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The present work attracts attention to obtaining a new result of the periodic solution of a damped nonlinear Duffing oscillator and a damped Klein–Gordon equation. It is known that the frequency response equation in the Duffing equation can be derived from the homotopy analysis method only in the absence of the damping force. We suggest a suitable new scheme successfully to produce a periodic solution without losing the damping coefficient. The novel strategy is centered on establishing an alternate equation apart from any difficulty in handling the influence of the linear damped term. This alternative equation was obtained with the rank upgrading technique. The periodic solution of the problem is presented using the non-perturbative method and validated by the modified homotopy perturbation technique. This technique is successful in obtaining new results toward a periodic solution, frequency equation, and the corresponding stability conditions. This methodology yields a more effective outcome of the damped nonlinear oscillators. With the help of this procedure, one can analyze many problems in the domain of physical engineering that involve oscillators and a linear damping influence. Moreover, this method can help all interested plasma authors for modeling different nonlinear acoustic oscillations in plasma.
Keywords: damping nonlinear oscillator, non-perturbative technique, modified homotopy perturbation method, stability analysis, rank upgrade technique
1 INTRODUCTION
In the range of differential equations, various physical manifestations, such as acoustic waves in plasma physics, and many engineering problems are modeled. A lot of scientists have made magnificent efforts to evaluate the solution of these differential equations. Different techniques have been utilized to evaluate the corresponding solutions. Modeling different biological, physical, and biochemical engineering problem occurrences, in general, yields nonlinear partial differential equations (PDEs). Moreover, plasma physics is one of the most fertile fields for many researchers interested in studying nonlinear phenomena. To perform modeling, the nonlinear phenomena that propagate in different plasma systems and many ordinary and partial differential equations must be solved. For this purpose, different mathematical approaches have been introduced for modeling several physical problems. Recently, a damped nonlinear oscillator model has been widely considered in practical engineering, general physics, and in plasma physics. For mathematical scientists, an article on nonlinear PDEs, which are addressed in most engineering and science domains, is extremely important. Many authors have offered a survey of the literature with numerous references using various analytical techniques for dealing with the damped nonlinear oscillation problems. Nonlinear systems remain a challenge, and its interest has fundamentally concentrated on specific changes in system instability and bifurcations.
Duffing oscillators are permanently connected with engineering and physical situations, especially plasma physics. The damping force is an impact on an oscillatory system that has the action of restricting, reducing, or averting its oscillation. Damping is created by operations of losing the energy stored in an oscillation. Examples include resistance in electronic oscillators, viscous pull in mechanical systems and plasma physics, osmosis, and expansion of light in visual oscillators. Damping, which did not build from vanishing energy, may be significant in other vibrating systems like those that subsist in some biological systems. A system’s damping may be categorized as one of the following:
• Overdamped: The system reaches equilibrium as an exponential decay.
• Critically damped: The system reaches equilibrium as soon as possible without vibrating.
• Underdamped: The system vibrates with amplitude slowly lessening to zero (at low frequency compared to the nondamped case).
• Undamped: The system resonantly oscillates at its native frequency.
See [1] for additional instances for the aforementioned categories.
Over the current decades, a lot of physical phenomena have been described utilizing nonlinear ordinary differential equations (ODEs). One of the simplest of these oscillators called a Duffing equation has received significant interest in light of its classical applications in engineering, biology, plasma physics, and sciences. The history of nonlinear proceedings in engineering sciences has been observed since [2] employed the hardening spring model to investigate the vibration of the electromagnetic vibrating beam in 1918. Therefore, the Duffing equation has been extensively utilized in structural dynamics and in mathematics to determine the existence of oscillatory motions of second-order nonlinear PDEs. The oscillation/non-oscillation theorems of Meissner’s equation were investigated by [3]. [4] utilized the multiple-scale perturbation approach to develop and calculate an analytic periodic solution of oscillating movements in damping Duffing oscillators. [5] used perturbation techniques for nonlinear structural vibrations using Duffing oscillators. Consequently, perturbation analysis is still used to obtain an analytic solution for oscillating movements. The HPM was first introduced by the famous mathematician [6]. Recently, it has been employed in numerous investigations in engineering and physics. In contrast, this technique failed in analyzing damping nonlinear oscillators [7]. There are many modifications made by many researchers to improve HPM to be a more functioning method. [8] employed the parameter-expanding technique as a modification to HPM in solving strongly nonlinear oscillators. [9] and [10] developed HPM by connecting it with Laplace transform for solving nonlinear oscillators. [11] obtained a periodic solution for the Fangzhu oscillator by HPM.
Next, several of the latest developments of this technique are briefly mentioned; for instance, the combination of the multiple-scale method and HPM [12–15], the parameterized HPM [16], and nonlinearities distribution HPM was applied to solve Troesch’s problem [17]. Numerical and approximate techniques can be utilized for the treatment of nonlinear oscillators. Numerous estimates were used in trying to solve linear and nonlinear oscillators, for example, the reproducing kernel method [18]. Moreover, an iterative procedure is employed to evaluate a numerical solution of the optimal control issues of the Duffing oscillators [19]. Also, [20] applied the finite difference technique to investigate an oscillatory model. Furthermore, by substituting a suitable linear auxiliary operator for the linear operator in [21] analysis of nonlinear equations with restoring force, among other changes, they created a new version of HPM. By using the modified homotopy perturbation procedure, [22] also introduced an analytic solution for a nonconservative parametric quintic-cubic Duffing oscillator. A damped Mathieu equation was solved using a modulation for HPM by [23]. The Newell–Whitehead–Segel (NWS) equation’s periodic solution was also estimated by [24] using the HPM. [25] introduced a simple frequency formulation to study a tangent oscillator. An analytic solution of Burgers’ equation with time-fraction has been introduced by [26]. A variational principle for a nonlinear equation that appears in several micro-electro-mechanical systems was developed by [27]. Furthermore, a jerk Duffing oscillator was solved using the lowering rank approach by him and [28]. Luo and Jin have used the lower-order technique in numerical approaches [29]. Recently, [30] applied the non-perturbative technique to solve a damping Helmholtz–Rayleigh–Duffing oscillator.
It is common knowledge that some nonlinear differential equations do not have exact solutions. Then, the analysis of approximate solutions for some kinds of these systems plays a significant role in investigating nonlinear physical phenomena [31]. The damping Duffing oscillator refers to these kinds of equations, and it is represented by the following equation:
[image: image]
It is thought to observe that a Duffing oscillator is a simple model which displays various kinds of vibrations, such as chaos and limit cycles. The term [image: image] in Eq. 1 represents a damping oscillation, and [image: image] refers to viscous damping. The part [image: image] refers to a nonlinear restoring force acting as a hard spring (with [image: image] rules, the size of stiffness, and [image: image] dominants, the size of nonlinearity). This equation illustrates a wonderful area of well-known nonlinear dynamical system behavior. It was used by a lot of scientists to illustrate such behaviors. Numerous problems in both engineering and physics drive to nonlinear Duffing oscillators (Eq. 1) from oscillations of a simple pendulum, including nonlinear electrical circuits. It has been approved in various applications in image processing [4, 5]. The approximate periodic response for the un-damped equation, obtained by various analytical methods, has been discussed in almost all textbooks on nonlinear vibration. Eq. 1, with a non-zero damping term, has received attention in many domains of physical engineering problems. The investigation of new techniques which drive the solution of the damped Duffing equation was of vital significance since these solutions can be used for a cubic Schrodinger/damping Klein–Gorden equation that has numerous uses in nonlinear optics, plasma physics, and fluid mechanics.
Other related works have been included in this study, yielding a good understanding of the present analysis. A fractionally damped beam has been analyzed by [32]. The influence of dispersion force and squeezed film damping was incorporated in the dynamic instability of the nanowire-fabricated sensor subjected to centrifugal and constant acceleration [33, 34]. Even though Eq. 1 appears straightforward at a first glance, it contains several complex elements. The classical perturbation approach has a lot of drawbacks. Moreover, the following damping nonlinear Klein–Gorden equation has the same shortcoming when using the classical HPM:
[image: image]
The real constant coefficients [image: image] and [image: image] can be defined as a second-order spatial derivative coefficient, spatial damped coefficient, temporal damped coefficient, natural frequency, and cubic stiffness parameter, respectively. The classical nonlinear Klein–Gordon equation, which appears in several scientific domains such as nonlinear optics, solid physics, fluid mechanics, quantum mechanics, and plasma physics, is derived from Eq. 2 when the values of the coefficients [image: image] and [image: image] vanish. In addition to its applications in plasma physics, it can be used for modeling many nonlinear structures in plasma. It transforms into the one-dimensional time-nonlinear damped Klein–Gordon equation when [image: image] and [image: image] [35–38]. The aforementioned damping Klein–Gordon equation can be transformed into a damping Duffing oscillator by using the technique of the traveling wave approaches. Traveling waves engender multiple physical systems spontaneously, typically qualified by PDEs. Then, by including the following traveling wave’s next variable [image: image], one can create an alternative oscillatory form of Eq. 2.
[image: image]
Such transformation was applied to the nonlinear Klein–Gordon Eq. 2 without damping by [39]. According to the stated novel independent variable, one obtains
[image: image]
where the prime denotes the total derivative concerning the variable [image: image]. By utilizing Eq. 4 with Eq. 2, it will be transformed into the following damping Duffing equation:
[image: image]
where [image: image] and [image: image] are given through the subsequent notations:
[image: image]
The solution of Eq. 5 gives the traveling wave solution of the original nonlinear Klein–Gordon equation as given in Eq. 2. Suppose that Eq. 5 has been subjected to these initial conditions [image: image].
A fresh perturbation strategy is required to address the drawbacks. Unexpectedly, the flaw in Eq. 1 has been fixed by using the fractional derivative in conjunction with HPM [40, 41].
In the present research, a new suitable idea is presented successfully to produce a periodic solution for oscillators containing the damping coefficient without losing this damping force. The main idea is based on the rank upgrading technique by upgrading the linear operator to a higher order and using the original equation to replace what is equivalent to the linear damped term [42, 43]. The outcome is an alternative fourth-order differential equation devoid of any damping difficulties. The comparison between this alternative equation and the original equation showed that the obtained equation is corrected and can be used to perform the periodic solution. The periodic solution of the problem is presented using the non-perturbative method and validated by the modified homotopy perturbation technique.
2 METHODOLOGY
To overcome the difficulty in solving the damping nonlinear oscillator, one can employ the rank upgrading mechanism to annihilate the damping term “[image: image]”. This method is used for upgrading the order of the derivatives of Eq. 5 to become
[image: image]
[image: image]
By removing [image: image] from Eq. 7 with the help of Eq. 5 and replacing [image: image] in Eq. 8 yields
[image: image]
This is a fourth-order equation with cubic-quintic nonlinearity which represents an alternative form of the original damping Eq. 5. This new form will be subject to the initial conditions listed as follows:
[image: image]
It can be ensured that Eq. 9 represents an alternative form of the original Eq. 5 through the comparison of the numerical solutions.
3 INTRODUCING THE PERIODIC SOLUTION
The periodic solution can be introduced from Eq. 9 analytically which can be illustrated as follows, with the non-perturbative approach and with the homotopy perturbation method:
It is noted that Eq. 9 can be rearranged in the following form:
[image: image]
where the two odd functions [image: image] and [image: image] are selected to have [image: image] and [image: image] as a common factor, respectively. Here,
[image: image]
Consequently, Eq. 11 in the non-perturbative approach can be sought in the form
[image: image]
The efficient frequency formula given by El-Dib [44–46] can be used to evaluate both [image: image] and [image: image] as follows:
Introducing the trial solution to Eq. 13 in the form
[image: image]
where [image: image] and [image: image] represent the amplitude and the unknown frequency of the oscillation, respectively. Accordingly, both [image: image] and [image: image] read
[image: image]
[image: image]
Employing Eq. 14 with the linear fourth-order Eq. 13 yields the frequency equation in the form
[image: image]
At this stage, the solution of Eq. 13 has the form
[image: image]
with
[image: image]
4 VALIDATION WITH THE HOMOTOPY PERTURBATION APPROACH
By utilizing the technique of the auxiliary equivalent [21, 40, 47, 48] by introducing ([image: image]) into Eq. 9 and then building the corresponding homotopy equation, one obtains
[image: image]
The new frequency parameter [image: image] is unknown to determine the latter.
By operating both sides of Eq. 20 with the inverse [image: image], one can reduce the artificial higher power and obtain
[image: image]
This equation is an alternative to Eq. 5; it is free of difficulty due to the linear damping effects. At this stage, the application of HPM is easy without any shortcomings. Typically, introducing the homotopy expansion [6], one finds
[image: image]
where the unknowns [image: image] are given by substituting from Eq. 22 into Eq. 21; following the same procedure as given in HPM, the abovementioned unknowns may be determined by the simpler differential equations as follows:
[image: image]
which is the linear harmonic equation having the general solution in the form
[image: image]
where [image: image] is the amplitude of the oscillation. Furthermore, we have
[image: image]
The zero-order solution Eq. 24 is introduced into Eq. 25, and the cancellation of the secular terms requires
[image: image]
Consequently, the frequency–amplitude equation is given by
[image: image]
It is noted that the frequency equation derived by the homotopy perturbation method is equivalent to that obtained before by the non-perturbative approach in Eq. 17.
Without secular terms, the solution of Eq. 25 arises in the form
[image: image]
Accordingly, the final first-order approximate solution gives
[image: image]
It should be noted that solution Eq. 29 is superior to known asymptotic periodic solutions of Eq. 5. See, for illustration, the recent study demonstrated by [49]. In his work, he applied the Laplace Adomian decomposition method to a damping Duffing equation and obtained an asymptotic solution in terms of a power series. However, the abovementioned solution cannot be obtained using HPM without applying the rank upgrading technique.
The stability criteria of the frequency–amplitude Eq. 26 become
[image: image]
These criteria ensure the positivity of [image: image]
By employing the value of [image: image] as a function of [image: image] and [image: image] from Eq. 3 into the asymptotic solution of Eq. 29, consequently, this asymptotic solution is converted in terms of the original Klein–Gordon Eq. 2; therefore, one obtains
[image: image]
For more convenience, a numerical calculation will be represented to confirm the previous approximate analytic solution of the damping Duffing oscillator 5).
5 NUMERICAL ILLUSTRATIONS
In this section, the comparison between the numerical solutions for both the original Eq. 5 and alternative Eq. 9is explained. The Runge–Kutta approach built in Mathematica software will be used in this comparison. The numerical values of the parameters are selected in the form [image: image] and [image: image]. In Figure 1, the numerical solution for the original equation is represented by the solid red line, while the alternative equation is plotted with a blue dashed line. In this calculation, the error between these solutions is [image: image]. This means that the two curves are identical. This graph shows that Eq. 9 is another face of Eq. 5. This means that any solution of Eq. 9 represents a solution of Eq. 5. Therefore, the periodic solution obtained by the non-perturbative technique or that obtained by the modified HPM represents a periodic solution of the original Eq. 5.
[image: Figure 1]FIGURE 1 | Comparison of the numerical solution between Eq. 5 and Eq. 9.
It is worthwhile to observe that the periodic solution Eq. 18, that obtained by the non-perturbative method, and the periodic solution Eq. 29, performed by the modified homotopy perturbation approach, are required for comparing the periodic solution that can be produced from Eq. 5 directly. It is easy to employ the Galerkin’s method directly to Eq. 5 to perform the following periodic solution:
[image: image]
where [image: image] is given by
[image: image]
Figure 2 represents the periodic solution obtained by three different methods. These are as follows: Galerkin’s solution (Eq. 32), which is plotted by the solid red line; the non-perturbative solution (Eq. 18),which is represented by the blue dashed line; and the HPM solution (Eq. 29), which is represented by the dotted green curve. The calculations are made for the system having [image: image], and [image: image]. The investigation of this graph shows that there is an excellent agreement between the three curves. The relative error between the Galerkin solution (Eq. 32) and the non-perturbative solution (Eq. 18) is [image: image], while the error between the Galerkin solution (Eq. 32) and the HPM solution (Eq. 29) is found to be [image: image]. This comparison also shows that the non-perturbative solution (Eq. 18) is closer than the HPM solution (Eq. 29) to Galerkin’s solution (Eq. 32).
[image: Figure 2]FIGURE 2 | Comparison between the analytical periodic solutions by the non-perturbative and homotopy perturbation approaches (18) and (29), respectively, with Galerkin’s solution (Eq. 32).
The approximate solution, as given in Eq. 32, is sketched versus the parameter [image: image] for the amplitude [image: image] and [image: image] This calculation is displayed in Figures 3–5. These three graphs show a periodic solution for the damping Duffing Eq. 5. Moreover, the influence of the parameters [image: image] and [image: image] and the linear frequency [image: image] on the periodic solution is shown in these graphs. The growth in these coefficients reduces the time cycle of the wave solution.
[image: Figure 3]FIGURE 3 | Influence of the parameter P on the periodic solution Eq. 32.
[image: Figure 4]FIGURE 4 | Influence of the parameter R on the periodic solution Eq. 32.
[image: Figure 5]FIGURE 5 | Influence of the parameter [image: image] on the periodic solution Eq. 32.
The calculations are performed under the stability conditions that are given in Eq. 30. The stable distribution is located in the plane [image: image] The numerical outcomes are illustrated in Figures 6–9, where the stable region is colored in red. These stable regions have satisfied the three inequalities in Eq. 30. In Figure 6, the natural frequency [image: image] is plotted versus the amplitude [image: image] for the Duffing coefficient [image: image] at [image: image]. When the parameter [image: image] was increased to the value of [image: image] (i.e., the damping coefficient is decreased), the stable region was decreased, as shown in Figure 7. The continued raise in [image: image] results in reducing the stable region, as shown in Figure 8, for [image: image]. This shows the increase in the damping coefficient plays a stabilizing influence. This agreement is with those obtained in [11]. The examination of the increase in the Duffing coefficient is the subject of Figure 9. It is observed that as [image: image] increased, the width of the stable region decreased. This ensures that the nonlinear coefficient plays a destabilizing influence.
[image: Figure 6]FIGURE 6 | Stability distribution of the conditions for a system of [image: image] and [image: image]
[image: Figure 7]FIGURE 7 | Stability distribution of the same system, as given in Figure 6, except that [image: image]
[image: Figure 8]FIGURE 8 | Stability distribution of the same system, as given in Figure 6, except that [image: image]
[image: Figure 9]FIGURE 9 | Stability distribution of the same system, as given in Figure 7, of [image: image]
6 CONCLUSION
Away from the regular investigation of the nonlinear oscillators, the present article has been explained. This article deals with the nonlinear Duffing equation and obtains a new result of the periodic solution of a damped nonlinear Duffing oscillator and the damped Klein–Gordon equation by using a new technique named the rank upgrading technique. This technique first increases the order of the partial differential equation by differentiating the original differential equation. The alternative equation is obtained. The comparison between this alternative equation and the original equation shows that the obtained equation is corrected and can be used to perform the periodic solution. Its solution has been validated by applying the HPM to the alternative equation, in which the oscillation frequency obtained by the non-perturbative approach has been identical to that frequency obtained by the HPM. This frequency has been used to discuss stability behavior. A comparison of the periodic solutions’ curves was obtained using three different methods. Non-perturbative, modified homotopy perturbation, and Galerkin solutions showed an excellent agreement. This comparison also shows that the non-perturbative solution is closer to Galerkin’s solution than the HPM solution. Furthermore, this scheme is a new technique. Therefore, the present numerical method can be used for analyzing different acoustic waves and oscillations in plasma and different physical systems.
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Determining the non-linear traveling or soliton wave solutions for variable-order fractional evolution equations (VO-FEEs) is very challenging and important tasks in recent research fields. This study aims to discuss the non-linear space–time variable-order fractional shallow water wave equation that represents non-linear dispersive waves in the shallow water channel by using the Khater method in the Caputo fractional derivative (CFD) sense. The transformation equation can be used to get the non-linear integer-order ordinary differential equation (ODE) from the proposed equation. Also, new exact solutions as kink- and periodic-type solutions for non-linear space–time variable-order fractional shallow water wave equations were constructed. This confirms that the non-linear fractional variable-order evolution equations are natural and very attractive in mathematical physics.
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1 INTRODUCTION
Fractional calculus is a generalization of traditional integer-order integration and derivation actions onto non-integer order. The idea of fractional calculus is as old as classical calculus; it was discussed for the first time by Leibniz and L’Hospital in 1965. The fractional- and variable-order VO fractional models gained more attention because these models describe the physical phenomenon properly as compared to integer-order differential models. The non-linear FEEs define different phenomena in various areas, such as signal preparation, medication, biology, and organic framework [1, 2]. Many strategies have been produced to solve integer/fractional-order problems. Various fractional-order literature works directed that the memory and/or non-locality of the system may change with time, space, or other conditions. So, here our focus is on VO fractional differential models, which describe the physical models that vary with time or space or space–time. For example, Akgül et al. [3] solved the VO FPDE numerically and presented numerical experiments to confirm the efficiency and feasibility. Katsikadelis [4] developed a numerical method for linear and non-linear VO FPDEs in the Caputo sense. The resultant numerical values demonstrated the accuracy of the proposed method. Sahoo et al. [5] reviewed the VO operator definitions and properties. They discussed the new transfer function and investigated the model of a dynamic viscoelastic oscillator. Sing et al. [6] suggested an SEIR model that modeled the 2014–2015 outbreak of the Ebola virus in Africa. They discussed the system of VO FDEs and estimated its parameters for one or more variables. Semary et al. [7] approximated the solution of Liouville–Caputo VO FPDEs with [image: image] based on the Chebyshev function and discussed many linear and non-linear non-integer-order PDEs. Taghipour and Aminikhah [8] proposed the ADI numerical scheme for the fractional-order model and discussed the theoretical analysis. Other related studies can be seen in [9–16]. The effective analytical and closed-form solutions are studied in the recent literature. For example, Uddin et al. [17] considered the two important fractional-order models, namely, equal width and generalized equal width that describe the dispersive waves. They used the fractional derivative in the Riemann–Liouville sense and the [image: image] expansion approach has been used, and they confirmed that the proposed approach is powerful, very convenient, and computationally efficient. Barman et al. [18] worked on a generalized Kudryashov method to provide a generic and inclusive closed-form solution. The proposed approach confirmed various shapes of waveform solutions such as kink-shaped, bell-shaped, singular, and flat in a 3D form. In another study, Barman et al. [19] proposed the same technique for Konopelchenko–Dubrovsky and Landau–Ginzburg–Higgs models. They obtained various varieties of analytical solutions for different parameters. The solutions are obtained in 2D and 3D forms, which demonstrated the efficiency and reliability of the proposed method. Roy et al. [20] solved the two significant types of models and implemented the new generalized [image: image] expansion method. They constructed the solution in trigonometric, hyperbolic, and rational forms with different parameters. Kumar et al. [21] found out the exact solution for the higher-dimensional Fokas and breaking soliton models by the generalized exponential function method. The authors observed that the suggested method is effective and powerful. Ali et al. [22] investigated the exact solution for the VO fractional modified equal width equation based on the exp [image: image] method. The fractional derivative is obtained in the Caputo sense, and the obtained exact solution is new and somewhat natural in mathematical physics. Akhtar et al. [23] constructed exact and traveling wave solutions for the Konopelchenko–Dubrovsky model and used two types of integration schemes. The resultant solutions are dark, single, anti-kink forms having a wide range of applications in applied sciences. Islam et al. [24] worked on analytical techniques and found the solution for the fractional-order foam drainage equation and SRLW equation. They used the [image: image] expansion method and investigated the traveling wave solution for the proposed models. Mamun et al. [25] discussed the double [image: image] expansion approach for the breaking soliton and the (1 + 1)-dimensional classical Boussinesq equations and obtained different soliton solutions, such as kink, multi-periodic, single soliton, and periodic wave solutions for different values of parameters. The comprehensive study can be found in [26–35].
The aforementioned cited literature reported that so far only numerical studies have been discussed for VO models and no attempt has been made to find the closed form for such types of VO-FEEs. The objective of this paper is to discuss the closed-form solution of the non-linear VO-FEEs. Here, we solve the non-linear VO fractional shallow water wave equation with CFD using the Khater method. The VO fractional problems are more complex computationally than a constant fractional order, and the evolution of a system can be furthermore clearly and accurately described. This contribution seems natural and simple and models many systems with VO [36]. The traveling wave solutions for the VO physical models are not known to the authors.
2 THE OUTLINE OF THE KHATER METHOD
The non-linear variable-order [image: image] FPDE is given as
[image: image]
where [image: image] is a polynomial for [image: image] and [image: image] represents Caputo fractional derivatives of the variable-order [image: image]. The Caputo fractional derivative of the variable order for a function [image: image] of order [image: image] is defined as follows [22]:
[image: image]
Also, the important property is given as follows:
[image: image]
Eq. 1 involved the linear and non-linear highest-order derivatives. A brief explanation of the proposed method is as follows [37]:
Convert the variable-order FPDE into an ordinary differential equation (ODE) by taking the transformation as
[image: image]
The obtained ODE is as follows:
[image: image]
where [image: image] and [image: image] are constant parameters, if necessary, integrate Eq. 5. Next, we constructed a trial solution which can be expressed as
[image: image]
where [image: image] can be zero and [image: image], and the function [image: image] satisfies the following second-order linear equation:
[image: image]
The aforementioned equation has 27 possible solutions [33], which are derived by formulating various traveling wave solutions. Furthermore, the balancing principle is used to find [image: image]. Substituting Eq. 6 in Eq. 5 and Eq. 7, an equation involving the term [image: image] is obtained. In the obtained system of equations, the same power of [image: image] is equated to zero. The equations are solved simultaneously to find all unknown constants.
The solutions to Eq. 7:
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The exact solutions for Eq. 1 are obtained by substituting unknown constants and Eq. 7 in Eq. 6.
3 FORMULATION FOR THE SOLUTIONS OF SHALLOW WATER WAVE EQUATIONS
Shallow water waves arise in the ocean when the waves move from the center of the ocean to the shore or beach known as shallow water waves. Most of the ocean waves are produced by wind, tsunamis, earthquakes, tides, etc. [38], which carry energy. Tsunamis and tides are both shallow water waves. The shallow water wave equation has been derived from the Navier–Stokes equations. Here, we apply the proposed method to study the non-linear space–time fractional VO shallow water wave equation and construct a traveling wave solution based on the Khater method.
3.1 The non-linear space–time variable-order fractional shallow water wave equation
We consider the space–time VO fractional shallow water wave equation as follows [39]:
[image: image]
Using the wave variable [image: image], Eq. 35 simplified to
[image: image]
By balancing the highest-order non-linear term [image: image] and the highest-order linear term [image: image], we obtain [image: image] Therefore, the solution of Eq. 6 becomes
[image: image]
Substituting Eq. 37 into Eq. 36 yields a polynomial equation for [image: image] Equating the like powers of [image: image], we attain a system of algebraic equations given as
[image: image]
[image: image]
[image: image]
[image: image]
[image: image]
Solving the aforementioned system of algebraic equations by using computer algebra, we obtain
[image: image]
where [image: image], and [image: image] are arbitrary constants.
Substituting Eq. 38 into Eq. 37, we obtain
[image: image]
Now, substituting the solutions of Eq. 7, we obtain the following 27 distinct traveling wave solutions for space–time fractional variable-order shallow water wave Eq. 35:
When [image: image] and [image: image],
[image: image]
[image: image]
When [image: image] and [image: image],
[image: image]
[image: image]
When [image: image], [image: image], and [image: image],
[image: image]
[image: image]
When [image: image], [image: image], and [image: image],
[image: image]
[image: image]
When [image: image] and [image: image],
[image: image]
[image: image]
When [image: image] and [image: image],
[image: image]
[image: image]
When [image: image],
[image: image]
When [image: image], [image: image], and [image: image],
[image: image]
[image: image]
When [image: image] and [image: image],
[image: image]
When [image: image],
[image: image]
When [image: image] and [image: image],
[image: image]
When [image: image] and [image: image],
[image: image]
When [image: image],
[image: image]
When [image: image],
[image: image]
When [image: image],
[image: image]
When [image: image],
[image: image]
When [image: image],
[image: image]
When [image: image],
[image: image]
When [image: image] and [image: image],
[image: image]
When [image: image],
[image: image]
4 GRAPHICAL REPRESENTATION
This section focuses on the graphical representation of some specific findings. Marwan and Aminah [40] solved the generalized shallow water equation by the (G′/G)-expansion and constructed a new exact solution for the proposed method. Bagchi et al. [41] extended the elliptic function method and found the traveling wave solution for the generalized shallow water wave equation. The obtained solutions are in the form of singular and periodic soliton solutions. Here, in this study, the graphical results obtained for different values of VO [image: image] and [image: image] are shown in Figures 1–5 for Eq. 35 in the form of 3D and 2D plots. Figure 1 and Figure 4 show the singleton soliton solution, and Figure 2, Figure 3, and Figure 5 represent the kink-shaped solution obtained using Maple 16 software.
[image: Figure 1]FIGURE 1 | Periodic solution for Eq. 35 for [image: image] at [image: image].
[image: Figure 2]FIGURE 2 | Kink-shaped solution for Eq. 35 for [image: image] at [image: image].
[image: Figure 3]FIGURE 3 | Kink-shaped solution for Eq. 35 for [image: image] at [image: image]
[image: Figure 4]FIGURE 4 | Kink-shaped solution for Eq. 35 for [image: image] at [image: image].
[image: Figure 5]FIGURE 5 | Kink-shaped solution for Eq. 35 for [image: image] at [image: image].
5 CONCLUSION
In this paper, we solved the non-linear VO fractional evolution equation successfully in the Caputo fractional derivative sense and obtained new exact traveling wave solutions. The VO fractional evolution equation is discussed quite efficiently and accurately by using the Khater method. Here, 27 exact solutions having Kink and singular soliton-type solutions are obtained for different values of VO [image: image] and [image: image] for the proposed Caputo fractional VO equation. The different values of parameters examine different physical phenomena. This contribution is effective, instrumental, and evangelistic and seems more natural in the literature. This study can be extended to other types of VO FPDEs and can be solved by various analytical techniques.
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In this article, (3+1)-dimensional generalized Shallow Water-like (gSWl) equation is discussed. The infinitesimal generators of the equation are derived by using the Lie symmetry analysis method. The optimal system is obtained based on the adjoint table of the generators of the equation. Exact solutions of the equation are constructed by applying symmetry reduction, Exp[image: image] expansion method, Exp-function expansion method, Riccati equation method, and [image: image] expansion method. For analyzing the dynamical behavior of the solutions, we derive the physical structures of dark soliton, kink wave, and periodic solutions via numerical simulations.
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1 INTRODUCTION
Non-linear phenomena are widespread in the life of the world, such as marine engineering, hydrodynamics, chemical physics, etc [1–3]. To investigate exact solutions of any complex non-linear partial differential equations and examine the behavior of the solutions is very interesting. Many effective methods for constructing the exact solutions are proposed, including Bäcklund transformation method [4] (G′/G) expansion method [5, 6], Hirota bilinear method [7], Homogeneous balance method [8, 9], Lie symmetry method [10–12], Inverse scattering method [13], F-expansion method [14], Exp-function method [15, 16], Darboux transformation method [17], Riemann-Hilbert method [18, 19] and so on.
The following (3 + 1)-dimensional generalized Shallow Water equation
[image: image]
has been studied by many approaches. Huang and Gao [20] derived the one-, two- and three-soliton solutions of the equation by the Hirota method, and deduced the propagation and interaction of the soliton solutions. In [21], Huang studied the stability of solitons by numerical methods and noticed that the soliton amplitude magnitude is affected by the spectral parameters. In [22], the closed-form solutions of the equation were derived by Lie symmetry, and the soliton solutions were found through the optimal system. Based on the auto-Bäcklund transformation, Li and Liu [23] constructed the multi-periodic solitons of Eq. 1.1 through the variable-coefficient homogeneous balance method and investigated the propagation and interactions of the solutions. In [24], Liu deduced the new periodic solitary solutions of Eq. 1.1 by the direct test function method, and the validity of the direct test function method was shown. Liu and Zhu [25] investigated the variable coefficients of the gSW equation by the Hirota bilinear method and constructed a large number of breather wave solutions.
Tang, Ma and Xu [26] proposed the (3 + 1)-dimensional generalized Shallow Water-like (gSWl) equation
[image: image]
which can be derived by rewriting Eq. 1.1 on the scale x → −x. In [26], the Grammian and Pfaffian solutions of Eq. 1.2 were obtained and the equations were extended with the Pfaffianization method. Kumar et al. [27] derived the multi-stripe and breathing wave solutions of Eq. 1.2 by the bilinear method, combining the quadratic function and hyperbolic cosine method, the behavior between the one-block and multi-stripe solutions were obtained. Sadat et al. [28] applied symbolic calculations to yield lump-type and stripe solutions of Eq. 1.2. Zhang et al. [29] applied the generalized bilinear operator method and obtained the rational and lump solutions of Eq. 1.2.
The shallow water wave equation plays an essential role in marine engineering, environmental problems, and ecology, so it is valuable to derive the exact solutions of the shallow water wave equation. Employing the Lie symmetry method to yield exact solutions of the (3 + 1)-dimensional gSWl equation has not been studied. In this paper, the Lie symmetry analysis method is applied to investigate the solutions of Eq. 1.2. Lie symmetry method [30–34] has an important significance for solving partial differential equations (PDEs). Applying the Lie symmetry method, the symmetry group of the equation can be derived, furthermore, the equation can be similarly reduced and the new solutions of the equation can be yielded by the symmetry transformation. The Lie symmetry method can reduce the order of the equation when solving with higher order equations, which is difficult to accomplish by other methods.
The structure of the rest of the paper is as follows: In Sect 2, the infinitesimal generators are obtained by applying the Lie group transformation to the (3 + 1)-dimensional gSWl equation. In Sect 3, the optimal system for Eq. 1.2 is derived under the basis of the adjoint table. The periodic wave, kink wave and soliton solutions of the equation are derived by Exp[image: image] expansion method, Exp-function expansion method, Riccati equation method, and [image: image] expansion method in Sect 4. The dynamical behavior of the soliton wave solutions of the gSWl equation are analyzed in Sect 5. The conclusions are given in Sect 6.
2 LIE SYMMETRY ANALYSIS FOR THE (3 + 1) GSWL EQUATION
The key step for solving non-linear PDEs by Lie symmetry group method is to obtain Lie algebra of the equation. Consider the following one-parameter Lie group transformation:
[image: image]
where ɛ is a parameter, and ɛ ≪ 1. ξ, η, φ, τ, and ϕ are infinitesimal generators concerning x, y, z, t and u. The one-parameter vector field V of gSWl equation can be written as
[image: image]
The vector field V satisfies
[image: image]
in which Δ = uxxxy + 3uxxuy + 3uxuxy − uyt − uxz and [image: image] is the fourth prolongation of V. The fourth prolongation of Eq. 1.2 can be derived as
[image: image]
The invariant condition can be given as
[image: image]
Based on Eq. 2.5, the system of determining equations can be given by
[image: image]
By solving the above equations we can derive
[image: image]
where ci and Fi (i = 1, 2, 3, 4) are arbitrary constants and functions, respectively.
Assume that [image: image]. The infinitesimal generators have new forms
[image: image]
Thus, Lie algebras of infinitesimal symmetry of Eq. 1.2 can be spanned by the following six vector fields
[image: image]
The commutator table derived for the gSWl equation by the action of Lie brackets is shown in Table 1, where [image: image].
TABLE 1 | Commutator table.
[image: Table 1]3 OPTIMAL SYSTEMS OF ONE-DIMENSIONAL SUBALGEBRAS
Based on the Lie brackets, the optimal system of one-dimensional subalgebras of the equation can be deduced. By the linear combination of subalgebras, a new form is given by
[image: image]
By Olver theory [30], using symbolic calculations
[image: image]
The adjoint table is shown in Table 2.
TABLE 2 | Adjoint table.
[image: Table 2]3.1 Construction of group invariants
The exchange and adjoint relations of the six-dimensional Lie algebras are given in Table 1 and Table 2, respectively. Assume that the vectors [image: image] and [image: image] satisfy
[image: image]
in which [image: image] can be derived from Table 1. The values of k were calculated from Table 1 as follows
[image: image]
For any sj (j = 1, 2, 3, 4, 5, 6), it have required
[image: image]
Gather the coefficients containing sj in the above equation, the following system of differential equations are deduced as
[image: image]
After analyzing the above system of PDEs (3.5), it is not difficult to yield that the invariant function as [image: image].
3.2 One-dimensional optimal system
For [image: image] defined by [image: image] is a linear map [35], in which n = 1, … , 6. The matrix [image: image] of [image: image] with respect to basis to [image: image] are deduced below
[image: image]
Then, the matrix M can be yielded by
[image: image]
The matrix M can be written as
[image: image]
The adjoint transformation equation for Eq. 1.2 is
[image: image]
By applying the invariants a1 and a3, discuss the situations of the following Lie algebras.
Case 1 Assume that a1 ≠ 0 and a3 = 0. Let a1 = 1. Making ρ2 = 0, ρ3 = 0 through
[image: image]
and ɛ4, ɛ5, ɛ6 are constants. In other words, all v1 + a2v2 + a3v3 + a4v4 + a5v5 + a6v6 can be replaced by v1 + ς4v4 + ς5v5 + ς6v6, where ς4, ς5 and ς6 are constants.
Case 2 Assume that a3 ≠ 0 and a1 = 0. Let a3 = 1. Making ρ1 = 0, ρ4 = 0, ρ5 = 0, ρ6 = 0 through
[image: image]
and ɛ2 is an arbitrary constant. In other words, all a1v1 + a2v2 + v3 + a4v4 + a5v5 + a6v6 can be replaced by ς2v2 + v3, where ς2 is a constant.
Case 3 Assume that a1 ≠ 0 and a3 ≠ 0. Let a1 = 1 and a3 = 1. Making ρ2 = 0, ρ4 = 0, ρ5 = 0, ρ6 = 0 through
[image: image]
In other words, all v1 + a2v2 + v3 + a4v4 + a5v5 + a6v6 can be replaced with v1 + v3.
Case 4 Replacing a1 = a3 = 0 into (3.9). By solving (3.9) for ɛi, we get ɛ1 = 0, ɛ3 = 0 and ɛ2, ɛ4, ɛ5, ɛ6 are arbitrary constants. In other words, all v1 + a2v2 + v3 + a4v4 + a5v5 + a6v6 can be replaced by ς2v2 + ς4v4 + ς5v5 + ς6v6, where ς2, ς4, ς5 and ς6 are constants.
Similarly, the other terms of the optimal system of Eq. 1.2 can be obtained by the above method. All of them are listed below.Single vector fields: v1, v2, v3, v4, v5, v6.Dual vector fields: v1 + v3, v1 + v4, v1 + v5, v1 + v6, v2 + v3, v2 + v4, v2 + v5, v2 + v6, v4 + v5, v4 + v6, v5 + v6.Triple vector fields: v1 + v4 + v5, v1 + v4 + v6, v1 + v5 + v6, v2 + v4 + v5, v2 + v4 + v6, v4 + v5 + v6.Quadruple vector fields: v1 + v4 + v5 + v6, v2 + v4 + v5 + v6.
4 EXACT SOLUTIONS OF THE GSWL EQUATION
Next, the exact solutions of the gSWl equation are derived by employing the optimal system. The similarity solutions for arbitrary vector field v in the optimal system can be solved by the Lagrange’s system.
[image: image]
4.1 Vector field v1
The characteristic equation can be composed as
[image: image]
(Eq. 4.2) has the following form similarity solution.
U (x, y, z, t) = F (α, β, δ).in which α = x, [image: image], δ = t.
Taking the above similarity solution into Eq. 1.2, the reduced NLPDE is given as
[image: image]
Similarly, applying the Lie symmetry method, the infinitesimal generators of Eq. 4.3 can be derived
[image: image]
Let c1 = 0,1(δ) = d,2(δ) = d, c2 = d, c3 = 3d, and take these values into (4.4), we get
[image: image]
which has the similarity solutions from
[image: image]
where P = α − δ and Q = 3α − β.
Putting it into Eq. 4.3, the following reduced equation can be yield
[image: image]
Repeating the above steps, we get
[image: image]
Substituting c1 = d, c2 = 3d, c3 = d into (4.8). The new characteristic equation is given as
[image: image]
The new similarity solutions from
[image: image]
where ϖ = 3P − Q. Replacing (4.10) into Eq. 4.7, we get 3kϖϖ = 0. The solution of Eq. 1.2 via the above method can be given as
[image: image]
in which c1 and c2 are constants.
4.2 Vector field v3
The characteristic equation can be composed as
[image: image]
The derived similarity solution has the form as.
[image: image].where [image: image], [image: image], θ = z. Hence, the following (2 + 1)-dimensional equation can be given as
[image: image]
Then, the new infinitesimal generators of Eq. 4.13 can be yielded
[image: image]
Let c1 = 0, c2 = 0, c3 = 0, g1(z) = θ, and take these values into (4.14), the corresponding characteristic equation is reduced as
[image: image]
which has the similarity solutions from
[image: image]
in which P = α, [image: image]. Substituting F (α, β, θ) into Eq. 4.13 results
[image: image]
Equations 4.17 satisfies infinitesimal as follows
[image: image]
assume that c1 = 9, c2 = 1 and its characteristic equation is
[image: image]
The similarity solution is
[image: image]
where ϖ = Q. Then the ODE can be reduced as
[image: image]
By solving the above equation, we get
[image: image]
4.3 Vector field v2 + v5
The characteristic equation can be composed as
[image: image]
(4.23) has the following form similarity solution
[image: image]
in which α = x − z, β = y, δ = z. Then Eq. 1.2 can be reduced to the following (2 + 1)-dimensional equation
[image: image]
The solution of Eq. 4.25 is more difficult to be derived, hence we use the Exp[image: image] expansion method to find its solution. Considering the following traveling wave transformation
[image: image]
where k, l, m are constants. Replacing (4.26) into Eq. 4.25 and integrate the derived equation with respect to υ once, we get
[image: image]
Suppose that Eq. 4.27 can be solved in the following form
[image: image]
in which j can be determined later and ϑ satisfies
[image: image]
When λ2 − 4μ > 0 and μ ≠ 0, (4.29) has a solution given by
[image: image]
When λ2 − 4μ < 0, (4.29) has a solution given by
[image: image]
By balancing Eq. 4.27, j = 1. Hence (4.28) can be rewritten
[image: image]
Taking (4.32) along with Eq. 4.29 into Eq. 4.27, a series of algebraic equations about a0, a1, k, l and m can be deduced. Select a set from these to discuss the solution of the equations, we get
[image: image]
If λ2 − 4μ > 0 and μ ≠ 0, the kink wave solution of Eq. 1.2 is
[image: image]
If λ2 − 4μ < 0, the periodic wave solution of Eq. 1.2 can be given by
[image: image]
4.4 Vector field v4 + v6
The characteristic equation can be composed as
[image: image]
We derive [image: image], where α = x, β = y and θ = z as the similarity variables. Taking it into Eq. 1.2, the following reduced equation can be obtained
[image: image]
In the following (G′/G) method is applied to solve Eq. 4.37. Considering the following traveling wave transform
[image: image]
in which k, l, m are constants. Putting (4.38) into Eq. 4.37 yields
[image: image]
then integrate once, we yield
[image: image]
Assume that Eq. 4.40 has solutions of the following form
[image: image]
in which bj (j = 0, … , p) are constants which can be derived later and [image: image] satisfies the equation
[image: image]
Exploiting the principle of homogeneous balance, p = 1. Hence (4.41) can be rewritten as
[image: image]
Substituting (4.42) and Eq. 4.43 into Eq. 4.40 and putting the same power combination of (G′/G)j. Then make these coefficients be zero, and a series of algebraic equations about k, l, m, α1, α2 can be yielded. By solving the above equations, we obtain
[image: image]
where k ≠ 0 and λ − 4μ ≠ 0. With these parameters, we can yield the following forms of solutions:
For λ2 > 4μ,
[image: image]
where [image: image] and c1, c2, α0, k, λ, μ are constants.
For λ2 < 4μ,
[image: image]
where [image: image] and c1, c2, α0, k, λ, μ are constants.
4.5 Vector field v2 + v4 + v5 + v6
The characteristic equation can be composed as
[image: image]
Solving (4.47), we derived the similarity solution
[image: image]
in which α = x − t, β = y and θ = z − t are similarity variables. Taking (4.48) into Eq. 1.2, the (2 + 1)-dimensional equation can be yielded
[image: image]
Next, applying the Riccati equation method, different forms of solutions of Eq. 4.49 can be deduced. Taking the following traveling wave transform
[image: image]
where k, l, m are constants. Substituting (Eq. 4.50) into Eq. 4.49 and integrating once yields
[image: image]
Suppose that Eq. 4.51 has solutions of the following form
[image: image]
where aj (j = 1 p) are constants which can be obtained later and [image: image] satisfies the equation
[image: image]
in which ω is an constant. The form of the solutions of Eq. 4.53 are as follows
[image: image]
By balancing Eq. 4.51, we get p = 1. Hence, (Eq. 4.52) can be rewritten as
[image: image]
Replacing (Eq. 4.53) along with Eq. 4.55 into Eq. 4.51, letting the same coefficients and a series of algebraic equations about a0, a1 and l can be yielded. Solving the above equations, we obtain
[image: image]
On the basis of Eq. 4.56, we derive the solution of Eq. 1.2 as follows:
For ω < 0,
[image: image]
where k, m, a0, ω, y, z are constants.
For ω > 0,
[image: image]
where k, m, a0, ω, y, z are constants.
4.6 Vector field v2 + v4
The characteristic equation can be composed as
[image: image]
Solving (Eq. 4.59), we derived the similarity solution
[image: image]
where α = x, β = y and θ = z − t are similarity variables. Taking (Eq. 4.60) into Eq. 1.2, the (2 + 1)-dimensional equation can be obtained by
[image: image]
Taking the traveling wave transform
[image: image]
where k, l and m are constants. Putting (Eq. 4.62) into Eq. 4.61 and integrate once, we derive
[image: image]
Suppose the solution of Eq. 4.63 is given by
[image: image]
where sj, rj are constants to be obtained. By balancing Eq. 4.63, p = 1. Therefore, Eq. 4.64 is written as
[image: image]
Replacing (Eq. 4.63) along with Eq. 4.65 and making the same coefficient be zero, a family of algebraic equations about s0, s1, s2, r0, r1, r2, k, l and m can be yielded. Solving the above equations, we obtain:
[image: image]
Then the solution of Eq. 1.2 is given by:
[image: image]
where m, s0, s1, s2, r0, r1 and r2 are constants. Based on Eq. 4.67, replacing the parameter k = ik, l = il, m = im and picking the real part, the following periodic wave solution can be given
[image: image]
5 ANALYSIS AND DISCUSSION
In this part, the geometric representation of the solution of Eq. 1.2 is discussed by employing graphical description. The physical phenomena of the solutions can be seen more obviously via numerical simulation. The solutions of the gSWl equation yielded from the above process include periodic, dark soliton, kink wave and annihilation structures of solutions. The dynamic structure of the solutions is investigated below.
Figure 1 depicts the physical structure of the singular solution when the parameter c1 = 1, = 1, x = 1, y = 1. (B) Indicates the density plot of the corresponding solution.
[image: Figure 1]FIGURE 1 | Singularity profile of (4.11).
Figure 2 describes the physical structure of the kink solution when t = 1, and the rest of the parameters take the value of y = 1, = 3, = 1, k = 1, l = 1, m = 1, = 1, = 1. When the time increases from t = 1 to t = 28, the energy of the wave is gradually depleted and eventually becomes a plane wave.
[image: Figure 2]FIGURE 2 | Annihilation of the kink wave solution of (4.34) at y =1.
The physical structure of the antisymmetric periodic solution (4.35) is shown in Figure 3. The 3-D plot of the antisymmetric periodic solution is described when the parameter is taken as z = 0, y = 0, = 1, = 1, k = 1, l = 1, m = 1, = 1, = −1. (B) show the density plot of the solution.
[image: Figure 3]FIGURE 3 | Multi period solution of (4.35).
The dynamics structure of the kink wave solution at z = 0 is plotted in Figure 4. When k = −10, c = 10, = 1, = −10, y = 1. (A) shows the 3-D plot of the solution and (B) depicts the spread route of the solution along the x-axis when t = 0, t = 1, t = 2 and t = 3, respectively.
[image: Figure 4]FIGURE 4 | The kink wave solution of (4.57) at z =0.
It is shown in Figure 5 and Figure 6 that the physical structure of the periodic wave solutions (4.58) and (4.68). (A) Is the corresponding 3D structure, (B) is the track of the solution along the x-axis, which is given when the parameterk = 1, = −1, = 1, r = 1, y = 0, z = 0 (4.68) shows the 3-D structure of the symmetric two-period wave solution, with the corresponding parameter a0 = 1, = 1, = 1, = 5, = 1, = 1, m = 1. (B) Depicts the spread route of the solution along the z-axis at t = 0.
[image: Figure 5]FIGURE 5 | The periodic solution of (4.58) at z =0.
[image: Figure 6]FIGURE 6 | The symmetric two-periodic solution of (4.68).
A structure of the dynamics of the dark soliton (4.67) is depicted in Figure 7. The 3-D plot of the dark soliton is obtained when the parameter is selected as a0 = 1, = 1, = 1, = 1, = 2, = 1, m = 1. The spread route behavior of the dark soliton along the z-axis can be derived by choosing t = 0, t = 1, t = 2 and t = 3.
[image: Figure 7]FIGURE 7 | Dark soliton solution of (4.67).
6 CONCLUSION
In summary, the (3 + 1)-dimensional generalized Shallow Water-like wave equation is shown in this paper which is studied based on the Lie symmetry method and the symbolic calculation. By the adjoint table of the infinitesimal generators, a one-dimensional optimal system is formulated. In terms of the optimal system, some new solutions of the gSWl equation are derived by Exp[image: image] expansion method, Riccati equation method, Exp-function expansion method, and [image: image] expansion method. In particular, the physical structures of the detected dark soliton, kink wave, and periodic solutions are investigated to make this study more credible.
In this work, a situation of the (3 + 1)-dimensional gSWl equation has been investigated based on the Lie symmetry method, and the rest of the latter cases are presented in other subsequent papers. More work needs to be done in the future. Firstly, in this paper, the exact solutions of the equation are derived richly with the Lie symmetry method, and other methods can be employed for the solutions of the equation, such as the numerical analysis method [36–38]. Secondly, the natural properties of the solutions to the equation can be investigated further in subsequent studies through the generalized multi-symplectic method and the structure-preserving method [39–42].
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The Lie symmetry method is applied, and exact homotopic solutions of a non-linear double-diffusion problem are obtained. Additionally, we derived Lie point symmetries and corresponding transformations for equations representing heat and mass transfer in a thin liquid film over an unsteady stretching surface, using MAPLE. We used these symmetries to construct new (Lie) similarity transformations that are different from those that are commonly used for flow and mass transfer problems. These new (Lie) similarity transformations map the partial differential equations of a mathematical model under consideration to ordinary differential equations along with boundary conditions. Lie similarity transformations are shown to lead to new solutions for the considered flow problem. These solutions are obtained using the homotopy analysis method to analytically solve the ordinary differential equations that resulted from the reduction of considered flow equations through Lie similarity transformations. With the aid of these solutions, effects of various parameters on the flow and heat transfer are discussed and presented graphically in this study.
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1 INTRODUCTION
Fluid flow and heat transfer phenomena have a wide range of applications in engineering. By varying these transporters and enforcing various physical conditions, it is possible to produce a variety of industrial products at their best. As a result, it has drawn a significant amount of attention during the past several decades. The Navier–Stokes equations are used to quantitatively represent these heat and flow exchanges, with the appropriate circumstances. These are extremely non-linear partial differential equations (PDEs) of order two or higher. Such non-linearities lessen the likelihood of obtaining precise results. As a result, flow studies are related to approximation techniques and analytical solution schemes, and heat transfer techniques are frequently used.
The Runge–Kutta and shot method are combined for the derivation of the former type of solutions, whereas homotopy analysis and perturbation techniques are frequently used for the latter.
These problem-solving methods are not directly related to the PDEs that describe the flow problems. The system of ordinary differential equations (ODEs) relating to these flow issues is, nevertheless, solved using these methods. The similarity transformation is the technology that makes this kind of reduction possible. The dependent and/or independent variables of flow equations are reduced using these adjustments.
First, the fact that there are more established and diverse solution methods for ODEs than PDEs accounts for this reduction. Second, running ODEs through mathematical symbolic and numeric software requires less time and equipment compared to other approaches. Following the reduction of flow equations to ODEs via similarity transformations, one finds several applications of such solution algorithms in the literature.
With this procedure, the flow and heat transfers have been studied under different sets of conditions, for example, in a liquid film on an unsteady stretching surface [1, 2], under the effects of variable fluid properties and thermo capillarity [3], with Soret and Dufour effects on a viscoelastic fluid in three dimensions [4], in a rotating channel three-dimensional squeezing flow [5], in a three-dimensional flow of a nanofluid over a non-linearly stretching sheet [6], and for an Oldroyd-B nanofluid thin film over an unsteady stretching sheet [7]. Likewise, magnetohydrodynamic (MHD) flow and heat transfer have been studied for the following: thermosolutal Marangoni convection with heat generation [8], viscoelastic fluid flow over a vertical stretching sheet under the effects of Soret and Dufour [9], Jeffrey fluid over a stretching sheet considering the chemical reaction and thermal radiation [10], three-dimensional flow of an Oldroyd-B nanofluid on a radiative surface [11], thermally radiative flow in three dimensions of a Jeffrey nanofluid under internal heat generation [12], a shrinking sheet with thermal slip [13], a vertical stretching sheet under the effects of heat sink or source [14], mixed convection on the inclined stretching plate in the Darcy porous medium with a Soret effect considering variable surface conditions [15], and mixed convective flow of a Maxwell nanofluid past a porous vertical stretching sheet with a chemical reaction [16].
There are countless studies through an area of research known as the Lie symmetry method, which helps to accurately derive the analytical or approximate solutions for flow and heat transfer equations. For instance, Lie group theory has been employed to study the flow and heat transfer in a non-Newtonian fluid over a stretching surface with thermal radiation [17], MHD boundary layer flow over a stretching sheet with viscous dissipation and uniform heat source/sink [18], MHD mixed flow of unsteady convection on a vertical porous plate with radiation [19], MHD double-diffusion convection of a Casson nanofluid on a vertical stretching/shrinking surface under the effects of thermal radiation and chemical reaction [20], heat flux effect on MHD second slip flow past a stretching sheet along with heat generation [21], MHD Casson fluid flow near a stagnation point on a linearly stretching sheet taking variable viscosity and thermal conductivity into account [22], thermophysical properties of a magnetized Williamson fluid subject to porous/non-porous surfaces [23], two-parameter Lie scaling approach on an unsteady MHD Casson fluid over a porous rigid plate with a stagnation point flow [24], double-diffusive MHD tangent hyperbolic fluid flow on a stretching sheet [25], MHD thermally slip Carreau fluid subject to multiple flow regimes [26], and for a liquid film on an unsteady stretching sheet using Lie point symmetries [27].
The governing equations in the aforementioned flow models are non-linear. Therefore, numerous approaches are adopted to deal with the non-linearity of the governing equations. The Lie symmetry method is one of those that provide a systematic procedure to construct similarity transformation that is a pivotal component of solution schemes employed on fluid flows mentioned previously. Non-linear phenomena impose constraints on the studies conducted to analyze physical models appearing in numerous applications due to the availability of few techniques that are employed to deal with it. As far as the Lie approach is concerned, one may linearize the governing equations (28)–(31). There are many non-Lie procedures that are also available in the literature, for example, effective treatments of the non-linearity of differential equations have been reported in [32–34].
A Lie point symmetry transformation can be associated with a differential or an algebraic equation if it leaves it form invariant. It implies that a heat equation remains a heat equation after mapping it under its Lie point transformation. Every Lie point transformation possesses a Lie symmetry generator. For basic theory and the algebraic computations of the Lie symmetry generators and transformation, readers are referred to [35, 36]. MAPLE contains all these procedures to build symmetry transformations in the “PDEtools” package, which, on applying “Infinitesimals” on differential equations, reveals their symmetries. MAPLE is used to find out symmetry generators and corresponding transformations for flow problems that are being taken into consideration in this study.
We deduce Lie point symmetries for the momentum, energy, and concentration equations representing the flow problem under consideration. There exist nine Lie symmetries, and by using them, Lie similarity transformations are obtained. However, we employ only those symmetries which leave the associated boundary conditions in a particular form. Based on these constraints, we consider three linear combinations (that are also Lie point symmetries) of the derived Lie symmetries. In one of these, we combine two symmetries, while the remaining two consist of three symmetries. These three combinations provided a different type of similarity transformation which transformed flow equations into three different types of ODE systems. Arbitrary constants are used in the linear combinations of the Lie point symmetries, and these constants also appear in the resulting system of ODEs due to their presence in the Lie similarity transformations we construct. We use them to control the convergence of solutions of the flow model we are considering.
The outline of the paper is as follows. The second section is about flow equations and their Lie symmetries. The subsequent section is on similarity transformations and mapping of flow PDEs to ODEs. In the fourth section, analytical solutions are constructed and presented with graphs and tables. The last section is the conclusion.
2 FLOW EQUATIONS
The flow of heat and mass in a thin liquid film has been studied [37] on an unsteady stretching surface with thermosolutal capillarity and variable magnetic field. Here, we are considering the flow model without the magnetic field and thermosolutal capillarity. The governing equations for the flow of heat and mass transfer in a thin liquid film over an unsteady surface are given by the following system of PDEs:
[image: image]
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subject to boundary conditions as follows:
[image: image]
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The Lie point symmetries of the flow mathematical model (Eq. 1) are derived by using the MAPLE “PDEtools” package and the built-in command “Infinitesimals.”
[image: image]
However, for a detailed algebraic procedure to obtain symmetries of system (Eq. 1), the reader is referred to [27]. The Lie symmetry transformations corresponding to symmetry generators (Eq. 3) leave equations of system (Eq. 1) form invariant. These Lie transformations are given in Table 1. Furthermore, all the associated conditions (Eq. 2) should also remain invariant. For this purpose, we employ each
[image: image]
where [image: image] denotes the extension of the symmetry generator; here, we require the first extension of [image: image], for m [image: image], and [image: image] denotes the conditions (Eq. 2) for [image: image], e.g., [image: image], and vice versa.
TABLE 1 | Lie symmetry generators and transformations.
[image: Table 1]3 LIE SIMILARITY TRANSFORMATIONS OF FLOW EQUATIONS
We construct the Lie similarity transformations corresponding to a few linear combinations for the derived Lie point symmetries [image: image]. These combinations are based on the unknown functions they determine for [image: image], [image: image], [image: image], and [image: image]. In this work, only those cases are of interest in which all these functions remain dependent on their arguments. Hence, we consider the combination [image: image] of Lie symmetries in Case-I, [image: image] in Case-II, and [image: image] in Case-III, where [image: image], [image: image], and [image: image] are any non-zero real numbers. All other symmetries from the list (Eq. 3) are not suitable in any form to construct the similarity transformations due to stretching sheet velocity and temperature obtained for these symmetries and their combinations. Hence, we consider only those linear combinations that are mentioned previously. These three linear combinations of symmetries leave both [image: image] and [image: image] in the stretching sheet velocity [image: image] and temperature [image: image]; i.e., we want to keep them as functions of time [image: image] and space variable [image: image]. Moreover, [image: image] is also left as a function of [image: image].
In the study conducted earlier on this type of fluid and heat transports [38], both the said quantities are set to be dependent on both [image: image] and [image: image].
3.1 Case-I: Similarity transformations for [image: image]
These symmetry generators provided the similarity transformations
[image: image]
which map the system of PDEs (Eq. 1) into the following system of ODEs:
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where [image: image] is the new independent variable. The associated boundary conditions are
[image: image]
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3.2 Case-II: Similarity transformations for [image: image]
In this case, the following similarity transformations are obtained:
[image: image]
These similarity transformations map the system of PDEs (Eq. 1) into the following system of ODEs:
[image: image]
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and the associated boundary conditions are given as follows:
[image: image]
3.3 Case-III: Similarity transformations for [image: image]
Here, we obtain the following similarity transformations:
[image: image]
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These similarity transformations map the system of PDEs (Eq. 1) into the following system of ODEs:
[image: image]
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[image: image]
The associated boundary conditions map to
[image: image]
4 ANALYTIC SOLUTION BY THE HOMOTOPY ANALYSIS METHOD
In this section, the velocity and temperature profiles are constructed with the aid of the analytical solution of order ten derived through the HAM. It has been observed that the first equation in all three cases that are under consideration here is the same. First, we draw [image: image]-curves that are presented graphically for [image: image] in Figure 1. The reason to consider this range is the dimensionless film thickness which remains negative or zero for [image: image]. Hence, all the velocity, temperature, and concentration profiles are presented here for [image: image]. The dimensionless film thickness increases with an increase in [image: image], under the conditions provided by Lie similarity conditions. This situation changes and opposite trends have been found in [39] using Lie similarity transformations with an introduction of a magnetic term. Figure 2 shows the velocity profiles for the same range of an unsteadiness parameter, which shows an increase in the velocity with this parameter. The temperature and concentration profiles are expected to be different in all three cases as, apparently, the second and third equations in the systems of ODEs (Eq. 6), (Eq. 9), and (Eq. 12) are different. Hence, they are written separately in the following cases to present the trends that are followed by these quantities under the influence of [image: image], [image: image], and [image: image]. Moreover, the constants [image: image], [image: image], and [image: image] that are used in forming the linear combinations of the Lie symmetry generators (Eq. 3) also affect the temperature and concentration profiles. These are all present in the second and third equations of the systems in Case (3.1)–(3.3).
[image: Figure 1]FIGURE 1 | [image: image]-curves ([image: image].
[image: Figure 2]FIGURE 2 | Velocity profiles ([image: image].
4.1 Velocity and concentration profiles for Case-I
For system (Eq. 6), we draw the [image: image]-curves in Figures 3A–C, for [image: image] and for three different values of [image: image]. The [image: image]-curves show a decline for [image: image] From these curves, we select a value for [image: image] to construct the temperature profiles in Figures 4A–C, which also exhibit a decreasing trend with a decrease in the values of [image: image] Likewise, we draw [image: image] curves in Figures 5A–C for [image: image] and for multiple values of [image: image]. These figures show a decrease in the [image: image] curves with a decrease in [image: image] and an increase in [image: image]. The concentration profiles behave in a similar manner as [image: image] curves. Here, we present these profiles for [image: image] and a variation in [image: image] and [image: image] The temperature and concentration profiles follow the same trends as system (Eq. 6) equations for both are the same; however, we are presenting them here separately. In both the mentioned set of figures, we considered different values of the unsteadiness parameter [image: image]. It can be observed from these figures that the unsteadiness parameter and concentration are inversely proportional, i.e., [image: image].
[image: Figure 3]FIGURE 3 | Different h-curves. (A) [image: image]-curve ([image: image]) and a variation in [image: image]. (B) [image: image]-curve ([image: image]) and a variation in [image: image]. (C) [image: image]-curve ([image: image]) and a variation in [image: image].
[image: Figure 4]FIGURE 4 | Different temperature profiles. (A) Temperature profiles ([image: image]) and a variation in [image: image]. (B) Temperature profiles ([image: image]) and a variation in [image: image]. (C) Temperature profiles ([image: image]) and a variation in [image: image].
[image: Figure 5]FIGURE 5 | Different h-curves.
4.2 Velocity and concentration profiles for Case-II
System (Eq. 9) involves three arbitrary constants [image: image], and [image: image], which appear here due to the linear combination of Lie point symmetries we used to construct the corresponding Lie similarity transformation. We draw common curves for [image: image] and [image: image] as [image: image]-curves for this system in Figures 6A–C. These curves are drawn for [image: image] and a variation in the unsteadiness parameter [image: image] and [image: image], [image: image] and [image: image], and a range of [image: image] and [image: image]. These curves and corresponding set of graphs for temperature and concentration show an increase when the unsteadiness parameter decreases from [image: image] to [image: image] Similar is the case when [image: image] goes from [image: image] to [image: image], as shown in Figures 7A–C and Figures 8A–8C.
[image: Figure 6]FIGURE 6 | Different concentration profiles.
[image: Figure 7]FIGURE 7 | Different h-curves.
[image: Figure 8]FIGURE 8 | Different temperature and concentration profiles.
4.3 Velocity and concentration profiles for Case-III
System (Eq. 12) involves three arbitrary constants [image: image], and [image: image] that are also part of the associated Lie similarity transformation. Figures 9A–C show the [image: image]-curves for both [image: image] and [image: image] These curves are constructed with the same values of [image: image] as in the previous case and for a different value of the unsteadiness parameter [image: image]. When the unsteadiness parameter decreases from [image: image] to [image: image], the [image: image]- and [image: image]-curves are decreasing. Similar behavior is shown by temperature and concentration profiles in Figures 10A–C; that is, for [image: image], the temperature and concentration are increasing. However, for [image: image], a decrease in the temperature and concentration is evident from these figures.
[image: Figure 9]FIGURE 9 | Different h-curves.
[image: Figure 10]FIGURE 10 | Different temperature and concentration profiles.
5 CONCLUSION
Lie point symmetries for heat and mass transfer in a thin liquid film on an unsteady stretching sheet are derived. These symmetries are used to construct Lie similarity transformations which map the PDEs representing the heat and flow model to ODE systems. We showed that there exist three different types of such reductions of the considered flow equations. In the Lie similarity transformation derivation, linear combinations of Lie symmetry generators are utilized. These linear combinations are derived with the help of arbitrary constants, which gives rise to multiple solutions of the flow and heat equations. We use the HAM to analytically solve the obtained non-linear ODEs with a [image: image]-order of approximation. Velocity, temperature, and concentration profiles are drawn with the aid of these [image: image]-order HAM solutions. These profiles are presented graphically with variations in the unsteadiness parameter [image: image], Prandtl number [image: image], Schmidt number [image: image], and the arbitrary constants used in the linear combinations of the Lie point symmetries.
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The oblique propagation of arbitrary ion acoustic solitary waves (IASWs) in magnetized electron-positron-ion plasmas is investigated by employing Sagdeev pseudopotential approach. Ions are assumed to be adiabatic having anisotropic thermal pressure. Electrons and positrons are considered to be isothermal, following Maxwellian distribution. In terms of electrostatic potential, Sagdeev potential function is obtained and analyzed numerically in the context of relevant plasma configuration parameters. The existence region of solitary pulses is defined accurately. It is investigated how several plasma configuration parameters, such as the positron concentration, parallel, and perpendicular ion pressure affect soliton characteristics.
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1 INTRODUCTION
To understand the fundamental processes in the Universe, most of the researchers have taken keen interest in the study of electron-positron-ion (e − p − i) plasma. Such plasmas are thought to have most probable appearance in the early Universe [1]. Other regions of space where such plasma is assumed to be found are atmospheres of Sun, neutron stars, active galactic nuclei and pulsar magnetosphere [2–4]. The existence of ions in astrophysical plasmas has some interior source, i.e., the processes of accretion, evaporation or seismic processes on the surface of stars might be a source of ions [5]. Moreover in matter, intense short laser pulse propagation can generate e − p − i plasma [6]. In laboratory experiments, the production of such three component plasma is possible when positron were made to probe particle transport in tokamaks, in which case the two-component electron-ion (e − i) plasma becomes a three-component e − p − i plasma [7, 8]. Clearly the wave motion behavior should be totally different in e − p − i plasma compared to the two component electron-positron (e − p) and e − i plasmas. The existence of ions is necessary for various low-frequency wave propagation which is other wise not possible in e − p plasma [9].
The ion-acoustic (IA) waves are the low frequency waves which have been investigated in both linear and non-linear limits in e − i plasma [10–13]. Several researchers have theoretically studied the linear as well as the non-linear wave phenomena in both magnetized and unmagnetized e − p − i plasmas [14–18]. The IA solitary waves (IASWs) were first investigated in unmagnetized e − p − i plasmas by Popel et al. [14] by considering one dimensional perturbations. The solution of non-linear equations was obtained in the form of a solitary pulse or soliton. It was shown that positron concentration reduces the maximum amplitude of the solitons. The study of IASWs in magnetized e − p − i plasmas was made by Mushtaq et al. [18]. In their research work, they found that the increase values of positron concentration leads to an increase in the amplitude of the solitary structure which is the opposite behavior to the previous study of these waves in an unmagnetized plasma [14].
Various techniques, such as the reductive perturbation and the Sagdeev pseudopotential are used to examine non-linear waves in plasma. Reductive perturbation technique (RPT) is applied to study small amplitude non-linear waves in unmagnetized/magnetized plasmas in the form of Korteweg-de Vries (KdV) equation, modified KdV equation and Zakharov-Kuznetsov (ZK) equation etc. For the very first time SWs in plasmas were studied by Washimi and Taniuti [19] through RPT and derived the KdV equation for IASWs [20]. However with this technique large amplitude excitations can not be studied. To overcome the limitation of small amplitude approximations, Sagdeev pseudo-potential method [21], usually called the mechanical-motion analog, provides an exact approach to the problem of finding arbitrary amplitude SWs. This method provides non-linear solutions for a plasma model which can be considered as candidates for SWs. The method basically modifies the Poisson’s equation which results into general energy equation of the form
[image: image]
The first term of the energy equation corresponds to kinetic energy, while the second term corresponds to potential energy. The equation basically represents a moving classical particle of unit mass in one dimensional potential [image: image] at time x. This method has been adopted for studying wave phenomena in various plasma environments like dusty plasmas, e − p − i plasmas and magnetospheric plasmas [22, 23].
The presence of an external magnetic field causes the collisionless plasma to behave in an anisotropic manner. As a result, according to the Chew-Goldberger-Low (CGL) theory, pressure differs in directions that are parallel and perpendicular to the magnetic field [24]. Therefore two equations of states are necessary to evaluate ion pressure i.e., the parallel ion pressure p‖ and perpendicular ion pressure p⊥ relative to the external magnetic field. Magnetic compression and expansion generated by plasma convection in some space regions might be one of the reason of this anisotropic behavior of plasma [25]. The CGL theory can be applied to such anisotropic plasma in the case when, the coupling between degree of freedom is ignorable [26]. While in the isotropic plasma the strong coupling between the degree of freedom gives rise to a simplified description due to wave-particle interaction, and hence ionic pressure can be evaluated using single equation of state [25].
IASWs in magnetized e − i plasma using Sagdeev pseudopotential method have been investigated by Chatterjee et al. [27]. They used quasi neutrality condition to discuss the existence conditions, shape and speed of SWs. The same approach was used by Sultana et al. [28] to analyze the oblique propagation of IASWs in a magnetized plasma in the presence of excess superthermal electrons. Oblique IA excitations in a magnetoplasma having κ-deformed Kaniadakis distributed electrons have also been discussed using Sagdeev’s potential approach [29]. The same technique has also been used by various researchers to discuss the SWs in e − p − i magnetoplasma [15, 30, 31].
The role of ion pressure anisotropy on the propagation characteristics of IA solitary structures in magnetized plasmas can not be ignored. Choi et al. used the Sagdeev potential approach and investigated the effect of anisotropy of ions on dust ion acoustic solitary waves (DIASWs) and double layer structures [32]. Adnan et al. [33] have examined the influence of pressure anisotropy on IASWs in superthermal magnetized e − p − i plasma by applying RPT. It has been shown that the solitary structures are affected by superthermality of electrons and positrons, pressure anisotropy of ions as well as the positron concentration. Similarly pressure anisotropy effect on DIASWs in a nonthermal plasma in Ref. [34] have also been investigated. The oblique propagation of electrostatic SWs in non-Maxwellian e − i plasma in the presences of ion pressure anisotropy with Sagdeev approach are studied in Ref. [35]. Khalid et al. [36] used Maxwellian electrons to investigate the modulation of multidimensional waves in anisotropic e − i plasma. Similarly, Alyousef et al. have also used Sagdeev approach to study the IASWs in magnetoplasma [37]. In [38] Sagdeev approach is utilized and IASWs in magnetized e-i plasma in the presences of pressure anisotropy is discussed. The results have revealed that the model supports only positive potential non-linear structures. Furthermore, the effect of relevant plasma parameters on the characteristics of IA solitary structures is evaluated. However, to the best of authors knowledge, the non-linear IASWs in the presence of pressure anisotropy in magnetized e − p − i plasma has not been explored, so for. We aim to considered anisotropic e − p − i plasma with Maxwellian electrons and positrons to study these waves.
The following is a breakdown of how this paper is structured. The model equations are presented in Section 2. The linear wave analysis is covered in Section 3. The Sagdeev pseudopotential technique is used to analyze large-amplitude electrostatic excitations in Section 4. The soliton existence domain for propagation of IASWs is discussed in Section 5. In Section 6, a parametric investigation is carried out to examine the effect of various relevant parameters on the solitary wave characteristics. The summary of the present study is given in Section 7.
2 BASIC EQUATIONS
The goal of the present study is to propose a model for the propagation of IASWs in a magnetized plasma made up of Maxwellian electrons (ne) and positrons (np) as well as adiabatically heated ions (ni). The ions are considered to be inertial exhibiting pressure anisotropy relative to the external magnetic field. The external magnetic field is assumed to be uniform and is taken along x-axis, i.e., B [image: image]. In the presence of ion pressure anisotropy, the ion fluid equations are,
[image: image]
[image: image]
where ui, ϕ, mi, e and Z stand for ion fluid velocity, electrostatic potential, ion mass, magnitude of electron charge and ionic charge state (for simplicity Z = 1 is chosen), respectively. Owing to the plasma anisotropy because of a strong external magnetic field B0, the plasma behaves differently in the parallel and perpendicular direction (s). Thereby the pressure tensor [image: image]) is divided into two components, i.e., the parallel [image: image] and perpendicular [image: image] pressure components [24, 25], thus
[image: image]
where [image: image] represents unit tensor and [image: image] shows the unit vector along B0. The expressions for p‖i and p⊥i are
[image: image]
In Eq. 4 p‖i0 = ni0kBTi‖ and p⊥i0 = ni0kBTi⊥ which are, respectively, the equilibrium values of parallel and perpendicular pressure functions, where ni0 is the unperturbed ion density. In case of ion pressure isotropy, we have p‖i = p⊥i and [image: image].
The electrons and positrons are assumed to follow the Boltzmann distributions under the electrostatic potential perturbation, and their number densities are given as
[image: image]
and
[image: image]
The system of evolution equations is closed via Poisson’s equation
[image: image]
where Te and Tp are, respectively, the electron and positron temperatures, while ne0 (np0) is the unperturbed electron (positron) number density. We consider ne0 = ni0 + np0 at equilibrium i.e., the quasineutrality condition does hold.
2.1 Evolution equations
We have considered two dimensional perturbation in the xy-plane, by setting [image: image]. Thus, the above system of equations can be written as follows;
[image: image]
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Here [image: image] is ion gyro-frequency, while uix, uiy, and uiz denote the fluid velocity components.
2.2 Scaled evolution equations
To normalize the above system of equations, we normalize the number density variables ns (s = e, i, p) by the unperturbed ion density ni0, the electrostatic potential ϕ by Teφ/e, the ion fluid velocity components by the ion acoustic speed [image: image]. The time and space variables are scaled by the inverse ion plasma frequency [image: image] and electron Debye radius [image: image], respectively. The normalized equations obtained by applying the mentioned normalization to Eqs 5, 6 and to Eqs 8–12 are:
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[image: image]
Here [image: image] and [image: image] represent the normalized parallel and perpendicular pressures, respectively, and are normalized by the thermal pressure in the relevant directions, with [image: image] being the dimensionless parameter. Furthermore, [image: image], [image: image], and [image: image] signify the electron to positron temperature ratio, unperturbed electron-to-ion density ratio and positron-to-ion density ratio, respectively. The over all charge neutrality in normalized form is η − γ = 1.
3 LINEAR WAVE ANALYSIS
To derive the dispersion relation (DR), we employ Poisson’s Eq. 19 instead of plasma approximation, although plasma approximation will be used in Section 5 for non-linear analysis. The DR while using Eqs 13–19 is obtained as
[image: image]
where kx = k cos θ and ky = k sin θ are the wave numbers in the parallel and perpendicular directions to the magnetic field, re spectively, and [image: image]. It can be noticed from Eq. 20 that DR depends on the ion pressure anisotropy. Also, the magnetic field dependence is visible through the frequency ratio Ω. By solving Eq. 20, we get
[image: image]
Equation 21 gives two modes i.e., ω− and ω+, representing slow and fast electrostatic modes, respectively. An acoustic mode is obtained by setting, ky → 0 and kx = k and considering k ≪ 1. Thus, the phase speed parallel to the magnetic field is calculated as
[image: image]
This is called phase speed of acoustic mode which is independent of the magnetic field Ω and perpendicular pressure p⊥. By inserting γ = 0 (i.e., in the absence of positron) and taking p‖ = 0, Eq. 22 reduces to the result of Ref. [29]. In Figure 1 Eq. 22 has been plotted for various values of obliqueness of the propagation direction, manifested via α (= cos θ). Increasing obliqueness (lowering α) results in a decrease in wave frequency and, consequently, in the phase speed of the magnetized IAW.
[image: Figure 1]FIGURE 1 | Plot of ω vs. k defined in Eq. 22 for different values of α i.e., α = 0.70 (solid curve), 0.80 (dashed curve) and 0.90 (dot-dashed curve) with p‖ = 0.2, γ = 0.2 and σ = 0.1.
4 ARBITRARY AMPLITUDE SOLITARY WAVE ANALYSIS
We are now interested to investigate the existence of large amplitude solitary waves in Maxwellian plasmas with the inclusion of ion pressure anisotropy. The fluid variables in the evolution equations are considered to be transformed into a single variable via the transformation
[image: image]
to a moving frame (here M is the Mach number indicating the normalized pulse propagation velocity) where the solitary pulses are stationary. The parameters [image: image] and [image: image] sin θ, respectively, imply the direction cosines along x − axis and y-axis subject to the condition that α2 + β2 = 1. By utilizing Eq. 23 in Eqs 13–18 we obtain a set of dimensionless non-linear differential equations in the co-moving co-ordinate (ξ). The transformed equations can be expressed as,
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By integrating Eqs 24–27 and implementing the appropriate boundary conditions, i.e., ni → η − γ = 1, uix,iy → 0 and φ → 0 at ξ → ±∞, we obtain
[image: image]
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The combination of Eq. 28 with Eqs 26, 27 results in
[image: image]
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Substituting the value of uiy from Eq. 30 into Eq. 32 one obtains
[image: image]
Differentiating Eq. 31 with respect to ξ and using Eqs 30 and 33 and after simplification, we have
[image: image]
Multiplying Eq. 34 by [image: image] and integrating once under the boundary conditions φ → 0 and dξφ → 0 at ξ → ±∞, we obtain the energy integral equation for the electrostatic potential φ, in the form
[image: image]
where [image: image] is the Sagdeev pseudopotential, which is written as
[image: image]
Equation 35 is a well known pseudoenergy conservation equation of an oscillating particle of unit mass, with velocity dξφ and position φ in a potential well [image: image]. In Eq. 36 the potential functions [image: image], [image: image] are given in the Appendix.
5 SOLITON EXISTENCE CONDITIONS
Solitary wave solutions are allowed by Eq. 35, if the following constraints are fulfilled [21]:
1. [image: image],
2. ψ(φ) < 0 at 0 < φ < φm,
3. [image: image]
where φm represents the maximum amplitude of SWs. The origin at φ = 0 defines the equilibrium state, which should represent a local maximum of the Sagdeev pseudopotential ψ(φ). From Eq. 36, it is clear that both ψ∣φ=0 = 0 and dφψ∣φ=0 = 0 holds at equilibrium. We have to investigate [image: image], from which one can specify a range of velocity values in which SWs may occur. Using the procedure explained in Refs. [28, 39], the third condition takes the form
[image: image]
with
[image: image]
and
[image: image]
where M1 and M2 are the lower (threshold Mc) and the upper (maximum Mmax) limits of the Mach number. It is clear from Eq. 38 that the lower Mach number does not depends on p⊥, while upper Mach number does depend on both p‖ and p⊥. While keeping α = 1, both the equations reduce to the true acoustic phase speed of IAWs given in Eq. 22. Eq. 37 is satisfied for Mach number values in the range
[image: image]
i.e.,
[image: image]
In other words, the inequality in Eq. 37 is valid if α = cos θ ≤ 1. Because we employed the neutrality hypothesis rather than Poisson’s equation, our results are valid in the long wavelength limit. To examine the polarity of the non-linear structures, we have to check third derivative of Sagdeev potential ψ(φ) at φ = 0 and M = Mc. If [image: image], then only positive structures (solitons or shocks) can exist otherwise, the plasma system can then support negative structures as well. It is found that,
[image: image]
which indicates that the current model can only support compressive (positive potential) solitary pulses. By keeping γ = 0 and neglecting p‖ and p⊥ we can retrieve the result of Ref. [29].
In order to emphasize the soliton existence region, we have plotted M1 and M2 in Figure 2 for different values of p‖ = 0.20 (solid curve), 0.30 (dashed curve) and 0.40 (dot-dashed curve). Considering, p⊥ = 0.1, α = 0.8 and σ = 0.1, it can be seen that M decreases with the increasing values of γ while both limits of Mach numbers increase with increasing values of p‖.
[image: Figure 2]FIGURE 2 | Variation of Mach number M vs. positron concentration γ for different values of p‖ = 0.20 (solid curve), 0.30 (dashed curve) and 0.40 (dot-dashed curve) with α = 0.80, p⊥ = 0.1 and σ = 0.1.
6 PARAMETRIC STUDY
The Sagdeev potential [image: image] depends on a number of important physical parameters in addition to the electric potential φ, including the excitation speed M, positron concentration γ, electron to positron temperature ratio σ, the obliqueness of propagation (via α = cos θ), parallel ion pressure p‖ and perpendicular ion pressure p⊥. In this study, we specifically focus to assess the effect of γ, p‖ and p⊥. Therefore, the effect of these three parameters is studied on propagation characteristics of solitary structures.
In Figure 3, the variation of Sagdeev potential ψ(φ), the resulting electrostatic potential φ and the associated electric field profile E have been shown for various values of positron concentration γ, while considering other fixed values M = 0.9, σ = 0.1, Ω = 0.3, α = 0.8, p‖ = 0.2 and p⊥ = 0.1. We note that as γ increases, the depth and root of the Sagdeev potential increases. It is clear from Figure 3B that, the amplitude of the solitary pulse increases while its width decreases with higher value of γ. Therefore, solitary structure gets taller and narrower with the increase of positron concentration in a magnetized anisotropic e − p − i plasma. The same effect has been shown in Ref. [30] while studying these waves in unmagnetized isotropic plasma. It is clearly seen that in the absence of positron concentration γ = 0, the amplitude of solitary structure reduced as shown in Figure 3 by solid orange curve.
[image: Figure 3]FIGURE 3 | Plot of (A) Sagdeev potential ψ(φ) vs. φ, (B) Electrostatic potential φ and (C) Electric field E for different values of γ = 0.00 (solid curve), 0.05 (dashed curve) and 0.10 (dot-dashed curve) with M = 0.9, Ω = 0.3, p‖ = 0.2, p⊥ = 0.1, α = 0.80, and σ = 0.1.
To study the effect of pressure anisotropy on the solitary waves, we have shown the variation of Sagdeev potential ψ(φ) along with the corresponding electrostatic potential and electric field profiles with p‖ = 0.20 (solid curve), 0.25 (dashed curve) and 0.30 (dot-dashed curve) while considering M = 0.9, γ = 0.2, Ω = 0.3, α = 0.8, σ = 0.1, and p⊥ = 0.1in Figure 4. It has been noted that the ion parallel pressure p‖ variation is quite effective (i.e., a minor change in p‖ causes a significant changes in the Sagdeev potential). Thereby increasing values of p‖ result in the decrease of depth and root of Sagdeev potential as well as in the amplitude of associated soliton pulses. The changing values of perpendicular ion pressure p⊥ have no discernible influence on the amplitude of the solitary waves as shown in Figure 5. In Figure 6 we have considered three different cases, mainly p‖ = p⊥ = 0, p‖ > p⊥ and p⊥ > p‖ with fixed values of M = 0.85, γ = 0.1, Ω = 0.3, α = 0.8, σ = 0.1. For p‖ > p⊥ the amplitude of solitary pulse decreases while in case of p⊥ > p‖ the amplitude of solitary pulses is not significantly effected as compared to p‖. In the absence of pressure anisotropy p‖ = p⊥ = 0, the amplitude of soliton increases as shown in Figure 6 by orange solid curve. We can infer from this Figure 6 that, in comparison to p⊥, the characteristics of IASWs are more sensitive to variations in p‖ as compared to p⊥. Similar results have been demonstrated in Ref. [35].
[image: Figure 4]FIGURE 4 | Plot of (A) Sagdeev potential ψ(φ) vs. φ, (B) Electrostatic potential φ and (C) Electric field E for different values of p‖ = 0.20 (solid curve), 0.25 (dashed curve) and 0.30 (dot-dashed curve) with M = 0.9, Ω = 0.3, γ = 0.2, p⊥ = 0.1, α = 0.80, and σ = 0.1.
[image: Figure 5]FIGURE 5 | Plot of (A) Sagdeev potential ψ(φ) vs. φ, (B) Electrostatic potential φ and (C) Electric field E for different values of p⊥ = 0.1 (solid curve), 0.5 (dashed curve) and 0.9 (dot-dashed curve) with M = 0.9, Ω = 0.3, γ = 0.2, p‖ = 0.2, α = 0.80, and σ = 0.1.
[image: Figure 6]FIGURE 6 | Plot of (A) Sagdeev potential ψ(φ) vs. φ, (B) Electrostatic potential φ and (C) Electric field E for different pressure anisotropy cases p‖ = p⊥ = 0 (solid curve), p‖ > p⊥ (dashed curve) and p⊥ > p‖ (dot-dashed curve) with M = 0.85, Ω = 0.3, γ = 0.2, α = 0.80, and σ = 0.1.
7 CONCLUSION
We have presented a study of the properties of arbitrary amplitude non-linear IASWs, propagating in a magnetized plasma characterized by anisotropic ions and Maxwellian distributed electrons and positrons. The linear analysis gives two modes, the IA and the ion-cyclotron modes, whose characteristics depends on the Maxwellian electron and positron and on the pressure anisotropy of the ions. We have shown that the frequency of the acoustic mode decreases with increasing obliqueness of propagation. In the non-linear regime, Sagdeev approach is used for the investigation of the properties of arbitrary amplitude IASWs. A parametric analysis was carried out for studying the characteristics of these waves, which can be summarize as follows.
• The amplitude of solitary pulses increases with rising values of positron concentration γ.
• The amplitude of solitary pulses reduced with higher values of parallel ion pressure p‖.
• Finally, we found that the characteristics of IASWs are more sensitive to the parallel ion pressure p‖ than perpendicular ion pressure p⊥.
These results are general and might be applied to astrophysical plasma environments like the polar cups region of pulsars and near active galactic nuclei, where magnetized e − p − i plasma and ions with aniotropic pressure can exist.
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The critical slowing down (CSD) phenomenon of the switching time in response to perturbation β (0 < β < 1) of the control parameters at the critical points of the steady state bistable curves, associated with two biological models (the spruce budworm outbreak model and the Thomas reaction model for enzyme membrane) is investigated within fractional derivative forms of order α (0 < α < 1) that allows for memory mechanism. We use two definitions of fractional derivative, namely, Caputo’s and Caputo-Fabrizio’s fractional derivatives. Both definitions of fractional derivative yield the same qualitative results. The interplay of the two parameters α (as memory index) and β shows that the time delay τD can be reduced or increased, compared with the ordinary derivative case (α = 1). Further, τD fits: (i) as function of β the scaling inverse square root formula [image: image] at fixed fractional derivative index (α < 1) and, (ii) as a function of α (0 < α < 1) an exponentially increasing form at fixed perturbation parameter β.
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1 INTRODUCTION
Bistable systems in many branches of sciences (physics, biology, … ) and engineering are characterized by the co-existence of two stable states, where the system switches from one stable state to other state by means of changing one or some of the system control parameters [1–4]. The associated transient phenomena of lengthening the switching time between these two stable states, called critical slowing down (CSD), happens upon perturbing one of the parameters at the critical (switching-on or -off) points of the charactertistic bistable curve [5–8]. It has been suggested that, CSD may serve as a universal indicator of how a complex physical system (such as brain, ecosystems, climate and financial markets) approaches a threshold [9–12], and as well serving as an indicator of transitions in two-species biological models, which exhibit Hopf bifurcation or hysteresis transition [13]. For our specific current concern, the CSD phenomenon has recently been investigated by us in [14] for some biological bistable models, namely.
(a) The spruce budworm outbreak model [3, 4, 15];
(b) The Thomas-reaction (enzyme membrane) model [4, 16].
Specifically, our investigation in [14] was concerned with the nature of transition between the two stable states, and the verification of the inverse square root scaling law, for the switching time delay (τD) at the critical switching-on and -off points, independent of the type of non-linearity in the model rate equations. The model rate equation in model a) is of first order ordinary differential equation (ODE), while in model b) the model rate equations are coupled first order ODEs.On the other hand, fractional calculus, a field of mathematics that deals with the analysis of derivatives and integrals of fractional (or even complex) order, has its applications in diverse areas of science and engineering. The associated fractional differential equations (FDEs) are widely and successfully used in mathematical modelling in a variety of fields. We refer the reader to the extensive list of major works and applications in the area of fractional calculus cited in ([17–20] and refs. therein). In ordinary calculus, the first order derivative of a function f(t), namely [image: image] is the instantaneous rate of change of f(t) over the infinitesimal time period, t → 0, that is, local time effect. In fractional calculus, the physical meaning is non-local, as the time domain is manifested as a memory (or time delay) effect and the current state of the system depends on its earlier history. Moreover, in fitting with test data of various models of memory phenomena, the order of the fractional derivative serves as an index of memory [21, 22]. FDEs of arbitrary real order are not in general easy to solve analytically [23]. However, the numerical method based on Laplace transform technique is a basic one and applicable for a wide class of initial value problems for FDEs, [23–26]. Recent fundamental computational methods are found in [27, 28]; and refs, therein.
Experimentally speaking, fractional derivative models (FDMs) are in excellent agreement with experimental data in many branches of science and engineering. Two specific examples we quote.
1. A recent experimental study of viscoelastic properties of some soft biological tissues under harmonic mechanical loading shows that the FD Voigt model performed better, compared with integer order derivative models [29].
2. FDM (Maxwell’s model) describing the viscoelastic Creep damage of some fruits is more efficient and well fitted with experimental data [30].
Further, CSD or more generally instability mechanism and chaos, have been investigated at large in fractional order dynamical systems in fields, like, fluid flow [31–35], neurology and biological phenomena ([36–38]; refs. therein) to account successfully for memory (time-delay) and special non-local effects. For example.
1. The Landau model that describes the fluid flow from laminar to turbulent has been examined within a fractional rate equation model [35] in order to account for memory effect. This transition to turbulence due to CSD shows that the turbulent fluctuations depend on memory of inverse power law decay in agreement with experiment [39]-slower than in the case of no memory (ordinary derivative case) of turbulent fluctuations decaying exponentially,
2. Capacitive memory due to fractional order cardiomyocyte dynamical model [37] alters the electrical signaling in cardiac cells in a manner that promote or suppress electrical instability (known as alternans).
3. The use of a fractional order mathematical model to study the signaling process in nerve cells (like, neuron) due to incorporated strong memory effects [36] has been interpreted as a neuronal disorder (Parkinson disease).
The concern of the present paper is to adopt the corresponding FDEs in both models a) [3, 4, 15] and b) [4, 16], referred to above, in order to incorporate for memory effects and examine effects of the fractional derivative order parameter (α), (0 < α < 1) on the time delay (τD) associated with the CSD phenomena examined in the no-memory case [14]. We use and compare two definitions of fractional derivatives, namely, Caputo’s [40] and Caputo-Fabrizio’s [21, 22] definitions. Both definitions have the advantage of dealing with initial conditions of the variables and their integer derivatives suitable in most physical processes, like models a) [3, 4, 15] and b) [4, 16] referred to above. As a main result, it is found that Caputo’s and Caputo-Fabrizio’s definitions of fractional derivatives yield the same qualitative results of reduced time delay τD at fixed perturbation of the concerned control parameter, with smaller values of the fractional derivative order α. The small quantitative difference in τD is due to the different convoluted kernels (that model the memory or delay effect) in [21, 22, 40].This paper is presented as follows. In section 2), we present the model differential equations in both ordinary and Caputo’s fractional derivative forms, for both models. In section 3), we present the computational results for the transient switching. Section 4) presents a summary of the results. In Supplementary Appendix A, a brief background of the model ODEs (eqa (1) and. 2) below) representing the two biological models referred to above is given, while Supplementary Appendix B presents a guideline for Euler’s numerical method to solve fractional FDE.
2 THE MODEL EQUATIONS
Here, we first present the model DEs of the two biological models (the Spruce-budworm and Thomas reaction models) in their ordinary derivative forms. (A brief background of these model ODEs are given in Supplementary Appendix A). Second, we present the corresponding fractional derivative forms, according to the two formulations of Caputo’s [40] and Caputo-Fabrizio’s definitions [21].
2.1 Ordinary derivative case
2.1.1 The spruce budworm Model
This model ([3, 4, 15]) provides a good example for understanding the dynamics of the interaction between trees and insects. The model rate equation for the insect (budworms) population has the form:
[image: image]
where N(τ) is the budworm’s population, τ = rt is normalised time, r is the linear birth rate and K is the constant carrying capacity which is related to the foliage (food) available on the trees in the absence of birds. The constant F = poA/r is the predation population with rate po and A is the (positive) predator attack rate and B is the threshold measure of the budworm population. The predation will approach an upper level value, [image: image] as N increases.
2.1.2 The Thomas reaction model
The mechanism of this model is based on a basic reaction in an enzyme membrane, between the substrate oxygen and uric acid. The model equations of the system in a dimensionless form are [4, 16]:
[image: image]
[image: image]
Here, u and v represent the uric acid and the oxygen being supplied at constant rates a and γb, respectively, where, a, ℓ, k, γ and b are all positive real constants. The factor [image: image] exhibits substrate inhibition: it increases (decreases) when u is small (large), with measure of inhibition’s severity equal to k.
In [14], the model Equations 1, 2 were analysed in detail (theoretically and computationally) regarding regions of bistability, the CSD phenomenon at the critical (switch-up and -down) points of the bistable curves and the verification of the inverse square root scaling law of the switching time delay [7, 41].
2.2 Fractional derivative cases
In this case, Equations 1, 2 take the following forms;
[image: image]
and,
[image: image]
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respectively, where [image: image] denotes the fractional derivative of order α (0 < α < 1). There is no unique definition of fractional calculus (FC), derivatives and integrals. Definitions of FC are too many and still -up to date - increasing. Here, we use and compare two definitions of fractional derivatives of a continuous function f(τ) on (0, τ), namely, Caputo’s [40] and Caputo-Fabrizio’s [21] derivatives.
2.2.1 Caputo’s fractional derivative [40]
     Caputo’s fractional derivative of f(τ) is defined as the convolution of the kernel power function τ−α, 0 < α < 1 with the first order (ordinary derivative) f′τ) on the closed interval [0, τ],
[image: image]
with Γ(x) is the gamma function.
2.2.2 Caputo-Fabrizio’s derivative [21, 22]
     This fractional derivative of f(τ) is defined as the convolution of the kernel exponential function e−ατ/(1−α), 0 < α < 1, with f′(τ) on the closed interval [0, τ],
[image: image]
3 TRANSIENT SWITCHING AND TIME DELAY
The switching time at the critical (switch-on and -off) points of the characteristic steady state bistable curves (N vs K) according to the FDE 3), or (u and v vs a) according to the FDEs 4) with both Caputo’s and Caputo-Fabrizio’s fractional derivatives, Eqs. 5 and 6, respectively, are investigated by solving these FDEs numerically using the fractional Euler’s method developed in [28, 48] (see Supplementary Appendix B for guidelines). This is done by replacing the control (input) parameter K in Equations 1–3) by Kc ± β, or a in Equations 2, 4 by ac ± β, where β (0 < β < 1) is a small real perturbation of the relevant control parameter, and Kc, ac are the initial (switch-on or switch-off) points of the bistable curves. Results are compared with the ordinary derivatives case (α = 1) [14].
3.1 The spruce budworm model
The switching-on and off -points, Aon and Aoff, respectively, of the steady state bistable curve (N vs. K) according to the ODE, Eq. 1, or the FDE; Eq. 3, i. e., [image: image], are shown in Figure 1, for fixed values of the parameters F and B (c.f [14]). For fixed positive perturbation parameter β = 0.1, the time delay τD to switch up to the upper branch of the bistable curve, Figure 2, is reduced in both cases of the fractional derivatives with smaller values of α, (0 < α < 1), compared with the ordinary derivative case (α = 1). This is confirmed in Figure 3 where for fixed 0 < β < 1, τD vs. α best fits exponentially increasing function for α ∈ (0, 1) in both cases of fractional derivatives. Note in Figure 2, τD is slightly reduced in the case of Caputo-Fabrizio’s fractional derivative, compared with Caputo’s fractional derivative case. Further, for fixed fractional parameter α = 0.25, for example, the lesser the perturbation parameter β, the larger is τD (i.e. slowing down)- Figures 4– like the case of α = 1 [14]. For fixed negative value of perturbation- Figures 5– at the switching-off point Aoff (in Figure 1), we have the same qualitative behaviour as in Figure 2, but with smooth delayed switching to the lower branch.
[image: Figure 1]FIGURE 1 | The steady state bistable curve of N against K, at fixed values of the parameters F =0.85, B =0.5. The switching-on and -off points: Aon =(3.6631,0.61299) and Aoff =(3.0199,1.2793).
[image: Figure 2]FIGURE 2 | The transient population N(τ) versus the normalised time τ = γt (as log scale), for control parameter with positive perturbation, K = Kc + β; Kc =3.6631 at the switching-on point, Aon, of Figure 1 and fixed β =0.1, and for α =1 (ordinary derivative) and 0.25 (Caputo’s and Caputo-Fabrizio’s fractional derivatives).
[image: Figure 3]FIGURE 3 | Time-delay, τD, versus the fractional derivative parameter α at fixed β =0.1. Circles represent the numerical results and the solid lines C1, C2 represent the exponential fitting, 4.9e2.2α in the case of Caputo’s derivative, and 3.8e2.3α in the case of Caputo-Fabrizio’s derivative, respectively.
[image: Figure 4]FIGURE 4 | As Figure 2, but at fixed value of α =0.25, and different β =0.01,0.3 in the case of: (A) Caputo’s, and (B) Caputo-Fabrizio’s, fractional derivatives.
[image: Figure 5]FIGURE 5 | Data as in Figure 2, but with negative perturbation, Kc − β at Aoff, where Kc =3.0199.
In both cases of positive and negative perturbations β) at the switching-on and -off points, Aon and Aoff, respectively, the time delay formula τD ∼|β|−1/2 (inverse square root scaling law) essentially holds in the both cases of Caputo’s and Caputo-Fabrizio’s fractional derivatives (0 < α < 1), Figure 6, similar to the ordinary derivative case (α = 1) [14], but with different proportionality factor.
[image: Figure 6]FIGURE 6 | Time-delay, τD, versus the perturbation parameter β at the switching-on point Aon in Figure 1. Circles represent the numerical results and the dashed lines represent the corresponding fittings, [image: image]. (A) The case of ordinary derivative (α =1). (B) The case of Caputo’s fractional derivative (α =0.25). (C) As (B) but with Caputo-Fabrizio’s fractional derivative.
3.2 The Thomas reaction model
The steady state bistable curves for the Oxygen and uric acid concentrations u, v, respectively, against the supplied rate a, according to Eq. 2 or 4) are shown in Figure 7, for fixed values of other system parameters [14]. For positive perturbation β in the ordinary derivative case (α = 1) at the switching-on point, Aon in Figure 7, the transient oxygen concentration u(τ), Figure 8, shows similar qualitative behaviour of reducing τD in both cases of Caputo’s and Caputo-Fabrizio’s fractional derivatives, but with smaller quantitive difference. The same behaviour occurs with negative perturbation at the switching-off point Aoff in Figure 7. Similar qualitative behaviour is also exhibited for the transient uric acid concentration v(t) for α = 1 [14] and α < 1. The time delay τD in both cases of u(τ) and v(τ) against the fractional parameter α and the perturbation parameter β shows similar qualitative behaviour as in Figures 3, 6, respectively.
[image: Figure 7]FIGURE 7 | The steady state bistable curves, u and 0.12v, versus the control parameter, a, for fixed parameters K =20, B =100, γ = l =1.
[image: Figure 8]FIGURE 8 | The transient Oxygen concentration, u(τ), versus the normalised time, τ with positive perturbation, κ = ac + β, ac =9.3643, at the switching-on point Aon of Figure 7 with fixed β =0.1 for α =1 (ordinary derivative) and 0.25 (Caputo’s and Caputo-Fabrizio’s fractional derivatives).
4 SUMMARY
Fractional order mathematical models generalise the concept of ordinary differentiation to incorporate memory (time delay) and spatial non-local effects, and hence provide extra fractional parameters to interpret/predict the dynamical behaviour of the concerned model and capture more of its details.In this paper, we have investigated the switching time response at the critical switching-on and -off points of the bistable curves related to two biological models, namely, the spruce budworm outbreak model [3, 4, 15] and the Thomas reaction model for enzyme membrane [4, 16] within fractional order models. Two definitions of fractional derivatives of order α, (0 < α < 1) have been used, namely, Caputo’s [40] and Caputo-Fabrizio’s [21, 22] fractional derivatives. Our study shows the following.
(i) The two definitions use convolution kernels of different variability that model the memory effect, namely, as power function [40] and as exponential function [21]. Both definitions yield the same qualitative results, (ii)-(iv) below, for the two biological models referred to above. The small quantitative variance in the results is due to the different mathematical forms for the memory or delay effect.
(ii) The switching time τD due to the perturbation in the control (input) parameter, at the critical points of the bistable curves, is reduced further in the fractional derivative case (0 < α < 1), compared with the ordinary derivative case (α = 1) [14],
(iii) For fixed perturbation β, τD as a function of the fractional derivative parameter, α, (0 < α < 1) fits an exponential form, i.e., τD is reduced with strong memory index (α ≪ 1) and,
(iv) The switching time τD as a function of the perturbation parameter β fits the scaled inverse square root law [image: image] at fixed fractional derivative index (α < 1) as in the ordinary derivative case (α = 1) [14]. This is a further indication of the universality of this inverse square root law in both cases of ordinary and fractional derivative formulations. Experimental affirmation of this law in optical bistable models within ordinary derivative formation was reported in [42].
In general, fractional order models provide deeper insight into the system dynamics with memory taken, into effect and further motivate for experimental observation.Finally, we refer to some very recent works [43, 44] on biological models of COVID-19. In [43], the authors investigated various parameter estimation methods of COVID-19 incubation period using lognormal and Gamma distribution assumptions. The expressions for the maximum likelihood estimation, expectation maximisation algorithm and newly proposed algorithm [43] are termed as double or single (Riemann) integrals: these integral expressions can be converted to fractional integrals (i.e usual Riemann integral with memory or non-local, convolution kernel of fractional index, e.g. [23]), and so to have extra fractional order parameter. The other biological model of COVID-19 [44] is concerned with the stability and sensitivity analysis, and optimal control strategies of a suggested epidemic control of COVID-19. The adopted model of ODEs can be converted to FDEs and so to investigate the memory effect in this epidemic model. The formulation of the models in [43, 44] within fractional calculus will certainly add details concerning memory/non-local effects.
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The purpose of this study is to apply the Lie group analysis method to the time-fractional order generalized fifth-order KdV (TFF-KdV) equation. We examine applying symmetry analysis to the TFF-KdV equation with the Riemann–Liouville (R–L) derivative, employing the G′/G-expansion approach to yield trigonometric, hyperbolic, and rational function solutions with arbitrary constants. The discovered solutions are unique and have never been studied previously. For solving non-linear fractional partial differential equations, we find that the G′/G-expansion approach is highly effective. Finally, conservation laws for the equation are well-built with a full derivation based on the Noether theorem.
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1 INTRODUCTION
The soliton solutions of non-linear evolution equations have has a significant impact on the flesh and have been widely used in wide ranges of physical and biological sciences, such as non-linear optics, plasma physics, fluid dynamics, biochemistry, and mathematical chemistry. In recent years, fractional partial differential equations (FPDEs) have attracted great attention and have been extensively investigated. The non-linear FPDEs can be found in different fields of science and engineering problems, such as signal processing, mechanics, plasma physics, finance, electricity, stochastic dynamical system, control theory, economics, and electrochemistry [1–6]. Several efficient methods have been presented to solve FPDEs of interest. It is necessary to point out that some methods used for solving non-linear FPDEs are actually to construct numerical and analytical methods, such as the fractional sub-equation method [7–10], tanh-function method [11–13], Adomian decomposition method [14–17], variational iteration method [18–20], trial equation method [21, 22], homotopy perturbation method [23, 24], exponential rational function method [25], Riccati sub-equation method [26], and rational G′/G-expansion method [27], which have been applied to handle the non-linear evolution equations.
As far as we know, the fractional differentiation and integration operators have a variety of definitions so that we can mention them, like the Riemann–Liouville definition [3, 28] and the Caputo definition [29]. Recently, [30] proposed a new simple definition of the fractional derivative named the conformable fractional derivative, which can redress shortcomings of many definitions.
In this paper, we consider the following time-fractional generalized fifth-order KdV (TFF-KdV) equation:
[image: image]
where [image: image].When α = 1, Eq. 1 can be reduced to a generalized fifth-order KdV equation of general meaning.
Some of the researchers have investigated different kinds of exact solutions for different orders of KdV equations. For example, Wang [31] has found some new exact solutions of the fifth-order KdV equation with the Lie point symmetry group method, while Abdel-Salam A B and Al-Muhiameed Z I A [32] have provided the exact solutions for the KdV–mKdV equation by applying the analytic solution method. Recently, an efficient numerical scheme has been developed to solve a linearized time-fractional KdV equation by Zhang [33].
Our aim in the present work is to investigate many new closed-form solutions of the TFF-KdV equation by using Lie group analysis and the G′/G-expansion method with the Riemann–Liouville (R–L) derivative. These algebraic methods can be regarded as the most concise and the most efficient methods for searching the closed-form solutions of the non-linear FPDEs.
The rest of the article is organized as follows: the basic definitions and properties of the fractional calculus are being considered in terms of the Riemann–Liouville derivative in Section 2. In Section 3, we briefly give an account of the Lie symmetry analysis method for the TFF-KdV equation. We perform the Lie group classification on the TFF-KdV equation and investigate the symmetry reductions of the TFF-KdV equation. The main steps of the improved G′/G-expansion method are given, and the exact solutions of the TFF-KdV equation are obtained in Section 4. In Section 5, conservation laws of the TFF-KdV equation are constructed by using the Noether theorem. Finally, in Section 6 of this paper, we will discuss the results obtained.
2 FOREWORD
As to the fractional derivative operators, various definitions which are not necessarily equivalent to each other exist. In this paper, we would like to consider the most common definition that is named after the Riemann and Liouville derivative, which is the natural generalization of the Cauchy formula for the n-fold primitive of a function f(x). The Riemann–Liouville (R–L) fractional derivative is defined as follows [34]:
[image: image]
where [image: image] and Iμf(t) is the R–L fractional integral of order μ, namely,
[image: image]
and Γ(z) is the standard Gamma function.
Definition 1. The R–L fractional partial derivative is defined by
[image: image]
If it exists, [image: image]is the usual partial derivative of the integer order n [31, 35].
In [34], some useful formulas and properties are provided. Here, we only mention the following:
[image: image]
[image: image]
[image: image]
Definition 2. The generalized Leibnitz rule [36, 37] is defined by
[image: image]
where
[image: image]
Definition 3. Considering the generalization of the chain rule [31]for composite functions, we have
[image: image]
3 LIE SYMMETRY ANALYSIS FOR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS
In this section, we consider the time-fractional differential equations as the form:
[image: image]
where [image: image], and [image: image] is a fractional derivative of u with respect to t. Subject to the Lie theory, if Eq. 3.1 is a invariant under a one-parameter Lie group of point transformations, then
[image: image]
where ɛ ≪ 1 is a small parameter, and
[image: image]
Here, Dx denotes the total derivative.
[image: image]
and the vector field associated with the aforementioned group of transformations can be written as
[image: image]
If the vector field Eq. 3.5 generates a symmetry of Eq. 3.1, then V must satisfy Lie’s symmetry condition.
[image: image]
where [image: image].
Conversely, the corresponding group transformations (Eq. 3.2) to a known operator (Eq. 3.6) are found by solving the Lie equations.
[image: image]
It is not different to observe that Eq. 3.2 conserves the structure of the fractional derivative infinitesimal operator Eq. 2.1. As the lower limit of the integral is constant, it should be in variant with respect to Eq. 3.2. Therefore, we can arrive at
[image: image]
For the R–L fractional time derivative [31, 35, 38], Eq. 3.8 can be changed into
[image: image]
By means of the generalized Leibnitz rule (Eq.2.6), Eq.3.9 can be read as
[image: image]
Furthermore, by applying the chain rule in Eq. 2.8 and the generalized Leibnitz rule in Eq. 3.10 with f(t) = 1, we can arrive at
[image: image]
where
[image: image]
It should be noted that we have μ = 0 when the infinitesimal η is linear of the variable u, considering the existence of the derivatives [image: image] in the aforementioned expression. To sum up the aforementioned reasonings, the explicit form of ηα,t is obtained.
[image: image]
According to the Lie theory, we have the following theorems:
Theorem 1. The function u = ϕ(x, t) is an invariant solution of Eq. 3.1 if and only if
(i)[image: image], and
(ii)u = ϕ(x, t) is the solution of FDPEs, as in Eq. 3.1.
4 THE TIME-FRACTIONAL FIFTH-ORDER KDV EQUATION
In the previous section, we have elaborated some definitions and formulas of the Lie symmetry analysis method of FPDEs. Now in this part, we are going to deal with the invariance properties of the TFF-KdV equation. Next, we will give some exact and explicit solutions to the TFF-KdV equation.
4.1 Lie symmetry of the TFF-KdV equation
By using the Lie group theory, we can derive the corresponding system of the symmetry equations as
[image: image]
By solving Eq. 3.1 with the help of Eq. 3.3, we can obtain
[image: image]
where c1 and c2 are arbitrary constants. Furthermore, the corresponding operator can be arrived at
[image: image]
Similarly, the Lie algebra of infinitesimal symmetries of Eq. 1.1 is spanned by the two vector fields:
[image: image]
It is easy to check that the vector fields are closed under the Lie bracket, respectively,
[image: image]
In order to obtain the similarity variables for V2, we have to solve the corresponding characteristic equations.
[image: image]
Thus, we derive the group-invariant solution and group-invariant as follows:
[image: image]
It is not difficult to observe that Eq. 1.1 is reduced to a non-linear ordinary differential equation (NODE). We derived a theorem as follows:
Theorem 2. The TFF-KdV equation Eq. 1.1 can be reduced into a NODE of fractional order by transformation in Eq. 4.7 as follows:
[image: image]
with the Erdelyi–Kober (EK) fractional differential operator [image: image] of order [34].
[image: image]
[image: image]
where
[image: image]
is the EK fractional integral operator [39, 40].
Let n − 1 < α < n, n = 1, 2, 3, …. Based on the R–L fractional derivative for the similarity transformation (Eq. 4.7), we have
[image: image]
Taking v = t/s, one can obtain [image: image]. Then Eq. 4.12, can be written as
[image: image]
If we use the definition of the EK fractional integral operator (Eq. 4.11), then Eq. 4.13 will be
[image: image]
Now, we attempt to simplify the right hand side of Eq. 4.14. Taking into account [image: image], we can obtain
[image: image]
One can arrive at
[image: image]
Through repeating the same procedure n − 1 times, we obtain the following equation:
[image: image]
Then, by using Eq. 4.9, we find that
[image: image]
Substituting Eq. 4.18 into Eq. 4.14, the following expression for the time-fractional derivative is obtained:
[image: image]
Thus, the TFF-KdV equation Eq. 1.1 can be reduced into a fractional-order ODE as follows:
[image: image]
By this mean, the proof of theorem 2 is completed.
4.2 The G′/G-expansion method for the non-linear FPDEs
A general non-linear conformable time FPDE can be written as follows:
[image: image]
where u is an unknown function of independent variables x and t, and P is a polynomial in u = u (x, t) and its partial fractional derivatives, where the highest order derivatives and non-linear terms are involved.
Next, we will illustrate the major steps of the G′/G-expansion method [41].
Step 1. Combining the independent variables x and t into one variable [image: image], it is supposed that
[image: image]
where k, l are constants that will be determined later.
The traveling wave variable in Eq. 4.22 permits us to reduce Eq. 4.21 to an ODE for u(x, t) = ϕ(ξ),
[image: image]
Step 2. Assuming that the exact solution of Eq. 4.23 can be expressed by the polynomial in (ω/G) and ω, G satisfies the following relation
[image: image]
namely,
[image: image]
where a, b, c are arbitrary constants. Now, let us have a careful examination on Eq. 4.24. If choosing ω = G′, a = −μ, = ̱ −λ, c = −1, then u(ξ) can be expressed as
[image: image]
where G satisfies the second-order LODE in the form
[image: image]
In here, the general solutions of Eq. 4.27 are as follows:
[image: image]
This is just the G′/G-expansion method that Wang et al [42] have proposed recently.
Furthermore, if we put ω = tanh ξ, g = 1, a = 1, b = 0, c = −1, then u(ξ) turns to be [image: image], which is the tanh-function expansion method.
Step 3. Substituting Eq. 4.24 into Eq. 4.23 and using second-order LODE, collecting all terms with the same order of G′/G together, we will obtain the system of algebraic equations for am⋯⋯, l, λ, and μ.
Step 4. Substituting the results obtained in the aforementioned steps into Eq. 4.26.
4.3 The application to the TFF-KdV equation using the G′/G-expansion method
Considering the TFF-KdV equation as follows:
[image: image]
Eq. 4.29 has been investigated in [31] by using the Lie symmetry analysis. Now, we will use the G′/G-expansion method to find the closed-form solutions to the TFF-KdV equation. For this purpose, we will apply the traveling wave transformation as follows:
[image: image]
where l is the constant that will be determined later. The transformation of Eq. 4.29 and Eq. 4.30 leads to the following equation:
[image: image]
Eq. 4.31 is integrable; thus, once integrating with respect to ξ, we can obtain the following result:
[image: image]
where C is the integral constant that will be determined later.
Considering the homogeneous balance between ϕ3 and ϕ′′′′ in Eq. 4.32, 3m = m + 4 gives m = 2. Thus, we can write Eq. 4.32 as
[image: image]
By substituting Eqs 4.33 and 4.27 into Eq. 4.32 and collecting all terms with the same power of [image: image] together, the left-hand side of Eq. 4.32 is converted into another polynomial in [image: image]. Equating the coefficients of this polynomial to zero yields a set of simultaneous algebraic equations for a2, a1, a0, l, λ, μ and C. Solving the algebraic equations, we obtain
[image: image]
where λ, μ and a0 are arbitrary constants.
We substitute Eq. 4.34 with Eq. 4.28 into Eq. 4.32 and obtain the closed-form solutions of Eq. 4.32as three types, which are as follows:
When λ2 − 4μ > 0, we can obtain the hyperbolic function solutions as follows:
[image: image]
where [image: image], and C1 and C2 are arbitrary constants.
Taking C1 and C2 special values, then different known solutions can be deduced from Eq. 4.35.
For example,
(i) If C1 = 0 and C2 ≠ 0, we have
[image: image]
(ii) If C1 ≠ 0 and C2 = 0, we have
[image: image]
(iii) If C1 ≠ 0 and [image: image], we have
[image: image]
(iv) If C2 ≠ 0 and [image: image], we have
[image: image]
Here, [image: image].
However, if λ2 − 4μ < 0, we obtain the trigonometric function solutions:
[image: image]
where [image: image], and C1 and C2 are arbitrary constants.
Remark 1. Taking C1 and C2 as special values, various known solutions can be found from Eq. 4.40. Here, we do not list them for simplicity.
However, if λ2 − 4μ = 0, the following rational function solutions can be obtained:
[image: image]
where [image: image], and C1 and C2 are arbitrary constants.
Remark 2. When ω = tanh ξ, which is the tanh-function expansion method. This is similar to the [image: image] method, which is omitted here.
Remark 3. Inc, M and B Kilic [43] have investigated exact solutions for the KdV-like equation using Kudryashov, Exp-function, and Jacobi elliptic rational expansion methods. From the aforementioned procedure, the G′/G-expansion method is very powerful for FPDEs. As far as we know, the solutions obtained therefrom under this study have never been reported previously, and are newly generated.
Remark 4. Recently, many scholars put forward the Riemann–Hilbert method [44, 45], and its application in FPDEs is also worthy of further study.
5 CONSERVATION LAWS OF THE TFF-KDV EQUATION
In this part, we have obtained the conservation laws for the TFF-KdV equation by applying Eq. 4.4 of Lie point symmetry.
Based on the definition of the conserved vector for inter-order PDEs, a conserved vector C(Ct, Cx) for Eq. 1.1 admits the following conservation equation:
[image: image]
It should be noted that the TFF-KdV equation might be written in the form of the conservation law as Eq. 5.1.
[image: image]
We also study the conservation laws with the adjoint equation [46] and symmetries of the TFF-KdV equation. As to Eq. 1.1, the adjoint equation can be written in the following form:
[image: image]
and the Lagrangian can be written in the symmetrized form as follows:
[image: image]
where [image: image] is a new dependent variable. The adjoint equation of Eq. 1.1 is written as
[image: image]
where [image: image] is the Euler–Lagrange operator we defined by
[image: image]
where [image: image] is the adjoint operator of [image: image]. As to the Riemann–Liouville fractional differential operators, we have
[image: image]
where
[image: image]
is the right-sided Caputo operator of the fractional differentiation of order α.
Through the substitution of Eq. 5.4 into Eq. 5.5, it can lead to the adjoint equation of Eq. 1.1 admitting the following expression:
[image: image]
The TFF-KdV equation arrives at the following conservation law in [44].
[image: image]
where the conserved vector C(Ct, Cx) has a new form.
[image: image]
where Xi = ηi − ςiux − τiut, and S is the integral.
[image: image]
Using the symmetries[image: image], we have
[image: image]
Substituting Eq.5.4 and Eq.5.13 into Eq. 5.11, we obtain the following conserved vectors for the TFF-KdV equation.
Case 1: By using the symmetry X1 = −ux, we find an additional conserved vector as follows:
[image: image]
Case 2: By using the symmetry[image: image], we find an additional conserved vector:
[image: image]
According to the aforementioned detailed analysis, we have
Theorem 3. The TFF-KdV equation has the following conservation laws:
[image: image]
where [image: image] is shown in Eq.5.2, Eq.5.14, and Eq. 5.15.
6 CONCLUSION
In this research, it was considered the symmetry analysis, explicit solutions to the TFF-KdV equations with Riemann-Liouville derivative. The TFF-KdV equation was reduced to a non-linear ordinary differential equation (ODE) of fractional order. The G′/G-expansion method was obtained to work out the TFF-KdV equation in the sense of the Riemann–Liouville derivative. There were three types of exact solutions that originated in the aspect of hyperbolic, trigonometric, and rational functions with some parameters, which have great potential for further research. All solutions derived in this study were checked utilizing Maple by incorporating them into Eq. 1.1. At last, considering the advantages of the G′/G-expansion method such as efficiency, conciseness, and briefness, the method can be applied to several other higher-order non-linear FPDEs arising in mathematical physics, plasma, hydrodynamics, engineering, and other fields of applied sciences. Finally, based on the Noether theorem, the conservation laws of the equation are well-constructed with detailed derivation. Additionally, it is clear from Lie symmetry analysis that this approach is relatively well-organized and can be used to solve many different non-linear FPDEs from natural sciences.
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This developing study is focused on mass diffusion and thermal energy enhancement in Reiner–Philippoff martial across a vertical-surface under an exposed Lorentz force. Characterization of the thermal energy and mass diffusion are modified utilizing non-Fourier’s theory in the presence of a heat source. Three types of nanoparticles—[image: image], titanium dioxide, and [image: image]—in engine oil are inserted for production of heat energy. Darcy’s Forchheimer theory is used to analyze behavior flow and heat energy. Moreover, effects related to Dufour and Soret are added. A transformed system of ODEs is achieved regarding the developed model using similarity variables. Numerically developing models in the form of ODEs are handled with the aid of the finite element method (FEM). Fluidic thermal energy is augmented against upshot values of time relaxation number. Fluidic concentration declines against changes in Schmidt number and chemical reaction number.
Keywords: EMHD, three-phase simulations, buoyancy forces, thermal properties, two-dimensional plate, Galerkin algorithm
1 INTRODUCTION
Non-Newtonian fluids have numerous applications and are used extensively in many materials. This investigation deals with Sutterby nanofluid boundary-layer flow in a stretched cylinder by including updated models for mass and heat transfers and applying the Cattaneo–Christov theory. Boundary-layer analysis leads to the creation of a mathematical model. By utilizing conservation principles, the physical phenomena are first generated in terms of PDEs. The penetrating medium is influenced by the advanced Darcy’s law. The suggested model’s non-linear equations are optimally and dynamically investigated. By establishing the conservation rules for mass, momentum, energy, and concentration, non-linear partial differential equations (PDEs) are created. The OHAM is adopted and aims to develop numerical solutions for non-linear systems, as previously discussed [1]. Nanofluids are the newest category of fluids, and Choi first described them at the beginning of 1995. Akbar et al. [2] formulated a model of peristaltic transport in the presence of thermal conductive using variable viscosity-based temperature with carbon nanoparticles; the authors found the exact solution of the developed model. Akram et al. [3] utilized curved microchannels to investigate heat transfer and flow behavior in the presence of titanium dioxide in Carneau fluid rheology; the authors estimated the motion of nanoparticles using mechanisms of thermophoretic and Brownian motion via an exact solution technique. Maraj et al. [4] discovered the consequences of Lorentz force, including CNTs and thermal deposition in the channel, utilizing exact closed-form solutions involving radiation and magnetic field. Akram et al. [5] studied thermal features of peristaltic transport involving Lorentz force and electroosmosis with SWCNTs in aqueous diagrams. Multiple industrial and technological implications, including wire drawing, glass fiber production, assembly of particularly elastic sheets, and cooling of concerning metallic plates are among the pertinent themes investigated previously [6] regarding the study of fluid attributes in multiple mathematical models. When a fixed magnetic field was supplied, Bhandari and Husain carefully examined the combined impacts particularly of rotating viscosity and magnetized force subjected to a 2D Ferro hydrodynamic non-conductor nanoliquid flow across a stretched surface. To explore the hybrid nanomaterials’ flow demeanor when subjected to a stretched sheet, Gul et al. presented a computer model. Fractional calculus ideas have been widely used in different areas in recent years. This topic has recently expanded in several different directions, including fractional-order multipoles influenced by electromagnetism and in the field of electrochemistry. Moreover, tracer is used within the fluid flow demeanor, the neuron model in the field of biology, finance, and signal processing. The Riemann–Liouville and Caputo fractional derivatives are the most popular applications discussed by Shah and Khan [7]. Biomedical engineering and medical care greatly benefit from the radiation and magnetic field impacts appertaining to nanofluids. Khan et al. [8] examined gold particle performance toward the blood flow demeanor (Sisko fluid flow) through a penetrating, slick, curvy surface. Partial slip impacts were considered in thoroughly analyzing the properties referring to nanofluidic flow. After Choi’s original study, a significant advancement in this field was made. In an experimental study, Eastman et al. examined heat transfer in the presence of Al2O3 and CuO particles, synthesized using ethylene glycol and water, respectively. Investigation based on blood flow demeanor in small arteries involves many variable features. Understanding the rheological behavior of blood and other biological fluids, namely urine, spermatozoa, and eye drops, requires accounting for heat conductivity and viscosity change. In the current work, which was motivated by these applications, we describe the peristaltic flow demeanor—particularly Ree–Eyring liquid via a uniform compliant channel—while accounting for the influence of varying thermal conductivity and viscosity, as described previously [9]. Recent studies have shown a particular interest in dusty fluid model flows due to their two-phase nature. This effect occurs when solid particles are dispersed in fluid (gas or liquid) flows. As an example, consider the chemical process that results in droplet formation when relatively small dust particles agglomerate, leading to high dusty-air velocity. Cosmic dust, a mixture of gas and dust particles, is the essential precursor for planetary systems, as expressed previously [10]. In tabular and graphical formats, Khan and Pop [11] examined fluctuation in declining Nusselt and reduced Sherwood numbers. Falkner–Skan flow is one of the most well-known motives for investigating magnetohydrodynamics, on account of its applications in the field of fluid dynamics and heat transfer. In the scientific community, conventional flow behavior, specifically Newtonian and non-Newtonian fluids subjected to a moving wedge, is very popular right now. Lin et al. investigated the properties of heat transmission within the static wedge flow demeanor. The authors examined the model particularly for every conceivable finite Prandtl number value. Watanabe and Watanabe and Pop, respectively, researched forced and free-convection Falkner–Skan flow. Akbar et al. [12] discussed investigations into shape factors associated with SiO2/MoS2 nanoparticles in a base fluid in a channel including a temperature gradient (oscillatory). Convection may occur in three different ways in heat transfer flows: naturally, forcibly, and mixed. The last of these has uses in a variety of industrial and natural phenomena, including nuclear reactor cooling, electronic systems, and heat exchangers used to heat or cool fluids in the food industry and in compact heat exchangers, as studied previously [13]. In numerous systems pertaining to heating and cooling, fluids including water and kerosene oil, ethylene, and glycol are frequently utilized. Most of these fluids, which are sometimes referred to as the basic fluids, are poor heat conductors. We must address the issues caused by these systems' weak conductivities in order to improve their performance. Nowadays, a relatively novel approach is being used to increase thermal conductivity and other thermal characteristics. Habib et al. [14] discussed a new discovery regarding nanofluid behavior in clinical isolates of Staphylococcus aureus using gold nanoparticles. Alghamdi et al. [15] favored adopting non-linear stretching sheets. These crucial industrial applications drove researchers to carefully examine boundary-layer flow demeanor over linear and non-linear prolonged sheets of a range of geometric thicknesses. Micropolar nanofluidic flow demeanor embedded with buoyancy force, along with magnetic field subjected to an enclosure, has been studied for its heat and mass transmission mechanism. The proposed mathematical model needed to assess effectiveness, particularly nanoparticle thermal efficiency, must be built using mass and energy and must be within the momentum equations. This study aims to increase the effectiveness of heat and mass transmission within the heat transport machinery and heat-ameliorated units used in engineering and industrial operations. The proposed dimensionless 2D model given the significance of dimensional analysis analyzed previously [16]. The substandard thermal conductivity of operating liquids, which constrains high solidity and performance appertaining to thermal production within heat exchanges, is currently a serious worldwide problem. Most frequently, ethanol and water, as well as an acetone and an ethylene–glycol combination, are used as working fluids, as discussed previously [17]. Additionally, in response to this issue, numerous scientists and engineers have demonstrated the essential principles of improving thermal properties, specifically for energy-transported liquids, and efficiency, particularly of heat transfer in industrial appliances.
Examining entropy production in catalytic and non-linear thermal radiative impacts involves assessing the hydromagnetic stagnation point flow demeanor of a micropolar nanofluid. A water nanofluid is created by mixing in the magnetite nanoparticles. The time-independent, significant 2D flow demeanor is supposed to start with a vertically stretchable sheet. When creating the governing equations for the relevant issue, the Joule heating and viscous dissipation impacts are considered, as described previously [18]. Using updated heat and mass flux models, the entropy production approach is subjected to Maxwell nanofluid incorporated with gyrotactic microorganisms influenced by homogeneous–heterogeneous processes. Amended models are provided using the dual diffusive theory and the generalized Fick’s equation. According to boundary-layer theory, derived equations that depict the flow situation under consideration are modeled as PDEs. An appropriate transformation is then applied to alter the resulting PDEs toward the transformed ODEs and is subsequently solved using a powerful technique called the optimal homotopy analysis approach. Special instances of certain previously published research are in close accordance with our findings. Graphs are used to describe the effects, specifically of physical factors within the velocity, as well as temperature, concentration, reaction rate, the concentration of motile bacteria, and entropy production, as examined in an earlier study [19]. Based on the three-dimensional and steady power-law for nanofluidic flow demeanor close to the stagnation point area, the MHD and non-linear thermal radiative impacts included in penetrable material are applied to conduct an entropy generation study. The heat transformation phenomena inside the boundary layer configured by the stretchy moving disc are investigated and accompanied by non-uniformly thermal radiative heat source/sink exposed to convective boundary circumstances. The basic fluid ethylene glycol (C2H6O2) is combined with multi-wall carbon nanotubes (MWCNTs). The suggested fluid flow issue is analytically modeled, as discussed previously [20]. Incompressible viscous hybrid nanofluid flow is analyzed in three dimensions in a rotating frame. The basic liquid is ethylene glycol, and the nanoparticles are copper and silver. Fluid flows within the dual parallel surfaces, with the bottom surface extending linearly. Since fluid conducts, a consistent magnetic field is applied. We consider the viscous dissipation impacts and Joule heating and non-linear thermal radiations. The Nusselt number and surface drag force are addressed as interesting quantities. Xia et al. [21] examined the rate of entropy formation. Because of their significant industrial applications and high heat transfer rates, nanofluids are of great importance to scientists. Hybrid nanofluids, a brand-new form of nanofluid, have lately been employed to accelerate heat transfer even further. The current phenomena focus particularly on the investigation of SWCNT–MWCNT/water hybrid nanofluidic flow demeanor and on heat transmission subjected to a moving wedge. The flow demeanor in the porosity media is described by the Darcy–Forchheimer relationship. In addition, Ahmad et al. [22] covered in depth the effect of varying viscosity and velocity, as well as thermal slip, thermal radiation, and heat production. By performing a theoretical study, peculiarly viscous three-dimensional fluid flow demeanor incorporated with gyrotactic microorganisms across a non-linear stretchy surface, heat mechanisms, and mass transmission may be understood. To regulate the flow of fluid, the fluctuating magnetic field is thought to be normal toward the stretchy surface. The varying thermal conductivity prompts a discussion of thermal transportation. Mass transportation incorporates chemical processes and variable mass diffusion properties. The porous medium is defined using the Darcy–Forchheimer equation. To improve diffusion, Abdelsalam and Sohail [23] included Brownian motion and thermophoresis. The current study investigates viscous fluid flow in three dimensions when specific heat (PHF) and concentration (PCF) fluxes are present. Chemical reactions, viscosity dissipation, and Joule heating impacts are all considered when the mathematical formulation is being constructed. Fluid becomes electrically conductive when influenced by the applied magnetic field, whereas the non-linear system referring to ordinary differential equations is obtained by appropriate transformations. The resultant non-linear system determines the solution. To investigate the effects, particularly the physical factors, of the temperature and concentration distributions, graphs are plotted. Maraj et al. [24] estimated rotational flow and motion of hybrid nanoparticles with Hall currents in a vertical channel using conditions of thermal periodic and velocity slip via closed-form solutions. Saleem et al. [25] adopted FEM for statistical solutions, referring to a set of ODEs. Damaged arteries with stenosis have reduced blood flow; the accumulation of plaque within the artery walls, brought on by fats and oils, leads to the development of this stenosis. Multiple stenoses may exist in an artery that has severe stenosis. Multiple stenoses cause the artery to narrow, which restricts blood flow across it. Many academics have recently been interested in examining this particular kind of stenotic artery. Blood flows through tiny channels, with non-Newtonian behavior in big vessels and Newtonian behavior in smaller vessels. Owing to various peculiarities, particularly blood circulation along with the mechanical characteristics of the vessel walls, it is essential to examine the blood flow through a stenotic channel. Shahzad et al. [26] determined the location of stenosis on the vessel wall and the flow behavior through sick blood arteries by observing blood flow across a stenotic artery. In this investigation, the contributions of viscous dissipation and thermophoresis, as well as Brownian motion, gravitational effects, and stratification impacts, were examined. Physical events are derived as linked systems of partial differential equations. An appropriate transformation converts the model’s equation system into straightforward ordinary differential equations (ODEs). Naz et al. [27] used an ideal homotopy analysis approach and an improvised system that relies on coupled non-linear ODEs solved in Mathematica. Due to its use in several sectors, heat transfer is crucial. Hybrid nanofluidic flow, a novel manner of nanofluids with a greater heat exponent in comparison to the nanofluids, is being utilized to improve the ability of regular fluids to transport heat. In a base fluid, two-element nanoparticles are known as hybrid nanofluids (HNFs). Jamshed et al. [28] demonstrated the properties of steady hybrid nanofluidic flow and thermal transfer over a slippery surface. Convection, whether forced or natural, is more significant in the context of fluid dynamics than the other two well-known heat transfer processes, conduction and radiation. It happens because of differences in the thermal energy that is applied differently to various parts of the fluid under examination. Akram et al. [29] discussed theoretical investigations of thermal transfer based on Au and Ag hybrid water-based nanoparticles induced by electroosmotic pumping in a microchannel. Due to their poor heat conductivity, pure liquids like water and oil have proven to be problematic in this respect. To improve heat transmission and modify the carrier fluid’s thermal characteristics, nanoparticles with an approximate diameter of less than 100 nm, materials with intensified thermal conductivities, are mixed along with the fluid, as discussed previously [30]. This analysis emphasizes the importance of radiation and Joule heating effects, particularly for Casson liquid-boundary layer flow (BLF) configured by a linearly elongating surface, as well as the properties of momentum and entropy production. Likewise, species and thermal dissemination are also considered. Thermal conductivity and mass diffusion coefficient models that vary with temperature are used to provide thermal and species transportation. Emerging issues take the non-linear partial differential equations form, in opposition to the principles governing the movement of mass, momentum, heat, and species. The exhibited issue may be transformed into ordinary differential equations with the proper modification. Sohail et al. [31] used the optimal homotopy analysis method (OHAM) as a competent and dependable approach for obtaining numerical solutions, specifically for upgraded boundary-layer ordinary differential equations (ODEs). Due to its applicability, heat transfer analysis in two-dimensional flows has drawn the interest of several academics in recent years. Akram et al. [32] derived features of electroosmotic flow by inserting silver nanoparticles and solving using two various approaches. Applications like drawing wire, making plastic and rubber sheets, cooling electric plates enclosed by a bath, melt spinning, and hot rolling, among others, all benefit from fluid passage over elongating sheets. Because a plate expands at a specific rate, Sakiadis was the first to examine fluid flow. Crane then concentrated on the laminar flow demeanor, specifically two-dimensional, incompressible, and viscous fluid subjected to a stretching plate. There is a precise closed-form solution to this problem. Following the above-mentioned studies, many researchers (see, for instance, [33]) concentrated on fluid flow caused by stretched plates. These researchers investigated flow demeanor across an exponentially stretching sheet with the impacts of MHD and radiation, and discovered that the magnetic and radiation parameters are what reduce the heat transmission rate. The authors looked across the Eyring–Powell fluid boundary-layer fluid flow configured by a linearly stretching sheet and computed the findings for velocity profiles using the collocation method.
2 MATHEMATICAL ANALYSIS
Two-dimensional consequences of mass diffusion and thermal fields of a complex fluid (Reiner–Philippoff) were investigated under conditions of EMHD on a vertical plate. Three phases of hybrid nanomaterial are implemented in the presence of engine oil. Fields associated with mass diffusion and thermal conductivity are carried out by heat sink and non-Fourier’s theory, as well as variable properties pertaining to mass diffusion and thermal conductivity. A flow diagram with boundary conditions and suspension of ternary hybrid nanoparticles is shown in Figure 1. Conservation laws have been implemented to obtain distributions for motion, concentration, and thermal conductivity, as listed below. The thermophysical properties of different used materials are depicted in Table 1.
[image: Figure 1]FIGURE 1 | Physical configuration of the model.
TABLE 1 | Thermal properties of engine oil, silicon dioxide, and aluminum oxide [36, 37].
[image: Table 1]The reduced form of PDEs [34–36] is derived as
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and subjected to the desired boundary conditions
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Similarity, the variables of temperature-dependent concentration and temperature-dependent thermal conductivity are defined as
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The system of ODEs [34] is formulated as
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Equation 5 in dimensionless form [34] is defined as
[image: image]
The defined correlations associated with tri-hybrid nanoparticles [36] are
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The mathematical expressions of Sherwood number and temperature gradient [34] are
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where (Reynolds number) [image: image]
3 NUMERICAL PROCEDURE
The current model in terms of ODEs is numerically handled by a finite element approach based on the following steps:
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3.1 Discretization
The computational form domain has been discretized into elements, and weighted residuals are derived as
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3.2 Assembly process
The assembly process is implemented to derive a global stiffness matrix. In this step, the boundary vector, source vector, and stiffness matrix are obtained as.
3.3 Investigations of error and convergence
Error analysis is estimated as
[image: image]
Table 2 shows mesh-free simulations and convergence analysis, while criteria regarding convergence are defined as
[image: image]
TABLE 2 | Analysis of the grid-independent study carried out for 300 elements for concentration, velocity, and temperature profiles.
[image: Table 2]3.4 Validation of works
The code for FEM was designed in MAPLE 18. Table 3 illustrates the present validation in view of temperature gradient, with an already-published study [38] having different values of [image: image] in the absence of tri-hybrid nanoparticles, variable properties, heat sink, and non-Fourier’s law. It was noticed that the present results were obtained by the finite element method while the present simulations, obtained by the finite element method, are compared with a shooting approach termed the RK4-method (see Table 3).
TABLE 3 | Validation of present works for Nusselt number with different values of [image: image] when [image: image]
[image: Table 3]4 RESULTS AND DISCUSSION
The development of a two-dimensional model is formulated in view of Reiner–Philippoff toward a surface involving buoyancy forces and electric field. Energy transfer and mass species are carried out in the presence. Dispersions of tiny nanoparticles are incorporated using generalized theory. Mass diffusion (variable) and thermal conductivity (variable) are inserted into the concentration and energy equations. A finite element scheme has been utilized to simulate numerical study of the present problem. Graphical explanations regarding flow, solute, and thermal energy versus various parameters are displayed in the following sections.
4.1 Study of fluidic motion
In this subsection, graphs related to velocity curves are plotted versus electric magnetic ([image: image]) number, Forchheimer number ([image: image]), and fluid parameter ([image: image]). Comparative study of tri-hybrid nanofluid and hybrid nanoparticles on a velocity field is conducted versus parameters, shown in Figures 2–4. It is evident that solid curves are generated to represent the role of nanoparticles (tri-hybrid), and dash–dot lines are plotted to sketch the estimation of hybrid nanomaterials. Figure 2 predicts the behavior of [image: image] on the velocity field. Here, [image: image] is electric field number, and velocity increases versus enhancement in [image: image] Here, the parameter related to [image: image] is known as the electric magnetic number; it is modeled using the electric magnetic number in the momentum equation. Mathematically, a parameter regarding [image: image] is based on [image: image] and appears in the dimensionless momentum equation. Direct proportional relations have been estimated among velocity and [image: image] Therefore, velocity increases against [image: image] The physical reason behind this increasing trend is the appearance of a Lorentz force because forces (electromagnetic) behave in the same direction during the flow of nanoparticles. Furthermore, drag force declines when [image: image] is enhanced. Thickness in view of momentum layers is increased against magnified values of [image: image] Figure 3 predicts the influence of [image: image] on fluidic motion. Momentum layers are based on variation in [image: image] It is mentioned that a retardation motion is created in motion regarding particles, which creates a resistance force in fluidic particles. Momentum layers are also reduced using higher values of [image: image] Physical, numerous pores are placed at the surface. Therefore, velocity field is reduced when [image: image] is increased. Moreover, [image: image] is known as a Forchheimer porous medium, which is related to resistive force on the flow. It is a non-linear function versus velocity, while it experiences retardation force. Mathematically, the direct proportional relation among drag force and [image: image] is increased when [image: image] is enhanced. Thickness based on momentum layers declines versus enhancement of [image: image] This drag force reduces flow on the surface. Figure 4 shows the behavior of [image: image] on velocity curves. This is a dimensionless parameter that is modeled due to the appearance of Reiner–Philippoff liquid in the momentum. It is evident that fluidic motion is decreased when [image: image] increases. Moreover, thickness based on momentum layers declines with higher impacts of [image: image] Mathematically, an inverse proportional relation has been observed among [image: image] and velocity. Therefore, an increase in [image: image] results in flow decreases on the surface. [image: image] is a dimensional parameter also called the Bingham number; it is a ratio among viscous stress and yield stress. Apparent viscosity has a direct proportional relation with increasing shear rate. Consequently, flow increases when shear rate is enhanced.
[image: Figure 2]FIGURE 2 | Effect of [image: image] on velocity curves.
[image: Figure 3]FIGURE 3 | Effect of [image: image] on velocity curves.
[image: Figure 4]FIGURE 4 | Effect of [image: image] on velocity curves.
4.2 Study of fluidic temperature
Figures 5–7 show the role of fluidic temperature against changes in [image: image], [image: image], and [image: image]. The solid lines are plotted to sketch the role of tri-hybrid nano-structures, while dash–dot lines are plotted to measure the role of hybrid nanoparticles. Figure 5 represents behavior among fluidic temperature and [image: image]. Fluidic temperature is increased by applying an external heat source at the wall. Mathematically, heat sink ([image: image]) is directly proportional to [image: image], whereas temperature difference increases when [image: image] is increased. In Figure 5, two types of heat transfer are experienced based on heat generation and heat absorption. Furthermore, heat absorption is numerically predicted by [image: image], and heat generation is predicted by [image: image] Physically, the heat source (external) is implemented at the surface and is utilized to control thermal thickness. Thermal layer thickness for [image: image] is higher than for [image: image] The characteristic of [image: image] on thermal layers is shown in Figure 6. The appearance [image: image] is created due to the appearance of variable thermal conductivity. In the current investigation, thermal conductivity is considered as a function of thermal energy. Mathematically, thermal conductivity is based on temperature, whereas [image: image] is based on [image: image]. An increase in [image: image] enhances the temperature difference. Mathematically, [image: image] is a function of temperature difference. Consequently, temperature difference is based on [image: image] Hence, temperature increases against increases in thermal conductivity. Moreover, the thickness of thermal layers for [image: image] is less than the thickness (of thermal layers) for [image: image] Whether an involvement of the time relaxation parameter is created due to the appearance of a generalized mechanism of heat transmission is investigated. [image: image] denotes relaxation time number, and [image: image] reveals production regarding time related to migration of heat energy through a heated surface. Physically, fluid particles need more time in the case of transfer of thermal energy toward neighboring particles. This reason declines in thermal energy, as depicted in Figure 7.
[image: Figure 5]FIGURE 5 | Effect of [image: image] on thermal energy curves.
[image: Figure 6]FIGURE 6 | Effect of [image: image] on thermal energy curves.
[image: Figure 7]FIGURE 7 | Effect of [image: image] on thermal energy curves.
4.3 Investigation of fluidic concentration
Figures 8–10 determine the characterizations of fluidic concentration versus impacts of [image: image], and [image: image] upon inserting a tri-hybrid nanofluid. Solid lines are the sketched behavior of tri-hybrid nanofluid, while dash–dot lines are sketched for hybrid nanofluid. Figure 8 reveals the role of [image: image] on fluidic concentration in the presence of hybrid and tri-hybrid nanofluids. Physically, it is the division of momentum and mass diffusion diffusivities. Hence, an inverse proportional relation of mass diffusion is found versus [image: image]. Therefore, an increase in [image: image] resulting form higher mass diffusivity is observed. Moreover, mass diffusion for tri-hybrid nanofluids is higher than the amount of mass diffusion for hybrid nano-structures. This reduction of [image: image] occurs when mass diffusivity decreases against higher values of [image: image] Thickness related to concentration can be managed through numerical values of [image: image] Furthermore, the amount of mass diffusion for [image: image] is less than the amount of mass diffusion for [image: image] Figure 9 demonstrates the relationship between mass diffusion and variable mass diffusion number; it shows that the appearance of [image: image] on mass diffusion is created due to the implication of variable mass diffusion. Furthermore, variable mass diffusion is based on temperature difference. Therefore, mass diffusion declines when [image: image] is increased. From Eq. 8, it was shown that [image: image] is a function of temperature difference. Consequently, [image: image] is also based on concentration difference, while mass diffusion increases when [image: image] is increased. An illustration of the chemical reaction parameter on mass diffusion is shown in Figure 10. Two kinds of chemical reactions are generated for positive or negative numerical values of the chemical reaction parameters. For both cases, mass diffusion declines when [image: image] is increased. Here, three cases of chemical reactions based on chemical parameters have been observed. It is estimated that [image: image] when solute particles have been generated, while [image: image] when solute particles are utilized in the chemical reaction and [image: image] when no chemical reaction has occurred. As Figure 10 shows, increasing concentrations can be controlled by generative chemical reactions, whereas destructive chemical reactions are performed for increasing concentration tendency.
[image: Figure 8]FIGURE 8 | Effect of [image: image] on concentration curves.
[image: Figure 9]FIGURE 9 | Effect of [image: image] on concentration curves.
[image: Figure 10]FIGURE 10 | Effect of [image: image] on concentration curves.
4.4 Study of Sherwood number and Nusselt number
The impact of [image: image]-[image: image]-[image: image]/EO and [image: image]-[image: image]/EO on the Sherwood number and temperature gradient versus magnetic number, Schmidt number, [image: image], and [image: image] are observed. Numerical outcomes among [image: image]-[image: image]-[image: image]/EO and [image: image]-[image: image]/EO are recorded in Tables 4, 5. It was observed that temperature gradient and Sherwood number decline with various values of [image: image] and [image: image] However, the opposite trend was estimated for Sherwood number and temperature gradient. Essentially, the thermal rate and Sherwood number are greater for [image: image]-[image: image]-[image: image]/EO than for [image: image]-[image: image]/EO (see Tables 4, 5).
TABLE 4 | Change in [image: image], and [image: image] on Sherwood and Nusselt numbers with [image: image]-[image: image]-[image: image]/EO.
[image: Table 4]TABLE 5 | Change in [image: image] and [image: image] on Sherwood and Nusselt numbers with [image: image]-[image: image]/EO.
[image: Table 5]5 CONCLUSION
Features of fluidic motion, fluidic thermal energy, and fluidic concentration are determined in a two-dimensional model under non-Fourier’s law with variable properties. A heat source and chemical reactions are also taken out into a mixture of nanoparticles. A strong scheme, termed a finite element method, is utilized. The main findings of the problem are summarized as follows:
➢ Velocity field has been enhanced against changes in [image: image], but the opposite behavior is observed versus [image: image] and [image: image]
➢ Heat energy increases against changes in relaxation number, heat source number, and variable thermal conductivity parameter.
➢ Fluidic concentration declines against changes in Schmidt number and chemical reaction parameter.
➢ The cooling process can be improved by adding ternary hybrid nano-structures rather than other nanoparticles.
➢ The highest production of thermal energy can be achieved utilizing tri-hybrid nanoparticles as compared with hybrid nanofluids and nanofluids.
➢ Thermal gradient and mass diffusion gradient are higher for [image: image]-[image: image]-[image: image]/EO than for [image: image]-[image: image]/EO.
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Around 1880, Lie introduced an idea of invariance of the partial differential equation (PDE) under one-parameter Lie group of transformation to find the invariant, similarity, or auto-model solutions. Lie symmetry analysis (LSA) provides us an algorithm to search for point symmetries for solving related linear systems for infinitesimal generators. Actually, point symmetries lead us to one-parameter family of solutions from a known solution. LSA is a program that provides us the exact solutions for the non-linear differential equations (DEs) in analogy of the program designed by Galois for algebraic polynomial equations. In this paper, we have carried out the LSA for computing the similarity solutions (symmetries) of the non-linear short pulse equation (SPE) for the cases when h(u) = eu, k(u) = uxx, [image: image], and k(u) = uxx. In addition, an optimal system of one-dimensional sub-algebra has been set up. The reductions and invariant solutions for the generalized SPE are calculated corresponding to this optimal system as well. Reductions reduce the non-linear PDE or system of PDEs into non-linear reduced ordered ODE or system of PDEs. This helps to solve these systems of PDEs to reduced form. Graphical behavior of the transformed points of the 1-parameter solution functions have drawn.
Keywords: short pulse equation, Lie point symmetry analysis, optimal system for lie subalgebras, reductions, invariant solutions
1 INTRODUCTION
Galois used the group theory to discuss the solvability of algebraic polynomial equations. Sophus Lie used the same idea foe differential equations and devised a comprehensive program now known as Lie symmetry analysis (LSA). In his attempt, he also developed the theory of Lie groups with broad applications in many areas of mathematics, physics, and in applied sciences [1, 2]. [3] have explained the procedure of symmetry reductions and exact solutions for the non-linear PDEs using three different methods that are direct, classical, and non-classical. [4] used LSA for systems of non-linear PDEs including the solutions, for system of non-linear coupled PDEs in real physical application, for the unsteady liquid and gas flow in long pipelines, for approximated long wave equations in shallow water and for the general dispersive long-wave equation.
Non-linear short pulse equation (SPE) represents the propagation of ultra-short pulses (light pulses) in optical fibers of silica [5]. Propagation of pulses in optical fibers was first depicted by the cubic non-linear Schrodinger equation (NLSE) which are used to provide the actual fiber connections and refer new systems of fiber communication to attain very high data transmission [6, 7]. Research studies on a large scale have been performed for the propagation of ultra-short pulses (very narrow pulses) that permit high quality fast data transmission [6, 8]. In case of short pulses (or ultra-short pulses), the rationality of NLSE lacks due to the breakdown, [9]. Also, the higher order terms that are involved in cubic NLSE cause difficulties, see Figure 1, for the behavior of NLSE as an output [10]. Therefore, determined the SPE which provides more accurate approximation of the solution of Maxwell’s equation in non-linear media rather than the NLSE [6]. The SPE has vast applications in many applied fields such as systems of impulse, mechanics, neural networks, and in many other fields of sciences. Determined the symmetries of SPE and travelling wave solution by parametric representation and power series process, respectively, [11]. Evaluated the symmetry reductions and conservation laws by using the direct method for SPE, [12]. Authors also determined the Lie symmetries for SPE through the non-local system. Established the results for well-posedness of solutions which are bounded for homogenous IBVP and Cauchy problem connected with SPE, [5]. Matsuno constructed multiple exact solutions by using the direct method for three novel PDEs related with generalizations of SPE that are integrable, [13]. He gave the parametric representation of multi-soliton solutions of generalized SPE. LSA has been used by many mathematicians to explore the results related to the exact solutions of non-linear PDEs which depict physical phenomena [14]. Discussed the class of non-linear PDEs having an arbitrary order [15]. Authors estimated the determining equations for non-classical symmetries by using compatibility of original equations with invariant surface conditions.
[image: Figure 1]FIGURE 1 | Pulse propagation in NL-dispersive optics.
In this article, we have discussed the LSA for one of the modified form of SPE and see graphical behavior of the functions depending upon 1-parameter (ϵ) Lie groups. The non-linear SPE is as follows:
[image: image]
where u(x, t) is the magnitude of electric field. α and β are the real parameters. Considering the SPE of the following form
[image: image]
where we let the general functions h(u) and k(u) as:
• h(u) = eu and k(u) = uxx,
• [image: image] for n ∈ N, (n > 1) and k(u) = uxx.
It is worth mentioning that the case h(u) = un and k(u) = uxx for Eq. 2 has been recently discussed in the article [16]. We will find Lie point symmetries corresponding to the aforementioned cases and the optimal system with reductions and see their graphical behavior corresponding to the Lie symmetries.
2 RESULTS
In the present section, we give our main results with computations.
2.1 Lie symmetries of SPE for the case of h(u) = eu and k(u) = uxx
Eq. 2 becomes
[image: image]
Consider the one parameter Lie group of point transformations for Eq. 3.
[image: image]
where ϵ ∈ R is the group parameter.The group generator of (4) is defined in the following vector form as:
[image: image]
where λ, μ and ν are infinitesimal functions of group variables. The second prolongation of the infinitesimal generator along with coefficients has the following form:
[image: image]
where Dx and Dt are the total derivatives.
Apply the second prolongation of the infinitesimal generator Eq. 5 onto Eq. 3. Then, in order to calculate symmetry of Eq. 3, we have the equation of the following form:
[image: image]
Solving this equation
[image: image]
Substitute the values of νxx, νxt and Eq. 3 which leads to an under-determined system of equations given as:
[image: image]
The solution of the aforementioned determining equations gives the coefficient functions in the form of
[image: image]
[image: image] and [image: image] are arbitrary constants. Thus, the Lie algebra of the infinitesimal symmetries for the case n = 1 is
[image: image]
Theorem 3.1 The set of these generators is closed under the one parameter Lie groups [image: image] which are generated by infinitesimal generators Wi for i = 1, 2, and 3 are given in the following table. The entries give the transformed points exp(ϵWi)(x, t, u) = (x*, t*, u*).
[image: image]
where ϵ ∈ R is the group parameter.Theorem 3.2 If [image: image] satisfies Eq. 3, then, u(i)(i = 1, 2, and 3) are solutions of Eq. 3:
[image: image]
where [image: image], (i = 1,2, and 3), ϵ ≪ 1 is any positive number.
The Eq. 13 provides a class of solutions for Eq. 3 depending upon the parameter ϵ and general function [image: image] where (i = 1, 2, 3). The Figures 2–5 show the graphical view of the functions ui, (i = 1, 2, 3) where ui attained from Lie symmetry groups Wi. These graphs are formed by letting different general functions in place of [image: image] in Eq. 13. The graphs are constructed from the maple.
[image: Figure 2]FIGURE 2 | For [image: image] and ϵ =0.000005.
[image: Figure 3]FIGURE 3 | For [image: image] and ϵ = 0.000005.
[image: Figure 4]FIGURE 4 | For u(2) = x3+2(t − ϵ) and ϵ = 0.000005.
[image: Figure 5]FIGURE 5 | For u(3)=2t ln (x − ϵ).
For first equation in Eq. 13, letting the general trigonometric function in place of [image: image]
[image: image]
along-with ϵ = 0.000005 and abscissa x = −5 to 5, ordinate t = −5 to 5.
[image: image]
Figure 2 shows the graphical behavior of Eq. 15.letting another general value of function [image: image]. The function becomes
[image: image]
Figure 3 shows the graphical view of Eq. 16.
For second equation of Eq. 13, considering a general function [image: image] for the same values of ϵ = 0.000005 and aforementioned coordinates for Eq. 14.
[image: image]
Figure 4 shows its graphical view.
For last equation of Eq. 13, we let a general logarithmic function [image: image] and for similar values of ϵ, x, and t coordinates.
[image: image]
Its graph is in Figure 5.
2.2 Optimal system of subalgebras
In this part, we will find the optimal system of one dimensional Lie subalgebras for Eq. 3 by using the adjoint representation. The corresponding commutator table and the adjoint table are as follows:Commutator Table: Adjoint Table:
 | 
[image: ] | 
[image: ]Let us take a generator
[image: image]
Case No.1 For β1 ≠ 0, the generator turns to
[image: image]
Applying [image: image] on Y gives
[image: image]
furthermore, proceeding in the same way
[image: image]
which successively makes the coefficients β2 and β3 equal to 0and implies that W ≃ W1.Case No.2 Without loss of generality, here we take β1 = 0 and β2 = 1, the generator becomes
[image: image]
Now, act [image: image] on the aforementioned W,
[image: image]
Subcase No.2.1 If β3 < 0, then
[image: image]
Subcase No.2.2 If β3 > 0, then
[image: image]
Case No.3 For β1 = β2 = 0 and β3 = 1. Thus, in the meanwhile we have W ≃ W3.Case No.4 Let consider β1 = 0 = β3 and β2 ≠ 0. In this case, the generator is W ≃ W2.
The optimal system of one-dimensional subalgebras admitted by Eq. 3) is as follows:
[image: image]
2.3 Reductions and invariant solutions
2.3.1 Reduction by W2
The invariants for corresponding characteristic equation are as follows:
[image: image]
where a and b are arbitrary constants.
The invariant solution can be written in the form of b = f(a), implies that
[image: image]
substituting this value in Eq. 3), we obtain
[image: image]
The solution of this reduced equation for β = 1 is given in the form of solution set as.
[image: image]
[image: image]
[image: image]
2.3.2 Reduction by W3
The corresponding characteristic equation to this generator is as follows:
[image: image]
this gives two invariants
[image: image]
where a1 and b1 are arbitrary constants. It implies
[image: image]
putting this in Eq. 3, we obtain
[image: image]
which gives a trivial solution for u = f(x).
2.3.3 Reduction by W1
The characteristic equation is
[image: image]
solving this, we obtain corresponding invariants of the form
[image: image]
from this
[image: image]
where we obtain
[image: image]
substituting these derivatives into Eq. 3, we obtain
[image: image]
Thus, non-linear PDE (3) reduces to a non-linear ODE.
2.3.4 Reduction by W2 + W3
The invariants that we gain by solving characteristic equation are as follows:
[image: image]
a3 and b3 are arbitrary constants. The invariant solution corresponding to them is u = f (a3). Inserting this solution into Eq. 3 will give us a non-linear ODE of the form
[image: image]
2.3.5 Reduction by W2 − W3
The invariants corresponding to characteristic equation for this case are a4 = x + t and b4 = u. Furthermore, its invariant solution is given as u = f (a4). Therefore, the Eq. 3 will be converted into an ODE of the form
[image: image]
2.4 Determining lie symmetry of SPE for the case [image: image] and k(u) = uxx (n > 1)
The equation becomes
[image: image]
The one-parameter Lie group of transformations and the second prolongation with coefficients are given in Eqs 4, 6, respectively for Eq. 43. Let the generator be
[image: image]
Therefore, we have
[image: image]
simplification gives the following equation:
[image: image]
which is solved for the values of νxx and νxt, will give us the equation involving derivatives of infinitesimals with respect to dependent and independent variables and also the derivatives of dependent variable w.r.to independent variables. Substituting Eq. 43 and comparing the values of coefficients on both sides gives an under-determined system of equations
[image: image]
To solve this system, we consider ν as:
[image: image]
which satisfies the aforementioned equations and then by solving the aforementioned system, we obtain
[image: image]
c1 and c2 are any arbitrary constants. The infinitesimal generators for the one-parameter of Lie groups of transformations admitted in Eq. 43) are given by
[image: image]
These symmetry generators give us the symmetry groups [image: image] for i = 1, 2:
[image: image]
If u = R (x,t) is a solution of Eq. 43), then ui for i = 1, 2, and 3 and ϵ ≪ 1 also satisfies Eq. 43,
[image: image]
 Commutator Table:also,
 | 
[image: ]Adjoint Table.
 | 
[image: ]Proposition 5.1: The generators Z1 = ∂t and Z2 = ∂x form a two-dimensional abelian Lie symmetry algebra.
2.5 Optimal system, reductions and invariant solutions
Considering a generator Z = b1Z1 + b2Z2. This generator will established a set of optimal system comprising of Lie algebra
[image: image]
where b1, and b2 are arbitrary constants. The reduction of PDE Eq. 39 by using the generator Z1 leads to an invariant solution u = f (c1). The reduced non-linear ODE will be
[image: image]
The reduction through Z2 generates a trivial case for Eq. 39.
3 CONCLUSION
In this paper, we have carried out the LSA for computing the similarity solutions (symmetries) of the non-linear SPE for the cases when h(u) = eu and k(u) = uxx and [image: image] and k(u) = uxx in SPE (2). In addition, an optimal system of one-dimensional subalgebra has been set up. The reductions and invariant solutions for the generalized SPE are calculated corresponding to this optimal system as well. The graphs are formed by the maple for the functions obtained from the transformed points of one-parameter Lie groups.
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We extend the invariant subspace method (ISM) to a class of Hamilton–Jacobi equations (HJEs) and a family of third-order time-fractional dispersive PDEs with the Caputo fractional derivative in this letter. More precisely, the complete classification is presented for such HJEs that admit invariant subspaces governed by solutions of the second-order and third-order linear ordinary differential equations (ODEs). Meanwhile, some concrete equations are derived for the construction of new exact solutions [image: image]. Then a set of invariant subspaces of the considered third-order time-fractional non-linear dispersive equations are obtained. Based on the Laplace transform method (LTM) and applying several properties of the well known Mitta-Leffer (ML) function, the different types of explicit solutions of a family of third-order time-fractional dispersive PDEs are finally derived.
Keywords: exact solution, Hamilton–Jacobi equation, complete classification, invariant subspace method, Laplace transform
1 INTRODUCTION
One of the recently invented methods to derive the explicit solution of NPDE is ISM, which was initiated by Galaktionov and Svirshchevskii in [1] and many researchers have illustrated its applicability in Refs. [2–6]. Specifically, Refs. [2, 3, 5, 6] have addressed the basic question of the dimension of invariant subspaces, which in addition to ISM is also relevant to Lie-B[image: image]cklund symmetry (LBS) and the conditional Lie-B[image: image]cklund symmetry (CLBS) [7–14]. Very recently, Refs. [15–23] generalized this method to resolve fractional non-linear partial differential equations (fNPDEs). It is verified that by applying ISM, a fNPDE can be reduced to a system of fractional non-linear ordinary differential equations (fNODEs), which can be solved by known analytical approaches.
In this paper, we analyze the following two families of special-type non-linear evolution equations.
1.1 Hamilton–Jacobi equations
Hamilton–Jacobi equations (HJEs) can be regarded as models for various processes in theoretical physics, quantum mechanics and contemporary problems of control, etc. In Refs. [24–28], the authors analyzed HJEs in different directions. References [29–32] have also indicated that these equations can be used to depict several properties including blow up behavior and the long time action of non-linear diffusion equations. We will consider the following HJEs
[image: image]
where u = u(t, x) and p(x), B(u), Q(x, u) are sufficiently smooth functions of indicated variables. Here we suppose that m ≠ − 1, −2. This assumption means that Eq. 1.1 is a fully non-linear HJE. In Ref. [7], Qu showed that Eq. 1.1 preserves the second-order CLBS with [image: image] and classified the solutions for Eq. 1.1.
1.2 Third-order time-fractional dispersive PDEs
The concept of fractional order derivative was initiated with the half-order derivative as considered by Leibniz and L’Hopital and many authors have generalized it to an arbitrary order derivative. Different concepts of fractional derivatives were proposed in [33–36]. Now fNPDEs have gained much attention because they can be utilized to represent a large number of physical processes. Some techniques have been employed to solve fNPDEs, but the study of fNPDEs has been still handicapped due to the limitations on dealing with more complex fNODEs.
We will study a family of third-order time-fractional dispersive PDEs
[image: image]
where u = u(t, x), 0 < α ≤ 1, t > 0, and [image: image] is the Caputo fractional derivative of u with respect to t. The ordinary case α = 1 of Eq. 1.2 was first introduced in [37] and has been discussed in depth by many researchers [38, 39]. In fact, when α = 1, δ = b2 = b3 = 0, Eq. 1.2 becomes the KdV equation. If we take [image: image], Eq. 1.2 becomes the Camassa–Holm equation [40]:
[image: image]
If [image: image], Eq. 1.2 is the Degasperis–Procesi equation [41, 42]:
[image: image]
If α = δ2 = 2b2 = b3 = 1, σ = γ = b1 = 0, Eq. 1.2 becomes the Hunter-Saxton equation [1]:
[image: image]
These equations arise as asymptotic models in the theory of shallow water waves. Many authors have concentrated on studying the above special cases of Eq. 1.2.
The major contents of this paper are as follows. We recall the method of the invariant subspace, and also introduce several definitions and fundamental theorems on fractional derivatives and integrals in Section 2. In Section 3 we obtain the complete invariant subspace classification of Eq. 1.1 and derive the reductions and explicit solutions of several examples by utilizing ISM. In Section 4, combined with LTM and inspired by several properties of the well known ML function, we investigate exact solutions of different cases for Eq. 1.2. In the last section, we make some concluding remarks.
2 PRELIMINARIES
First, we introduce ISM. Then, we give several definitions and properties.
2.1 Invariant subspace method
Now, we will present brief details of ISM for a kth-order NPDE
[image: image]
where [image: image].
In [15], Gazizov and Kasatkin demonstrated that ISM can be used to reduce a fNPDE to a system of fNODEs.
We focus on the fNPDE of the form
[image: image]
where [image: image] is the time-fractional Caputo derivative. Let f1(x), f2(x), …, fn(x) be linearly independent functions and their linear span over [image: image] be Wn, namely,
[image: image]
Definition 2.1. If differential operator F satisfies F[Wn] ⊆ Wn, the subspace Wn is invariant under F.Let us suppose Eq. 2.2 preserves the subspace Wn, then
[image: image]
[image: image]. Thus Eq. 2.2 has the solution
[image: image]
{Ci(t), (i = 1, 2, …, n)} satisfy the n-dimensional dynamical system
[image: image]
Observing that the subspace Wn is determined by a basic solution set of a linear nth-order ODE,
[image: image]
Therefore, the invariant condition F is
[image: image]
2.2 Some results on fractional calculus
Definition 2.2. The Riemann–Liouville fractional integral operator of order α > 0 is represented as the following expression:
[image: image]
Where [image: image] is the Euler Gamma function. Note that [image: image].
Definition 2.3. The Caputo fractional differential operator of order α > 0 is represented as the following expression:
[image: image]
When [image: image].We can replace operators [image: image] and [image: image] by Dαf(t) and Iαf(t) respectively. The following properties are true for fractional integral and derivative:
[image: image]
When α ∈ (0, 1], the LT of Caputo fractional derivative has the following expression
[image: image]
where [image: image].
Definition 2.4. A ML function is
[image: image]
Also, Eα,1(z) = Eα(z).We can see the γth order Caputo derivatives of the ML function are:
[image: image]
[image: image], and the following presentation gives the LT of function [image: image], that is
[image: image]
3 EXACT SOLUTIONS OF HJES
3.1 Invariant subspace classification of Eq. 1.1
For Eq. 1.1, we write it in the form [image: image]. By the maximal dimension n ≤ 2k + 1, we consider the following cases for n = 2, 3.
We investigate n = 2 first. After a straightforward calculation, we obtain that
[image: image]
where Ji(i = 1, 2, …, 8) have the following expressions:
[image: image]
Observing the above expression Eq. 3.1, we shall discuss four possibilities: m = −3, 1, 2 and m ≠ − 3, 1, 2. For the case of m = −3, we derive the following system
[image: image]
From the first equation of Eq. 3.3, it is apparent that B(u) = b1u + b2. By solving the fifth and sixth equations of Eq. 3.3, we obtain Q(x, u) = q1u + Q1(x), where b1, b2 and q1 are arbitrary constants and Q1(x) is a function of x. Inserting B(u) = b1u + b2 and Q(x, u) = q1u + Q1(x) into system Eq. 3.3, we have
[image: image]
Taking into account the assumption p(x) ≠ 0 and solving the system (3.4), the corresponding classifying equations and two-dimensional invariant subspaces are listed as the first three lines in Table 1 with the case m = −3. The cases of m = 1, 2 and m ≠ − 3, 1, 2 can be dealt in a similar way; therefore, we obtain the invariant subspace classification results, which are presented in Table 1.
TABLE 1 | Classifications of W2 governed by linear ODEs (2.3) of Eq. 1.1.
[image: Table 1]When n = 3, we find there is only one case: m = 0, and the corresponding results are listed in Table 2.
TABLE 2 | Classifications of W3 governed by linear ODEs (2.3) of Eq. 1.1.
[image: Table 2]3.2 Applications
In this section, we provide a further discussion for addressing with the explicit solutions using the above classification results.
Example 1: The equation
[image: image]
admits the two-dimensional invariant subspace [image: image] generated by ODE
[image: image]
As a result, we derive that
[image: image]
Substituting the above solution into Eq. 3.5, we obtain
[image: image]
For q1 = 0, we can see that
[image: image]
For q1 ≠ 0, we have
[image: image]
The corresponding solution shown in Figure 1
[image: Figure 1]FIGURE 1 | Solution profile of Eq. 3.5.
Example 2: The equation
[image: image]
admits the invariant subspace [image: image] governed by ODE
[image: image]
Then, we arrive at
[image: image]
Inserting the above solution into Eq. 3.6, we obtain
[image: image]
For q1 = 0, we obtain
[image: image]
For q1 ≠ 0, we have
[image: image]
The corresponding solution shown in Figure 2
[image: Figure 2]FIGURE 2 | Solution profile of Eq. 3.6.
Example 3: The equation
[image: image]
admits the two-dimensional invariant subspace [image: image] governed by ODE
[image: image]
Then we arrive at
[image: image]
Inserting the above solution into Eq. 3.7, we obtain
[image: image]
we can see that
[image: image]
The corresponding solution shown in Figure 3
[image: Figure 3]FIGURE 3 | Solution profile of Eq. 3.7 with m = 2, c1 = c2 = 1.
Example 4: The equation
[image: image]
admits the three-dimensional trigonometric invariant subspace [image: image] governed by ODE
[image: image]
Then we arrive at
[image: image]
Inserting the above solution into Eq. 3.8, we obtain
[image: image]
For q2 = 0, we can see that
[image: image]
For q2 ≠ 0, we have
[image: image]
The corresponding solution shown in Figure 4
[image: Figure 4]FIGURE 4 | Solution profile of Eq. 3.8.
4 EXACT SOLUTIONS OF A FAMILY OF THIRD-ORDER TIME-FRACTIONAL DISPERSIVE PDES
Now, we will investigate the different invariant subspaces of non-linear differential operator F[u] and discuss explicit solutions of Eq. 1.2, see the following discussions.
Case 1. Let us consider the following equation
[image: image]
Here [image: image], Eq. 4.1 admits the invariant subspace [image: image], the reason is that
[image: image]
This means that Eq. 4.1 has the following explicit solution:
[image: image]
Substituting the solution into Eq. 4.1, we have
[image: image]
[image: image]
Eqs 4.2, 4.3 provide
[image: image]
and
[image: image]
Then
[image: image]
The corresponding solution shown in Figure 5
[image: Figure 5]FIGURE 5 | Solution profile of Eq. 4.1 with α = 1/3, b1 = 2.
Case 2. We consider the equation
[image: image]
α ∈ (0, 1], Eq. 4.4 preserves invariant subspace [image: image], since
[image: image]
which means that Eq. 4.4 has the solution
[image: image]
Plugging the solution into Eq. 4.4, we find
[image: image]
[image: image]
Solving Eq. 4.5, C1(t) = c1, c1 is an arbitrary constant, and when [image: image], letting
[image: image]
Therefore, Eq. 4.6 becomes
[image: image]
Applying the LT to Eq. 4.7, we have
[image: image]
namely,
[image: image]
Here C2(0) = a, its inverse LT is
[image: image]
where Eα,1(.) is the ML function
[image: image]
Hence, we derive that
[image: image]
In the case of α = 1, it is a traveling wave solution
[image: image]
The corresponding solution shown in Figure 6
[image: Figure 6]FIGURE 6 | Solution profile of Eq. 4.4.
Case 3. We consider the equation
[image: image]
α ∈ (0, 1], Eq. 4.8 admits the two-dimensional invariant subspace [image: image], since
[image: image]
This indicates that Eq. 4.8 has the solution
[image: image]
Substituting the solution into Eq. 4.8, we have
[image: image]
[image: image]
Here, [image: image]. By applying the time-fractional derivative [image: image] to Eq. 4.9, we derive that
[image: image]
Now we discuss the following Cauchy problem:
[image: image]
Then, define [image: image], and utilizing the LT to this equation, we can see
[image: image]
At the same time, applying LT to the first equation of Eq. 4.11, we obtain
[image: image]
Inserting Eq. 4.12 into Eq. 4.13, we find
[image: image]
whose inverse LT is
[image: image]
where E2α,1(.) is the ML function
[image: image]
Substituting Eq. 4.14 in Eq. 4.10, we get
[image: image]
By applying Iα on both sides of Eq. 4.15, we obtain
[image: image]
For the sake of simplicity, we set the integration constant to zero. Assuming a = 1, the solution of Eq. 4.8 is
[image: image]
Note that for α = 1,
[image: image]
and the solution becomes
[image: image]
The corresponding solution shown in Figure 7
[image: Figure 7]FIGURE 7 | Solution profile of Eq. 4.8 with a0 = 100, σ = γ = 1, δ = 2.
Case 4. We consider the equation
[image: image]
α ∈ (0, 1], Eq. 4.16 admits the two-dimensional invariant subspace [image: image], since
[image: image]
This means that the explicit solution has the following form
[image: image]
Substituting the solution into Eq. 4.16, we have
[image: image]
[image: image]
where [image: image]. Setting C1(0) = 1 and employing the LT of both sides of Eq. 4.17, we have
[image: image]
Its inverse LT is
[image: image]
Utilizing C1(t) in Eq. 4.18, we obtain
[image: image]
However, while the ML function does not fulfill the following composition property
[image: image]
it should be noted that
[image: image]
which satisfies the composition property, that is,
[image: image]
Thus, we find
[image: image]
Taking Iα on Eq. 4.19 and applying the integration of the ML function relation, we derive the following result:
[image: image]
Here, we set C2(0) = 0. Hence, the exact solution of Eq. 4.16 associated with [image: image] reads
[image: image]
Note that for α = 1,
[image: image]
[image: image]
The corresponding solution shown in Figure 8
[image: Figure 8]FIGURE 8 | Solution profile of Eq. 4.16 with a1 = 1, λ1 = 1, λ2 = 2, δ = 2.
Case 5. We consider the equation
[image: image]
α ∈ (0, 1], Eq. 4.20 admits the three-dimensional invariant subspace [image: image], since
[image: image]
This means that the exact solution has the following form:
[image: image]
Substituting the solution into Eq. 4.20, we obtain
[image: image]
[image: image]
[image: image]
Solving Eq. 4.21, we obtain C1(t) = c1, inserting it into Eq. 4.22 and Eq. 4.23, we find
[image: image]
where [image: image], Following the procedure described in case 3, we obtain the exact solution
[image: image]
Note that for α = 1,
[image: image]
and the solution is
[image: image]
which is a compacton solution.The corresponding solution shown in Figure 9
[image: Figure 9]FIGURE 9 | Solution profile of Eq. 4.20 with α = γ = b2 = b3 = c1 = 1, δ = 10.
Case 6. We consider the equation
[image: image]
[image: image], Eq. 4.24 admits the four-dimensional invariant subspace [image: image], since
[image: image]
This means that the exact solution has the following form
[image: image]
Substituting the solution into (4.24), we have
[image: image]
Solving this system, we derive that
[image: image]
Thus, Eq. 4.24 has the solution
[image: image]
where [image: image].The corresponding solution shown in Figure 10
[image: Figure 10]FIGURE 10 | Solution profile of Eq. 4.24 with α = 1/3, b2 = b3 = 1, δ = 10.
5 CONCLUSION
In this work, a class of HJEs (1.1) and a family of third-order time-fractional dispersive PDEs (1.2) are investigated by utilizing ISM. All invariant subspaces for the considered HJEs are derived and displayed in Table 1 and Table 2. Meanwhile, some exact solutions to the equations are obtained due to the corresponding symmetry reductions. For the third-order time-fractional dispersive PDEs, the right-hand side of Eq. 1.2 is the derivative of a quadratic differential polynomial, therefore they preserve more than one invariant subspace, each of which generates a solution. Then, by employing the LT method and applying several properties of the well known ML function, the different kinds of explicit solutions of Eq. 1.2 are derived.
There are still some important problems to be considered. For instance, how does one use ISM to resolve initial value problems? How can we develop this method to investigate higher-dimensional non-linear equations and their discrete versions? This will be considered in the future. Moreover, in the extended version of this work, we will discuss more complicated fractional differential equations by using ISM.
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In this paper, the non-local reverse space−time fifth-order non-linear Schrödinger(NLS) equation has been investigated, which is proposed by the non-local reduction of Ablowitz–Kaup–Newell–Segur (AKNS) scattering problems. The determinant representation of the Nth Darboux transformation for the non-local reverse space−time fifth-order NLS equation is obtained. Some interesting non-linear wave solutions, including soliton, complexiton, and rogue wave solutions, are derived by the Darboux transformation. Moreover, the dynamics of non-linear wave solutions are illustrated with the corresponding evolution plots, and the results show that the non-local fifth-order NLS equation has new different properties from the local case.
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1 INTRODUCTION
Integrable systems play an important role in non-linear science fields such as non-linear optics [1, 2], ocean physics [3], Bose–Einstein condensates [4], and even financial markets [5]. The investigation of various physically meaningful non-linear wave solutions is still one of the active areas of research in the field of integrable systems. In the past decades, many powerful methods and techniques have been proposed to construct various non-linear wave solutions and to study their underlying dynamics, such as Darboux transformation [6, 7], inverse scattering [8, 9], bilinear transformation [10], and Riemann–Hilbert approaches [11, 12]. Recently, Ablowitz and Musslimani proposed a new integrable non-local non-linear Schrödinger (NLS) equation under a reduction of the Ablowitz–Kaup–Newell–Segur (AKNS) system, and some non-linear wave solutions are constructed by the inverse scattering method [13]. Subsequently, much more non-local integrable systems including reverse space–time and reverse time cases are further investigated [14]. At the same time, the physical background of non-local integrable equations is also investigated from various related fields, such as multi-place systems [15], magnetic structures [16], nanomagnetic artificial materials [17], and loop quantum cosmology [18] [19, 20].
The NLS equation [21] is a fundamental prototype and plays a pivotal role in many fields of physics, such as fluid mechanics [22], plasmas [23], Bose–Einstein condensates [24], and deep water waves [25]. However, the NLS equation only contains the lowest-order dispersion term and the lowest-order non-linear effect. Under the necessary physical conditions, various higher-order dispersions and non-linear effects must be taken into account, such as ultrashort pulses in optical fibers [26], where the effects of higher-order dispersions should be considered. Therefore, some higher-order NLS equations, including Hirota [27], Lakshmanan–Porsezian–Daniel (LPD) [21, 28], and quintic NLS equations [29], have been constructed, and their corresponding integrable properties and dynamics have been studied.
In this paper, we consider the scattering problem as follows:
[image: image]
where [image: image], λ is the spectral parameter, and U, V0, L, M, and N are given by
[image: image]
where
[image: image]
Under the symmetry reduction q (x, t) = r*(x, t), the generalized integrable fifth-order NLS equation [30],
[image: image]
where
[image: image]
[image: image]
[image: image]
[image: image]
can be obtained from the compatibility condition of the linear spectral problem (1), i.e., the zero-curvature equation, [image: image]. However, a new integrable reverse space–time non-local fifth-order NLS equation,
[image: image]
can be obtained under the symmetry reduction,
[image: image]
Considering the importance of such non-local equations in multi-place physical systems [15], it is significant and has far-reaching importance in constructing exact solutions to the equations and aids in studying the dynamical properties of the solutions. To the best of our knowledge, such reverse space–time non-local equations have not been investigated. This paper is organized as follows: in Section 2, the one-fold and N-fold Darboux transformation of Eq. 5 are presented; in Section 3, soliton, complexiton, and rogue wave solutions are derived through the Darboux transformation and their corresponding dynamical properties and evolutions are discussed; and in Section 4, some conclusions and discussions are drawn.
2 DARBOUX TRANSFORMATION FOR THE REVERSE SPACE–TIME NON-LOCAL FIFTH-ORDER NLS EQUATION
The Darboux transformation method is a very effective tool for constructing exact solutions of integrable non-linear equations in the soliton theory. In order to derive the Darboux transformation of the reverse space–time non-local fifth-order NLS in Eq. 5, we first introduce a gauge transformation of the linear spectral problem (1),
[image: image]
under which the linear spectral problem (1) can be deformed as follows:
[image: image]
The next pivotal step is to construct the Darboux matrix T[1] in such a form that [image: image] in Equation 8 have the same form as U and V in (1) and the old potentials r and q are replaced by the new potentials [image: image]. Suppose
[image: image]
where [image: image] are functions of x and t. Substituting Eq. 9 into Eq. 8, it is evident that the relationships between two potentials in the two linear spectral problems (1, 8) can be given as
[image: image]
In addition, combined with symmetry reduction (6), there is
[image: image]
We see that [image: image] and [image: image] are two eigenfunctions corresponding to the eigenvalue λ = λj (j = 1, 2). From the gauge transformation, there exist constants [image: image] such that
[image: image]
where
[image: image]
Then, the gauge transformation [image: image] can be given as follows:
[image: image]
where [image: image] can satisfy
[image: image]
along with
[image: image]
By tedious calculations and using the identities (15), it can be verified that [image: image] have the same forms as U and V under the symmetry reduction (6). To construct the N-fold Darboux transformation of Eq. 5, a more generalized higher-order gauge transformation can be given as follows:
[image: image]
where
[image: image]
from which the following relationships can be obtained:
[image: image]
Combined with symmetry reduction (6), there is
[image: image]
Similar to the case of one-fold Darboux transformation, we construct the following equations:
[image: image]
with
[image: image]
From algebraic Eq. 21, the determinant representation of the N-fold Darboux matrix TN can be derived by Cramer’s rule, from which the determinant representations of [image: image] and [image: image] can be given as follows:
[image: image]
Here,
[image: image]
[image: image]
[image: image]
This is the N-fold Darboux transformation of Eq. 5. Moreover, the existence of the symmetry reduction condition Eq. 6 implies that the Darboux transformation of the non-local reverse space−time fifth-order NLS Eq. 5 is very different from the Darboux transformation of the classical fifth-order NLS Eq. 4, although both of them have the same form.
3 NON-LINEAR WAVE SOLUTIONS OF THE REVERSE SPACE–TIME NON-LOCAL FIFTH-ORDER NLS EQUATION
3.1 One-soliton solutions from zero seed solution
To construct a soliton solution of the non-local Eq. 5, we take a zero seed solution, under which the corresponding eigenfunctions of the linear spectral problem (1) can be given as follows:
[image: image]
Then, the following relationships can be obtained:
[image: image]
[image: image]
[image: image]
under which the conditions for symmetry reduction (6) can be obtained as follows:
[image: image]
Without the loss of generality, we take γ1 = −1 and γ2 = 1 and [image: image], and the solution can be simplified as follows:
[image: image]
where
[image: image]
The soliton solution can be obtained as follows:
[image: image]
This is under the condition that k1 = k2 and w1 = −w2. Evidently, the propagation direction of a soliton (34) is determined by the value of [image: image]. In Figure 1A, the evolution of a soliton solution (34) is illustrated, and the corresponding evolution profiles of the real and imaginary parts are shown in Figures 1B, C, which exhibit the characteristics of a breather. On the other hand, by taking k2 = −2k1 and w2 = 0, the complexiton solution can be given as follows:
[image: image]
where
[image: image]
[image: Figure 1]FIGURE 1 | (Color online). (A) Density evolution of the one-soliton solution; (B) evolution of the real part; (C) evolution of the imaginary part of the soliton solution (34) under the parameters [image: image].
It can be seen from Figure 2A that the solution (35) propagates to the left along the x-axis under the condition that [image: image]. Figures 2B, C show the evolution characteristics of the real and imaginary parts of the solution (35). The propagation states of the solution (35) at three different times are shown in Figure 2D.
[image: Figure 2]FIGURE 2 | (Color online). (A) Density evolution of the complexiton solution; (B) evolution of the real part; (C) evolution of the imaginary part; (D) three evolution states at t =−2,0,2 for the solution (35) under the parameters [image: image].
3.2 Two-soliton solutions from zero seed solution
Two-fold exact solutions of Eq. 5 can be derived from the Darboux transformation (23) by taking N = 2. In order to satisfy the constraint condition (20), we take γ1 = −1, γ2 = 1, γ3 = −1, and γ4 = 1 and consider the case that the eigenvalues are two pairs of conjugate complexes, i.e., [image: image]. Then, the solution can be obtained as
[image: image]
where
[image: image]
and ξjR and ξjI are defined by (33) previously. In Figure 3A, the two-soliton solution behaves as an interaction of two bright solitons; after that, they stably propagate with original shapes and velocities. The corresponding evolutions of real and imaginary parts of the solution are shown in Figures 3B, C, which are all two-order breather solutions.
[image: Figure 3]FIGURE 3 | (Color online). (A) Density evolution of the two-soliton solution; (B) evolution of the real part; (C) evolution of the imaginary part of the solution (37) under the parameters [image: image].
3.3 One-soliton solutions from non-zero seed solution
In order to construct the rogue wave solution of Eq. 5 by the Darboux transformation (10), the seed solution is taken as the plane wave solution,
[image: image]
where a and c are an arbitrary constant and [image: image], respectively. Substituting the seed solution (39) into the linear spectral problem (1) with [image: image] or [image: image], the eigenfunctions can be obtained as follows:
[image: image]
or
[image: image]
where
[image: image]
and C1, C2, C3, and C4 are arbitrary constants. For simplicity, taking [image: image] and [image: image] and considering their relationship (13), we have the following:
[image: image]
To satisfy the constraint condition (11), we take γ1 = 1 and γ2 = −1. Then, the rogue wave solution can be given as follows:
[image: image]
where
[image: image]
The density evolution and 2D contour plots for the rogue wave solution (45) under appropriate parameters are shown in Figures 4A, B, and the typical amplitude |r[1]| profile with t = 0 is illustrated in Figure 4C.
[image: Figure 4]FIGURE 4 | (Color online). The rogue wave solution given by (45) with [image: image]: (A) density evolution; (B) 2D contour plot; (C) amplitude |r[1]| profile with t = 0 of the rogue wave.
4 CONCLUSION
In this paper, the reverse space–time non-local fifth-order NLS Eq. 5 is studied by Darboux transformations. Based on the scattering problem, the N-fold Darboux transformation of the equation is constructed. By selecting different seed solutions, we have presented soliton, complexiton, and rogue wave solutions of Eq. 5, whose non-linear dynamics and evolutions are discussed. However, the computational effort increases rapidly due to the increase of the order of the Darboux transformation and the presence of the symmetric reduction condition; so, more interesting and physically meaningful non-linear wave solutions are difficult to be derived, such as breather and higher-order rogue wave solutions. At the same time, whether the equation has other integrable properties, such as Bäcklund transformations, Hamilton structures, and infinite conservation laws, will be studied in the near future.
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The residual symmetry of the KdV6 equation is obtained by the Painlevé truncate expansion. Since the residual symmetry is non-local, five field quantities are introduced to localize it into the local one. Besides, the interaction solutions between solitons and cnoidal periodic waves of the KdV6 equation are constructed by making use of the consistent tanh expansion method. As an illustration, a specific interaction solution in the form of tanh function and Jacobian elliptic function is discussed both analytically and graphically.
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1 INTRODUCTION
Due to the wide applications in explaining physical phenomena, seeking exact solutions of non-linear equations becomes one of the most important tasks in non-linear science. In fact, finding solutions of non-linear evolution equations is not an easy thing, and only in few special cases one may write down the explicit analytical solutions. Despite of this fact, kinds of non-linear excitations such as the solitons, conoidal periodic waves, Painlevé waves have been found. However, although the non-linear waves or even the interactions among solitons have been well studied, the research on the interactions among different types of non-linear waves is still a thorny issue. Recently, Lou discovered that, starting from the non-local symmetries of non-linear equations, the interactions, such as the soliton-Painlevé wave, soliton-cnoidal periodic wave, soliton-KdV wave, etc., can be established [1-6]. Moreover, recent researches have also shown that the interaction solutions between solitons and other non-linear excitations can also be obtained by the consistent tanh expansion (CTE) method, which is evolved from the classical tanh function expansion method [7-9].
In Ref. [10], K2S2T [A. Karasu-Kalkanlı, A. Karasu, A. Sakovich, S. Sakovich, R. Turhan] introduced the Painlevé test for integrability of partial differential equation to the sixth-order non-linear wave equation
[image: image]
where αi (i = 1, 2, … , 7) are arbitrary parameters. They found that there were four cases of relations between the parameters that pass the Painlevé test. Three of those cases correspond to the known integrable equations, the bidirectional Sawada–Kotera equation (11)–(15), the bidirectional Kaup-Kupershmidt equation (11), (12) and (16) and the Drinfeld-Sokolov-Satsuma-Hirota system [17-19], whereas the fourth one
[image: image]
turns out to be new. This new integrable case is associated with the same spectral problem as of the potential KdV equation, so Eq. 2 is also called the KdV6 equation. In Ref. [10], K2S2T also showed the Lax pair, auto-Bäcklund transformation, traveling wave solutions, and third-order generalized symmetries of the KdV6 equation. In fact, since K2S2T first derived the KdV6 equation, there has been a growing interest in finding its exact solutions, conservation laws and various integrable properties [20-24]. However, as far as we know, the research on the interaction solution of this equation is still lacking.
In present paper, we shall focus on investigating the non-local residual symmetry and the interactions between solitons and cnoidal periodic waves for the KdV6 equation. The paper is organized as follows: In Section 2, the non-local residual symmetry of the KdV6 equation is derived. To constitute a local symmetry, five dependent variables are brought in, thus the non-local symmetry is localized into the Lie point symmetry of the enlarged KdV6 system. In Section 3, with the aid of the CTE method, the interaction solutions between solitons and cnoidal periodic waves of the KdV6 equation are acquired. According to these explicit solutions, the dynamical properties of the interaction solutions are investigated. Finally, the main results are summarized in Section 4.
2 NON-LOCAL RESIDUAL SYMMETRY AND ITS LOCALIZATION
By the transformation v = ux, [image: image], Eq. 2 is equivalent to
[image: image]
Since the KdV6 Eq. 3 possesses Painlevé property, we formulate the truncated Painlevé expansion as
[image: image]
where p2, p1, p0, q2, q1 and q0 are undetermined functions depending on {x, t}. Substituting the expansion 4) into Eq. 3 and collecting the terms with the same power of ϕ, we get the expressions
[image: image]
with λ being a free integral constant. In this case, Eq. 3 can be represented as its Schwartzian form
[image: image]
with the Schwartzian derivative [image: image]. The Schwartzian form (6) is form invariant under the Möbious transformation
[image: image]
which implies that Eq. 6 possesses the symmetry
[image: image]
with di (i = 1, 2, 3) being three random constants.
In view of the expansion 4), it is found that {p0, q0} is just the solution of the KdV6 equation, so the following non-auto-Bäcklund transformation theorem is true.
Non-auto-Bäcklund transformation theorem. If ϕ satisfies the Schwartzian Equation 6, then
[image: image]
constitutes a solution of the KdV6 Eq. 3.
In addition, the substituting of the expansion 4) into Eq. 3 also tells us that the residues p1 and q1, taking the form as Eq. 5, exactly satisfy the symmetry equations of the KdV6 equation, i.e.,
[image: image]
Thus {p1, q1} is then named as the residual symmetry of the KdV6 equation. Clearly, seen from Eq. 5, the residual symmetry {p1, q1} contains the space and time derivatives of ϕ, which means that this symmetry is non-local. We turn now to the task of localizing it into a local one such that one can use Lie’s first principle to recover the original Bäcklund transformation. To this end, the following five field quantities have to be introduced
[image: image]
As a result, the residual symmetry {p1, q1} of the KdV6 equation is converted into the Lie point symmetry
[image: image]
of the enlarged KdV6 system {3), 6), 9), (11)}.
As is known, symmetry reduction [25, 26] is one of the most powerful methods to study exact explicit solutions for non-linear equations. Based on the Lie point symmetry (12), one may continue to explore more abundant symmetry reduction solutions for the KdV6 equation. The details on this topic might be reported in our future research work.
3 CTE SOLVABILITY OF THE KDV6 EQUATION AND ITS SOLITON-CNOIDAL WAVE INTERACTION SOLUTIONS
In this section, we would like to obtain the soliton-cnoidal wave interaction solutions for the KdV6 Eq. 3. In the frame of the CTE method, by balancing the highest order non-linearity and dispersive term of the KdV6 equation, we take v and w in the following generalized truncated tanh function expansion
[image: image]
where vi, wi (i = 0, 1, 2), being six real-valued functions of (x, t), are to be determined from the requirement for solutions v and w to satisfy Eq. 3. Inserting Eq. 13 into the KdV6 equation and requiring the coefficients of all powers of tanh f to be zeros yield twelve overdetermined partial differential equations. After a few detail calculations, we can conclude that
[image: image]
and the expansion function f is determined by
[image: image]
with λ being an arbitrary integral constant.
In order to obtain the interaction solutions between solitons and other non-linear excitations for the KdV6 equation, the expansion function in Eq. 15 may be assumed in the form
[image: image]
where ω1 and ω0 describe the velocities of the soliton and its surrounding W-wave, b1 and b0 are two quantities referring to the widths of the soliton and W-wave, respectively. Specially, if W(ξ) = 0 is taken, the solution (14) with Eq. 16 reduces to the trivial traveling wave solution.
Inserting the ansatz (16) into Eq. 15 and introducing the abbreviation
[image: image]
it follows that Eq. 15 becomes the equation satisfied by the elliptic function
[image: image]
with coefficients a1, a4 and ω1 taking the form
[image: image]
Hence, the corresponding relation between the solution of the KdV6 equation and that of Eq. 18 is established. Given any one solution of Eq. 18, the associated interaction solution of the KdV6 system can be realized. According to Ref. [27], Eq. 18 has varieties of solutions in the form of Jacobian elliptic functions, which gives us a chance to look for the physically relevant soliton-cnoidal periodic wave interaction solutions for the KdV6 equation. As a representative example, we suppose now that Eq. 18 owns the solution
[image: image]
where c0 and c1 are two real constants, S ≡ sn (ξ, m), C ≡ cn (ξ, m) and D ≡ dn (ξ, m) represent the Jacobian elliptic sine function, Jacobian elliptic cosine function and Jacobian elliptic function of the third kind, respectively, and m is known as the modulus of the Jacobian elliptic functions. Substituting the solution (20) into Eq. 18 and eliminating the coefficients of different powers of Jacobian elliptic functions, we obtain after a brief calculation
[image: image]
Next integrating the notation (17), the expression for the cnoidal periodic wave can be written as
[image: image]
with an integral constant c2. Substituting this into Eq. 16, we form now the formula for the expansion function
[image: image]
Therefore, after inserting Eq. 23 into the solution (14), the soliton-cnoidal periodic wave interaction solution of the KdV6 equation is constructed. Here we omit the lengthy formulas for the sake of simplicity.
As pointed out in our pervious work [2, 7], soliton-cnoidal wave interaction solutions can be regarded as dressed solitons, namely, solitons dressed by cnoidal periodic waves. After taking the limit tanh(f) = ±1 in the solution (14), i.e., removing the soliton cores of v and w, only the cnoidal periodic wave parts remain. To illustrate the soliton-cnoidal periodic wave structure in more detail, it is exhibited in a graphical way with the parameters c2 = 0, δ = b1 = λ = 1, ω0 = 2 and m = 0.01; Figures 1A,B display the profiles of the soliton-cnoidal wave structures at t = 0; Figures 1C,D depict the soliton cores of v and w, where the dashed lines show the left parts of the solitons, i.e., taking tanh(f) = −1 in the solution (14), and the right parts are displayed by the solid lines. Figures 1E,F show the corresponding cnoidal periodic wave structures. As is expected, apart from the soliton cores, the solutions v and w rapidly tend to the cnoidal periodic waves propagating along the x direction.Furthermore, we would like to illustrate how to control the profiles of the soliton-cnoidal periodic waves and analyze their dynamical behaviors. First, the designable of the velocity of the cnoidal periodic wave is to be considered. Figure 2 exhibits the time-space evolutions of the soliton-cnoidal periodic wave solution (14). The overtaking collision processes between solitons and cnoidal waves are shown in Figure 2A, B. Here both the solitons and the cnoidal waves are right-moving, but the velocity of cnoidal waves, selected as ω0 = 2, is slower than the velocity of solitons ω1 = 7.96, which is calculated from Eq. 19. As time evolves, the soliton collide with every peak of cnoidal wave, and both the amplitudes and the widths of solitons and cnoidal periodic waves are unchanged except for a phase shift; Figure 2C, D show the interactions between solitons and cnoidal waves with zero velocity. In this situation, the cnoidal waves can be viewed as the standing waves. The right-going solitons collide with the standing periodic waves during their propagations. It is also shown that the collisions between solitons and cnoidal waves are elastic with a slight phase shift. The head-on collision between solitons and cnoidal waves can be observed from Figure 2E, F, which display the right-going solitons colliding with the left-going cnoidal waves (ω0 = −2). In addition, the straight line that the soliton propagates along is x = ω1t − b1c2, determined by Eq. 23, which is drawn in Figure 2A, B by solid lines.
[image: Figure 1]FIGURE 1 | (A) and (B): Profiles of the soliton-cnoidal periodic wave interaction solutions with parameters c2=0, λ = δ = b1=1, ω0=2 and m =0.01. (C) and (D): Soliton cores of the interaction solutions. (E) and (F): Background periodic waves of the interaction solutions.
[image: Figure 2]FIGURE 2 | Density profiles of the soliton-cnoidal periodic wave with the parameters (A) and (B)ω0=2; (C) and (D): ω0=0; (E) and (F): ω0=−2. Other parameters are the same as those in Figure 1.
As shown in Eq. 21, the wave parameter m indicates not only the modulus of the Jacobian elliptic function, but also the amplitude of Jacobian elliptic function. With the increasing of m, the amplitude of the cnoidal periodic wave trends to decrease. In particular, under the asymptotic condition m → 0, the soliton profiles go to be the classical KdV6 solitons, and the surrounding cnoidal periodic waves are non-zero and with a slight amplitude periodic wave, which is displayed in Figure 3.
[image: Figure 3]FIGURE 3 | 2D plots of the soliton-cnoidal periodic wave interaction solutions (A) v and (B) w with m = 0.00001, and other parameters are chosen as those in Figure 1.
4 SUMMARY AND DISCUSSION
In this paper, by making use of the truncated Painlevé expansion, the residual symmetry of the KdV6 equation was derived. To eliminate the non-locality of the residual symmetry, we introduced five new field quantities ϕ1, ϕ2, g, g1 and h to localize it into the local Lie point symmetry of the enlarged KdV6 system {(3), (6), (9), (11)}. Besides, the CTE method was applied to the KdV6 equation to get its soliton-cnoidal wave interaction solutions. In the process of solving the equation that the expansion function f satisfies, an intimate connection between this equation and the equation satisfied by the elliptic functions was constructed. By choosing any one elliptic function solution, the corresponding interaction solutions of the KdV6 equation can be acquired. To show the interaction solution more concretely, the Jacobian elliptic wave solution (20) of Eq. 18 was introduced. The results show that the soliton-cnoidal wave interaction solutions of the KdV6 equation can be viewed as the solitons dressed by the cnoidal periodic waves. Once the cnoidal wave backgrounds are taken away, only the soliton cores are left. The results also exhibit that the shapes of the soliton-cnoidal wave interaction solutions of the KdV6 equation are designable by selecting different values of wave parameters. In particular, how to design the velocities and amplitudes of the cnoidal periodic waves were demonstrated, and the dynamical behaviors of the soliton-cnoidal periodic wave interaction solutions were analyzed. In addition, we believe that the method used for getting non-local residual symmetry in this paper can also be applied to complex functional equations, such as the non-linear Schrödinger type equations, and their abundant soliton-nonlinear wave interaction solutions can also be obtained by symmetry reduction method. More studies regarding the soliton-nonlinear wave interaction solutions for other partial differential equations will be reported in our future research work.
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In this paper, the fuzzy scattering problem with semicircular depressions on the boundary of a band-shaped elastic plate with steady SH guided wave incident is studied and an analytical solution is given. First, the SH guided wave is constructed by the guided wave expansion method, and then the scattered wave satisfying the free condition of the boundary stress of the strip domain is constructed by the cumulative mirror method. Finally, a definite solution equation is obtained based on the fact that the shear stress at the edge of the semi-circular recessed hole is zero. In this paper, the ambiguity of the number of waves and the width of the bands is taken into account. In order to avoid the irreversibility of interval algorithm and the difficulty of solving non-linear equations, the membership function of fuzzy quantity is segmented to make the membership degree and fuzzy quantity correspond respectively. A deterministic problem that translates into piecewise processing. Two numerical examples are given to examine the changes in fuzzy response of different numbers of fuzzy waves and fuzzy thicknesses to the dynamic stress concentration factor of the hoop at the collapse limit.
Keywords: semicircular depressions, fuzzy scattering, SH guided wave, membership function, fuzzy thicknesses
1 INTRODUCTION
The scattering theory of elastic waves is widely used in the fields of earthquake engineering, ocean engineering and geological exploration. The research and application of elastic wave scattering are very extensive, and rich results have been achieved. For the study of elastic wave scattering problems, several parameters are uncertain. This is due to the ambiguity of its own objective attributes, the approximate processing of mathematical modeling, and the use of random parameters as deterministic parameters. Since the American cybernetics expert Professor Zadeh proposed fuzzy sets in 1965, the research direction of fuzzy mathematics has become more extensive, such as fuzzy reliability, fuzzy control, fuzzy optimization, fuzzy calculus equations and so on. Tong et al. [1] investigated the adaptive fuzzy output-feedback backstepping control design problem for uncertain strict-feedback non-linear systems in the presence of unknown virtual and actual control gain functions and immeasurable states. Shi et al. [2] proposed the issue of the reliable asynchronous sampled-data filtering of Takagi-Sugeno (T-S) fuzzy delayed neural networks with stochastic intermittent faults, randomly occurring time-varying parameter uncertainties and controller gain fluctuation. Zhao et al. [3] solved the problem of asymptotic tracking control for a class of uncertain switched non-linear systems under fuzzy approximation framework. Shi et al. [4] dealt with the non-fragile memory filtering issue of T-S fuzzy delayed neural networks with randomly occurring time-varying parameter uncertainties and variable sampling rates. Liu et al. [5] proposed the concept of q-rung orthopair fuzzy sets (q-ROFSs) to be able to describe more complex fuzzy uncertainty information effectively. Sun et al. [6] researched the issue of fuzzy adaptive control for a class of strict-feedback non-linear systems with non-affine nonlinear faults. Hu et al. [7] explored the performance of fuzzy system-based medical image processing for predicting the brain disease. Zhu et al. [8] investigated the event-triggered control problem for stochastic non-linear systems with unmeasured states and unknown backlash-like hysteresis. Lin et al. [9] proposed a novel picture fuzzy multi-criteria decision making (MCDM) model to solve the site selection problem for car sharing stations. Zhang et al. [10] studied the fault detection problem for continuous-time fuzzy semi-Markov jump systems (FSMJSs) by employing an interval type-2 (IT2) fuzzy approach. Wang et al. [11] presented a fault-tolerant tracking control strategy for Takagi-Sugeno fuzzy model-based non-linear systems which combines integral sliding mode control with adaptive control technique. Garg H et al. [12] introduced a novel multi-attribute decision making (MADM) method under interval-valued intuitionistic fuzzy (IVIF) set environment by integrating a Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method. Pan et al. [13] developed a novel risk analysis approach by merging interval-valued fuzzy sets (IVFSs), improved Dempster-Shafer (D-S) evidence theory, and fuzzy Bayesian networks (BNs), acting as a systematic decision support approach for safety insurance for the entire life cycle of a complex system under uncertainty. In other numerical applications, spectral elemental methods are also effectively applied by researchers [14-15]. Mahariq I et al. [16] explored the on-resonance and off-resonance optical response of dielectric cylinders excited by normal incident plane waves. Mahariq I et al. [17] also studied photonic nanojets resulting from corrugated cylinders (with irregular boundaries) under normally incident plane-wave illumination.
SH waves are the most fundamental elastic waves, propagating in a direction perpendicular to the direction of vibration. The SH wave has only one inverse plane vibration displacement (out-of-plane displacement). Compared to P and SV waves, SH waves have the simplest elastodynamic behaviour. For elastic dynamics problems with complex initial boundary conditions, P and SV waves can be difficult to find solutions for. For SH waves, however, such problems can be easily solved to obtain further analytical solutions. There are a lot of ambiguity factors in the elastic wave scattering problem, such as seismic intensity, wave speed, medium shear modulus, medium density, amplitude and frequency of incident waves, etc., all of which are typical ambiguities with randomness and ambiguity. In this paper, the ambiguity of the number of waves and plate thickness ambiguity of SH guided wave scattering are studied for the semicircular depression on the boundary of the band-shaped elastic plate, and the membership function is segmented so that the ambiguity and the membership function correspond respectively. This method can avoid the appearance of interval numbers and combine the decomposition theorem of fuzzy numbers well. In this paper, a new theoretical method is given to deal with fuzzy dynamics knowledge, and the curve of dynamic stress concentration factor of semicircular sag boundary with membership degree of fuzzy quantity is discussed in detail, and a valuable reference conclusion for practical engineering is obtained.
2 THEORETICAL MODEL AND ANALYSIS
2.1 Theoretical model
In this paper, the classical model in the reference [18] is used as an example to further illustrate the use of fuzzy mathematics in solving the scattering problem for defects in thin plates. As shown in Figure 1, the thickness of the infinitely long strip-shaped domain is h, the upper boundary is [image: image], the lower boundary is [image: image], the center of the depression is [image: image], and the radius is [image: image]. The shear modulus and density of the medium are [image: image] and [image: image], respectively. The right-hand plane rectangular coordinate system [image: image] is established with the center of a circle [image: image] as the origin, where the X-axis is parallel to the length direction of the belt shape domain, and the Y-axis is parallel to the thickness direction. At the same time, taking the center of the circle as the pole, a plane polar coordinate system (O, r, θ) is established. Introduce complex variables [image: image]; [image: image], of which [image: image], and establish complex plane [image: image]. When the SH wave propagates in the plate, the out-of-plane direction is the vibration direction of the particle, and the amplitude w is only a function of the coordinates (x, y, t) or (r, θ, t).
[image: Figure 1]FIGURE 1 | Theoretical model of steady-state scattering of SH waves by semi-cylindrical depressions in elastic ribbon domains.
2.2 Control equation
According to the theoretical model shown in Figure 1, the control equations satisfying the upper and lower boundary stress freedom can be obtained. According to reference [19], the control equation for the anti-plane dynamics problem can be obtained. The governing equation of the elasto-dynamic inverse plane problem is the scalar wave Eq. 1:
[image: image]
In the formula: [image: image] is the two-dimensional Laplace operator. In this chapter, the steady-state SH wave is analyzed. According to the separation variable method, after separating the space variable and the time variable, the time harmonic factor [image: image] is omitted, and the Helmholtz equation, which is the governing equation of Eq. 2 is obtained:
[image: image]
Where: [image: image] is the wave number of the anti-plane shear wave, [image: image] is the circular frequency, and [image: image] is the phase velocity. In the complex plane, the Helmholtz equation and the stress-strain relationship can be expressed as:
[image: image]
[image: image]
[image: image]
2.3 Incident wave
Establish a global coordinate system at any point of the upper boundary [image: image] of the belt domain, and satisfy the stress freedom condition (6) of the upper and lower boundaries of the belt domain. The SH guided wave expression is Eq. 7, where [image: image] is the propagation term in the x-direction. m is the guided wave order and its physical meaning is the number of nodes of the interference term in the y-axis direction. [image: image] and [image: image] are the amplitudes of the corresponding propagating guided waves. When m is an even number [image: image]. When m is an odd number [image: image].
[image: image] satisfies Eq. 8, [image: image] is the apparent wave-number in the x-axis direction, and [image: image] satisfies Eq. 9. Only when [image: image] is a real number, [image: image] can represent a propagating traveling wave in the direction of the x-axis. Considering the issues discussed in this chapter, the study of non-propagating waves has no meaning. Therefore, when the m-order SH guided wave is incident, the wave number is required to satisfy [image: image].
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Using the superposition method to superimpose the guided waves of each order, all the displacement waves in the strip-shaped medium satisfying the stress freedom of the upper and lower boundaries can be obtained:
[image: image]
In this chapter, the steady-state SH wave is discussed, and the time harmonic factor [image: image] is omitted. When the incident guided wave is of order m, the expressions of displacement and stress are as follows:
[image: image]
[image: image]
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2.4 Scattered waves
Under the action of incident SH waves, the concave will produce scattered waves. By using the method of repeated mirror image, the semi-cylindrical depression [image: image] is extended to the medium into a whole circle, which is named as the circular hole [image: image]. According to the wave function expansion method, the displacement and stress of all-space scattered waves generated by the boundary of a circular hole satisfy:
[image: image]
[image: image]
[image: image]
The scattered wave [image: image] generated by the circular hole [image: image] is reflected for the first time at the boundaries [image: image] and [image: image] of the band domain, respectively. This reflected wave can be represented by the mirror images [image: image] and [image: image] of the scattered wave [image: image] to the boundaries [image: image] and [image: image], which is called the first mirror scattered wave. The first reflected wave will have a second reflection on the boundaries [image: image] and [image: image] of the strip domain, respectively. The reflected wave can be represented by the mirror images [image: image] and [image: image] of the first mirror scattered waves [image: image] and [image: image] on the boundaries [image: image] and [image: image], known as the secondary mirror scattering wave.
Repeating this, the displacements of the P-th mirror scattered waves are [image: image] and [image: image], and the corresponding stresses are [image: image], [image: image], [image: image] and [image: image]. Among them, P is the number of mirror images and the subscripts 1 and 2 represent the mirror faces of [image: image] and [image: image], respectively.
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In the above formula:
[image: image]
[image: image]
Using the superposition method, the scattered waves obtained by each mirror image are accumulated together, and the displacement of the scattered waves generated by the circular hole [image: image] that can satisfy the stress freedom of the upper and lower boundaries of the strip domain can be obtained as Eq. 25, and the stress is expressed as Eq. 26 and 27.
[image: image]
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2.5 Definite solution conditions
The incident wave and scattered wave constructed according to the above method have already satisfied the condition that the shear stress at the boundary [image: image] and [image: image] is zero, so that the condition of stress freedom at the concave boundary [image: image] becomes the definite solution condition of the whole problem. The resulting coefficients An on the scattered wave function level are the set of Eq. 28. Firstly, the coordinate translation technique is used to translate the stress expressions solved in other coordinate systems into the complex plane [image: image]. Then, the Fourier expansion method is used, and both ends of the formula are multiplied by [image: image] at the same time, and then the infinite algebraic equations with coefficient An are integrated on the interval [image: image]. Finally, the truncated finite terms are solved.
[image: image]
2.6 Dynamic stress concentration factor
Under the action of steady-state SH wave, the dynamic stress concentration factor characterizes the degree of dynamic stress concentration. Define Eq. 29 as the dynamic stress concentration factor of the recessed edge.
[image: image]
Where: [image: image] is the angular stress on the edge of the depression and [image: image] is the maximum amplitude of the incident stress.
3 EXAMPLES AND ANALYSIS
3.1 Analysis of fuzzy example 1
There are several fuzzy parameters in this problem including wave amplitude, frequency, and wave speed in the plane of perturbation which may all be fuzzy numbers. As can be seen from reference [20], the different affiliation curves are treated according to trapezoidal segments. It is assumed that the ambiguity membership function of the wavenumber is [image: image] and the trapezoidal distribution is shown in Figure 2. According to the method of fuzzy cut set, the interval under a certain degree of membership is obtained. The points in this interval actually have different degrees of membership, so that the fuzzy cutest set is not exactly the same as the general interval number. Since the subtraction and division of the four arithmetic operations of interval numbers are not reversible, it is difficult to deal with fuzzy numbers, and at most an enlarged interval solution can be obtained. According to the corresponding relationship between points and membership degrees, different membership degree curves are processed in segments.
[image: Figure 2]FIGURE 2 | Trapezoidal distribution.
The related membership relationship can be expressed as:
[image: image]
The analysis only needs to consider a range of [image: image] divided into three segments. Order [image: image].
When [image: image], [image: image] ;
When [image: image], [image: image];
When [image: image];
Let a = 2, a2 = 1.5, a1 = 1, r = 1. By considering the different thicknesses [image: image], [image: image], [image: image] and [image: image] in the strip domain and substituting different affiliation relations, the cyclic dynamic stress concentration factor at the semi-circular depression are further obtained at different levels of affiliation.
Figure 3 shows the distribution of the hoop dynamic stress concentration factor of the semicircular depression in different sections when the thickness of the belt domain is [image: image]. The left transition region of the membership function curve is the low wave number region, and the dynamic stress concentration factor is significantly higher than that of the core region and the right transition region (high wave number region). The angle of the left transition zone is 1800–2700 for the front wave and 2700-3600 for the back wave. The front wave front in the left transition region oscillates more obviously than the back wave front, because the front wave first arrives when the incident wave hits the inside of the band. The core area is a non-empty and non-single element interval. Although the membership degree of points in the core area is [image: image], due to the difference in the numerical value of specific points, the dynamic stress concentration factor of the core area exhibits irregular oscillations, which is caused by fuzzy uncertainty.
[image: Figure 3]FIGURE 3 | Distribution of hoop dynamic stress concentration factor of semi-circular depression when the thickness of the ribbon domain is [image: image]. (A–C) represent the results of these three subsets: Left transition area, Nuclear region and Right transition area.
As can be seen from Figure 4, the left transition area of the membership function curve is a low wave number area, the maximum value of dynamic stress concentration factor appears on the membership degree [image: image] curve, and the peak value of the core area appears on the membership degree [image: image] curve, while the peak value of the right transition area appears on the membership degree [image: image] curve. The peaks of membership degrees appear on the curves of different membership degrees, which is obviously caused by fuzzy uncertainty. The change of the stress concentration factor curve in the right transition region is more complicated than that in the left transition region, which indicates that the high wave number region has a more serious influence than the low wave number region.
[image: Figure 4]FIGURE 4 | Distribution of hoop dynamic stress concentration factor of semi-circular depression when the thickness of the ribbon domain is [image: image]. (A–C) represent the results of these three subsets: Left transition area, Nuclear region and Right transition area.
From Figure 5, the thickness [image: image] of the band-shaped domain shows the distribution of the hoop dynamic stress concentration factor of the semicircular depression. The left transition area of the membership function curve is the low wave number area, and the dynamic stress concentration factor curve is not obviously oscillated, and the core area and the right transition area are the medium wave number area and the high wave number area, respectively. When the membership degree of the left transition zone is [image: image], the maximum value of the peak appears. The membership degrees of the core area are all [image: image], but the maximum value of the wave peak appears at [image: image], and the maximum value of the peak of the dynamic stress concentration factor in the right transition area appears at [image: image]. Due to the influence of fuzzy and uncertain factors, the positions of the peaks in different sections of the membership curve are different. It can be seen from the figure that the number of wave peaks in the right transition area is significantly more than that in the nuclear area and the left transition area, and the right transition area oscillates more violently.
[image: Figure 5]FIGURE 5 | Distribution of hoop dynamic stress concentration factor of semi-circular depression when the thickness of the ribbon domain is [image: image]. (A–C) represent the results of these three subsets: Left transition area, Nuclear region and Right transition area. 
It can be seen from Figure 6 that the dynamic stress concentration factor in the left transition area of the membership function curve is significantly higher than that in the core area and the right transition area, and the curve of the stress concentration factor in the left transition area changes gently. With the increase of wave number, the curve has obvious oscillation, and the change is more obvious in the right transition region (high wave number region). The maximum value of the wave crest in the left transition area appears at the position of membership degree [image: image], and although the membership degree of the core area is [image: image], the maximum value of the wave crest appears at [image: image]. The peak value of the right transition area appears at [image: image]. The transition regions of different segments show different correlations, which also lead to the maximum value of the peaks appearing on the curves of different membership degrees.
[image: Figure 6]FIGURE 6 | Distribution of hoop dynamic stress concentration factor of semi-circular depression when the thickness of the ribbon domain is [image: image]. (A–C) represent the results of these three subsets: Left transition area, Nuclear region and Right transition area.
3.2 Analysis of fuzzy example 2
As can be seen from reference [21], the different affiliation curves are treated according to triangular segments. Assuming that the fuzzy membership function of the thickness h of the elastic plate in the belt domain is [image: image], it is a triangular distribution as shown in Figure 7. According to the method of fuzzy cut set, the interval under a certain degree of membership is obtained. The points in this interval actually have different degrees of membership, so that the fuzzy cut set is not exactly the same as the general interval number. Since the subtraction and division of the four arithmetic operations of interval numbers are not reversible, it is difficult to deal with fuzzy numbers, and at most an enlarged interval solution can be obtained. According to the corresponding relationship between points and membership degrees, different membership degree curves are processed in segments.
[image: image]
[image: Figure 7]FIGURE 7 | Triangular distribution.
In this analysis, only [image: image] is considered and divided into two sections. Order [image: image]. When [image: image], [image: image]. When [image: image], [image: image]. Let b1 = 1, b2 = 2, b3 = 5, r = 0.8 and consider the hoop dynamic stress concentration factor curve at the semicircular depression under different membership levels under the condition of [image: image], [image: image] and [image: image].
It can be seen from Figure 8 that when [image: image], [image: image] is a phenomenon of low-frequency quasi-static incidence of SH guided waves. Whether it is the left transition region or the right transition region, the dynamic stress concentration factor curve exhibits a position symmetry about 2700. The variation law of the dynamic stress concentration factor of the membership function is very similar, and when the membership degree is [image: image], the peak of the dynamic stress concentration factor is the largest. The changing law of the dynamic stress concentration factor in the right transition zone is also very similar in the case of different membership relationships, but the maximum value of the wave peak appears at the position of [image: image]. Due to the uncertainty of the fuzzy wave number, the positions of the peaks in the left and right transition regions are different.
[image: Figure 8]FIGURE 8 | Distribution of hoop dynamic stress concentration factor with [image: image] at semicircular depressions. (A,B) represent the results of these two subsets: Left transition area and Right transition area.
It can be seen from Figure 9 that when [image: image] corresponds to the incident situation of the intermediate frequency SH guided wave. From the curves of the left and right transition regions, it can be seen that the dynamic stress concentration factor of the front wave surface is more obvious than the fluctuation stress concentration factor of the back side. The maximum value of the wave crest in the left transition area appears at the position of membership degree [image: image], while the maximum value of the wave peak in the right transition area appears at the position of membership degree [image: image]. The values of different membership degrees are different, and the changes of the dynamic stress concentration factor in the left and right transition regions are also different.
[image: Figure 9]FIGURE 9 | Distribution of hoop dynamic stress concentration factor with [image: image] at semicircular depressions. (A,B) represent the results of these two subsets: Left transition area and Right transition area.
It can be seen from Figure 10 that when [image: image] corresponds to the incident case of high-frequency SH guided waves. The values of different membership degrees in the left and right transition regions are different, and the variant rules of the dynamic stress concentration factor are also different. However, it can be clearly seen that the variation law of the dynamic stress concentration factor curve in the left and right transition zones basically appears in the form of two peaks. The peak maximum value in the left transition area appears on the [image: image] curve, while the peak maximum value in the right transition area appears on the [image: image] curve. From this, it can be concluded that the fuzzy relationship is uncertain, and different fuzzy membership relationships lead to different positions of wave crests.
[image: Figure 10]FIGURE 10 | Distribution of hoop dynamic stress concentration factor with [image: image] at semicircular depressions. (A,B) represent the results of these two subsets: Left transition area and Right transition area.
4 CONCLUSION
The solution to the elastic wave scattering problem is often a non-linear function of various parameters, and there is no mature and unified method to obtain the explicit expression of the fuzzy parameters. Even if the inverse function is reached, it is mostly a multi-valued function. Various parameters are often ambiguous, and the membership function of fuzzy response is not always solved by using the membership function of known fuzzy parameters, and the irreversibility of interval algorithm also brings many difficulties in solving fuzzy response problem. In this paper, the correspondence between the subordinate function and the fuzzy quantity pairs is exploited to segment the subordinate function so that each segment corresponds to the fuzzy quantity. This method can effectively avoid the process of interval calculation and does not violate the decomposition process of fuzzy numbers. Two different affiliation curves are given for the trapezoidal and triangular distributions. We solve the multi-source fuzzy scattering problem for wave number and band shape domain thickness, respectively. The calculation example results show the feasibility of the algorithm, and provide theoretical basis and reference value for the application of fuzzy mathematics to earthquake engineering.
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The Landau–Ginzburg–Higgs equation (LGHE) is a mathematical model used to describe nonlinear waves that exhibit weak scattering and long-range connections in the tropical and mid-latitude troposphere as interactions between equatorial and mid-latitude Rossby waves. This study assessed the fractional Landau–Ginzburg–Higgs model, previously introduced in truncated M-fractional derivatives utilizing the [image: image], modified [image: image], and new auxiliary equation methods. Using these techniques, different solutions, including unknown parameters, were obtained in trigonometric, hyperbolic, and exponential functions. This study investigated how varying values of the fractional parameter affected the deeds of the solutions obtained for the given conditions. The predicted solutions, obtained under restricted conditions, were visualized through 2D, 3D, and contour plots using appropriate parameter values. The attained results were confirmed for the aforementioned equations using symbolic soft computations. Moreover, the outcomes confirmed that the methods used in this study were effective mathematical tools for discovering exact solitary wave solutions to nonlinear models encountered in various areas of science and engineering.
Keywords: Ginzburg–Higgs equation, truncated M-fractional derivative, the (Gʹ/G,1/G)-expansion method, modified (Gʹ/G2)-expansion method, new auxiliary equation method, exact solitary wave solutions
1 INTRODUCTION
Non-linear partial differential equations (NLPDEs) play significant roles in physics, mathematical engineering, and other phenomena such as heat flow, plasma physics, wave propagation, shallow water waves, chemically dispersed electricity, quantum mechanics, fluid dynamics, and reactive materials. NLPDEs also play substantial roles in nonlinear optical fibers and quantum fields, such as nonlinear wave equations, Monge–Ampere equations, Burgers equations, Liouville equations, Fisher equations, and Kolmogorov–Petrovskii–Piskunov equations [1–4]. These equations assist in the implementation of essential parts of the soliton solution. The soliton is stimulated during diffusion by eliminating the effects of diffusion. Now, soliton assessment is very common [5]. Solitons are solutions to large, weakly detached partial differential equations (PDEs) for physical structures. Nowadays, many models are considered for computing the soliton solutions (SS) [6–8]. Among these, the Landau–Ginzburg–Higgs (LGH) model [9, 10] is one of the most considered in recent years, as follows:
[image: image]
where [image: image] is the ion-cyclotron wave electrostatic potential [image: image] and [image: image] are real parameters and [image: image] indicate the nonlinearized spatial and temporal coordinates. Lev Davidovich Landau and Vitaly Lazarevich Ginzburg designed the LGHE (1) to describe superconductivity and drift cyclotron waves in radially inhomogeneous plasmas of integrated ion cyclotrons [11]. Numerous methods have been used to determine the distinctive SS of the integrable nonlinear evolution equation (NLEE) (1). Bekir and Unsal [12] provided exponential function solutions by using the first integral method for NLEE (1). Iftikhar et al. [13] utilized the [image: image]-expansion method and inspected a variety of analytical solutions for NLEE (1). They also determined general and kinked shape soliton solutions for different parameter selections. Barman et al. [14, 15] obtained various analytical solutions using the Kudryashov technique comprising the undisclosed parameters of Eq. 1. In addition, they employed the tanh function to create solutions with soliton-like shapes, such as dark solitons, bright solitons, peakons, compactons, and periodic solutions, among others. These solutions can be utilized to investigate the propagation of various waves, such as tidal and tsunami waves, ion-acoustic waves, and magneto-sound waves in plasma. Islam and Akbar [16] used the IBSEF and presented innumerable stable solutions. The results provided several soliton shapes, which considered one-way wave propagation with diffuse systems in nonlinear science.
For two centuries, fractional calculus has fascinated many intellectuals’ curiosity. Use them to develop many nonlinear aspects, inclosing bioprocesses, chemical processes, fluid mechanics, etc. In the traditional integer order, the fractional-order PDEs are used to generalize PDEs. Several definitions of the fractional derivative exist in the literature, such as Riemann–Liouville [17], Caputo [18], Caputo–Fabrizio [19], conformable fractional derivative (FD) [20], and beta-derivative [21] to solve non-integer-order models. Studies have shown that these definitions of FD do not meet some of the basic assets of derivatives, such as product and chain rules. Sousa and Oliveira [22] developed a novel truncated-M fractional derivative that meets numerous properties considered to be the FD’ boundary. This derivative has interesting results in different areas, such as chaos theory, biological modeling, circuit analysis, optical physics, and disease analysis.
The core aim of this study was to explore the space-time fractional LGH model [23], symbolized as
[image: image]
where [image: image] and [image: image] are the fractional parameters representing the fractional time derivative’s order.
The fundamental consideration of this exploration was to take advantage of the novel indication of fractional-order derivatives, called truncated truncated-M fractional derivatives [22, 24, 25], for space-time fractional LGHE [23], and to use the [image: image] modified [image: image], and new auxiliary equation methods (NAEMs) [23, 26, 27] to obtain new inclusive solitary solutions in the form of solutions of bright, dark, single solitons, and periodic isolated waves. Up to now, the results have different corporate and diverse forms, which have not been reported previously [23].
Moreover, the planned technique has been used to solve various models. For instance, Hafiz [28] employed the [image: image]-expansion method to determine the closed-form solutions of the generalized fractional reaction Duffing model and the density-dependent fractional diffusion-reaction equation. Li et al. [29] discovered the traveling wave solutions of the Zakharov equation, and Zayed et al. [30] established solutions to the nonlinear Kdv–mKdv equation. Uddin [31] and Wazwaz [32] provided general solutions for the fifth-order NLEEs and the Burger KP-equation, respectively. Sirisubtawee [33] found exact traveling wave solutions for nonlinear fractional evolution equations. Traveling wave solutions for the nonlinear Schrodinger equation with third-order dispersion were obtained using the modified [image: image]-expansion model [34]. The Fokas–Lenells equations were solved using this technique to regulate different traveling wave solutions [35]. Aljahdaly [36] extended the NLEEs and described the general exact traveling wave solutions. Dragon and Donmez [37] discovered solutions in the form of traveling waves for the Gardner equation and then used these solutions to address different plasma-related issues. The Sharma–Tasso–Olver (STO) equations were also solved, and exact nonlinear and super nonlinear traveling wave solutions were obtained [38]. Jhangeer et al. [39] used the new auxiliary equations method to find innovative soliton solutions for the fractional Caudrey–Dodd–Gibbon–Sawada–Kotera equation. Raza et al. [40] obtained the new optical solitary wave solitons of the three-dimensional Fractional Wazwaz–Benjamin–Bona–Mahony (WBBM) equation. Furthermore, Riaz et al. [41] scrutinized the various forms of solitary wave solutions for the modified equal-width wave equation.
This work is structured into six sections. Section 2 presents the truncated M-fractional derivative and its properties, which is the foundation of the proposed methods. The methodologies of the three proposed approaches are discussed in Section 3, where we explain how to use the truncated M-fractional derivative to solve mathematical models. Section 4 involves a mathematical examination of the models we have presented and the solutions we have obtained using the proposed methods. We compare them with existing methods in the literature. Section 5 provides a graphical representation of the obtained solutions for each analyzed model. Finally, Section 6 provides the study conclusion by summarizing the key findings and their implications.
2 TRUNCATED M-FRACTIONAL DERIVATIVE AND ITS PROPERTIES
The following section will discuss the truncated M-fractional derivative (TMFD) of order [image: image] with its properties.
Definition 2.1. Let [image: image] then, the TMFD of a function [image: image] of order [image: image] is determined as
[image: image]
where [image: image] is a truncated Mittag–Leffler function of one parameter [22].
Properties 2.2. Let [image: image] and [image: image] be [image: image]-differentiable at a point [image: image] then:
1. [image: image] [image: image] [image: image]
2. [image: image]
3. [image: image]
4. [image: image]
5. If [image: image] is differentiable, then
[image: image]
6. [image: image]
3 GENERAL FORM OF THE METHODS
3.1 [image: image]-expansion method
The core steps of the [image: image]-expansion model [24, 28] for discovering traveling wave solutions to nonlinear evolution equations are outlined in this section. We begin by examining the second-order linear ordinary differential equation (ODE):
[image: image]
where [image: image] then 
[image: image]
Case 1:. When [image: image] the general solutions of Eq. 4 is given as
[image: image]
and we have
[image: image]
where [image: image] are arbitrary integration constants and [image: image]
Case 2:. When [image: image] the general solution of Eq. 4 is clearly
[image: image]
and we have
[image: image]
where [image: image] are arbitrary integration constants and [image: image]
Case 3:. When [image: image] the general solutions of Eq. 4 is
[image: image]
and we have
[image: image]
where [image: image] are arbitrary integration constants.Consider the NLPDE, such as
[image: image]
The unfamiliar function [image: image] is represented by a [image: image] polynomial of the variable and its partial derivatives. The key phases involved in the [image: image]-expansion model are as follows:
Step 1:. By coordinate transformation
[image: image]
where [image: image] is the speed of the traveling wave.The wave variable allows us to reduce Eq. 12 into a nonlinear ODE for [image: image]
[image: image]
where [image: image] is a polynomial of [image: image] and its total derivatives concerning [image: image]
Step 2:. Assume that a polynomial can express the solutions of Eq. 14 in two variables [image: image] and [image: image] as
[image: image]
To determine the values of the constants [image: image] and the positive integer [image: image], a homogenous imbalance is used among the highest-order derivatives and the nonlinear terms in the given ODE Eq. 14.
Step 3:. Substitute Eq. 15 into Eq. 14 along with Eqs 5 and 7, reducing the left-hand side of the ODE into a polynomial in terms of [image: image] and [image: image], with a maximum degree of 1 for [image: image]. A system of algebraic equations is obtained by setting each coefficient of the polynomial to zero, which can be solved with the aid of Mathematica software to obtain the values for [image: image]
Step 4:. Substitute the values obtained for ai (i = 0, 1, …, m), bi (i = 1, …, m), c, μ, λ(λ<0), A1 and A2 in Eq. 15 to determine the traveling wave solutions in terms of hyperbolic functions, as expressed in Eq. 14.
Step 5:. Similarly, substitute Eq. 15 into Eq. 14 along with Eq. 5 and either Eq. 9 or Eq. 11 to obtain exact traveling wave solutions expressed in terms of trigonometric or rational functions, respectively.
3.2 The modified [image: image]-expansion method
We outline the fundamental steps of the modified [image: image]-expansion method [24, 29] as follows:
Step 1:. Start by considering Eqs 12–14.
Step 2:. Extend the solutions to Eq. 14 as follows:
[image: image]
where [image: image] are constants and found later. It is important that [image: image]The function [image: image] satisfies the following Riccati equation:
[image: image]
where [image: image] and [image: image] are constants.We can obtain the following solutions to Eq. 17 under different conditions [image: image]:When [image: image]
[image: image]
When [image: image]
[image: image]
When [image: image] and [image: image]
[image: image]
where [image: image] and [image: image] are arbitrary constants.
Step 3:. If we substitute Eq. 16 and Eq. 17 into Eq. 14 and equate the coefficients of each power of [image: image] to zero, a set of algebraic equations can be obtained. These equations can then be solved to determine the values of [image: image], and other parameters.
Step 4:. Replacing Eq. 16 of which [image: image], and other parameters are found in step 3 in Eq. 13, we obtain the solutions for Eq. 12.
3.3 The new auxiliary equation method
Now, we will designate the elementary steps of the new auxiliary equation method [39, 40].
Step 1:. Consider Eqs 12–14.
Step 2:. Subsequently determine the solutions of Eq. 14: 
[image: image]
which satisfies the auxiliary equation:
[image: image]
where [image: image] are coefficients to be solved such that [image: image] We then utilized the balancing principle to obtain the value of [image: image] which states that we can find [image: image] by equating the nonlinear term of Eq. 14 with the highest-order derivative.For Eq. 22, the family of solutions can be attained as follows:Family-1 When [image: image] and [image: image]
[image: image]
Family-2 When [image: image] and [image: image]
[image: image]
Family-3 When [image: image] and [image: image]
[image: image]
Family-4 When [image: image] and [image: image]
[image: image]
Family-5 When [image: image] and [image: image]
[image: image]
Family-6 When [image: image] and [image: image]
[image: image]
Family-7 When [image: image]
[image: image]
Family-8 When [image: image] and [image: image]
[image: image]
Family-9 When [image: image] and [image: image]
[image: image]
Family-10 When [image: image]
[image: image]
Family-11 When [image: image] and [image: image]
[image: image]
Family-12 When [image: image] and [image: image]
[image: image]
Family-13 When [image: image]
[image: image]
Family-14 When [image: image]
[image: image]
Family-15 When [image: image]
[image: image]
Family-16 When [image: image]
[image: image]
Family-17 When [image: image]
[image: image]
Family-18 When [image: image]
[image: image]
Family-19 When [image: image] and [image: image]
[image: image]
Family-20 When [image: image]
[image: image]
4 MATHEMATICAL ANALYSES OF THE MODELS AND THEIR SOLUTIONS
Assuming the transformations:
[image: image]
where [image: image] and [image: image] are constants. Using Eq. 8 in Eq. 2, we acquire the subsequent ODE
[image: image]
The subsequent sections employ the planned techniques to obtain the desired solutions.
4.1 Solutions with the [image: image]-expansion method
Using the homogenous balance technique to the highest-order derivative with the nonlinear term in Eq. 24, we get [image: image] For [image: image] Eq. 15 has the form:
[image: image]
where [image: image] are unknown parameters.
Case 1:. The obtained Eq. 25 is substituted into Eq. 24 with the use of Eqs 5 and 7 to result in a polynomial equation. A system of algebraic equations is obtained by setting each polynomial coefficient to zero [image: image]. This system of algebraic equations can be solved using symbolic computation software such as MATHEMATICA, which provides the following results:
[image: image]
The hyperbolic traveling wave solutions of Eq. 24 can be obtained by substituting Eq. 26 into Eq. 25:
[image: image]
where [image: image]Family 1.1: If [image: image] in Eq. 27, then we obtain the subsequent hyperbolic traveling wave solution:
[image: image]
Family 1.2: If [image: image] in Eq. 27, we obtain the following hyperbolic traveling wave solution:
[image: image]
Case 2:. By substituting Eq. 25 into Eq. 24 along with Eqs 5 and 9 for [image: image] we can obtain a polynomial equation. Setting each polynomial coefficient to zero generates a system of algebraic equations for [image: image]. By solving this system of algebraic equations using software such as Mathematica, we can obtain the following outcomes:
[image: image]
The periodic trigonometric traveling wave solution of Eq. 24 can be obtained by substituting Eq. 30 into Eq. 25, as follows:
[image: image]
where [image: image]Family 2.1: If [image: image] in Eq. 31, we obtain the following trigonometric traveling wave solution:
[image: image]
[image: image]
4.2 Solutions with the modified [image: image]-expansion method
Using the homogenous balance technique to the highest order derivatives with the nonlinear term in Eq. 24, we get [image: image] For [image: image] Eq. 16 has the form:
[image: image]
where [image: image] and [image: image] are unknown parameters. We can then substitute Eq. 34 and Eq. 17 into Eq. 24 and sum all coefficients of the same order. [image: image] yields a set of algebraic equations involving [image: image], and other parameters. The set of algebraic equations is then solved using the symbolic computation software Mathematica, resulting in specific values for the unknown parameters:
[image: image]
By substituting Eqs 35, 18, and 19 into Eq. 34 and considering the following cases, if [image: image] then
[image: image]
[image: image]
4.3 Solutions with the new auxiliary equation method
Using the homogenous balance technique to the highest order derivative with the nonlinear term in Eq. 24, we obtain [image: image] For [image: image] Eq. 24 has the form:
[image: image]
where [image: image] and [image: image] are unknown parameters.
Switching Eq. 10 into Eq. 24 with Eq. 22, we obtain the algebraic equations involving [image: image], and other parameters by equating all coefficients of different powers [image: image] to zero:
[image: image]
Using mathematical software (Mathematica) to solve the aforementioned system of algebraic equations, we obtain the subsequent solution:
[image: image]
where [image: image]
Substituting the attained solution Eq. 40 into Eq. 38, we obtain the following:
[image: image]
Substituting the solution stated by Eq. 22 into Eq. 41, the solutions regained are:
For Family 1: When [image: image] and [image: image]
[image: image]
[image: image]
For Family 2: When [image: image] and [image: image]
[image: image]
[image: image]
For Family 3: When [image: image] and [image: image]
[image: image]
[image: image]
For Family 4: When [image: image] and [image: image]
[image: image]
[image: image]
For Family 5: When [image: image] and [image: image]
[image: image]
[image: image]
For Family 6: When [image: image] and [image: image]
[image: image]
[image: image]
For Family 7: When [image: image]
[image: image]
For Family 8: When [image: image] and [image: image]
[image: image]
[image: image]
For Family 9: When [image: image] and [image: image]
[image: image]
[image: image]
For Family 13: When [image: image]
[image: image]
For Family 14: When [image: image]
[image: image]
For Family 15: When [image: image]
[image: image]
For Family 16: When [image: image]
[image: image]
For Family 18: When [image: image]
[image: image]
For Family 19: When [image: image] and [image: image]
[image: image]
5 GRAPHICAL DEMONSTRATION AND EXPLANATION
To demonstrate the dynamics and behavior of our solutions, we used Eqs 32, 36, 42, and 17 to graphically represent the solutions in 3D, 2D, and contour graphs, which are shown in Figures 1–4. To illustrate the variation over time or to compare multiple wave items, 3D plots are often used. In this study, the wave points were arranged in a series with evenly spaced breaks and connected by a line to emphasize their relationships. In contrast, 2D line plots demonstrate very high and low frequency and amplitude. The authors note that the plots show the different natures of the solutions, such as periodic, singular-kink type, singular-bell shaped, and bright singular wave solutions. Furthermore, the authors emphasize that the correct physical description of the solutions can be generated by choosing distinct values for the fractional parameter [image: image].
[image: Figure 1]FIGURE 1 | Influence of fractional order by 2D, 3D, and corresponding contours of Eq. 32 for [image: image]. Family 2.2: If [image: image] in Eq. 31, we obtain the following trigonometric traveling wave solution.
[image: Figure 2]FIGURE 2 | Influence of fractional order by 2D, 3D, and corresponding contours of Eq. 36 for [image: image]. [image: image] then
[image: Figure 3]FIGURE 3 | Influence of fractional order by 2D, 3D, and corresponding contours of Eq. 42 for [image: image]
[image: Figure 4]FIGURE 4 | Influence of fractional order by 2D, 3D, and corresponding contours of Eq. 57 for [image: image]. For Family 12: When [image: image] and [image: image]
6 CONCLUSION
In this work, we applied the [image: image]-expansion, modified the [image: image]-expansion, and provided new auxiliary equations methods in a satisfactory way to determine the novel soliton solutions of the space-time fractional LGHE by considering the truncated M-fractional derivative. These methods restored the periodic, singular-kink type, singular-bell shaped, and bright singular wave solutions dark, bright-singular, exponential, trigonometric, and rational solitons. Mathematica was utilized to perform the algebraic computations and generate graphical representations of the obtained solutions at different parameter values. Compared with other works [10, 23], our solutions have not been reported in the previous literature. These techniques are highly effective and robust for discovering soliton solutions for nonlinear fractional differential equations. Furthermore, the solutions obtained can provide deeper insights into the nonlinear dynamics of optical soliton propagation.
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We propose a new symmetry reduction method for (1+1)-dimensional differential-difference equations (DDEs), namely, the λ-symmetry reduction method of solving ordinary differential equations is generalized to DDEs. Order-reduction processes are a consequence of the invariance of the given DDE under vector fields of the new class. These vector fields satisfy a new prolongation formula. A simple example of order-reduction is provided to illustrate the application.
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1 INTRODUCTION
Symmetry is closely related to the integrability of the nonlinear evolution equations (NLEEs) in various specific meanings. For example, the existence of infinite Lie-Bäcklund symmetry is a criterion for the integrability of NLEEs, so the study of symmetry of NLEEs is particularly important. The symmetry of the NLEEs is studied systematically by Lie point symmetry theory [1–3]. Although the Lie point symmetry method has relatively mature theories, it also has great limitations [1–10]. When a given NLEE does not allow enough non-trivial Lie point symmetries, this method cannot be applied. Therefore, it is necessary to extend the classical Lie point symmetry concept from various angles [11–20]. For example, if the infinitesimal also depends on the higher derivative, the corresponding Lie-Bäcklund symmetry is obtained [21, 22].
The concept of λ-symmetry proposed by Muriel and Romero [23], aims to show that many of the known order-reduction processes can be explained by the invariance of the equation under some special vector fields that are neither Lie symmetries nor Lie-Bäcklund symmetries. The λ-symmetry reduction method for ordinary differential equations (ODEs) has attracted the attention of more and more scientists [24]. For example, Levi and Rodriguez successfully extended this method to the case of difference equations [25]. Again, the μ-symmetry reduction method is used to deal with partial differential equations (PDEs) [26–30].
For the sake of readability, we will briefly introduce the λ-symmetry reduction method for ODEs in Section 2. Then we extend the λ-symmetry reduction method to the case of (1+1)-dimensional differential-difference equations (DDEs) in Section 3. The last section is devoted to conclusions and discussions.
2 THE Λ-SYMMETRY REDUCTION METHOD OF ODES
In this section we briefly review the λ-symmetry reduction method of ODEs. For a given mth-order ODE
[image: image]
we can set a vector field
[image: image]
where [image: image] means the ith-order derivative with respect to the independent variable x. Thus we can construct high-order infinitesimal prolongation vector field
[image: image]
where
[image: image]
Here Dx means the total derivative with respect to x. So the invariance of Eq. 1 needs
[image: image]
Solving this equation, the expressions for X and U can be derived. For complex high-order ODEs or systems, we need to use symbolic computing software to calculate X and U. Theoretically, all of the similarity variables be derived by solving the following characteristic equation
[image: image]
and then we can reduce and solve Eq. 1.
The above method is the Lie point symmetry method, also known as the classical symmetry reduction method. In Ref. [23], authors have introduced a new class of symmetries, that strictly includes Lie point symmetries, for which there exists an algorithm that lets us reduce the order of a given ODE. This method is now called the λ-symmetry reduction method. The key step of this generalized method is that the infinitesimal prolongation is modified to the following form
[image: image]
where λ is a smooth function that is determined simultaneously with the coefficients of the infinitesimal generators X and U. Thus the infinitesimal prolongation vector field is modified to
[image: image]
The following theorem that is important for the λ-symmetry reduction method, which is first obtained by Muriel and Romero [23].
Theorem 1. (Muriel, Romero [23]). Let us suppose that, for some smooth functions λ, the vector field v is a λ-symmetry of the following ODE
[image: image]
Then
[image: image]
for some smooth functions μ. Here A is the vector field of Eq. 9,
[image: image]
Conversely, if
[image: image]
is a vector field such that
[image: image]
for some smooth functions λ, μ, then the vector field
[image: image]
is a λ-symmetry of Eq. 9 and K = v[λ,(m−1)].
3 THE Λ-SYMMETRY REDUCTION METHOD OF DDES
In this section, we extend the λ-symmetry reduction method to the case of (1+1)-dimensional DDEs.
Definition 1. For the following (1+1)-dimensional DDE with a discrete variable n and a continuous variable x,
[image: image]
 where [image: image], the vector field
[image: image]
is said to be λ-symmetry for this equation if there exists a differential function λ such that the mth λ-prolongation of the vector field satisfies.
[image: image]
Particularly, for the following (1+1)-dimensional DDE
[image: image]
we can set a vector field
[image: image]
Here [image: image] is for ease of writing. So we have Theorem 2.
Theorem 2. Let us suppose that, for some differential functions λ, the vector field v is a λ-symmetry of the following DDE
[image: image]
Then
[image: image]
for some differential functions μ. Here A is the vector field of Eq. 19,
[image: image]
Conversely, if
[image: image]
is a vector field such that
[image: image]
for some differential functions λ and μ, then the vector field
[image: image]
is a λ-symmetry of Eq. 19 and K = v[λ,(m−1)].
Proof. Compute [v[λ,(m−1)], A] as a function of [image: image] at each lattice point, with
[image: image]
and
[image: image]
Since v is a λ-symmetry,
[image: image]
Hence, if [image: image], Eq. 26 says that
[image: image]
If we set μ = −A(X(x)) − λX(x), then we can write
[image: image]
Therefore, we conclude that [v[λ,(m−1)], A] = λ ⋅ v[λ,(m−1)] + μ ⋅ A.The vector field
[image: image]
depends on three lattice points with n − 1, n and n + 1. If we apply both elements of this equation to each coordinate function, we obtain
[image: image]
and, for 0 ≤ i ≤ m − 2, the coordinate [image: image] of K must satisfy
[image: image]
Hence
[image: image]
Then we apply both elements of [K, A] = λK + μA, to the coordinate function [image: image], [image: image] and [image: image], we obtain
[image: image]
where k = −1, 0, 1. The above equation yields
[image: image]
Calculate
[image: image]
when [image: image], we obtain, by Eq. 35, that
[image: image]
Therefore v is a λ-symmetry of Eq. 19.In order to reduce the mth-order DDEs to (m − 1)th-order DDEs and first-order DDEs, we can determine invariants for the λ-prolongation of v by deriving invariants of lower order. This can be achieved through the application of the main tools, Theorem 2.
Theorem 3. Let v be a vector field defined on M and let λ is a differential function, If
[image: image]
are such that
[image: image]
then
[image: image]
Proof 3. By Theorem 2, we have
[image: image]
where μ = −Dx(v(x)) − λv(x). Therefore,
[image: image]
Proposition 1. Let v be a λ-symmetry. Let
[image: image]
be two functionally independent first-order invariants of v[λ,(m)]. By solving an equation of [image: image] and an auxiliary equation [image: image], the general solution of the equation can be obtained.With the help of independent first-order invariant, we demonstrate a simple application of λ-symmetry. Considering a (1+1)-dimensional DDE
[image: image]
Eq. 43 has the from
[image: image]
which admits the obvious order reduction
[image: image]
Letting X(x) = 0, Un−1(x, un−1) = 1, Un(x, un) = 1, Un+1(x, un+1) = 1 and [image: image], we have the following λ-prolongation vector field
[image: image]
We can easily prove that the vector field v is the λ-symmetry of Eq. 43. The λ-symmetry generator has two obvious invariants z = x, [image: image]. Furthermore, the differential invariant [image: image]. Therefore, Eq. 43 can be reduced to Eq. 45.
4 CONCLUSION
λ-symmetry reduction method is useful in establishing effective alternative methods analyze ODEs without using Lie point symmetries. At present, there is no programmatic algorithm package to solve λ-symmetry directly. Therefore, it is difficult to determine the general form of λ.
There are many examples of DDEs, without Lie point symmetries, that can be completely integrated. So we have to study the reduction of these DDEs. In this paper, we have extended the λ-symmetry reduction method to the case of (1+1)-dimensional DDEs. We have obtained some theorems Theorem 2, 3 and Proposition 1 which can be used to reduce and solve DDEs in Section 3. By comparison, DDEs can be more complex. Here we have just listed a simple example to illustrate the method. How to combine the integrating factor method and the λ-symmetry reduction method of DDEs to construct more effective examples will be the next work.
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The actual multimodal process data usually exhibit non-linear time correlation and non-Gaussian distribution accompanied by new modes. Existing fault diagnosis methods have difficulty adapting to the complex nature of new modalities and are unable to train models based on small samples. Therefore, this paper proposes a new modal fault diagnosis method based on meta-learning (ML) and neural architecture search (NAS), MetaNAS. Specifically, the best performing network model of the existing modal is first automatically obtained using NAS, and then, the fault diagnosis model design is learned from the NAS of the existing model using ML. Finally, when generating new modalities, the gradient is updated based on the learned design experience, i.e., new modal fault diagnosis models are quickly generated under small sample conditions. The effectiveness and feasibility of the proposed method are fully verified by the numerical system and simulation experiments of the Tennessee Eastman (TE) chemical process.
Keywords: new modal fault diagnosis, meta-learning, neural architecture search, small samples, artificial intelligence
1 INTRODUCTION
With the development of many sensors and industrial networks, modern chemical industry is moving toward large-scale, hierarchical, information integration and strong interaction, leading to frequent failures and unstable product quality in chemical production processes, and chemical process troubleshooting is one of the effective techniques to ensure product quality and efficient production operation [1, 2]. In the actual chemical production process, the adjustment of the product grade or index, the fluctuation of material quality, and the imbalance of feed ratio all lead to the multimodal characteristics of the chemical process [3]. Therefore, multimodal characteristics are widely present in modern manufacturing industries [4, 5]. Compared with unimodal processes, the multimodal process data are more complex, usually manifested as non-linear time correlation and non-Gaussian distribution accompanied by new modes [6]. If deep learning is directly applied to multimodal chemical processes, it will be difficult to adapt to complex characteristics such as new modes and to construct accurate fault diagnosis models under small samples [7, 8]. Therefore, the deep learning-based fault diagnosis method for new modes in small samples is of research value.
Existing multimodal chemical process fault diagnosis methods can be classified into statistical learning, machine learning, and deep learning methods, among which statistical learning and machine learning methods have been studied previously. For example, Zhao et al. studied a local modal fault diagnosis method using multiple local PCA statistical models [9], but the method requires the use of accurate modal information in the offline modeling stage. To address the problem of incomplete modal prior knowledge, Tan et al. applied the clustering method to the multimodal chemical process and effectively improved the accuracy of fault diagnosis [10]. Wang et al. proposed a stable and transitional modal fault diagnosis method based on the transition probabilities between different modes [11]. Natarajan et al. gave the minimum distance from the test data to the training data center by calculating the selection of the locally optimal PCA model criterion [12]. Deep learning has made important progress in many fields in recent years, but there are relatively few studies on deep learning for multimodal chemical process fault diagnosis. In addition, the training of deep learning fault diagnosis models usually requires a large amount of labeled data, but new modes often have only a small amount of data [13–16]. How to make full use of multimodal process characteristics and model design experience of the existing modes under small-sample conditions to rapidly construct new modal fault diagnosis models based on deep learning is of great importance to ensure the safety and product quality of the actual chemical processes.
Existing small-sample data learning methods can be divided into three categories: data augmentation-based methods, model improvement-based methods, and algorithm optimization-based methods [17, 18]. Data augmentation-based methods achieve the purpose of expanding the dataset by generating new data [19], but the manipulation of data is not universal and requires the designer to have sufficient knowledge of the relevant domain. Model improvement-based approaches model small data by limiting the model complexity, reducing the hypothesis space, and reducing VC dimension [20] but require a priori knowledge and extensive experience of the designer, and the aforementioned two approaches cannot effectively utilize the design experience of existing modes. Algorithm-based optimization methods search for suitable solutions faster by improving the optimization algorithm [21, 22], and meta-learning is an improved optimization algorithm. The proposed meta-learning method provides research ideas to solve the problems such as inadequate utilization of model design experience of the existing modes and small samples [23]. For example, Finn et al. proposed the model-agnostic meta-learning (MAML) method, which first trains a set of initialization parameters and then performs one or more steps of gradient adjustment to achieve rapid adaptation to new tasks with only a small amount of data [24, 25]. However, MAML is very sensitive to the neural network structure and requires time-consuming hyperparameter search to stabilize the training and improve the model generalization power [26]. To address these problems, Antoniou et al. optimized MAML in terms of robustness, training stability, automatic learning of inner-loop hyperparameters, and computational efficiency during inference and training, which significantly improved the generalization performance of MAML [27] but at the expense of computation and memory. Nichol et al. replaced the process of computing second-order differentiation in MAML with the one in which each task is performed using the stochastic gradient descent (SGD) in a standard form without expanding the computational graph or computing arbitrary second-order derivatives, reducing the amount of computation and memory required by MAML [28]. However, the aforementioned methods have a single network structure and cannot transform the network structure as the task changes, and meta-learning faces problems such as cumbersome network structure design and time-consuming parameter search.
In the field of machine learning and artificial intelligence, several state-of-the-art (SOTA) algorithms have been developed to tackle various tasks. Although these algorithms have their own advantages, they also come with certain limitations. Here is a summary of the advantages and limitations to the existing SOTA algorithms in this area. The advantages are as follows: high accuracy: SOTA algorithms often achieve remarkable accuracy in solving complex problems; robustness: many SOTA algorithms exhibit robustness in handling noisy or incomplete data; generalization: SOTA algorithms often possess excellent generalization capabilities; and scalability: several SOTA algorithms are designed to handle large-scale datasets efficiently. The limitations are as follows: computational complexity: many SOTA algorithms, particularly those based on deep learning architecture, require significant computational resources to train and deploy; interpretability: while SOTA algorithms often achieve impressive performance, they can be black-box models, meaning they lack interpretability; data dependency: SOTA algorithms heavily rely on large and diverse datasets for training; and overfitting: some SOTA algorithms are susceptible to overfitting, especially when dealing with small datasets.
To solve the aforementioned problems, this paper proposes a new modal fault diagnosis method, MetaNAS, which uses meta-learning to find the optimal initial parameters, and the new modal can find the network structure with optimal performance by only a few steps of gradient update based on the optimal initial parameters. The optimal initial parameters are to be learned so that the fault diagnosis model is obtained by performing a few steps of updates based on the optimal initial parameters under a small sample of the new mode. MetaNAS solves the limitations to fault diagnosis by NAS, such as underutilization of the existing modal design experience and difficulty in training models under small samples.
The main contributions of this paper are as follows [1]: the proposed MetaNAS method can automatically design fault diagnosis network models and realize automatic fault diagnosis under small samples of new modes [2]. To address the problems of underutilization of the existing modal design experience and difficulty in training models under small samples, meta-learning is used to learn the model design experience of existing models and obtain the optimal initial parameters so that the new modal can obtain the fault diagnosis model with only a few steps of gradient update under small samples [3]. Continuous relaxation optimization converts the discrete channel selection process into a continuous optimization process, making NAS more efficient and convenient.
2 MANUSCRIPT FORMATTING
2.1 Model-agnostic meta-learning
The entire dataset, training set, and test set are denoted by [image: image], [image: image], and [image: image], respectively, and in meta-learning, a series of tasks [image: image] is sampled according to the distribution [image: image] of [image: image], where there are N categories in the [image: image] task, and each category has K samples, calling the problem an N-class K-sample problem [19]. The data in each N-class K-sample problem are further divided into a training set and a test set, and in order not to be confused, the training set in [image: image] is called the support set and the test set is called the query set, denoted as [image: image] and [image: image], respectively. The core idea of MAML is to learn an optimal initial parameter [image: image] in all tasks [image: image] such that [image: image] to perform one or more steps of gradient adjustment based on [image: image] to achieve the goal of fast adaptation to new tasks and good performance with only a small amount of data. The optimal initial parameters are learned according to the following rules:
[image: image]
where [image: image] is the internal learning rate of parameter [image: image], [image: image] is the update step in each task [image: image], [image: image] is the parameterization function of the network weight [image: image], and [image: image] is the loss function. During the internal learning process, [image: image] is used to calculate the loss of task [image: image] and let the parameter [image: image] be updated from [image: image] to [image: image], where [image: image]. After M steps, [image: image] in [image: image] is used to update the optimal initial parameters, which can be expressed as follows:
[image: image]
where [image: image] is the external learning rate of parameter [image: image] and eventually, when the model converges, the optimal initial parameter [image: image] is obtained. This makes the initial parameters so sensitive that a better model can be obtained in only a few steps of updating on [image: image].
2.2 Automatic fault diagnosis
The core idea of the automatic fault diagnosis (AutoFD) method is to continue the discrete network search process by continuous relaxation optimization, assigning weights to all candidate operations separately, then optimizing the operation weights and network parameters by gradient descent, and then using the operation weight parameters to select the corresponding operations to form the final network model [29, 30].
Let [image: image] be the candidate operation set, each candidate operation is denoted as [image: image]; given the input [image: image], the operation output [image: image] after continuous relaxation optimization is as follows:
[image: image]
where [image: image] represents the operation weight vector, which represents the importance of different candidate operations in the corresponding edge. After the training is completed, the operation corresponding to the largest weight is selected according to the operation weight parameter as the final result.
Through continuous relaxation optimization, the NAS problem is transformed into a double optimization problem, which can be solved by using the two-step update algorithm.
[image: image]
[image: image]
where [image: image] denotes the loss function and [image: image] means the internal learning rate.
3 THE PROPOSED METHOD
The MetaNAS method is proposed to address the problems of existing methods that do not fully utilize the model design experience of the previous modes and require a large amount of feature data, and the overall flow chart of the method is shown in Figure 1. MetaNAS first assigns weights to the candidate channels and transforms the discrete channel selection process into a continuous optimization process by optimizing the continuous weights instead of the channel selection process. Then, MAML is used to learn the optimal initial parameters of the required learning parameters in NAS, and when a new mode appears, a better fault diagnosis model for the new mode is obtained with only a few steps of updates based on the optimal initial parameters when only a small amount of data is available for the new mode.
[image: Figure 1]FIGURE 1 | Flowchart of the proposed MetaNAS method.
3.1 Channel weight parameters
AutoFD uses multi-channel convolution to enhance the performance of the network, but the selection of convolutional channels is very time-consuming. In order to make NAS more efficient, this paper uses continuous relaxation optimization to make the discrete convolutional channel selection process continuous. The candidate channels are denoted by [image: image] to denote the set of candidate channels, which are used as the candidate input channels of the network, i.e., [image: image], the selection process of these candidate input channels is discrete, the channels are assigned weights [image: image], and these weights are transformed by the Softmax function to mix all the channels in the candidate channel set to obtain a mixed input.
[image: image]
Thus, each channel [image: image] is associated with a weight coefficient [image: image] corresponding to it, and continuous relaxation optimization uses a continuous weight coefficient to represent the discrete candidate channels. This continuous weight coefficient indicates the importance of the corresponding channel in the network input, so the performance of the network on the validation set can be updated quickly by using gradient descent for each operation, effectively avoiding the time-consuming process of training all network inputs and selecting the well-performing inputs. After the search is completed, the channel corresponding to the top three values of the weight coefficient is selected as the final operation convolution channel. By the aforementioned method, the NAS problem is transformed into a two-layer optimization problem of learning the smallest values of operation weight [image: image], network weight [image: image], and channel weight [image: image] with the loss function.
[image: image]
[image: image]
[image: image]
[image: image]
3.2 The proposed method
In order to make the NAS process of the new modal fault diagnosis more efficient, this paper uses MAML to learn the design experience of previous modes and NAS, the new modal chemical process based on the learned design experience. In Subsection 3.1, MAML is trained on the training set to obtain the optimal initial parameters [image: image] for fast adaptation in the new task. Similarly, the optimal network initial parameter [image: image], operation weight initial parameter [image: image], and channel weight initial parameter [image: image] are learned using the training set data in MetaNAS, which enables MetaNAS to quickly obtain a better model with a few steps of the gradient update on the new task, where the parameters [image: image], [image: image], and [image: image] are the NAS parameters defined in Subsection 2.1 and Subsection 3.1.
In order to learn the previous modal NAS design experience, this paper is based on the MAML strategy to learn the optimal NAS initial parameters [image: image], [image: image], and [image: image]. Similar to AutoFD, the operation weight parameter [image: image], network parameter [image: image], and channel weight parameter [image: image] cannot be trained independently, so the initial parameters [image: image], [image: image], and [image: image] also need to be jointly optimized. In MetaNAS, the initial parameters [image: image], [image: image], and [image: image] are also solved by joint optimization. Eqs 1, 2 are used in subsection 2.1 to update the optimal initial parameters [image: image], where Eq. 1 is used to update the internal parameters and Eq. 2 is used to update the external initial parameters, and similarly, MetaNAS contains two parts: internal parameter update and external initial parameter update. In the internal parameter update part, the NAS parameters [image: image], [image: image], and [image: image] are jointly optimized in a specific task [image: image] according to the following equations:
[image: image]
[image: image]
[image: image]
where [image: image] is the internal learning rate of the network parameter [image: image], [image: image] is the internal learning rate of the operational weight parameter [image: image], [image: image] is the internal learning rate of the channel weight parameter [image: image], and [image: image] is the parameterization function of [image: image], [image: image], and [image: image]; initially, [image: image]. In the external parameter update, in order to obtain an optimal initial point, after M steps, the loss function [image: image] in task [image: image] is calculated to jointly optimize the parameters [image: image], [image: image], and [image: image] according to the following equation:
[image: image]
[image: image]
[image: image]
where [image: image] is the external learning rate of the network parameter [image: image], [image: image] is the external learning rate of the operational weight parameter [image: image], and [image: image] is the external learning rate of the channel weight parameter [image: image]. When the results converge, the optimal initial parameters [image: image], [image: image], and [image: image] are obtained, and the new task is updated on the basis of the parameters [image: image], [image: image], and [image: image] to obtain better results quickly.
3.3 New modal fault online diagnosis steps
The new modal chemical process fault diagnosis algorithm proposed in this paper can be divided into four steps, namely, model construction, search phase, training and optimization phase, and real-time diagnosis, which are as follows:
Step 1. Model construction. The network model is a two-way branch linked by several convolutional neural network units, the network units within the branch and between the branches are linked by edge operations, the data to be processed are input at the beginning of the two branches, the fully connected layer for outputting fault diagnosis results is also connected at the end of the two branches, the said network units also include edge operations and nodes, the input within the unit is also divided into two ways, and the output is one way, the same as the network model in the AutoFD method.
Step 2. Search phase.
Step 2.1. The raw chemical production process data on multiple modes are normalized and dimensionally preprocessed to make data dimensions that satisfy the structural search of the meta-learning network.
Step 2.2. The pre-processed data are manipulated to form candidate channels for multi-channel convolution and are stitched with the preprocessed data to generate inputs for the network search phase.
Step 2.3. The candidate input channels are individually assigned weights to further obtain the mixed inputs.
Step 2.4. The set of candidate operations are defined, and a weight is assigned to each operation.
Step 2.5. Iterating steps 2.3 and 2.4 repeatedly, the Adam/SGD optimizer is chosen to adjust the network parameters, channel weight parameters, and operation weight parameters by using the cross-entropy loss function and backpropagation so as to obtain the optimal network initial parameters, channel optimal initial parameters, and operation optimal initial parameters as the initial parameters of the new mode.
Step 3. Training and optimization phase.
Step 3.1. Normalization and dimensional preprocessing are performed for the new modal chemical production process data so that the input data dimensions satisfy the meta-learning network structure search.
Step 3.2. The optimal network initial parameter [image: image], optimal channel weight initial parameter [image: image], and optimal operation weight initial parameter [image: image] are used as initial parameters to train the new modal chemical production process data into the network, and the optimized network parameter [image: image], channel weight parameter [image: image], and operation weight parameter [image: image] are obtained after training.
Step 3.3. The channel weight parameter [image: image] and operation weight parameter [image: image] obtained by the aforementioned optimization are used to filter the selected convolutional channels and convolutional operations in the network, and obtain the fault diagnosis network model corresponding to the new mode.
Step 4. Real-time diagnosis. The data obtained in real time are normalized and preprocessed so that the input data dimensions of the network are satisfied. Then, the data are input into the obtained diagnosis network for real-time diagnosis.
4 EXPERIMENTAL VERIFICATIONS
For all datasets, in the network search phase, the same candidate operations, candidate convolution channels, and the structure of the network are used as in AutoFD, with candidate convolution channels. The network in the empirical phase of the learning design is determined by the operation weight parameter [image: image] and the channel weight parameter [image: image]. The candidate operations are as follows: 3 × 3 separable convolution, 5 × 5 separable convolution, 3 × 3 null convolution, 5 × 5 null convolution, 3 × 3 maximum pooling, 3 × 3 average pooling, keep the original input, and clear the original input. When there is a new task, the optimal network structures [image: image] and [image: image] can be obtained by updating on the basis of the original network structure parameters.
The dataset is first divided into validation and test sets, and then, the training set is subdivided into training and validation sets, and the test set is subdivided into training and test sets, and the aforementioned four sets are noted as the training set in the training phase, validation set in the training phase, training set in the test phase, and test set in the test phase for easy distinction [31, 32].
First, in the training set of the training phase, K data are randomly selected from the selected N class samples as a task T. Then, in the validation set of the training phase, 10 data are randomly selected from each category sample as the test data in the training phase, so there should be N*(K+10) data in task T. In the NAS process, let the network training epoch be E1, and each time, first, S1 independent tasks are randomly selected, and then, the search training of the network is performed with these S1 tasks. In the internal search phase, the ordinary SGD is chosen to optimize the parameters of the network, the operation weight parameters, and the channel weight parameters, and the internal learning rates are set to [image: image], [image: image], and [image: image] in the internal sojourn phase, and the accuracy and efficiency of the network are weighed by adjusting the internal step size M. In the external search phase, the Adam optimizer is chosen to optimize the initial parameters of the network, the initial parameters of the operation weights, and the initial parameters of the channel weights, and the external learning rates are set to [image: image], [image: image], and [image: image]. In the validation phase, first, K data are randomly selected from the samples of N classes as task T in the training set of the testing phase, so there should be N*(K + Q) data in task T. Let the network training epoch be E2 times, and each time, S2 independent tasks are randomly selected first, and the final accuracy is the average diagnostic accuracy of S2 independent tasks.
All training and verification experiments are completed on a PC equipped with Inteli7-10875H 2.30 GHz, 16 GB DDR4, WDC PCSN730, and NVIDIA GeForce RTX 2060. All Python codes are completed under the PyTorch framework, using the parallel acceleration capabilities provided by CUDA and cuDNN to achieve fast training and diagnostic tasks.
4.1 New modal fault online diagnosis steps
In this paper, a typical multimodal numerical simulation model proposed by Ge et al. [25] is taken for testing, which has been adopted by many scholars to verify the effectiveness of multimodal algorithms, and the specific structure of the model is denoted as follows:
[image: image]
where five variables [image: image], [image: image], [image: image], [image: image], and [image: image] have different distributions of [image: image] and [image: image]. [image: image], [image: image], [image: image], [image: image], and [image: image] are five mutually independent noises that obey the Gaussian distribution with mean 0 and standard deviation 0.01. According to the two different distributions of [image: image] and [image: image], the model has two different modes, mode 1 (mode1) and mode 2 (mode2), which are represented as follows [26]:
[image: image]
where [image: image] denotes uniform distribution and [image: image] denotes Gaussian distribution; each measured data contain five moments of data [image: image], and [image: image] is [image: image] for each moment; each data have 25 features; for each mode, first 1,000 normal samples are generated, followed by the next 1,000 samples generated as fault data, and the fault data are generated according to the following rules.
Fault 1: Addition of a step signal of amplitude 4 at the beginning of the 1001st sample.
Fault 2: Adding a ramp signal of 0.02 (i-400) at the beginning of the 1001st sample.
Fault 3: A sinusoidal signal with amplitude, offset, and frequency of 1 is added at the beginning of the 1001st sample.
Here, 1,000 data were generated for each mode of normal and fault 1, 2, and 3, respectively, where 4,000 data of mode1 were used as the training set and the data were divided into training and validation sets in the ratio of 7:3 to learn the optimal initial parameters. mode2 also contained 4,000 data, and the data were divided into training and test sets in the ratio of 7:3.
The dataset is divided according to the category [image: image]; the number of data items [image: image]; the network training epoch is [image: image]; the number of randomly selected independent tasks [image: image]; the internal learning rate [image: image], [image: image], and [image: image]; the internal step size [image: image]; the external learning rate [image: image], [image: image], and [image: image]; test data size [image: image] for the validation phase; [image: image] for the network training epoch; and the number of randomly selected independent tasks [image: image]. The results of the numerical system multi-fault experiments are shown in Table 1 and Figure 2.
TABLE 1 | Multi-fault diagnosis accuracy of numerical simulation with different training set sizes.
[image: Table 1][image: Figure 2]FIGURE 2 | Multi-fault diagnosis accuracy of numerical simulation with different training set sizes.
It can be seen that as the training set size increases on mode2 data, the amount of knowledge learned by each method from the data increases accordingly and the diagnostic accuracy of MetaNAS, MAML++ [21], Reptile [22], and MAML [19] also increases. The diagnostic accuracy of MetaNAS with a training set size of 3 × 10 was as high as 74%, while the highest of the compared methods was 68.17% for MAML++. The diagnostic accuracy of MetaNAS with a training set size of 3 × 50 was 85.27%, and none of the compared methods exceeded 76%. The diagnostic accuracy of MetaNAS with a training set size of 3 × 100 was 86.35%, and all the compared methods exceeded 80%. At a training set size of 3 × 150, the diagnostic accuracy of MetaNAS was 88.34%, and all the compared methods exceeded 84%. MetaNAS achieved the highest diagnostic accuracy in each category of the training set size.
4.2 TE multi-modal simulation
The TE chemical process is a standard experimental simulation platform. This paper adopts the TE simulation platform provided by http://depts.washington.edu/control/LARRY/TE/download.html. The TE process is presented in Figure 3. In the multimodal process fault diagnosis experimental study, the TE process simulation platform is set up with six G/H product ratios to obtain the process data under normal and fault conditions in six modes as mentioned in Table 2 and verify the performance of MetaNAS through multimodal TE process fault diagnosis experiments. In each mode normal operating condition, simulation for 72 h with a sampling interval of 3 min, 1,440 normal samples were obtained. In total, 15 kinds of faults were set when collecting fault samples, including seven step change faults (faults 1–7), five random change faults (faults 8–12), one slow drift fault (fault 13), and two blockage faults (faults 14 and 15); faults were introduced after 10 h of simulation in the normal operating condition, and the simulation was continued for 62 h with a sampling interval of 3 min, i.e., 200 normal samples and 1,220 fault samples were collected each time during the simulation of collecting fault samples.
[image: Figure 3]FIGURE 3 | Tennessee Eastman process.
TABLE 2 | TE operation mode single-fault description.
[image: Table 2]In the multimodal process fault diagnosis experiment, for the six modal process data obtained, 1,000 normal samples (6,000 normal samples) and 1,000 samples for each fault (i.e., 6,000 samples for each fault) are selected to form the dataset to be used; each data contains 12 operational variables and 41 process variables, and the variable dimension of each data is 53, which is filled with 0 at the end of the data and then converted into an 8 × 8 two-dimensional matrix as the candidate input of the network.
The data on modes 1, 2, 3, 4, and 5 were used as the training set, and the data on mode 6 were used as the test set. First, single-fault diagnosis experiments are performed on the multimodal dataset with the division N = 2; the number of data entries K = 10, 50, 100, and 150; [image: image] for the network training epoch; the number of randomly selected independent tasks [image: image]; the internal learning rate [image: image], [image: image], and [image: image]; the internal step size M = 4; the external learning rate [image: image], [image: image], and [image: image]; the test data size Q = 150 in the validation phase; [image: image] in the network training epoch, and the number of randomly selected independent tasks [image: image]; the results of the single-fault diagnosis are shown in Table 3.
TABLE 3 | TE single-fault diagnosis accuracy with different training set sizes.
[image: Table 3]Then, the multimodal dataset is subjected to multiple fault diagnosis experiments, and a total of five operating conditions, normal 0, fault 1, fault 8, fault 13, and fault 15, are selected as the study objects, covering common step disturbances, random disturbances, drift disturbances, blocking disturbances, and other faults. The division of the dataset N = 5; the number of data entries K = 10, 50, 100, and 150; the training epoch [image: image]; the number of randomly selected independent tasks [image: image]; the internal learning rate [image: image], [image: image], and [image: image]; the internal step size M = 5; the external learning rate [image: image], [image: image], and [image: image]; the test data size Q = 150 in the validation phase; the training epoch [image: image]; and the number of randomly selected independent tasks [image: image]; the multi-fault diagnosis results are shown in Table 4 and Figure 4.
TABLE 4 | TE multi-fault diagnosis accuracy with different training set sizes.
[image: Table 4][image: Figure 4]FIGURE 4 | TE multi-fault diagnosis accuracy with different training set sizes.
It can be seen that the diagnostic accuracy of MetaNAS, MAML++, Reptile, and MAML increases as the size of the mode6 training set increases. The diagnostic accuracy of MetaNAS with a training set size of 5 × 10 is 72.35%, while the highest diagnostic accuracy of the comparison method is 57.07% for MAML++. The diagnostic accuracy of MetaNAS with a training set size of 5 × 50 is 80.47%, while the comparison method does not exceed 66%. The diagnostic accuracy of MetaNAS with a training set size of 5 × 100 is 84.29%, and the comparison methods are all over 76%. The diagnostic accuracy of MetaNAS with a training set size of 5 × 150 is 85.34%, and all the comparison methods exceed 77%. MetaNAS achieves the highest diagnostic accuracy in each category of the training set size.
Because MetaNAS has the advantage of using design experience to design a unique network structure for new modes, unlike MAML++, Reptile, and MAML, which use fixed network models, it usually requires additional time overhead for network model generation. During TE multi-fault experiments, the number of model parameters of MetaNAS, MAML, MAML++, and Reptile are 2.4 megabytes, 3.2 megabytes, 3.2 megabytes, 3.2 megabytes, and 3.2 megabytes, respectively, and MetaNAS takes about 1.5 s more than MAML for network model generation in each batch during the validation phase, where the number of model parameters is calculated by the thop.profile () function and the model runtime is calculated by the time.time () function.
Summarizing the aforementioned three experiments, it can be concluded that the diagnostic accuracy of MetaNAS is higher than that of the compared MAML++, Reptile, and MAML methods in most faults. MetaNAS uses AutoFD for NAS based on MAML, which provides a rich candidate network structure for MAML and solves the problem of a single meta-learning network structure, and MetaNAS’s network model does not require a complex and time-consuming design process. Comparing the results of MetaNAS and MAML in the three experimental results, we can see that the diagnostic results of MetaNAS are higher than those of the base method MAML in the case of different training set sizes of the same dataset, which indicates that MetaNAS can obtain better fault diagnosis capability after adding AutoFD because the network model structure can be learned, and the fault diagnosis results of MetaNAS in many faults are better than those of MAML++ and the Reptile algorithm, which are improved on the basis of MAML, proving the effectiveness of the MetaNAS method.
5 CONCLUSION
The MetaNAS method is proposed to find the optimal initial parameters to be learned in NAS by meta-learning, and the new mode can find the best performing network structure with only a few gradient updates based on the optimal initial parameters. MetaNAS uses NAS to provide a rich learnable network architecture for meta-learning method so that the network structure of meta-learning is no single. It also automates the network design, making it possible to quickly obtain fault diagnosis models with better performance even for new modes with small samples. MetaNAS solves the limitations to fault diagnosis through NAS, such as underutilization of the existing modal design experience and difficulty in training models with small samples. The effectiveness and superiority of the proposed method in fault diagnosis under the small samples of new models are demonstrated by numerical system and TE process simulations. However, the existing model design experiences are obtained from different modes of the same chemical process, and the learning of different industrial process model design experiences is lacking. The next work will focus on the study of learning algorithms about different industrial process model design experiences and NAS algorithms on unbalanced datasets.
Moving forward, there are several potential avenues for future research and improvement. First, expanding the application of MetaNAS to different fault diagnosis domains and datasets would provide a broader evaluation of its effectiveness and generalizability. Second, investigating the integration of additional data sources or modalities could enhance the diagnostic capabilities of MetaNAS. Furthermore, exploring the interpretability of the MetaNAS approach is an important direction for future research. Last, considering the scalability of the MetaNAS approach to handle larger and more complex fault diagnosis tasks would be valuable. By pursuing these future research directions, we can further advance the field of real-time fault diagnosis with small sample learning and continue to improve the performance, applicability, and interpretability of the MetaNAS approach.
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This article focuses on the investigation and computation of solutions to fuzzy fractional-order Cahn–Hilliard and Gardner equations. The study hybridizes the fuzzy Gardner and Cahn–Hilliard equation into two equations using hybrid techniques and the concept of a parametric fuzzy number. To explore these equations, a combination of a novel iterative approach and the Shehu transformation is employed. The article presents detailed procedures for computing a series of solutions to the fractional-order Cahn–Hilliard and Gardner problem. The applied techniques not only offer precision, simplicity, and efficacy but also outperform other existing technologies. Additionally, several examples are solved to validate the proposed theoretical solution.
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INTRODUCTION
In mathematics, fractional calculus is a useful tool for dealing with ambiguity, recognizing emotional or confusing circumstances, and providing more general answers. Physical models of real-world occurrences may contain significant uncertainty due to a variety of variables. It appears that fuzzy sets can be used to replicate the uncertainty caused by imprecision and ambiguity. If data involve uncertainty, we use it in the medical, environmental, economic, physical, and social sciences. Zadeh investigated these concerns when he contributed fuzziness to set theory in 1965. Fractional calculus has risen in popularity over the last 20 years as a result of its numerous applications in practical research [1–4]. In the behavior of the aforementioned system processes, there are numerous examples of fuzzy uncertainty as opposed to stochastic uncertainty. Many authors have focused on the theoretical foundations of fuzzy problems in recent years. Fractional fuzzy differential equations can be used in civil engineering, population models, electro-hydraulics models, and weapon systems, among others. Fractional fuzzy differential equations are also studied in real-world contexts such as medicine [6], practical systems [7], the golden mean [5], gravity, quantum optics [8], and engineering phenomena. Zadeh [9] became familiar with fuzzy set theory for the first time. The idea of a fuzzy number and its use in fuzzy controls [10] and approximation reasoning problems [11] then became the subjects of research. It is challenging to effectively represent a variety of circumstances using real numbers in data analysis. Later, the fundamentals of fuzzy number arithmetic were specified by Mizumoto and Tanaka [12, 13], Dubois and Prade [14, 15], Nahmias [17], and Ralescu [16]. They used a variety of intervals, such as ϱ-levels, 0 < ϱ ≤ 1, [18], to compute the fuzzy number. It contains information on fuzzy differential equations as well as the fundamental concepts of non-crisp sets. Equations of differential generalization are the recommended notions. Numerous academics have shown interest in this novel idea. Applications of fractional-order differential equations in real-world scenarios are significant; they may be found in fields like engineering, chemistry, and physics. The fractional differential equation is a helpful tool for representing non-linear events in scientific and engineering models. In applied mathematics and engineering, partial differential equations (PDEs), particularly non-linear PDEs, have been utilized to simulate a wide range of scientific phenomena.
Fractional differential equations have received an immense attention in the last two decades because of their ability to mimic a wide range of occurrences in a variety of academic domains and practical applications. Many physical applications in engineering and science can be described using fractional differential equations, which are particularly useful for a wide range of physical challenges. Because these equations are represented by fractional linear and non-linear PDEs, fractional differential equations must be solved [19–21]. The most significant processes occurring in the world are described by non-linear equations. Non-linear partial differential equations remain a challenging topic in both applied mathematics and physics, requiring the employment of a variety of methods to arrive at creative approximations or precise solutions [22–25]. Fractional differential equations have been solved using a variety of numerical and approximation methods. There have been several innovative ways for solving fractional differential equations recently, some of which include the following: the iterative Laplace transform method (ILTM) [27], differential transform method (FDTM) [26], Adomain decomposition technique [29], variational iteration transform technique [30], fractional Adomian decomposition method (FADM) [28], natural decomposition technique [32], and fractional homotopy perturbation technique [31]. The primary goal of this article is to use the natural decomposition technique, one of the most efficient approaches, to solve non-linear fractional Cahn–Hilliard and Gardner equations. Natural decomposition methods do not need discretization, linearization, perturbation, or prescriptive assumptions to prevent round-off errors. The KdV and modified KdV equations were combined to create the Gardner equation [33], which is used to explain internal solitary waves in shallow water. In physics, Gardner’s equation is often applied in fields including quantum field theory, fluid physics, and plasma physics [34, 35]. It also covers a variety of wave events in solid and plasma states [36]. We quickly review the fractional Gardner (FG) equation of the form
[image: image]
where ϒ is a real constant. The wave function ν(℘, ɛ) has the scaling variables space (℘) and time (ɛ), the terms [image: image] and [image: image] represent non-linear wave steepen, and [image: image] represents the wave dispersive effect.
In 1958, Cahn and Hilliard [37] developed the Cahn–Hilliard equation to represent the phase separation of a binary alloy at the critical temperature. This equation is essential to several outstanding scientific phenomena, such as phase separation, phase-ordering dynamics, and spinodal decomposition. In this context, the fractional Cahn–Hilliard (FCH) equation is expressed as follows:
[image: image]
Several techniques are applied to analyze the Cahn–Hilliard and Gardner equations, such as the Adomian decomposition method [38], modified Kudryashov method [39], reduced differential transform technique [40], residual power series technique [41], and homotopy perturbation method [42].
The article is organized as follows: theBasic definitionsection provides the basic definition of a fractional fuzzy set. Methodology of the iterative transform method is described in the Roadmap of the suggested techniquesection. The Implementation section describes the application of numerical fuzzy problems, which is followed by the conclusion.
BASIC DEFINITIONS
Definition 2.1. If [image: image] denotes a fuzzy set, it is understood to be a fuzzy set if the following main requirements hold true [43–46]:
1. ϖ is normal (for some [image: image]);
2. ϖ is upper semi-continuous;
3. [image: image], i.e., ϖ is convex;
4. [image: image] is compact.
Definition 2.2. The fuzzy number ϖ is a r-level set expressed as [43–46]
[image: image]
where r ∈ [0, 1] and [image: image].
Definition 2.3. A fuzzy number’s parameterized variant is represented as [image: image] such that r ∈ [0, 1] fulfills the following assumptions [43–46]:
1. ϖ(r) is left continuous, left continuous at zero, non-decreasing, and over bounded (0,1];
2. ϖ(r) is right continuous, right continuous at zero, non-increasing, and over bounded (0,1];
3. [image: image].
Definition 2.4. Suppose that there are fuzzy set numbers r ∈ [0, 1] and Y [43–46] [image: image], then the additions, subtractions, and multiplications, consequently, are defined as follows:
1. [image: image];
2. [image: image];
3. [image: image].
Definition 2.5. the fuzzy mappings [image: image] have fuzzy two sets [43–46] [image: image], then Θ-distances between [image: image] and [image: image] is defined as
[image: image]
Theorem 2.1. Consider a fuzzy valued function [image: image] such that [image: image], [image: image] and r ∈ [0, 1]. Then [43–46],
1. [image: image] and [image: image] are differentiable functions, if E is a (1)-differentiable function and
[image: image]
11. [image: image] and [image: image] are differentiable functions, if E is a (2)-differentiable function and
[image: image]
Definition 2.6. Assume that a fuzzy mapping [image: image]. The fuzzy [image: image]-fractional differentiability Caputo of the fuzzy value mappings nu is thus written as [43–46]
[image: image]
The parametric values of [image: image] and ɛ10 ∈ (0, s), and Caputo fractional differential in the presence of fuzzy are expressed as
[image: image]
where r = [r]
[image: image]
Definition 2.7. Suppose that fuzzy mappings [image: image] and ß ∈ [0, 1], then the fuzzy [image: image]-fractional differentiability Atangana–Baleanu of fuzzy value mappings is expressed as
[image: image]
Thus, the parameterized formulation of [image: image] and ɛ0 ∈ (0, s), and the fuzzy Atangana–Baleanu operator is defined by
[image: image]
where
[image: image]
where [image: image] represents the function of normalization which is equal to 1 when ß is supposed to be 0 and 1. Moreover, we assume that form (i) [image: image] exists. Now, there is no requirement to consider the differentiability of (ii) [image: image].
Definition 2.8. Suggest a continuous real-value mapping Ψ, and there is an inappropriate Riemann fuzzy integrable mappings [image: image] on [0, + ∞). Then, the integral [image: image] is recognized to be the Shehu fuzzy transformation, and it is noted over the set of mapping [43–46]as follows:
[image: image]
as
[image: image]
REMARK 1
In Equation 14, [image: image] satisfies the expectation of the reducing diameter [image: image], diameter [image: image] of a mapping of fuzzy ν. If σ = 1, then fuzzy Shehu transform is reduced to * Laplace transform [43–46].
[image: image]
Moreover, by analyzing the traditional Shehu transformation [43–46], we achieve
[image: image]
and
[image: image]
The aforementioned expression can then be expressed as
[image: image]
Then, we shall define the Caputo generalized Hukuhara derivative’s fuzzy Shehu transformation as [image: image].
Definition 2.9. Suppose there is a fuzzy integrable value mapping [image: image], and [image: image] is the primitive of [image: image] on [0, + ∞), then the CFD of order ß is expressed as [43–46]
[image: image]
[image: image]
Bokhari et al. defined the ABC operator’s fractional derivative in terms of the Shehu transform. Additionally, we extend the concept of fuzzy ABC fractional derivative in the context of a fuzzy Shehu transform as follows:
Definition 2.10. Consider [image: image] such that [image: image], r ∈ [0, 1]; then, the Shehu transformation of the fuzzy ABC of order ß ∈ [0, 1] is defined as follows:
[image: image]
Moreover, by applying the fact of Salahshour et al. [45], we obtain
[image: image]
ROAD MAP OF THE SUGGESTED TECHNIQUE
Consider the fractional fuzzy partial differential equation
[image: image]
where ß ∈ (0, 1]; therefore, the Shehu transform of Equation 3 is
[image: image]
On using the initial condition, we obtain
[image: image]
Decomposing the solution as [image: image], then (4) implies
[image: image]
Taking parts of the solution by the choice of comparison, we obtain
[image: image]
Taking the inverse Shehu transform, we obtain
[image: image]
Thus, the solution becomes
[image: image]
Equation 8 is the solution in series form.
IMPLEMENTATION
Example 4.1. Consider the fractional fuzzy Gardner equation as follows:
[image: image]
with the fuzzy initial condition
[image: image]
Applying the proposed Equation 7, we achieve
[image: image]
[image: image]
The higher terms can also be obtained in a similar manner. Equation 8 provides solution in series form; consequently, we write
[image: image]
while, in lower and upper portion types, it is, respectively, written as
[image: image]
[image: image]
The exact result is given as
[image: image]
Example 4.2. Consider the fractional fuzzy Cahn–Hilliard equation as follows:
[image: image]
with the fuzzy initial condition
[image: image]
Applying the system of Equation 7, we achieve
[image: image]
[image: image]
The higher terms can also be obtained in a similar manner. Equation 8 provides solution in series form; consequently, we write
[image: image]
In the lower and upper portion types, it is, respectively, written as
[image: image]
[image: image]
The exact result is
[image: image]
DISCUSSION OF RESULTS
In Figure 1, the first graph presents the two-dimensional fuzzy lower and upper branch graphs showcasing the analytical series solution. This graph visually represents the behavior and characteristics of the solution in a two-dimensional space. The second graph in Figure 1 illustrates the fractional-order differences between the two different series of Example 1. This graph highlights the variations and disparities between the fractional-order components of the series, providing insights into the impact of fractional-order differences on the overall solution.
[image: Figure 1]FIGURE 1 | The first graph demonstrates the two-dimensional fuzzy lower and upper branch graphs for the analytical series solution, while the second graph illustrates the fractional-order differences between the two different series.
Moving on to Figure 2, similar to Figure 1, the first graph displays the two-dimensional fuzzy lower and upper branch graphs representing the analytical series solution. This visualization offers a comprehensive view of the solution's behavior and properties. The second graph in Figure 2 focuses on the fractional-order differences between the two different series of Example 2. By examining this graph, one can observe and analyze the variations and discrepancies in the fractional-order components, gaining a deeper understanding of their influence on the overall solution.
[image: Figure 2]FIGURE 2 | The first graph demonstrates the two-dimensional fuzzy lower and upper branch graphs for the analytical series solution, while the second graph illustrates the fractional-order differences between the two different series.
Overall, the graphical discussion presented in Figure 1 and Figure 2 provides a visual representation of the analytical series solutions, allowing for a better comprehension of the fuzzy lower and upper branch graphs as well as the fractional-order differences in the respective examples. These graphical analyses enhance the interpretation and interpretation of the results obtained in the study, contributing to a more comprehensive understanding of the investigated phenomena.
CONCLUSION
The Atangana–Baleanu operator is used in this work to attempt a semi-analytic solution to the fuzzy fractional Gardner and Cahn–Hilliard equations. As a result, in this case, fuzzy operators are better suited to describe the physical phenomena. Using a fuzzy method that takes into account the starting condition’s uncertainty, we computed the solutions to the Gardner and Cahn–Hilliard equations. This study generalized the fuzzy fractional of the Gardner and Cahn–Hilliard equations. Next, we created the approximate parametric formulation of the suggested problem using a novel iterative transform technique. We demonstrated many examples that supported the methodology’s intended use and created a parametric solution for each case. Last but not least, solving a wide variety of fuzzy fractional partial differential equations analytically is not an easy task.
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In this work, a novel technique is considered for analyzing the fractional-order Jaulent-Miodek system. The suggested approach is based on the use of the residual power series technique in conjunction with the Laplace transform and Caputo operator to solve the system of equations. The Caputo derivative is applied to express the fractional operator, which is more suitable for modeling real-world phenomena with memory effects. As a real example, the proposed technique is implemented for analyzing the Jaulent-Miodek equation under suitable initial conditions. Additionally, the proposed technique’s validity (accuracy and effectiveness) is examined by studying some numerical examples. The obtained solutions show that the suggested technique can provide a reliable solution for the fractional-order Jaulent-Miodek system, making it a helpful tool for researchers in different areas, including engineering, physics, and mathematics. We also analyze the absolute error between the derived approximations and the analytical solutions to check the validation and accuracy of the obtained approximations. Many researchers can benefit from both the obtained approximations and the suggested method in analyzing many complicated nonlinear systems in plasma physics and nonlinear optics, and many others.
Keywords: Fractional-order Jaulent-Miodek system, Residual power series, Laplace transform, Caputo operator, Fractional calculus
1 INTRODUCTION
Fractional differential equations (DEs) are types of DEs that involve fractional derivatives (FDs). Unlike ordinary DEs, where the order of the derivative is a positive integer, fractional DEs (FDEs) involve operators of non-integer orders. These equations are applied to model various physical and biological phenomena, such as anomalous diffusion, viscoelasticity, and fractal growth [1–3]. FDEs have several unique properties that differentiate them from ordinary DEs, such as non-locality and memory effects. Solving the FDEs requires specialized techniques, such as fractional calculus and numerical methods [4–8]. These equations have become an active area of research in recent decades due to their potential application in various fields of science [9–12].
Fractional nonlinear systems of partial DEs (PDEs) are mathematics model that describes the behavior of complex models in different areas, such as chemistry, biology, physics, engineering, and finance [13–15]. These systems are characterized by the presence of FDs, which are generalizations of the classical integer-order derivatives. FDs describe the system’s memory and long-range interactions and allow for modeling anomalous diffusion, power-law behavior, and other non-local effects that classical models cannot capture. Nonlinearities are another essential feature of fractional systems, as they can lead to the emergence of rich and diverse phenomena, such as chaos, bifurcations, solitons, and patterns. Nonlinear systems are ubiquitous in nature and technology, and understanding their dynamics is crucial for predicting and controlling their behavior [16–23].
Fractional nonlinear systems of PDEs are challenging to study due to their non-locality, nonlinearity, and complexity. They require developing new analytical and numerical tools, such as fractional calculus (FC), dynamical systems theory, and computer simulations [24–26]. Despite the difficulties, fractional nonlinear systems of PDEs have attracted increasing attention in recent years due to their relevance in many applications. They provide a powerful framework for modeling and understanding complex phenomena and offer new opportunities for scientific and technological advances [27, 28].
It has been found that FDEs describe real-world problems more precisely than integral order DEs. The study of coupled systems of FDEs is also quite interesting. Because mathematical models of many phenomena in bio-mathematics, physics, psychology, and other fields are coupled systems of DEs [29, 30]. Among such coupled systems of fractional PDEs (FPDEs), we have the coupled Jaulent-Miodek models with Schrodinger energy-dependent potential. This type of equation system is widely applied as a model for the solution of several real worlds problems in the areas of applied sciences [31, 32]. Extensive analysis of nonlinear coupled fractional-order Jaulent-Miodek models a key role in many areas fields of science, such as plasma physics [33], condensed matter physics [34, 35]. There are a variety of techniques applied in achieving analytic and numeric results to linear and nonlinear FPDE, such as the homotopy perturbation technique (HPT) [36–39], the variational iteration technique [40], the q-homotopy analysis transformation technique [41], the fractional natural decomposition technique [42], the fractional multi-step differential transform technique [43], the new iterative technique [44, 45] and the homotopy analysis technique [46, 47], Residual power series technique [48].
The suggested method is called Laplace residual power series method (LRPSM) which was introduced recently to address nonlinear DEs (NLDEs) with fractional orders [49, 50]. This method is a combination between Laplace transform (LT) and RPSM which provides a more accurate solution, requiring less time and simpler calculations than other analytical methods. Unlike other methods, LRPSM does not involve differentiation or linearization and only utilizes the LT, followed by taking the limit at infinity. Thus, the current work aims to apply an innovative analytical technique (LRPSM) to obtain highly accurate estimated fractional solutions to the Jaulent-Miodek equation in the Caputo sense subject to suitable initial conditions. Also, the outcomes of the LRPSM will be compared with the precise answer by creating graphs and tables for the numerical problem. The suggested technique has been used to make exact results for emerging realistic models of physical phenomena by using fast convergent power series. This method succeeded because it is straightforward and handles different kinds of initial conditions directly. Also, it doesn’t need linearization or restrictive assumptions, doesn’t need a lot of computing power, takes less time, and is more accurate.
The framework of this study is detailed as follows: Section 2 reviews certain essential concepts, properties, and theorems related to FC, LT, and Laplace fractional expansion. The general methodology of LRPSM for the proposed model is presented in Section 3. Fractional solution Jaulent-Miodek equations are provided applying the LRPSM in Section 4. Section 5 contains the result and discussion. Finally, the conclusion is given in Section 6.
2 BASIC DEFINITIONS
Definition 1. For at least n time differentiable function, the fractional Caputo derivative of order ρ reads [51]
[image: image]
where n ∈ N and the fractional Riemann–Liouville (RL) of Ω(γ, τ) of order κ becomes
[image: image]
assuming that the given integral exists.
Lemma 1. For n − 1 < ρ ≤ n, q > − 1, τ ≥ 0 and λ ∈ R, we have [52]:
1. [image: image],
2. [image: image],
3. [image: image],
4. [image: image].
Definition 2. The function of LT ψ(η, τ) is given as [52]
[image: image]
The expression for the inverse of LT reads
[image: image]
where l0 is in the right half-plane of absolute convergence the Laplace integral’s.
Lemma 2. Assuming that ψ(η, τ) is a piecewise continuous function with exponential-order δ, we can obtain [image: image] by taking the LT of ψ(η, τ).
1. [image: image].
2. [image: image].
3. [image: image].
Theorem 1. Consider a function Ω(γ, τ) that is continuous and piecewise-defined over the interval I × [0, ∞) and has an exponential order of ζ. Let us define the term Ω(γ, s) as the Laplace transform of Ω(γ, τ) with respect to τ. It is worth noting that Ω(γ, s) has a fractional expansion.
[image: image]
Then, [image: image].
3 GENERAL IMPLEMENTATION LAPLACE RESIDUAL POWER SERIES METHOD
Consider the general FPDE
[image: image]
subject to initial condition:
[image: image]
The function dψ(η, τ) is unknown and depends on the independent variables η and τ, where the operator A is linear and N is nonlinear.Applying LT to Eq. 6 and making use of Eq. 7 we get
[image: image]
The result of Eq. 8 is given as
[image: image]
the kth-truncate terms series are
[image: image]
The residual Laplace function reads [53].
[image: image]
And the kth-LRFs as:
[image: image]
The few properties of the LRPSM [53], is expressed as.
• [image: image] and [image: image] for each s > 0,
• [image: image],
• [image: image].
To investigate the coefficient fn(η, s) and gn(η, s), we find the solution of the following system
[image: image]
Finally, we apply the inverse of the LT to Eq. 9, to get the kth analytical solution of ψk(η, τ) and ϕk(η, τ).
4 NUMERICAL PROBLEM
Consider the coupled fractional-order Jaulent-Miodek equations: 
[image: image]
with the initial conditions (ICs)
[image: image]
By utilizing Eq. 14 and taking advantage of Eq. 15, we get
[image: image]
By applying the ICs, we get
[image: image]
The kth-truncated term series reads
[image: image]
The Laplace residual functions (LRFs) reads
[image: image]
The kth-LRFs are given by
[image: image]
To compute fk (η, s) and gk (η, s) for k = 1, 2, 3, … , we can use Eq. 18 which gives the nth-truncated series, and substitute it into Eq. 20, which gives the nth-Laplace residual term. Then, we can multiply the solution of the equation by snρ+1 and solve the relation recursively for [image: image] and [image: image] for n = 1, 2, 3, ⋯. The following are the first few terms:
[image: image]
Now, by using the values of fk(η), k = 1, 2, 3, … , we get
[image: image]
[image: image]
Applying the inverse of LT, we get
[image: image]
[image: image]
The exact solutions of ϕ(η, τ) and ψ(η, τ) are, respectively, given by
[image: image]
[image: image]
In the results section, we will discuss the profile of the obtained solutions as well as will make a comparison with the exact solutions and the other literature approximations.
5 RESULTS AND DISCUSSION
Figures 1, 2 represent both two- and three-dimensional graphs for the approximations (24) and (25), respectively, using the LRPSM at different values of fractional order derivative ρ. It is clear that the absolute amplitude of the approximation ϕ(η, τ) decreases with the enhancement of ρ while the amplitude of the approximation ψ(η, τ) has an opposite behavior, i.e., its amplitude increases with increasing ρ. Moreover, the two approximations are presented in Tables 1, 2 at different values of ρ and discrete values for η and τ. Furthermore, the absolute error for the approximations ϕ(η, τ) and ϕ(η, τ) at ρ = 1 as compared to the exact solutions is estimated in Tables 1, 2, respectively. After analyzing the obtained results, we can conclude that the obtained approximations using the proposed technique are closely aligned with the exact solutions, indicating a strong level of agreement. We have applied the proposed method to the fractional-order Jaulent-Miodek system to analyze it, and this is not the only example, and it can be applied to a wide range of complicated systems related to nonlinear mediums such as plasma physics and optical fibers.
[image: Figure 1]FIGURE 1 | The profile of the approximation ϕ(η, τ) (24) is plotted at different values of ρ and with λ = 1: (A) ρ = 0.4, (B) ρ = 0.6, (C) ρ = 0.8., and (D) the comparison between different values of ρ at x = 0.
[image: Figure 2]FIGURE 2 | The profile of the approximation ψ(η, τ) (25) is plotted at different values of ρ and with λ = 1: (A) ρ = 0.4, (B) ρ = 0.5, (C) ρ = 0.6., and (D) the comparison between different values of ρ at x = 0.
TABLE 1 | The approximate solution ϕ(η, τ) (24) is considered at different values ρ and with (τ = 0.0099, λ = 0.2). Also, the absolute error of ϕ(η, τ) (24) at ρ = 1 as compared to the exact solution (26) is estimated.
[image: Table 1]TABLE 2 | The approximate solution ψ(η, τ) (25) is considered at different values ρ and with (τ = 0.0095, λ = 0.02). Also, the absolute error of ψ(η, τ) (25) at ρ = 1 as compared to the exact solution (276) is estimated.
[image: Table 2]6 CONCLUSION
In conclusion, the fractional-order Jaulent-Miodek system has been solved using a novel technique, called the residual power series method with the help of the Laplace transform (LT) in the sense of the Caputo operator. The LT, in conjunction with the Caputo operator, has been used to transform the fractional differential equation into an algebraic equation, which can then be solved using the residual power series method. The suggested method (Laplace residual power series method (LRPSM)) involves using a truncated power series to approximate the solution, and the residual error is minimized by adjusting the power series coefficients. The study of fractional-order systems has gained significant attention in recent years due to their ability to model complex phenomena in various fields of science and engineering. For instance, the Jaulent-Miodek system is a well-known example of such a fractional system, and its solution has been a topic of interest for many researchers. Accordingly, the LRPSM has been applied for derived high accurate approximations for the fractional-order Jaulent-Miodek system. The derived approximations have been compared with the analytical solutions. It was found great harmony and agreement with a very small absolute error between both the approximate solutions and the analytical solutions. This method has proven to be an effective tool for solving fractional-order systems, as it can provide accurate and efficient solutions. The findings of this study may be helpful in different areas of applied sciences where fractional-order systems are commonly encountered.
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Lithium storage and capture are of particular importance for the development of new technology in electric vehicles and portable electronics. Nanotubes (NTs) are among many porous nanomaterials offered as potential candidates for lithium storage. In this paper, we adopt a continuum approach together with the Lennard–Jones function to determine the minimum interaction energies for lithium atoms in boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs). By minimizing the interaction energies, we may obtain the preferred type and size of the nanotubes to encapsulate the lithium atoms. The results showed that BNNTs and CNTs are attractive candidates for lithium atom encapsulation, and the optimal nanotube to enclose lithium is the BNNT with a radius equal to 3.4 Å, and corresponding (5, 5) armchair nanotubes and (9, 0) zigzag nanotubes, where the minimum energy is obtained. The present computations observed that both nanotubes are promising candidates for lithium intercalation materials suitable for battery applications.
Keywords: lithium, nanotube, continuum approach, Lennard–Jones potential, mathematical physics equations
1 INTRODUCTION
Recently, with the rapid development of nanotechnology, nanomaterials represent a high level of importance in many applications, such as pharmaceuticals, electronic technology, energy applications, the biomedical sector, and environmental applications. They are used, for example, but not limited to the new generation of computer chips, harder and more durable cutting tools, removal of pollutants, very efficient batteries, magnets with high power, sensors with high sensitivity, automobiles, aerospace components, weapon platforms, long-lasting medical implants, and electrochromic display devices [1–3]. One of the most well-known and widely studied nanostructures in science is nanotubes (NTs), including boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs). Due to the distinctive structures and exceptional properties of nanotubes, they have attracted more interest in research and developing nanotechnology, and they are expected to be used in many new applications. CNTs have gained a wide range of theoretical and experimental research since their discovery in the 1990s [4]. They show a variety of captivating qualities, including exceptional electronic sensitivity, good mechanical strength, high surface area to volume ratios, high levels of flexibility, and exceptionally strong electro-catalytic activities, which enable them to find practical use in sensors, actuators, energy storage devices, etc. [5]. Until now, this field is still active and attractive to the interest of many researchers, and many distinguished and important applications of CNTs have emerged since their discovery. There are numerous studies on CNTs, and some authors highlight their applications in the field of electronics, sensing, and composite [6, 7].
Studies and research paid significant attention to the new material, BNNTs. Numerous accomplishments have allowed access to this material, and several applications have been implemented in this field since Chopra et al.’s invention of BNNTs in 1995. Both BNNTs and CNTs share some basic properties like outstanding mechanical properties and high heat conductivity. This is because of the similarity between the structures of BNNTs and CNTs, where boron and nitrogen atoms in BNNTs are replaced by carbon atoms in CNTs [8]. One exceptional physical feature of BNNTs is that they are an excellent insulator with a wide bandgap (5–6 eV), while CNTs are semiconducting materials. Moreover, they are not sensitive to the chirality and morphology of the tubes. BNNTs also have distinct characteristics such as high-temperature stability and neutron radiation shielding capability, which make them essential for use in sensors and devices in extreme environments [8]. The chiral vector C = ia1 + ja2 is used to classify the structure of the nanotubes, where a1 and a2 are the basis vectors of a hexagonal unit cell on layered inorganic sheets [such as hexagonal boron nitride (h-BN) and graphene (GRA)], and i and j are integers. Alternatively, the chiral vector may be indicated by (i, j), and the radii of the corresponding nanotubes are then given by [image: image], where ℓ denotes the bond length [3]. Although BNNTs and CNTs have structural similarities, the two nanotubes differ in some properties, which cause different behaviors for each. For example, the bond lengths of C–C bonds and B–N bonds are approximately 1.42 and 1.45 Å, respectively [9, 10].
The energy demand is increasing dramatically recently, and energy storage has become one of the major interests in technology and science. Due to climate change caused by global warming, researchers focus on developing systems of generating renewable energy and using electric motors in vehicles instead of the known engines [11, 12]. Sources of renewable energy like solar power generators also need batteries to store energy for later use [11, 12]. Therefore, improving battery technology requires materials with the ability to charge and recharge with high efficiency in order to be able to use energy resources successfully [11]. Owing to their advantages of excellent cyclic stability, lightweight, high capacity density, and high efficiency, lithium (Li) batteries have received considerable attention in many applications, such as electric vehicles, electric power grids, and portable electronics [12, 13].
One of the scientific challenges facing lithium batteries is their safety, which needs to be ensured before they can be widely used in everyday portable devices, and the most important factor that threatens the safety of the battery is the overheating of the cell, which results from a short circuit under a high temperature and high current environment. Since the separator plays an important role in avoiding short circuits, it is important that the separator be thermally stable [14]. Nanotubes can play an important role in energy storage systems, including the lithium battery, and they may protect against thermal shrinkage at high temperatures and high current operation, which improves the stability of the temperature in the polyolefin separator and then prevents battery short-circuits [12, 14]. Lithium batteries have offered great success for mobile electronics because of the progress in cell design and the manufacturing of lithium batteries with more efficient electrochemical performances regarding power densities and energy [15]. Further studies are required to improve the progress of these materials with the lithium battery technology. Moreover, nanomaterials, including nanotubes, might provide long-lasting separation of electron charges, and supramolecular nanoclusters can be supported, increasing the photoelectrochemical performance of photovoltaic cells [16]. Many experimental studies have worked on determining the lithium adsorption energetics in NTs. Theoretical studies have concentrated on the intercalation of Li atoms in nanotubes and the calculation of energy barriers for the entry and diffusion of Li inside the tubes.
Song et al. examined the intercalation and diffusion of Li ions in CNTs and found that lithium intercalation may cause deformation of CNTs [17]. Khantha et al. used density functional theory (DFT) to study the interaction of a single Li atom inside a (5, 5) CNT and reported that the lithium insertion capacities are dependent on the chirality and the equilibrium position of the Li atom on the tube axis, which provides strong binding energy, and is about 1.46 Å [18]. Zhong-Heng et al. used ab initio molecular dynamics (AIMD) simulations and first-principle calculations to probe the Li transport mechanism in armchair and zigzag CNTs, and their results showed a fast Li transport with an ultralow activation energy in the CNTs with a diameter of 5.5 Å, corresponding to (4, 4) and (7, 0) CNTs [19]. Meunier et al. found an equilibrium distance of 1.29 Å using ab initio simulations for Li inside the (5, 5) and (8, 0) CNTs [20]. Yanhong and Junwei have applied the DFT to investigate the adsorption of Li atoms in different CNTs [21]. Their results showed that a Li atom is steadily adsorbed inside the CNTs, and the strongest adsorption energy of the Li atom is obtained in the (6, 0) CNTs.
In addition, Rahman et al. presented a new separator coated by BNNTs with a thermal stability of up to 150°C for the safer operation of lithium batteries. Kim et al. investigated BNNT-based separators in lithium–sulfur batteries and showed the comparison of the electrochemical behavior of lithium–sulfur batteries with BNNTs and those without BNNTs [11]. They found that the BNNT-loaded polypropylene separator prevents the formation of dendrite on the Li metal anode, helps the ions move easily through the separator, and reduces the shuttle effect at the cathode compared to the ordinary polypropylene separator. Zhong et al. used the DFT method to investigate the interaction between (5, 0) BNNTs and lithium atoms, which is located near the open end of the tube [22]. Their results showed that the interaction between the lithium atom and the edge of BNNTs is around −30.05 (kcal/mol). Seif et al. performed the DFT method to study the effects of lithium doping on the properties of the electronic structure of (4, 4) BNNTs, and their results showed a heterogeneous electrostatic environment along the tube [23].
The investigation of the adsorption and encapsulation of lithium in different nanotubes is still active to improve the performance of lithium batteries. Experiments can be performed directly, but they are time-consuming and expensive. Mathematical modeling and simulation may be used as an alternative, complementary, and guiding method. Calculating the interaction energy between non-bonded atoms and molecules is usually performed by either the discrete method, which calculates the force for every non-bonded atom as a pair using molecular dynamics, or the continuum method, which approximates these atoms using geometric representation. Here, we apply the continuum approach with the Lennard–Jones (LJ) potential to calculate the van der Waals energies and the interaction between atoms and molecules. In this method, some simple geometric shapes with rotational symmetry are used to represent the molecular structures and the distance between them. These geometric shapes, like points and cylinders, with this geometric property are useful to simplify interaction expressions. In particular, we use this approach to determine the minimum interaction energies for lithium in two different nanotubes, namely, BNNTs and CNTs, as shown in Figure 1. By minimizing the interaction energies, we may obtain the preferred type and size of the nanotubes to encapsulate the lithium atoms.
[image: Figure 1]FIGURE 1 | Geometrical diagram of (A) Li in CNTs and (B) BNNTs.
2 MODELING APPROACH
In this section, the interactions between Li atoms inside BNNTs and CNNTs are modeled. Predominantly, van der Waals forces are the forces present in physisorption, so we may use the Lennard–Jones potential to determine the interaction between lithium atoms and nanotubes, and it is given as
[image: image]
which evaluates the potential energy between two atoms at distance ϱ apart. The coefficients T and R are the attractive and repulsive parameters of the interaction, respectively, and their values might be obtained by applying the Lorentz–Berthelot mixing rule [24], where T = 4ɛσ6 and R = 4ɛσ12. Furthermore, σ is the van der Waals diameter and ɛ is the well depth for Li, B, N, and C atoms, and their values are taken from Rappi et al. [25], as shown in Table 1. For two different atoms, they might be computed using σ12 = (σ1 + σ2)/2 and [image: image]. As the nanotubes have cylindrical structures, we approximate them as continuum surfaces, where their atoms are uniformly distributed over their entire surfaces, and they are modeled continuously over their atoms by employing a typical surface element, dA. For such a problem, the hybrid discrete–continuum approach is used to obtain the interaction of an atom (i.e., a point) with the surface A (the cylinder), and it is given as
[image: image]
where P(ϱi) is the potential function, ϱ is the distance between an atom (point i) and the surface of nanotubes (BNNT and CNT), and ϖj (j ∈ {B, C}) is the atomic surface density of NTs, and their values are given by ϖB = 0.3661 and ϖC = 0.3812 Å−2 [26, 27]. In the following subsections, we considered two factors affecting the interaction energies of lithium atoms and nanotubes.
TABLE 1 | Values of the well depth and van der Waals diameter used in this study.
[image: Table 1]2.1 Li atom entering nanotubes
Here, we considered the entry of a Li atom in the nanotube, and the atom is assumed to be outside the tube. Figure 2 shows the Li atom as it enters an open-ended semi-infinite tube with the radius r. Thus, the NTs can be modeled as a cylinder, and their coordinates are (r cos u, r sin u, z), where −π ≤ u ≤ π and 0 < z < ∞, and the parametric equation of the atom is denoted by (0, 0, w), where w is the distance between the atom and the open end of the tube on the z-axis of the tube. The distance ϱ between the surface of the nanotube and the entering atom is given by
[image: image]
[image: Figure 2]FIGURE 2 | Li atom entering the nanotube.
and the total interaction between the nanotube and the atom is given by
[image: image]
This integral may be rewritten as follows:
[image: image]
The integral Qn (n = 3, 6) can be evaluated as follows:
[image: image]
By using the change of variables t = z − w and the substitution t = r tan ϕ, we have
[image: image]
Now, using the formula, we obtain [∮2.512(2)] [28]. For n = 3 and 6, the integral, Qn, is given by
[image: image]
and
[image: image]
and these expressions are completed (Eq. 3).
2.2 Preferred position of a Li atom inside nanotubes
For a specific size nanotube, the preferred position of the Li atom inside the nanotube is determined with respect to the cross section of the tube, as shown in Figure 3. The atom is located at (α, 0, 0), where α is the distance of the offset atom (on the x-axis of the tube) from the central axis of the nanotube (z-axis), and the nanotubes are assumed to be of infinite length with a parametric equation, (r cos u, r sin u, z), where −π ≤ u ≤ π and −∞ < z < ∞. In this case, the distance ϱ is given by
[image: image]
[image: Figure 3]FIGURE 3 | Offset distance of the Li atom in the nanotube.
and the total interaction of the Li atom in the nanotube is given by
[image: image]
Again, these integrals can be written as
[image: image]
where Wn is given by
[image: image]
Here, these integrals can be solved by letting γ2 = (r − α)2 + 4rα sin2(u/2), and using the substitution z = γ tan θ, we obtain
[image: image]
where [image: image] is the beta function. By following the steps performed by Cox et al. in this work [29], the integral Wn became
[image: image]
where F(a*, b*; c*, z*) indicates the usual hypergeometric function. Then, this expression is substituted in Eq. 7) in the cases of n = 3 and n = 6.
3 NUMERICAL RESULTS
In this section, the interactions between the lithium atom and the nanotubes are presented numerically for various types of nanotubes by using the numerical values for the parameters associated with Li and nanotubes, which are given in Table 2. First, we determine the numerical solutions of the interactions of the Li atom entering various types of NTs. Figures 4, 5 show the results of the entry of the Li atom in CNTs and BNNTs. Moreover, by using the algebraic computer package Maple, in particular with optimization and then minimization, the minimal interaction energy values are obtained, as shown in Table 3. We comment that when the energies are lower in the +w tube side (i.e., inside the nanotube) than those in the −w tube side (i.e., outside the nanotube), Li is inserted in the tube. The results indicate that for both BNNTs and CNTs, the Li atom is accepted in all tubes except (3, 3) armchair and (5, 0) zigzag nanotubes. The results show that the interaction energies of the Li atom at the open end of the CNTs and BNNTs with a radius less than [image: image] Å are highly positive, indicating that Li insertion is not feasible energetically due to the energy barrier. Moreover, Figures 4 and 5show that both tubes would not accept the Li atom from the rest because the suction energy is not sufficient to outdo the barrier energy at the opening of these tubes. Therefore, the interactions can exhibit two peaks [positive in the range (P1, P2) and negative in the range (P2, ∞)], where it is possible for the Li atom to be inside these tubes when the curve of the energy crosses the horizontal axis at P2 as some additional energies are required. Our results for the interactions of Li with CNTs and BNNTs are in excellent agreement with the results given in [18–20] for the interactions of Li with CNTs and with those given in [22] for the interactions of Li with BNNTs. In addition, Table 4 summarizes the results for the relationship between the interaction energies and the offset position for Li inside (5, 5), (6, 6), (7, 7), (8, 8), and (9, 9) nanotubes. Our results show that the lowest energies for all CNTs and BNNTs considered in this study are obtained for the (5, 5) NTs with an equilibrium distance of 0 Å from the tube axis, assuming that the Li atom remains on the tube axis. These results differ from [18, 20], who used the ab initio simulations and the DFT method, and they showed that the equilibrium distance was between 1.29 and 1.46 Å inside the (5, 5) CNT. It is observed that the discrepancy between our results and these results may be attributed to the parameters which we have adopted here. In addition, our results are in excellent agreement with those performed by Yanhong and Junwei [21] using the DFT method, where their results showed that the strongest adsorption energy of the Li atom is obtained in the (6, 0) CNT. Finally, Figure 6 shows the preferred radii of both BNNTs and CNTs to encapsulate a Li atom, and the results show that the optimal radii are about 3.433 and 3.422 Å, corresponding to energies −2.476 and −2.217 kcal/mol, respectively. Our methods and results that are presented in this work yield the theoretical design of the interaction of a lithium atom stored in various types of nanotubes; moreover, further research should study the interaction energies and the changes in the electronic structure of the interaction configurations for lithium atoms interacting with nanotubes. In conclusion, the results are obvious that the BNNT and CNT are attractive candidates for Li atom encapsulation, and the best nanotubes are the BNNTs as the interaction between the Li atom and BNNT is slightly stronger than that between the Li atom and CNTs as the former gives the lowest minimum energy. We note that our approach can be used to investigate the interactions between the metal atoms with different types of nanotubes and nanomaterials such as fullerenes (see, for example, [30]).
TABLE 2 | Constants utilized in this study.
[image: Table 2][image: Figure 4]FIGURE 4 | Interactions of Li and BNNTs with respect to w. (A) (3, 3) armchair, (B) armchair, (C) (5, 0) zigzag, and (D) zigzag.
[image: Figure 5]FIGURE 5 | Interactions of Li and CNNTs with respect to w. (A) (3, 3) armchair, (B) armchair, (C) (5, 0) zigzag, and (D) zigzag.
TABLE 3 | Main results of the interactions of Li atoms with NTs.
[image: Table 3]TABLE 4 | Interaction energies of an offset Li atom inside NTs.
[image: Table 4][image: Figure 6]FIGURE 6 | Interactions between the Li atom and nanotube as the function of tube radius r.
4 SUMMARY
In this study, the Lennard–Jones potential, in conjunction with continuum modeling, has been used to investigate the interactions between a lithium atom and BNNTs and CNTs. First, calculations of the insertion of a Li atom at an open edge of nanotubes show that a lithium atom is attracted to the entrance open end of the tubes that have a radius larger than 2.2 Å. In addition, our results for (3, 3) and (5, 0) nanotubes showed that the lithium atom confronted a large energy barrier at the open end of these tubes, consequently, for the lithium atom to be enclosed into the nanotube with a radius less than 2.2 Å; some additional energy is also needed. Moreover, when the lithium atom is assumed to be inside the tube, our results indicate that the equilibrium distance from the tube axis depends on the size of the tube; as the radius gets larger, the position of the Li atom tends to be closer to the wall of the tube. By minimizing the interaction energy, we predicted that the preferred radii of both BNNTs and CNTs to encapsulate the Li atom are about 3.433 and 3.422 Å, respectively, with corresponding (5, 5) armchair nanotubes and (9, 0) zigzag nanotubes. Our results observed that both tubes are attractive candidates for Li atom encapsulation, and by minimizing the interaction energies, we obtained that the interaction between the Li atom and BNNTs is slightly stronger than that between the Li atom and CNTs. Overall, nanostructures, including CNTs and BNNTs, might offer a well-suited playground for optimizing rate performance nanomaterials and capacity for Li storage as an anode material in lithium batteries. Future work could involve a calculation on other nanotubes to enclose the lithium atoms as the particular architecture of nanotubes can offer a useful design idea for the electrode of next-generation lithium batteries.
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This paper examines the analysis of entropy generation in the flow of an MHD Prandtl fluid over a nonlinear stretching sheet. Heat transfer is developed through a convectively heated sheet. The impacts of nonlinear radiation and nonlinear mixed convection are considered. The resulting nonlinear systems are computed for the unique solutions of velocity and temperature profiles. Effects of thermal radiation, the Prandtl number, Prandtl fluid parameters, and the Biot number are discussed. Results for the Nusselt number and skin friction coefficient are analyzed. The impact of the radiation parameter is to improve the rate of heat transport to the flow region. It is stated that temperature distribution increases for greater values of θf. We state that the fluid temperature decreases with the increasing importance of the Prandtl number Pr. Growth in the Prandtl number decreases the rate of thermal diffusion. It shows that the magnitude of drag forces decreases for larger values of Prandtl fluid parameters. Furthermore, curvature and mixed convection parameters boost the flow and heat transfer rate near the cylinder wall. The entropy generation grew up rapidly with larger values of magnetic and Brinkman numbers. The temperature ratio parameter and Prandtl fluid parameters reduce the entropy generation rate. These parameters are also used to control the entropy generation process.
Keywords: Prandtl fluid, entropy generation, MHD, nonlinear thermal radiation, nonlinear mixed convection, convective condition
1 INTRODUCTION
In recent years, non-Newtonian fluid with boundary layer approximation over the moving surface has gained considerable attention due to its extensive applications. In [1], the Couette flow of a viscoelastic fluid with thermal convection was studied. In [2], the micropolar fluid flow in a channel was analytically investigated. In [3], the flow and heat transfer of a viscoelastic electrically conducting fluid over a stretching/shrinking sheet was reported. In [4], the exact solution of a rate-type fluid in a circular duct was developed. Coupled flow and heat transfer of a Maxwell fluid over a stretching sheet was discussed in [5, 6], where the mixed convection flow of power-law fluids past an inclined sheet was explored. The effects of shear flow and power-law viscosity on the temperature field were also considered. MHD boundary layer stagnation point flow of a Jeffrey fluid over a moving sheet was analyzed in [7].
Convective heat transfer has great interest among researchers, both theoretical and practical, and also has many applications in engineering and geophysical fields. Initially, in [8], the convective heat transfer flow over a moving sheet was reported. In [9], the convective heat transfer over a stretching/shrinking surface was numerically examined. In [10], the steady flow of double-diffusive mixed convection boundary layer flow through convective boundary conditions was numerically reported. The flow of a Maxwell fluid due to constantly moving radiative surfaces with the convective condition was reported in [11, 12],where numerical analysis over a continuous stretching sheet with nonlinear thermal radiation was performed. In [13], the flow of a nanofluid in the existence of nonlinear thermal radiation was numerically analyzed. In [14], the three-dimensional flow of a Jeffrey nanofluid subject to thermal radiation effects was explored. In [15], the analysis of MHD flow and heat transfer with nonlinear radiation in a viscoelastic fluid was performed. The study of three-dimensional magnetohydrodynamics with thermophoresis and Brownian motion aspects was extended in [16].
In the present study, we explore the entropy generation in the flow of an MHD Prandtl fluid with nonlinear thermal radiation. Although the stretching problems are explored extensively for linear thermal radiation, much less emphasis has been given to the flow problems with nonlinear thermal radiation. Such information is further scarce when heat transfer through convective conditions is considered. The radiation effect in the flow of a pseudo-plastic nanofluid was examined in [17]. The MHD stretched flow of a nanofluid in the presence of buoyancy and thermal radiation was analyzed in [18]. A salient feature of radiation in nanofluid flow over an unsteady stretching sheet was reported in [19, 20],where the thermal radiation effect in time-dependent MHD flow with variable viscosity was analyzed. The hydromagnetic flow of a second-grade fluid in the presence of thermal radiation was examined in [21]. The effect of thermal radiation in the flow of a micropolar fluid was considered in [22, 23],where entropy generation in nonlinear radiative flow in the direction of a variable thick surface was reported. A mathematical model for entropy generation with variable fluid properties was examined in [24]. The impact of mixed convection and nonlinear radiation was further considered. The results of surface drag forces, entropy generation rate, heat/mass transfer, and the Bejan number were presented numerically in [25], where the entropy generation in an MHD micropolar nanofluid was analyzed using a nonlinear stretching sheet.
We explore the nonlinear effects of radiation, mixed convection, and stretching sheet with an MHD [26–31] Prandtl fluid and heat transfer on entropy generation. The first objective of the current article is to venture further into the regime of the nonlinear stretched flow of the Prandtl fluid with convective heat transfer [32–41] effects. Thus, the Prandtl fluid dealt with the nonlinear flow of thermal radiation. Our second objective is to consider the nonlinear mixed convection in the entropy generation by nonlinear stretching. Having such an incentive in mind, the reason here is to model first the appropriate problem and then compute it. Nonlinear radiation properties are also incorporated. Governing differential systems are solved for the unique solution of velocity and temperature fields. Velocity, temperature, and entropy generation are sketched and examined for different emerging parameters. The local Nusselt number and skin friction coefficient are studied by graphical illustrations and tabular values.
2 MATHEMATICAL CONSTRUCTION
We consider the 2D flow of an MHD Prandtl fluid over a stretching sheet. The flow is induced by using a nonlinear stretching sheet. The x- and y-axis are taken along and perpendicular correspondingly. Furthermore, the effects of nonlinear radiation, mixed convection, and convective condition are considered. The Cauchy stress tensor for the Prandtl fluid is given by
[image: image]
where A and C are the material parameters and A1 is the first Rivlin–Erickson tensor. The boundary layer equations containing the stability of mass, linear momentum, and energy can be written as follows:
[image: image]
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with the subjected boundary conditions
[image: image]
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In the aforementioned expressions, ν = (μ/ρ) is the kinematic viscosity, μ is the dynamic viscosity, k is the thermal conductivity of the fluid, ρ is the fluid density, T is the fluid temperature, cp is the specific heat, [image: image] is the radiative heat flux, k* is the mean absorption coefficient, σ* is the Stefan–Boltzmann constant, and Bi is the Biot number.
Setting
[image: image]
equation 2 is identically satisfied, and Eqs.3−5) give
[image: image]
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where prime denotes the differentiation with respect to η, f is the dimensionless stream function, θ is the dimensionless temperature, and θf is the temperature ratio parameter; the dimensionless numbers are
[image: image]
Here, α and β are the dimensionless Prandtl parameters, R is the radiation parameter, Bi is the Biot number, and Pr is the Prandtl number.
The local Nusselt number Nux and skin friction coefficient Cf are defined as follows:
[image: image]
where ρ is the fluid density, τw is the surface shear stress, and qw is the surface heat flux. These quantities are defined by
[image: image]
The dimensionless Nusselt number and skin friction coefficient are
[image: image]
[image: image]
where [image: image] is the local Reynolds number.
3 ENTROPY GENERATION
This sector is associated with the influence of the MHD Prandtl fluid with heat transfer on entropy generation. The local volumetric rate of entropy generation is defined as
[image: image]
The aforementioned equation is the combination of three different phenomena. The first is heat transfer, the second is due to the magnetic field, and the third one is due to viscous dissipation of Walter’s B fluid. The characteristic entropy generation rate is defined as
[image: image]
Thus, the dimensionless form of entropy generation is obtained by taking a ratio of Eqs 21 and 22.
[image: image]
where [image: image], [image: image], and [image: image].
4 CONVERGENT SERIES SOLUTIONS
Convergent series solutions depend on the non-zero auxiliary parameters. The convergence of solution is checked by drawing the h-curves for the velocity and temperature distributions. Figures (a and b) show the h-curves of velocity and temperature profiles for fixed values of other physical parameters. The admissible ranges are hf and hθ, respectively. It is observed that the solutions converge for the complete region. Table 1 illustrates the convergence of solutions for various orders of approximations. Tabular values elucidate that 15th and 30th order of approximations are enough for the convergence of series solutions of momentum and energy equations, respectively.
TABLE 1 | Homotopic convergence for various orders of approximations when a =0.4, θf =1.03, R =0.2, Pr=1.0, Bi =0.3, hf =−0.9, and hθ =−1.7.
[image: Table 1]Figures a and b show the ℏ-curves for velocity and temperature profiles.
5 RESULTS AND DISCUSSION
To analyze the physical aspects of the considered problem, we discuss the effects of dimensionless parameters α, β, R,θf, Bi, and Pr on the velocity f′η) and temperature θ(η) distributions. The influence of Prandtl fluid parameters α and β on the velocity profile is presented in Figures 1, 2. It is inspected that the velocity profile increases for greater α and β. The increment in velocity for larger values of β is smaller when compared with α. The effect of thermal radiation parameter R on the temperature profile is displayed in Figure 3. It represents the increasing behavior of thermal radiation parameters when α = 0.4, β = 0.3, Bi = 0.3, Pr = 1.0, and θf = 1.03. There is heat transfer from the flow region to the wall, indicating that the boundary layer thickness increases throughout the region. Physically, the effect of the radiation parameter is to increase the rate of heat transport to the flow region. Figure 4 illustrates the behavior of ratio parameter θf on the thermal profile. It is observed that temperature distribution increases for greater values of θf. Figure 5 shows the effect of the Biot number on the temperature field. A larger Biot number Bi boosts the temperature profile. Here, a gradual increase in Bi results in the larger convection at the stretching sheet which increases the temperature. This outcome leads to the conclusion that the heat transfer rate at the sheet is enhanced by increasing the velocity of the stretching sheet. Figure 6 depicts the temperature distribution for different values of the Prandtl number. We observe that the fluid temperature decreases with the increase in the value of the Prandtl number Pr. Growth in the Prandtl number decreases the rate of thermal diffusion. Consequently, the boundary layer thickness becomes thinner due to the reduction in thermal conductivity. The Nusselt number characterizes the heat flux from a solid surface to a fluid. Here, we see graphical effects of radiation parameter R, Prandtl number Pr, and Prandtl fluid parameters on the Nusselt number. Figures 7–10 reveal the influences of emerging parameters on the Nusselt number. Figure 7 describes the variation of the Nusselt number. Physically, a larger-Prandtl number fluid has a relatively lower thermal conductivity; thus, an increase in Pr decreases conduction and, thereby, increases the variations of thermal characteristics. This results in the reduction of the thermal boundary layer thickness and an increase in the heat transfer rate at the bounding surface. We can see that the heat transfer rate increases for greater values of α and Pr. Figure 8 depicts that the Nusselt number increases for radiation parameter R. An increase in R enhances the heat flux from the sheet which increases the fluid’s velocity and temperature. Figure 9 depicts that the Nusselt number increases for a larger temperature ratio parameter. Figure 10 shows that the Nusselt number increases with an increase in the Biot number. The values of drag forces are given in Table 2. It shows that the magnitude of drag forces decreases for larger values of Prandtl fluid parameters. Table 3 shows the validation of the method, and we found good agreement with the published work.
[image: Figure 1]FIGURE 1 | f′(η) versus α.
[image: Figure 2]FIGURE 2 | f′(η) versus β.
[image: Figure 3]FIGURE 3 | f′(η) versus R.
[image: Figure 4]FIGURE 4 | f′(η) versus θf.
[image: Figure 5]FIGURE 5 | θ(η) versus Bi.
[image: Figure 6]FIGURE 6 | θ(η) versus Pr.
[image: Figure 7]FIGURE 7 | Nusselt number versus Pr.
[image: Figure 8]FIGURE 8 | Nusselt number versus R.
[image: Figure 9]FIGURE 9 | Nusselt number versus θf.
[image: Figure 10]FIGURE 10 | Nusselt number versus Bi.
TABLE 2 | Values of drag forces for various fluid parameters.
[image: Table 2]TABLE 3 | Comparison of the Nusselt number at the wall for the present results and those of Ishak [42] and Aziz [43] for Pr and Biot number Bi.
[image: Table 3]Deviation of entropy generation with η is represented in Figure 11 for different values of Eckert’s number. Growth in Eckert’s number leads to a decrease in entropy generation. It is also observed that near-the-surface variation is almost negligible. Figure 12 shows the dual behavior of the radiation parameter: a small increase is displayed near the wall, but far away from the wall, entropy generation increases rapidly. Figures 13,14 exhibit the influence of fluid parameters α and β which boost the entropy generation. The distribution of the magnetic framework on entropy generation is displayed in Figure 15. The magnetic parameter persuades Lorentz force which boosts the entropy generation. The effect of the temperature ratio framework on entropy generation is shown in Figure 16. From this figure, it can be seen that entropy generation decreases when the temperature ratio parameter increases. The effect of the Brickman number is discussed in Figure 17. The Brickman number produces heat transport by viscous heating, which leads to the development in entropy generation. The variation of entropy generation with the Reynolds number is discussed in Figure 18. It is distinguished that entropy generation increases with a larger Reynolds number because a larger Reynolds number corresponds to a larger inertia and smaller viscous force.
[image: Figure 11]FIGURE 11 | Entropy generation versus Ec.
[image: Figure 12]FIGURE 12 | Entropy generation versus R.
[image: Figure 13]FIGURE 13 | Entropy generation versus β.
[image: Figure 14]FIGURE 14 | Entropy generation versus α.
[image: Figure 15]FIGURE 15 | Entropy generation versus M.
[image: Figure 16]FIGURE 16 | Entropy generation versus θf.
[image: Figure 17]FIGURE 17 | Entropy generation versus Br.
[image: Figure 18]FIGURE 18 | Entropy generation versus Re.
6 CONCLUSION
Important features of the heat transfer flow of an MHD Prandtl fluid past a stretching are investigated. Important points are mentioned as follows.
■ By increasing α and β, the velocity field increases.
■ Larger values of radiation parameter enhance the temperature distribution.
■ The temperature field decreases by increasing the Prandtl number.
■ Larger Biot number enhances the temperature and thermal boundary thickness.
■ The effect of fluid parameters α and β on the magnitude of the skin friction coefficient is quite the opposite.
■ Entropy generation develops with the magnetic parameter, Reynolds number, curvature parameter, and Brinkman number, while contrary behavior is detected for larger values of the temperature ratio parameter.
■ Nusselt number enhances when R and Bi are enhanced.
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5% 50 5% 150 80.47% 65.50% 64.36% 62.65%

5% 100 5% 150 84.29% 74.10% 75.29% ‘ 72.18%

5% 150 5% 150 85.34% 73.60% 76.64% ‘ 74.63%
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Training set 2 x 10 test set 2*150 Training set 2 x 100 test set 2 x 150

MetaNAS MAMLA++ Reptile MetaNAS MAML++ Reptile

1 96.70% 94.30% 88.33% 85.45% 100.00% 96.70% 100.00% 93.00%
2 93.30% 83.35% 80.00% 63.33% 100.00% 96.70% 88.67% 88.33%
3 7334% 76.66% 66.55% 67.00% 79.00% 86.67% 73.34% 74.66%
4 96.70% 97.30% 96.00% 93.30% 100.00% 98.34% 100.00% 94.00%
5 on0% 75.70% | ssamn 90.00% 96.70% 90.67% 90.67% 93.30%
6 100.00% 100.00% 99.00% 97.66% 100.00% 100.00% 100.00% 100.00%
7 100.00% 96.00% 100.00% 98.00% 100.00% 99.30% 100.00% 98.34%
8 100.00% 100.00% 96.34% " 9300% 100.00% 1o0.00% 97.66% 97.30%
9 76.66% 73.34% 69.34% 73.34% 80.00% 76.66% 80.00% 75.00%
10 83.35% 63.00% 80.00% 73.00% 93.60% 82.00% 93.30% 78.30%
1 73.34% 64.65% | 7666% | w0m 85.35% 81.70% 78.65% 83.35%
12 100.00% 73.00%  10000% 89.00% 100.00% | 9033% 100.00% 92.70%
13 96.70% 100.00% 06 81.00% 100.00% 100.00% 91.00% 95.00%
M 76.66% 60.35%  s00m 72.30% 84.67% 82.67% 82.00% 81.23%
15 76.66% 80.00% 69.70% 61.00% 84.35% 83.35% 73.34% 75.34%
Top 9 6 4 0 14 4 6 1

It can be seen that MetaNAS achieves the highest diagnostic accuracy for nine faults when the training size is 2 x 10, which is better than six faults for MAML++, four faults for Reptile, and zero
faults for MAML. As the trainingsize increases, MetaNAS achieves the highest diagnostic accuracy for 14 out of 15 faults when the trainingsize is 2 x 100, compared to four faults for MAML++,
six faults for Reptile, and one fault for MAML. Moreover, MetaNAS achieves 100% diagnostic accuracy on faults 1, 2, 4, 6, 7, 8, 12, and 13 when the training set size is 2 x 100.

That the bold values indicates the results of our proposed MetaNAS method.
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