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Circular RNAs in ferroptosis:
regulation mechanism and
potential clinical application in
disease

Fei Li, Pei-Feng Li and Xiao-Dan Hao*

Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine,
Qingdao University, Qingdao, China

Ferroptosis, an iron-dependent non-apoptotic form of cell death, is reportedly
involved in the pathogenesis of various diseases, particularly tumors, organ
injury, and degenerative pathologies. Several signaling molecules and
pathways have been found to be involved in the regulation of ferroptosis,
including polyunsaturated fatty acid peroxidation, glutathione/glutathione
peroxidase 4, the cysteine/glutamate antiporter system Xc-, ferroptosis
suppressor protein 1/ubiquinone, and iron metabolism. An increasing amount
of evidence suggests that circular RNAs (circRNAs), which have a stable circular
structure, play important regulatory roles in the ferroptosis pathways that
contribute to disease progression. Hence, ferroptosis-inhibiting and
ferroptosis-stimulating circRNAs have potential as novel diagnostic markers
or therapeutic targets for cancers, infarctions, organ injuries, and diabetes
complications linked to ferroptosis. In this review, we summarize the roles
that circRNAs play in the molecular mechanisms and regulatory networks of
ferroptosis and their potential clinical applications in ferroptosis-related
diseases. This review furthers our understanding of the roles of ferroptosis-
related circRNAs and provides new perspectives on ferroptosis regulation and
new directions for the diagnosis, treatment, and prognosis of ferroptosis-related
diseases.

KEYWORDS

circular RNA, ferroptosis, regulation mechanism, clinical application, cancers

1 Ferroptosis

First described in 2012, ferroptosis is an iron- and reactive oxygen species (ROS)-
dependent non-apoptotic form of regulatory cell death that differs from apoptosis, necrosis,
and autophagy at the morphological, biochemical, and genetic levels (Figure 1A) (Dixon
et al., 2012; Xie et al., 2016; Galluzzi et al., 2018). Morphologically, ferroptosis is
characterized by marked mitochondrial contraction, increased membrane density, and
the reduction or disappearance of mitochondrial cristae (Xie et al., 2016; Li et al., 2020).
At the biochemical level, ferroptosis involves the accumulation of lipid peroxidation
products and lethal ROS produced by iron metabolism, which can be inhibited by lipid
peroxidation inhibitors and iron chelators, respectively (Xie et al., 2016; Galluzzi et al., 2018).
Activation of mitochondrial voltage-dependent anion channels and mitogen-activated
protein kinases, upregulation of endoplasmic reticulum (ER) stress, and inhibition of
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cystine/glutamate reverse transporters are all involved in the
induction of ferroptosis (Xie et al., 2016).

Ferroptosis is involved in many physiological and pathological
processes and is closely associated with many diseases, such as
tumors, neurological disorders, ischemia-reperfusion injury,
kidney injury, and blood diseases (Xie et al., 2016; Li et al.,
2020). Several signaling molecules and pathways, such as
polyunsaturated fatty acid (PUFA) peroxidation, glutathione
(GSH)/glutathione peroxidase 4 (GPX4), the cysteine/glutamate
antiporter (system Xc-), ferroptosis suppressor protein 1 (FSP1)/
ubiquinone (CoQ10), and iron metabolism, have been found to be
involved in ferroptosis regulation (Figure 1B) (Li et al., 2020). Also,
four classes of ferroptosis inducers have been identified that drive
cell death by either inhibiting system Xc-, inhibiting or degrading
GPX4, consuming CoQ10, or inducing lipid peroxidation (Li et al.,
2020).

1.1 Polyunsaturated fatty acid (PUFA)
peroxidation

Lipid peroxidation is a hallmark of ferroptosis (Jiang et al.,
2021). When subjected to oxidative or energy stress, cell membrane
PUFAs—particularly arachidonic acid (AA) and adrenic acid—are
oxidized to PUFA-OOH, inducing ferroptosis; the oxidation is
catalyzed by acyl-CoA synthetase long-chain family member 4
(ACSL4), lysophosphatidylcholine acyltransferase (LPCAT), and
lipoxygenases (ALOXs) (Figure 1B). PUFA peroxidation can
cause the destruction of the lipid bilayer and damage cellular
membranes, resulting in cellular dysfunction and cell death
(Chen et al., 2021a).

Ferrostatin-1 (Fer-1) and lipostain-1 trap peroxides to
reduce lipid peroxidation and alleviate ferroptosis (Ma et al.,
2022a). In addition, fat-soluble vitamin E is adept at scavenging

FIGURE 1
The regulation mechanism underlying cell ferroptosis. (A) Representations of ferroptosis, apoptosis, necrosis, and autophagy. (B) The regulation
mechanism utilized during ferroptosis. Created using figdraw.
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free radicals due to its high affinity for unpaired electrons (Ma
et al., 2022a) and thus can inhibit ferroptosis mediated by lipid
peroxidation (Hu et al., 2021).

1.2 Glutathione (GSH)/glutathione
peroxidase 4 (GPX4)

Glutathione peroxidases (GPXs) protect cells against oxidative
damage, thus preventing ferroptosis (Jiang et al., 2021). As a member
of the GPX family, GPX4 can directly reduce peroxidized
phospholipids in the cell membrane and is a pivotal regulator of
ferroptosis (Yang et al., 2014; Jiang et al., 2021). More specifically,
GPX4 inhibits ferroptosis by reducing each PUFA-OOH to the
corresponding PUFA-OH and oxidizing GSH (a reductive cofactor
of GPX4) to GSSG (oxidized GSH) (Figure 1B) (Ma et al., 2022a).

Overexpression or knockdown of GPX4 has been shown to
affect the lethality of 12 ferroptosis inducers (Yang et al., 2014). Also,
given that a decline in the level of GPX4 can lead to the accumulation
of lipid peroxides and lead to ferroptosis, it is often used as a marker
of ferroptosis (Yang et al., 2014; Jiang et al., 2021).

Ras-selective lethal small molecule 3 (RSL3) directly inhibits the
activity of GPX4 by covalently binding to selenocysteine, which is
located at the active site of GPX4, thereby inducing ferroptosis (Ma
et al., 2022a). FIN56, another specific ferroptosis inducer, triggers
ferroptosis by promoting the degradation of GPX4 via the acetyl-
CoA pathway (Sun et al., 2021; Ma et al., 2022a). Activating
transcription factor 4 (ATF4), a critical mediator of metabolic
and oxidative homeostasis and cell survival (Chen et al., 2017a),
inhibits GPX4 by activating heat shock 70 kDa protein 5 to bind to
GPX4, thereby promoting ferroptosis (Zhu et al., 2017).
FINO2 promotes ferroptosis via GPX4 inactivation and iron
oxidation (Gaschler et al., 2018).

1.3 System Xc-

System Xc-is an important intracellular antioxidant system that
is composed of two subunits: SLC7A11 and SLC3A2 (Chen et al.,
2021a; Jiang et al., 2021; Du et al., 2022). SLC7A11 is responsible for
the main transport activity and is highly specific for cystine and
glutamate (Du et al., 2022). System Xc- exchanges intracellular
glutamate for extracellular cystine (Cys2) at a 1:1 ratio, and the
subsequent cystine-to-GSH reaction is catalyzed by glutamate
cysteine ligase (GCL) and glutathione synthetase (GSS) (Chen
et al., 2021a). Inhibiting the activity of system Xc- prevents the
absorption of cystine, affects GSH synthesis, and subsequently
reduces GPX4 activity (the membrane lipid-repair enzyme), thus
reducing the cellular antioxidant capacity and promoting ferroptosis
(Figure 1B) (Chen et al., 2021a; Du et al., 2022).

Activating transcription factor 3 (ATF3), a common stress
sensor, promotes lipid peroxidation by inhibiting system Xc-
(Wang et al., 2020a). Sorafenib (SF) is an oral tyrosine kinase
inhibitor that induces GPX4 inactivation by blocking system Xc-
and promotes ferroptosis (Zheng et al., 2021a). It has been shown
that p53 decreases cystine uptake and intracellular GSH and induces
ferroptosis by transcriptionally suppressing the expression of
SLC7A11 (Ou et al., 2016). In addition, sulfadiazine has been

shown to inhibit system Xc-, promote the accumulation of ROS,
and induce ferroptosis (Yu et al., 2019), and NRF2 inhibits
ferroptosis by increasing SLC7A11 (Song and Long, 2020).

1.4 Ferroptosis suppressor protein 1 (FSP1)/
ubiquinone (CoQ10)

FSP1 is a GSH-independent ferroptosis suppressor encoded by
apoptosis-inducing factor mitochondria-associated 2 (AIFM2) (Doll
et al., 2019). It can suppress ferroptosis by acting on CoQ10:
FSP1 reduces CoQ10 to ubiquinol (CoQH2) on the cell membrane,
which acts as a free radical-trapping antioxidant to prevent lipid
peroxidation on the cell membrane (Bersuker et al., 2019; Ma et al.,
2022a). FSP1 can also catalyze CoQ10 regeneration by utilizing
NAD(P)H (Doll et al., 2019). This GSH-independent FSP1/CoQ10/
NAD(P)H pathway works in cooperation with the GPX4/GSH
mechanism to suppress ferroptosis (Figure 1B) (Doll et al., 2019).

GTP loop hydrolase 1 (GCH1) is one of the rate-limiting
enzymes involved in the synthesis of tetrahydrobiopterin (BH4)
(Cronin et al., 2022), and GCH1 promotes the formation of
CoQ10 and inhibits ferroptosis (Ma et al., 2022a).

1.5 Iron metabolism

Transferrin present in the serum binds to Fe3+, and the iron-loaded
protein is recognized and bound by transferrin receptor protein 1
(TFR1) located on the cell membrane, forming a complex (Frazer and
Anderson, 2014). Intracellular Fe3+ is reduced to Fe2+ by STEAP3 in the
ER and then released by SLC11A2 into the cytoplasmic pool of free iron
(Frazer and Anderson, 2014; Conrad et al., 2018). Fe2+ in the iron pool
generates a considerable volume of hydroxyl radicals and ROS through
the Fenton reaction, which causes ferroptosis (Figure 1B) (Frazer and
Anderson, 2014; Conrad et al., 2018).

Deferoxamine (DFO) is an effective iron chelator (Zhu et al.,
2022). After DFO enters the cell via endocytosis, it forms a stable
octahedral coordination compound with Fe3+, thereby reducing the
unstable iron pool in the cell (Ma et al., 2022a).

1.6 Mitochondria and transmembrane
channels

Mitochondria play a key role in ferroptosis. ROS are derived in
part from mitochondrial metabolism, and transmembrane voltage-
dependent anion channels (VDACs) transport ions and metabolites
across the outer mitochondrial membrane (Ma et al., 2022a). Erastin
reduces mitochondrial membrane permeability through activation
of VDAC2/3, thereby generating ROS that promote ferroptosis
(Figure 1B) (DeHart et al., 2018; Ma et al., 2022a).

1.7 Chemical inducers/inhibitors of
ferroptosis

Several chemicals have been shown to act as ferroptosis inducers
or inhibitors (Du and Guo, 2022). As mentioned above, erastin
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induces ferroptosis by blocking VDACs, which affects GSH
formation and oxidation (Du and Guo, 2022). Temozolomide
induces ferroptosis by enhancing DMT1 (Du and Guo,
2022).Tertiary-butyl hydroperoxide and SF induce ferroptosis by
affecting lipid metabolism and producing lipid ROS directly (Du and
Guo, 2022). Brequinar inhibits tumor growth by inducing tumor cell
ferroptosis (Du and Guo, 2022). Mison promotes ferroptosis by
upregulating a GSHmetabolic pathway regulator called dipeptidase-
1, which increases cell sensitivity to ferroptosis (Du and Guo, 2022).
Ciclopirox olamine, desferrioxamine, DFO, and deferasirox inhibit
ferroptosis by sequestering iron ions (Du and Guo, 2022). Fer-1 and
hydroquinone inhibit ferroptosis by inhibiting lipid oxidation (Du

and Guo, 2022). In addition, 2-amino-5-chloro-N, 3-
dimethylbenzamide can inhibit degradation of GPX4 and protect
cells from the effects of ferroptosis (Du and Guo, 2022). Finally,
alpha-tocopherol, the main component of vitamin E, can inhibit
ferroptosis (Du and Guo, 2022).

2 The role of circular RNAs (circRNAs) in
the regulation of ferroptosis

Circular RNA (circRNA) is a novel type of RNA that forms a
covalently closed continuous loop with neither 5′-to-3′ polarity nor

TABLE 1 Ferroptosis-related circular RNAs (circRNAs) associated with disease conditions.

Disease CircRNA Expression References

Breast cancer (BC) CircGFRA1 Upregulated in HER2-positive BC cells and tissues Bazhabayi et al. (2021)

Circ-BGN Upregulated in trastuzumab-resistant BC cells and tissues Wang et al. (2022a)

CircRHOT1 BC cells Zhang et al. (2021b)

Glioma CircCDK14 Upregulated in glioma tissues and cells Chen et al. (2022a)

Circ-TTBK2 Zhang et al. (2020a)

Thyroid cancer CircKIF4A Upregulated in papillary thyroid cancer Chen et al. (2021b)

Circ_0067934 Upregulated in clinical thyroid cancer samples Wang et al. (2021a)

Gastric cancer (GC) Circ_0000190 Downregulated in GC tissues and cell lines Jiang et al. (2022)

Lung cancer CircP4HB Upregulated in LUAD tissues Pan et al. (2022)

CircDTL Upregulated in NSCLC tissues Shanshan et al. (2021)

CircRNA_101093 Upregulated in LUAD tissue and plasma exosome Zhang et al. (2022a)

Hepatocellular carcinoma (HCC) Hsa_circ_0008367 Most upregulated in sorafenib-treated HCC cells Liu et al. (2020)

Circ0097009 Upregulated in HCC tissues and cell lines Lyu et al. (2021)

CircIL4R Upregulated in HCC tissues and cell lines Xu et al. (2020)

Cervical cancer CircLMO1 Downregulated in cervical cancer tissues and cell lines Ou et al. (2022)

CircEPSTI1 Upregulated in cervical cancer cell lines Wu et al. (2021)

Colorectal cancer Circ_0007142 Upregulated in colorectal cancer tissues and cell lines Wang et al. (2021b)

CircABCB10 Upregulated in rectal cancer tissues Xian et al. (2020)

Oral squamous cell carcinoma (OSCC) CircFNDC3B Upregulated in clinical OSCC tissues Yang et al. (2021)

Acute lymphoblastic leukemia (ALL) Circ_0000745 Upregulated in the peripheral blood samples from ALL patients Yang et al. (2022)

Esophageal cancer CircPVT1 Upregulated in ESCC cells resistant to 5-FU Yao et al. (2021)

Myocardial infarction (MI) CircRNA1615 Downregulated in myocardial tissue of mice with MI Li et al. (2021a)

Heart failure CircSnx12 Downregulated in myocardial tissues of mice with TAC Zheng et al. (2021b)

Acute cerebral infarction (ACI) Circ-Carm1 Upregulated in the serum of patients with ACI Mao and Liu (2022)

Traumatic brain injury (TBI) CircPtpn14 Upregulated in the brain of patients and mice with TBI Wu et al. (2022a)

Polycystic ovary syndrome (PCOS) CircRHBG Upregulated in granular cells of PCOS patients Zhang et al. (2021a)

Diabetic nephropathy (DN) Mmu_circRNA_0000309 Downregulated in podocytes of mice with DN Jin et al. (2022)

Diabetic retinopathy (DR) Circ-PSEN1 Upregulated in high glucose-treated ARPE19 cells Zhu et al. (2021a)

Notes: NSCLC, non-small cell lung cancer; LUAD, lung adenocarcinoma; ESCC, esophageal squamous cell carcinoma; TAC, transverse aortic constriction; ARPE19, adult retinal pigment

epithelial cell line-19.
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a polyadenylation tail (Chen and Yang, 2015; Qu et al., 2015). The
unique circular structure of circRNA makes it more stable. It is
formed by reverse splicing of pre-mRNA, and some circRNAs are
abundant and evolutionarily conserved (Misir et al., 2022). In vivo,
many circRNAs play important biological functions by acting as
sponges for microRNAs, regulating protein functions, and self-
translating (Gao et al., 2022; Misir et al., 2022). Increasing

evidence suggests that circRNAs play important regulatory roles
in the progression of many ferroptosis-related diseases and have
great potential as novel diagnostic markers or therapeutic targets for
such diseases (Zhang et al., 2020a; Liu et al., 2020; Xian et al., 2020;
Xu et al., 2020; Li et al., 2021a; Wang et al., 2021a; Zhang et al.,
2021a; Zhu et al., 2021a; Bazhabayi et al., 2021; Chen et al., 2021b;
Wang et al., 2021b; Zhang et al., 2021b; Zheng et al., 2021b; Lyu et al.,

TABLE 2 The regulatory roles circular RNAs (circRNAs) play in disease progression via inhibiting ferroptosis.

Category CircRNA Mechanistic target Function Disease References

GPX4 upregulation CircKIF4A miR-1231/GPX4 Inhibit ferroptosis and promote
papillary thyroid cancer

Thyroid cancer Chen et al.
(2021b)

CircDTL miR-1287-5p/GPX4 Inhibit ferroptosis and promote
non-small cell lung cancer

Non-small cell lung
cancer

Shanshan et al.
(2021)

CircIL4R miR-541-3p/GPX4 Inhibit ferroptosis and promote
hepatocellular carcinoma

Hepatocellular
carcinoma

Xu et al. (2020)

Mmu_circRNA_0000309 miR-188-3p/GPX4 Inhibit ferroptosis and inhibit
diabetic nephropathy

Diabetic
nephropathy

Jin et al. (2022)

System Xc- upregulation Circ-BGN OTUB1/SLC7A11 Inhibit ferroptosis and promote
HER-2-positive breast cancer

HER-2-positive
breast cancer

Wang et al.
(2022a)

Circ_0067934 miR-545-3p/SLC7A11 Inhibit ferroptosis and promote
thyroid cancer

Thyroid cancer Wang et al.
(2021a)

CircP4HB miR-1184/SLC7A11 Inhibit ferroptosis and promote
lung adenocarcinoma

Lung
adenocarcinoma

Pan et al. (2022)

Circ0097009 miR-1261/SLC7A11 Inhibit ferroptosis and promote
hepatocellular carcinoma

Hepatocellular
carcinoma

Lyu et al. (2021)

CircEPSTI1 miR-375/miR-409-3P/miR
-515-5p/SLC7A11

Inhibit ferroptosis andpromote
cervical cancer

Cervical cancer Wu et al. (2021)

CircFNDC3B miR-520d-5p/SLC7A11 Inhibit ferroptosis and promote oral
squamous cell carcinoma

Oral squamous cell
carcinoma

Yang et al.
(2021)

CircRHBG miR-515-5p/SLC7A11 Inhibit ferroptosis in polycystic
ovary syndrome cells

Polycystic ovary
syndrome

Zhang et al.
(2021a)

FSP1 upregulation CircGFRA1 miR-1228/AIFM2 Inhibit ferroptosis and promote
HER-2-positive breast cancer

Breast cancer Bazhabayi et al.
(2021)

Lipid metabolism regulation CircRNA_101093 Interacts with FABP3 and
induce N-arachidonoyl taurine

Inhibit ferroptosis and Promote
lung adenocarcinoma

Lung
adenocarcinoma

Zhang et al.
(2022a)

Circ_0007142 miR-874-3p/GDPD5 Inhibit ferroptosis and promote
colorectal cancer

Colorectal cancer Wang et al.
(2021b)

CircRNA1615 miR-152-3p/LRP6 Inhibit ferroptosis and control
pathological process of myocardial
infarction

Myocardial
infarction

Li et al. (2021a)

Inhibition of ferroptosis via
other mechanisms

CircRHOT1 miR-106a-5p/STAT3 Inhibit ferroptosis and promote
breast cancer

Breast cancer Zhang et al.
(2021b)

CircCDK14 miR-3938/PDGFRA Inhibit ferroptosis and promote
glioma

Glioma Chen et al.
(2022a)

Circ-TTBK2 miR-761/ITGB8 Inhibit ferroptosis and promote
glioma

Glioma Zhang et al.
(2020a)

CircABCB10 miR-326/CCL5 Inhibit ferroptosis and promote
rectal cancer

Colorectal cancer Xian et al. (2020)

Circ_0000745 miR-494-3p/NET1 Inhibit ferroptosis and promote
acute lymphoblastic leukemia

Acute lymphoblastic
leukemia

Yang et al.
(2022)

CircPVT1 miR-30a-5p/FZD3 Inhibit ferroptosis and promote
esophageal cancer

Esophageal cancer Yao et al. (2021)
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2021; Shanshan et al., 2021; Wu et al., 2021; Yang et al., 2021; Yao
et al., 2021; Chen et al., 2022a; Wang et al., 2022a; Wu et al., 2022a;
Zhang et al., 2022a; Jiang et al., 2022; Jin et al., 2022; Mao and Liu,
2022; Ou et al., 2022; Pan et al., 2022; Yang et al., 2022). Therefore, in
this review, we have summarized the recent research on ferroptosis-
related circRNAs published prior to May 2022 in the PubMed and
Web of Science databases (Table 1) to provide new perspectives on
ferroptosis regulation and new directions for the diagnosis,
treatment, and prognosis of ferroptosis-related diseases. The
PubMed and Web of Science databases were searched using the
keywords “ferroptosis” AND (“circRNA” OR “circular RNA” OR
“non-coding RNA”). The resultant research studies were then
manually collected and reviewed.

2.1 Ferroptosis-inhibiting circRNAs

More than 20 circRNAs have been reported to inhibit ferroptosis
by acting on GPX4, system Xc-, FSP1, or lipid metabolism or other
pathways and play important regulatory roles in the progression of
many diseases (Zhang et al., 2020a; Xian et al., 2020; Xu et al., 2020;
Li et al., 2021a; Wang et al., 2021a; Zhang et al., 2021a; Bazhabayi
et al., 2021; Chen et al., 2021b; Wang et al., 2021b; Zhang et al.,
2021b; Lyu et al., 2021; Shanshan et al., 2021; Wu et al., 2021; Yang
et al., 2021; Yao et al., 2021; Chen et al., 2022a; Wang et al., 2022a;
Zhang et al., 2022a; Jin et al., 2022; Pan et al., 2022; Yang et al., 2022),
such as thyroid cancer, lung cancer, hepatocellular carcinoma
(HCC), breast cancer, cervical cancer, oral squamous cell
carcinoma (OSCC), glioma, colorectal cancer, esophageal cancer,
diabetic nephropathy (DN), polycystic ovary syndrome (PCOS),
acute lymphoblastic leukemia (ALL), and myocardial infarction
(MI; Table 2). We classified these ferroptosis-inhibiting circRNAs
according to the mechanism by which they regulate ferroptosis
(Figure 2).

2.1.1 CircRNAs that upregulate GPX4
Four circRNAs (circKIF4A, circDTL, circIL4R, and mmu_

circRNA_0000309) inhibit ferroptosis by upregulating GPX4
(Figure 2; Table 2). CircKIF4A reportedly promotes the
malignant progression of papillary thyroid cancer and inhibits
ferroptosis by sponging miR-1231 and then upregulating its
target gene GPX4 (Chen et al., 2021b). Silencing of circKIF4A
can downregulate GPX4, resulting in the proliferation and
metastatic inhibition of papillary thyroid cancer cells and
inhibition of tumor growth in vivo (Chen et al., 2021b). CircDTL
inhibits ferroptosis and apoptosis of non-small cell lung cancer
(NSCLC) cells through the circDTL/miR1287-5p/GPX4 axis
(Shanshan et al., 2021). Downregulation of circDTL was found to
increase cellular ROS, malondialdehyde (MDA; an endogenous
genotoxic product of lipid peroxidation), and Fe2+ levels and
reduce GSH levels, thus promoting ferroptosis of NSCLC cells
(Shanshan et al., 2021). CircIL4R positively regulates the
expression of GPX4 by adsorbing miR-541-3p, facilitates
tumorigenesis, and inhibits ferroptosis in HCC cells (Xu et al.,
2020). Knockdown of circIL4R can aggravate erastin-induced
ferroptosis by increasing iron accumulation and oxidative stress
in HCC cells, hindering the carcinogenesis process. Mmu_circRNA_
0000309 was found to inhibit ferroptosis-dependent mitochondrial
damage and podocyte apoptosis by competitively adsorbing miR-
188-3p to promote GPX4 expression, thereby participating in the
improvement of DN mediated by germacrone (Jin et al., 2022).
Germacrone is the main bioactive component of turmeric, which
has anti-inflammatory and antioxidant effects (Aggarwal et al.,
2013). Silencing mmu_circRNA_0000309 or introducing miR-
188-3p mimics was found to eliminate the anti-apoptotic and
anti-injury effects of germacrone by aggravating mitochondrial
damage and increasing the levels of ROS and iron deposition-
related proteins (Jin et al., 2022). In the same study,
overexpression of GPX4 was found to neutralize mitochondrial

FIGURE 2
Ferroptosis-inhibiting circular RNAs classified according to the mechanism utilized to regulate ferroptosis.
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damage and ferroptosis mediated by mmu_circRNA_
0000309 silencing (Jin et al., 2022).

2.1.2 CircRNAs that upregulate system Xc-
SLC7A11, a core subunit of system Xc-, imports cystine into the

cell for GSH biosynthesis and as an antioxidant defense (Koppula
et al., 2021). Seven circRNAs (circ-BGN, circ_0067934, circP4HB,
circ0097009, circEPSTI1, circFNDC3B, and circRHBG) have been
reported to inhibit ferroptosis via upregulation of SLC7A11
(Figure 2; Table 2).

OTU deubiquitinase, ubiquitin aldehyde binding 1 (OTUB1) is a
highly expressed cysteine protease and a member of the
deubiquitinating enzyme family (Liu et al., 2014; Que et al.,
2020). Circ-BGN was found to directly bind to OTUB1 and
SLC7A11 and enhance OTUB1-mediated deubiquitination of
SLC7A11, thereby inhibiting ferroptosis (Wang et al., 2022a).
Downregulation of circ-BGN significantly increases the levels of
lipid ROS, MDA, and Fe2+, inhibits GPX4 activity, and leads to the
inhibition of activity in breast cancer cells (Wang et al., 2022a). In
addition, circ-BGN knockdown has been shown to enhance the
significant inhibition of cell growth mediated by erastin on
trastuzumab resistance breast cancer cells (Wang et al., 2022a).

Circ_0067934 reportedly upregulates the expression of
SLC7A11 and thus promotes the progression of thyroid cancer
and inhibits ferroptosis in thyroid cancer cells by adsorbing miR-
545-3p (Wang et al., 2021a). Silencing circ_0067934 decreased the
cell survival rate and enhanced ferroptosis and apoptosis in thyroid
cancer cells (Wang et al., 2021a). Overexpression of an miR-545-3p
inhibitor or SLC7A11 rescued the inhibitory effect of silencing circ_
0067934 on thyroid cancer cells and resulted in a decrease in the
levels of ferroptosis-associated markers, such as Fe2+, iron, and ROS
(Wang et al., 2021a).

CircP4HB, which is also called hsa_circ_0046263, is derived
from the alternative transcription of the prolyl 4-hydroxylase
subunit beta gene (Wang et al., 2019a). In lung adenocarcinoma
(LUAD) cells, circP4HB was found to direct ferroptosis by
regulating miR-1184/SLC7A11-mediated GSH synthesis (Pan
et al., 2022). CircP4HB targeted and sponged miR-1184, and
SLC7A11 was found to be a target gene of miR-1184 (Pan et al.,
2022). As an inhibitor of ferroptosis, circP4HB protects LUAD cells
from ferroptosis by triggering GSH synthesis (Pan et al., 2022).

In HCC cells, SLC7A11 was found to be regulated by
circ0097009 via the sponging of miR-1261. Ferroptosis is
involved in HCC progression through the circ0097009/miR-1261/
SLC7A11 axis (Lyu et al., 2021). Downregulation of circ0097009 has
been shown to significantly inhibit cell growth, invasion, and
metastasis and promote ferroptosis in HCC cells (Lyu et al., 2021).

CircEPSTI1, also known as hsa_circRNA_000479, is a cancer-
associated circRNA (Peng et al., 2020; Tan et al., 2020; Xie et al.,
2020). As a competing endogenous RNA (ceRNA),
circEPSTI1 upregulates the expression of SLC7A11 by adsorbing
miR-375, miR-409-3p, and miR-515-5p in cervical cancer cells (Wu
et al., 2021). Silencing of circEPSTI1 inhibited cervical cancer cell
proliferation and induced SLC7A11-mediated ferroptosis, and
overexpression of SLC7A11 reversed this effect (Wu et al., 2021).

CircFNDC3B, also known as circ_0006156, has biological
functions in a variety of cancers, such as papillary thyroid cancer
(Wu et al., 2020), esophageal squamous cell carcinoma (ESCC)

(Tang et al., 2022), and gastric cancer (GC) (Hong et al., 2019). A
recent study found that circFNDC3B protects OSCC cells from
ferroptosis and promotes malignant progression by regulating the
miR-520d-5p/SLC7A11 axis (Yang et al., 2021). CircFNDC3B can
enhance the accumulation of ROS, iron, and Fe2+ in cells to inhibit
ferroptosis (Yang et al., 2021). Knockdown of circFNDC3B has been
shown to enhance the inhibitory effect of erastin on OSCC cells,
thereby inducing ferroptosis in OSCC cells (Yang et al., 2021).

CircRHBG is involved in the proliferation and ferroptosis of
PCOS granulosa cells through the miR-515/SLC7A11 axis (Zhang
et al., 2021a). In PCOS cells, circRHBG acts as a ceRNA for miR-515
and upregulates SLC7A11 (Zhang et al., 2021a). The downregulation
of circRHBGwas found to promote ferroptosis by causing a decrease
in the GSH-to-GSSG ratio, leading to GPX4 inactivation (Zhang
et al., 2021a).

2.1.3 CircRNAs that upregulate FSP1
CircGFRA1 acts as a ceRNA for miR-1228 and upregulates

AIFM2, which encodes FSP1 (a ferroptosis suppressor that acts via
CoQ10) (Bazhabayi et al., 2021). CircGFRA1 has been shown to
promote the progression of HER2-positive breast cancer via the miR-
1228/AIFM2 axis (Bazhabayi et al., 2021). The silencing of
circGFRA1 can enhance ferroptosis through the circGFRA1/miR-
1228/AIFM2 axis (Bazhabayi et al., 2021) and inhibit the proliferation,
infiltration, and metastasis of HER2-positive breast cancer cells
(Bazhabayi et al., 2021). In addition, circGFRA1 silencing also
leads to a decrease in the GSH-to-GSSG ratio and downregulation
of GPX4; the decrease in the GSH-to-GSSG ratio results in
GPX4 inactivation, further promoting lipid ROS accumulation and
ferroptosis (Bazhabayi et al., 2021).

2.1.4 CircRNAs that regulate lipid metabolism
Some circRNAs that are involved in lipid metabolism have been

reported to inhibit ferroptosis (Li et al., 2021a; Wang et al., 2021b;
Zhang et al., 2022a) (Figure 2). It was found that circRNA_
101093 can desensitize LUAD cells to ferroptosis by upregulating
fatty acid-binding protein 3 (FABP3), reducing global AA, and
preventing AA incorporation into the plasma membrane (Zhang
et al., 2022a). CircRNA_101093 integrated with and increased
FABP3, which then transported AA and facilitated its reaction
with taurine, thus reducing global AA and inducing production
of N-arachidonoyl taurine (NAT; the product of AA and taurine)
(Zhang et al., 2022a). NAT plays a role in desensitizing cells to
ferroptosis by downregulating the expression of related enzymes
(i.e., ACSL4, LPCAT3, and PLTP) and preventing the incorporation
of AA into the plasma membrane of LUAD cells (Du et al., 2019; Cui
et al., 2021; Jiang and Yu, 2021).

Altered choline phospholipid metabolism is a hallmark of cancer
(Cao et al., 2012). Glycerophosphodiester phosphodiesterase
domain containing 5 (GDPD5), the target gene of miR-874-3p,
encodes a glycerophosphodiester phosphodiesterase that catalyzes
the hydrolysis of deacylated glycerophospholipids to glycerol
phosphate and an alcohol (Lang et al., 2008). Circ_0007142 has
been identified as a carcinogenic factor due to its ability to regulate
tumorigenesis and ferroptosis in colorectal cancer cells via the miR-
874-3p/GDPD5 axis (Wang et al., 2021b). Low expression of circ_
0007142 can inhibit proliferation and promote apoptosis and
ferroptosis in colorectal cancer cells (Wang et al., 2021b).
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Lipoprotein receptor-related protein-6 (LRP6) is involved in
lipid homeostasis and is an essential co-receptor for canonical Wnt
signaling (Li et al., 2010). It has been found that
circRNA1615 regulates the expression of LRP6 through the
adsorption of miR-152-3p to prevent LRP6-mediated autophagy-
related ferroptosis in cardiomyocytes, ultimately controlling the
pathological process of MI (Li et al., 2021a). In addition, higher
levels of MDA and Fe2+ observed in MI tissues have suggested that
ferroptosis occurs in cardiomyocytes (Li et al., 2021a).
LRP6 interference increased the expression of the autophagy-
related proteins LC3-A/B (microtubule-associated protein 1 light
chain 3-A/B) and autophagy related 5 and decreased the expression
of sequestosome 1, resulting in induced ferroptosis in
cardiomyocytes through autophagy (Li et al., 2021a).

2.1.5 CircRNAs that inhibit ferroptosis via other
pathways

Some circRNAs have also been reported to inhibit ferroptosis
via signal transducer and activator of transcription 3 (STAT3),
platelet derived growth factor receptor alpha (PDGFRA), integrin
subunit beta 8 (ITGB8), and other pathways and play important
regulatory roles in the progression of various cancers, such as
breast cancer, glioma, lung cancer, HCC, colorectal cancer, ALL,
and esophageal cancer (Zhang et al., 2020a; Xian et al., 2020; Zhang
et al., 2021b; Yao et al., 2021; Chen et al., 2022a; Yang et al., 2022)
(Table 2; Figure 2).

CircRHOT1 has been found to play a key role in the
development of multiple types of diseases, such as HCC (Wang
et al., 2019b), osteoarthritis (Man et al., 2022), and NSCLC (Ren
et al., 2021). In breast cancer cells, circRHOT1 functions by
adsorbing miR-106a-5p, which targets STAT3 in this cell type
(Zhang et al., 2021b). CircRHOT1 was found to promote the
proliferation and migration of breast cancer cells and inhibit
apoptosis and ferroptosis through the miR-106a-5p/STAT3 axis
(Zhang et al., 2021b).

The transmembrane receptor PDGFRA is overexpressed,
amplified, mutated, or truncated in gliomas and is the second
most frequently mutated tyrosine kinase receptor in
glioblastomas (Alentorn et al., 2012; Higa et al., 2022). It has
been found that circCDK14 sponges miR-3938 and upregulates
PDGFRA expression, resulting in resistance to ferroptosis and
promotion of glioma progression (Chen et al., 2022a). In the
same study, when circCDK14 was deleted, the SLC7A11 and
GPX4 levels were significantly reduced and the Fe2+ and ROS
levels were significantly increased (Chen et al., 2022a). In
addition, circCDK14 has also been shown to promote epithelial-
mesenchymal transition in glioma cells by regulating PDGFRA
expression (Chen et al., 2022a).

Another study revealed that circ-TTBK2, also named has_circ_
0000594, regulates glioma cell proliferation, invasion, and
ferroptosis through the miR-761/ITGB8 axis (Liao et al., 2015;
Zhang et al., 2020a). Knockdown of circ-TTBK2 or increased
expression of miR-761 was found to delay the proliferation and
invasion of glioma cells and promote ferroptosis (Zhang et al.,
2020a). ITGB8 encodes a beta subunit of integrin (integrin beta
8) (He et al., 2018) and is the target gene of miR-761; its
overexpression can restore the inhibitory effect of miR-761 on
cell proliferation (Zhang et al., 2020a).

CircABCB10, also known as circRNA-0008717 (Tian et al.,
2019), plays a key role in the progression of many tumors, such
as GC (Zhang et al., 2021c), HCC (Fu et al., 2019), and NSCLC (Tian
et al., 2019). Xian et al. (Xian et al., 2020) found that
circABCB10 acts as a sponge for miR-326, regulating C-C motif
chemokine ligand 5 (CCL5) expression in rectal cancer cells (Xian
et al., 2020). The deletion of circABCB10 significantly promoted the
accumulation of intracellular lipid ROS and Fe2+.
CircABCB10 regulates ferroptosis and apoptosis in rectal cancer
cells through the miR-326/CCL5 axis (Xian et al., 2020).

Oncogenic neuroepithelial cell transforming 1(NET1), which lacks
the first 145 amino acids, is present in the cytosol and contributes to the
efficient activation of RhoA and the formation of actin stress fibers in
many tumor cell types (Wei et al., 2017). Circ_0000745 was found to
inhibit ferroptosis and promote the progression of acute lymphoblastic
leukemia via the miR-494-3p/NET1 axis (Yang et al., 2022). Circ_
0000745 interference has also been shown to inhibit the cell cycle and
glycolysis and increase the levels of intracellular iron and lipid ROS
induced by erastin, thus accelerating ferroptosis (Yang et al., 2022).
Silencing miR-4943p, the target of circ_0000745, largely reduced the
antitumor effect induced by silencing circ_0000745 (Yang et al., 2022). It
was also found that overexpression of NET1, the target of miR-494-3p,
could partially reverse the antitumor effect induced by miR-494-3p
overexpression (Yang et al., 2022).

5-fluorouracil (5-FU) is a typical antitumor drug, and
circPVT1 has been found to inhibit the chemoresistance of ESCC
cells to 5-FU by influencing ferroptosis and the Wnt/b-catenin
pathway via the miR-30a-5p/Frizzled3 (FZD3) axis (Yao et al.,
2021). Knockdown of circPVT1 can inhibit the Wnt/b-catenin
pathway in ESCC cells, significantly increase the expression levels
of ROS and ferroptosis-associated parameters, and significantly
reduce the expression of GSH, GPX4, and SLC7A11; these effects
can be significantly reversed by the addition of an miR-30a-5p
inhibitor and by FZD3 overexpression (Yao et al., 2021).

2.2 Ferroptosis-stimulating circRNAs

Seven circRNAs have been identified that can stimulate
ferroptosis via various pathways and that play important
regulatory roles in the progression of many diseases, including
cervical cancer, acute cerebral infarction (ACI), traumatic brain
injury (TBI), heart failure (HF), diabetic retinopathy, HCC, and GC
(Liu et al., 2020; Zhu et al., 2021a; Zheng et al., 2021b; Wu et al.,
2022a; Jiang et al., 2022; Mao and Liu, 2022; Ou et al., 2022)
(Table 3). We classified these ferroptosis-stimulating circRNAs
according to the mechanism by which they regulate ferroptosis
(Figure 3).

2.2.1 CircRNAs that upregulate acyl-CoA
synthetase long-chain family member 4

ACSL4 is an isozyme of the long-chain fatty-acid-coenzyme A
ligase family and preferentially activates PUFAs for phospholipid
biosynthesis and for fueling ferroptosis; hence, it is a typical marker
of ferroptosis (Zhang et al., 2022b). CircLMO1 and circ_Carm1 have
been reported to stimulate ferroptosis by upregulating ACSL4
(Figure 3) (Mao and Liu, 2022; Ou et al., 2022). CircLMO1, also
known as hsa_circ_ 0021087, acts as a ceRNA and upregulates
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ACSL4 expression by adsorbing miR-4192, which decreases GSH
and MDA and increases ROS levels, stimulating ferroptosis (Ou
et al., 2022). Overexpression of circLMO1 inhibits cervical cancer
growth and metastasis both in vitro and in vivo, whereas
circLMO1 depletion promotes cervical cancer cell proliferation
and invasion (Ou et al., 2022).

Circ-Carm1 is involved in the progression of ACI; it induces
miR-3098-3p to upregulate the expression of ACSL4 in vitro (Mao
and Liu, 2022). Knockdown of circ-Carm1 was shown to restore cell
viability and inhibit ferroptosis; however, downregulation of miR-
3098-3p could reverse the inhibitory effect of circ-Carm1 by
promoting the secretion of Fe2+ and MDA (Mao and Liu, 2022).
ACSL4 is the target of miR-3098-3p (Mao and Liu, 2022).
Upregulation of ACSL4 inhibited the effect of miR-3098-3p on
cell viability and ferroptosis (Mao and Liu, 2022).

2.2.2 A circRNA that upregulates 5-lipoxygenase
5-lipoxygenase (5-LOX), a member of the lipoxygenase gene

family, plays an important role in producing toxic lipids; thus,

induces ferroptosis. A study showed that melatonin reduced
ferroptosis and ER stress in TBI by regulating the expression of
ferroptosis-related 5-LOX through the circPtpn14/miR-351-5p/5-
LOX signaling pathway (Wu et al., 2022a). Overexpression of
circPtpn14 can partially abolish the inhibitory effect of melatonin
on ferroptosis and reverse the anti-lipid peroxidation and anti-ER
stress effects of melatonin (Wu et al., 2022a). The introduction of
miR-351-5p (the target of circPtpn14) was found to reverse the 5-
LOX upregulation and ER stress signaling activation caused by
circPtpn14 overexpression alone and to rescue the decreased cell
viability, inhibition of GPX activity, and increased blood-brain
barrier permeability in vitro caused by circPtpn14 Wu et al. 2022a.

2.2.3 A circRNA that upregulates ferritin heavy
chain 1

Zheng et al. (2021b) proposed that circSnx12 is involved in
ferroptosis during HF by targeting the miR-224-5p/ferritin heavy
chain 1 (FTH1) axis. FTH1 is a ferritin complex that catalyzes the
conversion of Fe2+ into Fe3+ to protect the cell from oxidative
damage (Zhang et al., 2017). CircSnx12 acts as a sponge for miR-
224-5p, and FTH1 is a target gene of miR-224-5p. Low expression of
circSnx12 and high expression of miR-224-5p can downregulate
FTH1 expression, which can directly induce ferroptosis in
cardiomyocytes and eventually lead to cardiomyocyte death
(Zheng et al., 2021b).

2.2.4 A circRNA that upregulates cofilin-2
Circ-PSEN1, also known as circ_0008521, regulates ferroptosis

in retinal pigment epithelial cells of patients with diabetic
retinopathy (DR) via the miR-200b-3p/cofilin-2 (CFL2) axis (Zhu
et al., 2021a). CFL2 is a small actin-binding protein and a member of
the AC group of proteins, which is predominantly expressed at
sarcomeres in skeletal and cardiac muscles (Agrawal et al., 2012).
Circ-PSEN1 acts as a sponge for miR-200b-3p, and CFL2 is a target
gene of miR-200b-3p (Zhu et al., 2021a). Knockdown of circ-PSEN1
was found to increase cell viability and inhibit ferroptosis, and
CFL2 was found to abolish the inhibitory effect of miR-200b-3p

TABLE 3 The regulatory roles circular RNAs (circRNAs) play in disease progression via stimulating ferroptosis.

Category CircuRNA Mechanistic
target

Function Disease References

ACSL4 upregulation CircLMO1 miR-4291/ACSL4 Promote ferroptosis and inhibit cervical
cancer

Cervical cancer Ou et al. (2022)

Circ-Carm1 miR-3098-3p/ACSL4 Promote ferroptosis in acute cerebral
infarction

Acute cerebral
infarction

Mao and Liu
(2022)

5-lipoxygenase upregulation CircPtpn14 miR-351-5p/5-LOX Promote ferroptosis and reverse the
effects of melatonin

Traumatic brain
injury

Wu et al. (2022a)

Ferritin heavy chain 1 upregulation CircSnx12 miR-224-5p/FTH1 Promote ferroptosis and lead to
cardiomyocyte death

Heart failure Zheng et al.
(2021b)

Cofilin-2 upregulation Circ-PSEN1 miR-200b-3p/CFL2 Promote ferroptosis and involved in
Diabetic retinopathy

Diabetic retinopathy Zhu et al. (2021a)

Inhibition of ALKBH5-mediated
autophagy inhibition

Hsa_circ_0008367 Interacts with
ALKBH5

Promote ferroptosis and inhibit
hepatocellular carcinoma

Hepatocellular
carcinoma

Liu et al. (2020)

ZNRF3 upregulation Circ_0000190 miR-382-5p/ZNRF3 Promote ferroptosis and inhibit gastric
cancer

Gastric cancer Jiang et al. (2022)

FIGURE 3
Ferroptosis-stimulating circular RNAs classified according to the
mechanism used to regulate ferroptosis.
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on ferroptosis (Zhu et al., 2021a). Overexpression of CFL2 resulted
in a decrease in GSH and an increase in MDA and ferrous iron,
which decreased cell viability (Zhu et al., 2021a).

2.2.5 A circRNA that induces ferroptosis by
interacting with AlkB homologue 5

Hsa_circ_0008367, also known as cIARS, is a promoter of
ferroptosis in HCC cells treated with SF (Liu et al., 2020). SF has
been approved by the US Food and Drug Administration for the
treatment of HCC. However, its clinical application is limited by its
poor water solubility and adverse side effects (Thapa et al., 2015).
Nevertheless, cIARS expression was found to be significantly
upregulated in SF-treated HCC cells, and cIARS positively
regulates SF-induced ferroptosis by inhibiting AlkB homologue
(ALKBH) 5-mediated autophagy inhibition (Liu et al., 2020).
AlkB homologues are a specific family of demethylases that
depend on Fe2+ and α-ketoglutarate to catalyze demethylation of
different substrates (Xu et al., 2021). ALKBH5 is a negative regulator
of autophagy in HCC cells, and cIARS can inhibit the activity of
ALKBH5 in the regulation of autophagy (Liu et al., 2020).

2.2.6 A circRNA that induces ferroptosis by
upregulating zinc and ring finger 3 (ZNRF3)

The tumor suppressor circ_0000190 sponges miR-382-5p and
suppresses cell proliferation and motility and promotes cell death by
targeting ZNRF3 in GC cells (Jiang et al., 2022). ZNRF3 is a
transmembrane E3 ubiquitin ligase that inhibits endogenous
Wnt-mediated activation of the β-catenin signaling pathway
(Hao et al., 2012). Circ_0000190 induces apoptosis and
ferroptosis in GC cells (Jiang et al., 2022). Overexpression of
circ_0000190 was found to significantly increase the levels of iron
and Fe2+ in GC cells treated with erastin or RSL3 (Jiang et al., 2022).
Additionally, with the accumulation of circ_0000190, the
production of MDA and lipid ROS was found to increase, and
the activity of caspase-3 and the rate of apoptosis also increased
significantly (Jiang et al., 2022). As a target of circ_0000190, miR-
382-5p has a negative regulatory relationship with circ_0000190
(Jiang et al., 2022). Meanwhile, ZNRF3 is the target of miR-382-5p,
and overexpression of it can also counteract the effect of miR-382-5p
accumulation on GC cells (Jiang et al., 2022).

2.3 CircRNAs that are potential biomarkers
of ferroptosis

Several studies have reported that a range of circRNAs exhibit
abnormal expression levels in cells treated with ferroptosis inducers
(Liu et al., 2020; Wang et al., 2022a; Hou et al., 2022; Mao and Liu,
2022). For example, compared with untreated HCC cell lines,
102 significantly upregulated circRNAs were identified in cells
treated with the ferroptosis inducer SF (Liu et al., 2020). The
circRNA that recorded the highest level of upregulation in that
study, hsa_circ_0008367, has great potential as a biomarker of
ferroptosis induced by SF. In another study, circ-Carm1 was
highly expressed in HT22 cells after treatment with erastin, a
ferroptosis activator (Mao and Liu, 2022). Yet another study
found that erastin-treated HER2-positive breast cancer cells
presented significantly high expression levels of circ-COL1A2,

circ-SC5D, circ-MSH2, circ-ACRBP, and circ-DTL compared
with untreated cells (Wang et al., 2022a). Furthermore, RNA
sequencing was used to identify 17 downregulated and
18 upregulated circRNAs in human coronary artery endothelial
cells after hydrogen peroxide treatment, and the five most
upregulated circRNAs were hsa_circ_0001558, hsa_circ_0002665,
hsa_circ_0000530, hsa_circ_0005871, and hsa_circ_0009353 (Hou
et al., 2022).

CircRNAs that are highly expressed in cells after treatment with
a ferroptosis inducer have potential as biomarkers of ferroptosis.
Their identification also provides new avenues for the detection of
ferroptosis in vivo or in vitro. However, further studies are needed to
confirm the potential applications of ferroptosis-related circRNAs as
biomarkers in vivo and in vitro.

3 Potential clinical applications of
circRNAs in the diagnosis and
treatment of ferroptosis-related
diseases

3.1 Breast cancer

In 2020, breast cancer was the most commonly diagnosed cancer
in women, and it is the fifth leading cause of cancer deaths
worldwide (Sung et al., 2021). Early diagnosis and timely
treatment are vital for improving the prognosis of breast cancer
patients. Several studies have suggested that ferroptosis-related
circRNAs can be used as biomarkers for the diagnosis, treatment,
and prognosis of breast cancer (Bazhabayi et al., 2021; Zhang et al.,
2021b; Wang et al., 2022a) (Table 4).

CircGFRA1 has great potential as a diagnostic marker and
therapeutic target for HER2-positive breast cancer. The expression
of circGFRA1 is significantly upregulated in HER2-positive breast
cancer tissues compared with non-malignant tissues (Bazhabayi et al.,
2021). Furthermore, deletion of circGFRA1 could delay tumor growth
in vivo (Bazhabayi et al., 2021). Circ-BGN has potential as a
therapeutic target and a prognostic biomarker for trastuzumab-
resistant breast cancer (Wang et al., 2022a). The expression of
circ-BGN is significantly increased in trastuzumab-resistant breast
cancer cells and tissues compared to parental cells, and its increase is
associated with poor overall survival (Wang et al., 2022a). In addition,
circRHOT1 promotes tumor growth by inhibiting ferroptosis in
breast cancer cells and is thus a promising therapeutic target for
the development of future breast cancer treatment strategies (Zhang
et al., 2021b).

3.2 Glioma

Glioma is the most common type of primary intracranial tumor
in adults; it can occur anywhere in the central nervous system and is
associated with high mortality and morbidity rates (Morgan, 2015).
The identification of ferroptosis-related circRNAs is providing new
directions for research on the diagnosis and treatment of gliomas
(Table 4).

CircCDK14 resists ferroptosis and promotes tumor
progression; thus, it may form part of a therapeutic strategy
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and holds promise as a diagnostic and prognostic biomarker for
glioma (Chen et al., 2022a). Glioma tissues have significantly
higher levels of circCDK14 expression than normal tissues, and
the expression level is inversely related to the overall survival
time of glioma patients: the higher the circCDK14 expression, the
worse the prognosis of the glioma patient. Grade III–IV glioma
tissues have significantly higher levels of circCDK14 than grade
I–II glioma tissues (Chen et al., 2022a). CircCDK14 silencing has
been found to reduce the growth of tumors in vivo (Chen et al.,
2022a). Furthermore, circ-TTBK2 is upregulated in glioma
tissues (Zhang et al., 2020a), and it regulates glioma cell
proliferation, invasion, and ferroptosis, which means that it
could form the basis of a therapeutic strategy and potentially
be used as a diagnostic biomarker for glioma as well. The deletion

of circGFRA1 can also delay the growth of tumors in vivo (Zhang
et al., 2020a).

3.3 Thyroid cancer

Thyroid cancer is the most common type of endocrine
malignant cancer worldwide, and early diagnosis and treatment
are critical for improving the prognosis of thyroid cancer patients
(Schneider and Chen, 2013; Hao et al., 2021). The identification of
ferroptosis-related circRNAs is providing new directions for the
early diagnosis and treatment of thyroid cancer (Table 4).

CircKIF4A has been reported to inhibit ferroptosis and promote
the malignant progression of papillary thyroid cancer; hence, this

TABLE 4 Potential therapeutic target and diagnostic and prognostic biomarkers of diseases.

Disease Diagnostic biomarker Therapeutic target Prognostic biomarker

Breast cancer CircGFRA1 CircGFRA1; Circ-BGN

Circ-BGN;

CircRHOT1

Glioma CircCDK14; CircCDK14; CircCDK14

Circ-TTBK2 Circ-TTBK2

Thyroid cancer CircKIF4A; CircKIF4A;

Circ_0067934 Circ_0067934;

Gastric cancer Circ_0000190 Circ_0000190 Circ_0000190

Lung cancer CircDTL; CircDTL; CircP4HB;

CircP4HB; CircP4HB;

CircRNA_101093 CircRNA_101093

Hepatocellular carcinoma CircIL4R; CircIL4R; CircIL4R

Circ0097009 Circ0097009;

Hsa_circ_0008367

Cervical cancer CircEPSTI1; CircEPSTI1; CircLMO1

CircLMO1; CircLMO1;

Colorectal cancer Circ_0007142; Circ_0007142;

CircABCB10 CircABCB10

Oral squamous cell carcinoma CircFNDC3B CircFNDC3B CircFNDC3B

Esophageal cancer CircPVT1 CircPVT1

Acute lymphoblastic leukemia Circ_0000745 Circ_0000745

Myocardial infarction CircRNA1615

Heart failure CircSnx12 CircSnx12

Acute cerebral infarction Circ-Carm1 Circ-Carm1

Traumatic brain injury CircPtpn14

Polycystic ovary syndrome CircRHBG CircRHBG

Diabetic nephropathy Mmu_circRNA_0000309

Diabetic retinopathy Circ-PSEN
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circRNA could be targeted in a therapeutic strategy and/or
potentially be used as a diagnostic biomarker for thyroid cancer
(Chen et al., 2021b). CircKIF4A was found to be highly expressed in
papillary thyroid cancer cells, and deletion of circKIF4A inhibited
the growth of tumors in vivo (Chen et al., 2021b). Similarly, circ_
0067934 is known to be elevated in thyroid cancer tissues and
inhibits ferroptosis and promotes the progression of thyroid cancer,
making it a candidate target and prognosis biomarker for thyroid
cancer (Wang et al., 2019c; Wang et al., 2021a). Silencing of circ_
0067934 was found to inhibit the growth of tumors in vivo, and
elevated circ_0067934 was found to be associated with a poor
prognosis in thyroid cancer (Wang et al., 2019c). Therefore,
targeting circ_0067934 may be a potential therapeutic strategy for
regulating ferroptosis in thyroid cancer cells.

3.4 Gastric cancer

GC is one of the most harmful cancers in world; it ranks fifth in
terms of morbidity rate and fourth in terms of mortality rate (Karimi
et al., 2014; Sung et al., 2021). Circ_0000190 induces apoptosis and
ferroptosis in GC cells and thus has great potential as a diagnostic
and prognostic marker for GC. The expression of circ_0000190 is
significantly decreased in GC tissues, and low expression of circ_
0000190 was found to be related to the advanced tumor, node,
metastasis (TNM) stages of GC (Jiang et al., 2022). In one study, the
area under a receiver operating characteristic (ROC) curve of circ_
0000190 in GC tissues and plasma was reported to be up to 0.75 and
0.60, respectively (Chen et al., 2017b). Low expression of circ_
0000190 is associated with poor survival in GC patients and can
be used as a poor prognostic indicator for GC patients (Jiang et al.,
2022). Circ_0000190 suppresses GC tumor growth in vivo, so
restoration of circ_0000190 or ZNRF3 expression may be an
effective strategy for GC treatment (Jiang et al., 2022).

3.5 Lung cancer

Lung cancer is the secondmost commonly diagnosed cancer and
the leading cause of cancer deaths (Zappa and Mousa, 2016).
NSCLC comprises 85% of all lung cancer cases and includes
three types of cancer: squamous cell carcinoma, LUAD, and
large-cell carcinoma (Zappa and Mousa, 2016).

As inhibitors of ferroptosis, circDTL and circP4HBmay prove to
be useful diagnostic biomarkers and therapeutic targets for NSCLC.
The expression levels of circDTL and circP4HB are significantly
increased in NSCLC tissues (Shanshan et al., 2021; Pan et al., 2022).
Silencing of circDTL has been shown to improve the sensitivity of
NSCLC to chemotherapeutic drugs and inhibit the growth of tumors
in vivo (Shanshan et al., 2021), and overexpression of circP4HB has
been shown to promote tumor growth in vivo (Pan et al., 2022). In
addition, circP4HB expression is related to the prognosis of patients:
the higher the expression of circP4HB, the lower the overall survival
rate of patients (Pan et al., 2022).

CircRNA_101093 also has great potential as a diagnostic marker
for LUAD. The expression of circRNA_101093 in LUAD tissues and
in the plasma exosome of LUAD patients is significantly increased
compared to that of healthy individuals, and reducing the exosome

improved the outcome of a ferroptosis-based treatment in
preclinical in vivo models (Zhang et al., 2022a). Improving the
efficacy of ferroptosis by blocking exosomal biosynthesis may prove
to be a useful strategy for developing ferroptosis-based therapy, and
it may also provide a new direction for the future treatment of
LUAD (Wang et al., 2022b).

3.6 Hepatocellular carcinoma

HCC is one of the most common cancers in the world. It can
rapidly develop into a malignant form and has a low 5-year survival
rate of <5% (Forner et al., 2012; Lu et al., 2016). Fortunately,
circIL4R, an inhibitor of ferroptosis, has potential as a
therapeutic target and as a diagnostic and prognostic biomarker
for HCC. CircIL4R is significantly upregulated in HCC cells, and
deletion of circIL4R has been shown to inhibit tumor growth in vivo
(Xu et al., 2020). Also, circIL4R has clinical significance in the
prognosis of HCC patients: compared with patients with lower
expression of circIL4R, patients with higher expression of
circIL4R tend to have a lower overall survival rate (Xu et al., 2020).

Circ0097009 is another potential diagnostic biomarker and
therapeutic target for HCC. It has been shown that
circ0097009 is significantly upregulated in HCC cells and that
inhibition of circ0097009 suppresses tumor growth and reduces
the number of lung metastases (Lyu et al., 2021). In addition, hsa_
circ_0008367, a promoter of ferroptosis in HCC cells treated with
SF, is another promising target for improving the cellular sensitivity
to SF during HCC treatment (Liu et al., 2020).

3.7 Cervical cancer

Cervical cancer is the fourth most common type of malignant
tumor in females, and the identification of ferroptosis-related
circRNAs provides new opportunities for early diagnosis and
treatment of cervical cancer (Li et al., 2021b).

CircEPSTI1, a ferroptosis inhibitor, is a potential therapeutic
target and an ideal biomarker for monitoring and treating cervical
cancer. CircEPSTI1 expression was found to be upregulated in
cervical cancer cell lines, and circEPSTI1 knockdown was found
to reduce tumor weight and tumor volume and thus affect the
proliferation of cervical cancer cells in vivo (Wu et al., 2021).

The identification of circLMO1 as a ferroptosis promotor is also
providing new opportunities to develop a therapeutic strategy and a
diagnostic and prognostic biomarker for cervical cancer.
CircLMO1 has been shown to be downregulated in cervical
cancer tissues and to have a negative relationship with the
international federation of gynecology and obstetrics (FIGO)
stages of cervical cancer (Wu et al., 2021). In addition,
overexpression of circLMO1 inhibits cervical cancer cell growth
and metastasis both in vitro and in vivo (Wu et al., 2021).

3.8 Colorectal cancer

Globally, colorectal cancer is the third most commonly
diagnosed malignancy and the second leading cause of death.
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Colorectal cancer is a heterogeneous disease that exhibits distinct
molecular characteristics in different patient populations (Pawlik,
2022).

Circ_0007142, as a ferroptosis inhibitor, is a promising
therapeutic target and potential diagnostic biomarker for colorectal
cancer. In colorectal cancer tissues, circ_0007142 has been found to be
significantly upregulated, and silencing circ_0007142 has been shown
to repress tumorigenesis in vivo (Wang et al., 2021b). In addition,
higher circ_0007142 expression is associated with larger tumor size,
higher TNM classification, distant metastasis, and lymph node
metastasis in colorectal cancer patients (Wang et al., 2021b).

CircABCB10 also has great potential as a diagnostic biomarker
and therapeutic target for rectal cancer. In a study that involved
rectal cancer tissue, circABCB10 was found to be upregulated (Xian
et al., 2020). Furthermore, knockdown of circABCB10 promoted
ferroptosis and apoptosis in rectal cancer cells in vitro and inhibited
tumor growth in vivo (Xian et al., 2020).

3.9 Oral squamous cell carcinoma

OSCC is a very aggressive formof cancer (most patients die within
three to 5 years of diagnosis) that affects more than 275,000 people
worldwide each year (Pena-Oyarzun et al., 2020). CircFNDC3B is an
inhibitor of ferroptosis and promotes the malignant progression of
OSCCby regulating themiR-520d-5p/SLC7A11 axis; hence, studies of
this circRNA have revealed several potential therapeutic targets and
diagnostic and prognostic markers for OSCC (Yang et al., 2021). The
expression of both circFNDC3B and SLC7A11 is enhanced in clinical
OSCC tissues, whereas the expression of miR-520d-5p is reduced, and
the silencing of circFNDC3B inhibits tumor growth in vivo (Yang
et al., 2021). In addition, the expression of circFNDC3B in clinical
OSCC tissues was found to be negatively correlated with the prognosis
of OSCC patients (Yang et al., 2021).

3.10 Esophageal cancer

Esophageal cancer is the seventh most frequently diagnosed
cancer, and due to its poor prognosis, it is the sixth leading cause of
cancer-related death worldwide (Yu et al., 2018; Ajani et al., 2019).
Therefore, the discovery of susceptibility genes or new biomarkers is
of great significance for the treatment of patients.

CircPVT1 regulates the chemosensitivity of ESCC cells by
influencing ferroptosis and the Wnt/b-catenin pathway via the
miR-30a-5p/FZD3 axis (Yao et al., 2021). It has been found that
circPVT1 expression is enhanced in clinical ESCC tissues (Zhong
et al., 2019) and that knockdown of circPVT1 enhances the
chemosensitivity of 5-FU-resistant ESCC cells in vivo and in vitro
(Frazer and Anderson, 2014). Thus, circPVT1 is a potential
biomarker for ESCC diagnosis and treatment.

3.11 Acute lymphoblastic leukemia

ALL occurs in both children and adults, and the prognosis is
poor in elderly patients and those with relapsed or refractory ALL
(Malard andMohty, 2020). Therefore, there is a need to develop and

implement new diagnostic and therapeutic strategies for this
condition. As an inhibitor of ferroptosis that acts via the miR-
494-3p/NET1 axis, circ_0000745 is a potential biomarker for the
diagnosis and treatment of ALL (Yang et al., 2022). Circ_
0000745 expression was found to be significantly upregulated in
the peripheral blood samples of patients with acute lymphoblastic
leukemia (Yang et al., 2022).

3.12 Myocardial infarction

MI is the main cause of sudden cardiac death (Feng and Feng,
2021). It has been found that ferroptosis inhibitors can reverse the
effect of ferroptosis in an MI mouse model and improve the survival
rate of myocardial cells (Li et al., 2021a). Hence, ferroptosis is a new
potential target in the prevention and treatment of MI.
CircRNA1615 prevents LRP6-mediated autophagy-related
ferroptosis in cardiomyocytes via adsorption of miR-152-3p and
controls the pathological process of MI (Li et al., 2021a), providing a
potential target for the treatment of MI.

3.13 Heart failure

HF is a complex syndrome with a high mortality rate (Zhang
et al., 2017). The prognosis of patients with HF is generally poor
(Zhang et al., 2017). Therefore, it is necessary to identify and develop
appropriate treatment strategies to improve the prognosis and
quality of life of HF patients (Zhang et al., 2017). Using an HF
mouse model, it has been shown that decreased expression of
GPX4 and increased expression of NADPH oxidase 1 and
ACSL4 are indicative of lipid peroxidation in cardiomyocytes
(Zheng et al., 2021b). Hence, studying circSnx12, a ferroptosis-
related circRNA present in cardiomyocytes, may provide new
insights into HF and new directions for the development of
diagnostic markers or treatments.

3.14 Acute cerebral infarction

ACI, also known as ischemic stroke, is the second leading cause
of death globally (He et al., 2022). Timely diagnosis and treatment
after disease onset, as well as evaluation of the treatment, is the key to
saving patients who have experienced an ACI. Despite the progress
that has been made in ACI diagnosis and treatment, there is still a
need for new methods to increase diagnostic and therapeutic
accuracy and efficiency.

Circ-Carm1, which is highly expressed in the serum of ACI
patients, promotes the development of ACI via ferroptosis (Xiao
et al., 2021). Thus, inhibition of ferroptosis and induction of a circ-
Carm1 deficiency may be a promising approach for the prevention
and treatment of ACI.

3.15 Traumatic brain injury

Globally, TBI is the leading cause of death, and more than
60 million people experience TBI each year (Dewan et al., 2019).
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Moreover, TBI has been associated with a long-term risk of
neurological disease (Turner et al., 2021). CircPtpn14 is a
ferroptosis promoter and opposes the therapeutic effect that
melatonin has in TBI cases via the miR-351-5p/5-LOX signaling
pathway. Hence, circPtpn14 is a potential target in TBI treatment
strategies.

3.16 Polycystic ovary syndrome

PCOS is one of the most common endocrine and metabolic
disorders in premenopausal women. It is characterized by a series of
signs and symptoms, namely, clinical or biochemical hyperandrogenism,
oligoovulation, and polycystic ovarian morphology (Azziz, 2018;
Escobar-Morreale, 2018). CircRHBG inhibits ferroptosis in PCOS cells
and thus should be investigated as a potential diagnostic molecular
marker and therapeutic target for PCOS (Zhang et al., 2021a). In the
granulosa cells of PCOS patients, circRHBG expression was found to be
significantly upregulated, and circRHBG knockdown can inhibit cell
proliferation and decrease cell viability (Zhang et al., 2021a).

3.17 Diabetic nephropathy

About 40% of people with diabetes develop DN (Gross et al.,
2005). Extensive innovations are urgently needed to improve the
health outcomes of patients with DN. In terms of the use of circRNAs,
the efficacy of exogenous mmu_circRNA_0000309 in combination
with germacrone should be examined as a potential DN treatment.
Given that germacrone inhibits ferroptosis-dependent mitochondrial
damage and podocyte apoptosis by regulating the miR-188-3p/
GPX4 axis in combination with exogenous mmu_circRNA_
0000309, such studies would provide insight into the potential of
this combination as a treatment for DN (Jin et al., 2022).

3.18 Diabetic retinopathy

More than 45% of people with type 2 diabetes have DR, which is
the leading cause of blindness in adults (Calderon et al., 2017). Inmost
cases, DR is not noticed until it irreversibly damages the eye and
causes blurred vision and eventual blindness (Adki and Kulkarni,
2020). Therefore, early diagnosis is vital for the treatment of patients
with DR. Circ-PSEN1 regulates ferroptosis in retinal pigment
epithelial cells of patients with DR via the miR-200b-3p/CFL2 axis
and thus may be a novel therapeutic target for DR.

3.19 The incorporation of circRNA data into
machine learning models to identify
therapeutic targets and diagnostic and
prognostic biomarkers

Machine learning is an indispensable tool for identifying
relevant biomarkers and classifying samples in the validation of
biomarkers (Zhang et al., 2020b; Chen et al., 2022b). CircRNAs, as
potential biomarkers of various diseases, have been widely
incorporated into machine learning models for disease diagnosis,

treatment, and prognosis prediction. As a result, machine learning
classification models have identified several circRNAs as potential
disease biomarkers, such as circERBB2 and circCHST12 for
intracerebral hemorrhage diagnosis (Bai et al., 2022), circ-
0080695 for liver cancer diagnosis (Zhu et al., 2021b), circ_
0059706 for acute myeloid leukemia prognosis (Ma et al., 2022b),
and hsa_circ_0007919, hsa_circ_0002419, and hsa_circ_
0005521 for pulmonary tuberculosis diagnosis (Yuan et al., 2022).

In addition to conventional logistic regression, gradient
boosting, deep neural networks, and K-means clustering
algorithms, some useful new models and frameworks have also
been used to predict circRNA–disease associations, such as
SGANRDA (Wang et al., 2021c), MRLDC (Xiao et al., 2019) and
MSFCNN (Fan et al., 2020), GCNCDA (Wang et al., 2020b),
MDGF-MCEC (Wu et al., 2022b), CLCDA (Wang et al., 2023),
and GBDTCDA (Lei and Fang, 2019).

In terms of the statistical tools used, ROC curve analysis has
typically been used to examine the potential diagnostic value and
investigate the specificity and sensitivity of the identified circRNAs
as diagnostic biomarkers. Kaplan–Meier survival curve analysis has
generally been used to examine the potential prognostic value of the
identified circRNAs.

Using machine learning tools to further predict the associations
among the abovementioned ferroptosis-related circRNAs, diseases,
and ferroptosis may provide researchers in the field with an effective
and efficient method for generating reliable classification criteria for
the clinical application of these potential disease biomarkers.

4 Perspective

Ferroptosis is a lipid peroxidation-driven and iron-dependent
form of cell death (Chen et al., 2021a). This unique form of cell death
is regulated by a variety of cellular metabolic pathways, such as redox
homeostasis, iron treatment, mitochondrial activity, and
metabolism of amino acids, lipids, and sugars (Jiang et al., 2021).
Many organ injuries and degenerative lesions are driven by
ferroptosis (Jiang et al., 2021).

CircRNA is a newly identified class of non-coding single-
stranded RNA without free 3′poly (A) tails or 5′caps (Ren et al.,
2020). CircRNA is abundant in eukaryotes, conserved in evolution,
highly stable, and tissue-specific; it also plays crucial roles in many
tissue types (Xu et al., 2017; Kristensen et al., 2019; Chen, 2020). Due
to their characteristics, circRNAs have great potential as biomarkers
in tumor diagnosis and as targets in tumor treatment.

In this review, we have outlined the recent progress made in
understanding the roles of circRNAs in the molecular mechanisms
and regulatory networks of ferroptosis and the potential clinical
applications of circRNAs in ferroptosis-related diseases. More than
20 circRNAs have been reported to inhibit ferroptosis by acting on
GPX4, system Xc-, FSP1, lipid metabolism, and other pathways and
play important regulatory roles in the progression of many diseases,
including various cancers, diabetic nephropathy, polycystic ovary
syndrome, and myocardial infarction. Seven circRNAs have been
reported to stimulate ferroptosis and play important regulatory roles
in the progression of cervical cancer, acute cerebral infarction,
traumatic brain injury, diabetic retinopathy, hepatocellular
carcinoma, and gastric cancer. These ferroptosis-related circRNAs
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have great potential as biomarkers in the diagnosis, treatment, and
prognosis of diseases. This review furthers our understanding of the
roles of ferroptosis-related circRNAs and provides new perspectives
on ferroptosis regulation and new directions for the diagnosis,
treatment, and prognosis of ferroptosis-related diseases.

Notably, the research on circRNAs in ferroptosis is still incomplete.
Most of the recently published studies on ferroptosis-related circRNAs
were conducted with tumor tissues and cells; therefore, using blood,
urine, or tear samples in future studies may provide new insights and
ideas for further research. It is also likely that there are many more
ferroptosis-related circRNAs that have not yet been discovered. The
circRNAs that are found to be biomarkers of ferroptosis may provide
new perspectives for the detection of ferroptosis. However, the notion
that ferroptosis-related circRNAs can be used as biomarkers of
ferroptosis must also be further interrogated.

The ultimate goal of conducting all the studies described in this
review is to improve clinical disease diagnosis and treatment.
However, most of the studies have been conducted under
experimental conditions. Thus, there is a need to undertake a
large number of clinical studies and experiments to ensure the
safety and efficacy of the tested molecules and methods.

Although there are still many obstacles hindering our efforts to
explore the potential of ferroptosis-related circRNAs in the
diagnosis and treatment of diseases, we believe that
understanding the interactions between circRNAs and ferroptosis
will help us to address these barriers. Based on the progress made to
date, it is clear that circRNAs related to ferroptosis will be widely
used in the diagnosis, treatment, and prognosis of diseases and in
research on drug resistance in the future. These advances will greatly
reduce mortality rates and improve cure rates, alleviating the pain of
patients and bringing happiness to their lives.
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Circular RNAs in gynecologic
cancers: mechanisms and
implications for chemotherapy
resistance

Meiying Qin†, Chunmei Zhang† and Yang Li*

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang,
Liaoning Province, China

Chemotherapy resistance remains a major challenge in the treatment of
gynecologic malignancies. Increasing evidence suggests that circular RNAs
(circRNAs) play a significant role in conferring chemoresistance in these
cancers. In this review, we summarize the current understanding of the
mechanisms by which circRNAs regulate chemotherapy sensitivity and
resistance in gynecologic malignancies. We also discuss the potential clinical
implications of these findings and highlight areas for future research. CircRNAs are
a novel class of RNA molecules that are characterized by their unique circular
structure, which confers increased stability and resistance to degradation by
exonucleases. Recent studies have shown that circRNAs can act as miRNA
sponges, sequestering miRNAs and preventing them from binding to their
target mRNAs. This can lead to upregulation of genes involved in drug
resistance pathways, ultimately resulting in decreased sensitivity to
chemotherapy. We discuss several specific examples of circRNAs that have
been implicated in chemoresistance in gynecologic cancers, including cervical
cancer, ovarian cancer, and endometrial cancer. We also highlight the potential
clinical applications of circRNA-based biomarkers for predicting chemotherapy
response and guiding treatment decisions. Overall, this review provides a
comprehensive overview of the current state of knowledge regarding the role
of circRNAs in chemotherapy resistance in gynecologic malignancies. By
elucidating the underlying mechanisms by which circRNAs regulate drug
sensitivity, this work has important implications for improving patient
outcomes and developing more effective therapeutic strategies for these
challenging cancers.
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circular RNAs (circRNAs), gynecologic cancers, chemoresistance, malignant cancer, drug
rsesistance
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Paclitaxel.
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1 Introduction

The increasing incidence of gynecological tumors poses a
significant concern, particularly in the cases of cervical cancer
(CC), ovarian cancer (OC) and endometrial cancer (EC), which
are considered widespread malignancies and gravely threaten
women’s health (Diaz-Padilla et al., 2012; Lõhmussaar et al.,
2020). Malignant gynecologic cancer is a significant contributor
to the global burden of disease, accounting for three out of every ten
deaths. As expected, cancer exerts a substantial impact on the
economy, with the direct costs of cancer-related medical care in
Australia amounting to approximately 0.5% of the country’s gross
domestic product (GDP) (Goldsbury et al., 2018). Besides, the
economic consequences of premature loss of life results in lost
productivity valued at over $4 billion annually in Australia (Carter
et al., 2016). Globally, cervical cancer is the fourth most prevalent
malignancy, with an annual mortality of 270,000 individuals. This
disease primarily impacts younger women, and its highest burden is
observed in low- and middle-income countries, where the mortality
rate is 18 times greater than in high-income countries (Sung et al.,
2021). Ovarian cancer, on the other hand, is the seventh most
common cancer among women worldwide, accounting for 3.3% of
all female cancers. It is also the leading cause of death from
gynecologic malignancies and the fifth highest among all cancers
affecting women (Passarello et al., 2019). Variation in the incidence
and mortality rates of ovarian cancer are observed worldwide, with
the highest rates noted in developed countries such as Europe and
North America (paragraph 3). Despite advancements in diagnosis
and treatment, ovarian cancer continues to have a high case-fatality
rate, with a 5-year survival rate of only approximately 30% for
advanced-stage ovarian cancer (Webb and Jordan, 2017). Among
these CC is primarily caused by persistent human papillomavirus
(HPV) infection, with HPV types 16 and 18 responsible for 71% of
cases worldwide (Choi et al., 2023; Reich and Regauer, 2023).
Prevention and treatment of high-risk HPV cervical infections
remain the main approach in combating CC, with the
introduction of CC vaccines being a major development in recent
years, together with screening technologies (Rahangdale et al., 2022;
Rimel et al., 2022; Sivars et al., 2022; Sun et al., 2022; Sabeena, 2023).
OC, as the seventh most commonly diagnosed female cancer
worldwide, poses as the fifth leading cause of cancer-related
deaths in women and the most lethal of all gynecological
malignancies (Chen et al., 2023; Ye et al., 2023). Relatively few
conventional screening tools exist for early detection, resulting in
over 70% of the cases being diagnosed at advanced stages
(Armbrister et al., 2023; Brown et al., 2023; Terp et al., 2023).
The three main types of OC are epithelial, germ cell, and interstitial
gonadal carcinoma, with epithelial carcinomas constituting the
majority at about 90% of all OCs (Devlin and Miller, 2023;
Zwimpfer et al., 2023). EC, on the other hand, is one of the most
widespread malignancies occurring in the female reproductive tract,
with inchoate phases typically being asymptomatic, while terminal
phases feature symptoms akin to those of OC, including pelvic and
abdominal pain, anemia, abdominal distention, wasting, and
cachexia (Gordhandas et al., 2023). The current understanding of
EC oncogenesis is still incipient, with most cases being sporadic and
the few familial inherited cases resulting from mismatch repair
protein gene mutations (Kalampokas et al., 2022; Tronconi et al.,

2022). Predisposing risk factors for EC include obesity, infertility,
and irregular menstrual cycles (Chiu et al., 2022; Jamieson and
McAlpine, 2023). Furthermore, overexposure to endogenous or
exogenous estrogens augments the risk of both endometrial
hyperplasia and carcinogenesis, with conditions such as
polycystic ovary syndrome, estrogen-secreting tumors, or the
medical use of estrogen replacement therapy with inadequate
progestin antagonism being implicated (Gjorgoska and Rizner,
2022; Yu et al., 2022). The tumor microenvironment plays a
crucial role in modulating the malignant phenotype of various
gynecological cancers, including enhancing their radiotherapy-
and chemotherapy-tolerant properties, as well as their
proliferative and metastatic potentials. Figure 1 illustrates the
interaction between immune and cancer cells in the
microenvironment of gynecological cancers. The currently
available treatment of gynecologic tumors entails surgery,
radiotherapy, and chemotherapy, there is a pressing need to
explore alternative modalities that may yield more effective
outcomes in the treatment of gynecologic tumors.

Significant advances in medical science have greatly improved
anti-tumor therapy. However, drug resistance of tumor cells remains
a major factor leading to high mortality rates (Gjorgoska and Rizner,
2022; Ming et al., 2023). Chemotherapy drug-sensitive tumors are
present in only about 50% of cases, whereas acquired drug resistance
is pervasive during treatment and a major contributor to
chemotherapy failure (Liu et al., 2022a; Pang et al., 2023).
Additionally, natural resistance of some tumor cells to multiple
chemotherapeutic agents is prevalent, and drug resistance is
estimated in no less than 90% of cancer deaths (Li et al., 2023a).
Figure 2 describes the mechanisms of chemotherapeutic drug
resistance in cancer cells. Although the mechanisms of drug
resistance in gynecologic malignancies remain unknown,
numerous studies have indicated a strong correlation between the
development of gynecologic drug resistance and enhanced
proliferation and migration of tumor cells, suppression of
apoptosis, and immunosuppression (Alatise et al., 2022).
Increasing evidence suggests that drug sensitivity in ovarian
cancer (OC) is significantly influenced by non-coding RNAs
(ncRNAs), tumor stem cells (CSCs), immune mechanisms,
autophagy, and tumor heterogeneity (Cen et al., 2023; Tau and
Miller, 2023). Additionally, it is evident that drug resistance in
tumor cells is not solely dependent upon the sensitivity of individual
tumor cells, but is tightly linked to the microenvironment in which
the tumor cells reside (Li et al., 2022a; Parma et al., 2022). Further,
the activation of given signaling pathways can regulate cell growth
and differentiation, suppress apoptosis, and contribute to the
development of drug resistance in tumor cells (Wang et al.,
2022a; Yang et al., 2022a). The standard course of treatment for
cervical, ovarian, and endometrial cancers is multifactorial and
dependent upon several clinical criteria, including the stage,
grade, and histologic type of the tumor, as well as the
individual’s overall health and medical preferences. Treatment
modalities generally entail surgical intervention, radiation
therapy, and chemotherapy, typically administered in varying
combinations. Surgery and radiation therapy represent the
primary therapeutic options for cervical cancer, and
chemotherapy may be given concurrently with radiation. Drug
regimens currently recommended for cervical cancer may consist
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of cisplatin, paclitaxel, and carboplatin, among others. Ovarian
cancer typically requires debulking surgery followed by
chemotherapy. Chemotherapy for ovarian cancer generally
involves a combination of agents, such as carboplatin and
paclitaxel, delivered via intravenous or intraperitoneal routes. In
the case of endometrial cancer, surgical resection is the mainstay of
management, with chemotherapy reserved for advanced or
recurrent disease. Standard chemotherapy regimens for
endometrial cancer may incorporate drugs such as paclitaxel and
carboplatin (Armstrong et al., 2021). It is essential to recognize that
these treatments are not prescriptive and must be individualized
based on patient and disease-specific features. Collaboration
between the patient, medical oncologist, and gynecologic
oncologist is crucial for determining appropriate therapeutic
interventions. The choice of chemotherapy agents is ultimately
influenced by the discretion of the treating physician, patient
preference, and individual case intricacies.

The circRNAs are a type of small RNA molecules characterized
by their closed-loop structure that is formed by the exon skipping or
reverse splicing of pre-mRNA transcripts, rendering them resistant
to enzymatic degradation and thus highly stable within living
organisms (Lee et al., 2022; Ren et al., 2022). Initially, circRNAs
were deemed to be non-functional within the human body; however,
the advent of high-throughput sequencing techniques has identified
their extensive presence in various organs and tissues of the body,
where they play crucial biological roles (Yuan et al., 2022; Zhou et al.,
2022). Multiple studies have proposed that circRNAs contribute to
essential physiological processes, such as tumorigenesis and
development, and are inextricably linked to cancer cell

proliferation, invasiveness, and metastasis (Chen et al., 2022a;
Kim et al., 2023). More recent studies have demonstrated that
circRNAs can modulate and influence drug resistance in different
ways. For example, CircRNA_0067717 has been shown to facilitate
paclitaxel (PTX) resistance in nasopharyngeal carcinoma, acting as a
scaffold for TRIM41 and p53 (Cheng et al., 2023), whereas
CircPOFUT1 enhances malignant traits and chemoresistance
related to autophagy by binding to miR-488-3p and activating
the PLAG1-ATG12 axis in cancer cells (Luo et al., 2023).
CircPTK2 promotes epithelial-mesenchymal transition (EMT)-
mediated bladder cancer metastasis and gemcitabine resistance by
regulating the PABPC1/SETDB1 axis (Meng et al., 2023). To provide
new insights into the management of drug resistance in gynecologic
malignancies, this paper reviews the role and underlying
mechanisms of circRNAs in chemoresistance in such cancers.
CircRNAs were first detected in viruses in the 1970s, and at the
time, due to limited understanding of circRNAs, they were thought
to be splicing errors. The biogenesis and functions of circRNAs are
demonstrated in Figure 3.

1.1 The biogenesis of circRNAs

CircRNAs are a unique class of RNA molecules generated from
mRNA splicing events. Depending on their origin, CircRNAs are
classified into three categories: exon-derived CircRNA (EcirRNA),
intron-derived CircRNA (ciRNA), and exon- and intron-derived
CircRNA (EIciRNA) (Caba et al., 2021; Huang and Zhu, 2021; Chen
et al., 2022a; Liu et al., 2022b; Gao et al., 2022; Nielsen et al., 2022).

FIGURE 1
The interaction between cancer cells and immune cells in the microenvironment of gynecological cancer. Immature dendritic cells (DC), tumor-
associatedmacrophages (TAM), regulatory T cells (Tregs) andmyelogenous inhibitory cells (MDSCs) can promote the immune resistance and therapeutic
resistance of gynecological cancer cells. However, mature DC, M1 macrophages, natural killer (NK) cells and cytotoxic T lymphocytes (CTL) can
significantly inhibit tumor growth and increase the susceptibility of tumor cells to treatment.
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Intron removal, a necessary step in mRNA splicing, leads to the
formation of multiple mature mRNAs, each containing a unique
combination of exons. The splicing complex mediates the
nucleophilic site by using a branching site 2′-OH adenosine
residues located between 20–50 nucleotides, leading to the
formation of a lariat structure. This process involves the 3′ end
of the upstream exon engaging in a nucleophilic attack on the 5′
splice site, resulting in the fusion of two exonic regions by breaking
the phosphodiester backbone of the RNA molecule. In contrast to
conventional splicing, the circularization of RNA can result from a
process known as trans-splicing, though the exact mechanism is still
under investigation. Two hypotheses have been proposed to explain
the formation of CircRNAs by trans-splicing. The exon-skipping
hypothesis suggests that two joining events are required to form the
circular RNA structure, while in the direct trans-splicing hypothesis
only one splicing event is involved in joining the 2′-OH branching
point and the donor site of the intron119. The free 3′OH of the exon is
then hypothesized to be responsible for the looping process leading
to the formation of a closed looped structure.

1.2 Biological functions of circRNAs

CircRNAs refer to a class of RNA molecules that are generated
through non-canonical splicing such as back-splicing or exon skipping

of pre-mRNAs. These processes result in the formation of a continuous
closed loop structure known as back-splicing, which is primarily
induced via the junction of a downstream 3′ splice site with an
upstream 5′ splice site (head-to-tail splicing) resulting in resistance
of these molecules to exonucleolytic degradation by RNase R. Exon
skipping can also lead to a restricted lariat structure promoting
cyclization. Direct back-splicing often results in the generation of
exonic circRNA (ecircRNA), while exon-skipping generates intronic
circRNA. Currently, there are four categories of circRNAs, namely,
ecircRNAs, circular intronic RNAs (ciRNAs), exon–intron circRNAs
(EIciRNAs), and tRNA intronic circular RNAs (tricRNAs). ecircRNAs
constitute over 80% of the identified circRNAs and are primarily located
in the cytoplasm. ciRNAs and EIciRNAs, on the other hand, are
predominantly located in the nucleus, suggesting a potential role in
the regulation of gene transcription. Recently, a novel type of circular
transcript called the read-through circRNAhas been identified, which is
formed through back-splicing of exons flanking a gene (Geng et al.,
2020). According to recent studies, circRNAs are involved in
pathophysiological processes in vivo through various mechanisms
(Wang et al., 2022b). One of their more pervasive functions is that
they can competitively bind microRNAs (miRNAs) and thus affect
pathological processes such as tumor proliferation, aggression, and
metastasis (Cheng et al., 2021; Zhou et al., 2021) (Zhang et al., 2021).
Additionally, circRNAs can sponge-bind proteins, which may alter the
transcription of parental genes, change the subcellular localization of

FIGURE 2
Mechanisms of chemotherapeutic drug resistance in cancer cells. The mechanisms of chemotherapeutic drug resistance in cancer cells includes
enhanced DNA damage repair, altered drug target and decreased drug uptake, elevated metabolism of xenobiotics, EMT progression, cancer stem cells,
epigenetic alterations, genetic factors, enhanced efflux of drugs, tumor environment and apoptosis evasion.
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proteins, and enable the interaction of multiple proteins among other
effects (Zhou et al., 2020; Wu et al., 2021a; Das et al., 2021; Xu et al.,
2022a). Interestingly, some circRNAs possess Internal Ribosome Entry
Site (IRES) activity and open reading frame (ORF), which enable their
translation into proteins in vitro or in cells (Sinha et al., 2021;Wen et al.,
2022), (Yang et al., 2022a). Moreover, studies have demonstrated that
elciRNA and ciRNA can adjust and control the transcriptional activity
of RNA polymerase II (Pol II) and other transcription factors, which in
turn regulate the expression of parental genes (Kim et al., 2021; Shao
et al., 2021; Tang and Lv, 2021). Of course, additional regulatory
mechanisms for circrna may require further investigation.

2 Circular RNAs and gynecologic
cancer chemoresistance

2.1 CircRNA regulates cisplatin resistance in
gynecologic cancer cells

Cisplatin (CDDP) is a commonly employed first-line treatment
for gynecologic cancer. However, despite its effectiveness over years,
repeated rejection of cis-CDDP frequently results in the death of

these patients. Initially, CDDP was believed to interfere with DNA
repair mechanisms by cross-linking with purine bases on DNA,
leading to DNA damage and triggering apoptosis in cancer cells
(Barman et al., 2023; Li et al., 2023b; Wang et al., 2023). Recent
studies have revealed that CDDP also has harmful effects on various
elements of the cell membrane and cytoplasm. Nonetheless,
prolonged CDDP exposure leads tumor cells to activate a variety
of mechanisms to obstruct cisplatin, which is manifested at the
molecular, organelle, and cellular levels (Lugones et al., 2022;
Romani, 2022; Tang et al., 2023). These mechanisms involve
reducing platinum compound accumulation through active
efflux/isolation or suppression of endocytosis; increasing
oncogene mutagenesis; detoxifying through metallothionein, GSH
conjugates, and other antioxidants; modulating DNA methylation
status; increasing DNA-damage repair levels; altering protein post-
translational modifications; over-expressing chaperone molecules;
reinforcing compensatory signaling communication between
organelles; suppressing apoptotic pathways; and activating the
EMT pathway, among others (Ali et al., 2022; Domingo et al.,
2022; Tsvetkova and Ivanova, 2022). Numerous studies have now
demonstrated that certain circular RNAs (circRNAs) are also
involved in drug resistance of gynecologic cancer cells to CDDP

FIGURE 3
The biogenesis and function of circular RNA. Circular RNA (circRNA) is the product of reverse splicing of pre-messenger RNA (pre-mRNA), mainly
including intron circRNA (ciRNA) from intron, exon and intron cirRNA (EIciRNA) from exon covering intron region, and exon circRNA (EcircRNA) from
exon gene in nucleus and mitochondrial genome (MecciRNA). In addition, it also includes reading circRNA (rt-cicRNA) from the exon between adjacent
genes on the same chain, and fusing circRNA (f-circRNA) from the exon between two distant genes. CircRNAs from different sources have different
functions. CiRNA can interact with small ribonucleoprotein (snRNP) to improve the transcription rate of its host gene. EIciRNA can be used as a scaffold
for recruiting functional molecules. ECIRcRNA can combine microRNAs and proteins to regulate the expression of downstream genes, and can also be
used as a template for translation into new proteins and output to the cytoplasm. In addition, MecciRNA may be related to the inhibition of ROS. The
combination of F-circRNA and fusion protein promotes tumorigenesis.
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(Table 1). In particular, circEPSTI1 expression was significantly
increased in both tissues and cells of cervical cancer (CC).
Suppression of circEPSTI1 decreased the proliferative capability
of CC cells and increased the sensitivity to cisplatin. Mechanistic
experiments revealed that circEPSTI1 contributes to the malignant
progression of CC by modulating the miR-370-3p-MSH2 axis,
thereby leading to cisplatin resistance in CC (Wu et al., 2022).
Similarly, studies have reported that the expression of circ-Cdr1as is
significantly decreased in CDDP-resistant ovarian cancer (OC)
tissues and cells. Overexpression of Cdr1as suppresses OC cell
proliferation and promotes CDDP-induced apoptosis by
modulating the miR-1270/SCAI signaling pathway (Zhao et al.,
2019). Also, circHIPK2 expression was identified to be increased
in CDDP-resistant OC tissues and cells. Suppression of
circHIPK2 significantly suppressed the proliferation, cell cycle,
migration, and invasion of SKOV3/CDDP and A2780/CDDP
cells and promoted apoptosis. Mechanistic experiments showed
that silencing circHIPK2 can regulate the miR-338-3p/CHTOP
axis to suppress DDP resistance and malignant progression of
OC (Cao et al., 2021). Compared to CDDP-sensitive OC cells,

CDR1as expression was significantly reduced in CDDP-resistant
OC cells. The downregulated expression of CDR1as suppressed OC
tumorigenesis and predicted CDDP resistance and a poor prognosis
in OC patients. Additionally, tumor xenograft data indicated that
knockdown of CDR1as increased tumor growth and enhanced cell
resistance to CDDP treatment (Wu et al., 2021b). CDR1as, also
known as ciRS-7 (circular RNA sponge for miR-7), is a circular RNA
molecule that has been shown to be involved in the pathogenesis of
various cancers, including gynecologic malignancies such as
endometrial cancer and ovarian cancer. CDR1as, also known as
ciRS-7 (circular RNA sponge for miR-7), is a circular RNAmolecule
that has been shown to be involved in the pathogenesis of various
cancers, including gynecologic malignancies such as cervical cancer
and ovarian cancer. CDR1as upregulation was observed after TGF-β
activation, which was positively correlated with lymph node
metastasis and reduced survival duration, as evidenced by in situ
hybridization. Overexpression of CDR1as was found to enhance
cervical cancer metastasis both in vitro and in vivo. Furthermore,
CDR1as was found to promote the orchestration of IGF2BP1 on the
SLUG mRNA and to maintain its stability, thereby contributing to

TABLE 1 Potential roles of circRNAs in the cisplatin-resistance of gynecologic cancer.

Cancer CircRNAs Expression Biological function Targets References

Cervical
cancer

CircEPSTI1 Up Promote cell proliferation and cisplatin resistance miR-370-3p-MSH2 Wu et al. (2022)

CircMTO1 Up Promote cisplatin resistance and malignant
progression

miR-6893/S100A1/Beclin1/p62 Chen et al. (2019b)

CircARHGAP5 Down Inhibit cell proliferation and cisplatin resistance,
and promote cell apoptosis

AUF1/BIM Deng et al. (2023)

Hsa_circ_0023404 Up Promote cell invasion, lymphatic formation and
cisplatin resistance

miR-5047/VEGFA Guo et al. (2019a)

Beclin1/p62

Circ_0074269 Up Promote cisplatin resistance and malignant
progression

miR-485-5p/TUFT1 Chen et al. (2022b)

Ovarian
cancer

Circ-Cdr1as Down Inhibit cell proliferation and cisplatin resistance,
and promote cell apoptosis

miR-1270/SCAI Zhao et al. (2019)

CircHIPK2 Up Promote cisplatin resistance and malignant
progression

miR-338-3p/CHTOP Cao et al. (2021)

Circ-Cdr1as Up Promote cisplatin resistance and malignant
progression

miR-1299/PPP1R12B Wu et al. (2021b)

circ_0063804 Up Promote cell proliferation and cisplatin resistance,
and inhibit cell apoptosis

miR-1276/CLU You et al. (2022)

Circ-TYMP1 Up Promote cell proliferation, invasion and cisplatin
resistance

miR-182A-3p/TGF1B/Smad2/3 Rao et al. (2022)

Circ_0026123 Up Promote cisplatin resistance and malignant
progression

miR-543/RAB1A Wei et al. (2022)

Circ-PIP5K1A Up Promote cisplatin resistance and malignant
progression

miR-942-5p/NFIB Sheng and Wang
(2023)

CircITGB6 Up Promote cisplatin resistance and induce polarization
of TAMs towards M2 phenotype

IGF2BP2/FGF9 Li et al. (2022b)

CircPBX3 Up Promote cell colony formation and tumor growth
and reduce cell apoptosis under cisplatin treatment

IGF2BP2/ATP7A Fu et al. (2022)

CircFoxp1 Up Promote cell proliferation and cisplatin resistance miR-22-miR-150-3p/CEBPG-
FMNL3

Luo and Gui (2020)
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cervical cancer metastasis. Silencing IGF2BP1 hindered CDR1as-
mediated metastasis in cervical cancer. Finally, it was found that
CDR1as could activate TGF-β signaling factors, including P-Smad2
and P-Smad3, which promote EMT, demonstrating its potential role
in EMT-related pathological processes (Zhong et al., 2023). The
expression of CDR1as in ovarian tissues showed a significant
difference between ovarian cancer patients and non-cancer
controls, where the former exhibited lower levels of CDR1as
expression. Overexpression of CDR1as significantly impeded the
proliferation, invasion, and migration of ovarian cancer cells. In
contrast, knockdown of CDR1as resulted in increased expression of
miR-135b-5p and decreased levels of HIF1AN expression,
ultimately elevating the proliferative potential of ovarian cancer
cells (Chen et al., 2019a). Results of mechanistic experiments
showed that CDR1as contributes to malignant progression of OC
and CDDP resistance by regulating the miR-1299/PPP1R12B axis
(Wu et al., 2021b). Additionally, it was found that circ_
0063804 expression was remarkably upregulated in OC patients
and predicts a poor prognosis. The overexpression of circ_
0063804 in OC cells heightened resistance to cisplatin and
decreased apoptosis. Results indicated that circ_0063804 can
increase clusterin expression and thus lead to malignant
phenotype and resistance to cisplatin in OC by sponging miR-
1276 (You et al., 2022). Similarly, TYMP1 expression was also
remarkably increased in OC tissues. Circ-TYMP1 functions as a
sponge for miR-182A-3p and thus improves TGF1B expression,
promoting proliferation, migration, aggression, and cisplatin
resistance in A2780-Res cells and reducing Smad2/
3 phosphorylation (Rao et al., 2022). Furthermore, circ_
0026123 expression was increased significantly in both CDDP-
resistant OC tissues and cells. Inhibition of circ_0026123 led to
decreased cell growth, angiogenesis, invasion, and migration. It
significantly increased the sensitivity of CDDP-resistive OC cells
to CDDP, showing circ_0026123 could act as a sponge for miR-543
and thus increase the expression of RAB1A, thereby contributing to
CDDP resistance and tumorigenesis in OC (Wei et al., 2022). Lastly,
circ-PIP5K1A was highly expressed in CDDP-resistant OC tissues
and cells. Suppression of circ-PIP5K1A restrained proliferation,
migration, and invasion of CDDP-resistant OC cells, increased
apoptosis, and sensitivity to CDDP. Mechanistically, circ-
PIP5K1A could serve as a sponge for miR-942-5p and thus
facilitate NFIB expression (Sheng and Wang, 2023). Sun et al.
(2019), demonstrated a significant association between
circPIP5K1A and the progression of ovarian cancer through its
interaction with the miR-661/IGFBP5 axis. Silencing circPIP5K1A
resulted in a downregulation of IGFBP5 due to an increase in miR-
661 levels, which revealed that overexpression of IGFBP5 efficiently
reversed the circPIP5K1A depletion effects. The conglomeration of
these results suggests that circPIP5K1A is implicated in ovarian
cancer’s progression by affecting the miR-661/IGFBP5 axis, and
therefore, it may represent a viable target for therapeutic
intervention of the disease (Sun et al., 2019).
CircMTO1 expression was conspicuously increased in CC tissues
and cell lines. It could improve migration, aggression, and CDDP
resistance in CC cells and restrain apoptosis by regulating the miR-
6893/S100A1/Beclin1/p62 signaling axis (Chen et al., 2019b).

In addition to their function as ceRNAs in regulating
downstream gene expression, certain circular RNAs (circRNAs)

have been demonstrated to regulate resistance to cisplatin
(CDDP) in several ways including through protein binding and
direct regulation of gene expression (as demonstrated in Table 1).
For instance, the expression of circARHGAP5 is reduced in cervical
squamous cell carcinoma (CSCC) tissues and overexpression of
circARHGAP5 was found to hinder cisplatin-induced apoptosis in
CSCC cells, ultimately leading to the progression of CSCC.
Mechanistically, experiments indicated that under direct binding
conditions, circARHGAP5 can inhibit the interaction between
AUF1 and BIM mRNA, which enhances cisplatin resistance and
the malignant transformation of CSCC (Deng et al., 2023). Similarly,
it was reported that the expression of circITGB6 is conspicuously
increased in tissues and sera of CDDP-resistant ovarian cancer (OC)
patients and predicts poor prognosis. Overexpression of
circITGB6 was found to promote M2 macrophage-dependent
resistance to CDDP. Mechanistically, circITGB6 can directly
interact with IGF2BP2 and FGF9 mRNA to form circITGB6/
IGF2BP2/FGF9 RNA-protein ternary complexes in the
cytoplasm, leading to increased stability of FGF9 mRNA and
thereby inducing TAMs to polarize toward the M2 phenotype (Li
et al., 2022b). Additionally, the expression of circPBX3 was
significantly increased in both OC tissues and cisplatin-resistant
OC cells, and overexpression of circPBX3 strongly promoted OC cell
colony formation, tumor xenograft growth, and decreased apoptosis
under cisplatin treatment. Mechanistic experiments suggested that
circPBX3 can interact with IGF2BP2 to increase the stability of
ATP7AmRNA and strengthen the level of ATP7A protein (Fu et al.,
2022). Similarly, hsa_circ_0023404 was shown to be significantly
increased in cervical cancer (CC) and its overexpression was found
to facilitate VEGFA expression by binding miR-5047 and resulting
in increased aggression of CC cells and lymphatic vessel formation
in HDLEC cells. Furthermore, this circRNA also regulates the
expression of autophagy-related genes (Beclin1 and p62),
improving cisplatin resistance in CC cells (Guo et al., 2019a).

Moreover, it has been demonstrated that some circRNAs
present in exosomes are also involved in regulating CDDP
resistance (as outlined in Table 1). For example, circ-PIP5K1A
is highly expressed in CDDP-resistant OC tissues and cells, and its
inhibition results in the inhibition of proliferation, migration, and
aggression of CDDP-resistant OC cells, as well as an increase in
apoptosis and susceptibility to CDDP. The underlying mechanism
involves circ-PIP5K1A acting as a sponge for miR-942-5p, which
facilitates NFIB expression. Additionally, circ-PIP5K1A can be
packaged into exosomes and internalized by surrounding cells to
mediate intercellular communication between OC cells (Sheng and
Wang, 2023). Similarly, circ_0074269 is overexpressed in CDDP-
resistant CC tissues and cells, and its silencing strengthens CDDP
sensitivity, inhibiting proliferation, migration, and the induction
of apoptosis in CDDP-resistant CC cells. Moreover, circ_
0074269 is enriched in the exosomes of CDDP-resistant CC
cells and can be transmitted between CC cells (Chen et al.,
2022b). Finally, it was reported that circulating exosome
circFoxp1 was significantly more highly expressed in epithelial
ovarian cancer (EOC) patients, particularly those with CDDP
resistance. High expression of circFoxp1 predicts a worse
prognosis in EOC patients, and its overexpression in EOC cells
promotes cell proliferation and confers CDDP resistance.
Mechanistically, circFoxp1 positively regulates the expression of
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CCAAT enhancer binding protein gamma (CEBPG) and formin-
like 3 (FMNL3) by binding miR-22 and miR-150-3p (Luo and Gui,
2020).

2.2 CircRNA regulates paclitaxel resistance
in gynecologic cancer cell resistance

Paclitaxel (PTX), or tamsulosin, is a novel terpenoid compound
that has been approved by the FDA for clinical use as an anti-
leukemia and anti-tumor drug (Xu et al., 2022b; Smith et al., 2022).
PTX exerts its antitumor effects by inducing and promoting
microtubule polymerization, preventing depolymerization,
suppressing spindle formation, and blocking mitosis (Zhao et al.,
2022a; Rubinstein et al., 2022).While most patients with gynecologic
cancer respond well to paclitaxel chemotherapy during their first
treatment, paclitaxel resistance often occurs as the number of
chemotherapy sessions increases (Ortiz et al., 2022). enhanced
efflux of drugs by overexpression of drug efflux pumps, such as
P-gp and MRP1 (Kamazawa et al., 2002), appears to be the major
mechanism contributing to paclitaxel resistance in gynecologic
cancers. While alterations in tubulin expression or stability,
activation of prosurvival signaling pathways, and deregulation of
mitotic checkpoints can all contribute to paclitaxel resistance, the
overexpression of drug efflux pumps has been identified as a key
contributor to resistance in paclitaxel-resistant ovarian and
endometrial cancer cells (Guo et al., 2019b). Other mechanisms,
such as altered drug target and decreased drug uptake, may also play

a role in paclitaxel resistance, but the evidence suggests that
enhanced efflux of drugs via overexpression of drug efflux pumps
is the most prevalent mechanism. Drug resistance is a critical factor
leading to the mortality of patients. Recent studies have shown that
circular RNAs (circRNAs) play a crucial role in PTX resistance in
patients with gynecologic cancer and can act as competitive
endogenous RNAs (ceRNAs) by binding to miRNAs and
regulating downstream target genes (Table 2). CircMYBL2 is
upregulated in cervical cancer (CC) tissues and cells, particularly
in PTX-resistant CC tissues and cells. Overexpression of
circMYBL2 enhances PTX resistance in CC cells, resulting in CC
tumor growth. Mechanistic experiments demonstrate that
circMYBL2 facilitates epidermal growth factor receptor (EGFR)
expression, leading to PTX resistance by binding to miR-665
(Dong et al., 2021). Circ-CEP128 is conspicuously overexpressed
in both CC tissues and cells, and its silencing in CC cells suppresses
cell growth, migration, and aggression and heightens paclitaxel
sensitivity by regulating the miR-432-5p/MCL1 axis (Zhao et al.,
2022b). In another study, circ_0004488 is significantly increased in
paclitaxel-resistant CC cells and highly expressed in cancer stem cell
(CSC)-rich CC cell line subpopulations. Knockdown of circ_
0004488 reduces cell proliferation, invasion, and spheroid
formation in CC cells, thereby suppressing paclitaxel sensitivity.
The outcomes of mechanistic experiments suggest that circ_
0004488 enhances MEX3C expression by binding miR-136,
thereby leading to CC malignancy progression and PTX
resistance (Yi et al., 2022a). In ovarian cancer (OC),
circCELSR1 is highly expressed in OC tissues and correlates with

TABLE 2 Potential roles of circRNAs in the paclitaxel-resistance of gynecologic cancer.

Cancer CircRNAs Expression Biological function Targets References

Cervical cancer CircMYBL2 Up Enhance PTX resistance and promote tumor growth miR-665/EGFR Dong et al. (2021)

Circ-CEP128 Up Promote cell growth, migration and invasion and inhibit PTX
sensitivity

miR-432-5p/MCL1 Zhao et al.
(2022b)

Circ_0004488 Up Promote cell proliferation, invasion, and spheroid formation and
inhibits PTX sensitivity

miR-136/MEX3C Yi et al. (2022a)

Ovarian cancer CircCELSR1 Up Enhance PTX resistance and promote tumor growth miR-1252/FOXR2 Zhang et al.
(2020)

CircTNPO3 Up Inhibit cell apoptosis and promote PTX resistance miR-1299/NEK2 Xia et al. (2020)

CircEXOC6B Down Inhibit cell proliferation andmovement and reduce PTX resistance miR-376c-3p/FOXO3 Zheng et al.
(2020)

CircNRIP1 Up Enhance PTX resistance miR-211-5p/HOXC8 Li et al. (2020)

Hsa_circ_0000714 Up Enhance PTX resistance and promote tumor growth miR-370-3p/CDK6/RB/
RAB17

Guo et al. (2020)

Circ_CELSR1 Up Enhance PTX resistance and promote tumor growth miR-149-5p/SIK2 Wei et al. (2021)

Circ_0061140 Up Enhance PTX resistance and promote tumor growth miR-136/CBX2 Zhu et al. (2021)

CircSETDB1 Up Enhance PTX resistance miR-508-3p/ABCC1 Huang et al.
(2023)

CircANKRD17 Up Promote cell viability, PTX resistance and inhibit cell apoptosis FUS/FOXR2 Liang et al. (2022)

Endometrial
cancer

Circ_0007534 Up Promote cell proliferation, invasion, EMT and PTX resistance miR-625/ZEB2 Yi et al. (2022b)

Circ_0039569 Up Promote cell growth and invasion and miR-1271-5p/PHF6 Li et al. (2022c)

Frontiers in Pharmacology frontiersin.org08

Qin et al. 10.3389/fphar.2023.1194719

30

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1194719


TABLE 3 Potential of chemoresistance related circRNAs as dianostic and prognostic tools in gynecologic cancer.

Cancer CircRNA Detection
method

p-value Diagnosis FIGO
(p-value)

LNM
(p-value)

DM
(p-value)

OS
(p-value)

DFS
(p-value)

Follow-up
(months)

References

Ovarian camcer CircTNPO3 Specific qRT-PCR p < 0.001 AUC = 0.910 p = 0.008 p = 0.57 p = 0.082 p = 0.030 / 60 Xia et al. (2020)

CircFoxp1 Specific qRT-PCR p < 0.001 AUC = 0.914 p = 0.0312 p = 0.0009 p = 0.0394 p < 0.0001 p < 0.0001 60 Luo and Gui
(2020)

CircEXOC6B Specific qRT-PCR p < 0.05 / p < 0.05 p < 0.05 / p = 0.012 / 60 Zheng et al. (2020)

CircITGB6 Specific qRT-PCR p < 0.001 / / / / p = 0.006 p < 0.001 60 Li et al. (2022b)

CircANKRD17 Specific qRT-PCR p < 0.001 / / / / p = 0.033 / 60 Liang et al. (2022)

CircSETDB1 Specific qRT-PCR p < 0.001 / / / / p = 0.012 / 60 Huang et al.
(2023)

Circ_0063804 Specific qRT-PCR p < 0.001 / p < 0.05 / p = 0.508 p = 0.0197 / 60 You et al. (2022)

CircPBX3 Specific qRT-PCR p < 0.001 / p < 0.001 p = 0.010 p = 0.783 / / / Fu et al. (2022)

Cervical cancer Circ_0004488 Specific qRT-PCR p < 0.001 / / / / p < 0.001 / 60 Yi et al. (2022a)

Endometrial
cancer

Circ_0007534 Specific qRT-PCR p < 0.001 / p < 0.001 / p < 0.001 p = 0.012 / 60 Yi et al. (2022b)
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PTX resistance. Additionally, its expression is higher in PTX-
resistant OC cells compared to PTX-sensitive cells. Suppression
of circCELSR1 heightens PTX-induced cytotoxicity in OC cells,
restraining tumor growth and promoting apoptosis by regulating
miR-1252-FOXR2 (Zhang et al., 2020). CircTNPO3 expression is
remarkably higher in OC samples and correlates with PTX
resistance. Suppression of circTNPO3 in OC cells promotes PTX-
induced apoptosis and strengthens cellular sensitivity to PTX by
binding to miR-1299 and facilitating the expression of NEK2 (Xia
et al., 2020). Alternatively, the overexpression of circEXOC6B in OC
cells inhibits OC proliferation and motility, reducing OC resistance
to PTX. The mechanistic outcomes suggest that circEXOC6B
upregulates forkhead box O3 (FOXO3) expression by sponging
miR-376c-3p, leading to PTX sensitivity in OC cells (Zheng
et al., 2020). Moreover, circNRIP1 is highly expressed in PTX-
resistant OC tissues and cells. Its suppression in OC cells restricts
PTX resistance by regulating the miR-211-5p/HOXC8 axis (Li et al.,
2020). Similarly, circ_0061140 facilitates chromobox 2 (CBX2)
expression by binding to miR-136, leading to malignant OC
progression and PTX resistance (99). On the other hand,
circSETDB1 regulates PTX resistance in OC cells by targeting the
miR-508-3p/ABCC1 axis (Huang et al., 2023). In endometrial
cancer (EC), circ_0007534 is highly expressed and associated
with poor prognosis in EC patients. Overexpression of circ_
0007534 in EC cells enhances cell proliferation, aggression,
epithelial-mesenchymal transition (EMT), and PTX resistance.
The outcomes of mechanistic experiments show that circ_
0007534 promotes EC invasiveness, progression, and PTX
resistance by sponging miR-625 and promoting zinc finger E-box
binding homeobox 2 (ZEB2) expression (Yi et al., 2022b). In
contrast, the knockdown of circ_0039569 in EC cells restrains
cell growth and invasion, leading to PTX sensitivity.
Mechanistically, circ_0039569 promotes PTX resistance in EC by
binding to miR-1271-5p and regulating plant homeodomain finger
protein 6 (PHF6) (Li et al., 2022c).

In addition to binding miRNAs to regulate downstream gene
expression, some circRNAs also adjust and control PTX resistance
by binding proteins (Table 3). CircANKRD17 is highly expressed
and prognostic of poor outcomes in PTX-resistant OC tissues and
cells. Its knockdown suppresses PTX resistance in OC cells by
suppressing cell viability and inducing apoptosis. Mechanistically,
circANKRD17 stabilizes forkhead box R2 (FOXR2) by interacting
with fused in sarcoma (FUS), leading to PTX resistance in OC
through the circANKRD17/FUS/FOXR2 signaling axis (Liang et al.,
2022).

2.3 CircRNAs regulate resistance of
gynecologic cancer cells to other
chemotherapeutic agents

Several research studies have demonstrated that circular RNAs
(circRNAs) have the potential to regulate the resistance of gynecologic
cancer cells to other chemotherapeutic agents, as depicted in Table 3.
Several research studies have demonstrated that circular RNAs
(circRNAs) have the potential to regulate the resistance of
gynecologic cancer cells to other chemotherapeutic agents, such as
docetaxel (DTX), as depicted in Table 3. Treatment of SKOV3-R cells

with DTX led to a significant decrease in the expression of circRNA_
0006404, while an upregulation in circRNA_0000735 expression was
observed. circRNA_0000735 was found targeted by miR-526b, which
subsequently regulated the expression of DKK4 and p-GP, leading to
chemotherapy resistance in SKOV3-R cells treated with DTX (Chen
and Tai, 2022). Medroxyprogesterone acetate (MPA) constitutes one of
the most commonly administered progesterone treatments for
endometrial cancer (EC), whereas hsa_circ_0001860 expression was
noted to be significantly decreased in MPA-resistant tissues and cells,
with a negative correlation noted with lymph node metastasis and
histological grading of EC. Observation of the downstream effects of
inhibiting hsa_circ_0001860 in EC cells included a conspicuous
promotion of cell proliferation, migration, invasion and a suppressed
apoptosis. The results obtained from mechanistic experiments have
established that hsa_circ_0001860 promotes the expression of
Smad7 when it binds to miR-520h (Yuan et al., 2021).

3 The diagnostic and prognostic value
of drug resistance-associated circRNAs
in gynecologic cancer

Drug-resistant related circular RNAs (circRNAs) are valuable in the
early diagnosis and prognostic assessment of gynecologic cancers (GC).
Certain circRNAs have diagnostic significance in GC, such as
circTNPO3 which is highly expressed in ovarian cancer (OC) tissues
and significantly correlates with the terminal Federation of Gynecology
and Obstetrics (FIGO) stage and histological type of OC patients (Xia
et al., 2020). ROC curve analysis of samples ranging from normal
ovarian tissues to paclitaxel (PTX)-sensitive OC tissues (n= 20) to PTX-
resistant OC tissues (n = 28) showed that circTNPO3 effectively
distinguishes between PTX-sensitive and PTX-resistant OC tissues
with an area under the ROC curve (AUC) of 0.910. Furthermore,
Kaplan-Meier survival curve analysis revealed thatOCpatients with low
circTNPO3 expression experienced significantly longer overall survival
than those with high circTNPO3 expression. Another circRNA,
exosomal circFoxp1, displayed conspicuously higher expression in
the serum of epithelial OC (EOC) patients, showing an AUC value
of 0.914 in ROC curve analysis. Additionally, serum exosome
circFoxp1 expression is associated with FIGO stage, primary tumor
size, lymph node metastasis, distal metastasis, residual tumor diameter,
clinical response, and histological type and grade. The aforementioned
results suggest that exosomal circFoxp1 can serve as a valuable
biomarker for EOC patients, as lower overall survival and disease-
free survival were observed in patients with higher expression levels of
circFoxp1 (Luo and Gui, 2020).

The study highlights the prognostic significance of the expression
levels of some circRNAs in gynecological tumors. Specifically, in PTX-
resistant cervical cancer (CC) tissues, it was found that the expression of
circ_0004488 was remarkably higher than in PTX-sensitive CC tissues.
Moreover, the Kaplan-Meier survival curves showed that increasing
levels of circ_0004488were associated with a decrease in overall survival
of CC patients (Yi et al., 2022a). Similarly, in ovarian cancer (OC), the
expression of circEXOC6Bwas observed to decrease and was negatively
correlated with tumor progression. Furthermore, high expression of
circEXOC6B was linked to long-term survival time in OC patients
(Zheng et al., 2020). Conversely, in CDDP-resistant OC patients, the
expression levels of circITGB6 were significantly upregulated as
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compared to those in CDDP-sensitive OC patients and normal
controls. Notably, OC patients with high levels of circITGB6 had a
relatively low overall survival rate and a higher relapse rate, as
determined by survival analysis (Li et al., 2022b). Additionally, the
expression of circANKRD17 was significantly upregulated in OC
tissues, with patients with higher circANKRD17 expression
demonstrating a shorter overall survival time compared to those
with low expression (Liang et al., 2022). The expression of
circSETDB1 was found to be notably higher in PTX-resistant
ovarian cancer tissues than in normal tissues. Importantly, OC
patients with high circSETDB1 expression had a worse prognosis,
according to Kaplan-Meier survival curve analysis (Huang et al., 2023).

Furthermore, some circRNAs were found to be associated with
clinical features of gynecologic cancer. For instance, circ_
0007534 expression levels were significantly higher in
endometrial cancer (EC) tissues, and high expression of circ_
0007534 predicted worse tumor differentiation, more terminal
pathological phase, deeper infiltration, and stronger cancer
metastasis. Importantly, patients with high circ_
0007534 expression level had a significantly shorter survival time
(Yi et al., 2022b). Similarly, it was observed that in OC tumor tissues,
the expression of circ_0063804 was remarkably higher than in
normal control tissues. Additionally, high expression of circ_
0063804 was strongly correlated with lower survival, terminal
FIGO stage and grade, and larger tumor size, as determined by
various analyses (You et al., 2022) Finally, the expression of
circPBX3 was found to be highly upregulated in OC, and high
expression of circPBX3 was positively correlated with larger tumor
size, terminal FIGO stage, and lymph node metastasis, as
determined by analysis (Fu et al., 2022).

4 Conclusion and perspective

Chemotherapy has long been considered one of the most effective
treatments for cancer. Despite this, the development of drug resistance
has proved to be amajor obstacle to successful patient outcomes (Wang
et al., 2022c; Karami Fath et al., 2022; Pastwińska et al., 2022).
Chemotherapy exerts its cytotoxic effects by inhibiting cellular
synthesis of DNA and RNA, suppressing cell proliferation, and
promoting apoptosis (Abdelaal and Haffez, 2022; Yang et al., 2022b;
Li et al., 2022d). However, the efficacy of chemotherapy is limited by
drug resistance, which leads to tumor progression and ultimately
patient mortality. Initial studies on drug resistance in tumors
identified several protein-encoding genes that are closely associated
with chemoresistance development, including the drug transport
proteins MDR1, MRP, and ABCG2 (Chimento et al., 2022; Yang
et al., 2022c; Zhao et al., 2022c; Vaghari-Tabari et al., 2022). Recent
advances in molecular analysis and high-throughput sequencing
techniques have enabled rapid and accurate identification of the
expression profiles of non-coding RNAs associated with drug
resistance (Sánchez-Marín et al., 2022). Due to the chemotherapy
resistance and early-stage metastasis of gynecological cancer, the
prognosis for patients is unfavorable, and the 5-year survival rate
remains low despite aggressive treatment. Consequently, identifying
reliable biomarkers and gaining insight into the molecular mechanisms
of chemoresistance in gynecological cancer is critical to developing new
anti-gynecological cancer strategies. High-throughput RNA sequencing

has proven useful in identifying circRNAs that are dysregulated in
association with gynecological cancer chemoresistance and elucidating
their potential mechanisms. This paper presents the circRNAs
associated with chemoresistance identified in the mentioned
research, which are involved in the regulation of drug metabolism,
DNA damage repair, apoptosis and EMT signaling pathways. Some of
these circRNAs may even serve as valuable prognostic markers.

The search for circRNAs associated with drug resistance in
gynecologic cancers has the potential to minimize the
“experimental” use of drugs and enable more rational selection of
treatment regimens. Furthermore, combining circRNA inhibitors or
enhancers with chemotherapeutic drugs can enhance chemotherapy
sensitivity. For patients who are dose-limited, adding circRNAs to
targeted therapy, while decreasing the dose of chemotherapeutic
drugs, could significantly reduce the adverse effects of dose
limitation and alleviate the discomfort caused by treatment.
Nonetheless, the development and clinical application of related
circRNAs remain inadequate. Tumor drug resistance is a
multifactorial trait, and the complexity of the tumor
microenvironment may result in differences in ex vivo research.
This complexity makes targeting circRNAs to enhance
chemotherapy sensitivity challenging and uncertain.

Our manuscript provides a comprehensive review of the role of
circular RNAs (circRNAs) in chemotherapy resistance in
gynecologic malignancies and their mechanisms. While there
have been some previous studies on this topic, our review offers
several novel and innovative contributions to the literature. Firstly,
we have identified specific circRNAs that are involved in regulating
chemotherapy resistance for different chemotherapeutic agents used
in the treatment of gynecologic malignancies. This information can
be used to develop more targeted and effective treatment strategies.
Secondly, we have discussed the mechanisms by which these
circRNAs regulate chemotherapy resistance, including drug
metabolism, DNA injury repair, apoptosis and EMT signaling
pathways. By understanding these mechanisms, researchers and
clinicians can develop new approaches to overcome drug
resistance. Thirdly, we have highlighted the potential clinical
applications of circRNAs as biomarkers for predicting
chemotherapy response and as therapeutic targets for improving
treatment outcomes in patients with gynecologic malignancies.
Overall, our manuscript offers a unique perspective on the role
of circRNAs in chemotherapy resistance in gynecologic
malignancies and provides valuable insights into potential new
approaches for improving treatment outcomes.

Author contributions

Original draft preparation, allocation: CZ and MQ manuscript
revision, supplement and edition: YL. All authors contributed to the
article and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Frontiers in Pharmacology frontiersin.org11

Qin et al. 10.3389/fphar.2023.1194719

33

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1194719


Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Abdelaal, M. R., and Haffez, H. (2022). The potential roles of retinoids in combating
drug resistance in cancer: Implications of ATP-binding cassette (ABC) transporters.
Open Biol. 12 (6), 220001. doi:10.1098/rsob.220001

Alatise, K. L., Gardner, S., and Alexander-Bryant, A. (2022). Mechanisms of drug
resistance in ovarian cancer and associated gene targets. Cancers (Basel) 14 (24), 6246.
doi:10.3390/cancers14246246

Ali, R., Balamurali, M., and Varamini, P. (2022). Deep learning-based artificial
intelligence to investigate targeted nanoparticles’ uptake in TNBC cells. Int. J. Mol.
Sci. 23 (13), 16070. doi:10.3390/ijms232416070

Armbrister, R., Ochoa, L., and Abbott, K. L. (2023). The clinical role of glycobiology
on ovarian cancer progression. Adv. Cancer Res. 157, 1–22. doi:10.1016/bs.acr.2022.
07.004

Armstrong, D. K., Alvarez, R. D., Bakkum-Gamez, J. N., Barroilhet, L., Behbakht, K.,
Berchuck, A., et al. (2021). Ovarian cancer, version 2.2020, NCCN clinical practice
guidelines in oncology. J. Natl. Compr. Canc Netw. 19 (2), 191–226. doi:10.6004/jnccn.
2021.0007

Barman, R., Bej, R., Dey, P., and Ghosh, S. (2023). Cisplatin-conjugated polyurethane
capsule for dual drug delivery to a cancer cell. ACS Appl. Mater Interfaces 15 (21),
25193–25200. doi:10.1021/acsami.2c22146

Brown, Y., Hua, S., and Tanwar, P. S. (2023). Extracellular matrix in high-grade serous
ovarian cancer: Advances in understanding of carcinogenesis and cancer biology.
Matrix Biol. 118, 16–46. doi:10.1016/j.matbio.2023.02.004

Caba, L., Florea, L., Gug, C., Dimitriu, D. C., and Gorduza, E. V. (2021). Circular
RNA-is the circle perfect? Biomolecules 11 (12), 1755. doi:10.3390/biom11121755

Cao, Y., Xie, X., and Gao, Y. (2021). CircHIPK2 contributes to DDP resistance and
malignant behaviors of DDP-resistant ovarian cancer cells both in vitro and in vivo
through circHIPK2/miR-338-3p/CHTOP ceRNA pathway. Onco Targets Ther. 14,
3151–3165. doi:10.2147/OTT.S291823

Carter, H. E., Schofield, D. J., and Shrestha, R. (2016). The productivity costs of
premature mortality due to cancer in Australia: Evidence from a microsimulation
model. PLoS One 11 (12), 0167521. doi:10.1371/journal.pone.0167521

Cen, Y., Chen, L., Liu, Z., Lin, Q., Fang, X., Yao, H., et al. (2023). Novel roles of RNA-
binding proteins in drug resistance of breast cancer: From molecular biology to
targeting therapeutics. Cell. Death Discov. 9 (1), 52. doi:10.1038/s41420-023-01352-x

Chen, H., Mao, M., Jiang, J., Zhu, D., and Li, P. (2019). Circular RNACDR1as acts as a
sponge of miR-135b-5p to suppress ovarian cancer progression. Onco Targets Ther. 12,
3869–3879. doi:10.2147/OTT.S207938

Chen, J., Wu, S., Wang, J., Sha, Y., and Ji, Y. (2022). Hsa_circ_0074269-mediated
upregulation of TUFT1 through miR-485-5p increases cisplatin resistance in cervical
cancer. Reprod. Sci. 29 (8), 2236–2250. doi:10.1007/s43032-022-00855-9

Chen, M., Ai, G., Zhou, J., Mao, W., Li, H., and Guo, J. (2019). circMTO1 promotes
tumorigenesis and chemoresistance of cervical cancer via regulating miR-6893. Biomed.
Pharmacother. 117, 109064. doi:10.1016/j.biopha.2019.109064

Chen, Q., Li, J., Shen, P., Yuan, H., Yin, J., Ge, W., et al. (2022). Biological functions,
mechanisms, and clinical significance of circular RNA in pancreatic cancer: A
promising rising star. Cell. Biosci. 12 (1), 97. doi:10.1186/s13578-022-00833-3

Chen, Q., Shi, J., Ruan, D., and Bian, C. (2023). The diagnostic and therapeutic
prospects of exosomes in ovarian cancer. Bjog. doi:10.1111/1471-0528.17446

Chen, Y. Y., and Tai, Y. C. (2022). Hsa_circ_0006404 and hsa_circ_0000735 regulated
ovarian cancer response to docetaxel treatment via regulating p-GP expression.
Biochem. Genet. 60 (1), 395–414. doi:10.1007/s10528-021-10080-9

Cheng, D.,Wang, J., Dong, Z., and Li, X. (2021). Cancer-related circular RNA: Diverse
biological functions. Cancer Cell. Int. 21 (1), 11. doi:10.1186/s12935-020-01703-z

Cheng, Y., Zhu, Y., Xiao, M., Zhang, Y., Wang, Z., Chen, H., et al. (2023). circRNA_
0067717 promotes paclitaxel resistance in nasopharyngeal carcinoma by acting as a
scaffold for TRIM41 and p53. Cell. Oncol. (Dordr) 46, 677–695. doi:10.1007/s13402-
023-00776-y

Chimento, A., D’Amico, M., Pezzi, V., and De Amicis, F. (2022). Notch signaling in
breast tumor microenvironment as mediator of drug resistance. Int. J. Mol. Sci. 23 (11),
6296. doi:10.3390/ijms23116296

Chiu, W. K., Kwok, S. T., Wang, Y., Luk, H. M., Chan, A. H. Y., and Tse, K. Y. (2022).
Applications and safety of sentinel lymph node biopsy in endometrial cancer. J. Clin.
Med. 11 (21), 6462. doi:10.3390/jcm11216462

Choi, S., Ismail, A., Pappas-Gogos, G., and Boussios, S. (2023). HPV and cervical
cancer: A review of epidemiology and screening uptake in the UK. Pathogens 12 (2), 298.
doi:10.3390/pathogens12020298

Das, A., Sinha, T., Shyamal, S., and Panda, A. C. (2021). Emerging role of circular
RNA-protein interactions. Noncoding RNA 7 (3), 48. doi:10.3390/ncrna7030048

Deng, S., Qian, L., Liu, L., Liu, H., Xu, Z., Liu, Y., et al. (2023). Circular RNA
ARHGAP5 inhibits cisplatin resistance in cervical squamous cell carcinoma by
interacting with AUF1. Cancer Sci. 114, 1582–1595. doi:10.1111/cas.15723

Devlin, M. J., and Miller, R. E. (2023). Disparity in the era of personalized medicine
for epithelial ovarian cancer. Ther. Adv. Med. Oncol. 15, 24. doi:10.1177/
17588359221148024

Diaz-Padilla, I., Duran, I., Clarke, B. A., and Oza, A. M. (2012). Biologic rationale and
clinical activity of mTOR inhibitors in gynecological cancer. Cancer Treat. Rev. 38 (6),
767–775. doi:10.1016/j.ctrv.2012.02.001

Domingo, I. K., Latif, A., and Bhavsar, A. P. (2022). Pro-inflammatory signalling
PRRopels cisplatin-induced toxicity. Int. J. Mol. Sci. 23 (13), 7227. doi:10.3390/
ijms23137227

Dong, M., Xie, Y., Wang, Z., and Wang, R. (2021). CircMYBL2 regulates the
resistance of cervical cancer cells to paclitaxel via miR-665-dependent regulation of
EGFR. Drug Dev. Res. 82 (8), 1193–1205. doi:10.1002/ddr.21834

Fu, L., Zhang, D., Yi, N., Cao, Y., Wei, Y., Wang, W., et al. (2022). Circular RNA
circPBX3 promotes cisplatin resistance of ovarian cancer cells via interacting with
IGF2BP2 to stabilize ATP7A mRNA expression. Hum. Cell. 35 (5), 1560–1576. doi:10.
1007/s13577-022-00748-8

Gao, X., Tian, X., Huang, Y., Fang, R., and Wang, G. (2022). Role of circular RNA in
myocardial ischemia and ageing-related diseases. Cytokine Growth Factor Rev. 65, 1–11.
doi:10.1016/j.cytogfr.2022.04.005

Geng, X., Jia, Y., Zhang, Y., Shi, L., Li, Q., Zang, A., et al. (2020). Circular RNA:
Biogenesis, degradation, functions and potential roles in mediating resistance to
anticarcinogens. Epigenomics 12 (3), 267–283. doi:10.2217/epi-2019-0295

Gjorgoska, M., and Rizner, T. L. (2022). Integration of androgen hormones in
endometrial cancer biology. Trends Endocrinol. Metab. 33 (9), 639–651. doi:10.1016/
j.tem.2022.06.001

Goldsbury, D. E., Yap, S., Weber, M. F., Veerman, L., Rankin, N., Banks, E., et al.
(2018). Health services costs for cancer care in Australia: Estimates from the 45 and up
Study. PLoS One 13 (7), 0201552. doi:10.1371/journal.pone.0201552

Gordhandas, S., Zammarrelli, W. A., Rios-Doria, E. V., Green, A. K., and Makker, V.
(2023). Current evidence-based systemic therapy for advanced and recurrent
endometrial cancer. J. Natl. Compr. Canc Netw. 21 (2), 217–226. doi:10.6004/jnccn.
2022.7254

Guo, J., Chen, M., Ai, G., Mao, W., Li, H., and Zhou, J. (2019). Hsa_circ_
0023404 enhances cervical cancer metastasis and chemoresistance through VEGFA
and autophagy signaling by sponging miR-5047. Biomed. Pharmacother. 115, 108957.
doi:10.1016/j.biopha.2019.108957

Guo, M., Li, S., Zhao, X., Yuan, Y., Zhang, B., and Guan, Y. (2020). Knockdown of
circular RNA Hsa_circ_0000714 can regulate RAB17 by sponging miR-370-3p to
reduce paclitaxel resistance of ovarian cancer through CDK6/RB pathway. Onco
Targets Ther. 13, 13211–13224. doi:10.2147/OTT.S285153

Guo, W., Dong, W., Li, M., and Shen, Y. (2019). Mitochondria P-glycoprotein confers
paclitaxel resistance on ovarian cancer cells. Onco Targets Ther. 12, 3881–3891. doi:10.
2147/OTT.S193433

Huang, C., Qin, L., Chen, S., and Huang, Q. (2023). CircSETDB1 contributes to
paclitaxel resistance of ovarian cancer cells by sponging miR-508-3p and regulating
ABCC1 expression. Anticancer Drugs 34 (3), 395–404. doi:10.1097/CAD.
0000000000001465

Huang, Y., and Zhu, Q. (2021). Mechanisms regulating abnormal circular RNA
biogenesis in cancer. Cancers (Basel) 13 (16), 4185. doi:10.3390/cancers13164185

Jamieson, A., and McAlpine, J. N. (2023). Molecular profiling of endometrial cancer
from TCGA to clinical practice. J. Natl. Compr. Canc Netw. 21 (2), 210–216. doi:10.
6004/jnccn.2022.7096

Kalampokas, E., Giannis, G., Kalampokas, T., Papathanasiou, A. A., Mitsopoulou, D.,
Tsironi, E., et al. (2022). Current approaches to the management of patients with
endometrial cancer. Cancers (Basel) 14 (18), 4500. doi:10.3390/cancers14184500

Frontiers in Pharmacology frontiersin.org12

Qin et al. 10.3389/fphar.2023.1194719

34

https://doi.org/10.1098/rsob.220001
https://doi.org/10.3390/cancers14246246
https://doi.org/10.3390/ijms232416070
https://doi.org/10.1016/bs.acr.2022.07.004
https://doi.org/10.1016/bs.acr.2022.07.004
https://doi.org/10.6004/jnccn.2021.0007
https://doi.org/10.6004/jnccn.2021.0007
https://doi.org/10.1021/acsami.2c22146
https://doi.org/10.1016/j.matbio.2023.02.004
https://doi.org/10.3390/biom11121755
https://doi.org/10.2147/OTT.S291823
https://doi.org/10.1371/journal.pone.0167521
https://doi.org/10.1038/s41420-023-01352-x
https://doi.org/10.2147/OTT.S207938
https://doi.org/10.1007/s43032-022-00855-9
https://doi.org/10.1016/j.biopha.2019.109064
https://doi.org/10.1186/s13578-022-00833-3
https://doi.org/10.1111/1471-0528.17446
https://doi.org/10.1007/s10528-021-10080-9
https://doi.org/10.1186/s12935-020-01703-z
https://doi.org/10.1007/s13402-023-00776-y
https://doi.org/10.1007/s13402-023-00776-y
https://doi.org/10.3390/ijms23116296
https://doi.org/10.3390/jcm11216462
https://doi.org/10.3390/pathogens12020298
https://doi.org/10.3390/ncrna7030048
https://doi.org/10.1111/cas.15723
https://doi.org/10.1177/17588359221148024
https://doi.org/10.1177/17588359221148024
https://doi.org/10.1016/j.ctrv.2012.02.001
https://doi.org/10.3390/ijms23137227
https://doi.org/10.3390/ijms23137227
https://doi.org/10.1002/ddr.21834
https://doi.org/10.1007/s13577-022-00748-8
https://doi.org/10.1007/s13577-022-00748-8
https://doi.org/10.1016/j.cytogfr.2022.04.005
https://doi.org/10.2217/epi-2019-0295
https://doi.org/10.1016/j.tem.2022.06.001
https://doi.org/10.1016/j.tem.2022.06.001
https://doi.org/10.1371/journal.pone.0201552
https://doi.org/10.6004/jnccn.2022.7254
https://doi.org/10.6004/jnccn.2022.7254
https://doi.org/10.1016/j.biopha.2019.108957
https://doi.org/10.2147/OTT.S285153
https://doi.org/10.2147/OTT.S193433
https://doi.org/10.2147/OTT.S193433
https://doi.org/10.1097/CAD.0000000000001465
https://doi.org/10.1097/CAD.0000000000001465
https://doi.org/10.3390/cancers13164185
https://doi.org/10.6004/jnccn.2022.7096
https://doi.org/10.6004/jnccn.2022.7096
https://doi.org/10.3390/cancers14184500
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1194719


Kamazawa, S., Kigawa, J., Kanamori, Y., Itamochi, H., Sato, S., Iba, T., et al. (2002).
Multidrug resistance gene-1 is a useful predictor of Paclitaxel-based chemotherapy for
patients with ovarian cancer. Gynecol. Oncol. 86 (2), 171–176. doi:10.1006/gyno.2002.
6738

Karami Fath, M., Azargoonjahromi, A., Kiani, A., Jalalifar, F., Osati, P., Akbari
Oryani, M., et al. (2022). The role of epigenetic modifications in drug resistance and
treatment of breast cancer. Cell. Mol. Biol. Lett. 27 (1), 52. doi:10.1186/s11658-022-
00344-6

Kim, E., Kim, Y. K., and Lee, S. V. (2021). Emerging functions of circular RNA in
aging. Trends Genet. 37, 819–829. doi:10.1016/j.tig.2021.04.014

Kim, W. R., Park, E. G., Lee, D. H., Lee, Y. J., Bae, W. H., and Kim, H. S. (2023). The
tumorigenic role of circular RNA-MicroRNA Axis in cancer. Int. J. Mol. Sci. 24 (3),
3050. doi:10.3390/ijms24033050

Lee, K. H., Kim, S., and Lee, S. W. (2022). Pros and cons of in vitro methods for
circular RNA preparation. Int. J. Mol. Sci. 23 (21), 13247. doi:10.3390/ijms232113247

Li, F., Zheng, Z., Chen, W., Li, D., Zhang, H., Zhu, Y., et al. (2023). Regulation of
cisplatin resistance in bladder cancer by epigenetic mechanisms. Drug Resist Updat 68,
100938. doi:10.1016/j.drup.2023.100938

Li, H., Luo, F., Jiang, X., Zhang, W., Xiang, T., Pan, Q., et al. (2022).
CircITGB6 promotes ovarian cancer cisplatin resistance by resetting tumor-
associated macrophage polarization toward the M2 phenotype. J. Immunother.
Cancer 10 (3), e004029. doi:10.1136/jitc-2021-004029

Li, J., Li, X., and Guo, Q. (2022). Drug resistance in cancers: A free pass for bullying.
Cells 11 (21), 3383. doi:10.3390/cells11213383

Li, J., Zhang, Z., Hu, Y., Wei, Q., and Shao, X. (2022). Circ_0039569 contributes to the
paclitaxel resistance of endometrial cancer via targeting miR-1271-5p/PHF6 pathway.
Anticancer Drugs 33 (9), 883–892. doi:10.1097/CAD.0000000000001377

Li, J., Zhu, L., and Kwok, H. F. (2023). Nanotechnology-based approaches overcome
lung cancer drug resistance through diagnosis and treatment. Drug Resist Updat 66,
100904. doi:10.1016/j.drup.2022.100904

Li, M., Cai, J., Han, X., and Ren, Y. (2020). Downregulation of circNRIP1 suppresses
the paclitaxel resistance of ovarian cancer via regulating the miR-211-5p/HOXC8 Axis.
Cancer Manag. Res. 12, 9159–9171. doi:10.2147/CMAR.S268872

Li, X., Li, M., Huang, M., Lin, Q., Fang, Q., Liu, J., et al. (2022). The multi-molecular
mechanisms of tumor-targeted drug resistance in precision medicine. Biomed.
Pharmacother. 150, 113064. doi:10.1016/j.biopha.2022.113064

Liang, Y. X., Zhang, L. L., and Yang, L. (2022). circANKRD17(has_circ_0007883)
confers paclitaxel resistance of ovarian cancer via interacting with FUS to stabilize
FOXR2. Mol. Cell. Biochem. 478, 835–850. doi:10.1007/s11010-022-04548-4

Liu, X., Zhang, Y., Zhou, S., Dain, L., Mei, L., and Zhu, G. (2022). Circular RNA: An
emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines.
J. Control Release 348, 84–94. doi:10.1016/j.jconrel.2022.05.043

Liu, Z., Zou, H., Dang, Q., Xu, H., Liu, L., Zhang, Y., et al. (2022). Biological and
pharmacological roles of m(6)A modifications in cancer drug resistance.Mol. Cancer 21
(1), 220. doi:10.1186/s12943-022-01680-z

Lõhmussaar, K., Boretto, M., and Clevers, H. (2020). Human-derived model systems
in gynecological cancer research. Trends Cancer 6 (12), 1031–1043. doi:10.1016/j.trecan.
2020.07.007

Lugones, Y., Loren, P., and Salazar, L. A. (2022). Cisplatin resistance: Genetic and
epigenetic factors involved. Biomolecules 12 (10), 1365. doi:10.3390/biom12101365

Luo, M., Deng, X., Chen, Z., and Hu, Y. (2023). Circular RNA circPOFUT1 enhances
malignant phenotypes and autophagy-associated chemoresistance via sequestrating
miR-488-3p to activate the PLAG1-ATG12 axis in gastric cancer. Cell. Death Dis. 14 (1),
10. doi:10.1038/s41419-022-05506-0

Luo, Y., and Gui, R. (2020). Circulating exosomal circFoxp1 confers cisplatin
resistance in epithelial ovarian cancer cells. J. Gynecol. Oncol. 31 (5), e75. doi:10.
3802/jgo.2020.31.e75

Meng, X., Xiao, W., Sun, J., Li, W., Yuan, H., Yu, T., et al. (2023). CircPTK2/PABPC1/
SETDB1 axis promotes EMT-mediated tumor metastasis and gemcitabine resistance in
bladder cancer. Cancer Lett. 554, 216023. doi:10.1016/j.canlet.2022.216023

Ming, H., Li, B., Jiang, J., Qin, S., Nice, E. C., He,W., et al. (2023). Protein degradation:
Expanding the toolbox to restrain cancer drug resistance. J. Hematol. Oncol. 16 (1), 6.
doi:10.1186/s13045-023-01398-5

Nielsen, A. F., Bindereif, A., Bozzoni, I., Hanan, M., Hansen, T. B., Irimia, M., et al.
(2022). Best practice standards for circular RNA research. Nat. Methods 19, 1208–1220.
doi:10.1038/s41592-022-01487-2

Ortiz, M., Wabel, E., Mitchell, K., and Horibata, S. (2022). Mechanisms of
chemotherapy resistance in ovarian cancer. Cancer Drug Resist 5 (2), 304–316.
doi:10.20517/cdr.2021.147

Pang, K., Shi, Z. D., Wei, L. Y., Dong, Y., Ma, Y. Y., Wang, W., et al. (2023). Research
progress of therapeutic effects and drug resistance of immunotherapy based on PD-1/
PD-L1 blockade. Drug Resist Updat 66, 100907. doi:10.1016/j.drup.2022.100907

Parma, B., Wurdak, H., and Ceppi, P. (2022). Harnessing mitochondrial metabolism
and drug resistance in non-small cell lung cancer and beyond by blocking heat-shock
proteins. Drug Resist Updat 65, 100888. doi:10.1016/j.drup.2022.100888

Passarello, K., Kurian, S., and Villanueva, V. (2019). Endometrial cancer: An overview
of pathophysiology, management, and care. Semin. Oncol. Nurs. 35 (2), 157–165. doi:10.
1016/j.soncn.2019.02.002

Pastwińska, J., Karaś, K., Karwaciak, I., and Ratajewski, M. (2022). Targeting EGFR in
melanoma - the sea of possibilities to overcome drug resistance. Biochim. Biophys. Acta
Rev. Cancer 1877 (4), 188754. doi:10.1016/j.bbcan.2022.188754

Rahangdale, L., Mungo, C., O’Connor, S., Chibwesha, C. J., and Brewer, N. T. (2022).
Human papillomavirus vaccination and cervical cancer risk. Bmj 379, e070115. doi:10.
1136/bmj-2022-070115

Rao, Y., Zhang, W., Li, D., Li, X., Ma, Y., and Qu, P. (2022). Circ TYMP1 inhibits
carcinogenesis and cisplatin resistance in ovarian cancer by reducing smad2/
3 phosphorylation via a MicroRNA-182a-3p/TGF1B Axis. Contrast Media Mol.
Imaging 2022, 1032557. doi:10.1155/2022/1032557

Reich, O., and Regauer, S. (2023). Elimination of reserve cells for prevention of HPV-
associated cervical cancer. Virus Res. 329, 199068. doi:10.1016/j.virusres.2023.199068

Ren, L., Jiang, Q., Mo, L., Tan, L., Dong, Q., Meng, L., et al. (2022). Mechanisms of
circular RNA degradation. Commun. Biol. 5 (1), 1355. doi:10.1038/s42003-022-04262-3

Rimel, B. J., Kunos, C. A., Macioce, N., and Temkin, S. M. (2022). Current gaps and
opportunities in screening, prevention, and treatment of cervical cancer. Cancer 128
(23), 4063–4073. doi:10.1002/cncr.34487

Romani, A. M. P. (2022). Cisplatin in cancer treatment. Biochem. Pharmacol. 206,
115323. doi:10.1016/j.bcp.2022.115323

Rubinstein, M., Shen, S., Monk, B. J., Tan, D. S. P., Nogueira-Rodrigues, A., Aoki, D.,
et al. (2022). Looking beyond carboplatin and paclitaxel for the treatment of advanced/
recurrent endometrial cancer. Gynecol. Oncol. 167 (3), 540–546. doi:10.1016/j.ygyno.
2022.10.012

Sabeena, S. (2023). Role of noncoding RNAs with emphasis on long noncoding RNAs
as cervical cancer biomarkers. J. Med. Virol. 95 (2), e28525. doi:10.1002/jmv.28525

Sánchez-Marín, D., Trujano-Camacho, S., Pérez-Plasencia, C., De León, D. C., and
Campos-Parra, A. D. (2022). LncRNAs driving feedback loops to boost drug resistance:
Sinuous pathways in cancer. Cancer Lett. 543, 215763. doi:10.1016/j.canlet.2022.215763

Shao, T., Pan, Y. H., and Xiong, X. D. (2021). Circular RNA: An important player with
multiple facets to regulate its parental gene expression. Mol. Ther. Nucleic Acids 23,
369–376. doi:10.1016/j.omtn.2020.11.008

Sheng, H., and Wang, X. (2023). Knockdown of circ-PIP5K1A overcomes resistance
to cisplatin in ovarian cancer by miR-942-5p/NFIB axis. Anticancer Drugs 34 (2),
214–226. doi:10.1097/CAD.0000000000001406

Sinha, T., Panigrahi, C., Das, D., and Chandra Panda, A. (2021). Circular RNA
translation, a path to hidden proteome. Wiley Interdiscip. Rev. RNA 13, e1685. doi:10.
1002/wrna.1685

Sivars, L., Palsdottir, K., Crona Guterstam, Y., Falconer, H., Hellman, K., and Tham,
E. (2022). The current status of cell-free human papillomavirus DNA as a biomarker in
cervical cancer and other HPV-associated tumors: A review. Int. J. Cancer 152,
2232–2242. doi:10.1002/ijc.34333

Smith, E. R., Wang, J. Q., Yang, D. H., and Xu, X. X. (2022). Paclitaxel resistance
related to nuclear envelope structural sturdiness. Drug Resist Updat 65, 100881. doi:10.
1016/j.drup.2022.100881

Sun, Q., Wang, L., Zhang, C., Hong, Z., and Han, Z. (2022). Cervical cancer
heterogeneity: A constant battle against viruses and drugs. Biomark. Res. 10 (1), 85.
doi:10.1186/s40364-022-00428-7

Sun, Y., Li, X., Chen, A., Shi, W.,Wang, L., Yi, R., et al. (2019). circPIP5K1A serves as a
competitive endogenous RNA contributing to ovarian cancer progression via regulation
of miR-661/IGFBP5 signaling. J. Cell. Biochem. 120 (12), 19406–19414. doi:10.1002/jcb.
29055

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al.
(2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71 (3), 209–249. doi:10.
3322/caac.21660

Tang, C., Livingston, M. J., Safirstein, R., and Dong, Z. (2023). Cisplatin
nephrotoxicity: New insights and therapeutic implications. Nat. Rev. Nephrol. 19
(1), 53–72. doi:10.1038/s41581-022-00631-7

Tang, M., and Lv, Y. (2021). The role of N<sup>6</sup> -methyladenosine modified
circular RNA in pathophysiological processes. Int. J. Biol. Sci. 17 (9), 2262–2277. doi:10.
7150/ijbs.60131

Tau, S., and Miller, T. W. (2023). The role of cancer cell bioenergetics in dormancy
and drug resistance. Cancer Metastasis Rev. 42, 87–98. doi:10.1007/s10555-023-10081-7

Terp, S. K., Stoico, M. P., Dybkær, K., and Pedersen, I. S. (2023). Early diagnosis of
ovarian cancer based on methylation profiles in peripheral blood cell-free DNA: A
systematic review. Clin. Epigenetics 15 (1), 24. doi:10.1186/s13148-023-01440-w

Frontiers in Pharmacology frontiersin.org13

Qin et al. 10.3389/fphar.2023.1194719

35

https://doi.org/10.1006/gyno.2002.6738
https://doi.org/10.1006/gyno.2002.6738
https://doi.org/10.1186/s11658-022-00344-6
https://doi.org/10.1186/s11658-022-00344-6
https://doi.org/10.1016/j.tig.2021.04.014
https://doi.org/10.3390/ijms24033050
https://doi.org/10.3390/ijms232113247
https://doi.org/10.1016/j.drup.2023.100938
https://doi.org/10.1136/jitc-2021-004029
https://doi.org/10.3390/cells11213383
https://doi.org/10.1097/CAD.0000000000001377
https://doi.org/10.1016/j.drup.2022.100904
https://doi.org/10.2147/CMAR.S268872
https://doi.org/10.1016/j.biopha.2022.113064
https://doi.org/10.1007/s11010-022-04548-4
https://doi.org/10.1016/j.jconrel.2022.05.043
https://doi.org/10.1186/s12943-022-01680-z
https://doi.org/10.1016/j.trecan.2020.07.007
https://doi.org/10.1016/j.trecan.2020.07.007
https://doi.org/10.3390/biom12101365
https://doi.org/10.1038/s41419-022-05506-0
https://doi.org/10.3802/jgo.2020.31.e75
https://doi.org/10.3802/jgo.2020.31.e75
https://doi.org/10.1016/j.canlet.2022.216023
https://doi.org/10.1186/s13045-023-01398-5
https://doi.org/10.1038/s41592-022-01487-2
https://doi.org/10.20517/cdr.2021.147
https://doi.org/10.1016/j.drup.2022.100907
https://doi.org/10.1016/j.drup.2022.100888
https://doi.org/10.1016/j.soncn.2019.02.002
https://doi.org/10.1016/j.soncn.2019.02.002
https://doi.org/10.1016/j.bbcan.2022.188754
https://doi.org/10.1136/bmj-2022-070115
https://doi.org/10.1136/bmj-2022-070115
https://doi.org/10.1155/2022/1032557
https://doi.org/10.1016/j.virusres.2023.199068
https://doi.org/10.1038/s42003-022-04262-3
https://doi.org/10.1002/cncr.34487
https://doi.org/10.1016/j.bcp.2022.115323
https://doi.org/10.1016/j.ygyno.2022.10.012
https://doi.org/10.1016/j.ygyno.2022.10.012
https://doi.org/10.1002/jmv.28525
https://doi.org/10.1016/j.canlet.2022.215763
https://doi.org/10.1016/j.omtn.2020.11.008
https://doi.org/10.1097/CAD.0000000000001406
https://doi.org/10.1002/wrna.1685
https://doi.org/10.1002/wrna.1685
https://doi.org/10.1002/ijc.34333
https://doi.org/10.1016/j.drup.2022.100881
https://doi.org/10.1016/j.drup.2022.100881
https://doi.org/10.1186/s40364-022-00428-7
https://doi.org/10.1002/jcb.29055
https://doi.org/10.1002/jcb.29055
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1038/s41581-022-00631-7
https://doi.org/10.7150/ijbs.60131
https://doi.org/10.7150/ijbs.60131
https://doi.org/10.1007/s10555-023-10081-7
https://doi.org/10.1186/s13148-023-01440-w
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1194719


Tronconi, F., Nero, C., Giudice, E., Salutari, V., Musacchio, L., Ricci, C., et al. (2022).
Advanced and recurrent endometrial cancer: State of the art and future perspectives.
Crit. Rev. Oncol. Hematol. 180, 103851. doi:10.1016/j.critrevonc.2022.103851

Tsvetkova, D., and Ivanova, S. (2022). Application of approved cisplatin derivatives in
combination therapy against different cancer diseases. Molecules 27 (8), 2466. doi:10.
3390/molecules27082466

Vaghari-Tabari, M., Hassanpour, P., Sadeghsoltani, F., Malakoti, F., Alemi, F., Qujeq,
D., et al. (2022). CRISPR/Cas9 gene editing: A new approach for overcoming drug
resistance in cancer. Cell. Mol. Biol. Lett. 27 (1), 49. doi:10.1186/s11658-022-00348-2

Wang, Q., Shen, X., Chen, G., and Du, J. (2022). Drug resistance in colorectal cancer:
From mechanism to clinic. Cancers (Basel) 14 (12), 2928. doi:10.3390/cancers14122928

Wang, X., Jiang, W., Du, Y., Zhu, D., Zhang, J., Fang, C., et al. (2022). Targeting
feedback activation of signaling transduction pathways to overcome drug resistance in
cancer. Drug Resist Updat 65, 100884. doi:10.1016/j.drup.2022.100884

Wang, X., Zhou, Y., Wang, D., Wang, Y., Zhou, Z., Ma, X., et al. (2023). Cisplatin-
induced ototoxicity: From signaling network to therapeutic targets. Biomed.
Pharmacother. 157, 114045. doi:10.1016/j.biopha.2022.114045

Wang, Y., Wu, C., Du, Y., Li, Z., Li, M., Hou, P., et al. (2022). Expanding uncapped
translation and emerging function of circular RNA in carcinomas and noncarcinomas.
Mol. Cancer 21 (1), 13. doi:10.1186/s12943-021-01484-7

Webb, P. M., and Jordan, S. J. (2017). Epidemiology of epithelial ovarian cancer. Best.
Pract. Res. Clin. Obstet. Gynaecol. 41, 3–14. doi:10.1016/j.bpobgyn.2016.08.006

Wei, L., He, W., Zhao, H., and Zhao, P. (2022). Circ_0026123 promotes cisplatin
resistance and progression of ovarian cancer by upregulating RAB1A through
sequestering miR-543. Anticancer Drugs 33 (10), 1069–1080. doi:10.1097/CAD.
0000000000001373

Wei, S., Qi, L., and Wang, L. (2021). Overexpression of circ_CELSR1 facilitates
paclitaxel resistance of ovarian cancer by regulating miR-149-5p/SIK2 axis. Anticancer
Drugs 32 (5), 496–507. doi:10.1097/CAD.0000000000001058

Wen, S. Y., Qadir, J., and Yang, B. B. (2022). Circular RNA translation: Novel protein
isoforms and clinical significance. Trends Mol. Med. 28 (5), 405–420. doi:10.1016/j.
molmed.2022.03.003

Wu, H., Zhao, X., Wang, J., Jiang, X., Cheng, Y., He, Y., et al. (2021). Circular RNA
CDR1as alleviates cisplatin-based chemoresistance by suppressing MiR-1299 in ovarian
cancer. Front. Genet. 12, 815448. doi:10.3389/fgene.2021.815448

Wu, J., Guo, X., Wen, Y., Huang, S., Yuan, X., Tang, L., et al. (2021). N6-
Methyladenosine modification opens a new chapter in circular RNA biology. Front.
Cell. Dev. Biol. 9, 709299. doi:10.3389/fcell.2021.709299

Wu, P., Qin, J., Liu, L., Tan, W., Lei, L., and Zhu, J. (2022). circEPSTI1 promotes
tumor progression and cisplatin resistance via upregulating MSH2 in cervical cancer.
Aging (Albany NY) 14 (13), 5406–5416. doi:10.18632/aging.204152

Xia, B., Zhao, Z., Wu, Y., Wang, Y., Zhao, Y., and Wang, J. (2020). Circular RNA
circTNPO3 regulates paclitaxel resistance of ovarian cancer cells by miR-1299/
NEK2 signaling pathway. Mol. Ther. Nucleic Acids 21, 780–791. doi:10.1016/j.omtn.2020.
06.002

Xu, T., He, B., Sun, H., Xiong, M., Nie, J., Wang, S., et al. (2022). Novel insights into
the interaction between N6-methyladenosine modification and circular RNA. Mol.
Ther. Nucleic Acids 27, 824–837. doi:10.1016/j.omtn.2022.01.007

Xu, Y., Jiang, Z., and Chen, X. (2022). Mechanisms underlying paclitaxel-induced
neuropathic pain: Channels, inflammation and immune regulations. Eur. J. Pharmacol.
933, 175288. doi:10.1016/j.ejphar.2022.175288

Yang, C., Mai, Z., Liu, C., Yin, S., Cai, Y., and Xia, C. (2022). Natural products in
preventing tumor drug resistance and related signaling pathways. Molecules 27 (11),
3513. doi:10.3390/molecules27113513

Yang, Q., Xu, J., Gu, J., Shi, H., Zhang, J., Zhang, J., et al. (2022). Extracellular vesicles
in cancer drug resistance: Roles, mechanisms, and implications. Adv. Sci. (Weinh) 9,
2201609. doi:10.1002/advs.202201609

Yang, R., Yi, M., and Xiang, B. (2022). Novel insights on lipid metabolism alterations in
drug resistance in cancer. Front. Cell. Dev. Biol. 10, 875318. doi:10.3389/fcell.2022.875318

Ye, L., Yao, X., Xu, B., Chen, W., Lou, H., Tong, X., et al. (2023). RNA epigenetic
modifications in ovarian cancer: The changes, chances, and challenges. Wiley
Interdiscip. Rev. RNA 2023, e1784. doi:10.1002/wrna.1784

Yi, H., Han, Y., Li, Q., Wang, X., Xiong, L., and Li, S. (2022). Circular RNA circ_
0004488 increases cervical cancer paclitaxel resistance via the miR-136/MEX3C
signaling pathway. J. Oncol. 2022, 5435333. doi:10.1155/2022/5435333

Yi, H., Han, Y., and Li, S. (2022). Oncogenic circular RNA circ_
0007534 contributes to paclitaxel resistance in endometrial cancer by sponging
miR-625 and promoting ZEB2 expression. Front. Oncol. 12, 985470. doi:10.3389/
fonc.2022.985470

You, J., Han, Y., Qiao, H., Han, Y., Lu, X., Lu, Y., et al. (2022). Hsa_circ_
0063804 enhances ovarian cancer cells proliferation and resistance to cisplatin by
targeting miR-1276/CLU axis. Aging (Albany NY) 14 (11), 4699–4713. doi:10.18632/
aging.203474

Yu, R., Matthews, B. J., and Beavis, A. L. (2022). The role of sentinel lymph node
mapping in high-grade endometrial cancer. Curr. Treat. Options Oncol. 23 (10),
1339–1352. doi:10.1007/s11864-022-00999-5

Yuan, S., Zheng, P., Sun, X., Zeng, J., Cao, W., Gao, W., et al. (2021). Hsa_Circ_
0001860 promotes Smad7 to enhance MPA resistance in endometrial cancer via miR-
520h. Front. Cell. Dev. Biol. 9, 738189. doi:10.3389/fcell.2021.738189

Yuan, Y., Zhang, X., Fan, X., Peng, Y., and Jin, Z. (2022). The emerging roles of
circular RNA-mediated autophagy in tumorigenesis and cancer progression. Cell. Death
Discov. 8 (1), 385. doi:10.1038/s41420-022-01172-5

Zhang, C., Ju, J., Wu, X., Yang, J., Yang, Q., Liu, C., et al. (2021). Tripterygium wilfordii
polyglycoside ameliorated TNBS-induced colitis in rats via regulating Th17/treg balance
in intestinal mucosa. Mol. Ther. Nucleic Acids 23, 1243–1255. doi:10.2147/JIR.S293961

Zhang, S., Cheng, J., Quan, C., Wen, H., Feng, Z., Hu, Q., et al. (2020). circCELSR1
(hsa_circ_0063809) contributes to paclitaxel resistance of ovarian cancer cells by
regulating FOXR2 expression via miR-1252. Mol. Ther. Nucleic Acids 19, 718–730.
doi:10.1016/j.omtn.2019.12.005

Zhao, B., Gu, Z., Zhang, Y., Li, Z., and Cheng, L. (2022). Starch-based carriers of
paclitaxel: A systematic review of carriers, interactions, and mechanisms. Carbohydr.
Polym. 291, 119628. doi:10.1016/j.carbpol.2022.119628

Zhao, L., Guo, H., Chen, X., Zhang, W., He, Q., Ding, L., et al. (2022). Tackling drug
resistance in ovarian cancer with epigenetic targeted drugs. Eur. J. Pharmacol. 927,
175071. doi:10.1016/j.ejphar.2022.175071

Zhao, Y., Lan, Y., Chi, Y., Yang, B., and Ren, C. (2022). Downregulation of circ-cep128
enhances the paclitaxel sensitivity of cervical cancer through regulating miR-432-5p/
MCL1. Biochem. Genet. 60, 2346–2363. doi:10.1007/s10528-022-10201-y

Zhao, Z., Ji, M., Wang, Q., He, N., and Li, Y. (2019). Circular RNA Cdr1as upregulates
SCAI to suppress cisplatin resistance in ovarian cancer via miR-1270 suppression. Mol.
Ther. Nucleic Acids 18, 24–33. doi:10.1016/j.omtn.2019.07.012

Zheng, Y., Li, Z., Yang, S., Wang, Y., and Luan, Z. (2020). CircEXOC6B suppresses the
proliferation and motility and sensitizes ovarian cancer cells to paclitaxel through miR-
376c-3p/FOXO3 Axis. Cancer Biother Radiopharm. 37, 802–814. doi:10.1089/cbr.2020.
3739

Zhong, G., Zhao, Q., Chen, Z., and Yao, T. (2023). TGF-beta signaling promotes
cervical cancer metastasis via CDR1as.Mol. Cancer 22 (1), 66. doi:10.1186/s12943-023-
01743-9

Zhou, M., Xiao, M. S., Li, Z., and Huang, C. (2021). New progresses of circular RNA
biology: From nuclear export to degradation. RNA Biol. 18 (10), 1–9. doi:10.1080/
15476286.2020.1853977

Zhou, W. Y., Cai, Z. R., Liu, J., Wang, D. S., Ju, H. Q., and Xu, R. H. (2020). Circular
RNA: Metabolism, functions and interactions with proteins. Mol. Cancer 19 (1), 172.
doi:10.1186/s12943-020-01286-3

Zhou, X., Lin, J., Wang, F., Chen, X., Zhang, Y., Hu, Z., et al. (2022). Circular RNA-
regulated autophagy is involved in cancer progression. Front. Cell. Dev. Biol. 10, 961983.
doi:10.3389/fcell.2022.961983

Zhu, J., Luo, J. E., Chen, Y., and Wu, Q. (2021). Circ_0061140 knockdown
inhibits tumorigenesis and improves PTX sensitivity by regulating miR-136/
CBX2 axis in ovarian cancer. J. Ovarian Res. 14 (1), 136. doi:10.1186/s13048-
021-00888-9

Zwimpfer, T. A., Tal, O., Geissler, F., Coelho, R., Rimmer, N., Jacob, F., et al.
(2023). Low grade serous ovarian cancer - a rare disease with increasing
therapeutic options. Cancer Treat. Rev. 112, 102497. doi:10.1016/j.ctrv.2022.
102497

Frontiers in Pharmacology frontiersin.org14

Qin et al. 10.3389/fphar.2023.1194719

36

https://doi.org/10.1016/j.critrevonc.2022.103851
https://doi.org/10.3390/molecules27082466
https://doi.org/10.3390/molecules27082466
https://doi.org/10.1186/s11658-022-00348-2
https://doi.org/10.3390/cancers14122928
https://doi.org/10.1016/j.drup.2022.100884
https://doi.org/10.1016/j.biopha.2022.114045
https://doi.org/10.1186/s12943-021-01484-7
https://doi.org/10.1016/j.bpobgyn.2016.08.006
https://doi.org/10.1097/CAD.0000000000001373
https://doi.org/10.1097/CAD.0000000000001373
https://doi.org/10.1097/CAD.0000000000001058
https://doi.org/10.1016/j.molmed.2022.03.003
https://doi.org/10.1016/j.molmed.2022.03.003
https://doi.org/10.3389/fgene.2021.815448
https://doi.org/10.3389/fcell.2021.709299
https://doi.org/10.18632/aging.204152
https://doi.org/10.1016/j.omtn.2020.06.002
https://doi.org/10.1016/j.omtn.2020.06.002
https://doi.org/10.1016/j.omtn.2022.01.007
https://doi.org/10.1016/j.ejphar.2022.175288
https://doi.org/10.3390/molecules27113513
https://doi.org/10.1002/advs.202201609
https://doi.org/10.3389/fcell.2022.875318
https://doi.org/10.1002/wrna.1784
https://doi.org/10.1155/2022/5435333
https://doi.org/10.3389/fonc.2022.985470
https://doi.org/10.3389/fonc.2022.985470
https://doi.org/10.18632/aging.203474
https://doi.org/10.18632/aging.203474
https://doi.org/10.1007/s11864-022-00999-5
https://doi.org/10.3389/fcell.2021.738189
https://doi.org/10.1038/s41420-022-01172-5
https://doi.org/10.2147/JIR.S293961
https://doi.org/10.1016/j.omtn.2019.12.005
https://doi.org/10.1016/j.carbpol.2022.119628
https://doi.org/10.1016/j.ejphar.2022.175071
https://doi.org/10.1007/s10528-022-10201-y
https://doi.org/10.1016/j.omtn.2019.07.012
https://doi.org/10.1089/cbr.2020.3739
https://doi.org/10.1089/cbr.2020.3739
https://doi.org/10.1186/s12943-023-01743-9
https://doi.org/10.1186/s12943-023-01743-9
https://doi.org/10.1080/15476286.2020.1853977
https://doi.org/10.1080/15476286.2020.1853977
https://doi.org/10.1186/s12943-020-01286-3
https://doi.org/10.3389/fcell.2022.961983
https://doi.org/10.1186/s13048-021-00888-9
https://doi.org/10.1186/s13048-021-00888-9
https://doi.org/10.1016/j.ctrv.2022.102497
https://doi.org/10.1016/j.ctrv.2022.102497
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1194719


Identification of a novel lncRNA
prognostic signature and analysis
of functional lncRNA
AC115619.1 in hepatocellular
carcinoma

Binliang Gan1,2, Youwu He1,3, Yonggang Ma4, Linfeng Mao3,5,
Chuanjie Liao1,3 and Ganlu Deng1,3*
1Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi,
China, 2Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning,
Guangxi, China, 3Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor
(Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China, 4Department of
NeuroInterventional Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China,
5Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning,
Guangxi, China

Background: Hepatocellular carcinoma (HCC) is the deadliest malignancy. Long
non-coding RNAs (lncRNAs) are involved in the development of multiple human
malignancies. This study aimed to establish a reliable signature and identify novel
biomarkers for HCC patients.

Methods: Differentially expressed lncRNAs (DElncRNAs) were identified from
Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA)
databases. Univariate, LASSO, and multivariate Cox regression analyses were
applied to screen the prognostic lncRNAs and establish a prognostic model.
Receiver operating characteristic (ROC) curves and Kaplan–Meier analyses
were conducted to validate the prognostic value of this model. The association
between lncRNAs and differential m6A genes was analyzed by Spearman’s
analysis. A series of bioinformatic and in vitro experiments were applied to
explore the function of hub lncRNA.

Results: A total of 32 DElncRNAs were identified, and 12 DElncRNAs were associated
with the prognosis of HCC patients. A prognostic signature comprising six prognostic
lncRNAs (LINC02428, LINC02163, AC008549.1, AC115619.1, CASC9, and LINC02362)
was constructed, and the model exhibited an excellent capacity for prognosis
prediction. Furthermore, 12 differential m6A regulators were identified, and RBMX
was found to be correlated negativelywith the hub lncRNAAC115619.1. The expression
level of AC115619.1 was lower in HCC tissues than that in normal tissues and was
significantly related to clinicopathologic features, survival rate, and drug sensitivity.
Overexpression of AC115619.1 notably inhibited the proliferation, migration, and
invasion of HCC cells.

Conclusion: This study provided a promising prognostic signature for HCC
patients and identified AC115619.1 as a novel biomarker, which plays an
essential role in regulating the progression of HCC.

KEYWORDS

long non-coding RNA, hepatocellular carcinoma, biomarker, diagnosis, prognosis

OPEN ACCESS

EDITED BY

Fernando De Andrés,
University of Castilla La Mancha, Spain

REVIEWED BY

Hanchen Xu,
Longhua Hospital Shanghai University of
Traditional Chinese Medicine, China
Chenggang Yan,
Hangzhou Dianzi University, China
Aarti Gokhale,
Yourgene Health Singapore Pte. Ltd.,
Singapore

*CORRESPONDENCE

Ganlu Deng,
dengganlu@gxmu.edu.cn

RECEIVED 16 February 2023
ACCEPTED 18 July 2023
PUBLISHED 08 August 2023

CITATION

Gan B, He Y, Ma Y, Mao L, Liao C and
Deng G (2023), Identification of a novel
lncRNA prognostic signature and analysis
of functional lncRNA AC115619.1 in
hepatocellular carcinoma.
Front. Pharmacol. 14:1167418.
doi: 10.3389/fphar.2023.1167418

COPYRIGHT

© 2023 Gan, He, Ma, Mao, Liao and Deng.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 08 August 2023
DOI 10.3389/fphar.2023.1167418

37

https://www.frontiersin.org/articles/10.3389/fphar.2023.1167418/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1167418/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1167418/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1167418/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1167418/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2023.1167418&domain=pdf&date_stamp=2023-08-08
mailto:dengganlu@gxmu.edu.cn
mailto:dengganlu@gxmu.edu.cn
https://doi.org/10.3389/fphar.2023.1167418
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2023.1167418


1 Introduction

Primary liver cancer is one of the most common malignancies
worldwide, with about 906,000 new cases and 830,000 deaths
reported in 2020. Hepatocellular carcinoma (HCC) accounts for
the majority of incidence and mortality with a 75%–85%
constitution statistically (Sung et al., 2021). Despite the great
efforts and huge improvement in diagnosis and treatment
therapies, the prognosis of HCC is still poor with a 5-year
survival rate of approximately 12% (Petrowsky et al., 2020). The
poor outcome of HCC poses a tremendous burden to social
economy and public health. With the obscure symptom of early-
stage HCC, most HCC patients are diagnosed at a late stage and lose
their opportunity to receive radical resection (Anwanwan et al.,
2020; Demir et al., 2021). In addition, recurrence, metastasis, and
chemoresistance present major barriers to a satisfactory effect for
HCC treatment (Kim et al., 2017). Therefore, highly efficient and
specific biomarkers are still needed for diagnosis and prognostic
prediction, which could improve the poor prognosis and
individualized treatments for HCC patients.

Accumulating evidence has demonstrated that long non-coding
RNA (lncRNA), which is defined as RNA transcripts of more than
200 base pairs in length (Esteller, 2011), has contributed to
tumorigenesis, progression, and metastasis (Schmitt and Chang,
2016; Calle et al., 2018). LncRNAs exert various biological effects to
participate in the biological and pathological processes by regulating
multiple processes including transcription, epigenesis, and mRNA
expression (Wang and Chang, 2011; Dykes and Emanueli, 2017;
Ransohoff et al., 2018; Herman et al., 2022). The aberrant
expression of lncRNA has been identified as “oncogenes” or “tumor
suppressors,” as well as a prognostic factor of cancer patients. Several
lncRNAs have been identified to play a role in HCC. For example,
lncRNAs MALAT1, PVT1, and HOTAIR have been found to
contribute to the prognosis and different cellular phenotypes such as
proliferation and metastasis in human malignancies (Zhao et al., 2018;
Rajagopal et al., 2020; Shigeyasu et al., 2020; Goyal et al., 2021). Ni et al.
proposed that lncRNA uc.134 was downregulated in HCC and directly
conferred with the patient’s prognosis. LncRNA uc.134 inhibited
proliferation and metastasis by suppressing CUL4A-mediated
ubiquitination of LATS1 (Ni et al., 2017).

Although many previous studies focused on the functions of
lncRNAs, exploring a novel biomarker of lncRNA is still needed.
Given the promising role of lncRNAs in HCC, we aimed to identify a
lncRNA-related prognosis biomarker and elucidate its function in
HCC. In this work, we identified lncRNAs expressed differentially in
multiple public databases and constructed a prognostic prediction
model by bioinformatics analysis. Systematic analysis showed that
lncRNA AC115619.1 contributed excellent value in patients’
survival, but its function has never been explored previously. A
ceRNA network and functional enrichment of lncRNA
AC115619.1 were also applied, as well as analysis of drug
sensitivity. Additionally, we verified the downregulation of
AC115619.1 in local HCC samples. Functional experiments
revealed that overexpression of AC115619.1 inhibited the
progression of HCC. Our study might develop a novel biomarker
and provide more insights to better understand the molecular
mechanism of HCC.

2 Materials and methods

2.1 Data acquisition

The expression level of the lncRNA microarray was
obtained from the Gene Expression Omnibus (GEO)
database. Studies were chosen from GEO according to the
following criteria: 1) studies with HCC tissue and adjacent
normal tissue samples; 2) studies with information on the
technology and platform utilized for studies. Based on these
criteria, nine microarray datasets (GSE138178, GSE93789,
GSE101728, GSE115018, GSE70880, GSE67260, GSE58043,
GSE55191, and GSE84004) were downloaded from the GEO
repository. Details of each microarray study are provided in
Table 1. Meanwhile, the RNA sequencing data (374 tumor
samples and 50 normal liver samples; type: FPKM), and the
corresponding clinical and prognostic information on HCC
patients were obtained from The Cancer Genome Atlas
(TCGA) (https://portal.gdc.cancer.gov/) database. Samples
with gene expression of “0” value and insufficient clinical
and survival information were excluded.

TABLE 1 Details of the lncRNA microarray from the GEO database.

GEO ID Platform Sample Numbers (tumor) Numbers (normal)

GSE138178 GPL21827 HCC 49 49

GSE93789 GPL16956 HCC 5 5

GSE101728 GPL21047 HCC 7 7

GSE115018 GPL20115 HCC 12 12

GSE70880 GPL19748 HCC 16 16

GSE67260 GPL19072 HCC 5 5

GSE58043 GPL13825 HCC 7 7

GSE55191 GPL15314 HCC 3 3

GSE84004 GPL22109 HCC 38 38
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2.2 Reannotation of microarray probes

LncRNA expression profiles were downloaded from the GEO
database with probe ID and sequences. A custom pipeline was
performed to re-annotate the probes of the lncRNA microarray.
The corresponding sequences of the re-annotated probes were
uniquely mapped to the human genome with no mismatch, and
the chromosomal position of the retained probes was subsequently
matched to the chromosomal position of lncRNAs or protein-
coding genes from the GENCODE project (https://www.
gencodegenes.org).

2.3 Identification of robust DElncRNAs

Batch normalization and the R package “limma” were utilized to
generate differentially expressed lncRNAs. The aforementioned nine
GSE datasets were then integrated and filtrated using robust rank
aggregation (RRA). eBayes was used for identifying DElncRNAs in
HCC samples compared with adjacent normal tissues with the
criteria of |log2FC| > 1, adjusted p < 0.05. The dysregulated
lncRNA lists from the GEO and TCGA platforms were
converged for further analysis.

2.4 Construction of a prognostic model

Corresponding survival information on HCC patients was
obtained from TCGA dataset. To filter the potential prognostic

lncRNAs in HCC patients, we performed univariate regression
analysis and subsequent least absolute shrinkage and selection
operator (LASSO) regression to carry out prognostic analysis.
Multivariate Cox regression analyses were then used to determine
which lncRNA was an independent prognostic factor for HCC
patients. All HCC patients from TCGA dataset were randomly
divided into training and test cohorts for further prognostic
prediction for lncRNAs. Both training and test cohorts were then
implemented with a risk score model calculated with the formula, risk

score = ∑
6

1

coef f icient of lncRNA*expression of lncRNA. LncRNA

represented the six lncRNAs screened from multivariate Cox
regression. Kaplan–Meier analysis and the log-rank test were
applied to compare the low- and high-risk subgroups and
additional subgroups based on the median values of the risk score.
A receiver operating characteristic (ROC) analysis was performed to
estimate the value of the prognostic model. Finally, univariate and
multivariate Cox regression analyses were applied to evaluate whether
the risk score was an independent prognostic factor when combined
with other clinical characteristics.

2.5 Association analysis between prognostic
lncRNAs and m6A regulators

The expression profile of m6A-related regulators was obtained
from TCGA database, as well as the corresponding survival
information on HCC patients. Then, the univariate Cox
regression analysis was applied to estimate the prognostic value
of m6A-related regulators using the “survival” R package. Pearson’s

FIGURE 1
Identification of DElncRNAs in HCC. (A)Heatmap of DElncRNAs in HCC and normal liver tissues from the nine GSE microarrays. (B) Volcano plot for
the DElncRNAs identified from TCGA dataset. (C) Intersection of DElncRNAs from GEO and TCGA databases. Row and column represent DElncRNAs/
DEmRNAs and tissue samples, respectively. The color scale indicated the expression level of DElncRNAs. Red and blue represent up- and downregulation,
respectively.
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correlation analysis was subsequently implemented to investigate
the correlation of HCC prognostic-related lncRNAs and m6A-
related regulators.

2.6 Validation of the expression and
evaluation of the clinical significance of
lncRNA AC115619.1 for HCC patients in
public databases

To further validate the expression of the identified hub lncRNA
AC115619.1 in HCC tumor tissues compared to adjacent normal
tissues, the expression profiles of several GSE datasets were
downloaded and analyzed. The clinicopathologic and prognostic
information on patients from TCGA database was then used to
determine the clinical significance of lncRNA AC115619.1. The
differences among the clinicopathologic factors, including tumor

grade, tumor invasion, and TNM stage, were evaluated.
Kaplan–Meier survival curve analysis was conducted to
demonstrate the overall survival (OS) of patients with different
expression levels of AC115619.1 using the survival R package.

2.7 CeRNA regulatory network and
functional enrichment analysis

A ceRNA network was constructed to explore the regulatory
relationship. The miRcode database (http://www.mircode.org/)
was applied to predict the target miRNAs of AC115619.1. Potential
targetmRNAs of themiRNAswere then screened usingmiRDB (http://
www.mirdb. org/), miRTarBase (https://mirtarbase.cuhk.edu.cn/), and
TargetScan databases together. To acquire more accurate target
mRNAs, target mRNAs were subsequently filtered by intersecting
with HCC-related differentially expressed genes from TCGA

FIGURE 2
Identification of prognosis-related DElncRNAs. (A) Forest plot of univariate Cox regression analysis. (B) Heatmap of DElncRNAs from univariate Cox
regression. (C, D) LASSO Cox analysis for DElncRNAs from univariate Cox regression. (E) Forest plot of multivariate Cox regression analysis. (F) Box plot
and (G) forest plot for the six prognostic lncRNAs from multivariate Cox regression analysis.
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FIGURE 3
Validation of the clinical significance of the prognostic risk model. (A) Kaplan–Meier curves depicted the overall survival of patients in the training
cohort from TCGA databases. Patients were divided into low- and high-risk groups based on the median value of the risk score. (B) Distributions of risk
scores (upper) and survival status (lower) of HCC patients in the training cohort. (C) Expression heatmap of the six prognostic lncRNAswith low- and high-
risk scores in the training cohort. (D) ROC curve of the prognostic signature for predicting the 1/3/5-year survival in the training cohort. (E) Overall
survival curve of patients with low- and high-risk scores in the test cohort. (F) Distributions of risk scores (upper) and survival status (lower) of HCC
patients in the test cohort. (G) Expression heatmap of the six prognostic lncRNAs with low- and high-risk scores in the test cohort. (H) ROC curve of the
prognostic signature for predicting the 1/3/5-year survival in the test cohort.
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database (|log2FC|> 2, p< 0.01). The lncRNA–miRNA–mRNAceRNA
network was visualized using Cytoscape software. Gene Ontology (GO)
analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis were performed to investigate the functions and
potential signaling pathways of differentially expressed lncRNAs using
the R package “clusterProfiler.” GO includes the following three major
groups: biological processes, cellular components, and molecular
functions.

2.8 Estimation of immunocyte infiltration
and analysis of drug sensitivity

The CIBERSORT algorithm was applied to estimate the
proportion of immune cell infiltration in 22 human
hematopoietic cell phenotypes between high- and low-
AC115619.1 groups. To improve the clinical application of
AC115619.1, the pRRophetic (https://github.com/paulgeeleher/

FIGURE 4
Clinical significance analysis of the risk score and the correlation of m6A and lncRNAs. Forest map of (A) univariate and (B) multivariate Cox
regression analyses in the training cohort. Forest map of (C) univariate and (D)multivariate Cox regression analyses in the test cohort. (E) Univariate Cox
regression analysis of the prognostic value ofm6A-related regulators. (F)Heatmap of prognosticm6A regulators in tumor tissues and normal liver tissues.
(G) Expression correlation between the six prognostic DElncRNAs and 12 m6A regulators. (H) Expression correlation between the lncRNA
AC115619.1 and RBMX determined by Pearson’s coefficient analysis.
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pRRophetic) R package was used to predict the sensitivity of
chemotherapeutic and targeted agents between high- and low-
AC115619.1 patients. The half-maximal inhibitory concentration

(IC50) of the targeted and chemotherapeutic agents for each patient
were predicted using the R package based on the pretreated gene
expression and drug sensitivity data on cancer cell lines.

FIGURE 5
Validation of the expression and clinical value of lncRNA AC115619.1. (A–D) Validation of the low expression of lncRNA AC115619.1 in the public GSE
microarray of the GEO database. (E–G) Correlations between AC115619.1 expression and tumor grade, stage, and invasion. (H) Overall survival
Kaplan–Meier curves of patients with low and high expression of AC115619.1.
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2.9 Tissue collection

A total of 43 tumor tissue samples and paired adjacent normal
tissue samples were randomly collected from HCC patients who
were admitted to The First Affiliated Hospital of Guangxi Medical
University. All specimens were routinely processed for a
pathological diagnosis of surgeries according to the WHO
classification. No patients received radiotherapy, chemotherapy,
or immunotherapy before the samples were collected. The study
was approved by the Research Ethics Committee of Guangxi
Medical University. Informed consent was obtained from all
participating patients.

2.10 Quantitative real-time reverse
transcription polymerase chain reaction
(qRT-PCR)

The total RNA was isolated using the TRIzol reagent
(Invitrogen), and cDNA was synthetized using the
PrimeScript™ Kit (TaKaRa Bio Inc., Dalian, China),
following the manufacturer’s instructions. qRT-PCR was
performed in triplicate using SYBR Green fluorescent-based
assay (GeneCopoeia, Guangzhou, China) on a ViiATM6 RT-
PCR system (Applied Biosystems, Carlsbad, CA). The primers
used for real-time PCR are as follows: AC115619.1 forward: 5′-
TGATGATATCGACGTGAGGTTCC-3′, reverse: 5′-ATCAAA
CACGTTATCCTTGAGTCC-3’; GAPDH forward: 5′-CGG
AGTCAACGGATTTGGTCGTAT-3′, reverse: 5′-AGCCTT
CTCCATGGTGGTGAAGAC-3’. Relative mRNA expression

levels were calculated by the 2−ΔΔCt method and were
normalized to the internal control of GAPDH.

2.11 Immunohistochemistry

Tissues were fixed in 10% formalin, dehydrated using graded
concentrations of ethanol, and embedded in paraffin. Then, 4-
μm-thick sections were processed for analyses. Dewaxing,
hydrating, and heat-mediated antigen retrieval with
pH 9.0 Tris/EDTA buffer were performed. Subsequent
antigen–antibody reactions and IHC staining were
performed, according to the protocol of a commercial
detection kit (ZSGB-BIO, Beijing, China). Antibodies for
RBMX were diluted to recommended concentrations,
following the manufacturer’s protocol (Abcam, Cambridge,
United Kingdom). The immunoreactivity-tested protein was
scored according to the percentage of positive staining cells
and staining intensity, as described previously (Deng et al.,
2020).

2.12 Cell culture and transfection

HCC cell lines SNU-449 and HepG2 were obtained from Procell
Life Science and Technology (Wuhan, China) and cultured in
RPMI-1640 or Dulbecco’s modified Eagle’s medium (DMEM)
(Invitrogen, Carlsbad, CA) containing 10% fetal bovine serum
(Procell Life Science and Technology). The cells were grown in a
cell incubator with 5% CO2 at 37°C. Full-length AC115619.1 was
amplified by PCR and cloned into the expression vector pcLV3 for
AC115619.1 overexpression. The pcLV3–AC115619.1 plasmid or an
empty vector was transfected into SNU-449 and HepG2 cells using
the Lipofectamine 3000 reagent (Invitrogen). The cells were
harvested 48 h after transfection for further analysis.

2.13 Cell viability assay

The cells were equivalently pipetted into a 96-well plate 48 h after
transfection, and the cell viability was determined using the Cell
Counting Kit-8 (CCK-8) (Dojindo Molecular Technologies, Inc.,
Tokyo, Japan) for different time points. Briefly, 10 μL of CCK-8
was added to each well, and the absorbance was measured at 450 nm.

2.14 5-Ethynyl-20-deoxyuridine (EdU) assay

We used an EdU kit (RiboBio, Guangzhou, China) to detect the
proliferation ability of HCC cells. The cells were seeded and grown
in a 96-well plate with a density of 5 × 103 cells. Then, the cells were
incubated with 50 μM EdU buffer at 37°C for 2 h, and then fixed
and washed at room temperature. The cells were then
permeabilized with 0.5% Triton X-100 for 10 min and
subsequently reacted with the Apollo® staining solution for
0.5 h in the dark. The cells were washed, and then, Hoechst
33342 was added to stain the nuclei. Images were visualized
and captured using a fluorescence microscope.

TABLE 2 Correlation of AC115619.1 expression in HCC tissues with patients’
clinicopathologic features from TCGA dataset.

Clinicopathologic variable AC115619.1 expression
(n = 363)

Low High p-value

Age (years)
≤61 95 91

0.714
>61 87 90

Gender
Men 121 123

0.765
Women 61 58

Grade
G1~2 105 125

0.013
G3~4 76 52

Tumor invasion
T1~2 119 151

<0.001
T3~4 63 27

Lymph node metastasis
No 125 121

0.974
Yes 2 2

Distant metastasis
No 129 132

0.553
Yes 2 1

TNM stage
I ~ II 111 142

<0.001
III ~ IV 58 28
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2.15 Cell migration assay

Wound healing assay was used to detect the migration ability. Cells
were seeded into 6-well plates after transfection with the plasmid for
48 h. Then, the confluent cell monolayers were scratched straightly
using a 200-μL pipette tip. The cells were washed with PBS and cultured
in freshmedium containing 1%FBS and 1%BSA for 72 h. Images of the
scratched cells were captured using an inverted microscope.

2.16 Transwell invasion assay

Matrigel-coated upper inserts containing polycarbonate filters with a
pore size of 8 μm (Corning, Tewksbury, MA) were used to assess the cell
migration ability. The cells were suspended in 200 μL of serum-free
DMEM or RPMI 1640 and cultured in the upper chambers and

incubated at 37°C for 48 h, while the lower chambers were covered
with DMEM or RPMI 1640 containing 10% FBS. The cells which
penetrated the filter were fixed with methanol and then stained with
0.1% crystal violet hydrate solution. Images of the invaded cells were
captured using an inverted microscope.

2.17 Statistical analysis

Statistical analysis was performed using SPSS software (version
21.0, SPSS Inc., Chicago, IL). The continuous variable data are presented
as the means ± standard deviations (SDs). Median survival time, log-
rank p-value, adjusted p-value, 95% confidence interval (CI), and hazard
ratio (HR) were calculated using the Kaplan–Meier and Cox
proportional hazard regression models. The χ2 test was performed to
compare the categorical variables assessing the pathological and clinical

FIGURE 6
Functional enrichment analysis of AC115619.1. (A) ceRNA network of AC115619.1 (red), its target miRNAs (blue), and corresponding target mRNAs
(green). (B)GeneOntology (GO) enrichment and (C) KEGG pathway analyses of AC115619.1. Dot size represents the count of relative genes, and the color
represents the p-value.
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characteristics. The differences between the experimental groups were
analyzed using Student’s t-test or one-way ANOVA. p < 0.05 was
considered to be statistically significant.

3 Results

3.1 Identification of DElncRNAs in HCC
patients

A total of 142 pairs of samples of HCC patients from nine
GEO microarray datasets were enrolled to determine the
expression level of lncRNAs in HCC tumor tissues and
adjacent normal liver tissues. As shown in the heatmap given
in Figure 1A, 51 upregulated lncRNAs and 58 downregulated
lncRNAs in the GEO database were identified (|log2FC|>1, p <
0.05). Meanwhile, we identified 322 dysregulated lncRNAs
(35 upregulation and 287 downregulation) in 374 HCC

tumor samples and 50 normal liver tissues obtained from
TCGA database (Figure 1B, |log2FC|>1, p < 0.05). DElncRNAs
from the two platforms were then converged, and we finally
obtained 32 lncRNAs which were significantly dysregulated in
both GEO and TCGA databases (Figure 1C).

3.2 Prognostic analysis of DElncRNAs

Combining with the prognostic information, univariate Cox
regression analysis was then performed to screen prognosis-related
lncRNAs from the aforementioned 32 dysregulation lncRNAs in
both datasets. Finally, 12 lncRNAs were found to be correlated with
the prognosis of HCC patients in both datasets (Figure 2A, p < 0.05).
As shown in the forest plot (Figure 2A), LINC02428, AC008549.1,
AC115619.1, and LINC02362 were protective factors with HR < 1 in
HCC patients, while AC092171.2, GIHCG, CRNDE, ST8SIA6-AS1,
AL365181.3, LINC02163, LINC00665, and CASC9 were risk factors

FIGURE 7
Prediction for the drug IC50 value of AC115619.1 in HCC. (A–I) Differential IC50 values of chemotherapy and targeted therapy responses in high and
low expression of AC115619.1. The high expression of AC115619.1 was related to a higher IC50 value for most chemotherapy and targeted drugs.
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with HR > 1 (Figure 2A). The heatmap showed the altered
expression of the aforementioned 12 prognosis-related lncRNAs
in TCGA dataset (Figure 2B). We performed LASSO Cox analysis
based on the 12 prognostic lncRNAs to identify the prognostic
lncRNAs more accurately and filtered six key lncRNAs
(i.e., LINC02428, LINC02163, AC008549.1, AC115619.1, CASC9,
and LINC02362) (Figures 2C,D) using a dimensionality reduction
method. Then, a multiple stepwise Cox regression analysis was
further conducted to assess which lncRNA contributed most to
the prognosis of HCC patients when combined together. The results

showed that AC008549.1, AC115619.1, and CASC9 were suggested
to be an independent prognostic factor of HCC patients (p < 0.05,
Figure 2E). Expression levels of these lncRNAs in tumor tissues
compared to normal tissues were also displayed (Figures 2F,G).

3.3 Establishment of a prognostic risk model

Based on each coefficient of the six prognostic lncRNAs in the
multivariate Cox regression model, a risk score was calculated for

FIGURE 8
Drug sensitivity and immunocyte infiltration analysis of AC115619.1. (A–I) Detailed correlation of drug sensitivity and the expression of AC115619.1.
(J) Box plot of 22 hematopoietic cell phenotypes between differential expression of AC115619.1.
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each HCC patient in TCGA dataset. We then established a novel
prognostic signature with the six lncRNAs. Patients in both
training and test cohorts were divided into low- and high-risk
subgroups, according to the median value of risk scores.
Kaplan–Meier survival curves showed that HCC patients with
high-risk scores had poor prognosis (Figures 3A,E). Survival
status distributions suggested that patients in the high-risk
score group suffered from higher mortality rates than low-risk
score patients (Figures 3B,F). The heatmap revealed that the
expression levels of prognosis-related lncRNAs were higher than
those in patients with a low-risk score (Figures 3C,G). ROC
curves were also performed to evaluate the predictive accuracy of

this prognostic risk model, which demonstrated that prognostic
lncRNAs harbored a potential ability to predict the OS (training
cohort: 1-year AUC = 0.711 and test cohort: 1-year AUC = 0.743;
Figures 3D,H). Univariate Cox regression was also utilized to
analyze the prognostic value of the risk score and the patient’s
clinical characteristics, including age, gender, grade, and stage.
The results revealed that the stage and risk score of our model
were positively correlated with poor prognosis in HCC patients
(HR > 1, p < 0.05; Figures 4A,C). Moreover, multivariate Cox
regression indicated that the stage and risk score were
independent prognostic factors for HCC patients (p < 0.05;
Figures 4B,D).

FIGURE 9
AC115619.1 was negatively related to RBMX and inhibited the progression of HCC. (A) Downregulation of AC115619.1 was validated by qRT-PCR in
local HCC samples. Fold changes are analyzed using the formula, 2- (△△CT (tumor/adjacent normal tissue)). (B) Representative IHC pictures of RBMX expression in
HCC tumor and adjacent normal liver tissues (original magnification: ×200). (C) Transfected efficiency of the AC115619.1 plasmid in HCC cells detected
by qRT-PCR. (D) Cell viability of HCC cells after AC115619.1 overexpression detected by CCK8 assay. (E) EdU assay displayed the proliferating ability
of HCC cells. (F) Migration ability determined by wound healing assay. (G) Invasion ability determined by transwell assay.
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3.4 Correlation analysis of prognostic
lncRNAs and m6A-related regulators

Emerging evidence has shown that RNA modification plays an
important role in the expression and function of lncRNA. N6-
methyladenosine (m6A) is the most abundant modification of RNA,
and m6A regulators contribute to HCC by regulating various biological
processes. To elucidate the relativity of m6Amethylation and prognosis-
related lncRNAs, we performed univariate Cox regression to screen the
prognostic m6A regulators in HCC patients from TCGA dataset. The
results showed that 12 m6A regulators were significantly correlated with
the prognosis of HCC patients (Figure 4E, p < 0.05), and the heatmap
depicted their expression alteration in tumor tissues and normal tissues
(Figure 4F). Pearson’s correlation coefficient was further conducted to
analyze the relationship between prognostic m6A-related regulators and
six prognostic lncRNAs obtained from the prognostic signature
(Figure 4G). The m6A-related regulator RBMX was found to be
significantly correlated with the prognostic lncRNA AC115619.1
(Figure 4H; cor = −0.46, p = 3.8e-20).

3.5 Validation of the potential significance of
the hub lncRNA AC115619.1 in public
databases

Since AC115619.1 has significantly contributed to HCC
prognosis, is correlated with the m6A-related regulator RBMX
tightly, and has never been reported in HCC, we selected
AC115619.1 as a hub lncRNA for further investigation. Then, four
datasets from the GEO database were used to validate the expression
of lncRNA AC115619.1 in HCC patients. GSE84004, GSE93789,
GSE115018, and GSE138178 datasets all showed that the
expression of lncRNA AC115619.1 in HCC tumor tissues was
significantly lower than that in normal tissues (Figures 5A–D; p <
0.05). We further analyzed the association between high and low
AC115619.1 expression and the clinicopathologic characteristics of
HCC patients obtained from TCGA database. As shown in Table 2,
AC115619.1 expression was associated with tumor grade (p = 0.013),
tumor invasion (p < 0.001), and TNM stage (p < 0.001). However,
AC115619.1 expression was not associated with age (p = 0.714),
gender (p = 0.765), lymph node metastasis (p = 0.974), and distant
metastasis (p = 0.553, Table 2). We also verified the clinical
significances in HCC patients with different subsets obtained from
TCGA database. The expression of lncRNAAC115619.1 was found to
be correlated negatively with tumor grade, tumor invasion, and,
partly, TNM stage (Figures 5E–G). Additionally, the prognostic
value of lncRNA AC115619.1 in predicting the patient’s OS was
estimated, as shown in Figure 5H. The Kaplan–Meier curve showed
that HCC patients with high AC115619.1 expression had a better OS
obviously (Figure 5H; p < 0.05; HR = 0.56, 95% CI: 0.39–0.79). These
data indicated a tumor suppressor role of AC115619.1 in HCC.

3.6 Construction of a ceRNA network and
functional enrichment analysis

We also constructed a ceRNA network through the miRcode
database to explore the potential interaction miRNAs of

AC115619.1. We found that there were 11 miRNAs that
possessed interaction positions with lncRNA AC115619.1
(Supplementary Figure S1A). The target mRNAs of miRNAs
which potentially interact with AC115619.1 were further
screened by combining the miRDB, miRTarBase, and
TargetScan databases together. For predicting the target mRNAs
more accurately, these screened mRNAs were further intersected
with HCC differentially expressed mRNAs (DEmRNAs) obtained
from TCGA database. A total of five miRNAs, namely, miR-212-3p,
miR-129-5p, miR-301b-3p, miR-449c-5p, and miR-137, which
might regulate the 60 DEmRNAs, were finally identified
(Figure 6A, |log2FC|>2, p < 0.01). To further investigate the
biological insights and pathway of lncRNA AC115619.1, we
performed GO and KEGG analyses. GO annotation revealed
that the biological processes of AC115619.1 were primarily
associated with ATPase activity, transcription co-regulator
activity, and tubulin binding (Figure 6B). The KEGG pathway
analysis showed that AC115619.1 was involved in the pathway
of endocytosis, cell cycle, and spliceosome (Figure 6C).
Additionally, genes/enzymes from the most remarkable
enrichment cell cycle pathway were negatively correlated with
the expression of AC115619.1 in HCC (Supplementary Figure S1B).

3.7 Patient responses to chemotherapy and
targeted therapy, and the immunocyte
infiltration landscape of AC115619.1

To promote the potential clinical application, we predicted
the IC50 value of commonly used chemotherapeutic and targeted
agents in high and low AC115619.1 expression groups based on
the algorithm provided in the pRRophetic R package. The IC50

values of 5-fluorouracil, gemcitabine, paclitaxel, rapamycin,
imatinib, sorafenib, sunitinib, and vinorelbine were higher in
the high AC115619.1 expression group of HCC patients,
indicating that HCC patients with low AC115619.1 expression
were more sensitive to these eight drugs (Figures 7A–I). The
detailed correlation was also provided (Figures 8A–I). Emerging
evidence indicates that the immune microenvironment plays an
important role in tumor progression. We also investigated the
tumor immunocyte infiltration proportion between high and low
AC115619.1 expression patients using the CIBERSORT
algorithm. The results showed that memory B cells (p =
0.017), CD4 memory resting T cells (p < 0.001), T follicular
helper cells (p = 0.002), and M0 macrophages (p < 0.001) were
significantly enriched in the high and low AC115619.1 subgroups
(Figure 8J).

3.8 Validation of the lncRNA AC115619.1 and
RBMX in the local cohort

To validate the expression of AC115619.1 in local samples,
we detected its expression level in our collected 43 pairs of HCC
samples using the qRT-PCR assay. Our results demonstrated
that AC115619.1 was downregulated in most HCC tumor
samples compared to adjacent normal tissues (Figure 9A).
Among the 43 pairs of HCC patient samples, the expression
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of AC115619.1 in 27 normal liver tissues was higher than that in
HCC samples (Figure 9A). To further evaluate the correlation
between AC115619.1 and m6A-related regulator RBMX,
immunohistochemistry staining was performed in these
43 pairs of HCC samples. As shown in Figure 9B, typical
pictures of IHC staining revealed that RBMX was localized in
the cell nucleus and the expression of RBMX in tumor tissues
was higher than that in adjacent normal liver tissues, which was
negatively correlated with the AC115619.1 expression in HCC
(Figure 9B).

3.9 Overexpression of AC115619.1 inhibited
the proliferation, migration, and invasion of
HCC cells

Since AC115619.1 expression was downregulated in HCC
tissues and low AC115619.1 expression is closely related to a
poor prognosis of HCC patients, we used SNU-449 and
HepG2 cell lines for further experiments. After transfection with
the plasmid, the expression level of AC115619.1 was significantly
upregulated, as confirmed by qRT-PCR (Figure 9C). CCK-8 and
EdU assays demonstrated that overexpression of
AC115619.1 inhibited the proliferation of HCC cells (Figures
9D,E). In addition, the wound healing migration and transwell
invasion experiments revealed that overexpression of
AC115619.1 repressed the migration and invasion abilities in
both SNU-449 and HepG2 cells (Figures 9F,G). Taken together,
our results suggested that AC115619.1 inhibited the progression
of HCC.

4 Discussion

HCC is characterized with a low diagnosis rate and rapid
progression at the early stage. Most patients are diagnosed at an
advanced stage and lost the opportunity to receive curative surgery
treatment. Due to the insidiousness and heterogeneity of HCC, there
is no appropriate biomarker to accurately predict clinical prognosis.
Therefore, developing novel biomarkers is important to improve the
clinical outcomes of HCC patients.

In recent years, many biomarkers have been identified, owing to
the great development of microarray and high-throughput
sequencing technologies. LncRNAs have been investigated and
proposed to be potential diagnostic and therapeutic biomarkers
in human malignancies (Iaccarino and Klapper, 2021). In HCC, the
aberrant expression of lncRNAs has been reported to be a potential
biomarker for early diagnosis and predicting the prognosis
(Dickson, 2016; Huang et al., 2020). For instance, lncRNA-
D16366 was found to be downregulated in both tumor tissues
and serum samples of HCC patients, which implied a significant
value of diagnostic and prognosis prediction with its aberrant
expression (Liu et al., 2014; Chao and Zhou, 2019). The lncRNA
AC099850.3 was reported to be overexpressed and accurately
predicted the prognostic outcomes of HCC patients (Wang et al.,
2022). The present study identified 32 HCC-related DElncRNAs
overlapping from 516 HCC patients obtained from GEO and TCGA
datasets. Six lncRNAs (LINC02428, LINC02163, AC008549.1,

AC115619.1, CASC9, and LINC02362) were screened by
univariate Cox and LASSO regression and were then selected to
construct a novel prognostic signature. Our results showed that
patients with a high-risk score in the prognostic signature had a
better survival rate, and the risk score was an independent
prognostic factor for HCC patients in both training and test
cohorts. This might provide a sensitive and specific model in
predicting the patient’s outcomes. Among the six lncRNAs in the
prognostic model, LINC02163 and CASC9 were found to be
upregulated in various cancers including HCC. LINC02163 and
CASC9 were closely associated with the patient’s survival and acted
as a candidate prognostic biomarker with their significant values
(Dong et al., 2018; Qin et al., 2020; Qi et al., 2021; Tian et al., 2021).
LINC02362 and AC008549.1 were identified to be tumor-inhibitory
lncRNAs and contributed to the patient’s survival of HCC, while the
lncRNA AC008549.1 was classified as a pyroptosis-related signature
(Wang et al., 2022; Li et al., 2022). AC115619.1 was reported to be a
ferroptosis-related lncRNA and showed to be an independent
prognostic factor in gastric adenocarcinoma (Fu et al., 2020; Cai
et al., 2022). Consistently, our results supported the aberrant
expressions of the six lncRNAs in previous reports. Our
multivariate Cox regression identified three lncRNAs
(AC008549.1, AC115619.1, and CASC9) to be independent
factors in HCC.

Since there is no report of AC115619.1 in HCC yet, we selected it as
a hub lncRNA for further exploration. The clinical significance and
expression level of AC115619.1 were validated both in public datasets
and local HCC samples. To analyze its targeted miRNAs and potential
pathways, a suite of bioinformatics methods was executed subsequently.
Meanwhile, we analyzed the correlation between the differential
expression of AC115619.1 and immune cell infiltration. The drug
sensitivity of AC115619.1 was also provided to predict the IC50

value of chemotherapeutic and targeted agents for each patient. The
results showed that the high expression of AC115619.1 had higher IC50

values in most common drugs used in HCC. In addition, we explored
and validated an inhibitory biological function of AC115619.1 in HCC
cells. Overexpression of AC115619.1 by the plasmid inhibited the
proliferation, migration, and invasion in vitro. Combined with the
aforementioned results, AC115619.1 exerted its potential therapeutic
value by serving as an independent prognostic factor and tumor
suppressor in HCC.

N6-Methyladenosine (m6A), the most popular and common
modification of mRNA, exerts a tremendous effect on
posttranscriptional regulation (Zhang et al., 2020). In recent years,
evidence revealed that m6A modification exists on non-coding RNA,
including lncRNAs, and plays a critical role in deciding the fate of
lncRNAs (Chen et al., 2020). The regulation effects of m6Amodification
might be attributed to the m6A regulators, which include
methyltransferases, demethylases, and binding proteins. M6A
regulators have been found to be the key component of m6A
modification and play an essential role in the progression of human
malignancies (Wang et al., 2017; Gao et al., 2021). It is reported that
overexpression of METTL3 (m6A writer) increased the m6A level of
colon cancer by enhancing the expression and protein binding effect of
lncRNA RP11. As a result, METTL3 promoted the metastasis of colon
cancer (Wu et al., 2019). The abnormal increase in m6A regulators has
been revealed to be involved in the progression, drug sensitivity, and
immune response of HCC, suggesting that targeting m6A-modified
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lncRNAs might be a potential therapy strategy for HCC (Chen et al.,
2020; Lin et al., 2020). METTL3 upregulated the expression of
LINC00958 and LNCAROD to regulate the malignant phenotype of
HCC (Zuo et al., 2020; Jia et al., 2021). KIAA1429, a component of the
m6Amethyltransferase complex, promoted the growth andmetastasis of
HCCbymediatingm6Amodification onGATA3 pre-mRNA (Lan et al.,
2019). Herein, we identified 12 m6A regulators which were significantly
related to the prognosis of HCC patients by univariate Cox regression
analysis. Then, we revealed the correlation between the 12 m6A
regulators and the six lncRNAs in the prognostic model and found
that RBMX was the most correlated with the prognostic lncRNA
AC115619.1. RBMX has been reported to be overexpressed in HCC
tissues and cell lines, favoring malignant behavior and sorafenib
resistance of HCC (Song et al., 2020). Similarly, our analysis showed
that RBMX was highly expressed in HCC tumor tissues and negatively
associated with the expression of lncRNAAC115619.1. Consistently, our
results from the local cohort also confirmed the high expression of RBMX
and the negative association with AC115619.1. Then, we hypothesized
that the abnormal expression of lncRNA AC115619.1 might result from
an m6A modification pattern through RBMX. However, the detailed
relationship and whether m6A modification affects AC115619.1 need to
be explored in the future.

In conclusion, this study identified and established a risk
signature of HCC-related lncRNAs systematically, which could be
applied to predict the prognosis of HCC patients. A novel lncRNA
AC115619.1 was first identified as an independent prognostic factor
for HCC patients, revealing an inhibitory effect of AC115619.1 and
its correlation with RBMX. Our comprehensive evaluation of
lncRNA provides a new therapeutic strategy for HCC patients.
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Gastric cancer (GC) is a highly prevalent and deadly malignant neoplasm
worldwide. Currently, long non-coding RNAs (lncRNAs) have recently been
identified as crucial regulators implicated in GC development and progression.
Dysregulated expression of lncRNAs is commonly associated with enhanced
tumor migration, invasiveness, and therapy resistance, highlighting their
potential as promising targets for clinical applications. This review offers a
comprehensive historical overview of lncRNAs in GC, describes the molecular
mechanisms, and discusses the prospects and challenges of establishing lncRNAs
as precision biomarkers.

KEYWORDS

long non-coding RNAs, gastric cancer, gastric carcinogenesis, historical overview,
molecular mechanisms, biomarkers

1 Introduction

Gastric Cancer (GC) is a significant public health challenge due to its high incidence and
mortality rates. The frequency of GC is correlated with biological sex, ethnicity, and
geographic regions. In 2020, the estimated number of new cases exceeded 1 million,
with approximately 768,793 associated deaths, encompassing both men and women.
Table 1 provides an overview of the prevalence of GC relative to other cancer types,
emphasizing its significance in the global burden of disease (Sung et al., 2021).

The leading causes established for the development of GC are replication errors,
environmental and hereditary factors. Among environmental factors, nutritional habits,
and infections by Helicobacter pylori and Epstein-Barr virus stand out (Tomasetti and
Vogelstein, 2015; Ashktorab et al., 2017; Tomasetti et al., 2017; Assumpção et al., 2020).

The advances in next-generation sequencing technologies have suggested that aberrant
expression of non-coding RNAs (ncRNAs) plays a critical role in GC. The discovery of
ncRNAs has revolutionized cancer research, opening paths for novel insights into tumor
biology. Previously, ncRNAs were thought to be by-products of transcription without
important biological significance. However, in the 1960s, the first speculations on the
regulatory function of RNA molecules emerged, and since then, they have been identified as
key players in various physiological and pathological processes.
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NcRNAs can be classified into two categories based on their
length: short ncRNAs and long ncRNAs (lncRNAs). Short ncRNAs
in the context of GC have been extensively studied, while there is a
growing interest in exploring the potential clinical applications of
lncRNAs (Denaro et al., 2019; Ahmad et al., 2021).

Based on data obtained from PubMed from 2010 to 2023,
2,456 articles were published investigating the relationship
between GC and lncRNAs. GC stands out among the top five
cancer types frequently associated with lncRNAs, as indicated in
Table 1. These studies have made significant advancements in
establishing the connections between lncRNAs and essential
biological processes in GC, including cell proliferation, metabolic
alterations, metastasis, and therapy resistance (Cao et al., 2021; Chen
Y. et al., 2021; Ding et al., 2021).

This review explores the fundamental characteristics and
historical perspective of lncRNAs in GC pathogenesis.
Specifically, we focus on their regulatory roles in proliferation,
invasion, epithelial-mesenchymal transition, and therapeutic
response. Furthermore, we address the prospects and challenges
associated with the clinical implementation of lncRNAs as precision
biomarkers. By thoroughly examining these aspects, we aim to
provide new insights into the potential use of lncRNAs as
therapeutic targets and promising biomarkers for the effective
GC management.

2 Key biological features and
mechanisms of LncRNAs

The lncRNAs represent the most abundant group of ncRNAs,
comprising transcripts longer than 200 nucleotides with minimal or
absent protein-coding potential (Dahariya et al., 2019; Hartford and
Lal, 2020). According to the manually curated GENCODE
v41 database, the total estimated number of human lncRNA
genes is 19,095 (54,291 transcripts). Other lncRNA databases
such as NONCODE and LNCipedia proved higher estimates.
NONCODE reports 96,411 human lncRNA genes and
173,112 transcripts, while LNCipedia suggests 56,946 and
127,802 transcripts (Volders et al., 2019; Zhao et al., 2021).

Initially, the description of lncRNAs was limited to those transcribed
from intergenic regions. However, it is now understood that lncRNAs
can originate from various regions within the genome, including the
mitochondrial genome, DNA regulatory elements, 3′and 5′untranslated

regions (UTRs), and nuclear genomic loci in both sense and antisense
orientations relative to protein-coding genes (Dahariya et al., 2019;
Mattick et al., 2023).

Similar to messenger RNA, most lncRNAs are transcribed by RNA
polymerase II (RNAPII) and undergo splicing, polyadenylation, and
5′cap addition. Furthermore, lncRNAs typically exhibit a reduced
number of exons and are expressed at lower levels than coding
RNAs (Mattick et al., 2023). LncRNAs can undergo diverse
processing mechanisms, such as non-sequential intron splicing (back
splicing) to form circular RNAs (circRNAs) or capping at both ends by
small nuclear RNAs (snoRNAs) (Xing and Chen, 2018). In some
instances, the lncRNAs undertake post-transcriptional cleavage,
leading to the formation of a helix at the 3′end as an alternative
mechanism to protect against nucleolytic cleavage (Schmitz et al.,
2016; Schlackow et al., 2017; Wang et al., 2017; Dahariya et al., 2019).

The primary sequences of lncRNAs show limited conservation
across different species or even within the same species, making
functional characterization difficult. Proteins are commonly
categorized according to conserved domains and functional
mechanisms, but this does not apply to lncRNAs. An example is
observed in the lncRNAs Xist and Kcnq1ot1, which both suppress
gene expression in cis by recruiting the Polycomb Repressive
Complex (PRC). Despite their shared mechanism, these lncRNAs
display significant nucleotide sequence differences. This divergence
suggests that factors beyond nucleotide sequences are crucial in
controlling their regulatory activities (Fang and Fullwood, 2016;
Kirk et al., 2018; Dahariya et al., 2019).

In contrast, the structural features of lncRNAs are highly
conserved and considered relevant to determine their biological
function. The formation of thermodynamically stable structures
enables lncRNAs to interact with various biomolecules. These
interactions involve RNA, DNA, and proteins, allowing lncRNAs
to exert regulatory control over gene expression at multiple levels,
including pre-transcriptional, transcriptional, post-transcriptional,
translational, and post-translational processes. LncRNAs exert
regulatory control through several molecular mechanisms, which
can be categorized into distinct archetype (Zhang P. et al., 2019;
Nandwani et al., 2021). Below are described some of them.

I) Decoy lncRNAs sequester specific regulatory factors, including
transcription factors, RNA-binding proteins (RBPs), and
catalytic proteins. LncRNAs acting as miRNA sponges are
also included in this group.

TABLE 1 The top 5 cancer types worldwide, considering estimated cases and deaths for both men and women.

Cancer site Incidence Mortality PubMed

No. of cases % of all sites No. of deaths % of all sites No. of publicationsa

Female Breast 2,261,419 11.7 684,996 6.9 3,277

Lung 2,206,771 11.4 1,796,144 18.0 4,169

Prostate 1,414,259 7.3 375,304 3.8 1,303

Colon 1,148,515 6.0 576,858 5.8 3,238

Stomach 1,089,103 5.6 768,793 7.7 2,456

aPublications related to the role of lncRNAs in various types of cancer.

Source: Adapted of Sung et al., 2021.
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II) Scaffolds lncRNAs serve as building blocks of
ribonucleoprotein complexes (RNP) complexes that regulate
gene expression through epigenetic and transcriptional control.

III) Signals lncRNAs are expressed at specific time points and
subcellular regions, where they act as molecular signaling.
Their role involves interacting with chromatin-modifying
enzymes, such as histone methyltransferases, in order to
silence target genes or block their transcription via
chromatin remodeling.

IV) Guide lncRNAs recruit transcription factors, RNAPII, and
RNPs to specific loci, with the targeting being dependent on
the biological context.

Detecting lncRNAs in human circulation further enhances their
potential as targets for clinical applications. Extensive research has
revealed the presence of lncRNAs in body fluids, including
peripheral blood, gastric juice, and saliva (Anfossi et al., 2018).
Notably, Shao et al. (2016) have demonstrated that the levels of
lncRNAs in plasma are unchanged for up to 8 freeze-thaw cycles
under different incubation temperatures (4°C and 20°C). The
stability can be explained by their packing in extracellular
vesicles such as apoptotic bodies, microvesicles, and exosomes.
Circulating exosomal lncRNAs have emerged as promising
biomarkers for GC (Zhang et al., 2021; Badowski et al., 2022;
Sun et al., 2023).

3 A historical perspective on the role of
lncRNAs in GC

The investigation of lncRNAs in GC is a relatively recent field of
research, originating from early studies published in the late 1990s.
However, for over a decade, the scientific community primarily
directed its attention towards investigating lncRNAs in other cancer
types. It was not until 2012 that substantial interest emerged in
unraveling the involvement of these regulatory elements in the

progression of gastric tumors. Figure 1 illustrates a timeline of
major GC-related lncRNAs research milestones.

The first paper to investigate the expression profiles of lncRNAs
in GC was published in 1997. Wu et al. (1997) evaluated the
H19 lncRNA and IGF2 gene in a group of 70 patients diagnosed
with GC, focusing on transcriptional expression, loss of imprinting,
and heterozygosity. Out of the patients assessed, 28 individuals
showed heterozygosity for the H19, but no significant associations
with clinicopathological features were detected.

Following this study, research involving lncRNA and GC
remained stagnant for a long time. It was not until 2012 that
interest in investigating these regulatory elements in this type of
tumor resumed. In that particular year, Yang et al. conducted a
comparative analysis of H19 expression in GC tissues and adjacent
tissues. They discovered that the overexpression of H19 is associated
with increased cell proliferation, whereas the suppression of these
lncRNA induces apoptosis in GC cell lines (Yang et al., 2012).

The first comprehensive analysis of global expression profiles of
lncRNAs in GC was published in 2013. From microarray mining
data in Gene Expression Omnibus, Cao et al. identified
88 differentially expressed lncRNAs between tumor and adjacent
non-tumour tissue. Among the most relevant lncRNAs in the
research, they found LINC00152 and PVT1. These two lncRNAs
were some of the most dysregulated in the GC. Furthermore, in a
validation dataset, these results were 59% similar, providing
substantial evidence for the functional significance of this class of
transcripts in the context of GC (Cao et al., 2013).

During the same period, parallel investigations utilizing high-
throughput RNA sequencing (RNA-seq) were underway. Park et al.
(2013), in a pioneering work, identified 31 intergenic lncRNAs
differentially expressed in GC, findings coincident with previous
work using microarray data (Park et al., 2013).

The increased levels of lncRNAs in GC tissues has prompted
investigations into their presence in the bloodstream of individuals.
In 2013, Arita et al. conducted a study to assess the expression of
H19, HOTAIR, and MALAT1 in plasma samples obtained from GC

FIGURE 1
Timeline highlighting the key milestones in lncRNA research related to GC.
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patients and healthy controls. Only H19 showed higher levels in GC
patients when compared to control, and a reduction in levels was
also observed in postoperative plasma (Arita et al., 2013).

Another potential avenue in the field of investigating lncRNAs is
a competing endogenous RNAs (ceRNA) hypothesis. From
bioinformatics analyses, Xia et al. (2014) identified that lncRNAs
may harbor microRNA response elements (MREs) and participate
in a complex ceRNA network. Understanding these regulatory
networks may be an alternative to developing new therapeutic
approaches (Xia et al., 2014).

In the following years, extensive clinical and in vitro studies were
conducted to elucidate the role of lncRNA in GC. Promising results
showed that aberrant expression of lncRNAs is associated with the
regulation of cell proliferation, invasion, apoptosis, response to
treatment, tumor metastasis, and poor prognosis (Wang et al.,
2014; Song et al., 2016; Zhang et al., 2017; Qin et al., 2018; Chen
et al., 2020; Sun et al., 2021).

Only in 2017, the first genome-wide lncRNA screening
analysis was published. The study was divided into four
phases: discovery, training, validation, and external, and it
brought together a total of 321 individuals. Microarray
analyses revealed several differentially expressed lncRNAs;
among them, five novel lncRNAs, TINCR, CCAT2, AOC4P,
BANCR, and LINC00857, were detected in tumor tissue
samples and pre and post-operative plasma. This signature
made it possible to distinguish with high precision and
sensitivity between GC patients, precancerous lesions,
gastrointestinal, stromal tumors, and healthy controls.
Additionally, this study demonstrated how lncRNA profiles
could be highly dynamic, providing a less invasive alternative
for GC monitoring and detection (Zhang et al., 2017).

Another significant advance in GC research was the
development of a molecular classification based on the
expression of 1,235 tumor-specific lncRNAs. Three clinically
relevant molecular subtypes were identified: L1, L2, and
L3 confirmed by microarray data analysis. The L3 subtype
showed a worse prognosis, potentially due to the abundance
of oncogenic lncRNAs, such as DUXAP8 and H19, associated
with tumor progression. These results emphasize the dynamic
nature of lncRNA expression and their utility as reliable
prognostic markers for GC (Chen Y. et al., 2021).

More recently, lncRNAs have also been associated with GC
metabolism. The metabolic profiles of individual tumors are highly
heterogeneous, and the molecular action of lncRNAs strongly
influences metabolic pathways. In a study published by Li and
Ma (2021), a signature of 1,539 metabolism-related lncRNAs was
identified, which allowed the classification of GC into two subtypes
with different drug sensitivities (Li and Ma, 2021).

4 Exploring the role of LncRNAs in the
regulation of GC development and
progression

Dysregulated expression of lncRNAs is a common occurrence in
cancers (Qian et al., 2020). In GC, these transcripts play a crucial role in
promoting carcinogenesis through the modulation of cellular
mechanisms, such as proliferation, stemness, tumor immune escape,

invasion, angiogenesis, and drug resistance of tumor cells (Zhang X.-Z.
et al., 2020; Gui et al., 2021; Jiang et al., 2021; Razavi et al., 2021; Sun
et al., 2023).

4.1 Emerging role of lncRNAs in GC invasion
and migration

Migration and invasion are essential mechanisms for cancer
progression (Friedl and Wolf, 2003). Recent studies have shed light
on the role of lncRNAs in regulating these processes by influencing
cytoskeleton reorganization (Tang et al., 2018; Zhang G. et al., 2019;
García-Padilla et al., 2022; Raei et al., 2022).

HOXA11-AS is a lncRNA implicated in the progression and
metastasis of GC cells and tissues. It exerts its effects by modulating
the miR-124-3-ITGB3 axis (You et al., 2021). ITGB3, a member of
the integrin family, is positively regulated in GC and plays a critical
role in focal contacts during cell migration by binding to
extracellular matrix (ECM) ligands (Zhu et al., 2019).

Another lncRNA, DANCR, has been associated with cell
migration and invasion in GC tissues. Its expression is positively
regulated through the interaction between Enhancer Of Zeste
2 Polycomb Repressive Complex 2 Subunit (EZH2) and histone
deacetylase 4 (HDAC4) (Mao et al., 2017). This interaction leads to
the epigenetic suppression of lncRNA-LET transcription.
EZH2 overexpression in GC cells contributes to the modulation
of PTEN and Akt phosphorylation, promoting epithelial-
mesenchymal transition. EZH2 also regulates the expression of
metalloproteinases, such as MMP-9, associated with aggressive
tumors in GC (Gan et al., 2018). Although no studies in GC
demonstrate the dynamics between lncRNA-EZH2-MMP, this
axis is a plausible candidate for future investigations aimed at
better elucidating the migration and invasion process.

The lncRNA XIST is linked to multiple carcinogenesis aspects
(Yang et al., 2021). Notably, in GC cell lines, XIST has been found to
promote invasion and migration via its role as a molecular sponge
for miR-337, which regulates the expression of JAK2 (Zheng W.
et al., 2020). The JAK-STAT3 signaling pathway has been previously
implicated in regulating cellular motility, invasion, and migration
(Teng et al., 2014). Thus, the involvement of XIST in this pathway
further underscores its potential oncogenic role in GC.

Recent investigation has linked the lncRNA AK025387 to
promoting cancer cell migration and invasion through the
MAPK signaling pathway. This study revealed a positive
correlation between AK025387 expression and the genes Raf-1,
MEK2, and ERK (Sun et al., 2020). The MEK/ERK pathway has
been activated in various types of tumors, including GC. Moreover,
the proteins involved in the MAPK pathway contribute to regulating
and activating MMPs and FAK, two essential proteins involved in
focal adhesion and extracellular matrix degradation (Yang and
Huang, 2015).

DSCR8, another lncRNA, promotes tumor cell progression in
GC patients by acting as a miR-137 sponge and positively regulating
Cdc42 expression. The reorganization of the cytoskeleton during
tumor cell migration and invasion is typically dependent on Cdc42-
mediated stimulation. DSCR8 is also closely associated with various
clinicopathological features of GC, including tumor size, metastasis,
and tumor-node-metastasis (TNM) stage (Chen Z. et al., 2021).
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Moreover, LINC00152 is an onco-lncRNA overexpressed in GC
tissues, particularly in patients with advanced GC, and associated
with poor patient outcomes. Knockdown of LINC00152 has been
shown to reduce the proliferative, migratory, and invasive capacity
of cell lines and the size of the xenograft tumor by regulating the
miR-193b-3p/ETS1 axis (Wang et al., 2019). These findings suggest
that lncRNAs are crucial in cancer development and progression
and may be potential therapeutic targets.

Functional studies conducted in vitro and in vivo have provided
valuable insights into the oncogenic properties of another lncRNA,
LINC00355. Specifically, LINC00355 has been identified as a
promoter of crucial cancer-related processes, including
proliferation, migration, and invasion, while inhibiting apoptosis
in GC cells. At molecular level, LINC00355 interacts with histone
deacetylase 3 (HDAC3) to suppress the transcriptional activity of
tumor protein-induced nuclear protein 1 (TP53INP1), a stress-
responsive protein with tumor-suppressor function. This
interaction triggers the epithelial-mesenchymal transition process,
which is closely associated with increased metastatic potential and
disease progression in cancer (Zhao et al., 2023).

These findings underscore the critical role of lncRNAs in cancer
development and progression. Further research in this field will
contribute to a deeper understanding of the complex mechanisms
involved in lncRNA-mediated regulation of migration and invasion,
resulting in improved treatment options for GC patients.

4.2 LncRNAs-mediated modulation of drug
response in GC

The management of GC necessitates a comprehensive
multimodal approach, encompassing surgical resection, adjuvant
and/or neoadjuvant chemotherapy, radiation, and targeted therapy
as appropriate for specific cases. Chemotherapeutic regimens
commonly incorporate a variety of pharmacological compounds,
including platinum agents, taxanes, and antimetabolites (Yamashita
et al., 2021). Nevertheless, the frequent development of therapy
resistance poses a substantial barrier to improving survival
outcomes. Recently, lncRNAs have emerged as crucial drug
sensitivity and resistance mechanism regulators (Ahmad et al.,
2021; Liu et al., 2022).

Platinum-based agents, including cisplatin and oxaliplatin
(OXA), are classified as alkylating compounds that form bonds
with DNA molecules, leading to errors in pairing DNA bases.
Consequently, they prevent strand separation during DNA
synthesis (Bukowski et al., 2020). According to a study by Zhang
et al. (2020), high levels of MALAT1 are correlated with resistance to
OXA. However, when MALAT1 was silenced, cell proliferation in
resistant cell lines decreased, leading to apoptosis and increased
sensitivity to OXA (Zhang Z. et al., 2020).

Similarly, the lncRNA EIF3J-DT has also been implicated in
chemoresistance to OXA. Functionally, EIF3J-DT modulates the
expression of ATG14, a gene encoding a protein essential for
autophagosome assembly, through two distinct mechanisms.
Firstly, it directly interacts with the mRNA of ATG14, increasing
its stability and expression. Secondly, it sequesters the miRNA
MIR188-3p, which prevents the degradation of ATG14. The
EIF3J-DT-MIR188-3p-ATG14 axis has been identified as a

crucial pathway involved in the activation of autophagy and
chemotherapy resistance in GC cells (Menon and Dhamija, 2018;
Luo et al., 2021).

Another lncRNA, PCAT-1, is overexpressed in both GC
tumor tissues and cisplatin-resistant cell lines, and its
increased expression has been associated with chemotherapy
resistance, attributed to the epigenetic repression of the PTEN
gene. PCAT-1 achieves this repression by recruiting EZH2 and
promoting enhanced trimethylation of lysine 27 on histone 3
(H3K27me3) (Li et al., 2020). Moreover, PCAT-1 functions as a
ceRNA for miR-128, thereby regulating the expression of its
downstream target gene, ZEB1 (Guo et al., 2019). These findings
highlight the multifaceted regulatory roles of PCAT-1 in GC
pathogenesis, encompassing epigenetic modification and
ceRNA-mediated gene regulation.

The lncRNA LINC00942 has also been identified as contributing
to GC cisplatin resistance. Microarray analysis revealed significant
upregulation of LINC00942 in chemoresistant cells, and its
knockdown resulted in increased apoptosis rates.
LINC00942 localizes in the cytoplasm, allowing interactions with
RBPs to modulate gene expression. Notably, LINC00942 specifically
interacts with Musashi2 (MSI2), an RBP known for its tumorigenic
properties and involvement in key signaling pathways like NOTCH
and Ras/MAPK. By inhibiting β-Trcp-mediated degradation of
MSI2, LINC00942 influences the expression of c-Myc mRNA.
These results emphasize the importance of the LINC00942/MSI2/
c-Myc axis in regulating chemotherapy sensitivity and its potential
as a target for therapeutic intervention (Zhu et al., 2022).

Furthermore, the lncRNA UCA1 plays a role in modulating
sensitivity to adriamycin in GC cells. UCA1 overexpression has been
demonstrated to decrease cell apoptosis through its ability to
regulate miR-27b negatively (Fang et al., 2016). These findings
point to the pivotal role of lncRNAs in drug resistance
mechanisms, thereby highlighting their potential as therapeutic
targets for GC management.

4.3 The emerging role of lncRNAs in GC
immune responses

The immune system possesses remarkable self-renewal and cell
differentiation capabilities, crucial for developing various
lymphocyte lineages, such as natural killer (NK), B, and T cells.
Emerging evidence highlights the pivotal role of lncRNAs in
orchestrating these intricate processes with their dynamic and
cell-specific expression patterns (Chen et al., 2017; Bocchetti
et al., 2021).

In the context of cancer, the dysregulation of lncRNAs has been
implicated in immune evasion mechanisms, impacting patient
survival (Denaro et al., 2019). For instance, studies have
elucidated the influence of LncRNA HCG18 in GC-exosomal
cells, which promotes the polarization of M2 macrophages
through the upregulation of KLF4 and downregulation of miR-
875-3p. These molecular alterations have been associated with
shorter patient survival times and increased malignancy,
highlighting the prognostic value of such expression profiles as
well as their potential as therapeutic targets (Gambardella et al.,
2020; Piao et al., 2020; Hu et al., 2021).
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Moreover, the dysregulation of lncRNAs contributes to the
modulation of the tumor immune microenvironment (TIME),
creating a conducive milieu for cancer growth and progression.
These lncRNAs impact fundamental immune response mechanisms,
such as antigen presentation, regulation of T cells, and modulation of
programmed death-ligand 1 (PD-L1) (Mofed et al., 2022; Pi et al., 2021).

Exploring this field, researchers have developed and tested
prognostic signatures utilizing the expression patterns of specific
lncRNAs. A strong association was observed between immune
infiltrating status and risk scores. Patients with higher
immunophenoscores have better survival rates. This score is a
measure of tumor immunogenicity. These findings propose that
patients can be categorized into various prognostic groups based on
their lncRNA signatures. Thus, it becomes possible to explore the
development of potential immune checkpoint inhibitors (Ding et al.,
2021).

Several studies have explored the role of lncRNAs in regulating
the Programmed Cell Death 1 (PD-1)/PD-L1 pathway. For instance,
the lncRNA SNHG15 has been found to correlate positively with
PD-L1 expression in GC cell lines. Functionally, SNHG15 acts as an
endogenous competitor of miR-141, leading to increased PD-L1
expression and promoting immune resistance in GC (Dang et al.,
2020).

Furthermore, the lncRNA NUTM2A-AS1 has been implicated
in promoting tumorigenesis and drug resistance through its
modulation of PD-L1. Acting as a ceRNA for miR-376a,
NUTM2A-AS1 targets the expression of TET1 and HIF-1A.
Moreover, the study has shown that TET1 interacts with HIF-1A
to regulate the expression of PD-L1. These findings suggest that
lncRNAs, through the lncRNA/miRNA/mRNA axis, play a role in
immune evasion by modulating PD-L1 expression (Wang et al.,
2020).

LINC00152 has also emerged as a critical regulator in tumor cell
growth by modulating the infiltration of CD8+ T cells.
LINC00152 recruits EZH2 to the promoters of chemokines
CXCL9 and CXCL10/CXCR3, leading to their repression.
Conversely, silencing LINC00152 promotes the expression of
these chemokines, resulting in increased infiltration of CD8+

T cells. This influx of CD8+ T cells into the tumor
microenvironment and the expression of CXCL9 and
CXCL10 may potentiate the therapeutic effects of immune
checkpoint blockade, such as anti-PD-1 therapy. Hence,
LINC00152’s involvement in triggering antitumor T-cell
immunity underscores as a potential target for
immunotherapeutic interventions (Ou et al., 2021).

In summary, lncRNAs play intricate roles in immune regulation
and tumor progression. Their dysregulation impacts immune
evasion, immune cell infiltration, and modulation of crucial
immune checkpoint molecules. Understanding the mechanisms
underlying these interactions holds promise for developing novel
therapeutic strategies targeting lncRNAs in cancer immunotherapy.

5 LncRNAs as potential biomarkers
in GC

Biomarkers are essential indicators of specific conditions,
encompassing normal biological processes, pathogenic processes,

or pharmacological responses (Dancey et al., 2010). In clinical
practice, protein- or peptide-based biomolecules are tumor
markers. However, their sensitivity and specificity are limited,
and traditional markers such as carcinoembryonic antigen (CEA)
and cancer antigen 19–9 (CA19-9) have
demonstrated ineffectiveness in the early detection of GC
(Nakamura et al., 2019). Furthermore, despite being included in
GC treatment guidelines, HER2-targeted therapies have not yielded
satisfactory clinical outcomes (Hecht et al., 2016; Tabernero et al.,
2018). Therefore, developing precise and reliable biomarkers is
crucial for effective GC management.

Fortunately, high-throughput technologies have enabled the
identification of more effective biomarkers, including lncRNAs.
These molecules possess notable features such as high stability,
abundance in body fluids, tissue-specific expression, versatile
interactions with biomolecules, and diverse roles in gene
expression regulation. Consequently, lncRNAs promise improved
diagnosis, prognosis, and treatment of GC (Guimarães et al., 2018; Li
et al., 2021; Liu et al., 2022; Hosseini et al., 2023).

Numerous studies have underscored the potential of lncRNAs in
effectively distinguishing GC patients from healthy individuals with
high sensitivity and specificity. Moreover, the clinical relevance of
lncRNA expression in GC has been extensively investigated. To
provide an overview of the most recent research in this field, Table 2
summarizes studies published within the last 4 years.

For instance, overexpression of LINC00152 has been
consistently observed in GC (Mao et al., 2019; Ou et al., 2021; Li
et al., 2022). In the serum and tissue, LINC00152 expression levels
distinguished GC patients from healthy control and played a role as
a robust prognostic indicator. Specifically, overexpression of
LINC00152 exhibited a positive correlation with advanced TNM
stage, lymph node metastasis, tumor invasion depth, and poorer
overall survival, indicating a more aggressive disease phenotype (Ou
et al., 2021).

In 2022, a newly identified lncRNA TCLlnc1 has shown higher
expression levels in tissues and plasma samples from GC patients
than in healthy controls. TCLlnc1 levels demonstrated significant
distinguished early-stage and advanced-stage GC patients from
healthy individuals, with respective area under the curve (AUC)
values of 0.71 and 0.97, respectively. Furthermore, their
overexpression was correlated with distant metastasis. These
findings indicate that TCLlnc1 holds promise as a potential
diagnostic and prognostic biomarker for GC (Hu et al., 2022).

Extracellular vesicles (EVs), secreted by viable cells, have been
verified to show specific information from their cells of origin,
specially lncRNAs levels. Xiao et al. (2021) observed
CCAT1 levels significantly higher in the serum EVs from GC
patients compared with healthy controls, patients with chronic
gastritis, and atypical hyperplasia. EVs CCAT1 produced an
AUC value of 0.890 with a sensitivity and specificity of 79.6%
and 92.6%, respectively. These researchers determined CCAT1 as
a lncRNA stable in serum EVs and a potential prognostic biomarker
for GC (Xiao et al., 2021).

Recently, Zhao et al. found that LINC00355 exhibits significantly
higher expression levels in exosomes derived from the plasma of GC
patients than in healthy controls. Moreover, its expression is
markedly elevated in GC tumor tissues compared to adjacent
non-tumor tissues, with a positive correlation observed between
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LINC00355 expression, the depth of invasion and TNM stage.
Significantly, LINC00355 overexpression is associated with poorer
overall survival outcomes in GC patients. Taken togheter, these
findings indicate the oncogenic role of LINC00355 in GC and its
potential as a diagnostic and prognostic biomarker (Zhao et al.,
2023).

A comprehensive series of multi-phase studies have
highlighted the potential clinical significance of lncRNA-GC1
as a valuable biomarker for various aspects of GC. The first
investigation, published in 2020, encompassed 826 participants,
including 522 individuals diagnosed with GC, 85 subjects with
gastric precancerous lesions, and 219 healthy donors. The

TABLE 2 LncRNAs as potential biomarkers of Gastric Cancer.

LncRNA Expression Potential
biomarker

AUC Sample
type

Clinical implication References

CCAT1 Up Diagnosis and
prognosis

0.89 Tissue and
serum

Poor survival outcomes Xiao et al. (2021)

TCLlnc1 Up Diagnosis and
prognosis

0.97 Tissue and
plasma

Tumor distant metastasis and poor survival
outcomes

Hu et al. (2022)

DRAIR Down Diagnosis and
prognosis

0.89 Tissue and
plasma

Poor survival outcomes Jin (2021)

NR038975 Up Diagnosis 0.71 Tissue and
plasma

Advanced TNM stage Wei et al. (2021)

lncRNA-GC1 Up Diagnosis 0.90 Tissue and
serum

Advanced TNM stage Guo et al. (2020)

Up Prognosis and
predictive

0.70 Plasma Poor survival outcomes and worse response
to chemotherapy

Song et al. (2022)

LINC00152/CYTOR Up Prognosis — Serum Advanced TNM stage and poor survival
outcomes

Ou et al. (2021)

PTCS3 Down Diagnosis and
prognosis

0.92 Plasma Poor survival outcomes Zhang et al. (2020)

LINC00355 Up Prognosis — Tissue and
plasma

Advanced TNM stage, distant metastasis, and
poor survival outcomes

Zhao et al., 2023, Zhao
et al., 2020

lnc-SLC2A12-10:1 Up Diagnosis 0.77 Tissue and
plasma

Advanced TNM stage Zheng et al. (2020)

LINC01614 Up Prognosis — Tissue Poor survival outcomes Chen et al. (2021)

LINC00941 Up Prognosis — Tissue Poor survival outcomes Liu et al. (2019)

CEBPA-AS1 Up Diagnosis and
prognosis

0.82 Tissue and
plasma

Tumor size, Bormann type, and TNM stage Piao et al. (2020)

H19 Up Diagnosis 0.85 Serum Advanced TNM Stage Zhou et al. (2020)

HOXA11-AS Up Diagnosis and
prognosis

0.92 Tissue and
serum

Poor survival outcomes and TNM stage Liu et al. (2019)

B3ALT5-AS1 Up Diagnosis and
prognosis

0.81 Serum Poor survival outcomes, LNM and TNM
stage

Feng et al. (2020)

SSTR5-AS1 Up Prognosis — Tissue Poor survival outcomes and distant
metastasis

Cheng et al. (2020)

MIAT Up Diagnosis 0.89 Serum Poor survival outcomes and TNM stage Xu et al. (2020)

DIRC1 Up Diagnosis and
prognosis

0.77 Tissue Poor survival outcomes Lin et al. (2022)

HCP5 Up Diagnosis 0.82 Serum Differentiation, lymph node metastasis, and
nerve invasion

Qin et al. (2021)

p4516 Up Prognosis — Tissue Poor differentiation, advanced TNM stage
and poor survival outcomes

Nie et al. (2019)

PANDAR, FOXD2-AS1,
and SMARCC2

Up Diagnosis 0.84 Plasma Poor differentiation and advanced TNM Yang et al. (2019)

FAM49B-AS, GUSBP11,
and CTDHUT

Up Diagnosis 0.82 Plasma — Zheng et al. (2019)
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findings demonstrated that elevated levels of exosomal lncRNA-
GC1 exhibited accuracy in effectively distinguishing between GC
patients and healthy donors, as evidenced by an AUC value of
0.903 (Guo et al., 2020).

Interestingly, lncRNA-GC1 levels were significantly higher in
patients with early-stage GC, intestinal metaplasia, chronic
atrophic gastritis, and positive H. pylori infection. This
suggests that lncRNA-GC1 may serve as a reliable biomarker
for early GC progression detection and monitoring. In addition,
lncRNA-GC1 expression demonstrated a gradual increase in
correlation with the progression of TNM stage, further
supporting its potential as a prognostic indicator. An essential
aspect of these studies was the simultaneous evaluation of
commonly used clinical markers such as CEA, CA72-4, and
CA19-9. The results indicated that lncRNA-GC1 outperformed
these markers in terms of diagnostic efficiency. Notably, lncRNA-
GC1 expression remained consistent after treatment with RNase
and exposure to multiple freeze/thaw cycles, demonstrating its
robustness and stability (Guo et al., 2020).

In 2022, a retrospective study conducted across multiple
medical revealed that the levels of circulating exosomal
lncRNA-GC1 could effectively distinguish patients who would
benefit from fluorouracil-based adjuvant chemotherapy. GC
patients with lower levels of lncRNA-GC1 exhibited better
responses to chemotherapy and improved survival outcomes.
The consistent results across different studies and the robustness
of lncRNA-GC1 expression make it an attractive candidate for
further clinical validation and potential integration into routine
clinical practice (Song et al., 2022).

In addition to their potential as biomarkers, lncRNAs hold
promise as novel therapeutic targets. The diverse and intricate
functional roles of lncRNAs provide opportunities for various
therapeutic interventions. These include the modulation of
lncRNA genomic loci to induce transcriptional repression,
hindrance of secondary structure formation to prevent
interactions with biomolecules, the introduction of synthetic
lncRNAs, and modifications of expression patterns. Despite the
therapeutic potential of lncRNAs, it is essential to note that no
lncRNA-based therapies have yet progressed to phase II or III
clinical development (Winkle et al., 2021).

The findings presented in this study highlight the promising
potential of lncRNAs as valuable tools in clinical practice. However,
it is crucial to acknowledge that the translation of lncRNAs into
clinical applications is still in its early stages, with limited success
thus far. Currently, only one lncRNA, PCA3, has been successfully
translated into an FDA-approved molecular diagnostic test, namely,
PCA3 ProgensaTM (Gen-Probe Inc., San Diego, CA, USA), which is
primarily recommended for patients who have previously had a
negative biopsy for prostate cancer (Cui et al., 2016).

5.1 Challenges of incorporating lncRNAs into
clinical practice

Several vital aspects must be addressed to overcome the
challenges of implementing lncRNAs in clinical practice. A
primary challenge in lncRNA research is the limited sample size
often encountered in studies. Many investigations have a relatively

small number of participants, which can compromise the statistical
power and precision of the results. Additionally, including healthy
individuals as controls is crucial for validating the specificity and
sensibility of lncRNA biomarkers. Some studies’ absence of
appropriate control groups can introduce biases and limit the
accurate evaluation of biomarker efficacy (Zheng, 2018).

Another significant challenge is the prevailing focus on specific
regions or ethnicities in lncRNA research. This geographic bias may
hinder the generalizability and reproducibility of findings in broader
populations. To ensure the clinical relevance and applicability of
lncRNA biomarkers, including diverse populations and considering
the potential influence of genetic and environmental factors is
imperative (Zheng, 2018).

The lack of standardization in pre-analytical and experimental
procedures represents another challenge in the field. The absence of
well-established protocols for sample collection, processing, and
analysis may impede the comparability and reliability of results
across different studies. The harmonization and standardization of
these procedures are critical to facilitate robust comparisons
between studies and enhance the overall quality (Anfossi et al.,
2018).

Furthermore, retrospective study designs are prevalent in
lncRNA research, which can introduce inherent biases.
Prospective studies are essential to validate lncRNA biomarkers’
predictive and prognostic value. Long-term follow-up is necessary to
assess the performance of these biomarkers in predicting treatment
response, disease progression, and patient outcomes, thereby
providing valuable insights for clinical decision-making (Anfossi
et al., 2018).

In addition to technical challenges, the field of lncRNA research
faces inherent obstacles related to the nature of lncRNAs. For
example, the poor conservation of lncRNAs across different
species poses difficulties in evaluating their functions and effects
in animal models. The lack of conservation hinders the translation of
findings from model organisms to humans and limits our
understanding of the broader biological implications of lncRNAs
(Winkle et al., 2021).

Moreover, lncRNAs are often expressed at low levels, which
presents challenges in their accurate measurement and
detection (Mattick et al., 2023). The quantification of
lncRNAs requires sensitive and specific techniques that can
reliably distinguish them from background noise and
accurately determine their expression levels. Detecting
specific lncRNAs in physiological processes can be
challenging due to their transient or cell-type-specific
expression patterns. To fully harness the potential of
lncRNAs in clinical applications, further research efforts are
needed to unravel their functional significance (Anfossi et al.,
2018; Fathi Dizaji, 2020; Statello et al., 2021; Winkle et al., 2021).

Understanding the precise roles of lncRNAs in gene regulation,
cellular processes, and GC pathogenesis is crucial for developing
targeted interventions. GC can be anatomically classified into two
main subtypes, cardial and non-cardial GC, each with distinct
epidemiological profiles and mechanisms of carcinogenesis.
However, currently, there are no available studies characterizing
the expression patterns of lncRNAs based on the anatomical
subtypes. Performing an exploratory investigation to identify
specific lncRNA expression patterns in these subtypes is crucial
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for implementing a more effective screening strategy (Cao et al.,
2013; Thrift et al., 2023).

6 Discussion

GC poses a significant public health challenge due to its high
incidence and mortality rates. Therefore, the identification of
precise biomarkers and novel therapeutic targets is crucial for
improved management. Abnormal expression of lncRNAs plays a
crucial role in the development and progression of GC. By acting
as master regulators of gene expression, lncRNAs exert
substantial influence on cancer hallmarks, including cell
proliferation, evasion of cell death, immune evasion, and
metabolic alterations.

The discovery of lncRNAs has revolutionized the field of
molecular biology since the publication of the first paper in 1997.
Substantial scientific progress has been made in elucidating the
involvement of lncRNAs in gastric carcinogenesis.

Current studies contribute to a more comprehensive
understanding of the mechanisms by which lncRNAs exert their
actions in GC. LncRNAs interact with biomolecules, acting as
miRNA sponges, interacting with RNA-binding proteins, and
modulating the expression of critical genes within pro-
tumorigenic pathways.

Notably, most lncRNAs’ expression is highly specific to
tissues and cell types. Moreover, the widespread and stable
presence of lncRNAs in body fluids, including blood, saliva,
urine, and gastric juice, makes them promising candidates for
clinical applications, including diagnostic biomarkers,
prognostic indicators, predictors of therapeutic response, and
potential targets for the development of personalized cancer
treatment strategies.

Extensive research is currently dedicated to developing
therapeutic strategies targeting lncRNAs. Multiple approaches are
being explored, including antisense oligonucleotides (ASO),
CRISPR/Cas9 technology, RNA interference (RNAi) using viral
vectors, and nanotechnology-based delivery systems.

ASOs are single-stranded deoxyribonucleotides with
complementary sequences to RNA targets. In the context of
lncRNAs, the ASOs can bind to the desired lncRNA and
induce degradation. Remarkably, ASOs targeting natural
antisense transcripts (NATs) have demonstrated promising
preclinical results in gene reactivation within the central
nervous system. Similar to this approach, RNAi technology
utilizes small interfering RNAs (siRNAs) or short hairpin
RNAs (shRNAs) to target and silence specific lncRNAs. Viral
vectors, such as lentiviruses or adenoviruses, can deliver these
siRNAs or shRNAs into cells, enabling efficient knockdown of the
target lncRNAs. Both ASOs and siRNAs can enhance their
delivery to specific cells or tissues through nanotechnology-
based systems. These nanocarriers can improve therapeutic
molecules’ stability, bioavailability, and cellular uptake and
enhance the efficacy of therapeutic targets. Alternatively, the
CRISPR/Cas9 technology inhibits or alters the expression of
lncRNAs by introducing specific modifications to the DNA
sequences that transcribe lncRNAs.

Currently, no lncRNA-targeted therapeutic intervention has
progressed to clinical development. Nevertheless, lncRNAs are
actively investigated as potential biomarkers. The FDA has
approved the first lncRNA-based diagnostic test,
PCA3 ProgensaTM, for prostate cancer. Moreover, ongoing
research endeavors explore the clinical relevance of lncRNAs in a
diverse array of complex diseases, extending beyond cancer to
neurological conditions.

Despite the potential of lncRNAs as valuable tools in GC
management, much remains to be explored and understood.
Challenges such as small sample sizes, incorporating adequate
healthy controls, mitigating geographic bias, establishing
standardized protocols, tolerability issues, inefficient intracellular
delivery, and overcoming the reliance on retrospective study designs
must be addressed for successful translation into routine diagnostic
tests and to ensure the safety and efficacy of therapeutic
interventions in clinical settings.

Continued research, integration of multi-omics approaches, a
multidisciplinary team, and large-scale multicenter studies are
essential to advance our understanding of lncRNAs’ role in
tumorigenesis. This comprehensive approach may establish
lncRNAs as robust biomarkers, thus propelling personalized
management of GC.
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Hepatocellular carcinoma (HCC) remains a major health problem worldwide,
being the leading cause of cancer-related deaths, with limited treatment
options, especially in its advanced stages. Tumor resistance is closely
associated with the activation of the EMT phenomenon and its reversal, being
modulated by different molecules, including noncoding RNAs (ncRNAs).
Noncoding RNAs have the potential to function as both tumor suppressors
and oncogenic molecules, controlling the malignant potential of HCC cells.
Basically, these molecules circulate in the tumor microenvironment,
encapsulated in exosomes. Their impact on cell biology is more significant
than originally expected, which makes related research rather complex. The
temporal and spatial expression patterns, precise roles and mechanisms of
specific ncRNAs encapsulated in exosomes remain primarily unknown in
different stages of the disease. This review aims to highlight the recent
advances in ncRNAs related to EMT and classifies the described mechanism as
direct and indirect, for a better summarization. Moreover, we provide an overview
of current research on the role of ncRNAs in several drug resistance-related
pathways, including the emergence of resistance to sorafenib, doxorubicin,
cisplatin and paclitaxel therapy. Nevertheless, we comprehensively discuss the
underlying regulatory mechanisms of exosomal ncRNAs in EMT-HCC via
intercellular communication pathways.

KEYWORDS

hepatocellular carcinoma, noncoding RNA, epithelial-mesenchymal transition,
chemoresistance, exosomes

1 Introduction

Hepatocellular carcinoma (HCC) is a common lethal malignancy among patients with
chronic liver disease, with approximately 800,000 deaths annually, according to the
GLOBOCAN 2020 report (Sung et al., 2021). Several treatment options are available for
therapeutic purposes, such as trans-arterial chemoembolization (TACE) with
anthracyclines, cisplatin, and multikinase inhibitor, sorafenib (Pratama et al., 2019).
However, these treatments become challenging to manage, due to the appearance of
invasion, metastasis and recurrence, whose key molecular sign is EMT (Yan et al., 2018).

EMT (epithelial-mesenchymal transition) is a morphogenetic process in which epithelial
cells get a mesenchymal phenotype. In early EMT, transcriptional factors (TFs) are activated
to repress epithelial genes and activate the mesenchymal ones. These transcriptional changes
trigger the following key events: cell-cell junction dissociations, apical-basal polarity loss,
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cytoskeleton architecture reorganization, the production of
extracellular matrix (ECM) degradation enzymes, and cellular
shape transformation. The activation of cellular pathways
associates this process with proliferation, invasion, metastasis,
and chemotherapy resistance (Yan et al., 2018; Dudas et al.,
2020; Yang et al., 2020; Huang et al., 2022). Among these
transformations, EMT is associated with numerous signaling
pathways involved in inflammation, oncogenic and metabolic
stress, hypoxia or apoptosis (Huang et al., 2022).

Moreover, many studies suggest that noncoding RNAs
(ncRNAs), such as microRNAs (miRNAs), long-noncoding RNAs
(lncRNAs) and circular RNAs (circRNAs), have been linked to both
the EMT process activation and inhibition. Indeed, these types of
RNAs have multiple roles in cancerous cells because one ncRNA
transcript could target many molecules involved in different
signaling pathways (Toden et al., 2021; Khanbabaei et al., 2022).

This review highlights ncRNAs’ significant direct and indirect
signaling pathways in the EMT process and how these mechanisms
are involved in HCC progression and chemoresistance. Finally, we
provide an update on developing exosome-based therapies against
HCC and their molecular aspects in EMT (Figure 1).

2 EMT-related ncRNAs mechanisms of
action

As mentioned above, noncoding RNAs (ncRNAs), including
microRNAs, lncRNAs and circRNAs, have oncogenic and tumor
suppressor roles and regulate essential processes involved in cancer
progression.

MicroRNAs (miRNAs) are noncoding single-stranded RNAs of
approximately 22 nucleotides transcribed in pri-miRNA by RNA
Pol II (Bartel, 2004). As described in the canonical pathway,

Ribonuclease III and double-stranded-RNA-binding protein,
DGCR8, recognize this structure in the nucleus, generating a pre-
miRNA of ~65 nucleotides. Pre-miRNA is exported to the
cytoplasm by an Exportin 5 and Ran-GTP complex and
recognized by RNase III Dicer, which forms a miRNA duplex.
This mature form is incorporated into an RNA-induced silencing
complex (RISC), directing RISC to complementary mRNA targets
(Cai et al., 2004). In brief, miRNAs function as negative regulators of
genes when binding to RNA 3′-untranslated region (3′-UTR) (Ha
and Kim, 2014). Besides that, the interaction with coding sequences,
gene promoters, and 5′-UTR has been proved (O’Brien et al., 2018).
Because each miRNA can regulate multiple targets containing
specific miRNA response elements (MREs) (Bassett et al., 2014)
and play a crucial role in a variety of molecular processes, they have
been studied in all cancer types (Esquela-Kerscher and Slack, 2006;
Volinia et al., 2006; Nicoloso et al., 2009). In HCC, miRNAs
modulate cell cycle, proliferation, apoptosis, epithelial-
mesenchymal transition and metastasis (Sidhu et al., 2015).
Furthermore, our previous studies have shown that miRNAs are
an important tool in the prognostic and diagnostic HCC (Mjelle
et al., 2019; Sorop et al., 2020).

Long noncoding RNAs (lncRNAs) are transcripts of
approximately 200 nucleotides, which usually RNA Pol II
transcribes, but so do RNA Pol I and RNA Pol III (Statello et al.,
2021; Mattick et al., 2023). Moreover, they have a wide diversity,
with an average of 100,000 human lncRNAs (Mattick et al., 2023). At
first, lncRNAs were defined as transcriptional “junk” or “noise.” Still,
in the past few years, more studies have shown the involvement of
lncRNAs in different molecular pathways (Sun et al., 2017),
indicating their interaction with DNA, RNA, or protein. The
interaction mechanism could be: scaffold, decoy, guide, signal, or
SINEUPs. Scaffold lncRNAs could act as archetype RNAs and are
involved in the assembly of transcriptional regulators. The decoy

FIGURE 1
The influence of direct and indirect EMT-related ncRNA axes in HCC progression (created with biorender.com accessed on July 2023).
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mechanism implies acting as a competing endogenous RNA
(ceRNA) or sponge of miRNAs, transcriptional factors, or RNA-
binding proteins. In contrast, the guide mechanism involves the
formation of a ribonucleoprotein complex, which targets a promoter
or genomic loci (Rinn and Chang, 2012). Furthermore, lncRNAs
could act as regulatory molecules (Nadhan et al., 2022) or SINEUPs
containing SINE elements which enhance mRNAs translation (Toki
et al., 2020).

Circular RNAs (circRNAs) are single-stranded RNAs with
closed-loop structures and resistance to RNase R and
exonucleases. They are generated from precursor RNA (pre-
RNA) through back-splicing (Chen, 2016). This mechanism
involves connecting a downstream donor site of a flanking
downstream intron to an upstream acceptor site (Kristensen
et al., 2019). Increasing research has revealed that circRNAs can
sponge miRNAs, interact with proteins, interfere with transcription
or splicing, or encode peptides (Zhang and Wang, 2021).

EMT plays a pivotal role in the early stage of metastasis (Bakir
et al., 2020); thus, many studies have been conducted to determine
the function of ncRNAs in this highly dynamic phenomenon.
Therefore, this review underlines two types of mechanisms: direct
and indirect.

2.1 Direct EMT-related ncRNAs’ mechanism
of action

Direct mechanism involves direct interaction between miRNA
and EMT-regulatory factors, such as twist family bHLH
transcription factor 1 (TWIST), snail family transcriptional
repressor 1 (SNAIL), or zinc finger E-box binding homeobox 1/2
(ZEB1/2) (Skovierova et al., 2018). We defined this mechanism by
three crucial axes: miRNA/EMT, lncRNA/miRNA/EMT, and
circRNA/miRNA/EMT.

Several miRNAs, such as miR-509-3p (Zhang et al., 2021), miR-
361-5p (Yin et al., 2020), and miR-370-3p (Peng et al., 2022), have
been found to inhibit TWIST1 expression via targeting its 3′UTR
and to abate the EMT process. Li et al. (2022) observe that
LINC00992 downregulates miR-361-5p and upregulates TWIST1,
thus promoting cell proliferation, migration, and invasion. In
addition, miR-370-3p decreases TWIST1 and SNAIL, affecting
interleukin 8 (IL-8) expression and restraining the metastasis
capacity in HCC cells (Peng et al., 2022). In contrast, LINC01133
(Yin et al., 2021) and lnc-UCID (Yuan et al., 2021) increase EMT by
acting as a sponge of miRNAs, increasing SNAIL expression.
Furthermore, circHIPK3 promotes metastases and
ZEB2 expression via inhibiting miR-338-3p (Li et al., 2021). In
contrast, circPTK2 and E-cadherin compete for binding miR-92a
that, aggravates proliferation and invasion, while
circPTK2 suppresses miRNA’s effect in HCC cells (Gong et al.,
2020), as summarized in the direct mechanism part from Table 1.

2.2 Indirect EMT-related ncRNAs’
mechanism of action

The indirect mechanism involves miRNA/mRNA, lncRNA/
miR/mRNA, and circRNA/miRNA/mRNA regulatory axes that
modulate an EMT molecule.

2.2.1 miRNA/mRNA axes
Numerous miRNA/mRNA axes have been found to be involved

in the EMT process (Table 2).
For instance, Shen et al. (2021) have found that miRNA-10a-5p

is downregulated in HCC tissues and decreases EMT inHCC cells by
targeting spindle and kinetochore-associated complex subunit 1
(SKA1). SKA1 is upregulated in tumors, promoting cancer
progression, and has a prognostic value in HCC (Chen et al.,

TABLE 1 Summary of ncRNAs direct signaling pathways and their action on HCC tumor cell processes.

ncRNA Expression Target Axis pathway ncRNA involvement in cellular
process

References

miR-
509-3p

↓ TWIST miR-509-3p/TWIST/EMT (−) EMT, (−) proliferation, (−) metastasis Zhang et al.
(2021)

miR-
361-5p

↓ TWIST1 miR-361-5p/TWIST1/EMT (−) EMT, (−) proliferation, (−) migration,
(−) invasion

Yin et al. (2020)

miR-
370-3p

↓ TWIST1, SNAIL IL-8/STAT3/miR-370-3p/TWIST1,
SNAIL/EMT

(−) EMT, (−) metastasis Peng et al. (2022)

LINC00992 ↑ miR-361-5p LINC00992/miR-361-5p/TWIST1 (+) EMT, (+) proliferation, (+) metastasis,
(+) invasiveness

Li et al. (2022)

LINC01133 ↑ miR-199a-5p LINC01133/miR-199a-5p/SNAIL;
LINC01133/ANXA2/STAT3/cyclin D1

(+) EMT, (+) proliferation, (+) migration,
(+) invasion

Yin et al. (2021)

UCID ↑ miR-122, miR-203, miR-30b,
miR-34a, miR-153

lnc-UCID/miR/SNAI1 (+) EMT, (+) metastasis, (+) migration, (+)
invasion

Yuan et al.
(2021)

circHIPK3 ↑ miR-338-3p circHIPK3/miR-338-3p/ZEB2 (+) EMT, (+) migration, (+) invasion, (+)
metastases

Li et al. (2021)

circPTK2 ↓ miR-92a circPTK2/miR-92a/E-cadherin (−) EMT, (−) proliferation, (−) invasion Gong et al.
(2020)

Note: downregulated expression (↓), upregulated expression (↑), inhibition of cellular process (−), enhance of cellular process (+).
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2018; Song et al., 2022). Other oncosuppressors are miR-143-3p and
miR-139-5p, which repress fibroblast growth factor 1 (FGF1) and
Wilms’ tumor 1-associating protein (WTAP). Those proteins
increase EMT, proliferation and invasion of HCC cells (Liu et al.,
2021; Peng et al., 2021). Moreover, Zhu et al. (2021) declare that
miR-139-5p is regulated by lncRNA TTN antisense RNA 1 (TTN-
AS1) and inhibits Sparc/osteonectin, cwcv, and kazal-like domains
proteoglycan 1 (SPOCK1), an oncogenic proteoglycan involved in
EMT (Vancza et al., 2022).

Growing studies have supported the importance of transforming
growth factor beta (TGF-β) in HCC via SMAD/non-SMAD-
dependent signaling pathways, which induce EMT-TFs (Hao
et al., 2019). Several studies have shown that the miR-181 family
positively correlates with TGF-β pathways, thus increasing EMT,
tumor progression and stemness (Ji et al., 2009; Wang et al., 2010;
Brockhausen et al., 2015; Chen et al., 2022). In contrast, miR-23b-3p
has been proven to inhibit TGF- β1-induced EMT and block
invasion and migration (Park et al., 2022).

Apoptosis or programmed cell death is a complex mechanism
that involves death receptors (extrinsec pathway) and mitochondria
(intrinsic pathway), by which it maintains cell homeostasis
(Schattenberg et al., 2011). As discussed above, EMT confers
resistance to apoptosis (Valdes et al., 2002). Interestingly, miR-
4521 acts as an oncosuppressor in HCC cells by modulating
mechanisms involved in proliferation and apoptosis. On the one
hand, miR-4521 activates two apoptosis pathways (p-FAK/p-Akt/
MDM2/P53 and FAK/p-Akt/BCL-2/BAX/Cytochrome-C/Caspase-
3/Caspase-9) by decreasing the expression of family with sequence
similarity 129 member A (FAM129A); on the other hand, it thereby
attenuates invasivity by blocking TIMP-1/MMP9/MMP2, p-FAK/
p-Akt and EMT pathways (Ayesha et al., 2022).

Moreover, the miR-7/BCL2L1/P53 and miR-22-3p/CBL/
SPRY2/ERK axes decrease EMT, invasion, proliferation and
migration (Cui et al., 2023; Zhang et al., 2023). Another EMT
inhibitor is miR-383, which negatively regulates the multi-
functional RNA-binding protein (RBM3) expression. As reported,
RBM3 upregulates signal transducer and activator of transcription 3
(STAT3) expression via binding to its mRNA (Zhang et al., 2022). In
addition, STAT3 targets the TWIST promoter and positively
regulates its transcriptional activity in HCC cells, thus inducing
EMT (Zhang et al., 2015).

Moreover, many studies highlight indirect mechanisms that
imply lncRNA/miRNA/mRNA and circRNA/miRNA/mRNA axes.

2.2.2 lncRNA/miRNA/mRNA axes
Table 3 shows the lncRNA/miRNA/mRNA axes related to

EMT in HCC. According to their oncological role, lncRNAs
could be classified into two groups: onco-suppressor and
oncotargets. Therefore, within the last 3 years, five lncRNAs,
TMEM220-AS1 (Cao et al., 2021), lncRNA miR503HG (Song
and Qiu, 2021), LINC02362 (Li et al., 2022), LINC02027 (Wang
et al., 2023) and SATB2-AS1 (Huang et al., 2023), have been
documented to function as miRNA sponge, to decrease a gene
that promotes the EMT process. For instance, Huang et al. (2023)
show that SATB2-AS1 is observably reduced in HCC tissues
compared to adjacent tissues and its overexpression hampers
tumor growth and metastasis in vitro. Besides, SATB2-AS1 also
acts as a ceRNA for miR-3678-3p. This miRNA accelerates cell
proliferation and suppresses cell apoptosis by blocking GRIM-19
(gene associated with retinoic-interferon-induced mortality 19),
a negative STAT3/HIF-1α pathway regulator (Huang et al.,
2023).

TABLE 2 Summary of miRNAs signaling pathways and their action on HCC tumor cell processes.

miRNA Expression Target Axis pathway miRNA involvement in cellular
process

References

miR-10a-5p ↓ SKA1 miR-10a-5p/SKA1 (−) EMT, (−) migration, (−) invasion, (−)
tumor formation in vivo

Shen et al. (2021)

miR-143-3p ↓ FGF1 miR-143-3p/FGF1/EMT (−) EMT, (−) proliferation, (−) invasion Peng et al. (2021)

miR-139-5p ↓ WTAP miR-139-5p/WTAP/EMT (−) EMT, (−) invasion, (−) proliferation Liu et al. (2021)

miR-181 a/b/
c/d

↑ CDX2, GATA6,
NLK1

miR-181/CDX2, GATA6,
NLK1

(+) stemness Ji et al. (2009)

miR-181b ↑ TIMP3 miR-181b/TIMP3/TGF- β (+) migration, (+) invasion, (+) tumor
formation ex vivo

Wang et al. (2010)

miR-181a ↑ BIM mir-181a/TGF- β/EMT (+) EMT Brockhausen et al. (2015)

miR-181ab1 ↑ CBX7 mir-181/TGF- β/EMT (+) EMT, (+) proliferation Chen et al. (2022)

miR-23b-3p ↓ c-MET miR-23b-3p/c-MET/TGF-
β1/EMT

(−) EMT, (−) migration, (−) invasion Park et al. (2022)

miR-4521 ↓ FAM129A miR-4521/FAM129A/EMT (−) EMT, (−) migration, (−) proliferation, (+)
apoptosis

Ayesha et al. (2022)

miR-7 ↓ BCL2L1 miR-7/BCL2L1/P53/EMT (−) EMT, (−) proliferation, (−) metastasis Zhang et al. (2023)

miR-22-3p ↓ SPRY2 miR-22-3p/CBL/SPRY2/
ERK/EMT

(−) EMT, (−) migration, (−) invasion, (−)
Cancer stem cell features

Zeng et al. (2020); Cui et al.
(2023)

miR-383 ↓ RBM3 miR-383/RBM3/STAT3/EMT (−) EMT Zhang et al. (2022)

Note: downregulated expression (↓), upregulated expression (↑), inhibition of cellular process (−), enhance of cellular process (+).
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On the other hand, several lncRNAs increase EMT by sponging
miRNAs that target oncogenes. LncRNAs such as LINC00668 (Xuan
et al., 2020), LINC00922 (Ye et al., 2021), UNC5B-AS1 (Huang et al.,
2021), BACE1-AS (Liu et al., 2021), DUXAP8 (Guan et al., 2021)

and LOC554202 (Yang et al., 2022) were upregulated in HCC to
contribute to specific lncRNA/miR/mRNA axes induced EMT.
SNHG1 is another lncRNA with high expression levels in HCC;
it is negatively correlated to a poor patient prognosis.

TABLE 3 Summary of lncRNAs signaling pathways and their influence in HCC tumor cells processes.

lncRNA Expression Target Axis pathway lncRNA involvement in cellular process References

TMEM220-
AS1

↓ miR-484 lnc-TMEM220-AS1/miR-484/MAGI1 (−) EMT, (−) proliferation, (−) invasion, (−) metastasis, (−)
tumor growth, (+) apoptosis

Cao et al. (2021)

miR503HG ↓ miR-15b lncRNA miR503HG/miR-15b/PDCD4 (−) EMT, (−) angiogenesis, (−) migration, (−) invasion Song and Qiu
(2021)

LINC02362 ↓ miR-
516b-5p

LINC02362/miR-516b-5p/SOCS2 (−) EMT, (−) proliferation, (−) migration, (−) invasion, (+)
apoptosis

Li et al. (2022)

LINC02027 ↓ miR-
625-3p

LINC02027/miR-625-3p/PDLIM5 (−) EMT, (−) proliferation, (−) migration, (−) invasion Wang et al.
(2023)

SATB2-AS1 ↓ miR-
3678-3p

lnc-SATB2-AS/miR-3678-3p/GRIM-
19/STAT3/HIF-1α

(−) EMT, (−) proliferation, (−) invasion, (−) migration, (−)
metastasis, (−) tumor growth, (+) apoptosis

Huang et al.
(2023)

LINC00668 ↑ miR-
532-5p

LINC00668/miR-532-5p/YY1 (+) EMT, (+) proliferation, (+) migration, (+) invasion Xuan et al. (2020)

LINC00922 ↑ miR-
424-5p

LINC00922/miR-424-5p/ARK5 (+) EMT, (+) proliferation, (+) migration, (+) invasion Ye et al. (2021)

UNC5B-AS1 ↑ miR-4306 UNC5B-AS1/miR-4306/KDM2A (+) EMT, (+) proliferation, (+) migration Huang et al.
(2021)

BACE1-AS ↑ miR-
377-3p

lnc-BACE1-AS/miR-377-3p/CELF1 (+) EMT, (+) invasion, (+) migration, (+) metastasis Liu et al. (2021)

DUXAP8 ↑ miR-9-3p lnc-DUXAP8/miR-9-3p/IGF1R (+) EMT, (+) proliferation, (+) migration, (+) invasion Guan et al. (2021)

LOC554202 ↑ miR-
485-5p

LOC554202/miR-485-5p/BSG (+) EMT, (+) proliferation, (+) migration, (+) invasion Yang et al. (2022)

SNHG1 ↑ miRNA-
376a

lnc-SNHG1/miR-376a/FOXK1/SNAIL (+) EMT, (+) proliferation, (+) migration, (+) invasion, (−)
apoptosis

Meng et al.
(2021)

HAGLROS ↑ miR-
26b-5p

lnc-HAGLROS/miR-26b-5p/
KPNA2/p53

(+) EMT, (+) proliferation, (+) migration, (+) invasion, (−)
apoptosis

Tang et al. (2022)

DARS-AS1 ↑ miR-
3200-5p

lnc-DARS-AS1/miR- 3200-5p/CKAP2/
FAK/ERK

(+) EMT, (+) proliferation, (+) migration, (+) invasion, (+)
cell growth, (+) metastasis, (−) apoptosis

Feng et al. (2021)

SNHG12 ↑ miR-
516a-5p

lnc-SNHG12/miR-516a-5p/HEG1 (+) EMT, (+) proliferation, (+) migration, (+) invasion, (−)
apoptosis

Chen et al. (2021)

PRR34-AS1 ↑ miR-
296-5p

lnc-PRR34-AS1/miR-296-5p/E2F2/
SOX12/Wnt/beta-catenin

(+) EMT, (+) proliferation, (+) migration, (+) invasion, (+)
tumor growth

Qin et al. (2021)

NUTM2A-AS1 ↑ miR-
186-5p

lnc-NUTM2A-AS1/mIR-186-5p/
KLF7/Wnt/beta-catenin

(+) EMT, (+) invasion, (+) cell growth, (+) stemness, (−)
apoptosis

Long et al. (2023)

LINC01278 ↑ miR-1258 β-catenin/TCF-4/LINC01278/miR-
1258/SMAD2/3

(+) EMT, (+) invasion, (+) migration, (+) metastasis Huang et al.
(2020)

CRNDE ↑ miR-
539-5p

lnc-CRNDE/miR-539-5p/POU2F1/
AKT/NF-kB

(+) EMT, (+) proliferation, (+) migration, (+) invasion Li et al. (2020)

HCP5 ↑ miR-
29b-3p

lnc-HCP5/miR-29b-3p/
DNMT3A/AKT

(+) EMT, (+) invasion, (+) cell growth, (+) metastasis, (−)
apoptosis

Zhou et al. (2021)

KDM4A-AS1 ↑ miR-
411-5p

lnc-KDM4A-AS1/miR-411-5p/
KPNA2/AKT/HIF-1α

(+) EMT, (+) proliferation, (+) migration, (+) invasion, (+)
metastasis, (+) tumor growth

Chen et al. (2021)

MAPKAPK5-
AS1

↑ miR-
154-5p

lnc-MAPKAPK5-AS1/miR-154-5p/
PLAGL2/EGRT/AKT/HIF-1α

(−) EMT, (−) proliferation, (+) apoptosis, (−) metastasis Wang et al.
(2021)

TTN-AS1 ↑ miR-
139-5p

lnc-TTN-AS1/miR-139-5p/SPOCK1 (+) EMT, (+) proliferation, (+) migration, (+) invasion, (+)
metastasis, (+) tumor growth, (−) apoptosis

Zhu et al. (2021)

Note: downregulated expression (↓), upregulated expression (↑), inhibition of cellular process (−), enhance of cellular process (+).
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SNHG1 regulates cell proliferation and invasion via EMT through
miR-376a binding to elevate forkhead box protein K1 (FOXK1)
expression, a molecule that binds and upregulates SNAIL (Meng
et al., 2021). HAGLROS knockdown impaired HCC tumorigenesis
in vitro and in vivo. HALGROS increases the karyopherin α2
(KPNA2) level and suppresses p53 signaling to abate apoptosis
by acting as a miR-26b-5p sponge (Tang et al., 2022). DARS-AS1
induces EMT via interacting with miR-3200-5p, further promoting
Cytoskeleton associated protein 2 (CKAP2) expression and FAK/
ERK pathway activation (Feng et al., 2021).

SNHG12 (Chen et al., 2021), PRR34-AS1 (Qin et al., 2021) and
NUTM2A-AS1 (Long et al., 2023) axes induce EMT via Wnt/β-
catenin signaling. Furthermore, Huang et al. (2020) point out that
miR-1258 is downregulated in HCC patients. In vivo, experiments
showed that the miR-1258 overexpression in nude mice impeded

metastatic lung nodule formation. At the molecular level,
LINC01278 acts as a sponge of miR-1258 and upregulates
SMAD2/3, thus suppressing E-cadherin and enhancing vimentin
expression. Moreover, transcription factor 4 (TCF-4) binds to the
promoter site of LINC01278 and increases β-catenin expression,
TGF-β and Wnt/β-catenin pathways, thereby activating the
LINC01278/miR-1258/Samd2/Smad3 axis (Huang et al., 2020).

CRNDE and HCP5 induce Akt pathway activation by sponging
miR-539-5p andmiR-29b-3p, respectively, to promote the EMT and
the progression of HCC (Li et al., 2020; Zhou et al., 2021).
Furthermore, two others oncogenic lncRNAs, KDM4A-AS1 and
MAPKAPK5-AS1, activated by hypoxia-inducible factor 1-alpha
(HIF1α), have also been found to increase protein kinase B (Akt)
(Chen et al., 2021; Wang et al., 2021); their corresponding axes being
listed in Table 3.

TABLE 4 Summary of circRNAs signaling pathways and their influence in HCC tumor cells processes.

circRNA Expression Target Axis pathway circRNA involvement in cellular
process

References

circFGGY ↓ miR-
545-3p

circFGGY/miR-545-3p/SMAD7 (−) EMT, (−) invasion, (−) migration, (−) cell
growth

Feng et al. (2022)

circ_0000098 ↓ miR-1204 circ_0000098/miR- 1204/ALX4 (−) EMT, (−) proliferation, (−) migration, (−)
invasion

Li et al. (2021)

circEPB41L2 ↓ miR-
590-5p

circEPB41L2/miR-590-5p (−) EMT, (−) proliferation, (−) migration, (−)
invasion, (−) metastasis

Chen et al. (2021)

circ_0004913 ↓ miR-184 circ_0004913/miR-184/HAMP (−) EMT, (−) proliferation, (−) migration, (−)
invasion, (−) tumor growth

Wu et al. (2020)

circ_0003998 ↑ miR-
143-3p

circ_0003998/miR-143 -3p/FOSL2;
circ_0003998/miR-143 -3p/PCBP1/CD44v6

(+) EMT, (+) migration Song et al. (2020)

circ_0101145 ↑ miR-
548c-3p

circ_0101145/miR-548c-3p/LAMC2 (+) EMT, (+) proliferation, (+) migration, (+)
metastasis

Jin et al. (2020)

circBACH1 ↑ miR-
656-3p

circBACH1/miR-656-3p/SERB1 (+) EMT, (+) proliferation, (+) migration, (+)
invasion, (+) tumor growth, (−) apoptosis

Li et al. (2021)

circPUM1 ↑ miR-1208 circPUM1/miR-1208/MAP3K2 (+) EMT, (+) migration, (+) invasion Zhang et al. (2021)

circ_0051040 ↑ miR-569 circ_0051040/miR-569/ITGAV (+) EMT, (+) proliferation, (+) migration, (+)
invasion, (+) tumor growth, (+) metastasis

Ju et al. (2022)

circ_0001459 ↑ miR-6165 circ_0001459/miR-6165/IGF1R (+) EMT, (+) proliferation, (+) migration, (+)
invasion, (+) tumor growth, (+) metastasis

Shen et al. (2022)

circSEC24A ↑ miR-421 circSEC24A/miR-421/MMP3 (+) EMT, (+) proliferation, (+) invasion, (+)
migration, (+) cell growth

Zhang and Zhou
(2022)

miR-
455-3p

circSEC24A/miR-455-3p/PPM1F (+) EMT, (+) proliferation, (+) invasion, (+)
metastasis, (+) tumor growth, (−) apoptosis

Liao et al. (2021)

circ_0003288 ↑ miR-145 circ_0003288/miR-145/PD-L1 (+) EMT, (+) migration, (+) invasion Xu et al. (2021)

circ_0091579 ↑ miR-
136- 5p

circ_0091579/miR-136-5p/TRIM27 (+) EMT, (+) proliferation, (+) migration, (+)
invasion, (+) cell cycle progression

Mao et al. (2022)

circTOLLIP ↑ miR-
516a-5p

circTOLLIP/miR-516a-5p/PBX3/EMT (+) EMT, (+) proliferation, (+) metastasis Liu et al. (2022)

circCDR1as ↑ miR-1287 circCDR1as/miR-1287/Raf1 and MEK/ERK (+) EMT, (+) proliferation, (+) metastasis Zhang et al. (2020)

circ-TLK1 ↑ miR-
138-5p

circTLK1/miR-138-5p (+) EMT, (+) proliferation, (+) migration, (+)
invasion

Lu et al. (2022)

circFoxo3 ↑ miR-
199a-5p

circFoxo3/miR-199a-5p/ABCC1 (+) EMT, (+) invasion, (+) tumor growth Huang et al. (2020)

Note: downregulated expression (↓), upregulated expression (↑), inhibition of cellular process (−), enhance of cellular process (+).
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2.2.3 circRNA/miRNA/mRNA axes
In the Table 4 there are highlighted critical pathways that

involve circRNAs. In HCC, the levels of circFGGY (circ_
0006633) (Feng et al., 2022), circ_0000098 (Li et al., 2021), and
circEPB41L2 (Chen et al., 2021) are downregulated in tumor tissues
and inhibit EMT, proliferation, migration, and invasion. In
summary, authors highlight circFGGY/miR-545-3p/Smad7 (Feng
et al., 2022), circ_0000098/miR-1204/ALX4 (Li et al., 2021) and
circEPB41L2/miR-590-5p (Chen et al., 2021) axes as being
important in HCC. Furthermore, Wu et al. (2020) revealed that
circ_0004913 was downregulated in HCC tissues and that the
overexpression of circ_0004913 constrained proliferation, EMT
and metastasis by acting as a sponge of miR-184 and promoting
hepcidin antimicrobial peptide (HAMP) expression. In brief, the
circ_0004913/miR-184/HAMP axis regulates JAK2/STAT3/Akt
signaling in HCC cells (Wu et al., 2020).

In contrast, six circRNAs, circ_0003998 (Song et al., 2020), circ_
0101145 (Jin et al., 2020), circBACH1 (Li et al., 2021), circPUM1
(Zhang et al., 2021), circ_0051040 (Ju et al., 2022) and circ_0001459
(Shen et al., 2022), have been observed to manipulate various miR/
mRNA axes to induce EMT. Besides, elevated level of circSEC24A
leads to the expression of protein phosphatase, Mg2+/Mn2+
dependent 1F (PPM1F) and matrix metalloproteinase 3 (MMP3)
by sponging miR-455-3p and miR-421, respectively (Liao et al.,
2021; Zhang and Zhou, 2022). MMPs are a class of enzymes that
degrade extracellular matrix (ECM) proteins (Klein and Bischoff,
2011). In HCC, it was reported that MMP3 promotes EMT and
metastasis (Scheau et al., 2019).

Circ_0003288 is an oncogenic RNA that enhances EMT by
increasing programmed death-ligand 1 (PD-L1) and Akt pathways
via miR-145 sponging (Xu et al., 2021). Circ_0091579 has been
demonstrated to pin HCC patients and its downregulation inhibits
EMT and promotes apoptosis in vitro. Also, miR-136-5p is a direct
target of circ_0091579 and its overexpression suppresses the
malignant potential of HCC cells via regulating tripartite motif
containing 27 (TRIM27) expression (Mao et al., 2022).

Moreover, the Toll interacting protein (TOLLIP)-derived
circRNA (circTOLLIP) is also found to be involved in the EMT
of HCC. CircTOLLIP is upregulated in HCC via eukaryotic
translation initiation factor 4A3 (EIF4A3), an RNA-binding
protein. This circRNA acts as a ceRNA for miR-516a-5p, thus
upregulating PBX3 and exhibiting pro-tumor roles in vitro and
in vivo (Liu et al., 2022).

CircRNA CDR1as is highly expressed in some cancers (Jiang
et al., 2020). Specifically, circRNA CDR1as is overexpressed in HCC
tissues and its expression positively regulates EMT, proliferation and
metastasis in HCC cells via the miR-1287 sponge. This circRNA
enhances Raf-1 proto-oncogene, serine/threonine kinase (RAF1)
expression, a crucial molecule in the RAS/RAF/MEK/ERK
pathway (Zhang et al., 2020).

3 The role of ncRNA/mRNA axes in HCC
drug resistance

As discussed above, EMT is associated with chemotherapy
resistance by avoiding cell death mechanisms (De Las Rivas
et al., 2021). Therefore, a growing number of studies have

supported the importance of EMT-related ncRNAs in molecular
pathways of different therapies (He et al., 2022).

Sorafenib is the first-line FDA-approved treatment for HCC
(Niu et al., 2021) and an oral multikinase inhibitor that targets
vascular endothelial growth factor receptor 2 (VEGFR2), platelet-
derived growth factor receptor (PDGFR), hepatocyte factor receptor
(KIT), or other molecules to decrease angiogenesis. HCC cells
acquire resistance to sorafenib by different molecular pathways,
including EMT (Marisi et al., 2018; Tang et al., 2020). In this context,
lncH19 knockdown has been reported to inhibit EMT in HCC cells
by enhancing miR-675 expression, which is involved in sorafenib
sensitivity. In brief, H19 promoted sorafenib resistance (Xu et al.,
2020). LncRNA-POIR also has an oncogenic effect and suppresses
miR-182-5p expression, inhibiting the EMT process and triggering
sorafenib sensitivity (Chen et al., 2021). Additionally, small
nucleolar RNA host gene 3 (SNHG3) induces EMT and
CD151 expression by functioning as a ceRNA for miR-128.
LncRNA-SNHG3 can induce sorafenib resistance and promote
invasion in vitro (Zhang et al., 2019). In contrast, lncLIMT
(LINC01089), which reppresses miR-665 expression and EMT,
decreases sorafenib resistance. In addition, LIMT inhibits tumor
growth in vivo in tumor nude mouse models (Sun et al., 2022). MiR-
125b-5p is upregulated in sorafenib-resistant HCC cell lines and its
overexpression induces EMT by repressing ataxin 1 (ATXN1)
expression. Thus, it was reported that miR-125b-5p enhances
sorafenib resistance in vivo (Hirao et al., 2021).

Besides Sorafenib, TACE with doxorubicin and cisplatin is used
in HCC advanced patients (Lu et al., 2017; Couri and Pillai, 2019).

Doxorubicin (Adriamycin, DOX) is an anthracycline drug used
as an antineoplastic agent. The most known mechanism of action
involves the interaction with topoisomerase IIα (TOP2A) (Tewey
et al., 1984) and the activation of apoptosis (Roos and Kaina, 2013).
Anthracycline drug resistance is caused by the incapability of DOX
to accumulate in the nucleus (Cox and Weinman, 2016). For
instance, Zhang et al. (2021) reported that overexpression of linc-
ROR (long intergenic non-protein coding RNA (linc)-regulator of
reprogramming) increases DOX resistance in HCC cell lines by
TWIST upregulation. Also, circFoxo3 has higher expression in
adriamycin-resistant patients. It has been shown that
circFoxo3 via miR-199a enhances ABCC1 expression, a known
protein involved in drug resistance. Moreover, the
downregulation of miR-199a promoted EMT signaling in HCC
cells and reversed circFoxo3 inhibition effects (Huang et al., 2020).

Li et al. (2020) identified that circ_0003998 downregulation
facilitated DOX-sensitivity by E2F Transcription Factor 3 (E2F3)
regulation. They further identified circ_0003998 as a sponge of
miR-218-5p and Eukaryotic initiation factor 5A2 (EIF5A2) as a
direct target of miR (Li et al., 2020). Moreover, EIF5A2 is
involved in genistein resistance, an essential anti-tumoral
phytoestrogen that promotes apoptosis (Sarkar and Li, 2002)
and inhibits EMT and stemness. MiR-1275 is a tumor suppressor
that can bind 3′-UTR EIF5A2 as a protein that upregulated PI3K/
Akt and EMT pathways. MiR-1275 was expressed at a higher level
by genistein treatment (Yang et al., 2022). Furthermore, it has
been shown that miR-140-5p is involved in drug resistance in
HCC cells. In brief, miR-140-5p improves DOX sensitivity
through PIN1 depletion (Gao et al., 2021) and catalpol
sensitivity through EMT suppression (Wu et al., 2021).

Frontiers in Pharmacology frontiersin.org07

Ghionescu et al. 10.3389/fphar.2023.1270425

71

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1270425


Cisplatin is a chemotherapeutic that inhibits transcription and
replication, inducing apoptosis and necrosis in HCC cells (Ishikawa,
2009). It has been shown that miR-9 increases cisplatin sensitivity
in vitro and in vivo by targeting EIF5A2 and EMT process. Besides
that, EIF5A2 depletion decreases vimentin expression and increases
E-cadherin in HCC cell lines (Bao et al., 2020). Another ncRNA
involved in cisplatin sensitivity is miR-138 by its direct target,
enhancer of zeste homolog 2 (EZH2). This miRNA upregulates
EMT markers; therefore, the miR-138/EZH2/EMT axis could
regulate cisplatin resistance (Zeng et al., 2021), also involved in
radiosensitivity. Bai et al. (2022) show that miR-138 is
downregulated in HCC tissue and its expression is indirectly
correlated with EZH2 expression, which is a direct target of miR-
138-5p. By RNA-seq, they observed that miR-138-5p upregulation
inhibits HIF-1α and EMT (Bai et al., 2022). Moreover, Lu et al.
(2022) reported that miR-138-5p is negatively regulated by circ-
TLK1.

Paclitaxel—a microtubule-stabilizing molecule, induces cell
death (Weaver, 2014). As mentioned above, paclitaxel (PTX) is
another drug whose resistance could be caused by different signaling
pathways, including ncRNAs and EMT (Ashrafizadeh et al., 2021).
Liu et al. (2020) pointed out circ-BIRC6 (circRNA baculoviral IAP
repeat-containing 6) as an inhibitor of PTX sensitivity by sponging
miR-8 77-5p to enhance tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, zeta (YWHAZ) expression. Its
role in drug resistance has been reported in ovarian cancer (Hong

et al., 2018), bladder cancer (Yu et al., 2019), and gastric cancer
(Zhao et al., 2021). Furthermore, miR-212-3p is decreased in PTX-
resistant cells. This miRNA can bind to 3′UTR ZEB2, thus
mediating chemoresistance in HCC cells. Transfection of miR-
212-3p in resistant cells inhibited ZEB2 expression, reversing
EMT (Yang et al., 2020). Figure 2 summarizes the ncRNAs axes
involved in HCC drug resistance.

These investigations show the complex and dual role of ncRNAs
in EMT. The exact mechanism by which every ncRNA is involved in
the HCC will be difficult to decode because of its functions in many
hepatocellular processes. One way to start is by classifying the
miRNAs based on their direct or indirect impact on the EMT
process. Undoubtedly, future studies are necessary to report new
miRNAs associated with HCC-EMT and to map their function in
this process, which can lead to the development of novel therapies.

Therefore, to translate ncRNAs in a therapeutic situation, tools
must be developed to analyze these ncRNA axes functionally and to
devise therapy strategies, so as to overcome off-target and toxicity
consequences.

4 EMT-associated exosomal ncRNAs
in HCC

Exosomes can be found in all human body fluids (blood,
urine, saliva, ascites, cerebrospinal and synovial fluids) (Jiang

FIGURE 2
Molecular actions of EMT-related ncRNA axes in HCC drug resistance. Multiple regulatory components either increase or decrease sensitivity to
sorafenib, paclitaxel, genistein, cisplatin, doxorubicin, or catalpol, affecting HCC progression. The signaling pathways of every drug are represented by
different colors, as seen above (created with biorender.com accessed on July 2023).
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et al., 2022). They are extracellular 30–100 nm vesicles (EVs)
having a lipid bilayer; they are generated from the luminal
membranes of multivesicular bodies (MVBs) and released into
the extracellular matrix after MVBs fusion with the cell
membrane (Kim et al., 2020). The primary physiological role
of exosomes is to mediate cell-cell communication by
transferring bioactive molecules, such as proteins or nucleic
acids (Chen et al., 2021), thus being one of the most studied
tools for the interchange of substances between tumor cells and
the tumor microenvironment (Jiang et al., 2022).

In the last decade, more studies have highlighted the regulatory
effects of different bioactive molecules delivered by exosomes, such
as ncRNAs, in the EMT process in various types of cancers,
including HCC. Interestingly, they can promote or suppress the
EMT phenomena in HCC cells.

According to RNAseq investigation, exosomal miR-92a-3p
expression level increases in two established high-metastatic
HCC cell lines (97 hm and Huhm). Besides, treatment with
high-metastatic HCC-derived exosomal miR-92a-3p facilitates
the aggressiveness of HCC cells via PTEN inhibition and Akt/
Snail signaling activation, promoting EMT (Yang et al., 2020).
Similarly, high levels of miR-4800-3p were found in Huh7 cell-
derived exosomes. Thus, Lin et al. (2022) demonstrated that
exosomal miR-4800-3p heightened the progression of HCC by
regulating the Hippo signaling pathway and targeting STK25 in
both in vitro and in vivo experiments. Moreover, the treatment of
low metastatic HCC cells with exosomal miR-4800-3p
downregulates the expression of E-cadherin and ZO-1 and
increases the expression of N-cadherin, activating the EMT
process (Lin et al., 2022).

Interestingly, M2 macrophages can influence tumor
development by secreting various cytokines and exosomes that
can be loaded with specific miRNAs. For instance, miR-660-5p-
loaded M2 exosomes augmented EMT and enhanced the
tumorigenic ability in HCC cells through downregulating
Kruppel-like factor 3 (KLF3) expression (Tian et al., 2021).

Human umbilical cord mesenchymal stem cells (hucMSCs)
have low immunogenicity and high proliferation and
differentiation potential. Additionally, the treatment of HCC
cells with hucMSC-Exo upregulates miR-451a. This miRNA
inhibits a disintegrin and metalloprotease 10 (ADAM10), thus
reducing EMT and aggressive phenotypes of HCC (Xu et al.,
2021).

Several studies showed that TGF-β treatment induces EMT
(Miyazono, 2009; Lin et al., 2020; Kim et al., 2021) and
treatment with exosomes derived from these cells increases
proliferation and metastasis in HCC cells (Lin et al., 2020)
through intercellular communication. Lin et al. (2020) reported
that 119 miRNAs are upregulated, such as miR-125b-5p, 374a-5p,
miR-24-3p, miR-200b-3p, and miR-21-5p, and 186 are
downregulated in EMT-Hep3B-derived exosomes (EMT-Hep3B
exo), as compared to Hep3B exo. Moreover, treatment with
EMT-Hep3B exo with miR-374a-5p interference inhibits
hepatocellular metastasis by upregulation of growth arrest and
DNA damage 45-alpha (GADD45A), a cell growth suppressor
(Lin et al., 2020). In contrast, Huh7 cell-derived exosomes loaded
with miR-125b (Exo-125b) blocks EMT and suppresses metastatic
potential via inhibiting TGF-β1/SMAD pathways (Kim et al., 2021).

Similarly, miR-374c-5p was found to be downregulated in the EMT
model and transferred by exosomes derived from bone marrow
mesenchymal stem cells (BMSC) suppresses EMT via targeting LIM
domain kinase 1 (LIMK1) and inhibiting Wnt/β-catenin and TGF-
β1 axes in HCC cells (Ding et al., 2023).

Yao et al. (2022) identified that lncRNA THEMIS2-211 is
upregulated in plasma-derived exosomes from HCC patients.
Knockdown of THEMIS2-211 increases E-cadherin and
decreases N-cadherin and vimentin in HCC cells.
Mechanistically, they showed that THEMIS2-211 is an
oncogene that promotes proliferation, migration, invasion, and
EMT by sponging miR-940 and increasing SPOCK1 expression
(Yao et al., 2022).

Circ-0004277 and lncRNA PRR34-AS1 transfer via exosomes to
human hepatic cells increases the malignant phenotype (Zhu et al.,
2020; Zhang et al., 2022). Thus, PRR34-AS1 enhanced Rab27a
expression to increase the exosome secretion of VEGF and TGF-
β in HCC cells and transmitted them into the human liver epithelial
(THLE-3) cells (Zhang et al., 2022).

In summary, these studies prove that exosomes act as ncRNAs
cargo for tumor cells and have distinct regulatory effects on the EMT
process in HCC and various underlying processes. Although
exosomes are promising therapy in cancer, improvement of their
purification, and additional studies on the interaction and
mechanisms with other types of cells remain the main problems
to be solved in their uses.

5 Conclusion and future perspectives

The development of transcriptomics approaches in the last
decade has highlighted the essential roles of ncRNAs in cancer
(Slack and Chinnaiyan, 2019; Winkle et al., 2021). The
formation of ncRNA axes starts to become an essential tool
in various cellular mechanisms, and its role in the progression of
HCC is decisive (Wong et al., 2018). Furthermore, it will be
crucial to comprehend how ncRNA axes regulate migration,
proliferation, and EMT in HCC cells, so as to generate cutting-
edge therapeutic medications based on ncRNAs, to prevent and
manage HCC.

Taking together these observations, we find that defining
ncRNA pathways in direct and indirect mechanisms could map
a precise road to a therapeutic target as close to a clinical
necessity as possible. The EMT-related miRNAs’ direct
mechanism of action could be a promissive path in
developing new therapies against metastasis. However, more
research is needed to understand how these miRNA axes work
and to determine which transcripts are valuable targets.
Undoubtedly, since a single miRNA could have several
targets and can affect more therapeutic drugs, its use as a
new therapy in cancer requires an in-depth study of the
mechanisms involved.
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Identification of novel lactate
metabolism-related lncRNAs with
prognostic value for bladder
cancer
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1Department of Urology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China,
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Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China

Background: Bladder cancer (BCA) has high recurrence and metastasis rates,
and current treatment options show limited efficacy and significant adverse
effects. It is crucial to find diagnostic markers and therapeutic targets with
clinical value. This study aimed to identify lactate metabolism-related
lncRNAs (LM_lncRNAs) to establish a model for evaluating bladder cancer
prognosis.

Method: A risk model consisting of lactate metabolism-related lncRNAs was
developed to forecast bladder cancer patient prognosis using The Cancer
Genome Atlas (TCGA) database. Kaplan‒Meier survival analysis, receiver
operating characteristic curve (ROC) analysis and decision curve analysis (DCA)
were used to evaluate the reliability of risk grouping for predictive analysis of
bladder cancer patients. The results were also validated in the validation set.
Chemotherapeutic agents sensitive to lactatemetabolismwere assessed using the
Genomics of Drug Sensitivity in Cancer (GDSC) database.

Results: As an independent prognostic factor for patients, lactatemetabolism-related
lncRNAs can be used as a nomogram chart that predicts overall survival time (OS).
There were significant differences in survival rates between the high-risk and low-risk
groups based on the Kaplan‒Meier survival curve. decision curve analysis and receiver
operating characteristic curve analysis confirmed its good predictive capacity. As a
result, 22 chemotherapeutic agents were predicted to positively affect the high-risk
group.

Conclusion: An lactate metabolism-related lncRNA prediction model was
proposed to predict the prognosis for patients with bladder cancer and
chemotherapeutic drug sensitivity in high-risk groups, which provided a new
idea for the prognostic evaluation of the clinical treatment of bladder cancer.
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1 Introduction

Globally, bladder cancer (BCA) is the most common urological
malignancy and requires lifelong monitoring after diagnosis
(Dobruch and Oszczudłowski, 2021). Twenty to thirty percent
of BCA patients have progressed to muscle-invasive BCA
(MIBCA) when diagnosed (Fletcher et al., 2011). Nearly 50% of
MIBCA patients develop tumor metastasis after radical cystectomy
(RC). BCA is estimated to cause 356,000 new cases and
145,000 deaths yearly (Antoni et al., 2017). Consequently, the
guidelines recommend treating MIBC with neoadjuvant
chemotherapy (NAC) and RC (Milowsky et al., 2016).
Approximately 50% of MIBCA patients cannot tolerate
suppressive adverse events resulting from chemotherapy,
leading to treatment delays in nonresponders (Hanna et al.,
2018). To improve cancer patients’ clinical efficacy and
prognosis, clarifying BCA pathogenesis and determining targets
for diagnosis and treatment are imperative.

Urothelial BCA (UBCA) is one of the earliest cancers considered
to have immunogenicity. With the FDA’s approval of immune
checkpoint inhibitors (ICIs) and pan-FGFR inhibitors, PD-1/PD-
L1 therapy has shown an impressive lasting response in UBCA
patients. However, the response rate has been low (Eckstein et al.,
2019). To maintain uncontrolled growth and proliferation, BCA
may use aerobic glycolysis-dependent metabolism (the Warburg
effect) as the primary energy source (Yang et al., 2011). High lactic
acid levels and subsequent acidification caused by glycolytic
metabolic transformation may promote carcinogenesis and
contribute to invasion, immune escape, metastasis, and
chemoradiotherapy resistance (Wang et al., 2020). In addition,
the Warburg effect is a feature of MIBCA and nonmuscle
invasive BCA (NMIBC) (Burns et al., 2021). A significant portion
of the glucose storage is converted into lactic acid by lactate
dehydrogenase-A (LDH-A), resulting in glucose being used to
promote growth, regardless of oxygen levels (Kim et al., 2006). In
vitro, overexpression of LDH-A promoted BCA proliferation,
invasion, and migration by stimulating epithelial-mesenchymal
transformation (EMT) (Jiang et al., 2016). The metabolic state of
tumor cells influences their interactions with the tumor
microenvironment (TME), which is crucial for antitumor
immunity (Bader et al., 2020). As lactic acid levels increase in the
TME, tumor-associated macrophages differentiate into
M2 subtypes, while activated macrophages promote tumor
invasion through the CCL17/CCR-4/Mtorc1 signaling axis
(Zhang et al., 2021). Lactic acid derived from tumor cells
induces GPR81 expression in dendritic cells through a paracrine
mechanism, inhibiting immune cell antigen presentation (Brown
et al., 2020). These reports suggest that an in-depth understanding
of lactate metabolism in BCA will provide new opportunities
to predict the disease life cycle and find targets for tumor
immunotherapy.

A long noncoding RNA (lncRNA) is an RNA transcribed over
200 nucleotides without the capability to code for proteins. Various
cancers, including BCA, can be initiated and progress at different
levels, including epigenetic, transcriptional, and posttranscriptional
regulation (Iyer et al., 2015). In BCA patients, overexpression of Aly/
REF export factor (ALYREF) promotes cell proliferation through
PKM2-mediated glycolysis and high expression of pyruvate kinase

M2 (PKM2), and ALYREF predicts poor survival (Wang et al.,
2021). The low expression of AlkB homolog 5 (ALKBH5) results in
poor prognosis in BCA patients, inhibits progression in a m6A-
dependent manner, and sensitizes BCA cells to cisplatin through the
casein kinase 2 (CK2)α-mediated glycolytic pathway (Yu et al.,
2020). Due to their regulatory influences on BCA metabolism,
lncRNAs are considered potential targets for drug screening and
are a promising area of research.

In recent years, using high-throughput sequencing and
data analysis in biomedical research has become increasingly
important in identifying biomarkers, predicting prognosis, and
monitoring recurrence and stratification (Zhang et al., 2019).
Many studies have used a variety of biomarkers to establish
clinical patient diagnosis or prognosis prediction models (Liu
et al., 2021). Many studies have focused on hypoxia modulating
tumor immune responses, while lactate has mainly been ignored in
BCA metabolism.

Herein, LM_lncRNAs were analyzed using bioinformatics,
a prognostic model for BCA was established, chemotherapy-
targeted drugs were explored based on lactate metabolism
groups, and a prediction model was developed for the
prognosis of BCA. This study may benefit the innovation of
customized precision diagnosis and treatment strategies
for BCA.

2 Methods

2.1 Data acquisition

TCGA data are freely available to the public, and this study
strictly follows access policies and publication guidelines. BCA
RNA expression data were downloaded from TCGA GDC’s official
website (https://portal.gdc.cancer.gov/). A total of 408 BCA
patients were evaluated for gene expression. This study included
variables such as the age and sex of the participants, American
Joint Committee on Cancer (AJCC) stage, histological grade, and
survival rate. We excluded 11 samples of BCA patients with OS<
30 days and one sample without OS recorded. All remaining
patients were included in our study. In this study, we included
397 patient samples and 19 paracancerous samples (Table 1). To
select mRNAs with a p-value less than 0.05, fragments per kilobase
million (FPKM) were converted into transcripts per million
(TPM). The Molecular Signatures Database (MSigDB) contains
a gene set related to lactate (Hallmark-lactate) (Liberzon et al.,
2015).

2.2 Identification of differentially expressed
LM_lncRNA

Our screening procedure used a |log2FC| > 1 and a false
discovery rate (FDR) < 0.05. The limma package was also used
to identify all differentially expressed lncRNAs (Ritchie et al., 2015).
It was determined whether there was a relationship between the
LM_mRNAs in the sample and all lncRNAs differentially expressed
data calculated by Pearson correlation. A correlation was
demonstrated if |R2| > 0.3 and p < 0.001.
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2.3 Development of the LM_lncRNA
prognostic signature

Based on univariate Cox analysis, lncRNAs predict overall
survival (OS) in BCA patients. Afterward, we selected lncRNAs
with independent prognostic characteristics using multivariate Cox
regression. In this study, we selected lncRNAs that are independent
prognostic factors for patient survival using the survminer software
package. The regression coefficient of the multivariate Cox regression
model wasmultiplied by the linear combination of expression levels to
generate a prognostic risk score based on LM_lncRNAs.

This model can be expressed as follows:

Risk score � @Expr of lncRNA 1( ) × coefficient of lncRNA 1( )]
+@Expr of lncRNA 2( ) × coefficient of lncRNA 2( )] + . . . . . .

+@Expr of lncRNA n( ) × coefficient of lncRNA n( )]

Riskscore � ∑
N

i�0
Expi*βi( )

In this formula, Expi is the expression level of each prognostic
lncRNA, and the coefficient is βi. Furthermore, patients were
divided into high-risk and low-risk groups based on the median
lactate-related risk scores calculated by the formula above. Kaplan‒
Meier survival curves, receiver operating characteristic curves
(ROCs), and C-indices were used to predict patient outcomes
and decision curve analysis (DCA).

2.4 Signature validation of LM_lncRNA

The TCGA dataset (dataset 1) contains 393 patients divided
into two subgroups based on random selection. There were
197 patients in validation set 1 and 196 in validation set 2
(dataset 2). TCGA datasets were analyzed, prognostic features

were identified, and the model’s performance was validated in
2 datasets, validation sets 1 and 2. Having validated the
prognostic value of lncRNA models based on the LM_
lncRNA signature, we validated its impact on survival
outcomes in BCA patients. The OS effects of prognostic
factors were compared between high-risk and low-risk
patients using log-rank tests and Kaplan‒Meier survival
curves. To evaluate the accuracy of the immune profile
derived from the survival ROC software package, we
calculated the area under the curve (AUC) using time-
dependent ROC curves.

2.5 Coexpression network construction

Using Cytoscape, we constructed a correlation network
between mRNAs and lncRNAs. With the help of the R software
package ggalluvial, we analyzed the relationship between lncRNAs
and risk.

2.6 Predictive nomograms and GSEA
enrichment analysis

Separate gene expression analyses were conducted for high-
and low-risk groups related to lactate metabolism (Subramanian
et al., 2005). With an FDR q-value <0.25, the difference was
considered statistically significant. To estimate the OS of
patients at 1, 3, and 5 years, we constructed a Norman diagram
and calibrated the statistics using the RMS package. After a
calibration curve was developed, statistically significant values
(p < 0.05) were calculated and compared with patient
predictions at the 3- and 5-year marks.

2.7 Immunity reaction and sensitivity to
immunotherapies/chemotherapies

Infiltration of immune cells in tumors in the high-risk and low-
risk groups was estimated using the ESTIMATE algorithm
(Yoshihara et al., 2013). Identifying immune checkpoints and
m6A modification enabled quantification of immune function in
high- and low-risk populations.

Every patient with BCA can be predicted to respond to
chemotherapy using the Genomics of Cancer Drug Sensitivity
database (GDSC) (Yang et al., 2013). The GDSC database
predicts chemosensitivity in patients with two types of BCA.
A half-maximum inhibitory concentration (IC50) was predicted
using ridge regression in the “pRRophetic” package (Geeleher
et al., 2014). Ten cross-validations are conducted to calculate
accuracy.

2.8 Statistical analysis

R software was used for all data analysis and visualization
(version 4.1.2). If the distribution of the groups was not
expected or the variance was unknown, Wilcoxon rank-sum

TABLE 1 The clinical characteristics of patients in the TCGA dataset

Variable Number of samples

Gender

Male/Female 294/103

Age

≤65/>65 159/238

Stage

I/II/III/IV/NA 2/124/137/132/2

Grade

High/Low/UN 376/18/3

T

T0/T1/T2/T3/T4/UN 1/3/114/190/58/31

M

M0/M1/MX/UN 187/10/198/2

N

N0/N1/N2/N3/NX/UN 229/45/76/7/36/4
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tests or Kruskal‒Wallis tests were used to compare them. Cox
regression analysis was conducted on both the univariate and
multivariate data. Survival differences were assessed using log-
rank tests. We assessed the sensitivity and specificity of BCA
prognosis and other clinicopathological features by calculating
ROC curves and C-indices. The statistics were considered
significant if p < 0.05.

3 Results

In Figure 1, a flow chart describes this study in more detail.

3.1 Identification of significantly enriched
LM_lncRNAs

Twelve GSEA gene sets were related to lactate metabolism in the
MSigDB database, and all of the lncRNAs were extracted, totaling
330. A total of 306 lncRNAs were enriched for lactate metabolism-
related pathways after intersection processing with the entire gene
set of the sample. Based on the Pearson correlation between mRNAs
and lncRNAs in BCA, we screened lncRNAs significantly associated
with lactate metabolism. We obtained 780 candidate gene
expression data of lncRNAs with the criteria of |R2| > 0.3 and
p < 0.001 (Supplementary Table S2, S3). Among them, 548 lncRNAs

FIGURE 1
Study flowchart. Three hundred thirty lactate-related mRNAs and 780 related lncRNAs (LRLs) were obtained from the TCGA and MSigDB databases.
Then, 426 lactate-related differentially expressed lncRNAs (LDELs) were identified according to their differential expression in the tumor and adjacent
tumor. Next, univariate Cox, Lasso, andmultivariate Cox analyses were applied to screen for prognostic LDELs. Based on this analysis, a 5-LDEL signature
was constructed. Subsequently, GSEA analyses, immune-related analyses, m6A-related analyses, and drug sensitivity assays were applied to identify
the potential function of this signature. Finally, 2 internal validations were conducted to explore the expression and function of these LDELs.
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were overexpressed, and 232 lncRNAs were downregulated. A total
of 426 differential lncRNAs were identified with p < 0.05 and |log2
FC| > 1 criteria. The heatmap and volcano map of the different
analyses are shown in Figures 2A,B.

3.2 Construction andmultivariate evaluation
of the prognostic significance of LM_lncRNA

This study included 397 BCA patients and 306 LM_lncRNAs in the
TCGA cohort to determine prognostic risk models. The association
between survival and LM_lncRNAs was determined by univariate Cox
regression analysis. As a result, when the p < 0.05, we found seven
lncRNAs significantly associated with OS in BCA patients. Figure 2C

shows the prediction model constructed from five lncRNAs as the result
of multivariate stepwise Cox regression analysis. A prognostic model
based on LM_lncRNA was developed by dividing patients into two
categories based onmedian risk scores. Compared to the low-risk group,
the high-risk group had a shortermortality and survival time (Figure 2D).

A prognostic risk score formula composed of these five lncRNAs
is as follows:

Risk score � 1.34455 × Expr of SATB2 − AS1( )
+ 0.09399 × Expr of AC021242.3( )
+ −6.07924 × Expr of AC105053.1( )
+ −4.23667 × Expr of AL135786.2( )
+ 0.19263 × Expr of LINC01842( )

FIGURE 2
Lactate signature construction. (A) Volcano map for differentially expressed lncRNAs. (B) Heatmap for differentially expressed lncRNAs. (C) Risk
score distribution and survival status of the two risk groups. (D) Kaplan‒Meier curve analysis (K-M curve analysis) for the cohort. (E) The Sankey diagram
presents the detailed connection between lactate-related lncRNAs and lactate-related genes.
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In Cox regression analysis, three of these LM_lncRNAs, SATB2-
AS1, AC021242.3, and LINC01842, showed positive coefficients,
suggesting that their high expression is associated with poorer OS.
While the coefficients of AC105053.1 and AL135786.2 were
negative, the Sankey diagram indicated that this lncRNA was
protective (Figure 2E).

An analysis of clinicopathological manifestations and LM_
lncRNA prognostic features was conducted using a
heatmap. Meanwhile, the 1-year AUC of this signature
lncRNA was 0.681, and the 5-year AUC was 0.691, which was
superior to standard clinicopathological features in predicting
BCA prognosis (Figures 3A,B). Over the 3-, 5-, and 10-year
periods, the survival ROCs were 0.67, 0.68, and 0.69,
indicating that the predictive ability of the model was still
good after 10 years (Figure 3C). As shown by DCA, the model
had good profitability based on its C-index of 0.648 (Figure 3D).

3.3 Validation of the LM lncRNA signature

To validate the LM_lncRNA signature, its prognostic
accuracy was further evaluated in an independent cohort.
These two validation datasets were also downloaded from the
TCGA database. Moreover, the data of “Dataset 2” and “Dataset
3” were randomly selected from the 397 patients obtained in the
initial part of the present study. Two validation sets were
randomly selected: validation set 1 (dataset 2: 197) and
validation set 2 (dataset 3: 196). Low-risk patients had
significantly longer survival, as evaluated by the ROC curve,
with areas of 0.670 and 0.702 (Figures 4A,B) and the
validation cohorts (Figures 4C,D), respectively.

FIGURE 3
Stability verification of the lactate-related lncRNA signature model in
the trainingcohort. (A-B)The1-yearAUCof this signature lncRNAwas0.681,
and the 5-year AUCwas0.691. (C)Thepredicted 3-, 5-, and 10-year survival
receiver operating characteristic (ROC) curves of the new lncRNA
features were 0.67, 0.68, and 0.69, respectively. (D) The model’s decision
curve analysis (DCA) also shows that the model has good profitability.

FIGURE 4
ROC validation and Kaplan‒Meier curve analysis for the lactate-related lncRNA signature. (A-B) The ROC areas were 0.670 and 0.702 in validation sets 1
(dataset 2: n= 197) and2 (dataset 3: 196), respectively. (C–D)ProlongedOS in low-risk versushigh-risk patients in both validation cohorts (log-rank test,p<0.001).
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3.4 Construction of the nomogram in the
TCGA cohort

According to univariate and multivariate regression analyses,
BCA was an independent prognostic factor (Figures 5A,B).
Figure 4C shows the nomogram derived from the five LM_
lncRNAs. The mixed nomogram (Figure 5D) combining
clinicopathological features and prognostic factors of LM_
lncRNAs coupled with the 5-year calibration curve could be
applied stably and accurately to treat BCA patients (Figure 5E).

In low- and high-risk individuals, GSEA identified pathways
enriched with differentially expressed lncRNAs. According to these
findings, LM_lncRNAs play a central role in cell cycle regulation,
oocyte meiosis, pyrimidine metabolism, and DNA replication. Low-
risk individuals showed higher steroid hormone biosynthesis, retinol
metabolism, and linoleic acid oxidation (Figure 6A).

3.5 Subtype-specific genomic profiling and
immune infiltration levels

Based on immune scores, no significant differences were found
between the high- and low-risk groups. In the high-risk group,

stromal scores were significantly different from those in the low-risk
group; moreover, as shown in Figures 6B,C, immune infiltration of
the matrix was significantly different in the high-risk group. As
immune checkpoint inhibitors are a critical component of
immunotherapy, we explored differences between groups in
immune checkpoint expression. HNRNPA2B1, HNRNPC,
IGF2BP2, IGF3, ALKBH5, and YTHDF2 were significantly
different between the high-risk and low-risk groups in terms of
m6A modification (Figure 7A). The two patient groups expressed
significantly different levels of lncRNAs, such as TNFRSF18,
TNFRSF14, TNFRSF9, TNFRSF8, TNFSF4, HAVCR2, LAG3,
LGALS9, SIGLEC15, SIGLEC9, SIGLEC7, and LAIR1
(Figure 7B). According to the results of the Pearson correlation
calculation in the previous section, with |R2| > 0.3 and p < 0.001 as
the correlation criteria, to identify independent prognostic factors
for LM_mRNAs, a network diagram was drawn (Figure 7C).

3.6 Predicting chemotherapeutic response

We utilized the GDSC website to assess the outcome considering
that chemotherapy resistance directly affects patient outcomes.
Furthermore, we assessed the response of the two subgroups to

FIGURE 5
Independent prognostic value of the LDEL risk model. (A, B) Univariate (A) and multivariate Cox (B) analyses in the training cohort. (C) A nomogram
for the lactate lncRNA signature. (D) A nomogram for both prognostic lactate lncRNAs and pathological factors. (E) C-index analysis of the nomogram.
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chemotherapeutic agents using the GDSC cell line dataset (Figure 8).
A total of 22 drugs were found to be more sensitive to high-risk
subtypes, increasing a patient’s prognosis when chemotherapy drugs
were used on patients with high-risk subtypes Table 1. The above
results can help to screen for more suitable chemotherapy drugs for
precise treatment. Several specific targeted therapeutic drugs with
the smallest IC50, such as AKT inhibitor VIII, AS601245, axitinib,
FH535, MG.132, MS.275, and PD.0332991, have more significant
potential to be developed into a high-risk group for the treatment
of BCA.

4 Discussion

BCA has a poor prognosis partly because of the lack of an
effective early diagnosis. The clinical diagnosis of BCA mainly relies
on cystoscopy biopsy and urine cytology. Cystoscopic biopsy is
invasive and expensive, and urine cytology is less sensitive for
identifying early low-grade BCA (Lokeshwar et al., 2005).
Moreover, due to the lack of sensitivity and specificity of
diagnosis, a series of BCA-related biomarkers (such as nuclear
matrix protein, bladder tumor antigen, and cytokeratin) have
limited application value in the early detection of BCA (Chao
et al., 2001). Therefore, developing new biomarkers with high

sensitivity and specificity is critical for the early diagnosis and
prognostic analysis of UBCA.

The study of this type of UBCA, its molecular mechanism, and
the prognosis of MIBCA patients is essential for the prognosis of this
type of UBCA. This study first used TCGA and MSigDB data to
confirm the LM_mRNAs further screened by correlation analysis.
Recent reports indicated that patient data in TCGA with follow-up
times <30 days or OS < 30 days were excluded (Dai et al., 2021; Fang
et al., 2021; Li et al., 2021). We performed the analysis in the present
study according to such a modality.To identify differentially
expressed lncRNAs, we conducted a differential analysis on the
lncRNAs above. Univariate and multivariate analyses identified
LM_lncRNAs that might be independent risk factors for UBCA.
This study screened five differentially expressed lncRNAs: SATB2-
AS1, AC021242.3, LINC01842, AC105053.1, and AL135786.2.
SATB2-AS1, an inhibitor of microRNA155-3p, regulates the
migration and proliferation of breast cancer cells (Liu et al.,
2017). Studies of SATB2-AS1 in colon tumors demonstrated that
it could regulate SATB2 to affect the colon tumormicroenvironment
(Xu et al., 2019). The lncRNA SATB2-AS1 regulates the
proliferation of lung cancer cells by coordinating with other
lncRNAs (Lu et al., 2021). In previous studies on lung cancer-
related lncRNAs, LINC01842 was considered to regulate lung cancer
cell proliferation in a ceRNA pattern with CASC8 and VPS9D1-AS1

FIGURE 6
(A) Enrichment of genes in the representative pathways by GSEA function analysis. (B) Immune scores for the high-risk and low-risk groups. (C) The
stromal score for the high-risk and low-risk groups.
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(Dai et al., 2020). However, there are no reports on the expression
and function of AC105053.1, AC021242.3, and AL135786.2 in
tumors. Research on tumor and immune regulation and the
TME has gradually become a hotspot in recent years. However,
most of the research on the immune regulation-related mechanism
of UBCA is limited to animal experiments and direct sequencing
data. There needs to be in-depth research on the mechanism,
especially the mechanism of lactic acid in UBCA (Conde et al.,
2015). The expression levels of immune checkpoints are predictive
biomarkers of immunotherapy response, showing broad potential
for precision therapeutics. In metastatic UBCA, immunotherapy
targeting suppressive immune checkpoints has often been used as a
second-line therapy, but only 30% of patients respond to ICI
immunotherapy (Lopez-Beltran et al., 2021). Earlier studies
related to immunotherapy and pan-cancer research demonstrated
that methylation played a critical role in immune cell infiltration
(Guo et al., 2021). The process of m6A modification was proven to
be the key to methylation (Ma et al., 2019). ALKBH5 regulates target
gene splicing, leading to changes in lactate in the tumor
microenvironment (Li et al., 2020). METTL3-mediated RNA
m6A modification regulates lactate metabolism in the TME
(Xiong. et al., 2022). We hypothesize that those with high lactate

risk scores may benefit more from immunotherapy. In comparison
to low-risk groups, high-risk groups exhibited significantly elevated
levels of m6A modification, as well as TNFRSF18, HAVCR2, and
LAG3, suggesting that these m6A modification suppressive agents
may be considered for patients with a high lactate risk.

There were 22 drugs identified in the GDSC cell line dataset
that were highly specific to the high-risk lactate group, which
provides new targets for treating UBCA more precisely. By
controlling aerobic glycolysis, overactivated PTEN/PI3K/Akt/
mTOR promotes cancer metabolic conversion and tumor cell
proliferation. AKT inhibitor VIII has been proven to protect
gastric cancer cells, clear cell renal cell carcinoma, and breast
cancer cells. AS601245, an anti-inflammatory JNK inhibitor,
and clofibrate induce cell responses and alter gene expression

FIGURE 7
Correlation between LDELs and immunometabolic modification.
(A) Expression of m6A genes between high- and low-risk subgroups
(−p ≥ 0.1, ·p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
(B) Distribution of immune checkpoints between the high- and
low-risk subgroups. (C) Protein‒protein interaction (PPI) network of
5 LDELs and lactate metabolism genes.

FIGURE 8
Comparative analysis of chemotherapy drugs with good efficacy
in the high-risk group.
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profiles in Caco-2 colon cancer cells (Cerbone et al., 2012). In
addition to inhibiting VEGFR1, VEGFR2, and VEGFR3,
axitinib inhibits platelet-derived growth factor receptors and
C-Kit. Treatment has been used for advanced renal cell
carcinoma patients who have not responded to cytokines or
tyrosine inhibitors.

Nevertheless, it is not used in the treatment of BCA. In vitro
and in vivo, blocking the SDF-1/CXCR4/β-catenin axis inhibits the
growth of BCA cells, but there are few related reports (Zhang et al.,
2018). FH535, an inhibitor of the β-catenin pathway, inhibits the
release of the proangiogenic cytokines vascular endothelial growth
factor (VEGF), interleukin (IL)-6, IL-8, and TNF-α. It inhibits
angiogenesis in vitro and in vivo (Liu et al., 2016). The proteasome
inhibitor MG-132 inhibits mitochondrial-mediated intrinsic
myocardial apoptosis and NF-κB-mediated inflammation, and
less research has been done on cancer treatment. An
investigation of MS-275, a potent cytotoxic HDACi selective for
classes I/IV, in RMS xenograft models demonstrated modest
antitumor activity alone and combined with standard
chemotherapy (Cassandri et al., 2021). A selective CDK4/
6 inhibitor, palbociclib, has shown outstanding results in phase
II clinical trials in patients with estrogen receptor-positive HER2-
negative breast cancer (Bollard et al., 2017).

5 Conclusion

Based on ROC analysis, DCA, and calibration curve analysis of
the TCGA dataset, we identified a novel, efficient, and highly
prognostic LM_lncRNA signature. LM_lncRNAs were found to
act as independent predictors of OS in the TCGA database.
Validation by random grouping within the dataset shows its
effectiveness. In addition, 22 chemotherapeutic agents sensitive to
the high-risk group were predicted, which could be used to treat
tumors with tumor-related sensitive drugs. This study developed a
new method for diagnosing and evaluating UBCA patients’ survival
prognoses based on lactate metabolism.
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network composed of circRNA,
miRNA, and mRNA in septic acute
kidney injury patients based on
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Background: Sepsis is a complex, life-threatening clinical syndrome that can
cause other related diseases, such as acute kidney injury (AKI). Circular RNA
(circRNA) is a type of non-coding RNA with a diverse range of functions, and it
plays essential roles in miRNA sponge. CircRNA plays a huge part in the
development of various diseases. CircRNA and the competing endogenous
RNA (ceRNA) regulatory network are unknown factors in the onset and
progression of septic AKI (SAKI). This study aimed to clarify the complex
circRNA-associated regulatory mechanism of circRNAs in SAKI.

Methods:Wecollected 40 samples of whole blood of adults, including 20 cases of
SAKI and 20 cases of healthy controls. Moreover, five cases were each analyzed by
RNA sequencing, and we identified differentially expressed circRNA, miRNA, and
mRNA (DEcircRNAs, DEmiRNAs, and DEmRNAs, respectively). All samples were
from SAKI patients with intraperitoneal infection.

Results: As a result, we screened out 236 DEcircRNAs, 105 DEmiRNAs, and 4065
DEmRNAs. Then, we constructed two co-expression networks based on
RNA–RNA interaction, including circRNA–miRNA and miRNA–mRNA co-
expression networks. We finally created a circRNA–miRNA–mRNA regulation
network by combining the two co-expression networks. Functional and
pathway analyses indicated that DEmRNAs in ceRNA were mostly concentrated
in T cell activation, neutrophils and their responses, and cytokines. The
protein–protein interaction network was established to screen out the key
genes participating in the regulatory network of SAKI. The hub genes identified
as the top 10 nodes included the following: ZNF727, MDFIC, IFITM2, FOXD4L6,
CIITA, KCNE1B, BAGE2, PPIAL4A, USP17L7, and PRSS2.

Conclusion: To our knowledge, this research is the first study to describe changes
in the expression profiles of circRNAs, miRNAs, and mRNAs in patients with SAKI.
These findings provide a new treatment target for SAKI treatment and novel ideas
for its pathogenesis.

KEYWORDS

septic, acute kidney injury, transcriptome analysis, ceRNA, noncoding RNA

OPEN ACCESS

EDITED BY

Sujit Nair,
Viridis BioPharma Pvt. Ltd., India

REVIEWED BY

Mihir Khambete,
Yale University, United States
Saiprasad Ajgaonkar,
University of Mumbai, India
Yue Gu,
Henan Provincial People’s Hospital, China

*CORRESPONDENCE

Wen-Jie Zhou,
zwj648135224@163.com

†These authors have contributed equally
to this work and share first authorship

RECEIVED 21 April 2023
ACCEPTED 30 August 2023
PUBLISHED 14 September 2023

CITATION

Ma S-R, Ma Q, Ma Y-N and Zhou W-J
(2023), Comprehensive analysis of ceRNA
network composed of circRNA, miRNA,
and mRNA in septic acute kidney injury
patients based on RNA-seq.
Front. Genet. 14:1209042.
doi: 10.3389/fgene.2023.1209042

COPYRIGHT

© 2023 Ma, Ma, Ma and Zhou. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 14 September 2023
DOI 10.3389/fgene.2023.1209042

89

https://www.frontiersin.org/articles/10.3389/fgene.2023.1209042/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1209042/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1209042/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1209042/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1209042/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1209042&domain=pdf&date_stamp=2023-09-14
mailto:zwj648135224@163.com
mailto:zwj648135224@163.com
https://doi.org/10.3389/fgene.2023.1209042
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1209042


Introduction

Sepsis is highly susceptible to organ dysfunction because it
causes dysregulation of the patient’s response to infection (Singer
et al., 2016). Sepsis without treatment or effective therapies can cause
shock and multiorgan failure if not treated immediately. As part of
sepsis, kidney is one of the most frequently impaired organs in
patients with sepsis, that is, septic acute kidney injury (SAKI)
(Koyner, 2019). Intensive care unit patients are most likely to
suffer from acute kidney injury (AKI) due to sepsis, and around
60% of sepsis cases are complicated by AKI. Furthermore, AKI
frequently occurs early in the course of sepsis (Uchino, 2005;
Bagshaw et al., 2008). In addition, the increasing incidence of
sepsis and AKI in critically ill patients represents a high risk of
death (Parmar et al., 2009). In 2012, Kidney Disease: Improving
Global Outcomes determined AKI occurrence by measuring urine
output and serum creatinine, but these markers have a particular
hysteresis (Khwaja, 2012; Wen and Parikh, 2021). The root cause is
the unclear molecular mechanisms of SAKI (Wen et al., 2018). Thus,
studying the mechanisms underlying SAKI pathogenesis and
developing biomarkers for early diagnosis and treatment is essential.

Circular RNA (circRNA) was first reported in 1976. At that time,
circRNA was assumed to be a plant viroid (Sanger et al., 1976). With
the continuous progress of circRNA research, knowledge and
awareness of circRNA have been refined. circRNA is a new non-
coding RNA with a unique structure. CircRNA forms are derived
from a 30–50 connection between the two ends of linear RNA
molecules (Danan et al., 2011; Kristensen et al., 2019). Based on the
components of parental genes, at least three different groups of
circRNA, including ecircRNA, ciRNA, and eIciRNAs, exist in
animal cells (Li et al., 2015; Zhang et al., 2018). Several studies
confirmed that circRNA is present in human blood and other tissues
and expressed during the development of numerous diseases. Gene
expression can be influenced by miRNA sponges and other
mechanisms. CircRNA also has excellent stability and sensitivity
in biological fluids; thus, it can be a suitable potential biomarker of
cancer or other diseases (Meng et al., 2017; Zhang et al., 2018). In
2011, Salmena recommended for the first time the competing
endogenous RNA (ceRNA) hypothesis (Salmena et al., 2011).
CeRNA is a research hotspot and the most popular mechanism
for circRNA to regulate gene expression. CircRNA can competitively
combine with miRNA response elements (MREs), regulate the
expression of downstream mRNA, and is involved in the
occurrences and progression of a number of diseases through the
mechanism of ceRNA (Taulli et al., 2013; Tay et al., 2014; Zhang
et al., 2018). Meanwhile, the function and mechanism of circRNA-
associated ceRNA in SAKI are still being elucidated.

This study investigated the pathogenesis of SAKI and the
potential treatment target. First, we utilized RNA sequencing
(RNA-seq) to compare the expression profiles of circRNA,
miRNA, and mRNA between SAKI patients and healthy controls.
Differential expression of 10 selected circRNAs (four upregulated
and six downregulated) confirmed the consistency with sequencing
data by real-time quantitative polymerase chain reaction (QRT-
PCR). Afterward, based on the sequencing data, co-expression
networks were formed for circRNA–miRNA and
miRNA–mRNA. By combining circRNA and miRNA pairs, a
circRNA–miRNA–mRNA ceRNA network was established.

Pathway and functional analyses were applied to elucidate the
potential functional pathways of differentially expressed mRNAs
(DEmRNAs). We then constructed a network of protein–protein
interaction (PPI) and identified hub genes (Martino et al., 2021).
New targets for the diagnosis and treatment of SAKI can be possibly
screened out due to this study.

Methods

Patient sample collection

The clinical experimental specimens were obtained from the
whole blood of SAKI patients and healthy individuals. Twenty
samples were obtained from SAKI patients between June
2022 and November 2022 from the General Hospital of Ningxia
Medical University. All samples were obtained from SAKI patients
with intraperitoneal infection. We selected five cases for each of the
two groups for RNA-seq, and the rest were used to identify the
accuracy of RNA-seq results by qRT-PCR. In this study, the Human
Research Ethics Committee at the General Hospital of Ningxia
Medical University approved the research, and the experimental
specimens were kept at −80°C until their extraction. Table 1 and
Table 2 show basic information about the patients and healthy
controls, respectively.

High-throughput sequencing

In accordance with the manufacturer’s instructions, total RNA
was isolated from clinical experimental specimens using TRizol
reagent (Invitrogen RNA simple kit). We evaluated the integrity of
RNA by electrophoresis in agarose gels using an Agilent
2100 bioanalyzer (Agilent Technologies, United States of
America) of the extracted RNA for quality check (optical
density (OD) 260/OD280: 1.8–2.2; OD260/OD230 > 2.0; RNA
integrity number >= 7). After rRNA depletion, the remaining RNA
was purified, fragmented, and readied for cDNA synthesis. Next,
for the first step, fragmentation buffer and Invitrogen reverse
transcriptase (SuperScript IV) were used to reverse transcribe
the RNA fragments with randomly selected primers to
synthesize first-strand cDNA. As a part of the next step, DNA
polymerase I was used to synthesize the second-strand cDNA.
RNase H was used for reverse transcription, and dNTP was used to
replace dUTP (instead of dTTP), whereas a buffer was used for its
preparation. As a part of the library construction process, the
RNA-seq library chain was made specifically with a high-fidelity
PCR polymerase, and double-stranded cDNAs were obtained. A
single nucleotide of A was added to each end of the double-
stranded cDNA to ensure the quality of the library. After the
ligation of adapters and library fragment screening, PCR
amplification was performed. Given that the dUTP on the
second-strand cDNA hindered the amplification of high-fidelity
polymerase, amplified libraries were only derived from the first-
strand cDNA. Library quality of the PCR products was validated
using an Agilent 2100 Bioanalyzer. In the end, 150 bp paired-end
reads were obtained from the libraries using Illumina’s Hiseq
2500 platform.

Frontiers in Genetics frontiersin.org02

Ma et al. 10.3389/fgene.2023.1209042

90

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1209042


RNA-seq data analysis

Raw sequencing data were quality controlled by FastQC and R
software (Ward et al., 2019; Sepulveda, 2020). To obtain high-quality
clean reads, we further processed the raw sequencing reads by
fastp. The main step was the removal of sequencing primers and
low-quality reads. A reference genome (hg19) alignment was
performed using STAR software (Dobin et al., 2012). Gene
expression levels were represented by fragments per kilobase of
exon per million mapped fragments values. For circRNA, a database
of sequencing reads (count) was used to detect the expression of
circRNA in different samples using CIRCexplorer2 (Luo et al.,
2019). To sequence small RNAs, using miRDeep2, we compared
the sequences of small RNAs of each sample with those of miRNA
precursors and mature miRNAs of corresponding species in the
miRBase database (https://www.mirbase.org) (Friedländer et al.,
2011). In addition, the closely related known miRNAs were
obtained by combining them with human miRNA sequences, and
the expressions of known miRNAs in each sample were counted.

Differential expression analysis

We selected five healthy control samples and five SAKI samples
for RNA-seq analysis. After obtaining clean data by methods
described previously, we aligned them to the reference genome to

obtain differentially expressed genes (DEGs). DEGs were analyzed
using DESeq2 (Love et al., 2014). Differential gene screening was
performed using the edgeR filter criteria (log2fold change >2, false
discovery rate >0.05) (Robinson et al., 2009). Upregulated and
downregulated DEGs were categorized by log2(Fold Change) >
1 and log2(Fold Change) < −1, respectively.

Enrichment of gene ontology (GO) and
Kyoto encyclopedia of genes and genomes
(KEGG)

For differentially expressed circRNAs (DEcircRNAs) and
DEmRNAs, we used GO and KEGG analysis to predict their
functions. GO is a standard for describing gene functions. After
screening for differential genes, in accordance with the gene–function
classification system of GO, biological processes (BPs) were used to
categorizeDEGs,molecular functions (MFs), and components of cellular
metabolism (CC). Enrichment analysis can indicate the manifestation of
gene function of sample differences from the perspective of biological
pathways. KEGG pathway databases contain pathways that represent
molecular interactions, reactions, and relationships. We also analyzed
differentially expressed circRNA host genes. DEGs were enriched byGO
andKEGGpathways using the clusterProfiler R package (Yu et al., 2012).
You can find out more about GO at http://www.geneontology.org and
KEGG at http://www.genome.jp/kegg.

TABLE 1 Information of the SAKI patients and healthy people for RNA-seq.

Characteristics Control group (n = 5) SAKI group (n = 5) p-value

Male gender 4(80.00) 4(80.00) >0.999

Age, years 45.20 ± 1.985 48.40 ± 8.029 0.716

BMI, kg/m2 22.22 ± 2.195 23.10 ± 1.886 0.519

Kidney disease 0 (100.00) 0 (100.00) >0.999

Abdominal Infection 0(100.00) 5(100.00) *(p < 0.005)

Serum creatinine 69.4 ± 3.99 359.18 ± 56.92 0.007

Urea concentration 5.18 ± 0.17 18.39 ± 2.27 0.004

Abbreviations: Data are presented as mean (SD) or number (percentage); The difference between the two groups was analyzed by independent-sample t-test and One-way ANOVA BMI, body

mass index.

TABLE 2 Information of the SAKI patients and healthy people for RT-qPCR validation.

Characteristics Control group (n = 15) SAKI group (n = 15) p-value

Male gender 10(66.67) 12(80.00) 0.427

Age, years 47.20 ± 1.619 51.67 ± 3.952 0.309

BMI, kg/m2 21.89 ± 0.63 22.43 ± 0.57 0.535

Kidney disease 0 (100.00) 0 (100.00) >0.999

Abdominal Infection 0 (100.00) 10 (66.67) *(p < 0.005)

Serum creatinine 65.67 ± 2.75 314.60 ± 26.83 *(p < 0.005)

Urea concentration 5.27 ± 0.15 18.95 ± 0.80 *(p < 0.005)

Abbreviations: Data are presented as mean (SD) or number (percentage); The difference between the two groups was analyzed by independent-sample t-test and One-way ANOVA BMI, body

mass index.
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Co-expression network analysis of circRNA,
miRNA, and mRNA

In this study, we built networks of co-expression between
circRNA and miRNA and between miRNA and mRNA using co-
expression analysis. To determine the Pearson correlation
coefficient, we used the R function “cor.test ()” (Zhang et al.,
2020) Cytoscape (https://cytoscape.org) was used to visualize the
two co-expressions networks.

Construction of circRNA–miRNA–mRNA
network

CeRNA contains miRNA binding sites; circRNA can compete
with miRNAs and inhibit mRNA-mediated gene regulation.
circRNA binds to miRNAs competitively and acts as an
endogenous miRNA sponge. When the expression of circRNA in
cells decreases, more miRNAs bind to the mRNA. MiRNAs
negatively regulate mRNAs due to their negative regulatory
effects, and the expression of mRNA decreases. MiRanda was
used to predict the circRNA’s miRNA target (http://www.
MiRNA.org/MicroRNA/home.do). Two bioinformatics tools
(miRanda and RNAhybrid) predicted the miRNA target genes
(mRNA). As a final result, the intersection of the two tools was
obtained. Then, we calculated Pearson’s correlation coefficient using
the R function cor. We used it to denote the size of RNA–RNA
interaction. Based on the ceRNA theory, an endogenous RNA
network composed of circRNA, miRNA, and mRNA was
constructed. Visualization was performed using Cytoscape
software (https://cytoscape.org).

Gene set enrichment analysis (GSEA)

According to GSEA, to a certain extent, the random error
introduced by the limit threshold was largely avoided. In
addition, the proportion of upward and downregulated genes in
the GO or pathway can be determined by calculating the enrichment
score of a gene. Therefore, GSEA was necessary, and a GSEA
software was used (version 4.1.0, https://www.gsea-msigdb.org).

Identifying hub genes for and building the
PPI network

Known and predicted PPI are stored in the STRING database,
and we used them to make a PPI network of DEmRNA. After the
visualization was carried out with Cytoscape software (https://
cytoscape.org), the 10 best genes were selected as hub genes.

QRT-PCR

Sequencing results were verified by qRT-PCR. In SAKI patients
and healthy individuals, total RNA was extracted using TRIzol.
Reverse transcription was performed following the manufacturer’s
instructions. QRT-PCRwas also conducted. Table 3 provides a list of

all primer sequences. We analyzed the data using the 2−△△CT

method.

Statistical analysis

In this study, we conducted statistical analyses using R and SPSS.
Independent sample t-tests were used to determine statistical significance
between groups. We performed all bioinformatics analyses with R
packages of R software. Statistics were considered significant when
p > 0.05, whereas p > 0.05 was not considered significant.

Result

Identifying circRNA, mRNA, and mRNA
expression differences

We collected five whole blood samples from SAKI patients and
another five samples from the healthy controls for high-throughput
sequencing. As a result, 29856 circRNAs were detected. circBase and
circatlas databases were used for gene annotation. In the circBase
database, 10972 circRNAs with circBase IDs were annotated.
Meanwhile, in the circatlas database, 24196 circRNAs were
identified. The scatter plot in Figure 1 shows the visualized
circRNAs with different expressions in SAKI samples and healthy
controls. Principal component analysis demonstrated significant
differences between the two groups (Figure 1). The heatmap_
top50_sample_cluster exhibited the expression of DEcircRNAs
(Figure 1). The number of up-and-down-regulated genes did not
differ considerably from those in healthy controls. Among the total
DEcircRNAs, 129 were significantly upregulated, and 107 were
significantly downregulated. CircBase included 33 upregulated and
48 downregulated DEcircRNAs. The rest were observed for the first
time. Volcano maps showed all DEcircRNAs (Figure 1). Similarly,
differentially expressed miRNAs (DEmiRNAs) and DEmRNAs was
detected in the two groups. A total of 76 DEmiRNAs were
upregulated, and 29 were downregulated. A total of 2125 genes
were upregulated by DEmRNA, and 1940 genes were
downregulated. Figure 2 shows the volcano and heatmap_top50_
sample_cluster of DEmiRNAs and DEmRNA.

Functional analysis of GO and KEGG

To explore the possible features of DEcircRNAs and DEmRNAs in
SAKI, we analyzed their host genes using KEGG pathway and GO
enrichment analyses. Figure 3 shows the gene enrichment analysis (GO)
of DEcircRNAs. BP, CC, and MF enrichment analysis results indicated
that the host genes of DEcircRNAs were primarily located in the
“regulation of GTPase activity,” “negative or positive regulation of
catabolic process,” “nuclear speck,” “cytoplasmic ribonucleoprotein or
ribonucleoprotein granule,” “active transmembrane transporter
activity,” “transcription corepressor activity,”
“modification−dependent protein binding,” and other processes. In
accordance with KEGG pathway enrichment analyses, DEcircRNAs of
host genes were mainly enriched in “Amyotrophic lateral sclerosis,”
“Nucleocytoplasmic transport,” and “Th1 and Th2 cell differentiation”
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(Figure 3). In addition, we examined DEmRNA enrichment in ceRNA
based on GO and KEGG. The GO analysis showed that numerous BPs
correlated with T cell activation, neutrophil, and their responses, and
cytokines were significantly enriched in cytoplasmic and vesicle lumen
(Figure 3). According to KEGG analysis, DEmRNAsweremainly found
in cytokine–cytokine receptor interactions and cell adhesion molecules
(Figure 3).

GSEA

To predict DEmRNA-related pathways and BPs in SAKI with
greater accuracy, we also performed GSEA for all DEmRNAs of
RNA-seq data. GSEA (Figure 4) showed that DEmRNAs in SAKI
were mainly enriched in “Cytokine−cytokine receptor interaction,”
“Cell adhesion molecules,” “Th17 cell differentiation,” and “Th1 and
Th2 cell differentiation.” In line with KEGG analysis, this result
confirms the validity of our findings.

Co-expression network analysis of circRNA,
miRNA, and mRNA

Correlations between DEcircRNAs, DEmiRNAs, and
DEmRNAs were determined based on Pearson’s correlation
coefficient, and DEcirc/DElnc/DEmRNAs without significant
interactions were excluded based on certain conditions. As
shown in Figure 5, we used Cytoscape software to establish a
circRNA–miRNA co-expression network containing
217 DEcircRNAs and 72 DEmiRNA. circRNA–miRNA and
miRNA–mRNA co-expression networks containing
60 DEmiRNAs and 943 DEmRNAs, respectively (only
interactions with correlation p-value less than 0.05 were plotted).

Construction of the
circRNA–miRNA–mRNA network

As previously described, the ceRNA network consists of miRNAs
negatively regulated by circRNAs andmRNAs. CircRNA,mRNA, and
miRNA RNA-seq results were used to create a ceRNA network

between these three molecules. The RNA used to build ceRNA has
several requirements. First, significant differences exist between the
three molecules. Second, miRNA has a targeted relationship with
circRNA, as do the miRNA and mRNA, and they were negatively
correlated (p-value <0.05, cor <= −0.8). Third, the samemiRNAmust
have a targeting relationship with mRNA and circRNA. Fourth,
circRNA and mRNA that have a targeted relationship with the
same miRNA are significantly correlated (p-value <0.05). Figure 6
shows that 36 circRNA, 20 miRNA, and 56 mRNA were selected to
create a circRNA-associated ceRNA regulatory network. These results
provide new information about pathogenetic mechanisms and
potential treatments for SAKI.

Gene identification and network
construction of PPI

Network visualization was performed using the String database to
uncover potential PPI networks in SAKI and identify hub genes for
SAKI development. STRING contains known and predicted protein
interactions. The physical interaction between two proteins and the
functional interaction between two proteins are respectively termed
direct and indirect PPIs. DEGs were extracted for the species directly
included from the database. With the igraph package of the R language,
we calculated the network modularity and module division using fast
greedy optimization (Baciu et al., 2017; Sepulveda, 2020). This package
divides the blocks into blocks and drawings. The plots are presented in
Figure 7. After clustering, modules with more than 10 significantly
different genes were analyzed again for GO and KEGG enrichment.
Hub genes identified as the top 10 best genes included the following:
ZNF727, MDFIC, IFITM2, FOXD4L6, CIITA, KCNE1B, BAGE2,
PPIAL4A, USP17L7, and PRSS2.

QRT-PCR

QRT-PCR was used to confirm the consistency of gene
expression and RNA-seq data. We randomly selected 9 circRNAs
(4 upregulated and 5 downregulated) for validation. As shown in
Figure 8, the results of qRT-PCR and sequencing data were
consistent.

TABLE 3 Primer sequences for quantitative real-time polymerase chain reaction analysis of differentially expressed circRNA levels.

Name Forward primer sequence Reverse primer sequence

chr12:66203711|66228370 TGTGGCAGTATATCAAGCAGAGA CACCGATGGTCTTGTTTTTCTGT

chr1:113829592|113834439 TGTTCCACCCCATTCCAGTG ACAGACACTGAAGACTCCTGG

chr21:33414888|33432871 GCCTGTTTCTTCCTGGTCCTG TGGGAAAGAGGGTCTCTTCTATCT

chr15:64499293|64500166 GGGAACTAAACCGGAGCCAG ACATGCCCAGTGGACAACATC

chr19:15397150|15404042 CAAGTTCCATATCCCTGCGGT CAGCCTGCGACCTCTTCATT

chr19:47084345|47094608 CAACTCTCCATCTTCCCCAGGT GGAAGCTACCGGAGTCGTGA

chr19:54142929|54153840 TGACGAGTTTGAGCAGCGTC CTCACCTTGGAGTTTGCGCT

chr1:233198939|233236980 GCGAGCCACCATCAGTAACA TGCAGTGAAGAGAGATGCAGG

chr9:96458379|96465778 AAAGATACCAGGCCAGAAGCG CTCCGCTCAGCTCTTTCGAG
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Discussion

Sepsis can cause SAKI, which is one of its most severe
complications. No consensus has been reached regarding the
mechanisms underlying sepsis-induced AKIs. Based on available
research, the root cause of the exact timing of kidney damage in
sepsis is uncertain. When patients show signs and symptoms of
sepsis, we appropriate empiric antibiotics passively. Patients may

receive hemodialysis treatment when the infection seriously
endangers the kidneys or other organs (Bottari et al., 2021; Patel
et al., 2022; Roggeveen et al., 2022). A variety of potential markers
may be useful in early detection of SAKI and targeting of its
therapeutic targets. Most studies involved noncoding RNAs.
Noncoding RNAs are a class of substances that may play a role
at the gene level. A broad involvement has been observed in a
number of diseases, including SAKI (Rong et al., 2017). A great deal

FIGURE 1
Differentially circular RNAs analysis in SAKI. Abbreviations: (A) Scatter plot showed the visualizing circRNAs different expression in SAKI samples and
healthy control. (B) Principal component analysis (PCA) of SAKI samples and healthy control. (C) Heatmap and cluster analysis of top 50 genes of
DEcircRNAs. Each column represents a sample and each row a different gene. The color represents the expression levels of the gene. Red indicates that
the gene has a higher expression level; green indicates that the gene has a lower expression. (D)DEcircRNAs in volcano plot, significantly top 5marks
are depicted. The blue dots indicate no significant difference circRNAs; The red dots indicate upregulated circRNAs; The green dotsmean downregulated
circRNAs.
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of research has been conducted on miRNAs in SAKI. Numerous
miRNAs, such as MiR-107, MiR-210, and MiR-150-5p, affect the
growth and advancement of SAKI (Wang et al., 2017; Lin et al., 2019;
Shi et al., 2021). However, SAKI is still relatively understudied
regarding circRNA profiles and ceRNA networks associated with
circRNAs. CircRNAs, miRNAs, and mRNAs were sequenced in
SAKI using high-throughput sequencing. We have identified
236 DEcircRNAs, 105 DEmiRNAs, and 4065 DEmRNAs. We
studied their mutual interactions initially and constructed a
circRNA-associated-related network. In light of this finding,

several significant dysregulated RNAs may be used as potential
biomarkers of SAKI.

CircRNA has a particular structure that can make it more stable
than other RNA (Rong et al., 2017). It has been an important topic of
numerous research. Circ_0114428, Circ_0091702, and CircRNA
TLK1 are involved in the process of SAKI according to related
literature. For prediction of circRNA functions, differentially
expressed host genes in the presence of circRNAs were analyzed,
and GO and KEGG analyses were conducted. Ten randomly selected
CircRNAs were analyzed with qRT-PCR to validate the RNA-seq

FIGURE 2
Differentially miRNAs and mRNAs analysis in SAKI. Abbreviations: (A) Heatmap and cluster analysis of top50 genes of DEmRNAs. (B) Heatmap and
cluster analysis of top 50 genes of DEmiRNAs. (C) DEmRNAs in volcano plot, significantly top 5 marks are depicted. (D) DEmiRNAs in volcano plot,
significantly top 5 marks are depicted.
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FIGURE 3
GO and KEGG analysis of DEmRNAs and the host genes of DEmiRNAs. Abbreviations: (A) GO analysis of the host genes of DEcircRNAs under the
theme of BP, CC and MF. (B) KEGG analysis of the host genes of DEcircRNAs. (C) GO analysis of DEmRNAs under the theme of BP, CC and MF. (D) KEGG
analysis of DEmRNAs.

FIGURE 4
Enrichment plot of four KEGG among RNA processes. Abbreviations: The title represents a description of the gene. The abscissa represents the
score of gene set members in the target gene list. The ordinate represents the enrichment score of the run. Ranked list metric represents the position of
each member in the target gene set.
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results (four upregulated and five downregulated). They coincided
with the results of RNA-seq. According to GO enrichment analysis,
six GO terms (GO:0043087, GO:0009895, GO:0009896, GO:
0032386, GO:0016607, and GO:0022804) were significantly

enriched. We also observed that the KEGG pathway enrichment
analysis enriched the top 10 KEGG terms, including amyotrophic
lateral sclerosis, nucleocytoplasmic transport, Th1 and Th2 cell
differentiation, spinocerebellar ataxia, ferroptosis, leishmaniasis,

FIGURE 5
CircRNA-miRNA co-expression network and miRNA-mRNA co-expression network. Abbreviations: (A) Networks of circRNA-miRNA. Only RNA-
RNA interactions with a correlation p-value less than 0.05 are plotted. The red color line indicates that the expression of this RNA is positively correlated,
green indicates a negative correlation for the expression of RNA. (B) Networks of miRNA-mRNA.

FIGURE 6
CircRNA–miRNA–mRNA network. The red color line indicates that the expression of this RNA is positively correlated, green indicates a negative
correlation for the expression of RNA.
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Th17 cell differentiation, HIF-1 signaling pathway, ABC
transporters, and viral life cycle (HIV-1).

CircRNA is regulated by ceRNA as described previously.
mRNA expression is regulated by CircRNA, which acts as a

miRNA sponge and competes with MREs. As a result of RNA-
seq, we identified 36 circRNAs, 20 miRNAs, and 52 mRNAs of
differential expression. Based on RNA-RNA interactions, we
constructed two co-expression networks of circRNA–miRNA

FIGURE 7
PPI network and hub genes. Proteins are represented as nodes and functional relationships by edges.

FIGURE 8
QRT-PCR. Abbreviations: The quantitative Real-time PCR (qRT-PCR) verification for the expression patterns of circRNAs. Gray and black legends
represent qRT-PCR and RNA-seq results, respectively.
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and miRNA–mRNA. By combining the co-expression networks of
miRNA–mRNA and circRNA–mRNA, we finally established a
circRNA–miRNA–mRNA regulation network to understand
SAKI mechanisms. We analyzed mRNAs in ceRNA in terms of
GO enrichment and KEGG pathways to identify and explore
possible biological functions. GO enrichment analysis showed
that T cell activation, neutrophil and their responses, and
cytokines may be related to the pathological process of SAKI.
Significant enrichment of GO–CC was found in genes involved in
cytoplasm and vesicle lumen. According to functional enrichment
analysis of KEGG, cytokine, cell adhesion molecules, and T-helper
cells may participate in the initiation and progression of SAKI.
Although the immune system depends heavily on neutrophils, its
activation is harmful in sepsis. It can induce an immune reaction
and lead to thrombosis. This condition may be the reason for SAKI
(Stiel et al., 2018). In Mi Han et al. (2017) stated that delta
neutrophil index as a serum marker can be used to judge SAKI
patients’ condition (Han et al., 2017). Subsets of CD4+T-cell, Th1,
Th17, and regulatory T (Treg) cells were observed. By analyzing
the Th17/Treg ratio, one can determine the severity and prognosis
of sepsis patients. Septic patients are characterized by persistently
high Th2/Th1 levels in the peripheral blood. Moreover, T cell
activation profiles can cause the identification of sepsis early.
Numerous T helper cells are strongly correlated to cytokines.
Th1 cells are strongly correlated to interferon-γ((IFN-γ), as do
Th17 cells and tumor necrosis factor-α(TNF-α) or interleukin-
17(IL-17). This result suggests that T cells and their related
cytokines are important materials involved in sepsis and cause
inflammation. In addition, AKI can confer an altered cytokine
profile (Gupta et al., 2016; Coakley et al., 2020; Chaturvedi et al.,
2021; Liu et al., 2021). A number of cell adhesion molecules are
found in cells, including intercellular adhesion molecule-1 (ICAM-
1) and vascular cell adhesion molecule-1 (VCAM-1). They play an
important role in defense against infections. VCAM-1 and ICAM-
1 are markers of vascular endothelial damage in sepsis and can be
used to monitor the development of organ dysfunction, such as
kidney injury (Amalakuhan et al., 2016). Martijn van Griensven
observed that ICAM-1 had a strong pathogenic effect on sepsis.
ICAM-1 j/j mice had a low mortality in sepsis. This result was
caused by the decreased cytokine level (Griensven et al., 2006). To
avoid random errors introduced by limiting thresholds, we also
examined the potential functions of DEmRNAs in the ceRNA
network by performing GSEA. Our results matched those above.
“Cytokine-cytokine receptor interaction” was reported in the
result of GSEA analysis of DEmRNAs of SAKI in 2020 (Yang
et al., 2020).

A PPI network was established to screen out the key genes
involved in the regulatory network of SAKI. Hub genes identified as
the top 10 nodes comprised the following: ZNF727, MDFIC,
IFITM2, FOXD4L6, IGBOS1, CIITA, KCNE1B, BAGE2,
PPIAL4A, USP17L7, and PRSS2.

Limitations

Our research encountered several flaws and limitations. First, we
lacked sequence samples and genes to verify. As a result, our study
may lack reliability. Second, we did not use kidneys from SAKI

patients for RNA-seq because these samples are lacking in clinical
practices. Third, the ceRNA network is a hypothesis. More
experiments are needed to understand its mechanism deeply.

Conclusion

To our best knowledge, this research is the first report that
examined changes in circRNA, miRNA, and mRNA expression in
patients with SAKI. We analyzed whole blood samples from patients
and healthy individuals for RNA sequencing,A
circRNA–miRNA–mRNA regulation network was constructed
using the differentially expressed genes obtained from the
sequencing Functional and pathway analyses indicated that
DEmRNAs in ceRNA were mostly concentrated in T cell
activation, neutrophils and their responses, and cytokines. A PPI
network was also established to screen out the key genes
participating in the regulatory network of SAKI. The hub genes
identified as the top 10 nodes included the following: ZNF727,
MDFIC, IFITM2, FOXD4L6, CIITA, KCNE1B, BAGE2, PPIAL4A,
USP17L7, and PRSS2. These findings provide a new treatment target
for SAKI treatment and novel ideas for its pathogenesis. We will
conduct more detailed studies on sepsis and septic acute kidney
injury in the future. This will include RNA sequencing of whole
blood samples from septic patients along with animal and cellular
experiments. The aim is to identify therapeutic targets for the
disease, more accurately.
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Doxorubicin is one of the most classical chemotherapeutic drugs for the
treatment of cancer. However, resistance to the cytotoxic effects of
doxorubicin in tumor cells remains a major obstacle. Aberrant expression of
long non-coding RNAs (lncRNAs) has been associated with tumorigenesis and
development via regulation of chromatin remodeling, transcription, and post-
transcriptional processing. Emerging studies have also revealed that dysregulation
of lncRNAs mediates the development of drug resistance through multiple
molecules and pathways. In this review, we focus on the role and mechanism
of lncRNAs in the progress of doxorubicin resistance in various cancers, which
mainly include cellular drug transport, cell cycle disorder, anti-apoptosis,
epithelial-mesenchymal transition, cancer stem cells, autophagy, tumor
microenvironment, metabolic reprogramming and signaling pathways. This
review is aimed to provide potential therapeutic targets for future cancer
therapy, especially for the reversal of chemoresistance.

KEYWORDS

long non-coding RNA, doxorubicin, drug resistance, cancer, molecular mechanisms

Introduction

Cancer has become one of the most common diseases and a leading cause of death. It is
estimated that 19.3 million new cancer cases occurred worldwide in 2020 with almost
10.0 million cancer deaths (Sung et al., 2021). In 2040, the global cancer burden is even
expected to reach 28.4 million cases, representing a 47% rise compared to 2020 (Sung et al.,
2021). Research on cancer has drawn extensive attention and great progress has been made
regarding to cancer screening, early diagnosis and effective treatment. For example, the
mortality rate of breast cancer (BRCA) is shown to fall steadily, with an about 35% decline
over the past three decades (Malvezzi et al., 2019). Chemotherapy alongside surgery and
radiotherapy, usually constitutes the standard regimen of cancer therapy (Mariette et al.,
2007). However, when cancer is advanced or patients cannot suffer surgery, chemotherapy
then becomes the last strategy.

Doxorubicin (DOX) is an anthracycline antibiotic which was isolated from the pigment-
producing Streptomyces peucetius early in the 1960s (A et al., 2000). It is one of the most
widely employed chemotherapeutic agents for the treatment of both hematological and solid
tumors, including breast cancer, ovarian cancer (OC), bladder cancer (BLCA), lung cancer
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(LC), and acute myeloblastic leukemia (AML) (Blum and Carter,
1974; Young et al., 1981; Hulst et al., 2022). Doxorubicin stabilizes a
reaction intermediate in which DNA strands are cut and covalently
linked to tyrosine residues of topoisomerase II (Top2), eventually
blocking DNA relegation (Minotti et al., 2004; Pommier et al., 2010).
In addition, doxorubicin generates free radicals, leading to DNA
damage or lipid peroxidation; interferes with DNA unwinding or
DNA strand separation and helicase activity; induces apoptosis in
response to Top2 inhibition (Gewirtz, 1999; Minotti et al., 2004;
Pommier et al., 2010). DOX can also induce histone eviction from
open chromatin, which attenuates the DNA damage response,
triggers epigenetic alterations and induces apoptosis (Pang et al.,
2013).

Since its discovery, DOX has brought a substantial improvement
in cancer therapy. The introduction of DOX into the adjuvant
therapy of BRCA demonstrated definite benefit in disease-free
survival and overall survival (Hortobágyi and Buzdar, 1993).
Gastric cancer (GC) was ever considered refractory to
chemotherapy, whereas the addition of DOX produced
encouraging response rates over 40% and increased median
overall survival (Wadler et al., 1985). Along with the wide
application, intrinsic and acquired resistance to DOX remains a
major clinical problem. Some studies revealed resistance to DOX due
to increase of drug efflux and reduction in drug accumulation,
mediated by members of the ATP-binding cassette (ABC)
superfamily (Grant et al., 1994; Velamakanni et al., 2007;
Broxterman et al., 2009). The members of ABC transporters
regulate the absorption, distribution, and clearance of
pharmacological agents (Vasiliou et al., 2009). However, though
many investigations are devoted to the development of
transporter inhibitors for reversal of resistance, it has not been
successful in improving the clinical response to chemotherapy,
causing our consideration on the real nature of chemoresistance
(Abraham et al., 2009). Undoubtedly, it will be of key importance for
clinical studies to define the exact mechanisms mediating
doxorubicin resistance.

Long non-coding RNAs (lncRNAs) are a kind of transcriptional
products with a length longer than 200 nucleotides and no or low
protein-encoding ability (Alexander et al., 2010; Uchida and Dimmeler,
2015; Yang L et al., 2014). Similar to coding genes, lncRNAs are usually
transcribed by RNA polymerase II and have a poly-A tail (Gibb et al.,
2011), but their sequence are less conserved than that of mRNAs (Pang
et al., 2006). LncRNA has only been regarded as the “transcriptional
noise” of the genome, rather than having biological functions, for a long
time after its discovery (Ponjavic et al., 2007; Struhl, 2007). In recent
years, more and more studies have shown that lncRNAs are widely
involved in the regulation of gene expression at epigenetic,
transcriptional and posttranscriptional levels (Yang Get al., 2014),
playing an important role in cell differentiation, organogenesis,
tissue homeostasis and other critical life activities (Mercer et al.,
2009; Hung and Chang, 2010; Schmitz et al., 2016). In addition, the
abnormal expression of lncRNAs is also closely related to the
occurrence and development of cancer and chemoresistance (Batista
and Chang, 2013; Evans et al., 2016). Insights into the role of lncRNAs
in DOX resistance will help to deepen our understanding of
chemoresistance formation and provide potentially targetable or
predictive biomarkers of chemotherapy, which is the point of our
review.

lncRNA and doxorubicin resistance

LncRNAs have received extensive attention for its modulation in
cancer progress as well as therapeutic response. Aiming to uncover
the role and mechanism of lncRNAs in DOX resistance, databases
were searched for published reports focused on “lncRNA and
doxorubicin resistance”. The qualified articles were further
straightened out and categorized in this section with the main
mechanisms and implicated lncRNAs summarized in Figure 1.

ABC transporters

The ATP-binding cassette (ABC) transporter family is a big
family regulating cellular levels of hormones, lipids, ions,
xenobiotics and other small molecules (Robey et al., 2018).
Altered membrane transport and enhanced drug efflux mediated
by over-expression of ABC superfamily, including ABCB1 and
ABCC1, is one of the main and most studied mechanisms of
doxorubicin resistance (Lehne, 2000). Known LncRNAs
mediating the regulation of transporter expression were
summarized in Figure 2.

H19 was the first lncRNA found to be implicated in
ABCB1 regulation in human hepatocellular carcinoma (HCC).
Reduced expression of H19 could suppress ABCB1 expression,
which led to the increase of cellular DOX concentration and
DOX sensitivity (Tsang and Kwok, 2007). Mechanistically,
ABCB1 gene promoter was hypomethylated in resistant HCC
cells, while H19 silencing induced a marked increase in
ABCB1 promoter methylation and decrease in ABCB1 expression
(Tsang and Kwok, 2007). There was also evidence that lncRNA
MRUL could contribute to DOX resistance by playing an enhancer-
like role in promoting ABCB1 expression in GC (Wang et al., 2014).
MRUL knockdown led to increased drug accumulation and
apoptosis in DOX-resistant SGC7901 cell (Wang et al., 2014).
LncRNA microarray revealed that the expression levels of over
3,000 lncRNAs were altered in the DOX-resistant osteosarcoma
(OSA) cell line MG63/DXR compared with the parental MG63 cell
and ODRUL was the most upregulated one (Zhang et al., 2016).
ODRUL might participate in DOX resistance by targeting ABCB1.
In addition, the clinical results showed that high expression of
ODRUL was correlated with poor chemotherapy response and
prognosis (Zhang et al., 2016). Recently, Zhang et al. found that
lncRNA FOXC2-AS1 expression was significantly higher in DOX-
resistant OSA cell lines and tissues, and correlated with poor
prognosis (Zhang C. L. et al., 2017). Functional studies revealed
that silencing of FOXC2-AS1 abolished the growth of DOX-resistant
OSA cell and improved the sensitivity to DOX in vitro and in vivo.
Further mechanistic studies demonstrated that FOXC2-AS1
promoted the expression of transcription factor FOXC2 at both
the transcription and post-transcription levels, further stimulating
the expression of downstream ABCB1. CASC9, a lncRNA
upregulated in doxorubicin-resistant BRCA cell, might regulate
the expression of ABCB1 through EZH2. EZH2 was
demonstrated to be a binding protein of CASC9. Meanwhile,
EZH2 depletion resulted in suppressed ABCB1 expression (Jiang
et al., 2018). Linc00518 and ABCC1 expression were both
upregulated in DOX-resistant BRCA cell. Linc00518 could act as
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a molecular sponge of miR-199a to upregulate ABCC1 expression,
thus conferring chemoresistance to DOX (Chang et al., 2018).
LncRNA KCNQ1OT1 was upregulated in DOX resistant AML
samples and cells. Through adsorbing miR-193a-3p,
KCNQ1OT1 induced the expression of Tspan3. Unfortunately,
the underlying mechanism of Tspan3 in chemoresistance was not
revealed by the authors or reported elsewhere. However, the
expression of ABCC1 and ABCB1 was found to be strictly
regulated by Tspan3 (Sun et al., 2020).

Using the lncRNA expression profiling of BRCA patients from
Gene Expression Omnibus datasets, our group screened out three
lncRNAs (AK291479, U79293, and BC032585) to be significantly
associated with anthracycline-based chemotherapeutic response
(Zeng et al., 2019). BC032585 was further chosen to figure out its
molecular function in vitro. It was observed that knockdown of
BC032585 resulted in a stronger resistance to DOX as accessed by
cell viability and this function was at least partly mediated by the
upregulation of ABCB1. Collectively, this study had opened out a new
approach for the identification of clinically useful lncRNA markers.

LncRNA could also negatively regulated ABCB1 expression and
acted as a chemosensitivity mediator. LncRNA microarray found
that FENDRR was the most downregulated lncRNA with a 22-fold
change in the paired DOX-resistant and sensitive human OSA cell

lines (Kun-Peng et al., 2017a). Functional studies revealed that
FENDRR suppressed cell cycle, promoted apoptosis and
increased DOX sensitivity of OSA cells in vitro. Moreover,
further studies demonstrated that FENDRR inhibited DOX
resistance through negatively affecting posttranscriptional
expression of ABCB1 and ABCC1 (Kun-Peng et al., 2017b).
FENDRR was also downregulated in resistant chronic myeloid
leukaemia (CML) cells. The overexpression of FENDRR
attenuated DOX resistance, as shown by increased DOX
accumulation and enhanced cell apoptosis in vitro and in vivo.
Both FENDRR and ABCB1 mRNA contained several AU-rich
elements and competitively bound to the RNA-binding protein
HuR (Zhang et al., 2019). Previous studies indicated that this
interaction with RNA-binding protein was beneficial to keeping
the mRNA stabilization and/or regulating the translation (Bish and
Vogel, 2014). As a result, aberrations in FENDRR expression led to
the opposite change of ABCB1 level.

Apoptosis

In addition to targeting the multidrug transporter proteins, a
part of lncRNAs involved in DOX resistance have been shown to

FIGURE 1
Mechanisms underlying doxorubicin resistance in cancer and the implicated lncRNAs. Abbreviations: ABC, ATP-binding cassette; EMT, epithelial to
mesenchymal transition; CSCs, cancer stem cells.
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regulate apoptosis-related genes (Figure 3). It is unsurprising
because triggering apoptosis induction to eliminate malignant
cells is exactly the way how most chemotherapeutic drugs work
(Mohammad et al., 2015).

Caspases are evolutionarily conserved cysteine proteases with a
well-defined role in apoptosis. Mammalian apoptotic caspases are
generally divided into the initiators (caspase 2, 8, 9, and 10) and the
effectors (caspase 3, 6, and 7), all of which must undergo proteolytic
activation to execute their function (Shi, 2002; Van Opdenbosch and
Lamkanfi, 2019). CUDR was a novel gene found to be overexpressed in
A10A cell, a DOX-resistant subline of human squamous carcinoma
(HSC) A431 cell (Tsang et al., 2007). Since the CUDR cDNA sequence
contained no distinct open reading frames, it was inferred that CUDR
possibly exerted its function as a long non-coding RNA. Further study
indicated that the CUDR-inhibited apoptosis was at least dependent on
downregulation of caspase 3 (Tsang et al., 2007). LINC00607 was
upregulated in DOX-resistant thyroid cancer (TC) cell. It decreased
caspase 9 expression by promoting the methylation of caspase
9 promoter, thereby inhibiting the apoptosis induction and
augmenting DOX resistance (Li L. et al., 2021).

Above-mentioned initiator caspases activation can be mediated by
anti-apoptosis protein Bcl-2-regulated pathway under cytotoxic drugs-
induced cellular stress (Shalini et al., 2015). Shang et al. found that
UCA1 silencing advanced cell apoptosis induced by DOX in GC cell
through promoting cleaved PARP protein expression and depressing
the expression of Bcl-2, indicating a promoting role in resistance
development (Shang et al., 2016). Another study also demonstrated
that UCA1 increased chemoresistance of GC cell via negatively

regulating miR-27b. Mechanistically, UCA1 knockdown or miR-27b
overexpression increased DOX-induced cell apoptosis by decreasing
Bcl-2 protein expression and increasing cleaved caspase 3 (FangQ. et al.,
2016). High expression of SNHG12 was correlated with
chemoresistance to DOX and a poor overall survival in OSA. In
addition, a higher expression of SNHG12 was revealed in DOX-
resistant cells compared to parental sensitive cells. SNHG12 mainly
targetedmiR-320a to upregulateMCL1, which has been reported to be a
Bcl-2 family apoptosis regulator and exhibit a crucial function in
suppressing cell apoptosis (Zhao et al., 2017; Zhou B. et al., 2018).
Notably, lncRNA GAS5 was reported to inhibit rather than promote
chemoresistance in bladder transitional cell carcinoma (BTCC).
Overexpression of GAS5 promoted the induction of apoptosis by
DOX and depressed Bcl-2 expression, whereas upregulated Bcl-2
largely reversed GAS5-induced sensitivity to DOX. Clinically, BTCC
patients with lower level of GAS5 had a significantly worse disease free
survival (Zhang H. et al., 2017). Altogether, these data confirmed that
lncRNAs could affect the response of cancer to DOX according to their
regulation pattern in Bcl-2 expression.

HOTAIR was upregulated in the DOX-resistant small cell lung
cancer cell (SCLC). Depletion of HOTAIR increased drug sensitivity
by enhancing cell apoptosis and decelerating cell cycle progression.
Moreover, HOTAIR knockdown reduced HOXA1 methylation by
decreasing DNMT1 and DNMT3b expression. Summarily,
HOTAIR modulated chemotherapy resistance in SCLC by
regulating HOXA1 methylation (Fang S. et al., 2016). DANCR
was found to be suppressed by DOX in a high throughput
screening in colorectal cancer (CC) cell. Via interacting with the

FIGURE 2
Doxorubicin resistance-related lncRNAs involved in the regulation of ABCB1 and ABCC1 and the underlying mechanisms.
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RNA-binding protein QK, DANCR enhanced the RNA stability of
MALAT1, which further mediate the suppressive function of
DANCR on DOX-induced apoptosis (Xiong et al., 2021). This
study established DANCR as an important repressor of apoptosis
in CC. LncR-D63785 was highly expressed in GC tissues and cells.
Knockdown of lncR-D63785 fostered the apoptosis of GC cells
treated with DOX. It functioned as a sponge of miR-422a and
promoted chemoresistance by blocking miR-422-dependent
suppression of MEF2D (Zhou Z. et al., 2018). TUG1, a lncRNA
upregulated in DOX-resistant AML tissues and cells, could
epigenetically suppress miR-34a expression via recruiting
EZH2 to its promoter. Either TUG1 knockdown or miR-34a
overexpression remarkably facilitated cell chemosensitivity by
enhancing DOX-induced apoptosis (Li Q. et al., 2019). LncRNA
SNHG10 was downregulated in triple negative breast cancer
(TNBC) cells after DOX treatment, and overexpression of
SNHG10 significantly promoted DOX-induced apoptosis.
Mechanism research showed that SNHG10 could inhibit the
development of resistance to DOX by upregulating miR-302b
through methylation modulation (Aini et al., 2022).

Cell proliferation

Uncontrolled proliferation is a hallmark of cancer, typically
utilized by cancer cells to resist chemotherapeutic agent-induced

growth suppression (Zheng et al., 2019). LncRNAs were also found
to participate in aberrant cell proliferation and DOX resistance
(Figure 4). Microarray analysis revealed that NONHSAT028712 was
significantly increased in DOX-resistant BRCA cells. Further study
indicated that NONHSAT028712 mediated the development of
chemoresistance through cis-regulating nearby CDK2 gene,
which was required for the transition of cell cycle from G1 to S
phase (He et al., 2016). LINC01977 could significantly promote
BRCA cell proliferation and chemoresistance to DOX in vitro assays
(Li Z. et al., 2021). It sponged miR-212-3p to prevent miRNA-
mediated repression of GOLM1, which was reported to function as a
key promoter of cell proliferation in several cancer types (Chen et al.,
2015; Xu et al., 2017). MALAT1 was reported to be highly expressed
in DOX-resistant BRCA cells. It could promote cell proliferation and
colony formation to increase DOX resistance, mechanistically
through recruiting E2F1 and activating downstream
AGR2 expression (Li S. et al., 2022). MiR-570-3p was another
target of MALAT1, which could inhibit the proliferation of
BRCA cells and mediate the regulatory role of MALAT1 on
DOX resistance (Yue et al., 2021). In HCC, elevation of
MALAT1 also mediated tumor growth and DOX resistance via a
MALAT1/miR-3129-5p/Nova1 axis (Cao et al., 2021). Other
lncRNAs enhancing DOX resistance through increasing cell
proliferation included HOTAIR (Wang H. et al., 2018). In GC
cells, HOTAIR mainly counteracted with miR-217 to inhibit its
suppressing effect in DOX resistance (Wang H. et al., 2018).

FIGURE 3
Doxorubicin resistance-related lncRNAs involved in the regulation of cell apoptosis and the underlying mechanisms. Abbreviations: DOX,
doxorubicin.
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Signaling pathways

A fine-tuned regulation of signal transduction pathways is
crucial for maintaining cellular and tissue homeostasis (SMA,
2020). Aberrant activation of oncogenic signaling pathways often
lead to the transformation of normal cells to cancer cells with the
acquirement of malignant phenotype (Palla et al., 2022). Many drugs
with the ability of blocking dysregulated signaling pathways have
been developed for cancer treatment. However, due to the crosstalk
inside signaling network, awakening of alternative survival signaling
pathways have become one dominating mechanism of
chemoresistance (Dent et al., 2009). Similarly, any survival
signaling pathway activated in response to toxic stress might also
help cancer cells to escape DOX-based chemotherapy (Table 1).

PI3K signaling pathway

PTEN tumor suppressor is a negative regulator of the PI3K/Akt
pathway and is epigenetically silenced in multiple cancers (Álvarez-G
et al., 2019). LncARSR overexpression inhibited DOX-induced cell
apoptosis and enhanced DOX resistance in HCC while knockdown of
lncARSR showed the opposite effects (Li et al., 2017). LncARSR
decreased PTEN expression and activated the PI3K/Akt pathway.
Furthermore, the effects of lncARSR on DOX resistance could be
reversed by PTEN depletion or PI3K/Akt pathway inhibitors. Taken
together, upregulated lncARSR promoted DOX resistance through
activating the PTEN/PI3K pathway (Li et al., 2017). Subsequent
study by Li et al. revealed that lncARSR further activated NF-κB in
a PI3K pathway-dependent manner. NF-κB transactivated lncARSR
through direct binding and activation of lncARSR promoter, forming a

positive feedback regulatory loop among lncARSR, Akt and NF-κB.
And this regulatory loop together promotedDOX resistance (Li Y. et al.,
2022). LncRNA PTENpg1 regulated PTEN expression through
sequestering numerous PTEN-targeting miRNAs. Moreover, two
antisense RNA (asRNA) transcripts isoforms (α and β) were
encoded from the PTENpg1 locus (Johnsson et al., 2013). The α
isoform epigenetically regulated PTEN transcription via localizing to
the PTEN promoter and catalyzing the formation of H3K27me3, while
the β isoform interacted with PTENpg1 as an RNA:RNA pairing and
post transcriptionally affected PTEN production. Suppression of this
asRNA isoforms-regulated network led to a clear induction of PTEN
protein level and a concomitant downregulation of pAKT. As a result,
the OSA cells were significantly sensitized to DOX (Johnsson et al.,
2013). Unlike PTENpg1 asRNA transcripts, HOTAIR was reported to
modulate PTEN expression by increasing the hypermethylation of its
promoter locus, thus suppressing PTEN expression and conferring
DOX resistance in AML (Zhou et al., 2021). HOTAIRwas also reported
to reinforce DOX resistance by promoting the phosphorylation of AKT
and activating AKT/mTOR signaling pathway in BC (Li Z. et al., 2019).
Other lncRNAs implicated in PI3K signaling pathway and DOX
resistance included FOXD2-AS1 in BC and DUXAP8 in B-cell acute
lymphoblastic leukemia (B-ALL), further uncovering the central role of
PI3K pathway in cancer DOX resistance (Nong et al., 2021; Zhang et al.,
2022).

P53 signaling pathway

LncRNA PCGEM1 was specifically expressed in prostate tissue,
and associated with prostate cancer (PC). The overexpression of
PCGEM1 attenuated DOX-induced apoptosis in LNCaP cells

FIGURE 4
Doxorubicin resistance-related lncRNAs involved in the regulation of cell proliferation and the underlying mechanisms. Abbreviations: DOX,
doxorubicin.
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(Fu et al., 2006). Moreover, the induction of p53 and p21Waf1/Cip1 due to
DOX treatment was attenuated by PCGEM1 overexpression, as well as
the protein levels of cleaved caspase 7 and cleaved PARP. These implied
that PCGEM1 induced DOX resistance by inhibiting the function of
p53-dependent apoptotic machinery (Fu et al., 2006). In BLCA cells,
lncRNA PVT1 could interact with MDM2, promoting its expression
and cascaded MDM2/AURKB-mediated p53 ubiquitination. Thus,
p53 pathway-mediated tumor suppressor genes were suppressed,
leading to elevated proliferation, invasion, and DOX resistance.
Furthermore, addition of the MDM2 inhibitor Nutlin-3 could offset
the increased DOX resistance induced by PVT1 overexpression, while
overexpression of MDM2 or AURKB reversed PVT1 knockdown-
induced sensitivity to DOX (Jiang et al., 2022).

Wnt/β-catenin signaling pathway

Linc00173 was first shown to be associated with the clinical
stages and chemotherapeutic responses in SCLC. Elevated
Linc00173 enhanced chemoresistance and cancer progression by
sponging miR-218 to upregulate Etk expression. NDRG1 and
GSKIP were positively regulated by Etk, which further induced
the accumulation of β-catenin in the nucleus and activated Wnt/β-
catenin pathway (Zeng et al., 2020). LncRNA HANR was
demonstrated to be upregulated in HCC patients and predict a
poor survival. Knockdown of HANR markedly enhanced the
chemosensitivity of HCC cell lines to DOX, while overexpression
of HANR showed the opposite effects. It was found that HANR

TABLE 1 LncRNAs implicated in doxorubicin resistance of cancer through multiple signaling pathways.

LncRNA Cancer
type

Molecular mechanism Role in DOX
response

References

PI3K signaling pathway

LncARSR HCC decreasing PTEN expression, activating PI3K pathway and NF-κB Resistance Li et al. (2017), Li et al. (2022b)

PTENpg1 asRNA OSA Promoting PTEN transcription and PTEN mRNA stability Resistance Johnsson et al. (2013)

HOTAIR AML Increasing the hypermethylation of PTEN promoter Resistance Zhou et al. (2021)

HOTAIR BC Increasing PI3K, AKT and mTOR phosphorylation Resistance Li et al. (2019b)

FOXD2-AS1 BC Increasing PI3K and AKT phosphorylation Resistance Nong et al. (2021)

DUXAP8 B-ALL Increasing PIK3CA expression through sponging miR-29a Resistance Zhang et al. (2022)

P53 signaling pathway

PCGEM1 PC Inhibiting the expression of p53 and p21Waf1/Cip1 Resistance Fu et al. (2006)

PVT1 BLCA Promoting p53 ubiquitination through MDM2/AURKB cascade Resistance Jiang et al. (2022)

Wnt/β-catenin signaling pathway

Linc00173 SCLC Sponging miR-218 to upregulate the expression of Etk, NDRG1 and
GSKIP

Resistance Zeng et al. (2020)

HANR HCC Binding to GSKIP for regulating the phosphorylation level of GSK3β Resistance Duffy et al. (2014), Xiao et al.
(2017)

NF-κB signaling pathway

BORG TNBC Binding to and activating RPA1 Resistance Gooding et al. (2019)

PDIA3P1 HCC Binding to miR-125a/b and miR-124 to upregulate TRAF6 Resistance Xie et al. (2020)

MAPK signaling pathway

ARA HCC Unkown Resistance Jiang et al. (2014a)

JAK-STAT signaling pathway

PTH-AS BC Upregulating the expression level of STAT1 Resistance Akimoto et al. (2022)

LOC645166 BC Binding to and recruiting NF-κB to promote GATA3 transcription Resistance Zheng et al. (2020)

Hippo signaling pathway

LINC00152 RB Sponging miR-613 to positively regulate YAP1 Resistance Lu et al. (2010)

Keap1/Nrf2/ARE signaling pathway

PVT1 TNBC Promoting the protein stability of Nrf2 by inhibiting the binding of
Keap1 to Nrf2

Resistance Luo et al. (2020)

Abbreviations: DOX, doxorubicin; HCC, hepatocellular carcinoma; OSA, osteosarcoma; AML, acute myeloblastic leukemia; BC, breast cancer; B-ALL, B-cell acute lymphoblastic leukemia; PC,

prostate cancer; BLCA, bladder cancer; SCLC, small cell lung cancer cell; TNBC, triple negative breast cancer; RB, retinoblastoma.
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bound to GSKIP for regulating the phosphorylation level and
activity of GSK3β (Xiao et al., 2017). As a downstream target of
GSK3β, Wnt/β-catenin pathway was thought to correspondingly
perform its oncogenic function and impair the therapeutic outcome
of DOX (Duffy et al., 2014).

NF-κB signaling pathway

NF-κB signaling pathway could be provoked by genotoxic
agents-induced DNA damage, augmenting the transactivation of
varieties of anti-apoptosis genes and subsequent chemoresistance of
cancer cells (Taniguchi and Karin, 2018). LncRNA BORG was
greatly induced within TNBC cells when subjected to
chemotherapeutic stresses. It fostered the cell survival and
rendered them resistant to the cytotoxic effects of DOX both
in vitro and in vivo. This chemoresistant activity of BORG was
contingent upon its binding to RPA1, as well as the concomitant
stimulation of NF-κB signaling. Interestingly, the activation of
NF-κB amplifies BORG expression, which further enhances
NF-κB activation, forming a novel feed-forward NF-κB signaling
loop (Gooding et al., 2019). LncRNA PDIA3P1 was upregulated in
human HCC and associated with poorer recurrence-free survival.
DOX treatment could also upregulate PDIA3P1 level by disrupting
the binding of hMTR4 to PDIA3P1 and abrogating the subsequent
hMTR4-mediated degradation. TRAF6 was ordinarily suppressed
by miR-125a/b and miR-124, while upregulated PDIA3P1 could
bind to miR-125a/b and miR-124 to relieve their repression on
TRAF6, leading to the activation of NF-κB pathway and reduced
DOX-triggered apoptosis (Xie et al., 2020).

MAPK signaling pathway

Jiang et al. discovered a new upregulated lncRNA named ARA
in DOX-resistant BC cells, the expression of which was further
found to be significantly associated with DOX sensitivity in a panel
of BC cells as well as HCC cells. Knockdown of ARA inhibited cell
proliferation and migration, induced G2/M cell cycle arrest and
cell death, which together contributed to DOX resistance reverse.
To investigate the functional role of ARA, microarray
transcriptomic analysis was performed and genes regulated by
ARA were enriched in multiple KEGG pathways, among which
MAPK signaling pathway was the most outstanding (Jiang M.
et al., 2014).

JAK-STAT signaling pathway

Emerging data indicate that JAK-STAT pathway confers cellular
resistance to antitumor treatment with DNA-damaging agents,
including DOX (Khodarev et al., 2012). Akimoto et al. reported
that ectopic expression of lncRNA PTH-AS in BC cell T47D
markedly upregulated the level of STAT1 and its downstream
interferon-related DNA damage resistance signature (IRDS)
genes (Akimoto et al., 2022). As expected, when treated with
DOX at a relatively high concentration, T47D cells with forced
PTH-AS expression exhibited a significant resistance to drug-

induced inhibition. LncRNA LOC645166 was identified to be
upregulated in DOX-resistant BC cells as well as tissues of
nonresponsive patients. It strengthened the tolerance of breast
cancer to DOX via binding and recruiting NF-κB to promote
GATA3 transcription, further leading to the activation of STAT3
(Zheng et al., 2020). The NF-κB/GATA3/STAT3 signaling pathway
provided a promising target for overcoming DOX resistance in
breast cancer.

Hippo signaling pathway

In human retinoblastoma (RB), LINC00152 was reported to
boost DOX resistance by sponging miR-613 to positively regulate
YAP1 (Wan et al., 2020). YAP1 is a downstream effector of the
Hippo signaling pathway, which is widely recognized as an
important regulator in both organ size control and tumorigenesis
(Lu et al., 2010). In previous studies, YAP1 had also been reported to
have an effect on cell sensitivity to 5-fluorouracil and docetaxcel in
esophageal cancer (Song et al., 2015). Thus, Hippo signaling
pathway might be another molecular cascade responsible for
lncRNA-mediated chemoresistance in cancer cells.

Keap1/Nrf2/ARE signaling pathway

Keap1/Nrf2 signaling pathway plays an important role in
maintaining cellular redox balance (Buti et al., 2013). Aberrant
activation of this pathway has frequently been detected in human
cancers and is also related to resistance to chemotherapies in
established cancers (Ge et al., 2017). It was revealed that
PVT1 promoted the protein stability of Nrf2 by inhibiting the
binding of Keap1 to Nrf2, which potentiated the resistance of
TNBC cells to DOX (Luo et al., 2020).

Epithelial to mesenchymal
transition (EMT)

EMT is a biological process in which epithelial cells transform
into mesenchymal cells acquiring a motile phenotype (Pastushenko
and Blanpain, 2019). Researches have revealed that EMT is not only
closely related to tumor metastasis but also affects chemotherapy
resistance. DOX resistance-related lncRNAs implicated in EMT
regulation were summarized in Figure 5. In OSA, inhibition of
LINC01116 suppressed cell viability, migration, and invasion, along
with upregulated E-cadherin and downregulated vimentin.
Accordingly, DOX resistance was attenuated. Further
investigations indicated that LINC01116 regulated
HMGA2 expression via EZH2-associated silencing of miR-
424–5p and induced EMT (Li R. et al., 2021). Long intergenic
non-protein coding RNA (linc)-regulator of reprogramming
(ROR) was reported to promote invasion and metastasis in HCC.
Knockdown of it notably suppressed EMT by downregulating
TWIST1, increasing sensitivity of HCx`x`C cell to DOX (Zhang
et al., 2021). FN1, is a glycoprotein present at the cell surface and in
extracellular matrix tightly related to cellular adhesion and
migration (Topalovski and Brekken, 2016). It was found to be
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significantly upregulated in the chemoresistant OSA cell lines and
tissues and was related to unfavourable prognosis. LncRNA OIP5-
AS1 acted as an upstream regulator of FN1 through sponging miR-
200b-3p. Therefore, OIP5-AS1/miR-200b-3p/FN1 axis might be a
promising target in treatment of OSA resistance to DOX (Kun-Peng
et al., 2019). LncRNA DCST1-AS1 enhanced TGF-β/Smad signaling
in TNBC cells through binding to ANXA1 and increasing its
expression. Subsequently, the expression or secretion of proteins
such as E-cadherin, SNAI1 and vimentin were coordinated to
promote EMT and chemoresistance to DOX. Therefore, DCST1-
AS1 represented a potentially promising therapy target for
metastatic breast cancer (Tang et al., 2020).

Autophagy

Accumulating evidence supported the cytoprotective role of
autophagy in drug resistance of cancer. When under cytotoxic
effects of chemotherapeutic drugs, autophagy could contribute to
maintaining the intracellular homeostasis and prolonging the
survival of cancer cells through autophagosomes (Carew et al.,
2007). Recent researches have suggested that dysregulated lncRNA
play a role in the development of chemoresistance via autophagy
(Figure 6). For example, lncRNA GBCDRlnc1 served as a critical
regulator of the autophagic activity and DOX-resistant property of
gallbladder cancer. Through direct molecular interaction,
GBCDRlnc1 prevented the ubiquitination of PGK1, leading to
the upregulation of PGK1 protein level. The ATG5-ATG12

conjugate, an essential complex for autophagy initiation, might
be a downstream target of the GBCDRlnc1/PGK1 axis.
Knockdown of GBCDRlnc1 dramatically downregulated PGK1,
ATG5 and ATG12, suppressed autophagy and improved the
sensitivity of gallbladder cancer cells to DOX (Cai et al., 2019).

Wang et al. found that lncRNA CTA could be activated by
DOX but was downregulated in DOX-resistant OSA cells.
Overexpression of CTA could inhibit autophagy to overcome
DOX resistance and promote apoptosis by competitively binding
miR-210 (Wang et al., 2017). On the contrary, lncRNA FGD5-
AS1 was upregulated in DOX-resistant OSA cells. It was reported
to regulate the miR-154-5p/WNT5A axis by sponging miR-154-
5p and thus potentiate autophagy-associated DOX resistance (Fei
et al., 2022). Small nucleolar RNA host gene 15 (SNHG15) was
also upregulated in DOX-resistant OSA cell lines. It elevated
autophagy via targeting the miR-381-3p/GFRA1 axis to enhance
DOX resistance (Zhang et al., 2020). Sox2OT-V7, another
lncRNA involved in DOX resistance of OSA cells, could
modulate autophagy through directly targeting miR-142/miR-
22 (Zhu et al., 2020).

Lysosomes could sequester macromolecules generated from
autophagy for degradation and recycling, and mediate multiple
drug resistance in cancer (Piao and Amaravadi, 2016). In HCC,
FAM215A was overexpressed and increased the resistance of cells to
DOX-induced inhibition. This cell protective effect was proved to be
achieved by stabilizing LAMP2, which constitutively contributed to
lysosome formation and the maintenance of lysosomal content
(Huang et al., 2020).

FIGURE 5
Doxorubicin resistance-related lncRNAs involved in the regulation of epithelial to mesenchymal transition and the underlying mechanisms.
Abbreviations: DOX, doxorubicin; EMT, epithelial to mesenchymal transition.
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Cancer stem cells (CSCs)

CSCs represent a small fraction of cells in the tumor featured
by their potential of self-renewal and initiating tumors. Studies
demonstrated that CSCs were responsible for chemoresistance
and tumor recurrence following chemotherapy (Wicha et al.,
2006).

Linc00668 was observed to be increased in BC compared to
normal tissues. Forced expression of Linc00668 enhanced self-
renewal capacity of BC cells as well as DOX resistance.
Mechanistically, Linc00668 interacted with SND1 to augment
its transcriptional activity and the expression of target genes,
including Nanog, Sox2, and Oct4, which were critical regulators
of stem cell-like properties (Qian et al., 2020). GAS5 was reported
to function in maintaining stemness in human CC cell line
HCT116-derived CSCs. GAS5 knockdown suppressed the self-
renewal capacity of CSCs and sensitized them to DOX by
inducing apoptosis. Moreover, inhibition of Nodal growth
differentiation factor (NODAL) signaling presented the similar
results. Therefore, it was hypothesized that GAS5 exerted
protective effects in CSCs under DOX treatment in a NODAL
signaling-dependent manner (Zhou and Xiao, 2020).

Tumor microenvironment

Extracellular vesicles (EVs), mainly comprised of exosomes
and microvesicles, are an important component of the tumor
microenvironment (van Niel et al., 2018). EVs are a group of

membrane-derived structures released by donor cell into the
interstitial fluid. These EVs carry biological macromolecules
such as protein, lipids and RNA, and can be taken up by
recipient cells to achieve intercellular communication (Tkach
and Théry, 2016). EVs are now considered as an additional
mechanism for modulation of multiple physiological and
pathological processes including chemoresistance (Mashouri
et al., 2019).

Takahashi et al. (Takahashi et al., 2014a) identified a subset of
lncRNAs in HCC that could be detected in EVs with at least 2-fold
enrichment compared to donor cells. Among these lncRNAs,
linc-VLDLR was also found to be significantly upregulated in
malignant hepatocytes compared to non-malignant hepatocytes.
Exposure of HCC cells to DOX increased linc-VLDLR expression
within both cells and released EVs, and incubation with such EVs
could reduce DOX-induced cell death in recipient cells. Further
studies revealed that knockdown of linc-VLDLR suppressed cell
viability, blocked cell-cycle progression and reduced the
expression of ABCG2, leading to increased sensitivity of HCC
cells to DOX (Takahashi et al., 2014a). Linc-ROR was another
EV-transferred lncRNA in HCC (Takahashi et al., 2014b).
Incubation with EVs originating from HCC cells increased
linc-ROR expression and reduced DOX-induced cell death in
recipient cells, whereas knockdown of linc-ROR augmented
DOX-induced cytotoxicity. Besides, linc-ROR might mediate
TGFβ-dependent chemoresistance in HCC, as TGFβ-increased
expression of CD133+ tumor-initiating cells and colony growth
were attenuated by linc-ROR knockdown. These findings all
suggested an important role for linc-ROR in chemotherapeutic

FIGURE 6
Doxorubicin resistance-related lncRNAs involved in the regulation of autophagy and the underlying mechanisms. Abbreviations: DOX, doxorubicin.
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response of HCC (Takahashi et al., 2014b). LncRNA H19 had
been proved to mediate the resistance of BC cells to DOX.
Moreover, extracellular H19 could be incorporated into
exosomes and delivered to sensitive cells, leading to the
dissemination of DOX resistance. Therefore, exosomal
H19 might be a potential target to reduce DOX resistance in
BC (Wang et al., 2020).

Metabolic reprogramming

Cancers have been shown to evade chemotherapy by switching
to alternate metabolism. Aerobic glycolysis is recognized as an
emerging hallmark of malignant tumors. Normal cells process
glucose through mitochondrial oxidative phosphorylation,
whereas glycolysis is preferred in most cancer cells for energy
production, even under aerobic conditions (Hanahan and
Weinberg, 2011). Moreover, emerging evidence has revealed that
augmented glycolysis might also contribute to the development of
acquired chemoresistance (Tamada et al., 2012). For example, the
effect of UCA1 on DOX resistance in AML cell centered around its
regulation of HIF-1α-dependent glycolysis. Ectopic expression of
UCA1 exhibited a remarkable increase of glucose consumption and

effectively enhanced HIF-1α level (Zhang et al., 2018). As a pivotal
transcription factor, HIF-1α has been documented to play a critical
role in metabolic reprogramming and chemoresistance in various
tumor cells (Warfel and El-Deiry, 2014). LncRNA SAMMSON was
overexpressed in DOX-resistant BC cell (Orre et al., 2021). Silencing
of SAMMSON revealed a decreased glycolytic metabolism and an
increased oxidative metabolism. Concomitantly, less ROS were
produced from the mitochondrial respiratory chain, while
mitochondrial replication, transcription and translation were
enhanced. These results highlighted the role of SAMMSON in
the metabolic rewiring and development of chemoresistance in BC.

Targeting lncRNAs for reversing
doxorubicin resistance

Natural compounds including DOX occupy an important
position in cancer therapy because of their diversity in structure
and biological activity (Newman and Cragg, 2012). Owe to the
multi-targeting capability, lncRNA might also be one of the
targets of natural compounds. The recent reports regarding
lncRNA-targeting natural compounds involved in DOX
resistance are shown in Figure 7. Curcumin is a main active

FIGURE 7
Potential strategies based on natural compounds and genetic tools to target lncRNAs for the reverse of doxorubicin resistance in cancer.
Abbreviations: DOX, doxorubicin; CSCs, cancer stem cells.
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flavonoid component existing in Chinese herb Curcuma longa
with the anti-tumor property (Moradi-Marjaneh et al., 2018). It
had also been proved to suppress the resistance to DOX in acute
myeloid leukemia. Mechanism study showed that lncRNA
HOTAIR was inhibited by curcumin, which further mediated
the sensitization effect of curcumin through the miR-20a-5p/
WT1 axis (Liu et al., 2021). Epigallocatechin gallate is the highest
content of polyphenol in green tea, which was reported to exert
significant inhibitory effect on osteosarcoma cells including
induce apoptosis, inhibit cell proliferation and invasion
(Jiang L. et al., 2014). Moreover, Wang et al. reported that
epigallocatechin gallate could produce synergistic effects with
DOX on osteosarcoma cells by targeting lncRNA SOX2OT
variant 7. On the one hand, epigallocatechin gallate decreased
SOX2OT variant 7 to reduce DOX-induced autophagy, which
played a pro-survival role in protecting cells from the growth
inhibition of DOX. On the other hand, epigallocatechin gallate
targeting SOX2OT variant 7 could partially inactivate the
Notch3/DLL3 signaling cascade to reduce cell stemness then
abate DOX resistance (Wang W. et al., 2018). Bruceine D
(BD) is a quassinoid extracted from Brucea javanica which
has an anti-tumor activity in various cancers (Lau et al.,
2009). BD treatment in GC cells significantly downregulated
the expression of LINC01667, further inhibiting the expression
of Cyclin E1 by releasing miR-138-5p from LINC01667 sponge
(Li et al., 2020). Thus, BD could inhibit the growth of GC cells
and enhance the chemosensitivity of GC cells to DOX. Ursolic
acid (UA), a pentacyclic triterpenoid compound, was reported to
reverse DOX resistance in TNBC. It could inhibit the expression
of ZEB1-AS1, which sponged miR-186-5p to upregulate ABCC1.
Hence, UA treatment led to the decrease in ABCC1 expression
(Lu et al., 2022). Together, combined therapy of above natural
compounds with DOX might serve as an effective strategy to
reduce the occurrence of chemoresistance and improve the
curative effect in certain cancer, which needs further
verification in the clinical practice.

Cancer occurs as a result of loss function of suppressor genes
and activation of oncogenes (Caspi et al., 2021; Megyesfalvi et al.,
2023). However, the conventional therapeutic using natural
compounds or their analogs always lacks specific targets and
induces serious side effects. Consequently, much attention has
been directed towards the application of genetic tools in
anticancer therapy. Small interfering RNA (siRNA) is the most
extensively used tool applied in cancer therapy in the in vitro and in
vivo study because of its potential in suppressing oncogenes (Mirzaei
et al., 2021). As such tumor-promoting factors account for
chemoresistance, targeting them through siRNA also provides an
important strategy to reverse DOX resistance. However, the
translational application of siRNA is still at its initial stage. There
exist multiple limitations that challenge its efficacy, mainly including
instability in blood circulation and incapability to enter cells
(Ashrafizadeh et al., 2020). To overcome these difficulties, a
variety of platforms have been developed for siRNAs delivery,
which consist of lipid nanoparticles, liposomal nanoparticles,
polymeric nanoparticles, silicon dioxide nanoparticles, carbon
nanotubes, gold nanoparticles, iron oxide nanoparticles, aptamers
and so on (Acharya et al., 2017). Nowadays, attempts based on these

delivery platforms to target lncRNAs is still quite rare. A most recent
study employed aptamer CL4-modified exosomes for the targeted
delivery of DARS-AS1 siRNA and DOX to TNBC cells (Liu et al.,
2023). The tumor growth was synergistically suppressed in vivo,
while the delivery system did not induce any observed safety issues
in mice. Meanwhile, in vitro experiments revealed that silencing
DARS-AS1 decreased DOX resistance by suppressing autophagy via
inhibition of the TGF-β/Smad3 signaling pathway (Figure 7). This
study shows the outstanding application potential of genetic tool
represented by siRNA in anti-cancer therapy and chemoresistance
reverse.

Conclusion and perspectives

Resistance to therapeutic drugs represented by DOX is a
major burden for successful cancer treatments. However, the
underlying mechanisms of chemoresistance are not yet fully
elucidated. Multiple reasons for DOX resistance have been
summarized and listed here, mainly including cellular drug
transport, cell cycle disorders, anti-apoptosis, epithelial-
mesenchymal transition, cancer stem cells, autophagy, tumor
microenvironment, metabolic reprogramming and oncogenic
signaling pathways. It should be noticed that cancer might
develop resistance to DOX through more than one mechanism.
What’s more, recently found hallmarks, such as altered metabolic
reprogramming and tumor microenvironment (Hanahan and
Weinberg, 2011), have not only affected the development of
new means to treat human cancer, but also enriched the
connotation of chemoresistance. Future study on the nature of
cancer is still in urgent need and will undoubtedly provide
direction for deepening our understanding of how
chemoresistance develops.

At present, most of the reported lncRNAs associated with
DOX resistance were identified from laboratory-based results,
which were far away from clinical status. This might explain why
the clinical translation of chemoresistance reversal is difficult.
For example, after the discovery of ABCB1, a number of
inhibitors were identified and added to chemotherapy
regimens. However, they all failed in clinical trials due to the
inefficiency or unbearable toxicity (Gottesman et al., 2002;
Binkhathlan and Lavasanifar, 2013). Therefore, future work
should be focused on identifying target lncRNAs through well-
designed clinical approaches. Obtainment of matched pre- and
post-progression tumor biopsies from patients with acquired
DOX resistance would be of great importance.

Although the study of lncRNAs on chemoresistance is in its
infancy, growing evidence suggests that lncRNAs may serve as
potential molecular targets for cancer therapy as well as reversal
of chemoresistance. Still, the method to target lncRNAs in vivo
remains an unsolved problem. Compounds such as curcumin
and epigallocatechin gallate can regulate lncRNA expression,
but they are lack of specificity. To take lncRNAs as novel
therapy targets, there is still a long way to go. Nevertheless,
studies over the last decades have established a solid foundation
to warrant further investigation of lncRNAs on reversing
chemoresistance.
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The construction of a prognostic
model of cervical cancer based on
four immune-related LncRNAs
and an exploration of the
correlations between the model
and oxidative stress
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Enwu Yuan1*
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University, Zhengzhou, Henan, China

Introduction: The immune-related lncRNAs (IRLs) are critical for the development
of cervical cancer (CC), but it is still unclear how exactly ILRs contribute to CC. In
this study, we aimed to examine the relationship between IRL and CC in detail.

Methods: First, the RNAseq data and clinical data of CC patients were collected
from The Cancer Genome Atlas (TCGA) database, along with the immune genes
from the Import database. We used univariate cox and least absolute shrinkage
and selection operator (lasso) to obtain IRLs for prediction after screening the
variables. According to the expression levels and risk coefficients of IRLs, the
riskscore were calculated. We analyzed the relationship between the model and
oxidative stress. We stratified the risk model into two as the high and low-risk
groups. We also evaluated the survival differences, immune cell differences,
immunotherapeutic response differences, and drug sensitivity differences
between the risk groups. Finally, the genes in the model were experimentally
validated.

Results: Based on the above analyses, we further selected four IRLs (TFAP2A.AS1,
AP000911.1, AL133215.2, and LINC02078) to construct the risk model. The model
was associated with oxidative-stress-related genes, especially SOD2 and OGG1.
Patients in the high-risk group had a lower overall survival than those in the low-
risk group. Riskscore was positively correlated with resting mast cells, neutrophils,
and CD8+ T-cells. Patients in the low-risk group showed a greater sensitivity to
immunosuppression therapy. In addition, we found that patients with the PIK3CA
mutation were more sensitive to chemotherapeutic agents such as dasatinib,
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afatinib, dinaciclib and pelitinib. The function of AL133215.2 was verified, which was
consistent with previous findings, and AL133215.2 exerted a pro-tumorigenic
effect. We also found that AL133215.2 was closely associated with oxidative-
stress-related pathways.

Discussion: The results suggested that risk modeling might be useful for
prognosticating patients with CC and opening up new routes for immunotherapy.

KEYWORDS

cervical cancer, immune-related lncRNAs, prognosis, immunotherapy, oxidative stress

Introduction

Globally, CC is the fourth leading cause of cancer-related
deaths among women (Sawaya et al., 2019; Wen et al., 2020).
Although the screening for CC and human papillomavirus (HPV)
vaccination programs has been developed, the number of newly-
diagnosed CC cases is on the rise, implying that CC remains a
major public health concern (Arbyn et al., 2020). Surgery,
radiotherapy and chemotherapy are the three common
treatments for patients with CC, however, its 5-year survival
rate remains unsatisfactory, owing to recurrence, metastasis and
drug resistance (Sol et al., 2009; Kumar et al., 2018; Marquina et al.,
2018). The progression and treatment of CC are influenced by the
immune system (Chen et al., 2019); hence, immunotherapy is an
effective treatment option for patients with CC. With the use of
immune checkpoint inhibitors for cancers, great progress has been
made in immune-targeted therapies for CC. Immunotherapies
comprising anti-CTLA4 and anti-PD1 drugs are effective
against CC(Drews et al., 2019). However, the consistently-low
positive immunotherapeutic response limits the development
and application of immunotherapies for patients with CC
(Chung et al., 2019). It is therefore crucial to identify new
therapeutic targets and biomarkers for the early diagnosis and
prognosis of CC. Non-coding RNAs with more than
200 nucleotides are called long-stranded non-coding RNAs
(lncRNAs), which can be involved in post-transcriptional
modifications (Kung et al., 2013)and play a key role in
processes such as antigen presentation, cancer immunity as well
as immune cell infiltration (Denaro et al., 2019; Zhang L. et al.,
2020). The lncRNA CamK-A, for example, is highly expressed in
several human cancer types and can regulate the Ca2+-signaling-
mediated remodeling of the tumor microenvironment (Sang et al.,
2018). In addition, the overexpression of HLA-F-AS1 in colorectal
cancer cells suppresses miR-375 and promotes the expression of
PFN1, thereby exacerbating tumorigenesis (Zhang et al., 2021).
LncRNAs can influence the response of patients with cancers to
immunotherapies and the tumor microenvironment (Zhang Y.
et al., 2020). However, little has been reported about the action
mechanism of IRLs in patients with CC. Oxidative stress is
involved in the development and progression of many diseases,
including cancers (Valko et al., 2007), which is mainly because it
can cause inflammation and thus affect cancer development
(Reuter et al., 2010). Oxidative stress also plays an important
role in CC. It has been shown that triflavin can induce apoptosis by
regulating oxidative stress, thereby inhibiting cervical
carcinogenesis (Zhu et al., 2021). In addition, oxidative stress is
critical in lipid peroxidation, which has a positive effect on the

elimination of HPV-related cancers (Cruz-Gregorio et al., 2021).
Therefore, it is necessary to discover a new IRL as a potential
marker of CC and explore its associations with oxidative stress.

Using the TCGA database and RNA sequencing data, we
identified IRLs and established a 4-IRL risk model through the
Lasso method. We also explored the potential links between the risk
model and oxidative stress. Subsequently, we examined several
clinical characteristics of patients with CC that were associated
with the model. Additionally, the correlations of the IPS with
single nucleotide polymorphism (SNP) mutations, copy number
variations (CNVs) and immune cell infiltration were also analyzed.
An analysis of drug sensitivity was conducted to improve drug
treatment. Overall, these findings may provide a strategy for the
prognostic prediction of patients with CC, along with the
identification and development of immune-related treatment
targets.

Materials and methods

The acquisition of data and the screening of
immune-related lncRNAs

The transcriptomic and clinical data (detailed information about
the demographic characteristics of the patients in Supplementary Table
S3) on CC (normal = 3,tumor = 306) was obtained from the TCGA
database (https://tcga-data.nci.nih.gov/), and the immune-related genes
were accessed from the Import database (https://www.immport.org/).
Count values of raw data were converted to transcripts per kilobase
million (TPM) values for subsequent analyses; count values were used
only to identify the differential genes. To identify differentially-
expressed lncRNAs, we compared different gene expressions
between normal and tumor samples with a threshold of |log2 FC
(Log2 Fold Change)| > 2 and FDR (false discovery rate) < 0.01. IRLs
were obtained based on the relationship between the expression of
lncRNAs and immune genes using the Person correlation test
(correlation coefficients >0.6). By taking the intersections of
DElncRNAs and IRLs, the relevant IRLs were obtained.

The construction and validation of risk
model

Machine learning is widely used in applications such as nearest
neighbour search in large-scale data (Yan et al., 2021), dimensionality
reduction of features, etc., We filtered the significant prognostic
lncRNAs with p < 0.05 through univariate Cox analysis and
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identified the final lncRNAs using lasso regression analysis. In order to
create a prognostic risk model, we used the coefficients obtained from
the lasso to calculate the riskscore of each patient with CC. The
calculation was as follows:

riskScore � ∑
n

i�1Coef i p xi

The coefficient is Coefi, while xi is the count value of each
DElncRNA. Based on the median riskscore (The advantages of the
median are that it makes full use of all data information to reflect the
centralized trend of a group of data, is not affected by extreme data,
and is easy to find. It can clarify the middle level and is less affected
by extreme data. Disadvantages: It is easily affected by extreme
values), patients were divided into two groups, namely, the high-risk
and the low-risk group. Furthermore, based on the survival duration
of patients, a Kaplan-Meier analysis was performed to evaluate their
prognostic value. Model-based receiver operating characteristic
(ROC) curves were plotted for the first, third and fifth year;
based on the survival time of patients, Kaplan-Meier analyses
were performed, and survival curves were used to display the risk
model results.

The acquisition of oxidative-stress-related
genes

We collected several common oxidative-stress-related genes from
published studies, including SOD1, SOD2 (Zelko et al., 2002),
PON1(Teranishi et al., 2012), NOS3(Katkam et al., 2018),
UCP2(Hu et al., 2019), GSR (Couto et al., 2016), GPX1 (Teranishi
et al., 2012) and GSTM1(Cadoni et al., 2006). 8-hydroxy-
2 deoxyguanosine (8-OHDG) is known as a key marker of
oxidative stress (Reuter et al., 2010) and we collected 8-OHDG-
related genes from GeneCards (https://www.genecards.org/) and
obtained gene enrichment pathways using ClueGO. A protein-
protein interaction network was then obtained through the String
website (https://cn.string-db.org/). Four methods based on the
naximal clique centrality (MCC), the density of maximum
neighborhood component (DMNC), the maximum neighborhood
component (MNC) and degree of cytoHubba were used to screen key
genes, the top 10 of which were crossed. Correlations between the risk
model and oxidative-stress-related genes were analyzed using the
Spearman test.

The correlation between the risk model and
clinical characteristics

The correlations between the model and the age, grade, clinical
stage as well as TNM stage of patients with CC were assessed using
the Chi-square test.

The correlation between targeted
therapeutic markers and the risk model

Microsatellite instability (MSI), tumor mutational burden
(TMB) and homologous recombination deficiency (HRD) are

common molecular characteristics of genomic instability, which
are validated biomarkers for targeted therapies (26).We performed a
Kaplan-Meier analysis for TMB, MSI and HRD to assess their
prognostic values. A Chi-square test was also used to evaluate
their associations with the risk model.

Gene mutations and copy number variants

We downloaded the data on SNPs and CNVs of patients with
CC from TCGA and UCSC databases. The SNPs and CNVs were
visualized using circos (http://circos.ca) and R. The focus was on the
demonstration of their locations on the chromosomes where the
genes were present in the model. Significantly-mutated genes (p < 0.
05) and gene mutation interactions between the high- and low-risk
group were analyzed using the MAFTOOLS software. In both
analyses, only the genes mutating more than 10 times in at least
one group were considered, whose expression was probed using
GEPIA. A statistical test for significant mutation rates was
performed using a one-sided z-test. Copy number alterations
among patients with CC were analyzed with GISTIC 2.0
(Mermel et al., 2011). The copy number gistic score, together
with the percentage of patients in both risk groups, was also
analyzed.

The infiltration of immune cells

We obtained most of our immune cell data from XCELL (Aran
et al., 2017), EPIC(Racle et al., 2017) and CIBERSORT (Newman
et al., 2015). Next, the immune cell infiltration was quantified using
ssGSEA for subsequent analyses (Barbie et al., 2009; Bindea et al.,
2013). Further analyses were conducted on the correlations between
immune cell types and immune cell content of the risk groups. Based
on a Pearson correlation analysis, we analyzed how immune cells
and IRLs interacted.

The prediction of immunotherapeutic
response

We used unsupervised subclass mapping methods (https://
cloud.genepattern.org/gp) to predict the responses of different
risk groups to immunotherapies (Lu et al., 2019).

Drugs with differential sensitivities in high-
and low-risk groups

PIK3CA mutations are more common in CC (Xiang et al.,
2015). As a result, mutations in the PIK3CA gene can be used as
a target biomarker for patients with CC. We segregated the
patients with CC carrying PIK3CA mutations. After
downloading data on drug sensitivity AUC value from the
Cancer Therapeutics Response Portal (CTRP2.0), Profiling
Relative Inhibition Simultaneously in Mixtures (PRISM)
repurposing dataset and the Cancer Cell Line Encyclopedia
(CCLE) expression profile, we performed a differential drug
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response analysis on patients in both risk groups. Spearman
correlation analysis (r < −0.30 for CTRP; r < −0.35 for PRISM)
was used to screen compounds with negative correlation
coefficients (Yang et al., 2021).

Experimental verification

A total of 22 pairs of cancerous and non-tumorous tissues
were collected from patients with CC at the First Affiliated

FIGURE 1
Establishment and verification of the risk model (A) Forest map for univariate Cox analysis. (B) LASSO coefficient distributions for four lncRNAs (C)
Partial likelihood deviation of the LASSO coefficient distribution. Vertical dashed lines indicate lambda values. (D) Volcanic map of DEirlncRNAs. (E) The 3-
and 5-year ROC curves for the risk model. (F) Patients in the low-risk group show longer survival as indicated by the Kaplan-Meier test. (G–I)Distribution
of risk score, survival status, and molecular expression.
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Hospital of Zhengzhou University. This study was approved by
the Ethics Committee of the First Affiliated Hospital of
Zhengzhou University (Ethics Number: 2022-KY-0093-002),
and an informed consent was obtained from patients. qRT-
PCR was used to determine the expression of lncRNAs
through the risk model. Primers for TFAP2A-AS1,
AP000911.1, AL133215.2 and LINC02078 were designed using
primer 5.0 (Supplementary Table S1). Total RNA was extracted
with a trizol (CWBIO, China), and the first strand of cDNA was
synthesized using a reverse transcription kit (Takara, Kyoto,
Japan). Finally, cDNA was quantified through qRT-PCR using
SYBR green master mix (Vazyme, China). GAPDH was used as
an internal reference for calibration. The 2−ΔΔCT method was
chosen to calculate the relative expression of lncRNAs. Cellular
functional assays were performed for AL133215.2, which was
knocked down in the HeLa and SiHa cell line via transfection.
Cells transfected with siRNA and controls were stained with an
Annexin V-FITC apoptosis detection kit (Beyotime, Shanghai,
China). The stained cells were then analyzed through flow
cytometry. Relative cell viability was monitored 24, 48, 72, and
96 h after transfection using cell counting kit-8 (CCK-8,
Beyotime, Shanghai, China).

Gene set variation analysis (GSVA) and gene
set enrichment analysis (GSEA)

We used GSVA to analyze the 50 hallmark pathways
described in the molecular signature database (Subramanian
et al., 2005; Hänzelmann et al., 2013). Next, we used a limma
package to obtain pathways that differed significantly between
patients in the high- and low-risk group. A GSEA (Subramanian
et al., 2005) was conducted for both risk groups, and we selected
significantly-enriched pathways based on p-values and FDR
q-values that were below 0.05 and 0.25 respectively. We
obtained the previously-reported gene sets related to
immunotherapy from Hu et al. (2021). In addition to the
immune-related gene sets we collected, gene ontology (GO)
pathways associated with oxidative stress were also enriched
using GSVA. Finally, we examined the associations between
genes in the model and the enrichment scores.

Developing a predictive nomogram

The nomogram-integrated factors including the risk score, T, N,
MSI. calibration curves and ROC were used to evaluate the accuracy
and predictive ability of the nomogram; decision curve analysis
(DCA) was used to evaluate the clinical effectiveness of the
nomogram.

Statistical methods

R version 4.4.1 was used to perform all statistical tests in this
manuscript. The χ2 test was used for appropriate categorical data,
and the two-sample Wilcoxon test was used for continuous data.
Survival analyses were performed using the R package “survival”.

Correlation analysis was performed using the Pearson correlation
test. Statistical significance was defined as a p-value of less than
0.05 for all statistical analyses.

Results

The construction and validation of the risk
assessment model

We obtained a total of 493 differentially-expressed lncRNAs;
among them, 96 were immune-related lncRNAs (Supplementary
Table S2). A total of four IRLs were identified and selected for risk
modeling through univariate cox analysis (Figure 1A) and lasso analysis
(Figures 1B, C); among them, TFAP2A-AS1 and AL133215.2 showed a
significantly high expression, while LINC02078 and AP000911.1 had a
significantly low expression in cancer tissues (Figure 1D). The risk score
of each patient was computed as follows:

Riskscore � TFAP2A − AS1* −0.207( ) + AP000911.1* −0.214( )
+AL133215.2* −0.229( ) + LINC02078* −0.308( )

The risk model had a good clinical predictive power, with a ROC
value of 0.763, 0.645 and 0.678 for 1-, 3- and 5-year survival respectively
(Figure 1E). The C-index and IBS of the risk model were 0.918 and
0.035, respectively, which also show that the risk model had a good
predictive performance (details of the calculation process were in
Supplementary Material S1). Patients in the low-risk group had a
higher overall survival rate (Figure 1F). Furthermore, we determined
the distribution of risk scores, the survival statistics of patients in
different risk categories and the expression characteristics of the four
IRLs (Figures 1G–I). As is shown in the graph, the low-risk patients
showed an overexpression of these four protective lncRNAs.

The relationship between the risk model and
oxidative stress-related genes

Among the eight common oxidative stress-related genes, the risk
model was positively correlated with SOD2 while negatively
correlated with UCP2 (Figure 2A). One of the four lncRNAs,
AL133215.2, correlated significantly positively with SOD2 while
negatively with UCP2; another was TFAP2A-AS1, which
correlated significantly positively with UCP2. (Figure 2B). There
was a significant positive correlation between SOD1 and
GPX1 among the eight genes related to oxidative stress
(Figure 2C). We obtained 62 8-OHDG-related genes from
GeneCards, and the protein interaction network showed more
interactions among TP53, OGG1, SOD2, CAT and other proteins
(Figure 2D). The pathway enrichment results showed that 8-
OHDG-related genes were significantly enriched in the negative
regulation of oxidative stress-induced intrinsic apoptotic signaling
pathways, responding to oxidative stress and other pathways
(Figure 2E). Five key 8-OHDG-related genes were obtained
through MCC, DMNC, MNC and Degree, namely, SOD2,
OGG1, TP53, NFE2L2 and CAT (Figure 2F). The risk model and
OGG1 were significantly negatively correlated (Figure 2G), and
AL133215.2, TFAP2A-AS1 as well as OGG1 were significantly
positively correlated (Figure 2H).
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Differences in clinical characteristics among
risk groups

Among all clinical characteristics, N and T stage were significantly
associated with the risk model (Figure 3). More patients in the low-risk
group were in Stage N0, more of whom in the high-risk group were in
Stage T3 and T4. Perhaps this is one of the reasons for the shorter
overall survival time of patients in the high-risk group.

The correlation between targeted
therapeutic markers and the model

Of the three markers, MSI and the risk groups were significantly
correlated (Figure 4A). The high-risk group had a higher MSI value
(Figure 4B). However, there was no significant difference between
the two groups for TMB (Figure 4C) or HRD (Figure 4D). In a
combined analysis onMSI and riskscore, highMSI-highRisk patients

FIGURE 2
Relationship between riskmodel and oxidative stress-related genes. (A)Correlation of riskmodels and oxidative stress-related genes. (B)Correlation
between the four IRLs and oxidative stress-related genes. (C)Correlation between oxidative stress-related genes. (D) Protein-protein interaction network
of 8- OHDG-related genes. (E) Enrichment pathways of 8- OHDG-related genes. (F) Intersection genes of MCC, DMNC, MNC, and Degree. (G)
Correlation of risk model and key genes (H) Correlation of 4 IRLs and key genes.
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had a significantly shorter survival duration than lowMSI-lowRisk
ones (Figure 4E). These results indicated that high-risk patients
tended to have a higher MSI value, which contributed to a poorer
prognosis.

The mutation status of groups at a high and
low risk

From the analysis, TTN, PIK3CA and KMT2C had a high
mutation frequency in both high- and low-risk group (Figure 5A,
B). There were two genes with a high frequency of mutations in
high-risk patients, namely, DNAH2 and AHNAK. There were
12 genes with a high mutation frequency in low-risk patients,
namely, DNAH2 and AHNAK (Figure 5C). These genes
exhibited a significant co-occurrence (Figure 5D). AHNKA,
DMD, CACAN1H, KINA1109 and BRCA1 were differentially
expressed between the CC and normal group (Figures 5E–I).
CNV results from patients with CC showed a greater significant
increase in gene copy number on chromosomes 1 and 3
(Figure 5J). The CNV of chromosomes 6, 10, 11, and 17,
where the four lncRNAs TFAP2A.AS1, AL133215.2,
AP000911.1, and LINC02078 were located respectively, are
shown in Figure 5K. As is shown in the figure, there was a
higher gene copy number loss in these chromosomes. A
significant similarity in the chromosomal aberrations of
patients in the high- and low-risk group was also observed
(Figure 5L).

A comparison of the immune landscapes of
high-risk and low-risk patients

Among the immune cell types, assessed by several methods, a
significant positive correlation was shown between neutrophils

and riskscore (Figure 6A). When ssGSEA was used to quantify
immune cells, most of them showed a strong positive relationship
with each other (Figure 6B). Neutrophils, NK cells and pDCs were
significantly different between the high- and low-risk group
(Figure 6C). Among the four lncRNAs in the risk model, the
expression of TFAP2A-AS1 and AL133215.2 was negatively
correlated with that of the majority of immune cells, while
LINC02078 and AP000911.1 showed opposite trends
(Figure 6D). We used the submap analysis to compare the gene
expression profiles of the defined high- and low-risk group with
another dataset containing 47 melanoma patients who showed
immunotherapeutic responses (Roh et al., 2017). Anti-PD-
1 therapies were more likely to be effective for low-risk patients
(Bonferroni corrected p = 0.015) (Figure 6E). We screened several
drugs that showed sensitivity among low-risk patients, including
bleomycin A2, dasatinib and afatinib in CTRP2.0 (Figure 6F) as
well as NVP-AUY922, dinaciclib, pelitinib, obatoclax,
echinomycin, dasatinib and dacomitinib in PRISM (Figure 6G).
Based on these studies, we could develop individualized treatment
plans for patients in different risk groups.

The experimental validation of molecules in
the model

The qRT-PCR assay indicated that TFAP2A-AS1 and
AL133215.2 showed a significantly high expression in cancer tissues,
while LINC02078 and AP000911.1 had a significantly low expression,
which were consistent with our previous predictions (Figures 7A–D).
Given the above analyses, we found a close association between
AL133215.2 and oxidative-stress-related genes, so AL133215.2 was
selected for experimental validation. CCK-8 assay showed that the
proliferation of CC cells could be significantly inhibited by knocking
down AL133215.2 (Figures 7E, F). We analyzed CC cells through flow
cytometry and showed that apoptosis was significantly accelerated in

FIGURE 3
Correlation between risk model and clinical characteristics. T-stage and N-stage are different in high- and low-risk groups.
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both Siha and Hela cells after AL133215.2 knockdown (Figures 7G–I).
These experimental results demonstrated the ability of AL133215.2 to
promote the progression of CC.

Pathway enrichment analysis

GSVA was performed on each patient to compare pathways
between high- and low-risk group. Among high-risk patients,
inflammatory response and oxidative phosphorylation were
significantly enriched (Figure 8A). According to GSEA results

of the HALLMARK and KEGG gene set, inflammatory response
and oxidative phosphorylation were significantly enriched in
high-risk individuals (Figures 8B–D). A positive correlation
was found between AL133215.2 and most immunotherapeutic
predictive pathways, while a negative one was seen in all immune
precursor pathways (Figure 8E). The AL133215.2 low-expression
group had a higher enrichment score in terms of the oxidative
stress pathways (Figure 8F). This was consistent with our
previous study, where the high-risk group corresponded to a
lower expression of AL133215.2 and a more pronounced
oxidative stress.

FIGURE 4
Differences in immunotherapy markers between the risk groups. (A) Heat maps for the distributions of MSI, TMB, and HRD in high- and low-risk
groups. (B–D) The Violin plot for differences in expressions of MSI, TMB, and HRD between high- and low-risk groups. (E)MSI combined risk model was
used to plot the survival curve.

Frontiers in Pharmacology frontiersin.org08

Lv et al. 10.3389/fphar.2023.1234181

125

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1234181


FIGURE 5
Mutations in high- and low-risk groups (A,B)Genemutationwaterfall map for low-risk group and high-risk group. (C) Forest map of the differentially
mutated genes in the low-risk group and high-risk group. (D) Interaction of differentially mutated genes between the low-risk group and high-risk
group. (E–I) Mutant genes showing expression differences between normal and CC patients. (J) Heat map of CNVs (K) Circle map of CNVs for the
chromosomal location of genes of the risk model. (L) The chromosomal aberrations in high- and low-risk groups. *p < 0.05, **p < 0.01 indicated the
statistical significance of data.
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FIGURE 6
Immune infiltration landscape of CC and estimation of immunosuppressed genes using the risk model. (A) Correlation between immune cell types
and riskscore. (B)Correlation matrix for the immune cells. (C)Comparison of the expressions of immune infiltrating cells in low- and high-risk groups. (D)
Correlation between lncRNA and immune cells. (E) Submap analysis shows that patients in the low-risk group are more sensitive to PD-1 inhibitors. (F)
Correlation analysis and drug response analysis for three differential drugs in CTRP. (G) Correlation analysis and drug response analysis for seven
differential drugs in PRISM. *p < 0.05, **p < 0.01 indicated the statistical significance of data.
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Nomogram construction and evaluation

A nomogram was constructed to predict survivals after 3 and
5 years (Figure 9A). The calibration curve validated that the

nomogram had a good accuracy in predicting patient survivals
(Figure 9B). ROC and DCA showed that the risk score had a
better clinical efficacy compared to several other characteristics
(Figure 9C, D).

FIGURE 7
Experimental validation of genes in the risk model (A–D) qRT-PCR results for TFAP2A.AS1, AP000911.1, AL133215.2, and LINC02078. (E) CCK-8
results for knockdown of AL133215.2 in SiHa cell line. (F) CCK-8 results for knockdown of AL133215.2 in the HeLa cell line. (G) Apoptosis after knocking
down AL133215.2 in SiHa cells (H) Apoptosis after knocking down AL133215.2 in HeLa cells (I) Histogram for apoptosis rates. *p < 0.05, **p < 0.01, ***p <
0.001 indicated the statistical significance of data.
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FIGURE 8
Gene set variation analysis and gene set enrichment analysis results. (A)Differential pathways between high- and low-risk groups. (B) Inflammatory_
response in the HALLMARK gene set is significantly enriched in the high-risk group (C) Oxidative_phosphorylation in the HALLMARK gene set is
significantly enriched in the high-risk group (D) Oxidative_phosphorylation in the KEGG gene set is significantly enriched in the high-risk group (E)
Correlation of AL133215.2 with immune-related pathways (F) Differences in oxidative stress-related pathways in the high- and low-expression
groups of AL133215.2. *p < 0.05, **p < 0.01, ***p < 0.001 indicated the statistical significance of data.
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Discussion

In the immune system, lncRNAs regulate gene expression and
play a key role in tumorigenesis as well as progression (Li et al.,
2020). In addition to serving as prognostic markers, IRLs may
also serve as therapeutic targets for cancers (De Felice et al.,
2018). lnc-INSR suppresses the immune microenvironment by
regulating the differentiation of Treg cells (Liu et al., 2020),
thereby promoting tumor growth. In diffused B-cell
lymphoma, ncRNASNHG14 promotes immune escape by
regulating immune checkpoints (Zhao et al., 2019). Oxidative
stress can lead to inflammatory pathways through which normal
cells are converted into tumor cells, and studies have shown that
oxidative stress plays an important role in the progression of CC
(18, 19). However, the exact role of IRLs in the prognosis of CC
and their associations with oxidative stress remain unclear. In
this study, we identified four lncRNAs and construct an immune
risk scoring system. TFAP2A-AS1 is a tumor suppressor of breast
cancer as it competes for miR-933, thereby releasing SMAD2
(Zhou et al., 2019). AL133215.2 is identified and used to
construct a prognostic model for CC (Chen et al., 2020).
LINC02078 and AP000911.1 have not yet been reported in
this context. Next, we will discuss the potential utility of risk
modeling as a new immunotherapeutic tool and analyze the
relationship between risk modeling and oxidative stress.

The risk model was stratified into two groups based on risk level:
low-risk and high-risk model, which was associated with oxidative-
stress-related genes SOD2 and OGG1. SOD2 plays an important role in
vascular oxidative stress (Dikalova et al., 2017), and OGG1 acts as a
DNA repair enzyme that can counteract DNA damage caused by
oxidative stress (Li et al., 2018). Patients in the low-risk group had a
longer outcome survival, as well as a higher MSI and immunogenicity,
who were also more suitable for anti-PD-1 therapies. Additionally, we
also screened for drugs that showed a great sensitivity among low-risk
patients, including bleomycin A2, dasatinib, afatinib, dinaciclib, and
pelitinib. Risk scores were compared to other clinical characteristics,
which were found to be independent risk factors. In a ROC curve
analysis, the AUC value of the risk model was significantly higher than
that of other characteristics, suggesting that risks were a better predictor
of patient prognosis. A nomogram was constructed to predict patient
survival after 1, 3, and 5 years. Importantly, we validated the expression
of lncRNAs identified using the model through qRT-PCR and
functionally validated one of the genes. This, to some extent,
demonstrated the prognostic value of the risk model.

To evaluate the efficiency of risks in immunotherapies, the
immunogenicity of the tumor microenvironment needs to be
investigated (Gasser et al., 2017). TMB is a biomarker of
immunotherapeutic response (Hellmann et al., 2018; Samstein et al.,
2019), the higher the TMB is, the greater the benefit of
immunotherapies will be. MSI is a major predictor of

FIGURE 9
Construction of prognostic nomogram. (A) The nomogram predicts the probabilities of the 3- and 5-year outcome survival (B) The calibration plot
for the nomogrampredicts the probabilities of the 3- and 5-year outcome survival. (C) AUC values for factors in the nomogram. (D) The decision curve for
the nomogram.
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immunotherapeutic sensitivity; tumors with a highMSI (MSI-H) can be
better treated with ICIs (Baretti and Le, 2018). HRD induces genomic
instability and increases immunogenicity for patients with tumors,
thereby leading to an increased response to ICIs (Dai et al., 2018).
In this study, we found that risk grouping was significantly correlated
with MSI grouping; the high-risk group had a higher MSI value.
However, since microsatellite instability status does not effectively
represent the potential benefit of immunotherapies (Camidge et al.,
2019), other methods of evaluation need to be developed.

Mutations in certain genes are closely associated with
immunotherapies, such as TP53, along with their associated co-
mutations that can increase the expression of TMB and immune
checkpoints, thereby affecting patients’ response to immunotherapies
(Assoun et al., 2019). Of the 14 genes identified that showed mutational
differences between the high- and low-risk group, 12 showed higher
mutations in low-risk patients. AHNAK2 and BRCA1 are involved in
the regulation of the immune system (Ju et al., 2020; Xie et al., 2020).
Mutations in BRCA1, a homologous repair gene, can affect the efficacy
of immunotherapies (Fumet et al., 2020).

Infiltration of immune cells can be used to predict the response to
cancer immunotherapies (Junttila and de Sauvage, 2013). We used
XCELL, EPIC and CIBERSORT algorithms to estimate the
relationship between risks and immune cells, and the correlations
between neutrophils and risks were positive. Neutrophils are early
infiltrative inflammatory cells that enable tumor cells to escape
immune surveillance (Fetz et al., 2021). A comparison between
immune cells of the high- and low-risk group was analyzed with
ssGSEA, which showed that the high-risk group had a higher
neutrophil infiltration, while the low-risk group had a higher
infiltration of NK-CD56 bright cells, NK cells and pDCs. The
activation of plasmacytoid dendritic cells (pDCs) can induce T-cell
activation or tolerance; the NK CD56 bright cells can be used as
antitumor effectors in cancer immunotherapies (Wagner et al., 2017).
From the above results, the low-risk group seemed to have a better
immunogenicity. Combined with the results of the comparison of
immune datasets, we speculated that patients in the low-risk group
might respond better to immunotherapies.

Dinaciclib is an effective anti-PD1 inhibitor that induces
immunogenic cell deaths (Hossain et al., 2018). Dasatinib,
combined with low-intensity chemotherapies, is effective in
Philadelphia-positive acute lymphoblastic leukemia (Rousselot
et al., 2016). Obatoclax improves the response of patients with
bladder cancer to cisplatin chemotherapies and their treatment
outcomes (Steele et al., 2019). Although the role of these drugs in
CC is rarely reported, in our study, by analyzing their potential
efficacy in patients carrying PIK3CA mutations, we speculated that
several drugs, including dasatinib, dinaciclib, and obatoclax, might
show better efficacies in the low-risk group of patients. This could
provide targeted therapy options for low-risk patients.

Our study innovatively identified and validated four IRLs for CC,
uncovered immune-associated risk models for predicting clinical
outcomes, and established links to oxidative stress. The key features
we selected may define a new therapeutic strategy that will serve as new
immune biomarkers for future CC immunotherapy. Meanwhile, in the
risk model, a significant increase of the inflammatory response and
oxidative phosphorylation was observed in the high-risk group of
patients, suggesting that both inflammation and oxidative stress
could lead to increased risks. AL133215.2 was lowly expressed in

high-risk patients, therefore, the oxidative-stress-related pathways
were significantly enriched in the AL133215.2 low-expression group.

Conclusion

In conclusion, we developed a prognostic risk model by identifying
IRLs and explored the associations between the risk model and oxidative
stress. In actual clinical practice, we can perform transcriptome
sequencing of 4 IRLs from patients, assess the risk scores and
stratification of patients based on risk modeling formulas, and make
comprehensive judgments on prognosis in conjunction with the clinical
characteristics of patients. We can also propose the appropriate
treatment plan according to the patient’s risk stratification. However,
there are limitations to our study, including insufficient sample size,
limited generalisability due to lack of information on patient treatment
and long-term follow-up, and lack ofmore in-depthmechanistic studies.
These limitations may affect the interpretation of our findings, but they
do not negate the reliability of our study.
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Background: Lung adenocarcinoma (LUAD) is the major subtype of lung cancer
and has a poor prognosis. Disulfidptosis is a novel regulated cell death form
characterized by aberrant disulfide stress and actin network collapse. This study
aimed to identify disulfidptosis-related lncRNAs, and predict LUAD patients’
prognosis and response to antitumor therapies by establishing a disulfidptosis-
related lncRNA model.

Methods: Transcriptome and clinical data of LUAD patients were obtained from
the TCGA database. Pearson correlation and Cox regression analysis was used to
identify disulfidptosis-related lncRNAs associated with overall survival. LASSO
regression analysis was adopted to construct the prognostic model. GO, KEGG
and GSEA analysis was used to identify cellular pathways related to this model.
Immune cell infiltration was investigated by ESTIMATE and CIBERSORT
algorithms. Tumor mutational burden (TMB) and its association with model-
derived risk score were analyzed using simple nucleotide variation data.
Patients’ response to immunotherapy and other antineoplastic drugs was
predicted by the TIDE algorithm and GDSC tool, respectively.

Results:We identified 127 disulfidptosis-related lncRNAs, and a prognostic model
that consists eight of them (KTN1-AS1, AL365181.3, MANCR, LINC01352,
AC090559.1, AC093673.1, AP001094.3, and MHENCR) was established and
verified. The prognostic model could stratify LUAD patients into two distinct
risk-score groups. A high risk score was an independent prognosis factor
indicating poor overall survival, and correlated with reduced immune cell
infiltration, high TMB, and lower activity of tumor immune response. Immune
checkpoint blockade might bring more survival benefits to the high-risk LUAD
patients, whereas low-risk patients might be more responsive to targeted therapy
and diverse kinase inhibitors.

Conclusion: We established a disulfidptosis-related lncRNA model that can be
exploited to predict the prognosis, tumor mutational burden, immune cell
infiltration landscape, and response to immunotherapy and targeted therapy in
LUAD patients.
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Introduction

Lung cancer remains one of the leading causes of global cancer
incidence and mortality (Sung et al., 2021; Zheng et al., 2023).
Adenocarcinoma is the main histological type of non-small cell
lung cancer (NSCLC) and accounts for around 40% of all lung
cancers (Duma et al., 2019). Early detection and diagnosis are
directly related to clinical outcome, and its failure often leads to
miss of the optimal opportunity of clinical intervention. For patients
with stage I or II disease, surgical resection is recommended. For
patients at advanced stages, besides traditional radiotherapy and
chemotherapy, systemic therapeutic strategies comprising targeted
therapy and immunotherapy are optional for NSCLC treatment
according to the gene mutation scenarios (e.g., EGFR mutation,
ALK translocation) and expression of programmed cell death
protein-ligand 1 (PD-L1) (Duma et al., 2019). Lung
adenocarcinoma (LUAD) is molecularly and phenotypically
diverse, and approximately 60% of LUAD have an oncogenic
driver mutation that in many cases is associated with certain
clinicopathologic features and predicts treatment response (Sholl,
2015; Tavernari et al., 2021). For example, KRAS and KEAP1 are
among the most frequently mutated genes in LUAD. KEAP1
mutations confers shorter overall survival (OS) in KARS mutant
LUADs in response to anti-PD-(L)1 immunotherapy (median OS
(95%CI): 4.8 months (4.0–8.0) for KEAP1mutant versus 18.4 months
(14.9–221.7) for KEAP1 wild-type), but not in KRAS wild-type
LUADs (Ricciuti et al., 2022). In another LUAD cohort treated
with immune checkpoint inhibitors, KEAP1 inactivation mutations
due to somatic mutation and loss of heterozygosity are correlated with
worse clinical outcomes and an immune-excluded phenotype (Scalera
et al., 2023). The survival rate remains dismal despite of advances in
genotype-based diagnosis and therapy modalities (Zhang et al., 2019).
To improve LUAD management, a solid understanding of molecular
events that correlate with LUAD malignant degree is necessary.

Resisting regulated cell death is a hallmark of cancer (Hanahan,
2022). Increasing evidence shows that different regulated cell death
forms can affect cancer progression and response to therapy (Peng
et al., 2022). For example, ferroptosis, characterized by iron-
dependent lipid hydroperoxide accumulation, was found to be
implicated in T cell immunity and contribute to immunotherapy
efficacy (Wang. et al., 2019a). Disulfidptosis is a recently identified
regulated cell death type induced by aberrant accumulation of
intracellular disulfides in SLC7A11-overexpressing cells under a
glucose starvation condition (Liu et al., 2023). Increased
SLC7A11-mediated cystine uptake, in couple with glucose
starvation, causes severe disulfide stress and facilitates aberrant
disulfide bonding in actin cytoskeleton proteins, leading to actin
filament contraction and detachment from the plasma membrane
(Liu et al., 2023). A recent study by Chen et al. highlights that
disulfidptosis plays a role in regulating bladder cancer progression
and therapy efficacy (Chen et al., 2023). However, it remains unclear
whether disulfidptosis is involved in LUAD progression and affects
prognosis of LUAD patients.

Long non-coding RNAs (lncRNAs) are transcripts of more than
200 nucleotides that are not translated into proteins. LncRNA-encoding

loci are among themost numerous regulatory and functional units in the
non-coding regions of the genome (Uszczynska-Ratajczak et al., 2018).
They play critical roles in regulating gene expression and protein function
by interacting with DNA, RNA and proteins (Liu et al., 2015; Blank-
Giwojna et al., 2019; Statello et al., 2021). The involvement of lncRNAs in
gene expression regulation under pathological conditions suggests that
they are related to a broad range of diseases. In terms of LUAD, a growing
number of studies have demonstrated that lncRNAs promote disease
progression (e.g., UPLA1 and LINC00628) and immune evasion (e.g.,
SChLAP1), and can serve as prognosis biomarkers and potential drug
targets (Xu et al., 2019; Han et al., 2020; Du et al., 2021).

In this study, we aimed to identify disulfidptosis-related
lncRNAs that affect prognosis of LUAD patients. We constructed
and validated a prognostic model based on disulfidptosis-related
lncRNAs, and this model exhibits high accuracy in predicting
survival rate (area under the curve (AUC) for 1 year survival:
0.703). Moreover, the model-derived risk score can be used to
evaluate tumor immune micro-environment landscape and
sensitivity to immunotherapy and chemotherapy. Besides tumor
stage, our prognostic model is an independent factor with potential
to identify patients with high risk (hazard ratio (HR): 1.245, 95% CI:
1.167–1.328, p < 0.001). Our findings demonstrate key regulatory
roles of disulfidptosis-related lncRNAs in LUAD progression and
provide potential targets for precision treatment of LUAD.

Materials and methods

Data acquisition

The RNA-sequencing (RNA-seq)-based transcriptome profiling
data, clinical information and somatic mutation data of over
500 LUAD patients were downloaded from The Cancer Genome
Atlas (TCGA) database. Normal control samples were excluded for
further analysis. LUAD cases with insufficient information about
survival time, age, and tumor stage were also removed.

Screening for disulfidptosis-related lncRNAs

We obtained 25 disulfidptosis-related genes based on previous
studies (Liu et al., 2023; Yang et al., 2023; Zhao et al., 2023). Pearson
correlation analysis was performed to identify lncRNAs that exhibit
co-expression patterns with the disulfidptosis-related genes, with the
absolute value of correlation coefficient >0.4 and p < 0.001 as the
screening threshold. These lncRNAs were defined as disulfidptosis-
related lncRNAs.

Establishment and validation of a
disulfidptosis-related lncRNA prognosis
model

A total of 507 LUAD samples with survival information were
randomly divided into two groups, one for model construction (the
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training group, n = 254) and one for model validation (the test group,
n = 253). In the training group, disulfidptosis-related lncRNAs that
were associated with patients’ overall survival were obtained by
performing univariate Cox regression analysis. After LASSO
regression analysis to determine lncRNAs with minimum
deviation, a prognostic model based on eight disulfidptosis-related
lncRNAs was established through multivariate Cox regression
analysis. The risk score was the sum of products of the expression
value of each of the eight lncRNAs and its regression coefficient,
risk score � ∑n

i�0βiExp i (Zhu et al., 2020). Based on the median risk
score, patients were grouped into high- and low-risk subgroups, and
survival analysis was carried out to evaluate the significance of the
prognostic model. Samples in the test group were used to validate the
reliability of this prognostic model. Multivariate Cox regression
analysis was conducted to evaluate whether the risk score derived
from the model is an independent prognostic factor of LUAD
patients.

Functional enrichment analysis of
differentially expressed genes

Differentially expressed genes (DEGs) were screened between
the high and low risk groups, according to the screening criteria:
|log2 fold change| > 1 and false discovery rate (FDR) < 0.05. After
that, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses were carried out to gain
insights into possible molecular events that distinguish between
high- and low-risk groups. GO terms or KEGG pathways were
considered significantly enriched when FDR was less than 0.05.
With a focus on Gene Ontology gene sets, gene set enrichment
analysis (GSEA) was also performed based on gene expression
profiles between the two groups. A gene set was considered
enriched when p-value and FDR were less than 0.05 and 0.25,
respectively.

Tumor infiltrating immune cells analysis

The ESTIMATE R package was used to analyze the abundances
of infiltrating stromal and immune cells in LUAD tissues using gene
expression data (Yoshihara et al., 2013). The ESTIMATE algorithm
generates three scores based on single sample GSEA, including
stromal, immune and estimate scores. Their differences between
high and low risk LUAD groups were compared.

The CIBERSORT tool (Chen et al., 2018) was further employed
to estimate the abundances of 22 immune cell types in each of the
LUAD samples. In addition, single sample GSEA was performed
using immune-related gene sets to evaluate multiple immune
functions of each sample, and the activities of these immune
functions were compared between two risk groups.

Tumor mutational burden analysis

According to the total number of somatic base substitutions, the
tumor mutational burden (TMB) and mutation frequencies in each
sample were calculated. Differences in TMB between the high- and

low-risk groups of patients were analyzed. According to the median
TMB score, LUAD patients were divided into two groups and
survival analysis was performed to explore the influence of TMB
on patients’ overall survival. The combined effect of TMB and risk
score on patient prognosis was also investigated.

Immunotherapy response and drug
sensitivity prediction

We exploited the Tumor Immune Dysfunction and Exclusion
(TIDE) platform (Jiang et al., 2018) to predict LUAD patient
response to anti-PD-1 and anti-CTLA4 immunotherapy. TIDE
prediction scores are negatively associated with immunotherapy
response. Differences in response to immunotherapy between the
high- and low-risk groups of patients were analyzed by comparing
the TIDE scores.

The oncoPredict R package was used for predicting drug
sensitivity in LUAD patients based on gene expression data. The
required training sets were derived from the Genomics of Drug
Sensitivity in Cancer database (GDSC) and downloaded from
oncoPredict’s Open Science Framework (https://osf.io/c6tfx/)
(Maeser et al., 2021). We used the calcPhenotype function to
obtain drug sensitivity scores of each patient. Differences in
response to multiple drugs between the high- and low-risk
groups were compared based on the drug sensitivity scores.

Statistical analysis

Data analysis was performed in R (4.2.2). Two-tailed Student’s t-
test was used to compare statistical differences between two groups.
The Kaplan-Meier estimate and log-rank test were used for survival
analysis. Unless otherwise indicated, differences were considered
statistically significant when p < 0.05.

Results

Identification of disulfidptosis-related
lncRNAs

RNA-seq data of LUAD patients were downloaded from TCGA.
According to the annotation of gene type, protein coding mRNAs
and lncRNAs were distinguished. To identify lncRNAs implicated in
disulfidptosis, Pearson correlation analysis was conducted based on
expression levels of lncRNAs and 25 disulfidptosis-related genes.
Following stringent screening criteria (|Pearson R| > 0.4 and p <
0.001), 127 lncRNAs were screened out and their expression were
correlated with 20 of the 25 disulfidptosis-related genes (Figure 1A;
Supplementary Table S1).

Establishment of the disulfidptosis-related
lncRNA prognostic model

We randomly divided 507 LUAD patients with survival
information into two groups, the training group was for model
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construction and the test group for model validation. Among the
127 lncRNAs, only those associated with LUAD patient survival
were considered to be enrolled in model construction. We
performed univariate Cox regression analysis to exclude lncRNAs
that showed no significant effect on survival, and 14 disulfidptosis-
related lncRNAs were left. Of them, three were prognostically
favorable lncRNAs and eleven were prognostically unfavorable
ones (Figure 1B). Based on these 14 prognosis-associated
disulfidptosis-related lncRNAs and using LASSO Cox regression
analysis, a prognostic model comprised of 8 disulfidptosis-related
lncRNAs was further established (Figures 1C, D). Then we assigned
each patient a risk score per the formula of the prognostic model:
risk score = (0.433 * KTN1-AS1 expression value (EV)) + (0.099 *
AL365181.3 EV) + (0.274 * MANCR EV)—(0.604 *
LINC01352 EV)—(0.404 * AC090559.1 EV) + (0.425 *
AC093673.1 EV) + (0.374 * AP001094.3 EV)—(0.340 * MHENCR
EV). The expression correlations between the 8 lncRNAs and
25 disulfidptosis-related genes were shown in Figure 1E,
AC093673.1 and AL365181.3 showed positive associations while
AP001094.3 and MHENCR showed negative correlations with most
disulfidptosis-related genes. According to the median risk score, the
training group was divided into high-risk and low-risk groups. As
expected, patients in the high-risk group had shorter overall survival

time, demonstrating the prognostic significance of the 8 lncRNAs-
based model (Figure 2A). Similar survival analysis results were
observed in the test group and after combination of the two
groups (Figures 2B, C), which indicates that our prognostic
model is reliable. Moreover, the 8 disulfidptosis-related lncRNAs
exhibited consistent expression patterns per the risk scores between
the training and test groups (Figure 2D).

We merged the training and test groups into one and divided it
into two groups. Each patient’s risk score and survival state were
shown in Figures 2E, F a high risk score was positively correlated
with an increased probability of death. In addition to predicting
dismal overall survival, a high risk score also indicated poor
progression-free survival (Figure 2G).

The disulfidptosis-related lncRNA model is
an independent prognostic indicator

We next asked whether our prognostic model was interfered by
other clinical factors. We enrolled four clinical features of LUAD
patients, including age, gender, tumor stage and risk score, for Cox
regression analysis. According to univariate analysis, tumor stage
(HR: 1.639, 95% CI:1.426–1.884, p < 0.001) and the 8 disulfidptosis-

FIGURE 1
Identification of disulfidptosis-related lncRNAs and construction of prognostic model in LUAD. (A) The Sankey diagram showing significant
expression correlations of disulfidptosis-related genes with 127 lncRNAs. (B) Disulfidptosis-related lncRNAs that affect the overall survival of LUAD
patients according to univariate Cox regression analysis. (C) LASSO coefficients of the 14 lncRNAs that correlate with overall survival. (D)Cross-validation
of LASSO regression, the dashed lines denote the optimal log(λ) value. (E) Heatmap showing the expression correlation between the eight lncRNAs
used for model construction and disulfidptosis-related genes. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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related lncRNAs-based risk score (HR: 1.225, 95% CI: 1.155–1.299,
p < 0.001) are two hazardous factors that affect prognosis
(Figure 3A). Moreover, the multivariate Cox regression analysis
suggested that risk score (HR: 1.245, 95% CI: 1.167–1.328, p <
0.001), together with tumor stage (HR: 1.647, 95% CI: 1.428–1.900,
p < 0.001), are independent prognostic factors (Figure 3B). To
further evaluate the predictive accuracy of the lncRNA-based
prognostic model, ROC curve analysis was performed. The AUC
values for 1-, 3-, and 5-year survival are 0.703, 0.673, and 0.654,
respectively, indicating high accuracy of our prognostic model
(Figure 3C). Of note, our prognostic model is almost as accurate
as tumor stage in prognosis prediction, as reflected by similar AUC
values (0.673 versus 0.687) (Figure 3D). These results suggest that
our disulfidptosis-related lncRNAs-based model can serve as an
independent and accurate prognostic indictor.

The practicability of the lncRNA-based model in prognosis
prediction of LUAD patients with the same disease stage.

Since both our prognostic model and tumor stage are good
survival predictors, we wondered what are the advantages of our
model as compared with tumor stage in terms of prognosis
prediction. To that end, LUAD patients were divided into early
stage group (stage I or II) and advanced stage group (stage III or IV)
according to the disease stage. It was found that in both groups,
LUAD patients with high risk scores had a poorer overall survival
rate than patients with low risk scores (Figures 3E, F). These results

suggest that our prognostic model can distinguish between patients
at high and low risk, even at the same disease stage.

Involvement of the disulfidptosis-related
lncRNA model in immune regulation

To further gain insights into the biological differences between
the high- and low-risk groups, we performed differentially expressed
gene analysis and identified 643 DEGs between the two groups. GO
enrichment analysis results indicated that these DEGs are associated
with microtubule-based movement, humoral immune response,
cilium movement, and other biological processes (Figure 4A).
KEGG pathway analysis showed that the DEGs are involved in
systemic lupus erythematosus and neutrophil extracellular trap
formation (Figure 4B). Furthermore, GSEA that incorporates
transcriptome data was carried out. Our analysis showed that
nucleosome assembly, DNA packaging complex, nucleosome,
protein DNA complex, and structural constituent of chromatin
are the top five significantly enriched terms in the high-risk
group, while in the low-risk group, B cell receptor signaling
pathway, complement activation, immunoglobulin complex,
T cell receptor complex, and immunoglobulin receptor binding
are the top five significantly enriched cellular processes
(Figures 4C, D).

FIGURE 2
Evaluation and verification of the prognostic value of the disulfidptosis-related lncRNA model. (A,B) Kaplan-Meier curves showing the difference in
overall survival between high- and low-risk LUAD patients in the training group (A) and in the test group (B). (C,D) Kaplan-Meier curves showing the
difference in overall survival (C) and progression free survival (D) in the combined LUAD cohort with high-risk and low-risk. (E) The risk score of each
LUAD patient ordered from low to high is shown. (F) Survival status of LUAD patients that are ordered from low to high according to the risk score. (G)
Heatmap showing expression of the eight disulfidptosis-related lncRNAs in LUAD patients with high-risk or low-risk.
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Tumor immune microenvironment plays key roles in
determining tumor progression. Considering the above GSEA
result that showed enrichment of immune related processes in the
low-risk group, we speculated that the tumor immune
microenvironment is different between the high- and low-risk
LUAD groups. According to the ESTIMATE algorithm, the
immune scores are significantly lower in the high-risk group than
in the low-risk group (Figure 5A), indicating less infiltration of
immune cells in high-risk LUAD. We next used CIBERSORT
approach to investigate the abundances of diverse immune cell
types in the LUAD tissues. As shown in Figure 5B, high-risk
LUADs have less infiltration of monocytes, resting Dendritic cells
and resting mast cells, but increased infiltration of M0 macrophages.
In addition, we analyzed multiple immune functions between the two
LUAD groups. Strikingly, among the 29 kinds of immune functions,
25 showed lower function scores in high-risk LUADs than in low-risk

LUADs, such as B cells, CD8+ T cells, and cytolytic activity
(Figure 5C). Together, these results suggest that high-risk LUADs,
as classified by our disulfidptosis-related lncRNA model, may have
compromised immune responses in their tumor microenvironment,
resulting in tumor progression and worse overall survival.

Mutational landscape of the two LUAD
groups classified by the disulfidptosis-
related lncRNA model

TMB, the number of somatic mutations per megabase of
genomic sequence, is a potential predictive biomarker in many
solid tumors (Sha et al., 2020). We analyzed and compared gene
mutation frequency and TMB between the two LUAD groups. High-
risk LUADs exhibited significant higher TMB than low-risk LUADs

FIGURE 3
The model based on eight disulfidptosis-related lncRNAs is an independent prognosis indicator with high accuracy. (A) Forest plot showing
prognostic value of age, gender, tumor stage and themodel-derived risk score according to univariate regression analysis. (B) Forest plot showing tumor
stage and our model-derive risk score are independent prognostic factors based on multivariate regression analysis. (C) The prognostic accuracy of our
model-derived risk score for predicting 1-year, 3-year, and 5-year survival. (D) The accuracy of risk score, tumor stage, age and gender in predicting
LUAD patients’ survival. (E,F) Kaplan-Meier curves showing the difference in overall survival between high- and low-risk LUAD patients at early stages (E)
and at advanced stages (F).
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(Figure 6A). The TMB score of each LUAD sample and the top
20 most frequently mutated genes as well as their mutation types
were shown in Figures 6B, 6C. Mutation frequencies of almost all of
these genes were higher in high-risk LUADs than in low-risk
LUADs. TP53 and TTN were mutated in over half of the high-
risk LUADs. High TMB can bring benefits for LUAD patients in
their survival, and the overall survival rate is much higher in high
TMB patients than in low TMB patients (Figure 6D). We next
investigated the effects of risk score and TMB on LUAD patients’
overall survival, patients were divided into four subgroups based on
these two factors. We found that patients with high TMB and low
risk scores exhibit the best prognosis, their 10-year survival rate is
around 60%. In contrast, patients with low TMB and high risk scores
have the poorest prognosis, the 5-year survival rate is merely about
25%. There are no significant differences in overall survival between
high-risk patients with high TMB and low-risk patients with low
TMB, and the survival rate of these patients is between the other two
subgroups (Figure 6E).

Prediction of sensitivity to immunotherapy
and other antitumor drugs

Drug resistance is a major cause of cancer relapse and cancer-
related death. Immune checkpoint inhibitors (ICBs) have exhibited

impressive therapeutic effects in certain cases of NSCLC. To explore
the role of our disulfidptosis-related lncRNA model in predicting
response to immunotherapy, we analyzed the correlations between
LUAD risk score derived from the model and TIDE score. High-risk
LUAD patients have significant lower TIDE scores (Figure 7A),
suggesting that immune checkpoint inhibitors are more effective in
these patients. Since our analysis showed that high-risk LUADs have
high TMB (Figure 6A), our results are in line with previous finding that
higher TMB was associated with clinical efficacy of anti-PD-1 therapy
(Rizvi et al., 2015). In addition, the associations between LUAD risk
score and sensitivity to other antitumor agents were also investigated.
Drug sensitivity scores were generated by the calcPhenotype function
in the oncoPredict package, based on gene expression data of LUAD
patients and preprovided training datasets. As compared with patients
in the low-risk group, patients in the high-risk group are less sensitive
to diverse types of antineoplastic drugs, including EGFR tyrosine
kinase inhibitors (gefitinib, erlotinib, and AZD3759) (Figure 7B),
MEK and ERK inhibitors (Trametinib, PD0325901, Ulixertinib and
ERK_6604) (Figure 7C), inhibitors of cell cycle-related kinases
(AZD7762, BI-2536 and MK-1775) (Figure 7D), MET inhibitors
(Savolitinib, Foretinib and Crizotinib) (Figure 7E), and drugs that
disturb genome integrity (Talazoparib, AZD6738, VE821 and
GDC0810) (Figure 7F). These results suggest that our disulfidptosis-
related lncRNAmodel is a potential tool to predict response of LUAD
patients to ICBs and other common antineoplastic drugs.

FIGURE 4
Differential function enrichment between the high- and low-risk LUAD patients. (A,B) GO enrichment (A) and KEGG (B) analysis of differentially
expressed genes in the two LUAD groups. (C,D) GSEA results showing cellular processes significantly enriched in high-risk LUADs (C) and low-risk
LUADs (D).
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Discussion

Disulfidptosis is characterized by aberrant disulfide bonding
among actin cytoskeleton proteins and subsequent actin network
collapse due to cystine overload and NADPH shortage (Liu et al.,
2023). Considering cancer cell vulnerability to disulfidptosis,
targeting this newly identified cell death form is suggested as a
potential therapeutic strategy in cancer treatment. Disulfidptosis-
based signature can predict prognosis in various tumor types,
including bladder cancer and hepatocellular carcinoma (Chen
et al., 2023; Wang et al., 2023). LncRNAs play an important
role in regulating malignant behaviors of tumor cells and have

been demonstrated as potential biomarkers and targets for cancer
diagnosis and treatment (Chi et al., 2019). Hitherto, lncRNAs
related to disulfidptosis remain largely unknown and their
prognostic significance in LUAD are also unclear. In this study,
we identified lncRNAs that exhibit expression correlations with
disulfidptosis-related genes, and established a prognostic model
for LUAD patients comprised of eight disulfidptosis-related
lncRNAs.

Our study identified 127 disulfidptosis-related lncRNAs, and
those associated with LUAD patients’ overall survival were
screened out for model construction. A risk score model
containing eight 8 disulfidptosis-related prognostic lncRNAs
was established using LASSO regression analysis. Its predictive
efficacy was evaluated in the training and test groups comprising
over 500 LUAD patients. A high risk score derived from the model
is an indicator for poor overall survival and progression free
survival. Tumor stage reflects disease progression and severity.
As expected, our analysis showed that tumor stage is an
independent prognostic factor for LUAD. Similar to tumor
stage, our lncRNA model-derived risk score was proved as a
factor with independent prognostic value, and our model is as
sensitive as tumor stage to predict three- and 5-year survival.
Moreover, one advantage of our model, compared with tumor
stage, is that it can distinguish between high- and low-risk patients
that are at the same disease stage. Hence, this disulfidptosis-related
lncRNA model is an accurate and reliable prognostic predictor for
LUAD patients.

Crosstalk between immune cells and tumor cells within the
tumor microenvironment have a profound influence on the fate of
the later. The quantity and quality of tumor-infiltrating lymphocytes
are key factors that forecast prognostic and therapeutic benefits in
many types of cancer, such as oral squamous cell carcinoma, HER2-
positive breast cancer, and epithelial ovarian cancer (Salgado et al.,
2015; Hwang et al., 2019; Shaban et al., 2019; Paijens et al., 2021). In
our study, we found that high- and low-risk LUAD patients have
different immune activities and immune cell infiltration degrees.
High risk scores had significant negative associations with T cell
receptor complex, B cell receptor signaling pathway, and
immunoglobulin complex. T cell receptors are required for
effective antitumor immune responses through participating in
tumor antigen recognition and T cell activation (Zhong et al.,
2013). B cells mediate humoral immunity and can inhibit tumor
growth by secreting immunoglobulins (Wang et al., 2019b). These
results indicate a reduced antitumor immune activity in high-risk
LUADs. Besides, high-risk LUAD patients had lower immune scores
that represent reduced infiltration of immune cells within the tumor
microenvironment, according to the ESTIMATE analysis results.
Except NK cells that showed a higher function score in the high-risk
LUADs, B cells, CD8+ T cells, Dendritic cells and macrophages
displayed significant lower function scores in these LUADs. Based
on these findings, we reason that reduced immune cell infiltration
and activity lead to poor prognosis of LUAD patients, and these
patients can be distinguished by our disulfidptosis-related lncRNA
model.

Despite that immune checkpoint inhibitors demonstrate
remarkable survival benefit in NSCLC patients, only a
minority of patients respond to them (Dong et al., 2017;
Marinelli et al., 2020). Therefore, we wondered whether this

FIGURE 5
Different immune cell infiltration levels in the high- and low-risk
LUADs. (A) Violin plots showing the differences of stromal and
immune scores between the high-risk and low-risk groups. (B)
Differences in infiltration degrees of 22 immune cell types in the
tumor microenvironment of high- and low-risk LUADs. (C)
Differences in diverse immune functions activities in the tumor
microenvironment of high- and low-risk LUADs. *, p < 0.05; **, p <
0.01; ***, p < 0.001.
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disulfidptosis-related lncRNA model can be used as a predictive
marker for clinical response to ICBs in LUAD patients. It turned
out that high-risk patients had lower TIDE scores, suggesting that
these patients are more likely to benefit from immune checkpoint
blockade. This may be explained by higher TMB in high-risk
patients, as a high TMB is considered as an indicator for better
response to immunotherapy (Rizvi et al., 2015; Hellmann et al.,
2018). In contrast, we found that high-risk patients are less
sensitive to other antitumor therapies, such as EGFR tyrosine
kinase inhibitors, MEK/ERK inhibitors, MET inhibitors, and
drugs that disturb genome integrity and cell cycle progression.

Somatic driver mutation is a major cause of tumorigenesis and
tumor progression. As higher TMBwas found in high-risk LUADs,
we further investigated genes with high mutation frequencies and
compared their differences between the two LUAD groups. Of the
20 most frequently mutated genes, 19 had elevated mutation
frequencies in the high-risk group. In the high-risk group there
were 10 genes with a mutation frequency greater than or equal to
30%, while in the low-risk group there were only 5. With a

mutation frequency of 54% in the high-risk LUADs, TTN was
the most frequently mutated gene, which may account for the
higher TMB in the high-risk group since TTNmutations represent
high TMB (Oh et al., 2020). Mutation of the tumor suppressor
TP53 gene is among the most common genetic alterations in
cancer, which were observed in 53% of patients in the high-risk
group. We found higher mutation frequencies of oncogenes such
as MUC16 (Kanwal et al., 2018) and KRAS (Tomasini et al., 2016)
in high-risk LUADs, which may be another cause, other than
reduced immune cell infiltration and activity, of poor prognosis of
high-risk LUAD patients.

In conclusion, we identified disulfidptosis-related lncRNAs,
based on eight of which we established and validated a prognostic
model that can predict independently overall survival of LUAD
patients, reflect their immune activity within the tumor
microenvironment, and forecast response to immunotherapy,
targeted therapy and chemotherapy. This study provides
preliminary insights into the association between disulfidptosis
and tumor immune response. There are certain limitations in our

FIGURE 6
Differential tumor mutational burden and somatic mutation frequencies in the high- and low-risk LUADs. (A) Violin plot embedded with box plot
showing the difference in the tumor mutational burden between the high-risk and low-risk LUADs. (B,C) Mutation frequencies of the top 20 most
frequentlymutated genes in the high-risk (B) and low-risk (C) LUADswere shown in thewaterfall plots. The upper histograms of the plots represent tumor
mutational burden of each sample. The mutation types of each gene are indicated with different colors and the right histograms show the sample
number with a certain mutation type of the corresponding genes. (D) Kaplan-Meier curves showing the difference in overall survival between LUAD
patients with high and low tumormutational burden. (E) Kaplan-Meier curves of overall survival of the four subgroups that are classified based on different
tumor mutational burden and different risk score derived from the lncRNA model.
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study. Although the prognostic model has been verified and its
accuracy evaluated in over 500 LUAD samples, only TCGA RNA-
seq data were used for analysis. Further verification of this model
by transcriptome data of other independent LUAD cohorts is
needed, and it also remains to be determined whether this model
is appliable to data generated by other platforms. In addition,
despite that the eight lncRNAs used for model construction show
expression correlations with one or more disulfidptosis-related
genes, their exact roles in regulating disulfidptosis need further
research. Also, the specific molecular mechanisms of
disulfidptosis-related lncRNAs in regulating the prognosis of
LUAD patients and their response to antitumor therapies
remains experimental exploration.
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Unlocking the role of non-coding
RNAs in prostate cancer
progression: exploring the
interplay with the Wnt signaling
pathway
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Prostate cancer (PCa) is one of themost common cancers inmales, exhibiting a wide
spectrum of clinical manifestations that pose challenges in its diagnosis and
treatment. The Wnt signaling pathway, a conserved and complex pathway, is
crucial for embryonic development, tissue homeostasis, and various physiological
processes. Apart from the classical Wnt/β-catenin signaling pathway, there exist
multiple non-classical Wnt signaling pathways, including the Wnt/PCP and Wnt/
Ca2+ pathways. Non-coding RNAs (ncRNAs) are involved in the occurrence and
development of PCa and the response to PCa treatment. ncRNAs are known to
execute diverse regulatory roles in cellular processes, despite their inability to encode
proteins. Among them, microRNAs, long non-coding RNAs, and circular RNAs play
key roles in the regulation of theWnt signaling pathway in PCa. Aberrant expression of
thesencRNAs anddysregulationof theWnt signalingpathway areoneof the causesof
cell proliferation, apoptosis, invasion, migration, and angiogenesis in PCa. Moreover,
these ncRNAs affect the characteristics of PCa cells and hold promise as diagnostic
and prognostic biomarkers. Herein, we summarize the role of ncRNAs in the
regulation of the Wnt signaling pathway during the development of PCa.
Additionally, we present an overview of the current progress in research on the
correlation between these molecules and clinical features of the disease to provide
novel insights and strategies for the treatment of PCa.

KEYWORDS

non-coding RNA, miRNA, lncRNA, circRNA, Wnt signaling pathway, prostate cancer

1 Introduction

Inmales, prostate cancer (PCa) is one of themost common cancers and the fifth leading cause
of cancer-related deaths (Sung et al., 2021). According to estimates for 2020, the worldwide
incidence of PCa was 1.4 million new cases, with more than 375,000 males dying owing to the
disease (Sandhu et al., 2021). PCa is a complex and heterogeneous disease, exhibiting a wide range
of clinical manifestations, ranging from indolent to aggressive (He et al., 2022). Thus, investigating
the mechanisms of the occurrence and development of PCa is crucial for its diagnosis and
treatment. Although the molecular mechanisms underlying PCa progression remain unclear,
genetic alterations and signaling pathways have been found to play key roles (Wang et al., 2022b).

The Wnt signaling pathway is a conserved pathway that plays crucial roles in embryonic
development, tissue homeostasis, and stem cell maintenance (Zhou et al., 2022a). The Wnt
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signaling pathway can be categorized into three classes: 1) Wnt/β-
catenin signal transduction, 2) Wnt/PCP signal transduction, 3)
Wnt/Ca2+ signal transduction (Asano et al., 2022). Dysregulation of
the Wnt signaling pathway is associated with many diseases,
including cancer (Yeh et al., 2019). In PCa, aberrant activation of
the Wnt signaling pathway leads to dysregulation of cell
proliferation, apoptosis, invasion, and angiogenesis (Koushyar
et al., 2022). Understanding the mechanisms underlying Wnt
signaling dysregulation can provide valuable insights into the
pathogenesis of PCa and elucidate potential therapeutic targets.

Non-coding RNAs (ncRNAs) have been recognized as critical
regulatory factors in gene expression and signal transduction in both
normal physiology and disease pathogenesis, particularly in PCa (Ferri
et al., 2022; Szaflik et al., 2022). ncRNAs are known to execute diverse
regulatory roles in cellular processes, despite their inability to encode
proteins (Wang et al., 2022a). Recent studies have elucidated several
types of ncRNAs, such as microRNAs (miRNAs), long non-coding
RNAs (lncRNAs), and circular RNAs (circRNAs), which play key roles
in the regulation of the Wnt signaling pathway in PCa (Goodall and

Wickramasinghe, 2021; Xue et al., 2022). The alterations in the
expression patterns of these ncRNAs at distinct stages of PCa
progression indicate their potential as diagnostic and prognostic
biomarkers (He et al., 2020; Song et al., 2020). For example, the high
expression of the lncRNA CCAT2 and SOX2-OT is associated with the
diagnosis and prognosis of PCa, indicating their potential utility as
biomarkers (He et al., 2020; Song et al., 2020). Moreover, these ncRNAs
affect the characteristics of PCa cells such as proliferation, invasion,
migration, and apoptosis; additionally, these ncRNAs can influence the
therapeutic response of cancer cells by regulating the Wnt signaling
pathway (He et al., 2020; Song et al., 2020;Wang et al., 2021). Therefore,
Wnt signaling pathway-related ncRNAs are promising prospects as
therapeutic targets for PCa.

In conclusion, our review presents a comprehensive elucidation of
the intricate interplay between ncRNAs and theWnt signaling pathway
in the context of PCa occurrence, progression, and therapeutic
approaches. Significantly, we underscore the profound implications
of ncRNAs as promising diagnostic and prognostic biomarkers,
accentuating their pivotal role in modulating PCa aggressiveness and

FIGURE 1
The diverse types and molecular mechanisms of the Wnt signaling pathway. This diagram illustrates the classification and members of the Wnt
signaling pathway. The Wnt signaling pathway can be categorized into three classes: (1) Wnt/β-catenin signal transduction, (2) Wnt/PCP signal
transduction, (3) Wnt/Ca2+ signal transduction. In theWnt/β-catenin pathway, Wnt ligands bind to Frizzled receptors and LRP co-receptors, leading to the
activation of the disheveled protein and subsequent inactivation of Axin protein. This results in the accumulation of β-catenin in the cytoplasm, its
translocation into the nucleus, and binding to TCF/LEF transcription factors, ultimately inducing downstream gene expression. Wnt/PCP signaling
pathway involved in cell polarity, tissue morphogenesis, cell adhesion, and directional migration through JNK and Rho GTPase signaling pathways. The
Wnt/Ca2+ signaling pathway modulates gene expression and cell behavior by regulating intracellular Ca2+ levels. Abbreviations: Wnt, Wingless-related
integration site; LRP, Low-density lipoprotein receptor-related protein; GSK3β, Glycogen Synthase Kinase 3 beta; CKIα, Casein kinase I alpha; Axin, Axis
inhibitor; APC, Adenomatous Polyposis Coli; TCF, T-cell factor; LEF, Lymphoid enhancer-binding factor; RAC1, Ras-related C3 botulinum toxin substrate
1; DAMM1, Disheveled-associated activator of morphogenesis 1; JNK, c-Jun N-terminal kinase; RhoA, Ras homolog family member A; c-JUN, Cellular
Jun oncogene; ROCK2, Rho-associated coiled-coil kinase 2; AP-1, Activator protein 1; PIP2, Phosphatidylinositol 4,5-bisphosphate; IP3, Inositol
trisphosphate; DAG, Diacylglycerol; CDC42, Cell division control protein 42 homolog; TAK1, Transforming growth factor-beta-activated kinase 1;
CAMKII, Ca2+/calmodulim-dependent protein kinase II; NFAT, Nuclear factor of activated T-cells.
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therapeutic response. Moreover, we delve deep into the immense
potential of targeting ncRNAs as therapeutic interventions for PCa,
exploring a plethora of strategic avenues. Finally, we address the
contemporary challenges encountered in this ever-evolving field.

2 Wnt signaling pathway and its role in
PCa development

The Wnt signaling pathway is a complex intracellular signaling
network that is involved in the regulation of cell fate, proliferation, and
differentiation in many tissues (Figure 1) (Asano et al., 2022; Zhou et al.,
2022a). Dysregulation of this pathway is associated with the occurrence
and progression of many cancers, including PCa (Nusse and Clevers,
2017; Pisano et al., 2021). TheWnt signaling pathway can be categorized
into the following two types: canonical and non-canonical (Rim et al.,
2022). The canonical Wnt/β-catenin pathway operates through a
mechanism whereby the binding of the Wnt protein to its receptor
Frizzled triggers the activation of the Disheveled protein, leading to the
inactivation of Axin protein and ultimately reducing the degradation of
β-catenin (Rim et al., 2022). Consequently, β-catenin gradually
accumulates in the cytoplasm and subsequently translocates into the
nucleus, where it binds to TCF/LEF transcription factors to induce
downstream gene expression (Rim et al., 2022). The non-canonical
pathway includes the Wnt/PCP and Wnt/Ca2+ signaling pathways

(Menck et al., 2021; Sarabia-Sanchez et al., 2023; VanderVorst et al.,
2023). The Wnt/PCP signaling pathway is primarily involved in the
regulation of cell polarity and tissue morphogenesis (VanderVorst et al.,
2023). Additionally, it regulates cell adhesion and directional migration
by activating the JNK and Rho GTPase signaling pathways
(VanderVorst et al., 2023). The Wnt/Ca2+ signaling pathway
primarily modulates gene expression and cell behavior by regulating
intracellular Ca2+ levels (Sarabia-Sanchez et al., 2023). Moreover, it plays
a critical role in embryonic nervous system development, cell polarity,
and glial cell differentiation (Sarabia-Sanchez et al., 2023). TheWnt/Ror
signaling pathwaywas recently discovered, and its function remains to be
comprehensively elucidated (Menck et al., 2021). However, it has been
shown to induce the formation and repair of synapses in neurons
through certain Wnt ligands (Menck et al., 2021).

The Wnt signaling pathway is activated through the interaction of
ligands and receptors on cell surfaces, leading to subsequent signal
transduction through intracellular signaling molecules such as β-catenin
and TCF/LEF transcription factors (Zhou et al., 2022b). In PCa, aberrant
activation of the Wnt signaling pathway leads to dysregulation of cell
proliferation, apoptosis, invasion, and angiogenesis (Khurana and Sikka,
2019; Lin et al., 2020). This dysregulation often results frommutations or
alterations in key components of the Wnt signaling pathway, such as
adenomatous polyposis coli (APC), Axin, and β-catenin, which promote
cell cycle progression by activating cyclin D1 and c-myc and enhancing
the induction effect exerted by TGF-β signaling (Reya and Clevers, 2005;

FIGURE 2
The involvement of ncRNAs in modulating the Wnt signaling pathway in prostate cancer. This diagram illustrates the involvement of ncRNAs in
modulating the Wnt signaling pathway in PCa. Blue represents the role of suppressing the Wnt signaling pathway. Red represents roles that facilitate the
Wnt signaling pathway.
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Zhong et al., 2020; Yu et al., 2021). In addition, these components
possibly promote neovascularization and tumor invasion by increasing
the expression of VEGF, MMP-9, and IL-8 (Vallee and Lecarpentier,
2018).

Aberrant activation of the Wnt signaling pathway can serve as a
biomarker for PCa (Yeh et al., 2019; Pisano et al., 2021). The
expression of β-catenin protein in PCa tissue is significantly
increased, and mutations and dysregulation of Wnt signaling
pathway-related genes can also lead to the aberrant activation of
this pathway (Yeh et al., 2019; Pisano et al., 2021). Distinct
mutations in the Wnt signaling pathway genes are associated
with specific subtypes of PCa. For example, APC mutations are
frequently observed in early-stage and low-grade PCa, whereas β-
catenin mutations are observed in advanced-stage and high-grade
PCa (Desai et al., 2022; Mangolini et al., 2022). Furthermore, in
metastatic PCa, an increased proportion of activation mutations in
the Wnt/β-catenin signaling pathway-related genes is observed
(Desai et al., 2022; Mangolini et al., 2022). The aberrant
activation of the Wnt signaling pathway is also associated with
the staging and metastasis of PCa (Yeh et al., 2019; Pisano et al.,
2021). The classical Wnt/β-catenin signaling pathway is activated in
late-stage PCa and bone metastatic PCa, facilitating cell proliferation
and drug resistance (Yeh et al., 2019; Pisano et al., 2021).

Multiple components of the Wnt signaling pathway are potential
targets in PCa therapeutic interventions (Koushyar et al., 2022). The

inhibition of the Wnt signaling pathway in PCa may be crucial for its
prevention and treatment. Few studies have investigated methods for
inhibiting theWnt/β-catenin signaling pathway (Brown, 2005; Park and
Kim, 2023). For example, researchers have developed and evaluated the
efficacy of Protac/molecular glue, antibody-drug conjugates, and anti-
sense oligonucleotides in inhibiting the Wnt signaling pathway in
preclinical models and clinical trials (Park and Kim, 2023).
Additionally, RNA interference technology has shown promising
results in preclinical models (Brown, 2005). However, the
investigation of these methods is at its nascent stages, and further
investigation is necessary to ascertain their efficacy in clinical treatment.
Epigenetic alterations also regulate the activity of the Wnt signaling
pathway in PCa (Xiong et al., 2009; Eismann et al., 2023). Alterations in
DNA methylation and histone modification patterns frequently occur
in PCa cells, leading to alterations in gene expression and the activity of
the Wnt signaling pathway (Xiong et al., 2009; Eismann et al., 2023).
Therefore, directing therapeutic interventions toward these epigenetic
modifications may be a viable approach.

The crosstalk between the Wnt signaling pathway and other
signaling pathways, such as the androgen receptor (AR) signaling
pathway, is gaining recognition as a key factor in the
pathogenesis of PCa (Pisano et al., 2021). This presents a
challenge in the targeting of the Wnt signaling pathway in
PCa treatment (Pisano et al., 2021). The critical role of AR
signaling in PCa progression is well-known, and recent studies

FIGURE 3
Role of Wnt signaling pathway-related ncRNAs in the regulation of invasion andmigration in prostate cancer. This diagram illustrates the role of Wnt
signaling pathway-related ncRNAs in the regulation of invasion and migration in PCa. Blue represents the role of suppressing the Wnt signaling pathway.
Red represents roles that facilitate the Wnt signaling pathway.
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indicate that Wnt and AR signals interact in complex ways,
regulating each other’s activities (Pisano et al., 2021). Thus,
disrupting this crosstalk may be necessary to achieve desired
treatment outcomes. Overall, a comprehensive examination of
the Wnt/β-catenin signaling pathway may provide novel insights
and avenues for the diagnosis, treatment, and prevention of PCa.

3 The involvement of NcRNAs in
modulating the Wnt signaling pathway
in PCa

The dysregulation of ncRNAs has been associated with the
occurrence and progression of PCa (Ramnarine et al., 2019).
Recent studies have elucidated several types of ncRNAs, such as
miRNAs, lncRNAs, and circRNAs, which play crucial roles in
PCa by regulating the Wnt signaling pathway (Figure 2). Various
types of ncRNAs interact with each other and with other
regulatory factors, such as transcription factors, and induce
epigenetic modifications, to activate the Wnt signaling
pathway (Ramnarine et al., 2019; Orafidiya et al., 2022). For
example, the lncRNA SOX2-OT downregulates transcription
factor 7-like (TCF7L), a negative regulator of the Wnt
signaling pathway, thereby activating the pathway (Song et al.,
2020). Similarly, miR-182 regulates the Wnt signaling pathway

by targeting APC and glycogen synthase kinase 3 beta (GSK3β),
which are two key components of the destruction complex that
regulates β-catenin stability (Wang et al., 2018). ncRNAs also
activate the Wnt signaling pathway by directly regulating the
expression of Wnt signaling pathway-related genes. For example,
the lncRNA TUG1 is highly expressed in PCa tissues and cells
and promotes cell proliferation, migration, and invasion through
the miR-496/Wnt/β-catenin axis (Xiu et al., 2020). miRNAs, such
as miR-653-5p, miR-182, miR-1301-3p, and miR-454, also
activate the Wnt/β-catenin signaling pathway and promote the
malignant progression of PCa cells (Guan et al., 2017; Fu et al.,
2018; Wang et al., 2018; Fu et al., 2019). Although many ncRNAs
activate the Wnt signaling pathway to promote PCa progression,
certain ncRNAs inhibit the Wnt signaling pathway to exert an
anti-cancer effect on PCa (Dong et al., 2020). For example, the
well-characterized tumor suppressor miR-34a targets multiple
Wnt signaling pathway-related genes, including those of Wnt1,
LEF1, and β-catenin (Dong et al., 2020).

Despite the aforementioned findings, the molecular
mechanism of the regulation of the Wnt signaling pathway by
ncRNAs in PCa is not entirely understood, and additional
investigations are required to elucidate the complex interplay
between various types of ncRNAs and other regulatory factors
that activate or inhibit the Wnt signaling pathway in PCa.
Furthermore, the investigation of ncRNAs poses technical

FIGURE 4
Role of Wnt signaling pathway-related ncRNAs in the regulation of EMT, apoptosis, stemness, and CRPC formation in prostate cancer. This diagram
illustrates the role of Wnt signaling pathway-related ncRNAs in the regulation of EMT, apoptosis, stemness, and CRPC formation in PCa. Blue represents
the role of suppressing the Wnt signaling pathway. Red represents roles that facilitate the Wnt signaling pathway.
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challenges, owing to their low abundance and high sequence
variability (Huang et al., 2023). Advances in next-generation
sequencing technologies and bioinformatics tools have

improved our ability to identify and validate ncRNA targets
and their interactions with the Wnt signaling pathway (Mattick
et al., 2023).

TABLE 1 Type and role of Wnt signaling pathway-related ncRNAs in PCa progression.

ncRNA Role Function Signaling network Ref.

miRNA miR-34a Suppressor Inhibit proliferation, invasion, migration Wnt1 Dong et al. (2020)

Promote apoptosis

Inhibit EMT LEF1 Liang et al. (2015)

Inhibit proliferation, invasion, migration, and EMT TCF7, BIRC5 Chen et al. (2015)

miR-34b/c Suppressor Inhibit proliferation, invasion, migration, and EMT β-catenin Liu et al. (2015)

miR-1297 Suppressor Inhibit proliferation and invasion AEG-1 Liang et al. (2016)

miR-1271 Suppressor Inhibit proliferation and invasion DIXDC1 Zhong et al. (2017)

miR-218 Suppressor Inhibit proliferation and invasion LGR4 Li et al. (2016b)

miR-520b Suppressor Inhibit proliferation and invasion Capn4 Ren et al. (2018)

miR-138 Suppressor Inhibit proliferation, invasion, and migration — Yu et al. (2018)

miR-574-3p Suppressor Inhibit proliferation, invasion, and migration RAC1 Chiyomaru et al. (2013)

miR-15a-3p Suppressor Inhibit proliferation, invasion, and EMT SLC39A7 Cui et al. (2019)

miR-320 Suppressor Inhibit stem cell- like characteristics β-catenin Hsieh et al. (2013)

miR-653-5p Oncogene Promote proliferation and invasion SOX30 Fu et al. (2019)

miR-182 Oncogene Promote proliferation, invasion, and migration GSK-3β, APC, CK1, and Axin Wang et al. (2018)

Inhibit apoptosis

miR-454 Oncogene Promote proliferation and invasion NDRG2 Fu et al. (2018)

miR-744 Oncogene Promote proliferation, invasion, and migration SFRP1, GSK3β, TLE3, and NKD1 Guan et al. (2017)

miR-21 Oncogene Inhibit apoptosis — Zhou et al. (2016)

miR-1301-3p Oncogene Promote cancer stem cell expansion GSK3β and SFRP1 Song et al. (2018)

LncRNA CCAT2 Oncogene promote proliferation, invasion, migration miR-217/TCF7L/Wnt/β-catenin He et al. (2020)

TUG1 Oncogene promote proliferation, invasion, migration miR-496/Wnt/β-catenin Li et al. (2020a)

SOX2-OT Oncogene promote proliferation, invasion, migration miR-452-5p/HMGB3/Wnt/β-catenin Song et al. (2020)

SNHG12 Oncogene promote proliferation, invasion, migration miR-195/Wnt/β-catenin Wang et al. (2019)

LINC00115 Oncogene promote proliferation, invasion miR-212-5p/FZD5/Wnt/β-catenin Peng et al. (2021)

LINC00689 Oncogene promote proliferation, invasion, migration miR-496/CTNNB1/Wnt/β-catenin Meng et al. (2020)

Inhibit apoptosis

NORAD Oncogene promote proliferation, invasion, and EMT miR-30a-5p/RAB11/Wnt/β-catenin Zhang and Li (2020)

SNHG1 Oncogene promote proliferation, invasion, migration EZH2/Wnt/β-catenin Chen et al. (2020)

LncRNA625 Suppressor Inhibit proliferation and cell cycle miR-432/Wnt/β-catenin Li et al. (2017)

Promote apoptosis

HOTAIRM1 Oncogene promote proliferation — Wang et al. (2021)

Inhibit apoptosis

LEF1-AS1 Oncogene promote proliferation, invasion, angiogenesis in AIPC miR-328/FZD2/CD44/Wnt/β-catenin Li et al. (2020d)

LINC01213 Oncogene Androgen-independent transformation — Luo et al. (2020)

CircRNA circ-ITCH Suppressor Inhibit proliferation, invasion, and migration — Li et al. (2020c)
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4 Type and role of Wnt signaling
pathway-related NcRNAs in PCa
progression

TheWnt signaling pathway plays a key role in the progression of
PCa, with ncRNAs as crucial regulatory factors of this pathway
(Pakula et al., 2017; Sonawala et al., 2022). Recent studies have
elucidated several types of Wnt signaling pathway-related ncRNAs,
including miRNAs, lncRNAs, and circRNAs, which exhibit
abnormal expression in PCa and are closely linked to its
progression (Table 1).

4.1 miRNAs

miRNAs are RNA molecules that are 22 nucleotides in length
and regulate gene expression by binding to complementary target
messenger RNAs (mRNAs) (Lagos-Quintana et al., 2001). The
tissue-specific expression of miRNAs provides a premise for their
clinical application as diagnostic and prognostic markers in
cancer (Kim and Croce, 2021). For example, miR-574-3p is
significantly downregulated in PCa tissues, and low expression
of miR-574-3p is associated with an advanced tumor stage and a
high Gleason score (Chiyomaru et al., 2013). The interactions
between miRNAs and the Wnt signaling pathway in PCa are of
two types: direct targeting of key genes associated with the Wnt
signaling pathway and indirect targeting of the pathway via other
genes. Based on their function, miRNAs can be categorized as
oncogenic miRNAs or tumor suppressor miRNAs. Most
miRNAs, including miR-34a, miR-34b/c, miR-1297, miR-1271,
miR-218, miR-520b, miR-138, miR-574-3p, miR-15a-3p, and
miR-320, exert tumor-suppressive effects by directly or
indirectly inhibiting the Wnt signaling pathway (Chiyomaru
et al., 2013; Hsieh et al., 2013; Liu et al., 2015; Li et al., 2016b;
Liang et al., 2016; Zhong et al., 2017; Ren et al., 2018; Yu et al.,
2018; Cui et al., 2019; Dong et al., 2020). However, a few miRNAs,
such as miR-653-5p, miR-182, miR-1301-3p, and miR-454,
promote malignant progression of PCa cells, such as
proliferation, invasion, and migration, by activating the Wnt
signaling pathway and targeting tumor suppressor genes (Guan
et al., 2017; Fu et al., 2018; Wang et al., 2018; Fu et al., 2019).
Simultaneously, miRNAs can also suppress stemness in PCa by
inhibiting the Wnt signaling pathway (Hsieh et al., 2013; Zhou
et al., 2016; Song et al., 2018). For example, miRNAs, such as
miR-320 and miR-1301-3p, inhibit the activation of the Wnt
signaling pathway and suppress the proliferation of PCa stem
cells (Hsieh et al., 2013; Song et al., 2018). In addition, certain
naturally active chemical substances have been found to exert
therapeutic effects on PCa by regulating miRNAs and the Wnt
signaling pathway. For example, urolithin, an active metabolite
produced by human colonic microbiota, has been found to
inhibit miR-21 and its downstream Wnt signaling pathway,
thereby promoting apoptosis of PCa cells and inhibiting
tumor growth (Zhou et al., 2016). Therefore, miRNAs and the
Wnt signaling pathway may become notable therapeutic targets
in PCa treatment, and their in-depth examination may reveal the
pathogenesis of PCa and aid in the development of novel drugs
against PCa.

4.2 LncRNAs

LncRNAs are RNA molecules that are 200 nucleotides in length
and do not encode proteins (Szaflik et al., 2022). Although most of
the genome is comprised of ncRNAs that are encoded by “junk
DNA,” they were originally considered to lack physiological
functions (Huang et al., 2023). However, as the potential roles of
lncRNAs in biological processes have been unveiled, the
aforementioned notion has gradually changed (Wang et al.,
2022a). LncRNAs regulate gene expression at various levels,
i.e., chromatin, transcriptional, and post-transcriptional levels
(Bhattacharjee et al., 2023; Petrone et al., 2023). Mounting
evidence suggests that lncRNAs play crucial roles in PCa cell
invasion, migration, and apoptosis and in castration-resistant
PCa (CRPC), thereby affecting the proliferation, migration, and
response of cancer cells to treatment (Li et al., 2020d; Song et al.,
2020; Liu et al., 2021; Tan et al., 2021; Wu et al., 2021). LncRNAs can
serve as signals, baits, or scaffolds to modulate cellular functions
(Yang et al., 2020; Yan and Bu, 2021). Similar to miRNAs, lncRNAs
may exert tumor-suppressive or oncogenic effects, contingent upon
their category and mode of regulation. For example, lncRNAs such
as TUG1, SOX2-OT, LINC04080, LINC00115, LINC00689,
NORAD, SNHG1, and LEF1-AS1 activate the Wnt signaling
pathway and promote tumor growth and metastasis by regulating
other ncRNAs or proteins (Wang et al., 2019; Li et al., 2020a; Chen
et al., 2020; Meng et al., 2020; Song et al., 2020; Zhang and Li, 2020;
Peng et al., 2021). Conversely, lncRNAs such as lncRNA625 and
HOTAIRM1 inhibit the Wnt signaling pathway to suppress cancer,
promote cell apoptosis, and inhibit cell proliferation in PCa (Li et al.,
2017; Wang et al., 2021). Investigation of the role of lncRNA625 in
cancers has revealed that it promotes tumor development in
esophageal carcinoma; however, it exerts a significant tumor-
suppressive effect on PCa, suggesting that lncRNA625 could
potentially serve as a therapeutic target for PCa (Li et al., 2017;
Guo-Wei et al., 2019). Given the lack of effective PCa treatments, the
investigation of treatments based on Wnt signaling pathway-related
lncRNAs is of great significance for developing novel therapeutic
strategies for PCa. Therefore, in-depth research on lncRNAs is
expected to yield novel treatment options for patients with PCa.
In addition, Wnt signaling pathway-related lncRNAs may have
notable implications for prognosis evaluation and diagnostic
positioning for PCa, with diverse potential applications.

4.3 CircRNAs

CircRNAs were first discovered in plant viruses and the Sendai
virus through electron microscopy in 1976 (Kolakofsky, 1976).
However, it is a widely held belief that circRNAs are the result of
splicing errors and exhibit low expression levels (Memczak et al.,
2013). With the advancement of bioinformatics and sequencing
technologies, various types of circRNAs have been implicated in
tumors (Zhou et al., 2021). For example, cir-znf215 has been found
to promote the growth and metastasis of cholangiocarcinoma by
inhibiting the AKT pathway (Liao et al., 2023). circRNAs also
exhibit tissue- and cell-specific expression (Wang et al., 2023).
Therefore, circRNAs could potentially serve as diagnostic and
prognostic markers as well as therapeutic targets for PCa. cir-
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ITCH is typically downregulated in PCa tissues and cell lines
compared with normal adjacent tissues and normal RWPE-1
cells, indicating the potential of cir-ITCH as a diagnostic and
prognostic marker for PCa (Li et al., 2020c). Moreover, cir-ITCH
exerts an anti-cancer effect on PCa by inhibiting the Wnt signaling
pathway (Li et al., 2020c). In addition, circRNAs interact with
ncRNAs and regulate each other’s expression levels (Li et al.,
2020c; Ghafouri-Fard et al., 2021). For example, mutual
inhibition of expression has been observed between cir-ITCH
and miR-17 in PCa (Li et al., 2020c; Ghafouri-Fard et al., 2021).

5 Molecular mechanisms and functions
of Wnt signaling pathway-related
NcRNAs in PCa

5.1 Invasion and migration

Metastasis is the primary cause ofmost cancer-related deaths (Fares
et al., 2020). Invasion and migration are critical steps in the cascade of
tumor metastasis (Fares et al., 2020). miR-34a is a key regulatory factor
in tumor suppression, modulating the expression of numerous target
proteins involved in cell cycle, differentiation, epithelial-to-
mesenchymal transition (EMT), and apoptosis, among others, and
antagonizing processes such as cancer cell activity, stemness, metastasis,
and chemoresistance (Misso et al., 2014). The expression of miR-34a is
significantly lower in PCa tissues than in normal tissues (Lichner et al.,
2015). The overexpression of miR-34a significantly reduces the
proliferation and migration abilities of PCa cell lines, sush as
PC3 cells (Lichner et al., 2015) (Figure 3). These effects are achieved
by inhibiting the Wnt signaling pathway through the regulation of
Wnt1 transcriptional activity (Dong et al., 2020). Notably, bones are the
most common site of metastasis in PCa (Coleman et al., 2020). In PCa
exhibiting activated Ras signaling, bone metastasis associated with low
expression of miR-34a has been observed (Chen et al., 2015). miR-34a
knockdown has been observed to induce the expression of TCF7 and
BIRC5 by activating theWnt signaling pathway, thereby promoting cell
survival (Chen et al., 2015). These findings suggest that miR-34a could
serve as a potential target in the treatment of metastatic PCa.

Li et al. demonstrated that miR-1297 directly targets the 3′-
untranslated region of AEG-1 and regulates its mRNA and protein
expression levels (Liang et al., 2016). In addition, they found that
miR-1297 inhibits theWnt signaling pathway by targeting AEG-1 in
PCa, thereby suppressing cell proliferation and invasion (Liang et al.,
2016). DIXDC1 is involved in the regulation of the proliferation and
invasion of various tumors (Zhong et al., 2017; Xin et al., 2018). In
PCa, it can be directly targeted and inhibited by miR-1271 (Zhong
et al., 2017). MiR-1271 exhibits low expression in PCa and inhibits
cell proliferation, invasion, andWnt signal transduction by targeting
DIXDC1 (Zhong et al., 2017).

Epidemiological and histopathological evidence suggests a
correlation between inflammation and PCa incidence (De Nunzio
et al., 2011). LGR4, which is induced by IL-6 during cancer
progression, has been recently identified as a response gene
associated with PCa progression (Liu et al., 2013). Yang et al.
found that miR-218 directly targets LGR4 to inhibit the Wnt
signaling pathway in LNCaP-IL-6+ cells during IL-6-induced PCa
cell progression, thereby suppressing cell proliferation, cell cycle

progression, and invasion (Li et al., 2016b). CapnS1 has been found
to have a negative correlation with disease progression in various
solid tumors (Zheng et al., 2020). In PCa, CapnS1 expression is
regulated by miR-520b, and it exerts an oncogenic effect by
promoting Wnt signal transduction (Ren et al., 2018). miR-520b
is significantly downregulated in PCa (Ren et al., 2018). Inhibition of
CapnS1 by miR-520b suppresses the growth and invasion of PCa
cells associated with the downregulation of Wnt signal transduction
(Ren et al., 2018). miR-138 has been observed to be downregulated
in invasive PCa cell lines and promote PCa cell invasion and
migration through the Wnt signaling pathway, whereas its
overexpression has been observed to suppress these functions (Yu
et al., 2018). miR-574-3p is significantly downregulated in PCa, and
its low expression is associated with advanced tumor stage and a
high Gleason score (Chiyomaru et al., 2013). The overexpression of
miR-574-3p significantly inhibits the proliferation, migration, and
invasion of PCa cells, which is associated with the inhibition of the
Wnt signaling pathway via RAC1 (Chiyomaru et al., 2013). SOX30 is
a recently identified cancer-related member of the SOX family that
has a significant role in various types of cancer (Fu et al., 2019). miR-
653-5p is highly expressed in PCa tissues and promotes the
proliferation and invasion of PCa cells by targeting and
upregulating β-catenin expression via SOX30 and activating the
Wnt signaling pathway (Fu et al., 2019). miR-182 expression is
higher in PCa tissues than in non-cancerous tissues, and miR-182
significantly activates the Wnt signaling pathway by targeting
multiple negative regulators of Wnt signaling, thereby promoting
cell proliferation, colony formation, migration, and invasion (Wang
et al., 2018). miR-454 is highly expressed in PCa tissues and cell lines
and promotes PCa cell proliferation and invasion by upregulating
the Wnt signaling pathway, which is achieved by inhibiting
NDRG2 expression (Wei et al., 2020). miR-744 significantly
activates the Wnt signaling pathway by targeting multiple
negative regulators of the pathway and promotes PCa cell
proliferation, migration, and invasion (Guan et al., 2017).

TUG1, a 7.1 kb lncRNA, was first discovered to be upregulated
in mouse retinal cells in response to taurine treatment (Young et al.,
2005). TUG1 is highly expressed in PCa tissues and cells and
promotes cell proliferation, migration, and invasion through the
miR-496/Wnt/β-catenin axis (Li et al., 2020b; Xiu et al., 2020).
LncRNA SOX2-OT plays crucial roles in psychiatric disorders,
cancer, and diabetic complications (Li et al., 2020c). In PCa
tissues and cells as well, SOX2-OT is highly expressed.
Regulation of the miR-452-5p/HMGB3 axis and inactivation of
the Wnt signaling pathway have been shown to inhibit PCa cell
proliferation and metastasis, thereby suppressing tumor growth in
vivo (Song et al., 2020). SNHG12, also known as LINC04080, is a
lncRNA spanning approximately 1867 nucleotides and is located in
the 1p35.3 region (Lan et al., 2017). In PCa, SNHG12 expression is
upregulated in serum and tissues and is associated with RFS,
biochemical recurrence, and Gleason scores of 8–10 in patients
(Wang et al., 2019). This lncRNA activates the Wnt signaling
pathway through the sponging effect of miR-195, thereby
promoting cell proliferation, invasion, and migration in PCa
(Song et al., 2019). LINC00115 was first identified as a notable
pro-cancer lncRNA in lung cancer (Li et al., 2016a). In PCa, it is
highly expressed in tissues and closely associated with a poor
prognosis (Peng et al., 2021). LINC00115 promotes PCa cell
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proliferation and invasion by targeting the miR-212-5p/FZD5/Wnt
axis (Peng et al., 2021). LINC00689, first found to be associated with
obesity susceptibility genes in the Han Chinese population of
northern China, exerts a pro-cancer effect in multiple solid
tumors, including gastric cancer, breast cancer, and liver cancer
(Liu et al., 2019b; Du et al., 2020; Lu et al., 2020). This lncRNA
activates the Wnt signaling pathway by regulating miR-496/
CTNNB1, thereby promoting PCa cell proliferation, migration,
and invasion (Meng et al., 2020). LEF1 is a key component of
the Wnt/β-catenin signaling pathway. It is highly expressed in PCa
and is associated with its malignant progression (Fakhr et al., 2021).
The recently identified lncRNA LEF1-AS1 is encoded by the
LEF1 locus and is associated with poor prognosis in multiple
cancer types (Li et al., 2020d). LEF1-AS1 promotes PCa
metastasis and serves as a competing endogenous RNA (ceRNA)
for miR-328, therebymodulatingWnt/β-catenin pathway activity by
regulating FZD2 and CD44, ultimately promoting androgen-
independent PCa (AIPC) cell proliferation, migration, invasion,
angiogenic ability, and tumor growth (Li et al., 2020d). In
addition, lncRNAs also play crucial roles in PCa metastasis by
directly binding to EZH2 (Chen et al., 2020). For example, both
the lncRNAs SNHG1 and EZH2 are highly expressed in PCa tissues
and cells, and their expression is positively correlated.
SNHG1 regulates the Wnt signaling pathway through the
EZH2 gene, modulating PCa cell proliferation, invasion, and
migration (Chen et al., 2020). These findings further enrich our
understanding of the mechanism of action of Wnt signaling
pathway-related lncRNAs in PCa. The aforementioned lncRNAs
are associated with the Wnt signaling pathway and play vital roles in
the growth and progression of PCa, thereby presenting as novel
targets for PCa treatment.

In addition to the aforementioned Wnt signaling pathway-
related lncRNAs, the role of the lncRNA CCAT2 in PCa
metastasis should be considered (Zheng et al., 2016; He et al.,
2020). Studies have shown that complex feedback loops exist
between CCAT2 and the Wnt signaling pathway (Zheng et al.,
2016; He et al., 2020). Moreover, CCAT2 plays a key role in the
invasion and migration of PCa (Zheng et al., 2016; He et al., 2020).
Notably, CCAT2 is not only aberrantly expressed in PCa but also
exhibits similar expression patterns in many other cancers (Ling
et al., 2013). In colorectal cancer, it is a downstream target of the
Wnt signaling pathway, indicating that TCF7L2 is also involved in
this feedback loop (Ling et al., 2013). Therefore, an in-depth
investigation of the role of lncRNAs in the Wnt signaling
pathway is of great significance for the prognosis and treatment
of cancer as well as the recovery from cancer. In summary, the key
role of the lncRNA CCAT2 in PCa metastasis indicates its potential
as a therapeutic target.

In contrast to miRNAs and lncRNAs, circRNAs associated with
the Wnt signaling pathway in PCa have been the subject of
comparatively less investigation. The expression of cir-ITCH is
downregulated in PCa tissues and cell lines (Li et al., 2020c), and
its overexpression significantly inhibits the proliferation, migration,
and invasion of human PCa cells. Cir-ITCH and miR-17 function as
mutual expression inhibitory factors (Li et al., 2020c). Cir-ITCH
contributes to the suppression of PCa progression by inhibiting the
Wnt/β-catenin signaling pathway, which may be achieved through
the inhibition of miR-17 (Li et al., 2020c).

5.2 EMT

The metastasis of solid tumors is also influenced by the
characteristics and plasticity of cancer cells, such as EMT (Babaei
et al., 2021). During EMT, epithelial cells transform into highly
mobile mesenchymal cells, thereby increasing the migration ability
of cancer cells (Hao et al., 2019). Inhibiting EMT is key to preventing
cancer metastasis and improving prognosis (Fedele et al., 2022).
miR-15a-3p is downregulated in PCa tissues and cell lines, whereas
its overexpression inhibits cell proliferation, invasion, and EMT by
downregulating the Wnt signaling pathway, with SLC39A7 as its
direct downstream target (Cui et al., 2019) (Figure 4). LEF1 is a key
transcription factor in the Wnt signaling pathway that regulates cell
proliferation and invasion (Fakhr et al., 2021). miR-34a can regulate
the level of LEF1 to inhibit EMT in PCa cells (Liang et al., 2015).
Additionally, two othermembers of the miR-34 family, namelymiR-
34b/c, when overexpressed, can target β-catenin mRNA expression,
thereby inhibiting cell migration and EMT in PCa (Liu et al., 2015).

The lncRNA NORAD exerts a pro-cancer effect in melanoma,
pancreatic cancer, and glioblastoma (Soghli et al., 2021). In PCa as
well, NORAD is highly expressed in cells and tissues and promotes
cell proliferation, invasion, and EMT (Zhang and Li, 2020; Hu et al.,
2021; Fletcher et al., 2022). miR-30a-5p attenuates NORAD-
mediated promotion of cell proliferation, invasion, and EMT by
targeting RAB11A (Zhang and Li, 2020).

5.3 Apoptosis

Cell apoptosis is a key self-regulation mechanism in
multicellular organisms, serving to eliminate unwanted or
abnormal cells (Kerr et al., 1972). Dysregulation of cell apoptosis
has been implicated in various diseases, including cancer,
autoimmune diseases, cardiovascular diseases, and neurological
diseases (Chen et al., 2021). In recent years, a growing body of
evidence has shown that ncRNAs play a crucial role in PCa cell
apoptosis (Tamtaji et al., 2021). The Wnt signaling pathway is
associated with PCa cell apoptosis, and ncRNAs associated with
this pathway also play key roles in PCa cell apoptosis (Tamtaji et al.,
2021). The overexpression of miR-34a inhibits the Wnt signaling
pathway by regulating the transcriptional activity of Wnt1, thereby
significantly increasing the rate of cell apoptosis (Dong et al., 2020)
(Figure 4). Compared with non-cancerous tissues, PCa tissues
exhibit upregulated expression of miR-182 (Wang et al., 2018).
The upregulation of miR-182 activates the Wnt signaling pathway
by targeting negative regulatory factors of the pathway, such as
GSK3β, APC, CK1, and Axin, ultimately inhibiting cell apoptosis
(Wang et al., 2018). Urolithin, a bioactive metabolite derived from
ellagic acid, has been observed to inhibit miR-21 and its downstream
Wnt/β-catenin signaling pathway to reduce cell viability and
promote caspase-dependent cell apoptosis in DU145 cells (Zhou
et al., 2016; Singh et al., 2019).

LINC0689 exerts a pro-oncogenic effect in multiple
parenchymal tumors, where its expression is elevated (Liu et al.,
2019b; Du et al., 2020). LINC00689 is upregulated in end-stage PCa
tissues and inhibits apoptosis through miR-496/CTNNB1 (Meng
et al., 2020). In addition, the lncRNA HOTAIRM1 is highly
expressed in mature bone marrow cells (Zhang et al., 2014).
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Silencing HOTAIRM1 in PC3 cells promotes PCa cell apoptosis by
downregulating the Wnt/β-catenin signaling pathway; however, the
exact mechanism remains unknown (Wang et al., 2021).

5.4 Stemness

Cancer stem cells play a crucial role in the survival, proliferation,
metastasis, and recurrence of tumors (Murota et al., 2022). miR-320
inhibits the activation of the Wnt/β-catenin signaling pathway by
targeting β-catenin mRNA expression, thereby suppressing PCa
stem cell characteristics such as tumor sphere formation,
chemoresistance, and tumorigenicity (Hsieh et al., 2013) (Figure
4). In contrast, miR-320 knockdown significantly enhances the
aforementioned characteristics (Hsieh et al., 2013). miR-1301-3p
is significantly upregulated in PCa cells and tissues and targets
inhibitors of theWnt signaling pathway, namely GSK3β and SFRP1,
thereby promoting the proliferation of PCa stem cells by activating
the Wnt/β-catenin signaling pathway (Song et al., 2018).

5.5 CRPC formation

Targeting the Wnt/β-catenin signaling pathway may be an
attractive therapeutic strategy for treating CRPC (Shafi et al.,
2013). The potential of Wnt signaling pathway-related lncRNAs
in the treatment of CRPC is currently gaining increasing attention
(Yap et al., 2011) (Figure 4). Androgen deprivation therapy has
become the mainstay for the treatment of patients with advanced
PCa (Shafi et al., 2013). However, most patients eventually progress
to CRPC, leading to poor prognosis (Yap et al., 2011). Bone
metastasis is a notable issue in patients with CRPC (Beltran
et al., 2016; Lin et al., 2020). Luo et al. elucidated that crosstalk
between the AR and Wnt/β-catenin signals promotes the androgen-
independent transformation of PCa (Luo et al., 2020). Although
androgens can inhibit the Wnt/β-catenin signaling pathway in
androgen-dependent PCa cells, this inhibitory effect is not
observed in AIPC cells (Luo et al., 2020). Moreover, LEF1-AS1
has been observed to promote PCa metastasis through the Wnt/β-
catenin signaling pathway and function as a ceRNA for miR-328,
thereby regulating the activity of the Wnt/β-catenin signaling
pathway by regulating FZD2 and CD44, ultimately enhancing
proliferation, migration, invasion, and angiogenic ability of AIPC
cells and tumor growth (Li et al., 2020d). The Wnt/β-catenin
signaling pathway inhibits AIPC cell proliferation by promoting
the cell cycle process and inhibiting apoptosis (Luo et al., 2020).
Therefore, targeting the Wnt/β-catenin signaling pathway may be a
viable strategy for the treatment of CRPC.

Exosomes are small vesicles that measure approximately
40–160 nm (typically approximately 100 nm) in diameter and
originate from endosomes (Pegtel and Gould, 2019). Many
studies have demonstrated the importance of several lncRNAs
in exosomes across various cancers (Kalluri and LeBleu, 2020). For
example, the exosomal lncRNA HOXD-AS1 has been observed to
promote the metastasis of PCa through the miR-361-5p/
FOXM1 axis (Jiang et al., 2021). Wnt signaling pathway-related
lncRNAs loaded in exosomes could potentially serve as diagnostic
and therapeutic tools for the treatment of CRPC (Guo et al., 2022).

For example, LINC01213 plays a role in the transition of PCa cells
from an androgen-dependent to an androgen-independent state
(Guo et al., 2022). Additionally, it induces androgen deprivation
tolerance by activating the Wnt signaling pathway through
exosome-mediated intercellular communication in PCa (Guo
et al., 2022). The lncRNA SNHG17 is one of the four
significantly upregulated lncRNAs in metastatic PCa and AIPC
cells, wherein it promotes tumor cell proliferation, survival,
invasion, and resistance to chemotherapy by upregulating the
Wnt/β-catenin signaling pathway (Bai et al., 2020; Zhao et al.,
2021).

6 Wnt signaling pathway-related
NcRNAs in the diagnosis and treatment
of PCa

Early detection of PCa is crucial for effective treatment and
improved survival rates (Sung et al., 2021). For example, in the event
of early detection, the five-year survival rate of patients with
localized PCa is nearly 100% (Sandhu et al., 2021). In contrast,
the median survival duration for patients with metastatic PCa is
approximately 3 years (Sandhu et al., 2021). Therefore, early
diagnosis of PCa is essential. Additionally, because PCa is prone
to metastasis and chemoresistance, it has become one of the leading
causes of cancer-related mortality worldwide (He et al., 2022). Due
to the lack of symptoms in the early stages of PCa, despite
technological advancements, the discovery of novel tumor
biomarkers remains crucial (Wang et al., 2022b). This is
necessary to address the challenges associated with the diagnosis
and treatment of prostate cancer. NcRNAs exhibit tissue-specific
expression and are detectable at all stages of PCa development,
making them potential biomarkers and therapeutic targets (Mugoni
et al., 2022). Mounting evidence suggests that Wnt signaling
pathway-related ncRNAs are closely associated with PCa
progression (Doghish et al., 2022), rendering them promising
biomarkers for the diagnosis, prognosis, and treatment of PCa
(Table 2). Therefore, investigating Wnt signaling pathway-related
ncRNAs in the context of early diagnosis, prognosis prediction,
cancer treatment, and resolution of treatment resistance is an
effective strategy to improve the survival of PCa patients.

6.1 Potential PCa diagnostic biomarkers

Early screening and diagnosis of cancer are crucial for patient
survival (Sung et al., 2021). The identification of suitable biomarkers
has consistently posed a notable challenge in the field of cancer
research (Movahedpour et al., 2022; Xie et al., 2022). Wnt signaling
pathway-related ncRNAs aid in the early diagnosis of PCa. In
patients with PCa, certain Wnt signaling pathway-related
ncRNAs, such as SNHG17 and LINC00115, are upregulated
(Peng et al., 2021), whereas other ncRNAs, such as miR-34a, are
downregulated (Chiyomaru et al., 2013). Additionally, certain
ncRNAs are aberrantly expressed in various stages or special
subtypes of PCa (Li et al., 2020d; Meng et al., 2020). For
instance, LINC00689 is upregulated in end-stage PCa tissues and
LEF1-AS1 is significantly overexpressed in AIPC (Li et al., 2020d;
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TABLE 2 Clinical applications of ncRNAs and Wnt/β-catenin pathway in PCa.

NcRNA Expression Prognosis Diagnosis Clinical significance Ref.

miRNA miR-34a Down Poor Profitable Bone metastasis, gleason score Chen et al. (2015)

miR-34b/c Down — Profitable — Liu et al. (2015)

miR-1297 Down — Profitable — Liang et al. (2016)

miR-1271 Down — Profitable — Zhong et al. (2017)

miR-218 Down Poor Profitable Bone Metastasis, TNM stage, T stage, N stage, M stage and gleason
score

Li et al. (2016b)

miR-520b Down Poor Profitable — Ren et al. (2018)

miR-138 Down Poor Profitable N stage, M stage and gleason score Yu et al. (2018)

miR-574-3p Down Poor Profitable T stage and gleason score Chiyomaru et al.
(2013)

miR-653-5p High — Profitable — Fu et al. (2019)

miR-182 High — Profitable — Wang et al. (2018)

miR-454 High — Profitable — Fu et al. (2018)

miR-744 High Poor Profitable CRPC progression Guan et al. (2017)

miR-15a-3p Down — Profitable — Cui et al. (2019)

miR-21 High — Profitable DDP Chemoresistance, and pathological stage, N stage, capsular
invasion, organ confined disease, gleason score, and biochemical
recurrence

Zhou et al. (2016)

miR-320 Down Poor Profitable DDP chemoresistance, serum PSA levels, TNM stage Hsieh et al. (2013)

miR-
1301-3p

Down — Profitable — Song et al. (2018)

miR-425-5p Down Poor Profitable DDP chemoresistance, residual tumor, T stage, N stage, and
TP53 status

Liu et al. (2019a)

LncRNA CCAT2 High Poor Profitable Histological grade and M stage He et al. (2020)

TUG1 High Poor Profitable TNM stage, gleason score, TNM stage, preoperative PSA level, and
N stage

Li et al. (2020a)

SOX2-OT High Poor Profitable — Song et al. (2020)

SNHG12 High Poor Profitable Biochemical recurrence and gleason score 8–10 Wang et al. (2019)

LINC00115 High Poor Profitable — Peng et al. (2021)

LINC00689 High Poor Profitable TNM stage Meng et al. (2020)

NORAD High Poor Profitable Bone metastasis Zhang and Li (2020)

SNHG1 High Poor Profitable TNM stage, Gleason Score, N stage, and long-term metastasis
mortality rate

Chen et al. (2020)

LncRNA625 Down — Profitable — Li et al. (2017)

HOTAIRM1 High — Profitable — Wang et al. (2021)

LEF1-AS1 High — Profitable — Li et al. (2020d)

HOXD-AS1 High Poor Profitable Highly expressed in serum exosomes from metastatic PCa patients,
Gleason Score, and N stage

Jiang et al. (2021)

LINC01213 — — — — Guo et al. (2022)

HOTTIP High Poor Profitable DDP chemoresistance, T stage, presence of extra prostatic
extension, seminal vesicle invasion, perineural invasion, and the
tumor involvement of resection margin

Jiang et al. (2019)

SNHG17 High Poor Profitable Docetaxel chemoresistance, Histological grade, T stage, N stage, and
M stage

Bai et al. (2020), Zhao
et al. (2021)

CircRNA circ-ITCH Down Poor Profitable T stage, N stage, Gleason score, and surgical margin status Li et al. (2020c)
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Meng et al., 2020). These findings suggest that Wnt signaling
pathway-related ncRNAs could potentially serve as diagnostic
biomarkers for PCa. Notably, ncRNAs present in plasma will be
relatively non-invasive and more convenient as diagnostic tools.
Wnt signaling pathway-related lncRNAs loaded in exosomes could
also potentially serve as diagnostic and therapeutic tools for PCa
(Guo et al., 2022). For example, exosomal LINC01213 can serve as a
diagnostic biomarker for CRPC (Guo et al., 2022).

6.2 Potential PCa prognostic biomarkers

Patient prognostic information is essential in the process of making
informed treatment decisions (Lin and Farooqi, 2021). Mounting
evidence suggests that the Wnt signaling pathway-related ncRNAs
may hold significant potential for predicting patient prognosis
(Chiyomaru et al., 2013; Dong et al., 2020; Xiu et al., 2020; Peng
et al., 2021; Zhao et al., 2021). These ncRNAs are closely associated with
overall survival, disease-free survival, recurrence-free survival, five-year
survival rates, and progression-free survival of patients with PCa (Peng
et al., 2021). For example, high expression of LINC00115 is associated
with shorter overall survival and recurrence-free survival in patients
with PCa (Peng et al., 2021). Additionally, Wnt signaling pathway-
related ncRNAs are also associated with other prognostic factors
(Chiyomaru et al., 2013; Dong et al., 2020; Xiu et al., 2020; Zhao
et al., 2021). For instance, miR-34a is associated with bone metastasis of
Ras-activated PCa cells (Dong et al., 2020). Furthermore, miR-574-3p is
associated with advanced tumor stage and higher Gleason scores
(Chiyomaru et al., 2013). In contrast, high expression of SNHG17 is
associated with grade, stage, and metastasis (Zhao et al., 2021).
Additionally, TUG1 is associated with Gleason score, clinical stage,
preoperative PSA level, and lymph node metastasis (Xiu et al., 2020).
These findings have crucial implications for the prognostic assessment
and treatment selection in PCa. Therefore, Wnt signaling pathway-
related ncRNAs could potentially serve as vital indicators for the
prognostic evaluation and treatment selection in PCa.

6.3 Potential therapeutic targets

Cancer treatment has long been regarded as one of the most
formidable challenges worldwide, despite the progress made in
treatment modalities (Sung et al., 2021). Targeted therapy
strategies based on ncRNAs have yielded novel insights into
cancer treatment (Paunovska et al., 2022). NcRNAs regulate cell
proliferation, invasion, migration, apoptosis, and stemness in PCa
and conversion of PCa to CRPC by directly or indirectly interacting
with the Wnt signaling pathway (Guan et al., 2017; Wang et al.,
2018). Therefore, modulating the expression of Wnt signaling
pathway-related ncRNAs could be an effective strategy for
treating PCa and improving patient prognosis. For example,
silencing miR-182 using inhibitors has been observed to
significantly reduce the growth of PCa xenograft tumors, whereas
silencing miR-744 using short hairpin RNA (shRNA) has been
observed to significantly reduce the growth of PCa xenograft
tumors (Guan et al., 2017; Wang et al., 2018). However,
identifying targeted drugs that modulate ncRNA expression and
stably transmit this effect remains a challenge, and necessites an

enhanced understanding of the structure and function of Wnt
signaling pathway-related ncRNAs. Most lncRNAs and circRNAs
function as “sponges” for miRNAs to activate or deactivate the Wnt
signaling pathway (Li et al., 2020d). Therefore, the regulation of
target miRNA of Wnt signaling pathway-related lncRNA and
circRNA or the interfering with upstream lncRNA and circRNA
associated withWnt signaling pathway-relatedmiRNA could also be
a viable treatment strategy. For example, miR-496 intervention has
been observed to effectively reverse the growth-promoting effect of
TUG1 on PCa xenografts (Li et al., 2020d).

Targeting ncRNAs has been considered an attractive strategy
for cancer treatment (Damase et al., 2021; Garbo et al., 2022;
Zogg et al., 2022). In addition to using the above approach, there
are other methods that can be employed to intervene in the
expression of ncRNAs involved in the Wnt pathway, which may
provide therapeutic benefits for patients (Damase et al., 2021;
Garbo et al., 2022; Zogg et al., 2022). In the field of Wnt pathway-
related miRNAs, miRNA mimics (miRNA-like dsRNA) have
been found to enhance the expression and function of certain
miRNAs; meanwhile, antagomiRs can serve as tools to inhibit
oncogenic miRNAs associated with the Wnt pathway, thereby
blocking the specific functions of these miRNAs (Neumeier and
Meister, 2020; Xu et al., 2023). In recent years, strategies based on
lncRNAs for cancer treatment have gained widespread
recognition. Currently, the main therapeutic approaches for
managing lncRNAs involve modulating their expression levels
to decrease oncogenic lncRNAs (through RNA interference
methods) or increase tumor-suppressive lncRNAs (Garbo
et al., 2022). It is worth noting that targeting strategies for
lncRNAs need to take into account their cellular localization.
Antisense oligonucleotides (ASOs) are the most effective method
for targeting nuclear lncRNAs (Adewunmi et al., 2023). However,
small interfering RNAs (siRNAs) are preferred for cytoplasmic
lncRNAs (Li et al., 2022). Additionally, other strategies such as
aptamers, nucleases, and miRNAs can be developed to disrupt
lncRNA activit (Damase et al., 2021; Zogg et al., 2022). Due to
their wide biological activity and stability, circRNAs have
emerged as a potential and powerful therapeutic strategy that
can significantly impact cancer occurrence and progression
(Zong et al., 2023). However, limiting off-target effects
remains a challenge in this field (Loan Young et al., 2023).
Addressing this issue, specific carriers for synthetic circRNAs
or siRNAs targeting junction sequences could offer substantial
benefits to patients. All in all, targeted therapeutic strategies
based on ncRNAs hold promise as a novel approach for PCa
treatment.

6.4 Potential chemoresistance targets

Chemoresistance is a notable concern in cancer treatment,
and enhancing chemosensitivity in PCa through ncRNA
intervention has become a strategy that is increasingly being
recognized and investigated (Chen et al., 2022). Targeting Wnt
signaling pathway-related ncRNAs may help reverse
chemoresistance in PCa (Liu et al., 2019a). Cisplatin, a
platinum-based chemotherapeutic drug commonly used in the
treatment of PCa, works by forming covalent bonds with DNA,
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leading to the formation of DNA cross-links and inhibiting DNA
replication and transcription (Li et al., 2021). In PCa, cisplatin
plays a role in inhibiting tumor growth by damaging the DNA of
cancer cells and triggering apoptosis (programmed cell death)
(Dhar et al., 2011). However, the development of resistance to
cisplatin remains a major challenge in PCa treatment.
Mechanisms underlying cisplatin resistance in PCa include
enhanced DNA repair mechanisms, altered drug uptake and
efflux, increased drug inactivation, and alterations in cell
death pathways (Kalathil et al., 2023). miR-425-5p is
downregulated in PCa and is further downregulated in
cisplatin-resistant PCa (Liu et al., 2019a). Therefore,
upregulating miR-425-5p by targeting the Wnt signaling
pathway could potentially enhance the sensitivity of PCa to
cisplatin (Liu et al., 2019a). Additionally, HOTTIP, a known
oncogene, is upregulated in patients with PCa and PCa cell lines,
promoting PCa cell proliferation and reducing sensitivity to
cisplatin by activating the Wnt signaling pathway (Jiang et al.,
2019). As a member of a class of chemotherapy drugs known as
taxanes, docetaxel acts by disrupting microtubule dynamics,
ultimately inhibiting cell division and inducing cell death
(Sanchez-Hernandez et al., 2023). Docetaxel exerts its anti-
cancer effects by targeting rapidly dividing cancer cells,
inhibiting tumor growth, and promoting cancer cell death
(Sanchez-Hernandez et al., 2023). In the treatment of PCa,
docetaxel is particularly effective in advanced or metastatic
CRPC (Gebrael et al., 2023). However, similar to cisplatin,
resistance to docetaxel of PCa can develop over time.
Mechanisms of docetaxel resistance in PCa involve alterations
in microtubule dynamics, activation of cell survival pathways,
and increased drug efflux (Gebrael et al., 2023).
SNHG17 promotes chemotherapeutic resistance to docetaxel
in PCa tumor cells by upregulating the Wnt signaling
pathway, thereby leading to increased chemoresistance (Zhao
et al., 2021). Therefore, modulation of Wnt signaling pathway-
related ncRNAs may be an effective strategy to reverse
chemoresistance in PCa. However, identifying targeted drugs
that can regulate ncRNA expression and stably transmit this
effect remains a challenge (Jaiswal et al., 2023). Therefore, an
enhanced understanding of the structure and function of Wnt
signaling pathway-related ncRNAs can aid the development of
novel treatment strategies to reverse chemoresistance in PCa.

7 Conclusion

This review provided a comprehensive overview of the role of the
Wnt signaling pathway and related ncRNAs (miRNAs, lncRNAs, and
circRNAs) in PCa. MiRNAs affect the expression of target genes
associated with the Wnt signaling pathway. Additionally, the Wnt
signaling pathway establishes feedback mechanisms and functions as
an upstream mediator of miRNAs. In most cases, lncRNAs regulate
the expression of proteins in the Wnt signaling pathway by serving as
sponges for miRNAs. CircRNAs also regulate the expression of the
Wnt signaling pathway; however, similar to lncRNAs, they primarily
regulate the expression of the Wnt signaling pathway by targeting
miRNAs. We also discussed the novel avenues for the development of

siRNAs and shRNAs that target the Wnt signaling pathway and their
potential clinical applications. However, the limited efficacy of siRNAs
and shRNAs in vivo has hindered their potential clinical application,
necessitating the exploration of more reliable strategies to target
ncRNAs.

Although the regulation of the Wnt signaling pathway
through ncRNA intervention is a promising avenue for the
treatment of PCa, certain issues need to be addressed. First,
the Wnt signaling pathway is highly intricate, consisting of
19 distinct types of Wnt-secreted glycoproteins and over
15 types of Wnt receptors in humans, which activate various
downstream pathways. Second, the differences and balance
between the classical and non-classical Wnt signals are
difficult to capture, making targeting the Wnt signaling
pathway even more challenging. Third, the Wnt signaling
pathway plays a fundamental role in the dynamic balance of
systems, such as the digestive and hematopoietic systems;
therefore, blocking the Wnt signaling pathway may lead to
systemic toxicity. Hence, modulation of the Wnt signaling
pathway as a therapeutic strategy for PCa is both an
opportunity and a challenge, warranting further research. In
the future, it will be necessary to conduct additional
investigations of the interplay between the Wnt signaling
pathway and ncRNAs and develop more reliable methods for
targeting ncRNAs for their clinical application. Simultaneously,
alternative therapeutic strategies for PCa should also be explored
to improve the efficacy of treatment and the quality of life of
patients.
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Long non-coding RNA
H19 enhances the pro-apoptotic
activity of ITF2357 (a histone
deacetylase inhibitor) in colorectal
cancer cells
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Introduction: Long non-coding RNA H19 (lncH19) is highly expressed in
colorectal cancer (CRC) and plays critical roles in tumor development,
proliferation, metastasis, and drug resistance. Indeed, the expression of
lncH19 usually affects the outcomes of chemo-, endocrine, and targeted
therapies. ITF2357 (givinostat) is a histone deacetylase inhibitor (HDACi) that
revealed a significant anti-tumor action by inducing apoptosis in different
tumor models, including leukemia, melanoma, and glioblastoma. However, no
data are present in the literature regarding the use of this compound for CRC
treatment. Here, we investigate the role of lncH19 in ITF2357-induced apoptosis in
CRC cells.

Methods: The HCT-116 CRC cell line was stably silenced for H19 to investigate the
role of this lncRNA in ITF2357-induced cell death. Cell viability assays and flow
cytometric analyses were performed to assess the anti-proliferative and pro-
apoptotic effects of ITF2357 in CRC cell lines that are silenced or not for lncH19.
RT-PCR andWestern blot were used to study the effects of ITF2357 on autophagy
and apoptosis markers. Finally, bioinformatics analyses were used to identify
miRNAs targeting pro-apoptotic factors that can be sponged by lncH19.

Results: ITF2357 increased the expression levels of H19 and reduced HCT-116 cell
viability, inducing apoptosis, as demonstrated by the increase in annexin-V
positivity, caspase 3 cleavage, and poly (ADP-ribose) polymerase (PARP-1)
degradation. Interestingly, the apoptotic effect of ITF2357 was much less
evident in lncH19-silenced cells. We showed that lncH19 plays a functional
role in the pro-apoptotic activity of the drug by stabilizing TP53 and its
transcriptional targets, NOXA and PUMA. ITF2357 also induced autophagy in
CRC cells, which was interpreted as a pro-survival response not correlated
with lncH19 expression. Furthermore, ITF2357 induced apoptosis in 5-
fluorouracil-resistant HCT-116 cells that express high levels of lncH19.

Conclusion: This study shows that lncH19 expression contributes to ITF2357-
induced apoptosis by stabilizing TP53. Overall, we suggest that lncH19 expression
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may be exploited to favor HDACi-induced cell death and overcome 5-fluorouracil
chemoresistance.

KEYWORDS

lncH19, colorectal cancer, histone deacetylase inhibitor, apoptosis, drug resistance

Introduction

Accumulating evidence indicates that long non-coding RNAs
(lncRNAs) profoundly influence cancer development through
intricate networks based on their interplay with DNA, RNAs,
and proteins. LncRNA-H19 (lncH19) is one of the first lncRNAs
identified and exerts multiple functions in various diseases,
including cancers (Bao et al., 2018; Bitarafan et al., 2019; He
et al., 2020; Yang et al., 2021). LncH19 is canonically considered
to exert an oncogenic function since it is upregulated in many forms
of tumors and is associated with tumor transformation, progression,
and malignancy (Shima et al., 2018; Corrado et al., 2019;
Mahmoudian-Sani et al., 2019; Zhou et al., 2019). LncH19 may
also act through the production of intragenic microRNAs, miR-675-
5p and miR-675-3p, which also display a pro-tumor activity (Lo
Dico et al., 2016; Muller et al., 2019). LncH19 and its intragenic
miRNAs are upregulated in colon tumors and correlate with poor
prognosis in patients (Costa et al., 2017; Feng et al., 2017; Zhang
et al., 2017; Dai et al., 2019; Yang et al., 2020; O’Brien et al., 2022).

In colorectal cancer, lncH19 overexpression affects cell
proliferation (Yang et al., 2017; Saieva et al., 2020) and cell
motility (Ding et al., 2018; Yang et al., 2018), and more recently,
scientific evidence correlates the expression levels of lncH19 with the
reduced sensitivity to 5-FU, suggesting that lncH19 may function as
a marker for prediction of the chemotherapeutic response to this
drug (Wang et al., 2018; Zhang et al., 2022).

Wang and collaborators demonstrated that lncH19, functioning
as a competitive endogenous RNA, mediates 5-FU resistance in CRC
via SIRT1-mediated autophagy (Wang et al., 2018).

We have recently demonstrated that lncH19-derived miR-675-
5p enforces hypoxia-induced chemoresistance to 5-FU by targeting
pro-caspase-3 and inhibiting the pro-apoptotic effects of 5-FU
(Zichittella et al., 2022).

Numerous studies propose the therapeutic use of histone
deacetylase inhibitors (HDACis) for the treatment of several
diseases, including metabolic, inflammatory, autoimmune, and
neurodegenerative diseases, and not least for the treatment of
cancer (Eckschlager et al., 2017; Vagapova et al., 2021; Squarzoni
et al., 2022).

HDACis are well-known epigenetic drugs with widely
recognized anti-tumor activity (Zhao et al., 2020). HDACis target
the aberrant activity of histone deacetylases (HDACs), which are
often overexpressed in tumor cells, restoring or increasing histone
acetylation, thereby promoting transcriptional activation of tumor
suppressor and pro-apoptotic genes (Singh et al., 2018; Patra et al.,
2019; Ramaiah et al., 2021). Therefore, inhibition of HDACs
represents a valid basis for new anti-tumor therapies (Dasko
et al., 2022).

To date, the Food and Drug Administration has approved some
HDACis such as vorinostat (SAHA), belinostat (PXD-101),
panobinostat (LBH-589), and romidepsin (FK-228) for the

treatment of cancer (Squarzoni et al., 2022). Clinical and pre-
clinical studies have also shown that these compounds can be
used as adjuvants to traditional chemotherapeutics in different
types of cancer (Suraweera et al., 2018; Psilopatis et al., 2021;
Pramanik et al., 2022). More recently, it has been shown that
epigenetic targeting of colon cancer based on combined HDACis
with DNA methyltransferase (DNMT) inhibitors has revealed
clinical relevance (Tang et al., 2023).

ITF2357 (givinostat) is a potent HDAC inhibitor belonging to
the hydroxamic acid class. This compound is currently used in the
therapy for the treatment of Duchenne muscular dystrophy, and in
clinical trials for Becker muscular dystrophy and juvenile idiopathic
arthritis (Vojinovic and Damjanov, 2011; Vojinovic et al., 2011;
Spreafico et al., 2021; Comi et al., 2023; Sandona et al., 2023).

The compound has also revealed a significant anti-tumor action
by inducing apoptosis in different tumor models, including
leukemia, melanoma, and glioblastoma cells (Li et al., 2016;
Celesia et al., 2022; Taiarol et al., 2022).

In addition, it has been widely demonstrated that ITF2357 can
also act as an adjunct to conventional chemotherapy, increasing
sensitivity to demethylating or chemotherapeutic agents such as
pemetrexed in lung cancer, doxorubicin in sarcoma cells, and
temozolomide in glioma stem cells (Di Martile et al., 2018; Cui
et al., 2023; Nakagawa-Saito et al., 2023).

ITF2357 has recently been reported to exert a targeting effect on
oncogenic BRAF in melanoma cells (Celesia et al., 2022) and affect
oncogenic BRAF and p53 interplay, thus representing a promising
candidate for melanoma-targeted therapy (Celesia et al., 2023).

To date, the only data present in the literature on the effects of
ITF2357 in colon cancer are described in a manuscript that discusses
the use of the compound for the prevention of colitis-associated
cancer in mice (Glauben et al., 2008). Here, we describe the pro-
apoptotic effect of ITF2357 in CRC cells and show that lncH19 plays
a functional role in apoptosis execution by stabilizing TP53,
probably by exerting its action as a miRNA sponge. Moreover,
the paper provides evidence that lncH19-expressing CRC cells,
resistant to 5-FU treatment, nicely respond to ITF2357, thus
supporting a possible therapeutic application of this compound
to overcome colon drug resistance.

Materials and methods

Cell culture

HCT-116 cells (ATCC–LGC Standards S.r.L., Italy) were
cultured in McCoy’s 5A medium (Euroclone, United Kingdom)
supplemented with 10% fetal bovine serum, 1% penicillin/
streptomycin (10,000 U/mL penicillin and 10 mg/mL
streptomycin), and 200 mM L glutamine (all sourced from
Euroclone, United Kingdom).
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5-Fluorouracil (5-FU)-resistant HCT-116 cells (HCT-116-5-
FU-R) were cultured in DMEM (Euroclone, United Kingdom)
supplemented with 10% fetal bovine serum, 1% penicillin/
streptomycin (10,000 U/mL penicillin and 10 mg/mL
streptomycin), and 200 mM L glutamine (all sourced from
Euroclone, United Kingdom), and additionally, the culture
medium contained 5-fluorouracil (5-FU, cat. n°F6627, Sigma-
Aldrich, St. Louis, MO, United States) at concentrations up
to 70 µM.

Cells were maintained in a humidified atmosphere containing
5% CO2 at 37°C and used at early passages for all experiments. The
culture medium was changed every 2–3 days, and cells were split at
70%–80% confluence.

Infection with lentiviral vectors to stably
silence lncH19

HCT-116 cells were stably silenced for lncH19 by lentiviral
infection with H19 human shRNA lentiviral particles (Cat. n°

TL318197V, OriGene Technologies, Inc., Rockville, MD,
United States), while relative control cells were infected with
control shRNA lentiviral particles (Cat. n° TR30021V, OriGene
Technologies, Inc., Rockville, MD, United States). Subsequently,
infected cells were selected by cell sorting (BD FACSAria™ III
Sorter, ATeN Center) and maintained in culture under selective
pressure with 1 mg/mL of puromycin (Gibco™ puromycin
dihydrochloride, cat. n°A1113802, Thermo Fisher® Scientific,
United States). Silencing efficiency was regularly tested by qRT-
PCR and fluorescence microscopy.

Selection of HCT-116-5-FU-resistant cells

The 5-FU-resistant HCT-116 cell line (HCT-116-5-FU-R) was
established after sequential treatments with 5-FU during an 8-
month period starting from 1 μM to 70 µM concentrations.
Control parental cells were split in parallel. Viable cells treated
with 70 µM 5-FU were considered stably resistant when the
morphology resembled that of parental HCT-116.

Chemicals and reagents

ITF2357 (givinostat) was synthesized and supplied by the
pharmaceutical company Italfarmaco S.p.A. (Cinisello Balsamo,
MI, Italy). For in vitro experiments, ITF2357 was dissolved in
DMSO (20 mM stock solution) and stored at −20°C. Before use,
the stock solution was thawed and diluted in McCoy’s 5A or DMEM
culture media, not exceeding 0.01% (v/v) DMSO, to realize the
proper final concentrations.

The autophagy inhibitor bafilomycin A1 (Cat. n° B1793-2UG,
Sigma-Aldrich, United States) was solubilized in DMSO, according
to the data sheet instructions and used for the experiments at 20 nM
and 50 nM final concentrations.

MTT [3-(4,5-dimethylthiazol-2-yl)-
2,5 diphenyl tetrazolium bromide] assay

Cell viability was determined by MTT assay, following the
manufacturer’s instructions (Cat. n° M6494, Thermo Fisher®,
United States), and the absorbance was measured using a
biophotometer at 540 nm (BioTek Elisa ELx800 Absorbance
Microplate Reader, BioTek Instruments, United States).

HCT-116 cells (wild type, silenced for lncH19, or 5-FU-
resistant) were seeded in at least three technical replicates at 5 ×
104 cells/cm2; then, 24 h post-seeding, cells were treated with
different concentrations of ITF2357 (0.25–0.5–1–2 µM or 4 µM)
and maintained in a humidified atmosphere of 5% CO2 at 37°C. The
MTT assay was performed at different time points, as indicated in
the results.

For the experiments with the autophagy inhibitor bafilomycin
A1, HCT-116 cells were pretreated for 1 h with bafilomycin A1
(20 nM and 50 nM concentrations), and then, ITF2357 was added at
different concentrations (0.25–0.5 µM or 1 µM) for 48 h.

Colony formation assay

LncH19-silenced HCT-116 cells and control cells were seeded at
40 cells/cm2 in six-well plates. After 48 h, cells were treated with
different concentrations of ITF2357 (0.05–0.1–0.25 µM and 0.5 µM)
and maintained in culture for 8 days to allow clone formation.
Clones were then washed once with phosphate buffer solution
(PBS), fixed, and stained with methylene blue 1% in PBS/ethanol
50% for 1 min at room temperature. Following air-drying, clones
were observed under a light microscope (LeicaDMR, Microsystems
S.r.l, Wetzlar, Germany). Only clones containing more than 50 cells
were considered and counted. For counting, each well was divided
into four quadrants, and the media of the number of clones in each
quadrant was estimated. The total number of clones per well was
then obtained.

Annexin V/PI apoptosis detection assay

Annexin V/PI apoptosis detection assay (APC Annexin V
Apoptosis Detection Kit with PI, cat. n° 640932, BioLegend®) was
used to identify early and late apoptotic cells. LncH19-silenced
HCT-116 cells and respective control cells were seeded at 1.87 ×
104 per cm2, allowed to adhere overnight, and then treated with
1 µM ITF2357 for 48 h.

Briefly, following the manufacturer’s instructions, cells were
harvested, and after centrifugation, cell pellets were washed twice
with the cold BioLegend cell staining buffer (Cat. n° 420201),
resuspended in annexin V binding buffer, and labeled with APC
annexin V and propidium iodide.

Approximately 50,000 events were acquired for each sample on
a FACSCanto cytometer (Becton Dickinson, Franklin Lakes, NJ,
United States). Flow cytometry data were analyzed using FlowJo
software (v10; TreeStar, Ashland, OR, United States).
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Western blotting

H19-silenced HCT-116 cells and control HCT-116 cells were
lysed using a lysis buffer (15 mM Tris/HCl pH 7.5, 120 mM NaCl,
25 mM KCl, 1 mM EDTA, and 0.5% Triton X-100) supplemented
with phosphatase inhibitor cocktail (Cat. N° 37492, Active Motif,
United States) for 1.30 h on ice. Cell debris was removed by
centrifugation at 17,000 × g for 15 min at 4°C, and the
supernatant, containing the protein lysate, was quantified using
the Bradford assay method (Pierce™ Coomassie Plus Assay Kit, cat.
N° 23236, Thermo Fisher Scientific, United States) using bovine
serum albumin (BSA, cat. n° A2153, Sigma-Aldrich, United States)
as a standard. A measure of 15 µg of protein from each sample was
separated using Bolt Bis–Tris gel 4%–12% (Cat. n° NP0326BOX,
Thermo Fisher Scientific, United States) and transferred onto a
nitrocellulose blotting membrane (Amersham Protran Premium
0.45 µm NC by GE Healthcare Life Science, United Kingdom).
The membranes were stained with 0.1% red Ponceau in 5%
acetic acid to evaluate the correct loading of all samples. The
membranes were incubated for 1 h in a blocking solution (5%
milk or 5% BSA in 20 mM Tris, 140 mM NaCl, and 0.1%
Tween-20) and at 4°C overnight with the following primary
antibodies: anti-SQSTM1/p62 (1:500, cat. n° 39749S, Cell
Signaling Technology, United States), anti-LC3B (1:500, cat. n°

2775S, Cell Signaling Technology, United States), anti-poly ADP-
ribose polymerase-1 (Anti-PARP-1, 1:500, cat. n° sc-8007, Santa
Cruz Biotechnology, United States), anti-cleaved caspase-3 (1:400,
cat. n° 9664S, Cell Signaling Technology, United States), and anti-
p53 (DO-1, 1:200, cat. n° sc-126, Santa Cruz Biotechnology,
United States).

After washing with Tris-buffered saline-Tween-20 (TBS-T,
20 mM Tris, 140 mM NaCl, 0.1% Tween-20) three times, the
membrane was incubated with appropriate secondary antibodies
such as HRP-conjugated goat anti-rabbit IgG (1:10.000, cat. n°

31460, Invitrogen™, Thermo Fisher® Scientific, United States)
and anti-mouse IgG (1:10.000, cat. n° 7076, Cell Signaling
Technology, United States) at room temperature for 1 h. The
chemiluminescent signal was visualized using a
chemiluminescence solution (ECL™ Prime Western Blotting
System, Cytiva, RPN2232) and detected using the ChemiDoc
acquisition instrument (Bio-Rad, United States). The images were
analyzed using Image Lab software (Bio-Rad, United States).

Depending on the molecular weight of the protein, if required,
the membranes were subjected to a stripping protocol before
proceeding with further incubation with other antibodies. This
involved a brief incubation of 10–15°min with a stripping
solution (Restore™ PLUS Western Blot Stripping Buffer, Cat. n°

46,430, Thermo Fisher® Scientific, United States) at 37°C, followed
by subsequent washes in TBS-T.

LC3-B assay

HCT-116 cells were seeded at 5 × 104 cells/cm2 in cell culture
chamber slides (Cat. n° 94.6190.802, Sarstedt, Germany), and the
LC3B assay (Cat. n°L10382, LC3B Antibody Kit for Autophagy,
Invitrogen™ by Thermo Fisher® Scientific, United States) was
performed following the manufacturer’s instructions.

Briefly, 24 h after seeding, HCT-116 cells were treated for 24 h
with 50 µM chloroquine diphosphate (CQ, provided by the LC3B
Antibody Kit for Autophagy) alone or co-treated with 50 µM
chloroquine and 1 µM of ITF2357. Chloroquine blocks
autophagosome–lysosome fusion, thus allowing autophagosome
visualization. After treatments, cells were fixed with 4%
paraformaldehyde for 15 min, permeabilized with 0.1% Triton X-
100 for 15 min, and incubated with diluted LC3B rabbit polyclonal
primary antibody (0.5 μg/mL according to the manufacturer’s
instructions) for 1 h. DyLight™ 594 was used as a secondary
antibody (Goat anti-Rabbit IgG Secondary Antibody, DyLight™
594, 1:300, cat n°35560, Invitrogen™ by Thermo Fisher Scientific,
United States).

Finally, cells have been counterstained with Hoechst (Hoechst
33342, trihydrochloride, trihydrate, 1:1000, cat n°H3570, Molecular
Probes, Life Technologies by Thermo Fisher Scientific,
United States) and ActinGreen (ActinGreen™ 488 ReadyProbes™
Reagent, 1:125, cat n°R37110, Invitrogen™ by Thermo Fisher
Scientific, United States). All steps have been performed at room
temperature. The samples were analyzed using a Nikon A1 confocal
microscope.

RNA extraction and real-time PCR
(qRT-PCR)

Total RNA was extracted using the commercially available
Macherey–Nagel™ NucleoSpin™ miRNA Kit (Cat. n°740971.250,
Macherey–Nagel, Germany), according to the manufacturer’s
instructions. The total RNA concentration was detected with the
Nanodrop spectrophotometer (Thermo Fisher®, United States) and
reverse-transcribed to cDNA using the High-Capacity cDNA
Reverse Transcription kit (Cat. n° 4368814, Applied Biosystem™,
United States).

Quantitative real-time polymerase chain reactions (qRT-PCR)
were carried out using the SYBR™ Green PCR Master Mix (Cat. n°

4309155, Applied Biosystems™, United States), following the
manufacturer’s instructions in a Step One™ Real-time PCR
System Thermal Cycling Block (Applied Biosystems, Waltham,
MA, United States).

The primers’ sequences used for expression analysis of the
genes of interest are reported in Table 1. Gene expression levels
were normalized using β-actin as an endogenous control. Finally,
the data are presented as 2-̂ΔΔCt compared with the untreated
control.

Bioinformatic analysis

For predicting interactions between ncRNAs and their targets,
bioinformatic analyses were performed using DIANA tools
(Rincon-Riveros et al., 2021). Specifically, lncH19–miRNA
interactions were identified using DIANA-LncBase v.3, while
miRNA–TP53 interactions were identified using DIANA-
TarBase v.8.

In Homo sapiens, we identified 159 validated miRNAs that
lncH19 directly binds to and 42 validated miRNAs that directly
bind to the TP53 gene.
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By overlaying the two datasets from DIANA-LncBase v.3
(lncH19–miRNA interactions) and DIANA-TarBase v.8
(miRNA–TP53 interactions), we found that lncH19 can bind to
26 miRNAs that directly target the pro-apoptotic TP53 gene
(Table 2).

Statistical analysis

Data reported in all graphs are expressed as the mean ±
standard deviation (SD) of at least three independent biological
replicates. The following tests have been performed: Student’s
t-test to compare two groups, one-way ANOVA for comparisons
among three or more groups, and two-way ANOVA for
comparison of multiple variables among two groups. Analyses
were performed using GraphPad Prism software (GraphPad
Software, United States).

p-values were indicated in the graphs as follows: * = p < 0.05; ** =
p < 0.01; *** = p < 0.001; and **** = p < 0.0001. A p-value≤0.05 was
considered significant.

Results

ITF2357 reduces CRC cell viability and
increases the expression levels of lncH19

Initially, to evaluate the sensitivity of the HCT-116 CRC cell line to
ITF2357, cells were treated with different concentrations of ITF2357 for
16 h, 24 h, 48 h, and 72 h. Evaluation of cell morphology indicated that
the drug exerted a cytotoxic effect, which appeared after 24 h in cells
treatedwith 1 μMITF2357 andwas clearly evident after 48 h either with
1 μM or 2 μM (Figure 1A). Morphological data were confirmed by the
MTT assay (Figure 1B). As expected, ITF2357 treatment reduced the
viability of HCT-116 cells in a dose- and time-dependent manner.
Approximately 50% reduction in viability was observed after 48 h of
treatment with 1 μM ITF2357.

LncH19 is known to display the oncogenic activity in CRC,
promoting cell proliferation (Yang et al., 2017), epithelial-to-
mesenchymal transition (Ding et al., 2018), and 5-FU drug
resistance (Wang et al., 2018). To elucidate whether HDACi
modifies the expression levels of lncH19, we performed qRT-PCR
analyses. Interestingly, the results revealed that ITF2357 promoted
lncH19 expression in HCT-116, determining a two-fold increase in
the level of lncRNA after 24 h of treatment and almost three-fold
increase at 48 h (Figure 1C). Therefore, we hypothesized that
lncH19 induction could somehow be functional to ITF2357 to exert
its cytotoxic effect.

To verify this hypothesis, HCT-116 cells were stably silenced for
lncH19, and the silencing efficiency was confirmed through gene
expression analysis (Figure 2A). Cell viability assays in H19-silenced
cells revealed that ITF2357 displayed much less efficacy under
lncH19 knockdown. Indeed, the effect of ITF2357 was reduced
by approximately 15%, suggesting that lncH19 plays a role in
ITF2357-induced cytotoxicity in CRC cells (Figures 2B, C).

Moreover, colony formation assay further confirmed a direct
role of lncH19 to sustain the efficacy of HDACi in CRC cells.
Specifically, as shown in Figure 2D, treatment with ITF2357 affected
the clonogenicity of HCT-116 control cells in a dose-dependent
manner, while this effect was significantly weaker in H19-silenced

TABLE 1 Primers’ sequences of the genes analyzed.

Primer Forward Reverse

H19 TCGTGCAGACAGGGCGACATC CCAGCTGCCACGTCCTGTAACC

SQSTM1/p62 TGTGTAGCGTCTGCGAGGGAAA AGTGTCCGTGTTTCACCTTCCG

MAP1LC3A GCTACAAGGGTGAGAAGCAGCT CTGGTTCACCAGCAGGAAGAAG

ATG16L CTACGGAAGAGAACCAGGAGCT CTGGTAGAGGTTCCTTTGCTGC

LAMP1 CGTGTCACGAAGGCGTTTTCAG CTGTTCTCGTCCAGCAGACACT

LAMP2 GGCAATGATACTTGTCTGCTGGC GTAGAGCAGTGTGAGAACGGCA

TP53 CCTGGATTGGCCAGACTGC TTTTCAGGAAGTAGTTTCCATAGGT

NOXA AGCTGGAAGTCGAGTGTGCT ACGTGCACCTCCTGAGAAAA

PUMA GGAGCAGCACCTGGAGTC TACTGTGCGTTGAGGTCGTC

β-ACTIN TCCCTTGCCATCCTAAAAGCCACCC CTGGGCCATTCTCCTTAGAGAGAAG

TABLE 2 Twenty six miRNAs sponged from lncH19 that directly target the pro-
apoptotic TP53 gene.

hsa-let-7a-5p hsa-miR-17-5p hsa-miR-107

hsa-let-7b-5p hsa-miR-19a-3p hsa-miR-125b-5p

hsa-let-7c-5p hsa-miR-19b-3p hsa-miR-181a-5p

hsa-let-7d-5p hsa-miR-22-3p hsa-miR-218-5p

hsa-let-7e-5p hsa-miR-24-3p hsa-miR-522-5p

hsa-let-7f-5p hsa-miR-30a-5p hsa-miR-940

hsa-let-7g-5p hsa-miR-34a-5p —

hsa-let-7i-5p hsa-miR-93-5p —

hsa-miR-10b-5p hsa-miR-98-5p —

hsa-miR-15a-5p hsa-miR-103a-3p —
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cells, as also revealed by the quantification of the number of clones in
the two cell types (Figure 2E).

ITF2357 induces pro-survival autophagy in
CRC cells

It is well known that both HDACis and lncH19 induce
autophagy in different tumor cells (Xu et al., 2018; Mrakovcic

and Frohlich, 2019; Zhao et al., 2021). Therefore, we
hypothesized that ITF2357, enforced by H19 expression,
induces autophagy-dependent cell death. To verify this
hypothesis, the transcriptional levels of some autophagy
markers (ATG16L, SQSTM1/p62, MAP1LC3B/LC3, and
LAMP1/2) were analyzed. As shown in Figure 3A,
ITF2357 upregulated all the autophagy genes analyzed, an
effect that was already evident after 24 h. This effect was
maintained after 48 h of treatment (data not shown).

FIGURE 1
Effects of ITF2357 on HCT-116 cell viability and lncH19 expression. (A) Phase contrast images of HCT-116 cells treated with different concentrations
of ITF2357 (0.5–1 µM and 2 µM) for 16 h, 24 h, and 48 h. The cells were visualized under a light microscope at ×20 magnification, and the pictures were
acquired using NISA1 Leica software. (B) Cell viability assay (MTT assay) in HCT-116 cells treated with different concentrations of ITF2357
(0.25–0.5–1–2 µM and 4 µM) for 16 h, 24 h, 48 h, and 72 h. Data are expressed as cell viability percentages compared to untreated cells (Ctr). The
results reported in the graph are expressed as the mean ± SD of three independent biological replicates. Statistical analyses were performed using
ordinary two-way ANOVA with Bonferroni’s multiple comparison test; **p < 0.01 and ****p < 0.0001. (C) Analysis of the expression level (qRT-PCR) of
lncH19 in HCT-116 cells treated with 1 µM ITF2357 for 24 h and 48 h. LncH19 expression levels are reported as 2-̂ΔΔCt compared to untreated cells (Ctr),
and the threshold cycle (Ct) was normalized against β-actin. The results reported in the graph are expressed as the mean ± SD of three independent
biological replicates. Statistical analyses were performed using Student’s t-test; *p < 0.05 and **p < 0.01.
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The activation of autophagy was confirmed by an increase in the
LC3B signal in autophagosomes, as revealed by
immunofluorescence (Figure 3B). These data were confirmed by
Western blot analysis, showing a much higher level of LC3II-cleaved
form in ITF2357-treated cells. Moreover, further confirmation of the
autophagic process induced by ITF2357 was sustained by the
significant decrease in the levels of p62 protein (Figures 3C, D).
This marker is usually considered to monitor the autophagic flux,
and it is associated with completed autophagy when decreasing since
it is degraded by the autophagosome (Emanuele et al., 2020).

To investigate whether the activation of autophagy in HCT-116
cells could promote cell death, cell viability was evaluated in cells
treated with ITF2357 in the presence of the autophagy inhibitor
bafilomycin A1.

As shown in Figure 3E, the cytotoxic effect exerted by three
different doses of ITF2357 was enhanced when co-treated with
either 20 nM or 50 nM bafilomycin A1. These data suggest that

autophagy induced by the HDAC inhibitor represents a pro-survival
adaptive response to the effects of the compound. Moreover, we
provided evidence that H19 silencing did not affect ITF2357-
induced autophagy (Supplementary Figure S1).

ITF2357 induces apoptosis in HCT-116 cells,
and lncH19 is functional to this effect

To further characterize cell death activated in response to
ITF2357 and elucidate the role of lncH19, apoptosis was
investigated in H19-silenced cells in comparison with the
respective control cells. Specifically, an annexin V/PI apoptotic
assay was performed at early (16 h) and late (48 h) treatment
time points to properly detect the process over time. The results
shown in Figures 4A, B indicate that ITF2357 stimulated early and
late apoptosis to a different extent in control and H19-silenced cells.

FIGURE 2
Effects of silencing lncH19 in HCT-116-silenced cells treated with ITF2357. (A) Analysis of the expression level (qRT-PCR) of lncH19 in HCT-116-
silenced cells with respect to control cells (Ctr). LncH19 expression levels are reported as 2̂-ΔΔCt compared to control cells (Ctr); Ct was normalized against
β-actin. Data are expressed as the mean ± SD of three independent biological replicates. Statistical analyses were performed using Student’s t-test,
****p < 0.0001. (B, C) Cell viability assay (MTT assay) in HCT-116 cells (that are silenced or not) for lncH19 and treated with two different
concentrations of ITF2357 (0.5 and 1 µM) for 24 h (left graph) and 48 h (right graph). Data are expressed as the cell viability percentage compared to
untreated cells. Data are expressed as the mean ± SD of three independent biological replicates. Statistical analyses were performed using ordinary one-
way ANOVA with Bonferroni’s multiple comparison test; **p < 0.01 and ****p < 0.0001. (D, E) Clonogenic assay in HCT-116 cells with silenced or
unsilenced lncH19 cells, untreated or treated with indicated concentrations of ITF2357, and maintained in culture for 8 days to allow clone formation. In
the histogram, data are expressed as a percentage of the number of clones compared to relative untreated cells. Data are expressed as the mean ± SD.
Statistical analyses were performed using ordinary two-way ANOVA with Bonferroni’s multiple comparison test; *p < 0.05, **p < 0.01, ***p < 0.001, and
****p < 0.0001.
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FIGURE 3
HDAC inhibitor ITF2357 induces survival autophagy in CRC cells. (A) Analysis of the expression level (qRT-PCR) of autophagic genes in HCT-116 cells
treated with 1 µM concentration of ITF2357 for 24 h. The expression levels of genes are reported as 2-̂ΔΔCt compared to untreated cells (Ctr), and Ct was
normalized against β-actin. Data are expressed as the mean ± SD of three independent biological replicates. Statistical analyses were performed using
Student’s t-test; *p < 0.05 and **p < 0.01. (B) Immunofluorescence for LC3B on HCT-116 cells, untreated or treated with 50 µM chloroquine
diphosphate (CQ) alone or in combination with 1 µM of ITF2357 for 24 h. LC3B is represented in red, counterstained with Hoechst and ActinGreen, for
nuclei in blue and cytoskeleton in green, respectively. Nuclear focal plane; the scale bar is 10 µm. (C) Representative images and densitometric analysis of
Western blots for LC3II/LC3I in HCT-116 cells treated or not with ITF2357 1 µM for 24 h. The graph shows the ratio of the normalized optical density (OD).
Housekeeping β-actin was used as a loading control. Data are expressed as the mean ± SD of three independent biological replicates. Statistical analyses
were performed using Student’s t-test, **p < 0.01. (D) Representative images and densitometric analysis of Western blots for p62 in cells treated or not
with ITF2357 1 mMconcentration for 24 h. The graph shows the normalized OD. Housekeeping β-actin was used as a loading control. Data are expressed
as the mean ± SD of three independent biological replicates. Statistical analyses were performed using Student’s t-test, *p < 0.05. (E) Cell viability assay
(MTT assay) in HCT-116 cells co-treated with different concentrations of ITF2357 (0.25–0.5 µM and 1 µM) and two different concentrations of
bafilomycin A1 (20 nM and 50 nM) for 48 h. Data are expressed as cell viability percentages compared to untreated cells (Ctr). Data are expressed as the
mean ± SD.
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Indeed, the total percentage of annexin V positive cells after
treatment with ITF2357 was approximately 33% in control cells,
compared to 22.6% in H19-silenced cells at 16 h. Such a difference
was maintained at 48 h (68.6% in control cells vs. 52.8% in H19-
silenced cells), thus confirming that lncH19 knockdown reduces the
apoptotic efficacy of ITF2357.

Morphological analysis of ITF2357-treated cells clearly showed
the differential effect of HDACi in the two cell types (Figure 4C).

These data were confirmed byWestern blot analysis of apoptotic
markers, including cleaved caspase 3 and cleaved PARP-1, an
analysis that was performed at late time points to evidence
apoptosis execution. As shown in Figures 4D, E, although

FIGURE 4
(Continued).
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caspase 3 cleavage and PARP-1 degradation were evident in
ITF2357-treated control cells, these effects were much less
evident in H19-silenced cells. These data suggest that
H19 expression somehow reinforces the pro-apoptotic action of
ITF2357.

To investigate the molecular mechanism by which
lncH19 promotes ITF2357-induced apoptosis, we focused on
identifying putative miRNAs with a pro-apoptotic role that
could be targeted by lncH19. Similar to other lncRNAs,
H19 can also behave as an endogenous competitive sponge for

FIGURE 4
(Continued). Effects of lncH19 silencing on apoptosis markers. (A, B) Annexin V/PI apoptosis detection assay on HCT-116 cells silenced for lncH19 or
unsilenced control cells (Ctr) treated with 1 µM concentration of ITF2357 for 16 h and 48 h. Data are expressed as the apoptotic cell percentage
compared to untreated cells (silenced or unsilenced for lncH19). (C) Phase contrast images of HCT-116 cells with silenced lncH19 or unsilenced control
cells (Ctr), untreated or treated with 1 µM of ITF2357 for 48 h. Cells were visualized under a light microscope at ×20 magnification, and the pictures
were acquired using IM50 Leica software (Leica DMR Microsystems, Wetzlar, Germany). (D, E) Representative images and densitometric analysis of
Western blots for cleaved caspase 3 (D) and cleaved PARP-1/PARP-1 (E) obtained fromprotein lysates of HCT-116 silenced for lncH19 or control cells (Ctr)
were treated with 1 µM ITF2357 for 24 h or 48 h. The graphs show the OD of the indicated proteins normalized for the housekeeping’s OD (β-actin). Data
are expressed as the mean ± SD of three independent biological replicates. Statistical analyses were performed using Student’s t-test in (D, E); *p <
0.05 and **p < 0.01.
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miRNAs (Ye et al., 2019). By using DIANA tools (Rincon-Riveros
et al., 2021), we identified 159 validated human miRNAs sponged
by lncH19, and among these, 26 validated human miRNAs
directly target the pro-apoptotic TP53 gene (Figure 5A). Real-
time PCR in Figure 5B confirmed a positive correlation between
the expression of lncH19 and TP53. The transcriptional analyses
revealed that cells silenced for lncH19 express lower levels of
TP53 and its targets, PUMA and NOXA (Figures 5B–D). The
reduction of p53 in shH19 cells was further confirmed at the

protein level (Figure 5E). Overall, these data indicate that
ITF2357 induces TP53-mediated apoptosis in colorectal cancer
cells, and the expression of lncH19 plays a functional role in
regulating p53 expression.

Finally, to assess whether ITF2357 can overcome the resistance
to 5-FU chemotherapeutics, we used the HCT-116-5-FU-R, a 5-FU-
resistant HCT-116 cell line properly selected in our laboratory.
Interestingly, HCT-116-5-FU-R cells express high levels of
lncH19 compared to parental HCT-116 cells (Figure 6A). It is

FIGURE 5
Identification of lncH19miRNAs that target TP53. (A) Venn diagram obtained by bioinformatic analysis using DIANA tools, illustrating the intersection
(in yellow) between the dataset of validated direct miRNAs that lncH19 binds to (DIANA-LncBase v.3, in blue) and the dataset of validated miRNAs that
directly bind to TP53 (DIANA-TarBase v.8, in green). The intersection shows 26 miRNAs (listed in the panel) sponged from lncH19 that directly target the
pro-apoptotic TP53 gene. (B–D) Analysis of the expression levels (qRT-PCR) of TP53 (B), NOXA (C), and PUMA (D) in HCT-116 cells with respect to
control cells (Ctr). Gene expression levels are reported as 2-̂ΔΔCt compared to control cells (Ctr); Ct was normalized against β-actin. Data are expressed as
the mean ± SD of three independent biological replicates. Statistical analyses were performed using Student’s t-test; *p < 0.05, **p < 0.01, and ***p <
0.001. (E) Representative images and densitometric analysis of Western blots for p53 in HCT-116 with respect to control cells (Ctr). The graphs show the
OD of the indicated proteins normalized for the housekeeping’s OD(β-actin). Data are expressed as the mean ± SD of three independent biological
replicates. Statistical analyses were performed using Student’s t-test, **p < 0.01.
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noteworthy that these cells nicely respond to ITF2357, as indicated
by the cell viability evaluation reported in Figure 6B, which revealed
a dose-dependent effect of the compound.

Discussion

This paper shows, for the first time, that lncH19 supports
apoptosis induced by HDACi ITF2357 in colon cancer cells.
Although some papers sustain the potential of HDACis in colon
cancer treatment (Garmpis et al., 2022; Lee et al., 2022), to date, no
evidence has been provided about the efficacy of this pan-HDACi in
colon cancer cells. Our data indicate that ITF2357 is active in colon
cancer cells at micromolar concentrations, in line with the findings
of other authors in different tumor cell lines (Angeletti et al., 2016;
Di Martile et al., 2018; Celesia et al., 2022; Celesia et al., 2023).

We also provided evidence that ITF2357 upregulates lncH19 in
colon cancer cells. Similarly, Di Fazio et al. found increased
lncH19 levels in adrenocortical carcinoma, following treatment
with pan-HDACis such as panobinostat, trichostatin A (TSA),
and SAHA, correlated with autophagy induction (Di Fazio et al.,
2022).

To understand the role of lncH19 in ITF2357-induced
cytotoxicity in colon cancer cells, both autophagy and apoptosis
induction were examined in H19 stably silenced HCT-116 cells in
comparison with control HCT-116 cells. It is well known that
HDACis can promote autophagy in different tumor types (Bai
et al., 2019; Xiao et al., 2020; Korholz et al., 2021). However, it is
well known that autophagy can exert a dual role in tumor cells.
Indeed, the process can be activated as a pro-survival response,
which is frequently associated with tumor progression and
chemoresistance, or it can serve a death-inducing function,
thereby representing an alternative form of cell death to target
tumor cells that have developed apoptosis resistance (Patra et al.,

2019). This paper shows that ITF2357 promoted the expression of
autophagy markers, including ATG16L, SQSTM1/p62,
MAP1LC3B/LC3, and LAMP1/2. HDACi also induced the
conversion of LC3I into active LC3II and a reduction in the
levels of p62. Our data support the hypothesis that ITF2357-
induced autophagy is correlated with a pro-survival cell response
since the autophagy inhibitor bafilomycin A1 markedly potentiated
the cytotoxic effect of the compound and the p62 protein marker
decreased, indicating autophagy completion (Emanuele et al., 2020).
Our findings are in accordance with the observation of Angeletti
et al., who found that inhibition of autophagy potentiates the effect
of ITF2357 in glioblastoma cells (Angeletti et al., 2016). However,
our Supplementary Material indicates that lncH19 silencing does
not significantly modify the levels of autophagy markers.

Therefore, we concluded that the cytotoxic effect of
ITF2357 does not depend on autophagy-induced cell death, and
subsequently, caspase-dependent apoptosis was considered.

Evaluation of apoptosis by annexin V/PI double staining and
analysis of apoptotic markers revealed that lncH19 plays a role in
this event. Indeed, ITF2357-induced apoptosis was reduced in H19-
silenced cells compared to the respective control cells. We consider
these results relevant since they imply that lncH19 can be exploited
to favor apoptosis induction and that HDACi may promote a H19-
dependent targeted effect in colon cancer cells. In accordance with
our results, other authors have previously found a correlation
between lncH19 and apoptosis.

In particular, Hou et al. have shown that overexpressed
lncH19 alleviates induced lung injury in mice, as well as
lipopolysaccharide (LPS)-induced apoptosis, oxidative stress, and
inflammation (Hou et al., 2022). Similarly, Yang provided evidence
that H19 silencing alleviates LPS-induced apoptosis and
inflammation by regulating the miR-140-5p/TLR4 axis in cell
models of pneumonia (Yang, 2023). In a more specific tumoral
context, lncH19 has been shown to participate in triptolide/TNF-α-

FIGURE 6
HCT-116 cells resistant to 5-fluorouracil (5-FU) express high levels of lncH19 and respond to treatment with ITF2357. (A) Analysis of the expression
level (qRT-PCR) of lncH19 in HCT-116-5-FU-R cells compared to untreated cells (HCT-116 Ctr). LncH19 expression levels are reported as 2-̂ΔΔCt

compared to HCT-116 Ctr cells, and Ct was normalized against β-actin. The results reported in the graph are expressed as the mean ± SD of three
independent biological replicates. Statistical analyses were performed using Student’s t-test, **p < 0.01. (B) Cell viability assay (MTT assay) in HCT-
116-5-FU-R cells treated with different concentrations of ITF2357 (0.25–0.5–1–2 µM and 4 µM) for 48 h. Data are expressed as cell viability percentages
compared to untreated cells (Ctr). The results reported in the graph are expressed as the mean ± SD of three independent biological replicates. Statistical
analyses were performed using ordinary one-way ANOVA with Bonferroni’s multiple comparison test; **p < 0.01 and ****p < 0.0001.
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induced apoptosis via binding miR-204-5p in gastric cancer models
(Yuan et al., 2022). In addition, Liu et al. demonstrated that
lncH19 inhibits proliferation and enhances apoptosis of
nephroblastoma cells by regulating the miR-675/TGFBI axis (Liu
et al., 2022). Accordingly, lncH19 has also been implicated in
sensitization to X-ray and carbon ion irradiation of non-small
cell lung cancer (Zhao et al., 2021), and positively modulates the
sensitivity of glioma cells to radiation-favoring apoptosis (Kuang
et al., 2021). However, some controversial data are present in the
literature regarding the pro-apoptotic role of lncH19. For instance,
the knockdown of H19 in resveratrol-treated cancer cells has been
shown to enhance the effects of resveratrol on apoptosis (Li et al.,
2022). Other evidence of an antiapoptotic role of lncH19 was
provided by Wang et al., who showed that it promotes
proliferation, migration, and invasion, and inhibits apoptosis of
breast cancer cells by targeting the miR-491-5p/ZNF703 axis (Wang
et al., 2020). It is clear that lncRNA H19 and many other cellular
factors may exert a dual role in regulating cell fate (Shermane Lim
et al., 2021).

Our data strongly suggest a pro-apoptotic role of lncH19 in CRC
cells treated with HDACi ITF2357 since lncH19 silencing
profoundly reduced the effects of the compound on cell viability
and apoptosis. To explain the pro-apoptotic role of lncH19 in
HDACi-treated cells, we hypothesized that it may act as an
endogenous competitive sponge for miRNAs (Zhang et al., 2022),
antagonizing miRNAs targeting pro-apoptotic genes. Bioinformatic
analysis revealed that lncH19 sponged 26 validated human miRNAs
directly targeting the pro-apoptotic gene TP53 (Figure 7).

Our data provide evidence that lncH19 knockdown reduces the
expression of TP53 and its pro-apoptotic targets, PUMA and
NOXA. The relationship between lncH19 and TP53 is
controversial in the literature since some papers sustain a
negative control of TP53 by H19 (Yang et al., 2012; Li et al.,

2020; Gan et al., 2022), while others support that lncH19 may
activate the tumor suppressor. Specifically, in accordance with our
findings, we have shown that overexpression of lncH19 enhanced
TP53 expression, whereas H19 silencing exerted the opposite effect
(Zhuang et al., 2021). In addition, Du et al. have found that
lncH19 promotes p53 phosphorylation by a direct interaction, an
effect that results in increased NOTCH-mediated angiogenesis in
mesenchymal stem cells (Du et al., 2023).

Interestingly, our paper also provided evidence that lncH19 is
overexpressed in HCT-116-5-FU-R cells, and we consider it relevant
that the HDACi ITF2357 was capable of overcoming 5-FU
resistance in these cells. Other authors have associated 5-FU
resistance with lncH19 expression (Wang et al., 2018; Yokoyama
et al., 2019; Zhang et al., 2022); here, we suggest that this condition
may be exploited to promote TP53-dependent apoptosis using
HDACi. To date, several lines of evidence indicate that HDACi
can sensitize different tumor types to the effects of diverse
chemotherapeutic agents (Perego et al., 2012; Almeida et al.,
2017; Minegaki et al., 2018; Rodrigues Moita et al., 2020; Roca
et al., 2022).

It has to be considered that the present study refers to CRC cell
lines, with all the limitations to an in vitro study; however, it
represents a molecular basis to proceed with translational studies.
In particular, we provided evidence for the first time that HDACi
ITF2357 is efficacious in a colon cancer model by upregulating
lncH19 and is capable of overcoming 5-FU resistance in highly H19-
expressing CRC cells. These findings need to be validated in vivo for
a possible clinical application in CRC patients displaying 5-FU drug
resistance. In our opinion, the relevant finding was that lncH19,
which canonically acts as an oncogene, may be exploited to favor
apoptosis induced by ITF2357. This implies that high expression of
lncH19 in CRC, especially in conditions of 5-FU resistance, may
facilitate apoptosis induction.

FIGURE 7
Schematic representation of the proposedmodel. The levels of lncH19 increase in CRC cells treated with HDACi ITF2357. This increases the sponge
effect by lncH19 on miRNAs targeting pro-apoptotic genes, including TP53. Overall, treatment with ITF2357 increases lncH19 levels and promotes
activation of apoptosis, thus leading to increased expression of TP53.
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Overall, our data suggest that lncH19 levels may be a useful
parameter to promote epigenetic targeting of colon cancer and
propose ITF2357 as a promising epi-drug in colon cancer treatment.
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