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Editorial on the Research Topic

Digital biomarkers in movement disordersitor

Introduction

There is a substantial gap in the assessment of movement disorders in the clinic, and
clinical trials, with the current gold standard involving clinical rating scales performed
by expert clinicians. This not only limits access but these rater-dependent measures are
time-consuming, lack sensitivity to disease progression, have ceiling effects in advanced
disease, and floor effects in the early stages (1). In addition, for therapeutic and disease-
modifying clinical trial readiness in movement disorders, there are increasing calls for
sensitive and rater-independent, multi-modal biomarkers, including quantitative digital
motor biomarkers to quantify the motor examination, identify the earliest signs of disease
manifestation, and obtain a fine-grained monitoring of disease progression (2–5). Such
measures could be deployed remotely (6, 7), increasing access, particularly in underserved
regions, and reducing the sample size, with consequent reduction of time and costs. Such
measures are particularly important in rare or combined movement disorders, where
sample sizes are small, and the presence of overlapping features and phenomenology make
clinical assessment especially challenging. To overcome such obstacles, objective measures
of motor performance using digital technology are currently being studied, and such
measures are now being included in early-adopting clinical trials (8).

Patients’ perspectives and use feasibility

Firstly, patient perspectives on the use of digital technology are of vital importance
to ensure data clinically relevant and important to patients is collected, and as buy-
in from patients is essential for effective deployment (9, 10). To this end, Paccoud
et al. performed a large-scale patient survey regarding the willingness of people with
Parkinson’s disease (PD) to adopt and engage with digital devices. They found a
high level of willingness to use digital technology and acceptance of data sharing.
This study further emphasizes the importance of having a patient-centered focus for
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deploying digital technology and highlighting differences in
preferences across the age range. Further, Evers et al. sought
to identify the perspectives of patients and healthcare providers
(physiotherapists, nurses, and neurologists) regarding personalized
monitoring of PD symptoms. They also conducted focus groups
of these groups, and interviews with neurologists, comparing
currently used monitoring tools to wearable sensors. Barriers
included wanting to avoid focusing on symptoms of PD, and lack
of an easy-to-use tool. Importantly, they identified a mismatch
between priorities in patients and those of providers (which varied
considerably by specialty), highlighting that personalized, patient-
centered strategies will be important in the future.

In tandem with digital assessment of motor symptoms and
movement analysis, digital patient-reported outcome measures,
including digital diaries to assess motor fluctuations and disease
progression in people with movement disorders such as PD, are
important as clinical and research tools (11). Asai et al. compared
an electronic diary to a standard paper diary assessing motor
fluctuations. Electronic diaries were faster and showed a greater
degree of correlation with patient-reported measures of disease
severity, suggesting that electronic diaries may be more accurate
than paper diaries in reflecting motor fluctuations in PD.

Wearable sensors, including those for continuous monitoring
of mobility in daily life, are a burgeoning field in the assessment
of movement disorders (12–14), with considerable interest in PD
(15). Antonini et al. describe the results of two multi-site clinical
studies assessing the performance and wearability of a system called
PDmonitor. The system includes five inertial measurement unit
(IMU) sensors to attach to both wrists and ankles and across
the waist. They assessed meaningful aspects of wearable sensor
use, including acceptable wearability of the device. Measurements
assessing bradykinesia, gait, tremor, freezing of gait, dyskinesias,
and on/off states correlated with clinical evaluations, suggesting
the feasibility of assessing PD motor symptoms. Acceptability of
the technology was good, as well as compliance. Interestingly, the
study indicated that the monitoring device worn on the waist
seemed to be more inconvenient compared to devices worn on
other body parts.

Telemonitoring systems can be used to continuously monitor
patients with movement disorders (16) over long periods, and
for potential eligibility assessment of therapies (17). Konitsiotis
et al. performed a telemonitoring study in 17 people with PD
using a mobile app and five wearable sensors to measure everyday
activities and digital reported outcomes over a 2-year time period.
Telemonitoring positively impacted motor symptom control and
enhanced patient satisfaction, which could improve adherence to
treatment plans.

Gait assessment in the laboratory and
in daily life

Gait analysis is a common research tool for the assessment of
gait disorders, including PD (18). A marker-based infrared camera
setup represents the gold standard for gait analysis. However, this
approach can only be performed in a specialized gait laboratory,
and hence, video-based assessment has evolved over time (19). Yin
et al. used amarkerless integrated camera system, including an RGB

and depth camera, to perform 3D gait analysis. They compared
early-stage PD patients to controls and used machine-learning
approaches. Several typical features distinguished early-stage PD
from controls, an integrated analysis accurately identified PD, and
machine-learning algorithms predicted clinical scores.

Shah et al. compared people with PD with falls and those
without falls, using three inertial sensors. They created models to
predict future fall risk, with the most consistent predictive features
being gait variability, particularly variability of the toe-out angle of
the foot, as well as turning domains, including pitch angle during
mid-swing and peak turn velocity.

Combination of multiple digital
technology systems

Furthermore, digital technology systems (3, 20) can also be
used in combination. Debelle et al. used multi-component digital
technologies to collect mobility and medication data and to assess
feasibility. They assessed people with PD over 7 days with a
single IMU applied to the lower back to assess digital mobility
outcomes, a smartphone to contextualize data, a smartwatch to
assess self-reported medication adherence, and a diary to track
motor complications, as well as a usability questionnaire. They
suggested the feasibility of their approach, with the IMU and
smartphone being usable, although there were issues with the
smartwatch, both technical and related to tremor, or not feeling
reminder vibrations, as well as a lack of familiarity with the system,
indicating potential limitations.

As an attempt to operationalize digital health approaches (21),
Alberts et al. sought to apply digital technologies together as the
Waiting Room of the Future for PD, which could be deployed into
the clinic and integrated into the electronic health record. Their
PD-Optimize paradigm involves digital assessments completed on
an iPad of motor function (manual dexterity and walking speed, a
digital adaptation of the 10m walking test) and cognitive aspects
(visual memory and processing speed), combined with patient-
reported outcomes. They describe the development and integration
of their platform into clinical practice. Insights from the clinical use
of PD-Optimize led to the development of a virtual reality platform
to evaluate instrumental activities of daily living in PD patients.

Atypical Parkinsonism and other
movement disorders

Digital technology has also been applied to atypical
Parkinsonism, with comparison to PD, and as potential
markers of disease progression (22, 23). Dale et al.reviewed
the use of multiple modalities assessing gait and balance (force
plates, 3D motion capture, and inertial sensors) and exercise
interventions in progressive supranuclear palsy (PSP). They
describe cross-sectional studies using wearable sensors comparing
PSP to PD and longitudinal studies assessing PSP, and their
limitations. They suggest potential practical applications, including
abnormal anticipatory posture and the use of wearable sensors for
longitudinal assessment, which may be useful for clinical trials.
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Robertson-Dick et al. performed a first study of gait analysis
in fragile X-associated tremor/ataxia syndrome (FXTAS). FXTAS
has a wide clinical spectrum including tremor, ataxia and
Parkinsonism. Digital measures have sought to identify features
of prodromal disease in FXTAS (24). The authors used digital
gait markers to compare patients with FXTAS, PD, and essential
tremor (ET) using six IMUs under various gait conditions, and
an instrument Timed Up and Go, in addition to cognitive
assessments. Metrics differentiated PD from FXTAS and ET but
none distinguished FXTAS from ET, and suggested that future
study may aid in accurate and timely diagnoses.

Posturography using force plates is a long-established method
to assess static and dynamic balance in vestibular disorders (25) and
movement disorders (26–30). Bao et al. used static and dynamic
posturography and compared PD and multiple system atrophy
(MSA) of the Parkinsonism (MSA-P) and cerebellar (MSA-C)
types. While static posture was similar between groups, all dynamic
posturography parameters differentiatedMSA from PD, with worse
postural control in the medial-lateral direction. MSA patients had a
greater degree of worsening with the eyes closed condition.

The simple use of spiral drawing is a useful assessment for
clinically distinguishing different movement disorders (31), with
increasing research interest in digital automated analysis (32) and
particularly for the severity assessment of tremor disorders (33),
such as ET (34). Toffoli et al. compared patients with PD to
controls using a smart ink pen and utilizing machine learning for
classification. PD patients had reduced fluency, with smoothness,
correlating with clinical scores, and lower, more variable applied
force, with accurate classification of PD compared to controls.

Musician’s dystonia is a debilitating occupational dystonia,
which has received little research assessing motor physiology
(35, 36). Sata et al. take an uncommon case study of musician’s
dystonia involving the lower extremities of a drummer, and
used electromyography of lower extremity muscles to assess
bass drum pedaling and performed muscle synergy analysis
using non-negative matrix factorization. This revealed shared
muscle synergies in data with and without dystonic movement.
Spatially, there was dystonia-specific muscle synergy, hypothesized
to be related to compensatory movement, while temporally there
was earlier over activation in timing, considered related to the
dystonic movements.

Conclusion

We are at the threshold of the accepted use of digital biomarkers
to assess movement and motor disorders in isolation or as a
combined platform and their integration into clinical practice (37).
In addition to a growing literature on sensor-based assessment,

there is also the potential for automated video analysis using
computer vision (38, 39). Such approaches could aid in early
diagnosis (including in prodromal stages), promote more accurate
and earlier differential diagnosis, and track patient symptoms over
time. These advantages hold the potential for more accurate clinical
assessment, which benefits clinical care and research, and may
lower sample sizes, time, and eventually costs of clinical trials.
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Dynamic postural balance
indices can help discriminate
between patients with multiple
system atrophy and Parkinson’s
disease

Wei Bao1†, Puyu Li2†, Ying Yang1, Kai Chen1* and Jun Liu2*

1School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang, China,
2Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University
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Background: Patients with Parkinson’s disease (PD) and those with multiple

system atrophy (MSA) show similar symptoms but have di�erent clinical

treatments. It will be helpful to discriminate between these two kinds of

patients at an early or middle stage. The purpose of this study is to highlight

the di�erences in posturographic characterization between patients with PD

and those with MSA during quiet standing and perturbed standing.

Methods: A total of clinically diagnosed 42 patients with PD and 32 patients

with MSA participated in the experiment. Patients were asked to first stand on

a static balance force platform and then on a dynamic balance (medial-lateral

rocker) force platform to measure the center of pressure (COP) trajectory

during an eyes-open (EO) state. The posturographic parameters were obtained

under the two standing conditions for statistical analysis.

Results: Four posturographic variables were calculated and analyzed, namely,

the standard deviation of COP position (SD), sway path of COP position (SP),

an elliptical area covering the 95% COP position trajectory (EA), sway path of

COP position (SP), and integral area of the power spectral density at 0–0.5Hz

frequency band (PSD). Except for variable EA, the other three variables are all in

the medial-lateral (ML) direction. In the static balance experiment, there were

no significant di�erences between the four variables between patients with

PD and those with MSA. However, in the dynamic balance experiment, the

obtained four variables all presented significant di�erences between patients

with PD and those with MSA.

Conclusion: The dynamic posturographic variableswith significant di�erences

between patients with PD and those with MSA imply that patients with

MSA have worse postural control ability in the medial-lateral (ML) direction

compared to patients with PD. The obtained dynamic indices may help

supplemental clinical evaluation to discriminate between patients with MSA

and those with PD.

KEYWORDS

Parkinson’s disease (PD), multiple system atrophy (MSA), balance control, center of

pressure (COP), posturography

Frontiers inNeurology 01 frontiersin.org

9

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2022.1089439
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2022.1089439&domain=pdf&date_stamp=2023-01-09
mailto:kchen@hdu.edu.cn
mailto:lj11128@rjh.com.cn
https://doi.org/10.3389/fneur.2022.1089439
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2022.1089439/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Bao et al. 10.3389/fneur.2022.1089439

Introduction

Patients with Parkinson’s disease (PD) and those with

multiple system atrophy (MSA) have many overlapping

symptoms clinically, such as tremors, rigidity, bradykinesia,

and posture instability, and they all have relatively large

spontaneous sways when standing (1, 2). Movement disorders

can be exceedingly difficult between differential diagnoses of

neurodegenerative diseases, such as patients with PD and

patients with MSA, who are very easily misdiagnosed (3).

Accurate diagnosis is very important for correct treatment.

Patients with PD are normally diagnosed by senior movement

disorder specialists based on the Movement Disorder Society

(MDS) diagnostic criteria for PD, which was drafted by Postuma

et al. (4). MSA was diagnosed based on a novel set of diagnostic

criteria from MDS, which was drafted by Wenning et al. (5).

The new MSA diagnostic criteria aim at improving diagnostic

accuracy, particularly in early disease stages.

Postural instability (PI) is one of the cardinal signs in

the clinical diagnostic criteria of Parkinson’s disease. Clinical

differentiation ofMSA typically relied on postural instability (PI)

within 3 years of motor onset by neurologists (6). However, the

differential diagnosis of neurodegenerative movement disorders

can be exceedingly difficult (1). For the diagnosis of MSA,

pathologically confirmed dementia with Lewy bodies (DLB)

is the most common misdiagnosis, followed by progressive

supranuclear palsy (PSP) and PD (7). According to Koga’s

report, only 62% of MSA patients’ clinical diagnosis was

confirmed at autopsy (7). Miki et al. researched and presented

a clinicopathological study involving 203 people, of whom

78.8% were correctly diagnosed with MSA by pathological

confirmation (8). In another study of surveys that confirmed

MSA by autopsy, the correct diagnosis was 81.2% (9). On the

contrary, the diagnosis of Parkinson’s disease continues to be

challenging, with misdiagnosis rates as high as 20–30% in the

early stages (10). Such diagnostic inaccuracy is largely due to the

failure to recognize atypical parkinsonian disorders (APDs) (10).

The presence and severity of PI among patients with Parkinson’s

are commonly evaluated by the number of clinical tests. The

most widely used tests for PI are the TUG test, the Tandem

Gait test, and the pull test (11, 12). The pull test has been

incorporated into theMDS-UPDRS scales (13). Tandem gait and

TUG tests were used to distinguish APDs from PD (14). Though

PI could not be detected in early PD patients without symptoms

through these clinical tests, subclinical posture instability could

be evaluated by objective assessments (15).

An objective method for the evaluation of posture stability

in the clinic is to observe the patient’s standing posture

through posturography (16). Some subclinical PI symptoms

have been shown through objective assessment of posturography

in patients without any visible symptoms of PI (17). Panyakaew

et al. compared the static standing PI of patients between the PD

group andMSA group under eye open (EO) and eye closed (EC)

conditions by analyzing the posturographic parameters (13). In

the state of EC, the elliptical area covering the trajectory of the

COP position in patients with MSA was larger than that in

patients with PD. However, in the state of EO, there was no

salient distinction. When comparing patients with PD, visual

conditions have more impact on the standing posture of patients

with MSA (18). But the studies comparing spontaneous sway

between patients with PD and those with MSA under visual

deprivation conditions have less practical meaning. In clinical

practice, the standing posture of patients is normally evaluated

with one eye open (EO). When patients with PD are in a state

of EO, dynamic balance experiments can effectively distinguish

the postural differences between patients with PD and healthy

controls, which are often difficult to distinguish under the static

balance condition (19). Dynamic balance experiments can also

help to evaluate the motor adaptability of patients with PD (20).

When a patient is standing on a dynamic force platform, the

body is forced to follow the swing plane to perform a swing

movement. In this disturbing environment, the standing person

needs to increase their postural control tomaintain body balance

(21). The severity of postural sway in MSA should be shown to

be worse than that of PD due to a more widespread degeneration

in MSA (22). It is thus hypothesized that patients with PD and

those with MSA may exhibit distinct PI features in the state of

EO under dynamic standing.

The direction of PI among patients with PD and those

with MSA has also been studied. Kamieniarz et al. found that

the PI of patients with PD is mainly reflected in the anterior-

posterior (AP) direction (2). In clinical trials, patients with

MSA showed PI in the medial-lateral (ML) direction, while

patients with PD did not present such features (23). Specifically,

patients with MSA often have a broad stance width (24), which

indicates that patients withMSA have more instability in theML

direction. Thus, it is better to use the tandem gait test for the

detection of MSA (25). Patients with PD preserved their balance

in the medial-lateral direction, so that many patients with PD

are still able to ride their bicycles, even in the face of severe

walking difficulties (26). Researchers found that patients with

MSA showed a lack of coordination ability and postural defects

in the ML direction in a cycling experiment (27). The previous

studies demonstrated that the analysis of the posturographic

characterization of patients with MSA should be focused on the

ML direction, and the dynamic swing should also be in the ML

direction in order to enhance the interference in the dynamic

balance experiment.

The purpose of this study was to compare the differences

in posturographic characterization between patients with PD

patients and those with MSA under static and dynamic

balance conditions at the state of EO. The obtained distinct

posturographic features may help screen out patients with MSA

from patients with PD during the stage of onset.
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Methods

Participants

A total of 74 patients participated in the experiment.

They were recruited from the outpatient clinics of the

neurological department at Runjin Hospital in Shanghai

between December 2019 and November 2020. Of them, 42

were patients with PD, and 32 were probable patients with

MSA. The average age of patients with PD was 68.2 ± 7.1

years; the average age of patients with MSA was 64.8 ± 10.1

years. All patients performed assessments on the Hoehn &Yahr

(H&Y) scale and the MDS-Unified Parkinson’s Disease Rating

Scale (MDS-UPDRS). Other examinations, such as the Berg

Balance Scale (BBS) assessment, the Minimum Mental State

Examination (MMSE), and the Gait and Falls Questionnaire

(GFQ), were also recorded. Patients were excluded once

they met one of the following conditions: H&Y stages 4–5,

a history of severe neurological and psychiatric disorders,

patients with significant cognitive impairment (MMSE < 24)

or unable to complete the questionnaire independently, severe

medical conditions preventing the patient from completing

the experiment, there existing implantable materials such as

intracranial stents, pacemakers, coronary stents, and cochlear

implants; pregnant or lactating women. All subjects were asked

not to take sedatives. All subjects were assessed at least 8 h

after the last dose of anti-parkinsonian medications used to

reduce the impact of dopaminergic medications (28). PD was

diagnosed by senior movement disorder specialists based on

the Movement Disorder Society (MDS) diagnostic criteria

for PD (4). In the course of PD assessment, secondary causes

(drug-induced, inflammatory, toxin-induced, and vascular

parkinsonism), parkinsonism with other neurodegenerative

diseases (progressive supranuclear palsy, multiple system

atrophy, cortical basal ganglia degeneration, Wilson’s disease,

etc.), and other neurological diseases, such as stroke, were

excluded. MSA was diagnosed based on the diagnostic

criteria for MSA, which were drafted by Gilman et al. in

2008 (6). Probable patients with MSA who participated in

the experiment were categorized as MSA-P with predominant

parkinsonism but no cerebellar features or as MSA-C with

predominant cerebellar signs but mild or no parkinsonism

(29). The baseline clinical characteristics of all subjects

were recorded by two doctors with more than 10 years of

clinical experience. This study was conducted in accordance

with the guidelines of the Helsinki Declaration of the

World Medical Association (2000) and was approved and

supervised by the Ethics Committee of Shanghai Ruijin

Hospital (approval No. LWEC2019017). After receiving

a detailed description of the experiment, all participants

signed informed consent forms. The patients’ demographic

information is listed in Table 1.

Device

The patients participating in the experiment needed to stand

on a platform, 60 cm × 40 cm in size. The platform is a self-

developed dynamic COP measuring system comprised of an

AMTI (model bp400600, Advanced Mechanical Technology

Inc., MA, USA) force board, a data collector, a rocker controller,

and a host computer. A detailed description of the system is

provided by Chen et al. and Chang et al. (30, 31). The frequency

of data acquisition is set at 500Hz. The system can work in either

a stationary or dynamic state. One state is that the platform is

stationary in the horizontal plane, in which the x-axis is in the

ML direction and the y-axis is in the AP direction. Another state

is that the platform rotates around the y-axis at a small angle

(within ±4◦) and swings periodically along the ML direction

with a frequency of 1Hz. A schematic diagram of the dynamic

force platform is shown in Figure 1.

Experimental procedures

All of the patients participated in the static balance

experiment and the dynamic balance experiment. In the static

balance experiment, the patient stood barefoot naturally and

with shoulder width apart, hands drooping naturally. The range

of the distance between heels was 20 ± 3 cm, and the range

of the angles of the feet with respect to the AP axis was 20 ±

2◦. The patient gazed at a fixed eye-level mark 3m in front. In

the dynamic balance experiment, the patient’s standing posture

was the same as that of the static balance experiment. After

the patient stood on the platform for 20 s, the platform started

to swing in the ML direction. In both experiments, before

recording, the patient was asked to stand for 30 s to confirm

that the COP signals were maintained at a relatively stable level.

The recording period was set to 70 s for each state, with the

first 5 s allocated for the fade-in, the next 60 s for the formal

test, and the last 5 s for the fade-out. To maintain the reliability

of the collected data, each patient’s test was repeated three

times, and the average value was taken during the calculation of

posturographic parameters. The interval between each patient’s

tests was 5min, during which time the patient left the platform

for relaxation. In the experiment, if the patient had difficulty

maintaining balance, the experiment was terminated.

Analysis of the COP parameters

Before the statistical analysis, the COP signal obtained by

the force platform was processed by fourth-order Butterworth

low-pass filtering, and the cutoff frequency was set to 10Hz. The

filtered signal was calculated by the self-developed MATLAB

algorithms. In the balance test, the coordinate origin of the
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TABLE 1 Demographic data of the PD and MSA groups.

Variable PD (N = 42)
(mean ± std)

MSA (N = 32)
(mean ± std)

MSA-C (N = 16)
(mean ± std)

MSA-P (N = 16)
(mean ± std)

Age 68.2± 7.1 64.8± 10.1 65.5± 10.69 64.1± 8.1

Disease duration (Y) 4± 3.28 3.3± 2.76 3.4± 2.86 3.2± 2.5

Sex (% Femail) 22(52%) 14(44%) 7(44%) 7(44%)

Body weight (kg) 63.2± 13.6 67.3± 12.8 65± 11.2 69.6± 13.8

Height (cm) 164± 7.29 166± 9.4 165± 10.4 167± 8.4

Body mass index 23.5± 2.9 24.26± 2.58 23.9± 1.58 24.62± 3.58

H&Y score 2.02± 0.57 2.6± 0.57 2.7± 0.77 2.5± 0.37

MDS-UPDRS score (total) 55.6± 21.9 76.65± 24.2 78.2± 22.2 75.1± 26.2

Berg Balance Scale 51.95± 4.1 41.23± 10.7 40.1± 11.7 42.36± 11.7

MMSE 27± 1.95 25.88± 2.14 25.2± 1.1 26.56± 2.1

GFQ 20± 11.8 22± 8.19 22.5± 6.2 21.45± 9.1

BBS, Berg Balance Scale; H&Y, Hoehn-Yahr Scale; MDS-UPDRS, MDS-Unified Parkinson’s Disease Rating Scale; PD, Parkinson’s disease; MSA, multiple system atrophy; GFQ, Gait and

Falls Questionnaire.

FIGURE 1

Schematic diagram of the dynamic force platform. (A) The patient stands still and upright on the stationary force platform with bare feet, with

the y-axis in the AP direction and the x-axis in the ML direction. (B) The patient stands upright and barefoot on the dynamic force platform. The

platform swings periodically around the y-axis. The patient needs to maintain body balance during the swinging process. The z-axis is the

vertical direction when the patient stands. θ is the instantaneous swing angle of the platform. ML, medial-lateral; AP, anterior-posterior.

COP signal was the central position of the force plate. Since

the starting point of each collected COP signal was different for

each test, the average coordinate values of COP displacement

(in the x and y directions) were taken as the offset values

and were removed by the program algorithm before the actual

calculation. In the dynamic balance test, the force platform

swings periodically around the y-axis with an instantaneous

swing angle θ (Figure 1). The x and y coordinates of the COP

position under dynamic balance can be calculated in real-

time through a coordinate transformation matrix, obtaining the

instantaneous swing angle θ by counting the control pulses (31).

After obtaining the position coordinates of the COP under

static balance and dynamic balance, the relevant posturographic

parameters were calculated. There are many parameters related

to posturographic characterization (32). In this study, four

spatiotemporal variables were chosen: (1) the standard deviation

(SD) of COP displacement, (2) the elliptical area covering the

95% confidence of COP position trajectory (EA) (33), (3) the

sway path of COP position, and a frequency domain variable,

(4) power spectral density (PSD) at 0–0.5Hz frequency band

(34). Table 2 lists the specific expressions of the four parameters.

The calculation formulas for those variables were provided

in the Supplementary material. Although the posturographic

parameters were calculated in both the AP and ML directions,

the results showed that only the parameters in the ML direction

presented significant differences between the MSA and PD

groups. Therefore, except for EA, the other three parameters

listed in Table 2 are in the ML direction by default.
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TABLE 2 Variables used in the analysis of the COP displacement.

Variable Description

SD Standard deviation of COP position in ML direction

EA Ellipse Area covering the 95% confidence of COP position

SP Sway Path of COP position in ML direction

PSD Integral area of power spectral density at 0–0.5Hz
frequency band in ML direction

COP, the center of pressure; ML, medial-lateral.

Statistical analysis

After obtaining the COP signal from the tester, the statistical

analysis was carried out using the IBM SPSS Statistics 25.0

software. The Shapiro–Wilk statistic was used to test the

normality of the distribution of all variables. Because the data

do not strictly follow a normal distribution, differences among

the MSA group and PD groups were evaluated using the Mann–

Whitney test for post hoc pair-wise tests for variables. To

compare between the MSA-C, MSA-P, and PD groups, Kruskal–

Wallis rank sum test was performed with Mann–Whitney tests

for post hoc pair-wise comparisons. The significance level was set

to 0.05. The correlations between the variables and the patient’s

clinical scale (H&Y) were calculated with Spearman’s rank test.

To determine the sample size, a power analysis was performed

based on the previously published studies betweenMSA and PD.

A sample size of at least 15 subjects per group was identified to

detect an effect size of 0.5 with a power of 0.8 (35). A sample size

of at least 15 subjects per group was needed.

Results

We present the results of the statistical analysis of the four

posturographic parameters. Subscripts _st and _dy are used to

represent the conditions of static balance and dynamic balance,

respectively. Table 3 lists the statistical results of the parameters

obtained from the MSA patient group and the PD patient group

in both the static and dynamic balance experiments. There were

no significant differences between the PD and MSA groups

with the four posturographic parameters in the static balance

experiment. However, in the dynamic balance experiment, there

were significant differences in these same parameters between

theMSA group and the PD group. The variable PSD_dy (p-value

= 0.006, effect size d value= 0.52) displays the largest difference.

Table 4 lists the statistical results between the MSA-C, MSA-

P, and PD groups in both the static and dynamic experiments.

Again, there were no significant differences between the PD,

MSA-C, and MSA-P groups with all four static parameters.

However, these four same parameters in dynamic balance all

showed significant differences between the PD group and the

TABLE 3 Statistical results of posturographic variables between PD

and MSA groups.

State of
EO

PD (N = 42) MSA (N= 32) MSA vs. PD

Variable Mean ± std Mean ± std P-value

Static

SD_st 0.007± 0.0082 0.0069± 0.0048 0.398

EA_st

(cm2)
5.37± 12.25 9.1± 25.43 0.071

SP_st (cm) 131.48± 139 151± 95.7 0.703

PSD_st 0.599± 1.24 0.217± 0.142 0.263

Dynamic

SD_dy 0.026± 0.0089 0.037± 0.014 0.001∗∗

EA_dy

(cm2)
52.1± 27.1 83.3± 57.13 0.002∗∗

SP_dy (cm) 656.28± 215 835.13± 315.7 0.001∗∗

PSD_dy 6.93± 5.47 12.96± 1.67 0.001∗∗

∗Indicates p-value < 0.05, ∗∗Indicates p value < 0.01. PD, Parkinson’s disease; MSA,

multiple system atrophy; st, static; dy, dynamic.

MSA-C group, and two variables (SD_dy and EA_dy) present

significant differences between the PD and the MSA-P groups.

Figure 2A shows the typical elliptical area (EA_st) of a

sample PD patient and a sample MSA patient with EO in the

static balance experiment. The value of the blue elliptical area

(the patient with PD) is similar to the value of the red elliptical

area (the patient with MSA). Figure 2B depicts the elliptical area

(EA_dy) of the same patient with PD and the same patient with

MSA in the dynamic balance experiment. The EA_dy value of

the patient with PD (46.13 cm2) was significantly smaller than

that of the patient with MSA (92.91 cm2).

Figure 3 shows processed sample data of a patient with PD

and a patient with MSA in the form of power spectral density of

COP changes with the frequency of COP. The variable PSD is

displayed in the figure as the integral area of the corresponding

curve up to the 0.5Hz frequency band. In Figure 3A of the static

balance experiment, there is little difference in the integral area

under the PSD curve (PSD_st) between the PD sample and the

MSA sample. However, in Figure 3B of the dynamic balance

experiment, a salient difference can be seen in the variable

PSD_dy between the PD sample and the MSA sample.

Table 5 lists Spearman’s rank correlation (rho) between the

subject’s posturographic variable and H&Y scale score. It can be

seen that the dynamic balance variable sway path (SP_dy) in the

MSA group is most relevant (rho=−0.484).

Discussion and conclusion

In this study, the differences in postural balance between

Parkinson’s disease and MSA were studied. The posturographic

characterization of PD and MSA groups under both the static
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TABLE 4 Statistical results of posturographic variables MSA-C, MSA-P, and PD groups.

State of EO PD (N = 42) MSA-C (N = 16) MSA-P (N = 16) PD vs MSA-C PD vs MSA-P MSA-C vs MSA-P

Variable Mean ± std Mean ± std Mean ± std P-value P-value P-value

Static

SD_st 0.007± 0.0082 0.007± 0.002 0.0067± 0.008 0.554 0.128 0.254

EA_st (cm2) 5.37± 12.2 12.9± 4.78 5.29± 70 0.144 0.156 0.696

SP_st (cm) 131.48± 139 162.68± 44 139.9± 155 0.59 0.486 0.752

PSD_st 0.599± 1.24 0.17± 0.18 0.26± 0.67 0.135 0.16 0.8

Dynamic

SD_dy 0.026± 0.0089 0.039± 0.013 0.035± 0.016 0.001∗∗ 0.035∗ 0.235

EA_dy (cm2) 52.1± 27.1 89.8± 72.8 76.8± 36.7 0.008∗∗ 0.028∗ 0.669

SP_dy (cm) 656.28± 215 944± 315 726± 284 0.001∗∗ 0.159 0.094

PSD_dy 6.93± 5.47 16.06± 10 9.87± 8 0.001∗∗ 0.044∗ 0.08

∗Indicates p-value<0.025, ∗∗Indicates p-value<0.01. PD, Parkinson’s disease; MSA, multiple system atrophy; N, number; st, static; dy, dynamic.

FIGURE 2

Schematic diagram of parameter EA of one PD patient and one MSA patient. (A) Static balance experiment. (B) Dynamic balance experiment. PD,

Parkinson’s disease; MSA, multiple system atrophy; COP, the center of pressure; ML, medial-lateral; AP, anterior-posterior.

balance and the dynamic balance conditions at the state of EO

was represented by three spatiotemporal parameters, namely,

SD, SP, and PEA, and one frequency domain variable, namely,

PSD. The four parameters in the static balance experiment show

no significant differences between the PD and the MSA groups

at the state of EO. However, significant differences in the four

parameters between the PD and theMSA groups were presented

in the dynamic balance experiments.

The posturographic variables, such as standard deviation

(SD), sway path (SP), and elliptical area (EA), are all

spatiotemporal measures of the COP trajectory. A previous

study reported that in the EC state, the elliptical area of the

COP displacement trajectory with patients with MSA under

static standing was statistically larger than that with patients

with PD. The different results under EO and EC conditions

indicated that the effect of vision block on postural instability

in patients with MSA is greater than that in patients with

PD (18). The larger elliptical area covering the COP position

trajectory usually indicates that the body has a poorer ability

for postural control (36). The current results showed no

significant differences between theMSA group and the PD group

under the static balance condition, which implies that such

spatiotemporal variables are normally inadequate to differentiate

the postural control abilities between patients with MSA and

those with PD during quiet standing in the EO state. In the

dynamic balance experiment, the patients needed to respond

to the coordination with the swinging platform along the ML

direction. The experimental results show that the spatiotemporal
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variables of patients with MSA are statistically significantly

larger than those of the PD group. Since patients with MSA

usually have a broad-based stance and more instability in the

ML direction, it is more difficult for patients with MSA to adjust

and coordinate balance in the ML direction under interference,

thus resulting in larger spatiotemporal variables. Other clinical

studies also reported that the feature of ML balance impairment

FIGURE 3

PSD analysis diagram of a sample PD and a sample MSA patients’

COP signal in the EO state. (A) Static balance experiment. (B)

Dynamic balance experiment.

from various atypical parkinsonians like MSA can be revealed

from simple observation tests (23). But in the early stages of

the patient’s illness, some subclinical posture instability could

be difficult to evaluate without objective assessments (17).

This study may provide an objective measure to assist these

observation tests.

The power spectra of the COP time series provided more

information about the structure of the COP signal. The power

spectral density of the COP signals is mainly concentrated

below the 0.5Hz frequency range, which is represented by the

variable PSD. In our study, the results show that the value of

PSD_dy for the MSA group was statistically higher than that

of the PD group in the dynamic balance experiment, whereas

no statistical differences in PSD_st were seen between those

two groups in the static balance experiment. It can be deduced

that COP oscillations were more exacerbated in MSA than PD

groups in the dynamic standing along the ML direction. This

is possibly caused by a more widespread degeneration in MSA

than in PD groups. The frequency below 0.5Hz can reflect

an oscillation that was part of the descending drive to the

motor neuron pool (37, 38). A larger oscillation in the lower

frequency band indicates increased activity within the relevant

postural subsystem, either due to pathology or compensatory

efforts. When the sway amplitude in the ML direction exceeds

a threshold range, the intermittent control mechanism will be

triggered (39). It has been reported that COP oscillations below

0.5Hz were exacerbated in an early and moderate PD relative

to the healthy group in the state of EO (40). Since all the

participants were in an early or moderate stage of the disease,

balance impairments in the ML direction were not obvious

and could not be discriminated against during static standing.

The coordinative disorder was amplified when standing on the

dynamic platform, resulting in a significant difference in the

variable between the two groups of patients.

TABLE 5 Spearman’s rank correlation (rho) between subjects’ posturographic variables and H&Y scale score.

State of EO PD (N = 42) MSA (N = 32) MSA-C (N = 16) MSA-P (N = 16)

Variable Rho P-value Rho P-value Rho P-value Rho P-value

Static

SD_st −0.088 0.611 0.14 0.462 0.373 0.189 0.122 0.654

EA_st (cm2) −0.077 0.646 −0.154 0.417 0.656 0.011∗ −0.017 0.95

SP_st (cm) −0.007 0.966 0.219 0.571 0.372 0.19 −0.063 0.816

PSD_Power_st 0.174 0.318 0.192 0.621 0.194 0.1 0.094 0.2

Dynamic

SD_dy 0.112 0.48 0.405 0.026∗ 0.302 0.295 0.011 0.968

EA_dy (cm2) 0.171 0.278 0.327 0.077 0.089 0.763 −0.075 0.783

SP_dy (cm) 0.119 0.453 0.484 0.007∗∗ 0.195 0.504 0.093 0.731

PSD _dy 0.04 0.8 0.472 0.008∗∗ 0.337 0.239 0.137 0.613

∗Indicates p-value<0.05, ∗∗Indicates p-value<0.01. PD, Parkinson’s disease; MSA, multiple system atrophy; EO, eyes-open, COP, the center of pressure; st, static; dy, dynamic.
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Furthermore, the four parameters were compared between

MSA-C andMSA-P patients. The four COP parameters of MSA-

C patients were statistically larger than those of MSA-P patients

in the dynamic balance experiment. Generally, the cerebellum

is severely damaged in MSA-C patients, which can result in a

worse postural control ability compared with MSA-P patients.

The variable PSD_dy shows the largest difference between MSA-

C and MSA-P, with a significant difference (p-value = 0.016).

This is also consistent with the previous study by Li et al., who

found that MSA-C can be effectively distinguished from MSA-P

by relying on PSD (41). The staging of the functional disability

associated with Parkinson’s disease is commonly evaluated

through H&Y scales (42). The H&Y scales have been validated

not only in PD but also in MSA for the assessment of severity

and disability. In our study, the participants in the experiment

are in the early or middle stages, and the corresponding H&Y

scale is 1–3 levels. Spearman’s rank correlation was performed

between the four posturographic variables and H&Y scales for

both the PD and MSA groups. SP_dy (rho = 0.484, p-value =

0.007) was found to be the most relevant variable in the MSA

group. This parameter may be used as a marker for studying the

degree of disability in MSA.

We studied the quantitative posturographic parameters of

body balance in a PD group and an MSA group under the

conditions of static balance and dynamic balance. The postural

balance indices with significant differences in the dynamic

balance condition reflected that the postural control ability of

patients with MSA is poorer in the ML direction compared to

patients with PD. Those indices can be used to help distinguish

between patients with MSA and patients with PD.
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Spiral drawing analysis with a smart
ink pen to identify Parkinson’s
disease fine motor deficits
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1Nearlab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy,
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Introduction: Since the uptake of digitizers, quantitative spiral drawing assessment

allowed gaining insight into motor impairments related to Parkinson’s disease.

However, the reduced naturalness of the gesture and the poor user-friendliness of

the data acquisition hamper the adoption of such technologies in the clinical practice.

To overcome such limitations, we present a novel smart ink pen for spiral drawing

assessment, intending to better characterize Parkinson’s disease motor symptoms.

The device, used on paper as a normal pen, is enrichedwithmotion and force sensors.

Methods: Forty-five indicators were computed from spirals acquired from 29

Parkinsonian patients and 29 age-matched controls. We investigated between-group

di�erences and correlations with clinical scores. We applied machine learning

classificationmodels to test the indicators ability to discriminate between groups, with

a focus on model interpretability.

Results: Compared to control, patients’ drawings were characterized by reduced

fluency and lower but more variable applied force, while tremor occurrence was

reflected in kinematic spectral peaks selectively concentrated in the 4–7Hz band. The

indicators revealed aspects of the disease not captured by simple trace inspection, nor

by the clinical scales, which, indeed, correlate moderately. The classification achieved

94.38% accuracy, with indicators related to fluency and power distribution emerging

as the most important.

Conclusion: Indicators were able to significantly identify Parkinson’s disease motor

symptoms. Our findings support the introduction of the smart ink pen as a

time-e�cient tool to juxtapose the clinical assessment with quantitative information,

without changing the way the classical examination is performed.

KEYWORDS

smart ink pen, spiral analysis, Parkinson’s disease, movement disorders, eHealth

1. Introduction

Handwriting analysis is considered a promising biomarker for PD assessment, as
impairments in the gesture can occur before the onset of typical symptoms (1). For this reason,
handwriting tasks performed on paper have been introduced, as they are simple and fast to
perform (2). Archimedes’ spiral can be a useful task in the clinical PD evaluation, since its shape
can elicit tremor in upper limbs (2, 3). However, the evaluation concerns only the produced
traces, without focusing on the underlying movements.
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Since the uptake of digitizers able to capture the coordinates of
the pen on the screen and the exerted pressure, a huge effort had
been put into quantitative spiral analysis (4), resulting in a series of
statistical and classification studies. Statistical studies aim at finding
spiral-derived features characterizing the PD population and report
a reduced velocity and applied pressure in the advanced stage of the
disease (5), a decreased fluency during OFF state (6), and an impaired
spatiotemporal drawing execution (7). Other work quantified the
effect of medication in alleviating bradykinesia and tremor amplitude
(8). Moderate correlations were found between UPDRS III and its
sub-scores, and indicators measuring spatial irregularity (9), velocity
variability (10), and pressure (5). Classification studies, starting from
spiral-derived features, exploit machine learning (ML) algorithms
to train models aiming at distinguishing PD patients from healthy
controls (11–13). The best results, obtained from 62 PD patients and
15 controls, reached classification accuracies above 95% (14–16).

Although the examined literature highlights the potential of
quantitative spiral assessment for the objective characterization of
motor symptoms, some limitations hamper its adoption. These limits
include the undermined naturalness of writing performed on the
small and frictionless surface of a digitizer, leading to an altered
execution (17). Most studies tried to restore the natural feeling using
a sheet of paper over the device surface, but inaccuracies in pen lifts
can arise due to the different pressure required by the twomedia (18).
Moreover, the use of digitizers during clinical practice may not be
straightforward and time-efficient, often requiring technical support
of an operator.

To overcome such limits, this work aims at computing indicators
from spirals drawn using an innovative smart ink pen (19–22) to: i)
discriminate between PD patients and age-matched healthy controls
using both statistical and ML methods; ii) assess the correlation with
PD clinical scales. The pen is sensorized with an inertial measurement
unit and a force sensor, and is designed to write on paper, allowing
the quantitative assessment of handwriting tasks while preserving the
gesture naturalness. The device works like a normal pen and could be
employed in the clinical routine without requiring technical support
or increasing the time spent for the visit.

2. Method

2.1. Smart ink pen

The smart ink pen (19) looks like a normal ink pen (height
147mm, maximum diameter 14.65mm weight 48 g), but it is
enriched with a load cell connected to the pen tip—to record the force
exerted on the writing surface—and with tri-axial accelerometers and
gyroscopes—to detect motion and tremor. It includes a memory and
a communication unit to store and transmit data through Bluetooth
Low Energy. The sampling frequency is set to 50 Hz.

2.2. Participants

PD patients were enrolled by IRCCS Istituti Clinici Scientifici
(ICS) Maugeri (Milan, Italy). Patients’ inclusion criteria were:

• Age ≥ 18 years;
• PD diagnosis;

• Mini Mental State Examination (MMSE) ≥ 24;
• Absence of disorders impairing handwriting, other than PD.

Politecnico di Milano (Milan, Italy) recruited the age-matched
control group, whose inclusion criteria were:

• Age ≥ 18 years;
• MMSE ≥ 24;
• No musculoskeletal, neurological, or cardiovascular disorders

impairing handwriting.

Age, gender, handedness and MMSE were collected from both
groups. Patients were evaluated through the UPDRS (23) and the
Hoehn and Yahr (H&Y) scale (24). From the UPDRS, the Jankovic
(25), Schiess (26) and Kang (27) scores for PD motor symptoms
classification were derived. High scores correspond to a tremor
dominant patient, low scores to an akinetic-rigid (26, 27), or affected
by postural instability patient (25), while medium scores to a
mixed (26, 27) or indeterminate (25) one. Participants signed an
informed consent prior to participation in the study. The protocol
was approved by the Ethical Boards of ICS Maugeri (2457 CE) and
Politecnico di Milano (n. 10/2018), for the respective recruited group.

2.3. Acquisition protocol

Subjects were asked to trace a spiral with the smart ink pen,
following a template printed on a sheet of paper, possibly avoiding
lifting the pen. The operator asked the subject to perform the spiral
drawing (maximum diameter 6 cm, five loops separated by 1.2 cm)
starting from the center and following the template line. Subjects
were sitting on a standard chair, in front of a desk (height 72 cm) and
instructed to assume an ergonomic posture, the feet resting on the
floor. Patients performed the tasks under the ON medication state
and, given the asymmetry of PD symptoms especially in the early
stage, both hands were tested. Controls performed the task only with
the dominant hand. All subjects performed the test twice.

2.4. Data analysis

Data analysis was performed in Matlab
R©

R2021b for the
indicator extraction and the statistical analysis, while ML algorithms
were implemented in Python

R©
3.8.10.

2.4.1. Indicator extraction
This phase included the pre-processing of the raw signals,

followed by the extraction of 45 relevant indicators, divided
into 7 domains. The drawing product was not considered in
the analysis. Kinematic signals were band-pass filtered (2–12Hz)
with a zero-phase, 4th-order Butterworth filter. The following
subscripts will appear in the names of the indicators extracted from
kinematics, to clarify which signal was used for the computation:
“_A” for acceleration; “_G” for angular velocity; “_G_filt” for
angular velocity filtered around the spectral peak, “_T” for tremor
contribution [extracted from the acceleration through empirical
mode decomposition (28)].
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- Kinematics. Indicators in this domain reflect the spatiotemporal
behavior of the drawing gesture. The time (Execution_Time)
and the number of strokes (Strokes_Num) required to complete
the drawing were computed. The average and the variation
coefficient of the difference between consecutive extrema in
angular velocity (ConsPeakDiff_G_Avg and ConsPeakDiff_G_CV)
were extracted (29).

- Force. The force generated while drawing is a key feature
of the disease (4, 30). The average and variation coefficient
of the exerted force were extracted (F_Avg and F_CV). To
measure force variability in terms of amplitude, we considered
the overshoot (F_OVS) (12), which is the difference between
maximum and median value, and the difference in consecutive
peaks (ConsPeakDiff_F_Avg and ConsPeakDiff_F_CV) (29). We
included the number of changes in force in the time unit (NC_F),
which quantifies the oscillations in the force profile (12).

- Smoothness. These indicators are related to the fluency in the
drawing execution, which is relevant in characterizing PD (30).
The number of extrema in kinematic signals (NC_A, NC_G) was
retained (12). The presence of high frequency movements was
investigated through the Spectral Arc Length (SPARC_G) (31); this
indicator was computed considering different thresholds (10, 20,
30, 40, 45, and 50) referring to the percentage of the peak value
considered for noise removal. The logarithmic dimensionless
squared jerk was computed for acceleration (LDLJ_A) and angular
velocity (LDLJ_G) (32).

- Tilt. The domain refers to the inclination angle of the pen and
was quantified by its average (Tilt_Avg), variance (Tilt_Var), and
coefficient of variation (Tilt_CV).

- Frequency. This domain comprises indicators that describe
the frequency content of the kinematics. We computed the
Power Spectral Density (PSD) estimates through Welch’s method
(window length = 500 samples; overlap = 50%; frequency
resolution = 0.1Hz). Given the PSD, the relative power was
computed for both acceleration and angular velocity (RPW_A and
RPW_G) in different frequency bands (0–2Hz; 2–4Hz; 4–7Hz,
and 8–12Hz). For angular velocity, the maximum relative power
in an interval around the peak was computed (RPW_G_filt_max).
The mean harmonic power (MHP_T) (33) was implemented to
measure the presence of high frequency components.

- Amplitude. These indicators measure the amplitude of kinematic
signals in time and frequency. The root mean square of
the acceleration (RMS_A) and angular velocity (RMS_G) was
computed on 10-s segments of the signals. After filtering the
angular velocity in an interval centered around the spectral
peak, the RMS was applied on 1-s windows of the resulting
signal and averaged for the extraction of the maximum value
(RMS_G_filt_max) (34). The signal-to-noise ratio (SNR_T) was
calculated as the ratio between the tremor signal filtered around
the peak frequency, and the remaining noise. To assess how
evident is the peak in the PSDs, we computed the relative
outlier level (Out_Lev_Rel_A and Out_Lev_Rel_G) as the distance
between the PSD peak and the PSD mean. The product
between the relative outlier level and the PSD peak value
produced the amplitude per outlier level (AmpXOut_Lev_A and
AmpXOut_Lev_G) (35).

- Regularity. The domain measures tremor regularity. The
occurrence of repetitive patterns in the tremor signal was
quantified through the Approximate Entropy (ApEn_T) (36).

Tremor predictability was also measured by Recurrence Rate
(RR_T) and Determinism (DET_T) (37). The Tremor Stability
Index, applied in Luft et al. (38) in postural activities, was adapted
to the spiral drawing condition (TSI_T) to measure the frequency
variability in tremor cycles. The angular velocity change rate
was computed over 1-s windows and the maximum value was
retained (G_Rate_max).

See Supplementary Table I for the summary of the indicators
computed in the study.

2.4.2. Statistical analysis
The statistical analysis was conducted with the two-fold aim

of: i) finding the most suitable indicators for distinguishing the
drawings executed with the dominant hand by patients and controls;
ii) assessing which indicators correlate with clinical scales for the
PD population. The mean of the indicators obtained in the two tests
was considered in the analysis, to capture information not based on
a single sample. For the first aim, after testing indicators normality
with the Lilliefors test, the Unpaired t-test and the Mann-Whitney
test were applied to normal and non-normal indicators, respectively.
For the second aim, following previous studies (5, 9), correlation was
assessed through Spearman’s Rank Correlation Coefficient (RHO.
|RHO| ≤ 0.3 weak; 0.3 < |RHO| < 0.7 moderate, |RHO| ≥ 0.7
strong) between the extracted indicators and a series of UPDRS-
derived scores, the H&Y scale score, and the Jankovic, Schiess and
Kang scores. The UPDRS-derived scores included the UPDRS II
tremor item (nr.16); the total UPDRS III score; the UPDRS III
resting tremor item (nr.20); the hands score, obtained as the sum of
the following UPDRS III items: action or postural tremor of hands
(nr.21), rigidity (nr.22), finger taps (nr.23), hand movements (nr.24)
and rapid alternating movements of hands (nr.25).

The sample size was chosen according to (5), where significant
correlations between indicators and clinical scales ranged from 0.356
to 0.650. We considered the mean value of these 2 correlation
results (0.503), leading to a sample size of 29 (confidence level: 95%,
power: 80%).

2.4.3. Machine learning
As we were interested in identifying the most relevant indicators

in the between-group discrimination, ML methods were employed.
Classification models were trained to differentiate between patients
and controls and model explainability techniques applied, to gain
insight about the model reasoning.

Different models were tested. The logistic regression, acting
as a reference, and three models based on decision trees:
random forest, LightGBM (39) and Catboost (40). For each
model, two subsets of indicators were evaluated: subset 1-all
45 indicators; subset 2-statistically different indicators in the
between-group comparison. Given the reduced dimensionality
of the available dataset, all trials were conducted employing
the Leave-One-Out Cross Validation approach. The classifier
performance was evaluated through Accuracy, f1 score, Recall and
Precision. To gain a better understanding about the indicators
importance and trend in the classification task, the Shapley
Additive Explanation (SHAP) technique (41, 42) was applied on the
model achieving the best performance. This allowed revealing the

Frontiers inNeurology 03 frontiersin.org
20

https://doi.org/10.3389/fneur.2023.1093690
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


To�oli et al. 10.3389/fneur.2023.1093690

TABLE 1 Statistically significant results of the between-group comparison.

Domain Indicator PD Control p-value

Kinematics Strokes_Num [#] 1.5 (1.75) 3 (2.63) 0.005∗

Force ConsPeakDiff_F_Avg [arbitrary] 8.07 (5.17) 11.28 (6.56) 0.014∗

NC_F [#/s] 3.74± 0.68 3.09± 0.63 0.0004∗∗∗

Smoothness NC_A [#/s] 5.82 (0.51) 5.76 (0.32) 0.029∗∗

SPARC_G_10 [a.u.] −42.75 (41.99) −23.65 (18.49) 0.0009∗∗∗

SPARC_G_20 [a.u.] −25.64 (44.72) −12.62 (18.54) 0.005∗∗

SPARC_G_30 [a.u.] −15.79 (33.39) −7.31 (7.70) 0.006∗∗

SPARC_G_40 [a.u.] −6.83 (18.82) −3.85 (5.31) 0.011∗

SPARC_G_45 [a.u.] −5.35 (13.96) −3.84 (4.70) 0.019∗

SPARC_G_50 [a.u.] −3.71 (11.85) −3.00 (3.62) 0.005∗∗

LDLJ_A [a.u.] −6.69± 0.99 −5.31± 1.15 <10E-05∗∗∗

LDLJ_G [a.u.] −12.32± 2.37 −9.26± 2.40 <10E-05∗∗∗

Frequency RPW_A_0-2 [a.u.] 0.52± 0.13 0.68± 0.14 <10E-04∗∗∗

RPW_A_2-4 [a.u.] 0.16± 0.05 0.13± 0.04 0.013∗

RPW_A_4-7 [a.u.] 0.16± 0.05 0.10± 0.05 <10E-04∗∗∗

RPW_A_8-12 [a.u.] 0.15± 0.04 0.10± 0.05 <10E-04∗∗∗

RPW_G_2-4 [a.u.] 0.18 (0.09) 0.38 (0.38) <10E-05∗∗∗

RPW_G_4-7 [a.u.] 0.51± 0.16 0.36± 0.10 <10E-04∗∗∗

RPW_G_8-12 [a.u.] 0.21 (0.16) 0.17 (0.13) 0.045∗

Amplitude Out_Lev_Rel_G [a.u.] 4.03 (1.42) 3.02 (0.74) 0.002∗∗

AmpXOut_Lev_A [a.u.] 0.0063 (0.0081) 0.0013 (0.0032) 0.0006∗∗∗

AmpXOut_Lev_G [a.u.] 0.056 (0.094) 0.015 (0.014) 0.0002∗∗∗

Regularity RR_T [a.u.] 0.28 (0.37) 0.69 (0.45) 0.0002∗∗∗

DET_T [a.u.] 0.64 (0.32) 0.94 (0.27) 0.0004∗∗∗

TSI_T [Hz] 4.84± 1.37 6.00± 1.76 0.007∗∗

Indicators (measurement unit in square brackets, a.u. stands for dimensionless) trend in the 2 groups is reported: mean ± standard deviation for normal distribution, median (interquartile range)

for nonnormal distribution. The p-value (∗< 0.05, ∗∗< 0.01, and ∗∗∗
< 0.001) is reported in last column.

most sensitive indicators in the classification, thus increasing the
model interpretability.

3. Results

3.1. Participants

Thirty participants per group were recruited. However, one
patient and one control subject were excluded from the analysis
as their traces were characterized by an excessive number of pen
lifts (>20). Therefore, the analysis regarded the spirals drawn
by 29 PD patients (gender: 14M; handedness: 29 R; age: 72.52
± 7.37 yo; MMSE: 27.77 ± 1.64; UPDRS III: 19.17 ± 7.67;
years since onset: 7.34 ± 4.94) and 29 controls (gender: 11M;
handedness: 29 R; age: 72.28 ± 8.30 yo; MMSE: 28.21 ± 1.57).
The statistical analysis did not reveal between-group differences in
either age (p = 0.91) or MMSE score (p= 0.31). The demographic
and clinical characteristics for all participants are reported in
Supplementary Table II.

3.2. Statistical analysis

Table 1 summarizes the statistically significant results of the
between-group comparison. The complete results are available in
Supplementary Table III.

In the Smoothness domain, the reduced SPARC and LDLJ

indicators for the PD group, together with an increased NC_A,

reflected a less fluent drawing execution. This finding is in agreement
with the dysgraphia manifestation associated to the disease (4, 30). As
for Frequency, the occurrence of tremor in PD spirals was highlighted
by a different power distribution in the PSD for both acceleration
and angular velocity signals: patients were characterized by a higher
relative power in the band associated with PD tremor (4–7Hz),
while lower proportions were observed in the lowest frequency bands
(0–2H z for acceleration, 2–4Hz for angular velocity) (43, 44).
In line with (35), indicators related to spectral peak deviation in
the PSD (Out_Lev_Rel_G, AmpXOut_Lev_A and AmpXOut_Lev_G)
revealed significantly more evident peaks in the 2–12Hz band for the
PD group.

The importance of such domains is further explained by the
examples in Figure 1. Patient A’s spiral trace is affected by tremor and
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FIGURE 1

Spiral traces, angular velocity PSD, relevant indicators, and clinical scores for three patients (A–C) and two control subjects (A, B).

the occurrence of the symptom is well captured by the quantitative
analysis. Indeed, the PSD of angular velocity is heavily concentrated
around the peak, a fact that is represented by high values of
RPW_G_4-7 and AmpXOut_Lev_G. The reduced fluency during the
execution is well captured by the SPARC indicators. Despite looking
quite different with respect to Patient A spiral, Patient B spiral shows
a similar behavior in terms of PSD and indicators. The less visible
tremor in the trace generates lower values for RPW_G_4-7 and
AmpXOut_Lev_G, which are however above the central tendency of
the PD group. Patient C presents the best-executed spiral among the
three. However, LDLJ_A and LDLJ_G highlight a lack of smoothness
in the drawing also in this case. Tremor is not evident from the trace,
but its occurrence is detected by the analysis: the broader spectrum in
the angular velocity with respect to patients A and B is translated into
a lower RPW_G_4-7, yet approximately half of the total power.

Table 2 reports the correlations that resulted statistically
significant. High values in Jankovic, Schiess and Kang scores, and in
UPDRS III resting tremor score were associated with an increased
RPW_G_4-7 and NC_A. A reduced fluency in the drawing gesture
was correlated with the overall impact of the disease: lower SPARC
corresponded to high scores in H&Y (dominant hand) and UPDRS
III (non-dominant hand).

Although the significant correlation results, the correspondence
between clinical scales and indicators was not always respected. For
instance, considering Figure 1, patient B clinical scores are in line
with indicators: the high UPDRS scores of tremor and resting tremor
are reflected into increased RPW_G_4-7 and AmpXOut_Lev_G. On
the other hand, Patient A is reported with mild tremor andmild hand
impairment, and Jankvoic-Schiess-Kang scores assign the patient to
the postural instability/akinetic-rigid category. However, both trace
and indicators show the occurrence of tremor (RPW_G_4-7 and
AmpXOut_Lev_G) and lack of smoothness in the drawing (SPARC).

3.3. Machine learning

Concerning ML classification with subset 1 (all indicators),
the following performances were obtained: i) Logistic Regression,
accuracy 84.48%, f1 score 84.21%, recall 82.76%, precision 85.71%;
ii) Random Forest, accuracy 77.59%, f1 score 78.69%, recall 82.76%,
precision 75.00%; iii) LightGBM, accuracy 89.65%, f1 score 90.00%,
recall 93.10%, precision 87.10%; iv) Catboost, accuracy 87.93%,
f1 score 87.72%, recall 86.21%, precision 89.28%. As for subset 2
(statistically significant indicators): i) Logistic Regression, accuracy
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TABLE 2 Correlation analysis results.

Dominant Non-dominant

Clinical score Indicator RHO p-value Indicator RHO p-value

H&Y SPARC_20 [a.u.] −0.40 0.033 RPW_A_2-4 [a.u.] 0.41 0.030

SPARC_30 [a.u.] −0.37 0.049

Jankovic NC_A [#/s] 0.56 0.002 RPW_G_4-7 [a.u.] 0.45 0.017

RPW_G_4-7 [a.u.] 0.40 0.034

ConsPeakDiff_G_Avg [deg/s] 0.43 0.018

Schiess NC_A [#/s] 0.47 0.010 RPW_G_4-7 [a.u.] 0.43 0.024

RPW_G_4-7[a.u.] 0.39 0.037

Kang NC_A [#/s] 0.49 0.008 RPW_G_4-7 [a.u.] 0.44 0.020

RPW_G_4-7 [a.u.] 0.37 0.045

ConsPeakDiff_G_Avg [deg/s] 0.41 0.029

UPDRS II tremor RPW_G_4-7 [a.u.] 0.40 0.029 RPW_G_4-7 [a.u.] 0.42 0.026

UPDRS III RPW_A_2-4 [a.u.] 0.37 0.049 SPARC_30 [a.u.] −0.39 0.043

SPARC_40 [a.u.] −0.44 0.018

SPARC_45 [a.u.] −0.45 0.015

SPARC_50 [a.u.] −0.41 0.031

RPW_A_2-4 [a.u.] 0.50 0.006

UPDRS III–resting tremor NC_A [#/s] 0.43 0.020 RPW_G_4-7 [a.u.] 0.50 0.007

RPW_G_4-7[a.u.] 0.43 0.019 AmpXOut_Lev_G [a.u.] 0.38 0.048

RPW_G_8-12 [a.u.] −0.37 0.048

ConsPeakDiff_G_Avg [deg/s] 0.37 0.046

UPDRS III–hands F_CV [a.u.] 0.41 0.027 SPARC_40 [a.u.] −0.43 0.022

SPARC_45 [a.u.] −0.45 0.015

SPARC_50 [a.u.] −0.42 0.028

MHP_T [Log((mm/s2)2/Hz)] 0.40 0.033

For each clinical score, significantly correlated indicators are reported for the 2 hands with measurement unit, Spearman’s RHO and p-value.

77.59%, f1 score 79.97%, recall 79.31%, precision 76.67%; ii)
Random Forest, accuracy 79.31%, f1 score 79.99%, recall 82.76%,
precision 77.42%; iii) LightGBM, accuracy 86.21%, f1 score 86.21%,
recall 86.21%, precision 86.21%; iv) Catboost, accuracy 94.83%,
f1 score 95.08%, recall 100%, precision 90.63%. The classification
performances are summarized in Supplementary Table IV. Overall,
the best performances were obtained by the Catboost model
on subset 2, which allowed correctly classifying all PD patients,
with only 3 misclassified controls (Figure 2A). The results of the
SHAP analysis, performed on the Catboost model trained with
subset 2, provided further insight about the way the different
indicators impacted subjects’ classification (Figure 2B). The plot
presents the first ten indicators (according to SHAP results),
in decreasing order of importance for the classifier decision.
For each indicator, each point represents a subject and conveys
two pieces of information: the SHAP value and the indicator
value. The SHAP value is encoded by the horizontal position
of the point: the more positive the SHAP value, the more the
indicator pushes the classification of the subject toward the PD
group, while negative values push it in the direction of the

control group. The color represents the indicator value (red high,
blue low).

This reveals, for example, that AmpXOut_Lev_G steered the
most the classification of a subject toward the PD group (strongly
positive SHAP values). Additionally, high (red) AmpXOut_Lev_G

values are found only for positive SHAP values; this suggests that
a clearly detectable peak in the angular velocity PSD leads the
classification toward the PD group. A less variable tremor frequency
(low TSI_T) pushed the prediction toward the PD group, as blue
points are all located in the right portion of the graph. The power
distribution represented another critical aspect for the differentiation:
low RPW_G_2-4 and high RPW_G_4-7 pushed the classification
toward the PD group, as they were associated with positive SHAP
values. Low SPARC_G_50, LDLJ_A, LDLJ_G and SPARC_G_10,
indicating the lack of fluency, were associated with a classification in
the patient group (blue points only for positive SHAP value). High
NC_F pushed the prediction toward the PD group, since red points
are mainly concentrated in the right part of the plot.

The SHAP analysis allowed the investigation of the model
reasoning, including gaining insight into the misclassifications. In
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FIGURE 2

(A) Confusion matrix of the Catboost classifier trained with subset 2; (B) resulting SHAP plot.

Figure 1, Control A was one of the misclassified subjects (false
positive) by the best model, while Control B was correctly assigned
to the healthy group (true negative). Looking at Patient C (true
positive) and Control A (false positive) traces and spectra, they
both look similar. This similarity may explain why Control A was
misclassified as PD. Indeed, looking at the Frequency indicators of
Control A, RPW_G_2-4 and RPW_A_8_12 values are almost the
same of Patient C, while RPW_G_4-7 is even higher in Control
A. Similarities are found in jerk-based indicators, highlighting a
similar fluency. The AmpXOut_Lev_G value, although lower than
in Patient C, highlights the presence of a more evident spectral
peak with respect to the control group central tendency of 0.015.
The TSI_T indicator reflects a stable tremor frequency, comparable
to the one of the PD population. Altogether, these trends may be
responsible for pushing the classification of Control A toward the
PD group. Considering Control B, who was correctly assigned to
the Control group, the trace is characterized by a good accuracy.
The greater dispersion of its PSD over the entire frequency band,
indicating the absence of relevant tremor components, is translated
into comparable values of RPW_G_2-4 and RPW_G_4-7, as well as
in a reduced AmpXOut_Lev_G value. The highly variable tremor
frequency (TSI_T), and the increased fluency of the acceleration
signal (LDLJ_A) also underlie the correct classification.

4. Discussion

This work aimed at analyzing the spiral drawing execution of
29 PD patients and 29 age-matched controls, acquired with an
innovative smart ink pen, to find the most suitable indicators in
identifying and characterizing some disease motor symptoms.

A total of 45 indicators, divided into 7 domains, were extracted
from the signals recorded by the pen inertial and force sensors,
without information related to the spiral coordinates. Nevertheless,
the outcome of the performed analysis was extremely good.

Significant between-group differences emerged in 25 indicators,
with Frequency and Smoothness being the most relevant domains in
the characterization of the disease. This is coherent with the spiral

task, which is typically employed in pen-and-paper settings to elicit
upper limb tremor and abnormal movement in neurological patients
(2). Also the Force domain revealed trends in line with the literature,
with patients applying a reduced and more variable force on the
writing surface (45). The correlation analysis demonstrated that
Frequency and Smoothness indicators are related with the patients’
clinical scores. Great angular velocity power concentration in the 4–
7Hz tremor band and increased number of inversions in acceleration
were correctly associated with high clinical scores assessing the
occurrence of tremor (UPDRS II tremor, UPDRS III resting tremor,
Jankovic, Schiess and Kang scores). The execution fluency decreased
with increasing disease severity according to UPDRS III and H&Y
scores. The correlation results were comparable with previous studies
(5, 9) and, although significant, ranged from weak to moderate.
We believe this does not indicate the indicators inaccuracy in
quantifying the patients’ symptoms, but rather reflects the well-
known limitations of the clinical scales, including the low granularity
of the assigned scores and the lack of separate scores for left and
right side. Our hypothesis is supported by the identification of cases
of mismatch between the clinical scores and the pen indicators,
which were able to detect relevant alterations not visible from the
spiral trace, nor from the clinical score. For instance, in Patient
A, tremor and lack of fluency were detected in traces where their
occurrence was not evident by visual inspection. These findings show
how the use of the smart ink pen to perform clinical writing tests
could be beneficial to complement the picture that emerges from
the clinical examination with additional information related to the
patient’s conditions.

Considering classification, the performances of the Catboost
model trained on subset 2 (only statistically significant indicators
from the between-group analysis) were comparable to the best results
found in the literature (14–16). But our focus was mostly on model
explainability, a critical aspect in the path to the adoption of ML
in healthcare: the understanding of the model decision-making is
fundamental for clinicians (46). Yet, this aspect is poorly explored
in the literature (14, 15), or provides results that are difficult to
interpret (16). In our work, the SHAP analysis allowed identifying
the most relevant indicators for the classification and gaining insight

Frontiers inNeurology 07 frontiersin.org
24

https://doi.org/10.3389/fneur.2023.1093690
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


To�oli et al. 10.3389/fneur.2023.1093690

into the model misclassifications. Indeed, highly ranked indicators
in the SHAP analysis exhibiting values similar to the PD group were
responsible for the false positive cases.

Some limitations of the study can be pointed out. The sample
size should be increased to further confirm the current results.
In the recruitment, patients were clinically assessed by a single
experienced rater; future work should study test-retest reliability of
pen indicators compared to inter-rater agreement during clinical
assessment. In future research, it would be interesting to study
the differences between dominant and nondominant hands in
both populations, as the between-group difference considered the
dominant hand only. The conducted analysis should also be evaluated
in patients at early stages of the disease—when patients’ complaints
cannot be clinically confirmed—or in preclinical stages, e.g., in PD
genetic forms.

This work showed that the indicators extracted from the smart
ink pen provide relevant information for the identification of
PD motor symptoms. Such results support the use of the smart
ink pen for PD spiral analysis in the clinical practice. Since the
device looks like a normal ink pen and is used on simple paper,
its introduction in the clinical examination would not change
the way the spiral test is already performed, neither extend the
duration of the visit. This point is crucial for adoption: given the
increasingly limited time and resources in the healthcare systems,
the smart ink pen represents a simple and time-efficient technology
that transparently adapts to the clinical practice, supporting the
graphomotor-based assessment with the identification of subtle but
relevant patterns. Simplicity and transparent monitoring are two key
requirements also for the remote health context. For this reason,
the proposed device reveals important potential applications also
in the remote patient assessment, with adequate frequency outside
the clinical setting. The use of the device in both scenarios would
allow improving and optimizing the treatment choice and result in
improved patient’s outcomes.
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Gait and turning characteristics
from daily life increase ability to
predict future falls in people with
Parkinson’s disease

Vrutangkumar V. Shah1,2*, Adam Jagodinsky2, James McNames2,3,

Patricia Carlson-Kuhta1, John G. Nutt1, Mahmoud El-Gohary2,

Kristen Sowalsky2, Graham Harker1, Martina Mancini1 and

Fay B. Horak1,2

1Department of Neurology, Oregon Health & Science University, Portland, OR, United States, 2APDM

Wearable Technologies, A Clario Company, Portland, OR, United States, 3Department of Electrical and

Computer Engineering, Portland State University, Portland, OR, United States

Objectives:To investigate if digital measures of gait (walking and turning) collected

passively over a week of daily activities in people with Parkinson’s disease

(PD) increases the discriminative ability to predict future falls compared to fall

history alone.

Methods: We recruited 34 individuals with PD (17 with history of falls and 17

non-fallers), age: 68 ± 6 years, MDS-UPDRS III ON: 31 ± 9. Participants were

classified as fallers (at least one fall) or non-fallers based on self-reported falls in

past 6 months. Eighty digital measures of gait were derived from 3 inertial sensors

(Opal® V2 System) placed on the feet and lower back for a week of passive gait

monitoring. Logistic regression employing a “best subsets selection strategy” was

used to find combinations of measures that discriminated future fallers from non-

fallers, and the Area Under Curve (AUC). Participants were followed via email every

2 weeks over the year after the study for self-reported falls.

Results: Twenty-five subjects reported falls in the follow-up year. Quantity of

gait and turning measures (e.g., number of gait bouts and turns per hour) were

similar in future fallers and non-fallers. The AUC to discriminate future fallers from

non-fallers using fall history alone was 0.77 (95% CI: [0.50–1.00]). In contrast, the

highest AUC for gait and turning digital measures with 4 combinations was 0.94

[0.84–1.00]. From the top 10 models (all AUCs>0.90) via the best subsets strategy,

the most consistently selected measures were variability of toe-out angle of the

foot (9 out of 10), pitch angle of the foot during mid-swing (8 out of 10), and peak

turn velocity (7 out of 10).

Conclusions: These findings highlight the importance of considering precise

digital measures, captured via sensors strategically placed on the feet and low

back, to quantify several di�erent aspects of gait (walking and turning) during daily

life to improve the classification of future fallers in PD.
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Introduction

Falls are prevalent in people with Parkinson’s Disease (PD),
occurring in 60.5% of patients per year (1). Moreover, fall history
is a prominent risk factor for recurring falls in PD, with 39% of
patients experiencing recurring falls (1). In addition, people with
PD who experience impairments in gait and turning difficulties are
significantly more likely to fall at home compared to those with
tremor as the primary symptoms (2).

Given the heightened risk of falls in people with PD, it is
important to consider which aspects of gait and turning difficulties
contribute to fall events. Traditionally, clinical assessments such
as the Unified Parkinson’s Disease Rating Scale (UPDRS) are
used to assess disease severity, gait and turning difficulties (3, 4).
Additionally, fall history, as recorded by diary or other self-reports
are implemented to monitor falls. Such outcomes, among others,
have been shown to be predictors of recurring falls in people with
PD (1).

A critical shortcoming of these assessments is the inability to
objectively measure gait and turning abnormalities in the patient’s
everyday environment where falls occur. Furthermore, brief clinical
or laboratory assessments of gait and turning (e.g., straight-ahead
gait and turning) may not accurately reflect functional mobility
of patients in their everyday lives, or capture inherent day-to-
day variations in movement patterns that may be indicative of
functional capacity (5). Therefore, daily life monitoring of gait and
turning could help assess the risk of falling in people with PD,
and provide insight into patient behavior outside of traditional
testing facilities.

Wearable sensors and advanced algorithms allow researchers
to capture objective mobility measures both in the clinic and at
home (6–10) that may improve our understanding of fall risk
in people with PD. It has been shown that environments and
tasks associated with daily living can amplify gait and turning
impairments in people with PD (7–9). Given the ubiquity of falls
and fall recurrence in PD, researchers have worked to identify
digital biomarkers, captured during daily life walking and turning,
that can assist with identifying fall risk and optimize clinical trial
conduct. Several gait and turning metrics obtained from wearable
sensors in laboratory settings and during daily life have been shown
to discriminate between fallers and non-fallers in PD (11–15).
However, it is still unclear which measures, among the high volume
of gait and turning measures calculated from inertial sensors, most
accurately discriminate fallers from non-fallers with PD during
daily life.

The aim of this study was to investigate if digital measures from
different components of gait and turning collected from a week
of daily activities increased discriminative ability to predict future
falls compared to fall history alone. We hypothesize that variability
and turn metrics will best discriminate fallers from non-fallers
during daily life, and will show an increased discriminative ability
to predict future fallers compared to falls history alone. The main
contribution of this study is to show the importance of considering
precise digital measures, captured via sensors strategically placed
on the feet and low back, to quantify several different aspects of gait
(walking and turning) during daily life to improve the classification
of future fallers in PD.

Methods

Participants

Thirty-four people with idiopathic PD participated in the study.
Inclusion criteria were a diagnosis of idiopathic Parkinson’s disease
from movement disorders specialist with the United Kingdom
Parkinson’s disease Society Brain Bank criteria, Hoehn & Yahr
scale of II-IV, and complaints about gait and balance. Exclusion
criteria were the inability to follow protocol instructions, and
other factors affecting gait and balance such as musculoskeletal
disorders, uncorrected vision or vestibular problems, or inability
to stand or walk in the home without an assistive device. The
experimental protocol was approved by the Institutional Review
Board of the Oregon Health & Science University (eIRB #15578).
All the participants provided informed written consent. The
same participants have been used in our previous research work
comparing gait and turning measures in two levodopa states in the
clinic (On vs. Off), and daily life settings (16).

Clinical assessment

Clinical characteristics (including demographic, motor and
cognitive status, and patient-reported outcomes) were assessed
with a comprehensive battery of validated tests. Specifically, we
collected age, sex, height, weight, disease duration, medications,
and the Movement Disorders Society (MDS-revised) Unified
Parkinson’s disease Rating Scale (MDS-UPDRS) (3); the Hoehn
and Yahr Rating Scale; the New Freezing of Gait Questionnaire
(NFoGQ) (17); the Parkinson’s Disease Questionnaire-39 (PDQ-
39); and the Montreal Cognitive Assessment (MoCA) (18).

Falls data collection

Self-reported fall history based on the previous 6 months was
collected and participants were classified as fallers (at least one
fall) or non-fallers based on falls history prior to the study visit.
For future falls, following a week of continuous monitoring of
gait. participants were asked complete a 12-month, fall-monitoring
period immediately after the 1 week of daily life gait data
collection. Participants received bimonthly emails to indicate if
they experienced a fall or near fall during the previous 2 weeks.
If participants failed to respond, a research assistant called them
to ascertain if they had fallen in the previous 2 weeks. A fall was
defined as “an event that results in coming to rest unintentionally
on the ground or other lower level”. Future-fallers were classified as
participants with >1 fall in the 12-month period after daily life gait
data collection. If a fall(s) occurred, we collected number of falls
and nature of injury.

Daily life data collection

Participants were asked to wear 2Opal-instrumented socks, one
on each foot, and an Opal sensor over the lower lumbar area with
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an elastic belt (APDM Wearable Technologies-a Clario Company,
Portland, OR, USA) for a week of continuous monitoring of at least
8 hours/day during daily activities including both on and off states.
The details of the instrumented socks were previously described in
Shah et al. (9). Briefly, instrumented socks incorporated the same
inertial sensors on top of the foot as used in the Opal, with the
battery separated from the sensor and positioned just above the
lateral malleolus. Each Opal sensor includes tri-axial accelerometer,
gyroscope, and magnetometer and was configured to sample at a
rate of 128Hz. The Opal is lightweight (22 g), has a battery life of
12 h, and includes 8 GB of storage, which can record over 30 days
of data.

Participants were asked to remove the sensors at night and
plugged in to recharge the batteries. During the daily activities, data
were continuously collected and stored in the internal memory of
the Opals. Participants were asked to mail back the sensors using a
pre-paid mailing box after completion of a week of data collection.
Once we receive the devices, the raw data were uploaded to a secure
cloud-based database on AmazonWeb Server (AWS), processed on
the same server and calculated gait metrics were then downloaded
to a local computer for further analysis.

Digital gait and turning measures during
daily life

The algorithms used to calculate the measures of gait and
turning were the same for the laboratory and daily life data as were
detailed previously (19). In summary, the daily life algorithm first
searches for possible bouts of walking from inertial sensor data
from the feet using a time-domain approach. Second, individual
steps are combined into potential bouts of walking if the duration
from one step to the next step is less than 2.5 seconds. Finally,
each possible bout that contains at least 3 seconds in duration
and at least 3 steps is processed with the commercial gait analysis
algorithms included in Mobility Lab V2 for prescribed gait tests
(APDM Wearable Technologies, A Clario company) (20). For the
gait measures reported in this paper, we calculated a mean and
variability across all strides over the week of recording and included
only the periods of straight walking. Straight walking were periods
of walking in which the heading angle of the foot during stance
changed by no more than 20 degrees during a single stride and
that did not contain detected turns as determined from the lumbar
sensor (21). For turning measures, we used a previously published
algorithm to detect and characterize each turn (21). Specifically, all
the turns with an amplitude larger than 40 degrees were detected
as a turn and we did not restrict any particular range of turns but
considered all. In total, we derived 52 measures and grouped into
four domains (Lower Body, Lower Trunk, Turning, and Variability)
similar to described in Shah et al. (22).

Statistical analysis

The normality of data was examined by the Shapiro-Wilk
test. For the demographics measures that were non-normally
distributed, the Mann- Whitney U test was used to compare fallers

and non-fallers. Otherwise, independent samples t-test (or Chi-
squared test) was used to examine possible group differences.

To investigate which combination of digital gait and turning
measures discriminate fallers from non-fallers group, we used
logistic regression employing a best subset selection (23). The
best subset selection strategy selects the best model from all
possible subsets according to goodness-of-fit criteria. To assess the
goodness-of-fit, we used the Bayesian Information Criteria (BIC)
(23). We selected the top 15 models based on BIC for two, three,
and finally for four digital outcomemeasures ofmobility (15∗3= 45
models total). Finally, we computed the AreaUnder the ROCCurve
(AUC) using “ROC” function (empirical ROC) in R (24, 25) and
ranked the top 10 models based on the AUC. All statistical analysis
was performed using R Version 1.1.456 software.

Power analysis

We recently showed that variability of the number of steps
during turning was a sensitive metric in predicting falls in the 6
months after the week of continuous monitoring in a group of
healthy elderly fallers (26). Out of 35 healthy elderly participants
(sample of convenience), 7 fell at least once in the 6 months after
the week of continuous monitoring. To determine the number
of subjects needed in this study, we compared the variability of
the number of steps needed to complete a turn by subjects who
experienced one or more falls to variability in the subjects that did
not fall. Given the fallers group mean variability of 0.59 (SD 0.04)
and the non-fallers group mean of 0.54 (SD 0.03), for alpha = 0.05
and a power of 95%, we are adequately powered to separate fallers
and non-fallers with a sample size of 12 subjects per group.

Results

Group characteristics and adherence

From a total of 34 people with PD, 17 were fallers and 17 were
non-fallers based on self-reported fall history. Table 1 compares
the demographic characteristics between non-fallers and fallers.
The demographic and other digital measures mostly followed
the normal distribution and we did not find any multimodal
distribution. There were no significant differences between the
groups for demographic characteristics, smart socks compliance
and activity measures from daily life. After 1-year follow up from
the data collection, out of 34 people, 25 people were fallers and 9
people were non-fallers (see Supplementary Table S1 for number of
past falls and future falls for each subject).

Digital gait and turning measures
separating fallers from non-fallers during
daily life

The AUC to discriminate future fallers from non-fallers using
fall history alone was 0.77 (95% CI: [0.50–1.00]). In contrast,
the highest AUC for gait and turning digital measures with 4
combinations was 0.94 [0.84–1.00]. From the top 10 models (all
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TABLE 1 Participant demographic information for non-faller and faller groups.

Non-fallers (N = 17) Fallers (N = 17) p

Age (yrs) 66.82 (6.61) 68.69 (11.10) 0.29

Disease Duration (yrs) 7.29 (5.6) 9.24 (4.58) 0.14

H and Y ON (#) 2 (0) 2.18 (0.53) 0.164

H and Y OFF (#) 2.06 (0.24) 2.29 (0.59) 0.153

MDS-UPDRS Part III total score ON (#) 29.47 (8.49) 32.65 (9.92) 0.36

MDS-UPDRS Part III total score OFF (#) 43.88 (11.3) 46.18 (10.02) 0.39

MDS-UPDRS Part III PIGD score ON (#) 2.59 (1.42) 3.53 (2.62) 0.34

MDS-UPDRS Part III PIGD score OFF (#) 3.53 (1.66) 5.35 (3.28) 0.09

MoCA total score (#) 26.94 (2.38) 26.88 (2.93) 0.81

LEDD total score (mg/day) 1,541.94 (2,342.53) 1,128.1 (533.18) 0.36

PDQ39 total score (%) 13.91 (7.3) 23.3 (14.82) 0.13

PDQ39 Mobility score (%) 11.91 (12.14) 21.76 (18.68) 0.11

MDS-UPDRS Dyskinesia ON (#) 0.35 (0.49) 0.53 (0.51) 0.31

NFOGQ past month (#) 0.47 (0.51) 0.76 (0.44) 0.08

Activity measures from daily life

Number of days 6.76 (0.56) 6.41 (1.28) 0.31

Total hours of recording 64.57 (8.64) 62.07 (16.02) 0.58

Bouts/hours (#) 7.82 (3.05) 7.65 (4.16) 0.70

Strides/hours (#) 149.87 (60.95) 161.07 (94.82) 0.85

Turns/hours (#) 20.19 (9.33) 21.34 (15.71) 0.97

H and Y, Hoehn and Yahr scale; MDS-UPDRS Part III, Movement Disorders Society-Unified Parkinson’s Disease Rating Scale, motor sub-score; MoCA, Montreal Cognitive Assessment; LEDD,

levodopa equivalent daily dose; PDQ39, Parkinson’s Disease Questionnaire-39; NFOGQ Past Month, First question of NFOGQ for freezing in last month.

AUCs > 0.90) via the best subsets strategy, the most consistently
selected gait measures were variability of toe-out angle of foot (9x),
pitch angle of the foot during mid-swing (8x), and the maximum
average turn velocity (7x) (see Table 2). Figures 1, 2 show the ROC
curves and AUC values for the top 4 fall prediction models selected
via best subsets of gait metrics strategy and using falls history alone.

Considering the definition of the recurrent fallers (n= 20 fallers
and 14 non-fallers), the most consistently selected gait measures
were the pitch angle of the foot during mid-swing (8x), stride
time variability (8x), and foot-strike angle variability (7x) (see
Supplementary Table S2).

Discussion

This study offers preliminary evidence that different aspects
of gait and turning during daily life (specifically, gait, turning,
and variability domains) are important to predict future fallers.
Further, digital measures from different components of gait showed
more discriminative ability to predict future fallers from non-fallers
compared to falls history, alone.

The top ten models incorporating digital gait and turning
measures in this study were able to separate fallers from non-
fallers with an AUC over 0.90 compared to fall history alone,
which yielded an AUC of 0.77. Gait variability was the most
consistent domain selected, with toe out angle variability being the

most common variability measure selected, followed by stride time
variability. These findings are consistent with previous research
showing association between gait variability and fall risk in people
with PD (27–29).

Digital measures of gait and turning have been shown to
have a good predictive value for a fall risk. For an example, Van
Schooten et al. reported an AUC of 0.82 when assessing predictive
value of accelerometry based measures of gait for detecting falls
in 169 older adults (30). In 26 patients with multiple sclerosis,
toe-off angle in daily living has been identified as a significant
predictor of falls in patients with multiple sclerosis, with an AUC
of 0.86 (31). Additionally, an AUC of 0.93 was reported using
clinical and functional characteristics in a multivariate model of
fall prediction in 49 patients with PD (22), while fall classification
accuracies of between 70–80% have been reported using machine
learning models with gait metrics as principal predictors in 251
patients with PD (13). In this study, gait and turning domains
were most consistently selected by best subset selection following
the variability domain. Specifically, pitch angle (dorsiflexion) of
the foot during mid-swing and peak turn velocity were most
prevalent. Pitch angle of the foot is a particularly pertinent
measure for fall risk as it reflects the amount of toe clearance
achieved by the participant during mid swing, and thus may
contribute to trips or stumbles while walking. Additionally, daily
life turning characteristics in people with PD have been shown
to be significantly impaired compared to age-matched controls
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TABLE 2 Combination of digital gait measures that best discriminated future fallers from non-fallers in PD during daily life.

Digital measures of gait and turning AUC

1st 2nd 3rd 4th

Pitch angle of the foot during mid-swing Toe-out angle variability Turn velocity maximum Cadence variability 0.94 (0.84–1)

Pitch angle of the foot during mid-swing Toe-out angle variability Turn velocity Maximum Stride time variability 0.93 (0.82–1)

Pitch angle of the foot during mid-swing Toe-out angle variability Double support variability Stride time variability 0.93 (0.83–0.99)

Pitch angle of the foot during mid-swing Toe-out angle variability Turn velocity maximum Stance time variability 0.93 (0.82–1)

Pitch angle of the foot during mid-swing Turn angle Turn velocity maximum Stride time variability 0.93 (0.82–1)

Pitch angle of the foot during mid-swing Toe-out angle variability Turn velocity maximum – 0.92 (0.81–1)

Pitch angle of the foot during mid-swing Toe-out angle variability Double support variability Stance time variability 0.92 (0.81–0.99)

Pitch angle of the foot at toe-off Toe-out angle variability Turn velocity maximum Cadence variability 0.91 (0.79–1)

Pitch angle of the foot maximum at toe-off Toe-out angle variability Turn velocity maximum Stride time variability 0.91 (0.78–1)

Pitch angle of the foot during mid-swing Toe-out angle variability Trunk transverse range of motion Stride time variability 0.91 (0.78–0.99)

Lower body. Variability. Turning. Lower trunk.

FIGURE 1

ROC plots to predict future falls based on falls history alone (blue

line) and various combinations of gait measures (top 4 from Table 2).

(9, 21, 32–34), and turning is associated with falls in older adults
(35, 36).

Findings from several recent studies highlight gait, variability,
and turning domains in daily life as particularly relevant to
understanding PD disease severity and fall prediction during daily
living. del Din et al. showed that daily-living gait and variability
measures, collected with a wearable sensor, were significantly
different in individuals with PD compared to controls (7), and
thereafter showed that similar domains were significantly different
between fallers with PD compared to non-fallers with PD (11).
Galperin et al. used a wearable sensor for 7 days of daily-
living monitoring of individuals with PD and a history of falls
(37). Their findings showed that daily-living gait and variability
measures accounted for 62% of explained variance in the MDS-
UPDRS- part III scores of fallers with PD, followed by laboratory
measures (30%) and participant demographics/characteristics (7%)
(37). More recently, Shah et al. demonstrated that gait, turning,

FIGURE 2

AUC values to predict future falls based on falls history alone and

various combinations of gait measures (top 4 from Table 2).

and variability measures, captured with wearable sensors during
1 week of continuous home monitoring, were most significant in
distinguishing patients with PD from healthy controls (19). Our
results suggest that turning might be more important in identifying
the patients who are at risk of their first fall, while gait variability
might be more important in identifying the recurrent fallers.

These findings provide support for the collection of digital gait,
variability, and turning markers to objectively assess fall risk of
people with PD during daily life. Notably, three body worn sensors
were required to capture gait, turning, and variability domains
during daily life monitoring. The use of instrumented socks to
capture mobility of each foot represents a novel approach that
may be useful for home monitoring during clinical trials, as they
are less obtrusive for continuous monitoring compared to sensors
strapped to the foot. Moreover, implementing three body worn
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sensors allows for more accurate measurement of gait, variability,
and turning domains compared to a single lumbar sensor, which
neglects to capture foot angle and variability of foot placement.

There are several limitations of the current study. First, we
recommend caution in interpreting the results as the individual
models from this small size study are not yet validated in a separate
cohort. Hence the performance of the models may be optimistic.
Second, future studies with larger cohorts are needed to validate
these preliminary findings. Third, we performed the analysis by
taking the mean of each measure for all the strides over a week
for each subject and thus gave equal weight to each stride. But in
reality, gait speed and othermeasures vary for gait bouts of different
lengths (7, 38–40). Hence, future work will focus on how gait bout
length affects the discriminatory power of the proposed fall models.
Forth, the follow-up period may also affect the ability of fall history
to predict future falls. Finally, test-retest reliability and sensitivity
of the top measures related to disease progression and falls should
be investigated to explore the utility of these digital endpoints for
clinical trials.

Conclusion

Inertial sensors worn on the feet and lumbar level for 7
days provided measures of gait pace, variability and turning that
increased the ability to predict future falls in people with PD,
beyond predictions from fall history alone.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

This study involved human participants; the protocol was
reviewed and approved by the Institutional Review Board
of Oregon Health & Science University (eRIB #15578). All
participants provided written informed consent to participate in
this study.

Author contributions

VS: conception, organization, execution of research project,
design, execution, review and critique of statistical analysis, writing
of the first draft, and review and critique of manuscript preparation.
AJ: writing of the first draft and review and critique of manuscript
preparation. JM, JN, ME-G, and KS: review and critique of the
statistical analysis and manuscript preparation. PC-K: organization

and execution of research project, review and critique of statistical
analysis, and review and critique of manuscript preparation. GH:
organization and execution of research project and review and
critique of manuscript preparation. MM and FH: conception
and organization of research project, design, review and critique
of statistical analysis, and review and critique of manuscript
preparation. ME-G and JM: conception. All authors contributed to
the article and approved the submitted version.

Funding

This study was supported by the National Institutes of Health
grants from National Institute on Aging (#R44AG055388 and
#R43AG044863), and Eunice Kennedy Shriver National Institute of
Child Health and Human Development (#R01HD100383).

Acknowledgments

We thank our participants for generously donating their time
to participate for helping with data collection.

Conflict of interest

OHSU and VS, JM, ME-G, and FH have a significant financial
interest in APDM Wearable Technologies, a Clario company, that
may have a commercial interest in the results of this research and
technology. This potential conflict of interest has been reviewed and
managed by OHSU. KS and AJ are employees of APDM Wearable
Technologies, a Clario company.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fneur.2023.
1096401/full#supplementary-material

References

1. Allen NE, Schwarzel AK, Canning CG. Recurrent falls in Parkinson’s disease:
a systematic review. Parkinsons Dis. (2013) 2013:906274. doi: 10.1155/2013/90
6274

2. Pelicioni PHS,Menant JC, LattMD, Lord SR. Falls in parkinson’s disease subtypes:
Risk factors, locations and circumstances. Int J Environ Res Public Health. (2019)
16:2216. doi: 10.3390/ijerph16122216

Frontiers inNeurology 06 frontiersin.org32

https://doi.org/10.3389/fneur.2023.1096401
https://www.frontiersin.org/articles/10.3389/fneur.2023.1096401/full#supplementary-material
https://doi.org/10.1155/2013/906274
https://doi.org/10.3390/ijerph16122216
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Shah et al. 10.3389/fneur.2023.1096401

3. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P,
et al. Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s
Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results.
Movement Disor. (2008) 23:2129–70. doi: 10.1002/mds.22340

4. Horak FB, Mancini M. Objective biomarkers of balance and gait for
Parkinson’s disease using body-worn sensors. Movement Disor. (2013) 28:1544–
51. doi: 10.1002/mds.25684

5. Weiss A, Herman T, Giladi N, Hausdorff JM. Objective assessment of fall risk
in Parkinson’s disease using a body-fixed sensor worn for 3 days. PLoS ONE. (2014)
9:e96675. doi: 10.1371/journal.pone.0096675

6. Corrà MF, Atrsaei A, Sardoreira A, Hansen C, Aminian K, Correia M, et al.
Comparison of laboratory and daily-life gait speed assessment during on and off states
in parkinson’s disease. Sensors. (2021) 21:3974. doi: 10.3390/s21123974

7. Del Din S, Godfrey A, Galna B, Lord S, Rochester L. Free-living gait characteristics
in ageing and Parkinson’s disease: Impact of environment and ambulatory bout length.
J NeuroEng Rehabilit. (2016) 13:1–12. doi: 10.1186/s12984-016-0154-5

8. Hillel I, Gazit E, Nieuwboer A, Avanzino L, Rochester L, Cereatti A, et al. Is every-
day walking in older adults more analogous to dual-task walking or to usual walking?
Elucidating the gaps between gait performance in the lab and during 24 / 7 monitoring.
Eur Rev Aging Phys Activity. (2019) 16:1–12. doi: 10.1186/s11556-019-0214-5

9. Shah VV, McNames J, Mancini M, Carlson-Kuhta P, Spain RI, Nutt JG, et al.
Laboratory versus daily life gait characteristics in patients with multiple sclerosis,
Parkinson’s disease, and matched controls. J NeuroEng Rehabilit. (2021) 17:1–
12. doi: 10.1186/s12984-020-00781-4

10. Warmerdam E, Hausdorff JM, Atrsaei A, Zhou Y, Mirelman A, Aminian K, et al.
Long-term unsupervised mobility assessment in movement disorders. Lancet Neurol.
(2020) 19:462–70. doi: 10.1016/S1474-4422(19)30397-7

11. Del Din S, Galna B, Godfrey A, Bekkers EM, Pelosin E, Nieuwhof F, et al. Analysis
of free-living gait in older adults with and without Parkinson’s disease and with and
without a history of falls: identifying generic and disease-specific characteristics. J
Gerontol Series A Biol Sci Med Sci. (2019) 74:500–506. doi: 10.1093/gerona/glx254

12. Delval A, Betrouni N, Tard C, Devos D, Dujardin K, Defebvre
L, et al. Do kinematic gait parameters help to discriminate between
fallers and non-fallers with Parkinson’s disease? Clin Neurophysiol. (2021)
132:536–41. doi: 10.1016/j.clinph.2020.11.027

13. Gao C, Sun H, Wang T, Tang M, Bohnen NI, Müller MLTM, et al. Model-
based and model-free machine learning techniques for diagnostic prediction and
classification of clinical outcomes in Parkinson’s disease. Scientific Reports. (2018)
8:7129. doi: 10.1038/s41598-018-24783-4

14. Hoskovcová M, Dusek P, Sieger T, Brozová H, Zárubová K, Bezdicek O, et al.
Predicting falls in Parkinson disease: What is the value of instrumented testing in off
medication state? PLoS ONE. (2015) 10:e0139849. doi: 10.1371/journal.pone.0139849

15. Rehman RZ, Zhou Y, Del Din S, Alcock L, Hansen C, Guan Y, et al.
Gait analysis with wearables can accurately classify fallers from non-fallers: A
step toward better management of neurological disorders. Sensors. (2020) 20:1–
17. doi: 10.3390/s20236992

16. Shah VV, McNames J, Carlson-Kuhta P, Nutt JG, El-Gohary M, Sowalsky K, et al.
Effect of Levodopa and Environmental Setting on Gait and Turning Digital Markers
Related to Falls in People with Parkinson’s Disease. Movement Disorders Clin Pract.
(2022). doi: 10.1002/mdc3.13601

17. Nieuwboer A, Rochester L, Herman T, Vandenberghe W, Ehab G, Thomaes
T, et al. Reliability of the new freezing of gait questionnaire : Agreement between
patients with Parkinson’ s disease and their carers. Gait Posture. (2009) 30:459–
63. doi: 10.1016/j.gaitpost.2009.07.108

18. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead
V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: A Brief
Screening Tool For Mild Cognitive Impairment. J Am Geriatr Soc. (2005)
53:695–9. doi: 10.1111/j.1532-5415.2005.53221.x

19. Shah VV, McNames J, Mancini M, Carlson-Kuhta P, Spain RI, Nutt JG,
et al. Quantity and quality of gait and turning in people with multiple sclerosis,
Parkinson’s disease and matched controls during daily living. J Neurol. (2020)
267:1188–96. doi: 10.1007/s00415-020-09696-5

20. Mancini M, King L, Salarian A, Holmstrom L, McNames J, Horak FB. Mobility
Lab to Assess Balance and Gait with Synchronized Body-worn Sensors. J Bioeng Biomed
Sci. (2013) 7:1–5. doi: 10.4172/2155-9538.S1-007

21. Shah VV, Curtze C, Mancini M, Carlson-Kuhta P, Nutt JG,
Gomez CM, et al. Inertial sensor algorithms to characterize turning in
neurological patients with turn hesitations. IEEE Trans Biomed Eng. (2021)
68:2615–2625. doi: 10.1109/TBME.2020.3037820

22. Custodio N, Lira D, Herrera-Perez E, Montesinos R, Castro-Suarez S,
Cuenca-Alfaro J, et al. Predictive model for falling in Parkinson disease patients.
Eneurologicalsci. (2016) 5:20–4. doi: 10.1016/j.ensci.2016.11.003

23. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. (2009).
Available online at: https://hastie.su.domains/ElemStatLearn/

24. Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett. (2006)
27:861–74. doi: 10.1016/j.patrec.2005.10.010

25. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC:
an open-source package for R and S+ to analyze and compare ROC curves. BMC
Bioinform. (2011) 12:1–8. doi: 10.1186/1471-2105-12-77

26. Mancini M, Schlueter H, El-Gohary M, Mattek N, Duncan C, Kaye J, et al.
Continuous monitoring of turning mobility and its association to falls and cognitive
function: a pilot study. J Gerontol A. (2016) 71:1102–8. doi: 10.1093/gerona/gl
w019

27. Callisaya ML, Blizzard L, Schmidt MD, Martin KL, Mcginley JL, Sanders
LM, et al. Gait, gait variability and the risk of multiple incident falls in older
people: A population-based study. Age Ageing. (2011) 40:481–7. doi: 10.1093/ageing/af
r055

28. Hausdorff JM. Gait variability: methods, modeling and meaning. J Neuroeng
Rehabil. (2005) 6:1–6. doi: 10.1186/1743-0003-2-19

29. Hausdorff JM. Gait dynamics in Parkinson’s disease: Common and distinct
behavior among stride length, gait variability, and fractal-like scaling. Chaos. (2009)
19:1–14. doi: 10.1063/1.3147408

30. Van Schooten KS, Pijnappels M, Rispens SM, Elders PJ, Lips P, van Dieën JH.
Ambulatory fall-risk assessment: amount and quality of daily-life gait predict falls in
older adults. J Gerontol A. (2015) 70:608–15. doi: 10.1093/gerona/glu225

31. Arpan I, Shah VV, McNames J, Harker G, Carlson-Kuhta P, Spain R, et al. Fall
prediction based on instrumented measures of gait and turning in daily life in people
with multiple sclerosis. Sensors. (2022) 22:5940. doi: 10.3390/s22165940

32. El-Gohary M, Pearson S, McNames J, Mancini M, Horak F, Mellone S, et al.
Continuous monitoring of turning in patients with movement disability. Sensors
(Switzerland). (2014) 14:356–69. doi: 10.3390/s140100356

33. Haertner L, Elshehabi M, Zaunbrecher L, Pham MH, Maetzler C, Uem JMT,
et al. Effect of fear of falling on turning performance in Parkinson’ s disease in the
lab and at home study cohort demographics and clinical. Front Aging Neurosci. (2018)
10:1–8. doi: 10.3389/fnagi.2018.00078

34. Mancini M, Weiss A, Herman T, Hausdorff JM. Turn around freezing:
Community-living turning behavior in people with Parkinson’s disease. Front Neurol.
(2018) 9:1–9. doi: 10.3389/fneur.2018.00018

35. Leach JM, Mellone S, Palumbo P, Bandinelli S, Chiari L. Natural turn measures
predict recurrent falls in community-dwelling older adults: A longitudinal cohort
study. Sci Rep. (2018) 8:1–9. doi: 10.1038/s41598-018-22492-6

36. Mancini M, El-Gohary M, Pearson S, Mcnames J, Schlueter H, Nutt JG, et al.
Continuous monitoring of turning in Parkinson’s disease: Rehabilitation potential.
NeuroRehabilitation. (2015) 37:3–10. doi: 10.3233/NRE-151236

37. Galperin I, Hillel I, Del Din S, Bekkers EM, Nieuwboer A, Abbruzzese G, et al.
Associations between daily-living physical activity and laboratory-based assessments of
motor severity in patients with falls and Parkinson’s disease. Parkinsonism Relat Disor.
(2019) 62:85–90. doi: 10.1016/j.parkreldis.2019.01.022

38. Rispens SM, van Schooten KS, Pijnappels M, Daffertshofer A, Beek PJ, van Dieen
JH. Do extreme values of daily-life gait characteristics provide more information about
fall risk than median values? JMIR Res Protoc. (2015) 4:e3931. doi: 10.2196/resprot.
3931

39. Rehman RZU, Guan Y, Shi JQ, Alcock L, Yarnall AJ, Rochester L, et al.
Investigating the impact of environment and data aggregation by walking bout
duration on parkinson’s disease classification using machine learning. Front Aging
Neurosci. (2022) 14:808518. doi: 10.3389/fnagi.2022.808518

40. Shah VV, McNames J, Harker G, Mancini M, Carlson-Kuhta P, Nutt JG, et al.
Effect of bout length on gait measures in people with and without Parkinson’s disease
during daily life. Sensors. (2020) 20:5769. doi: 10.3390/s20205769

Frontiers inNeurology 07 frontiersin.org33

https://doi.org/10.3389/fneur.2023.1096401
https://doi.org/10.1002/mds.22340
https://doi.org/10.1002/mds.25684
https://doi.org/10.1371/journal.pone.0096675
https://doi.org/10.3390/s21123974
https://doi.org/10.1186/s12984-016-0154-5
https://doi.org/10.1186/s11556-019-0214-5
https://doi.org/10.1186/s12984-020-00781-4
https://doi.org/10.1016/S1474-4422(19)30397-7
https://doi.org/10.1093/gerona/glx254
https://doi.org/10.1016/j.clinph.2020.11.027
https://doi.org/10.1038/s41598-018-24783-4
https://doi.org/10.1371/journal.pone.0139849
https://doi.org/10.3390/s20236992
https://doi.org/10.1002/mdc3.13601
https://doi.org/10.1016/j.gaitpost.2009.07.108
https://doi.org/10.1111/j.1532-5415.2005.53221.x
https://doi.org/10.1007/s00415-020-09696-5
https://doi.org/10.4172/2155-9538.S1-007
https://doi.org/10.1109/TBME.2020.3037820
https://doi.org/10.1016/j.ensci.2016.11.003
https://hastie.su.domains/ElemStatLearn/
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1093/gerona/glw019
https://doi.org/10.1093/ageing/afr055
https://doi.org/10.1186/1743-0003-2-19
https://doi.org/10.1063/1.3147408
https://doi.org/10.1093/gerona/glu225
https://doi.org/10.3390/s22165940
https://doi.org/10.3390/s140100356
https://doi.org/10.3389/fnagi.2018.00078
https://doi.org/10.3389/fneur.2018.00018
https://doi.org/10.1038/s41598-018-22492-6
https://doi.org/10.3233/NRE-151236
https://doi.org/10.1016/j.parkreldis.2019.01.022
https://doi.org/10.2196/resprot.3931
https://doi.org/10.3389/fnagi.2022.808518
https://doi.org/10.3390/s20205769
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


TYPE Original Research

PUBLISHED 15 March 2023

DOI 10.3389/fneur.2023.1111260

OPEN ACCESS

EDITED BY

Federico Parisi,

Harvard Medical School, United States

REVIEWED BY

Raquel Bouça-Machado,

Universidade de Lisboa, Portugal

Alvaro Sanchez-Ferro,

Centro Integral en Neurociencias A.C. HM

CINAC, Spain

Adeel Ali Memon,

West Virginia University, United States

*CORRESPONDENCE

Silvia Del Din

silvia.del-din@ncl.ac.uk

†These authors have contributed equally to this

work and share first authorship

SPECIALTY SECTION

This article was submitted to

Movement Disorders,

a section of the journal

Frontiers in Neurology

RECEIVED 09 December 2022

ACCEPTED 20 February 2023

PUBLISHED 15 March 2023

CITATION

Debelle H, Packer E, Beales E, Bailey HGB, Mc

Ardle R, Brown P, Hunter H, Ciravegna F,

Ireson N, Evers J, Niessen M, Shi JQ, Yarnall AJ,

Rochester L, Alcock L and Del Din S (2023)

Feasibility and usability of a digital health

technology system to monitor mobility and

assess medication adherence in

mild-to-moderate Parkinson’s disease.

Front. Neurol. 14:1111260.

doi: 10.3389/fneur.2023.1111260

COPYRIGHT

© 2023 Debelle, Packer, Beales, Bailey, Mc

Ardle, Brown, Hunter, Ciravegna, Ireson, Evers,

Niessen, Shi, Yarnall, Rochester, Alcock and Del

Din. This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Feasibility and usability of a digital
health technology system to
monitor mobility and assess
medication adherence in
mild-to-moderate Parkinson’s
disease

Héloïse Debelle1†, Emma Packer1†, Esther Beales2,

Harry G. B. Bailey1, Ríona Mc Ardle1,3, Philip Brown4,

Heather Hunter4, Fabio Ciravegna5,6, Neil Ireson5, Jordi Evers7,

Martijn Niessen7, Jian Qing Shi8, Alison J. Yarnall1,3,4,

Lynn Rochester1,3,4, Lisa Alcock1,3 and Silvia Del Din1,3*

1Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University,

Newcastle upon Tyne, United Kingdom, 2Faculty of Medical Sciences, Newcastle University, Newcastle

upon Tyne, United Kingdom, 3National Institute for Health and Care Research (NIHR), Newcastle

Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS

Foundation Trust, Newcastle upon Tyne, United Kingdom, 4The Newcastle upon Tyne Hospitals NHS

Foundation Trust, Newcastle upon Tyne, United Kingdom, 5Department of Computer Science and

INSIGNEO Institute for in silico Medicine, The University of She�eld, She�eld, United Kingdom,
6Dipartimento di Informatica, Università di Torino, Turin, Italy, 7McRoberts BV, The Hague, Netherlands,
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Introduction: Parkinson’s disease (PD) is a neurodegenerative disorder which

requires complex medication regimens to mitigate motor symptoms. The use

of digital health technology systems (DHTSs) to collect mobility and medication

data provides an opportunity to objectively quantify the e�ect of medication

on motor performance during day-to-day activities. This insight could inform

clinical decision-making, personalise care, and aid self-management. This study

investigates the feasibility and usability of a multi-component DHTS to remotely

assess self-reported medication adherence and monitor mobility in people with

Parkinson’s (PwP).

Methods: Thirty participants with PD [Hoehn and Yahr stage I (n = 1) and

II (n = 29)] were recruited for this cross-sectional study. Participants were

required to wear, and where appropriate, interact with a DHTS (smartwatch,

inertial measurement unit, and smartphone) for seven consecutive days to assess

medication adherence and monitor digital mobility outcomes and contextual

factors. Participants reported their daily motor complications [motor fluctuations

and dyskinesias (i.e., involuntary movements)] in a diary. Following the monitoring

period, participants completed a questionnaire to gauge the usability of the DHTS.

Feasibility was assessed through the percentage of data collected, and usability

through analysis of qualitative questionnaire feedback.

Results: Adherence to each device exceeded 70% and ranged from 73 to 97%.

Overall, the DHTS was well tolerated with 17/30 participants giving a score > 75%

[average score for these participants = 89%, from 0 (worst) to 100 (best)] for its

usability. Usability of the DHTS was significantly associated with age (ρ = −0.560,

BCa 95% CI [−0.791, −0.207]). This study identified means to improve usability of

the DHTS by addressing technical and design issues of the smartwatch. Feasibility,
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usability and acceptability were identified as key themes from PwP qualitative

feedback on the DHTS.

Conclusion: This study highlighted the feasibility and usability of our integrated

DHTS to remotely assess medication adherence and monitor mobility in

people with mild-to-moderate Parkinson’s disease. Further work is necessary to

determine whether this DHTS can be implemented for clinical decision-making to

optimise management of PwP.

KEYWORDS

Parkinson’s disease, medication adherence, smartwatch, wearable technology, remote

monitoring, mobility, inertial measurement units, motor complications

Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative
disorder characterised by cardinal motor symptoms which impact
quality of life and independence in individuals with PD; therefore,
careful clinical management is of primary importance. Adherence
to prescribed medication dosage and timing is vital for effective
management of motor symptoms. One of the most effective
strategies for managing these symptoms is dopaminergic therapy
such as levodopa (1, 2). As PD progresses, increased (3) and/or
more frequent (4) doses of levodopa are necessary to ease
motor symptoms, but motor complications such as dyskinesias
(involuntary movements) and/or motor fluctuations can develop
(5). During “ON” periods, symptoms and functional impairment
improve following medication intake, whereas “OFF” periods
correspond to a worsening of symptoms as the dose wears off (1).

Due to complex medication regimens, adherence is often
suboptimal, resulting in poor response to medication, reduced
quality of life and increased symptom fluctuation severity (6).
It has been shown that over a third of people with PD (PwP;
36.3%, n = 45) taking three or more doses of medication daily
report poor adherence (6). Modification of complex medication
regimens often follows short, infrequent appointments with a
clinician, which have been especially affected by the COVID-19
pandemic (7, 8). In addition, patient-clinician interactions are
influenced by patient recall and performance bias, and clinicians
observe PwP at different stages (“ON,” “OFF” periods) of their
medication regimen. Consequently, clinicians often lack adequate
insight of daily and habitual motor fluctuations to appropriately
adapt medication regimens. This highlights the need for remote
and real-world monitoring of mobility and motor symptoms in
response to medication in PwP. By objectively modelling and
predicting how mobility and motor symptoms change throughout
the day in response to medication, clinicians may be able to
optimise medication regimens and reduce motor fluctuations
in PwP.

Digital health technology systems (DHTSs) have the “potential
to transform healthcare research” (9) and present a means for
remote monitoring of mobility and assessment of medication
adherence and in PwP. Specifically, body-worn sensors [e.g.,
inertial measurement units (IMUs)] can monitor digital mobility
outcomes (DMOs) in an unobtrusive manner, allowing for
objective quantification of mobility in PwP (10), such as gait speed

(11–13). Other connected devices (e.g., smartphones) provide
a valuable indication of contextual factors that affect DMOs
(14), such as the likelihood that the individual is indoors or
outdoors. Digital health technology (DHT) also presents an
avenue to improve individuals’ medication adherence in PD,
by providing notifications to remind them of their medication
intake times (15, 16). A widely used DHT device is the Personal
KineticGraph (PKG R©, Global Kinetics Corp, Australia). The
PKG continuously monitors and stores motor symptom data
and can send medication reminders (17). However, it does not
provide real-time feedback to users, quantify gait components,
or register the specific medication taken, therefore limiting its
use for comprehensive remote monitoring of PD. Therefore, the
first step to enhance customisation and adaptation of medication
regimens in PwP, is for research to focus efforts on utilising DHT
to comprehensively monitor PwP in their daily life and explore
how motor complications and mobility respond to medication.
Reducing the burden of complex medication regimens on PwP will
improve their quality of life and offer improved management of
motor symptoms.

To achieve this, the present study investigates whether a new
DHTS integrating a smartwatch, smartphone and IMU can be
utilised to monitor mobility and assess medication adherence in
PwP. Specifically, the IMU allows for continuous monitoring of
DMOs; the smartwatch reminds individuals of their medication
intake times and records self-reported intakes through interaction
with the digital screen; and the smartphone sends notifications
to the smartwatch and records contextual data. Additionally, a
diary is filled by participants on a daily basis to record motor
complications (i.e., ON and OFF fluctuations and dyskinesia).
As highlighted by the World Health Organisation (WHO) (18),
feasibility and usability of a DHTS should be amongst the first
assessments conducted for the development of new digital health
interventions. Indeed, individuals’ needs and ability to use DHTS
vary with demographic and clinical status, but usability of DHTS is
rarely explored (19).

Therefore, as a first step to model how mobility and
motor symptoms respond to medication, the present paper aims
to investigate: (i) the feasibility and (ii) the usability of the
aforementionedDHTS and of a diary to remotelymonitormobility,
assess daily medication adherence and track motor complications
in PwP. We first hypothesised that the DHTS and motor
complications diary will be feasible for PwP, and second, as PD
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is a progressive disease, that usability of the DHTS’s components
will decline as participants age and PD progresses. Finally, we
provide recommendations and identify potential ways to improve
the DHTS for future studies.

Materials and methods

This section has been prepared following the EVIDENCE
(EValuatIng connecteD sENsor teChnologiEs) guidelines for the
evaluation of a DHTS in Utility and Usability studies (20).

Participants and protocol

Participants with PD were recruited as part of the Medical
Research Council (MRC) Confidence in Concept (CiC) funded
study “Translating digital healthcare to enhance clinical
management: evaluating the effect of medication on mobility
in people with Parkinson’s Disease” (ISRCTN Number: 13156149,
https://www.isrctn.com/ISRCTN13156149). This study is also a
sub-study of the Mobilise-D—Clinical Validation Study (REC
reference: 20/PR/0792) (21).

Due to the paucity of research exploring concurrent real-world
mobility and medication adherence in PwP using DHTS, there
was insufficient data to inform a reliable power calculation.
For this feasibility study, a sample size of 30 was defined
according to Consensus-based Standards for the selection of
health Measurement Instruments guidelines for measurement
properties (22). Ethical approval was obtained from the London—
Westminster Research Ethics Committee (REC reference:
21/PR/0469) and the study was conducted in accordance with the
declaration of Helsinki (23).

Eligibility criteria

Eligibility criteria are the same as previously published
for the Mobilise-D project (21) and are displayed in Table 1.
In the later stages of the disease (Hoehn and Yahr stages
IV and V), loss of independence can decrease the ability to
perform activities of daily living, this induces difficulties to
remotely monitor mobility with IMUs. Additionally, prevalent
cognitive impairments associated with disease progression
may alter the capacity to utilise the DHTS. Therefore, only
people in the early stages of the disease were recruited
for this study (inclusion criteria: Hoehn and Yahr stages I
to III).

Study protocol

Recruitment and screening
Participants were recruited between June 2021 and March

2022 from local movement disorder clinics and from the
“Mobilise-D—Clinical Validation Study” at the Newcastle
University (UK) site. Potential participants attended an eligibility
screening appointment during which the ability to consent was

TABLE 1 Inclusion and exclusion criteria for participant recruitment.

Inclusion criteria Exclusion criteria

Adults aged 18 or over

Ability to consent and comply with
any study specific procedures

Able to read and write in English

Patients with the clinical diagnosis
of PD according to the recent
criteria of the Movement Disorder
Society (24)

Occurrence of any of the following within 3
months prior to informed consent:
myocardial infarction, hospitalisation for
unstable angina, stroke, coronary artery
bypass graft, percutaneous coronary
intervention, implantation of a cardiac
resynchronization therapy device, active
treatment for cancer or other malignant
disease, uncontrolled congestive heart
disease (NYHA class >3), acute psychosis
or major psychiatric disorders or continued
substance abuse

Hoehn and Yahr stage I–III

On stable Parkinson’s disease
medication doses (i.e., taking the
same medications for 4 weeks or
more).

History consistent with Dementia with
Lewy Bodies, atypical parkinsonian
syndromes (including multiple system
atrophy or progressive supranuclear palsy,
diagnosed according to accepted criteria)

Able to walk 4m independently
with or without walking aids

Repeated strokes or stepwise progression of
symptoms, leading to a diagnosis of
“vascular parkinsonism”

Willingness to wear an IMU, a
smartwatch and use a smartphone

Drug-induced parkinsonism

assessed, informed consent was obtained, and eligibility criteria
were reviewed.

Study assessments
A flowchart of the study protocol is displayed in Figure 1.
Within 14 days of screening, participants attended a

single visit assessment at the Clinical Ageing Research
Unit of Newcastle University in which their demographic
and clinical characteristics were assessed. Clinical
characteristics were measured using validated tools and
questionnaires (25–33).

At the end of this visit, participants were equipped
with the DHTS and a demonstration of the smartwatch
use was made. Detailed written instructions for the
day-to-day use of the devices were provided to
participants which included the contact details of the
research team.

Seven-day continuous remote monitoring
The monitoring period started the day after the screening

visit, with self-reported medication adherence, mobility
and motor complications being monitored over seven
consecutive days.

IMU to monitor DMOs
To monitor their DMOs, participants wore an IMU [Axivity,

AX6, including triaxial accelerometers and gyroscopes, dimensions
23 × 32.5 × 8.9mm, mass 11 g, frequency 100Hz, accelerometer
range±8 g, gyroscope range±2,000 ◦ degrees per second (dps)] on
their lower back (fifth lumbar vertebra) throughout the monitoring
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FIGURE 1

Flowchart of the study protocol.

period, and were asked to continue their daily activities as usual and
not to change their routine.

Smartphone to contextualise DMOs
During the monitoring period, participants were also asked to

carry a smartphone (Samsung Galaxy S9, S10 or S21, Samsung
Group, Suwon-si, South Korea) when leaving their home. The
Aeqora mobile application (Department of Computer Science, The
University of Sheffield, UK) was pre-installed onto the smartphone
to (a) send medication notifications to the smartwatch, and
(b) collect contextual information such as weather conditions,
geolocation, and the number of steps participants took outside of
their home, per day (34). Geolocation data will be used in the future

to discern DMOs obtained from indoor and outdoor environments
using a deep learning model approach (35).

Smartwatch to assess self-reported medication
intake

Participants’ prescribed medication intake times were sent,
via the smartphone, to a smartwatch (Ticwatch Pro, Mobvoi)
through the custom-made Aeqora application extension, and the
smartwatch vibrated to notify participants to take their medication
at the programmed intake times. Participants interacted with the
smartwatch to acknowledge and log their medication intake times,
clicking either “Yes” or “No” on the screen when prompted.
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Participants were able to input any additional medication intake
[Per Required Need (PRN)].

Diary to track motor complications
To track motor complications (ON and OFF fluctuations,

dyskinesia), participants filled in a paper-based medication diary
each day; indicating their “OFF-status” (when participants felt their
medication was not working) with an “O” and dyskinesia with a
“D.” The diary recorded data over 16-h per day, from 06:00 to 22:00
from Day 1 to Day 7. A copy of the medication diary is provided as
Supplementary material 1.

Questionnaire to evaluate the usability of the
DHTS

At the end of the monitoring period, to evaluate usability of the
DHTS, participants completed an adapted version of Rabinovich
et al.’s (36) usability questionnaire. The questionnaire used a 5-
point ordinal scale, 5 being the most favourable and 1 the least
favourable scores, with answers of “no opinion” scored as 3.
Participants also provided an overall score for the DHTS, from 0
(worst score) to 100 (best score). Open text questions were added
to the questionnaire to allow participants to provide feedback on
individual devices and on the DHTS. Specifically, participants were
asked to “give any other comments on the DHTS and its devices,”
and to describe, where appropriate, the “problems” they had with,
and the “features [they] liked” about the DHTS and individual
devices. A copy of the usability questionnaire is provided in the
Supplementary material 2.

At the end of the 7-day assessment, participants returned all the
devices, the usability questionnaire and the motor complications
diary through the post using pre-paid tracked envelopes.

Data processing and analysis

Data processing
To gain comprehensive insight into the usability of the DHTS

we utilised a mixed methods approach (19). Statistical analysis was
carried out using SPSSv28 (IBM, NY). Histograms and boxplots
were visually inspected to assess the distribution of the data.
Outliers (values that are 1.5 × interquartile range lower or greater
than first or third quartiles, respectively) were kept in the analysis.
Where appropriate, mean and standard deviation or median and
range of the demographic and clinical characteristics were reported.

Qualitative analysis of free text questionnaire responses was
carried out by two researchers (EP and HD) who together
assessed all participants’ responses and developed key themes and
subthemes. Individually, the researchers then grouped all responses
into these themes and subthemes and finally met to review the
groupings and form a consensus.

Data was downloaded from the IMU onto a computer and
segmented into seven days and analysed in MATLAB (R2018a,
Mathworks, California, United States). Walking bouts (i.e., periods
of walking with aminimum threshold of three steps) were identified

and gait speed and number of steps per day were calculated from
the raw IMU data using validated algorithms in MATLAB (13, 37).

Data logged on the smartwatch and smartphone was uploaded
to the secure eScience platform (38) and processed using validated
algorithms for the contextual data (34), and manually for self-
reported medication intake. Raw data from the smartwatch was
exported to .xlsx files and included the following items for each
day: medication type, time, dose and participants’ input (“Yes” or
“No”). The number of hours spent per day, in the “ON-” and “OFF-
status” and time spent experiencing dyskinesias, were evaluated
using annotated motor complication diaries.

Quantitative assessment of feasibility of the DHTS
and motor complications diary

The WHO report (18) defines feasibility as “[. . . ] whether the
digital health system works as intended in a given context.”

To test whether the DHTS and motor complications diary will
be feasible for individuals with PD, we explored the feasibility of
the DHTS to measure mobility (IMU) and assess self-reported
medication adherence (smartwatch), and the feasibility of the
smartphone and diary to collect contextual data and track motor
complications (“ON,” “OFF” periods, dyskinesia), respectively. In
reference to the WHO definition of feasibility, we assessed whether
the intended data had been collected by each device in the
system (18).

Concerning medication adherence, the number of interactions
expected corresponded to the number of prescribed medication
intakes, excluding PRN intakes. As the overall aim of this project
is to model mobility and motor complications in response to
medication intake and this will include PRN doses, interactions
recorded per day included PRN intakes. Duplicates (second intake
separated by 30 minutes or less from initial intake) were excluded
from the analysis.

Table 2 summarises the measures of feasibility and outcomes
extracted.

Quantitative assessment of usability of the DHTS
The WHO report (18) defines usability as “[. . . ] whether the

digital health system can be used as intended by users.”

TABLE 2 Measure of feasibility and outcomes extracted for each device of

the DHTS and motor complications diary.

Device Measure of feasibility Outcomes
extracted

IMU Percentage of IMU datasets
collected over 7 days

Gait speed and number
of steps per day.

Smartphone Percentage of datasets collected
over 7 days and percentage of days
missing.

Number of steps taken
outside the home per
day.

Smartwatch Percentage of participants
interacting with the smartwatch
over 7 days.

Number of interactions
recorded.

Motor
complications
diary

Percentage of diaries returned and
legible.

Time spent in ON or
OFF state and
dyskinesia.
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The usability of the DHTS was evaluated through analysis
of the quantitative part of the usability questionnaire. To
test our second hypothesis that usability of the DHTS’s
devices will be affected by participants’ demographic and
clinical characteristics, we ran Spearman’s rho correlations
between the overall usability score of the DHTS provided by
participants and their demographic and clinical characteristics.
Considering the lack of normality of the sample’s DHTS
usability score, we used bootstrapping correlations with bias
corrected and accelerated 95% confidence interval (BCa 95%
CI) to improve the accuracy of the confidence interval [for
information on bootstrapping, please see Wright, London and
Field’s paper (39)]. It was anticipated that usability of the DHTS
would decrease with age or disease progression. Therefore,
correlation analysis was run between the overall DHTS score
(0–100) and demographic (age) (α = 0.05), as well as clinical
characteristics (disease duration, number of medication doses
prescribed per day, SPPB score, MDS-UPDRS II and MDS-
UPDRS III scores, frailty phenotype and total NFoG-Q score)
characteristics. Concerning the correlation between the overall
DHTS score and participants’ clinical characteristics, because
we would reject the null hypothesis should any of the seven
clinical characteristics be correlated with the overall DHTS
score, a Bonferroni correction was performed and α adjusted
to 0.007.

Qualitative assessment of feasibility and usability
of the DHTS

To identify opportunities to improve the DHTS, we
evaluated the qualitative part of the usability questionnaire
(19, 40, 41). To analyse these responses, we took a hybrid
approach using both deductive and inductive methods, originally
grouping qualitative feedback into feasibility, usability, and
recommendations for improvement. From exploration of
responses, acceptability was included as an additional theme
and, based on a previous definition (42), refers to the extent
to which the DHTS is perceived as agreeable. Finally, the
quantitative part of the usability questionnaires was analysed
again with questions grouped according to the identified theme.
Question 3 was the only question relating to the feasibility theme.
Questions 1, 2, 7, and 8 related to the usability theme and the
remaining questions (4, 5, 6, 9, 10, 11, and 12) related to the
acceptability theme.

Results

Demographic and clinical characteristics

Thirty participants (22 males, 63± 9 years, levodopa equivalent
daily dose 676 ± 370 mg·day−1) who met the inclusion criteria
(Table 1) were included in this study. Most (n = 29) participants
were at Hoehn and Yahr stage II (97%), and one was at Stage I (3%).
Participants’ clinical and demographic characteristics are presented
in Table 3.

No serious adverse event was reported.

TABLE 3 Demographic and clinical characteristics of participants

recruited for the study.

Characteristics Mean ± SD Median
(Min–Max)

Frequency

Males/females 22/8

Age (years) 63± 9

BMI (kg·m−2) 26.2± 4.2

Education (years) 13± 3

Disease duration
(years)

5 (1–17)

N◦ doses prescribed
per day

5 (3–13)

Hoehn and Yahr
stage, stage: n (%)

I: 1 (3%)
II: 29 (97%)

LLFDI function
(0–160)

132± 19

LLFDI function
walking device
(0–40)

33 (32–35)

LLFDI disability
frequency (0–80)

56 (43–70)

LLFDI disability
limitation (0–80)

66± 9

LEDD (mg·day−1) 676± 370

Frailty Phenotype,
phenotype: n (%)

0: 16 (53%)
I: 10 (33%)
II: 3 (10%)
III: 1 (3%)

MDS-UPDRS Part II
(0–52)

11 (2–33)

MDS-UPDRS Part
III (0–132)

30 (7–43)

NFoG-Q (0–33) 0 (0–26) Score ≥ 1:
n= 10

MoCA (0–30) 28 (21–30)

SPPB (0–12) 10± 1

Outcomes are reported as mean and standard deviation (SD) when normally distributed and

median with minimum and maximum values (Min–Max) when they lack normality.

BMI, body mass index; LLFDI, late-life function and disability instrument; MDS-UPDRS,

movement disorder society-unified Parkinson’s disease rating scale; NFoG-Q, new freezing of

gait questionnaire;MoCA,Montreal Cognitive Assessment; SPPB, short physical performance

battery test.

Quantitative assessment of the feasibility of
the DHTS and motor complications diary

IMU to monitor DMOs
IMU data was collected for 93% of participants (n = 28)

over the 7-day monitoring period. Two data sets were missing
because one DHTS was recalled due to technical issues with the
smartwatch and one participant removed it on day 3 due to
skin irritation. Averaged over the 7 days monitored, the median
gait speed collected from the IMUs was 1.04 m·s−1 and ranged
from 0.90 to 1.28 m·s−1. The median number of steps (indoor
and outdoor) recorded per day by the IMU ranged from 11,228
to 13,693.
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Table 4 shows participants’ gait speed and number of steps per
day recorded by the IMU from day 1 to day 7.

Smartphone to contextualise DMOs
Contextual data for one participant was missing for the

whole monitoring period (Day 1–7), therefore contextual data was
recorded for 97% (n = 29) of participants. No data was recorded
(phone off) for eight participants for 1–5 days [total number of days
without contextual data = 23 (11%)]. The median number of steps
(outdoor) recorded per day by the smartphone ranged from 313
to 3,307.

Table 5 shows participants’ number of steps outside their home
environment recorded by the smartphone from day 1 to day 7
(different from the IMU that continuously collected steps per day
indoors and outdoors).

Smartwatch to assess self-reported medication
intake

Three participants (10%) did not interact with their smartwatch
during the monitoring period, whilst the other 27 participants
(90%) interacted with it at least once. Due to technical issues,
eight participants (27%) stopped using the smartwatch during
the monitoring period, therefore only 22 participants (73%) had
smartwatch data recorded over the monitoring period. Delayed
(“No” interaction followed by late additional interaction to report

TABLE 4 Gait speed and number of steps per day measured from the

IMU’s data (n = 28).

Gait speed m·s−1 Number of steps per day
(inside and outside)

Median (Min–Max) Median (Min–Max)

Day 1 1.05 (0.76–1.16) 13,235 (3,688–24,556)

Day 2 1.05 (0.76–1.18) 13,092 (2,935–24,099)

Day 3 1.04 (0.83–1.16) 13,693 (4,360–38,655)

Day 4 1.03 (0.75–1.20) 11,919 (2,387–29,719)

Day 5 1.05 (0.82–1.14) 11,228 (917–33,403)

Day 6 1.05 (0.85–1.17) 13,399 (1,896–30,872)

Day 7 1.06 (0.85–1.40) 11,823 (1,755–27,394)

TABLE 5 Number of steps taken outside the home, per day, recorded by

the smartphone (n = 29).

Median (Min–Max)

Day 1 3,307 (0–12,068)

Day 2 2,218 (0–15,932)

Day 3 1,437 (0–19,184)

Day 4 1,521 (0–9,014)

Day 5 313 (0–11,915)

Day 6 2,425 (0–10,342)

Day 7 1,873 (0–19,452)

intake) and PRN intakes mean that some participants interacted
with their smartwatch more than expected. Ninety expected
interactions were missing from the records and 191 duplicates were
excluded from analysis.

Figure 2 shows the number of interactions recorded vs.
expected per day for (A) the whole sample (n = 30), and (B)
participants (n = 22) who used the smartwatch throughout the
monitoring period.

Diary to track motor complications
Twenty-nine participants (97%) returned their motor

complication diaries, among these, two diaries could not be
analysed (not legible) and were excluded from analysis; therefore
data from 27 participants (90%) was analysed. Participants spent
most of their time in the “ON” state during the monitoring
period, with participants’ median time in the “ON” state being
108 h, ranging from 56.5 to 112 h. Participants’ median time in
the “OFF” state was 2 h, ranging from 0 to 55.5 h, over the seven
days monitored 19 out of 27 participants reported “OFF” periods.
Participants’ median time over which they reported dyskinesia was
0 h and ranged from 0 to 30.5 h, 10 out of 27 participants reported
dyskinesia over the monitoring period.

Table 6 displays the time spent in each state from Day 1 to Day
7 in 27 participants for whom diary data could be analysed.

Quantitative assessment of usability of the
DHTS

Twenty-eight participants (93%) returned their usability
questionnaires. Briefly, 82% of those who returned their
questionnaires had little to no trouble getting started with
the DHTS (Q1), 64% found the system easy to put on and take
off (Q2), and 59% reported experiencing technical issues (Q3).
Additionally, the DHTS did not interfere with normal activities
in 89% of participants (Q4), with 93% of them felt comfortable
wearing the DHTS (Q5), none of the participants felt embarrassed
wearing the smartwatch (Q6), and over 68% of participants found
that the instructions were clear and that the daily use of the DHTS
was easy (Q7 and Q8). According to 75% of participants the system
was not bulky or heavy (Q9). Eight percent of them felt that the
DHTS bothered them in bed (Q10), and 7% of participants felt
that their privacy was invaded by the DHTS (Q11). Finally, 43% of
participants reported that they would be happy to wear the DHTS
for over a week if their doctor asked them to, 43% of them reported
that they would be happy to wear it for a week and the remaining
ones less than a week (Q12).

Results of the usability questionnaire are presented in Figure 3.
The median overall usability score given to the DHTS was 80%

and ranged from 10 to 100%, on a scale ranging from 0 (worst)
to 100% (best score). Responses were ranked over 25% intervals,
which showed that 61% of participants (n= 17) provided scores in
the highest rank (score above 75%) and overall, 86% of participants
(n= 24) found the DHTS usable (score 50% and above) (Figure 4).

A significant correlation was found between the overall
usability score and participants’ age (ρ = −0.560, p = 0.002,
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FIGURE 2

Bar chart representing the number of interactions with the smartwatch expected (black) vs. recorded (grey) per day for all 30 participants (A) and only

the 22 participants who recorded medication intake for seven days (B).

TABLE 6 Time (hours) in each medication state (ON, OFF, dyskinesia)

recorded from the medication diary (n = 27).

ON OFF Dyskinesia

Median
(Min–Max)

Median
(Min–Max)

Median
(Min–Max)

Day 1 15.3 (8.5–16.0) 0.5 (0.0–7.0) 0.0 (0.0–3.5)

Day 2 15.5 (8.5–16.0) 0.5 (0.0–7.5) 0.0 (0.0–4.0)

Day 3 15.5 (6.5–16.0) 0.3 (0.0–9.5) 0.0 (0.0–5.0)

Day 4 15.5 (8.0–16.0) 0.0 (0.0–8.0) 0.0 (0.0–4.5)

Day 5 15.5 (6.5–16.0) 0.0 (0.0–9.5) 0.0 (0.0–5.5)

Day 6 15.5 (8.5–16.0) 0.5 (0.0–7.5) 0.0 (0.0–3.5)

Day 7 15.8 (8.5–16.0) 0.3 (0.0–6.5) 0.0 (0.0–4.5)

BCa 95% CI [−0.791, −0.207]). A scatter plot of the significant
correlation is presented in Figure 5; Table 7 shows all the
correlation results.

Qualitative assessment of feasibility and
usability of the DHTS

Three themes (feasibility, usability, and acceptability)
were identified from analysis of participants’ feedback of
the DHTS and individual devices (open text questions of
the usability questionnaire). Responses to the questionnaire
(classified into themes and subthemes) are presented in the
Supplementary material 3.

Feasibility
Feasibility comments were split into two sub-themes: technical

and non-technical. Overall, most comments referred to technical

issues with the smartwatch, especially concerning its expected
function, with some participants reporting that notifications were
not delivered at the correct time “notifications sometimes late.” Two
participants felt the notification vibrations were not strong enough
to be felt “couldn’t feel the vibration.” Non-technical comments
encompassed all the devices and reflected the overall satisfaction of
participants. Commonly reported comments indicating no issues
with feasibility included “No problems” and “All good.”

Usability
Usability was split into three sub-themes: ease of use, disease

specific comments and requirement for external support. Usability
comments generally reflected issues experienced with the IMU
and smartwatch.

Ease of use comments generally concerned the IMU and
smartwatch. Regarding the IMU, participants commented on
whether they had to replace the attachment during the monitoring
period. Most participants who commented on the usability of the
IMU were satisfied by the product “No maintenance! Okay in

shower,” “Easy to wear,” but one reported having to “reapply twice
during the 7 days.” Concerning the smartwatch, two participants
found it easy to use, but three expressed their concern about how
it is “easy to get confused” or the watch being “over complicated.”
Another participant provided mixed feedback, stating that it was
“Difficult to fasten and unfasten [. . . ] Clear readable face. Easy

to recharge.”
Disease specific comments related to the participants’ tremors

adversely influencing their capacity to interact with the smartwatch
“screen is quite small, especially hard with a tremor” and to reach the
IMU (i.e., on their lower back) “needed help reapplying after showers
as could not reach.” Linking with this, four participants required,
or expressed the need for external support to reattach individual
devices, “tricky to attach without help.”
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FIGURE 3

Responses given to the usability questionnaire (%). Q1: How much trouble did you have getting started with the wearable technology system? Q2:

The wearable technology system was easy to put on/take o�. Q3: I experienced technical problems with the wearable technology system. Q4: The

wearable technology system interfered with my normal activities. Q5: I felt comfortable wearing the wearable technology system. Q6: I felt

embarrassed wearing the wearable technology system. Q7: The instructions on how to use the wearable technology system were clear. Q8: Using

the wearable technology system on a daily basis was easy. Q9: The wearable technology system was bulky/heavy. Q10: The wearable technology

system bothered me in bed. Q11: I felt my privacy was invaded by the wearable technology system. Q12: If my doctor would like to use the wearable

technology system to assess my activity and medication adherence I would be willing to wear it and use it for. Colour code from red (score = 1 for

least favourable response) to green (score = 5 for most favourable response). For this questionnaire, the term “wearable technology system” refers to

the DHTS.

FIGURE 4

Ranges of overall score given to usability of the DHTS (from 0 worse

to 100 best score).

Acceptability
Acceptability was split into four sub-themes: appearance,

perception of the device, routine and wearability. Overall, the
acceptability comments on the DHTS were positive, with the
devices described as “great to monitor people” and “ideal for use.”

FIGURE 5

Spearman’s rho correlation between overall usability score and age.

Comments on appearance solely concerned the smartwatch and
smartphone. Participants reported that the smartwatch was “bulky”
or “too large” for their wrist. Two participants reported that the
watch was “nice looking” and had a “clear screen.” Concerning the
smartphone, participants also found it “a bit bulky” and “too big”
to be carried in a handbag or pocket. One participant commented
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TABLE 7 Correlations between the overall usability score provided by participants on the DHTS in the usability questionnaire and demographic and

clinical characteristics.

Correlation with overall usability score Spearman’s rho Sig. (p) α BCa 95%CI

Lower boundary Upper boundary

Age −0.560 0.002 <0.05 −0.791 −0.207

Disease duration −0.269 0.167 <0.007 −0.643 0.145

Number of medication doses per day −0.309 0.109 <0.007 −0.680 0.153

SPPB score 0.412 0.029 <0.007 0.018 0.712

MDS-UPDRS II −0.218 0.266 <0.007 −0.536 0.193

MDS-UPDRS III 0.093 0.638 <0.007 −0.285 0.500

Frailty phenotype −0.224 0.251 <0.007 −0.582 0.142

NFoG-Q −0.259 0.184 <0.007 −0.581 0.144

Bold values are significant.

that the DHTS “would be a very helpful piece of technology if watch

was smaller.”
Concerning participants’ perception of the devices, they liked

that the IMU was “waterproof.” The smartwatch was reported
as “handy” and participants liked having a “reminder to take

medication,” one participant reported having invested in their own
smartwatch as a result of the study: “Seemed like a good idea

as I regularly need an alarm reminder. I like the theory. Have

invested in my own vibrating alarm watch” and one participant
felt that the notifications helped them realise that their medication
“ran out sooner” “No problems just made me realise my meds ran

out sooner before next dose.” Concerning the smartphone, one
participant reported that they “Didn’t feel any benefit from this

device. A nuisance.”
Relative to the sub-theme of routine, many participants felt the

IMU was “small” enough that it could be forgotten about. One
participant reported no issues sleeping with the IMU device on
“No problem sleeping. Kept it on all week.” One participant reported
having reservations before wearing it, but quickly forgot this once
attached “Had reservations before wearing it. However, after it was

fitted, I soon forgot about it, and it was no trouble.” One participant
felt that “When working full-time it was annoying having to keep

setting the watch.” Concerning the smartphone, two participants
reported either forgetting to take their smartphone with them “Ok
I forgot to take it twice” or that “Having to remember to have it

with me all the time was annoying.” In contrast, two participants
reported that they were not concerned by having the smartphone
with them “I did not need to do anything with the phone other than

have it withme all the time,” “Most people carry a phone these days, so

no problem for me.” Participants felt that overall, the DHTS “didn’t
interfere with daily life too much” and that it was “quite easy to live
with,” with “little impact on day-to-day activities.”

Concerning wearability, many participants felt that the IMU
was “comfortable” and “unobtrusive” although some reported
occasional itching and skin irritation due to the adhesive.
One participant reported that the smartwatch was the “least
comfortable” device, and one that it was “a bit big for me,” but
two participants reported being overall satisfied “Ok to wear,” “Not
heavy” by the smartwatch. Three participants reported that the
smartphone was “too heavy” or “on the heavy side.” One participant

reported that the overall system was “Wearable for a week” with
another reporting that they had “no problems wearing it.”

Overall, the DHTS was well accepted and usable, but technical
issues with the smartwatch affected participants’ opinion on the
system. Re-analysis on the questionnaire and grouping of each
question within the feasibility, usability and acceptability themes,
showed that the DHTS was deemed acceptable and usable with 83
and 71% of participants responding with the 2 most favourable
answers, respectively. Reflecting the responses given to Q3, only
41% of participants responded with the 2 most favourable answers
to the feasibility question. Figure 6 shows the percentage of
responses given for each theme.

Discussion

This study aimed to provide evidence that a new
multicomponent DHTS and a motor complications diary
could monitor mobility and contextual factors, assess self-reported
medication adherence and track motor complications in people
with mild-moderate Parkinson’s disease, and to identify potential
means to improve the DHTS for future use. Results showed that
the DHTS is both feasible and usable for remote monitoring of
PwP, but the smartwatch was prone to technical issues making it
the least feasible and usable component.

Feasibility

For this feasibility study, the performance of the DHTS was
not directly compared to other systems. However, previous research
assessing the feasibility of a DHTS in PwP found a completion rate
between 62 and 68% over 6 and 13 weeks, respectively, in people
mostly scoring II on the Hoehn & Yahr scale (43). Therefore, as
previously done by others over longer time periods (12 weeks) in
people with a median Hoehn & Yahr score of II, a completion
rate of 68% was used as feasibility threshold in the present study
(44). Here, this threshold was exceeded for all devices which was
expected as the monitoring period was much shorter. Specifically,
97 and 93% of the smartphone and IMU data was collected,
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FIGURE 6

Percentage of responses given to the usability questionnaire

classified according to the acceptability (Q4, Q5. Q6, Q9, Q10, Q11,

and Q12), usability (Q1, Q2, Q7, and Q8), and feasibility (Q3) themes.

Colour code from red (least favourable) to green (most favourable).

respectively, 90% of the motor complications diaries were legible,
and 73% of participants reported medication intakes over the 7-
day monitoring period. This last completion rate, although lower
than that of the smartphone and IMU, remains in line or slightly
higher than the compliance to a DHTS use measured over the
first week by other authors (about 75% on Day 1 and down to
about 65% after few days) (43). Therefore, this study showed
that it is feasible to assess self-reported medication adherence and
monitor mobility in PwP using this DHTS, and to track motor
complications with the diary. However, participants experienced
technical issues existed, particularly with the smartwatch, which
reduced the feasibility of the DHTS to assess self-reported
medication adherence. Importantly, some participants reported
not receiving or feeling the smartwatch vibrations, or notifications
being late. At this stage, it is difficult to evaluate whether these
failures were due: to participants not noticing the vibration,
possibly due to a disease related higher threshold to vibrations of
the sensory system (45); to the vibration not being strong enough;
or to technical failures, leading to notifications not being sent
to and/or received by the smartwatch. To appropriately control
motor symptoms and complications in PD, strict adherence to
prescribed medication timing is crucial. Therefore, the late delivery
of smartwatch notifications is a prominent issue that will need to
be addressed before this smartwatch can be utilised in future work
monitoring medication adherence in PD.

Contextual data (obtained from the smartphone) were missing
for 23 days in total (11% of total number of days monitored). Out of
these 23 days with missing contextual data, 21 days correspond to
participants (n= 6) who stopped interacting with their smartwatch
during the monitoring period. This may be due to participants
forgetting to take the phone with them when leaving their home,
and/or them not being aware of the importance of taking the
phone with them when they leave their home. As contextual
data was collected when the smartphone was on and movement
was detected, even when they did not leave their home, missing

data for the remaining 2 participants (1 day missing for each
participant) may mean that the smartphone was turned off, either
voluntarily or because it had run out of battery, and/or that the
phone was not moved that day. This may be due to participants
not endorsing the purpose or benefit of the device: exemplified
in the questionnaire response “Didn’t feel any benefit from this

device. A nuisance.” This is supported by previous research on
DHTS observing that older adults and PwP better adhere to device
use when they understand their benefits (46, 47). Therefore, to
improve participants’ adherence to smartphone usage, research
should emphasise to participants the importance and purpose of
collecting contextual data using a smartphone when monitoring
PD symptoms. As technology progresses and sensors reduce in size,
we expect the smartwatch to collect contextual data independently
and therefore the smartphone to become redundant, which would
resolve this issue.

Finally, two diaries were not legible. One because the
participant coloured the slots of the diary instead of differentiating
between OFF-status or dyskinesia with an O or D, and one because
the “O”s and “D”s were not distinguishable. Future work should
utilise devices which distinguish between these medication phases.
Although this is possible with the PKG (17), as previously stated,
it is limited in other outcomes it can produce. Therefore, an
optimal device should independently monitor motor symptoms
and complications, mobility, contextual factors and self-reported
medication adherence.

Usability

Overall, participants in this study considered the DHTS usable,
however the usability score given by participants was negatively
correlated with age, indicating that younger adults felt more at
ease using the DHTS. This may be a consequence of the lack of
experience with DHT associated with advanced age (48), or a lack
of confidence associated with handling new technology observed
in older adults with PD (49). This suggests that participants
may have benefitted from more practice time. No correlation
was found between the overall usability score of the DHTS and
clinical characteristics of participants. This is surprising since
two participants reported having issues interacting with the IMU
or smartwatch due to their tremor (see Supplementary material).
These results may suggest that a larger and more diverse sample
will be necessary to understand the usability of this DHTS
in participants with more severe PD, impaired motor function
and dexterity issues. Therefore, any attempt to assess self-
reported medication adherence in participants with more advanced
PD using this DHTS should be preceded by an appropriate
usability study.

Acceptability

Previous research highlighted that for a DHTS to be
acceptable, it should, among others, be easy to wear and
be aesthetically pleasing (9). Concerning wearability, many
participants commented on the “bulky” nature of the smartwatch.
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We received mixed feedback about the devices, particularly
the smartwatch was considered “too big” and “bulky” by some
participants but too small to use with a tremor by others. These
findings follow previous research that suggests that wearable
devices should be adjusted to individuals’ needs and motor
symptoms (49). Participants should therefore be offered a range of
models between which they are free to choose based on personal
preference. This would require careful study design to avoid
variations in response due only to a specific choice of DHTS, but
may encourage greater compliance, given active participation in
model selection.

Forty-three percent of participants would be happy to wear the
DHTS for a week and another 43% would be happy to wear it for
over a week. This is lower than previously reported (36). In the
present study, this was explored for the DHTS as a whole whereas it
was investigated for individual devices in Rabinovich et al.’s study.
Hence, the acceptability of the DHTS here was probably lowered
by the issues experimented with the smartwatch. The COVID-19
pandemic highlighted the need for long-term remote monitoring of
people with chronic disease, such as PD, therefore an independent
feasibility study of longer duration would be required to apply
these results for clinical management of PwP. Previous work (50)
observed that the majority of participants with PD would not feel at
ease wearing sensors, such as the Axivity sensor in public on visible
body locations. Although our study did not specifically ask about
wearing the devices in public, wearing a device for a week or longer
would most probably involve wearing it in public, as participants
in our study did. The greater acceptance of using our DHTS may
result from our devices being small, and easily hidden by clothing.
Additionally, although many participants in our study were willing
to utilise the DHTS, previous studies have highlighted that they
do not want this as a replacement for clinical consultations with
participants often prioritising communication with their clinician
(47, 49).

Despite utilising medical grade adhesive to secure the IMU,
one participant stopped the trial due to skin irritations and three
others reported mild symptoms of contact dermatitis (itchy skin
or irritation) on the location of the IMU. Future work will include
screening for history of allergy, skin reaction to adhesive, or skin
condition that could be triggered by contact with adhesive (e.g.,
eczema) as exclusion criteria.

Recommendations for improvement

This study was part of a larger project aiming to model motor
symptoms and mobility in response to medication intake in PwP
and has provided vital insights for the future. Firstly, technical
issues (notifications received late, not received, or received more
than once) with the smartwatch need to be addressed. To this
aim, we will update the smartphone to the latest version of the
android mobile operating system and upgrade the smartwatch
to the most recent model, which may improve the timing of
notification delivery. We could not identify why many expected
interactions were missing (n = 90), or received multiple times
(n = 191) with the current system. These might be due to a
system failure, with either no notification or multiple ones being
sent to, or received by, the smartwatch. The Aeqora application

will be updated which should improve notification delivery.
Alternatively, these missing or repeated interactions might be
due to participants not acknowledging their medication intake or
inputting the same intake several times. With the current system
there were only two possible outcomes for medication intake, either
“Yes” when participants acknowledged medication intake or “No”
when participants acknowledged not taking their medication. We
will add a “No interaction” outcome so that in the future we
can distinguish whether participants received the notification but
ignored it (“No interaction”) or if the notification had not been
sent to or received by the smartwatch (system error). In addition,
participants may have received their notifications but not felt the
watch vibration, possibly due to a higher sensory threshold (45). To
minimise this potential risk of losing data, in the future, we will trial
different notification types with participants and let them choose
which pattern they better detect (vibration only, auditory alarm
only, vibration and auditory alarm). Finally, we will add a “thank
you” message confirming to participants that their input has been
recorded which should prevent repeated inputs.

Limitations

The present study utilised an indirect approach to assess
medication intake which relies on participants self-reporting
their intakes and may be considered less accurate than direct
observation of intakes, or invasive and potentially expensive
laboratory detection of the active substance (15). This indirect
method was chosen because it is easily applicable to large cohorts,
but it requires reliable interactions with the smartwatch which may
be difficult to achieve for individuals with advanced PD and may
be susceptible to active deception (i.e., participant choosing not to
consume the medication whilst acknowledging its intake) (15). In
the future to reduce this risk, our system could be associated with
medication specific upper arm movement detection algorithms,
such as those developed by other authors (51–53).

Improvements made to the smartwatch should improve both
the feasibility and usability aspect of the DHTS but further work
is needed to quantify the progress made. In the future, additional
practice time will be scheduled to ensure participants have sufficient
understanding of how to use the devices, and for technical issues to
be identified and resolved.

This study presents data collected from a relatively small
sample, which only included participants at stage I (n = 1) and II
(n= 29) of the Hoehn and Yahr Scale. The majority of participants
(n = 16) were classified as not frail (only four participants had
two or more frailty characteristics), with little OFF-time (median
time = 2 h) or dyskinesia periods (median time = 0 h) and did not
have severe cognitive impairment (all participants scored ≥21/30
on the MoCA). Additionally, multimorbidity frequently coexists
with PD (54), but this was not recorded in the present study.
Furthermore, the sample was recruited from a regional movement
disorder clinic with specialised PD expertise. Therefore, this study
only reflects people in the early stages of the disease with mild
to moderate motor and cognitive symptoms and findings cannot
be generalised to the wider PD population. Hence, any attempt at
utilising this DHTS with people in the later stage of the disease
should be preceded by a feasibility study conducted with the
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intended population. Similarly, this DHTS may not be adapted
to the study of people in the very early stages of the disease
(prodromal and Hoehn and Yahr stage I) as it may be seen as too
constraining and of limited relevance to them if prescribed less
complex medication regimens.

Conclusion

This study demonstrated that assessing self-reported
medication adherence, tracking motor complications, and
monitoring mobility in people with mild-to-moderate Parkinson’s
disease are feasible using this novel DHTS and a motor
complications diary. Analysis of questionnaire answers and
qualitative feedback highlighted contrasting opinions on the
DHTS’s usability. Specifically, the IMU and smartphone were
considered usable by most participants, but difficulties arose when
interacting with the smartwatch due to technical issues, lack of
familiarity with the system and motor symptoms (tremor). In
the future, the DHTS will be improved to allow for more reliable
monitoring of medication intakes, which should enhance our
capacity to model motor symptoms, complications, and their
fluctuation in response to medication intake. This will provide
greater insights for clinicians to optimise complex medication
regimens in individuals with PD, potentially improving their
quality of life.
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Need for personalized monitoring 
of Parkinson’s disease: the 
perspectives of patients and 
specialized healthcare providers
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3 Scientific Center for Quality of Healthcare (IQ Healthcare), Radboud Institute for Health Sciences, 
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Background: Digital tools such as wearable sensors may help to monitor 
Parkinson’s disease (PD) in daily life. To optimally achieve the expected benefits, 
such as personized care and improved self-management, it is essential to 
understand the perspective of both patients and the healthcare providers.

Objectives: We identified the motivations for and barriers against monitoring PD 
symptoms among PD patients and healthcare providers. We  also investigated 
which aspects of PD were considered most important to monitor in daily life, and 
which benefits and limitations of wearable sensors were expected.

Methods: Online questionnaires were completed by 434 PD patients and 166 
healthcare providers who were specialized in PD care (86 physiotherapists, 55 
nurses, and 25 neurologists). To gain further understanding in the main findings, 
we subsequently conducted homogeneous focus groups with patients (n = 14), 
physiotherapists (n = 5), and nurses (n = 6), as well as individual interviews with 
neurologists (n = 5).

Results: One third of the patients had monitored their PD symptoms in the past 
year, most commonly using a paper diary. Key motivations were: (1) discuss 
findings with healthcare providers, (2) obtain insight in the effect of medication 
and other treatments, and (3) follow the progression of the disease. Key barriers 
were: (1) not wanting to focus too much on having PD, (2) symptoms being 
relatively stable, and (3) lacking an easy-to-use tool. Prioritized symptoms of 
interest differed between patients and healthcare providers; patients gave a higher 
priority to fatigue, problems with fine motor movements and tremor, whereas 
professionals more frequently prioritized balance, freezing and hallucinations. 
Although both patients and healthcare providers were generally positive about 
the potential of wearable sensors for monitoring PD symptoms, the expected 
benefits and limitations varied considerably between groups and within the 
patient group.

Conclusion: This study provides detailed information about the perspectives of 
patients, physiotherapists, nurses and neurologists on the merits of monitoring 
PD in daily life. The identified priorities differed considerably between patients and 
professionals, and this information is critical when defining the development and 
research agenda for the coming years. We also noted considerable differences 
in priorities between individual patients, highlighting the need for personalized 
disease monitoring.
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1. Introduction

Parkinson’s disease (PD) is a chronic, progressive 
neurodegenerative disease with complex clinical presentation (1, 2). 
Patients may experience motor symptoms such as bradykinesia, 
rigidity, tremor and balance impairments, but also a wide range of 
non-motor symptoms, such as mood changes, cognitive decline, pain 
and sleep disturbance, and side effects of medication such as 
dyskinesia. Symptoms can differ considerably between patients, and 
both the nature and the impact of symptoms can vary markedly 
throughout the course of the disease (3). In current clinical practice, 
we mainly use self-reports (history taking, sometimes supplemented 
by diaries) and in-clinic observations to monitor the presence and 
severity of symptoms, as well as the response to treatment. These 
episodic assessments do not always provide a representative and 
complete picture of the patient’s actual functioning in daily life, for 
example due to recall bias (4) and observer effects (5). Remote 
monitoring tools such as wearable sensors may partly fill this gap and 
provide opportunities for personalized care, telemedicine and 
improved self-management (6, 7).

To deliver on these promises, it is essential that such tools address 
specific needs experienced by PD patients and their healthcare 
providers. This requires a thorough understanding of the diverse 
perspectives on symptom monitoring and wearable sensors of all 
stakeholders involved (8). PD patients vary in terms of experienced 
symptoms, but also with regard to coping strategies and personal 
treatment goals (9). Moreover, professionals from multiple disciplines 
can be involved in PD care, including neurologists, physiotherapists, 
nurses, speech therapists, general practitioners and many others, with 
each discipline focusing on different aspects (10). Our current 
understanding of the motivations and barriers for symptom 
monitoring of PD and for using wearable sensors is fragmented, and 
the focus has thus far mainly been on the perspective of patients 
(11, 12).

Because health monitoring behavior is not limited to patients, 
some useful insights can be  obtained from studies in the general 
population. Using a survey among 150 self-trackers, five different 
motivations for self-tracking were identified, consisting of self-design 
(possibilities of self-optimization), self-discipline (self-gratification 
possibilities), and self-healing (independence of traditional medical 
treatment), self-entertainment (pleasure-bringing aspects), and self-
association (sharing results with others and being part of a 
community) (13). This framework has not yet been evaluated in PD 
patients, but other studies have shown that specific motivations of PD 
patients with experience in self-tracking include the desire to better 
understand their disease, understand the effects of medication intake, 
and share information with healthcare providers (11, 12). The 
symptoms of interest among patients varied between studies, often 
including slowness of movements, tremor, stiffness, lack of energy, and 
sleep (11, 12, 14). In these studies, the barriers among patients who 
did not engage in self-tracking activities (36 to 51%) were not 

investigated. A better understanding of experienced barriers could 
provide useful strategies to engage and support these patients as well, 
and offer useful insights in the potential (and limitations) of 
monitoring tools such as wearable sensors.

The perspective of different PD healthcare providers on symptom 
monitoring, and how this relates to the perspective of patients has 
received little attention so far. Studies on symptom monitoring in PD 
that included healthcare providers did not differentiate between 
different disciplines (i.e., neurologists, physiotherapists, etc.) (14, 15), 
or aimed to reach consensus between healthcare providers and 
patients (14). We approach the problem from a different angle, and 
hypothesize that the different groups may represent unique needs, 
potentially requiring different solutions.

The aim of this study is to provide insights that can fuel the 
development of remote monitoring tools that address specific needs 
experienced by patients and/or healthcare providers. Specifically, our 
objectives were to identify the motivations for and barriers to 
monitoring PD symptoms, and to better understand the expected 
benefits and limitations of wearable sensors. In addition, we aimed to 
assess which aspects of PD are considered most important to 
be  monitored in daily life. Finally, we  aimed to compare the 
perspectives of PD patients and healthcare providers specialized in PD 
(physiotherapists, nurses, and neurologists).

2. Methods

2.1. Study design

We used a two-phase, explanatory mixed method design, 
consisting of online surveys, and subsequent homogeneous focus 
groups and interviews among the different stakeholders to gain 
further understanding in the domains of interest that were identified 
in the preceding surveys (16, 17). We focus on the perspective of PD 
patients, as well as that of healthcare providers that are most frequently 
involved in PD care in the Netherlands, i.e., neurologists, 
physiotherapists and Parkinson nurses. The study was approved by the 
local medical ethics committee (Commissie Mensgebonden 
Onderzoek, regio Arnhem-Nijmegen; file number 2015–1776). All 
participants provided informed consent prior to participation.

2.2. Participants

Seven hundred and eleven persons with PD were invited by email 
to participate in the online survey. All invitees were on the waiting list 
to be  included in the Parkinson@Home study (18). Various 
recruitment strategies were used, including advertisements in the 
Dutch Parkinson Patient Association magazine and on social media, 
visits to support groups, and through physiotherapists specialized in 
PD care. Inclusion criteria were broad; participants were only asked 
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to confirm that they were diagnosed with PD by a neurologist at the 
start of the survey. At the end of the survey, participants were invited 
to participate in subsequent focus groups.

We also included healthcare providers who were specialized in PD 
care. We  chose to focus on the perspectives of neurologists, 
physiotherapists and Parkinson nurses, because the survey among 
patients showed that these healthcare providers are most frequently 
involved in PD care in the Netherlands (Table 1). To ensure that all 
included healthcare providers had sufficient experience in PD care, 
we only included members of the Dutch ParkinsonNet, a nationwide 
network of healthcare professionals who have received dedicated 
training in managing persons with PD (19). The invitations for the 
online survey were sent by email to 85 neurologists, 156 
physiotherapists and 163 nurses. Participants for the focus groups and 
interviews with healthcare providers were recruited from the 
responses to the survey and via ParkinsonNet.

2.3. Survey development

We developed two surveys: one for patients and one for healthcare 
providers. The surveys consisted of a combination of validated 
questionnaires and custom-developed questions, on the following 
domains: current use of monitoring tools, motivations for and barriers 
to monitoring PD, relevant aspects to monitor, and expected benefits 
and limitations of wearable sensors for monitoring PD.

First, the surveys addressed the participants’ experience with 
symptom monitoring, including the use of PD monitoring tools. 
Among patients, we assessed motivations for and barriers to self-
monitoring PD symptoms using open-ended questions, and using the 
validated 19-item motivations for self-tracking scale (13). This scale 

consists of 19 items answered on a Likert scale ranging from 0 
(“disagree strongly”) to 4 (“agree strongly”). A five-factor structure 
was identified by the developers, consisting of self-entertainment (five 
items, e.g., “I enjoy getting lost in totally in self-tracking activities”), 
self-association (four items, e.g., “I want to help/inspire others”), self-
design (five items, e.g., “I want to control what I am doing with my 
life,”) self-discipline (three items, e.g., “It motivates me to keep on 
working for a goal”), and self-healing (two items, e.g., “I do not trust 
the healthcare system/classic therapies”). Next, we asked both patients 
and healthcare providers to indicate which symptoms, and which 
factors that influence symptoms, they found most useful to monitor 
in daily life. Participants were instructed to select a top  3 from a 
predefined list. The symptom list was based on the Non-Motor 
Symptom Questionnaire (NMS-Quest) (20) and the MDS-UPDRS 
part II, with some additions from the patient survey used by Mathur 
et al. (11). All items were phrased in understandable language, and 
medical terms for symptoms were avoided as much as possible. To 
facilitate the comparison, the items were identical between the patient 
and healthcare provider surveys. For patients, the items were 
personalized according to which symptoms they had ever experienced. 
To assess which factors explained the selection of specific symptoms, 
patients were also asked to make a top 3 of the most troublesome and 
a top 3 of the most strongly fluctuating symptoms. Finally, we explored 
the interest of healthcare providers in wearable sensors, including the 
expected benefits and limitations of this technology, using a 
combination of open- and closed-ended questions.

To assess whether participants could understand the questions 
and formulate appropriate answers, we performed cognitive interviews 
prior to deployment (21). These interviews were conducted face-to-
face or by telephone, with five PD patients and four healthcare 
providers (two physiotherapists, one nurse, and one neurologist). 
During each session the assessor asked the participant to complete the 
draft survey, and to think out loud while doing so. Based on the 
assessor’s observations and the feedback from participants, we updated 
the survey after each session, until all questions were 
correctly understood.

The surveys were implemented using SurveyGizmo1, which 
allowed for the inclusion of advanced functionalities such as 
personalized drag-and-drop lists. The required completion time was 
approximately 30 min. The full surveys can be found in Appendix A.

2.4. Survey analysis

All data were analyzed separately for each stakeholder group. 
Persons with PD were divided into early (≤5 years since diagnosis) 
and late PD groups (>5 years since diagnosis) (3). All answers to open-
ended questions were analyzed using thematic analysis with inductive 
coding (17). Quantitative outcomes were analyzed using descriptive 
statistics. Specifically, from the responses to the motivations for self-
tracking scale, we calculated subtotals according to the identified five-
factor structure (13). For each symptom, and for each factor that 
influences symptoms, we determined the percentage of participants 
who selected the item for their top 3. To examine differences between 

1 www.surveygizmo.com

TABLE 1 Characteristics of the early PD (<6 years since diagnosis) and late 
PD (≥6 years since diagnosis) groups.

Early PD 
patients 
(n = 207)

Late PD patients 
(n = 222)

Age (years), mean (SD) 67.3 (8.6) 69.1 (8.1)

Gender (men), n (%) 146 (71%) 136 (61%)

Use of PD medication (% 

yes)

201 (97%) 221 (99%)

Time since diagnosis of 

PD (years), mean (SD)

3.8 (1.5) 12.6 (7.3)

Healthcare providers seen in past year for PD (% yes)

Neurologist 204 (99%) 215 (97%)

Physiotherapist 161 (78%) 189 (85%)

Parkinson nurse 143 (69%) 164 (74%)

General practitioner 80 (39%) 95 (43%)

Occupational therapist 45 (22%) 56 (25%)

Speech therapist 51 (25%) 44 (20%)

Dietitian 20 (10%) 32 (14%)

Other (including 

psychologist, revalidation 

specialist, neurosurgeon)

32 (16%) 40 (18%)

PD, Parkinson’s disease; SD, standard deviation.
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patients and healthcare providers, the average percentages of patients 
(early and late PD) were compared with the average percentages of 
healthcare providers (neurologists, physiotherapists and nurses). To 
assess which factors explained the patients’ selected three most 
important symptoms to monitor, we examined the correlation with 
the selected three most troublesome and three most strongly 
fluctuating symptoms (using Spearman’s ρ, applied to the percentages). 
We performed the quantitative analyses using SPSS (version 22.0), and 
we used Atlas.Ti (version 8.2.29) to support the qualitative analyses.

2.5. Design of focus groups and individual 
interviews

To gain a deeper understanding of the results of the survey and 
collect illustrative examples, we  conducted homogeneous, semi-
structured focus group discussions; two groups were organized with 
persons with PD, one group with physiotherapists specialized in PD, and 
one group with Parkinson nurses. We opted for focus groups because 
we expected that a group setting would stimulate further discussion 
about items that were considered relevant by more than one group 
member (22). The choice for homogeneous focus groups matches our 
hypothesis that the different stakeholders represent unique needs, which 
may require different solutions (i.e., the goal was not to reach consensus 
between the different groups). For logistical reasons, we conducted 
individual, semi-structured interviews with five neurologists. Because 
the goal of the focus groups and interviews was to further explore the 
findings of the surveys, we did not aim for data saturation.

The Value Proposition Canvas, a framework for matching proposed 
solutions to experienced needs (23), was used to develop the topic guide. 
Participants were invited to share their views regarding the following 
general themes: (1) goals participants wanted to achieve by monitoring 
symptoms, (2) experienced challenges (“pains”) and benefits (“gains”) 
of currently used monitoring tools, (3) potential advantages and 
limitations of wearable sensors, and (4) what the ideal tool to monitor 
PD in daily life would look like. These themes were discussed within a 
specific domain of interest, which varied per stakeholder group, and was 
based on the most important symptoms and motivations identified by 
the surveys. The full interview guides can be found in Appendix B.

2.6. Analysis of focus groups and interviews

All focus groups and interviews were audio recorded and 
transcribed verbatim. One researcher coded the transcripts using the 
four themes of the topic guide as pre-defined framework. Within these 
general themes, thematic analysis based on inductive coding was used. 
A second, independent researcher commented on the codes to 
improve their validity. In case of disagreement, the researchers 
discussed their interpretation of the codes until consensus was 
reached. Atlas.Ti (version 8.2.29) was used to facilitate the 
qualitative analysis.

3. Results

We will first discuss the results of the online surveys, including the 
current use of monitoring tools, motivations and barriers for 

monitoring PD, the most important PD aspects to monitor, and the 
expected benefits of wearable sensors for monitoring PD. Then we will 
zoom into different promising contexts for using wearables sensors for 
each group, discussing the theme’s emerging from the analysis of the 
focus groups and interviews. Finally, we present expected barriers of 
wearable sensors, identified in the surveys, focus groups and 
interviews combined.

The online surveys were completed by 429 PD patients (response 
rate 60%), 86 physiotherapists (response rate 55%), 55 nurses 
(response rate 34%) and 25 neurologists (response rate 29%). The 
background characteristics of the included PD patients are shown in 
Table  1. From the participating healthcare providers, 96% of the 
neurologists, 94% of the nurses and 78% of the physiotherapists 
treated at least 10 individual PD patients per year, most often more 
than 15 PD patients. The remaining healthcare providers, except for 
one nurse, treated at least five individual PD patients annually.

3.1. Use of monitoring tools (survey)

Approximately one third of the patients had tracked their PD 
symptoms during the previous year, with no differences between early 
PD (33, 95% CI: 27–40%) and late PD (34, 95% CI: 28–41%). Most 
healthcare providers used self-collected information from patients; 
almost all specialized nurses (94%) recommended at least some of 
their patients to record the course of symptoms, versus 80% of 
physiotherapists, and 68% of neurologists. Various modalities of paper 
diaries were the most frequently used tools among all patient and 
healthcare provider groups (range: 62–96%). Common examples 
included free notes, on/off state diaries and falls diaries. The use of 
digital tools was less prevalent; 14% of patients who monitored their 
PD used a website [most often the “Parkinson’s Well-Being Map” 
(24)], 12% used a smartphone or tablet (e.g., digital notes or apps for 
tracking physical activity), and only 4% of all patients had used a 
monitoring device or sensor [e.g., Parkinson KinetiGraph (25) or 
activity tracker] to monitor their PD during the previous year. 
Differences in tracking tools between early and late PD were negligible. 
The use of digital tools among healthcare providers was more 
prevalent: 24% of the neurologists, 23% of the nurses, and 10% of the 
physiotherapists who recommended their patients to keep track of 
their symptoms, had already used a wearable sensor in their clinical 
practice (e.g., Parkinson KinetiGraph or activity tracker). Moreover, 
42% of nurses, 24% of neurologists, and 16% of physiotherapists 
recommended a symptom tracking website such as the “Parkinson’s 
Well-Being Map.”

3.2. Motivations and barriers for 
self-monitoring (survey)

Among patients who tracked their PD symptoms during the 
previous year (n = 145), we identified various themes describing their 
motivations to do so (Figure 1). To support the communication with 
healthcare providers was frequently mentioned by both early and late 
PD patients. One patient wrote: “I do it to have an overview of the 
increase/decrease of complaints for the neurologist and Parkinson nurse.” 
Obtaining insights in the effect of medication and other treatments 
was another important motivation for many patients: “To gain insight 
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into the efficacy of medications! Especially the variation between on and 
off moments was difficult to measure!,” and “I have kept track of relevant 
items since the start, now 13 years. Therefore I can see the influence of 
actions taken.” More prevalent motivations in the early PD group were 
(1) following the disease progression over longer time periods (“To 
better interpret any decline over a longer time period, and use this to 
have a potential prognosis, to be  able to anticipate on supportive 
measures”), and (2) dealing with the emotions associated with having 
PD (“To keep having control on the disease, and to deal with it as well 
as possible”). Motivations mentioned more often by the late PD group 
were (1) to better remember symptoms (“because you  cannot 
remember the many complaints that you come across during the day”), 
and (2) to be able to undertake actions yourself to improve your well-
being (“The goal was to split my day into energy blocks, so I can do the 
most difficult activities during the hours with the most energy,” and “to 
limit the use of medications as much as possible”).

On the “motivations for self-tracking” scale, both early and late 
PD patients scored highest on the self-design dimension (the 
possibilities of self-optimization), whereas self-healing (independence 
of traditional medical treatment) and self-entertainment (the 
pleasure-bringing aspects) were the least important motivations at the 
group level. On most dimensions, considerable variation was observed 
between patients (Figure 2).

Among patients who had not tracked their PD symptoms during 
the previous year (early PD: n = 138, late PD: n = 146), we identified 
various themes describing reasons for this (Figure 3). The desire not 
to focus too much on having PD was an important barrier for many 
early and late PD patients. Different patients wrote: “I do not want to 
become mister Parkinson,” “The tide cannot be turned. I rather look at 
the positive experiences that I would not have had without Parkinson. 
Such as new social contacts and friendships through volunteer work, and 
contact with children and grandchildren as babysit,” and “Confrontation 

FIGURE 1

(A) Motivations for self-monitoring PD among early PD (n = 69) and late PD patients (n = 76) who had tracked their PD symptoms during the previous 
year. Presented categories are based on thematic analysis of open-ended responses to the online patient survey. (B) Motivations for self-monitoring 
among early PD (n = 67, 2 missing values) and late PD patients (n = 69, 7 missing values) who kept track of their PD symptoms during the previous year, 
based on five factors of the motivations for self-tracking scale. We show the distribution (median, 25th percentile, 75th percentile and range) of each 
patient’s average score of all relevant items (0: “disagree strongly,” 4: “agree strongly”; all items were phrased positively).
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with the disease and receiving more info makes me depressed. I put my 
head in the sand, according to my neurologist much better for me!.” The 
most common barrier among early PD patients was the fact that their 
PD was relatively stable: “The picture of each day is almost identical. 
Differences are barely noticeable, also not between medication intakes. 
I do not notice that the medication wears off, or that I need to take the 
next dose.” A common barrier among late PD patients was a lack of 
discipline or motivation: “I have tried it once or twice, but I’m not a 
go-getter, sometimes too tired.” Some patients thought that keeping 
track of their PD was too energy-consuming: “I’ve had Parkinson for 
almost 14 years now, and my husband died 6 years ago so I’m on my 
own. I need all my time and energy.” Other patients missed an easy-
to-use self-monitoring tool: “I do not know a smartphone app,” and 
“Making notes is difficult for me: my hand-writing is very small, typing 

takes too much time because of repeating keys.” Last, some patients had 
never thought about tracking their PD: “The question only now gives 
me the idea.” The fact that some patients mainly experienced 
“practical” barriers or never thought of tracking their PD, aligns with 
the fact that two-third (68%) of patients who had not tracked their PD 
during the previous year indicated to be  interested in 
self-monitoring.

3.3. Most important aspects of PD to 
monitor (survey)

The patients who indicated to be interested in monitoring their 
PD (n = 326, 76%), and all healthcare providers were asked for their 

FIGURE 2

Barriers to self-monitoring PD among early PD (n = 138) and late PD patients (n = 146) who have not tracked the course of their disease in the last year. 
Presented categories are based on thematic analysis of responses to open-ended questions in the online patient survey.

FIGURE 3

Differences between PD patients and healthcare providers in how frequently symptoms were selected for the three most important symptoms to 
monitor. Difference is expressed in percent point difference between the average percentage of the patient groups, and the average percentage of the 
healthcare provider groups.
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three most important symptoms and other factors that would merit 
monitoring in daily life. The five most frequently selected items per 
group are shown in Table 2. The complete item lists, including all 
percentages, can be found in  Appendix C. The selection made by 
patients differed from the selection of healthcare providers, which is 
highlighted in Figures 4, 5. On average, healthcare providers valued 
information about balance problems and freezing of gait more, 
whereas patients showed a larger interest in monitoring fatigue, 
problems with fine motor movements and tremor. Regarding factors 
that influence symptoms, patients showed more interest in the effects 
of stress, whereas healthcare providers were relatively interested in 
monitoring the general well-being of patients. The selection of 
symptoms by patients was largely explained by how burdensome (early 
PD: ρ = 0.95, late PD: ρ = 0.96) and how strongly fluctuating symptoms 
were (early PD: ρ  = 0.96, late PD: ρ  = 0.95). Healthcare providers 
mentioned several considerations for their selection, including (1) 
whether they expected that the symptom had a high impact on the 

patient’s quality of life and/or daily life functioning, (2) whether they 
could effectively treat the symptom, and (3) whether there is a 
“knowledge gap,” for example because there is a need for frequent 
information (e.g., for managing response fluctuations), or because the 
reliability of in-clinic anamnesis is limited (e.g., for managing falls). 
Some healthcare providers also mentioned increasing the patients’ 
self-awareness of symptoms as a motivation for their selection.

3.4. Expected benefits of wearable sensors 
(surveys)

Respondents in all healthcare provider groups generally had a 
positive attitude toward using wearable sensors in PD care; on a 
seven point Likert scale ranging from 1 (“strongly disagree”) to 7 
(“strongly agree”), they responded to the statement “I believe that 
wearable sensors have the potential to help me monitor my 

TABLE 2 Most frequently mentioned symptoms and factors that influence PD by the different stakeholder groups.

Early PD** 
(n = 165)

Late PD** 
(n = 161)

Physiotherapists 
(n = 86)

PD nurses (n = 55) Neurologist (n = 25)

Symptoms

1st Tremor Rigidity Balance and falls Balance and falls Slowness of movement

2nd Slowness of movement* Problems with walking Problems with walking Slowness of movement Dyskinesia

3rd Fatigue* Tremor* Freezing of gait Freezing of gait Freezing of gait

4th Rigidity Balance and falls* Rigidity Rigidity Balance and falls

5th Problems with fine 

motor movements

Fatigue Slowness of movement Sleep problems Rigidity

Other factors

1st PD medication PD medication Physical exercise PD medication PD medication

2nd Physical exercise Physical exercise PD medication Physical exercise General sense of well-being

3rd Sleep Stress General sense of well-being General sense of well-being* Physical exercise

4th Stress Sleep Stress Mood* Sleep

5th Time of the day Time of the day Pain Sleep Time of the day

*Equal percentages. **Only completed by patients who indicated to be interested in monitoring their PD.

FIGURE 4

Differences between PD patients and healthcare providers in how frequently factors that influence PD were selected for the three most important 
aspects to monitor. Differences are expressed as percent point difference between the average percentage of the patient groups, and the average 
percentage of the care provider groups.
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Parkinson patients” with a mean score of 5.5 (neurologists), 5.5 
(physiotherapists), and 5.4 (nurses). Figure 6 summarizes the most 
frequently identified themes of expected benefits. Obtaining more 
objective measurements was the most frequently mentioned theme 
across all groups. “It helps to translate complaints into symptoms,” 
according to a neurologist. A nurse wrote: “Often my patient category 
cannot clearly put into words what I would like to know. If I could see 
it myself, that would at least tell me something about what actually 
happened to someone.” Different physiotherapists mentioned: 
“Patients are inclined to downplay problems, with measurements 
you  obtain a better picture,” and “It adds objectivity to my own 
observations and the responses of the patient.”

In addition, different nurses and physiotherapists emphasized 
that wearable sensors could make it easier for patients to track their 
disease: “If they are unobtrusive for the patient, it hardly affects their 

activities and thinking,” and “Then the patients do not need to 
actively make notes.” Nurses and physiotherapists also saw 
opportunities for wearable sensors to support self-management 
and treatment compliance. Different nurses wrote: “People obtain 
more insight into the course of their disease, and receive guidance for 
self-management,” and “It can motivate patients, increase their 
involvement, and make things more insightful for patients 
themselves.” Physiotherapists mentioned: “It can help patients to see 
for themselves what they can and cannot do,” and “It provides people 
with feedback. And that could well be very different from how people 
currently see things.”

For neurologists, one of the main expected benefits of wearable 
sensors was obtaining more detailed measurements of symptom 
fluctuations throughout the day: “It can help to obtain better insights 
into the level of functioning, and fluctuations in time.”

FIGURE 5

Expected benefits of wearable sensors among neurologists (n = 25), nurses (n = 55), and physiotherapists (n = 86). Presented categories are based on 
thematic analysis of open-ended responses to the online care provider survey. The prevalence of the “other” category is high in the neurologists group; 
this is mainly because some neurologists mentioned “better monitoring” as a benefit, but did not specify this further.

FIGURE 6

Expected limitations of wearable sensors among neurologists (n = 25), nurses (n = 55), and physiotherapists (n = 86). Presented categories are based on 
thematic analysis of open-ended responses to the online care provider survey.
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3.5. Further exploration of each group’s 
main interest (focus groups and interviews)

Based on the most important symptoms and motivations 
identified by the surveys, the domains of interest for the focus groups 
and interviews were chosen: the physiotherapists (n = 5) elaborated on 
the management of balance problems and falls, the neurologists 
(n = 5) on the management of response fluctuations, the nurses (n = 6) 
on supporting self-management, and the patients on communication 
with their healthcare providers (n = 14, divided into two groups). 
Below we  describe the main findings related to the experienced 
challenges (“pains”) of currently used monitoring tools and the 
potential advantages of wearable sensors (all identified themes within 
the Value Proposition Canvas can be found in  Appendix D).

3.5.1. Physiotherapists’ view: improved fall risk 
monitoring

Three main “pains” were identified in the current treatment of falls 
and balance problems: (1) it is difficult to find out what precedes fall 
incidents in the patient’s daily life, especially in patients with cognitive 
impairments or without a partner: “Often patients say: all of a sudden 
I was lying on the floor,” (2) the in-clinic performance measured with 
standardized assessments (such as the mini-BEST) does not fully 
explain why some patients fall frequently and others do not: “On the 
balance board they perform quite well, their strength is rather good, their 
catch response is good, and still they fall 3 times per week. That is quite 
frustrating,” and (3) patients tend to forget applying strategies to 
prevent falling that the therapists teach them in-clinic: “When 
I am standing next to them, they perform things very differently. Last 
time a patient stepped over everything, but when I walked next to him 
he carefully walks around obstacles and takes the right path.”

According to the physiotherapists, wearable sensors worn in daily life 
could help by increasing the self-awareness of the fall frequency and 
situations with a high fall-risk, as a starting point for therapy: “If I as a 
therapist see someone who has reached his limit and I can talk with the 
patient about that: on these moments in your daily life you take risks.” 
Objective data about what precedes a fall incident could help to identify 
different “fall profiles” that would enable more targeted therapy. One 
physiotherapist said: “Together with the tests with patients we already 
perform, I would like to make a sort of risk analysis, of which factors are 
causing the fall. Then, based on the patient profiles, I can give my patients 
tailored verbal instructions. That would be a good example of using wearable 
sensors and connecting data.” Sensor devices could also be used to coach 
patients, for example by detecting situations with high fall risk and 
providing warnings or reminders to apply the right movement strategy: 
“If it has to do with selective attention and the sensor can recognize the 
movements before a fall occurs, then a warning signal may make someone 
alert so that he makes the right decision,” or coach patients to maintain a 
healthy gait pattern: “I can imagine that you have a sensor that in some 
situations sends a verbal message: pay attention, big steps, keep on stepping.” 
In addition, the therapists saw benefits for stimulating patients to do 
balance exercises: “It think it can be motivating for balance exercises which 
they need to perform at home, and they receive a signal when it goes well.”

3.5.2. Neurologists’ view: better management of 
response fluctuations

Three main “pains” regarding managing response fluctuations 
were identified. First, neurologists often find it difficult to understand 

the daily patterns of response fluctuations based on the patient’s story. 
One neurologist said: “Often patients say I am not doing well doctor, 
and then you need to figure out why: is it because of motor problems? 
And if this is the case, is it rigidity, dyskinesia or tremor?.” Self-reported 
on–off diaries are often not very helpful: “The patients who can 
accurately describe it are also capable of filling out such a dairy, it’s 
mostly the patients who find it hard to explain it, they also have problems 
completing the on–off diaries.” A complicating factor is that some 
patients find it difficult to distinguish between tremor and dyskinesias. 
Second, it is difficult to rely on in-clinic observations: “The situation 
here in the consultation room is always different than at home, so 
you  rely on what patients experience at home.” Third, it can 
be challenging to determine who is eligible for advanced therapies: “I 
often refer them to Nijmegen for that, and then they also find it difficult. 
It is very difficult to get an accurate picture. Now patients are often 
admitted to the hospital for that.”

Objectively quantifying response fluctuations in real-life could 
help neurologists to find the right medication dosage more efficiently: 
“That you  can give the right medication dosage more quickly, that 
you can go through the process of adjusting the medication schedule 
faster,” and “Then you can see at a glance whether the patient responds 
to the treatment or not.” Specifically, it could be helpful to find out 
whether motor symptoms are the main problem: “It would give a nice 
impression of how patients are doing in terms of motor symptoms, and 
if you  see that patients are doing well motorically, then you  know 
something else is going on. I  think that that is a huge benefit.” In 
addition, it might help to identify patients who would benefit from 
advanced therapy: “That you  can identify the phase when the 
medication really does not work anymore earlier. And that you can use 
this to refer patients for advanced therapies in an earlier stage.” The 
ability to provide care proactively was also seen as an important 
benefit: “I think that you can also use it to signal problems in an early 
stage, …, that you receive an early signal when a patient falls outside a 
certain range, when we should schedule an earlier check-up, or when the 
GP or local Parkinson nurse should have a look, to prevent certain 
problems, for example falls, confusion, or delirium.” In addition to these 
forms of decision support, neurologists also mentioned benefits for 
their communication with patients. Wearable sensors may help to 
increase the self-awareness of patients: “You may give a patient more 
insights into his own functioning if you can monitor him for a longer 
time than when you briefly discuss things in the consultation room.” It 
may also help to focus the conversation: “It makes the conversation 
much more concrete, because you can focus very timely on the current 
problems of a patient.”

3.5.3. Parkinson nurses’ view: educate patients 
and stimulate self-management

Three main “pains” were identified among Parkinson nurses. First, 
some patients find it difficult to reflect on and understand their own 
symptoms. Different nurses mentioned: “If we ask very specifically, 
what do you experience and how does it present itself, patients often find 
it difficult to pinpoint,” and “I saw a patient and when she goes into an 
off state, she really panics. She does not recognize the off phenomenon 
yet, which makes her hyperventilate.” In addition, for some patients 
understanding the difference between tremor and dyskinesias is 
difficult: “If you are dyskinetic, and you take extra dopamine, it only 
becomes worse.” Some patients also have the tendency to underestimate 
their sleep duration: “Sometimes it is the experience of a patient that 
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he sleeps for only 3 h, while it appears to be different. I always find this 
a difficult point to discuss.” Second, the nurses emphasized that 
completing diaries is often burdensome for patients: “The partner or 
someone else constantly looks over your shoulder and says: “you still 
need to fill it in,” and that drives some people crazy.” For some PD 
patients, this may even become an obsession: “The people who become 
very rigid in their behavior because of their PD and who want to 
rationalize everything in numbers, they sometimes show up with whole 
packages of information and then the partners tell us: “we cannot leave 
the house without taking pen and paper with us,” or they bring extensive 
tables and graphs. That is real obsessive behavior.” This makes some 
nurses also question how representative the diaries are: “I wonder, how 
realistic is it, because the stress that comes with filling in the diaries also 
makes symptoms different than they normally are.” Third, some patients 
in the early stages struggle with accepting the diagnosis: “Patients visit 
the neurologist and he says: “you have Parkinson’s.” Then people think, 
that cannot be true, nothing has been done. That’s why many patients 
keep on wondering: is the diagnosis true, because we cannot do imaging.”

The nurses thought that wearable sensors could help to increase 
the patients’ self-awareness. One nurse mentioned: “I could mention 
tens of patients of whom I think: yes, that would actually be nice to make 
it insightful: what really happened and discuss that together.” About the 
patient who panicked during off phases, the nurse said: “It could help 
her if she could say: last week I had such an attack, and that we can then 
discuss: it really looks like an off phase, which is confirmed in a graph.” 
Self-awareness about the cause of falls may help the patient to help 
himself: “Then you could say: you should have stood up less quickly. If 
someone has a gap in his memory and does not know it anymore, they 
also cannot help themselves.” Nurses also emphasized that wearable 
sensors could make it easier for patients to tell their story: “They 
already have less dopamine, so a conversation costs a lot of energy. I can 
imagine that it helps if you already have some numbers and the patient 
does not have to tell the whole story.” In addition, they saw a role for 
wearable sensor to activate patients: “If a sensor gives certain stimuli 
for loss of initiative, that could unburden caregivers a little because 
he does not continuously have to stimulate the partner and be in the 
caregiver role, and can be more of a partner.” Last, having objective 
measurements could help with accepting the diagnosis: “Often patients 
feel like: is the diagnosis true, because I cannot confirm it with imaging. 
This (i.e., feedback from wearable sensors) is something that patients can 
really see, something that is being measured.”

3.5.4. Patients’ view: communication with 
healthcare providers

How patients communicated about their symptoms with 
healthcare providers varied per individual. Some patients already 
made notes about the most important changes or questions before 
meeting with their healthcare providers: “Before I visit my neurologist, 
I always make one sheet with what I want to say, so I do not forget 
anything.” Some patients regularly used an online questionnaire 
(“Parkinson Monitor,” developed by the Dutch Parkinson Association) 
to identify the biggest changes in their symptoms compared to the last 
appointment. For some patients, the partner’s support during 
consultations was very important: “I have a very good partner who 
joins me with a memory like an elephant.” Others did not feel the need 
to track their Parkinson symptoms, either because their situation was 
relatively stable or because they felt like their disease course was too 

unpredictable to identify useful patterns: “I started with it, only for me 
every day is different. There is no logic to it, so at a certain point I felt 
like: what’s the use of keeping track of it.” Identified facilitators (“gains”) 
for communicating with healthcare providers about symptoms 
included (1) an open attitude to using self-collected information: “My 
neurologist says: “I am  happy you  brought a form, because 
I am depending on you.” She can only help if I say something,” and (2) 
whether their healthcare providers were easy to approach: “We have 
the best feeling with the Parkinson nurse. She maybe does not know 
100% about my patient record, but she does have eye for the social 
aspects and thinks with you if you say: “I went on a holiday and it was 
so nice.” It feels closer.”

Three main “pains” were identified with respect to the 
communication about symptoms with care providers. First, some 
patients thought it was difficult to collect reliable information to share. 
The Parkinson Monitor was considered as too subjective: “I tried it and 
I thought it was much too subjective. You need to give a number, and if 
I selected a 6 last time, I do not remember why I choose a 6 then.” In 
addition, patients who wanted to try a smartphone applications, found 
it difficult to know which one was reliable: “If I look for Parkinson’s in 
the app store, there are so many applications. I do not know which ones 
are any good.” Second, some patients thought it was burdensome to 
self-track their PD, either because it required a lot of time or because 
they did not want to focus too much on their PD: “I am very eager to 
learn, so I thought I want to know everything about the disease. It made 
me very sad day by day, I  did not sleep anymore, and I  became 
depressed.” Third, some patients had the impression that their care 
providers are not open for self-collected information: “The neurologists 
inspects how I walk when I come in and looks at my facial expression 
and says: you are doing well. That is what he relies on.” Another patient 
mentioned: “I know the Parkinson Monitor, but the neurologist thinks 
it’s nonsense and he  does not cooperate, so then there is no point.” 
Patients thought that the limited time for consultations was an 
important factor in this.

Patients who were interested in symptom monitoring, agreed that 
wearable sensors could provide more objective information, which 
would be useful to share and discuss with healthcare providers. First, 
patient thought that it could help to find the right treatment, for 
example by adjusting the medication schedule more quickly: “Imagine 
that you  agree during a consultation that the medication needs to 
be increased because you are too passive. Then you can see during the 
next 2 weeks: has it changed or not. Now you wait for 3 months until 
you go back.” Similarly, one patient thought that it could help with 
adjusting the intraduodenal levodopa infusion: “If you get it, you need 
to go for a week to the hospital to see: how are the settings. That should 
work much better with such a device.” Patients also saw benefits for 
non-pharmacological interventions: “With walking, sometimes it goes 
smoothly and sometimes I  think: “flap, flap, flap.” So then I  think: 
we should analyze the movements with sensors, and then get an advice 
which exercises you should do.” Second, some patients thought that it 
could help healthcare providers to proactively signal changes that need 
attention: “Then they might be able to see in the data in an earlier stage: 
something is not going well, maybe we  should schedule a check-up 
earlier.” Third, sensors could facilitate the communication during 
consultations: “I think that they are even more prepared for what 
happened, that they can read in before the appointment. Then you do 
not need to mention everything, because everyone is up-to-date.”
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3.6. Expected barriers and contextual 
considerations for use of wearable sensors 
(mixed methods)

The most frequently identified barriers to using wearable sensors 
among healthcare providers are shown in Figure 7 (the percentages 
were based on the survey, whereas the illustrative quotes below were 
based on the survey, focus groups and interviews combined). 
Concerns about the usability of wearable sensors, in particular for the 
PD population, was a common theme. Some healthcare providers 
commented on the motor skills required for using the devices: “It may 
be difficult for patients to put the sensors on and take them off,” one 
physiotherapist wrote, and one nurse mentioned: “Patients often have 
problems with fine motor skills.” Cognitive problems were a common 
concern as well: “Patients may forget that we agreed to wear the device, 
or how to use the device,” according to one of the nurses. A 
physiotherapist mentioned: “Some patients with Parkinson’s disease are 
not teachable anymore.”

Both patients and healthcare providers, neurologists in particular, 
emphasized the importance of reliable and well-validated sensor-
based outcomes: “It is important whether it actually reflects the 
condition of the patient” (neurologist), and “A sensor only gives objective 
data if it is really good. A system of a few years ago could not detect 
biking, then it does not work, then it is not a complete, objective picture” 
(patient). Some healthcare providers would only trust the 
measurements if recognized by the patient: “I would trust it if you look 
at it together with the patient and he says multiple times: yes that is true, 
I also experience it that way” (nurse). A neurologist noted that he needs 
to able to rely on measurements, also when findings are unexpected: 
“On the other hand, if it completely matches one-on-one with what 
I  already thought myself, then the added value is of course zero” 
(neurologist). Some healthcare providers emphasized the importance 
of transparency: “I think it’s difficult if you cannot look under the hood. 

If it does not seem to match with what you think about this patient, 
you cannot really see why it does not match.” The scope of what could 
be  measured with wearables was also a concern: “Only limited 
measurements are possible: for example one arm or one symptom” 
(neurologist), and “We talk a lot about cognitive problems. The sensors 
measure movements, so there is already some friction” (physiotherapist).

Another common theme was the compliance with using wearable 
sensors: “The devices will not always be  used by the patient, so 
information will not be complete, which can make patients very nervous” 
(nurse), and “Patients may take them off and forget to put them on 
again” (physiotherapist). Some healthcare providers thought that the 
patients’ motivation to wear the devices is an important hurdle: “It 
asks a lot of discipline from patients” (physiotherapist), and “Patients 
must benefit from it themselves” (neurologist).

Healthcare providers were also concerned about the time 
investment and costs. A physiotherapist wrote: “Reading out the 
sensors requires extra time which is not there, or it comes at the 
expense of treatment time,” and a neurologist expressed the 
concern that it may raise more questions: “Then they tell me in the 
app I see this and that. Cannot you increase the medication even 
more?” (neurologist). In addition, healthcare providers stressed 
the importance of the subjective experiences of patients: “You do 
not treat graphs, but patients. So how the patient eventually 
experiences it remains most important” (nurse), and “It is very 
important that patients can indicate via a simple button how they 
feel from time to time, for example whether they are feeling 
comfortable, miserable, stressed, etc. That is important for the 
interpretation of the data. The combination of subjective and 
objective data is important” (neurologist). Last, some participants 
mentioned the risk that self-monitoring can become an obsession, 
in particular for patients with PD: “A disadvantage could be that 
you let your life be ruled by the sensors. I would not be happy with 
that” (patient).

FIGURE 7

Visualization of personalized monitoring of PD, providing a non-exhaustive overview of aspects that should be considered when developing PD 
monitoring solutions to address specific needs of specific target groups of patients and healthcare providers. Categories are inspired by the results 
from the surveys, focus groups and interviews.
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In the focus groups, additional themes regarding the design and 
implementation of wearable sensors were identified (“the ideal tool” 
in the Value Proposition Canvas). Below we highlight highly prevalent 
themes; for all identified themes and illustrative quotations we refer 
to Appendix D.

3.6.1. Use for specific indications
Healthcare providers mainly saw benefits for specific target 

groups: “On the long term, I  think we  will mainly use it for the 
vulnerable patient with little informal care, or with cognitive 
problems when you think, I cannot get a good impression of how the 
patient functions at home, and that you  have doubts about the 
medication or activities of such a patient” (neurologist), and “It is 
particularly important for patients living by themselves and in 
nursing homes: here we  often do not have a clear picture of the 
patients’ functioning” (nurse). Both patients and healthcare 
providers also mentioned that there need to be specific goals and 
the use of wearable sensors should not be  standard: “I find 
everything that’s standard a bit tricky. In contrast, we  aim for 
personalized care, and if you  say: we  will do certain things as 
standard when they have Parkinson’s for 5 years, I would hate that.” 
A patient mentioned: “Yes, the data are very nice, but you  can 
quickly drown in all the information, so you need to have a thread or 
a goal. I have a goal: stay active.”

3.6.2. Active versus passive monitoring
Because of the need to obtain (continuous) insights into how the 

patients move in real-life, healthcare providers generally preferred 
passive registrations in the background over performing active tasks: 
“Otherwise patients focus on the exercise and not on the environment 
and why he stands up. He stands up for a reason, not to do that test, but 
he needs to go to the toilet. You can measure that in a very natural way” 
(physiotherapist), and “At the end of the day you would still do artificial 
measurements then. That’s not what it’s really about. They are still 
snapshots” (neurologist). Some patients were also more enthusiastic 
about passive monitoring: “I think you should not do extra movements 
for it. It needs to measure automatically, I should not have to say: now 
you measure me and now you do not.” Physiotherapists were interested 
in active tasks if these also served as an exercise: “It can be valuable if 
you say: I think this is an important exercise for this patient to repeat 
often.” Patient expressed the desire that the schedule of tasks should 
be personalized and that sensors should sense when the patient is not 
available: “A smart sensor knows from your movements that you are in 
a car, so it would be  smart if it does not send you  an alert then.” 
Nevertheless, some patients doubted whether they had the discipline 
to do repetitive tasks: “In every test that I participated in I always 
needed to do the same thing. Counting back from 100 with steps of 7, 
always the same test. Once in a while you should think about something 
else.” Some healthcare providers thought it would be  valuable to 
combine the sensor data with subjective self-reports: “It is very 
important that patients can use a simple button from time to time to 
indicate how they feel: for example if they feel good, miserable, stressed, 
etc. That would really help interpreting the data. The combination of 
subjective and objective data is important” (neurologist).

3.6.3. Privacy
Healthcare providers were generally more concerned about 

privacy than the patients themselves: “Well, it feels a bit like big 

brother is watching you, I  think a patient may experience that as 
unpleasant. It depends a little bit on how you measure it. You are 
already a patient and if you are also being monitored continuously, 
I can imagine if a patient would not like that” (neurologist), and “It 
should not work like: let us have a look at how mister X is doing 
tonight, whether he is sitting on the couch or he is doing his exercises. 
That is a bridge too far for me” (physiotherapist). Patients were 
generally very open to share information with their healthcare 
providers, and mainly emphasized the positive aspects of data being 
available: “Imagine that something happens and I have a question, 
then he can have a look at how I am doing. It is available. It is not a 
bad thing if it is available for people you trust.” Patients did emphasize 
they would like to have control on who has access to the data: “If 
I can say who and when, then I think it’s fine. My physiotherapist can 
see it for sure, because I see him every 14 days, maybe someone else 
not.” Some patients mentioned that data should not be shared with 
insurance companies. According to healthcare providers, it is 
important to give detailed information to PD patients and their 
caregivers about monitoring tools, by whom and how they are used, 
and to obtain informed consent. The nurses emphasized that respect 
for the patient’s autonomy is essential, and it needs to be evaluated 
in each individual case if and what kind of home monitoring is 
useful and desirable: in some cases, directly transferring the data to 
healthcare providers could help signaling problems and 
be experienced as supportive, whereas in other cases, this might 
be experienced as not respecting the patient’s privacy.

4. Discussion

4.1. Main findings

This mixed methods study provides detailed information about 
the perspectives of patients, physiotherapists, Parkinson nurses and 
neurologists on monitoring PD in daily life. One third of the patients 
had self-monitored their PD symptoms in the past year, most 
commonly using a paper diary. Key motivations for monitoring 
among patients are sharing information with healthcare providers, 
obtaining insight into the effect of medication and other treatments, 
and following the long-term disease progression. Key barriers are not 
wanting to focus too much on having PD, symptoms being relatively 
stable, and lacking an easy-to-use tool. Symptoms of interest differed 
between patients and healthcare providers; patients gave a higher 
priority to fatigue, problems with fine motor movements and tremor, 
whereas healthcare providers more frequently prioritized balance, 
freezing and hallucinations. PD patients as well as healthcare providers 
were in general positive about using wearable sensors to improve PD 
care and self-management, although the specific context and expected 
benefits varied considerably between the different stakeholders. For 
each group we provide further ideas about one promising context 
where wearable sensors could add value: treatment of balance and falls 
(physiotherapists), self-management and patient education (Parkinson 
nurses), treatment of response fluctuations (neurologists), and 
communication with healthcare providers (patients). Last, we discuss 
barriers for the use of wearable sensors as identified by the different 
groups (e.g., questions about usability, reliability, and compliance), as 
well as suggestions for the design and implementation of 
wearable sensors.
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4.2. Toward personalized monitoring

We observed a large heterogeneity among PD patients and 
healthcare providers regarding their views on monitoring PD, which 
underlines the need for solutions tailored to specific contexts. The 
observed heterogeneity is reflected in multiple ways. First, although 
patients and healthcare providers share interest in the classical motor 
symptoms of PD, which is in line with earlier studies (11, 14), 
interesting differences also appeared. Fatigue, problems with fine 
motor movements, tremor, and stress were mentioned more 
commonly by patients, whereas healthcare providers gave a higher 
priority to monitoring balance, freezing of gait, and general sense of 
well-being. On the one hand, these differences could encourage 
professionals to pay more attention to symptoms frequently 
mentioned by patients, especially since interventions to treat fatigue 
(26) and stress (27, 28) in PD patients are increasingly available. On 
the other hand, we  need to acknowledge that the perspectives of 
patients and healthcare providers may be inherently different: patients 
mainly tend to focus on aspects that are most burdensome for them, 
whereas the different healthcare providers mainly focus on areas 
where they can have an impact by providing tailored treatments, and 
where accurate information to support such treatment decisions is 
presently missing.

Second, healthcare providers expressed different ideas about 
how monitoring PD using wearable sensors could contribute to 
improving PD care. Wearable sensors were not only seen as tools to 
support treatment decisions and proactively signal problems, but 
also as tools to educate patients, increase their self-awareness of 
symptoms and triggers, increase their participation, and support 
treatment compliance. The latter could be particularly relevant for 
treatments that require a substantial active contribution from 
patients such as physiotherapy exercises, where wearable sensors 
could help by visualizing the achieved progress, or even by 
providing real-time feedback about the execution of exercises (29). 
In addition, wearable sensors could assist in the challenging 
transition from practicing movement strategies in a supervised 
setting to correctly applying them in daily life, by providing real-
time feedback in daily life (30, 31).

Third, patients expressed different motivations for self-monitoring 
their PD. In addition to sharing information with healthcare providers, 
patients also saw added value of self-monitoring independent of their 
relationship with healthcare providers. Many patients expressed an 
interest in gaining more insight themselves into the course of their 
symptoms and into the effect of medication or other interventions. An 
important perk of this was the opportunity to feel more in control, and 
being able to optimize aspects of their lives themselves (self-design), 
which is in line with findings of Riggare et al. (12). Also, some patients 
found it useful to self-monitor symptoms to communicate about their 
PD with family and friends (self-association). Some patients expressed 
the hope that wearable sensors could be  used to coach them, for 
example to maintain a healthy gait pattern (self-discipline). As such, 
self-monitoring using wearable sensors offers various opportunities to 
support self-management when properly integrated into treatment 
programs (32). However, the added value of self-monitoring will likely 
depend on whether it fits with the patient’s personal coping strategies, 
and it is important to find a balance between the benefits and burdens 
(e.g., the required time and energy, and the fact that self-monitoring 
can be confrontational) (12, 33).

Taken together, we conclude that it is unrealistic that a one-size-
fits all monitoring solution will be able to address the different needs 
of PD patients and healthcare providers involved in PD care. Instead, 
we believe that different PD monitoring solutions should be designed 
to address specific needs experienced by specific target groups of 
patients and healthcare providers (6), with close involvement of the 
users in all phases of the product’s design (15, 34).

4.3. Impact on interaction between 
patients and healthcare providers

Patients and healthcare providers expected that the use of sensor-
based monitoring tools will impact their interaction. On the positive 
side, being able to discuss measurements together could serve as a 
memory aid, trigger patients to share their experiences, and help to 
focus the conversation. Jointly discussing measurements was also seen 
as a way to increase the patients’ self-awareness. In addition, by 
reducing the dependence on in-clinic observations to evaluate the 
severity of symptoms, wearable sensors provide opportunities for 
telemedicine (35), in which the COVID-19 crisis triggered a revived 
interest (36).

However, the use of sensor-based monitoring tools also comes 
with challenges for the communication between patients and 
healthcare providers. Focusing too much on numbers was identified 
as a potential risk. Healthcare providers agreed that the subjective 
experiences of the patient remain vital to guide treatment decisions, 
as wearable sensors cannot measure the limitations experienced by the 
patient. This stresses the importance of providing patients ample 
opportunity to comment on the measurements, and only act upon 
them if jointly agreeing on the conclusions, which is in line with 
findings of the focus group study of Ozanne et al. (37). Future clinical 
trials on the effectiveness of specific remote monitoring tools should 
include more elaborate evaluations of their impact on the relationship 
and communication between patients and healthcare providers (38).

4.4. Uptake of wearable sensors

Despite an increasing availability of sensor-based monitoring tools, 
both our survey and the survey of Mathur et al. (11) showed that paper 
diaries are currently the most commonly used tool among patients and 
healthcare providers. This may be  partly explained by the lack of 
convincing evidence for the benefits of wearable sensors. A few pilot 
trials using sensor-based remote monitoring systems have demonstrated 
positive effects on clinical decision-making and motor symptoms of PD 
patients (34, 39, 40). However, these studies had different 
methodological shortcomings (including lack of randomization, small 
sample size, and no assessment of user experiences), and were 
conducted by the groups who also developed and commercialized the 
systems. The field would benefit from independent randomized 
controlled trials and qualitative process evaluations of mature versions 
of remote monitoring systems. In addition, systems are often evaluated 
in broad PD populations. Based on the observed heterogeneity in needs 
that we identified among patients and healthcare providers, it is unlikely 
that all PD patients will benefit from such solution. Instead, it would 
be more appropriate to conduct evaluations in well-defined, specific use 
cases. Randomized controlled trials such as the ongoing MoMoPa-EC 
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study are an important step in this direction (41). In addition, the focus 
has been on supporting clinical decisions around the prescription of 
medication, whereas opportunities also exist for supporting 
non-pharmacological interventions (e.g., by physiotherapists) and self-
management. Finally, given that concerns about the reliability and 
validity were commonly mentioned as barriers for using sensor-based 
monitoring tools, building trust in newly developed sensor-based 
outcomes is essential (42).

4.5. Strengths and limitations

This study has a few limitations. First, a relatively small number 
of patients and healthcare providers participated in the focus groups 
and interviews. Because we  did not aim for data saturation, the 
identified themes cannot be assumed to be exhaustive, also given the 
observed large variation in individual perspectives. Instead, our aim 
was to enrich the findings of the online surveys by further exploring 
promising contexts where wearable sensors could be of added value. 
Second, the organization of PD care in some other countries differs 
from the Netherlands, where, for example, PD patients are often seen 
by physiotherapists and Parkinson nurses, in addition to neurologists. 
Therefore, the roles of different healthcare providers should 
be considered when translating the findings of this study to other 
countries. At the same time, the Netherlands lends itself well for 
studying innovations in PD care, because of the nation-wide network 
of healthcare providers specialized in PD (19). Third, it should 
be noted that, because patients signed up to participate in a wearable 
sensor study, our study population may be relatively interested in this 
topic. We  believe this did not affect the generalizability of our 
findings, as approximately two-third of the participants did not 
perform self-tracking activities. Finally, although we involved the 
most frequently involved healthcare providers in PD care, future 
research may explore the perspectives of other relevant disciplines, 
such as speech and language therapists, occupational therapists and 
dietitians (10).

Strengths of this study include the combination of surveys with 
subsequent focus groups, and the involvement of both patients and 
different healthcare providers. The alignment of the survey questions 
allowed for a comparison of perspectives, highlighting interesting 
differences between the different stakeholder groups. In addition, by 
not limiting the input of participants to the development of a specific 
solution, we aimed to identify universal needs, not limited to what is 
currently technically possible. Finally, we aimed to provide a nuanced 
view on the potential of new monitoring solutions, by not only 
focusing on motivations for self-monitoring and expected benefits of 
wearable sensors, but also on barriers and expected limitations. More 
insights into the different perspectives on symptom monitoring and 
wearable sensors of all stakeholders involved will hopefully contribute 
to the successful design and implementation of PD 
monitoring solutions.
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Parkinson’s disease (PD) is characterized by a variety of motor and non-motor

symptoms. As disease progresses, fluctuations in the response to levodopa

treatment may develop, along with emergence of freezing of gait (FoG) and

levodopa induced dyskinesia (LiD). The optimal management of the motor

symptoms and their complications, depends, principally, on the consistent

detection of their course, leading to improved treatment decisions. During the

last few years, wearable devices have started to be used in the clinical practice

for monitoring patients’ PD-related motor symptoms, during their daily activities.

This work describes the results of 2 multi-site clinical studies (PDNST001 and

PDNST002) designed to validate the performance and the wearability of a new

wearable monitoring device, the PDMonitor®, in the detection of PD-related

motor symptoms. For the studies, 65 patients with Parkinson’s disease and 28

healthy individuals (controls) were recruited. Specifically, during the Phase I of

the first study, participants used the monitoring device for 2–6 h in a clinic

while neurologists assessed the exhibited parkinsonian symptoms every half hour

using the Unified Parkinson’s Disease Rating Scale (UPDRS) Part III, as well as the

Abnormal Involuntary Movement Scale (AIMS) for dyskinesia severity assessment.

The goal of Phase I was data gathering. On the other hand, during the Phase

II of the first study, as well as during the second study (PDNST002), day-to-day

variability was evaluated, with patients in the former and with control subjects in

the latter. In both cases, the devicewas used for a number of days, with the subjects

being unsupervised and free to perform any kind of daily activities. Themonitoring

device produced estimations of the severity of the majority of PD-related

motor symptoms and their fluctuations. Statistical analysis demonstrated that

the accuracy in the detection of symptoms and the correlation between their
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severity and the expert evaluations were high. As a result, the studies confirmed

the e�ectiveness of the system as a continuous telemonitoring solution, easy

to be used to facilitate decision-making for the treatment of patients with

Parkinson’s disease.

KEYWORDS

Parkinson’s disease, telemonitoring, wearable devices, digital health, automatic

ambulatory monitoring, inertial measurement unit sensors

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder with
a high prevalence among those aged ≥ 45 years (572 patients per
100, 000 people) (1). It is characterized by motor and non-motor
symptoms, with a progressively worsening course. The main motor
manifestations of the disease are bradykinesia, rigidity and resting
tremor, with accompanying gait impairment and reduced manual
dexterity (2). Non-motor symptoms include autonomic nervous
system disorders, dementia, as well as neuropsychiatric disorders
(3–5). To date, treatment is based on dopamine replacement drugs
but there are numerous biological strategies under development
including active and passive immunization aimed at testing disease
modification (2, 6). In the early stages, drug treatment results
in sustained benefits and improves quality of life throughout the
day. However, as disease progresses, levodopa effects shorten, and
patients experience motor and non-motor fluctuations, as well as,
in some occasions, levodopa induced dyskinesia (LiD) and freezing
of gait (FoG). To optimize and personalize the treatment strategy,
it is necessary to accurately monitor their symptoms, as they
vary widely from day-to-day, and also differ significantly between
different patients (7). Rating scales for clinical evaluation, internet-
based tools, completed by physicians, and diaries/questionnaires,
completed by patients and caregivers have been developed to
improve disease assessment of the clinical features of the disease
(8, 9). However, the information from the diaries is often unclear
and the limited time of the neurological assessment, during patient
encounters, does not provide sufficient information to accurately
determine the severity of symptoms that patients experience in
their daily living and their own environment. This often results in
underestimating or overestimating the symptoms of the disease and
could lead to sub-optimal therapeutic interventions (10).

To address this issue, sensor-based systems have been
developed for the quantitative evaluation of motor symptoms’
severity, and some of them have been specifically designed for
tracking PD symptoms (11–14). The idea of telemedicine is not
new (15), but during the last 20 years, technological advancements
and enhancement of telecommunication infrastructure, have made
the accurate remote monitoring of patients with diverse disorders,
such as PD, possible (16, 17). For neurodegenerative diseases,
affecting both motor and cognitive functions, technological health
services have emerged as useful tools for tackling the challenge
of patient-physician contact, in cases where patients’ visits to
medical centers are laborious (18). Especially during the COVID-
19 pandemic, a number of restrictions were imposed, forcing
patients, caregivers and healthcare professionals toward limiting

their interactions, thus encouraging the use of healthcare practices
supported by electronic processes (eHealth) (19). This practice
resulted in better healthcare technologies and related services,
and led to their widespread adoption (20–22). Apart from remote
delivery of health services to overcome barriers in communication
and transportation, telemedicine in PD also involves accurate
objective symptom detection, monitoring and improvement of
follow-up care (18, 23). Different telemedicinemodalities have been
successfully employed in patients’ care, including:

1. virtual visits via video conferencing (24),
2. non-motor symptom assessment/treatment via phone (25),
3. monitoring through wearable devices (23),
4. health applications on mobile phones (mHealth) (26),
5. virtual reality rehabilitation (27) and
6. online speech assessment and rehabilitation (28).

Telemedicine technology enables a patient-centric approach and
has been proven to be reliable in the management of specific disease
aspects, having comparable results with current medical practice
(29, 30). Furthermore, the cost-effectiveness of telemedicine in
PD has been analyzed in several studies that show considerable
resource savings stemming from technology enhanced and home-
based monitoring (31–34). Of course, disadvantages do exist, since
telemedicine may limit the diagnostic ability and the patient-
physician relationship, however, healthcare technology devices are
currently recommended for use in response to existing clinical
needs and have been integrated in the PD multidisciplinary care
(19, 35). Wearable devices are the spearhead of eHealth modalities
in PD. The reason for this lies mainly in the fact that symptoms’
fluctuations in patients with PD cannot be reliably addressed with
the current clinical limited assessment, while wearables can offer
prolonged objective measurements of motor symptoms (11, 23).

Most of these wearable systems are based on inertial sensors
that consist of accelerometers and gyroscopes. Griffiths et al. (36)
presented a wearable system composed of a single sensor in the
form of a wrist-worn watch and reported high accuracy in the
detection of bradykinesia and dyskinesia, compared to clinical
examination (37). The system was further validated in subsequent
studies for fluctuation detection (38, 39), impairment in activities
of daily living (40) and overall therapeutic management of patients
with PD (41). However, since this system is worn on a single wrist,
it can only measure a subset of PD symptoms, and specifically
those related to that limb. Thus, gait impairment, dyskinesia, as
well as freezing of gait, cannot be detected as they would require
additional sensors (42–44). As a result, the presented system lacked
the ability to extract information comparable with patient diaries,
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or more importantly, with a full neurological examination. Ferreira
et al. (37) introduced another system based on wearable sensors
and accompanied by a mobile app, for which they evaluated
its wearability and usability (45). The clinical validity of the
system was also evaluated and high accuracy was reported in
leg dyskinesia assessment and fluctuation detection, without any
report about the detection of other parkinsonian symptoms (13).
For the detection of specific symptoms, other sensors have been
developed as well (12, 46). A recent systematic review described
wearable solutions developed for PD and summarized their
advantages and disadvantages (47). Although the advancements in
telemonitoring solutions are significant, monitoring technologies
for PD haven’t yet gained wide acceptance among physicians,
patients and caregivers. The reason lies in the lack of adequate
evidence for validating their clinical utility in specific conditions,
including their use in the selection of suitable patients for invasive
therapies (48–50). During the last couple of years, a paradigm
shift in the monitoring of patients with PD is taking place. But,
in order to be successful, it needs further support that can only
be provided by the development of devices that can accurately
monitor parkinsonian symptoms and evaluate their fluctuations
in the long term. Perhaps the most important aspect of this
process is to prove that the output of the monitoring devices is
accurate, thus extensive validation is necessary (23). Preliminary
data on acceptability originating from patients of these systems are
encouraging and have helped define outcome measures for clinical
studies (51).

To that end, the PDMonitor R© system (PD Neurotechnology
Ltd.) was developed for the continuous monitoring of Parkinson’s
disease symptoms, designed to be used by patients in their own
environment. The PDMonitor R© is an innovative device consisting
of five wearable sensors, to be worn on the trunk and then limbs,
and is able to detect remotely most motor manifestations of PD,
including the daily activity of patients in their home. It is also
intended for long term follow-up monitoring of each patient with
the goal of objectively assessing the course of the disease. The aim of
this work was to use complementary data from 2 multi-site clinical
studies, described in Section 2.3, as a first systematic validation of
the usability and the performance detected of the PDMonitor R©

system in the identification, quantification and monitoring of PD
motor symptoms. More specifically, the main questions this works
aimed to answer, were:

• Is the device feasible to be used by patients and caregivers

without supervision?

• Is the device reliable when compared to expert assessment of

PD symptoms?

2. Materials and methods

Section 2.1 describes the body-worn system used for the
evaluation of PD motor symptoms. Section 2.2 briefly describes
the methods and algorithms used by the system. Section 2.3
briefly describes the data collection used for the initial algorithm
verification, as well as the studies performed for the validation of
the device.

2.1. The PDMonitor® system

The PDMonitor R© system developed by PDNeurotechnology R©

Ltd. is a class IIa CE-marked medical device, intended to be used
by patients diagnosed with PD, for continuous home monitoring.
The system is comprised of a base, a set of monitoring devices,
a set of mounting accessories, a mobile application, a physician
web dashboard and a cloud service. The PDMonitor R© provides
an ecosystem (Figure 1) enabling long term continuous remote
monitoring of patients with Parkinson’s disease (PwPs).

Physicians have full access to patients’ symptom reports at
any time, with comprehensive information about almost all PD-
related motor symptoms via the physicians’ web dashboard. Two
different patient cases from the study, with different symptoms,
as they appear in the web portal, are presented in Figure 2. The
PDMonitor R© report consists of a heatmap, illustrating the severity
of a symptom for a 30-minute interval and a chart with the average
symptom intensity for any time of day. The reports also provide the
medication schedule and the actual medication intake (as well as
nutrition information) reported by the patient via the PDMonitor R©

mobile application. Although the web dashboard is the default
way of accessing the outputs of the system, if there is a need for
direct access to the raw IMU data, then one would need to contact
PD Neurotechnology Ltd. beforehand, i.e., before the patient uses
the device. The components of the PDMonitor R© system are the
following (Figure 3A):

1. The PDMonitor R© SmartBox, used to collect, process and upload
data to the cloud. The SmartBox also acts as a docking station
for charging the wearable sensing devices (Monitoring Devices)
after they have been used. The SmartBox has a size of 170×80×
17 mm and a weight of≈ 280 g.

2. Five wearable sensing monitoring devices, used to collect
movement data. Eachmonitoring device has a size of 41×30.6×
12.85 mm, a weight of ≈ 16 g and contains a 9-degree inertial
measurement unit (IMU) sensor (accelerometer, gyroscope and
magnetometer), the LSM9DS1 from ST Microelectronics. The
monitoring devices record data with a sampling frequency of
59.5 Hz, which they store internally, until they are docked to the
SmartBox, at which point the data are transferred and uploaded
to the Cloud. The LSM9DS1 has a linear acceleration full scale
of±2/± 4/± 8/± 1 g, a magnetic field full scale of±4/± 8/±
12/±16 gauss and an angular rate of±245/±500/±2000 dps.

3. PDMonitor R© accessories (i.e., ClipFrame, StrapFrame,
Wristband and Velcro straps), used to attach the monitoring
devices to the patient’s body, and more specifically, near the
ankles, wrists and waist. Regarding the ankles, the monitoring
devices are attached to the lateral compartment of the leg,
slightly above the ankle, whereas the wrist monitoring devices
are attached to the posterior compartment of the forearm
around the wrist, much like a watch. The waist monitoring
device is placed near the anterior midline of the body at the
height of the waist. The waist sensor can bemounted, either with
a velcro band paired with a StrapFrame, or with a ClipFrame,
based on the patient’s preferences. The proper device placement
is presented in Figures 3B, C.

Each PDMonitor R© monitoring device produces raw
measurements from its embedded IMU sensor. Subsequently,
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FIGURE 1

The PDMonitor® ecosystem.

all 5 are synchronized and their data are uploaded to the Cloud
when docked to the SmartBox. Then, the symptom evaluation
process transforms the raw IMU signals from all monitoring
devices to a unique set of movement features, which are in turn
converted to symptom estimations for 30-minute windows,
correlated to UPDRS or other relevant scales’ items. The final
movement items estimations are the output of the PDMonitor R©

device to the cloud. The PDMonitor R© symptom evaluation
involves data analysis with digital signal processing techniques,
feature extraction algorithms, and machine learning. The final
outcome is the automated quantification of basic daily activities
(walking, resting/sitting, lying), main parkinsonian motor
symptoms (tremor, bradykinesia, gait and balance impairments),
and the most important motor complications associated with the
antiparkinsonian therapy (ON/OFF fluctuations, LiD and FoG).
Based on the system’s intended use, the 5 monitoring devices
must be worn by the patients during their waking hours, and then
docked for data transfer and recharging during the rest of the day.
However, the sensors have a battery duration of up to 50 h and thus
this is considered the maximum recording duration.

Although there are 5 monitoring devices to be attached to
a patient’s body, PDMonitor R© is easy to use, due to its ability
to automatically identify the placement of each sensing device
on the waist and limbs (52). As a result, the users (patients
and/or caregivers), do not need to match each sensor, individually,

to a corresponding body position, thus, reducing both the time
necessary for mounting the sensors and the probability of user
error. Moreover, PDMonitor’s R© sensor-mounting accessories (i.e.,
the Wristbands, StrapFrames and ClipFrames) act as active
measures against inappropriate use (i.e., placing them in a wrong
orientation). However, caution by the users remains a prerequisite
to place, both the wrist, and the ankle sensors facing outwards,
to prevent misidentification between the left and right limbs.
An inwards placement of the limb monitoring devices would be
improbable, given the awkward and uncomfortable nature of this
configuration, especially for the wrist sensors.

2.2. The PDMonitor® algorithms

The PDMonitor R© algorithms were initially designed, and
preliminary developed, during the PERFORM project (53–55).
Subsequently, they were further/mainly developed and verified in
a Pilot study performed at the University Hospital of Ioannina (see
Section 2.3.3).

The symptom evaluation process is similar for all PDMonitor R©

symptom assessment algorithms (Figure 4). More specifically, all
devices collect IMU sensor raw measurements (accelerometer,
gyroscope, magnetometer). Each sensor has three axes (X, Y, Z),
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FIGURE 2

(A) PDMonitor® OFF/Dyskinesia chart for a patient with clear fluctuations. (B) PDMonitor® OFF/Dyskinesia chart for a patient with significant

dyskinesia. In this report the di�erent areas of interest have been marked. Specifically, the area 1 illustrates the severity of a symptom for a 30-min

interval, including medication and nutrition information, the area 2 presents a chart with the average symptom intensity for any time of the day, while

the area 3 lists the medication the patient receives.
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FIGURE 3

(A) The PDMonitor® box, docking station, monitoring devices and accessories. (B) The PDMonitor® monitoring devices’ placement on the wrists,

torso and ankles. In the middle image, the waist sensor has been placed to the waist with a velcro band and a StrapFrame, but there is also the option

to be mounted on a belt using a ClipFrame accessory. (C) The placement of all monitoring devices on the appropriate body position at the same time.

FIGURE 4

General pipeline used by the PDMonitor® algorithms. The raw IMU signals are used for motion feature extraction, which are, in turn, utilized for

symptom evaluation. The evaluation is generated every 30 min and the symptoms are presented in relevant clinical scales.

therefore it is a 9-degree measurement system. The PDMonitor R©

symptom evaluation process transforms the raw IMU signals from
all monitoring devices to a unique set of movement features,
which are in turn converted to UPDRS, or other clinical scales’
items, estimated in 30-minute windows. The first step in the
overall PDMonitor R© symptom evaluation methodology is activity
detection as described in Section 2.2.1. After activity detection,
symptom-specific processing is used to address the challenging task

of detecting, quantifying and assessing each of the cardinal PD
motor symptoms. Machine learning is mainly applied in this step in
order to discriminate different types of body movement (walking,
normal activity, leg tremor and dyskinesia) and in every case a
different kind of symptom assessment takes place. In the following
sections, the methods and algorithms used in the PDMonitor R©

system will be briefly described, mainly focusing on activity
and posture detection, dyskinesia, bradykinesia, gait, tremor and
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ON/OFF fluctuations. Due to space limitations, algorithms are not
presented in detail. Nonetheless, the main features used by each
method are described.

2.2.1. Activity detection
The PDMonitor R© symptom evaluation process for symptom

detection and severity assessment follows a hierarchical approach.
The main idea is to first identify “regions of interest” based
on the activity, where each symptom can be evaluated with
high accuracy. For example, regions in the signal identified
as rest are used to detect resting tremor, while regions that
include climbing of stairs are used to detect gait impairment.
This requires accurate activity detection algorithms. The main
activities identified were:Walking, Resting, Tremor, Dyskinetic and
Other. Walking pertains to free walking (excluding stair climbing),
however the patients that took part in the generation of the
dataset, were free to move without restrictions. Hence, the dataset
itself, and as a result the symptom evaluation process, take into
account numerous other activities (i.e., rehabilitation activities),
which were not explicitly annotated. Those activities are included
in the “Other” category.

The PDMonitor R© activity detection is based on motion
features extracted from all body parts, as well as from both
time (signal energies, average values, standard deviations, jerk,
correlation of signals from different body parts etc.) and frequency
domain (energies of gyroscope signals within different frequency
bins). The objective of the activity detection is to evaluate
different activities based on the quantification of body movement,
movement coordination (walking is a coordinated body motion
whereas dyskinesia is not) and posture (by discriminating between
standing, sitting and lying). In total, over 140 features are extracted.
A wrapper feature selection method (56) is applied to identify
the best feature set for Bayes classification. The activity detection
method was developed and verified with data from the pilot
study. A Naive Bayes classifier is applied using a leave-one-out
technique, which minimizes the risk of overfitting and bias. With
this approach, PDMonitor R© managed to identify the different body
movements with high accuracy (> 90%). The identification of each
activity spawns further analysis for different symptoms and motor
characteristics. Gait disturbances are evaluated exclusively during
the “Walking” activity, dyskinesia severity is assessed during the
“Dyskinetic” activity, whereas (wrist) tremor and arm bradykinesia
are assessed during the “Resting” or “Other” activities. The general
pipeline used by the PDMonitor R© algorithms is presented in
Figure 4.

2.2.2. Dyskinesia
The dyskinesia evaluation algorithm requires activity detection

to be implemented first. Dyskinesia severity is better assessed
while resting, therefore walking regions are excluded. The first
step is to find dyskinetic regions in 5-minute window intervals.
In a 5-minute window, the initial detected activity is combined
with motion features from all body parts into a new feature
vector enabling the detection of dyskinesia and the assessment of
its severity.

2.2.3. Bradykinesia
The PDMonitor R© method for the detection and assessment of

bradykinesia is based on the evaluation of a patient’s movement
speed. However, to assess movement capacity, actual movement
must occur and be detected. Therefore, bradykinesia evaluation
starts with the detection of specific movements and the estimation
of their speed. Movements that are slower than those calculated
for the control group are considered as bradykinetic movements.
The percentage of the bradykinetic movements for a 30-minute
window is the so-called “PDMonitor R© bradykinesia score” which is
significantly correlated with the UPDRS score of arm bradykinesia
(items 23, 24 and 25).

2.2.4. Gait
The gait assessment requires the identification of walking

regions and the detection of individual steps. The main parts of
the method are: signal acquisition and filtering, activity detection,
consecutive candidate walking regions’ merging, steps detection,
gait features extraction and gait impairment score extraction based
on gait features. The detection of gait is based on the activity
detection method. The basic window used for activity detection
is 4 s. Consecutive windows classified as “Walking” are merged
into larger walking regions in order to improve the statistical
estimation of gait parameters. After walking region detection and
merging, a step detection procedure is applied. Three peaks are
identified for each step: Terminal Contact (TC), corresponding to
heel off, Max Rotational Speed (RS), corresponding to mid-stance
and Initial Contact (IC), corresponding to heel strike. Then, a
number of features are estimated based on the detected peaks for
each step. A number of gait features are extracted (shanks’ sagittal
range of movement, cadence, swing time, swing time variability
among others) and combined in order to build a linear model with
the purpose of translating gait features to the gait corresponding
item of the UPDRS scale. The feature that dominates the gait
impairment estimation is the shanks’ range of motion (RoM). This
feature is related to the step length, which has been demonstrated to
be levodopa responsive (57). Said property (i.e., responsiveness to
levodopa) is significant, given that themain purpose of devices such
as the PDMonitor R© is to equip physicians with the means to better
evaluate symptom response tomedication, and as a result have finer
control over medication dose adjustments and time intake.

2.2.5. Freezing of gait
Freezing of Gait (FoG) is a phenomenon described by PD

patients as a sensation of their feet being “glued to the ground.” FoG
is of episodic and unpredictable nature and as such, it is detected
as an event, potentially with a duration of just a few seconds,
rather than being considered a symptom. FoG is expressed when a
patient is either shuffling forward with tiny steps, or suddenly being
incapable of starting to walk, or failing to move forward. FoG can
also be expressed by the complete absence of movement.

Moore et al. (58) presented a method for the calculation of an
index of FoG, based on the principle that FoG is usually combined
with short hesitation steps that could be detected. However, this is
not always the case. A comprehensive definition of FoG such as the
one used by Djurić-Jovičić et al. (59), differentiating between FoG
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paired with trembling and FoG paired with complete motor blocks,
seems to address the problem by incorporating different types of
FoG events. Nonetheless, FoG events expressed with full motor
blocks are difficult to accurately detect in a home environment and
they wouldmost likely introduce a lot of false positives. Marcante et
al. (60) used a system based on a pair of pressure insoles equipped
with a 3D accelerometer in order to detect FoG episodes. Using it in
a controlled environment they were able to report a 90% accuracy
in FoG detection. The PDMonitor R© evaluates the presence of FoG
events before the initiation of walking, during pausing phases. FoG
is then detected based on the freezing index introduced by Moore
et al. (58), which is estimated using data from the ankle gyroscope,
as well as other features necessary for the discrimination between
FoG and other kinds of activity (i.e., tremor an/or dyskinesia).

2.2.6. Tremor
PDMonitor R© evaluates resting tremor occurring in a body

segment while maintained at rest. Action (or kinetic) tremor are
not evaluated by the current version of PDMonitor R©.

Leg tremor detection is based on the activity detection
method and specifically on the activities classified as “Tremor.”
The activity detector is a probabilistic classifier which provides
a posterior probability of a sample X belonging to a specific
class, that is P(Class|X). The posterior probability of the activity
detection classifier for the “Tremor” class, i.e., P(Class =

Tremor|X) represents mainly leg activity and is averaged over a
30-minute window.

Wrist tremor assessment is based on the method presented by
Cancela et al. (45), which mainly relies on the gyroscope’s signal.
The method consists of: signal preprocessing, tremor detection,
tremor amplitude estimation and rest/posture detection. Both
wrist tremor detection and amplitude estimation are based on 3-s
windows. Typically, tremor has a dominant frequency on the 3.5 to
8 Hz frequency band, whereas the voluntary movement frequency’s
range is below 2.5 − 3 Hz. A number of features are extracted,
including the energy of low-pass and high-pass gyroscope signals,
defined, as a reference, as following:

En =

∑

i

√

s2x(i)+ s2y(i)+ s2z(i) (1)

In Equation 1, sk(i) is the i-th sample of the k axis of the signal.
A C4.5 decision tree was employed for wrist tremor detection.

The wrist tremor amplitude estimation and consequently its
translation to UPDRS item scores follows the approach of Rigas et
al. (53) and uses a fuzzy linear function to correlate with the score
of the UPDRS item 20.

2.2.7. ON/OFF and fluctuations
Motor fluctuations refer to the transitions between the ON

and the OFF periods. During the ON periods, medication is in
effect and patients with a well-adjusted treatment plan should
not experience any motor symptoms. An exception is dyskinesia,
which occurs in more advanced stages of the disease. During the
OFF periods, medication is not alleviating the symptoms, although
is should. In advanced stages of the disease, most PD patients

TABLE 1 The features used by the PDMonitor® for the detection of OFF,

sorted into groups of interest.

Group name PDMonitor® UPDRS
items

Activity Lack of movement, Activity, Resting
time

-

Gait Gait, Gait with no dyskinesia 29

Tremor Tremor score for LL, RL, LW, RW 20, 21

FoG/PI Freezing of gait/Postural instability 14, 30

Rigidity - 22

Body Bradykinesia - 31, 27

Arm Bradykinesia Bradykinesia score for LW, RW 23, 24, 25

In the last column, there is a set of UPDRS items that correspond to the same groups. LL, RL,

LW, RW stand for Left/Right Leg and Left/Right Wrist, respectively.

will experience OFF periods, with increased symptom severity,
manifested unpredictably during the day.

The time during which a patient is in an OFF state is an
important parameter used to assess interventions. As a result,
obtaining precise information, such as the onset and the duration
of OFF states, on the long term evolution of ON/OFF fluctuations is
essential to optimize therapy. Currently, the only available method
to collect such information is self-reported diaries. A wearable
device capable of collecting PD motor fluctuations in an objective
and reliable way would help overcome the limitations of those
diaries and as a result would provide physicians with a valuable tool
for reducing OFF periods and dyskinesia.

PDMonitor R© estimates the probability of a patient being in the
OFF state based on a Naive Bayes classifier, taking as input the rest
of the PDMonitor outputs. A feature importance technique based
on the Relief method (61) is conducted in order to evaluate the
importance of each feature in the detection of OFF. The features
used, can be sorted into groups of interest as presented in Table 1.
For the purposes of this work, a similar analysis was performed
based on study data including patient diaries and UPDRS expert
evaluations, in order to estimate the importance of each feature.
The results for the accuracy of OFF detection are presented in
Section 3.2.1.

2.3. Study description

The data used in this work to validate PDMonitor R© originated
from two studies (Figure 5). Specifically:

1. A study with PD patients (PDNST001) for the evaluation of the
PDmotor symptom assessment algorithms of the PDMonitor R©,
as well as for the wearability and usability of the PDMonitor
device (Section 2.3.1).

2. A study with age-matched healthy subjects (PDNST002) for the
evaluation of the wearability/usability of the device, as well as for
collecting data in order to evaluate the sensitivity of the device’s
algorithms (Section 2.3.2).
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FIGURE 5

Clinical trials (Pilot, PDNST001, and PDNST002) that took place for the generation of datasets used for the development/verification and validation of

the algorithms of the PDMonitor® device. The PERFORM project, used for the initial development of the algorithms, is not related to the studies

described in the body of this manuscript.

Asmentioned in Section 2.2, the data for themain development and
verification of the PDMonitor R© algorithms were generated during
a Pilot study which is described in Section 2.3.3.

2.3.1. Clinical study with PD patients (PDNST001)
The PDMonitor R© system was used in the study PDNST001,

entitled “Assessment of Parkinson’s Disease’s Motor Symptoms
Using Inertial Measurement Devices”, in which sixty-five (65) PD
patients were recruited. The total duration of the study was 5
months and it included the following two phases:

1. Phase I: Data collection for inpatients, with a participation
duration not exceeding 6 h. During that time expert evaluations
based on clinical scales were also regularly conducted.

2. Phase II: Data collection from continuous monitoring of
outpatients at their home, or in care facilities, with a duration
not exceeding seven (7) days and at least 7 h per day.

Phase II participants were a subset of patients who already
participated in Phase I. The aim of the study was the assessment of
PDMonitor R©, as an integrated monitoring system for Parkinson’s
disease, ultimately intended to increase patients’ independence,
improve their quality of life and reduce the costs associated with
the disease.

Phase I. During the Phase I of the study, the patients wore
the system while staying at the hospital. At the beginning of the
recording with the PDMonitor R©, a clinical examination based
on the Unified Parkinson’s Disease Rating Scale (UPDRS) (62),
and the Abnormal Involuntary Movement Scale (AIMS) (63) took
place, preferably while patients were in an “OFF” state. If a patient
was in an “ON” state, the clinical examination was postponed
and rescheduled. Each patient was examined at regular intervals
(30 minutes) by a physician and the whole session was recorded
by a camera. The video obtained was used for the identification
and evaluation of symptoms by third-party physicians (expert
evaluations). The duration of the PDMonitor R© recording in Phase
I was between 3 and 6 h for each patient. For the proper
evaluation of the patients’ symptoms, a diary was kept by their

caregivers or nurses. Every half hour the specialized nurse or
the physician asked the patient to perform specific motor tests
and recorded their symptoms. During each session, patients were
instructed to perform random activities that could last several
minutes, for example, climbing up and down a set of stairs,
making turns, lying down, standing up, walking while carrying
a glass of water, carrying a heavy object, drinking a glass of
water, opening and closing a door, taking a walk outside. Also
there were more complex activities conducted, such as setting
a table for a meal, having a meal, or even using a computer,
tablet, or smartphone, etc. Normal daily activities were required
in order to reduce the possible bias in symptom assessment
introduced by the reduced range of patients’ activity in a hospital
environment.

Phase II. Data collected during Phase II were used to evaluate
usability, validate the outcomes of the PDMonitor R© system vs.
patient diaries as well as to evaluate day-to-day variability. The
overall recording run for 1–3 days and with at least 7 h per day,
whether a caregiver was present or not. Patients were trained
on how to wear and use the system during their participation
in Phase I.

Data from Phase I (i.e., gathered from inpatients wearing the
device) were used in order to compare PDMonitor R© outcomes with
both expert annotations (available only in Phase I) and diaries.

Sites and Participants. This study took place in three sites:

1. the Technische Universität Dresden (TU Dresden) in
Dresden, Germany,

2. the General University Hospital of Ioannina in Ioannina,
Greece and

3. the Ospedale San Camillo IRCCS, and the Padua University
Hospital in Italy.

In total, sixty-five (65) PD patients were recruited. The study
protocols were approved by the corresponding ethical committees
and all recruited individuals signed an informed consent form. The
patients’ demographics are shown in Table 2.

Scales and Questionnaires. For the purposes of the study, the
following scales and questionnaires were used:
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TABLE 2 Demographics of patients participating in the PDNST001 (top)

and PDNST002 (bottom) studies.

Patient population

Number of participants 65

Age (Mean± SD) 65.8± 9

Gender (Male/Female) 33/30

Years with PD (Mean± SD) 8.8± 4.9

Healthy population

Number of participants 28

Age (Mean± SD) 63.2± 9.9

Gender (Male/Female) 10/19

1. Unified Parkinson’s Disease Rating Scale (UPDRS) (62). A full
UPDRS evaluation was conducted in the start of the session,
while the Part III of the UPDRS was performed every 30
minutes.

2. Abnormal Involuntary Movement Scale (AIMS) (63). An AIMS
questionnaire was filled by physicians every 30 minutes to
evaluate dyskinesia exhibited by the study participants.

3. Patient/Nurse Symptom Diary (64). Diaries were filled every 30
minutes by patients, or nurses, in order to assess ON/OFF states,
Dyskinesia, Bradykinesia, Tremor, FoG and general activity.

4. Comfort Rating Scale (CRS) (45). A CRS questionnaire was filled
once at the end of the session in order to evaluate whether the
device was comfortable to use.

2.3.2. Clinical study with healthy individuals
(PDNST002)

This study only included a procedure similar to that of Phase
I of the PDNST001, and as such, during its course only healthy
individuals (controls) used the PDMonitor R© device.

Sites and Participants. This study took place in the Ospedale
San Camillo IRCCS, and the Padua University Hospital in
Italy. In total, 31 healthy individuals were recruited, with
data being available for 28 subjects. The healthy participants
used the device for up to 3 days in a hospital environment,
but they were free to move and perform any kind of daily
activity, mimicking home daily living scenarios. The data
resulting from this study were used mainly for evaluating the
robustness of the system’s algorithms in order to properly
discriminate normal activities and movements from PD symptoms.
The study protocols were approved by the corresponding
ethical committee and all recruited individuals signed an
informed consent form. The participants’ demographics are shown
in Table 2.

2.3.3. Pilot study
The pilot study took place, chronologically, after the PERFORM

project and before the PDNST001 and PDNST002 studies
described herein with the purpose of data acquisition for
developing the algorithms used in the PDMonitor R© device. The

pilot study used the same protocol as the Phase I of the PDNST001
study, and it included 30 sessions performed by patients staying
in the hospital between 4 and 8 h. Each session was recorded
on video, and every 30 minutes a UPDRS examination (62) was
performed. Moreover, a trained nurse kept a symptom diary
for the entirety of each session. For monitoring the pilot study
participants, a Shimmer device1 with 5 sensing elements was used.
The sensing elements, were mounted on the ankles, wrists and
the torso, in the exact same configuration as the PDMonitor R©.
The Shimmer device was used for data collection given that
the PDMonitor R© hardware was still under development at that
time.

2.4. Statistical analysis

2.4.1. Assessment of wearability
The wearability of the device was evaluated based on the

Comfort Rating Scale (CRS), filled by patients after completing the
Phase II of the PDNST001 study, as well as by the control subjects of
the PDNST002. The questions of the CRS are provided in Table 3.
The average ratings, resulting from the responses of the patients
and the control subjects, were quantitatively and qualitatively
analyzed.

2.4.2. Assessment of accuracy
The validation of the PDMonitor R© system in the identification

and quantification of PD motor symptoms, as well as in the
complications stemming from PD, in a statistically significant
manner, is assessed based on measures of accuracy (for the
detection) and measures of correlation (for the severity).
Initially, the symptoms extracted through the PDMonitor R© were
compared against the UPDRS and the AIMS scores resulting
from physicians’ clinical examinations, conducted in 30-minute
intervals.

Agreement with Expert on the Detection of Specific

Symptoms. For the statistical analysis, a dataset was created
for each symptom, which included pairs of PDMonitor R© 30-
minute estimations, as well as the corresponding UPDRS/AIMS
items. The UPDRS/AIMS items were converted to a binary scale
based on the clinical thresholds for defining a mild (or more
severe) presence of a symptom. Cases with a slight symptom
presence were ignored for this analysis. Then, for each symptom,
an analysis based on a receiver operating characteristic (ROC)
curve (65) was used to evaluate the corresponding thresholds to
be set in the PDMonitor R©. Given the thresholds obtained from
the ROC analysis, a confusion matrix was computed. Accuracy,
specificity and sensitivity measures were estimated and reported
(Section 3.2.1).

For each symptom, specific groups of different symptoms’
intensity were defined. Group differences were evaluated
using the t-test method and box plots were generated using
the Seaborn Python library (66). The created box plots are

1 http://www.shimmersensing.com
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TABLE 3 All the questions included in the Comfort Rating Scale (CRS), a standardized questionnaire used in our work as a tool of assessing the

wearability of the PDMonitor® system.

Section Description Controls Patients

Emotion I feel worried and embarrassed. 0.8/20 1.9/20

I feel tense. 0.1/20 1.8/20

I would wear the device if it was invisible. 7.4/20 7.1/20

Attachment I feel the device on the body. 2.3/20 3.5/20

I feel the device moving. 1.8/20 3.0/20

I was not able to move as usual. 0.0/20 2.6/20

I have difficulty in putting on the device. 1.1/20 5.9/20

Harm The attached device causes me some kind of harm. 0.0/20 0.0/20

Perceived change I feel more bulky. 1.0/20 0.9/20

I feel change in the way people look at me. 2.0/20 3.0/20

Movement The device obstructs my movements. 0.3/20 2.6/20

Anxiety I do not feel secure with the device. 0.0/20 0.5/20

I feel that I do not have the device properly attached. 0.5/20 1.1/20

I feel that the device is not working properly. 0.0/20 0.8/20

In the “Controls” and “Patients” columns, we present the average ratings that resulted from the responses of the control subjects of the PDNST002 study, as well as the patients of the Phase II

of the PDNST001 study to the CRS questionnaire.

presented in Section 3. Group differences in some cases included
measurements from the same patient. Therefore, patients do
not belong to a specific group, neither have the same number
of measurements in the same group. As a result, given this
degree of variability and non-determinism, the assumption of
the samples being independent, as well as the use of the t-test is
justified.

Total time estimation. Subsequently, the thresholds indicating
a significant symptom presence were employed to extract, per
session, the total time of its presence, as measured by both the
experts and the PDMonitor R© (Section 3.2.2) respectively.

A Bland Altman analysis (67) was also performed and is
presented in Section 3. The intra-class correlation of PDMonitor R©

estimation of the total time of a symptom’s presence was also
evaluated. To that end, the data from Phase II of the PDNST001
study were employed. The total symptom presence was estimated,
for the same patient, over a number of different days, resulting in
a dataset containing those estimations in pairs, forming a dataset
of day-to-day symptom presence estimations. Both Pearson and
Spearman correlation were used as measures of correlation and a
Bland Altman analysis (67) is also reported for the bradykinesia
case. The Bland Altman analysis was performed using the Matlab
implementation (68). The Standard error (SSE), the Coefficient of
Variation (CV) and the RPC reproducibility coefficient (1.96 ∗ SD)
are included in the analysis.

Agreement on Day-To-Day Symptom Evaluation. For the
evaluation of the day-to-day agreement of PDMonitor R© measures,
two sets of data were used. The first, was patient data from the
Phase II of the PDNST001 study, while the second, was data of
healthy individuals from the PDNST002 study. The agreement
was evaluated for all those patients, and control subjects (healthy
individuals), having more than 1 day of monitoring activity. For

each symptom, the average severity was estimated per day, and
then pairs of different days were compared. Similar to the case of
the total time estimation, for the day-to-day symptom evaluation,
a Bland Altman analysis was performed, and both Pearson and
Spearman measures of correlation were employed to evaluate the
day-to-day agreement.

3. Results

3.1. Assessment of wearability

The results of the Comfort Rating Scale (CRS) for both patient
and control subjects are presented in Table 3. On top of the results
from the CRS questionnaire, some key findings regarding the
wearability of the system, acquired through the interaction with
the patients of the study, are presented below. First, it took patients
about 5minutes on average (5.3±2minutes ranging from 2 to 10.25
minutes evaluated on 39 patients), to put on all five monitoring
devices (monitoring device). The procedure was recorded on video
and the reported time durations were estimated based on those
recordings. The wide spread in the time necessary to put on the
device, was expected, and it is attributed to some patients exhibiting
significant movement impairment or being in an OFF state when
they were instructed to wear the device. Second, the study subjects
indicated that the monitoring device worn on the waist seems to
be more inconvenient compared to the devices worn on other
body parts. Third, disease duration did not affect the time patients
needed to put on the monitoring devices. For all patients, when
comparing the time to put on the sensors to the disease duration,
the Pearson’s correlation coefficient (R), and its p-value, indicated
that there was no significant correlation (r = −0.123 with p = 0.77,
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TABLE 4 Evaluation of the accuracy of PDMonitor® vs. 30-min expert evaluations (UPDRS/AIMS) or diaries (for the OFF case).

PDMonitor® Scale item Thres.a Conf. Matrixb Pos./Neg. Acc./Spec./Sens.c

Arm brad. (UPDRS) 23+ 24+ 25 > 4 0.7 208/41/137/781 249/918 0.85/0.85/0.84

Gait (UPDRS) 29 > 1 1.6 70/39/7/903 109/910 0.99/1.0/0.67

Wrist tremor (UPDRS) 20 > 1 1.64 90/17/2/2,858 107/2860 0.99/0.99/0.84

Leg tremor (UPDRS) 20 > 1 0.16 28/2/1/1,440 30/1441 0.99/0.99/0.93

Dyskinesia (AIMS) AIMS > 4 1.66 68/15/9/1,607 83/1616 0.99/0.99/0.82

OFF (Diaries) OFF 0.5 29/5/18/571 34/589 0.96/0.97/0.85

FoG (UPDRS) 14 > 1 0.02 10/2/1/61 12/62 0.96/0.98/0.83

The threshold derived by a ROC curve analysis (Thres.), the confusion matrix, the number of positives (true positives plus the false negatives), negatives (true negatives plus false positives), as

well as the accuracy, specificity and sensitivity are also provided. The last line of the table presents the accuracy of the freezing of gait discrimination for the “Freezing” patients compared to the

“No freezing” patients and the control subjects. The freezing of gait is evaluated per patient, instead of the 30-minute evaluations of the other outputs presented in this table.
aThreshold for the corresponding PDMonitor R© measure extracted from the ROC analysis.
bTrue positive/False negative/False positive/True negative.
cAccuracy/Specificity/Sensitivity PDMonitor R© measures are compared against specific scale items provided in the column “Scale Item.”

for Germany, r = −0.195 with p = 0.38, for Greece and r = 0.67
with p = 0.32, for Italy). As expected, patients who had no help
putting on the sensors, needed more time than patients assisted by
a caregiver (6.28 vs. 4.67 minutes).

3.2. Assessment of accuracy

3.2.1. Agreement with expert on the detection of
specific symptoms

In this section, the results regarding the agreement of the device
with the expert assessments (UPDRS/AIMS evaluations performed
every 30 minutes), and the symptom diaries, are presented.

Bradykinesia. PDMonitor R© arm bradykinesia estimation for
30-minute windows had significant correlation with the UPDRS
arm bradykinesia subscore (r = 0.68) and had a rather high
accuracy (0.85) in detecting patients with a sum of the bradykinesia
UPDRS subscore (sum of UPDRS items 23, 24 and 25) larger
than 4, as presented in Table 4. In order to further evaluate the
device’s performance in discriminating bradykinesia impairment, 4
bradykinesia groups were considered:

1. control individuals (referring to healthy subjects),
2. patients with 0 bradykinesia UPDRS subscore,
3. patients with < 4 bradykinesia UPDRS subscore,
4. patients with > 4 bradykinesia UPDRS subscore.

The PDMonitor R© bradykinesia estimation distributions for
those groups are presented in Figure 6A. All groups have
statistically significant different means, indicating the rather good
correlation between the PDMonitor R© estimation and the arm
bradykinesia, annotated by the experts.

Dyskinesia. Based on the method described in Section 2.2.2,
the accuracy of the dyskinesia detection method was evaluated
for the discrimination of 30 minutes’ regions where the patients’
AIMS score, as annotated by experts, had a value greater than
4, compared to that of those participants (control and patients)
with no dyskinesia. The threshold of 4 is the minimum AIMS
score for which the device can provide the most accurate results
regarding the sensitivity and specificity of the detection. The
accuracy obtained (Table 4) was 0.99 with an excellent specificity

(0.99) and sensitivity (0.82). A high specificity is paramount,
considering that the device is intended to be used in daily living and
during free activities where normal movements could be confused
with dyskinesia.2 To this end, the use of healthy subjects for the
evaluation of the algorithms was rather important in order to
ensure that dyskinesia can be accurately discriminated. Similarly to
bradykinesia, 5 groups were considered based on their AIMS score.
Those groups were:

1. control individuals (healthy),
2. patients with a 0 AIMS score,
3. patients with < 4 AIMS score,
4. patients with 4− 12 AIMS score,
5. patients with > 12 AIMS score.

The PDMonitor R© dyskinesia estimation distributions for those
groups are presented in Figure 6C. All groups have statistically
important differences indicating a rather good performance of
the device in discriminating dyskinesia. It should be noted that
PD patients with no dyskinesia have significantly lower dyskinesia
estimations compared to both patients with slight dyskinesia
(AIMS < 4) as well as healthy subjects. The only shortcoming
observed with our method was the underestimation of dyskinesia
in the rare case of patients having significant dyskinesia on the head
or the neck and less dyskinesia in their extremities.

Gait. The PDMonitor R© gait score was evaluated for the
detection of gait impairment in 30-minute windows taking into
account mild and severe gait impairment according to the score of
the UPDRS item 29. For the evaluation, annotations with a score
of 1 in the UPDRS item 29, as well as regions with dyskinesia, were
excluded. The accuracy of gait impairment detection is presented
in Table 4. A rather high accuracy is achieved (0.99 accuracy
with >0.99 specificity and 0.67 sensitivity). PDMonitor R© gait
score distributions for the different expert UPDRS assessments are
provided in Figure 6B.

2 It should be noted that according to the device’s instructions for use,

the device is not intended to be worn during intense activities (i.e., any

activity other than walking). The reason being, signals logged by the IMU

sensors during intense activities would contain abrupt changes that would

contaminate the system’s output.
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A B

C D

FIGURE 6

(A) Boxplot representing the PDMonitor® bradykinesia score distribution for the di�erent subgroups based on expert UPDRS bradykinesia

evaluations. (B) Boxplot of PDMonitor® gait score distribution for the di�erent subgroups based on expert UPDRS gait evaluation. (C) Boxplot of

PDMonitor® dyskinesia score for the di�erent subgroups based on expert AIMS dyskinesia evaluation. (D) Boxplot of PDMonitor® tremor (wrist) score

distribution for the di�erent subgroups based on expert UPDRS tremor evaluation. The dots represent outliers in the dataset, while the asterisks

represent statistical significance. On top of each box there is the number of data points contained within each group. Every data point represents an

estimation of the respective symptom for a 30-min window. Regarding the underlying rules for the generation of the box plots, the “whiskers” extend

to all points that belong within 1.5 IQR (interquartile range). The rest of the points, lying outside this range, are considered as outliers and are

depicted as dots. The asterisks (*) that are drawn on top of the box plots, denote statistical significance and correspond to p-values’ ranges.

Specifically, 4 asterisks would denote p ≤ 0.0001, 3 asterisks p ≤ 0.001, 2 asterisks p ≤ 0.01, 1 asterisks p ≤ 0.05 while ns denotes p > 0.05.

Freezing of gait. During the Phase I of the PDNST001
study, 30-minute, in-clinic, sessions were annotated by experts for
each patient as “Freezing” or “No-Freezing,” based on whether
they identified freezing of gait in their UPDRS evaluations. The
expert annotations were also compared to symptom diaries, when
available. Cases where diaries and expert annotations were in
disagreement were excluded, taking into account mainly cases
where FoG was not observed during the UPDRS examination. It
should be noted that the clinical examination included a walking
test requiring the subjects to open a door and pass through it.

However, the protocol neither included specific tests or activities
to elicit freezing events, nor called for patients to be monitored
throughout the session (recorded on video), thus limiting our
ability to fully assess FoG events. As a result, the PDMonitor R©

was evaluated in terms of discriminating between “Freezing” and
“No freezing” patients based on a ROC (Receiver Operating
Characteristic) analysis. To that end, first the device produced the
ratio of the “number of freezing of gait events” compared to the “total
number of freezing of gait regions, per 30-minute periods,” and then
aggregated those ratios, per patient, for the whole session. Finally
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FIGURE 7

(A) PDMonitor® output importance for OFF detection (per group defined in Table 1). (B) UPDRS item importance for OFF detection (per group in

Table 1).

the ROC analysis for the evaluation of the discriminating power of
the device was conducted. The results are presented in Table 4, in
which it can be seen that the device had an excellent accuracy in the
discrimination of patients exhibiting freezing of gait.

Tremor. Wrist tremor with a 30-minute constancy was
evaluated compared to the patients’ symptom diary. The accuracy
of the wrist tremor detectionmethod was initially evaluated. All 30-
minute intervals with RW (right wrist) or LW (left wrist) tremor
score (> 1) in the UPDRS item 20 (tremor at rest) were considered
as cases with tremor, whereas 30-minute windows without tremor
(taking into account both the legs and the wrists) were considered
as negative cases. Again, neighboring windows of different tremor
classification where excluded. The confusion matrix is presented
in Table 4. The specificity of tremor detection is very high (>
0.99) with a significant sensitivity (> 0.85). Based on the method
described in the corresponding part of Section 2.2.6, the accuracy of
leg tremor was also evaluated. Accuracy, sensitivity and specificity,
along with the confusion matrix are presented in Table 4. The
accuracy of the PDMonitor R© in the discrimination between those
patients that exhibit more than slight leg tremor compared to those
patients that exhibit no tremor in 30-minute intervals is 0.99. As
presented in Figure 6D the device is able to accurately discriminate
tremor rated with a UPDRS item 20 score of> 1. It should be noted
that neighboring samples with different UPDRS annotations were
not excluded in the box-plot and therefore the overlapping between
the distributions could be even smaller in practice.

ON/OFF and Fluctuations. PDMonitor R© OFF estimation is
based on a method combining the individual symptoms and
measures produced by the device. The results of the Relief method
for assessing the importance of each symptom in estimated OFF
periods are presented in Figure 7A. As discussed in Section 2.2.7,
a similar analysis was performed trying to estimate OFF periods
as were reported in symptom diaries. The results are presented in

Figure 7B for PDMonitor R© and UPDRS annotations respectively.
Features related to gait, postural instability and gait difficulties
(PIGD) have the highest importance in discriminating between
ON and OFF states consistently in both the PDMonitor R© and
the UPDRS estimations. The UPDRS body bradykinesia (UPDRS
items 27 and 31) had similar importance with gait. However, this
was expected since the correlation of gait (UPDRS item 29) with
the rising from chair activity (UPDRS item 27) in our study was
very high (r = 0.88). Therefore, the order of the symptoms’
importance is consistent between the PDMonitor R© and the expert
annotations, highlighting again the rather good agreement between
the device and the expert raters. The accuracy, the sensitivity and
the specificity of the OFF score produced from the PDMonitor R©

compared to the UPDRS annotations and the symptom diaries
was evaluated in 30-minute windows and is presented in Table 4.
The evaluation included exclusively 30-minute intervals where
estimations for gait from the PDMonitor R© were available. It
should be noted that for one site, diaries were not filled in during
the Phase I of the PDNST001 study. Moreover, neighboring 30-
minute intervals with different OFF evaluations where excluded,
in order to reduce possible errors due to the transition between
OFF and ON states (and vice versa). The accuracy and the
specificity of the OFF detection method was excellent (0.96 and
0.97 respectively).

3.2.2. Agreement on the total time of presence of
specific symptoms

OFF Time. For each session, the percentage of each patient
in the OFF state was calculated. The percentage of time while a
patient was in the OFF state was estimated as the ratio of the
“number of evaluations where the probability for being in an OFF

state was higher than 0.55,” to the “total number of evaluations.” A
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high correlation, r2 = 0.75, between the PDMonitor R© estimations
and the combination of UPDRS evaluations and symptom diaries
is observed, as it can be seen in Table 5. Correlation and Bland-
Altman plots are presented in Figure 8A.

Dyskinesia Time. The time with Dyskinesia is estimated in a
similar fashion, considering the percent of expert annotations in
which the AIMS scores were higher than 4. A total of 80 subjects
were included in this analysis and the correlation of the variable

TABLE 5 Correlation of the measures “Time with OFF” and “Time with

dyskinesia,” as were estimated by the PDMonitor® system, compared to

expert annotations (and diaries in the case of “Time with OFF”) per

recording/session.

PDMonitor® No. of
patients

Correlation
(r2)

Spearman’s
Rho

Time with OFF 54 0.75 0.65

Time with
dyskinesia

80 0.63 0.77

The “Time with OFF” was calculated from expert annotations using the ratio of the “number

of evaluations where the probability for being in an OFF state was higher than 0.55”, to the

“total number of evaluations.” ‘Time with dyskinesia”. On the other hand, the “Time with

dyskinesia” was calculated as the percent of expert annotations in which the AIMS scores

were higher than 4.

called “Time with dyskinesia” as produced by the PDMonitor R©,
compared to the expert assessments was r2 = 0.63 (Table 5).

3.2.3. Agreement on day-to-day symptom
evaluation

The day-to-day agreement was evaluated for those patients
of PDNST001, Phase II and those controls (healthy individuals)
of PDNST002, having more than 1 day of monitoring activity.
For each symptom, the average severity was estimated per day,
and then pairs of different days were compared. Correlation and
Bland-Altman plots of the results are presented, for bradykinesia,
in Figure 8B. The ICC correlations are presented in Table 6.
Considering the fact that there is an intrinsic variation in the PD
symptoms, the device’s ICCs could be considered rather high.

4. Remarks

During the course of the first study (PDNST001), the UPDRS
annotations were performed by one physician, although different
in each site. Diaries were not filled in one site during the Phase I of
the PDNST001 study and as a result, for this site, we were not able

A

B

FIGURE 8

(A) PDMonitor® OFF estimation and Bland Altman plot for the patient diaries. (B) Correlation and Bland-Altman plots for day-to-day agreement of

PDMonitor® estimated time percentage, where (left leg) bradykinesia score was more than 1 (UPDRS).
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TABLE 6 Intra-class correlation coe�cients of PDMonitor® estimated

measures for di�erent recording days.

PDMonitor® ICC (r2) Spearman’s
Rho

Time spent with bradykinesia
(LL) > 1

0.77 0.83

Time spent with dyskinesia
(LL) > 1

0.82 0.45

Time spent with gait > 1 0.71 0.83

This analysis evaluated the day-to-day agreement for those patients of PDNST001, Phase

II and those controls (healthy individuals) of PDNST002, having more than one day of

monitoring activity. For each symptom, the average severity was estimated per day, and then

pairs of different days were compared.

to compare the UPDRS evaluations with the corresponding diaries.
Themajority of the recordings were performed inside hospitals, but
the subjects were free to perform any kind of activity. For example,
in one site, many patients also performed rehabilitation exercises.
Therefore, even if the recordings were not in the patients’ actual
environment, the conditions during the studies were quite close
them. Moreover, since patients are instructed not to use the device
during intense activities, the actual conditions they encounter
during their everyday lives, while wearing the PDMonitor R©, were
expected to be quite similar to the ones they experienced during the
studies. Intense activities were defined as any activity other than
walking. The patients were advised not to wear the monitoring
devices during intense activities as there would be abrupt signal
changes logged by the IMU sensors, which would contaminate the
system’s output.

5. Discussion

PDMonitor R© is a monitoring system that has been developed
for the detection and follow-up monitoring of parkinsonian
symptoms based on wearable monitoring devices. Although, it
should be noted, that the device does not replace, neither a clinical
examination, nor a patient’s symptoms report, and any findings
should be always verified with the patients and their caregivers.
The aim of the studies presented herein, was to validate the
system’s usability and efficacy in the detection of motor symptoms
manifested in Parkinson’s disease.

The first significant outcome of the PDNST001 study was the
confirmation that PDMonitor R© can be effectively, and easily, used
by patients and caregivers. As a reference, in order to use the
system, about 5 minutes are required, in average, for mounting
all sensors, although patients in the OFF state may need more
time or additional help. This finding is also confirmed by the CRS
questionnaire in which the question “I have a difficulty in putting
on the device” received a higher score by the patients compared
to the control subjects. It should be noted that the PDMonitor R©

device has a number of features that enable its unsupervised use
in hospital and home environments. The first important feature,
is the ability to automatically identify the position of each of
the 5 monitoring devices on a patient’s body, thus, significantly
reducing the complexity/burden of wearing the 5 sensors, as well
as the probability of device misuse. Another important feature is

that no user interaction is needed to start a recording, apart from
undocking and wearing the monitoring devices, as well as putting
them back overnight for data transfer and charging. A point to
note is that, in terms of usability, the question “I would wear the
device if it was invisible” of the CRS, received an increased score.
This question is probably answered by patients having in mind
the stigma around medical conditions, and thus it denotes a wish
for discreet “invisible” medical devices in general. As a result, this
is a well known aspect of similar devices (45) and PDMonitor R©

design aims to reduce such concerns. More data from real world
use may be needed to further evaluate the effect of such issues
on the usability of the device. The effective use of the system was
also demonstrated in the study performed by Bendig et al. (69),
where 12 subjects used the monitoring devices for 3 months and
demonstrated significant adherence and satisfaction (both being
prerequisites for effective use).

The second major outcome of the study is related to the
performance of the device in the detection of PD related
motor symptoms. Statistical analysis comparing the symptoms
detected by the PDMonitor R©, to those identified through clinical
evaluation and patient diaries, revealed the system’s capacity to
accurately detect the majority of PD motor symptoms and their
fluctuations. Table 4 summarizes all PDMonitor R© outcomes and
their accuracy measures, compared to the detection and severity
estimation of PD motor symptoms based on the expert evaluations
or diaries. In all cases, the outcomes of the PDMonitor R©

algorithms were translated to clinically relevant scales which are
familiar to movement disorders healthcare professionals, aiming
to immediately offer actionable knowledge. Even in cases where
the accuracy was moderate, the specificity was very high. This
was an important requirement of the device, considering the
fact that it is intended to be used at home, as well as in
general unconstrained, environments with a need of avoiding
false positives occurring during daily activities. The significant
day-to-day correlation between symptoms presented in Section
2.4.2 is also very important as it depicts the repeatability of
the device’s outcomes. This is also further supported by the fact
that both bradykinesia and gait impairment were statistically
different between control subjects (healthy individuals) and PD
patients with a UPDRS score of 0 on the respective UPDRS
items (Figures 6A, B). The results for both OFF and dyskinesia
time estimation are also very important (r2 = 0.75 and r2 =

0.63 respectively) considering the sparse evaluations (30-minute
intervals) and a typical duration of each session between 4 and 8
h. Therefore, PDMonitor R© provides a rather comprehensive, and
accurate, evaluation of the main parkinsonian symptoms. Each
one symptom worths a further evaluation, in greater technical
and clinical detail, in which there will be also presentations of
specific cases. However, this was not possible in the context of
this work due to space limitations. We will focus on this task in
a future work.

Moreover, there are specific cases where the limitations of the
physical examination were highlighted, even though they were not
systematically evaluated in the studies. For example, some patients
did have significant altered symptom manifestations before and
during the clinical examination, including gait difficulty, which
was however clearly depicted in the PDMonitor R© report as it is
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not based only on a specific time period in which the symptoms
may have subsided. This further supports the need of using
remote monitoring in clinical practice. Also, a very interesting
fact is that features related to gait, postural instability and gait
difficulties (PIGD) seem to be better indicators of OFF, compared
to arm bradykinesia. This may further highlight the importance of
ambulatory gait evaluation for assessing PD patient monitoring.

The progression of the neurodegeneration process in PD
is related to the emergence of motor complications, such as
fluctuations and dyskinesia, which are often difficult to predict and
manage, especially in advanced patients (14, 70). The treatment
strategies that are currently available for PD, as it advances, include
lifestyle changes, fine tuning of oral medication, different routes of
drug administration, and deep brain stimulation (13, 71). However,
the efficacy of these treatments is limited and it relies mainly
on the information that physicians manage to acquire regarding
each patient’s symptomatology, which does not always depict with
accuracy the patient’s overall state and disease progression. A study
performed by Erb et al. (72) found that 38% of all participants who
were asked to complete an electronic motor diary at home missed
approximately 25% of all possible entries. Also, the entries the
participants made had an average delay of more than 4 h. During
clinical evaluations by PD specialists, self reports of dyskinesia
were marked by approximately 35% false negatives and 15% false
positives. Compared to the live examinations, the video evaluations
of the Part III of the UPDRS significantly underestimated the subtle
features of tremor and extremity bradykinesia, suggesting that these
aspects of the diseasemay bemisjudged during remote assessments.
On the other hand, based on the results of this study, PDMonitor R©

can effectively detect the majority of PD related motor symptoms,
with high test-retest reliability. The device also provides a highly
accurate estimation of OFF and dyskinesia time, which is crucial
for any therapeutic decision.

Other systems previously reported to detect parkinsonian
symptoms in PD (36, 73, 74), do provide useful information
to physicians leading to improved therapeutic decisions and
patient outcomes (41, 75). However, PDMonitor R© has the
main advantage of evaluating all motor symptoms and their
complications, including gait, freezing of gait and postural
instability. The detection of freezing of gait along with other
problems related to postural instability and gait difficulties (PIGD)
is a key component when we try to optimize pharmacological
and non-pharmacological treatment in Parkinson’s (13, 71). These
symptoms also have a strong effect on a patient’s quality of
life. The recent COVID-19 pandemic has further highlighted the
importance of telemedicine and remote monitoring as a way to
hamper the impact of social and mobility restrictions, particularly
in patients in advanced stages of the disease and those that have
undergone invasive treatments (19, 76).

PDMonitor R© is designed for long-term continuous
monitoring, enabling a new paradigm in PD management.
Long-term and continuous monitoring facilitates the early
detection of fluctuations (wearing off) and PIGD in patients,
which the treating physicians could not otherwise identify. Timely
detection and treatment could help patients better understand
their status (77) and improve the probability of living a normal
life while staying effective in their work. This is expected to have
a serious impact to the Health Economics of the System and

the patients’ Quality of Life. Tsamis et al. (22) presented two
specific cases where the potential of PDMonitor R© to accurately
capture the diverse clinical manifestations of advanced PD was
demonstrated, thus reducing the need for prolonged in-person
examinations or hospitalization. Both presented cases, included
significant difficulties in the diagnostic approach, due to missing
information regarding the time course of symptoms throughout
the day. With the use of PDMonitor R©, physicians had access to
an objective assessment of the patients’ motor symptoms, as these
were manifested in their daily home environments, managing to
reach a final diagnosis and making the right treatment decisions.

PDMonitor R© also offers the possibility to be used for advanced
therapy selection based on a set of patient eligibility criteria.
For example, Antonini et al. (9) have developed a screening tool
for identifying patients eligible for deep brain stimulation (DBS).
The tool consists of a number of questions regarding PD motor
symptoms and their fluctuations, such as:

• Do you have ≥ 2 h of OFF time per day?

• Do you experience unpredictable fluctuations?

Objective measurements and measures like the ones suggested,
based on PDMonitor (78), may complement such screening tools
and provide a valuable instrument for a timely and accurate patient
selection eligible for advanced therapies.

Furthermore, PDMonitor R© can be used for post-DBS
monitoring and tuning. The challenge in post-DBS management
is to find the proper stimulation paradigm along with the proper
medication treatment. The problem increases when the patients go
home and after 3–4 weeks they start losing the acute effect of their
therapy, creating the need for further medication optimizations.
This is a use case when a medical device, like PDMonitor R©, could
be really useful, as it can guide the medication adjustment through
precise monitoring, fulfilling a true unmet need of moving the
patients’ care away from the hospital and to the home.

Dorsey et al. (79) also supported that in order to improve
PD care, more of it must be delivered at home. Emerging
care models will combine remote monitoring, self-monitoring,
and multidisciplinary care in order to enable the provision of
patient-centered care at home and decrease the need for in-
clinic assessments. It should be noted that PDMonitor R© also
provides an accompanying mobile app with important features
like medication and medication intake, as well as a symptom
diary. All logged information is also available in the PDMonitor R©

reports as those presented in Figures 2A, B. The mobile app also
includes educational material and provides to each patient a form
of an one-way communication with their physician. It is known
that mHealth solutions tend to increase patient awareness and
disease self-management, as demonstrated in similar applications
(80). Therefore, based on the results of the studies (PDNST001
and PDNST002) and considering the usability, the performance
and the clinical need, PDMonitor R© could be considered as a tool
that could be essential in daily practice and in the management
of Parkinson’s disease. New and ongoing studies are expected to
provide additional evidence about the clinical benefits of this new
paradigm, that PDMonitor R© is a part of, enabling a wider adoption
(81). Physicians and healthcare systems may need to adopt and
embrace this new paradigm in order to overcome current barriers
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(77, 82) as well as to unlock the full potential of continuous
patient monitoring.

6. Conclusions

Objective symptom monitoring in Parkinson’s disease can be
a groundbreaking tool for the proper management of the disease
and the therapeutic decision making process. Monitoring the most
important PDmotor symptoms with high accuracy, may contribute
to better, more precise and more effective treatment interventions.
The results of these studies demonstrated that PDMonitor R© can
provide a comprehensive evaluation of the majority of motor
symptoms, with significant accuracy, as compared to expert
assessments and patient/caregiver diaries, and also that it can be
easily used by the patients and their caregivers. PDMonitor R©

enables longitudinal objective monitoring of patient symptoms and
their lifestyle, unlocking important patient management potential.

Related patents

The following patent has been filed and published:
WO2020120999A1 Monitor system of Multiple Parkinson’s
Disease Symptoms And Their Intensity.
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Balance and gait in progressive 
supranuclear palsy: a narrative 
review of objective metrics and 
exercise interventions
Marian L. Dale 1,2*, Carla Silva-Batista 1,3, Filipe Oliveira de Almeida 3 
and Fay B. Horak 1

1 Balance Disorders Laboratory, Department of Neurology, Oregon Health and Science University, 
Portland, OR, United States, 2 Neurology Section, VA Portland Health Care System, Veterans Health 
Administration, Portland, OR, United States, 3 Exercise Neuroscience Research Group, University of São 
Paulo, São Paulo, Brazil

Background: The use of objective gait and balance metrics is rapidly expanding 
for evaluation of atypical parkinsonism, and these measures add to clinical 
observations. Evidence for rehabilitation interventions to improve objective 
measures of balance and gait in atypical parkinsonism is needed.

Aim: Our aim is to review, with a narrative approach, current evidence on 
objective metrics for gait and balance and exercise interventions in progressive 
supranuclear palsy (PSP).

Methods: Literature searches were conducted in four computerized databases from 
the earliest record up to April 2023: PubMed, ISI’s Web of Knowledge, Cochrane’s 
Library, and Embase. Data were extracted for study type (cross-sectional, longitudinal, 
and rehabilitation interventions), study design (e.g., experimental design and case 
series), sample characteristics, and gait and balance measurements.

Results: Eighteen gait and balance (16 cross-sectional and 4 longitudinal) and 
14 rehabilitation intervention studies were included. Cross-sectional studies 
showed that people with PSP have impairments in gait initiation and steady-
state gait using wearable sensors, and in static and dynamic balance assessed by 
posturography when compared to Parkinson’s disease (PD) and healthy controls. 
Two longitudinal studies observed that wearable sensors can serve as objective 
measures of PSP progression, using relevant variables of change in turn velocity, 
stride length variability, toe off angle, cadence, and cycle duration. Rehabilitation 
studies investigated the effect of different interventions (e.g., balance training, 
body-weight supported treadmill gait, sensorimotor training, and cerebellar 
transcranial magnetic stimulation) on gait, clinical balance, and static and dynamic 
balance assessed by posturography measurements. No rehabilitation study in 
PSP used wearable sensors to evaluate gait and balance impairments. Although 
clinical balance was assessed in 6 rehabilitation studies, 3 of these studies used a 
quasi-experimental design, 2 used a case series, only 1 study used an experimental 
design, and sample sizes were relatively small.

Conclusion: Wearable sensors to quantify balance and gait impairments are emerging 
as a means of documenting progression of PSP. Robust evidence for improving balance 
and gait in PSP was not found for rehabilitation studies. Future powered, prospective 
and robust clinical trials are needed to investigate the effects of rehabilitation 
interventions on objective gait and balance outcomes in people with PSP.
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progressive supranuclear palsy, balance, gait, objective measurements, rehabilitation
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Introduction

Progressive supranuclear palsy (PSP) is a relatively rare and 
rapidly progressive neurodegenerative disease classified among 
atypical Parkinsonisms (1, 2), but evidence suggests that the clinical 
spectrum of PSP is larger than originally described. The most 
frequent form of the disease, PSP-RS (PSP Richardson syndrome), 
is characterized by vertical supranuclear gaze palsy and backward 
postural instability with early falls (2), while the second most 
common form of disease is characterized by a parkinsonian 
syndrome resembling Parkinson’s disease (PD) especially in the 
earliest stages (3). The 2017 Movement Disorder Society criteria 
recognize multiple subtypes of PSP (4), and these subtypes 
encompass a spectrum of degree of gait and balance deficits. PSP-RS, 
PSP-P, and PSP-progressive gait freezing (PSP-PGF) display 
prominent gait and balance abnormalities, while other subtypes and 
stages of PSP, such as probable PSP frontal presentation (probable 
PSP-F) and possible PSP speech and language (possible PSP-SL), are 
characterized primarily by deficits other than gait and 
balance impairment.

It has long been recognized that particular clinical exam findings 
and history questions serve as a red flag for gait and balance in 
atypical parkinsonism disorders, such as PSP and multiple system 
atrophy (MSA). For example, Nonnekes et al. (5) highlighted the 
tandem gait sign and bicycle sign as indicative of atypical 
parkinsonism versus idiopathic PD (iPD): if a patient has impaired 
tandem gait or states that early in their disease course that they were 
no longer able to ride a bicycle, one should be concerned for possible 
atypical parkinsonism. This reflects the clinical observation of a 
wider-based gait and earlier balance troubles as reflective of 
atypical parkinsonism.

The use of objective gait and balance metrics is rapidly 
expanding for evaluation of atypical parkinsonism, and these 
measures add to clinical observations. For example, Raccagni et al. 
(6) used inertial sensors on the feet to compare a group of subjects 
with PSP and MSA to a group with iPD and found reduced gait 
speed and stride length in the atypical parkinsonism subjects 
compared to subjects with iPD.

Although advances in technology of small, body-worn, inertial 
sensors have objectively quantified balance and gait impairments in 
the clinic for research trials and clinical practice in people with PD 
(7–9), this approach has not been explored in PSP. Objective balance 
and gait metrics may eventually provide useful biomarkers for PSP, 
clinical efficacy of new treatments, in place of counting falls from 
diaries or clinical balance rating scales. Objective balance and gait 
biomarkers also may be helpful in clinical practice to monitor effects 
of interventions and prognosis. Biomarkers of balance control could 
be especially useful to monitor PSP progression and fall risk as well as 
to differentiate PSP subtypes.

In this narrative review, we examine current evidence for objective 
metrics of gait and balance in people with PSP. We summarize cross-
sectional studies examining gait initiation, steady state gait, and 
balance in PSP, as well as studies that use gait and balance data mining 
approaches for classification of PSP, and studies examining radiological 
correlations with gait and balance metrics in PSP. We then discuss the 
emerging use of objective gait and balance measures for longitudinal 
monitoring in PSP and objective gait and balance measures as 
endpoints for rehabilitation intervention trials in PSP.

Methods

Literature searches were conducted in the following four 
computerized databases from the earliest record up to April 2023: 
PubMed, ISI’s Web of Knowledge, Cochrane’s Library, and Embase. 
Inclusion criteria were: any study design (cross-sectional, longitudinal, 
and rehabilitation interventions) published in peer-reviewed journal, 
published in English, available in full text, with or without 
rehabilitation interventions [e.g., physical exercise, virtual reality, and 
repetitive transcranial magnetic stimulation (rTMS)], population with 
diagnosis of PSP, mixed PSP subtypes, gait and/or balance assessment. 
Exclusion criteria were: no gait and/or balance assessment and 
invasive brain stimulation.

The search was limited to English language. All the identified and 
retrieved electronic search titles, selected abstracts, and full-text 
articles were independently evaluated by two of the authors (FOA and 
CSB) to assess their eligibility. In case of disagreements, a consensus 
was adopted or, if necessary, a third reviewer evaluated the article 
(MD). The search process is depicted in Figure 1.

Results

Gait and balance as a diagnostic tool: 
cross-sectional studies

Sixteen cross-sectional studies were included in this review 
(Table 1). These studies compared gait initiation, steady state gait, and 
balance between people with and without PSP. In addition, some 
studies used radiological correlations with gait and balance measures 
in PSP and mixed PSP phenotypes. We have separated the following 
discussion of cross-sectional studies according the type of gait and 
balance assessment.

Gait initiation in PSP
In an elegant 2015 study Amano and colleagues examined the 

mechanics of gait initiation in PSP using a combination of force 
platforms embedded in a walkway and a 3D motion capture system 
(11). Twelve subjects with PSP-Richardson syndrome (PSP-RS), 12 
subjects with PD, and 12 age- and gender-matched healthy controls 
(HC) performed 5 gait initiation trials at a self-selected speed, and 
their anticipatory postural adjustments (APAs) were examined in 
detail. Whereas subjects with Parkinson’s disease and HCs displayed 
the normal APA with an initial backward and lateral center of pressure 
shift to initiate gait, subjects with PSP could not tolerate the initial 
destabilization of the APA imbalance phase. In other words, subjects 
with PSP displayed an inefficient gait initiation strategy because they 
were unable to initially shift their center of pressure to generate 
momentum for forward movement, but rather moved their swing foot 
forward more robotically without the normal, anticipatory weight 
shift that moves the center of body mass forward and over the 
stance leg.

The authors proposed that gait initiation in PSP prioritizes 
stability over mobility, and suggested possible strategies for 
rehabilitation including focusing on medio-lateral balance to 
overcome the minimal lateral weight shift and staggering the initial 
swing foot posteriorly to try to promote the physiological weight shift 
of a normal APA. Limitations of this study include a lack of accounting 

86

https://doi.org/10.3389/fneur.2023.1212185
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Dale et al. 10.3389/fneur.2023.1212185

Frontiers in Neurology 03 frontiersin.org

for baseline anthropometric measurements and width of the initial 
base of support, and the fact that all subjects were evaluated on 
levodopa, likely preferentially improving APAs in the iPD group (25). 
The study was also conducted prior to the 2017 Movement Disorder 
PSP Criteria (4), and thus only included subjects with the Richardson 
syndrome variant of PSP (PSP-RS).

Steady state gait in PSP-RS
In the same Amano study discussed above, PSP, iPD, and HC 

subjects also performed 10 steady state gait trials at a self-selected 
speed, and gait analysis revealed a slower, and more variable, gait in 
PSP-RS compared to iPD (11). Hatanaka et al. also compared steady 
state gait in 20 PSP-Richardson syndrome, 124 PD, and 24 HC 
subjects, using triaxial accelerometers for 10-meter, self-selected 
straight walking (15). Their study replicated the finding of slower gait 
in PSP, showing an overall hypokinetic gait pattern with decreased 
velocity, step length, cadence, and mean acceleration in PSP. They 
additionally found that the subjects with PSP demonstrated an 
especially small vertical displacement but larger vertical acceleration 
than PD patients when comparing subjects with the same cadence.

Selge et  al. applied straight walking on a gait mat, with and 
without cognitive and motor dual tasks, to differentiate PSP-RS from 
normal pressure hydrocephalus (NPH) (20). Clinically, gait in NPH is 
considered to be even wider-based and slower than in PSP with an 
additional “magnetic” quality, but in certain cases the gait patterns of 

the two diseases approximate each other and contribute to a 
differential diagnosis that includes both NPH and PSP. In the Selge 
study, 27 subjects with idiopathic NPH and 38 subjects with PSP 
performed straight walking at their preferred speed, at a slow speed, 
and at their maximum speed, as well as dual-task walking at their 
preferred speed with the serial 7 s cognitive task or while carrying a 
tray as a motor dual task. Importantly, the PSP and NPH subjects were 
initially matched on a clinical, functional gait assessment scale. The 
authors found that gait was slower and more broad-based in NPH, 
and gait in PSP was more variable and more sensitive to dual-task 
conditions. They interpreted the increased sensitivity to dual- task 
conditions in PSP to increased cortical attention for walking. A 
limitation of this (and many other dual-task studies) was that 
prioritization of the dual-task was not assessed, so it was not known 
to what degree the subjects were focused on walking versus on the 
cognitive task during the assessments.

Steady state gait in mixed PSP phenotypes
After establishment of the 2017 Movement Disorder Society 

Criteria for PSP (4), several groups examined steady state gait in 
multiple phenotypic variants of PSP. Amboni et  al. (12) included 
variants of PSP to compare with iPD specifically in early diagnostic 
stages. The iPD subjects were enrolled less than a year from symptom 
onset and had confirmed positive DAT scans. The subjects with PSP 
met MDS PSP diagnostic criteria and included 11 with PSP-RS, 5 with 

FIGURE 1

PRISMA flowchart for inclusion into the review.
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TABLE 1 Summary characteristics of the cross-sectional included studies.

Study and 

Country

Participants Subtypes of PSP 

and criteria for 

PSP

Cognitive and 

Mood status

Assessment Walking 

aids (YES/

NO) and 

type

Measurement 

Tool

Clinical motor 

outcomes/other 

outcomes

Objective gait 

outcomes

Objective balance 

outcomes

Correlational 

analysis

Author’s 

conclusion

Ali et al. (20) USA PSP: n=16, age (70.4±7.1 

years), disease duration 

(4.4±2.8 years), men (n=10), 

women (n=6) HC: n=25, age 

(72.7±6.6 years), women 

(n=25)

PSPRS UPDRS-III 

Richardson’s syndrome 

(n=10), Cortico-basal 

syndrome (n= 3), 

Parkinsonism predominant 

(n=2), Speech and language 

disorder (n=2), Frontal 

predominant (n=1)

Not Reported Patients were not on 

any dopaminergic 

medications.

Not reported Force plate, 3D motion 

system

UPDRS-III scores were average 50 

(range: 20, 85) for PSP, while 

PSPRS scores average was 39 

(range:24, 58).

PSP patients walked with a 

slower velocity, lower 

cadence, shorter stride, 

and step lengths, and 

reduced single support 

times compared to healthy 

older adults. Total sagittal 

plane ROM in the hip, 

knee and ankle showed 

significant decreased 

ROM (p<0.05) when 

comparing patients with 

PSP to healthy adults

PSP exhibited significantly 

larger amplitudes of COP 

displacement (7.0±3.9) 

compared to the healthy 

individuals (3.4±2.2) for the 

eyes open task (p<0.01). PSP 

patients exhibited less 

displacement in the ML 

(2.2±1.1) but significantly 

increased displacement in the 

AP (7.2±4.0) direction 

compared to the healthy 

individuals (5.1±1.6) in the 

eyes closed task (p<0.04).

There were significant 

correlations between PSPRS and 

UPDRS with gait velocity, 

(rs=0.597, p=0.015; rs=0.756, 

p=0.001), total support 

(rs=0.591, p=0.016; rs=0.546, 

p=0.029), single support 

(rs=0.557, p=0.025; rs=0.500, 

p=0.049), and step length 

(rs=0.561, p=0.024; rs=0.764, 

p=0.001). Significant 

correlations were also found for 

UPDRS only and initial double 

support (rs=0.582, p=0.018) and 

hip ROM (rs=0.728, p=0.003).

Patients with PSP have 

increased anteroposterior 

sway, slower gait velocity, 

wider stance, and lower 

cadence. The gait stability ratio 

and Romberg ratio was high 

consistent with postural 

imbalance and increased 

reliance on vision for stability, 

experienced by PSP patients. 

Motion analysis metrics 

correlated with clinical scales 

reflecting that they are a 

marker of disease severity.

Amano et al. (10) 

USA

PSP: n= 12, age (66 ± 8.0 

years), disease duration (6.5 ± 

4.9 years), men (n=5), women 

(n=7) PD: n=12, age (64 ± 7 

years), disease duration (7.8 ± 

7.1 years), men (n=5), women 

(n=7) HC: n=12, age (67 ± 7 

years), men (n=5), women 

(n=7)

NINDS-SPSP UPDRS 

Subtypes not reported

Not reported. ON-assessment Not reported 3D motion system UPDRS-III (PSP: 49.6±10.4; PD: 

23.5±8.5). UPDRS PIGD 

(PSP:6.33±2.46; PD:3.33±2.42)

The PSP group exhibited 

significantly reduced 

cadence, gait velocity, step 

length, and step duration 

compared to the other two 

groups.

COP displacement AP 

(PSP 0.71±1.55, PD 

–1.14±0.71, HC –2,61±1.56) 

COP displacement ML 

(PSP 2.46±3.62, PD 

–0.81±1.03, HC –1.85±1.28) 

The maximum distance 

between COP and COM 

significantly differed among 

the groups.

Not reported. The study identified significant 

differences in specific 

biomechanical characteristics 

during gait initiation and gait 

between PSP and PD. 

Abnormally shorter and slower 

step during GI in PSP was 

observed and may result from 

the inability to execute APAs. 

The compensatory GI strategy, 

characterized by diminished 

posterior COP shift and weight 

shift toward the stance limb, is 

therefore very distinct from 

PD and paradoxically induces 

lateral postural instability. PSP 

gait, which prioritizes stability 

over mobility, may 

be compensatory and could 

be the consequence of lateral 

instability and fear of falling.

(Continued)
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Study and 

Country

Participants Subtypes of PSP 

and criteria for 

PSP

Cognitive and 

Mood status

Assessment Walking 

aids (YES/

NO) and 

type

Measurement 

Tool

Clinical motor 

outcomes/other 

outcomes

Objective gait 

outcomes

Objective balance 

outcomes

Correlational 

analysis

Author’s 

conclusion

Amboni et al. (14) 

Italy

PSP Total: n= 21, age (67.8 ± 

7.4 years), disease duration 

(2.5 ± 1.1 years), men (n=11), 

women (n=10) PD Total: 

n=83, age (63.2 ± 8.5 years), 

disease duration (3.4 ± 3.2 

years), men (n=55), women 

(n=28) Early PSP: n= 12, age 

(63.5 ± 5.9 years), disease 

duration (1.7 ± 0.4 year), men 

(n=7), women (n=5) De novo 

PD: n=27, age (63.3 ± 8.7 

years), disease duration (< 1 

year), men (n=17), women 

(n=10)

PSPRS NDS-UPDRS-III 

Richardson’s syndrome 

(n=11), Parkinsonism 

predominant (n=5), Freezing 

of gait predominant (n=4)

MMSE: PSP Total 

(25.1 ± 3.0), PD Total 

(26.8 ± 2.3), Early PSP 

(25.5 ± 2.7), De novo 

PD (26.9 ± 2.2)

ON-assessment No SMART DX system 

(3D motion system + 

force plate)

MDS-UPDRS-III (PD Total): 

19.46±8.99; MDS-UPDRS-III (De 

novo PD): 12.85±6.17; PSP-RS-V 

(PSP total): 5.81±2.73; PSP-RS-VI 

(PSP total): 7.28±4.55; PSP-RS-V 

(Early PSP): 5,.3±2.87 PSP-RS-VI 

(Early PSP): 6.58±3.73

Compared to PD, PSP 

patients exhibited reduced 

velocity and cadence, 

shortened step and cycle 

lengths, increased cycle 

duration mainly due to 

longer double support 

stance phase duration, and 

increased swing duration 

variability during single 

task. During dual task, 

PSP patients exhibited the 

same gait features as those 

displayed during the single 

task, except for swing 

duration and step length 

variability. Compared to 

newly diagnosed PD 

patients, early PSP patients 

exhibited reduced velocity 

and cadence, shortened 

step and cycle length, and 

increased cycle duration; 

these patients tended to 

rely on a longer double 

support stance phase 

during single task. During 

dual task, early PSP 

patients exhibited a gait 

pattern similar to that 

during the single task 

except for swing duration 

and swing duration 

variability.

Not reported. Not reported. The study demonstrates that 

quantitative gait evaluation 

clearly distinguishes PSP 

patients from PD patients 

since the earliest stages of 

disease. These findings indicate 

that gait analysis could be a 

candidate as a reliable 

biomarker in both clinical and 

research setting. In addition, 

results may offer speculative 

clues for conceiving early 

disease-specific rehabilitation 

strategies.

TABLE 1 (Continued)

(Continued)
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Study and 

Country

Participants Subtypes of PSP 

and criteria for 

PSP

Cognitive and 

Mood status

Assessment Walking 

aids (YES/

NO) and 

type

Measurement 

Tool

Clinical motor 

outcomes/other 

outcomes

Objective gait 

outcomes

Objective balance 

outcomes

Correlational 

analysis

Author’s 

conclusion

Dale et al. (19) USA PSP: n= 12, age (70 ± 6.3 

years), disease duration (2.6 ± 

1.5 years), men (n=6), women 

(n=6) PD: n=12, age (67.8 ± 

7.3 years), disease duration 

(8.1 ± 5.6 years), men (n=6), 

women (n=6) HC: n=12, age 

(not reported), men (not 

reported), women (not 

reported)

NINDS-SPSP UPDRS 

Subtypes not reported

Not reported OFF-assessment Not reported NeuroCom Balance 

Master Clinical 

Research System

UPDRS-III (PD): 33.7 ± 7.5; 

UPDRS-III (PSP): 34.4 ± 9.1; 

PSP-RS: 26.9 ± 11.9

Not reported PSP displaced their CoP 

significantly less than PD 

subjects (p≤0.006) and slightly 

less than healthy subjects 

during the forward translation 

of the platform. The CoP of 

subjects with PSP remained 

more posterior after the 

platform shifted back to the 

initial position compared to 

subjects with PD (p≤0.01), 

while only a slight difference 

was found compared to healthy 

subjects. When the body was 

displaced backward by toes-up 

platform rotation, PSP exerted 

a significantly larger 

destabilizing plantar-flexion 

torque (as evidenced by 

forward CoP displacement) 

than subjects with PD 

(p≤0.008), and only slightly 

larger compared to healthy 

subjects.

Not reported The study demonstrates 

inappropriate adaptive 

postural motor control with 

excessive forward CoP 

displacement in response to 

toes-up surface tilts in PSP.

De Vos et al. (22) 

United Kingdom

PSP: n= 21, age (71 years), 

disease duration (2 years), 

men (n=12), women (n=9) 

PD: n=20, age (66.4 years), 

disease duration (11.4 years), 

men (n=11), women (n=9) 

Healthy Control: n=39, age 

(67.1 years), men (19), 

women (20)

UPDRS-III Richardson’s 

syndrome (n=4), 

Parkinsonism predominant 

(n=17)

MoCA: PSP (mean 

22), PD (mean 26.6), 

HC (mean 28.5). 

MMSE: PSP (mean 

25.8), PD (mean 26.6), 

HC (mean 27.6).

ON-assessment Not reported IMUs UPDRS-III (PSP: 44.6; PD: 27.9) Gait cadence distinguished 

PSP from PD and HC 

showing a high specificity 

(90 %) when using 6 

sensors (Mobility Lab™, 

APDM) over the lumbar 

spine, sternum, left and 

right wrists, and left and 

right feet.

Mean postural sway velocity in 

the coronal plane during the 

sway test, mean time taken to 

sit from standing during the 

timed up-and-go (TUG) task, 

mean time taken to turn 

during the gait task, mean time 

taken to turn during the TUG 

task, standard deviation of 

time taken to turn during the 

gait task distinguished PSP 

from PD and HC showing a 

high specificity (90 %) when 

using 6 sensors (Mobility 

Lab™, APDM) over the 

lumbar spine, sternum, left and 

right wrists, and left and right 

feet.

Not reported A wearable inertial 

measurement unit array and 

machine learning methods can 

accurately differentiate PSP 

from PD and from control.

TABLE 1 (Continued)

(Continued)
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Study and 

Country

Participants Subtypes of PSP 

and criteria for 

PSP

Cognitive and 

Mood status

Assessment Walking 

aids (YES/

NO) and 

type

Measurement 

Tool

Clinical motor 

outcomes/other 

outcomes

Objective gait 

outcomes

Objective balance 

outcomes

Correlational 

analysis

Author’s 

conclusion

Hatanaka et al. (12) 

Japan

PSP: n= 20, age (71,8 ±5.9 

years), disease duration 

(3.4±1.8 years), men (n=14), 

women (n=6) PD: n=124, age 

(68.4 ± 11.2 years), disease 

duration (6.7±7.4 years), men 

(n=64), women (n=60) HC: 

n=24, age (73.7 ± 3.8 years), 

men (5), women (19)

NINDS-SPSP Subtypes not 

reported

Not Reported ON-assessment No Portable triaxial 

accelerometer 

rhythmogram device

Not reported Compared with the 

accelerogram of HC, both 

PSP and PD patients 

showed a smaller 

amplitude (acceleration) 

and increased shuffle 

frequency over a certain 

period, indicating a 

reduced acceleration and 

shorter step time. 

Compared with HC (1.10 

± 0.22 m/s), velocity was 

reduced in PSP patients 

(0.83 ± 0.23 m/s, p < 0.01 

vs. control) and in all PD 

patients (0.89 ± 0.24 m/s, 

p < 0.01). The cadence of 

the PSP patients (100.5 ± 

11.5 steps/min, p < 0.01 

vs. control) was 

significantly lower than 

HC (115.9 ± 11.2 steps/

min) and of PD patients 

(109.3 ± 15.9 steps/min, # 

p < 0.05 vs. PSP). The 

vertical displacement of 

PSP patients (2.3 ± 1.1 

cm) was significantly 

lower than HC (5.6 ± 1.7 

cm, p< 0.01 vs. PSP), all 

PD patients (4.4 ± 2.2 cm, 

p< 0.01 vs. PSP).

Not reported There was a close relationship 

between cadence and 

acceleration for all groups. The 

relationships were positive and 

linear with R2 values > 0.4 

(controls, R2 = 0.54; PSP 

patients, R2 = 0.56; PD patients, 

R2 = 0.48).

Lower vertical displacement 

could be a feature of gait 

disturbance in PSP patients, 

and which could be used to 

better discriminate PSP from 

PD patients.
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Liao et al. (17) USA/ 

Germany

PSP-tVOR: n=9, age (median 

68 years, range 61-75), men 

(n=5), women (n=4) PSP-

VEMPs: n=10, age (median 

68 years, range 60-76), men 

(n=7), women (n=3) HC-

tVOR: n=9, age (median 67 

years, range 60-72), men 

(n=6), women (n=3) HC-

VEMPs: n=30, age (median 

67 years, range 56-80), men 

(n=19), women (n=11)

NINDS-SPSP Subtypes not 

reported

Not reported Not reported Not reported Magnetic search coil + 

Infrared reflection 

system

Not reported Not reported Vestibulo-ocular reflex: Patients 

with PSP tend to show smaller 

values of aVOR RR than 

control subjects, but with some 

overlap of data. For tVOR, 

patients with PSP’s RR were 

smaller than controls during 

far viewing, but with overlap of 

data. However, during near-

viewing conditions, PSP RR 

values for tVOR were 

significantly smaller than 

controls, with no overlap of 

data. The range of tVOR RR of 

our control subjects was 

similar to those previously 

reported during rapid 

oscillatory head translations, 

but responses of patients with 

PSP during near viewing were, 

on average, only 12% of 

controls. Vestibulo-spinal reflex: 

The median P1-N1 amplitude 

of all 60 ears of the HC was 

149 μV (range: 11.6 to 466); 

that of all 20 ears of the 

patients with PSP 54.3 μV 

(range: 16.8 to 214).

Not reported The study results indicate that 

abnormal otolith-mediated 

reflexes may be at least partly 

responsible for frequent falls in 

progressive supranuclear palsy.

Ondo et al. (18) 

USA

PSP: n= 20, age (68 ±5.4 

years), disease duration 

(3.5±1.5 years), men (n=8), 

women (n=12) PD: n=20, age 

(65.4 ± 5.3 years), disease 

duration (4.4±1.5 years), men 

(n=13), women (n=7) HC: 

n=20, age (69 ± 3 years), men 

(8), women (12)

Clinical criteria Subtypes not 

reported

Not reported OFF-assessment Not reported Computerized 

posturography

PSP group was significantly worse 

than both other groups (POAG, z 

= −5.13 [P<.001]; POAB, z = 

−5.02 [P<.001]). The FR measures 

showed significant differences 

among the groups (F2 = 48.2; 

P<.001, univariate ANOVA). PSP 

group scores were significantly 

lower than those of both other 

groups (P<.001), and that PD 

group scores were significantly 

lower than those of controls (P= 

.003).

Not reported. The total stability score (SOT) 

showed that PSP group total 

scores were worse than those 

of both other groups (P<.001). 

CT sway was greater in the PSP 

than in the PD or control 

groups (P=.02); and total LOS 

measures of path time to target 

(P<.001) and path sway from a 

straight line to target (P<.001) 

were significantly prolonged in 

the PSP compared with the PD 

and control groups. The PSP 

group tended to have better 

performance with lateral 

movement and worse with 

anterior/posterior movements

Total LOS correlated with total 

POA scores (Pearson 

correlation, 0.67).

Results demonstrate significant 

abnormalities of postural 

control in patients with PSP 

that were markedly worse than 

those seen in a PD group 

matched for age and disease 

duration, and in age-matched 

healthy controls. Although 

clinical assessments also 

showed significant differences 

among the groups, CP more 

accurately discriminated early 

PSP from early PD.
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Palmisano et al. (24) 

Italy

PSP: n= 20, age (66.6 ±4.7 

years), disease duration 

(5.3±3.1 years), men (n=6), 

women (n=14) HC: n=25, age 

(65.1 ± 3.4 years), men (9), 

women (14)

PSPRS All had Richardson’s 

Syndrome

Not reported OFF-assessment Not reported Force plate, 3D motion 

system

PSPRS Total (33 ± 9,7); PSPRS 

limb motor (5.6± 1.9); PSPRS gait 

and midline (9.3 ± 2.7) Brain 

metabolic measures: there are six 

hypometabolic brain regions in 

the PSP group: the right 

dorsolateral prefrontal cortex, the 

left supplementary motor area, the 

middle cingulate cortex, the left 

caudate Nucleus, the medial 

thalamus and the Midbrain.

Not reported. CoM movement was 

significantly impaired in the 

PSP group as revealed by lower 

values of the velocity and 

acceleration of the CoM at the 

unloading phase end, as well as 

the velocity and position of the 

CoM with respect to the CoP 

at the stance foot toe-off. 

Patients with PSP also showed 

a significantly reduced first 

step length, average and 

maximum velocity compared 

to HC.

In healthy controls, the velocity, 

acceleration and position of the 

CoM with respect to the CoP at 

IMB end were influenced by 

AM and BoS parameters. In the 

same cohort, during the 

unloading phase the CoP 

displacement and the average 

and maximum velocity of the 

CoP in the ML direction were 

influenced by the BoS. In the 

PSP group, no correlations of GI 

parameters with BoS 

measurements were found. The 

study also showed a significant 

correlation between the PSPRS 

subscores related to motor 

impairment (i.e., Limb motor, 

and Gait and midline) and the 

kinematic measurements of all 

GI phases. The caudate nucleus, 

together with the middle 

cingulate cortex, correlated with 

the velocity of the CoM at the 

end of the unload phase and, 

together with the thalamus, with 

the distance between CoP and 

CoM at stance foot toe-off.

The results of the study 

provide evidence to support 

the hypothesis that 

dysfunctional postural control 

at GI in PSP patients involves 

poor APA programming and 

execution. Multiple brain 

regions of the supraspinal 

locomotor network specifically 

contributes in a principled, 

controlled manner to an 

efficient GI.
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Pasha et al. (23) 

India

PSP: n= 29, age (60.8 ± 8.2 

years), disease duration 

(2.2±1.2 years), men (n=21), 

women (n=8) HC: n=30, age 

(59.8 ± 7.6 years), men (17), 

women (13)

NINDS-SPSP Richardson’s 

syndrome (17); Parkinsonism 

predominant (12)

MMSE: PSP 

(24.8±5.04); HC (29.7 

± 1.0)

ON and OFF-

assessments

Not reported Dynamic 

posturography

PSPRS, TPG, and TPT scores were 

found to be statistically significant 

among the subtypes of PSP 

(P=0.045; P=0.031; and P=0.037) 

while UPDRS-III was not 

significant (P=0.7). The PSP-R 

subtype performed poorly in 

comparison to the PSP-P subtype 

on these scales. MRI measures: 

The PSP-R subtype, compared to 

the PSP-P subtype, had more often 

radiological signs such as HBS (P 

< 0.001), MGS (P <0.008), and 

GCA (P <0.001).

The mean values of balance 

indices were almost similar 

between the subtypes of PSP as 

compared to controls. The 

most significant of all the 

parameters in DP was LOS (P 

< 0.001) and the PSP-R 

subtype had lower scores.

There was a significant 

correlation of PSPRS with BBS 

(r = −0.642, P < 0.001), TPT (r 

= −0.516, P=0.004), TPG (r = 

−0.449, P=0.013), and TPB (r = 

−0.505, P=0.004). LOS-BW-LT 

had significant positive 

correlation with BBS (r = 0.381, 

P=0.038), TPB (r = 0.417, 

P=0.022), and TPT scores (r = 

0.362, P=0.049). There was a 

significant correlation of the 

midbrain axial AP diameter (r = 

0.4; P=0.03) and the ratio of 

midbrain to pons with BBS (r = 

0.4; P=0.02), indicating that 

these are worse in patients with 

midbrain atrophy. In DP, API 

correlated negatively with the 

midbrain axial AP diameter (r = 

−0.5; P=0.01) and midbrain 

area (−0.39; P=0.03). The 

LOS-BW correlated positively 

with the area of midbrain (r = 

0.49; P=0.001) and the midbrain 

to pons ratio (r = 0.57; r = 

0.001). In addition, LOS-BW-LT 

correlated with the midbrain to 

pons ratio (r = 0.37; P=0.43)

The study shows that the 

measurements of balance 

severity in the PSP-P group 

correlate with the predominant 

pathology of the midbrain 

(midbrain atrophy); while in 

PSP-R subtype, the balance 

abnormalities could be a result 

of pathology in different or 

overlapping areas.
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Picillo et al. (16) 

Italy

PSP-RS: n= 10, age (69.9 ±7.6 

years), disease duration (2.5 ± 

1.17 years), men (n=5), 

women (n=5) PSP (other 

subtypes): n=9, age (66.5 ± 

5.9 years), disease duration 

(2.33 ± 1 years), men (n=6), 

women (n=3)

MDS-UPDRS-III PSPRS 

Richardson’s syndrome 

(n=10), Parkinsonism 

predominant (n=5), Freezing 

of Gait predominant (n=4)

MoCA: PSP-R (15.3 ± 

5.7), PSP-other (19.5 ± 

4.2).

Not Reported No SMART DX system 

(3D motion system + 

force plate)

PSPRS (PSP-R: 34.9 ± 13.8; 

PSP-other: 28.33 ± 9.38)

PSP-R showed worse gait 

parameters than did other 

subtypes of PSP during 

single task. In detail, 

PSP-RS exhibited reduced 

cadence and increased 

cycle duration (p=0.018), 

mainly due to longer 

stance duration (p=0.034). 

For the dual task analysis, 

PSP-RS continued to 

roughly show the same 

gait features displayed 

during the single task. In 

addition, PSP-RS showed 

increased stance phase and 

reduced swing phase 

(p=0.031). There was a 

trend for significance for 

greater variability in step 

length (p=0.069) and 

lower velocity (p= 0.098) 

in PSP-RS.

Not reported In patients with PSP-RS, 

constructional apraxia and right 

ideomotor apraxia presented an 

inverse relationship with cycle 

and swing duration and a direct 

correlation with cadence 

(p<0.05). TMT parts A and B 

showed a direct correlation with 

swing duration and cycle 

duration, respectively (p<0.05). 

No significant correlations were 

shown for other subtypes of PSP.

PSP-RS presents greater gait 

dynamic instability since the 

earliest stages of disease 

compared with other subtypes 

of PSP. In addition, these 

findings indicate that gait 

quantitative evaluation can 

help to distinguish PSP-RS 

from other subtypes of PSP.
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Raccagni et al. (6) 

Austria

PSP: n= 12, age (67.4 ±8.7 

years), disease duration 

(5.0±3.6 years), men (n=9), 

women (n=3) PD: n=25, age 

(66.6 ± 7.9 years), disease 

duration (7.5±4.5 years), men 

(n=13), women (n=12) HC: 

n=25, age (63.7 ± 9.7 years), 

men (13), women (12)

MDS-UPDRS-III PSPRS 

Subtypes not reported

Not reported ON-assessment Not reported Wearable sensor-based 

gait analysis system

MDS-UPDRS-III (PSP: 41.7±15.5; 

PD: 31.7±9.3)

Gait speed was 

significantly reduced in 

PD patients (1.20 ± 

0.23m/s) compared to 

controls 1.38 ± 0.20 m/s; 

p=.011) and even more 

impaired in APD patients 

(0.98 ± 0.18 m/s). 1.38 ± 

0.20 m/s; p=.011) and 

even more impaired in 

APD patients (0.98 ± 0.18 

m/s). Results showed 

significant difference for 

stride length in controls 

(1.47 ± 0.15 m), PD (1.27 

± 0.22 m) and APD (1.11 

± 0.18m). Maximum toe 

clearance was significantly 

reduced in PD (7.8 ± 2.6 

cm; p=.001) and APD 

patients (6.9 ± 2.8 cm; 

p=.000) compared to 

controls (10.8 ± 3.3 cm)

Not reported Stride length correlated with 

PSP-RS scores in the PSP 

patients (r=0.59, p=.021). There 

was a significant correlation 

between maximum toe 

clearance and MDS-UPDRS-3 

(r =−.444, p=.026) in APD.

The significant difference of 

objective gait parameters 

among patient groups suggests 

that sensor-based technology 

may support and complement 

the clinical assessment 

provided by validated rating 

scales.
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Ricciardi et al. (21) 

Italy

PSP: n= 7, age (70.5 ±8.9 

years), disease duration 

(2.6±0.5 years), men (n=3), 

women (n=4) De novo PD: 

n=15, age (63.3 ± 6.7 years), 

disease duration (0), men 

(n=11), women (n=4) Stable 

PD: n=24, age (61.9 ± 6.7 

years), disease duration 

(5.9±2.5), men (17), women 

(7)

MDS-UPDRS-III PSPRS 

Richardson’s syndrome (n=4); 

Parkinsonism predominant 

(n=3)

Not reported Not reported No SMART DX system 

(3D motion system + 

force plate)

MDS-UPDRS-III (De novo PD: 

14.3±7.5; Stable PD: 21.3±6.3), 

PSPRS (16.8±3.3)

The PSP group showed the 

highest sensitivity and 

specificity among all 

patients, both overcame 

the threshold of 90% and, 

particularly, the specificity 

went beyond 95%. De 

Novo PD’s sensitivity and 

specificity scores were 

remarkable as well as the 

previous group, getting 

close to the value of 90%. 

The Stable PD group 

achieved the lowest 

sensitivity (between 65% 

and 70%) but high 

specificity; this metric, 

that represents the 

capacity to classify 

correctly the examined 

group but not the others, 

overcame the value of 

90%.

Not reported Not reported The study’s methodology 

allowed a good overall 

accuracy and re- markable 

sensitivities in the 

classification of PSP and De 

Novo PD patients. This 

indicates that the present 

approach could provide the 

clinician with a reliable, 

low-cost, non-invasive tool to 

distinguish early PSP from PD, 

in the first phases of the 

diseases’ courses when the 

diagnosis of atypical forms of 

Parkinsonism is challenging.
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Selge et al. (13) 

Germany

PSP: n= 38, age (69 ±6.3 

years), disease duration (3.5 ± 

2.2), men (n=20), women 

(n=18) iNPH: n=27, age (63.3 

± 6.7 years), disease duration 

(1.9 ± 1.6), men (n=21), 

women (n=6) HC: n=38, age 

(68.9 ± 7.6 years), men (20), 

women (18)

NINDS-SPSP Subtypes not 

reported

MMSE (PSP: 27.3 ± 

3.1; iNPH; 23.4 ± 3.3) 

and FAB (PSP: 13.9 ± 

2.3)

Not reported No GAITRite (6.7-m-long 

pressure-sensitive 

carpet system)

PSPRS (31.1±8.9) Compared to HC, both 

patients with PSP and 

those with iNPH had a 

significantly inferior gait 

performance. Compared 

with patients with PSP, the 

gait of patients with iNPH 

was characterized by a 

lower velocity (p=0.001) 

and shorter stride length 

(p < 0.001). The main 

differences were a more 

broad-based gait in iNPH 

(p < 0.001) and a higher 

CV of stride time in PSP 

(p=0.009). Cognitive dual 

task led to a significant 

impairment of gait in all 3 

groups. Patients with PSP 

were significantly more 

sensitive to dual-task 

perturbation than patients 

with iNPH. Especially gait 

velocity was clearly more 

reduced in patients with 

PSP, while the reduction in 

patients with iNPH was 

comparable to that in HC. 

Motor dual task led to a 

significant decrease of gait 

velocity and stride length 

in patients with PSP, but to 

a lesser extent than 

cognitive dual task.

Not reported In patients with PSP, the CV of 

stride length increased at the 

time when the CV of step width 

decreased (r = −0.338). This 

correlation was not seen in 

patients with iNPH or HC.

Compared with patients with 

PSP, the gait of patients with 

iNPH was slower and broader 

based; gait variability was 

higher in patients with PSP; 

and patients with PSP were 

more sensitive to dual-task 

perturbation. Under motor 

dual task, patients with iNPH 

tended to even improve.
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Sintini et al. (25) 
USA

PSP: n= 19, age (71 ±7 years), 
disease duration (4.7 ± 2.6), 
men (n=11), women (n=8)

MDS-UPDRS-III PSPRS 
Richardson’s syndrome 
(n=13), Parkinsonism 
predominant (n=3), Cortico-
basal syndrome (n= 1), 
Speech and language disorder 
(n=2)

Not reported Not reported No Force plate, 3D motion 
system

PSPRS (39 ± 10); MDS-UPDRS-
III (49 ± 17) Neuroimaging 
measures: MRI atrophy, white 
matter tracts degeneration and 
flortaucipir-PET uptake were 
measured. Typically, DTI-FA and 
MRI volumes are reduced in PSP 
relative to healthy controls, while 
DTI-MD and flortaucipir SUVR 
are increased.

Stride length, cadence, 
velocity and step width 
were measured. Compared 
to HC, velocity, cadence 
and stride length are 
typically lower in PSP 
patients, while step width 
and stride length 
coefficient of variation are 
typically higher.

Gait stability ratio, total 
support, initial double support, 
postural imbalance and 
dynamic stability were 
measured. Compared to HC, 
velocity, cadence, stride length 
and dynamic stability are 
typically lower in PSP patients, 
while step width, gait stability 
ratio, total support, initial 
double support, postural 
imbalance, and stride length 
coefficient of variation are 
typically higher.

PSP rating scale and MDS-
UPDRS III scores strongly 
correlated to velocity, stride 
length, gait stability ratio and 
dynamic stability. The gait 
midline sub-scale score of the 
PSP rating scale strongly 
correlated to velocity, dynamic 
stability, and stride length CV. 
Velocity was negatively 
correlated to DTI-MD in the 
cerebellar peduncle and 
positively correlated to volume 
in the supplementary motor 
area, superior frontal, and 
lateral parietal cortex. Velocity 
was positively correlated to 
subcortical flortaucipir-PET 
uptake (subthalamic nucleus, 
pallidum, caudate, red nucleus). 
Cadence was positively 
associated with DTI-MD in 
various tracts, especially the 
sagittal stratum and the 
cingulum (hippocampus). Stride 
length was strongly associated 
with DTI-MD in the body and 
splenium of the corpus callosum 
and with volume in the 
precentral, superior, and medial 
frontal, and parietal cortex. Step 
width was strongly related to 
DTI-MD in the superior 
cerebellar peduncle and 
flortaucipir-PET uptake in the 
dentate nucleus, cerebellum, 
and pons. Total support time 
was higher (i.e., more impaired 
gait) in patients with lower 
DTI-FA in many tracts, 
particularly the posterior 
thalamic radiation, sagittal 
stratum, external capsule and 
splenium of the corpus 
callosum. Greater postural 
imbalance with eyes open 
correlated to reduced 
metabolism in the cerebellar 
crus and lateral parietal cortex 
and greater postural imbalance 
with eyes closed correlated to 
reduced metabolism in the 
dentate nucleus. Lower dynamic 
stability strongly correlated with 
lower volume in the lateral 
parietal cortex.

The study showed that gait and 
postural impairments in PSP 
are associated with imaging 
abnormalities on different sets 
of regions and tracts that 
belong to the PSP system of 
neurodegeneration and the 
supraspinal locomotor 
network. The results suggest 
that gait and balance 
impairments might be driven 
by different mechanisms in 
PSP.

TABLE 1 (Continued)
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Study and 

Country

Participants Subtypes of PSP 

and criteria for 

PSP

Cognitive and 

Mood status

Assessment Walking 

aids (YES/

NO) and 

type

Measurement 

Tool

Clinical motor 

outcomes/other 

outcomes

Objective gait 

outcomes

Objective balance 

outcomes

Correlational 

analysis

Author’s 

conclusion

Takamatsu et al. 

(15) Japan

PSP: n= 27, age (73.4 ± 5.3 

years), disease duration 

(5.0±4.4 years), men (n=19), 

women (n=8) PD: n=25, age 

(74.2 ± 5.3 years), disease 

duration (4.7±3.4 years), men 

(n=14), women (n=11) HC: 

n=25, age (73.1 ± 5.3 years), 

men (11), women (14)

UPDRS-III PSPRS-V and VI 

Richardson’s syndrome 

(n=19), Progressive gait 

freezing (n=5) Parkinsonism 

predominant (n=3)

Not reported Not reported Not reported WalkWay MW-1000 

(2.4-m-long pressure-

sensitive carpet 

system)

PSPRS-V mean (3); PSPRS-VI 

mean (9); UPDRS-III mean (25)

Walking speed (PSP:75.1± 

19.1, HC: 119±21, P < 

0.001), CV of cadence 

(PSP: 5.3 ± 3.9, HC: 

2.6±2.5, P=0.001), step 

length (PSP: 42.2 ± 8.9, 

HC: 62.2 ± 7.1, P < 0.001), 

step width (PSP:10.6 ± 3.5, 

HC:7.7 ± 3.4, P=0.007), 

foot angle (PSP: 9.6 ± 6.9, 

HC: 5,8 ± 4.8, P=0.010), 

time of stance phase (PSP: 

0.73±0,12, HC: 0.63± 0,08, 

P=0.031), and double 

supporting phase (PSP: 

0.15±0,04, HC: 0.11±0,02, 

P < 0.001) showed 

significant differences 

between PSP and HC. CV 

of cadence (PSP: 5.3 ± 3.9, 

PD: 2.8±2.6, P=0.015) and 

foot angle (PSP: 9.6 ± 6.9, 

PD: 5.1±4.7, P=0.016) 

showed significant 

differences between PSP 

and PD.

Not reported Not reported Results suggests that the gait of 

patients with PSP was unstable 

with parkinsonism and 

wide-based, which might 

be similar to combining 

features of PD and cerebellar 

disorders.

AP=anteroposterior; APAs = anticipatory postural adjustments; aVOR = angular vestibulo-ocular reflex; BBS = Berg Balance scale; BOS = base of support; COP=center of pressure; COM = center of mass; CP=Computerized posturography; CV = coefficient of variation; 
DP=dynamic posturography; DTI-FA = Diffusion tensor imaging—fractional anisotropy; DTI-MD = Diffusion tensor imaging—mean diffusivity; GI = gait initiation; HC = Healthy Control; iNPH = idiopathic normal pressure hydrocephalus; LOS = limits of stability; 
MDS-UPDRS-III = Movement Disorders Society Unified Parkinson’s Disease Rating Scale part III motor subscale score; ML = mediolateral; MMSE = Mini Mental state examination. MoCA = Montreal Cognitive Assessment; MRI = magnetic resonance imaging; NINDS-
SPSP=National Institute of Neurological Disorders and Society for Progressive Supranuclear Palsy criteria for PSP; PD = Parkinson’s disease; POA = performance-oriented assessments; POAB = performance-oriented assessment for balance; POAG = performance-
oriented assessment for gait; PSP=Progressive Supranuclear Palsy; PSPRS = PSP rating scale; PSPRS-V = PSP rating scale-limb motor subscale; PSPRS-VI = PSP rating scale—gait and midline subscale; RR = responsivity ratio; SOT: sensory organization testing; 
SUVR = standard uptake value ratios; TPB, TPG and TPT = Tinetti performance-oriented mobility assessment (POMA) balance, gait and total; tVOR = translational vestibular-ocular reflex; UPDRS-III = Unified Parkinson’s Disease Rating Scale part III motor subscale 
score.
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PSP-parkinsonism (PSP-P), and 4 with PSP-progressive gait freezing 
(PSP-PGF). Objective gait analysis revealed a longer stance phase in 
all PSP variants compared to iPD.

While some groups have compared the gait characteristics of 
PSP-RS, PSP-P, and PSP-PGF to each other and to iPD, other groups 
have pooled the variant subtypes to compare as a group to the 
traditional PSP-RS type, leading to slightly different conclusions. 
Takamatsu et al. compared gait mat measurements in 27 patients with 
PSP (including PSP-RS, PSP-PGF, and PSP-P variants) to patients with 
iPD and to healthy controls (24). They found an overall longer gait 
cycle time and a larger step width in PSP compared to iPD and 
HC. They also found a trend toward a faster walking speed in PSP-PGF 
compared to PSP-RS, and a trend toward a slower walking speed in 
PSP-P compared to PSP-RS. Low subgroup numbers did not allow for 
full statistical analysis. Picillo et al. performed a gait analysis in 19 
patients with PSP in single and dual tasks (21) and compared the 
PSP-RS group to a pooled variant group of PSP-P and PSP-PGF 
(vPSP). Ten of the 19 PSP subjects had the PSP-RS subtype, 5 had 
PSP-P, and 4 had PSP-PGF. The authors found reduced cadence and 
increased cycle duration with a longer stance duration in PSP-RS 
compared to vPSP. With the dual task condition, they found an 
additional increase in stance phase in PSP-RS compared to the vPSP 
group. In addition to different methodologies for comparison groups, 
another important limitation of these studies is that straight walking 
on a gait mat may not elicit freezing episodes that are fully 
representative of real-world mobility impairments.

Balance in PSP-RS
Despite the fact that postural instability and falls are classic 

features of PSP, fewer studies have focused on static and dynamic 
balance compared to the number of studies of gait in PSP. Early studies 
focused on the contribution of vestibular dysfunction to balance 
impairment in PSP. In 2008 Liao et  al. combined otolith-ocular 
reflexes (VORs) and vestibular-evoked myogenic potentials (VEMPs) 
while subjects with PSP-RS were seated on a dynamic chair capable of 
translations and rotation and found smaller translational VORs and 
smaller VEMPs in PSP compared to control subjects (16). The authors 
concluded that abnormal otolith reflexes may contribute to frequent 
falls in PSP. Using the sensory organization test (SOT), during which 
subjects stand in 6 conditions on a moveable force plate (Neurocom) 
platform (1. eyes open with stationary platform, 2. eyes closed with 
stationary platform, 3. eyes open with visual background movement, 
4. eyes open with platform movement, 5. eyes closed with platform 
movement, and 6. eyes open with both background and platform 
movement), Ondo et al. showed that subject with PSP-RS performed 
worse than subjects with iPD on the total SOT score (17).They also 
found that subjects with PSP-RS had specific impairments in a pattern 
that they concluded suggested vestibular dysfunction (conditions 3, 4, 
5, and 6 of the SOT). However, these are also the most challenging 
balance conditions in the SOT, nonspecific for vestibular loss.

Our group subsequently compared the sensory and motor 
responses of 12 subjects with PSP-RS, 12 postural instability and gait 
disturbance (PIGD)-matched subjects with iPD, and 12 healthy 
controls while sitting and standing on the same Neurocom moveable 
force plate platform system (13). We specifically examined subjects’ 
reactions to forward platform translations and toes-up platform tilts 
that resulted in backward sway. Compared to subjects with iPD, 
we found that subjects with PSP accurately perceived gravity when 

standing on a tilting surface, but could not accurately perceive toes-up 
platform tilts, and furthermore exerted less postural corrective motor 
responses in response to forward platform translations and toes up 
surface tilts. Taken together, we postulated that balance dysfunction 
in PSP is the result of abnormal central sensory integration, rather 
than a result of a primary vestibular deficit.

Combined gait and balance in mixed PSP 
phenotypes

More recently, Ali et al. combined gait and postural sway in a 
small number of PSP phenotypes versus age-matched controls using 
a 3D motion capture system (10). Sixteen patients with PSP (11 
PSP-RS, 2 PSP-P, 2 PSP-SL, and 1 PSP-CBS) were compared with 
healthy controls using a 10-camera motion capture system and 41 
body markers and ground-embedded force plates. They found a 
slower gait velocity, slower cadence, and longer double-support time 
in PSP that correlated with clinical disease severity on the PSP Rating 
Scale (PSPRS). They also noted larger antero-posterior sway, but there 
was no relationship between the clinical PSPRS scores and standing 
postural sway tasks. The findings suggest that static standing sway 
tasks may not fully capture dynamic balance impairments in PSP.

Data mining studies for classification of PSP 
versus PD

Machine learning approaches to classify gait in people with PSP 
from PD are the focus of two studies, one by Ricciardi (22) that uses 
data from a motion analysis system, and the other data from wearable 
Opal inertial sensors (APDM) by De Vos in 2020 (14). In the motion 
analysis study, straight walking data from 46 subjects with a mix of de 
novo PD, moderate PD, and unspecified PSP subtypes was compared. 
Freezing and turning data was excluded. In the initial machine 
learning classification attempt by Ricciardi, random forest and 
gradient boosted tree models correctly discriminated gait in those 
with PSP from iPD, with a sensitivity and specificity of 92.6 and 96.3 
(random forest) and 96.3 and 92.6 (gradient boosted), respectively. 
However, because the disease duration differed largely between 
groups, the clinical utility of such classification is unclear. The 
subsequent machine learning study by deVos, 2020 used 6 wearable 
Opal sensors (placed on feet, wrists, sternum, and the lumbar region) 
to examine data from 4 PSP-RS subjects, 17 PSP-P subjects, 20 iPD 
subjects, and 30 healthy controls during a 2-min walk, sway on a firm 
surface with eyes closed, and a 3-m timed up and go task (14). The 
Opal triaxial sensors include accelerometers, gyroscopes, and a 
magnetometer. Subjects were tested on dopaminergic medication. The 
authors found that a random forest model with combined gait, sway, 
and timed up and go data predicted PSP versus PD with 86% 
sensitivity and 90% specificity. Sway, alone, did not discriminate the 
groups. This study was also limited by a variable disease duration in 
subjects. The average disease duration in the subjects with PD was 
11.4 years, and only 2 years in the subjects with PSP. Additionally, 
machine learning approaches for classification of diseases can be of 
limited clinical utility when differences in the clinical features of the 
diseases under investigation are clinically apparent at baseline.

Radiological correlations with gait and balance 
measures in PSP

A 2016 study by Pasha et al. compared balance and radiological 
features in 17 PSP-RS and 12 PSP-P patients using a Biodex 
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posturography system, which is a platform capable of tilting 20 
degrees from the horizontal in all directions (19). They compared 
static limits of stability and dynamic stability in response to surface 
tilts with structural MRI features in PSP-RS and PSP-P and found that 
balance and radiological abnormalities were overall more severe in 
PSP-RS. This is consistent with evolution of the disease course, as 
we see that variants of PSP evolve with time and disease progression. 
In PSP-RS, they did not find any significant correlations between the 
PSPRS and specific areas of atrophy or between balance measures and 
imaging features. In PSP-P, the midbrain axial anterior–posterior 
diameter significantly correlated with the Tinetti Mobility Assessment 
total score and Gait subscore, but not with any dynamic 
posturography measures.

Palmisano et al. used a 3D motion capture system to examine 
anticipatory postural adjustments (APAs) for gait initiation in 26 
subjects with PSP-RS and 14 age-matched controls and then 
correlates APA measures with metabolic activity on fluoro-D glucose 
(FGD) PET (18). Their study supported the findings of Amano and 
colleagues showing impaired APAs in people with PSP (11). 
Metabolic correlations were not significant after controlling for 
multiple comparisons, but the data suggested several trends toward 
significance such as an association between decreased regional 
caudate uptake and impaired APA control. The study was limited by 
a high rate of exclusion due to falls or total absence of the imbalance 
phase of the APA (8 out of 26 patients were excluded), and this 
highlights the major limitation of severity of disease in clinical 
trials in PSP.

A subsequent, multimodal imaging study in 19 subjects with PSP 
analyzed 3 T MRI markers of atrophy and white matter integrity on 
diffusion tensor imaging (DTI) and fortaucipir-PET metabolic 
imaging with principal components analysis (23). Various subtypes of 
PSP were represented including PSP-RS, PSP-P, PSP-SL, and 
PSP-CBS. Gait features of decreased stride length, increased step 
width, and longer double-support time related to DTI measures in the 
posterior thalamic radiation, external capsule, superior cerebellar 
peduncle, superior fronto-occipital fasciculus, body and splenium of 
the corpus callosum, and the sagittal striatum, to MRI volumes in 
frontal and precentral regions, and to flortaucipir-PET uptake in the 
precentral gyrus. Postural sway in standing, alone, did not correlate 
with imaging abnormalities, but this may be due to the mix of PSP 
phenotypes studied. In PSP-RS, alone, imaging and postural sway 
abnormalities did correlate. The authors note that a limitation of the 
study relates to the somewhat controversial use of flortaucipir PET in 
PSP, as it was optimized for the paired helical tau fragments in 
Alzheimer’s and is known to have off-target binding in PSP.

Gait and balance as a biomarker of 
progression: longitudinal studies

Four longitudinal studies were included in this review (Table 2). 
These studies evaluated longitudinal changes in gait, balance, and 
cognition up to 1.5 years. Two studies observed that wearable sensors 
can serve as sensitive measures of PSP progression.

An early study by Ghosh et al. (27) previously examined PSPRS 
and oculomotor function changes in 23 subjects with PSP 
Richardson syndrome over 14 months. They found significant 
changes on both the PSPRS and vertical eye movements via 

saccadometry during that period, but objective gait and balance 
outcomes were not used.

As part of a larger, longitudinal study in the United Kingdom, the 
“OxQuip” study, Pereira et al. examined longitudinal changes in motor 
and cognitive symptoms on clinical scales in PSP (28), and then 
Sotirakis et  al. (29) built upon this background with longitudinal 
monitoring of PSP with 6 body-worn, inertial measurement units 
(IMU) sensors (“Opals,” by APDM). Pereira analyzed the PSPRS, 
MDS-UPDRS 3, MOCA, and MMSE in 28 subjects with possible or 
probable PSP by 2017 MDS criteria (with symptom onset at an average 
of 1.9 years prior to enrollment, but PSP subtypes were not specified) 
at visits every 3 months for 18 months. The gait and midline sub-score 
of the PSPRS was the earliest score to change and this change was 
observed at 6 months. This study experienced a drop-out rate of 
approximately 50% due to progression of illness, death, or change in 
diagnosis (the latter in only one subject). Other limitations of this 
study were the lack of pathological diagnoses and the fact that 
dopaminergic medication use was not accounted for at the time 
of assessments.

Sotirakis et al. then applied 6 wearable IMU Opal sensors to the 
wrists, feet, sternum, and lumbar region for longitudinal 
measurement in 27 subjects with PSP of the PSP-RS and PSP-P 
subtypes. The Opal sensors were applied for a 2-min walk with 180 
degree turns and for a postural sway task for 30 s with eyes closed. 
Data from 17 participants was sufficient for analysis of visits at 
3-month intervals for 12 months. Linear regression revealed that a 
model incorporating turn velocity, stride length standard deviation, 
and toe off angle detected statistically significant progression at visit 
4, which was 3 months earlier than the clinical PSP Rating Scale, 
alone. This was an important first study to quantify disease 
progression in PSP using wearable sensors. An important limitation 
of this study is the lack of accounting for the potential influence of 
physical therapy interventions on progression.

A subsequent study by Abate et al. (26) also examined disease 
progression in PSP using Opal inertial sensors, and correlated 
kinematic data to the PSPRS. Twenty-three subjects were assessed for 
progression, and PSP phenotypes included in this study were PSP-RS 
(80%), PSP-P (14%), and PSP-PGF (6%). In this study Opals were 
applied to the feet and lumbar area only. At the 3-month follow-up, 
cadence and gait cycle duration from a two-minute walking task 
worsened significantly, although the total PSPRS did not worsen 
significantly, except for the specific “arising from chair” sub-item that 
did worsen significantly. A strength of this study is the use of fewer 
sensors, which improve ease of clinical use. An important limitation 
of this study is that only 29% of the subjects with PSP needed unilateral 
assistance for gait (i.e., a cane or a helper holding onto one limb), so 
the population only encompassed relatively mild disease 
presentations of PSP.

The Sotrirakis and Abate studies (26, 29) both suggest that 
wearable sensors may be important and more sensitive detectors of 
disease progression than the PSPRS. Both studies also found that 
dynamic gait parameters, rather than balance parameters, are related 
to disease progression. The authors hypothesize that dynamic 
instability outweighs static instability for assessment of progression, at 
least in the relatively early stages of the disease. It is important to 
acknowledge that more wearable sensor assessment of static balance 
is needed to better understand progression, particularly in more 
advanced stages of PSP.
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TABLE 2 Summary characteristics of the longitudinal included studies.

Study and 
Country

Participants Subtypes 
of PSP and 
criteria for 
PSP

Cognitive and 
Mood status

Assessment Walking 
aids

Follow-up Clinical motor 
utcomes/other 
outcomes

Objective 
gait 
outcomes

Objective 
balance 
outcomes

Author’s 
conclusion

Abate et al. (26) 
Italy

PSP: n = 35, age 
(68.1 ± 5.4 years), 
disease duration 
(4.2 ± 2.5 years), 
men (n = 27), 
women (n = 8)

MDS PSP 
criteria. 
Richardson’s 
syndrome (n = 
28), 
parkinsonism 
predominant (n 
= 5), freezing of 
gait predominant 
(n = 2)

Not reported PSPRS, Wearable 
sensors (one on the 
back and one on 
each foot)

Ten (29%) 
participants 
required 
unilateral 
support to 
complete at 
least one of the 
required tasks.

Three-month 
follow-up for 
PSPRS and each 
objective variable

PSPRS total score did 
not show a significant 
change over the 
follow-up (0.78% 
increase), but 
significant differences 
were detected for the 
“emotional lability” 
item (36.54% decrease) 
and the “arising from 
chair” item (16.31% 
increase). PSPRS total 
showed moderate 
inverse correlations 
with gait speed 
(r = −0.434; p < 0.001), 
and with stride length, 
swing and turning 
velocity, 360° angle 
and 360° turning 
velocity and moderate 
correlations with gait 
double support, stance 
and turning duration. 
PSPRS gait/midline 
subscore presented a 
strong inverse 
correlation with gait 
turning velocity, 
moderate inverse 
correlations with gait 
speed, stride length, 
swing, 360° angle, 
360° duration and 
360° turning velocity 
and moderate direct 
correlations with gait 
double support time 
and stance.

The analysis 
from baseline to 
3-month follow-
up showed that 
cadence and 
cycle duration 
from the 2-min 
walking test 
presented a 
significant 
increase over 
time (by 3.69 
and 3.94% 
respectively).

Not reported. Results from the 
study 
demonstrated the 
change of objective 
gait parameters 
over a short-term 
follow-up. 
Wearable sensors 
can provide an 
objective, sensitive 
quantitative 
evaluation and 
immediate 
notification of gait 
changes in PSP.

(Continued)
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Study and 
Country

Participants Subtypes 
of PSP and 
criteria for 
PSP

Cognitive and 
Mood status

Assessment Walking 
aids

Follow-up Clinical motor 
utcomes/other 
outcomes

Objective 
gait 
outcomes

Objective 
balance 
outcomes

Author’s 
conclusion

Ghosh et al. (27) 

United Kingdom

PSP: n = 23, age 

(71.1 ± 8.6 years), 

disease duration 

(3 years), men (n = 

14), women (n = 9) 

Healthy Control: n 

= 22, age 

(71.4 ± 7.6 years), 

disease duration 

(N/A)

PSPRS 

Richardson’s 

syndrome

ACE-R = 76.4 ± 10.9 

FAB = 10.8 ± 3.9 

VOSP=7.6 ± 3.2

PSPRS, UPDRS-

III, Saccadometry

Not reported 1.2 years for 

PSPRS, UPDRS-

III, Saccadometry 

and cognitive 

status

PSPRS showed a mean 

change over a year of 

11.3 points (p < 0.001). 

UPDRS-III showed a 

mean change of 8.3 

points (p=0.003) and 

mu (the inverse 

median latency for 

saccades) showed a 

mean decrease of 

0.4 s−1(equivalent to an 

increase in latency of 

0.02 s) (p=0.01). 

Cognition did not 

change significantly 

during the study 

period.

Not reported Not reported Patients show 

significant 

deterioration over 

one year using the 

PSPRS severity 

measure. 

Oculomotor 

function changed 

over one year, 

including the 

range of vertical 

gaze in the PSPRS.

Pereira et al. (28) 

United Kingdom

PSP: n = 28, age 

[69.2 (52–68) 

years], disease 

duration [1.9 (0.2–

6.3) years], men (n 

= 15), women (n = 

12) Healthy 

Control: n = 28, age 

[66.2 (56–72) 

years], disease 

duration (N/A)

MDS PSP 

criteria. Subtypes 

not reported

MoCA = 22.4 (12–30) 

MMSE = 26 (20–30) 

Fluency test 

(Semantic) = 21.8 

(6–41) Fluency test 

(Phonemic) = 19.9 

(6–50)

PSPRS UPDRS-III Not reported 1.5 years for 

PSPRS and MDS-

UPDRS-III and 

cognitive status. 

Assessment visits 

were done every 

3 months.

The increase in MDS-

UPDRS-III was 

statistically significant 

after 12 months 

(Δ = 11.75, SD = 12.31, 

p < 0.008) while the 

increase in PSPRS 

became significant 

15 months after 

baseline assessment 

(Δ = 7.42, SD = 7.63, 

p < 0.008). The MoCA 

and MMSE scores did 

not show any enduring 

changes in scores over 

time.

Not reported Not reported Motor decline in 

PSP is consistently 

captured by 

clinical rating 

scales. These 

results support the 

inclusion of 

multiple follow-up 

time points in 

longitudinal 

studies in the early 

stages of PSP.

(Continued)

TABLE 2 (Continued)

104

https://doi.org/10.3389/fneur.2023.1212185
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


D
ale et al. 

10
.3

3
8

9
/fn

eu
r.2

0
2

3.12
12

18
5

Fro
n

tie
rs in

 N
e

u
ro

lo
g

y
fro

n
tie

rsin
.o

rg

Study and 
Country

Participants Subtypes 
of PSP and 
criteria for 
PSP

Cognitive and 
Mood status

Assessment Walking 
aids

Follow-up Clinical motor 
utcomes/other 
outcomes

Objective 
gait 
outcomes

Objective 
balance 
outcomes

Author’s 
conclusion

Sotirakis et al. (29) 

United Kingdom

PSP: n = 17, age [63 

(51–73) years], 

disease duration 

[1.6 (0–6) years], 

men (n = 9), 

women (n = 8)

MDS PSP 

criteria. Subtypes 

not reported

MMSE = 26.2 (20–30) Kinematic gait and 

posture features 

collected by a 

body-worn IMU

Not reported. 1 year, over five 

visits at 3-month 

intervals.

Not reported. There was a 

significant 

change in mean 

turn velocity, SD 

of Stride length 

and mean toe off 

angle. These 

three features 

served 

exclusively as 

predictors of 

progression on a 

mathematical 

model used to 

predict MDS-

UPDRS-III and 

PSPRS-motor. 

Strongly 

significant 

differences from 

baseline were 

apparent 

3 months earlier 

in these models 

than in the 

actual scores

Not reported. Data from 

wearable IMU 

arrays coupled 

with mathematical 

modeling can 

be used to track 

progression of PSP, 

complementing 

established clinical 

rating scales. In 

this study, the 

reduced variability 

in the modeled 

data allowed a 

progression signal 

to be discerned 

3 months earlier 

than would 

otherwise 

be expected.

ACE-R = Addenbrooke’s Cognitive Examination—revised; FAB = Frontal Assessment Battery; MDS-UPDRS-III = Movement Disorders Society Unified Parkinson’s Disease Rating Scale part III motor subscale score; MoCA = Montreal Cognitive Assessment; 
MMSE = Mini-mental State Examination; NINDS-SPSP: National Institute of Neurological Disorders and Society for Progressive Supranuclear Palsy criteria for PSP; PSPRS = PSP rating scale; UPDRS-III = Unified Parkinson’s Disease Rating Scale part III motor subscale 
score; VOSP=Visual Object and Space Perception Battery.
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Rehabilitation intervention studies

Fourteen rehabilitation intervention studies were included in this 
review (Table  3). These studies evaluated the effect of different 
interventions (balance training, home-gait exercise body-weight 
supported treadmill gait, virtual reality intervention, Robot-assisted 
walking, and cerebellar rTMS) on gait and balance outcomes in people 
with PSP. No study used wearable sensors to evaluate gait and 
balance impairments.

Effect of rehabilitation interventions on 
spatiotemporal gait metrics in PSP

Changes in spatiotemporal gait metrics were observed in six 
rehabilitation studies (31, 38, 39, 41–43). Of these studies, only one 
had a sample size of 19 people with PSP (43), the other studies were 
case report that investigated the effects of treadmill training and 
boxing (31), robot-assisted walking (38), virtual reality (39), treadmill 
training with body weight support (41), and cueing step-training (42) 
on spatiotemporal gait parameters such as gait speed, stride length, 
and cadence. Although these studies have shown changes in gait 
speed, stride length, and cadence after a short period of intervention, 
ranging from 8 (42) to 24 sessions (41), it is important to emphasize 
that the data from these case studies do not allow causal conclusions 
on the effects of these mode of rehabilitation in PSP. Therefore, caution 
should be exercised when interpreting these findings as they cannot 
be generalized to the entire PSP population. Thus, robust clinical trials 
are needed to investigate the effects of rehabilitation intervention on 
spatiotemporal gait parameters in people with PSP.

Zampieri et  al. (43) assessed the effect of a rehabilitation 
intervention in PSP on kinematic gait parameters (stance time, swing 
time, and step length) by tracking foot motion using electromagnetic 
sensors. Nineteen people moderately affected by the PSP were 
assigned to either a treatment group (balance plus eye movement 
exercises, n = 10) or a comparison group (balance exercises only, n = 
9). Although the authors did not find a difference between groups for 
any gait parameter, the within-group analysis revealed significant 
improvements in stance time and walking speed for the treatment 
group, whereas the comparison group showed improvements in step 
length only. These preliminary findings support the use of eye 
movement exercises as a complementary therapy for balance training 
in the rehabilitation of some gait parameters in people with PSP; 
however, future clinical trials powered at a higher level are needed to 
confirm these results.

Effect of rehabilitation interventions on clinical 
balance in PSP

Changes in clinical balance were observed in 6 rehabilitation 
studies (30, 32, 33, 35, 36, 40). These studies had a sample size ranging 
from 1 (40) to 24 (30). The number of sessions ranged from 10 (40) to 
24 sessions (33). Most studies used the Berg Balance Scale (BBS) to 
assess clinical balance, while one study used the Mini-BESTest (40). 
Different interventions were used such as treadmill training (30), 
body-weight supported treadmill gait training (33), balance and 
resistance training (35), cueing balance-exercises (36), and backward 
gait training combined with gait-synchronized transcranial alternating 
current stimulation (tACS) (40).

Clerici et al. (30) observed that 20 sessions of treadmill training 
with visual cues and auditory feedback, both with (n = 12) and 

without (n = 12) the use of a robotic device, significantly improved the 
BBS scores in people with PSP. The authors concluded that both 
interventions have similar effects on clinical balance of this population, 
thus, the usefulness of an aerobic, sensory-feedback approach for the 
rehabilitation of patients suffering from PSP may be implemented in 
future clinical trials. Di Pancrazio et al. (33) tested the effect of 24 
sessions of a rehabilitative program combining sensorimotor exercises 
(postural control, vibration, and cues) on postural instability of ten 
people with PSP. The authors observed that the combined rehabilitative 
program produced improvement in the BBS score and this clinical 
balance improvement persisted also in the follow-up phase after 
30 days. Although the authors suggest that this specific rehabilitation 
program could improve postural instability in people with PSP due to 
intensive sensory stimulation involved in the intervention protocol, 
the failure to use a control group can make it impossible to draw 
meaningful conclusion from this study. Likewise, Matsuda et al. (35) 
applied 20 sessions of balance and resistance training in 20 people 
with PSP without the use of a control group. They also observed 
beneficial effects on the BBS score.

Although we  do not know exactly the positive effects of 
progressive resistance strength training on people with PSP, there is 
strong evidence of benefit of this intervention in people with PD (44, 
45). Two years of progressive resistance strength training were more 
effective than 2 years of non-progressive exercise in decreasing the 
motor symptoms of patients with mild-to-moderate PD (44). Our 
previous studies have demonstrated that combining balance exercises 
with progressive resistance strength training is more effective than 
progressive resistance strength training alone in decreasing motor 
symptoms of PD (46), as well improving clinical balance on the 
Balance Evaluation Systems Test (BESTest), mobility (timed-up-
and-go test), and fear of falling in people with mild-to-moderate PD 
(47). Thus, a combined balance and progressive resistance training 
intervention would be  more effective for people with PSP than 
progressive resistance training alone. Future controlled and 
randomized studies should test this intervention in PSP.

Nicolai et  al. (36) tested the effects of 18 sessions of audio-
biofeedback training on the BBS score in 8 people with PSP. This study 
used a new device that was well accepted for the participants and no 
adverse events occurred. Although the authors observed a significant 
improvement in the BBS score, which remained significant at the 
4-week follow-up, the lack of a control group makes it difficult to 
be certain that the improvement in the BBS scores was caused by the 
audio-biofeedback training and not by other variables in the 
intervention. Thus, future powered and robust clinical trials are 
necessary to investigate the effects of sensory-feedback rehabilitation 
intervention on the clinical and objective balance of people with PSP.

Only one study investigated the effects of rehabilitation on 
freezing of gait (FOG) in people with PSP (34). We  know FOG 
negatively impacts balance and functional gait in this population (48, 
49). Irons et al. (34) observed that 24 sessions of a motor-assisted 
elliptical trainer with body weight support decreased FOG in a 
67-year-old man with PSP. However, 1 month without training 
revealed worsening of his FOG, although the improved oxygen cost 
during training was sustained at 1-month follow-up. This case study 
is the first to document FOG improvement after a motor-assisted, 
elliptical training program for an individual with PSP, and future 
studies with a larger sample size are needed to investigate the possible 
benefits of this structured rehabilitation for people with PSP.
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TABLE 3 Summary characteristics of the rehabilitation interventions included studies.

Study and 
Country

Participants Experimental Control Measurement 
tools

Walking 
aids

Clinical motor 
outcomes/
other 
outcomes

Objective 
gait 
outcomes

Objective 
balance 
outcomes

Adverse 
events

Author’s 
conclusion

Clerici et al. (30) 

Italy

n = 24 PSP patients 

Experimental group: 

age 69.9 ± 5.2, 

disease duration 

4.1 ± 1.4 years 

Control group: age 

72.5 ± 6.1; disease 

duration 

4.0 ± 1.2 years

Lokomat® Training 

(20 min), maximum 

velocity tolerated, not 

exceeding 2.5 km/h, 5 

times/week for 

4 weeks.

Treadmill 

Training with 

visual and 

auditory cues 

(20 min), 

maximum 

velocity 

tolerated, not 

exceeding 

2.5 km/h 

5 times/week 

for 4 weeks.

PSPRS, BBS, 6MWT 

and number of falls

Not reported Total PSPRS, PSPRS-

gait, BBS, 6MWT and 

number of falls 

improved significantly 

by the end of the 

training programs in 

both groups. PSPRS-

limb score improved 

significantly only in 

control group.

Not reported Not reported Not reported Aerobic, motor-

cognitive and 

goal-based 

rehabilitation 

treatments based 

on a 

multidisciplinary 

and intensive 

approach are 

useful for PSP 

patients, even 

without the 

support of 

expensive robotic 

technologies such 

as Lokomat®

Croarkin et al. (31) 

United States

n = 1 atypical PSP 

patient Age 63 years 

old, disease 

duration 11 years

Boxing, stepping tasks 

and treadmill 

training, 20 min for 

each 2 times/week, for 

6 weeks

No Computerized 

posturography, 10 

camera DX system 

(Vicon Motion 

Systems), 

performance-based 

tests of timed stepping 

and unilateral squats

Not reported Gains in strength were 

noted by 

improvements in his 

home exercise 

regimen.

Not reported. Foot clearance 

scores increased 

around 0.2 to 

2 cm bilaterally. 

Results on the 

repeated stepping 

test and the 

squats during 

unilateral stance 

also improved. 

Increased speed, 

symmetry, and 

accuracy were 

recorded.

Not reported The intervention 

improved balance, 

eye-body 

coordination and 

strength in a high 

functioning patient 

with PSP.

(Continued)

107

https://doi.org/10.3389/fneur.2023.1212185
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


D
ale et al. 

10
.3

3
8

9
/fn

eu
r.2

0
2

3.12
12

18
5

Fro
n

tie
rs in

 N
e

u
ro

lo
g

y
fro

n
tie

rsin
.o

rg

Study and 
Country

Participants Experimental Control Measurement 
tools

Walking 
aids

Clinical motor 
outcomes/
other 
outcomes

Objective 
gait 
outcomes

Objective 
balance 
outcomes

Adverse 
events

Author’s 
conclusion

Dale et al. (32) 

United States

n = 2 PSP patients 

Age and disease 

duration not 

reported

10 days of active 

Cerebellar rTMS 

(4,000 pulses were 

delivered with a 

70 mm figure-of-8 

coil at 10 Hz, 4 s on, 

8 s off, 100 trains, 

machine output 

90e110% of RMT, 

pending tolerability) 

plus 10 days of Sham 

treatment

No Cerebellar brain 

inhibition (CBI) 

assessment, 

posturography.

Not reported CBI increased by 50% 

in subject 1 and by 

32% in subject 2.

Not reported Subjects’ 

backward 

stability 

improved when 

standing on a 

force plate, as 

evidenced by 

reduction of the 

backward center 

of pressure 

excursion (less 

sway in the 

posterior 

direction).

Not reported Cerebellar rTMS 

with 

neuronavigation 

may result in 

improved postural 

stability in PSP.

Di Pancrazio et al. 

(33) Italy

n = 10 PSP patients 

Age 69 ± 7 years, 

disease duration 

not reported

20–30% body-weight 

supported treadmill 

gait training (20 min) 

plus mechanical 

acoustic vibrations 3 

times/week, for 

8 weeks

No PSPRS, BBS, 

Baropodometry static 

and dynamic, 

Stabilometry

Not reported PSPRS showed 

improvement of the 

motor score posture 

item (p=0.01), and in 

the motor score 

postural stability item 

(p=0.01). BBS score 

varied from a 

37.7 ± 12.1 at the 

baseline to a score of 

47,6 ± 9.2 at the end of 

treatment (p=0.02).

Not reported Stabilometry test 

showed a 

significant 

improvement of 

the distribution 

of the load in 

percentage.

Not reported. The rehabilitation 

program was 

efficient on posture 

and on walking 

quality. The 

patients showed an 

increase in walking 

speed, greater 

stability and a 

consequent 

reduction in the 

risk of falling.

TABLE 3 (Continued)
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Study and 
Country

Participants Experimental Control Measurement 
tools

Walking 
aids

Clinical motor 
outcomes/
other 
outcomes

Objective 
gait 
outcomes

Objective 
balance 
outcomes

Adverse 
events

Author’s 
conclusion

Irons et al. (34) 

United States

n = 1 PSP patient 

Age 67 years old, 

disease duration 

1.5 years

17–21% body-weight 

supported motor-

assisted elliptical 

training, time and 

speed progressively 

increased to 30 min 

and 50 rpm. 3 times/

week, for 8 weeks

No 6MWT, FOG-Q, SSC 

(self-selected 

comfortable treadmill 

speed (m/min)) 

Oxygen cost of SSC 

walk speed

Not reported Improvement of 82.9 m 

from pretraining on 

the 6MWT distance. 

The oxygen cost of SSC 

gait speed improved 

6.8% between 

pretraining 

(0.44 mL·kg−1·m−1) and 

post training 

(0.41 mL kg−1 m−1). 

This improvement in 

oxygen cost was 

sustained 1 month later 

(0.41 mL·kg−1·m−1).

Not reported Not reported Not reported. The intervention 

resulted in 

improved gait 

efficiency (oxygen 

cost of SSC gait 

speed) and 

distance traversed 

(6MWT).

Matsuda et al. (35) 

Japan

n = 20 PSP patients 

Age 72.3 ± 6.2 years, 

disease duration 

2.4 ± 1.5 years

Balance training, 

resistance training, 

range of motion 

(ROM) exercises, 

stretching, walking 

exercises, and ADL 

training, 60–80 min/

day 5 times/week, for 

4 weeks

No PSPRS, BBS, TUG, 

Pull test, comfortable 

and maximum gait 

speed

Not reported Improvements of 

PSPRS gait and 

midline total scores 

(p=0.004, r = 0.645), 

were found after 

intervention. BBS 

showed significant 

improvements in the 

items of reaching 

forward with 

outstretched arm 

(p=0.011, r = 0.566), 

turning to look behind 

(p=0.039, r = 0.461), 

turning 360 degrees 

(p=0.046, r = 0.447), 

standing with one foot 

in front (p=0.047, 

r = 0.445), and standing 

on one foot (p=0.009, 

r = 0.588).

No statistically 

significant 

difference was 

found for 

comfortable and 

maximum gait 

speed.

Not reported. Not reported A multiple 

therapeutic 

exercise program 

can improve the 

balance function in 

patients with PSP.
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Study and 
Country

Participants Experimental Control Measurement 
tools

Walking 
aids

Clinical motor 
outcomes/
other 
outcomes

Objective 
gait 
outcomes

Objective 
balance 
outcomes

Adverse 
events

Author’s 
conclusion

Nicolai et al. (36) 

Germany

n = 8 PSP patients 

Age 66.4 ± 6.2 years, 

disease duration 

6.2 ± 4 years

Balance exercises 

(sitting, standing, 

stepping) plus 

auditory cues 

(45 min) 3 times/

week, for 6 weeks

No BBS, TUG, 5CR, 

UPDRS-III

Five 

participants 

used a walking 

aid, and two 

participants 

were 

wheelchair-

bound but 

able to stand 

upright 

without 

another 

person’s help.

Median values of the 

BBS improved by 

25.7% (p=0.016) from 

pre to post 

intervention.

Not reported Not reported No adverse 

events.

The intervention is 

both feasible and 

associated with 

functional and 

psychosocial 

improvements for 

PSP patients.

Pilotto et al. (37) 

Italy

n = 20 PSP patients 

Age 

67.8 ± 11.7 years, 

disease duration 

3.6 ± 1.8 years

Each patient received 

both rTMS and sham 

cerebellar single 

session stimulations 

in randomized order 

in two different 

sessions performed at 

the same time of the 

day, separated by at 

least 2 weeks.

No Tinetti test, SPPB, 

TUG, FRT, IMUs

No Not reported Not reported No differences in 

baseline 

performances in 

instrumented 

tests were 

detected for each 

task between real 

and sham 

stimulation. In 

both eyes closed 

conditions, the 

participants were 

able to stay 

longer without 

support after the 

real rTMS, 

compared to 

sham stimulation

Not reported Results suggests a 

beneficial effect of 

a single session of 

cerebellar rTMS 

stimulation on 

measures of 

postural instability 

in PSP patients
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Adverse 
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Author’s 
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Sale et al. (38) Italy n = 5 PSP patients 

Age 74 ± 4 years, 

disease duration 

3.8 ± 1.2 years

Robot-assisted 

walking (45 min) 5 

times/week, for 

4 weeks

No 3D-Gait analysis Not reported Not reported Gait velocity and 

cadence improved, 

respectively, by 15 

and 23.8%. It was 

also shown an 

improvement of 

11% in step length 

left and of 35% in 

step length right, 

besides a decrease 

Of 9% of Step 

width. Due to a 

small sample size, 

no statistical 

significance was 

found in all the 

analyzed 

parameters.

Not reported No adverse 

events.

The positive results 

on improvement in 

spatiotemporal 

parameter of the 

PSP subject by the 

Robot Therapy, the 

lack of side effects 

strongly 

recommends 

extending the use 

of a Robot Therapy 

in the recovery of 

gait performance.

Seamon et al. (39) 

United States

n = 1 PSP patient 

Age 65 years old, 

disease duration 

5 years

Xbox Kinect virtual 

exergaming (60 min) 

2 times/week, for 

6 weeks

No BBS, FFABQ, FGA, 10 

Meter walk test, TUG

Not reported Fastest comfortable 

gait speed changed 

from 1.16 m/s to 

1.05 m/s on the 10 

Meter Walk Test. 

Balance function 

remained stable and 

no declines below 

fall risk cut offs 

listed for elderly 

individuals.

Not reported Not reported Results of the study 

demonstrates the 

feasibility of an 

intervention using 

a virtual gaming 

system to help 

maintain 

functional 

mobility, balance 

and independence 

for an individual 

with PSP.
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Shima et al. (40) 
Japan

n = 1 PSP patient 
Age 70 years old, 
disease duration 
1.6 years

tACS plus 4-min 
self-paced backward 
gait on the treadmill. 
A combination of 
sham stimulation 
(Intervention A), 
gait-synchronized 
cerebellar tACS 
(Intervention B), and 
cerebellar tACS 
asynchronized with 
gait using the inverted 
phase as a control 
condition 
(Intervention C) was 
performed. The order 
of the interventions 
was A–C, with an 
interval of more than 
a week between the 
interventions. 10 
times backward 
training, 2 times/
week, for 5 weeks

No PSPRS, TUG, mini-
BESTest, FES, 
modified FES ABC 
scale, VAS, CBI

No The short-term 
intervention elucidated 
that Intervention B 
improved the time of 
TUG and the total 
score of the mini-
BESTest, whereas 
interventions A and C 
did not. The VAS 
revealed the largest 
improvement in 
general motor 
symptoms in 
Intervention B and 
improvements in gait 
and balance functions 
evaluated using TUG 
and mini-BESTest. 
PSPRS was also 
improved, especially in 
the subscale of the 
“Gait and midline,” 
along with the VAS 
improvement for 
general symptoms The 
FES and modified FES 
scores increased after 
long-term 
intervention. The ABC 
scale also showed an 
increase in scores: 490 
at pre-intervention and 
640 at post-
intervention. CBI 
using paired TMS of 
the left M1 and right 
cerebellum was 
improved at inter-
stimulus interval of 
3,5, and 10 ms, 
suggesting that the 
function of the right 
cerebellum was 
recovered

Not reported Not reported No The results 
demonstrates that 
backward gait 
training combined 
with synchronized 
cerebellar tACS 
can be a promising 
treatment for 
improving the 
motor symptoms 
of PSP
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Suteerawattananon 

et al. (41) 

United States

n = 1 PSP patient 

Age 62 years old, 

disease duration 

>5 years

15% body-weight 

supported treadmill 

gait training (90 min) 

3 times/week, for 

8 weeks

No BBS, TUG, 15.2-m 

(50-ft) walk test, FRT, 

LOS, spatiotemporal 

gait measures

Sometimes the 

patient carried 

a cane for 

better balance.

The BBS score 

increased from 45 at 

the beginning of the 

training to 49 at 

midpoint, but it 

decreased to 47 by the 

end of the program.

Gait speed 

increased from 

73.40 ± 10.47 cm/s 

to 

100.05 ± 0.78 cm/s 

after training. Step 

length of the left 

and right legs 

improved from 

43.76 ± 5.52 cm and 

49.66 ± 4.32 cm to 

51.27 ± 0.44 cm and 

58.74 ± 3.80 cm, 

respectively.

Static balance in 

reaching forward 

increased 

3.63 cm.

Not reported The intervention 

might be an 

appropriate 

apparatus to 

reduce falls and 

improve balance 

and mobility in 

patients with PSP.

Wittwer et al. (42) 

Australia

n = 5 PSP patients 

Age ranging from 

54–74 years old, 

disease duration 

ranging from 1.1–

12.8 years

Home-based gait and 

Step training plus 

music and auditory 

cues (60 min) 2 times/

week, for 4 weeks

No Spatiotemporal gait 

measures (GAITRite)

2 patients 

occasionally 

used walking 

aid (single 

point stick, 4 

wheeled 

frame)

Not reported Gait velocity and 

stride time 

improved for three 

patients. Stride time 

variability 

improved for four 

patients. Clinical 

significance was 

found for gait 

velocity in one 

patient.

Not reported. No The intervention 

was feasible for 

people living with 

mild to moderately 

severe PSP and was 

associated with 

improvements 

including reduced 

variability in 

temporal and 

spatial measures of 

walking.

TABLE 3 (Continued)

(Continued)
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Interventions that involve cognitive and balance exercises should 
be applied to decrease FOG in people with PSP. People with PSP have 
more fear of falling, cognitive and balance impairments, and falls 
compared to people with PD (50). Our previous studies have 
demonstrated that 36 sessions (47, 51) or 18 sessions (52, 53) of 
challenging motor-cognitive balance training improved 
spatiotemporal gait parameters, anticipatory postural adjustments, 
postural stability, as well decreased FOG severity (51) and improved 
cognitive function in people with mild-to-severe PD. These 
interventions are challenging and need to be applied individually. As 
people with PSP are at higher risk of falling compared to those without 
PSP (49, 50), these exercises would be performed individually and 
with a body-weight support system (e.g., ZeroG) (54), in an attempt 
to significantly improve gait, cognition, FOG, and balance in a safe 
way. Thus, future, randomized, clinical trials are encouraged to 
implement this motor-cognitive rehabilitation strategy.

Using a different intervention approach, Shima et al. (40) assessed 
the effect of 10 sessions of rehabilitation (backward gait training) 
combined with gait-synchronized, cerebellar transcranial alternating 
current stimulation (tACS) on the MiniBESTest score in a 70-year-
old woman with PSP-Richardson’s syndrome. Initially, the participant 
underwent short-term intervention with combined training of 
backward gait with synchronized cerebellar tACS, asynchronized, or 
sham stimulation according to the N-of-1 study design. Synchronized 
tACS training demonstrated an improvement in the MiniBESTest 
scores, whereas asynchronized or sham stimulation did not. The 
additional long-term interventions of combined backward gait 
training with synchronized cerebellar tACS demonstrated further 
improvement in MiniBESTest. Although this case study results can 
be difficult to replicate due to the sample size, it describes a novel 
approach for clinical balance in a patient with PSP-Richardson’s 
syndrome, as backward gait training with synchronized cerebellar 
tACS may be  a promising therapeutic approach due to 
pathophysiology of disease involving cerebellar dysfunction (55, 56) 
and backward falls. Robust, prospective clinical trials are needed to 
test this new approach in people with PSP.

Although clinical balance was assessed in 6 rehabilitation studies 
(30, 33–36, 40), 3 of these studies used a quasi-experimental design 
(33, 35, 36), 2 used a case report (34, 40, 44–47), and only one study 
used an experimental design (30). Thus, the effects of balance- and 
gait-focused rehabilitation for people with PSP are still unknown due 
to small sample sizes. Future powered, prospective and robust clinical 
trials are needed to investigate the effects of rehabilitation 
interventions on clinical balance of the people with PSP.

Effect of rehabilitation interventions on objective 
balance measures in PSP

The effect of rehabilitation interventions on balance posturography 
has been investigated only in 2 studies, both of which used cerebellar 
transcranial magnetic stimulation (TMS) in people with PSP (32, 37). 
Neuroimaging and neuropathology studies have revealed a reduced 
volume of the cerebellum with tau accumulation (55, 56) that may 
be responsible for impaired balance and gait in patients with PSP. Thus, 
stimulatory cerebellar TMS may be  a promising tool to improve 
balance and motor control in people with PSP.

Dale et al. showed that 10 sessions of cerebellar repetitive TMS 
(rTMS) improved backward postural stability when 2 subjects with 
PSP-RS stood on a force plate (Neurocom), as evidenced by reduction 
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of the backward center of pressure excursion (less sway in the 
posterior direction) (32). The authors also observed that the 10 
sessions of cerebellar rTMS increased cerebellar-brain inhibition by 
50% in subject 1 and by 32% in subject 2. The rTMS protocol was well 
tolerated. Cerebellar rTMS may improve postural stability, but larger 
future studies are needed. One such study is currently enrolling 
(NCT04468932).

A recent study of cerebellar TMS compared theta burst TMS with 
sham cerebellar, single session stimulation in a randomized order in 
2 different sessions in 20 people with PSP (37). Before and after 
stimulation, static balance was evaluated with instrumented (lower 
back accelerometer) 30-s trials in semi-tandem and tandem positions. 
In tandem and semi-tandem tasks, active stimulation was associated 
with increase in time without falls. In addition, postural sway area, 
velocity, acceleration, and jerkiness was improved only after theta 
burst TMS, compared to sham stimulation. These preliminary data 
suggest that cerebellar theta burst TMS has significant effect on 
postural stability in people with PSP, when assessed with mobile 
digital technology. The authors suggest that these results should 
motivate larger and longer trials using non-invasive brain stimulation 
for people with PSP. Future powered, prospective and robust clinical 
trials are needed to investigate the effects of cerebellar TMS on 
outcomes of this population.

Conclusion

Objective measurement to quantify gait and balance and effects of 
rehabilitation on gait and balance in PSP is a rapidly growing field, 
with potential uses to classify of early parkinsonism, monitoring 
progression, and documenting effects of rehabilitation. A natural 
tension exists between lab-based, comprehensive 3D motion capture 
of gait and force plate measures of postural sway and wearable inertial 
sensors (57). The former yields laboratory, gold-standard data, but is 
impractical for clinical trials. Wearable sensors are currently being 
used in clinical trials of balance and gait and have the potential for 
home-based daily life monitoring of mobility (7–9).

In this narrative review we examined: (a) cross-sectional studies 
in PSP focused on quantifying step initiation and steady state gait 
and postural sway for standing balance that relate to disease 
progression and imaging features, and (b) the use of objective gait 
and balance metrics as endpoints for rehabilitation and brain 
stimulation intervention studies in PSP. This review suggests several 
potential practical applications: for example, abnormal anticipatory 
postural adjustments when initiating gait suggest medio-lateral tasks 
should be  a focus in rehabilitation for PSP, not just backward 
postural instability, and body-worn sensors for longitudinal 
monitoring may detect relevant gait changes 3 months earlier than 
the PSP Rating Scale.

However, studies of objective measurement of gait and balance 
in PSP suffer from several limitations common to studies of rare 
diseases: small sample sizes, no pathological confirmation of 
diagnoses, lack of multi-center studies, lack of replication, lack of 
long-term follow-up, and unclear subtyping of PSP classification. A 
particular note of caution when interpreting PSP classification 
studies: it is important to consider what particular mix of PSP 
subtypes is being evaluated and if it is reasonable to lump such 

variants together for analysis. PSP-RS, PSP-P, and PSP-PGF are the 
most represented variants, and these variants can look rather different 
clinically. Little is known about any subtle gait or balance 
abnormalities that objective metrics may elucidate in other categories 
of PSP, such as possible PSP speech and language, possible PSP with 
predominant corticobasal syndrome, and other categories that are 
suggestive of early PSP. It is also important not to consider variant 
subtypes of PSP as static categories, but rather milestones along a 
progression to eventual development of probable PSP-RS.

Regarding rehabilitation interventions, due to small sample sizes, 
low statistical power and comparatively low methodological rigor 
(lack of a control group and case series) in the studies included in this 
review, the effectiveness of rehabilitation interventions on objective 
measures of gait and balance and clinical balance still needs to 
be confirmed. Although we still do not know the optimal content of 
exercise (dosage, frequency, intensity, time, and type) for people with 
PSP, the most of the studies included in this review have used gait 
training, balance training, and sensory feedback training of gait and 
balance. Thus, there is a need to understand if rehabilitation 
interventions may have positive impact in a large population with PSP 
in future randomized clinical trials.

Looking forward, longitudinal monitoring with objective gait and 
balance metrics from body-worn sensors should be incorporated into 
future clinical trials with PSP, complementing the PSPRS clinical scale 
that has traditionally been used as the primary endpoint. Studies of 
correlations between objective measures of gait and balance and 
imaging features in PSP are in early stages, but are likely to grow in the 
coming years. Exercise regimens in PSP are often modified from PD 
or stroke regimens, and development of rehabilitation targeted 
specifically to the balance and gait impairments in people with PSP 
are needed. Exercise and other intervention studies benefit from 
objective gait and balance endpoints, but need replication with 
multisite application and long-term follow-up.
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The Parkinson’s disease waiting 
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measurements, not magazines
Jay L. Alberts 1,2*, Umar Shuaib 2, Hubert Fernandez 2, 
Benjamin L. Walter 2, David Schindler 1, Mandy Miller Koop 1 and 
Anson B. Rosenfeldt 1

1 Department of Biomedical Engineering, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, 
United States, 2 Cleveland Clinic, Neurological Institute, Center for Neurological Restoration, Cleveland, 
OH, United States

Utilizing technology to precisely quantify Parkinson’s disease motor symptoms has 
evolved over the past 50 years from single point in time assessments using traditional 
biomechanical approaches to continuous monitoring of performance with 
wearables. Despite advances in the precision, usability, availability and affordability 
of technology, the “gold standard” for assessing Parkinson’s motor symptoms 
continues to be a subjective clinical assessment as none of these technologies have 
been fully integrated into routine clinical care of Parkinson’s disease patients. To 
facilitate the integration of technology into routine clinical care, the Develop with 
Clinical Intent (DCI) model was created. The DCI model takes a unique approach 
to the development and integration of technology into clinical practice by focusing 
on the clinical problem to be  solved by technology rather than focusing on the 
technology and then contemplating how it could be  integrated into clinical care. 
The DCI model was successfully used to develop the Parkinson’s disease Waiting 
Room of the Future (WROTF) within the Center for Neurological Restoration at the 
Cleveland Clinic. Within the WROTF, Parkinson’s disease patients complete the self-
directed PD-Optimize application on an iPad. The PD-Optimize platform contains 
cognitive and motor assessments to quantify PD symptoms that are difficult and 
time-consuming to evaluate clinically. PD-Optimize is completed by the patient 
prior to their medical appointment and the results are immediately integrated into 
the electronic health record for discussion with the movement disorder neurologist. 
Insights from the clinical use of PD-Optimize has spurred the development of a virtual 
reality technology to evaluate instrumental activities of daily living in PD patients. This 
new technology will undergo rigorous assessment and validation as dictated by the 
DCI model. The DCI model is intended to serve as a health enablement roadmap 
to formalize and accelerate the process of bringing the advantages of cutting-edge 
technology to those who could benefit the most: the patient.

KEYWORDS

Parkinson’s disease, technology enablement, technology integration, healthcare 
transformation, clinical integration

1. Introduction

Over the past several decades there has been an explosion in the development of technology 
and the “internet of things” aimed at providing objective and quantitative outcomes to accelerate 
the detection and improve the treatment of Parkinson’s disease (PD) (1). Despite this explosion, 
the concept of using objective and quantitative measures to characterize PD symptoms and 
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motor and non-motor function is not new. In the early 1950’s 
accelerometers were used to measure human gait (2) and in the 1970’s 
the possibility of using accelerometers to characterize human 
movement in athletes was realized (3). The pioneering studies of 
George Stelmach (4) and Erwin Montgomery (5) were some of the 
first to apply biomechanical methods to better understand the effects 
of PD on motor control and potentially aid in disease detection. 
However, after decades of development and potential promise of using 
objective, quantitative outcomes from these and other technologies to 
enhance patient care, the gold standard of PD evaluation remains a 
subjective clinical scale. The goal of this paper is to introduce a 
cohesive model of technology development and clinical integration 
that we have used to effectively transition technology from the peak 
of inflated expectations through the trough of disillusionment and 
eventually to the plateau of productivity for the benefit of patient care 
and scientific advancement.

Gartner, Inc. (Stamford, CT), the advisory and information 
technology company, proposed a hype cycle “model” that 
characterizes technology adoption (Figure  1). The hype cycle 
consists of five phases: technology trigger, peak of inflated 
expectations, trough of disillusionment, slope of enlightenment, 
and plateau of productivity. The hype cycle is intended to 
conceptualize the maturity of technology and its adoption. While 
not a perfect model, it appropriately contextualizes the use of 
technology in evaluating PD motor and non-motor performance. 
We  take the position that technology intended to aid clinical 
practice in PD has cycled between the first three phases of this 
hype cycle: an emerging technology triggers an explosion of 
enthusiasm and validation studies and maybe even a few case 
series studies are published and then that technology tumbles to its 
final resting place, the trough of disillusionment. Failure to 
integrate promising technology has stagnated the field of 
movement disorders neurology, visible by the continued reliance 
on the Unified Parkinson’s disease Rating Scale (UPDRS), 
originally developed in the 1980s (6).

The field of clinical neurology, movement disorders in particular, 
is filled with examples of technology developed to quantify a single, 
isolated PD symptom via accelerometer or other technologies (7–11). 
In a review of technology solutions for the quantification of PD motor 
and non-motor symptoms, only six of more than 500 technologies 
were deemed at a technology readiness level for the integration into 
clinical care (12); of those six, it is unclear if any have been integrated 
into routine clinical care. The inability to integrate into clinical 
workflows provides clear evidence the field must critically reassess 
the model of technology development to ensure the technology has 
the best chance to pass through the trough of disillusionment. 
Hence, the expert Movement Disorders Society panel continues to 
call for the development of technology platforms that can 
be integrated into clinical workflows (13). Previous technology often 
times is valid and reliable; however, the focus has been on technology 
development with little regard to feasibility of clinical integration (14, 
15). If the true value of technological approaches to quantifying motor 
and non-motor aspects of PD are to be realized, a fundamental shift 
in the approach to technology development and integration is 
necessary. We have created and successfully utilized the Develop with 
Clinical Intent (DCI) model, shown in Figure 2. Central to this model 
is that technology development is secondary to the clinical problem 
that the technology aims to solve.

The DCI model was used to guide the successful development and 
integration of the Multiple Sclerosis Performance Test (MSPT) mobile 
application (16). The MSPT application is the cornerstone to the 
multi-continent Multiple Sclerosis Partners Advancing Technology 
and Health Solutions (MS PATHS) which is the first example of a 
learning health system in MS (17). To date, more than 17,000 unique 
MS patients have completed the MSPT application as part of standard 
of care; approximately 88 percent of these patients have multiple 
assessments over time which has resulted in more than 93,000 
quantitative assessments of motor and non-motor function in 
approximately six years. Data from the MSPT application has 
informed and augmented the care of the individual patients, enhanced 

FIGURE 1

Representation of the Gartner Hype Cycle for technology with the corresponding components of the Develop with Clinical Intent (DCI) model. The 
blue represents the Technology Development and Validation Phase of the DCI model; the yellow represents the Clinical Viability and Design Iteration 
Phase; and green represents the Full-scale Clinical Integration.
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care of MS patients from a population health perspective (18–21), and 
reduced provider documentation time in the electronic health record 
(22). Our experience in developing the MSPT application and 
involvement with the MS PATHS initiative was leveraged to create the 
PD-Optimize application for deployment into the Parkinson’s disease 
Waiting Room of the Future for PD (PD-WROTF).

2. Operationalizing the Develop with 
Clinical Intent model to create the 
Parkinson’s disease waiting room of 
the future

Building the PD-Optimize application and PD-WROTF was 
initiated in 2019; following pandemic related delays it was integrated 
into clinical practice and the Center for Neurological Restoration at 
the Cleveland Clinic in 2021. The remainder of this manuscript will 
detail the DCI model and processes, experience with the PD-WROTF 
and how analytics and clinical experience are shaping the 
development of new technology to better understand the effects of 
PD on non-motor performance and completion of instrumental 
activities of daily living (IADLs). It is envisioned that the DCI model 
serve as a roadmap for the development and integration of technology 
into routine clinical practice. The DCI model and decision-making 
process has three phases: (I) Technology Development and Validation 
(Figure 2, blue section), (II) Clinical Viability and Design Iteration 
(Figure 2, yellow section) and (III) Full-scale Clinical Integration 
(Figure 2, green section).

2.1. Phase I: technology development and 
validation

The critical first step of the DCI model is to bring providers, 
patients, engineers, IT professionals and data scientists together to 
clearly identify: What is the clinical problem to be solved? For PD, the 
clinical problem is well-known and has been expressed over multiple 
decades: how can one comprehensively and objectively quantify PD 
motor and non-motor symptoms for use in the long-term tracking of 
disease progression to optimize the clinical management of PD 
patients? While this clinical problem may be  rather obvious to 
providers or scientists who are immersed in PD clinical care or 
investigation, it is likely not evident to those who will be developing, 
testing and evaluating, integrating and eventually using the 
technology. Having critical and open conversations with experts in 
their respective fields will ensure all important knowledge and 
experience will be evaluated and weighed to ensure that the proposed 
technology is the most suitable, scalable and sustainable to solve the 
clinical problem.

While the problem of quantifying PD motor and non-motor 
function is well-known to PD providers and researchers, software 
developers and IT professionals are likely not familiar with the 
problem. The Clinical Workflow Analysis and Technology Selection is 
an important early step that must have representation from all 
stakeholders. The active participation of all parties is necessary to 
ensure all teams have a clear understanding of the problem and how 
they can leverage their respective expertise to identify a technology 

FIGURE 2

The Develop with Clinical Intent Model and decision-making points. Phase I, the blue section, represents the steps that must be considered during the 
initial phase of Technology Development and Validation. Once validation has occurred the technology is evaluated for Viability of Clinical 
Implementation in Phase II (represented by yellow decision points). Should the technology be viable for clinical integration, Full-scale Clinical 
Integration is Phase III (green section). HIPPA, Health Insurance Portability and Accountability Act; QA, Quality assurance.
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solution that can be scaled and sustained. It is necessary to engage 
engineers, software developers and IT specialists, including those 
affiliated at the enterprise level, in this initial phase as these 
preliminary discussions reinforce the concept that the project is not 
about the technology, rather that technology should enable the 
practice of better and more efficient medicine to benefit the patient. 
Technology Selection discussions between clinicians, researchers, and 
engineers are critical in this early phase of the DCI model as 
identifying the most appropriate technology to address the problem 
is critical. Our approach to the Technology Selection phase is to 
empower the engineers and software developers to lead this phase as 
they are familiar with the strengths and weaknesses of a given 
technology. If this phase is executed properly, the software and 
hardware developers will often propose technology that is typically 
“cutting edge,” but may not be “bleeding edge.” This phase takes time, 
commitment and discipline. Clinicians typically want to implement 
tomorrow, researchers want to use bleeding edge technology and if 
developers and IT are not actively participating in this phase, they 
want to finish the application and move to the next project.

Once the technology has been agreed upon, the Clinical Workflow 
Analysis phase is undertaken. The goal of this phase is to immerse the 
developers and engineers with all providers in the clinic to understand 
the current clinical workflow. Ideally, these teams will spend multiple 
days together initially and make frequent visits to the clinical setting 
during the technology development phase. Understanding the existing 
patient flow and how information is transmitted or not transmitted 
between nurses, physicians and patients will provide insight into the 
optimal integration points or may reveal that the technology can only 
be used if there is a reimagining of the clinical workflow.

A necessary precursor to the adoption of technology into the 
clinical workflow is provider trust of the data generated by the new 
technology. Providers must trust that the technology is accurate, 
reliable and provides data that will enhance treatment. During the 
Technology Development, Quality Assurance (QA) Testing, and 
Validation Testing, trust is established between the clinical team 
members, the technology team members, and the technology itself. 
We contend that the most appropriate technology validation study 
design is one in which outcomes from the proposed technology are 
compared to a gold standard biomechanical or non-motor outcome if 
possible. Notably, it is contended that the correlation of a measure of 
motor function to a clinical rating within the MDS-UPDRS III is not 
a gold standard comparison of motor performance. While 
MDS-UPDRS III items are the clinical gold standard for clinical use, 
they are not objective and lack resolution and a degree of quantification 
to serve as the best validation comparison to a new technology (23). 
If the outcome from the technology simply correlates with a subjective 
clinical rating, one must question if that is the best use of technology 
as providers will likely reject the technology as it is not providing new 
information that they could not derive from the traditional clinical 
assessment. Following rigorous validation, an analysis to understand 
how the outcomes of the technology may be related to clinical ratings 
to facilitate clinical understanding and adoption is recommended.

Once the team is aligned on the clinical problem, understands 
clinical workflow challenges and opportunities and validation strategy 
is established, the inevitable and unavoidable Budgetary and Personnel 
Requirements discussion must occur. Each institution will have 
resources unique to them that will shape these discussions. Seeking 
philanthropy for the support of a clinical technology integration 

project may an effective strategy or, as in the case of the MS PATHS, 
collaboration with a pharmaceutical partner. It is important to 
consider not only the technical development and validation of the 
potential technology, but also ongoing support in terms of 
maintenance, data storage, hardware and cost of integrating data into 
the electronic health record (EHR). The PD-Optimize and 
PD-WROTF were largely supported by philanthropic support.

Although it may seem premature during the initial development 
and validation phase, it is valuable to engage and contemplate the 
current HIPPA and Regulatory Considerations and future regulatory 
claims of the technology. During the initial phases of development, the 
most important activity is keeping and maintaining comprehensive 
documentation. Notably, documenting user requirements, technical 
requirements, software versioning, hardware versioning and quality 
assurance testing will save time and effort when deploying to the clinic 
as this information will be requested by enterprise IT and EHR teams. 
Further, any documentation of human factors testing, no matter how 
informal, will be important should one decide to pursue regulatory 
approval in the future.

2.2. Phase II: clinical viability and design 
iteration

Once the technology is at the point of moving out of the 
development phase, a piloting of the solution is necessary (Figure 2, 
yellow section). It is recommended that the beta version of the 
software/hardware should be tested within the clinical practice of one 
of the providers engaged in Phase I of the DCI model to determine if 
the technology is: Viable for Clinical Implementation. If the technology 
is not mature enough to meet the viability criteria (e.g., does it work 
reliably, is the user interface appropriate, can patients complete, are 
the data outputs valid and reliable, etc.), then one must determine if 
more fundamental research or validation or development is necessary. 
As shown in Figure  2, if the answer to this question is No, the 
technology should re-enter the development cycle and the 
stakeholders iterate on design or user interface or whatever factor(s) 
has been identified as a barrier to clinical integration. If more 
fundamental research is needed, one must critically evaluate if the 
current technology is capable of addressing the question or if 
alternative or new technology should be considered.

2.3. Phase III: full-scale clinical integration

If the technology is determined to meet clinical viability 
requirements, Full-scale Clinical Integration follows (Figure 2, green 
section). Prior to this implementation, the technology must 
be industrialized or hardened to ensure it is reliable and does not 
require a full-time engineer to monitor and troubleshoot. It is at this 
point the initial time and effort spent with the enterprise IT and EHR 
groups will pay dividends as their approval is necessary for the 
introduction of a new technology and for the integration of outcomes 
into the EHR. The transition from clinical viability to full-scale clinical 
integration is tenuous and failure to plan for this transition from Day 
1 increases the probability of the technology getting stuck in the 
trough of disillusionment. An enterprise approved plan for continuous 
support and maintenance of the technology must be contemplated 
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and agreed upon prior to clinical implementation. Clear 
communication with enterprise IT to clearly understand who will 
be responsible for perpetual support and maintenance is critical. It is 
also important to facilitate continuous communication between the 
data analytics team, IT team and medical providers after clinical 
integration as it relates to the display of data outcomes and their 
formal analyses. While many EHRs are able to ingest data from mobile 
devices or external sources, the graphing and visual display capabilities 
of the EHR are far from that of typical analytic or statistical software 
packages. In our experience, integration with EHRs should be done as 
close to natively as possible. Native integration typically limits data 
exchange to raw data; however, it lends itself to reliability and good 
clinical utilization as providers are able to minimize the number of 
clicks between screens or data sources.

The successful clinical integration and utilization of the 
technology is a tremendous accomplishment: however, in order to 
sustain use of the technology proper utilization of these data are 
necessary. One must remember that patient appointments are likely a 
little longer to complete the technology assessment. It is critical that 
patients are informed of these changes in clinical workflow prior to 
their appointment so they know what to expect and can plan to bring 
their eyeglasses or hearing aid. By asking patients to complete these 
tests prior to their appointment there is an implied importance of 
these assessments. It is imperative that the provider review these data 
with the patient as part of their clinical visit. Failure to review the data 
with the patient will result in the patient feeling these data are not 
important and they are likely to not complete in future visits (24).

Finally, clinical interpretation and data analytics should be coupled to 
identify new questions and potentially trigger the revision of the 
technology or possibly trigger the development of new technology. This 
encourages continued use and improvement of the DCI model.

3. Experience with the PD waiting 
room of the future (PD-WROTF)

The Center for Neurological Restoration (CNR) is a PD Center of 
Excellence that serves Northeast Ohio. Across all of its locations, the 
CNR examines and treats over 10,000 unique patients annually from 
across the globe. The DCI model was used to create the PD-WROTF 
which aimed to gather objective and quantitative data to better 
understand, track and treat the motor and non-motor effects of 
PD. The PD-WROTF was introduced into clinical practice in two 
stages. The first stage was in late 2019. To evaluate the acceptance of 
using technology, PD patients completed quality of life and symptom 
severity questionnaires via an iPad after checking in for their 
appointment. These questionnaires were completed by the patient in 
the waiting area. Information from the questionnaires was then 
automatically uploaded to a HIPPA compliant cloud, hence the 
importance of getting enterprise IT and cybersecurity engaged early, 
and automatically integrated into a flowsheet within the EHR. The 
provider was able to review this information and discuss with the 
patient at that visit. The collection of these patient reported outcomes 
served as a “soft launch” to determine if technology could 
be successfully implemented into a patient visit without disrupting the 
overall clinical workflow and gather patient and clinician feedback.

Early in the Technology Selection and Technology Development 
discussions, there were valid concerns from providers, software 
developers and IT staff that individuals with PD tend to be older and 

exhibit physical limitations such as bradykinesia, tremor or cognitive 
impairments that would result in poor assessment compliance and 
high abandonment rates. To mitigate these concerns, a group of PD 
patients were engaged in the development process and assisted in 
developing instructions for the test that were understandable and that 
the user interface and experience contemplated the effects of potential 
motor and non-motor dysfunction. Early engagement of the end user 
has been critical in ensuring the assessment modules are completed as 
intended and that the outcomes are measuring the function of interest.

Another key concern from clinicians was the amount of oversite 
that would be required to ensure the patients were completing the 
modules as intended. During the Clinical Workflow Analysis and 
Technology Selection, the clinicians voiced the importance of self-
administered modules to minimize staffing requirements and 
maximize workflow efficiency. The clinical and software teams 
addressed this need through the development of self-administered 
modules, ultimately resulting in one medical assistant overseeing as 
many as five PD patients simultaneously completing the PD-Optimize 
app. The cognitive modules include a practice session to ensure the 
patient understands the task. Algorithms were created during the 
Technology Development, Quality Assurance (QA) Testing, and 
Validation Testing to ensure understanding; if the patient makes too 
many errors on the practice portion, they are re-directed back to the 
instructions. The algorithms went through a rigorous quality 
assurance testing. This process ensured full understanding of the task 
prior to assessment initiation. Furthermore, the clinicians felt 
empowered that their clinical integration concerns had been heard 
and collaboratively addressed in the initial phase of the project.

Based on the success of this initial launch and with appropriate 
adaptions from clinician and patient feedback, the full suite of cognitive 
and motor assessment modules of PD-Optimize was developed and 
integrated into CNR clinical workflow for all PD patients. In 2021, four 
assessment modules, screenshot shown in Figure 3, and the MyHealth 
patient demographics questionnaire were completed and incorporated 
into the clinical workflow. Similar to the MS PATHS, assessment modules 
are delivered to the patient via iPad. Two motor and two non-motor 
modules are self-administered by the patient. Upper extremity function 
is evaluated with the Manual Dexterity Test (16, 22, 25), an electronically 
enabled version of the Nine-Hole Peg Test (26, 27). Lower extremity 
performance is monitored using the Walking Speed Test, an electronic 
adaptation of the 10 meter walk test (28). From a non-motor perspective, 
two validated and normed assessments of cognition as well as a quality of 
life assessment are gathered. Information processing is evaluated using the 
Processing Speed Test (PST) (29–31) adapted from the Symbol Digit 
Modalities Test (32). The Visual Memory Test (VMT) evaluates episodic 
memory and delayed memory (31). The Quality of Life in Neurological 
Disorders (Neuro-QoL) is assessed as a patient-reported quality of life 
metric for adults with neurological disease (33). Based on our experience 
with implementation of the MSPT application (34), an important aspect 
of engaging patients in using technology for the collection of objective and 
quantitative data by completing assessments they are likely unfamiliar 
with is that the technology must serve their immediate needs as well. To 
address this need, patients are asked one open text response question in 
the MyHealth module: “What is most important item(s) you want to 
discuss with your care team today?” The response to this question is 
automatically populated at the top of the patient’s chart within the EHR 
and it is the first information shown to the clinician. Querying the patient 
about their most important concern has facilitated a more focused clinical 
visit for the patient and allows the provider to quickly see which patients 
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on their schedule may have additional needs and make preparations in 
advance such as allocating more time to an encounter or further 
investigation into the patient’s chart and data prior to the encounter. 
Having providers engage patients around this question often facilitates a 
transition to a discussion about the objective data gathered. As we have 
demonstrated in MS-PATHS, these data bring the patient and provider 
together as patient’s report they are now both “speaking the same 
language” (22, 34).

4. Patient and data workflow

As illustrated in Figure 4, when a patient arrives to the CNR, they 
check in at the front desk like a typical appointment. A medical 
assistant (MA) escorts the patient to the PD-WROTF. Following 
standard vital sign collection, the MA selects the patient from the 
schedule on the iPad and gives the iPad to the patient for them to 
complete the assessment modules. The MyHealth demographics 
questionnaire confirms identify from the patient, gathers 
demographics and instructs the patient on how to complete each 
assessment and ensures the patient can perform basic tasks on the 
iPad. The patient then completes the four cognitive and motor 
assessments, quality of life and demographic modules and returns the 
iPad to the MA. The patient is then taken to an exam room and 
proceeds with the medical appointment. Results from PD-Optimize 
are immediately available to the provider in the EHR for review, 
discussion with the patient and automatically populate clinical notes.

In addition to the PD-Optimize application on the iPad, two 
servers support the application. The cloud structure and data flow are 
shown in Figure 5. The architecture was discussed and agreed upon 
between the development team, cybersecurity and enterprise IT early 
in the development process. While these initial meetings seemed 
premature, they were critical in informing the security features that 

the application had to adhere to and the approach to encrypting the 
data when transmitting to the cloud and EHR. Briefly, the cloud-based 
PD-Optimize server, within the Amazon Web Services (AWS) 
environment stores all incoming data and outgoing assessment results. 
The iPad application communicates directly with the PD-Optimize 
server to retrieve information such as the CNR’s daily schedule and 
patient demographics, and to send assessment results to the 
PD-Optimize server to be stored and sent to the EHR. The second 
server, the Gateway, communicates bidirectionally with Cleveland 
Clinic’s EHR.

The PD-Optimize server communicates with the iPad to 
display the CNR’s daily schedule to the MA so they can select the 
correct patient before giving the iPad to the patient. To retrieve 
data from the EHR, the PD-Optimize server requests data from 
the Gateway, which in turn requests data from EHR’s Interconnect 
platform through an HTTPS web service. Interconnect uses a 
custom protocol to securely communicate directly with the 
primary EHR database. Next, the data from the EHR is 
transformed into a JSON file and returns the data in response to 
the gateway’s web service call. The gateway then returns the data 
to the PD-Optimize server. When an iPad requests the schedule 
from the PD-Optimize server, it returns the most recent EHR 
data from the gateway server.

When a patient completes the assessment modules, the 
PD-Optimize application immediately uploads the results as JSON to 
a URL on the PD-Optimize server. The PD-Optimize application 
stores the assessment results to a secure research database to make the 
data easily available and preserved. The PD-Optimize server also 
sends the data to the gateway server, which sends the data to the EHR 
for storage in the EHR database as flowsheet data. Because the 
assessment results are stored in the EHR in real-time, providers can 
view the results in the EHR during the visit, compare with past results, 
and include the most recent results in their notes.

FIGURE 3

PD-Optimize modules presented to PD patients in the Parkinson’s disease – Waiting Room of the Future (PD-WROTF). The middle column illustrates 
the home page initially presented to the patient showing the modules that will be completed. The modules are self-administered at the patient’s own 
pace with the ability to repeat instructions to ensure understanding. The Medical Assistant has the option to de-select a given module if a patient 
would not be able to complete (e.g., a patient who is non-ambulatory may not complete the Walking Speed module). Screenshots of the Visual 
Memory Test, Manual Dexterity Test, Processing Speed Test, and the Walking Speed Test are displayed in the left and right columns. The MyHealth 
questionnaire asks the question  “What is most important item(s) you want to discuss with your care team today?” The Neuro-QoL is a patient-reported 
quality of life metric for adults with neurological disease.
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FIGURE 4

Parkinson’s disease-Waiting Room of the Future (PD-WROTF) at the Cleveland Clinic Center for Neurological Restoration. Following check-in at the 
front desk, the patient immediately enters the WROTF where they are greeted by a Medical Assistant (MA). The MA performs a standard vital sign 
assessment and medication reconciliation. The patient then proceeds to one of four assessment stations where an ITD-managed iPad is housed. The 
MA selects the patient’s name from the daily list and ensures the volume is appropriate via disposable headphones. Through the use of auditory and 
visual instructions, the patient progresses through each module of PD-Optimize. The modules are all self-administered and the single MA oversees the 
entire room, including the vitals station. Following completion of PD-Optimize, all data are automatically uploaded to the electronic health record 
(EHR) and the patient is escorted to their exam room.

FIGURE 5

PD-Optimize cloud structure and data flow. Patient (1) inputs data using PD-Optimize application (2) and files are instantaneously uploaded to the 
PD-Optimize cloud, a HIPAA compliant, secure AWS environment (3). Files are transferred in JavaScript Object Notation (JSON) format. Files can 
be transferred to a web server, a cloud-based database or exported via a gateway to allow integration into the medical record (4). Outside of the 
medical record, the health care professional (5) can access patient data via the PD-Optimize application (6) or a secure web portal (7). API application 
programming interface, EMR electronic medical record, AWS Amazon Web Services, HCP health care professional, HIPAA Health Insurance Portability 
and Accountability Act, HL7 Health Level-7, SOAP Simple Object Access Protocol.
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As of January 1, 2023 more than 2,000 unique patients have 
completed the PD-Optimize application within the WROTF. Nearly 
300 patients have completed PD-Optimize at two or more clinical 
visits. On average, 20 min is required to complete the assessments, 
including demographics confirmation.

We are currently assessing the response of dopaminergic therapy 
on bradyphrenia by comparing PST before and after a change in 
medication. Considering the PD WROTF is still in its nascence, much 
of its potential in better understanding PD and the development of a 
biomechanical biomarker will emerge as more patients complete the 
assessments over repeated clinical visits. Nevertheless, from data 
collected to date we have surmised that PD results in specific cognitive 
issues. Specifically, deficits in processing speed and executive function 
have been observed at rates greater than clinicians anticipated and 
have led clinicians to question if cognitive deficits observed in the 
PD-Optimize application map onto difficulties performing 
instrumental activities of daily living (IADL) in a ‘real-world’ 
environment. Fundamentally, these initial insights in cognitive 
functioning have served as a technology trigger in terms of better 
understanding how the PD-Optimize outcomes map onto PD patients’ 
performance of IADLs. These discussions between clinicians and 
researchers have cascaded a New Technology Trigger (Figure 2) that 
aims to leverage the capabilities of virtual reality (VR) to evaluate 
IADL performance in PD.

5. Peak of inflated expectations? 
Cleveland Clinic virtual reality 
shopping platform

Patients, providers, hospitals and regulatory bodies are 
increasingly interested in outcome measures that quantify the effects 
of PD motor and cognitive symptoms in meaningful daily actions (13, 
35–37). Technological advances, like PD-Optimize, provide the 
opportunity to measure motor and cognitive symptoms for more 
precise and meaningful measures of PD symptoms. The assessment of 
IADLs are necessary to systematically evaluate the overall effectiveness 
of an intervention in a salient environment or determine the potential 
of an intervention to slow disease progression.

Cooking, crossing a busy street, getting groceries and driving a car 
(38) are common IADLs that may be compromised in PD patients. 
IADLs are necessary for independent living and community 
integration (39), and frequently require the simultaneous performance 
of two attention-demanding tasks (e.g., motor-cognitive, motor-motor 
or cognitive-cognitive) (40). It is not realistic to avoid dual-task 
conditions, as they are necessary to complete the vast majority of daily 
household and community activities (41, 42). Although dual-task 
declines associated with PD clearly impact IADL performance, 
traditional clinical motor evaluations (43–45) and neuropsychological 
tests (46, 47) are insufficient to evaluate IADLs as they parse cognitive 
and motor function into distinct components or constructs without 
consideration of their interplay. Innovative virtual reality technology 
provides a method of delivering ecologically valid digital content for 
the patient to interact with and quantifying those interactions using 
rigorous biomechanical measures.

Based on feedback from providers utilizing the PD-WROTF 
technology, we identified a gap in the efficient, systematic and 

quantitative approach to quantifying PD IADL performance. 
We assembled a team of biomedical engineers, software developers, 
physical therapists, occupational therapists, and neurologists to create 
a virtual reality shopping task that had all of the key aspects of motor, 
cognitive and cognitive-motor components to understand how PD 
patients perform IADLs. As detailed previously (48), state of the art 
VR technology was combined with an omnidirectional treadmill 
which allowed PD patients to physically navigate a virtual grocery 
store. The Cleveland Clinic Virtual Reality Shopping (CC-VRS), 
shown in Figure 6, aims to objectively quantify the performance of 
IADLs in PD patients. The CC-VRS platform addresses the clinical 
gap by providing a standardized, systematic, objective and quantitative 
approach to characterizing IADL capabilities in older adults and those 
with neurological disease. Briefly, the participants complete a 3-min 
tutorial to ensure understanding of walking on an omnidirectional 
treadmill and hand trackers (used to display the list and retrieve 
objects), and to expose the participant to the VR grocery store 
environment. In order to advance to the CC-VRS assessment, 
participants must demonstrate proficiency (automatically and 
objectively measured by the application) in walking, viewing the 
grocery list, and selecting the item on the list in the tutorial. Once 
deemed proficient, the patient is progressed to two different CC-VRS 
scenarios. The Basic CC-VRS requires the patient to ambulate through 
a grocery store and select 3–5 items from their list. The Complex 
CC-VRS has the same requirements as the Basic and additionally the 
patient encounters motor challenges such as narrowed aisles and other 
shoppers along the path as well as cognitive challenges such as 
identifying the more cost-effective sale item. Based on preliminary 
usability testing and data, the Basic and Complex CC-VRS Scenarios 
can be completed in approximately 12–20 min total.

The CC-VRS is currently being used in two research projects 
aimed at: (1) identifying the neural signature underlying freezing 
of gait in advanced PD patients with deep brain stimulation 
systems and (2) validating performance on the CC-VRS in a 
group of young adults, older adults, and individuals with 
PD. These research projects have been critical in supporting the 
development of the VR technology and validation of outcomes 
relative to overground walking. We are currently evaluating the 
clinical viability of deploying this technology by conducting an 
initial pre-deployment study in a regional family health center. 
As part of this validation project, 400 healthy older adults will 
complete the CC-VRS as part of their annual Medicare Wellness 
Assessment. The outcomes of this project will provide valuable 
clinical experience and normative healthy older control data that 
can be used in better understanding the precise effects of PD and 
will inform whether the CC-VRS will be employed to all CNR PD 
patients or if a subset of the population would be  more 
appropriate, such as those under consideration for deep brain 
stimulation as the CC-VRS provides and ecological assessment 
of dual-task functioning, which is known to be affected by deep 
brain stimulation (49).

6. Moving through the hype cycle

Technology continues to be developed at a dizzying pace, and 
health care settings continue to be  slow to adopt and adapt this 
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technology to better serve patients during routine clinical care. The 
DCI model outlines a potential path for technology development that 
is scalable and adaptable. Developing technology for clinical 
integration may at times feel like trying to untie a Gordian knot. 
Unfortunately, the DCI model does not have a secret Alexander the 
Great sword, however, the model should assist in the time, personnel, 
expense, outreach, and other resources necessary for meaningful 
technology development and integration. The DCI model is not a 
formula, rather it is intended to serve as a roadmap to work through 
the fluid process of integrating technology into clinical workflows. 
While the specifics may look different depending on factors such as 
patient population, healthcare system, and resources, the overarching 
principles are applicable to many sectors across the healthcare system. 
It should be acknowledged by all stakeholders that not all technologies 
will progress to clinical integration using the DCI model; some 
technologies will not be able to progress out of the peak of inflated 
expectations or the trough of disillusionment. This is expected, and 
even encouraged, to ensure the technologies that do advance to 
clinical integration have been rigorously evaluated and truly enhance 
the provider and patient experience.

There have been trials and tribulations in the implementation of 
the PD-WROTF. The group ownership of the project within the DCI 
model provided a strong sense of ownership in which the failures and 
success of the project were mourned and celebrated by the entire team. 
We have now reached a point where the technology has addressed a 
clinical problem and the patient-provider relationship has 
been strengthened.
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FIGURE 6

A depiction of the Cleveland Clinic-Virtual Reality Shopping (CC-VRS) platform. The patient wears a VR headset and physically walks on an 
omnidirectional treadmill to navigate through a virtual grocery store. The patient follows a green path and is required to gather five items along this 
path. Various obstacles (e.g., narrowing of aisles and avoiding spills) and other shoppers must be avoided while performing the CC-VRS. Biomechanical 
data are derived from position data provide by the 3D motion trackers on the feet and Remote Controllers to characterize gait and upper extremity 
prehension. A first-person view of the user is provided to the experimenter via the Control Computer and Monitor.
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Background: Fragile X-associated tremor/ataxia syndrome (FXTAS), a 
neurodegenerative disease that affects carriers of a 55-200 CGG repeat expansion 
in the fragile X messenger ribonucleoprotein 1 (FMR1) gene, may be  given an 
incorrect initial diagnosis of Parkinson’s disease (PD) or essential tremor (ET) due 
to overlapping motor symptoms. It is critical to characterize distinct phenotypes 
in FXTAS compared to PD and ET to improve diagnostic accuracy. Fast as possible 
(FP) speed and dual-task (DT) paradigms have the potential to distinguish 
differences in gait performance between the three movement disorders. 
Therefore, we sought to compare FXTAS, PD, and ET patients using quantitative 
measures of functional mobility and gait under self-selected (SS) speed, FP, and 
DT conditions.

Methods: Participants with FXTAS (n  =  22), PD (n  =  23), ET (n  =  20), and controls 
(n  =  20) underwent gait testing with an inertial sensor system (APDM™). An 
instrumented Timed Up and Go test (i-TUG) was used to measure movement 
transitions, and a 2-min walk test (2MWT) was used to measure gait and turn 
variables under SS, FP, and DT conditions, and dual-task costs (DTC) were 
calculated. ANOVA and multinomial logistic regression analyses were performed.

Results: PD participants had reduced stride lengths compared to FXTAS and ET 
participants under SS and DT conditions, longer turn duration than ET participants 
during the FP task, and less arm symmetry than ET participants in SS gait. They also 
had greater DTC for stride length and velocity compared to FXTAS participants. 
On the i-TUG, PD participants had reduced sit-to-stand peak velocity compared 
to FXTAS and ET participants. Stride length and arm symmetry index during the 
DT 2MWT was able to distinguish FXTAS and ET from PD, such that participants 
with shorter stride lengths were more likely to have a diagnosis of PD and those 
with greater arm asymmetry were more likely to be diagnosed with PD. No gait 
or i-TUG parameters distinguished FXTAS from ET participants in the regression 
model.

Conclusion: This is the first quantitative study demonstrating distinct gait and 
functional mobility profiles in FXTAS, PD, and ET which may assist in more 
accurate and timely diagnosis.
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Introduction

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a 
progressive neurodegenerative disease that affects carriers of a 
‘premutation’ size (55–200) CGG repeat expansion in the fragile X 
messenger ribonucleoprotein 1 (FMR1) gene (1). Although the 
characteristic motor features are intention tremor and cerebellar gait 
ataxia, there is high phenotypic variability with some carriers also 
demonstrating parkinsonism, neuropathy, psychiatric symptoms, and/
or executive function deficits and dementia (1–5). Because FXTAS was 
first described relatively recently (1) and has high phenotypic 
variability and overlap of symptoms with other more well-known 
movement disorders, patients are frequently given an incorrect initial 
diagnosis (6). This is especially the case when patients are seen by a 
primary care physician or general neurologist, or at a non-Fragile X 
clinic where FXTAS may not be readily recognized. At onset, FXTAS 
is most commonly diagnosed as Parkinson’s disease (PD) or essential 
tremor (ET), due to overlapping motor symptom profiles and lack of 
physician awareness of the disorder (6). Inaccurate diagnosis delays 
the initiation of targeted treatments and the provision of genetic 
counseling, negatively impacting health outcomes for patients and 
their families. Distinguishing the FXTAS disease profile, in terms of 
gait and functional mobility, from those of PD and ET may be critical 
in assisting with the differential diagnosis. We previously reported that 
tremorography using an inertial sensor system was able to distinguish 
between these three movement disorders, where higher kinetic tremor 
was found in FXTAS compared to PD patients and more bradykinesia 
was found in FXTAS compared to ET patients (7). Thus, quantitative 
measures of the prominent motor features of FXTAS, namely kinetic 
tremor and cerebellar gait ataxia, captured via wearable sensor 
technologies are likely to be  beneficial in assisting clinicians with 
diagnostic accuracy.

Gait impairments are a common feature in FXTAS that can lead 
to significant disability. Our group first characterized the gait deficits 
in a small cohort of FXTAS participants during self-selected (SS) 
speed walking using an instrumented Timed Up and Go test (i-TUG) 
and found deficits in gait speed, rhythm, cycle phase, and variability 
as well as movement transitions compared to healthy controls (8). PD 
participants have shown similar gait deficits during SS walking using 
the i-TUG (9–15) and GAITRite® walkway (16), with the addition of 
abnormalities in the domain of gait asymmetry in arm swing range of 
motion and stride length (9). Reduced stride velocity and cadence and 
increased double support time and gait asymmetry have been found 
in ET participants compared to controls during standard walking on 
the GAITRite® walkway (17–19). Our group recently used an 
instrumented 2MWT under SS, fast as possible (FP) speeds, and with 
the addition of a cognitive dual task (DT) in FXTAS and found 
reduced stride length and velocity, swing time, and peak turn velocity 
and greater double limb support time and number of steps to turn as 
compared to controls under all three conditions. During the FP 
condition, stride length variability was increased, and cadence was 

reduced in FXTAS participants. Additionally, stride velocity variability 
under FP gait was significantly associated with the number of self-
reported falls in the last year (20). Studies investigating FP walking in 
PD report reduced stride length and stride velocity and increased 
double support time compared to controls (21–23). No studies to date 
have examined gait under fast speed walking conditions in ET. DT 
cognitive and motor paradigms have been used previously to explore 
the interplay between cognition and gait in PD (24), ET (18), and 
FXTAS (20). PD participants have shown decreased gait velocity, 
stride length and swing phase time, and increased gait variability 
during DT gait testing (25–27), and similar interference effects have 
been seen in ET (28). We previously found greater dual task costs 
(DTC) of a verbal fluency task on peak turn velocity in men with 
FXTAS compared to women with FXTAS and controls (20). However, 
the gait profiles of FXTAS, PD, and ET patients have never been 
directly compared. This information is critical to inform clinicians of 
the distinct phenotypes in FXTAS compared to PD and ET, and aid in 
accurate diagnosis. Therefore, the objective of this study was to 
compare the gait profiles in FXTAS, PD, and ET using quantitative 
measures of gait during SS and FP speeds, and a DT cognitive-motor 
condition to determine whether these measures may be sensitive for 
distinguishing FXTAS from PD and ET.

Methods

Participants

FXTAS, PD, and ET participants were recruited through the 
Parkinson Disease and Movement Disorders Clinic at Rush University 
Medical Center (RUMC). Inclusion criteria for participants with 
movement disorders were: (1) A diagnosis of only one of these 
disorders made by a movement disorders neurologist at RUMC, (2) a 
FMR1 gene test showing one allele with 55–200 CGG repeats for 
FXTAS participants and < 55 repeats on both alleles for PD and ET 
participants, (3) symptom onset at ≥ age 50, (4) mild to severe tremor, 
and (5) mild to moderate parkinsonism for PD participants with 
Hoehn & Yahr staging of PD score ≤ 3 (29). Exclusion criteria were: 
(1) A prior history of stroke with focal neurological deficit or any 
other neurological or muscular disease, (2) seizure disorder or past 
head trauma resulting in structural brain damage, (3) deep brain 
stimulation surgery, (4) presence of dyskinesia on neurological exam, 
and (5) clinical diagnosis of dementia as determined by the neurologist 
and/or neuropsychologist. Twenty healthy control subjects were 
recruited from RUMC or from the community. Inclusion criteria 
were: (1) a normal neurological examination, and (2) a FMR1 gene 
test showing both alleles with <55 CGG repeats. Exclusion criteria 
were the same as for the FXTAS, PD, and ET participants, but also 
included a significant history of tremor, balance problems, falls, or 
dizziness. All participants were required to be between 50 and 90 years 
of age; this range was chosen because FXTAS typically develops after 
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age 50. This study was approved by the RUMC Institutional Review 
Board, and all participants gave written informed consent.

Gait assessments

Quantitative gait analysis was performed during a 25-meter 
instrumented 2-min walk test (2MWT) using the APDM Mobility 
Lab™ six inertial sensor system (APDM™; Oregon; version 1) under 
three conditions: (1) self-selected speed (SS), (2) fast as possible speed 
(FP), and (3) dual-task (DT). The DT condition involved the 
participant performing a verbal fluency task (Animal Naming) during 
the SS 2MWT. FP and DT conditions were used to create gait “stress” 
conditions that might amplify differences between the three 
movement disorders under study. Variables were selected from the five 
key gait domains thought to reflect independent features of neural 
locomotor control in older adults (30, 31), including (1) gait pace 
(stride length and velocity), (2) rhythm (cadence), (3) gait variability 
(stride length, stride velocity, and cadence variabilities), (4) gait cycle 
phase (percentage of gait cycle spent in double limb support and swing 
phases), and (5) gait asymmetry [stride length asymmetry and arm 
symbolic symmetry index (32)]. Stride length asymmetry was 
calculated as a percentage via the following formula: 

( )
( )

left right

left right

stride length stride length
100.

max stride length ,stride length

−
×  Higher values of both 

gait asymmetry variables indicate greater asymmetry. Intra-individual 
gait variability was determined by the coefficient of variation 

(standard deviation

mean
×100)  for each gait parameter. A movement 

transition domain consisting of turn duration, and number of steps to 
turn was also created as previously described (8) to ascertain whether 
these were different among the three movement disorders. The level 
of interference of the cognitive DT on gait performance, or the dual-

task cost (DTC), was calculated as DT SS

SS

−
×100 . In addition, a 

validated and reliable instrumented Timed Up and Go (i-TUG) was 
performed six times as previously described (8) and the mean values 
for sit-to-stand and turn-to-sit measures were calculated.

Cognitive assessments

Four measures of executive function were administered: the 
Behavioral Dyscontrol Scale II (BDS-II), the Controlled Oral Word 
Association Test (COWAT), the Animal Naming test, and the Symbol 
Digit Modalities Test (SDMT). The BDS-II is a measure of attention 
and inhibitory control of voluntary motor behavior (33) and the 
COWAT and Animal Naming tests are measures of verbal fluency (34, 
35). The SDMT is a measure of attention and information processing 
speed (36); the oral version was used so that test results were not 
altered by the participants’ motor symptoms. The Wechsler 
Abbreviated Scale of Intelligence 3rd edition (WASI-III) was used to 
obtain a full intelligence quotient (Full IQ), verbal IQ (VIQ) and 
performance IQ (PIQ) (37). These executive function and intelligence 
scales were administered because there are known executive function 

deficits in FXTAS, PD, and ET and lower cognitive function negatively 
impacts gait and functional mobility in these disorders and therefore 
could be included as potential confounders in our statistical analysis 
plan. For example, lower executive function correlates with worse 
deficits in stride length, speed, variability and asymmetry in PD (26, 
38–40), and greater impairments in velocity, cadence, stride length, 
and double limb support time were also associated with lower 
cognitive scores in ET (18). We  previously found that lower 
information processing speed was associated with shorter stride 
lengths and lower response inhibition was associated with slower 
turn-to-sit times on the i-TUG in FXTAS (41).

Neuropathy testing

Participants were also administered the Total Neuropathy Score 
(TNS), modified to exclude nerve conduction velocity testing, from a 
neurologist (42). Testing for neuropathy is important given that it is 
prevalent in FXTAS (43) and PD (44) and may negatively affect 
performance on spatiotemporal measures of gait (45).

FXTAS rating scale

Participants were videotaped performing the FXTAS Rating Scale 
(FXTAS-RS), a 44-item scale that rates tremor, postural sway, gait, 
parkinsonism, coordination, dystonia, speech, and oculomotor 
deficits to determine the presence and severity of FXTAS symptoms 
(46). The scale was created using items from the Unified Parkinson’s 
Disease Rating Scale (UPDRS) (47), the Clinical Rating Scale for 
Tremor (CRST) (48), the International Cooperative Ataxia Rating 
Scale (ICARS) (49), and a tandem item from the Unified Huntington’s 
Disease Rating Scale (50). The leg agility and pouring items were not 
collected for all participants, therefore, only forty-two items were 
included in the scale. Videotapes were acquired for 16 control, 16 
FXTAS, 14 PD, and 10 ET participants, which were rated by a 
movement disorders neurologist who was blinded to genotype.

Molecular analysis

Blood samples or buccal swabs from all participants were sent to 
the Rush University Molecular Diagnostic Laboratory (Dr. Berry-
Kravis lab) for FMR1 genotype testing. QIAGEN Blood and Tissue 
DNA isolation kits were used to isolate DNA from buccal swabs or 
peripheral blood leukocytes. Allele-specific CGG repeat lengths were 
determined using the Asuragen Amplidex FMR1 mPCR kit (Asuragen 
Inc. Austin, TX) as previously described (51).

Statistical analysis

All measures were first compared univariately between the four 
participant groups with one-way ANOVA and Tukey’s post hoc 
pairwise comparisons (for normally distributed measures) or the 
Kruskal-Wallis test followed by pairwise comparisons with Dunn’s test 
for multiple comparisons (for non-normal measures). Significant gait 
measures from univariate comparisons were then included in a 
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penalized multinomial logistic regression model to determine which 
gait measures were best able to distinguish between the groups. Sex 
differences were first examined within each group to determine if sex 
should be included as a covariate in the regression model. Age, SDMT 
scores, and TNS were controlled for in the final regression analysis, as 
some were significantly different between the groups and thought to 
be potentially confounding factors. There were a few sex differences 
in the gait and i-TUG variables within the FXTAS group, but none of 
these variables were significantly different between groups in the 
univariate comparisons and therefore sex was not included as a 
covariate in the final regression model. For significant logistic 
regression results, ROC analyses were performed and area under the 
curve (AUC) was computed with 95% confidence intervals for 
significant between group differences. Sensitivity and specificity were 
then calculated using the Youden index.

Spearman’s rank correlation coefficient (rho) was used to assess 
the relationship between the gait and i-TUG parameters and 
FXTAS-RS scores in the three movement disorder groups and between 
CGG repeat size in the FXTAS group. CGG repeat size did not 
correlate with any gait or i-TUG measures under any condition; 
therefore, these were not examined as potential predictors of the gait 
and i-TUG measures in a separate regression model in the FXTAS 
group. A p ≤ 0.05 was considered significant. Statistical analyses were 
performed with SAS (SAS Institute Inc., Cary NC, USA), GraphPad 

Prism 9 (GraphPad Software, San Diego, CA, USA), and ‘pmlr’ 
package in R (R Core Team 2016). For the modified FXTAS-RS, 
missing values were imputed using the Hot Deck technique.

Results

Participant characteristics

Demographic and clinical characteristics are summarized in 
Table 1. The study included 22 participants with FXTAS, 23 with PD, 
20 with ET, and 20 controls. In the FXTAS group, six had a diagnosis 
of possible FXTAS, eight had probable FXTAS, and eight had definite 
FXTAS. The three movement disorder groups did not differ in age, 
although the control group was significantly younger than the PD and 
ET groups (p = 0.006 and 0.04, respectively). As expected, FXTAS 
participants had significantly greater CGG repeat sizes than all other 
groups (p < 0.0001) and all were in the premutation range. FXTAS and 
PD participants also had significantly higher TNS scores than controls 
(p = 0.0002 and 0.02, respectively) but there were no significant 
differences in TNS scores among the 3 movement disorders. ET 
participants had significantly longer disease duration compared to 
FXTAS and PD participants (p = 0.004 and 0.001, respectively). CGG 
repeat size did not correlate with any gait or i-TUG measures under 

TABLE 1 Participant demographic characteristics.

Variable Controls (n  =  20) FXTAS (n  =  22) PD (n  =  23) ET (n  =  20)

Age 62.65 ± 8.52 (50–83) 69.14 ± 8.12 (55–86) 71.26 ± 7.87 (56–87)a** 69.80 ± 8.85 (53–85)a*

Men, n (%) 11 (55.0) 12 (54.5) 15 (65.2) 10 (50.0)

Ethnicity, n 19 White/Non-Hispanic, 1 

White/Hispanic

22 White/Non-Hispanic 20 White/Non-Hispanic, 1 

White/Hispanic, 1 Asian, 1 

African American

19 White/Non-Hispanic, 1 

African American

BMI 27.07 ± 3.44 (20.6–35.3) 25.63 ± 4.82 (16.9–34.7) 25.94 ± 3.62 (19.5–33.8) 26.93 ± 5.39 (19.6–42.0)

Disease duration (years) N/A 6.59 ± 4.22 (1–16) 5.74 ± 3.74 (1–15) 13.29 ± 9.97 (2–33)b**,c**

History of diabetes, n (%) 2 (10.0) 3 (13.6) 0 (0.0) 2 (10.0)

CGG repeat 31.39 ± 5.42 (23–48) 85.33 ± 12.33 (60–104)a**** 29.64 ± 5.02 (20–42)b**** 29.10 ± 6.17 (20–44)b****

FXTAS Dx N/A 6 Possible, 8 Probable, 8 Definite N/A N/A

FXTAS-RS 13.6 ± 7.9 (3–26) 46.4 ± 17.6 (24–78)a**** 41.7 ± 13.1 (21–65)a**** 46.1 ± 19.6 (24–73)a****

H&Y stage N/A N/A 2.09 ± 0.29 (2–3) N/A

TNS 0.59 ± 1.12 (0–4) 3.67 ± 3.02 (0–14)a*** 2.95 ± 3.43 (0–13)a* 2.62 ± 2.99 (0–8)

Education 17.50 ± 2.61 (12–24) 15.95 ± 3.11 (9–20) 16.61 ± 2.69 (12–22) 15.75 ± 2.40 (12–20)

WASI full IQ 127.35 ± 9.98 (108–142) 118.13 ± 13.00 (84–135) 117.70 ± 15.24 (86–149) 116.85 ± 15.17 (84–136)

WASI VIQ 124.50 ± 8.57 (106–136) 118.07 ± 10.33 (88–129) 120.17 ± 13.45 (91–140) 117.55 ± 12.93 (86–136)

WASI PIQ 124.00 ± 11.53 (99–141) 113.53 ± 14.54 (83–141) 111.56 ± 16.69 (84–141)a* 111.65 ± 15.94 (86–134)

BDS-II 25.45 ± 1.10 (24–27) 23.33 ± 2.99 (16–27) 24.22 ± 1.93 (19–27) 24.20 ± 1.61 (21–27)

COWAT 108.20 ± 19.76 (82–142) 96.86 ± 24.98 (54–152) 101.35 ± 23.84 (74–160) 99.25 ± 23.42 (66–154)

SDMT 106.89 ± 10.05 (94–128) 89.56 ± 13.20 (67–118)a*** 88.87 ± 12.84 (61–107)a**** 88.95 ± 10.75 (72–103)a****

Animal naming 36.20 ± 9.56 (22–55) 28.71 ± 11.34 (11–53) 28.73 ± 8.93 (9–42) 27.40 ± 10.30 (13–48)a*

All values are mean ± SD with range in brackets unless indicated otherwise. a, significantly different from controls; b, significantly different from FXTAS; c, significantly different from 
PD; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. Age, disease duration, CGG repeat, modified FXTAS Rating Scale score (FXTAS-RS), Hoen & Yahr (H&Y) Stage, Body Mass Index 
(BMI), Total Neuropathy Score (TNS), Education, Wechsler Abbreviated Scale of Intelligence (WASI) Full Intelligence Quotient (Full IQ), Verbal IQ (VIQ) and Performance IQ (PIQ), 
Behavioral Dyscontrol Scale II (BDS-II), Controlled Oral Word Association Test (COWAT), Symbol Digit Modalities Test (SDMT) and Animal Naming test were compared between controls, 
FXTAS, PD and ET. The COWAT and SDMT were scaled for age and years of education.
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any condition; therefore, these were not examined as predictors of gait 
and i-TUG measures in a separate regression model in the FXTAS 
group. All movement disorder groups had significantly worse 
FXTAS-RS scores compared to controls (p < 0.0001) but were not 
different from each other. There were no significant differences in 
BMI, education level, WASI Full IQ or VIQ between any of the groups. 
PD participants had significantly lower PIQ compared to controls 
(p = 0.04). Roughly 48, 87 and 65% of FXTAS, PD and ET participants, 
respectively, were on medication for motor symptoms at the time of 
testing (Supplementary Table S1).

Cognitive assessments

A summary of between group differences in cognitive function is 
also shown in Table 1. FXTAS, PD and ET participants all scored 
lower than controls on the SDMT (p = 0.0002 to <0.0001). On Animal 
Naming, ET subjects scored significantly lower than controls 
(p = 0.04). No significant differences were found among any of the 
movement disorder groups on any of the cognitive measures.

Gait parameters

2MWT
Summaries of between group comparisons of gait parameters for 

the three walking conditions (SS, FP, and DT) are shown in Table 2. 
Under the SS condition, FXTAS participants demonstrated 
significantly increased stride velocity variability and cadence 
variability compared to PD participants (p = 0.048 and 0.04, 
respectively) (Figures 1A,B). PD participants had significantly shorter 
stride lengths compared to FXTAS (p = 0.007), ET (p = 0.002), and 
control participants (p = <0.0001) (Figure  1C), and slower stride 
velocity compared to controls (p = 0.003). They also had significantly 
greater arm asymmetry than ET and control participants (p = 0.02 and 
0.004, respectively) (Figure  1D). Lastly, PD participants took 
significantly longer to complete turns (p = 0.006), more steps to turn 
(p = 0.03), and slower peak turn velocity than control participants 
(p = 0.04). Under the FP condition, FXTAS participants had 
significantly slower stride velocity (p = 0.003), increased stride velocity 
variability (p = 0.03), increased stride length asymmetry (p = 0.02), and 
increased turn duration (p = 0.02) compared to controls. PD 
participants had significantly shorter stride lengths (p = 0.002 
and < 0.0001, respectively) and longer turn duration (p = 0.03 and 
0.0003, respectively) compared to ET and control participants 
(Figure 2). They also had slower stride velocity (p = 0.0002), greater 
arm asymmetry (p = 0.0005), and reduced peak turn velocity 
(p = 0.002) compared to controls. In the DT condition, FXTAS 
participants took significantly longer to complete turns (p = 0.03) and 
had slower peak turn velocity (p = 0.03) compared to controls. PD 
participants had significantly shorter stride lengths (p = 0.03, 0.02, 
and < 0.0001, respectively) and greater arm asymmetry (p = < 0.0001, 
0.0002, and < 0.0001, respectively) compared to FXTAS, ET, and 
control participants. They also had significantly slower stride velocity 
(p < 0.0001), longer turn duration (p < 0.0001), slower peak turn 
velocity (p = 0.0001), and took more steps to turn (p = 0.009) compared 
to controls.

Dual-task interference
Dual-task costs (DTC) on 2MWT parameters are summarized in 

Table  3. Compared to FXTAS participants and controls, PD 
participants had greater DTC for stride length (p = 0.02 and 0.004 
respectively) and stride velocity (p = 0.03 and 0.0006, respectively) 
(Figure 3). They also had greater DTC for cadence (p = 0.009), turn 
duration (p = 0.02), and peak turn velocity (p = 0.02) compared to 
controls. ET participants had greater DTC for peak turn velocity 
(p = 0.04) compared to controls.

i-TUG
Summaries of between group comparisons of i-TUG parameters 

are summarized in Table 4. PD participants had significantly reduced 
sit-to-stand peak velocity compared to FXTAS (p = 0.002), ET 
(p = 0.009) and control participants (p = 0.007) (Figure 4), and reduced 
turn-to-sit peak turn velocity compared to controls (p = 0.006).

Regression analysis
In the multinomial logistic regressions controlling for age, 

SDMT, and TNS, stride length on the DT 2MWT was able to 
distinguish PD from FXTAS (OR = 0.88, 95% CI = 0.77–0.996, 
p = 0.04) and ET (OR = 1.16, 95% CI = 1.02–1.33, p = 0.02), such that 
participants with shorter stride length were more likely to have a 
diagnosis of PD (Figure 5A). Arm symmetry index during the DT 
2MWT was also able to distinguish between PD from FXTAS 
(OR = 1.1, 95% CI = 1.01–1.19, p = 0.03) and ET (OR = 0.92, 95% 
CI = 0.85–1.00, p = 0.05), such that participants with greater arm 
asymmetry were more likely to be diagnosed with PD (Figure 5B). 
No gait or i-TUG variables were found to distinguish FXTAS from 
ET. Given the relatively low group sample sizes in this study, a 
multivariable ROC analysis was performed accounting for age, 
TNS, SDMT scores, stride length during DT gait, and arm 
symmetry index during DT gait. The ROC analysis comparing 
FXTAS and PD groups had an AUC of 0.85 (95% CI: 0.73–0.97) 
with a sensitivity of 0.83 and specificity of 0.71 based on the Youden 
index. The comparison between PD and ET resulted in an AUC of 
0.87 (95% CI: 0.76–0.98) with a sensitivity of 0.81 and specificity 
of 0.81.

Correlations
Spearman’s correlations between FXTAS-RS scores and gait 

parameters are summarized in Supplementary Tables S2–S5. 
Under the SS condition, worse (higher) FXTAS-RS scores were 
associated with reduced stride length (p = 0.03), stride velocity 
(p = 0.003), and peak turn velocity (p = 0.006), as well as increased 
arm asymmetry (p = 0.03), turn duration (p = 0.003), and number 
of steps to turn (p = 0.03) in FXTAS. On the FP 2MWT, higher 
FXTAS-RS scores were associated with reduced stride velocity 
(p = 0.005), cadence (p = 0.048) and peak turn velocity (p = 0.02), 
as well as increased turn duration (p = 0.005) in FXTAS, and lower 
steps to turn in controls (p = 0.03). During the DT 2MWT, worse 
FXTAS-RS scores were associated with greater stride length 
asymmetry (p = 0.04) and turn duration (p = 0.047), as well as 
reduced stride length (p = 0.04), stride velocity (p = 0.002), and 
peak turn velocity (p = 0.02) in FXTAS. No significant correlations 
were found between FXTAS-RS and spatiotemporal variables of 
gait and turning in PD or ET during SS, FP, or DT walking. On the 
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TABLE 2 Gait and turning parameters during self-selected (SS), fast as possible (FP), and dual task (DT) two-minute walk test (2MWT).

i-WALK domain 
parameters

Controls (n  =  20) FXTAS (n  =  22) PD (n  =  23) ET (n  =  20)

Self-selected (SS) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Stride length (%stature) 86.21 (3.48) 81.93 (8.00) 75.34 (7.51)a****,b** 83.06 (6.43)c**

Stride velocity (%stature/s) 81.77 (7.09) 75.77 (8.28) 72.17 (9.27)a** 76.61 (9.84)

Cadence (steps/min) 113.62 (8.91) 110.93 (9.24) 114.97 (9.45) 110.63 (11.89)

Double limb support (%) 20.22 (3.26) 22.99 (4.90) 21.67 (4.87) 23.12 (4.96)

Trunk frontal ROM (degrees) CoV 0.35 (0.26) 0.44 (0.33) 0.24 (0.16) 0.32 (0.32)

Stride length (%stature) CoV 0.04 (0.03) 0.05 (0.02) 0.04 (0.02) 0.04 (0.02)

Stride velocity (%stature/s) CoV 0.06 (0.04) 0.08 (0.05) 0.05 (0.02)b* 0.06 (0.04)

Cadence (steps/min) CoV 0.04 (0.03) 0.06 (0.04) 0.03 (0.01)b* 0.04 (0.03)

Stride length asymmetry (%) 1.42 (0.66) 1.83 (0.71) 1.60 (0.56) 1.47 (0.60)

Arm symmetry index (%) 18.20 (5.27) 21.90 (6.78) 31.89 (15.89)a** 20.81 (11.02)c*

Turn duration (s) 2.06 (0.37) 2.43 (0.53) 2.71 (0.61)a** 2.26 (0.63)

Number of steps to turn 4.33 (0.71) 4.93 (0.97) 5.44 (1.39)a* 4.48 (0.86)

Peak turn velocity 169.70 (37.50) 150.96 (26.92) 137.54 (31.43)a* 166.97 (46.79)

Fast as possible (FP) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Stride length (%stature) 88.52 (4.22) 83.23 (7.81) 77.03 (6.99)a**** 85.64 (6.39)c**

Stride velocity (%stature/s) 96.77 (9.35) 84.71 (9.90)a** 82.02 (10.54)a*** 88.97 (13.27)

Cadence (steps/min) 131.12 (12.39) 122.05 (12.95) 127.85 (12.86) 124.53 (16.43)

Double limb support (%) 16.75 (3.25) 19.46 (5.49) 18.69 (4.69) 19.50 (5.15)

Trunk frontal ROM (degrees) CoV 0.36 (0.28) 0.47 (0.43) 0.27 (0.18) 0.32 (0.25)

Stride length (%stature) CoV 0.04 (0.03) 0.06 (0.03) 0.04 (0.02) 0.05 (0.03)

Stride velocity (%stature/s) CoV 0.06 (0.05) 0.09 (0.05)a* 0.05 (0.03) 0.07 (0.04)

Cadence (steps/min) CoV 0.04 (0.03) 0.06 (0.04) 0.04 (0.02) 0.05 (0.03)

Stride length asymmetry (%) 1.34 (0.41) 1.98 (0.83)a* 1.61 (0.73) 1.57 (0.67)

Arm symmetry index (%) 14.00 (6.05) 17.61 (4.42) 29.59 (17.33)a*** 21.35 (11.03)

Turn duration (s) 1.81 (0.32) 2.27 (0.51)a* 2.45 (0.52)a*** 2.04 (0.55)c*

Number of steps to turn 4.63 (0.67) 5.00 (0.74) 5.52 (1.26) 4.71 (0.85)

Peak turn velocity 199.34 (41.69) 167.90 (34.68) 154.06 (31.86)a** 184.33 (50.59)

Dual-task (DT) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Stride length (%stature) 86.92 (4.50) 80.88 (9.38) 73.22 (8.78)a****,b* 82.23 (6.86)c*

Stride velocity (%stature/s) 85.72 (11.99) 74.75 (11.11) 68.52 (10.25)a**** 75.06 (10.91)

Cadence (steps/min) 117.95 (13.41) 110.68 (11.64) 112.52 (12.31) 109.31 (12.66)

Double limb support (%) 20.17 (3.66) 23.43 (5.91) 22.03 (4.44) 23.95 (4.73)

Trunk frontal ROM (degrees) CoV 0.38 (0.25) 0.45 (0.37) 0.27 (0.15) 0.36 (0.30)

Stride length (%stature) CoV 0.03 (0.02) 0.05 (0.03) 0.04 (0.02) 0.04 (0.03)

Stride velocity (%stature/s) CoV 0.06 (0.04) 0.08 (0.05) 0.05 (0.02) 0.07 (0.04)

Cadence (steps/min) CoV 0.04 (0.03) 0.06 (0.04) 0.03 (0.02) 0.05 (0.03)

Stride length asymmetry (%) 1.40 (0.53) 1.98 (0.86) 1.76 (0.66) 1.54 (0.55)

Arm symmetry index (%) 18.08 (5.59) 19.48 (5.63) 35.70 (19.69)a****,b**** 20.03 (6.84)c***

Turn duration (s) 1.88 (0.39) 2.51 (0.86)a* 2.80 (0.69)a**** 2.26 (0.66)

Number of steps to turn 4.16 (0.72) 4.98 (1.36) 5.49 (1.38)a** 4.45 (0.99)

Peak turn velocity 191.37 (42.21) 156.46 (38.28)a* 136.85 (34.44)a*** 166.54 (42.53)

Gait and movement transition domain variables for between group comparisons among FXTAS, PD, ET, and controls. CoV coefficient of variation
SD

mean
( ) = ×100. a, significantly different 

from controls; b, significantly different from FXTAS; c, significantly different from PD; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
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i-TUG, higher FXTAS-RS scores were correlated with increased 
total duration in PD (p = 0.01) and increased turn-to-sit duration 
in both PD (p = 0.02) and ET (p = 0.02). In FXTAS participants, no 
significant correlations were found between CGG repeat size and 
gait or i-TUG variables.

Discussion

This is the first study to directly compare gait characteristics in 
FXTAS, PD, and ET using quantitative gait analysis and gait stress tests 
including FP and DT paradigms. These results show that gait analysis 
was able to distinguish between-group differences in gait parameters 
during SS, FP, and DT conditions. We also identified differences in 
DTC in the domains of gait pace (stride length and velocity) where PD 
had significant DTC compared to FXTAS participants. FXTAS 
participants had significantly slower stride velocity and stride velocity 
variability, increased stride length asymmetry, and increased turn 
duration compared to controls during FP walking. Importantly, this 
condition revealed a greater number of impairments in FXTAS than 
in ET compared to controls, suggesting that this particular test may 
be helpful for distinguishing FXTAS from ET in the clinic. It is known 
that at fast speeds of locomotion, it is more difficult to maintain 
stability due to signaling delays between the musculoskeletal system 
and higher-level neural control centers (52). It is possible that this 
coordination of neural signaling and muscular responses was more 
stressed by fast walking in the FXTAS participants, requiring them to 
slow down their strides and turns in order to maintain stability more 
so than the ET participants. In a previous study, our group 
characterized the gait deficits using a 7 m i-TUG in a smaller cohort 
of FXTAS participants and found abnormalities similar to those found 
in this study, including reduced stride velocity and longer turn 
duration (8); however, these deficits were seen with SS walking speeds, 
whereas the current study did not find any gait deficits in FXTAS 
compared to controls at these speeds. Our present inclusion criteria 
required that participants had to be able to walk unassisted for 2 min; 
therefore, the group had milder gait symptoms that might not 
be detectable at SS speeds. In addition, our prior study only included 
those with definite cerebellar gait ataxia on neurological exam, 
whereas the current study included a more heterogeneous group of 
FXTAS participants with both tremor and ataxia dominant forms of 
the disease.

Other groups have investigated gait under fast walking speeds in 
other cerebellar ataxias and reported increased stride length and speed 
variability in Friedreich ataxia, spinocerebellar ataxia, and idiopathic 
cerebellar patients using the GAITRite® walkway (53–55). Increased 
stride velocity variability was seen in FXTAS during FP walking in the 
current study, which we reported in our prior FP gait study in FXTAS 
to be significantly associated with increased falls (20). Furthermore, 
Schniepp et al. found FP walking to be the most strongly correlated to 
clinical severity of ataxia compared to other walking speeds and 
concluded that it may be a useful measure in the clinical evaluation of 
patients with cerebellar ataxia (55). Given that we found the most gait 
deficits in FXTAS under FP walking in the present study, this test may 
be useful for evaluating FXTAS patients in the clinic.

PD participants had significantly reduced stride length compared 
to FXTAS and ET participants on the SS and DT gait conditions, as 
well as slower stride velocity and reduced stride length compared to 
controls on all three conditions. They also took significantly longer to 
turn with lower peak turn velocity and increased turn duration on all 
three gait conditions, and more steps to turn under SS and DT walking 
compared to controls. In the FP condition, PD participants were 
slower to turn than the ET group. Typical PD patients display a slow, 
shuffling gait pattern, as well as bradykinesia, which is consistent with 

FIGURE 1

Gait parameters under self-selected (SS) speed two-minute walk test 
(2MWT). Significantly different gait parameters among FXTAS, PD, 
and ET participants: (A) stride velocity variability, (B) cadence 
variability, (C) stride length, and (D) arm symmetry index. 

( ) SDCoV coefficient of variation 100
mean

= × . All data reported as 

mean  ±  SEM. *p  ≤  0.05, **p  ≤  0.01.

FIGURE 2

Gait parameters under fast as possible (FP) two-minute walk test 
(2MWT). Significantly different gait and movement transition 
parameters among FXTAS, PD, and ET participants: (A) stride length, 
and (B) turn duration. All data reported as mean  ±  SEM. *p  ≤  0.05, 
**p  ≤  0.01.
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our findings of slower, shorter strides and slower turns. This contrast 
with the wide-based, ataxic gait pattern typically seen in FXTAS 
patients, and the mild ataxia seen in roughly half of ET patients (56–
60). PD participants also had significantly greater arm asymmetry 
than ET participants and controls at SS speeds, and than FXTAS, ET, 
and control participants under DT gait. DT during gait apparently 
stressed the neuromotor system in PD exacerbating arm asymmetry. 
These results are consistent with the common asymmetric PD gait 
pattern. PD symptoms typically present asymmetrically and many 
patients exhibit a reduced or absent reciprocal arm swing (61).

ET participants were not abnormal on any gait parameters for any 
of the test conditions, likely because regular bipedal gait in ET patients 
tends to be normal (58). However, mild gait and postural stability 
deficits have been found in ET, including difficulties with tandem gait 
(56–60). It may be  that the present study conditions were not 

challenging enough to extract gait deficits in the ET group, or that the 
pool of selected ET participants did not have cerebellar gait ataxia.

Compared to FXTAS participants and controls, PD participants 
had significantly greater DTC for the gait pace domain including 
stride velocity and stride length parameters. Previous DT studies in 
PD have shown similar findings. Plotnik et al. found that gait speed 
and stride length were both impaired by DT using a serial subtraction 
cognitive interference task (26). Yogev-Seligmann et al. and Fuller 
et al. also found reduced gait speed under DT in PD using a verbal 
fluency interference task similar to the current study (27, 62). 
However, we did not find differences for DTC between movement 
disorder groups in any of the other gait domains. None of the groups 
performed worse on the cognitive task during the DT condition, 
indicating that they were not prioritizing the gait task over the 
cognitive task. It is possible that the DT verbal fluency test did not 
provide a sufficient cognitive load to reveal other impairments. 
Therefore, future studies could utilize a more difficult task that might 
cause greater cognitive interference. Our results do suggest that PD 
patients may be more sensitive to cognitive interference, potentially 
having lower cognitive reserve than those with FXTAS.

The i-TUG was used to evaluate functional movement transitions 
important in daily living. PD participants had significantly slower 
speed when transitioning from sit-to-stand compared to FXTAS, ET, 
and control participants, as well as slower speed when turning to sit 
compared to controls. Given that bradykinesia is a cardinal symptom 
of PD, it was expected that the PD group would be  slower at 
completing these movement transitions. These results suggest that the 
sit-to-stand measure may be helpful for assisting with diagnosis, such 
that patients with reduced velocities on this parameter may be more 
likely to have PD. Furthermore, Herman et  al. found that i-TUG 
parameters were able to distinguish between the postural instability 
and gait disorder and tremor dominant subtypes of PD (10). It has 
been proposed that there may be  two subtypes of FXTAS as well, 
including tremor and ataxia predominant phenotypes (63). As a 
follow-up study, it would be interesting to compare these subtypes of 

FIGURE 3

Dual task costs for gait parameters. Significantly different gait 
parameters among FXTAS, PD, and ET participants: (A) stride length, 
and (B) stride velocity. DTC was calculated using the formula 
DT SS 100

SS
−

× . All data reported as mean  ±  SEM. *p  ≤  0.05.

TABLE 3 Dual-task costs for gait and turning parameters.

i-WALK domain parameters Controls (n  =  20) FXTAS (n  =  22) PD (n  =  23) ET (n  =  20)

Dual-task cost (DTC) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Stride length (%stature) 0.81 (2.77) −1.16 (7.34) −2.98 (3.76)a**,b* −1.03 (2.14)

Stride velocity (%stature/s) 4.69 (9.68) −1.20 (10.59) −5.15 (5.98)a***,b* −2.02 (6.51)

Cadence (steps/min) 3.75 (7.43) −0.26 (5.38) −2.23 (4.72)a** −1.13 (5.10)

Double limb support (%) −0.07 (10.16) 1.98 (13.63) 2.60 (8.96) 4.29 (9.85)

Trunk frontal ROM (degrees) CoV 24.66 (47.14) 4.07 (31.88) 18.10 (34.02) 22.04 (32.84)

Stride length (%stature) CoV 3.28 (50.80) 3.58 (38.33) 8.15 (33.95) 3.62 (28.48)

Stride velocity (%stature/s) CoV 11.68 (55.87) 7.97 (37.26) 15.20 (36.37) 19.94 (44.09)

Cadence (steps/min) CoV 31.75 (70.57) 16.33 (51.26) 25.47 (35.78) 30.96 (56.67)

Stride length asymmetry (%) 5.84 (37.59) 15.58 (58.73) 11.49 (24.48) 7.56 (22.96)

Arm symmetry index (%) 2.40 (34.04) −7.26 (25.27) 17.06 (59.66) 7.28 (37.98)

Turn duration (s) −7.84 (13.04) 3.99 (32.21) 3.74 (12.17)a* 0.64 (12.43)

Number of steps to turn −2.73 (14.55) 1.94 (23.55) 1.52 (10.83) −0.49 (11.34)

Peak turn velocity 13.19 (13.19) 3.77 (17.93) 0.04 (14.79)a* 0.88 (10.64)a*

Dual-task costs (DTC) for gait variables for between group comparisons among FXTAS, PD, ET, and controls. DTC was calculated using the formula 
DT SS

SS

−
×100 . 

CoV coefficient of variation
SD

mean
( ) = ×100. a, significantly different from controls; b, significantly different from FXTAS; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
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FXTAS to see if i-TUG, FP, and DT gait testing are able to distinguish 
them; treatment plans could then be  tailored based on 
individual phenotypes.

Multinomial logistic regression analysis showed that on the DT 
condition, stride lengths was able to distinguish PD from FXTAS and 
ET, such that participants with shorter stride length were more likely 
to have PD. Shortening of steps when walking is a common feature in 
PD, particularly under a stressful condition such as walking while 
performing a cognitive task where PD patients may be triggered to 
festinate or take involuntarily short steps (64, 65). Furthermore, in the 
current study we found that PD participants had a significant DTC for 
stride length whereas FXTAS participants did not. Thus, it is logical 
that the measure of stride length would be  able to make this 
distinction. Arm symmetry index during the DT condition was also 
able to distinguish between FXTAS and PD, and ET and PD, such that 
participants with greater arm asymmetry were more likely to have 
PD. This appears logical given that reduction in reciprocal arm swing 
range of motion and its asymmetry is a hallmark feature in PD (61), 
while arm asymmetry in FXTAS or ET has not been reported. Our 
findings of greater arm asymmetry in PD compared to ET are similar 
to those in a recent report using inertial sensors during performance 
of the i-TUG and a machine learning approach to distinguish early-
stage PD from ET (66). We  also have unpublished data in larger 
cohorts indicating that arm asymmetry and arm range of motion are 
not different from controls in FXTAS.

As expected, the FXTAS, PD, and ET groups all had significantly 
worse FXTAS-RS scores compared to healthy controls. However, no 
differences in rating scale scores were found among the disorders, 
suggesting that the gait and functional movement transition measures 
were more sensitive for distinguishing between them than the scale. 
FXTAS-RS scores were associated with multiple gait measures in 
FXTAS under all three gait conditions, and number of steps to turn in 
controls during FP walking. FXTAS-RS scores were also associated 
with total duration in PD and turn-to-sit duration in PD and ET during 
the i-TUG. This finding was not unexpected given that FXTAS and PD 
patients tend to have greater gait impairments than ET patients (67).

Strengths of this study include objective gait measurement using 
highly sensitive quantitative analysis that has been validated in PD in 
previous studies, and the use of DT cognitive-motor interference 
paradigms similar to those used in previous studies of PD, FXTAS, and 
ET. SS, FP, and DT gait testing was able to distinguish differences 
between FXTAS and PD and ET and PD. It may be cost effective to add 
these tests to a clinical evaluation to aid in accurate diagnosis given that 
each walking condition takes only 2 min to complete. These quantitative 
measures may improve characterization of these disorders and serve as 
outcome measures to evaluate treatment responses in future studies.

Limitations of this pilot study include a relatively small sample 
size; increasing the sample size in future studies will help to 

TABLE 4 Movement transition parameters during the Instrumented Timed Up and Go test (i-TUG).

i-TUG parameters Controls (n  =  20) FXTAS (n  =  22) PD (n  =  23) ET (n  =  20)

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Total duration (s) 17.71 (2.28) 20.54 (5.47) 20.02 (2.64) 18.95 (3.69)

Sit-to-stand duration (s) 2.28 (0.30) 2.34 (0.26) 2.49 (0.23) 2.35 (0.32)

Sit-to-stand peak velocity (deg/s) 99.29 (47.45) 98.91 (33.63) 68.26 (14.90)a**,b** 90.95 (23.46)c**

Turn-to-sit peak turn velocity (deg/s) 173.98 (39.34) 151.89 (36.32) 135.15 (36.34)a** 160.50 (38.74)

Turn-to-sit duration (s) 4.21 (0.65) 4.57 (1.03) 4.56 (0.98) 4.26 (0.82)

i-TUG variables for between group comparisons among FXTAS, PD, ET, and controls. a, significantly different from controls; b, significantly different from FXTAS; c, significantly 
different from PD; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.

FIGURE 4

Movement transition parameters in the Instrumented Timed Up and 
Go test (i-TUG). Significantly different parameter among FXTAS, PD, 
and ET participants: sit-to-stand peak velocity. All data reported as 
mean  ±  SEM. *p  ≤  0.05, **p  ≤  0.01.

FIGURE 5

Significant multinomial regression results. Significantly different gait 
parameters among FXTAS, PD, and ET participants during the dual 
task (DT) condition: (A) stride length, and (B) arm symmetry index. All 
data reported as mean  ±  SEM. *p  ≤  0.05.
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strengthen and corroborate these findings. Another limitation is that 
there were no significant differences between controls and FXTAS 
participants on any gait or turn variables in the self-selected (SS) 
speed condition, suggesting that our FXTAS group was minimally 
impaired in gait and only showed impairments at fast speeds (FP) 
and while dual tasking (DT). Future studies could only include those 
with probable and definite FXTAS with definite cerebellar gait ataxia 
on clinical exam. The control group was significantly younger than 
the PD and ET groups, but there were no differences in age between 
the three movement disorder groups. Additionally, we controlled for 
age in the regression model, which only compared FXTAS, PD and 
ET groups, so we do not believe age is a relevant problem with the 
study. Another potential limitation was that, due to logistical and 
feasibility issues, all medicated study participants were on their 
medications at time of testing, which did not allow their gait to 
be  measured in its most natural and debilitating state. In future 
studies, it would be ideal if participants could be tested both on and 
off their medication to obtain a more accurate measurement of gait 
in these disorders.

These findings demonstrate that patients with FXTAS and ET 
exhibit distinct gait profiles from those with PD. The DT condition was 
sensitive for distinguishing FXTAS and ET from PD in arm asymmetry 
and stride length. Significant DT cognitive interference (i.e., DTC) for 
gait and turn variables were only seen in the PD group. On the i-TUG, 
FXTAS and ET participants were significantly faster at transitioning 
from sitting to standing than PD participants. These results suggest that 
DT walking paradigms and assessment of movement transitions may 
be useful for diagnosing FXTAS patients in the clinic.
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of Health Sciences, University of Ioannina, Ioannina, Greece, 8PD Neurotechnology Ltd., Ioannina,

Greece

Introduction: Conventional care in Parkinson’s disease (PD) faces limitations

due to the significant time and location commitments needed for regular

assessments, lacking quantitative measurements. Telemonitoring o�ers

clinicians an opportunity to evaluate patient symptomatology throughout the

day during activities of daily living.

Methods: The progression of PD symptoms over a two-year period was

investigated in patients undergoing traditional evaluation, supplemented by

insights from ambulatory measurements. Physicians integrated a telemonitoring

device, the PDMonitor®, into daily practice, using it for informed medication

adjustments.

Results: Statistical analyses examining intra-subject changes for 17 subjects

revealed a significant relative decrease of −43.9% in the device-reported

percentage of time spent in “OFF" state (from 36.2 to 20.3%). Following the

24-month period, the majority of the subjects improved or exhibited stable

symptom manifestation. In addition to positively impacting motor symptom

control, telemonitoring was found to enhance patient satisfaction about their

condition, medication e�ectiveness, and communication with physicians.

Discussion: Considering that motor function is significantly worsened over

time in patients with PD, these findings suggest a positive impact of objective

telemonitoring on symptoms control. Patient satisfaction regarding disease

management through telemonitoring can potentially improve adherence to

treatment plans. In conclusion, remote continuous monitoring paves the way

for a paradigm shift in PD, focusing on actively managing and potentially improve

symptoms control.

KEYWORDS

telemonitoring, real-world data, objective motor assessment, longitudinal analysis,

patient satisfaction
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1 Introduction

Parkinson’s disease (PD) is the second most prevalent
neurodegenerative disorder, characterized by a progressive
deficiency of dopamine in the brain (1). While the clinical
phenotype of PD encompasses various non-motor symptoms like
cognitive decline, impulsive behavior, depression, and autonomic
nervous system disorders, the primary focus in diagnosing
PD revolves around the presence of core motor symptoms,
including bradykinesia, muscle stiffness, and tremor (2). Currently,
the process of diagnosing and making treatment decisions is
conducted through clinical examinations, scales, and patient-
reported outcomes (3). To date, therapeutic interventions
primarily rely on dopamine replacement drugs, with levodopa
being particularly effective in the initial phases of the disease (4).

Nevertheless, disease progression differs from patient to patient
and advances at different rates. Conventional care faces limitations
due to the significant time and location commitments needed for
regular assessments, and it depends on the expertise of physicians,
lacking quantitative measurements (5). The accuracy of disease
assessment may also be impeded by recall bias and difficulties
in patients effectively conveying their symptoms (6). Moreover,
the management of PD presents a complex interplay between
symptom control and disease progression. Currently, there are
no therapies available that can affect the progression of PD. The
primary emphasis of medical care is to control themotor symptoms
through the use of drugs (7). However, prolonged use of medication
leads to significant motor complications, such as limited mobility
during the “OFF” period, wearing-off and end-of-dose phenomena,
necessitating further treatment modifications (8). To address this
unmet need, the utilization of wearable devices, which have become
instrumental in telemonitoring, has facilitated the continuous
objective measurement of PD symptoms (9).

Telemonitoring offers clinicians an opportunity to evaluate
patient symptomatology throughout the day during activities of
daily living, to assess response to therapy during long periods
of months and years, and to improve follow-up care (10). The
concept of continuous telemonitoring for symptoms aligns with the
existing standard of care and is not a novel concept in the context
of PD (11). Such transformative approaches for PD management
pave the way for a paradigm shift aimed at actively managing
and potentially improving symptoms control. In this study, the
progression of PD symptoms over a two-year observation period in
patients undergoing traditional evaluation, combined with insights
derived from objective ambulatory measurements is investigated.
To the authors’ knowledge, this marks the first study involving
longitudinal objective real-world data collected at non-clinical
settings.

2 Materials and methods

2.1 Telemonitoring system

The PDMonitor R© ecosystem, manufactured by PD
Neurotechnology Ltd., is a class IIa medical device for continuous
home monitoring of Parkinson’s disease patients. It comprises a
base (or SmartBox), monitoring devices, mounting accessories,

TABLE 1 Demographic data of the participantsa.

Sex 10 females, seven males

Age 64.3 (10.4) years

Years with disease 8.9 (6.6) years

LEDD (baseline) 799.6 (451.2) mg

LEDD (2-years) 1,055.2 (453.8) mg

LEDD, L-dopa equivalent daily dose. aTotal values are presented as “mean (standard

deviation)”.

a mobile app, a physician online dashboard, and a cloud service
provide an environment for long-term remote PD monitoring.
The system includes five wearable sensing devices with motion
sensors and accessories for attachment to particular body regions,
as well as a SmartBox for collecting and uploading data. For a
more in-depth exploration of the ecosystem, the interested reader
is directed to (12).

To measure everyday activities and device reported outcomes
(DROs) associated with PD, the system uses digital signal
processing and machine learning to assess raw movement signals.
The system automatically detects waist and limb device positioning
throughout waking hours. System output includes heatmaps of
symptom severity for a 30-min interval and plots of average
symptom intensity for any time of day. The DROs include the
percentage of time in “OFF” state (OFF), the percentage of time
with dyskinesia (DYS), and the percentage of time in “ON” state
(ON), that is defined as 100-OFF-DYS. Moreover, the system
provides DROs associated with the unified Parkinson’s disease
rating scale (UPDRS). As it was suggested by NICE in 2023 (13),
the system presents a novel way to remote PD monitoring, giving
useful information associated with the antiparkinsonian therapy.

2.2 Dataset

A cohort of 20 patients who utilized the telemonitoring device
in Greece for 2 years formed the basis of this study. These
individuals worn the wearable sensors over multiple days, allowing
averaged symptom data extraction. To guarantee the inclusion of
high-quality data, DROs corresponding to single-day recordings
were excluded, leading to the final cohort comprising 17 subjects.
The demographic data of the participants are provided in Table 1.
Consistent with applicable privacy laws across the world, no
identifiable protected health information (PHI) was extracted,
accessed, or used during the course of the study. Pursuant to
the USA Health Insurance Portability and Accountability Act
(HIPAA) of 1996 with updated provisions (14), the EU General
Data Protection Regulation (GDPDR) of 2018 (15), our study
used de-identified or anonymous data and therefore does not
require institutional review board (IRB) approval or waiver of
authorization. Physicians incorporated DROs into their daily
practices, relying on this tool to make informed decisions about
medication adjustments. Notably, patients with advanced therapies
such as Deep Brain Stimulation (DBS) and infusion pumps were
excluded from this specific analysis on medication management.
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2.3 Statistical analysis

In this study evaluating the progression of motor core
symptoms in PD, a paired t-test was employed to assess changes
between baseline (0 months) and the end of the study (24 months)
for each participant individually. This analysis focused on within-
subject differences, providing insights into the efficacy of the
intervention over the study period. Additionally, a linear mixed-
effects model was employed to analyze the longitudinal data,
incorporating random slopes and random intercepts to account for
variations among subjects. The model allowed for the examination
of individual trajectories over time while considering both fixed
effects, such as time points, and random effects, capturing subject-
specific deviations from the overall trend. This comprehensive
statistical approach facilitated the exploration of both within-
subject changes and inter-subject variability, providing a robust
analysis of the impact of the intervention on motor core PD
symptoms over the 24-month study duration. In this study, the
significance threshold was set to p < 0.05.

Questionnaires, employing Likert scales and qualitative
inquiries, were also administered to provide valuable insights into
the multifaceted clinical benefits of the telemonitoring approach,
encompassing patient satisfaction, medication efficacy, patient-
physician interactions, and the overall perceived advantages of
remote monitoring in the management of PD. Questionnaires were
administrated before, during, and after the use of telemonitoring
system, allowing for multiple responses from each subject.

3 Results

Figure 1 illustrates the findings of the statistical analyses for
various DROs. As depicted in Figure 1A, a statistically significant
decrease in the percentage of OFF (−15.9, or −43.9%) was
observed at the end of the study compared to baseline. The intra-
subject differences between 0 months and 24 months indicate
that telemonitoring contributes significantly to OFF improvement.
While there is also a discernible ascending trend of ON outcome
(Figure 1D), the statistical significance was not attained. This can
be attributed both to the small sample size and the increase of
dyskinesia in some patients (Figure 1G). No statistical differences
were found for device-reported UPDRS, highlighting the stability
of motor core symptoms (Figure 1J).

Results from linear mixed-effects models depict the influence
of telemonitoring on the motor core PD symptoms throughout
the 24-month study period. Among various DROs, the temporal
factor exhibited a statistically significant effect on OFF (mean slope
= −0.48, p < 0.05), as illustrated in Figure 1B. Although the effect
of time was not significant concerning other DROs, subject-specific
slopes suggest a notable increase in ON (Figure 1F), while UPDRS
either decreased or remained relatively constant across the majority
of the subjects (Figure 1L). Only a limited number of participants
exhibited exacerbation in terms of dyskinesia (Figure 1I).

The findings underscore the utility of telemonitoring in
comprehensively evaluating and understanding the dynamic
changes in PD symptoms over an extended observational
timeframe. Following a 24-month period utilizing the
telemonitoring system, the majority of the subjects improved

or exhibited consistent symptom manifestation, and a reduction
in the number of patients lacking proper control of their motor
symptoms was achieved. The considerable significance of time as a
determinant in the progression of PD symptoms when employing
the telemonitoring system in patients with PD undergoing
traditional evaluation, proves the efficacy of the intervention.

Figure 2 depicts an example of OFF evolution for a patient. The
patient, a 71-year-old female diagnosed with PD a decade ago and
treated with levodopa and rotigotine patches for the last 5 years,
had OFF phenomena lasting more than 3 h in the last months
of 2020. At the beginning of 2021, the patient was recommended
to use the telemonitoring system to evaluate symptom fluctuation
during the day and the intensity and duration of wearing OFF
phenomena. Adjustments in dosing intervals of levodopa (daily
dose 475 mg) and dietary habits resulted in a reduction in reported
OFF periods and an enhancement in ON periods after three
months. These improvements were sustained for more than 6
months without increasing the daily dose. However, escalation in
daytime OFF periods led to a decision by the physician to change
the treatment regimen by increasing the daily dose from 475 mg
of levodopa to 750 mg. The improvement was sustained for 9
months, after which deterioration in gait occurred again. As this
was corroborated by the physician during the subsequent visit,
further adjustments to the treatment regimen were implemented.
Firstly, the discontinuation of the rotigotine patch was decided due
to the observed onset of impulse control disorder. Additionally,
guided by the insights provided by the DROs, the dosage of
levodopa was increased from 750 to 1,250 mg. The efficacy of
the treatment was reassessed in the subsequent months using the
telemonitoring device, confirming that the patient’s condition was
adequately managed.

Table 2 presents the results from questionnaires regarding
the satisfaction levels of patients. There is a notable increase
in the percentage of satisfied patients, rising from 26.9 to
38.5%, regarding the effectiveness of the medication both
before and after the utilization of telemonitoring, respectively.
Furthermore, the proportion of very satisfied patients experienced
a substantial surge, escalating from 7.7 to 23.1%. In contrast, the
dissatisfied group exhibited a decline, decreasing from 46.2 to
34.6%. Moreover, upon analyzing the responses from patients
concerning the perceived advantages of remote monitoring,
a significant majority, constituting 81.5%, acknowledged the
beneficial impact of telemonitoring (Table 3). Additionally, 44.4%
of respondents reported an improvement in their condition
attributable to telemonitoring, while 37.0% indicated that
their condition remained unchanged (Table 4). Notably,
a substantial proportion of participants (81.5%) conveyed
that telemonitoring enhanced communication with their
physicians (Table 5). Improved patient-physician interactions
and enhanced perceived effectiveness of the medication
underscore the positive impact of telemonitoring in the context of
PD management.

4 Discussion

In this study, the control of motor symptoms in patients
with PD was examined over a two-year observation period. The
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FIGURE 1

Findings from statistical analyses concerning di�erent DROs. (A–C) OFF, (D–F) ON, (G–I) DYS, (J–L) UPDRS. The first row displays a combination of

boxplots, scatter plots and violin plots for data collected at both 0 and 24 months. Statistically significant di�erences between groups are marked with

an asterisk. The second row shows plots with individually fitted lines for longitudinal data. The average of these individual thick lines is represented by

a heavy black line. The third row illustrates barplots with the slope values across all subjects. The mean slope is indicated with a heavy black line.

FIGURE 2

An example of device-reported OFF evolution for a patient. Vertical dashed lines indicate adjustments of treatment regimen.

investigation centered on patients who underwent traditional
medical examination combined with a comprehensive
analysis of objective ambulatory measurements collected

at non-clinical settings. The impact of telemonitoring for
continuous home monitoring on the management of PD
was evaluated.
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TABLE 2 Q1:“How satisfied are you with the e�ectiveness of your

medication prior to using the PDMonitor®?” Q2:“How satisfied are you

with the e�ectiveness of your medication after using the PDMonitor®?”

Choices Q1 (%) Q2 (%)

Very satisfied 7.7 23.1

Satisfied 26.9 38.5

Neither 46.2 34.6

Dissatisfied 15.4 3.8

Very dissatisfied 3.8 0

Didn’t answer 0 0

TABLE 3 “To what degree do you agree that the use of PDMonitor® has

helped you up to this point?”

Choices Answers (%)

Strongly agree 59.3

Agree 22.2

Undecided 7.4

Disagree 11.1

Strongly disagree 0

Didn’t answer 0

TABLE 4 “Since you started using PDMonitor®, do you consider that your

condition has improved, worsened, or remained unchanged?”

Choices Answers (%)

Significantly improved 11.1

Improved 33.3

Remained unchanged 37.0

Worsened 14.8

Significantly worsened 3.7

Didn’t answer 0

TABLE 5 “To what degree do you agree that the use of PDMonitor® has

improved the communication with your physician?”

Choices Answers (%)

Strongly agree 63.0

Agree 18.5

Undecided 3.7

Disagree 14.8

Strongly disagree 0

Didn’t answer 0

Real-world evidence of this new treatment paradigm showed
a significant improvement in the percentage of OFF time over
the 24-month study period (Figure 1A). The observed decrease in
OFF, accompanied by a trend of increasing ON time (Figure 1E),
suggests a positive influence of telemonitoring on motor symptom

control. Increasing the number of patients with improved or stable
symptom manifestation, as reflected by the absence of statistical
differences and significant trends in device-reported UPDRS and
DYS scores (Figures 1G, J), further emphasizes the reliability
of the telemonitoring approach in PD management. Further
investigations are warranted to explore limited exacerbation in
dyskinesia and UPDRS, as indicated by only a subset of participants
(Figures 1I, L). In cases where patients experience worsening
symptoms, the referral to advanced therapies, such as DBS, should
be considered (16).

The clinical significance of these findings is enhanced
when considering that the motor function is usually worsened
significantly with time in patients with PD. Previous studies suggest
that annual rates of progression of the total UPDRS score range
from 7.8 to 14 points, and of the UPDRS III (motor) score from 5.2
to 8.9 points (17, 18). Moreover, the worsening is faster during the
first years of disease and the increase over time is independent of sex
and age (19, 20). The late stages of Parkinson’s disease are marked
by a progressive decline in both physical and cognitive function,
leading to a substantial reduction in quality of life for individuals
affected by the condition (21) and placing significant strain on
caregivers and healthcare systems (22, 23). Minimizing “OFF”
time and maximizing “ON” time leads to an improved quality of
life for patients, with optimum cognitive and mental health (24).
Improved motor function and reduced motor fluctuations are the
key considerations to be taken into account in PD treatment to
minimize potential side effects such as postural abnormalities and
freezing episodes, which are associated with an increased risk
of falls (25, 26). Telemonitoring emerges as a valuable tool for
healthcare professionals, facilitating the optimization ofmedication
management and enabling timely adjustments to the treatment
plan (27). When symptoms are effectively controlled, the necessity
for follow-up consultations can be diminished, thereby achieving
treatment waning (13).

The frequency of therapy adjustments and the subsequent
increase in dopaminergic burden underscore a critical
consideration in treatment approaches. In this study, the
average change in treatment was minimal, resulting in an LEDD
of 255.6 mg (from 799.6 to 1,055.2 mg) (Table 1). Although there
are periods lasting up to several years in which pharmacological
treatment could extremely efficiently control symptoms, the
majority of PD patients will experience ineffective symptom
management during disease course (28). For instance, the patient
illustrated at Figure 2 shows improved symptoms control, which,
however, was accompanied with an increased L-Dopa of about
800 mg during the 2 year follow-up period. This highlights that
there is an ongoing challenge in maintaining optimal symptom
control without increasing dopaminergic burden. While effective
symptom management is a desirable outcome in PD management,
healthcare practitioners should balance the therapeutic benefits
of dopaminergic medications with the potential risks of increased
burden and side effects (29). This emphasizes the importance
of continually reassessing treatment strategies through the
use of telemonitoring to address evolving patient needs and
disease dynamics.

The findings of this study also demonstrated that
telemonitoring not only aids in objective symptom assessment
but also contributes to a positive subjective experience for
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patients, potentially influencing adherence to treatment plans.
It should be noted that the prevalence of significant medication
non-compliance in PD is high and it is linked to reduced quality
of life and heightened severity of both motor and non-motor
complications (30, 31). Therefore, the reported improvement
in the perceived medication effectiveness underscores the
potential of telemonitoring in optimizing treatment strategies
by improving treatment adherence and satisfaction of patients
about their disease status (Table 2). The questionnaire-based
assessment of patient satisfaction revealed a notable increase in
the percentage of satisfied and very satisfied patients following
telemonitoring (Tables 3, 4). Perceived advantages of remote
monitoring, as reported by a significant majority of participants,
also include improved communication with physicians (Table 5),
highlighting an improved, patient-centered approach to care. In
accordance with findings in the literature, considerable interest
of employing telemonitoring is observed for patients as well as
healthcare professionals, with noteworthy levels of satisfaction
reported by both parties (32). The quality of care administered
to PD patients through telemedicine is deemed comparable to
that of in-person care, albeit a preference for a hybrid approach
combining telemonitoring and in-person visits has been expressed
by patients (33).

Despite the promising findings, this study has several
limitations. The small sample size may limit the generalizability
of the results, and further research with larger cohorts is
warranted to validate the observed trends. Additionally, the
exclusion of patients with advanced therapies such as DBS and
infusion pumps may limit the applicability of the findings to
this specific subgroup. Future studies, considering factors such
as device adherence, should explore the long-term sustainability
of telemonitoring benefits. This study relied on device-reported
outcomes to assess symptoms, which does not allow a direct
comparison with previous studies that used standard clinical
scales (e.g., UPDRS). Future research comparing telemonitoring
with traditional in-person care approaches and assessing the
cost-effectiveness of telemonitoring interventions would provide
additional insights into its broader implications. Additional studies
are required to quantify the net effect of telemonitoring on
symptoms control. Controlled longitudinal evaluation for longer
observation period could assess whether a different symptoms
trajectory exists between patients undergoing traditional practice
and people undergoing telemonitoring.

In conclusion, implementing telemonitoring could lead to
more efficient use of healthcare resources. By reducing the need for
frequent in-person visits, clinicians can allocate their time more
effectively, focusing on patients who require immediate attention
while remotely monitoring others. The study indicates that this
paradigm shift in PD improved patient satisfaction with their
treatment and communication with healthcare providers. This
enhanced engagement can lead to better adherence to treatment
plans and more active participation in managing the disease,
ultimately improving outcomes. Additionally telemonitoring
facilitates better disease management and potentially reduces
the frequency and severity of symptom exacerbations, which in
turn can alleviate the burden on caregivers. Consequently, this
may result in an improved quality of life for both patients and
their families.
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Background: Gait disorder is a prominent motor symptom in Parkinson’s disease 
(PD), objective and quantitative assessment of gait is essential for diagnosing 
and treating PD, particularly in its early stage.

Methods: This study utilized a non-contact gait assessment system to investigate 
gait characteristics between individuals with PD and healthy controls, with a 
focus on early-stage PD. Additionally, we trained two machine learning models 
to differentiate early-stage PD patients from controls and to predict MDS-
UPDRS III score.

Results: Early-stage PD patients demonstrated reduced stride length, decreased 
gait speed, slower stride and swing speeds, extended turning time, and reduced 
cadence compared to controls. Our model, after an integrated analysis of gait 
parameters, accurately identified early-stage PD patients. Moreover, the model 
indicated that gait parameters could predict the MDS-UPDRS III score using a 
machine learning regression approach.

Conclusion: The non-contact gait assessment system facilitates the objective and 
quantitative evaluation of gait disorder in PD patients, effectively distinguishing 
those in the early stage from healthy individuals. The system holds significant 
potential for the early detection of PD. It also harnesses gait parameters for a 
reasoned prediction of the MDS-UPDRS III score, thereby quantifying disease 
severity. Overall, gait assessment is a valuable method for the early identification 
and ongoing monitoring of PD.

KEYWORDS

Parkinson’s disease, gait analysis, early-stage diagnosis, MDS-UPDRS III score, 
non-contact assessment, machine learning

1 Introduction

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases, affecting 
approximately 1% of the population over 60 years of age (1). The typical motor symptoms of 
PD include resting tremor, bradykinesia, rigidity, postural and gait disorders. Among these, 
gait disorder is one of the principal symptoms in PD patients. Patients exhibit characteristic 
gait patterns such as reduced turning agility, short and slow steps, festinating, and freezing of 
gait (2, 3). Given the strong correlation between gait disorders and diminished quality of life, 
precise gait assessment is vital (4, 5). However, it is challenging for neurologists to assess gait 
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in the early stage of PD (6). Early gait disorders are very subtle, and 
some patients even exhibit motor symptoms without conscious gait 
complaints (7); Additionally, the presence of short and slow steps is a 
common trait in the aging population (8, 9), complicating the 
differentiation of PD-induced gait changes from age-related 
alterations. Consequently, precise identification and surveillance of 
gait anomalies are essential for the effective treatment and prognosis 
of PD, particularly in its early stage.

Currently, the clinical assessments of gait in PD patients rely on 
traditional scales, such as the Section III of the modified movement 
disorder society version of the unified Parkinson’s disease rating scale 
(MDS-UPDRS III), the Timed-Up and Go test, and the Freezing of 
Gait Questionnaire, and so on (10). However, these scales depend on 
the subjective assessments of clinical physicians and have the 
limitations of being semi-quantitative, time-consuming, and 
potentially leading to inconsistent and imprecise results. In recent 
years, along with the rapid advancement of science and technology, a 
variety of objective and quantitative gait assessment techniques have 
gradually matured, propelling PD gait research into a new stage (11), 
such as multi-camera motion capture systems, wearable sensors, and 
pressure-sensitive insoles. However, the existing methods also have 
various shortcomings. For instance, multi-camera motion capture 
systems offer the highest capture accuracy and are considered as the 
golden standard in clinical gait analysis (11), yet they are costly and 
demand a large space, making them difficult to popularize currently. 
Wearable sensors, while portable, still face several challenges, such as 
discomfort during wear, data synchronization, and noise 
contamination. In summary, although new technologies show great 
potential in gait assessment in PD, they still need further improvement 
and optimization in terms of popularization and clinical application 
(12). In order to provide more refined and convenient gait monitoring 
methods for PD patients, future research should focus on enhancing 
the universality of the technology, reducing costs, improving user 
experience, and maintaining the accuracy and reliability of the data in 
the same time.

Based on the current challenges faced by PD gait assessments, 
we have utilized a non-contact gait assessment system (ReadyGo, 
Beijing CAS-Ruiyi Information Technology Co., Ltd.) (13), in order 
to overcome the limitations of traditional evaluation methods. With 
its non-invasive characteristic, real-time data collection capability, 
cost-effectiveness, and unique ability to capture rich 3D skeletal 
information, ReadyGo has quickly became an ideal choice for gait 
assessment in both clinical and scientific research. Through implicit 
monitoring, this technology not only reduced the discomfort of 
patients but also captured the most authentic gait data in a natural 
state, providing a solid foundation for precision medicine and 
personalized treatment.

Despite the increasing number of objective and quantitative 
assessments of gait disorder in PD patients in recent years, there is a 
relative lack of research focusing on the gait characteristics in the early 
stage of the disease. Our study aimed to deep explore the gait disorder 
characteristics of PD patients, especially those in the early stage, and 
to explore whether gait assessment can effectively identify differences 
between early-stage PD patients and healthy elderly individuals.

By conducting a detailed comparative analysis of gait parameters 
between early-stage PD patients and healthy controls (HC), we hoped 
to reveal the unique gait patterns of early-stage PD patients. This 
would not only help improve the accuracy and timeliness of early 

diagnosis but also provide key information for predicting PD 
progression and optimizing intervention strategies. Our research was 
expected to bring advancements to the early diagnosis and 
management of PD, especially in the aspects of identification and 
monitoring of gait disorder, opening up new methods for improving 
the quality of life for patients.

2 Materials and methods

2.1 Participants

In this study, 63 patients with primary PD were encompassed, 
with 27 being male and 36 being female. The inclusion criteria were 
as follows: (1) Meeting the 2015 Movement Disorder Society (MDS) 
diagnostic criteria for primary PD (14); (2) Hoehn and Yahr (H&Y) 
stages between stage 1 and 3; (3) The Mini-Mental State Examination 
(MMSE) score of 24 or above. Additionally, 65 gender- and 
age-matched healthy participants were selected as the healthy control 
group, including 35 males and 30 females. The ages of participants 
ranged from 46 to 85 years old, and all of them were able to complete 
the tests without any assistance from others. Exclusion criteria 
included: (1) Atypical Parkinsonism; (2) Severe systemic diseases 
(such as musculoskeletal, cardiovascular, cerebrovascular and 
respiratory) and other neurological diseases; (3) Uncorrected visual 
impairments, or diseases that could alter gait patterns. This study was 
approved by the Ethics Committee of Central Hospital of Dalian 
University of Technology (Reference No. YN2022-039-57). Each 
participant signed the informed consent before participating in this 
study. The study was performed according to the guidelines of the 
declaration of Helsinki.

2.2 Clinical assessment

Demographic information was collected, including age, gender, 
height (cm), weight (kg), and disease duration. All patients were 
assessed by two experienced neurologists in movement disorders. The 
severity of the disease were evaluated using the H&Y staging scale (15) 
which score ranged from 0 (no symptoms) to 5 (wheelchair bound or 
bedridden unless aided) and the MDS-UPDRS III (16) which 
consisted of 33 items with a score ranged from 0 (no symptoms) to 
132 (severe motor symptoms). Cognitive was evaluated using the 
MMSE which score ranged from 0 to 30, with higher score indicating 
better cognitive function (17).

2.3 Gait assessment

Gait parameters were assessed using ReadyGo. Unlike the 
traditional multi-camera system, ReadyGo system innovatively 
utilizes a set of integrated cameras, including one RGB (red/green/
blue) camera and a single depth camera, to capture and analyze three-
dimensional (3D) motion data. The main advantage of this system lies 
in its unique skeletal tracking technology, which uses deep learning 
algorithms for precise positioning of skeletal points without requiring 
participants to wear any additional sensors, greatly enhancing the 
experience of the participants and the convenience of data collection 
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(Figure 1). By meticulously analyzing the gait of PD patients, the 
system can automatically extract and quantify up to 19 key gait 
parameters, covering many aspects of the gait cycle, including gait 
speed, cadence, stride length, swing and stance phases, and so on, 
providing numerous details for a comprehensive understanding of gait 
disorder in PD patients. The accuracy and sensitivity of the ReadyGo 
system have been validated in previous studies (13), showing high 
reliability in capturing key gait parameters such as stride length and 
gait speed.

2.4 Procedure

 1 Scale assessment: MDS-UPDRS III and H&Y staging scale were 
performed by two experienced neurologists in movement 
disorders, and then gait assessment was carried out. PD patients 
underwent all of the above, and healthy controls only underwent 
gait assessment but without clinical scale assessments.

 2 Gait assessment: the gait assessment device was placed in the 
equipment placement area which was 1.5 meters away from the 
endline. Participants stood at the starting line which was 4.5 
meters directly in front of the device. During the test, 
participants were asked to walk at their self-selected 
comfortable pace without using any assistant device, start from 
the starting line, walk to the end line, turn around, and return 
to the starting line, repeat this process three times before 
ending the recording (Figure  2). Each participant should 
undergo a practice trial before the test to ensure that they 
understood the instructions clearly.

The gait data was achieved through a non-contact method, 19 gait 
parameters were extracted based on the images of gait and depth 

information, including stride length (left, right), step height (left, 
right), step width, gait speed, stride speed (left, right), swing speed 
(left, right), turning time, cadence (left, right), swing phase (left, 
right), stance phase (left, right), double support phase (left, right). The 
specific definitions were shown in Table  1 and the gait cycle was 
shown in Figure 3.

2.5 Modeling

In this study, we defined patients in the H&Y 1 and 2 as early-
stage PD and constructed a classification model using gait parameters 
of early-stage PD and healthy controls. The classification model was 
constructed to distinguish early-stage PD from healthy controls using 
gait parameters. Ten gait parameters with a statistical significance level 
of p < 0.001 were selected as input features. The dataset was split into 
a training set (70%) and a test set (30%) to evaluate the model’s 
performance. We  utilized the LightGBM algorithm to build the 
classifier. The model was trained and validated using the training set, 
and its predictive performance was evaluated on the test set.

The Receiver Operating Characteristic (ROC) curve was 
performed as an important tool to evaluate the performance of the 
model, exploring whether gait parameters can identify early-stage PD 
from healthy controls. The ROC curve showed the relationship 
between the true positive rate (sensitivity) and the false positive rate 
(1-specificity), visually presented the classification capability of the 
model at different thresholds. In this study, we  paid particular 
attention to the Area Under the Curve (AUC) of the ROC, the closer 
the value is to 1, indicated the better classification performance of the 
model, i.e., the stronger ability of gait parameters to identify early-
stage PD.

By comprehensively analyzing the ROC curve and AUC value of 
the model, we hoped to validate the feasibility of gait parameters as 
early diagnostic biomarkers for PD, to provide a new perspective and 
basis for the early detection, intervention, and management of 
PD. This research would also lay a theoretical foundation for the 
subsequent development of more precise and personalized early 
screening tools for PD, promoting continuous advancement in 
clinical practice.

In the process of deepening our research, we adopted a more 
refined analytical strategy, using the Random Forest algorithm to train 
a machine learning regression model, which used all the 19 gait 
parameters as input features and MDS-UPDRS III score as output 
labels. This methodological shift aimed to explore how gait parameters 
quantitatively correlate with the severity of PD. By training a Random 
Forest regression model, we could predict the MDS-UPDRS III score 
of PD patients. To evaluate the performance of the model, we utilized 
the Leave-One-Out Cross Validation (LOOCV) method. In LOOCV, 
each instance of the dataset is used once as a test set while the 
remaining instances form the training set. This iterative process 
ensures that every data point is used for both training and validation, 
providing a robust assessment of the model’s generalization capability 
and predictive accuracy.

We could comprehensively evaluate the performance of the 
regression model by using these metrics: R-squared (R2), Mean 
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE). R2 
measured how well the model fitted the data, ranging from 0 to 1, the 
closer the value was to 1, indicated a better fit of the model. MAE 

FIGURE 1

Human skeletal point tracking and motion recognition (the yellow 
markers indicate the key skeletal points tracked by the ReadyGo 
system).
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quantified the average absolute difference between the predicted value 
and true value, the smaller value suggested higher predictive accuracy 
of the model. MAPE was the average absolute percentage error 
expressed as a percentage, which was better for assessing the relative 
error between predicted value and true value, which was often used to 
understand the prediction accuracy of a model over different ranges.

2.6 Statistical analysis

The statistical analysis in this study was analyzed using SPSS 26.0 
(IBM Corp., Armonk, NY). Continuous variables with normal 
distribution were presented as mean ± standard deviation (x  ± s), the 
comparisons between two groups were made using the Independent 
Samples t-Test, the comparisons among multiple groups with 
homogeneous variances were made using one-way ANOVA followed 
by Bonferroni post-hoc test, the comparisons among multiple groups 
with non-homogeneous variances were made using the Welch test 
followed by Games-Howell (A) post-hoc test. Continuous variables 
with non-normal distribution were presented as median and 
interquartile distances [M (P25, P75)], and comparisons between two 
groups were made using the Mann–Whitney U test, while comparisons 

among multiple groups were made using the Kruskal-Wallis test 
followed by post-hoc test. Categorical variables were described by 
frequency, and group comparisons were made using the Pearson 
Chi-square test. The statistically significant difference was considered 
p < 0.05  in two-tailed tests. In this study, scikit-learn data analysis 
library of Python 3.8 was used to train and verify the classification and 
regression models. Meanwhile, drawing libraries such as matplotlib 
and seaborn were used to visually display the distribution 
characteristics of data and prediction effects of the models.

3 Results

3.1 Demographic and clinical 
characteristics

The demographic data between PD patients and the healthy 
controls were comparable (the first four lines in Table 2), there were 
no significant statistical differences in gender, age, height, and weight 
between the two groups (p > 0.05).

The disease duration of PD patients ranged from 1 to 10 years, the 
MMSE score ranged from 24 to 30 points, the median MDS-UPDRS 

FIGURE 2

The procedure of gait assessment. (A) The schematic diagram of gait assessment (Line A is the starting line which is the departure point for the gait 
assessment; Line B is the end line which is the turning point for the gait assessment; C represents the area where the gait assessment device is placed). 
(B) The photograph of the actual procedure of gait assessment.
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III score was 25.5 points, and H&Y stages ranged from 1 to 3, 
including 13 individuals in stage of H&Y 1, 38 individuals in stage of 
H&Y 2, and 12 individuals in stage of H&Y 3.

3.2 Comparison of gait parameters 
between PD patients and healthy controls

There were statistically significant differences in gait parameters 
between PD patients and healthy controls except for step width and 
right step height. The PD patients exhibited shorter stride length, 
slower gait speed, slower stride speed, slower swing speed, longer 
turning time, slower cadence, longer percentage of stance phase, 
shorter percentage of swing phase, and longer percentage of double 
support phase (Table 3). These results confirmed the “short and slow” 
gait characteristics of PD patients.

3.3 Comparison of gait parameters among 
H&Y 1, H&Y 2, and H&Y 3

PD patients were divided into three groups according to the 
H&Y stages: H&Y 1, H&Y 2, and H&Y 3. We found that there were 
statistically significant differences in stride length, step height, gait 
speed, stride speed, swing speed, and percentage of double support 
phase among the three groups. Post-hoc test showed that these 
differences occurred between H&Y 1 and H&Y 3, and between 
H&Y 2 and H&Y 3, but there was no statistically significant 
difference when comparing H&Y 1 with H&Y 2. That was to say, 
compared with H&Y 1 and H&Y 2, H&Y 3 exhibited shorter stride 
length, lower step height, slower gait speed, slower stride speed, 
slower swing speed, and a longer percentage of time with both feet 
on the ground (Table 4; Figure 4).

3.4 Comparison of gait parameters 
between early-stage PD and healthy 
controls

From Table  4, we  could find that there was no statistically 
significant difference in gait parameters between H&Y 1 and H&Y 
2. Therefore, we  defined H&Y 1 and H&Y 2 as early stage and 
compared them with the healthy controls. We found that early-stage 
PD patients had shorter stride length (left, right), slower gait speed, 
slower stride speed (left, right), slower swing speed (left, right), 
slower cadence (left, right), and longer turning time. This indicated 
that the gait parameters such as stride length, gait speed, stride 
speed, swing speed, turning time, and cadence were the first to 
be affected in the early stage of PD.

3.5 ROC analysis

From Table 5, we selected 10 gait parameters with a statistical 
significance level of p < 0.001 when comparing early-stage PD with 
healthy controls, including stride length (left, right), gait speed, 
stride speed (left, right), swing speed (left, right), turning time, and 
cadence (left, right). We performed ROC analysis on the combined 
gait parameters mentioned above, and evaluated the ability of gait 

TABLE 1 Specific definitions of gait parameters in this study.

Gait parameter Definition

Stride length-L/R (m) The distance between two landings of the left/

right foot.

Step height-L/R (m) The highest distance from the ground during the 

swing of the left/right foot.

Step width (m) The average of the width of the left and right feet 

in each image frame.

Gait speed (m/s) Average speed during straight travel (not 

including the turning time).

Stride speed-L/R (m/s) Average speed during a left/right stride.

Swing speed-L/R (m/s) Average speed during a left/right swing.

Turning time (s) The time from turning start to turning end.

Cadence-L/R (steps/min) Frequency of left/right footstep.

Swing phase-L/R (%) Percentage of left/right swing phase time in the 

left/right stride time.

Stance phase-L/R (%) Percentage of left/right stance phase time in the 

left/right stride time.

Double support-L/R (%) Percentage of double support phase time in the 

left/right stride time.

L, left; R, right.

FIGURE 3

Gait cycle.
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parameters to distinguish early-stage PD from healthy controls. The 
accuracy was 91.43%, the sensitivity was 93.33%, the specificity was 
90.0%, and the area under the curve (AUC) was 0.99, indicating that 
the gait parameters could correctly distinguish 91.43% early-stage 
PD from healthy controls. We  further analyzed the feature 
contribution of the included 10 gait parameters, feature contribution 
was evaluated using the SHAP (SHapley Additive exPlanations) 
method, which quantifies each parameter’s contribution to the 
model’s predictions. The contribution degree was in the following 
order: cadence (right), gait speed, turning time, cadence (left), 
swing speed (right), stride length (left), stride speed (left), stride 
length (right), swing speed (left), and stride speed (right). Cadence, 
gait speed, and turning time had the greatest influence of the gait 
parameters for distinguishing between early-stage PD and the 
healthy controls, while stride length, stride speed, and swing speed 
had a secondary influence (Figure 5).

3.6 Predicting MDS-UPDRS III score

To explore whether gait parameters could predict MDS-UPDRS 
III score, we trained a machine learning regression model using all 
the 19 gait parameters as input features and MDS-UPDRS III score 
as the output label. The scatter plot indicated that the model had a 
strong explanatory power for MDS-UPDRS III score (R2 = 0.897), 
with MAE of 4.015 and MAPE of 0.198 (Figure 6). The scatter plot 
showed the relationship between the predicted value and the true 
value of the regression model. It could be visually seen from the 
figure that the model performance for predicting MDS-UPDRS III 
score was good.

4 Discussion

Our study used a non-contact gait assessment system to assess and 
quantify gait parameters in patients with PD. Our findings confirmed 
that there were significant differences in gait parameters between PD 
patients and healthy controls. PD patients had slower gait speed and 
shorter stride length, which was consistent with the existing research. 
Gait is a very important motor function in daily life, gait disorder is 
closely associated with the quality of life (18). Therefore, early 
recognition and monitoring of gait is crucial for the diagnosis, 
treatment, and prognosis of PD patients. It is challenging to identify 
gait abnormalities in the early stage of PD, even to detect gait 
abnormalities without the complaint of gait disorder. Previous studies 
defined the early stage as H&Y stage below 2.5 (19, 20).

We divided PD patients into three groups according to H&Y 
stages and found that compared with H&Y 1–2, H&Y 3 had shorter 
stride length, lower step height, slower gait speed, slower stride speed, 
slower swing speed, and a longer percentage of time with both feet on 
the ground. But there was no statistically significant difference 
between H&Y 1 and H&Y 2. To explore gait abnormalities in the early 
stage of PD, we  defined H&Y 1 and H&Y 2 as early stage, and 
compared them with healthy controls. We found that early-stage PD 
had shorter stride length, slower gait speed, slower stride speed, slower 

TABLE 2 Demographic and clinical characteristics.

Variable PD (n  =  63) HC (n  =  65) p value

Gender (male/female) 27/36 35/30 0.214

Age (years) 66.90 ± 8.43 67.40 ± 7.17 0.721

Height (cm) 165.10 ± 7.98 165.46 ± 7.96 0.795

Weight (kg) 67.83 ± 12.38 66.92 ± 11.37 0.665

Disease duration (years) 1–10 NA NA

MMSE (score) 24–30 NA NA

H&Y stage NA NA

  1 13

  2 38

  3 12

MDS-UPDRS III 

(score)–overall

25.50 (17.00, 39.00) NA NA

MDS-UPDRS III 

(score)–H&Y 1

13.15 ± 4.30 NA NA

MDS-UPDRS III 

(score)–H&Y 2

25.50 (21.00, 35.25) NA NA

MDS-UPDRS III 

(score)–H&Y 3

48.83 ± 11.89 NA NA

PD, Parkinson’s disease; HC, healthy controls; MMSE, Mini-Mental State Examination; H&Y, 
Hoehn and Yahr; MDS-UPDRS III, section III of the modified movement disorder society 
version of the unified Parkinson’s disease rating scale; NA, not applicable.

TABLE 3 Comparison of gait parameters between PD patients and 
healthy controls.

Gait parameter PD (n  =  63) HC (n  =  65) p value

Stride length-L (m) 0.89 ± 0.23 1.10 ± 0.15 < 0.001

Stride length-R (m) 0.89 ± 0.24 1.09 ± 0.15 < 0.001

Step height-L (m) 0.10 ± 0.03 0.12 ± 0.02 0.004

Step height-R (m) 0.10 ± 0.03 0.10 (0.09, 0.12) 0.127

Step width (m) 0.14 (0.12, 0.15) 0.13 ± 0.02 0.091

Gait speed (m/s) 0.72 ± 0.23 1.10 (1.01, 1.21) < 0.001

Stride speed-L (m/s) 0.80 ± 0.24 1.20 ± 0.21 < 0.001

Stride speed-R (m/s) 0.80 ± 0.24 1.20 ± 0.22 < 0.001

Swing speed-L (m/s) 1.93 ± 0.45 2.74 ± 0.36 < 0.001

Swing speed-R (m/s) 1.94 ± 0.47 2.75 ± 0.41 < 0.001

Turning time (s) 1.60 (1.21, 2.06) 1.03 (0.89, 1.31) < 0.001

Cadence-L (steps/min)
112.49 (100.00, 

119.99)

128.57 (120.00, 

138.46)

< 0.001

Cadence-R (steps/min) 105.88 (100.00, 

112.50)

128.57 (120.00, 

141.76)

< 0.001

Swing phase-L (%) 31.17 ± 3.17 32.39 ± 2.69 0.021

Swing phase-R (%)
31.09 ± 3.50 33.33 (31.43, 

34.62)

< 0.001

Stance phase-L (%) 68.82 ± 3.17 67.61 ± 2.69 0.022

Stance phase-R (%) 68.90 ± 3.50 66.67 (65.39, 

68.57)

< 0.001

Double support-L (%) 38.14 ± 6.34 34.62 (33.33, 

36.85)

< 0.001

Double support-R (%)
37.43 ± 6.21 34.62 (33.33, 

36.85)

0.004

L, left; R, right. p values in bold indicate statistical significance (p < 0.05).
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TABLE 4 Comparison of gait parameters among H&Y 1, H&Y 2, and H&Y 3.

Gait Parameter H&Y stage p value

H&Y 1 (n  =  13) H&Y 2 (n  =  38) H&Y 3 (n  =  12) Overall 1 vs 2 1 vs 3 2 vs 3

Stride length-L (m) 1.03 ± 0.13 0.91 ± 0.22 0.66 ± 0.22 <0.001 0.060 <0.001 0.007

Stride length-R (m) 1.02 ± 0.17 0.91 ± 0.22 0.66 ± 0.23 <0.001 0.383 < 0.001 0.001

Step height-L (m) 0.11 ± 0.02 0.11 ± 0.03 0.07 ± 0.02 <0.001 1.000 0.001 0.001

Step height-R (m) 0.11 ± 0.03 0.11 ± 0.03 0.08 ± 0.02 0.025 1.000 0.068 0.029

Step width (m) 0.13 ± 0.02 0.13 ± 0.02 0.14 (0.13, 0.15) 0.706 - - -

Gait speed (m/s) 0.82 ± 0.16 0.75 ± 0.21 0.54 ± 0.24 0.003 0.855 0.004 0.011

Stride speed-L (m/s) 0.92 ± 0.19 0.82 ± 0.22 0.60 ± 0.23 0.002 0.420 0.002 0.012

Stride speed-R (m/s) 0.90 ± 0.22 0.83 ± 0.22 0.61 ± 0.24 0.004 0.984 0.005 0.011

Swing speed-L (m/s) 2.07 ± 0.32 1.99 ± 0.44 1.56 ± 0.44 0.006 1.000 0.012 0.009

Swing speed-R (m/s) 2.15 ± 0.42 1.97 ± 0.47 1.61 ± 0.40 0.011 0.686 0.011 0.049

Turning time (s) 1.36 ± 0.39 1.68 (1.26, 2.17) 1.95 ± 1.00 0.105 - - -

Cadence-L (steps/min) 107.28 ± 12.05 110.50 ± 13.05 114.74 ± 20.39 0.441 - - -

Cadence-R (steps/min) 106.83 ± 12.48 105.88 (99.34, 

112.50)

107.87 ± 16.93 0.948 - - -

Swing phase-L (%) 32.31 ± 4.29 31.29 ± 2.57 29.55 ± 3.12 0.156 - - -

Swing phase-R (%) 33.19 ± 3.93 31.34 (29.91, 33.85) 28.51 ± 3.49 0.005 0.866 0.006 0.021

Stance phase-L (%) 67.68 ± 4.29 68.70 ± 2.57 70.45 ± 3.12 0.156 - - -

Stance phase-R (%) 66.80 ± 3.93 68.66 (66.14, 70.09) 71.49 ± 3.49 0.005 0.866 0.006 0.021

Double support-L (%) 34.96 ± 8.35 36.78 (34.24, 40.81) 43.10 ± 6.09 0.012 1.000 0.018 0.027

Double support-R (%) 34.91 ± 8.39 36.14 (33.33, 39.97) 41.79 ± 5.76 0.014 1.000 0.018 0.037

L, left; R, right. p values in bold indicate statistical significance (p < 0.05).

FIGURE 4

Comparison of gait parameters among H&Y 1, H&Y 2 and H&Y 3. The filled circles represent the median, lower and upper lines represent the 25th and 
75th percentile, respectively. *represents p  <  0.05, **represents p  <  0.01, ***represents p  <  0.001.
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swing speed, slower turning time, and slower cadence. This indicated 
that in the early stage of PD, stride length, gait speed, stride speed, 
swing speed, turning time, and cadence were the first to be affected, 
suggested that they could be used to detect gait abnormalities in the 
early stage. In the progressive stage of the disease, step height, gait 
speed, stride speed, and swing speed decrease further, and the 
percentage of time with both feet on the ground was prolonged, 
indicated that these parameters could be  used to monitor the 
progression of the disease.

We innovatively proposed an auxiliary diagnostic method 
based on fine-grained gait feature analysis, aimed to identify signs 
of PD in the early stage, we  paid a particular attention to the 

potential value of gait parameters in the early diagnosis of PD. By 
using the machine learning model, we  conducted an in-depth 
exploration of the selected ten gait parameters, including stride 
length (left, right), gait speed, stride speed (left, right), swing 
speed (left, right), turning time, and cadence (left, right). The 
results showed that these gait parameters could effectively 
distinguish early-stage PD from healthy controls. The model 
showed an encouraging classification performance, with an 
accuracy of up to 91%, the sensitivity of 93%, and the specificity 
also maintained at a high level of 90%. This strongly proved the 
practicality and reliability of the constructed model in the 
auxiliary diagnosis of early-stage PD.

TABLE 5 Comparison of gait parameters between early-stage PD and healthy controls.

Gait Parameter Early-stage PD (n  =  51) HC (n  =  65) p value

Stride length-L (m) 0.94 ± 0.20 1.10 ± 0.15 < 0.001

Stride length-R (m) 0.94 ± 0.21 1.09 ± 0.15 < 0.001

Step height-L (m) 0.11 ± 0.03 0.12 ± 0.02 0.175

Step height-R (m) 0.11 ± 0.03 0.10 (0.09, 0.12) 0.781

Step width (m) 0.13 ± 0.02 0.13 ± 0.02 0.156

Gait speed (m/s) 0.76 ± 0.20 1.10 (1.01, 1.21) < 0.001

Stride speed-L (m/s) 0.84 ± 0.22 1.20 ± 0.21 < 0.001

Stride speed-R (m/s) 0.85 ± 0.22 1.20 ± 0.22 < 0.001

Swing speed-L (m/s) 2.01 ± 0.41 2.74 ± 0.36 < 0.001

Swing speed-R (m/s) 2.02 ± 0.46 2.75 ± 0.41 < 0.001

Turning time (s) 1.56 (1.23, 2.05) 1.03 (0.89, 1.31) < 0.001

Cadence-L (steps/min) 109.68 ± 12.77 128.57 (120.00, 138.46) < 0.001

Cadence-R (steps/min) 105.88 (100.00, 112.50) 128.57 (120.00, 141.76) < 0.001

Swing phase-L (%) 31.55 ± 3.08 32.39 ± 2.69 0.123

Swing phase-R (%) 31.42 (30.00, 33.97) 33.33 (31.43, 34.62) 0.001

Stance phase-L (%) 68.44 ± 3.08 67.61 ± 2.69 0.127

Stance phase-R (%) 68.57 (66.02, 70.00) 66.67 (65.39, 68.57) 0.003

Double support-L (%) 36.97 ± 5.86 34.62 (33.33, 36.85) 0.008

Double support-R (%) 36.41 ± 5.90 34.62 (33.33, 36.85) 0.086

L, left; R, right. p values in bold indicate statistical significance (p < 0.05).

FIGURE 5

(A) Shows the ROC curve of the selected gait parameters in early-stage PD. (B) Shows the feature contribution of the selected gait parameters.
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To more comprehensively evaluate the potential of gait parameters 
in quantifying disease severity, we further explored their association with 
MDS-UPDRS III score. We constructed a predictive model using all the 
19 gait parameters as input features and MDS-UPDRS III score as output 
label. The model showed excellent explanatory power and predictive 
accuracy: a high R2 value indicated that the model could effectively 
explain most of the score variations; a low MAE value indicated good 
consistency between the predicted value and true value of the model; and 
a low MAPE value highlighted the high precision of the model in 
predicting MDS-UPDRS III score. In summary, our research not only 
confirmed the importance of gait parameters in the early diagnosis of PD 
but also demonstrated their great potential in quantifying disease 
progression. This provided a new perspective and tool for the future 
clinical management and personalized treatment of PD.

While our study has revealed the potential of gait parameters in the 
auxiliary diagnosis of early-stage PD, there were still some limitations 
that should be  acknowledged. The primary challenge lied in the 
limitation of sample size, that was, the relatively small number of 
participants. A small sample size might affect the power of statistical 
analysis and potentially constrain the generalizability and stability of the 
results. Additionally, the current study focused only on spatiotemporal 
parameters, such as stride length and gait speed, without involving 
more detailed kinematic parameters like joint angles. In light of these 
limitations, we plan to expand the sample size in future research and 
include more gait parameters, such as kinematic parameters, in order 
to build a more comprehensive and accurate diagnostic model.

5 Conclusion

In summary, the non-contact gait assessment system we used was 
capable of objectively and quantitatively evaluating gait disorder in PD 
patients, providing clinicians with a valuable tool for predicting 
MDS-UPDRS III score. Our machine learning models could 
accurately distinguish early-stage PD from healthy controls by 
integrating analysis of gait parameters such as stride length, gait speed, 
stride and swing speed, turning time, and cadence, and the model 
could also make reasonable prediction of MDS-UPDRS III score. This 
achievement reinforced the role of gait analysis in the early diagnosis 

of PD and paved the way for the development of early intervention 
and personalized treatment strategies for PD.
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Lower-limb muscle synergies in 
musician’s dystonia: a case study 
of a drummer
Shizuka Sata 1, Kazuaki Honda 2, Satoshi Yamaguchi 3, 
Mizuki Komine 1, SungHyek Kim 4, Makio Kashino 2, Shota Hagio 5* 
and Shinya Fujii 6*
1 Graduate School of Media and Governance, Keio University, Fujisawa, Japan, 2 NTT Communication 
Science Laboratories, NTT Corporation, Atsugi, Japan, 3 Keio Research Institute at SFC, Keio University, 
Fujisawa, Japan, 4 Department of Shizuoka Physical Therapy, Faculty of Health Sciences, Tokoha 
University, Shizuoka, Japan, 5 Graduate School of Human and Environmental Studies, Kyoto University, 
Kyoto, Japan, 6 Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan

Musician’s dystonia (MD) is a movement disorder characterized by involuntary 
muscle contractions specifically triggered by playing an instrument. This condition 
often leads to a loss of fine motor control, threatening the careers of affected 
musicians. While MD is commonly associated with the hands, it can also affect 
the lower limbs, particularly in drummers. Understanding the muscle coordination 
involved in MD is crucial for comprehending its neurological mechanisms, yet the 
muscle coordination of lower-limb dystonia has not been thoroughly explored. 
This study aimed to investigate the differences in lower-limb muscle synergies in 
a drummer with MD, utilizing non-negative matrix factorization (NMF) to analyze 
coordinated muscle activity patterns during drumming tasks. A 36-year-old male 
professional drummer with lower-limb MD was instructed to play a drum set in 
time with a metronome set at 80 beats per minute. The task involved striking 
the bass drum pedal in time with the downbeat. Electromyographic (EMG) data 
were collected from 10 muscles in the right lower limb. The data were analyzed 
using NMF to extract muscle synergies and compare the number of synergies, 
spatial modules, and temporal modules between the data with and without 
dystonia symptoms. The number of muscle synergies did not differ significantly 
between the data with and without symptoms. Notably, changes were observed 
in both the spatial and temporal modules of muscle synergies. Spatial modules 
revealed the appearance of dystonia-specific muscle synergy, which is considered 
related to compensatory movement. Temporal modules showed significant earlier 
overactivation in timing, which is considered the direct manifestation of dystonia 
symptoms. These findings indicate that lower-limb dystonia in drummers affects 
the spatial and temporal profiles of muscle synergies. This study underscores the 
importance of considering both spatial and temporal modules of muscle synergy 
in understanding and treating lower-limb dystonia in drummers. Further research 
is needed to validate these findings and apply muscle synergy analysis for the 
clinical assessment of lower-limb dystonia in drummers.
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dystonia, drummer, muscle synergy, lower limb, coordination
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1 Introduction

Focal task-specific dystonia (FTSD) is an involuntary movement 
disorder affecting some musicians due to maladaptive neuroplasticity 
(1–4). When this disorder manifests in musicians, it is referred to as 
musician’s dystonia (MD). It primarily induces involuntary 
movements specific to playing an instrument, presenting symptoms 
as a loss of fine motor control. This often leads to musicians 
abandoning their performance careers (5), making it a critical disorder 
for musicians.

While MD is most commonly reported in the hands, it also affects 
the lower limbs of drummers (6–8). In a case study of a drummer with 
lower limb MD, abnormal co-contraction in the thigh of the affected 
side during drum pedaling actions was noted (9). This drummer could 
alternately contract the plantar flexor and dorsiflexor muscles of the 
ankle on both affected and unaffected sides at a slow tempo. However, 
at increased tempos, he exhibited co-contraction of thigh muscles and 
was unable to maintain consistent performance at a fast tempo (9). In 
another case study of a drummer with lower limb MD, particularly in 
the right lower leg, it was revealed that the onset of symptoms led to 
increased activity in the ankle dorsiflexor muscles and partial thigh 
muscles, accompanied by a decrease in the activity of some toe 
extensor muscles (10). As a result, the amplitude of the played notes 
decreased, and synchronization errors increased (10). While these 
previous studies revealed symptom-specific activities in the individual 
lower limb muscles, how the symptom affected the coordination 
among the multiple muscles remains unclear.

By using a computational decomposition technique, such as 
non-negative matrix factorization (NMF), it is possible to extract a 
small number of synchronized activation groups of muscles, referred 
to as muscle synergies, from the activities of multiple muscles (11–14). 
Previous studies have demonstrated that the activities of multiple 
muscles in cyclic movements, like locomotion, can be decomposed 
into several sets of weighting coefficients assigned to individual 
muscles, i.e., spatial modules, and activation coefficients related to the 
phase of movement, i.e., temporal modules (15–18). From the 
perspective of muscle synergies, there are at least three potential ways 
that muscle coordination could be altered when dystonia symptoms 
manifest. First, the number of muscle synergies could differ. A 
reduction or increment in the number of muscle synergies suggests 
affecting the number of motor modules that can be independently 
recruited (19, 20). Second, the spatial modules of muscle synergy 
could differ. Changes in the spatial modules would indicate that 
dystonia primarily affects the extent to which each muscle participates 
in movement. Third, the temporal modules of muscle synergy could 
vary. Changes in temporal modules would show that the dystonia 
impacts the time-dependent profiles of when and how strongly each 
muscle synergy is activated to perform the movement. Together, 
investigating how dystonia symptoms influence (1) the number of 
synergies, (2) spatial modules, and (3) temporal modules is crucial. 
Clarifying these aspects would contribute to understanding how 
FTSD affects muscle coordination and elucidate clinical outcomes and 
neural underpinnings.

A central question of this study is how muscle synergies differ 
when dystonic symptoms occur in a drummer with lower limb 
dystonia. The previous research on pianists with MD revealed that 
while the number of muscle synergies remained unchanged, partial 
changes were observed in the coordination structures (spatial 

modules) between the affected and unaffected hands, as well as in 
comparison to the hands of healthy pianists (21). Moreover, these 
changes were identified as either directly related to the dystonic 
symptoms or as compensatory, based on their association with 
performance accuracy (21). This suggests that occurrence of dystonia 
symptoms affects the spatial modules without changes in the number 
of synergies. Another previous research in childhood dystonia 
reported the differences in the temporal modules while the number of 
synergies remained unchanged (22). This suggests that occurrence of 
dystonia symptoms affects the temporal modules without changes in 
the number of synergies. Taken together, the previous studies on 
muscle synergies in FTSD suggest changes in either spatial or temporal 
modules, but not in the number of synergies. Considering these 
previous studies on muscle synergies in FTSD, we hypothesized the 
following: (1) the drummer with lower-limb dystonia would show no 
significant change in the number of muscle synergies, while there 
would be changes in (2) the spatial modules, and/or (3) the temporal 
modules. The aim of this study was to investigate how the number of 
muscle synergies and the spatial and temporal modules would differ 
when dystonic symptoms occur in a drummer with lower-limb 
dystonia and to test the hypotheses in a drummer with right lower-
limb dystonia while performing a drum pattern.

2 Methods

2.1 Participant

The same participant as Honda et al. participated in this study 
(10). The participant was a 36-year-old male professional rock 
drummer. He began playing drums at age 14 and was diagnosed by a 
neurologist with focal task-specific dystonia in his right lower limb at 
age 29. He first experienced symptoms at the age of 24 while on a 
national tour. He complained that the right lower leg involuntarily 
contracted during drum playing. At times when his symptoms were 
most severe, he felt discomfort in his right foot during activities that 
resembled drum pedaling motions, such as ascending stairs and 
driving a vehicle. To mitigate these symptoms, he utilized sensory 
tricks, such as adjusting the height of his shoes and chair, which 
provided only temporary relief. Eventually, the progression of focal 
task-specific dystonia impaired his ability to play the drums, leading 
to his withdrawal from public performances. Given the task-specific 
nature of his dystonia, which was triggered exclusively by drumming-
related motions, and the temporary relief provided by sensory tricks, 
his diagnosis of FTSD was confirmed after ruling out other 
neurological conditions, including multiple sclerosis, minor spasticity 
(latent cerebral palsy), and rare ion-channel disorders such as 
stiff-man syndrome, based on the specific characteristics of his 
symptoms. The cumulative practice time from when he began playing 
the drum until he first experienced dystonia symptoms at the age of 
24 was 6,760 h, and by the time he was diagnosed with FTSD at age 
29, his total practice time had reached 9,360 h. His family history 
revealed no neurological disorders. His gait was normal, and he had 
no other neurological diseases. He was prescribed no medication for 
at least the past 3 years. He had no history of other neuropsychiatric 
disorders or neurosurgery. Ethical approval for this study was obtained 
from the Communication Science Laboratories Research Ethics 
Committee at Nippon Telegraph and Telephone Corporation 
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(Approval Number: H30-009). The experiment was conducted 
according to principles originating in the Declaration of Helsinki. 
Written informed consent was obtained from the participant in 
this study.

2.2 Experimental task

The participant was instructed to play an eight-beat drum pattern 
on a drum set in time with a metronome sound set at a constant 
tempo of 80 beats per minute (bpm). This tempo was chosen because 
it was the speed at which the participant most frequently experienced 
dystonic symptoms. The score of the drum pattern is depicted in 
Figure 1. The drumming pattern consisted of a single chunk of four 
metronome sounds that indicated the beat position in the pattern (see 
the vertical arrows in Figure 1), defined as 1 bar. Each trial consisted 
of 60 bars, and the participant completed a total of four trials. The 
affected right lower limb was used to play the bass drum, striking the 
drum pedal on the downbeat of the first beat and the syncopated 
upbeat of the third beat. The downbeat corresponds to the beginning 
of a beat, while the upbeat is situated between consecutive downbeats, 
such as when the participant played between the third and fourth 
beats. At the beginning of each trial, the participant started playing 
after hearing a 1 kHz pure tone and four metronome tones, which 
served as a cue for the start of the trial and to signal the tempo. The 
cue signal mimicked the standard practice in live performances, where 
a four-beat count-in is used. The participant was allowed a rest period 
of at least 1 min between trials. During the drum pattern, the 
participant verbally reported the occurrence of symptoms whenever 
he felt an abnormality in his movements.

2.3 Data collection

Electromyographic (EMG) activities were measured using active 
bipolar Ag/AgCl surface electrodes with a Trigno Wireless EMG 
system (DELSYS Corp., Boston, MA, United  States). The EMG 

activities were recorded from 10 muscles in the right lower extremity: 
rectus femoris (RF), lateral head of biceps femoris (BF), vastus lateralis 
(VL), vastus medialis (VM), tibialis anterior (TA), extensor digitorum 
longus (EDL), gastrocnemius (GAS), soleus (SOL), peroneus longus 
(PL), and extensor digitorum brevis (EDB), at a sampling rate of 
1,111 Hz. The interelectrode distance was 10 mm to prevent cross-talk 
between neighboring muscles. A trigger signal from the EMG system 
was sent to an audio interface (Fireface UCX: RME Corp., Germany), 
and the metronome sounds were recorded synchronously with the 
EMG signals at a sampling rate of 48,000 Hz.

2.4 Data preprocessing

Of the four trials, the first trial was excluded due to the failure of 
EMG recording, and the fourth trial was excluded from the analysis 
because the participant self-reported that he intentionally changed his 
drumming movements compared to the other trials. Consequently, 
we analyzed the data from the second and third trials to investigate 
muscle synergy. Since each of the trial consisted of 60 bars, there were 
120 bars of the data in the second and third trials. During the second 
trial, the participant verbally reported 11 occurrences of symptoms on 
the downbeat of the first beat and 2 occurrences on the upbeat of the 
third beat. In the third trial, the participant reported 9 occurrences of 
symptoms on the downbeat of the first beat but no occurrences of 
symptoms on the upbeat of the third beat. Taken together, the 
participant reported 20 occurrences of symptoms on the downbeat of 
the first beat and 2 occurrences on the upbeat of the third beat in the 
second and third trials. Because the participants reported the 
symptoms mostly on the downbeat of the first beat, we decided to 
analyze the right lower-limb EMG data of playing the bass drum for 
the first beat. In total, there were 20 beats of data with dystonia and 
100 beats of data without dystonia. Since three of the EMG data 
without dystonia included artifacts caused by intense electrode 
vibration during body movement, we excluded these data from the 
analysis. Thus, we used 20 beats of EMG data with dystonia and 97 
beats of EMG data without dystonia for muscle synergy analysis.

FIGURE 1

The score of the drum pattern used in the experiment. The participant was instructed to play an eight-beat drum pattern on a drum set in time with a 
metronome consisting of a single chunk of four metronome sounds that indicated the beat position in the pattern (see the vertical black arrows). The 
drumming pattern involved playing the bass drum with the right foot, the snare drum with the left hand, and the hi-hat cymbals with the right hand. 
The participant mostly exhibited dystonia symptoms in the right lower limb when playing the downbeat of the first beat (see the areas highlighted in 
pink). We therefore analyzed the muscle synergy of the right lower limb before and after the downbeat timings.
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The EMG signals were demeaned, full-wave rectified, and 
low-pass filtered using the 4th order Butterworth filter with a cutoff of 
20 Hz. The metronome sound signals were rectified, and the envelope 
was calculated to detect the peak timings, which were used as 
reference timings. We extracted the EMG signals 0.75 s before and 
after the reference timings. The interval of 0.75 s was selected because 
the metronome tempo was set at a constant tempo of 80 bpm, resulting 
in intervals of approximately 0.75 s between the reference timings (i.e., 
60 s/80 beats = 0.75 s/beat). Each of the extracted EMG data within this 
interval included the lifting and lowering of lower-limb movements to 
kick the bass drum in synchronization with the metronome sounds.

Each of the extracted EMG data over the 1.50 s, termed as one 
cycle of EMG data, was resampled into 151 time points. Since 
we recorded the EMG from 10 muscles, we formed an EMG data 
matrix consisting of 10 muscles × 20 cycles for the data with dystonia, 
and an EMG data matrix consisting of 10 muscles × 97 cycles for the 
data without dystonia. The minimum and maximum values across the 
cycles were calculated for each of the 10 muscles and normalization 
was performed for each muscle vector by subtracting the minimum 
value and dividing it by the maximum value. Thus, each muscle vector 
in the EMG data matrix was divided by standard deviation of each 
muscle vector, σ, to have unit variance, ensuring that the activity of 
each muscle was equally weighted (15).

2.5 Overview of muscle synergy analysis

Muscle synergy analyses were performed in two steps to examine 
the commonalities and differences between the EMG activities with 
and without dystonia symptoms. In the first step, muscle synergies 
were extracted for each of the EMG activities with and without 
dystonia. This first step aimed to determine the number of muscle 
synergies in each of the dataset. In the second step, we pooled the 
EMG data with and without dystonia, and muscle synergies were 
simultaneously extracted from the pooled dataset. The second step 
aimed to identify the shared and specific muscle synergies (23). 
Specifically, we aimed to extract the commonalities and differences in 
the muscle synergy due to the presence or absence of 
dystonia symptoms.

2.6 Muscle synergy analysis for each of the 
EMG data with and without symptoms

Muscle synergies were extracted for each of the EMG data 
matrices with and without dystonia symptoms using NMF (11, 14, 
24). NMF assumes that a given muscle activation pattern M at each 
point in time is composed of a linear combination of several muscle 
weight vectors Wi, each recruited by activation coefficients Ci (11, 14, 
24). Therefore, a specific muscle activation pattern M can be expressed 
as follows:

 
( )

1
0, 0

N
i i i i

i
M W C W Cε

=
= + ≥ ≥∑

where i represents the relative contribution of muscles involved in 
the synergy, N denotes the number of synergies, and ε represents the 

residual. To compare muscle weight vectors of synergies between the 
data with and without symptoms with the same scaling as the 
measured EMG activity, a unit variance scaling was reverted by 
multiplying each weight of the ith muscle by σi for all muscle synergies. 
The muscle weight and activation coefficient matrices were normalized 
so that each weight vector became a unit vector.

We first tested whether the number of muscle synergies was 
similar between the data with and without dystonia. For the EMG 
dataset with dystonia, the data across 20 cycles were randomly split 
into an 80% training set (i.e., 16 cycles) and a 20% test set (i.e., 4 cycles) 
for cross validation (25, 26). The test EMG datasets were reconstructed 
by muscle-weighting matrices derived from 1 to 10 muscle synergies 
extracted from the training EMG datasets. This cross-validation 
procedure was repeated 20 times. Then, the goodness-of-fit of the data 
reconstruction was quantified for each number of muscle synergies by 
the average value of the variance accounted for (VAF), which was 
defined as a 100 × the uncentered Pearson correlation coefficient (27, 
28). For the EMG dataset without dystonia, 20 cycles of data were 
randomly selected from the 97 cycles. The cross-validation procedure 
was the same as for the data with dystonia but repeated 1,000 times to 
estimate the 95% bootstrapping confidence interval (95% CI) of the 
VAF value. This series of procedures aimed to confirm whether the 
VAF value from the EMG dataset with symptoms fell within the range 
of inter-cycle variability of the EMG dataset without dystonia. To 
determine the number of muscle synergies, a least squares method 
was used to fit a line to the portion of the VAF curve, identifying the 
point at which the VAF curve linearly plateaued as the number of 
muscle synergies where the mean squared error (MSE) falls below 
10−5 (26).

For the EMG dataset without symptoms, to estimate the 95% CI 
of the muscle weighting vectors and activation coefficients of muscle 
synergies, the sets of muscle synergies were extracted 1,000 times 
across randomly selected EMG datasets each consisting of 20 cycles. 
Using k-means clustering, the entire set of muscle synergies were 
classified into clusters based on the cosine of the angle between pair 
of muscle weight vectors (15). K-means clustering was applied with 
pairwise constraints, preventing muscle synergies calculated in any of 
the 1,000 iterations from being classified into the same cluster (15, 29). 
The number of clusters was defined as the same determined based on 
the VAF curve as described above.

2.7 Shared and specific muscle synergy 
analysis

The EMG dataset with symptoms (20 cycles) and the EMG dataset 
without dystonia (97 cycles) were combined into a single EMG data 
matrix to extract muscle synergies that explain the entire EMG data 
matrix (i.e., shared synergies) and each of the datasets with and 
without dystonia (i.e., specific synergies) (23). First, the total number 
of muscle synergies to be extracted was set to the sum of the number 
of muscle synergies determined for each of the datasets with and 
without dystonia, assuming that there was no muscle synergies shared 
between the datasets with and without dystonia. Consequently, the 
activation coefficients specific to the dataset with dystonia were set to 
zero for the muscle synergies without dystonia, and vice versa. The 
total number of extracted muscle synergies was then reduced one by 
one in each extraction procedure, and the number of shared and 
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specific muscle synergies was adjusted. The number of shared and 
specific muscle synergies was determined as the minimum number of 
muscle synergies required to exceed the VAF value extracted in the 
analyses for each of the data with and without dystonia.

3 Results

3.1 The number of muscle synergies

The VAF curves linearly plateaued as the number of muscle 
synergies for each of the datasets with and without dystonia symptoms 
(see red and blue lines, respectively, in Figure 2). For the data with 
symptoms (red), the minimum number of muscle synergies for which 
the MSE calculated from the VAF curve was below 10−5 was 6 
(MSE = 7.22 × 10−6). The 6 muscle synergies explained 96.46% of the 
original EMG data variance with dystonia. For the data without 
dystonia (blue), the minimum number of muscle synergies for which 
the MSE calculated from the VAF curve was below 10−5 was also 6 
(MSE = 6.79 × 10−6). The 6 muscle synergies explained 92.36–96.99% 
(lower and upper limits of 95% CIs) of the original EMG data variance 
without dystonia. The VAF values with 1 to 7 muscle synergies to 
account for the EMG data with dystonia were within the 95% CI range 
for those without dystonia, indicating that the number of synergies 
was the same to account for both the data with and without dystonia.

3.2 Muscle synergies for each of the data 
with and without dystonia

The 6 muscle synergies extracted for each of the datasets with and 
without dystonia symptoms are shown in Figure  3. The spatial 
modules of muscle synergy, or the extracted muscle-weight vectors, 
are shown in the left panels of Figure 3, while the temporal modules 
of muscle synergy, or the extracted time-dependent profiles of when 

and how strongly each muscle synergy was activated, are shown in the 
right panels of Figure 3.

The first spatial module, or the extracted muscle-weight vector 
(W1), showed a high weighting for the RF muscle, which is 
responsible for hip flexion. The cosine similarity demonstrated the 
commonality in the use of this spatial module between the data with 
and without symptoms (r = 0.992). The time-dependent profiles (i.e., 
temporal modules) of this muscle synergy showed peak values at 
approximately 338 milliseconds (ms) and 318 ms before the 
metronome sound for the data with and without dystonia, 
respectively. The peak values were 0.40 [arbitrary units (a.u.)] and 
0.37 (a.u.) for the data with and without dystonia, respectively. Both 
the spatial and temporal modules of this muscle synergy were similar 
between the data with and without dystonia, indicating that W1 for 
hip flexion to lift the thigh in preparation for the kicking movement 
was used in a similar manner, irrespective of the presence or absence 
of symptoms.

The second spatial module (W2) showed high weightings for the 
TA and EDL muscles, which are responsible for ankle dorsiflexion. 
The cosine similarity demonstrated the commonality in the use of 
this spatial module between the data with and without dystonia 
(r = 0.984). However, the temporal modules of this muscle synergy 
differed between the data with and without dystonia. Specifically, the 
temporal module shifted earlier and was more activated in the data 
with symptoms compared to those without dystonia: the peak values 
were observed at approximately 318 ms and 219 ms before the 
metronome sound for the data with and without dystonia, 
respectively. The peak values were 0.58 (a.u.) and 0.20 (a.u.) for the 
data with and without dystonia, respectively. Thus, while the spatial 
modules were similar, the temporal modules differed between the 
data with and without dystonia, indicating that the temporal module 
of ankle dorsiflexion muscle synergy to prepare for the kicking 
movement occurred earlier and over-activated when the 
symptoms occurred.

The third spatial module (W3) showed a relatively high 
weighting for the EDB muscle, which is responsible for toe 
extension, and relatively low weightings for the other muscles (RF, 
VL, BF, TA, EDL, GAS, and PL). The cosine similarity of W3 
demonstrated relatively lower values compared to the other spatial 
modules (r = 0.868). The temporal modules of this muscle synergy 
also differed between the data with and without dystonia. 
Specifically, the temporal module shifted earlier and was less 
activated in the data with dystonia compared to those without 
dystonia: the peak values were observed at approximately 248 ms 
and 179 ms before the metronome sound for the data with and 
without dystonia, respectively. The peak values were 0.05 (a.u.) and 
0.11 (a.u.) for the data with and without dystonia, respectively. Thus, 
both the spatial and temporal modules differed between the data 
with and without dystonia.

The fourth spatial module (W4) showed a high weighting for the 
VL muscle, which is responsible for stabilizing the hip joint. The 
cosine similarity demonstrated the commonality in the use of this 
spatial module between the data with and without dystonia 
(r = 0.997). The temporal modules of this muscle synergy showed 
peak values at approximately 60 ms before the metronome sound for 
both the data with and without dystonia. The peak values were 0.20 
(a.u.) and 0.26 (a.u.) for the data with and without dystonia, 
respectively. Nevertheless, the temporal modules of this muscle 

FIGURE 2

The variance accounted for (VAF) as a function of the number of 
muscle synergies. The VAF for the EMG data with dystonia symptoms 
is shown in red, and that for the data without dystonia symptoms is 
shown in blue. The blue bars represent the upper and lower limits of 
the 95% bootstrapping confidence intervals (CIs) of the VAF for each 
number of muscle synergies in the data without dystonia symptoms.
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FIGURE 3

Muscle synergies for each of the data with and without dystonia. The spatial and temporal modules of muscle synergies are shown in the left and right 
panels, respectively. The red bars and lines indicate the spatial and temporal modules extracted from the data with dystonia, while the blue bars and 
lines indicate those from the data without dystonia. In the left panels, the bars represent muscle weights of rectus femoris (RF), vastus lateralis (VL), 
vastus medialis (VM), biceps femoris (BF), tibialis anterior (TA), extensor digitorum longus (EDL), soleus (SOL), gastrocnemius (GAS), peroneus longus 
(PL), and extensor digitorum brevis (EDB), respectively, extracted from the non-negative matrix factorization (NMF). The error bars represent the 95% CI 
in the data without dystonia. The r value indicates the cosine similarity between the muscle-weight vectors with and without dystonia. In the right 
panels, the activation coefficients in the NMF, or the temporal modules of muscle synergy, are shown 0.75  s before and after the metronome sound. 
The order of the muscle synergies (W1–W6) was sorted by the time of peak activation of the temporal modules.
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synergy were slightly different between the data with and 
without dystonia.

The fifth spatial module (W5) showed high weightings for the 
GAS, SOL, and PL muscles, which are responsible for plantar flexion. 
The cosine similarity demonstrated the commonality in the use of this 
spatial module between the data with and without dystonia (r = 0.991). 
The temporal modules of this muscle synergy showed peak values 
around the metronome sound for the data with symptoms and 
approximately 30 ms after the metronome sound for the data without 
dystonia. The peak values were 0.55 (a.u.) and 0.59 (a.u.) for the data 
with and without dystonia, respectively. The shape of the temporal 
modules of this muscle synergy was overall similar but appeared 
slightly shifted earlier in the data with dystonia compared to those 
without dystonia.

The sixth spatial module (W6) showed relatively high weightings 
for the VM and BF muscles, which are responsible for stabilizing the 
knee and hip joints. The cosine similarity of W6 was r = 0.922, which 
was relatively lower compared to the other spatial modules. 
Specifically, the weighting for the VM was lower, but the weighting for 
the BF was higher in the data with dystonia. The temporal modules of 
this muscle synergy showed peak values at approximately 30 ms and 
50 ms after the metronome sound for the data with and without 
dystonia, respectively. The peak values were 0.55 (a.u.) and 0.50 (a.u.) 
for the data with and without dystonia, respectively. The shape of the 
temporal modules of this muscle synergy was overall similar but 
appeared slightly shifted earlier in the data with dystonia compared to 
those without dystonia.

3.3 Shared and specific muscle synergies

The shared and specific muscle synergy analysis showed a VAF of 
95.79% for the combined dataset, a VAF of 95.45% for the data with 
dystonia, and a VAF of 94.96% for the data without dystonia. The 
analysis revealed that there were 5 shared muscle synergies between 
the data with and without dystonia symptoms, while there were 2 
specific muscle synergies each for the data with and without dystonia 
symptoms (Figure 4).

The first shared spatial module (SH1) showed a high weighting for 
the RF muscle, which is responsible for hip flexion. The time-
dependent profiles (i.e., temporal modules) of this muscle synergy 
were similar between the data with and without dystonia, indicating 
that SH1 for hip flexion to lift the thigh in preparation for the kicking 
movement was shared between the data with and without 
dystonia symptoms.

The second shared spatial module (SH2) showed high weightings 
for the TA and EDL muscles, which are responsible for ankle 
dorsiflexion. The temporal modules of this muscle synergy clearly 
differed between the data with and without dystonia. Specifically, 
the temporal module shifted earlier and was more activated in the 
data with dystonia compared to those without symptoms. Thus, this 
shared spatial module was activated more and earlier when 
symptoms occurred.

The without-dystonia-specific synergy (WODSP) showed a high 
weighting for the EDB muscle, which is responsible for toe extension 
(see blue in Figure 4). This muscle synergy appeared specifically in the 
data without dystonia, indicating that the muscle synergy for toe 

extension during the preparation movement was observed when 
dystonia symptoms did not occur.

The third shared spatial module (SH3) showed a high weighting 
for the VL muscle, which is responsible for stabilizing the hip joint. 
The shape of the temporal modules of this muscle synergy was overall 
similar between the data with and without dystonia but appeared 
slightly shifted earlier in the data with dystonia compared to those 
without dystonia.

The fourth shared spatial module (SH4) showed high weightings 
for the GAS, SOL, and PL muscles, which are responsible for plantar 
flexion. The shape of the temporal modules of this muscle synergy was 
overall similar between the data with and without dystonia but 
appeared slightly shifted earlier in the data with dystonia compared to 
those without dystonia.

The with-dystonia-specific synergy (WDSP) showed relatively 
high weightings for the BF and VM muscles, and relatively low 
weightings for the RF, VL, EDL, SOL, PL, and EDB muscles. The 
temporal module showed activation shortly after the metronome 
sound, indicating that this muscle synergy was contributing to 
stabilizing the kick movement after pedaling specifically when the 
dystonia symptoms occurred.

The fifth shared spatial module (SH5) showed a high weighting for 
the VM muscle. The shape of the temporal modules of this muscle 
synergy was overall similar between the data with and without 
dystonia but appeared slightly shifted earlier in the data with dystonia 
compared to those without dystonia.

4 Discussion

By utilizing NMF to extract the spatial modules (i.e., muscle-
weight vectors) and the temporal modules (i.e., activation coefficients), 
we aimed to investigate how the number of muscle synergies and the 
spatial and temporal modules would differ when dystonic symptoms 
occur in a drummer with lower-limb dystonia. Specifically, we tested 
whether (1) the drummer with lower-limb dystonia would show no 
significant change in the number of muscle synergies, while there 
would be changes in (2) the spatial modules, and/or (3) the temporal 
modules when the dystonia symptoms occurred. Our results showed 
that, while the number of muscle synergies was the same in accounting 
for both the data with and without dystonia, the spatial and temporal 
modules of the muscle synergies changed when the dystonia 
symptoms occurred.

4.1 Number of synergies

Our first hypothesis was that the drummer with lower-limb 
dystonia would show no significant change in the number of muscle 
synergies when the dystonia symptoms occurred. Our results showed 
that 6 muscle synergies explained 96.46% and 92.36–96.99% of the 
original EMG data variance in the data with and without dystonia, 
respectively (Figure 2). These results indicate that six muscle synergies 
account for both the data with and without symptoms, and the 
number of synergies was the same regardless of the occurrence of 
symptoms. Thus, our results support the first hypothesis and align 
with previous studies on MD pianists (21) and dystonia in children 
(22), suggesting that the number of synergies or motor modules that 
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FIGURE 4

Shared muscle synergies between the data with and without dystonia and specific muscle synergies for each dataset. The spatial and temporal 
modules of shared and specific muscle synergies are shown in the left and right panels, respectively. In the left panels, the bars represent muscle 
weights of rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), biceps femoris (BF), tibialis anterior (TA), extensor digitorum longus (EDL), 

(Continued)
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can be independently recruited remains unchanged when dystonia 
symptoms occur.

Nevertheless, it is worth mentioning that previous studies on 
patients with stroke (19, 30), cerebral palsy (31), spinal cord injury 
(32), and Parkinson’s disease (33) have shown changes in the number 
of muscle synergies. Specifically, these studies reported a reduction in 
the number of muscle synergies due to these neurological disorders. 
The reduced number of synergies indicates that motor commands 
become simplified and less complex when these neurological disorders 
occur. In contrast, we did not observe a reduction in the number of 
synergies, suggesting a specific nature of FTSD compared to other 
neurological conditions such as stroke, cerebral palsy, spinal cord 
injury, and Parkinson’s disease. Our results suggest that the lower-limb 
dystonia in the drummer cannot be explained by simplified motor 
commands or a reduced number of muscle synergies.

4.2 Spatial modules

Our second hypothesis was that there would be changes in the 
spatial modules of muscle synergies when the dystonia symptoms 
occurred. Our results showed that the structure of the spatial modules 
differed when the dystonia symptoms occurred. Specifically, the 
shared and specific muscle synergy analyses revealed that there were 
5 shared muscle synergies between the data with and without dystonia 
symptoms, while there were 1 specific muscle synergies each for the 
data with and without dystonia symptoms (Figure 4). These results 
support the second hypothesis, indicating that the spatial modules of 
muscle synergies change when symptoms occur in the drummer with 
lower-limb dystonia.

It is noteworthy that we observed the without-dystonia-specific 
synergy (WODSP), which had a high weighting for the EDB muscle 
(blue in Figure 4). Since this muscle synergy was activated before the 
kicking movement and the EDB muscle contributes to toe extension, 
this synergy seemed to contribute to the fine control of toe extension 
in preparation for the kicking movement when the dystonia symptoms 
did not occur. In contrast, when the dystonia symptoms occurred, 
we observed the with-dystonia-specific synergy (WDSP), which had 
high weightings for the BF and VM muscles (red in Figure 4). Since 
this muscle synergy was activated after the metronome sound, it 
appeared to contribute to stabilize the lower limb after the kicking 
movement. Thus, although the number of synergies was the same—six 
(5 shared plus 1 specific synergy)—between the data with and without 
dystonia, we  found a different structure of the spatial modules 
depending on the absence or occurrence of the symptoms.

The previous study on pianists with MD showed changes in the 
spatial modules of muscle synergies between the affected and 
unaffected hands, as well as in comparison to the hands of healthy 
pianists (21). These changes in the spatial modules were identified as 
either directly related to the dystonic symptoms or as compensatory 

(21). We  suggest that the with-dystonia-specific synergy (WDSP) 
observed in this study may be interpreted as compensatory rather 
than as a direct manifestation of dystonic symptoms. This 
interpretation is based on the fact that the WDSP was observed 
relatively late in the kicking movement. The spatial module specific to 
dystonia symptoms in this study may therefore be understood as a 
muscle synergy that compensates for the movement after the direct 
manifestation of dystonic symptoms. Interestingly, a previous study 
by Lee and Altenmüller (9) reported abnormal co-contraction in the 
thigh muscles of the affected side during drum pedaling actions in a 
drummer with FTSD. Specifically, they reported the co-contraction of 
the quadriceps and BF muscles. In this study, we measured the BF and 
three of the quadriceps muscles (RF, VL, and VM). It is noteworthy 
that our muscle synergy analysis showed that the WDSP had relatively 
high weightings for the BF and VM muscles, and relatively low 
weightings for the RF and VL muscles (Figure 4). These results suggest 
that the WDSP observed in this study is similar to the co-contraction 
in the thigh muscles of the affected side reported in the previous study 
(9). Compensatory activity of the thigh muscles may be a common 
feature of drummers with lower-limb dystonia.

4.3 Temporal modules

What kind of muscle synergy would reflect the direct 
manifestation of symptoms in the drummer with lower-limb 
dystonia? Based on the results of the temporal modules in this study, 
we propose that a change in the temporal module of muscle synergy 
reflects the direct manifestation of dystonic symptoms in the 
drummer. Specifically, we found that the temporal modules of the 
second shared spatial module (SH2), which had high weightings for 
the TA and EDL muscles, clearly differed between the data with and 
without symptoms: the temporal module shifted earlier and was more 
activated in the data with dystonia compared to those without 
dystonia (Figure 4). This synergy was activated at almost the same 
timing as the first shared spatial module (SH1), suggesting that the 
temporal module intended to activate SH1 may have contaminated 
the other muscle synergy and driven SH2 when the 
symptoms occurred.

What could be the neural mechanisms related to the earlier-
shifted overactivity of the muscle synergy (SH2) observed in this 
study? We suggest that abnormal inhibition and/or excitation of 
motor commands driving the muscle synergy may be one of the 
mechanisms. Previous neuroimaging studies have shown abnormal 
overactivity of the primary motor cortex (M1) in patients with 
FTSD (34, 35). Transcranial magnetic stimulation (TMS) studies 
have also shown a loss of inhibition in M1 in patients with FTSD 
(36–38). Moreover, a recent study on pianists with FTSD showed 
reduced inhibition and elevated facilitation in M1 compared to 
healthy controls (39). Considering these previous studies, 

soleus (SOL), gastrocnemius (GAS), peroneus longus (PL), and extensor digitorum brevis (EDB), respectively, extracted from the non-negative matrix 
factorization (NMF). The grey bars represent the shared spatial modules between the data with and without dystonia (SH1–5). The blue bars represent 
the without-dystonia-specific synergy (WODSP). The red bars represent the with-dystonia-specific synergy (WDSP). In the right panels, the activation 
coefficients in the NMF, or the temporal modules of muscle synergy, are shown 0.75  s before and after the metronome sound. The red lines indicate 
the temporal modules for the data with dystonia, while the blue lines indicate those for the data without dystonia.

FIGURE 4 (Continued)
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we assume that the overactivity or loss of inhibition in M1 might 
be related to the earlier-shifted overactivity of the muscle synergy 
SH2. It might be possible that the motor commands driving the 
muscle synergy for hip flexion (SH1) contaminated the muscle 
synergy for ankle dorsiflexion (SH2) due to the overactivity or loss 
of inhibition in M1.

We suggest that the occurrence of the earlier-shifted overactivity 
of the muscle synergy SH2 concealed the without-dystonia-specific 
synergy (WODSP) and induced slight shifts in the temporal-module 
activities of SH3, SH4, and SH5. This, in turn, might have resulted in 
the appearance of the with-dystonia-specific synergy (WDSP) to 
compensate for the movement. Specifically, the enhanced dorsiflexion 
movement due to the earlier-shifted overactivity of the muscle synergy 
SH2 during the pedaling preparation phase might lead to a decrease in 
the force applied to the pedal. To compensate for this reduced force, 
the with-dystonia-specific synergy (WDSP) might appear to provide 
the necessary force for pedaling despite the disrupted motor control 
caused by the dystonia symptoms.

In a previous study of lower-limb dystonia in drummers by Honda 
et al. (10), it was reported that the appearance of dystonia symptoms 
resulted in the earlier timing of bass drum performance. We suggest 
that the earlier shift of temporal-module activity of SH2, together with 
the slight shifts in those of SH3, SH4, and SH5, caused the earlier timing 
of bass drum performance. The without-dystonia-specific synergy 
(WODSP) is considered to contribute to the fine control of toe 
extension in preparation for the kicking movement. This might help 
achieve a “whip-like motion” or the sequential proximal-to-distal 
motion in preparation for the kicking movement. Similar preparatory 
movements have been reported in skilled pianists, where a lifting of 
the upper limb from the proximal to the distal end precedes the 
keystroke (40), suggesting a common motor strategy among musicians 
to facilitate skilled performance. We suggest that the earlier-shifted 
overactivity of the muscle synergy SH2 hindered the “whip-like” 
preparation for the kicking movement and resulted in compensatory 
movement caused by the with-dystonia-specific synergy (WDSP). 
Taken together, we propose that the change in the temporal module 
of muscle synergy reflects the direct manifestation of dystonic 
symptoms in the drummer with lower-limb dystonia, and this 
supports our third hypothesis.

4.4 Clinical implications and limitations

As far as we know, this is the first case study to apply NMF to 
investigate the muscle synergy of the lower limb in a drummer with 
FTSD. So far, there have been a limited number of studies on 
drummers with FTSD (6–10). Therefore, formal assessments and 
clinical interventions for lower limb dystonia in drummers have not 
been fully explored. Based on the results of this study, we suggest that 
NMF and muscle synergy analysis may be useful tools for assessing 
the symptoms of lower-limb dystonia. As shown in this study, muscle 
synergy analysis allows for the quantitative identification of the 
combination of muscles that activate simultaneously and the timing 
of activation, based on EMG data obtained from multiple muscles 
across multiple repetitions of movements. In clinical settings, 
dystonia symptoms can vary from person to person, and 
quantitatively identifying the symptoms from multiple muscles and 
repetitions of movements for each individual becomes challenging. 

We  suggest that muscle synergy analysis offers the advantage of 
organizing such complex data and capturing the statistical properties 
of symptoms.

However, given the limited research on drummer’s dystonia, more 
studies are needed before clinical applications can be developed. One 
of the limitations of this study is that our data is based on a single case, 
and the muscle synergy patterns identified in this study may vary 
considerably in other drummers with lower-limb dystonia. For 
instance, future research should expand the sample size of MD 
drummers and compare them to healthy drummers to validate the 
findings from this study. Longitudinal studies tracking changes in 
muscle synergies over time with various interventions would also 
be valuable in understanding the progression and potential recovery 
mechanisms of dystonia in musicians. Furthermore, it would also 
be interesting to compare lower-limb muscle synergies between the 
affected and unaffected sides of the legs at different tempi using a 
mirror-symmetrical task. These future studies will provide further 
insights into lower-limb dystonia in drummers with FTSD.

5 Conclusion

By applying NMF to 10 lower-limb muscles in a drummer with 
FTSD, we found that the number of muscle synergies did not differ 
between the data with and without dystonia; however, changes were 
observed in both the spatial and temporal modules of muscle synergies 
due to the appearance of symptoms. Spatial modules revealed the 
appearance of dystonia-specific muscle synergy, which is considered 
related to compensatory movement. Temporal modules showed 
significant earlier overactivation in timing, which is considered the direct 
manifestation of dystonia symptoms. These findings indicate that lower-
limb dystonia in drummers affects the spatial and temporal profiles of 
muscle synergies, and NMF and muscle synergy analysis may be useful 
tools for assessing the symptoms of a drummer’s lower-limb dystonia.
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Evaluation of motor fluctuations 
in Parkinson’s disease: electronic 
vs. conventional paper diaries
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Seira Taniguchi 1, Lindun Ge 1, Keita Kakuda 1, Yasuyoshi Kimura 1, 
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1 Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan, 2 ACCELStars, 
Bunkyo-ku, Tokyo, Japan, 3 Department of Neurology, Kawasaki Medical School, Kurashiki, Okayama, 
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Tokyo, Bunkyo-ku, Tokyo, Japan, 5 Laboratory for Synthetic Biology, RIKEN Center for Biosystems 
Dynamics Research (BDR), Suita, Osaka, Japan, 6 Department of Systems Biology, Institute of Life 
Science, Kurume University, Kurume, Fukuoka, Japan

Background: Paper symptom diaries are a common tool for assessing motor 
fluctuations in Parkinson’s disease (PD) patients, but there are concerns about 
inaccuracies in the assessment of motor fluctuation due to recall bias and poor 
compliance. We, therefore, developed an electronic diary with reminder and 
real-time recording functions.

Objectives and methods: To evaluate the effectiveness of the electronic diary, 
we  compared compliance and motor fluctuation assessment with a paper 
diary. Nineteen PD patients were recruited and recorded paper diaries every 
30  min from 8  am to 8  pm for 7  days, followed by 7  days of electronic diary 
recording using a smartphone and smartwatch. Prior to the recording period, 
the Parkinson’s Disease Questionnaire (PDQ)-39 and the Movement Disorders 
Society-sponsored Unified Parkinson’s Disease Rating Scale-Revised (MDS-
UPDRS) 1, 2, 3, 4 were measured. Patients completed a patient questionnaire on 
the usability of the diaries after the recording period.

Results: Total reported time was significantly longer in paper diaries, but there 
was no significant difference in the number of entries (paper 115 [71–147] vs. 
electronic 109 [93–116], p  =  0.77). There was a significant correlation between 
paper and electronic diaries with respect to motor status. ON time rate recorded 
in the electronic diary was significantly correlated with PDQ-39, MDS-UPDRS 1, 
2, and 4, while MDS-UPDRS 1 was only correlated with ON time rate in the paper 
diary. The usability of our electronic diary was found to be satisfactory based on 
the results of patient questionnaire.

Conclusion: Electronic diaries are useful tools that more accurately reflect PD 
motor fluctuations.

KEYWORDS

Parkinson’s disease, motor symptom diary, motor fluctuations, electric device, patient 
reported outcome measures
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Introduction

As Parkinson’s disease (PD) progresses, fluctuations in motor and 
non-motor symptoms can significantly affect quality of life (1). 
Therefore, PD symptom diaries are widely used in clinical research 
and medication reconciliation as an important tool to monitor 
patients’ symptom fluctuations. Prior studies have examined the 
reliability of paper symptom diaries and have demonstrated the 
reliability of the patient- or caregiver-reported symptom outcome 
(2–4). However, current symptom diaries have also raised issues such 
as low record rates and inaccuracy due to recall bias (5, 6). Therefore, 
an electronic symptom diary has been developed to record symptoms 
more accurately and in a real-time manner (7, 8).

A previous study compared the motor status of patients recorded 
in paper and electronic symptom diaries. It showed no significant 
differences in ON–OFF status or number of entries between electronic 
and paper diaries, indicating no advantage of electronic symptom 
diaries over paper diaries (9).

We focused on recall bias and developed an electronic symptom 
diary that allows only real-time recording. The purpose of this study 
is to compare the symptom variability in PD patients recorded by our 
electronic symptom diaries and by traditional paper symptom diaries 
and to evaluate the effectiveness of our electronic diary that allowed 
only real-time recording.

Materials and methods

Study protocol approvals and patient 
consent

The protocol conformed to Helsinki Declaration principles and 
was approved by the Osaka University review board (approval 
number: 22311). All participants received written 
informed consent.

Participants

This observational study was conducted from May to November 
2023. Participants were recruited from PD patients attending the 
outpatient department of neurology at Osaka University, Japan. The 
inclusion criteria were as follows: a diagnosis of clinically established 
or probable PD on the Movement Disorder Society Clinical Diagnostic 
Criteria for Parkinson’s disease, age 20 years or older, ability to 
understand and consent to the study, and a history of smartphone use. 
Exclusion criteria were Mini Mental State Examination (MMSE) score 
of 26 or less and the inability to use a smartphone.

Procedures

The procedures are summarized in Figure 1.
Visit 1: Patients were introduced to the electronic symptom diary, 

with a demonstration to ensure they could operate it effectively. The 
paper symptom diary was also explained, and patients were asked if 
they felt confident in filling it as instructed. Movement Disorder 
Society-Sponsored Revision of the Unified Parkinson’s Disease Rating 

Scale (MDS-UPDRS) part 1, 2, 3, 4, and The Parkinson’s Disease 
Questionnaire (PDQ)-39 were investigated.

Training period: To allow adequate time for participants, those 
who already use smartphones, to become familiar with this electronic 
diary, patients were asked to use both the electronic and paper 
symptom diaries at home for 1 month for both diaries. There were no 
restrictions on the frequency of assessments, and patients freely 
entered their symptoms into either the paper or digital diaries. During 
this time, they received phone support as needed for any questions or 
technical issues. This one-month period was deemed sufficient to 
become familiar with this application.

Visit 2: During the training period, we verified that the equipment 
was used correctly and moved to the recording period.

Recording period (i) Paper diary record: A paper symptom diary 
record was conducted for 7 consecutive days. Patients recorded 
symptoms every 30 min for 12 h from 8:00 am to 8:00 pm. Patients 
were allowed to look back and describe their symptoms in accordance 
with the conventional paper symptom diary recording method.

Recording period (ii) Electronic diary record: The patient was 
subsequently recorded in an electronic symptom diary for seven 
consecutive days after 7 days paper diary record. Recording was done 
every 30 min for 12 h from 8:00 a.m. to 8:00 p.m. Every 30 min, an alert 
with vibration was displayed to prompt recording. Patients were only 
allowed to record in real-time and were not allowed to look back on 
past symptoms (Supplementary Figure 1).

Patients completed a patient questionnaire on the usability of the 
diaries after the recording period (7). The questions in the 
questionnaire were as follows.

Responses given to the usability questionnaire (%). Q1: “The 
paper diary interfered with my normal activities.” Responses: 1 – 
Strongly Agree, 2 – Agree, 3 – Sometimes Agree, 4 – Occasionally 
Agree, 5 – Strongly Disagree. Q2: “Using the paper diary system on a 
daily basis was easy.” Responses: 1 – Strongly Disagree, 2 – 
Occasionally Agree, 3 – Sometimes Agree, 4 – Agree, 5 – Strongly 
Agree. Q3: “If your doctor wants to use paper diary to monitor your 
symptoms and adjust your medications, how long would 
you be willing to record your symptoms?” Responses: 1 – A few days, 
2 – 1 week, 3 – 2–3 weeks, 4 – More than 1 month. Q4: “The electronic 
diary interfered with my normal activities.” Responses: 1 – Strongly 
Agree, 2 – Agree, 3 – Sometimes Agree, 4 – Occasionally Agree, 5 – 
Strongly Disagree. Q5: “Using the electronic diary system on a daily 
basis was easy.” Responses: 1 – Strongly Disagree, 2 – Occasionally 
Agree, 3 – Sometimes Agree, 4 – Agree, 5 – Strongly Agree. Q6: “If 
your doctor wants to use electronic diary to monitor your symptoms 
and adjust your medications, how long would you be willing to record 
your symptoms?” Responses: 1 – A few days, 2 – 1 week, 3 – 2–3 weeks, 
4 – More than 1 month. Q7: “I felt comfortable wearing the 
smartwatch.” Responses: 1 – Strongly Disagree, 2 – Occasionally 
Agree, 3 – Sometimes Agree, 4 – Agree, 5 – Strongly Agree. Q8: “The 
smartwatch was easy to put on/take off.” Responses: 1 – Strongly 
Disagree, 2 – Occasionally Agree, 3 – Sometimes Agree, 4 – Agree, 5 
– Strongly Agree. Q9: “I felt embarrassed wearing the smartwatch.” 
Responses: 1 – Strongly Agree, 2 – Agree, 3 – Sometimes Agree, 4 – 
Occasionally Agree, 5 – Strongly Disagree. Q10: I  experienced 
technical problems with the electronic diary. Responses: 1 – Strongly 
Agree, 2 – Agree, 3 – Sometimes Agree, 4 – Occasionally Agree, 5 – 
Strongly Disagree. Color code from green (score = 1 for least favorable 
response) to orange (score = 5 for most favorable response).
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About the symptom diary

The paper symptom diary used was Parkinson’s Disease Home 
Diary (10). Participants were then asked every half-hour time 
period to indicate their predominant symptom status using the 
categories of On without dyskinesia, On with non-troublesome 
dyskinesia, On with troublesome dyskinesia, and Off for seven 
consecutive days.

In both paper and electronic diary, On with non-troublesome 
dyskinesia and On without dyskinesia were defined as ON-status. Off 
was defined as OFF-status. Troublesome dyskinesia was defined as 
Troublesome dyskinesia-status. Number of entries was defined as the 
number of times the patient actually recorded the symptom diary. For 
example, in the paper symptom diary, if the patient described his/her 
motor status for the last 2 h at once, the number of entries was counted 
as 1 and the recording time was counted as 2 h. The electronic 
symptom diary did not permit retrospective entries, so the recording 
time was 30 min per entry count (Supplementary Figure 2).

We defined “Missing time” as no recordings within 30 min and 
“Duplicate time” as multiple motor status recordings within 30 min. 
Both “Missing time” and “Duplicate time” were treated as missing 
data. “Reporting time” is the number of hours minus “Missing time” 
and “Duplicate time.” The proportion of motor status was calculated 
as the percentage of time recorded as troublesome dyskinesia status/
ON status/OFF status out of the total input time, excluding missing 
data (Missing + Duplicate time).

Outcomes and statistics

The primary outcome was the number of entries in the electronic 
diary compared to the paper symptom diary. The secondary outcome 
was the potential association/s between motor fluctuation recorded in 
each diary and patient-reported outcomes (MDS-UPDRS 1,2,3,4 and 
PDQ-39). While not all the measures are matched in their recorded 
time period, this correlational analyses can explore whether they are 
related measures. Moreover, we  evaluated whether the diary type 
(either paper diary or electronic diary) and number of days were 

associated with changes in the number of entries recorded. 
Additionally, we surveyed the patients’ usability questionnaire.

All data are presented as median and interquartile ranges (IQR) 
or counts and percentages.

Values were compared using the Mann–Whitney U-test for 
continuous variables and the chi-square test for categorical variables. 
Spearman correlation coefficient was used to correlate motor 
fluctuation rates between paper and electronic diaries. Spearman 
correlation coefficient was also used to compare the MDS-UPDRS 1, 
2, 3, 4, PDQ-39 and the motor symptoms recorded on paper and 
electronic diaries, respectively, to examine the validity of the recorded 
symptoms. To evaluate whether the diary type and number of days 
were associated with changes in the number of entries recorded, an 
analysis of covariance (ANCOVA) was performed. The ANCOVA 
model included the diary type (either paper diary or electronic diary) 
and the number of days as independent variables, with the number of 
entries as the dependent variable. Statistical analysis was performed 
using the R software.1 The level of significance was set at p < 0.05.

Results

The number of participants was 19. A total of 17 participants were 
analyzed, excluding one who entered the data only once during the 
7-day paper and digital diary recording period, respectively, and one 
whose paper symptom diary was illegible. The median age was 
61 years (IQR 48–64) and 10 (59%) were male. Detailed basic 
characteristics are shown in Table 1.

Table  2 shows the entry status of the paper and electronic 
symptom diaries. No significant difference in the number of entries 
was found between paper and electronic symptom diaries (paper 115 
[71–147] vs. electronic 109 [93–116], p = 0.77). Reporting time was 
significantly higher in the paper symptom diary, and “Missing time” 
was significantly higher in the electronic symptom diary.

1 https://cran.r-project.org/

FIGURE 1

The study protocol. Participants conducted 1  week of recording in each diary after the one-month training period.
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Next, we compared the motor fluctuation rate (ON-time rate, 
OFF-time rate, and Troublesome dyskinesia rate) evaluated by paper 
and electronic diaries (Figure 2). Significant correlations were found 
between paper and electronic diaries for ON-time rate, OFF-time 
rate, and troublesome dyskinesia time rate (r = 0.61 [p < 0.05], 
r = 0.76 [p < 0.05], and r = 0.57 [p < 0 05], respectively). Then, 
we  analyzed the correlation between the status of the motor 
symptoms captured in each symptom diary and the Parkinson’s 
disease clinical scales, MDS-UPDRS part 1–4 and PDQ-39 (Table 3). 
Interestingly, the electronic diary-based ON time rate was 

significantly correlated with several clinical scales, including 
MDS-UPDRS part 1, 2, 4, and PDQ-39. The electronic diary-based 
OFF time rate was also significantly correlated with MDS-UPDRS 
part 1 and 2. On the other hand, the paper diary-based ON time rate 
was only significantly correlated with UPDRS part 1 and 4, and the 
paper diary-based OFF time rate was not significantly correlated 
with any of the scores.

Additionally, we analyzed whether the diary type and number of 
days were associated with changes in the number of entries recorded 
(Figure 3). The number of days was associated with a decrease in the 

TABLE 1 Baseline characteristics of patients with Parkinson’s disease.

Patients (n  =  17)

Age, years (IQR) 61 (48–64)

Sex, n (%)

  Male 10 (59)

  Female 7 (41)

Duration, year (IQR) 8 (6–10)

Hoehn and Yahr, n (%)

  2 13 (77)

  3 3 (18)

  4 1 (6)

LEDD, mg (IQR) 1,050 (600–1,510)

MMSE, n (%)

  27 2 (12)

  28 1 (6)

  29 3 (18)

  30 11 (65)

MDS-UPDRS 1 (IQR) 7 (4–14)

MDS-UPDRS 2 (IQR) 9 (6–14)

MDS-UDPRS3 3 (IQR) 16 (11–18)

MDS-UPDRS 4 (IQR) 4 (0–11)

PDQ-39 (IQR) 32 (15–54)

IQR, interquartile range; LEDD, levodopa equivalent daily dose; MMSE, mini mental state examination; MDS-UPDRS, Movement Disorder Society-Sponsored Revision of the Unified 
Parkinson’s Disease Rating Scale; PDQ-39, The Parkinson’s disease questionnaire-39.

TABLE 2 Comparison of recording time for each status in paper and electronic diaries.

Paper-D. Electronic-D. p

Total entries, (IQR) 115 (71–147) 107 (93–116) 0.77

Total reported time, h (IQR) 69 (61–80) 48 (33–57) 0.001

Troublesome dyskinesia time, h (IQR) 0 (0–1.5) 0 (0–0.5) 0.63

Troublesome dyskinesia rate, % (IQR) 0 (0.0–0.2) 0 (0–0) 0.81

Total ON time, h (IQR) 49.5 (28.5–56) 33 (24.5–50) 0.12

ON time rate, % (IQR) 67 (62–81) 80 (64–98) 0.44

Total OFF time, h (IQR) 16 (8–28) 5 (0.5–9.5) 0.01

OFF time rate, % (IQR) 25 (13–36) 14 (1–27) 0.34

Total duplicate time, h (IQR) 0 (0–0.5) 0.5 (0.5–2.0) 0.14

Total Missing time, h (IQR) 12.5 (4.5–20) 37.5 (33.5–51.5) < 0.001

IQR, interquartile range.
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number of entries (F1,235  = 6.83, p  = 0.01). Diary type was not 
significantly associated with a decrease in the number of entries 
(F1,235 = 0.48, p = 0.49).

Finally, the results of the patient survey about usability are shown 
in Figure 4. Regarding daily life interruptions due to the use of the 
symptom diary, about half of the patients reported that the paper 

FIGURE 2

Correlations between electronic diary and paper diary. Correlations between electronic diary and paper diary based on motor status: Total ON time 
rate (A), total OFF time rate (B), Total troublesome dyskinesia rate (C). There were significant correlations between the proportion of motor status each 
group.

TABLE 3 Correlations between symptom diaries and scales.

Electronic-D.
ON time-rate

Electronic-D.
OFF time-rate

Paper-D.
ON time-rate

Paper-D.
OFF time-rate

MDS-UPDRS part 1 −0.69** 0.51* −0.48* 0.38

MDS-UPDRS part 2 −0.58* 0.49* −0.07 0.10

MDS-UPDRS part 3 0.07 −0.28 0.23 −0.35

MDS-UPDRS part 4 −0.70** 0.47 −0.56* 0.42

PDQ-39 −0.58** 0.40 0.24 0.21

Spearman correlation: **p < 0.01, *p < 0.05.
MDS-UPDRS, Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale; PDQ-39, The Parkinson’s disease questionnaire-39.

FIGURE 3

Relationship between the number of entries and the number of days. The number of days was associated with a decrease in the number of entries. 
Diary type was not significantly associated with a decrease in the number of entries.
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version sometimes or frequently interfered with their daily life (Q1). 
In contrast, no patient reported that the electronic diary interfered 
frequently and only 12% of the patients reported that it sometimes 
interfered with their daily life (Q4). None of the participants found the 
recording method difficult on paper (Q2). Even with the electronic 
diary, 80% of patients rated it as operable (Q5).

Discussion

We developed an electronic diary in Japanese. There was no 
significant difference in the number of entries between the paper 
and electronic diaries, maintaining compliance. However, the 
reported time was significantly shorter for the electronic symptom 
diaries. This suggests that the paper diary involves recording 
symptoms retrospectively. Our results showed that about 
one-fourth of the time recorded in the paper diary was done 
retrospectively, highlighting the issue of recall bias, which has 
been identified as a problem with paper symptom diaries. In this 
study, we showed that the status of the motor symptoms, such as 
ON time rate, OFF time rate, and Troublesome dyskinesia rate, 
was significantly correlated between paper and electronic 
symptom diaries, which is consistent with previous studies. 
Interestingly, however, when comparing the recorded status of the 
motor symptoms to other patient-reported outcomes such as 
MDS-UPDRS part 1, 2, 4 and PDQ-39, the electronic symptom 
diary showed significant correlations with a wider range of items 
than the paper symptom diary. PDQ-39 and MDS-UPDRS part 4 
have been reported to correlate with motor fluctuations in PD 
patients (11, 12). MDS-UPDRS part 1 and 2 have been reported to 
relate to quality of life in PD patients (13). Therefore, the 
electronic symptom diary may more accurately reflect the patient’s 
symptoms and quality of life. Our electronic diary, which allowed 
only real-time entries, may have eliminated recall bias, thereby 
reflecting the patient’s symptoms more accurately. The reason why 
MDS-UPDRS par 3 did not correlate with both paper and 
electronic diary may be due to the fact that MDS-UPDRS part 3 
was only evaluated at the time of the outpatient visit, which does 
not correctly reflect the patient’s motor fluctuation and general 

status at home. The symptom diary, which records continuous 
symptoms, is crucial in managing patients with Parkinson’s 
disease. Our electronic diary offers the advantage of also being 
able to record and evaluate patient-reported outcomes such as 
MDS-UPDRS part 1, 2, 4 and PDQ-39.

The usability of our electronic diary was found to be satisfactory 
based on the results of patients` questionnaire.

The present study also suggests that real-time input is difficult. 
Missing time in the electronic symptom diary averaged 37.5 h, or 
45% of the total time. The devices had reminders to remind them 
every 30 min with vibration, but patients said that they often did not 
notice the vibration in their daily life and work, and even when they 
did notice it, they could not respond immediately, resulting in 
missed entries. In addition, the electronic symptom diary was 
sometimes unavailable for a certain period of time due to equipment 
failure or battery problems with the device. Improvement of the 
reminding function should be  considered in the future. 
Furthermore, regardless of the type of symptom diary (paper or 
electronic), the number of entries tended to decrease as the number 
of days passed, suggesting user fatigue. Despite the reduced 
recording time, the correlations between exercise symptoms 
recorded in the electronic diary and patient-reported outcomes 
such as MDS-UPDRS part 1, 2, 4 and PDQ-39 were strong, 
suggesting that the recording frequency need not be as frequent as 
every 30 min. Determining the appropriate recording frequency is 
a subject for future study.

In addition, this study has several other limitations. The study 
design included a small sample size and was not a crossover. 
Conducting the paper diary first, followed by the electronic diary, also 
introduces potential bias. We acknowledge the need for a larger cross-
over study in the future. Another limitation is that the study did not 
implement the paper and app-based symptom diaries simultaneously, 
so it was not possible to examine concordance between the two 
methods for identical epochs. However, since there were no medication 
changes for Parkinson’s disease during this period and the assessments 
were conducted within a similar timeframe, we believe that the two 
methods likely reflect comparable motor fluctuations. Furthermore, 
the doctor’s evaluation was not conducted simultaneously with the 
patient reports, so no supervised data were available. In future studies, 
it would be beneficial to incorporate objective data collection methods, 
such as accelerometers, to compare against patient-oriented diaries. As 
previously noted, the correlational analyses were not based on exactly 
matching time periods, making it difficult to determine whether the 
reported motor fluctuations are accurate when compared to the 
patient questionnaire data (MDS-UPDRS and PDQ-39).

In conclusion, our electronic diary is a useful tool that more 
accurately reflects the patient’s motor symptoms and quality of life 
compared to the paper symptom diary. In the future, we hope that the 
use of such digital instruments to assess drug efficacy and DAT 
responsiveness will enhance more data-driven Parkinson’s disease 
treatment and ultimately lead to improved patient quality of life.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding authors.

FIGURE 4

Patients questionnaire. Responses given to the usability 
questionnaire (%). Color code from green (score  =  1 for least 
favorable response) to orange (score  =  5 for most favorable 
response).
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SUPPLEMENTARY FIGURE 1

Examples of each symptom diary. (A) Paper diary. In this case, the diary 
showed eight entries, and the reported time was 8  h. (B) Electronic dairy. In 
this case, the diary showed eight entries, and the reported time was 4  h.

SUPPLEMENTARY FIGURE 2

Data protocol. Patients use a smartphone or smartwatch application to 
record their motor status. The data is transmitted to a server/database and 
can be shared with doctors through a web application. A reminder function 
is available on both the smartphone and smartwatch, which sends a push 
notification if no symptom entries are recorded within a 30-min period.
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Introduction: Parkinson’s Disease (PD) affects around 8.5 million people 
currently with numbers expected to rise to 12 million by 2040. PD is 
characterized by fluctuating motor and non-motor symptoms demanding 
accurate monitoring. Recent advancements in digital medical devices (DMDs) 
like wearables and AI offer promise in addressing these needs. However, the 
successful implementation of DMDs in healthcare relies on patients’ willingness 
to adopt and engage with these digital tools.

Methods: To understand patient perspectives in individuals with PD, a cross-
sectional study was conducted as part of the EU-wide DIGIPD project 
across France, Spain, and Germany. Multidisciplinary teams including 
neurodegenerative clinics and patient organizations conducted surveys focusing 
on (i) sociodemographic information, (ii) use of DMDs (iii) acceptance of using 
health data (iv) preferences for the DMDs use. We used descriptive statistics to 
understand the use of DMDs and patient preferences and logistic regression 
models to identify predictors of willingness to use DMDs and to share health 
data through DMDs.

Results: In total 333 individuals with PD participated in the study. Findings revealed 
a high willingness to use DMDs (90.3%) and share personal health data (97.4%,) 
however this differed across sociodemographic groups and was more notable 
among older age groups (under 65 = 17.9% vs. over 75 = 39.29%, p = 0.001) 
and those with higher education levels less willing to accept such use of data 
(university level = 78.6% vs. 21.43% with secondary level, p = 0.025). Providing 
instruction on the use of DMDs and receiving feedback on the results of the data 
collection significantly increased the willingness to use DMDs (OR = 3.57, 95% 
CI = 1.44–8.89) and (OR = 3.77, 95% CI = 1.01–14.12), respectively.
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Conclusion: The study emphasizes the importance of considering patient 
perspectives for the effective deployment of digital technologies, especially for 
older and more advanced disease-stage patients who stand to benefit the most.

KEYWORDS

Parkinson’s Disease, patient-centeredness, personalized medicine, acceptance of 
digital medical devices, patient preferences, use of health data, trust, Adoption of AI

Introduction

Parkinson’s Disease (PD) is a complex neurodegenerative 
condition affecting approximately 8.5 million people, with the number 
expected to rise to 12 million by 2040 (1). The condition is 
characterized by a spectrum of combined motor and non-motor 
symptoms that fluctuate over the course of the disease, necessitating 
timely and accurate monitoring of treatment response, disease 
severity, and progression. Recent advances in Digital Medical Devices 
(DMDs) and related health technologies, including wearables and 
sensors, coupled with Artificial Intelligence (AI), hold substantial 
promise in addressing these requirements in both clinical and clinical 
research settings (2–4). By capturing precise and reliable longitudinal 
information regarding the daily functioning of individuals diagnosed 
with PD, these technologies enable accurate and objective assessments 
of health trajectories, aid in communication and clinical decision-
making, and make it possible to evaluate treatment effectiveness (2, 
5). Indeed, current assessment methods predominantly rely on clinical 
and patient-reported assessments, introducing numerous biases such 
as the experience of the clinician, patient recall, episodic assessments 
and inter-rater variability, which pose substantial challenges in 
measuring the fluctuating nature of PD symptoms (6, 7).

Despite the increasing availability and advantages of DMDs, the 
successful implementation of these technologies in healthcare and 
clinical research will depend highly on patient acceptance and 
engagement (8). Numerous studies in the general population have 
highlighted that various personal factors such as sociodemographic 
characteristics, digital literacy or privacy and trust concerns can 
hinder the use of DMDs (9–12). Regarding the acceptance of AI in 
healthcare, some of the major reasons behind the lack of trust are 
found to be the lack of responsibility attribution in terms of error, 
concerns over individual privacy and ‘perceived uniqueness neglect’– 
AI’s inability to adequately capture the unique characteristics and 
symptoms of individual patients (13, 14).

Studies investigating the acceptance and the use of digital tools and 
AI by individuals with PD generally suggest that individuals with PD 
are more accepting DMDs if they are younger, when they perceive their 
added value, and if technologies are more user-friendly. In general, 
they would accept DMDs if they facilitate disease management, track 
functionalities and symptoms, improve interactions with healthcare 
professionals or provide knowledge and social support (15–17). For 
instance, Duroseau et al. (18) studied the acceptance of DMD-based 
communication tools in a sample of 109 individuals with PD and found 
that willingness to use digital communication tools decreased with age. 
In addition, individuals with PD are more inclined to utilize DMDs for 
home care if the technology requires minimal effort, can be seamlessly 
integrated into their daily routine, and if they receive sufficient support 
from the study team (19). A study by LaBueno et al. further found that 
higher digital acceptance rates were associated with higher digital 
competencies among the users (16).

While these studies explore the factors that could influence 
patient acceptance of DMDs in general, there has been limited work 
on the perspective of individuals with PD regarding their willingness 
to use AI-based DMDs as well as their preferences regarding the 
sharing of their data for AI-driven personalized care. This lack of 
focus on patient needs and preferences can have major implications 
when implementing DMDs and AI in healthcare and clinical 
research, especially as it concerns complex diseases such as 
PD. Therefore, this study aims to investigate the determinants of the 
willingness to use DMDs and the collection of sensitive data for AI 
processing, as well as to capture patient views, concerns, and 
preferences related to such use while considering their 
sociodemographic and the clinical status.

Materials and methods

Study design, population and setting

This multicentre cross-sectional study was conducted across 
Parkinson’s patient cohorts in France, Spain, and Germany as part of 
the EU-wide DIGIPD project (20). The primary objective of the 
project was to validate the potential of digital biomarkers to support 
early diagnosis and personalized disease management of patients with 
PD. The cross-sectional survey, which is the subject of this paper, 
enrolled participants who had received a clinical diagnosis of 
Parkinson’s and provided informed consent (Review Ethical 
Committee Code: 22/320-E). Individuals with PD exhibiting 
significant cognitive impairment, intellectual disability, or other severe 
psychiatric conditions were excluded from participation.

Patient recruitment

To recruit participants, a multifaceted approach was conducted, 
leveraging databases from collaborating organizations, national 
patient associations, and prominent social media platforms such as 
Twitter, Facebook, LinkedIn, Google+, in addition to communication 
channels like partner magazines. The DIGIPD project’s social 
networks, accessible at https://www.digipd.eu/, were also 
instrumental in reaching potential participants. The recruitment 
process involved proactive engagement by members of the DIGIPD 
team who sent invitations to all individuals with PD who expressed 
interest in being contacted for research projects. Interested 
participants received project information and reviewed and signed 
online or paper-based informed consent form. The principal 
investigator and a trained team member responsible for obtaining 
informed consent facilitated this process. Those meeting the inclusion 
criteria were invited to participate within the designated timeframe 
(January to March 2022) by e-mail or by phone.
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The development of the survey

The development of the questionnaires was informed by the 
literature on acceptance of digital health technologies (21, 22), as 
well as by the input of clinicians, researchers, individuals with PD 
and patient organization. The survey was divided into four main 
themes: (i) sociodemographic information, (ii) use of DMDs (iii) 
acceptance of using health data (iv) preferences for the DMDs use. 
The survey, initially drafted in English, was translated into French, 
German and Spanish using the EU survey platform’s automated 
translation feature. Subsequently, to ensure linguistic accuracy and 
cultural relevance, the translations underwent review by personnel 
affiliated with the project partners: the Clinical Research Centre of 
the Paris Brain Institute for French, the University Hospital 
Erlangen for German and the Association Parkinson Madrid for 
Spanish. This collaborative effort aimed to enhance the quality and 
precision of the translated survey content, aligning it with the 
linguistic nuances and context-specific considerations of each target 
language. Finally, the survey was tested for feasibility in a workshop 
with three PD patients and researchers. The primary objectives of 
the workshop were twofold: firstly, to estimate the time required for 
completion of the survey, and secondly to assess and ensure a 
comprehensive understanding of the survey content and to make 
necessary adjustments, ensuring the overall robustness of the 
survey instrument prior to its wider dissemination. The complete 
survey can be found in Appendix 1.

Main study variables

Sociodemographic and clinical characteristics
The following variables were collected as a part of the 

sociodemographic characteristics: country of residence (France, 
Germany, Spain, Other) age categories (under 65, 65 to 75, Over 75), 
gender (female, male, intersex), educational level (no formal 
education, primary, secondary, post-secondary, bachelor degree, 
master degree, doctorate) added as a continuous variable in the 
regression model, and disease duration since diagnosis (<1 year, 1 to 
5 years, 6 to 10 years, 11 to 15 years, 16 to 20 years, over 20 years) 
grouped across four levels due to small sample size in some categories 
(newly diagnosed, 1 to 5 years, 6 to 10 years and over 10 years).

Willingness to use DMDs, sharing health data and 
confidence in AI for health decision-making

Patients were asked questions about:

 • their willingness to use DMDs in the healthcare context: ‘Would 
you use digital devices (i.e., smartphone, tablet, computer, specific 
wearable device – gait sensor on a shoe) if this would improve the 
information that your healthcare team has about you’ with 
response categories (yes, no, not sure), grouped into a binary 
variable (“yes” or “no/not sure”).

 • their acceptance of health data collection through digital tools for 
clinical purposes: ‘Would you accept the use of your physical or 
mental state data, gathered through digital devices (i.e., 
smartphone, tablet, computer, specific wearable device – gait sensor 
on a shoe), for your medical treatment and health care purposes?’, 
with response categories (yes, no and not sure), as well grouped 
into a binary variable (“yes” or “no/not sure”)

 • their confidence in the use of AI-based clinical decision and 
support: ‘Would you  be  confident in a healthcare decision/
recommendations based on a computer calculation using formula 
of your data?’, dichotomized into ‘No Confidence AI’ (I refuse 
such use, I am afraid of such use) and ‘Confidence in AI’ (I accept 
such use if it helps the physician with the diagnosis, I fully trust it).

Preferences and concerns
Finally, participants were asked about their preferences related to 

the use and functionalities of DMDs. This included preferences for 
particular types of DMDs (smartphones, computers with microphone 
and webcam, shoe sensors, headset microphone), preferred data 
collection settings (at home, hospital, both), and duration. Participants 
were also queried about their perspective on receiving feedback on the 
obtained measurements, instructions, and motivational messages (yes, 
no/not sure), and whether those functionalities would encourage their 
use of DMDs. Moreover, participants were asked about preferences 
regarding the type of instructions (animation videos, real-person 
videos, written manuals, pop-up messages). Lastly, participants were 
asked to share concerns related to the use of DMDs (abilities to handle 
them, privacy concerns, time-consuming, no concerns).

Statistical analysis

In the first step, we performed a descriptive analysis of the sample 
characteristics and main variables concerning the use of DMDs, 
concerns and preferences. Next, depending on the sample size, for the 
categorical variables we used chi-squared or Fisher exact tests, to 
identify significant differences in the use and willingness to use 
DMDs, concerns with DMDs, trust in AI as well as preferences for 
data collection across various countries, sociodemographic groups 
and among participants with various disease durations. Post-hoc 
analysis was performed to analyze adjusted residuals (person 
residuals divided by an estimate of their standard error) (23). To 
ensure the clarity and meaningful interpretation of our analysis, 
participants categorized under ‘Other’ in the country variable were 
excluded from the study. We report only results where we  found 
significant differences between study variables. Finally, we performed 
a logistic regression analysis to understand which clinical, 
sociodemographic, and support factors (such as having instructions 
or receiving personalized feedback) are associated with the 
willingness to use DMDs (Model 1) and willingness to share health 
data for AI (Model 2) while controlling for country effects. The 
predictors were estimated on an odds ratio scale, with a 95% 
confidence interval. The first aimed to ensure that excluding the 
‘other’ category from the country analysis would not significantly 
alter the results. The second analysis aimed to confirm that excluding 
participants who responded ‘not sure’ from the analysis and grouping 
them with those who responded ‘no’ did not yield different results.

Results

Patient sociodemographic and clinical 
characteristics

A total of 333 individuals with PD participated in the study. France 
accounted for 17%, Germany 8%, Spain 64%, and the remaining 11% 
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represented other regions. Among these participants, nearly half were 
below the age of 65, accounting for 49% (n = 162). The majority were 
male, making up 67% (n = 221), and a substantial proportion were 
well-educated, with 75.6% holding a university degree. Additionally, 
most participants (82%, n = 270) had been diagnosed with Parkinson’s 
Disease (PD) within the past 10 years. A more detailed overview of the 
main participant’s characteristics can be found in Table 1.

Willingness to use DMDs, share health data, 
and confidence in AI for clinical decision 
support

Almost half of the participants (47%; n = 159) have already used 
digital devices (i.e., smartphone, tablet, computer, specific wearable 
device – gait sensor on a shoe) that collect, process, and/or display 

personal health data, although there were differences between 
countries. Those living in Germany reported higher use of DMDs 
than those living in Spain (77.8% vs. 45.5%, p = 001) (Figure 1A). The 
majority of individuals with PD (90.3%, n = 278) stated that they are 
willing to use DMDs if that aids clinical decision-making. However, 
this strong commitment was lower among the older age groups 
(6.45% of those under 65 stating they are not willing to use DMDs vs. 
17.86% of those aged over 75, p = 0.046) (Figure  1B). Most 
participants (97.4%, n = 302) indicated that they would accept 
sharing their health data collected through DMDs. However, 
we observed differences across age groups and educational levels, 
with older age groups less willing to share their health data (under 
65 = 17.9% vs. over 75 = 39.29%, p = 0.001) (Figure 2A), and those 
with higher education levels less willing to accept such use of data 
(78.6% with university level vs. 21.43% with secondary level, 
p = 0.025) (Figure  2B). Regarding confidence in AI for clinical 
decision support, although most of the respondents expressed 
confidence in AI, those with higher educational levels (university) 
tended to be  less likely to trust an algorithm for clinical decision 
support compared to those with lower educational levels (secondary 
or less) (8% vs. 5.8%, p = 0.016) (Figure  3). No other significant 
differences across socio-demographic groups or disease duration 
were observed regarding the level of confidence in AI for clinical 
decision support.

Concerns related to the use of DMDs and 
preferences

Over half of the respondents with Parkinson’s Disease (63%, 
n = 210) stated that they do not have any specific concerns related 
to the use of DMDs. However, this differed across countries 
(France = 67.9%, Germany = 44.4% and Spain = 28%, p = 0.001). 
Most of the concerns about using DMDs were related to the time 
burden of using a device (11%) and the inability to handle the 
device even with support from others (9%), which was particularly 
salient among the older respondents (66.7% in those over 75 vs. 
13.3% in those under 65, p = 0.000) (Figure 4A), and among those 
with more advanced PD duration (p = 0.51) (Figure 4B). Only 5% 
of the respondents expressed concern about sharing their 
health data.

When it comes to the choice of DMDs, the majority of 
respondents (72.37%) preferred using smartphones, 20.42% 
preferred using a headset microphone, 30.33% expressed a 
preference for using a computer with a webcam and 45.05% 
expressed a preference for a shoe-sensor. However, differences in the 
level of preference for smartphones were found between those who 
were newly diagnosed (<1 year disease duration) and those with a 
longer PD disease duration (over 10 years) (94.7% vs. 61.7%, 
p = 0.016), respectively (Figure 5A), and across educational levels 
(primary = 41.4% and university level = 74.2%, p = 0.002) 
(Figure 5B). In terms of preferences for setting for data collection, 
46% of the respondents expressed a preference for daily or monthly 
data collection at home, in contrast to the 3.3% who favored 
periodic data collection at the hospital with no statistical differences 
across sociodemographics or clinical status. Finally, the majority of 
the participants preferred to receive instructions (83%), with the 
most frequently preferred type of instructions being real-person 

TABLE 1 Characteristics of participants (N = 333).

Variables N (%)

Gender

Male 221 66.77

Female 110 33.23

Age categories (years)

Under 65 162 48.80

65–75 108 32.53

Over 75 62 18.67

Country of residence

France 56 16.8

Germany 27 8.11

Spain 214 64.26

Other 36 10.81

Level of education

No primary school 10 3.00

Primary school 19 5.71

Secondary school 52 15.62

Bachelor’s degree 109 32.73

Master’s degree 103 30.93

Doctoral degree 40 12.01

PD disease duration

<1 year 19 5.76

1–5 years 142 43.03

6–10 years 109 33.03

Over 10 years 60 18.18

Already used DMDs

Yes 159 47.89

No 165 49.70

I’m not sure 8 2.41

DMDs, Digital Medicine Devices.
Due to non-responses in certain demographic categories (e.g., gender, age, PD duration), 
some categories do not reflect the full sample size. Percentages are calculated based on the 
number of respondents for each specific category.
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FIGURE 1

Use and Willingness to use DMDs by country and age groups. (A) Use of DMDs. (B) Willingness to use DMDs.

FIGURE 2

Willingness to share personal health data through DMDs for healthcare purposes by age and educational level. (A) Willingness to share health data by 
age. (B) Willingness to share health data by educational level.

FIGURE 3

Confidence in AI for clinical decision support by educational level.
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FIGURE 5

Preferences for using smartphones by disease duration and educational level. (A) Preferences for smartphones by PD duration. (B) Preferences for 
smartphones by education.

videos (43.2%), followed by animation videos (38.5%). Most of the 
respondents also expressed preferences for feedback, such as reports 
on the data that has been collected (94.3%), and the use of 
motivational messages (68.9%). No differences in preference for 
instructions, feedback or motivational messages based on 
sociodemographic characteristics and PD duration were observed.

Results from the logistic regression

After controlling for country effects, findings from the first logistic 
regression model (Model 1, Table  2), examining the relationship 
between willingness to use DMDs for healthcare purposes and the 
clinical and sociodemographic factors, and support factors, show that 
age as well as support factors such as having instructions and feedback 
are strongly associated with the willingness to use DMDs in the 
context of healthcare. Individuals with PD who are over the age of 75 
were less likely to be willing to use DMDs in the healthcare context 
(OR = 0.31, 95% CI = 0.11–0.83). Having instructions (OR = 3.57, 
95% CI = 1.44–8.89) and feedback, such as reports on the results of 
the data collection (OR = 3.77, 95% CI = 1.01–14.12), increased the 

willingness to use DMDs almost 4-fold, although with wide confidence 
intervals mostly due to the sample size.

The results in the second logistic regression model (Model 2, 
Table 2) that investigated the association between the willingness to 
share health data through DMDs for healthcare purposes and 
sociodemographic, clinical and support factors yield similar results to 
the first model, show that those within the older age categories are less 
likely to be willing to share their health data for healthcare purposes: 
(OR = 0.20, 95% CI = 0.06–0.63) for those between the age of 65 and 
75, and (OR = 0.11, 95% CI = 0.03–0.38) for those over the age of 75. 
Receiving instructions (OR = 3.24, 95% CI = 1.19–8.81) and feedback 
(OR = 4.93, 95% CI = 1.37–17.72) from the data collected was 
associated with increased odds in the willingness to share data 
through DMD for healthcare purposes.

Discussion

Overall, the findings of this study demonstrate a high acceptance 
of DMDs and trust in AI for the purpose of personalized health, 
aligning with results from other studies (21, 22, 24). However, our 

FIGURE 4

Concerns about handling DMDs by age and disease duration. (A) Concerns by age. (B) Concerns by disease duration.
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study found that the level of use and the preferences for particular 
DMDs varied across participants’ country of residence as well as 
clinical and sociodemographic factors.

Based on a sample of individuals with PD across three large 
European Countries, namely France, Germany, and Spain, we found 
that those living in Germany were more likely to have used DMDs 
compared to those living in Spain, which might be  due to the 
country’s digital readiness given the implementation of DMDs within 
the healthcare system. Indeed, Germany is a pioneering country that 
authorizes healthcare providers to prescribe Digital Health 
Applications so-called DIGAs (25). Furthermore, our findings 
indicate that individuals in the older age groups were less willing to 
adopt technologies. Older individuals with PD voiced higher 
concerns regarding their ability to manage the DMDs and concerns 
regarding the time burden of using the device. These results are in 
line with studies on acceptance of digital health technologies 
indicating that older adults with chronic diseases and individuals 

living with PD are less likely to use DMDs and more prone to express 
concerns related to time burden and difficulties in managing DMDs 
(10, 21). We also observed differences in the preferences for device 
technology, as individuals in more advanced disease stages and with 
lower education levels tended to show lower preferences toward 
using smartphones. This tendency might be attributed to the levels 
of digital literacy and challenges experienced by individuals with PD 
who face both motor symptoms (such as tremors, gait problems, or 
rigidity) and non-motor symptoms, including cognitive difficulties 
(26). These challenges might make handling DMDs particularly 
smartphones, more demanding for this subgroup. Therefore, it is 
imperative to offer opportunities to increase digital literacy in these 
populations as well as to design user-friendly DMDs that seamlessly 
integrate into the daily activities of individuals with PD. Previous 
research suggests that automating data collection through commonly 
used devices like watches, shoes, and jewellery could reduce the 
physical and mental effort of individuals with PD, consequently 
improving use and engagement (22, 27). In addition, our results 
show that the majority of the participants expressed preferences to 
receive instructional videos on how to use the DMDs (predominantly 
in the form of real-person videos), which was also shown to 
be  strongly associated with the willingness to use DMDs in the 
logistic regression model. Previous studies on the acceptance of 
technologies confirm these findings, suggesting that having technical 
and social support such as instructions, and encouragement from 
healthcare professionals or caregivers and families are important 
predictors of the acceptance of digital technologies (10, 28). 
Furthermore, in our sample, the majority of respondents favored the 
concept of home monitoring over periodic monitoring and 
assessments in the hospital. This is expected given that most of the 
individuals with PD have difficulties with mobility, making it harder 
for them to travel to a clinic. One intriguing finding lies in the 
association of lower confidence in healthcare decisions based on AI 
and a decreased willingness to share personal health data through 
DMDs for healthcare purposes among those with higher levels of 
education. However, the relationship between education and 
willingness to share personal health data diminished in the regression 
analysis after controlling for other demographic and clinical factors, 
suggesting that the relationship might be confounded and factors 
such as age, and receiving feedback and instruction play a more 
important role.

Advancing efforts toward transparency regarding the use of data 
collected from digital technologies is a critical step in fostering trust 
and, consequently, increasing the willingness to share health data for 
AI processing. Investing in innovative approaches for privacy-
perceiving digital infrastructure such as federated health records or 
the development of synthetic data could address privacy concerns 
among individuals with PD (29, 30) and allow to leverage the data to 
improve the health of individuals with PD. Additionally, transparency 
about how algorithms are developed and deployed, as well as rising 
awareness about the benefits of AI for clinical decision support among 
individuals with PD is important to increase their trust and confidence 
in AI. In the European Union, the General Data Protection Regulation 
(GDPR) overall aims to ensure lawful, fair, transparent, secure, and 
accountable handling of personal health information within a concise 
timeframe. The Regulation mandates, inter alia, transparent 
processing of personal health data, requiring clear and accessible 
information to be  provided to patients, including purposes of 

TABLE 2 Logistic regression models presenting factors associated with 
the willingness to use AI-based DMDs and share health data in healthcare 
settings.

Model 1 Model 2

Willingness to use 
DMD in healthcare

Willingness to share 
health data through 
DMDs for healthcare 

purposes

Odds 
ratio

[95% 
Confidence 

interval]

Odds 
ratio

[95% 
Confidence 

interval]

Country of residence (ref: Germany)

France 0.27 0.03 2.55 0.82 0.14 4.70

Spain 0.48 0.06 4.07 1.0 0.20 4.96

Age categories (ref: Under 65)

65–75 0.57* 0.21 1.53 0.20*** 0.06 0.63

Over 75 0.31 0.11 0.83 0.11*** 0.03 0.38

Gender (ref: female)

Male 0.93 0.39 2.23 1.06 0.43 2.61

Educational 

level
1.14 0.81 1.6 0.76 0.52 1.09

Disease duration (ref: newly diagnosed)

1–5 years 0.88 0.1 7.68 1.03 0.12 9.15

6–10 years 0.72 0.08 6.41 0.71 0.08 6.43

over 

10 years
0.92 0.09 9.32 1.41 0.13 15.4

Receiving instruction (ref: no)

Yes 3.57*** 1.44 8.89 3.24** 1.19 8.81

Receiving feedback (ref: no)

Yes 3.77** 1.01 14.12 4.93** 1.37 17.72

Constant 3.1 0.09 16.25 11.793 0.45 30.17

Pseudo 

r-squared
0.127 0.171

***p < 0.01, **p < 0.05, *p < 0.1.
DMDs, Digital Medical Devices; ref, Reference category.
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processing, recipients, and data storage duration. Furthermore, 
patients possess legal rights to access their personal data, request 
rectification of their inaccuracies, obtain their erasure or processing 
restriction in some circumstances, and object to their processing 
based on individual circumstances, unless an exception applies. 
Importantly, patients also have the right not to be subject to a decision 
based solely on automated processing which significantly affects 
them (31).

Finally, in this article, we also show that the perceived benefits of 
using DMDs were strongly related to the willingness to share health data 
via DMDs. For instance, participants show high preferences for receiving 
feedback, such as reports on their health based on the collected data. The 
insights derived from their personalized health data can offer valuable 
information for individuals with PD, contributing to their higher patient 
engagement and empowerment. This is confirmed in previous studies, 
suggesting that providing feedback on the data obtained from the 
patients was found to be an important motivator in adherence to digital 
technologies (17, 32, 33), and therefore should be widely implemented.

Limitations

Although this study foregrounds the perspectives of individuals 
with PD across three different European countries (France, Germany 
and Spain), one of the main limitations is its generalizability across all 
individuals with PD. In our study, the participants were mainly younger 
and highly educated which might overestimate the willingness to use 
these technologies. In addition, the majority of the participants were 
living in Spain, limiting the scope of country comparisons. Enhancing 
recruitment engagement strategies to include individuals with lower 
socioeconomic status necessitates collaborating with peers and 
community organizations, and disseminating information in simple 
language. Additionally, targeting locations where these communities 
reside can facilitate more inclusive participation. Furthermore, 
incorporating the experiences of healthcare professionals (34) and 
caregivers is essential to broaden perspectives, particularly for those in 
more advanced stages of the disease. While our study shows that 
sociodemographic and clinical characteristics of people with PD are 
important determinants to consider, other factors, such as the cost of 
DMD itself, should also be considered, especially if the DMDs are not 
reimbursed by the healthcare system. Lastly, it is important to note that 
our findings provide a general perspective rather than direct applicability 
to specific DMDs. Further studies assessing patient perspectives and 
acceptance of specific DMDs, such as smartphone apps and wrist-worn 
or waist-located devices, would offer valuable insights regarding the use 
and acceptance of specific types of technologies.

Conclusion

Our study underscores the importance of carefully considering 
patients’ needs and perspectives regarding the development and 
deployment of DMDs for personalized care. The specific needs of 
older patients and patients with a more advanced disease stage need 
to be considered to increase adoption and meaningful engagement 
with DMDs as those are also the groups that could benefit the most 
from it. Further research should also take into account the perspective 
of different migrant/ethnic groups, given the structural inequalities 
that these groups face in the healthcare system and their specific needs 

and perspectives. The high enthusiasm revealed by the participants’ 
readiness to use digital health technology to enable better monitoring 
of their disease and clinical decision-making should be matched with 
their implementation in healthcare services. Therefore, increased 
patient involvement and working in partnership with researchers and 
clinicians is an important step toward the successful and sustainable 
implementation of DMDs for research and personalized healthcare. 
Such involvement of patients or their representatives is required by the 
GDPR (29).

Finally, although this was a study to understand the willingness of 
individuals with PD to use DMDs and share health information for 
the purpose of personalized care and decision support, the gap 
between willingness and actual use should be  further explored. 
Indeed, although some individuals with PD are willing to use digital 
technologies, understanding the hurdles they face when it comes to 
real-time use and practical application is crucial.
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