Research Topic

The Amazon River-Ocean Continuum

  • Submission closed.

About this Research Topic

This special feature aims to make connections across both physical and disciplinary boundaries to improve our understanding of the Amazon River's contributions to the global carbon cycle. The Amazon River has the greatest discharge of any global river and accounts for ~18% of all of the riverine input to the ...

This special feature aims to make connections across both physical and disciplinary boundaries to improve our understanding of the Amazon River's contributions to the global carbon cycle. The Amazon River has the greatest discharge of any global river and accounts for ~18% of all of the riverine input to the oceans, more than the next seven largest rivers combined. Its impact on the western tropical North Atlantic includes nutrients, microorganisms, and fresh water fluxes that contribute to enhanced biological activity and carbon sequestration by a plume that can cover more than a million square kilometers of the tropical ocean. These contributions are sensitive to the quantity and composition of the river discharge itself, which is highly influenced by processes occurring in the river watershed, particularly the lower reach. This combined river-ocean continuum creates one of the world's largest environmental gradients on land and in the ocean, across 1000s of km from the Andes highlands and Amazonian forests, through the wetlands of the lower reach to the continental shelf, to the middle of the Atlantic Ocean. As such, the Amazon continuum serves as an ideal system for studying global change.

One of the key unifying conceptual frameworks in aquatic microbiology is the idea that the structure of planktonic communities both affects the biogeochemical cycling of nutrients and is structured by available nutrients. The combination of community structure and nutrient cycling in turn affects the export and sequestration of organic material (the biological carbon pump). Yet, predicting microbial community structure and activities, particularly in response to human forcing, has been elusive.

The feature aims to bring together river scientists and oceanographers to fill the gap between aquatic and marine ecosystems, and extend the tropical river continuum concept through the lower reach of the river to the open ocean. The main objective of this special feature is to improve our understanding of the processes and organisms responsible for carbon and nutrient cycling along the tropical river continuum, starting with the Amazon River, focusing on the lower reach, nearshore, and offshore tropical Atlantic, thus enhancing predictive capabilities under different global change scenarios. The submission of manuscripts examining microbial and biogeochemical processes driving the flow of carbon and nutrients along the continuum is particularly encouraged. Methodological approaches ranging from classical field measurements, to "omics," to modeling, are also encouraged.


Keywords: biogeochemistry, microbial ecology, Amazon River, continuum, plume, tropical, North Atlantic Ocean, carbon cycle, nitrogen fixation, biological pump, global change


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top