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Editorial on the Research Topic
Image-based digital tools for diagnosis and surgical treatment:
applications, challenges, and prospects authors

Introduction

The advent of image-based digital tools has revolutionized the landscape of modern
medicine, particularly in diagnosis and surgical treatment. Advances in deep learning,
computer vision, 3D modeling, 3D printing and Augmented Reality (AR) have significantly
enhanced the precision and efficacy of medical procedures, reducing human error and
improving patient outcomes.

The articles collected within this Research Topic explore various facets of these
emerging technologies, highlighting their applications, challenges, and prospects.

The collected studies can be grouped into the following focus areas of the Research Topic.

Innovations in medical image segmentation
and radiomics

Deep learning-based segmentation has emerged as a cornerstone in medical image
analysis. Also radiomics, i.e., the extraction of quantitative features from medical images,
has gained traction as a tool for enhancing diagnostic accuracy.

The study by Abidin et al. presents a comprehensive review of brain tumor
segmentation using multi-modal MRI and deep learning techniques. Their survey
categorizes state-of-the-art models into CNN-based, transformer-based, and hybrid
architectures, underscoring the strengths and weaknesses of each approach.
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Mao et al. introduce a 2D medical image segmentation
framework called Progressive Learning Network (PL-Net), which
optimizes medical image segmentation by integrating coarse-to-fine
semantic learning without increasing computational complexity.

Sun et al. present the innovative DA-TransUNet framework,
which incorporates a Dual Attention Block (DA-Block)
— combining position and channel attention—into a
Transformer-enhanced U-Net architecture. This tailored design
allows to improve segmentation accuracy particularly for high-
detail medical images by refining feature extraction and filtering
out irrelevant information.

The study by Lv et al. proposed an automated method for
mandibular canal segmentation using a transformer-based neural
network with cl-Dice loss and pixel-level feature fusion to improve
accuracy. Their approach addresses challenges like sample
imbalance and unclear boundaries through mandibular foramen
localization, contrast enhancement, and pre-training with Deep
Label Fusion on synthetic datasets. The method achieved state-
of-the-art results, demonstrating high precision and robustness in
3D mandibular canal localization.

Jia et al. explore the application of radiomics in optimizing
diagnosis and surgical planning for chronic osteomyelitis. Their
findings indicate that an expanded region of interest (ROI) in MRI
scans improves predictive performance, offering valuable insights
for precision medicine approaches.

Finally, the study by Chen et al. reviews recent advances in
retinal vessel quantification technology based on fundus
imaging, highlighting its key role in detecting and
monitoring ocular and systemic diseases. It focuses on how
innovations in imaging and AI have enhanced diagnostic
accuracy, offering clinicians and researchers an updated
overview of its clinical applications.

Across these studies, a shared emphasis emerges on refining
feature extraction and dealing with data complexity through
attention mechanisms or radiomic modeling. Several approaches
tackle the ongoing challenges of data imbalance and annotation
scarcity, particularly in high-detail segmentation tasks. Additionally,
transformer-based methods consistently appear as a unifying trend
aimed at capturing long-range dependencies and improving
contextual awareness.

Advances in 3D imaging, modeling and
printing for surgical planning and
regenerative medicine

The rapid evolution of 3D imaging, modeling and printing
technologies is creating unparalleled opportunities to optimize
surgical planning, improve patient outcomes, and driving
progress in regenerative medicine.

In this context, Henckel et al. advanced the validation of low-
dose 3D-CT imaging for acetabular implant orientation in
orthopedic surgery. Their findings confirmed that 3D-CT is a
highly accurate and precise modality for measuring cup
inclination and version in total hip arthroplasty, outperforming
conventional 2D CT methods. The results support 3D-CT as a
standard for post-operative evaluation and surgical system
optimization.

Similarly, Wu et al. developed novel 2D and 3D CT-based injury
models for predicting the risk of femoral neck fracture in patients
with femoral head fractures. Their quantitative parameters—such as
percentage of maximum defect length and fracture area—showed
high diagnostic accuracy and can serve as reliable predictors of
fracture risk. This approach provides clinicians with valuable
decision-making tools in trauma management and preoperative
risk assessment.

In the domain of 3D printing, Capellini et al. presented a brief
research report on the application of 3D printed models for the
management of complex congenital heart disease. Their work
underscores how physical models derived from high-resolution
MRI and CT datasets allow for a detailed and tactile
understanding of intricate pediatric cardiac anatomies. Among
the techniques explored, selective laser sintering (SLS) proved to
be the most cost-effective and time-efficient solution.

Pisani et al. explored bioartificial scaffolds produced using
solvent casting, electrospinning, and 3D printing within the field
of regenerative medicine. Their findings demonstrate that hybrid
scaffolds—merging various fabrication methods—achieve excellent
cell viability and mechanical properties similar to native soft tissues.

Moving to veterinary surgery, Chambers et al. evaluated a
custom 3D-printed cutting guide for canine caudal maxillectomy,
finding that it improved surgical accuracy for both experienced and
novice surgeons. While it slightly increased procedure time, the
enhanced precision, especially in achieving oncologic margins,
suggests that such digital tools can assist less experienced
surgeons and improve outcomes in veterinary oncology.

The studies in this area collectively highlight the growing
reliance on patient-specific models, whether for orthopedic
planning and post-operative evaluation, trauma prediction, or
surgical simulation. A consistent theme is the shift toward
integrating anatomical fidelity with fabrication
feasibility—balancing precision and efficiency. Moreover, the
translational relevance of these models is emphasized both in
human and veterinary medicine, underscoring the broad
applicability of 3D digital workflows.

Augmented reality in surgery and
patient education

The integration of AR into surgery and patient education is
another transformative development improving surgical accuracy
and enriching communication between clinicians and patients.

Nasir et al. provide a systematic review of AR applications in
orthopedic and maxillofacial oncological surgeries, detailing its
potential to enhance precision through improved visualization.
The study emphasizes the need for further clinical validation and
the integration of external navigation systems to improve accuracy.

Similarly, Urlings et al. investigate the role of AR in patient
education for intracranial aneurysms, highlighting how immersive
visualizations can enhance patient understanding and shared
decision-making.

Both studies highlight the visualization benefits of AR, while also
pointing to common implementation hurdles—particularly the
challenges of integrating AR with surgical navigation systems and
the need for robust clinical validation. Whether applied in the
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operating room or during patient consultations, AR consistently
emerges as a powerful tool for enhancing spatial understanding.
However, technical limitations continue to hinder its broader
adoption in clinical settings.

Conclusion and future directions

The contributions within this Research Topic underscore the
transformative impact of digital imaging tools in diagnosis and
surgical treatment. From AI-driven segmentation techniques to AR-
enhanced surgical interventions, these advancements promise a
future where precision medicine is more accessible, efficient, and
patient-centered.

Across all sections, a shared trajectory emerges: the shift toward
more personalized, data-driven, and visually guided approaches to
healthcare. While each study presents specific technological
innovations, they collectively reflect a broader trend of
converging digital methodologies—such as the use of
transformers in segmentation, patient-specific 3D models for
planning, and immersive AR for both surgeons and patients.
These tools not only enhance accuracy and confidence in clinical
decision-making but also foster interdisciplinary collaboration
among clinicians, engineers, and data scientists.

Despite these promising advancements, challenges remain on
the path to real-world clinical translation. In AI-based
segmentation tools, the major issues deal with computational
efficiency, the need for large, annotated datasets, and model
interpretability. In surgery, AR faces limitations in real-time
tracking accuracy and workflow integration. For 3D modeling
and printing, the translation of digital data into physical models
requires standardized protocols and cost-effectiveness
evaluations for broader clinical adoption.

Moreover, regulatory hurdles and data governance policies pose
significant obstacles, especially for AI applications and patient-
specific devices. Bridging the gap between innovation and
implementation will require not only technical refinement but
also rigorous validation, regulatory clarity, and integration into
clinical training and reimbursement frameworks.

The insights from the included studies suggest that an integrated
ecosystem—where data, tools, and expertise converge—can
accelerate the transition from research innovation to bedside

impact. Continued research and cross-disciplinary collaborations
between computer scientists, engineers, radiologists, and surgeons
will be essential for translating innovations from the lab into clinical
practice and for achieving the full potential of image-based digital
tools in delivering safer, more effective, and tailored patient care.
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Fractured morphology of femoral
head associated with subsequent
femoral neck fracture: Injury
analyses of 2D and 3D models of
femoral head fractures with
computed tomography

Shenghui Wu1†, Wei Wang2†, Ruiyang Li1, Jingyi Guo3, Yu Miao1,
Guangyi Li1 and Jiong Mei1*
1Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong
University School of Medicine, Shanghai, China, 2Department of Biomedical Engineering, The Hong Kong
Polytechnic University, Hong Kong, China, 3Clinical Research Center, Shanghai Sixth People’s Hospital
Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China

Background: The injury of femoral head varies among femoral head fractures (FHFs).
In addition, the injury degree of the femoral head is a significant predictor of femoral
neck fracture (FNF) incidence in patients with FHFs. However, the exact
measurement methods have yet been clearly defined based on injury models of
FHFs. This study aimed to design a new measurement for the injury degree of the
femoral head on 2D and 3D models with computed tomography (CT) images and
investigate its association with FHFs with FNF.

Methods: A consecutive series of 209 patients with FHFs was assessed regarding
patient characteristics, CT images, and rate of FNF. New parameters for injury degree
of femoral head, including percentage of maximum defect length (PMDL) in the 2D
CTmodel and percentage of fracture area (PFA) in the 3D CT-reconstruction model,
were respectively measured. Four 2D parameters included PMDLs in the coronal,
cross-sectional and sagittal plane and average PMDL across all three planes.
Reliability tests for all parameters were evaluated in 100 randomly selected
patients. The PMDL with better reliability and areas under curves (AUCs) was
finally defined as the 2D parameter. Factors associated with FNF were determined
by binary logistic regression analysis. The sensitivity, specificity, likelihood ratios, and
positive and negative predictive values for different cut-off values of the 2D and 3D
parameters were employed to test the diagnostic accuracy for FNF prediction.

Results: Intra- and inter-class coefficients for all parameters were ≥0.887. AUCs of all
parameters ranged from 0.719 to 0.929 (p < 0.05). The average PMDL across all three
planes was defined as the 2D parameter. The results of logistic regression analysis
showed that average PMDL across all three planes and PFA were the significant
predictors of FNF (p < 0.05). The cutoff values of the average PMDL across all three
planes and PFA were 91.65% and 29.68%. The sensitivity, specificity, positive
likelihood ratio, negative likelihood ratio, predictive positive value and negative
predictive value of 2D (3D) parameters were 91.7% (83.3%), 93.4% (58.4%), 13.8
(2.0), 0.09 (0.29), 45.83% (10.87%), and 99.46% (98.29%).

Conclusion: The new measurement on 2D and 3D injury models with CT has been
established to assess the fracture risk of femoral neck in patients with FHFs in the
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clinic practice. 2D and 3D parameters in FHFs were a feasible adjunctive diagnostic tool
in identifying FNFs. In addition, this finding might also provide a theoretic basis for the
investigation of the convenient digital-model in complex injury analysis.
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Background

Femoral head fractures (FHFs) are usually associated with high-
energy trauma and posterior hip dislocation. The major choice of
surgical FHF treatment was reduction and internal fixation, or
fragment removal, while joint replacement surgeries were favored
for some FHF patients due to the presence of the ipsilateral femoral
neck fracture (FNF) (Menger et al., 2021). The ipsilateral FNF had an
incidence of 8.6% and the worst prognosis among all FHFs (Menger
et al., 2021 Giannoudis et al., 2009). There were many possible
scenarios, simultaneously with FHF by trauma, during reduction,
during an eventual FHF fixation, upon resumption of the weight
bearing, etc., for the occurrence of the ipsilateral FNF.

In the Pipkin classification, a single FHF was called Pipkin I or II,
and associated fractures of the femoral neck and acetabulum were
respectively defined as Pipkin III and Ⅳ (Pipkin, 1957). During
treatment, the ipsilateral FNF is a severe intraoperative and
postoperative complication of closed reduction and internal
fixation of FHF with posterior hip dislocation. This may turn
Pipkin I and II into a rare Pipkin III, with increased risk of
femoral head avascular necrosis (AVN) (Park et al., 2016). Open
reduction is the most commonly used method for iatrogenic FNF
prevention in clinical practice. However, the ability of open reduction
to reduce incidence of AVN is controversial. Although open reduction
can lower the risk of intraoperative FNF caused by closed reduction, it
is associated with complications of AVN, with a high risk of injury to
vascular supply to the femoral head (Guo et al., 2010). Moreover, open

reduction may fail to reverse AVN followed by joint replacement,
when femoral neck refractures occur after FHF internal fixation
without any injury. Hence, early recognition of the risk of FNF in
FHFs is crucial, as the early identified characteristics of this injury type
could help tomake amore rational treatment strategy and improve the
prognosis. However, there is a lack of prediction tools in clinical
practice.

Previous studies have reported an association between the
injury degree of femoral head and the incidence of FNF in FHFs
(Davis, 1950; Henle et al., 2017). FHF is generally characterized
by development of a shearing force against the acetabular rim
caused by injury to the hip joint (Davis, 1950; Thompson and
Epstein, 1951). The contact area between the femoral head
surface and acetabular wall surface determines whether FHFs
occur with or without the additional osseous lesion on the
femoral neck (Henle et al., 2017). When the contact area of
the femoral head surface is larger, more of the axial compression
force transmitted to the hip is distributed to the surrounding
bone. This results in FNFs besides FHFs. Hence, the injury degree
of femoral head is a significant predictor of FNF incidence in
patients with FHFs (Davis, 1950; Thompson and Epstein, 1951;
Henle et al., 2017).

To date, no study has described an accurate and reliable
method for measuring the injury degree of femoral head for
predicting the incidence of FNF in FHFs. In addition, the hip
geometry for predicting diseases of proximal femur has been
studied extensively, but the exact measurement regarding FHFs
has yet been clearly defined (Kazemi et al., 2016; Wells et al., 2017;
Hesper et al., 2018). Moreover, clinically suspected FHF is
routinely assessed using computed tomography (CT)
examinations over the last few decades. Comprehensive
analysis of two-dimensional (2D) and three-dimensional (3D)
human models based on CT revealed femoral morphology in hip
diseases (Wells et al., 2017; Hesper et al., 2018). Therefore, it is
now possible to design a digital tool for identifying the risk of FNF
in FHFs based on CT imaging.

This study aimed to design a method for measuring the injury
degree of femoral head based on 2D and 3D injury models with CT.
The secondary aim was to investigate the association of the injury
degree of femoral head with incidence of FNFs in FHFs with CT. We
hypothesized that 2D and 3D CT-based parameters were reliable
predictors of FNF in patients with FHFs.

Methods

Study design

This study was approved by the Institutional Review Board (IRB)
of our institution [No.2022-KY-026(K)] and followed the
Strengthening the Reporting of Observational Studies in

TABLE 1 Background characteristics of patients with femoral head fractures.

Characteristics

Side of injury [no. (%)]

Left 102 (48.8%)

Right 107 (51.2%)

Age (yr) 39.85 ± 16.41

Sex [no. (%)]

Male 169 (80.9%)

Female 40 (19.1%)

Pipkin Classification [no. (%)]

I 3 (1.4%)

II 60 (28.7%)

III 8 (3.8%)

IV 138 (66.0%)

2D Measurement-Percentage of maximum defect length (%)

Coronal plane 76.41 ± 15.52

Cross-sectional plane 78.82 ± 16.45

Sagittal plane 78.57 ± 17.10

Average 77.93 ± 13.51

3D Measurement-Percentage of fracture area (%) 26.76 ± 12.95
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Epidemiology (STROBE) reporting guidelines for cross-sectional
studies (von Elm et al., 2007). Given the retrospective nature of
this study, participant informed consent was waived by IRB.

Participants

Using a prospectively maintained orthopedic database at a large
level-I trauma center, we retrospectively analyzed CT images of the hip
joint in patients diagnosed with FHF between 2011 and 2022. Three
investigators independently reviewed the imaging data of all FHFs to
identify initially missed FHFs. A total of 228 FHFs in 228 patients were
included. Patients with insufficient or poor quality axial CT images
(i.e., images with severe artifacts) (N = 12), unclosed epiphyseal line of
the femoral head (N = 2), pathological fracture (N = 3), or skeletal
immaturity (N = 2) were also excluded. Finally, 209 hips in
209 patients were included, and there were 12 cases with FHF and
FNF. Patient characteristics and features of FHFs are summarized in
Table 1.

Injury model generation

RawCT data of patients with femoral head fractures were obtained
and imported into theMimics software (Materialise, Leuven, Belgium)
for image analysis. The 2D injury model of FHF was defined as an
evident 2D image of maximum bone defect of femoral head in each CT
plane. The 3D injury model of FHF was defined as the 3D-
reconstruction model of the 3D-CT data using 3-matic software
(Materialise, Belgium). Additional details of the reconstruction of
3D model analysis are given in the Appendix A.

Measurements

Each 2D injury model of FHF, including coronal plane, cross-
sectional, and sagittal plane, were separately used to measure the

percentage of maximum defect length (PMDL). The 2D parameter
in each 2D injury model was defined as the ratio between the most
significant residual defect length and the optimum circle diameter
of the femoral head (Wells et al., 2017; Hesper et al., 2018),
(Figures 1A–C). Subsequently, the PMDL of each plane and
average PMDL across three planes were determined. The 3D
parameter of the percentage of fracture area (PFA) in each 3D
injury model was defined as the ratio between the fracture area
and total area of the femoral head (Figures 1D). Additional details
of the measurement process of the 3D parameter are also given in
the supplementary appendix.

To test the repeatability and reliability of PMDL and PFA
parameters, 100 randomly selected FNFs were independently
measured by two investigators using 2D-CT and 3D-CT images for
inter-observer analysis. One of the investigators conducted two
additional measurements 1 month apart for intra-observer analysis.

Statistical analysis

Qualitative data were presented as a percentage whereas
quantitative data were expressed as the mean with standard
deviation (SD) using SPSS 24.0 software (IBM SPSS Inc., Armonk,
New York). Reproducibility and agreement of parameters were tested
using Bland-Altman (Bland and Altman, 1986) and intraclass
correlation (ICC) (Rousson et al., 2002). The ICCs were interpreted
according to a method by Landis and Koch (Landis and Koch, 1977).
Factors significantly associated with FNF, including the injured side,
age, gender, Pipkin classification, the 2D parameters, and the 3D
parameter, were determined by binary logistic regression analysis. The
diagnostic accuracy of significant 2D or 3D parameters was
determined from the area under receiver operating characteristic
curves or AUCs. Optimal cutoff value of each parameter was
calculated using the receiver operating characteristic (ROC) curve.
Patients were grouped according to the cutoff of the 2D parameter,
with higher diagnostic accuracy, and the 3D parameter, respectively.
Differences between groups were analyzed using the chi-square test or

FIGURE 1
2D and 3D parameter measurements based on 2D and 3D injury models of femoral head fractures. The percentage of maximum defect length (PMDL)
was measured as the ratio between themost significant residual defect length (L) and the optimum circle diameter for the femoral head (D), including coronal
plane [Panel (A), PMDLC = LC/DC], cross-sectional [Panel (B), PMDLCS = LCS/DCS], and sagittal plane [Panel (C), PMDLS = LS/DS]. The percentage of fracture area
(PFA) was determined as the ratio between the fracture area and the total area of the femoral head [Panel (D), PFA = SF/ST].
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Fisher exact probability method for dichotomized values and the
Mann-Whitney test for continuous values. Differences were
considered statistically different at p < 0.05. The sensitivity,
specificity, likelihood ratios, and positive and negative predictive
values for different parameter cut-off values were also calculated.

Power calculation was performed by using PASS 15 Power
Analysis and Sample Size Software (2017). NCSS, LLC. Kaysville,
Utah, United States, ncss.com/software/pass. The primary outcome
measures were cutoff values and area under the curve (AUC) of ROC
curves for the FNF occurrence prediction. The secondary outcomes
included the reproducibility and agreement of parameters and
subgroup analyses based on cutoff values.

Results

Baseline characteristics

After screening 228 patients (228 hips) in our hospital’s
orthopedic database, 19 patients were excluded. Among those
excluded were eleven patients with insufficient or poor-quality
CT images and two patients with an unclosed epiphyseal line of
the femoral head. Five more patients were excluded for having a
pathological fracture or skeletal immaturity. One patient with
iatrogenic FNF was excluded for lacking CT images. Therefore,
209 hips in 209 patients comprising 102 left hip injuries (48.8%)
and 107 right hip injuries (51.2%), were finally analyzed. Of
these, 12 patients had FHF and FNF, including 7 Pipkin III,
2 Pipkin IV, 1 iatrogenic FNF during closed reduction, and
2 refractures of the femoral neck after internal fixation
without trauma or fall.

Parameter reproducibility and agreement test

The results showed an almost perfect inter-and intra-observer
reliability with ICC ≥0.887 (95% CI 0.837–0.922) for 2D parameters
tested. Similarly, an almost perfect inter-and intra-observer reliability
was found for the 3D parameter with ICC ≥0.987 (95% CI
0.981–0.992) (Table 2). The Bland–Altman analysis of 2D and 3D
parameters measured by the two observers also showed high
concordance (Figure 2).

Correlation analysis between parameters and
FNF occurrence

The binary logistic regression analysis of sex, age, injury side,
Pipkin classification, 2D parameters, and 3D parameter showed that
all 2D parameters except the sagittal plane and 3D parameter were
significant predictors of FNF occurrence (p < 0.05) (Tables 3, 4).

ROC analysis for FNF occurrence prediction

The AUC for the average PMDL three planes with a cutoff value of
91.65% was favorable and significantly better compared with that for
2D parameters (p < 0.001). The results of ROC analysis showed that
the optimal cutoff value of the 3D parameter was 29.68% (Figure 3).

Post-hoc power analysis

The post hoc power calculation based on AUCs in the primary
outcome data showed that the 2D parameter, average PMDL across
three planes, and the 3D parameter could predict FNF occurrence. The
study power of 2D parameter and 3D parameter was 100% and 74.24%.

Diagnostic accuracy analysis

Subgroups were analyzed separately based on the cutoff values of 2D
(average PMDL across all three planes) and 3D (PFA) parameters.
Figure 4 shows the distribution of single FHFs and the number of
FHFs combined with FNFs in the indicated subgroups. In total, 11/
24 of FHFs with average PMDL ≥91.65% across all three planes were
FNFs whereas 1/185 of FHFs with an average PMDL <91.65% across all
three planes were FNFs (p < 0.001). In addition, 10/92 of FHFs with
PFA ≥29.68%were FNFs whereas 2/117 of FHFs with PFA <29.68%were
FNFs (p = 0.005) (Table 5).

The sensitivity and specificity of the 2D parameter were 91.7% and
93.4%, and the 3D parameter were 83.3% and 58.4%. The positive
likelihood ratio and negative likelihood ratio of 2D parameter for FNF
prediction were 13.8 and 0.09, and 3D ones were 2.0 and 0.29. The
predictive positive value and negative predictive value for 2D parameter
were 45.83% and 99.46%, and the 3D parameter were 10.87% and 98.29%.

TABLE 2 Inter-observer and intra-observer reliability.

Parameters Inter-observer reliability Intra-observer reliability

ICC 95% CI ICC 95% CI

Two-dimensional Measurementa Coronal plane 0.926 0.845–0.959 0.887 0.837–0.922

Cross-sectional plane 0.926 0.873–0.954 0.986 0.979–0.990

Sagittal plane 0.915 0.870–0.944 0.976 0.965–0.984

Average 0.955 0.849–0.980 0.975 0.963–0.983

Three-dimensional Measurementb 0.987 0.981–0.992 0.994 0.991–0.996

ICC: intraclass correlation coefficient; CI: confidence interval.
aTwo-dimensional measurement of the percentage of maximum defect length.
bThree-dimensional measurement of the percentage of fracture area.
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FIGURE 2
Bland-Altman plots of parameter measurement showed high assessment agreement of inter-observers and intra-observers, containing 2D parameter of
the percentage of maximum defect length [coronal plane (A), cross-sectional (B), sagittal plane (C), and average across three planes (D)] and 3D parameter of
the percentage of fracture area (E).
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TABLE 3 Relationship between femoral neck fracture and patient characteristics for the 209 patients with femoral head fracture by univariate binary logistic regression
analysis.

Variable Femoral head fracture with femoral neck fracture

OR (95% CI) p-value

Side of injury 0.665 (0.204–2.168) 0.499

Age 1.011 (0.977–1.046) 0.528

Sex 1.441 (0.372–5.586) 0.597

Pipkin classification

I Reference

II 1.000

III 0.999

IV 0.999

2D Measurement-Percentage of maximum defect length

Coronal plane 1.212 (1.089–1.348) <0.001
Cross-sectional plane 1.363 (1.152–1.611) <0.001
Sagittal plane 1.256 (1.098–1.437) 0.001

Average 1.470 (1.229–1.757) <0.001

3D Measurement-Percentage of fracture area 1.080 (1.023–1.140) 0.005

TABLE 4 Relationship between femoral neck fracture and patient characteristics for the 209 patients with femoral head fracture by multivariate binary logistic
regression analysis.

Variable Femoral head fracture with femoral neck fracture

OR (95% CI) p-value

2D measurement-Coronal plane

Side of injury 0.318 (0.023–4.331) 0.390

Age 1.022 (0.955–1.094) 0.524

Sex 1.232 (0.070–21.788) 0.887

Pipkin classification

I Reference

II 1.000

III 0.999

IV 0.999

Percentage of maximum defect length 1.257 (1.009–1.566) 0.042

2D Measurement-Cross-sectional plane

Side of injury 1.080 (0.037–31.721) 0.964

Age 1.049 (0.939–1.173) 0.399

Sex 4.610 (0.085–249.166) 0.453

Pipkin classification

I Reference

II 1.000

III 0.999

IV 1.000

Percentage of maximum defect length 1.997 (1.121–3.557) 0.019

2D Measurement-Sagittal plane

Side of injury 0.784 (0.053–11.491) 0.859

Age 1.044 (0.965–1.130) 0.286

Sex 0.718 (0.029–17.977) 0.840

(Continued on following page)
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Discussion

The results of this study confirmed our hypothesis that the 2D and 3D
CT-based parameters were reliable predictors of FNF in patients with
FHFs. Furthermore, all parameters in 2D and 3D injury models were
statistically significant when expressed as a continuous value. However,
we presented 2D and 3D parameters for the injury degree of the femoral
head as a dichotomized value. Therefore, knowledge of “50% FNF in
patients with FHFs when average PMDL across all three planes exceeds
91.65% or PFA exceeds 29.68%” could be applied in clinical practice. To
our knowledge, this is a single large consecutive case series of FHFs to
measure 2D and 3D CT-based parameters and investigate their
association with FNF in patients with FHFs. The newly exact
measurement of injury degree of femoral head, based on 2D and 3D
model analysis, has been established to assess the fracture risk of femoral
neck, and it could be treated as a feasible adjunctive diagnostic tool in
identifying FNFs in patients with FHFs. In this study, all parameters based
on CT-based injury model was of great value in clinical application and
research due to its convenience and favorable diagnostic performance.

In the past decade, a positive role of the position of the femoral
head in relation to the acetabulum in iatrogenic FNF prevention was
proposed by a small series of studies (Sy et al., 2005; Park et al., 2016).
However, this conclusion remained controversial. Sy et al. (2005)
reported that FNFmight occur when femoral head defects were caught
on acetabular rim during reduction movement. In addition, the
femoral head remained attached above and posteriorly to the
acetabulum and rotated less than 90° in four cases. In another
retrospective study by Park et al. (2016), five of the nine patients
experienced FNFs during attempted closed reduction. Fragments of
the femoral head fracture were retained in the acetabulum in these
series while the remaining component was posterior and superior
relative to the acetabulum. In addition, the remaining component was
engaged or locked against the sharp rear angle of the acetabulum.
Therefore, the injury degree of femoral head is essentially a significant
predictor of the incidence of FNF in FHFs during attempted reduction
(Davis, 1950; Thompson and Epstein, 1951; Henle et al., 2017).
However, because of poor methodological rigor inherent in
qualitative reports, a relatively small sample size, and lack of

TABLE 4 (Continued) Relationship between femoral neck fracture and patient characteristics for the 209 patients with femoral head fracture by multivariate binary
logistic regression analysis.

Variable Femoral head fracture with femoral neck fracture

OR (95% CI) p-value

Pipkin classification

I Reference

II 1.000

III 0.998

IV 0.999

Percentage of maximum defect length 1.308 (0.969–1.766) 0.080

2D Measurement-Average

Side of injury 0.843 (0.031–22.949) 0.920

Age 1.018 (0.925–1.121) 0.710

Sex 1.650 (0.009–298.304) 0.850

Pipkin classification

I Reference

II 1.000

III 0.998

IV 1.000

Percentage of maximum defect length 1.789 (1.102–2.903) 0.019

3D Measurement

Side of injury 0.149 (0.008–2.651) 0.195

Age 1.008 (0.930–1.093) 0.842

Sex 0.613 (0.032–11.628) 0.744

Pipkin classification

I Reference

II 1.000

III 0.999

IV 1.000

Percentage of fracture area 1.254 (1.012–1.554) 0.038
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measurement criterion and comparison group, the level of evidence
for clinical application of positioning of the femoral head in relation to
the acetabulum is very low.

In the current study, 12 patients were found with FHF and FNF,
including concomitant fracture (Pipkin III and IV), iatrogenic FNF
during closed reduction (Figure 5), and femoral neck refracture after

FIGURE 3
AUC, area under the ROC curve. Receiver operating characteristic (ROC) curve for 2D and 3D parameters to predict refracture of the femoral neck after
femoral head fractures. The diagnostic accuracy of 2D parameter of the percentage of maximum defect length of coronal plane (A), cross-sectional (B),
average across three planes (C), and 3D parameter of the percentage of fracture area (D) was shown.

FIGURE 4
Distribution of 2D parameter (A), the average percentage of maximum defect length across three planes, and 3D parameter (B), the percentage of
fracture area, and the number of the femoral neck fracture in the 209 patients with femoral head fractures. Numbers were indicated [femoral head fracture
with (line in red) or without (bar in orange or yellow) femoral neck fracture] in the relevant group.
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FHF internal fixation without trauma. All three kinds of FHFs with
FNF were included in this study to make 2D and 3D parameters more
universally applicable. The present case illustrates patient’s refracture

of the femoral neck after FHF internal fixation without trauma or fall
(Figure 6). No similar findings have been previously reported.
Therefore, we speculated that a naturally favorable stress

TABLE 5 Data for 209 patients with femoral head fractures.

Variable 2D measurement of average across three planes 3D measurement

Percentage of maximum
defect length

Percentage of maximum
defect length

p-
value

Percentage of
fracture area

Percentage of
fracture area

p-
value

<91.65% ≥91.65% <29.68% ≥29.68%

Number 185 (100) 24 (100) 117 (100) 92 (100)

Side of injury 0.576a 0.100a

Left 89 (48.1) 13 (54.2) 63 (53.8) 39 (42.4)

Right 96 (51.9) 11 (45.8) 54 (46.2) 53 (57.6)

Age 38.0 (25.5–50.0) 37.5 (23.3–53.3) 0.873b 36.0 (24.5–50.0) 39.5 (26.0–54.0) 0.282b

Sex 0.581c 0.889a

Male 148 (80.0) 21 (87.5) 95 (81.2) 74 (80.4)

Female 37 (20.0) 3 (12.5) 22 (18.8) 18 (19.6)

Pipkin classification <0.001c 0.006c

I 3 (1.6) 0 (0.0) 3 (2.6) 0 (0.0)

II 53 (28.6) 7 (29.2) 26 (22.2) 34 (37.0)

III 1 (0.5) 7 (29.2) 2 (1.7) 6 (6.5)

IV 128 (69.2) 10 (41.7) 86 (73.5) 52 (56.5)

Simplified Pipkin
classification

0.912a 0.057a

I + II 56 (30.3) 7 (29.2) 29 (24.8) 34 (37.0)

III + IV 129 (69.7) 17 (70.8) 88 (75.2) 58 (63.0)

Femoral neck
fracture

1 (0.5) 11 (45.8) <0.001c 2 (1.7) 10 (10.9) 0.005a

aNumber of patients (percentage) and p-values determined with the chi-square test.
bMedian (interquartile range) and p-values derived with the Mann-Whitney test.
cNumber of patients (percentage) and p-values determined with the Fisher exact test.

FIGURE 5
A representative case of iatrogenic femoral neck fracture during closed reduction was shown. A 16-year-old girl involved in a severe traffic accident was
diagnosed with femoral head fracture based on X-ray (A) and CT (B). The average percentage of maximum defect length across three planes of 92.80% in the
2D injury model and the percentage of fracture area of 38.33% in the 3D injury model were determined (C). A refracture of the femoral neck occurred during
closed reduction (D).
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distribution mechanism could not be balanced by FHF internal
fixation, which causes femoral neck refracture without trauma or
fall. With approximately 70% of the articular surface of the femoral
head engaging in load transfer, bone defects of the femoral head can
cause significant load changes in the femoral head and neck after
fracture (Greenwald and Haynes, 1972). Thus, ensuring anatomic
congruity in the articular surface is important for effective
management of FHFs (Beebe et al., 2016). However, due to the
difficulty in restoring the natural anatomic hip structure, FHF
combined with FNF is associated with a more dismal prognosis
than a single FHF (Giannoudis et al., 2009). Hence, early
identification of these patients could improve their prognosis by
providing more aggressive treatment strategies. Our
findings showed a high risk of FNF when the injury degree of the
femoral head reached a critical value determined from 2D and 3D
parameters.

This study also corroborates previous findings regarding the
percentage of the femoral head fragments that can be removed in
the treatment of FNFs (Epstein, 1974; Epstein et al., 1976). In one
study, excellent clinical outcomes were reported for eight patients
who had less than one-third of the femoral head removed
(Epstein, 1974). In contrast, when more than one-third of the

femoral head was removed, no complete functional recovery was
due to too much stress in the hip joint (Epstein et al., 1976). Our
results showed that patients with 3D parameter of PFA exceeding
30% were at high risk of developing FNF. Moreover, of the three
2D parameters (coronal plane, cross-sectional, and sagittal
plane), the average PMDL across all three planes had the best
diagnostic accuracy and measurement reliability. In addition,
there was no standard position for patients to take the CT
examination due to severe pain, and taking the average across
three planes for each 2D parameter, combined with the 3D
parameter based on 3D fracture reconstruction, could allowed
for minimizing the impact on patients’ position and selective bias
of each CT plane. Therefore, an integrated assessment of 2D-CT
images would help improve the predictive performance of the
parameters.

One patient with iatrogenic FNF was excluded from this study for
lacking CT images. FHFs were rare but serious injuries caused by high-
energy trauma (Alonso et al., 2000). A CT scan of the hips was needed
for better diagnosis and treatment of the fractures (De Mauro et al.,
2021). The CT scan helped understand features of FHF, including the
femoral head fracture pattern, the congruity of the hip joint, and the
presence or absence of intra-articular loose fragments, which may not

FIGURE 6
A representative case of the refracture of the femoral neck after internal fixation of the femoral head fracture was shown. A 62-year-oldman involved in a
severe traffic accident was diagnosed with femoral head fracture based on X-ray (A) and CT (B). The average percentage of maximum defect length across
three planes of 96.64% in the 2D injury model and the percentage of fracture area of 40.72% in the 3D injury model were determined (C). Open reduction and
internal fixationwere conducted, and the postoperative radiograph showed good reduction status (D). A refracture of the femoral neck occurred without
trauma and fall 3 weeks postoperatively (E). Finally, hip replacement surgery was performed (F).
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be accurately detected in X-ray image (Ross and Gardner, 2012).
Moreover, it is inappropriate to define the standard measurement
condition using X-rays to predict FNF in patients with FHFs, due to
overlapping bones, exposure differences, and different body positions.
The feasibility of the 2D and 3D parameters was assured by routine CT
examinations of this special injury type. On the other hand,
multidimensional and comprehensive assessments of CT images
ensured better predictive efficacy.

Limitations

This study had some limitations. First, a retrospective design
was adopted and the number of cases with a combination of FHF
and FNF was small. However, the sample size of this type of
fracture was larger compared with samples in previous studies,
representing a strength of our study (Pipkin, 1957; Park et al., 2016;
Scolaro et al., 2017; Keong et al., 2019). Moreover, a large sample of
FHFs in consecutive series was taken, which helped minimize
selection bias. In addition, the post hoc power calculation in this
study demonstrated the 2D and 3D parameters had adequate power
to predict FNF occurrence. Second, although the results
demonstrated high repeatability and reliability of the two
methods, no further comparison was made between 2D and 3D
methods. However, using two distinct parameters, the 2D and 3D
parameters with respective strengths and biases, could enable
surgeons to lower estimation errors of the injury degree of the
femoral head, thus further predicting the incidence of FNF in
patients with FHFs with CT in clinical practice.

Conclusion

In summary, the new measurement for injury degree of femoral
head, based on 2D and 3D injury models with CT, appeared to be
reliable to assess the fracture risk of femoral neck in patients with
FHFs in the clinic practice. All new parameters, including average
percentage of maximum defect length across all three planes in 2D
parameter and percentage of fracture area in 3D parameter,
indicated strong emergence of femoral neck fracture in patients
with femoral head fractures. Thus, these parameters could be a
feasible adjunctive diagnostic tool in identifying FNFs. In addition,
this finding might also provide a theoretic basis for the
investigation of the convenient digital-model in complex injurie
analysis.
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Appendix A:Details of 3D parameter
measurement

Mimics software (version 20.0, materialise)

1. Reconstruct the 3D models of the proximal femur.
2. Export the 3-D model of the proximal femur of the injured (Figure

A1, The proximal femur in yellow) to the 3-matic software.

3-matic (materialise)

1. Standardize the coronal, cross-sectional, and sagittal positions
of the proximal femur of the injured to determine the femoral
head part, according to the previous literature report [Reference:
Wu S, Wang W, Zhang B, et al. A three-dimensional
measurement based on CT for the posterior tilt with ideal
inter-and intra-observer reliability in non-displaced femoral
neck fractures. Comput Methods Biomech Biomed Engin.
2021; 24 (16): 1854–1861]. Then standardize the model size
of the femoral head of the injured based on the scaling factor
(Figure A1) to better match the femoral head of the template.

1.1. Draw the caput sphere on the femoral head of the template and
the injured, referred to the process in the above literature report,
respectively. Then determine the radius of the sphere of the
template and the injured, defined as Rtemplate and Rcase, respectively.
1.2. Calculate the scaling factor, defined as the ratio between
Rtemplate and Rcase, used to adjust the model size of the femoral
head of the injured to match the femoral head of the template
better.

2. Achieve the best possible alignment between the femoral head of

the template and the injured, referred to the process in the above

literature report (Panel C, N-points registration and Local

registration). The greener the color is, the higher the degree of

matching is (Figure A1, The degree of matching).
3. Generate the fracture region through Subtraction Boolean

Operation between the femoral head of the template and the
femoral head of the injured (Panel D, Subtraction boolean
operation).

4. Extract the area of the femoral head of the template defined as Stotal,
then extract the area of the fractured region defined as Sfracture.

5. Calculate the percentage of fracture area, defined as the ratio
between Sfracture and Stotal (Figure A1).

FIGURE A1
Flowchart of the 3D parameter measurement.
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The accuracy and precision of
acetabular implant measurements
from CT imaging
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The placement of acetabular implant components determines the short- and
long-term outcomes of total hip replacement (THR) and a number of tools have
been developed to assist the surgeon in achieving cup orientation to match the
surgical plan. However, the accuracy and precision of 3D-CT for themeasurement
of acetabular component position and orientation is yet to be established. To
investigate this, we compared measurements of cobalt chrome acetabular
components implanted into 2 different bony pelvic models between a
coordinate measuring Faro arm and 3 different low dose CT images, including
3D-CT, 2D anterior pelvic plane (APP) referenced CT and 2D scanner referenced
(SR) CT. Intra-observer differences were assessed using the Intraclass correlation
coefficient (ICC). The effect of imaging the pelvis positioned in 3 different
orientations within the CT scanner was also assessed. The measured
parameters were the angles of inclination and version. 3D-CT measurements
were found to closely match the “true values” of the component position
measurements, compared with the 2D-CT methods. ICC analysis also showed
good agreement between the coordinate measuring arm (CMA) and 3D-CT but
poor agreement between the 2D SR method, in the results from two observers.
When using the coordinate system of the CT scanner, the measurements
consistently produced the greatest error; this method yielded values up to 34°

different from the reference digitising arm. However, the difference between the
true inclination and version angles and those measured from 3D APP CT was
below half a degree in all cases. We concluded that low radiation dose 3D-CT is a
validated reference standard for the measurement of acetabular cup orientation.

KEYWORDS

3D-CT, inclination, version, acetabular component position, coordinate measuring arm,
cup orientation

1 Introduction

The last decade has witnessed a substantial increase in the total number of hip
replacements performed annually worldwide, with concurrent advancements in the
surgical approach and technological tools used in the field. The use of robotic
technology, computer-based navigation systems, patient-specific instrumentation (PSI)
and custom implants for the placement of acetabular components all promise improved
accuracy and superior reproducibility (Henckel et al., 2018; Krämer et al., 2018; Fontalis
et al., 2021). If these are to be implemented on a wider scale, it is crucial to evaluate their
accuracy using metrics such as inclination and version, which are frequently used to quantify
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acetabular cup position (Spencer-Gardner et al., 2016; Fontalis et al.,
2021). Post-operative hip prosthesis measurements allow
orthopaedic surgeons and companies to assess the achieved
component position and orientation relative to the intended
surgical plan. This is important to make robust assessment of
new enabling technologies in surgery.

Measurement of hip implant positioning using 3D-CT has
become the gold standard approach (Kaiser et al., 2021).
Numerous studies have investigated the orientation of hip
implants from post-operative CT scans and planar radiographs
(Davda et al., 2015; Ma et al., 2022). However, the presence of
metal artifacts and identification of anatomical landmarks on the
reconstructed 3D pelvic model can introduce errors in the
measurements of the implant position (Brownlie et al., 2020).
These potential errors have not yet been quantified.

The novelty of this study includes the following.

• This is the first study quantifying the errors associated with CT
measurements of acetabular cup orientation, from different
coordinate systems, using artificial pelvic bone models.
Accurate measurements can help evaluate the use of
computer-aided systems which claim a 1–4° accuracy for
cup alignment (Elson et al., 2015).

• Comparison of measurements taken from slices of the same
CT scan before and after orienting the image using specialized
software is a task which has not yet been undertaken.

The aim of our study was to quantify the accuracy and precision
of 3D- and 2D-CTmeasurements of acetabular cup position for total
hip arthroplasty (THA) outcome assessment. This will be achieved
by evaluating and comparing the inclination and version of
implanted acetabular cups using a) a coordinate measuring arm
(CMA), b) 3D anterior pelvic (APP) referenced CT, c) 2D APP

referenced CT and d) 2D scanner referenced (SR) CT. The effects of
changes in pelvic orientation and inter- and intra-observer error on
the measurements are also explored.

The four different methods adopted for measuring the cup
inclination and version are outlined in this paper. This includes
the identification and alignment to the APP. The results from the CT
methods will then be compared to the reference standard in order to
define the accuracy of each approach.

2 Materials and methods

Two pelvic artificial bone models (Sawbone Pelvis - Foam
Cortical SKU:1301-1) were implanted with metal acetabular
components (Figure 1). The pelvic height (HP) was 150 mm,
the interspinous distance (ISD -distance between the two most
prominent points of the anterior superior iliac spine (ASIS)) was
250 mm and the intercristal distance (ICD - distance between the
most prominent points of the iliac crest) of the model was 270 mm
(Musielak et al., 2019). The acetabular size was chosen by a senior
orthopaedic surgeon to fit the Sawbone pelvic model used in this
study.

Identification of both ASIS and pubic tubercles was made by
placing the anterior face of the pelvis onto a flat surface covered
with graphite to reveal the 3 prominences which define the APP.
5 mm fully threaded hexagonal titanium screws serving as
“fiducial markers” were securely fixed into these 3 points,
allowing for robust landmarking on the CT images without
the associated imaging artefact, resulting from the use of
metal implants. The two pelvic models were prepared using
conventional tools to ream the acetabular socket to the size of the
prosthetic cup. The cup was securely implanted in an orientation
deemed suitable for the pelvis (approximately 45° of inclination

FIGURE 1
(Left) The orientation of the metal acetabular cup implanted in the pelvic Sawbone model being measured by the digitising arm. (Right) The model
placed on the CT scanner table with the fiducials (hexagonal fully threaded titanium screws) placed on landmarks for robust landmarking.
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and 20° of anteversion). A press-fit fixation was achieved and
thoroughly assessed to ensure that there was no movement of the
component relative to the bone.

2.1 Measurement of cup position using the
coordinate measuring arm

The “post-op” pelvises were rigidly secured to a pelvic clamp. A
digitising arm (reference standard, Gage Max FaroArm)
(McPherson et al., 2005) was used to take a single point (defined
in all 3 axes x, y, z) on each of the 3 fiducial markers and 20 on the
cup rim (Figure 1). This process was repeated 12 times by each of the
two observers, for both pelvises. While the 3 fiducial marker points
defined the APP, the 20 points taken on the cup rim defined the
plane of the acetabular component’s cup face, known as the ‘cup
plane’. The angular relationship between these 2 planes was
computed using a commercially available software. Inclination
was defined as the angle between the cup plane and the
transverse anatomical plane of the pelvis (orthogonal to the
APP). Anteversion was defined as the angle between the cup
plane and the sagittal anatomical plane of the pelvis (orthogonal
to both the APP and transverse plane) (Murray, 1993; Zhang et al.,
2014). The values calculated represent ‘true values’ for the 3D
orientation of the cup in the pelvis using the APP as the frame
of reference.

2.2 CT imaging of the implanted cups

The pelvic model with the implanted acetabular cup and its
corresponding femoral component was scanned using a 16-slice CT
scanner (Siemens SOMATOM Emotion eco 16-slice configuration)
(Figure 1). The images were acquired axially using a spiral sequence
and at 0.75 mm increments with a kV of 100, mAs of 100 and a pitch
of 1. The pelvic construct was CT scanned in 3 supine orientations:
A) parallel to the floor; B) 10° of lateral pelvic tilt; and C) 20° of
anterior pelvic tilt. Following the scanning process the images were
saved in Digital Imaging and Communications in Medicine
(DICOM) format. These axial slices were then reconstructed in
both the coronal and sagittal plane with respect to the pelvis’
position in the scanner and with 0.75 mm spacing.

2.3 Measurement of cup position using 3 CT
methods

Measurement method 1: 3D CT measurement of cup position
referenced from the APP, referred to as “3D APP CT.” The 2D
unprocessed axial slices in DICOM format were reconstructed to
produce a 3D model of the pelvis with the prosthetic cup. This 3D
image was oriented in the APP but in this method the 3D
reconstructed virtual model was directly used for the
measurement. Markers were placed on the fiducials, along with
20 on the acetabular cup rim, which was clearly differentiated from
the metallic femoral head. The compound angles between the APP
and the plane of the face of the cup were computed to give the angles
of inclination and version. The position measurements (angles of

inclination and anteversion) of the component were converted from
the anatomical definition to radiographic definition for the Faro arm
and 3D-CT, using dedicated software. This ensured all
measurements were according to the radiographic definition, for
comparison (Murray, 1993).

Measurement method 2: 2D CT measurement of cup position
using Robin 3D software with the dataset orientated to APP in the
coronal plane. This is referred to as 2D APP referenced, “2D APP
CT.” The 6 datasets were exported to a picture archiving (PACS)
workstation. The 2D unprocessed axial slices in DICOM format
were reconstructed using Robin 3D to produce a 3D model oriented
in the APP from which axial slices again oriented to the APP were
viewed. 2D reconstructed slices in all three planes, parallel and
perpendicular to the APP were then generated and snapshots taken
in both the coronal and axial planes at the equatorial region of the
components. In the coronal view 2 points were selected, one on the
most superior and the other on the most inferior edges of the
acetabular component margins. The angles between 2 lines, one
joining the 2 spines (ASIS) and a second joining the 2 points on the
cup, the “inclination angle” were measured. In the axial view and at
the cup’s equatorial region, 2 points were placed on the cup margin,
one on the most anterior edge and the other on the most posterior
edge. The angle between a line joining the 2 markers and a line at 90°

to the horizontal represents the angle of anteversion. Measurements
were made 12 times by 2 observers.

Measurement method 3: 2D CT, referenced off the position of
the pelvis in the CT scanner, referred to as 2D scanner referenced
(SR), “2D SR CT.” Measurements of the inclination and version
angles were taken directly from the coronal and axial slices,
respectively. The method for measurement used in the second
technique (2D APP CT) was repeated here, on these un-oriented
slices.

Statistical methods: Bland-Altman plots were used to assess the
level of agreement between the CTmethods and the digitising CMA.
Inter- and intra-observer differences were assessed using the Intra-
class correlation coefficient (ICC) tool on SPSS and it considered the
effect of different CT measurement methods.

3 Results

3.1 CT agreement with true CMA values

Table 1 summarizes the mean difference in inclination and
version angles between the digitising arm and the 3 CT-based
methods, for both pelvic models. These were positioned in a CT
scanner for imaging in 3 different positions (A, B, C). All possible
combinations of observers, pelvises, pelvic orientations, imaging
methods and number of repeats produced 432 datapoints for the
angles of inclination and version. This includes 2 observers,
2 pelvises, 3 orientations, 3 methods and 12 repeats. Table 1
reveals that 2D SR CT yields values up to 34° different to the
true value and is thus a less accurate method as this is very poor
agreement.

Supplementary Table S1 shows the average inclination and
version measurements taken to define the orientation of the
acetabular cup. The differences in the measurements between the
digitising arm and the 3 CT methods is evident; the values obtained
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from 3D APP CT closely follows the Faro arm, whereas 2D SR CT
reveals the largest mismatch particularly for the version angles. This
is true for both pelvises.

Bland-Altman and XY plots (Figures 2, 3) were used to assess the
difference between the three CT methods and the CMA. Figure 2
compares the digitising arm values to the 3 different CT methods in
terms of the measured cup inclination angle. The plots quantify the
level of agreement/disagreement between the true position and the
position measured using the 3 CT techniques. The solid blue line
represents the mean difference, whereas the dashed lines represent
the 95% limits of agreement (mean difference+/-1.96 SD). 3D APP
CT and 2D APP CT showed good agreement with the Faro arm
whereas the 2D SR CT measurements showed very poor agreement.

Figure 3 shows the same comparison of methods but for the cup
version angle. This showed the same pattern of agreement/
disagreement, however the spread of error recorded was greater
than for inclination angle. Overall, there is high validity of the 3D
APP CT method with decreasing validity from 3D APP CT to 2D
APP CT to 2D SR CT. Once again, for version, the 3D APP CT and
2DAPP CTmeasurements are close to the true (Faro arm) value, but
less accurate compared with inclination. Figures 2, 3 are a true
representation of the patterns seen for both pelvises in all three
positions. The 2D SR CT measurements consistently produced the

greatest error, disregarding the outlier shown for pelvis 1 in position
B in Table 1. The XY plot (Figures 2, 3D) also shows that the
discrepancy between the digitising arm value was lowest for 3D APP
CT and highest for 2D SR CT.

Figure 4 shows the effect of the different pelvic orientations (A,
B, C) on cup version. The method chosen for display was 2D SR CT
for pelvis 2, as this showed the greatest level of disagreement
between the orientations. For position C all measurements over
30° different to the digitising arm value. This result is noteworthy yet
not surprising, particularly for radiographers, as it confirms that the
position of the patient within the scanner will affect the
measurements made. So, the 20° anterior pelvic tilt resulted in
even greater disagreement between the 2D measurement and the
true digitising arm position measurements.

3.2 ICC analysis

To measure inter-observer agreement/disagreement, intra-class
correlation coefficients (ICC) of the measurements (n = 216) taken
from both observers were calculated. ICC analysis between the
observers showed excellent agreement (>0.9) for both inclination
and version values. ICC analysis also showed good agreement for

TABLE 1 Absolute mean (+/-2SD) difference between 12-paired coordinate measuring arm and CT measurements from observer 1 for both pelvises. 3 CT methods
were used (3D APP CT, 2D APP CT and 2D SR CT), each with the pelvis in 3 different orientations in the CT scanner. Measurements were made of the cup in terms of
inclination and version angles.

Inclination angle (⁰)

Pelvis Orientation D Arm-3D APP CT D-Arm-2D APP CT D Arm-2D SR CT

1 A 0.06 ± 0.07 0.1 ± 0.32 2.9 ± 1.2

1 B 0.23 ± 0.07 0.36 ± 0.20 0.12 ± 1.09

1 C 0.22 ± 0.08 0.17 ± 0.31 6.04 ± 2.48

Version angle (⁰)

Pelvis Orientation D Arm-3D APP CT D-Arm-2D APP CT D Arm-2D SR CT

1 A 0.36 ± 0.14 3.38 ± 0.36 12.9 ± 1.9

1 B 0.23 ± 0.10 3.00+ /-0.30 9.60 ± 0.84

1 C 0.41 ± 0.11 2.77 ± 0.38 19.9 ± 1.08

Inclination angle (⁰)

Pelvis Orientation D Arm-3D APP CT D-Arm-2D APP CT D Arm-2D SR CT

2 A 0.22 ± 0.07 0.20 ± 0.16 4.23 ± 0.88

2 B 0.24 ± 0.07 0.36 ± 0.09 8.31 ± 1.47

2 C 0.31 ± 0.06 0.33 ± 0.16 2.06 ± 1.50

Version angle (⁰)

Pelvis Orientation D Arm-3D APP CT D-Arm-2D APP CT D Arm-2D SR CT

2 A 0.13 ± 0.08 14.7 ± 0.29 14.8 ± 0.64

2 B 0.28 ± 0.08 14.1 ± 0.37 18.6 ± 0.66

2 C 0.13 ± 0.07 14.1 ± 0.28 34.3 ± 0.71
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both observers between the CMA and 3D-CT but poor agreement
between the CMA and 2D-CTmethods. Irrespective of the observer,
the ICC correlation between the Faro arm and 3D-CT was above
0.9 for inclination and version. The correlation between the Faro
arm and 2D APP CT showed moderate agreement (0.5< ICC <0.75)
for version but excellent agreement for inclination. This reaffirms
that measurement of the version angle is a more difficult task to
undertake, compared with inclination. Finally, the ICC value for
Faro vs. 2D SR CT was below 0.5, denoting poor agreement.

4 Discussion

Our study is the first to quantify the potential errors associated
with the use of 3D-CT for the measurement of cup angles of the
acetabular component in metal-on-metal (MOM) hip replacement.
Despite the frequent use of 3D-CT for the measurement of implant
position, it is yet unknown how accurately this method can do so.
There are several investigations in the literature which compare
inclination and version measurements between different imaging
methods, including 3D-CT and 2D radiographs (Davda et al., 2015),
and also 3D hipEOS and 3D-CT (Anderson et al., 2022). Findings
from these studies have proven 2D measurements to be less reliable,
particularly when measuring cup version, while hipEOS can provide
comparable angular measurements to 3D-CT. But these are clinical
imaging studies of patients and only provide a comparison of
different techniques, not the accuracy and precision of 3D-CT,
which this lab-based study aimed to offer. Validation of 3D-CT
is difficult to achieve directly from patients, given the invasive
technique that would be required to take measurements using a
sterilized digitising arm intra-operatively.

This study was designed to take account of the main variables
that may affect the measurement of cup orientation. Firstly, the
MOM relationship of the components blurring the boundaries
between the cup and head components. Secondly, the position of
the pelvis in the CT scanner and thirdly, the effect of the observer in
terms of inter- and intra-observer error.

The composite sawbones used here provide a uniform test bed
with physical properties similar to that of real bone (Heiner, 2008).
These medical models are primarily used for the testing of prosthetic
implant fixation and provide a reliable alternative to cadavers. The
CT imaging protocol was developed for clinical use, the aim being to
minimize radiation dose whilst maintaining adequate image quality,
following the guidelines of The Ionising Radiation (Medical
Exposure) Regulations 2000 (IR (ME)R) (Health Department,
2001). Many measurements (n = 432) were taken to analyse the
effect of error from the method of measurement, the pelvic position,
and the observer.

Metal artefact reduction strategies: The artefacts produced by
imaging prosthetic implants are as a result of their constituent
metals being high x-ray absorbers, reducing the amount of
radiation energy transmitted through the implant to the detector,
making valid measurement difficult (Berg et al., 2006). This
obstruction of the x-ray beam results in the distortion of the
images, leading to uncertainties in component position by the
reading clinician.

The use of conventional imaging protocols produces streaking
artefacts from the metal implant. To minimize the effect of these

metal artefacts on the images we used both a specific image
acquisition protocol and software solutions. Our imaging
sequence made use of an extended Hounsfield scale (Hounsfield
Units are the Supporting Material units for density as used in CT
imaging) (Hounsfield, 1973). The software allowed visualization of
the high-density profile of the metal component with a minimum of
streaking artefacts: these images can be viewed at chosen Hounsfield
thresholds. A Hounsfield threshold of 6,000 clearly visualizes cobalt-
chromium. Whilst there is no single best strategy to remove these
artefacts, we utilized software strategies that allowed the extension of
the Hounsfield scale to define the component edges more sharply
(Itokawa et al., 2008; Rinkel et al., 2008). Although some studies
have shown that by manipulating the imaging acquisition
parameters - mainly increasing the scanning kV - the volume of
these artefacts can be reduced but not eliminated (Moon et al., 2008),
we chose not to adopt this approach as the radiation dose to the
patient is also increased as a result of this.

Component position measurement: The inclination angle was
measured relative to a plane orthogonal to the APP-ordinarily a
horizontal line when the patient is standing or when the observer is
looking at an AP radiograph of the pelvis. The ‘radiographic
inclination’ is easily approximated on a plain AP radiograph as
the angle between the cup face and a horizontal line drawn between
the ischial prominences or the lowest aspect of the teardrop. The
anteversion angle is harder to describe and even harder to measure
satisfactorily using plain radiographs. It is the angle between the cup
face and a line in the mid coronal axis. CT on the other hand images
a volume from which 2D slices can be viewed in almost any region
and orientation. Others have shown the benefit of CT when
compared to standard radiograph measurements of the
acetabular cup (Snijders et al., 2019) but have not published the
validation of their methods. Presumably they assumed that CT
scanning is a validated imaging modality. However, the
application of CT to MOM hip component measurement has not
been compared against a reference standard. This issue is more
relevant when new CT protocols and 3D measurement software are
employed. Such techniques become more important when required
to overcome the difficult situation presented by MOM hips, where
the large diameter and high-density head obscures the imaging of
the cup face.

The measurements made from our optimized 2D images
revealed that the largest deviation from the true value (as
determined by the CMA) occurred when the orientation of the
pelvis was rotated with respect to the gantry of the scanner. This
deviation was found to be greater when measuring the angle of
anteversion. Conversely, both accuracy (deviation from the true
value) and precision (repeatability) were improved when the pelvis
was positioned in the supine position, parallel to the table. We
recommend that attention is paid to the positioning of the patient’s
pelvis in ensuring that the landmarks used to the derive APP are as
parallel to the table as possible particularly when using the scanner
as the frame of reference for measurement. Further improvements in
accuracy and precision were achieved using 2D orientated CT (2D
APP CT). The angles derived from the 3D APP referenced CT (3D
APP CT) measurement method were least affected by the
orientation of the pelvis.

We would like to emphasise that our protocol includes high-
resolution 0.75 mm collimations to image both bone and prosthetic
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FIGURE 2
Bland-Altman plot showing the level of agreement/disagreement between the digitising arm inclination measurements and (A) 3D APP CT; (B) 2D
APP CT; (C) 2D SR CT; (D) XY scatter plot of the 12 repeatedmeasurements of inclination angles according to each of the 3 imagingmethods and the Faro
digitising arm for pelvis 1A by observer 1.

FIGURE 3
Bland-Altman plot showing the level of agreement/disagreement between the digitising arm version measurements and (A) 3D APP CT; (B) 2D APP
CT; (C) 2D SR CT; (D) XY scatter plot of the 12 repeated measurements of version angles according to each of the 3 imaging methods and the Faro
digitising arm for pelvis 1A by observer 1.
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components and enables ‘separation’ of the edges of two metal
components, the cup and head held in close proximity. The
narrower slices increase the resolution of the images and are
particularly useful for large MoM hips.

In method 1 (3D APP CT) we compared like with like: the
‘radiographical’ definition of inclination and version angles
were used to compare the values for both the CMA and the
virtual 3D model. The very small errors were probably due to
the presence of the low-level metal artefacts affecting the
labelling of the 20 points on the cup margin. We used high
resolution CT to minimize this source of error (Lou et al., 2007).
The accuracy of the calibrated digitising arm, our ‘reference
standard’, used here, far outstrips the current resolution of
clinical CT. In method 2 (2D APP CT) we standardized the
frame of reference to the APP. The error between this method
and the digitising arm may have been due to the fact that only
two points were used to label the cup margin and the issues
inherent in using a 2D view (i.e., was the most representative 2D
“snapshot” selected?). The error between method 3 (2D SR CT)
and the digitising arm was most likely due to the difference in
the frame of reference.

A number of studies have shown good inter- and intra-
observer agreement on measurements of inclination made on
plain radiographs, i.e., precision. However, accuracy (closeness to
the true value) is poor when compared to APP referenced CT
(Bayraktar et al., 2017). Measurements on these plain 2D images
are referenced off the position of the patient in the radiograph
(Nishino et al., 2013) and are further confounded by the
diverging source of x-ray. The close agreement between the
observers in this study shows that our 3D APP CT method is
also very precise.

Davda et al. (2015) also measured cup version and inclination of
MOM hips using 3D-CT and Ein Bild Roentgen Analyse (EBRA)
software (for 2D radiographic analysis). Their results revealed
underestimated values of cup version using the 2D method. This
is also true for the results of the present study. Supplementary Table
S1 shows that the 2D SR CT version measurements are consistently
lower than the reference angles. However, Davda et al. (2015) used
3D-CT as their gold standard measurement, for comparison.
Equally, Ma et al. (2022) compared the orientation measurements
taken using low-dose bi-planar radiographs (EOS imaging) with 3D-
CT, but their results endorsed the use of EOS imaging for post-THA
component orientation measurements. This study is the first to
compare 3D-CT with a laboratory digitising arm, which is a gold
standard for measurements in engineering.

With ongoing advancements in hip replacement surgery,
numerous tools, including navigation, robotic and augmented
reality systems, and PSI are offered to the orthopaedic surgeon
to assist them in achieving optimal implant positioning. These will
determine the performance of the prosthesis. If these
instrumentations and surgical techniques are to be adopted in
the operating theatre, there needs to be evidence that the
orientation and position of the implant achieved with their use
matches the surgical plan. This study sought to quantify the errors
in the placement of the acetabular component using different
measurement techniques and coordinate systems of the CT
data, relative to a reference standard digitising arm. We have
demonstrated that 3D-CT measurements can be used to
perform post-operative radiological assessment and implant
surveillance.

We acknowledge that this study has its limitations. The
measurements were limited to the acetabular component only

FIGURE 4
The effect of pelvic orientation: XY scatter plot of the repeated version angle measurements using the digitising arm and 2D SR CT for pelvis 2. The
measurements were obtained at different pelvic orientations (A,B,C).
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and the position of the femoral component was not measured.
Thus, the errors associated with CT measurements of the femoral
stem may be quantified in future research. We are aware of the
better image resolution and faster acquisition time associated with
a 64-slice CT scanner (hence giving more accurate results), but we
scanned the pelvis using a more widely available 16-slice CT
scanner to represent a worst-case scenario for the
measurements taken. A more modern 64-slice scanner may be
used in future studies to give even more accurate angular
measurements. This study measured the accuracy of the
acetabular implant performed conventionally by the surgeon. By
contrast, in computer-aided surgery, the size and implant position
can be pre-planned (Inoue et al., 2019). However, this study did
not include this aspect.

5 Conclusion

In conclusion, this study validates the use of 3D-CT for the
measurement of acetabular component positioning post-
operatively. Although this lab-based study involved an artificial
pelvic bone model, the results may be extended in the context of
clinical CT images of real patients. The differences found in the
measurements from the variable CT methods, necessitates this
paper. This is because the measurements taken from the same
CT scan before and after specialized 3D-rendering software is
used to manipulate the image (by orientating the APP to the
coronal), are shown to differ. This emphasizes the need for
additional software which is not available on the CT console or
most PACS systems.

Here, the accurate measurement of inclination and anteversion
in the context of an unknown pelvic orientation presents a
fundamental 3-dimensional challenge. The challenge is increased
in the context of large diameter MOM hips. In this study we have
demonstrated and validated the use of 3D-CT to measure the
anatomical angles of inclination and version (later converted into
the radiographic definitions of the angles). The ability to standardize
the measurements of cup orientation to the accepted frame of
reference (APP) in three dimensions will allow surgeons and
researchers to more accurately study and plan surgery. This will
further the study of the relationship between component position
and outcome, such as the investigation of painful and poorly
functioning prosthetic hips.

Many studies have used 2D-CT measurement methods and this
work has shown that 3D-CT methods offer superior accuracy and
therefore we recommend the use of 3D-rendering software
solutions. Our CT protocol has significant clinical improvement
over others because it uses a low radiation dose and minimizes metal
artefact. Although the study was performed on MOM prosthesis, we
are currently using the method here developed on metal-on-
polyethylene and ceramic-on-ceramic prostheses where the
challenges in identifying the component boundaries are not as
great. Our study is very pertinent because we are bettering our
understanding in the large variability of post-operative component
position and its effect on function and failure rates. With an ever-

increasing demand for high performance hips from the young, more
active and an ageing population, the orthopaedic surgeon of today
needs additional tools in his armamentarium to further study the
function and longevity (Deep et al., 2017) of hip replacement
surgery.
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Introduction: Caudal maxillectomies are challenging procedures for most 
veterinary surgeons. Custom guides may allow the procedure to become more 
accessible.

Methods: A cadaveric study was performed to evaluate the accuracy and efficiency 
of stereolithography guided (3D-printed) caudal maxillectomy. Mean absolute 
linear deviation from planned to performed cuts and mean procedure duration 
were compared pairwise between three study groups, with 10 canine cadaver 
head sides per group: 3D-printed guided caudal maxillectomy performed by an 
experienced surgeon (ESG) and a novice surgery resident (NSG), and freehand 
procedure performed by an experienced surgeon (ESF).

Results: Accuracy was systematically higher for ESG versus ESF, and statistically 
significant for 4 of 5 osteotomies (p < 0.05). There was no statistical difference 
in accuracy between ESG and NSG. The highest absolute mean linear deviation 
for ESG was <2 mm and >5 mm for ESF. Procedure duration was statistically 
significantly longer for ESG than ESF (p < 0.001), and for NSG than ESG (p < 0.001). 

Discussion: Surgical accuracy of canine caudal maxillectomy was improved with 
the use of our novel custom cutting guide, despite a longer duration procedure. 
Improved accuracy obtained with the use of the custom cutting guide could 
prove beneficial in achieving complete oncologic margins. The time increase 
might be acceptable if hemorrhage can be adequately controlled in vivo. Further 
development in custom guides may improve the overall efficacy of the procedure. 

KEYWORDS

3D-printing, maxillectomy, surgical guide, accuracy, oncologic margins

1. Introduction

Tumors of the oral cavity make up approximately 6% of all tumors in dogs, with malignant 
melanoma, squamous cell carcinoma, and fibrosarcoma being the most common neoplasms. 
Wide surgical excision with 1–2 cm gross surgical margins is recommended to obtain local 
tumor control in malignant cases and locally invasive benign cases such as acanthomatous 
ameloblastoma (1, 2). MacLellan et al. (2), however, reported that 31.6% of dogs undergoing any 
type of partial maxillectomy had incomplete histologic margins. Incomplete resection has been 
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intimately associated with local tumor recurrence, and 65% of 
maxillary tumors removed with incomplete margins have been 
reported to recur locally versus 22% of tumors removed with complete 
margins (2–4). Anatomic location has also been proven to impact 
local tumor control. Sarowitz et al. (3) found that caudal maxillary 
tumors were associated with a 1.5 times hazard ratio for local tumor 
recurrence compared to all other maxillary tumors. This is potentially 
related to the difficulty of obtaining complete histologic margins in 
this challenging anatomic location (3–5). Indeed, caudal maxillary 
tumors are believed to be  difficult to remove because of poorer 
surgical exposure compared to rostral tumors, more abundant 
vasculature caudally, and generally larger size masses that have 
escaped owners’ notice until they start causing clinical signs (3–5). 
There is a need to increase technical ease and intraoperative accuracy 
for the excision of caudal maxillary tumors to optimize oncologic 
margins and improve long-term local tumor control.

Stereolithography (3D-printing) is becoming more popular in 
human and veterinary surgery because of the ability to make custom 
surgical guides, patient specific anatomical models, and individualized 
prostheses based on the diagnostic images of the patient (6–10). 
Stereolithography allows three dimensional models to be created in a 
variety of polymer materials using a laser light source that selectively 
cures and solidifies a liquid plastic layer-by-layer along the cross-
section of the object (8, 10). Custom-made drilling and cutting guides 
have been demonstrated to aid in surgical accuracy, efficiency, and 
allow implants to be best fitted to the patient (9, 10). In the human 
surgical field, 3D-printed surgical guides have been largely used to 
improve accuracy in dental procedures with small margins of error 
and to maximize the chances of obtaining clean surgical margins in 
oncologic procedures (11–13). The use of a custom surgical guide has 
been shown to improve accuracy in 76%–92% of cases compared to 
traditional freehand procedures for osteotomies and complex 
reconstructions in human maxillofacial, dental, orthopedic, and 
oncologic surgery (7, 9). In addition to the maxilla being a complex 
surgical location, there is great variability in anatomy between breeds 
within the canine species (14, 15). Therefore, the use of 3D-printed 
custom-made surgical guides may also improve accuracy and local 
tumor control for canine caudal maxillectomy procedures.

Additionally, major surgical hemorrhage has been reported as the 
number one intraoperative complication in canine maxillectomy, and 
occurred in 83% of dogs undergoing a caudal maxillectomy via a 
combined dorsolateral and intraoral approach in a retrospective study 
by MacLellan et  al. (2). As a consequence, patients undergoing a 
complete or caudal maxillectomy are reportedly 3 to 6.5 times more 
at risk of requiring a blood transfusion intraoperatively compared to 
other types of maxillectomy and/or mandibulectomy procedures (2, 
16). This is thought to be related to the complexity of the locoregional 
vasculature (2, 16). Additionally, median duration of the surgical 
procedure is also significantly increased for a caudal maxillectomy 
compared to other types of maxillectomies, and certainly plays a role 
in the increased hemorrhagic risk (2). In addition to improvements in 
accuracy, the use of a 3D-printed cutting and drilling guide created by 
computer aided manufacturing (CAM) has been shown to decrease 
the amount of time spent in the operating room (7, 9). In a systematic 
review of 227 human surgical studies using 3D-printing technology, 
28% of reports using 3D-printed custom-made surgical guides saw a 
reduction in operating room or treatment time with the use of CAM 
compared to conventional planning methods (7). The use of a 

3D-printed custom-made surgical guide may decrease the duration of 
caudal maxillectomy procedures and allow for more rapid hemostasis 
to be obtained, lowering the morbidity associated with the surgery.

Finally, the use of a 3D-printed surgical guide has the potential to 
not only improve the efficiency and accuracy of caudal maxillectomy 
procedures performed by experimented surgeons, but also to make 
these complex procedures more accessible to novice surgeons or 
boarded surgeons with limited experience in caudal maxillectomy. In 
the human literature, there is conflicting information regarding the 
use of 3D-printed surgical guides and whether such guides facilitate 
the procedures in the hands of a novice surgeon in comparison to an 
experienced surgeon (8, 11–13). Because of the wide range of 
procedures that veterinary surgeons are trained to do, it is possible for 
a residency-trained surgeon to not have primary experience with a 
caudal maxillectomy by the time they complete their program. The use 
of a 3D-printed cutting guide, however, may allow a caudal 
maxillectomy to become more accessible to veterinary surgeons that 
are advanced in their surgical training but have not yet had the 
opportunity to perform such a procedure. Novice surgeons also have 
a tendency to perform procedures slower than experienced surgeons; 
that difference is even more pronounced with complex procedures, as 
demonstrated in human surgery (17, 18). For a complex procedure 
such as a caudal maxillectomy, the use of a 3D-printed custom-made 
cutting guide may allow a novice surgeon to perform the surgery in a 
duration comparable to an experienced surgeon.

The objectives of this study were to (1) design a 3D-printed 
custom-made caudal maxillectomy surgical guide, and to (2) evaluate 
the accuracy and efficiency of the surgical guide in cadaveric dogs. 
We hypothesized that the use of a 3D-printed custom-made surgical 
guide increases the accuracy and efficiency of the osteotomy compared 
to a standard freehand procedure (hypothesis 1), and that there would 
not be any difference in accuracy and efficiency between a novice and 
an experienced surgeon when using the cutting guide (hypothesis 2).

2. Materials and methods

2.1. Specimen randomization

Fifteen heads were obtained from fresh frozen canine cadavers 
euthanatized at local shelters for reasons unrelated to the study and 
thawed in preparation to the procedure. Both left and right sides of 
the heads were used as separate subjects. Head number and 
lateralization were randomized per testing group and order with 10 
head sides per treatment group. The heads were inspected for any 
visual abnormality, and classified as doli-, brachy-, or mesocephalic. 
Their length was recorded from the most ventral aspect of the 
maxillary canine to the caudal aspect of the occipital bone.

2.2. Study groups

Two experimenters participated in this study: a board-certified 
surgeon and surgical oncologist (MT) with experience using 
3D-printed guided implantology (considered the experienced 
surgeon) while the other experimenter (AC) was a second-year 
surgical resident at the time of the experimentation (considered the 
novice surgeon). To address the study objectives, three treatment 
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groups were used that consisted of caudal maxillectomy procedures 
performed on canine cadaver heads (1) with the use of individualized 
3D-printed surgical guide by the experienced surgeon (group ESG), 
(2) with the use of individualized 3D-printed surgical guide by the 
novice surgeon (group NSG), or (3) freehand by the experienced 
surgeon (group ESF). Both the experienced and novice surgeons were 
right hand dominant and assisted to the other’s procedures (see 
Figure 1).

2.3. Maxillectomy planning

Computed tomography (CT) scans of all cadaver heads were 
performed via a 64-slice CT scanner (Siemens 64 slice; Siemens 
Medical Solutions, Malvern, Pennsylvania) and imported into a 
DICOM image processing software (Mimics Innovation Suite, 
Materialise, Leuven, Belgium).  Following the procedure described by 
Lascelles et al. (19), five osteotomy cuts were defined to complete a 
caudal maxillectomy with ventral orbitectomy, (1) zygomatic cut, (2) 
rostrolateral cut, (3) dorsolateral cut, (4) palatine cut, and (5) orbital 
rim cut. The skulls were thresholded, segmented, and virtual 
osteotomy cuts were planned in 3-Matics software (Mimics Innovation 
Suite, Materialise, Leuven, Belgium) (see Figure 1).

2.4. Custom guides manufacturing

Custom 3D-printed surgical guides were designed in 3-Matics 
software with the collaboration of an engineering undergraduate 
student (SN) at the Center for Additive Manufacturing and Logistics 
(CAMAL), for a total of 20 left and right sides of heads randomly 
allocated to treatment groups ESG and NSG. Each guide was made 
as two separate imbricating parts with a dorsal segment covering the 
orbit and dorsal maxilla and a ventral segment covering the caudal 
aspect of the dental quadrant and caudolateral palate as seen in 
Figure 2. Five drilling holes were added to secure the guide in place 
with 2.0 mm stainless steel screws (Arthrex Vet Systems, Naples, 
Florida, United States). The surgeon (MT) and surgery resident (AC) 
created the initial datum planes of the virtual cuts, and the cylinders 
at the location and orientation of the future screws as those require 
advanced knowledge of locoregional anatomy. The guide was then 
designed by the engineering student (SN) with strategical 
checkpoints along the design process at which times the CAD files 
were shared with the surgical team who reviewed the design before 
the engineering student could move on to the next step. The 3 
checkpoints included a first review time before Boolean union of the 
parts, a second after trimming excess guide material, smoothening 
and planning the two-part sectioning of the guide, and a final 
checkpoint before printing. The cutting guides were printed in a 
stereolithography printer (Form 3; Formlabs, Sommerville, 
Massachusetts) with resin (Tough 1500; Formlabs, Sommerville, 
Massachusetts). Tough 1500 resin was chosen because it is 
considered biocompatible by the manufacturer as well as acceptable 
for steam autoclaving, gamma sterilization, and ethylene 
oxide sterilization.

2.5. Procedures

The head and procedure orders were randomized, and the 
experienced (MT) and novice (AC) surgeons performed the role of 
surgical assistant when not primarily involved in the procedure. 
Guidance for the guide placement or osteotomy was not provided 
to the novice from the experienced surgeon for the NSG treatment 
group, and vice-versa. All maxillectomy procedures were performed 
via a combined dorsolateral and intraoral approach as described by 
Lascelles et al. (19). This approach elevates the skin and nasolabialis 
muscle from the maxilla from the zygomatic arch to the rostrolateral 
aspect of the bone dorsal to the planned rostral margin; specificities 
of the guided procedure included exposure of the zygomatic arch 
and dorsolateral nose rostrally to the level of the canine, as well as 
the extension of the soft tissue dissection along the medial canthus 
of the eye to allow for guide placement. The guide was purposefully 
designed to allow placement without elevation of the gingiva or 
palatal tissue.

The freehand maxillectomy was performed as previously 
planned in the modeling software using the aforementioned 
anatomic landmarks (see Figure 1). The surgeon was allowed to 
visualize the model including the planned cuts in 3-Matics while 
drawing the planned resection on the cadaver head with a #15 
scalpel blade to mark a thin cut line in the periosteum as one would 
visualize the CT images of the patients before marking the landmark 
of the cuts with an electrosurgical handpiece in a live procedure. 

FIGURE 1

Virtual caudal maxillectomy planning in 3-Matic. (A) Lateral view of 
the skull; (B) ventral intraoral view. The cuts for the maxillectomies 
were planned based on the following anatomical landmarks: (1) 
zygomatic cut, located caudal to the zygomaticomaxillary suture, (2) 
rostrolateral cut, extending to one third of the width of the palate at 
the rostral aspect of the third maxillary premolar tooth, to 5 mm 
rostral and dorsal to the infraorbital foramen, (3) dorsolateral cut, 
joining the dorsolateral extremity of cut 2 to the mid orbital rim of 
the lacrimal bone, (4) palatine cut, extending from the rostral intra-
oral extremity of cut 2 to the caudal edge of the hard palate along 
the third of the width of the palate (5) orbit cut, angled from the 
extremity of cut 3 at the orbital rim to the medial aspect of the 
second maxillary molar tooth.
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For the guided osteotomy, the surgical guide was fitted to the head 
and secured in place with a total of five 2.0 mm cortical stainless-
steel screws (Figure 2). The cuts were performed with a MicroAire 
oscillating saw (MicroAire, Charlottesville, Virginia) and a 0.6 mm 
Kerf blade for cuts 1 through 4; the orbital cut (5) was performed 
with a 15 mm × 2 mm osteotome and mallet. The guide was then 
removed after the screws had been retrieved to separate and extract 
the maxillectomy segment.

2.6. Quality assessment

For the ESG and NSG groups, the ease of placement for the guide 
was recorded as easy (able to fit the guide within 1 min without 
modification of the surgical approach), moderate (requiring 
modification of the surgical approach and/or able to fit the guide 
between 1 and 3 min), difficult (unable to fit or stabilize the guide 
without modifying the guide and/or able to fit the guide after 3 min).

Additionally, any instances of guide failure, including inability to 
fit the guide, cracking of the osteotome or saw groove, inability to 
secure the guide with screws, loose guide placement, or other failures 
were recorded.

For all three groups, the quality of the cut was recorded as high 
(smooth and straight cuts for all cuts and all cuts intersecting within 
2 mm of their individual demarcation), moderate (one or two irregular 
cuts and/or cuts extending 2–5 mm beyond their intersection), or low 

(more than two irregular cuts and/or cuts extending >5 mm beyond 
their intersection).

2.7. Accuracy assessment

The linear deviation was calculated using the model-to-model 
distance extension in 3D Slicer from Kitware (Kitware Inc., Clifton 
Park, New York, United States). When the deviation was toward the 
excised segment, a positive value was assigned and when away from 
the excised segment, a negative value was assigned. Absolute values of 
these deviations were used to calculate the means.

Average linear deviation of the performed cuts from the planned 
cuts was used to measure accuracy between groups. The procedure 
used to obtain 3D models of the heads for planning the cuts was 
repeated with the skulls scanned post-maxillectomy (Figure 3). For 
guided subjects (ESG and NSG groups), an additional CT scan was 
performed with the guide secured in place prior to the osteotomy. This 
was included to investigate the origin of the deviation and establish if 
the variation observed between the planned and performed cuts was 
a result of an error at the time of guide placement (due to CAD/CAM 
and/or the individual placement considered manufacturing/positioning 
error) or a consequence of guide shifting during the osteotomy 
(considered cutting error).

To establish a comparison between planned (pre-op), guided 
(post-guide placement), and performed (post-maxillectomy) cuts in 

FIGURE 2

Three-dimensional model of a skull and computer-aided design (CAD) of a custom-made maxillectomy guide in lateral view (A) and ventrolateral view 
(B) in 3-Matic, and the corresponding views of the guide on a cadaver (C,D). The guide is designed to recognize the contours of the skull, dental arch, 
gingiva, and palatine mucosa, and consists of 2 imbricating pieces (labeled 1 and 2), 5 drilling holes (star) to allow for the placement of cortical screws 
for stabilization, and 5 cutting grooves (arrow) guiding the 5 osteotomies. In (C,D) a combined dorsolateral and intraoral approach was performed to 
gain access to the maxilla. Screws have been placed to secure the guide in place.
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the ESG and NSG groups, the CT scans obtained at each step were 
overlaid in Geomagics to align them with each other. Local multipoint 
alignment was used to manually indicate prominent features on the 
skulls for the software to then align the models. In the ESF group, only 
planned and performed cuts were evaluated. Planes of the cuts were 
generated for each of the aligned skulls and guides in 3-Matic using 
the three-point method, where a skilled user picked the points based 
on cut alignment. In addition to this, the surfaces of each of the cuts 
were marked manually in 3-Matic and exported as STL files, along 
with the planes.

Cloud Compare (open-source software), a 3D point cloud 
processing software, was used to calculate the deviation between the 
various generated planes and points on the cut surfaces obtained from 
CT scans superimposed (Figure 3), as reported in previous studies (20). 
For each cut, the surface STL was converted to a point cloud, and a 
primitive was generated by fitting a plane to the STL of the plane 
obtained from 3-Matic. The “distance to primitive” function was then 
used to obtain the distance of each of the points on the surface to the 
fit plane. Using this distribution, a histogram was generated and used 
for further analysis. Figure 4 shows an example of a heat map generated 
using the distances obtained for the zygomatic arch cut. The difference 
between the planned and performed cut were recorded as total error 
for each cut in all 3 treatment groups. The difference between the 
guided and performed cut was recorded for each cut only in the ESG 
and NSG groups, and considered cutting error. The 
manufacturing/positioning errors representing the difference between 

planned and guided cut was obtained by subtraction of the cutting error 
from the total error in the ESG and NSG groups.

2.8. Efficiency assessment

The portions of the maxillectomy procedures were divided in 
different time sequences to compare efficiency between ESG and ESF 
groups (reflecting on the use of the guide compared to freehand 
procedure) and between ESG and NSG groups (reflecting on the 
impact of surgical experience, while using the guide). The times 
required to model the corresponding head, and design and print each 
guide was also recorded as CAD/CAM time.

More specifically, for the ESF treatment group, the time to visually 
plan and mark the planned cuts on the cadaver head with a scalpel 
blade was recorded as preparation time. For the ESG and NSG groups, 
the preparation time was divided in placement time (time required to 
place the guide) and securing time (time required to secure the guide 
with screws), recorded separately.

The time to complete the osteotomy in the ESF treatment group was 
recorded as freehand cut and removal time and included the removal of 
the excised bone segment which clinically is performed concomitantly. 
In the ESG and NSG groups, the cutting and removal times were 
recorded separately as guided cut and removal time since the removal of 
the excised bone segment required prior removal of the guide.

The total maxillectomy time was recorded as the time from 
freehand planning or guide placement to osteotomy and removal of 
the excised bone segment. The surgical approach was not included in 
the time recorded. Accordingly, the total maxillectomy time for 
freehand subjects was an addition of preparation and freehand cut and 
removal times. The total maxillectomy time for guided subjects was the 
addition of the placement, securing, guided cut, and guided 
removal times.

2.9. Statistics

Based on a review of human literature regarding accuracy of 
3D-printed custom-made surgical guides in maxillofacial, dental, and 
oncologic surgery, a mean linear deviation of 2 mm (+/−0.5) for both 
guided groups and 5 mm (+/−0.5) for ESF was expected (21–24). 
Using these expected values, a power analysis with an alpha of 0.05 
and beta of 0.8 was performed and led to a minimum of 8 subjects per 
treatment group. Therefore, a total of 10 cadaver head sides was 
chosen as the number of subjects per group, which raised the total for 
3 groups to 30 sides in 15 heads.

A Kruskal–Wallis test was performed to evaluate homogeneity 
across treatment groups in regards to head size.

The median and range was recorded for the total manufacturing 
time of the guides. The mean and standard deviations for times to plan 
freehand cuts, perform freehand cuts, place guide, secure guide, perform 
guided cuts, and remove the excised portions were recorded. The mean 
and standard deviations for linear deviation of each of the 5 cuts were 
calculated based on their absolute values, meaning that distances were 
examined without any consideration of which side of the designed cut 
they lay on. In cases where the performed cut intersected with the design 
cut, instead of the average then coming closer to 0 from having both 

FIGURE 3

Representation of linear deviation evaluation between planned and 
performed maxillectomy. (A) Is a CAD superimposition of the post-
maxillectomy skull with performed cuts (beige) and the virtual 
maxillectomy skull with planned cuts (green). (B) Is an inset of the 
zoomed in image of the superimposed skulls. The white arrows 
indicate an example of the distances that were measured using a 
cloud compare analysis to evaluate the mean linear deviation at the 
orbit cut.
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positive and negative values, the side was ignored to estimate how much 
deviation from the design plane occurred.

Standard deviations were similarly calculated from the average 
absolute deviations and were compared to give insight into the 
consistency of various cuts. Comparisons were done via t-test or, 
where the normality assumption failed, Wilcoxon rank sum test on 
the square root of the average absolute deviation or on the 
untransformed standard deviation. The square root transformation 
was applied to improve the normality of the data.

For the accuracy statistical analyses, two sets of data were run: the 
primary set with all heads and cuts included, and an exclusion set. To 
maximize test subjects with the limited cadavers available, 
maxillectomies were performed on the left and right sides of the head, 
as described previously. For some cadaver heads, the anatomic 
structure of the remaining head was altered slightly once both left and 
right caudal maxilla were removed, creating some inexactitude in the 
measurement of the linear deviation. Those heads were excluded from 
analysis in the exclusion set of data.

3. Results

3.1. Specimens

The cadaver heads ranged in length of 17–32 cm from the 
maxillary canine to the caudal aspect of the occipital bone. Two heads 
were brachycephalic, two dolicephalic, and the remainder of the heads 
were mesocephalic. There was no significant difference in the head 
lengths between the groups (p = 0.5157 from a Kruskal–Wallis test). 
The cadaver head lengths are summarized in Table 1.

3.2. Quality assessment

3.2.1. Ease of placement
Nine guides (9/10) were qualified as easy to place in the ESG 

group, and one guide (1/10) was graded as moderately easy. In the 

NSG group, 3/10 guides were considered easy to place, 6/10 
moderately easy, and 1/10 difficult to place.

3.2.2. Guide failure
Five instances of guide failure were observed, 4/5  in the ESG 

group and 1/5 in the NSG group; none of the failures yielded low 
quality cuts. Failures of the guide were observed as follows: 2/5 loosen 
securing screws, 1/5 osteotome slot crack, 1/5 saw slot crack, and 1/5 
extension of the saw mark out of the cutting groove.

3.2.3. Cut quality
Seven of thirty (23%) and 14/30 (47%) maxillectomy subjects had 

low or moderate quality cuts, respectively; distribution between 
groups is represented in Table  2. Of those with low or moderate 
quality cuts, 20/21 (95%) were related to the orbit cut. For the subject 
that had a moderate quality cut that did not occur with the osteotome, 
the jagged cut was located at the zygomatic arch. Nine subjects had 
incomplete cuts at the time of segment removal; 2 of those were 
observed in the ESF and ESG groups each, and 5 in the NSG group.

3.3. Accuracy assessment

3.3.1. Absolute linear deviation
The mean linear deviation from planned to performed cuts was 

overall lower in the ESG group compared to the ESF group, with a 

FIGURE 4

Heatmap generated using the “distance to primitive” function in cloud compare for cut 1 (orbit). (A) Demonstrates the planned cut plane in green and the 
performed cut in heatmap on the postoperative skull model. (B) Is a highlight of the cutting error observed along the orbit cut from planned to performed 
cut. In this case the cutting error was negative, or toward the defect, with the lowest to highest error pictured in warm (red) to cold (blue) colors, 
respectively. Scale bar indicates 15 mm. Color bar units are in millimeters.

TABLE 1 Summary of the cadaver head lengths.

Median 
(minimum-
maximum) 

(cm)

Mean 
(standard 
deviation) 

(cm)

Head classification 
(brachycephalic/
mesocephalic/
dolicephalic)

ESF 23 (17–32) 23 (±4.5) 0/9/1
ESG 22 (17–32) 22.4 (±4.6) 1/8/1
NSG 21 (17–24) 20.8 (±2.4) 1/9/0

The length was recorded from the most ventral aspect of the maxillary canine to the caudal 
aspect of the occipital bone. There was no significant difference in the head lengths between 
the groups (p = 0.5157 from a Kruskal–Wallis test).
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statistically significant difference for cuts 1 (p = 0.032), 2 (p = 0.003), 
3 (p < 0.001), and 5 (p = 0.045) as shown in Table 3 and Figure 5. There 
was no significant difference in the mean linear deviation between 
ESG and NSG groups for any of the cuts. The greatest mean linear 
deviation from planned to performed cuts observed in the ESG, NSG, 
and ESF groups was 1.98 ± 0.81 mm, 3.19 ± 1.64 mm, and 
5.46 ± 4.28 mm, respectively; all occurred at the orbit cut 5 (Table 3 
and Figure 5).

The stepwise breakdown of the mean linear deviation observed 
with the use of the guide is represented in Figure 6. For all cuts 
combined, there was a trend toward the cutting error being more 
significant than the manufacturing/positioning error, however this 
was statistically significant for ESG only for cuts 2 and 5 (p = 0.03 
and p = 0.001, respectively), and for NSG for cuts 2, 3, and 5 
(p = 0.021, p = 0.028, and p < 0.001, respectively). The total error 
was partially corrected from the positioning/manufacturing error 
to the cutting error due to difference in directions (positive vs. 
negative) in 43 and 48% of cuts for the NSG and ESG groups, 
respectively.

3.3.2. Corrected values
Four heads were excluded in the exclusion set because of shifts in 

the skull anatomy post-maxillectomy suspected to be secondary to the 
removal of bilateral caudal maxilla. With those four heads excluded, 
there was no significant difference in mean linear deviation between 
the new values and the original data set.

3.3.3. Consistency
The values for standard deviation between the planned and 

performed cuts are shown in Table 4. The standard deviation from 
planned to performed cut was significantly lower for the ESG group 
than the ESF group for cut 2 (p = 0.003) and cut 3 (p < 0.001). There 
was no significant difference in standard deviation from planned to 
performed cut and from guided to performed cut for the NSG group 

compared to the ESG group for any of the cuts. There was no 
difference in frequency of deviation in one direction versus the other 
for all cuts.

3.4. Efficiency assessment

3.4.1. Manufacturing time
The median total CAD/CAM time for the ESG and NSG groups 

was 10.7 h, with a range of 9 to 16.6 h per guide including a median 
printing time of 4.75 h (range, 3.4 to 10.5 h).

3.4.2. Preparation time
A significant difference was found in the preparation time between 

the ESG and ESF groups, with a median preparation time 3.38 time 
longer in the ESG group compared to the ESF group (p <  0.001) 
(Figure 7).

A significant difference was found in the placement time 
(p = 0.004) and the total preparation time (p = 0.023) between the 
ESG and NSG groups, with a median placement time and 
preparation time 2.3 and 1.2 time longer, respectively, for the NSG 
group compared to the ESG group (Figure  7). No significant 
difference was found in the median securing time between the ESG 
and NSG groups (p = 0.13).

3.4.3. Cut and removal time
A significant difference was found in the cut and removal time 

between the ESG and ESF groups (p < 0.001), with a median guided 
cut and removal time 1.9 time longer than the freehand cut and 
removal time for the ESG group compared to the ESF group 
(Figure 7).

A significant difference was found in the guided cut time 
(p < 0.001), the guided removal time (p = 0.034), and in the total guided 
cut and removal time (p < 0.001) between the ESG and NSG groups, 
with the NSG group having a median guided cut time, guided removal 
time, and guided cut and removal time 1.5, 1.8, and 1.6 time longer, 
respectively, than the ESG group.

3.4.4. Total maxillectomy time
A significant difference was found in the total maxillectomy time 

between the ESG and ESF groups (p < 0.001), with the ESG group 
having a median total maxillectomy time 2.3 time longer than the ESF 
group (Figure 7).

A significant difference was found in the total maxillectomy time 
between the ESG and NSG groups (p < 0.001), with the NSG group 
having a median total maxillectomy time 1.4 time longer than the ESG 
group (Figure 7).

TABLE 2 Quality of the performed cuts.

Treatment 
group

Cut quality

Low Moderate High

ESF 2/10 4/10 4/10

ESG 1/10 5/10 4/10

NSG 4/10 5/10 1/10

Quality of the cut was recorded as high (smooth and straight cuts for all cuts and all cuts 
intersecting within 2 mm of their individual demarcation), moderate (one or two irregular 
cuts and/or cuts extending 2–5 mm beyond their intersection), or low (more than two 
irregular cuts and/or cuts extending >5 mm beyond their intersection).

TABLE 3 Summary values for average +/− SD absolute linear deviation from planned to performed cuts (mm).

Treatment 
group

Cut

1 (Zygomatic) 2 (Rostrolateral) 3 (Dorsolateral) 4 (Palatine) 5 (Orbit)

ESF 1.26 ± 0.76A 1.32 ± 0.58A 3.02 ± 1.72AB 2.62 ± 1.77 5.46 ± 4.28A

ESG *0.61 (0.4, 0.73)A 0.56 ± 0.36A 0.78 ± 0.68A 1.45 ± 0.72 1.98 ± 0.81A

NSG 1.11 ± 0.7 0.82 ± 0.62 0.78 ± 0.46B *1.75 (1.19, 2.35) 3.19 ± 1.64

Superscript (A, B) indicates significant differences between average absolute deviation for p < 0.05. Results are reported as median with quartiles for variables with significant deviation from 
normality and noted with an asterisk.
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4. Discussion

In this study, we successfully designed, manufactured and used 20 
3D-printed custom-made caudal maxillectomy guides in canine 
cadavers. We found that the use of the guide did improve the overall 
accuracy of the procedure when evaluating the outcomes of the 
experienced surgeon compared to conventional freehand technique, 
and allowed the novice surgeon to reach similar accuracy. The use of 
the guide did, however, decrease the efficiency of the procedure 
compared to conventional freehand technique, and this was more 
pronounced with the novice surgeon compared to the experienced 
surgeon. Therefore, we  completed our objectives and partially 
accepted our first and second hypotheses.

To the authors’ knowledge, this is the first veterinary study to 
specifically evaluate the accuracy of a custom-made 3D printed 
surgical guide for a caudal maxillectomy. A few veterinary studies 
have described the use of 3D printed cutting guides in combination 
with custom-made implants placement to reconstruct oncologic 
defects of the mandible, radius, tibia, and the skull (25–28). 
Improvements in accuracy have been reported with the use of surgical 
guides for pedicle screw placement in spinal surgery leading to a 
decreased risk of breaching the vertebral canal (29–31). In our study, 
an overall gain in accuracy was obtained with a global mean linear 
deviation improved from 2.74 mm to 1.08 mm with the use of the 
guide compared to the traditional freehand procedure for the 
experienced surgeon. This compares favorably with human literature 

FIGURE 5

Linear deviation from planned to performed cut. All cuts for the experienced surgeon guided (ESG) fall within the acceptable deviation of 2 mm. Most 
of the novice surgeon guided (NSG) cuts fall within the acceptable deviation. Three of five cuts for the experienced surgeon freehand (ESF) are beyond 
the acceptable deviation (>2 mm).

FIGURE 6

Origin of deviation observed with use of the guide. There is a trend toward the cutting error being more significant than the manufacturing/positioning 
error but that is not true for all cuts and only significant for the cuts with an asterisk. The asterisk indicates a significant difference between cutting error 
and manufacturing/positioning error with red for the experienced surgeon and gray for the novice. Although not statistically significant, there is a trend 
for the novice to introduce more cutting error than the experienced surgeon.
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reporting mean deviations of 1.17 mm and 2.49 mm from planned to 
achieved cuts with surgical guides, and ranges of 0.74 to 3.60 mm and 
1.3 to 4.0 mm (11, 20, 23, 32). In comparison, the average deviation 
reported for freehand osteotomies when removing pelvic bone tumors 
in people is around 5 mm (13, 21). Most importantly, in our study, all 
cuts were within a mean linear deviation of 2 mm with the use of the 
guide while the most difficult cut along the orbit had a mean deviation 
superior to 5 mm without its use, similarly to previously reported 
freehand pelvic osteotomies (13, 21). This is particularly essential in 
an oncologic clinical scenario where the accuracy of oncologic 
margins could imply a difference between complete and incomplete 
tumor excision, leading to a higher risk of tumor recurrence and a 
potential need for adjuvant oncologic treatment. For most oral 
tumors, wide tumor excisions are planned with a margin of 1–2 cm of 
macroscopically normal tissue (33, 34). Based on those 
recommendations and previous papers evaluating accuracy of surgical 
guides, 2 mm was chosen as the threshold for a clinically acceptable 
surgical error (7, 20, 23, 32, 35, 36). Ultimately, achieving consistency 
in cutting accuracy is fundamental as one single largely deviated cut 
could be enough to lead to an incomplete excision. Our results show 
an improvement in the consistency for 2 out of 5 cuts with the use of 
the guide compared to the traditional freehand procedure. Overall, the 
use of the guide might help achieve more precise and more 
consistent osteotomy.

No significant difference in accuracy nor consistency was noted 
between the novice and the experienced surgeon suggesting that the 

3D-printed custom-made surgical guide could provide assistance and 
reassurance to a less experienced surgeon performing a newly 
practiced procedure. Surgical approach and management of 
hemorrhage, however, are essential aspects of the procedure that are 
not exemplified by the guide. Few previous veterinary studies 
compared the accuracy obtained with the use of 3D-printed custom-
made surgical guides from an experienced to a novice surgeon in 
corrective osteotomy and pedicle screw placement; no difference in 
accuracy was noted between the experienced and novice users in 
those scenarios (29, 37, 38). In the human literature, implant 
placement accuracy using 3D-printed custom-made surgical guides 
revealed no difference in accuracy between the experienced and 
novice surgeons in periodontal patients (39). This correlates to our 
findings and suggests that the guide represents a supportive surgical 
tool allowing a novice surgeon to perform a complex procedure 
without relying as intensely on traditional surgical mentorship. 
Additionally, the consistency of the procedure was similar between the 
novice and the experienced surgeon when using the cutting guide. 
This is in partial agreement with previous human studies as some 
report that custom guides allow novice surgeons to be as accurate as 
experienced surgeons and some suggests that experience still aids the 
user in obtaining higher accuracy even with the use of a guide (12, 39).

Part of our study design was also performed to measure the 
degree of error obtained at different steps of the guided procedure, 
as previous research has demonstrated that the total cumulative 
error is a sum of errors encountered during the CAD/CAM 

TABLE 4 Summary values for standard deviation from planned to performed cuts.

Treatment group Cut

1 2 3 4 5

ESF *0.12 (0.08, 0.16) 0.49 ± 0.47AB 1.25 ± 0.94AB *0.15 (0.1, 0.41)A 3.28 ± 2.07

ESG *0.08 (0.06, 0.14) 0.07 ± 0.05B *0.04 (0.02, 0.09)B *0.42 (0.19, 0.58) *1.09 (0.41, 1.72)

NSG 0.1 ± 0.06 0.05 (0.05, 0.08)A 0.17 ± 0.15A 0.76 ± 0.58A *0.85 (0.52, 2.57)

Superscript (A, B) indicates significant differences between average absolute deviation for p < 0.05. Results are reported as median with quartiles for variables. Significant deviation from 
normality is noted with an asterisk.

FIGURE 7

Comparison of total preparation time, cut and removal time, and total maxillectomy time per study group. The diamond and asterisks indicate 
significant differences (p < 0.05). There was a significant difference between ESF and ESG, and NSG and ESG for the total preparation time, total time to 
cut and remove the segment, and total maxillectomy time.
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process, during the positioning of the implant, and during the 
actual cutting time (35, 40). The stepwise comparison between the 
planned, guided, and performed cuts revealed that the largest 
component of the total linear deviation originated from a cutting 
error, and suggests some existing micromotion after guide 
placement and during the performance of the osteotomy. The 
flexibility of the resin, the separation in 2 guide parts, the type of 
anatomic support (bone vs. mucosa vs. teeth), and the number of 
teeth included for support might all have played a role in this 
cumulative error (35, 40). Additionally, five of 20 guides showed 
some degree of failure (loosening of screws, osteotome or saw slot 
cracking, sawing outside of the groove) during use. Those failures 
may not represent relevant information to draw guidelines for 
guide use or manufacturing as the failure types reported were 
diverse and only one type of failure (screws loosening) occurred 
more than one time in this study. Overall, this is the first version 
of a caudal maxillectomy guide designed and tested in veterinary 
medicine; future prototyping might improve its outcome.

Finally, despite the noticeable improvement in accuracy 
reported in our study with use of the guide, the orbital cut carried 
the largest linear deviation in all groups and subjectively 
demonstrated a low to moderate cut quality in 20/30 (66%) of cases, 
all groups confounded. Overall, the cut quality along the orbit was 
higher for the experienced surgeon, with or without use of the 
guide, compared to the novice surgeon, which reflects on the 
difficulty of performing that part of the procedure. Its complexity is 
certainly related to the fact that the osteotomy is performed in a 
partially blind fashion, which is inherent to the procedure itself and 
the locoregional anatomy. One of the main purposes of our study 
was to facilitate that particular step by allowing the osteotome 
groove to guide the orbital cut, which was partially accomplished 
although our subjective impression remained mitigated. 
Improvement might come with some modifications in the guide 
design and use of different shapes and sizes of osteotomes.

Additionally, the overall efficiency of the procedure was lower 
compared to the traditional freehand technique. Therefore, our results 
compare unfavorably to human literature reviews of 3D-printed 
guides, which describe a decrease in intraoperative and operating 
room time in 80 and 46% of the cases, respectively (10, 41). Our 
results also compare unfavorably to a cadaveric veterinary study by 
Kim et  al. evaluating the use of 3D-printed custom-made TPLO 
guides which reported a mean TPLO procedure time of 19 min with 
guide compared to 30 min without guide (42).

When breaking down the different procedural steps, the majority 
of the time difference observed for the experienced surgeon was found 
in the actual time required to perform the cut and remove the bone 
segment. This unfortunately also corresponds to the most critical step 
of the procedure where profuse hemorrhage can be encountered, thus 
the actual time of the procedure when an increase in efficiency would 
be beneficial. The choice made during our guide design to use screws 
instead of pins to improve guide stabilization might have been a trade 
off against efficiency, and replacing screws with pins could help 
placing and removing the guide faster. In addition, the cutting groove 
design did not allow to visualize the completion of the cuts at their 
intersections compared to the freehand procedure as the double 
cutting walls obscured the view; therefore, a larger number of 
incomplete cuts were noted in the guided groups, which was certainly 

responsible in part for the lack of efficiency. It is also possible that the 
efficiency demonstrated in the freehand group might have been 
overestimated by the use of cadavers. In live patients, surgeons 
generally experience profuse hemorrhage as the caudal maxillectomy 
is performed, unless the maxillary artery has already been ligated as 
previously described (43). Therefore, performing the maxillectomy 
and removing the segment in a live case scenario would likely take 
longer as blood obscures the field; the use of a guide could improve 
efficiency in that instance as the cuts could still be performed and 
finalized without absolute clear visualization.

Finally, the novice surgeon spent overall longer performing each 
step of the maxillectomy, and had a larger number of incomplete or 
subjectively low to moderate quality cuts. The increase in procedural 
time may have come from both the lack of familiarity with the 
procedure itself and with the use of a custom guide. Previous studies 
have demonstrated that experience with guides, even for the same 
individual, can improve the ability to position the guide (12). This was 
reflected as well in our efficiency and in our quality assessment as the 
placement of the guide was overall graded as more difficult for the 
novice group compared to the experienced surgeon. The cuts were 
also noted as incomplete in half of the cases for the novice group, 
which would have impacted the total time required to perform the cut 
and remove the maxillectomy segment. Therefore, although the use of 
a custom-made 3D printed guide might complement the surgical 
mentorship obtained, it certainly does not replace active supervision 
and might rather provide a comprehensive tool for initial 
practical exposure.

The main limitation of this study remains its cadaveric nature, 
and the fact that hemorrhage observed clinically may lower the 
efficiency and accuracy of the freehand procedure, therefore 
increasing the gap between the guided and traditional technique. 
The use of a guide may indeed aid in negating the effect of 
hemorrhage in a live patient because cuts could still be made even 
as blood obscures the field. Additionally, cadavers did not exhibit 
any pathology, and it is possible that the guide may not have the 
same fit with a large mass effect at the caudal maxilla. To 
accommodate for hypothetical large tumors, the guides were 
prophylactically designed with a large hollow center that would 
allow them to fit on the maxilla even in the instance where a tumor 
would surround the molars and/or last premolar teeth. Finally, the 
use and removal of left and right caudal maxilla to optimize 
cadaver usage and statistical power of our study design lead to four 
heads having a shift of the anatomy from an overall instability of 
the remaining skull. Even when excluding those four heads, 
however, the accuracy results were mostly identical and correlated 
with previous conclusions.

Another limitation of this study is the absence of comparison 
with a novice freehand group like previously reported by Bongers 
et al. (37) The goal of our study’s group design was to evaluate if a 
guide improved the accuracy and efficiency of a caudal maxillectomy 
for an experienced surgeon (comparison ESF to ESG groups) and 
to evaluate if the guide could allow a novice surgeon to perform the 
procedure with similar accuracy and efficiency of an experienced 
surgeon (NSG to ESG groups). Further work could be considered 
with a novice freehand group, however we decided against that 
evaluation considering that a caudal maxillectomy is a complicated 
procedure that would not be  expected from a novice surgeon 
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without completing a general surgical training program. A novice 
freehand group, however, could be considered to determine if the 
guide helps improve the accuracy and/or efficiency of the procedure 
for a novice surgeon, and if the improvement obtained with the 
guide is proportional to the difference provided to the 
experienced surgeon.

In addition to the guide efficiency in terms of use, the 
manufacturing time for the guides was lengthy. Some guides were 
printed as the sole objects on the printer plate and some were printed 
2–3 guides to a plate. The number of objects on a printer plate greatly 
influences the duration of a print and therefore, the total 
manufacturing time that was reported in this study may not be realistic 
for the total manufacturing time required for a single surgical guide 
printed for a clinical case.

In conclusion, our novel 3D-printed custom-made cutting 
guide appears to improve the accuracy of the caudal maxillectomy 
for an experienced surgeon, and allows a novice surgeon to perform 
the procedure with similar accuracy. However, it is not evident that 
the efficiency of the procedure is improved with the guide. In 
freehand caudal maxillectomies, the orbit cut is frequently 
considered the most challenging and, for the guided procedures, 
continues to lead to the most inaccuracy. There is a trend toward 
greater accuracy with the guide for the orbit cut, however, and 
further improvements to a maxillectomy guide could facilitate a 
more accurate procedure.
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Introduction: The problem of organs’ shortage for transplantation is widely
known: different manufacturing techniques such as Solvent casting,
Electrospinning and 3D Printing were considered to produce bioartificial
scaffolds for tissue engineering purposes and possible transplantation
substitutes. The advantages of manufacturing techniques’ combination to
develop hybrid scaffolds with increased performing properties was also evaluated.

Methods: Scaffolds were produced using poly-L-lactide-co-caprolactone (PLA-
PCL) copolymer and characterized for their morphological, biological, and
mechanical features.

Results: Hybrid scaffolds showed the best properties in terms of viability (>100%)
and cell adhesion. Furthermore, their mechanical properties were found to be
comparable with the reference values for soft tissues (range 1–10 MPa).

Discussion: The created hybrid scaffolds pave the way for the future development
of more complex systems capable of supporting, from a morphological,
mechanical, and biological standpoint, the physiological needs of the tissues/
organs to be transplanted.
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GRAPHICAL ABSTRACT

1 Introduction

Organ failure is still a leading cause of mortality worldwide,
despite advances in surgical and transplantation techniques. The
allogeneic transplant is still one of the most used strategies (more
than 34,285 solid organ transplants were performed in the EU in
2019) (Vanholder et al., 2021). However, it has a series of problems
such as the shortage of organs and donor cross-matching (Beyar,
2011). Indeed, it was reported by The World Health Organization
(WHO) that only 10% of the worldwide need for organ
transplantation is being met (Keeping Kidneys, 2012). To
overcome the scarcity of donors, xenotransplantation techniques
are being used (commonly from pigs) (Cooper et al., 2016; Zhang
et al., 2019). However, this technique still features many limitations,
including the most important one, a severe immune reaction
concomitant with coagulation dysregulation and chronic
inflammation; these adverse effects can nullify the transplant
surgery and compromise a patient’s life (Zhou et al., 2022).

Bioartificial organs (BOs) are emerging as a valid alternative to
traditional organ transplantation able to obviate the lack of donors
and avoid adverse reactions (Wang, 2019). Essentially, a BO is an
engineered three-dimensional (3D) scaffold implanted or integrated
into the human body, able to interact with surrounding living tissues
with the aim of replacing an organ, promoting regeneration, and
restoring its original functionality (Abu-Faraj, 2012; Ren and Ott,
2014).

The overarching vision is to provide better approaches for the
development of bioartificial scaffold (BSs)-guided tissues to be
applied to personalized therapy, organ replacement, or
reconstruction as well as to ex vivo screening among treatment
options for different human diseases (Oksdath et al., 2018). For BOs
development, three-dimensional scaffolds alone are not enough for a
correct and complete replacement of the damaged tissues, but it is
preferred as the co-presence of suitable cells is able to make the
repair process faster and more effective. In fact, the BSs geometry
and architecture must mimic physiological tissue/organ and
promote proper cell adhesion and proliferation to guarantee
tissue/organ integration and functionality (Causa et al., 2007). As
an example, fibroblast cells are widely used in tissue engineering
thanks to their heterogeneous presence in numerous tissues.
Depending on the anatomical region of origin, it has been
demonstrated that fibroblasts have different gene expression
profiles (Wong et al., 2007). Among them, dermal fibroblasts
were demonstrated to have several functions such as increasing
ECM components synthesis and deposition to promote proliferation
and migration in response to stimuli (cytokines) and exhibiting
autocrine and paracrine interaction (Stunova and Vistejnova, 2018).
Therefore, the harmony and synergy between the 3D scaffold and
the sown cells are fundamental to guarantee suitable chemical-
physical, mechanical, and biological characteristics to mimic the
physiological properties of the tissue to be replaced (Sultana, 2018;
Okamoto, 2019). Crucial aspects must be considered to provide the
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right support for cell adhesion, growth, and/or differentiation on
BSs; these include the choice of the polymer, the manufacturing
technique, the geometry, and the consequent scaffolds’ mechanical
properties (Bacakova et al., 2011; Eltom et al., 2019). As for
polymers, it is essential to choose biocompatible and non-toxic
polymers such as Poly-lactic acid (PLA), Poly-caprolactone (PCL),
Poly-lactic-co-glycolic acid (PLGA), or polyurethane (Pedersen
et al., 2022). Many of these polymers are also biodegradable,
therefore ensuring the tissue reformation and avoiding the
generation of toxic degradation products; the main advantage of
these polymers is that they do not have to be surgically removed
once the tissue is grown and therefore do not require further
interventions for the patient (Arif et al., 2019; Nikolova and
Chavali, 2019).

Scaffold geometry provides biophysical signals that trigger cells’
nucleus response (i.e., the regulation of gene expression) and
modulates cells’ behavior and functionality (Han et al., 2022).
Geometrical parameters are also crucial to mimic the
characteristics of the tissue/organ to be replaced and to improve
cell proliferation: different cellular lines require different scaffold
geometries and porosity percentages according to the function they
have to perform (Chantarapanich et al., 2012; Loh and Choong,
2013).

Various techniques for the BSs production have been
implemented over the years, starting from the simplest ones-such
as solvent casting (SC)-up to the more advanced ones, such as
electrospinning (ES) and 3D printing (3DP) (Murphy and Mikos,
2007; Wang, 2019; Morelli et al., 2022; Pien et al., 2022). SC
technique is a scaffold manufacturing method that begins with
the dissolution of a polymer in an organic solvent which
afterwards hardens by exploiting solvent evaporation; a dry solid
polymer scaffold with a porous network is left behind, although it is
difficult to handle the desired pore shape and pore inter-connectivity
of these types of scaffolds (Johnson et al., 2010; Dorati et al., 2017).
ES is a fibers’ fabrication technique which allows to obtain scaffolds
consisting of a network of submicrometric-sized fibers. The
collected electrospun fibers exhibit suitable properties for
biomedical applications such as high surface area-to-volume
ratio, small pore size, high porosity, and a structure able to
mimic ECM (Pisani et al., 2018). More recently, 3DP
technologies have emerged as versatile techniques to produce
components to be used for a wide range of purposes such as
anatomical models, surgical planning, training and simulation,
medical devices, prosthetics prototyping, and regenerative
medicine (Conti and Marconi, 2019). With Computer-Aided
Design (CAD) programs, it is possible to define the geometry,
the infill percentage, and the structure porosity according to 3D
printers’ resolution limits.

The purpose of the present work was to produce and
characterize BSs manufactured through three different
manufacturing techniques (SC, EL, and 3DP). Moreover, the
advantages of combining EL and 3DP for the development of
hybrid scaffolds (HS) useful for soft tissue replacement was
evaluated. The combination of ES and 3DP technologies is
already present with some examples in the literature. The
important aspect highlighted in this work is that for the same
used base material, obtained scaffolds have different properties
due precisely to the manufacturing technique. Therefore, one of

the main goals is to underline how the production technique has a
strong influence on the final scaffolds’ properties (both mechanical
and biological).

BSs were made up by the same biopolymer (poli-L-lactide-co-
caprolactone—PLA-PCL 70:30 ratio) that showed PLA prevalence
with a suitable degradation rate (about 8 weeks in vivo)
commensurate with the rate of tissue regeneration, while the PCL
component gives plasticity. Moreover, PLA-PCL was chosen for its
known bio-properties, such as biocompatibility and
biodegradability, and because it has already been widely
characterized in previous works by the authors, demonstrating
excellent properties of soft tissue regeneration (Pisani et al., 2018;
Pisani et al., 2020; Pisani et al., 2021). In the literature, the
combination of Electrospinning (ES) and Fused Filament
Fabrication (FFF) to produce copolymer PLA-PCL scaffolds
usually refers to a hybrid scaffold made of a layer of 3D-printed
PLA and a layer of electrospun PCL (or vice versa) (Pensa et al.,
2019; Smith and Mele, 2021); on the contrary, here HS where both

TABLE 1 Main slicing parameters according to Ultimaker Cura nomenclature.

Slicing parameter (ultimaker cura) Value

Layer Height 0.20 mm

Extrusion Width 0.35 mm

Wall Thickness 0.80 mm

Top Layers 4

Bottom Layers 4

Top/Bottom Pattern lines

Infill Pattern grid

Infill Overlap Percentage 10%

Flowrate 100%

Printing Temperature 200°C

Printing Temperature (Initial Layer) 200°C

Build Plate Temperature 80°C

Build Plate Temperature (Initial Layer) 80°C

Infill Speed 60 mm/s

Wall Speed 30 mm/s

Outer Wall Speed 30 mm/s

Inner Wall Speed 60 mm/s

Top/Bottom Speed 30 mm/s

Enable Retraction True

Retract at Layer Change False

Retraction Distance 6.50 mm

Retraction Speed 25 mm/s

Build Plate Adhesion Type skirt

Brim Width 8 mm

Fan Speed 100%
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ES and 3DP layers are made with the same PLA-PCL copolymer are
proposed. The resulting BSs were compared in terms of
morphological, mechanical, and biological properties and the
influence of manufacturing technique on the final features was
evaluated and compared. This proof of concept lays the
foundations for the subsequent development of complete
bioartificial soft body organs with the aim of providing
replacement models for transplantation.

2 Materials and methods

2.1 Scaffold manufacturing techniques

The SC manufacturing technique was used to prepare PLA-PCL
(Resomer LC 703 S—Mw 160,000 Da-Evonik Nutrition & Care
GmbH, Evonik Industries AG Relling-hauser Straße 1–11,
45128 Essen, Germany) film-scaffold. The copolymer was
solubilized in 1-4 dioxane since this organic solvent has a boiling
point of +101°C and a melting point of +12°C. These features limit
the evaporation of the solvent during the preparation phase, ensure
complete freezing of the solvent during the cooling phase of the
system, and guarantee its complete sublimation during freeze-
drying, facilitating the removal of the solvent from the finished
product. The polymeric solution (10% w/v) was placed in a glass vial
and subjected to magnetic stirring (1 h at RT) until completely
dissolved. Once a solution was obtained, it was sonicated for 15 min
(Sonica, Ultrasonic Cleaner. Soltec, Italy) to remove any air bubbles,
which in the subsequent dripping phase could give rise to the
formation of morphological heterogeneities, affecting the scaffold
formation and reproducibility. Using a glass syringe (Gastight
Syringes®/1 mL, Model 1001 LT SYR, Hamilton), 800 μL of the
PLA-PCL solution in 1,4-dioxane was dropped into a Teflon mold
5 × 5 cm. After the dripping phase, the mold was frozen at −25°C for
5 h, followed by the freeze-drying process (Lyophilizer Lio-5P,
Cinquepascal, Italy) at −48°C and 0.4 mbar for 12 h, to eliminate
all the solvent residues and favor the formation of the dry
polymeric film.

The same PLA-PCL copolymer was used to produce electrospun
nanofibers. A 20% w/v polymeric solution in Methylene Chloride
(MC) and N, N-Dimethylformamide (DMF) solvent blend 70:
30 ratio was electrospun following parameters optimized in
previous works (Pisani et al., 2018; Conti and Marconi, 2019).
The setup parameters were voltage (30 kV), flowrate (0.5 ml/h),
needle-collector distance (15 cm), temperature (25 ± 3°C), and
relative humidity (RH% = 30 ± 4%). Electrospinning apparatus
NANON-01A equipped with a dehumidifier (MEEC instruments,
MP, Pioltello, Italy) was used to produce electrospun polymeric
fibers. PLA-PCL fibers were collected after 30 min spinning time
using a metal plate collector (14 × 25 cm).

3DP scaffolds were produced using a PLA-PCL (70:30)
copolymer filament (TreeD Filaments® company) through Fused
Filament Fabrication (FFF) 3D printing technology. The filament
had a calibrated diameter of 1.75 mm and was extruded - without
any non-natural additive—using a LeapFrog HS® (Dutch LeapFrog
Group). The printer was equipped with two extruders with nozzles
of diameter 0.35 mm and a heated bed - with a printing area of 230 ×
270 × 200 mm—that can reach a temperature of 90°C. The two

extruders were equipped with a resistance heating them up to 250°C.
The printing head was also equipped with two fans to cool the
filament right before the extrusion chamber, to keep it rigid and able
to push the heated polymer out of the nozzle.

The printer was instructed on how to deploy the material
through a specific set of instructions, formatted according to the
G-code language, which included information on the path,
temperatures of the nozzles and the bed, printing speed, flow
rate, etc. The G-code was computed thanks to the so-called
slicing software, which started from virtual 3D geometry to be
produced and generated the set of instructions to drive the
production. In the present work, Ultimaker Cura 4.11.0 software
was employed to generate the final G-code. To set-up the optimal
printing strategy for the PLA-PCL copolymer, a preliminary
investigation of printing parameters was required. On the one
hand, PLA filament is one of the most common materials used
in FFF processes and its printing parameters are therefore already
well-known. On the other hand, little information is available in the
literature about PCL printing parameters (printing temperatures
(Darling and Sun, 2004), extrusion rates, and requirement of a
ventilation system cooling off specimens during printing (Temple
et al., 2014)), being less employed in FFF machine. Usually the two
filaments (PLA and PCL) are printed separately, from two different
nozzles, which are then combined layer-by-layer on the printing bed
(Cheng et al., 2021; Espinosa and Moroni, 2021). In this work, the
involved filament is unique and already includes both materials.
PLA and PCL FFF printing parameters are widely known; on the
contrary, the copolymer filament PLA-PCL 70:30 printing
parameters had to be deeply studied and optimized for the
specific purposes. Moreover, the production of a copolymer PLA-
PCL filament is not a trivial task, due to the difficulty of producing a
calibrated and regular filament with a diameter of 1.75 mm, starting
from separate PLA and PCL granules. A change in PLA-PCL ratio
would lead to different printing parameters, together with the
possible use of various additives to facilitate the FFF scaffolds’
production. The use of a copolymer filament allowed us to
characterize—from the biological and mechanical viewpoints -
patches made of the exact same material but produced through
both standard (SC and ES) and innovative (3DP) manufacturing
techniques.

Accordingly, preliminary tests were conducted to define
optimal PLA-PCL copolymer printing parameters, starting
from basic parameters—such as bed and extrusion
temperatures—and then more advanced options—such as
speeds, flow rate, extrusion width, retraction speed, and
length. Different printing parameters could influence the
mechanical properties of the final FFF sample (Chaitat et al.,
2022); considering the specific involved cells and patches’

TABLE 2 Physical dimensions of patches produced with the different
techniques.

SC ES 3DP HS

L [mm] 25 ± 2 25 ± 1 20 ± 0.2 40 ± 2

T [mm] 2 ± 1 0.15 ± 0.03 0.4 ± 0.1 0.6 ± 0.2

W [mm] 15 ± 2 6 ± 1 10 ± 0.2 15 ± 0.5
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geometry, the infill percentage parameter was considered as one
of the most crucial aspects that could affect the final patches’
biological and mechanical properties and was involved for
further investigation and analyses. Rectangular 3DP samples
(10 × 20 × 0.4–0.5 mm) with three different infill percentages,
namely, 20%, 50%, and 100%, were then produced. The main
printing parameters for PLA-PCL patches production are listed
in Table 1.

After a preliminary testing on SC, ES, and 3DP scaffolds
respectively, the obtained results showed that ES and 3DP
techniques allowed the production of the most promising
scaffolds. Consequently, the combination of these two
technologies was also considered and tested for HS
manufacturing.

HS were aimed to combine the advantages of the two
production techniques: on the one hand, 3DP produces very
complex and defined geometries and has high process
reproducibility, while the electrospun nanofibers allow to
obtain a network resembling the native extracellular matrix,
thus ensuring better cell adhesion and proliferation. Using the
same parameters cited above, 20% w/v PLA-PCL fibers were
electrospun for 30 min on 3DP PLA-PCL scaffolds (20%, 50%
and 100% infill) to achieve a composite HS. The number of fibers
deposited on 3DP scaffolds was evaluated gravimetrically on the
dry scaffolds using analytical balance (BCE64-1S, Sartorius AG,
Göttingen German).

2.2 Morphological analysis

Zeiss EVOMA10 apparatus (Carl Zeiss, Oberkochen, Germany)
was used to perform SEM analyses on polymeric SC, ES, 3DP, and
HS scaffolds to evaluate electrospun fibers’ dimensions and scaffolds
porosity (%) per unit surface area. Analyses were performed at the
following magnifications: 1.00 kX and 2.50 kX. The resulting images
were processed by ImageJ software (an open-source image
processing program designed for scientific multidimensional
images) (Hotaling et al., 2015).

2.3 Gel permeation chromatography (GPC)

The chromatograph system consists of a guard column
(Phenogel 10E 4˚A µm, 300 × 7.8 mm, Phenomenex, Milan,
Italy) and three connected Ultrastyragel columns (7.7 ×
250 mm each one with pores diameters of 104 ˚A, 103 ˚A and
500 ˚A), a pump (Varian 9,010), an infrared (IR) detector
(Prostra 355 RI; Varian), and software used to process the
data relating to MW (Galaxie Workstation, ver.1.8 Single-
Instrument, Varian). Samples for GPC analysis were prepared
by dissolving scaffolds (SC, ES and 3DP) in tetrahydrofuran
(THF) at a concentration of 1–2 mg/mL. THF solutions were
filtered through a 0.45 mm filter (Millipore, Massachusset,
United States) and injected in the GPC apparatus; the GPC
eluent was tetrahydrofuran at a flow rate of 1 mL/min. The
resulting data of molecular weight (MW), molecular number
(Mn), and polydispersity index (PDI) are expressed as an average
of five parallel samples.

2.4 Mechanical characterization

Scaffolds’ mechanical characterization was performed through
uniaxial tensile tests using an MTS Insight Testing Systems (MTS
System Corporation). Tests were carried out at 10 mm/min
crosshead speed using a 250N load cell. Testing parameters were
selected according to the ASTMD638 standard, considered the most
suitable for the materials under examination. Geometrical
parameters—namely, specimens’ length (L), thickness (T), and
width (W)—of the different types of scaffolds are reported in
Table 2.

Scaffolds’ stiffness was retrieved through linear interpolation of
the initial part of stress-strain curves, using least square method
(LSM) defined as the Young’s modulus (E). Reliability was assessed
computing the maximum R2 factor of the linear interpolation of σ-ε
curves for each sample (≥0.95).

Given the different size and thickness of the samples made with
different techniques, results of mechanical characterization have
been normalized to obtain comparable data.

2.5 Cell seeding and viability

Scaffolds’ cytocompatibility and cell adhesion were evaluated for
SC, ES, 3DP, and HS 48 h after cells sowing, as defined by standard
ISO 10993-5 (ISO 10993-5). Human Normal Dermal Fibroblast
(HNDF) passage 5 (P.5) were used (100.000 cell/scaffold) for
scaffolds cellularization. Scaffolds were fixed in CellCrown™
(CellCrown™ 12 NX Scaffdex, Tampere, Finland) supports,
suitable for 12-multiwell, and sterilized before cell seeding.
CellCrown™ was used to avoid samples floating in the cell
culture medium which can cause cells to fall off the scaffold
during cellularization. Scaffolds’ sanitization was performed by
dipping scaffolds in an 85% v/v EtOH solution for 20 min
followed by 15 min in a 70% v/v EtOH solution. Scaffolds were
then washed with sterile PBS supplemented with 2% penicillin/
streptomycin (P/S) and left under a laminar hood with UV
irradiation overnight. A protocol for scaffolds’ sterilization was
already used in previous work demonstrating that no scaffolds
were damaged (Pisani et al., 2021).

Engineered scaffolds were maintained in cell culture medium
(DMEM 10%v/v Fetal Bovine Serum) at 37°C and 5% CO2 for 48 h
before analysis. The cell viability percentage was evaluated using
underwent 3-(4,5-dymethiltiazol-2-y)-2,5 diphenyltetrazolium
bromide (MTT) (Merck KGaA, Darmstadt, Germany) test. Cell
culture media was removed from samples and the engineered
scaffold was washed twice with PBS (pH 7.4). Subsequently,
300 μL of MTT solution (5 mg/mL in PBS) was added to each
scaffold sample and fresh PBS was added to guarantee the total
immersion of the samples. The scaffolds were maintained for 2 h
and 30 min of incubation at 37°C and 5% of CO2, and then MTT
solution was removed paying attention not to suck precipitated
formazan salts.

The engineered scaffolds were withdrawn and transferred into a
vial to be solubilized with 1 mL THF under magnetic stirring for 1 h
to completely dissolve the polymeric matrix and lyse cellular
membranes of cells adhered that gave a purple coloring
proportional to cell viability. Instead, 12-multiwell bottoms (from
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where scaffolds were withdrawn) were treated with 1 mLDMSO and
left under soaking for 1 h to lyse cellular membranes of cells that did
not adhere to scaffolds. HNDF (100.000 cell/bottom) was used as
control, treated with MTT solution for 2 h and 30 min, washed, and
then solubilized with 1 mL DMSO. The solutions obtained by
dissolution of the engineered scaffolds, from 12-multiwell
bottoms and HNDF control, were spectrophotometrically
analyzed at 570 nm wavelength in a quartz cell (6705 UV/Vis
Spectrophotometer—Single cell holder JENWAY) to obtain Abs
values and correlate them to cell viability.

DAPI (4′,6-diamidino-2-phenylindole) (Thermo Fisher
Scientific Inc., Waltham, Massachusetts, US) is a fluorescent
nuclear staining useful for highlighting the nuclei of the cells and
detect cells on the scaffold surface. After 48 h incubation, scaffolds
were washed with PBS and 0,4% v/v glutaraldehyde solution was
added and left for 10 min to fix the adhered cells. Scaffolds were
washed twice with PBS and TRITON X 0,1% v/v was added and
left for 10 min in order to permeabilize the cell membranes. A
further washing step with PBS was performed and scaffolds were
treated with DAPI 300 nM solution over-night at 4°C. The samples
were analyzed with fluorescence microscope (Leica DM IL LED
with ebq 50 ac-L) and images obtained were processed by ImageJ
software.

Cell visualization on scaffolds’ surfaces was performed using
SEM analysis. After 48 h incubation, scaffolds were washed with PBS
and dehydrated using ethanol (EtOH) solutions at increasing
concentrations (30% v/v, 70% v/v, 80% v/v, and 100% v/v), for
10 min each passage. Samples were then washed with a 50:
50 mixture of dry EtOH 100% and hexamethyldisilane (HDMS)
for 20 min. Before SEM analysis, samples were left under a laminar
hood to remove solvent residues and then made conductive with
surface deposition of a thin layer of gold in an Argon atmosphere.
SEM images were further processed by ImageJ software to
characterize engineered scaffolds.

2.6 Statistical analysis

The results collected in this experimental study were presented
as mean, standard deviation (SD), and 95% Confidence Interval
(95%CI). All experiments were carried out in triplicate, unless

otherwise stated. To take into account the correlation between
technical triplicates (non-independence between observations),
we fitted clustered regression models, using robust Sandwich
estimator for the calculation of standard errors. The comparison
of polymer molecular weight and molecular number for SC, ES, and
3DP techniques compared to the raw materials was evaluated by
t-test for paired data.

Statistical analyses were performed using Stata 17
(StataCorp. 2021. Stata Statistical Software: Release 17. College
Station, TX: StataCorp LLC). A p-value less than 0.05 was
considered statistically significant.

3 Results

3.1 Morphological analysis

Results in terms of scaffolds’ weight, manufacturing time, and
surface porosity resulting from the three different manufacturing
techniques are reported in Table 3.

SC scaffolds showed a lower porosity compared to the ES ones,
with an average pore size of 0.92 ± 0.15 μm2 and 4.72 ± 2.1 μm2

respectively.
To calculate the porosity of the 3DP scaffolds, the area of the

square voids left by the filaments’ deposition was computed (Figures
1C,D). The porosity and average pore size progressively decreased
from the lowest to the highest infill percentage; 3DP 100% infill
resulted full of printed materials, i.e., 0 porosity. The single 3DP
filament composing the 3DP scaffolds was in all cases pore-free and
smooth.

HSs showed homogeneous fibers covering on 3DP scaffolds with
an average weight increase of 25 ± 4.62 mg compared to the
respective 3DP scaffold. The weight increase was comparable for
all HS taking as reference their corresponding 3DP scaffolds. As
concerns scaffolds’ porosity percentage and pore surface area, ES
layer was considered.

SEM images were obtained for all scaffolds. SC scaffolds
(Figure 1A) have shown undefined geometry and rough
surface with some pores of variable size and random position
generated by solvent sublimation during the manufacturing
process. ES scaffolds (Figure 1B) are characterized by the

TABLE 3 SC, EL, 3DP, and HS scaffold information obtained after the manufacturing process.

Scaffold manufacturing technique PLA-PCL 70:30 Production time Surface porosity Pore surface area

[mg] [min] [%] [mm2]

SC 80 ± 5.32 1440 0.24 ± 0.05 0.00092 ± 0.00015

ES 50 ± 3.23 30 3.94 ± 1.12 0.00472 ± 0.0021

3DP 20% infill 120 ± 0.25 5 38.41 ± 4.45 2.3 ± 0.3

3DP 50% infill 230 ± 0.15 7 11.7 ± 2.42 0.2 ± 0.03

3DP 100% infill 350 ± 3.30 15 - -

HS 20% infill 150 ± 0.41 5 + 30 4.14 ± 1.06 0.085 ± 0.1

HS 50% infill 250 ± 5.05 7 + 30 6.92 ± 1.02 0.069 ± 0.04

HS 100% infill 380 ± 1.50 15 + 30 8.28 ± 1.31 0.1399 ± 0.1
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presence of homogeneous nanofibers (745 ± 23 nm) forming an
interconnected network with a high surface area and porosity.
3DP scaffolds obtained with three different infill, 20%
(Figure 1C), 50% (Figure 1D), and 100% (Figure 1E), have
shown polymeric filaments with a full, smooth, and non-
porous structure; the porosity of the scaffold is controlled by
the distance between the deposited filaments.

HS showed complete coverage and adhesion between
the 3D scaffolds and electrospun fibers at all infills: 20%
(Figure 1F), 50% (Figure 1G), and 100% (Figure 1H). Moreover,
fibers electrospun on the 3DP scaffold maintained nanometer size
range (775 ± 31 nm).

3.2 Gel permeation chromatography (GPC)

Results obtained shown how all scaffold production
techniques lead to a reduction in polymer molecular weight
compared to the raw materials (Figure 2). In the case of SC
and ES techniques, PLA-PCL powder was solubilized in
solvents which were then evaporated to obtain the dry
scaffolds, while in the case of 3DP the PLA-PCL wire was
softened with heat (T > Tg°) to be extruded.

In all cases, between the raw material and the respective scaffold
obtained there was a reduction in the molecular weight of
26% ± 3.7%.

3.3 Mechanical characterization

Results obtained by uniaxial tensile tests were reported in
Figures 3, 4. ES exhibited E = 6.21 ± 3.45 MPa while 3DP
scaffolds showed higher values (E = 20.90 ± 6.11 MPa and E =
77.26 ± 23.58 MPa for the 20% infill and 50% infill scaffolds
respectively). SC scaffolds showed lower E values (E = 4.56 ±
1.47 MPa), indicating that they are less stiff with respect to the
previous ones.

HS 20% infill and HS 50% infill scaffolds showed values of E =
7.39 ± 3.85 MPa and E = 34.77 ± 6.37 MPa respectively. Stress-strain
curve for 3DP 100% and HS 100% infill was not reported in the
graph because their E values resulted out of scale if compared to the
other ones (E > 100 MPa). These scaffolds resulted too rigid and stiff
and – for these reasons – not suitable to mimic soft tissues’
mechanical properties.

The Young’s modulus values obtained from the tensile tests
performed on the different scaffolds shown how even if the same
material is used, the production technique influenced by the
mechanical properties of the final structure. In fact, the
production technique rules the resulting sub-millimeter
microstructure (see Figure 1) which governs the mechanical
response. All scaffolds have E values that fit within the
physiological mechanical strength values reported in the
literature for different soft (E ≈ 1 MPa) and hard tissues (E >
10 MPa) (Akhtar et al., 2011; Guimarães et al., 2020). Specifically,
SC, ES, 3DP 20% infill, and its hybrid equivalent scaffolds can find
their application in muscle and cartilage tissue regeneration. On the
other hand, the 3DP 50% and 100% infill scaffolds are more suitable
for bone regeneration, where much greater mechanical stiffness and
strength is required.

3.4 Cell seeding and viability

Results of cells seeding and viability % were reported in Figure 5.
The cell viability test showed good cell viability for cells seeded

on SC (83% ± 21%) and ES (127% ± 15%) scaffolds. Almost no cells
were found at the bottom of the multi-well, indicating that the
scaffolds were able to retain the cells on their surface. The fact that
the cell viability value of the ES scaffolds is higher than the control is
justified as the adhesion and growth of the cells seeded on the
scaffold and on the 2D control (multi-well plate) can be different due
to the diversity of the support. In this case, there was better adhesion
to the three-dimensional polymeric scaffolds than to the multi-well,
justifying slightly higher vitality values. For the 3DP 20% infill and

FIGURE 1
Scanning electron microscopy (SEM) of (A) SC; (B) ES; (C) 3DP 20% infill; (D) 3DP 50% infill; (E) 3DP 100% infill; (F)HS 20% infill; (G)HS 50% infill; and
(H) HS 100% infill PLA-PCL 70:30 scaffolds.

Frontiers in Bioengineering and Biotechnology frontiersin.org07

Pisani et al. 10.3389/fbioe.2023.1186351

48

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1186351


50% infill scaffolds, most of the cells remained viable, but deposited
at the bottom of the multi-well. This happened because the high
porosity created by the geometry of the scaffolds does not retain the
cells that fall by gravity and do not adhere to the scaffolds. The 3DP
100% infill scaffold demonstrated another problem; the absence of
porosity and the smooth surface do not allow good cell adhesion
(Pisani et al., 2020; Pisani et al., 2022). Increase in cell viability and
adhesion was achieved in HS that exploit the porous texture of
electrospun nanofibers combined to the rigidity of the 3DP scaffold.
This is demonstrated to regulate cell behavior since substrate
stiffness affects many different processes, such as cell growth,
migration, and differentiation (Breuls et al., 2008).

Biological characterization was also performed by fluorescent
microscopy through nuclear DAPI staining (Figures 6, 7). Images
obtained reflect cell viability data in which a higher number of cells

appears on ES scaffolds than on SC or 3DP scaffolds (both 20% and
50% infill). 3DP 100% infill scaffolds show some cells on the surface,
but with few clusters. All the HSs showed a high cell density and
complete cellularization of the electrospun surfaces with the initial
formation of clusters.

Confirmation of the presence of cells on the scaffolds was
obtained from SEM images (Figure 8). Also, in this case there are
more cells on the EL than on SC scaffolds. Only a few isolated cells
were detected on 3DP 20% and 50% infill scaffolds. 3DP 100% infill
scaffolds showed few living cells, which tend to detach from the
scaffolds because of their smoother surface that avoids correct cell
adhesion and proliferation. Otherwise, HSs show good surface
cellularization with large spaces to allow further cell proliferation.

4 Discussion

The demonstrated improved performance of HSs produced
through the combination of different techniques (EL and 3DP) is
a step forward for current investigations. First of all–by analyzing the
time-quality balance of the different production methods—it
emerges that SC is a very long manufacturing technique
requiring more than 24h, and not at all functional for the
development of BSs due to scaffolds’ poor reproducibility and
non-uniformity that compromise final outcomes. On the
contrary, ES and 3DP techniques are characterized by short
production times and a high process reproducibility. ES produces
uniform and dimensionally homogeneous nanofibers which can be
employed alone as scaffolds. Moreover, nanofibers offer the
possibility to be used as a “functional coating material”,
exploiting their high surface area over volume ratio to improve
cell adhesion (Kishan and Cosgriff-Hernandez, 2017). 3DP
technique—based on a defined CAD design—can be modified
and adjusted in order to perfectly adapt to the user needs,
offering high customization possibilities in the perspective of
personalized precision medicine purposes (Vaz and Kumar,
2021). Moreover, important to consider is the scaffolds’
resolution that the different technologies can implement. The
obtainable minimum thickness of scaffolds with the 3D
technique at our disposal has been created to adapt to the values
of mechanical properties compatible with soft tissue. On the other
hand, the EL scaffolds, which mainly have a biological role in this
case, as the nanofibrous texture improves cell adhesion, were
electrospun for a suitable time to allow deposition both on the
metal collector and on the polymeric 3D-printed scaffold.

Promising results have emerged from the integration of the two
techniques: HS with different infill percentages (20% and 50%) show
an improved surface porosity than the respective 3DP scaffolds.
Particularly, in the case of the 100% 3DP scaffolds with no porosity,
the addition of nanofibers leads to a suitable surface porosity able to
guarantee cells’ adhesion. These values obtained for the HS scaffolds
were more suitable to be used as supports for cell cultures and to
allow the passage of nutrients/waste (Yadav et al., 2021). From the
biological point of view, cell viability studies also demonstrated that
HS scaffolds (20%, 50%, and 100% infill) show not only a higher
viability than the respective 3DP and ES scaffolds, but also a better
ability to retain cells on their surfaces. In fact, 3DP 20% and 50%
scaffolds’ higher porosity did not allow the cells to adhere to the

FIGURE 2
Results of GPC analysis reporting mean with 95%CI of molecular
weight and molecular number performed on PLA-PCL 70:30 powder,
wire, and scaffolds obtained by SC, ES, and 3DP.
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FIGURE 3
Different frames of uniaxial tensile test performed on HS scaffolds (20% infill).

FIGURE 4
Mechanical characterization: stress-strain curves and slope resulting from the mechanical characterization of SC, ES, 3DP, and HS scaffolds.

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Pisani et al. 10.3389/fbioe.2023.1186351

50

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1186351


scaffold surface, making them fall to the multi-well bottom. On the
other hand, the lack of porosity of 3DP 100% scaffolds did not
guarantee suitable cell adhesion and growth, showing lower cell
viability values. Both problems can be overcome by the combination
between 3DP and ES, with the ES substrate improving the HS
biological surface properties. It is also interesting to note that the
performance of ES scaffolds is improved by the integration with 3DP
support. It is therefore clear that HS scaffolds offer better biological
performance than the ones produced through the two
manufacturing techniques individually. Moreover, cell viability on
HS scaffolds increased by increasing the infill of the 3DP scaffold.
Moreover, when PLA-PCL was used to print the 100% 3DP

scaffolds, the mechanical properties resulted were too high to be
used as a support for soft tissue replacement and regeneration. Thus,
an important aspect on which future research will focus will be to
evaluate the use of less stiff materials for the development of high
infill 3DP scaffolds for soft tissue regeneration.

From the biomechanical point of view, it was noted that the HS
(20% and 50% infill) show lower Young’s modulus values (E) than
the corresponding 3DP scaffolds: the high stiffness being one of the
main problems of 3DP scaffolds, the integration of ES nanofibers
offers the possibility to tune this parameter and overcome
mechanical limitations. The measured values are compatible with
the Young’s moduli values of some human soft tissues: in particular,

FIGURE 5
Results of cell viability test performed with HNDF (Human normal dermal fibroblast) 48 h after sowing on SC, ES, 3DP, and HS scaffolds. Mean with
95%CI are shown.

FIGURE 6
DAPI staining of HNDF 48 h after sowing on (A) SC; (B) ES; (C) 3DP 20% infill; (D) 3DP 50%; (E) 3DP 100% infill; (F) HS 20% infill; (G)HS 50% infill; and
(H) HS 100% infill scaffolds.
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possible applications for the proposed PLA-PCL HS could be the
replacement of the aorta (2.0–3.0 MPa), myocardium
(2.0–4.0 MPa), nerves (5 MPa), cartilage (5.7–6.2 MPa), and
ligaments (25–93 MPa) (Guimarães et al., 2020; Kwon et al.,
2020). Moreover, other studies highlighted that, especially in
biological materials, mechanical properties are more controlled
by the nano-micro-structure. At the nanostructure level of ECM
proteins (10−9–10−6 m) stiffness is higher (10–103 MPa) compared to
the tissue (10−5–10−3 m) and organ level (10−3–10 m), which show a
stiffness ranging from 10−3 and 102 MPa (Akhtar et al., 2011).
Because scaffolds also have to maintain mechanical strength and
integrity at the nanoscale level unless new tissue regeneration takes
place, it is acceptable that Young’s modulus of BSs is higher
compared to the target tissue/organ (Yadav et al., 2021).
However, for future applications, modulation of the E values

could be adapted to the physiological values of other tissues/
organs, their architecture, and individual needs, and modified
according to the use of materials, architecture-geometry, and the
presences of selected cells on the scaffold (Sultana, 2018; Pisani et al.,
2022).

5 Conclusion

The proposed work stands as a “proof of concept” to validate the
integrated use of two of the most innovative and scalable scaffolds’
production techniques, namely, electrospinning and 3D printing.
Preliminary results obtained from this work defined some crucial
aspects that are certainly very interesting for future development of
more advanced BOs. HSs can be modulated as a function of i) used

FIGURE 7
(A) Number of DAPI-stained cell nuclei for the region of interest (ROI); (B) Example of DAPI nucleus counting on HS 100% infill scaffolds.

FIGURE 8
SEMof HNDF 48 h after sowing on (A) SC; (B) ES; (C) 3DP 20% infill; (D) 3DP 50% infill; (E) 3DP 100% infill; (F)HS 20% infill; (G)HS 50% infill; and (H)HS
100% infill scaffolds.
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materials, ii) 3D construct micro-geometry, and iii) electrospinning
nano-topography, to be adaptable to different soft tissue/organ
types. BSs are therefore a valid option for further studies and
advanced development of BOs could be used as alternatives to
organ transplantation.
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Augmented reality—The way
forward in patient education for
intracranial aneurysms? A
qualitative exploration of views,
expectations and preferences of
patients suffering from an
unruptured intracranial aneurysm
regarding augmented reality in
patient education

Julie Urlings1,2,3*, Inger Abma4, René Aquarius1, Marlien Aalbers1,
Ronald Bartels1, Thomas Maal2, Dylan Henssen3† and
Jeroen Boogaarts1†

1Department of Neurosurgery, Radboud University Medical Centre, Nijmegen, Netherlands, 23D Lab
Radboudumc, Radboud University Medical Centre, Nijmegen, Netherlands, 3Department of Medical
Imaging, Radboud University Medical Centre, Nijmegen, Netherlands, 4IQ Healthcare, Radboud Institute
of Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands

Objectives: The goal of this project is to explore the views, expectations and
preferences of patients with an unruptured intracranial aneurysm regarding the
use of AR in patient education.

Methods: To gain an in-depth understanding of the patients’ perspective, a face-
to-face interview study was conducted using an interview protocol with a
predefined topic list. All interviews were audio-recorded and transcribed
verbatim afterwards. Transcripts were analyzed using thematic content
analyses. Coding was performed using Atlas.ti software.

Results: Seventeen interviews were conducted. The views, expectations and
preferences of patients regarding patient education with AR could be
subdivided into 15 categories, which could be grouped into 4 general themes:
1) experiences with current patient education, 2) expectations of AR in patient
education, 3) opportunities and limitations of AR, and 4) out-of-hospital use of an
AR application. Patients’ expectations were predominantly positive regarding
improving patients’ understanding of their medical situation and doctor-patient
communication.

Discusssion: This study suggests that patients with unruptured intracranial
aneurysms are open to receive patient education regarding their disease with
AR. Patients expect that AR models can help patients with intra-cranial aneurysms
better understand their disease, treatment options and risks. Additionally, patients
expect AR could improve doctor-patient communication.
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1 Introduction

An intracranial aneurysm is a dilation in the wall of an
artery of the brain. This increases the chances of the blood vessel
rupturing, which can cause severe bleeding. However, aneurysm
treatment is associated with possible complications. Therefore,
the risk of spontaneous rupture has to be balanced against the
risks of procedural complications. Clinical decision making is
therefore complicated and for patients with unruptured, often
asymptomatic, intracranial aneurysms, the process of
information transfer needs to be in-depth and detailed.
Physicians have the responsibility to inform patients about
the aneurysm itself, the different treatment options (e.g.,
endovascular coiling, open surgical clipping) and the
associated risks. This process of clinical decision making can
be challenging. Survey studies reported that there was low
agreement between patients and neurosurgeons regarding the
“best” treatment option for each individual patient (King et al.,
2005; Saito et al., 2012). Furthermore, almost no agreement with
regard to the understanding of treatment options and
corresponding risks has been reported (Saito et al., 2012)
(King et al., 2005). Patients estimated much higher risks of
stroke or death from surgical clipping, endovascular
embolization, or no intervention compared with the
estimates offered by their neurosurgeons (King et al., 2005).
These results illustrate that important discrepancies exist
between the perceived risks and benefits as estimated by
neurosurgeons and those estimated by patients. Patient
education with innovative 3D visualization techniques might
be able to overcome these discrepancies.

AR is a form of 3D technology which overlays a computer-
generated image on a user’s view of the real world, providing
additional data and context (Barsom et al., 2016). Although AR
is already being studied and used in the education of students and
residents (Kamphuis et al., 2014; Zhu et al., 2014; Pelargos et al.,
2017), its benefits in the context of patient education are mostly
unknown (Urlings et al., 2022). Theoretically, the use of AR might
add to standard methods of information transfer as AR has the
ability to simulate events on top of reality, creating a hybrid
immersive learning environment. This could facilitate the
development of skills, such as problem solving, critical thinking
and communicating (Dunleavy et al., 2008). Additionally, studies on
AR for anatomy education suggest that using AR applications
decreases cognitive load in students (i.e., the amount of working
memory resources used) (Iordache et al., 2012; Di Serio ÁIbáñez and
Kloos, 2013; Kucuk et al., 2016; Henssen et al., 2020). In a conference
paper of Jakl et al. (2020) participants thought that an AR system as a
complementary tool for medical patient education could lead to an
improved understanding of the content of a medical consultation.
Considering these benefits of AR for students and residents, we
hypothesize that AR could also be beneficial for patient education.

However, before implementing AR in the education of
unruptured intracranial aneurysm patients, it is important to ask
these patients if and how they would like to see AR used in the clinic.
Patients’ views on the current patient education process and their

expectancies of the usage of AR, can provide valuable insights into
effective AR implementation. Previous work has shown that
including patients through qualitative research can result in
identifying facilitators and barriers from the patient perspective,
and positive and negative effects of new educational tool usage (van
de Belt et al., 2018; Hilt et al., 2020).

This qualitative study aimed to provide more insight in the
expectations and wishes of patients suffering from unruptured
intracranial aneurysms on AR in patient education. These
insights could provide indications for AR in patient education,
and thus form a basis for developing a suitable AR application
and for further research.

2 Materials and methods

2.1 Study design

To obtain an in-depth understanding of the subject and to
explore patients’ views, expectations and preferences, a qualitative
research design was used. Ethical approval was not required for this
type of study under Dutch law, and an exemption was obtained by
the local Medical Ethics Committee “CMO Regio Arnhem-
Nijmegen” (registration number: 2020-7206). Written informed
consent was obtained from all participants. Data were collected
using semi structured interviews to obtain a nuanced understanding
of the patients’ expectations and wishes concerning AR in patient
education.

Based on a literature study, an interview protocol was
constructed based on a topic list. In collaboration with a
radiologist and neurosurgeons and 3D technicians, the topic list
was finetuned. The interview protocol provided structure for the
interview to ensure that all necessary topics were covered. Interviews
were conducted from May 2021 until December 2021.

The interviews were conducted by two trained researchers (JU
and/or D.H.). Each participant was interviewed once, at a time and
place suitable for the patient. The setting of this interview was
informal and was conducted as a conversation. Based on patients’
preferences, close relatives attended the interview and were allowed
to assist patients during the interviews. The researchers made
explicit that they had no involvement in the medical care of the
participants.

Interviews were conducted face-tot-face or by use of video
call programs due to the COVID-19 pandemic and its subsequent
restrictions (e.g., social distancing). All interviews were audio-
recorded and transcribed verbatim after conducting the
interview. Additional interviews were conducted until data
saturation was suspected (i.e., no new topics emerged during
the interviews), after which two additional interviews were held
to confirm this.

Open-ended questions were used as starting points for the
interview. The first part of the interview consisted of three topics:
1) general/demographics, 2) experiences with current patient
education, and 3) context (friends and family). Then, to clearly
illustrate augmented reality technology to the participants, two
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videos were shown during the interviews. These videos can be
viewed in Supplementary Material SA, B. The first video gave a
general idea on what AR looks like. The second video showed an AR
aneurysm model. The interview guide used after watching the first
video consisted of the topic 1) first reaction to AR. After watching
the second video, the guide consisted of six major topics: 1) first
reactions to AR, 2) expected value of using 3D prints during
consultation, 3) wishes for AR, 4) the AR model, 5) context
(friend and family), 6) additional experiences and needs. The
main topics/questions are shown in Table 1. Patients were
encouraged to express their own opinions and experiences freely.
Clarification was asked regularly to ensure that answers given were
understood correctly. When new topics emerged from the
interviews, they were added to the topic list.

2.2 Participants and recruitment

Patients were eligible for inclusion if they had a diagnosis for an
intracranial aneurysm or they were already treated for their intracranial
aneurysm. Patients were identified through the outpatient clinic of the
Radbouduniversitymedical center,Nijmegen,Netherlands, or theweekly
neurovascular interdisciplinary meeting of the first 3 months of 2021 of
this hospital. Patients were first approached by a neurosurgeon or nurse
practitioner. If patients were interested to participate in this project, their
contact details were passed on to the researchers who then providedmore
information on the study. To seek in-depth information from a wide
range of patients, purposive sampling was conducted based on gender,
age and educational background. Only patients with a sufficient
understanding of the Dutch language were included in the study.

TABLE 1 Timeline of each interview including main interview topics and accompanying interview questions.

Interview topics Main questions

General/demographics - Questions on age, work and occupational status

- Can you tell me about your aneurysm?

- How were you diagnosed?

- Which treatment did you receive?

Experiences with current patient education - How did your physician educate you about your aneurysm?

- What was your opinion about the information you received from your physician?

- Did your physician use visualization tools?

- Did you fully understand the information you received from your physician?

- What was the most important information you received from your physician?

Context (family and friends) - Did you talk about your condition with family and/or friends?

First video is shown

First reaction to AR - What are your first reactions on AR after watching this video?

- Did you already have experience with AR?

- Do you have any questions after watching the first video?

Second video is shown

First reaction to AR - What are your first reactions on AR after watching this video?

Expected value of using 3D prints during
consultation

- Do you think there are advantages of using AR in patient education?

- Do you think there are disadvantages of using AR in patient education?

- Do you think AR could change something about the subjects that are being discussed in the consultation room?

Wishes for AR - If you look back on the education that you received, do you think you would have liked the education to have been with
the use of AR?

- Besides the features of AR that you saw in the video, are there other things you would like to see in AR?

- When and where would you like to use AR?

- On which devise would you like to see AR?

The AR model - What did you think of the AR model that was used in the video?

Context (friend and family) - Do you think AR could help you talk about your condition with family and friends?

Additional experiences and needs - Do you have additional topics you want to discuss?

- Do you have any questions?
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2.3 Data analysis

The data from these interviews were analysed using thematic
content analysis. This was done using Atlas. ti software version
22 Windows (http://atlasti.com; ATLAS.ti Scientific Software
Development GmbH, Berlin, Germany). The first interviews were
independently coded by two authors (JU and DH). The assigned
codes were compared and discussed until consensus was reached on
the codes for the codebook. Analysis took place via an inductive
iterative process using the constant comparative method. This
means that data analysis started after the first interview was
completed. As the study continued, codes derived from the
previous interview(s) were used as a starting point for coding the
next interview, adding additional codes where and whenever
needed.

JU and DH also started axial coding in which codes were linked
together and combined into categories. This process continued
throughout the coding of the subsequent interviews, in which JU
analysed the interviews first, adding new codes if needed, after which
DH checked the coded interviews for agreement. Together, they
adapted the codebook throughout this process and created an
overview of the code categories and themes. Finally, the findings
were discussed with IA and JB, and the final categories and themes
were decided upon.

TABLE 2 Patient characteristics.

Participants (Brown et al., 2019)

Gender

- Female (n) 11

- Male (n) 6

Median age 65 years (20–75 years)

Occupational status

- Working (n) 9

- Unable to work (n) 5

- Retired (N) 3

Treatment

- Minimal invasive (Coiling/surpass flow diverter) 10

- Clipping 1

- Watchfull waiting 5

- Clipping and watchfull waiting 1

Level of education

- Bachelor’s degree 7

- No Bachelor’s degree 10

TABLE 3 Themes and categories.

Themes Categories

Experiences with current patient education - Received education

- Asking questions

- Visualization tools

- Points of improvement

Expectations of AR in patient education - Improving patients’ understanding

- Emotional confrontation

Opportunities and limitations of AR - Wishes used AR model

- Explaining relate complaints

- Showing treatment options in AR

- Patients’ needs

- Necessity

- Concerns regarding the use of AR

- Timing

Out- of- hospital use - AR at home

- AR for relatives
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3 Results

3.1 Patient characteristics

Seventeen patients with an unruptured intracranial aneurysm
were interviewed. Patient characteristics are summarized in Table 2.

3.2 Results of the analysis

The patients’ expectations and wishes on AR were categorized
into 15 categories. These were sorted into 4 themes: 1) experiences
with current patient education, 2) expectations of AR in patient
education, 3) opportunities and limitations of AR, and 4) out of
hospital use of an AR application. Details are summerized in Table 3.

3.2.1 Current patient education
This theme describes experiences patients have with current

patient education, which can provide valuable insights into effective
AR implementation.

3.2.1.1 Experiences
Participants mentioned that creating clarity and providing

assurance was the most important goal of patient education.
They indicated that this could be achieved by providing
complete, though concise and understandable information.
Additionally, it was mentioned that it was very important for
patients to be able to trust their physician and that the education
is approached positively, i.e., not just focusing on the risks. This is
important because emphasizing the risks of an intracranial
aneurysm could cause patients to feel overly anxious.

When discussing which information, they valued the most,
interviewees reported that detailed information about aneurysm
location, size and origin was important to them. The participants
described they needed this information to understand the
explanation of different treatment options, the advantages and
disadvantages, the associated risks and the possible consequences
of rupture or treatment failure.

It was expressed by participants that they had forgotten a great
amount of information that was given during the first consultation. The
reasons that people gave for this memory loss were pre-existent memory
problems, being nervous and/or the excessive amount of information
given during their first visit. Interviewees told us that they therefore
learned most about their aneurysm by reading information provided by
their physician or information they found online.

Participants stated that they found it difficult to formulate the
right questions during the first consultation due to shock and the
amount of information provided at this first consultation. Therefore,
most questions arose after their hospital visit.

3.2.1.2. Visualization tools
Two tools were described by the interviewees which were used to

help them visualize the aneurysm: radiological data and a sketch
made by the physician. A mentioned disadvantage of the
radiological data was that participants found it too difficult to
understand. They mentioned that they needed a lot of
explanation from their physician to fully comprehend what they

saw when looking at scans. One patient even stated that imaging was
interesting for physicians, but not for patients.

“A neurologist explained to me that there were at least two
aneurysms in there and she also showed them on a scan but well,
all you see are a few gray spots. You can’t do much with
that. (P14)”

Patients expressed that they were more satisfied with the
sketches made by the physician. The reasons patients gave for
this preference was that these sketches gave them more insight in
their diagnosis and possibilities for treatment in a simple way.
Additionally, the physician showing a stent when explaining
treatment options was well appreciated by patients.

“They also showed it on the MRI or CT, but that is less clear. It is
more difficult to understand. With a sketch, it was just a blood
vessel with a ball on top and then he drew some coils in it. (P4)”

3.2.2 Expectations regarding AR
3.2.2.1 Improving patients’ understanding

The biggest benefit patients expected from AR was that it could
increase patients’ understanding of the location and size of their
aneurysm. In addition, patients believed AR could be a valuable
addition to help explain treatment options and the associated risks.
They expected that, especially the attractive visualization used in AR
would help patients better understand the information given by their
physician. This might also make the information easier to
remember. Moreover, patients expected that increased
understanding could also lead to patients making more well-
educated decisions on their treatment. Participants believed this
visualization and the increased understanding that could come with
it would make it easier to live at ease with their intracranial
aneurysm.

“Then I can see what they’re really talking about. Because I try to
understand what they are telling me, but if you really just have a
clear image, it’s just a lot easier. Then it becomes easier to
remember and you can also explain it to others more
easily. (P9)”

It was also expressed that seeing an aneurysm in AR would give
more insight in possible complaints due to their aneurysm.

‘Very clear, nice to see. You understand it a little better. I
suppose that if I could see this of my own head, then I
would know precisely where my aneurysm is located. So,
when I feel pain elsewhere, I don’t have to be afraid. But
then, if I feel pain on the location of the aneurysm, I’d think,
oh, could there be something wrong there? (P10)”

With regard to AR in the consultation room, views were that the
use of AR would be suitable in a consultation with their physician.
Patients differed in their view whether using AR would lead to
discussing extra topics during a consultation. One view was that the
use of AR would not change what is being discussed in the
consultation room. The contrasting view was that, because
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patients can see exactly what the physician is talking about, AR could
lead to patients asking more questions.

3.2.2.2 Emotional confrontation
Before viewing the video of the AR aneurysm model, patients

expected that viewing their aneurysm in AR could be emotionally
confronting and even scary. However, after watching the AR video,
none of the participants expressed feelings of this kind. Patients did
not find the ARmodel scary because it was clear and informative and
because it did not look too ‘real’. Having a good doctor-patient
relationship was expected to make it less scary to watch the AR
model, emphasizing the guiding role of the physician.

3.2.3 Opportunities and limitations AR
3.2.3.1 Wishes regarding the used AR model

Generally, patients thought the AR aneurysm model used in this
study was clear and that it gave insight in the anatomy and the
location of the aneurysm. Participants were happy with an
innovation like this in patient education and mentioned they
would like to see a personalized AR model. The adaptability of
AR was seen as an advantage. Unlike with a sketch, with AR you can
easily remove and add different layers of the model, which provides
patients with a more detailed explanation. However, several points
for improvement and wishes for AR emerged during the interviews.
Concerning the current model, patients stated that the aneurysm in
the model should be presented larger or more striking. Thereby, it
was stated that more details should be incorporated in the AR
model, such as cranial nerves, white matter and the thickness of
blood vessels. Additionally, it was suggested that a brain should be
incorporated in the AR model to make it clearer where the blood
vessels are in relation to the brain. Also indicating the front and back
of the model could be helpful.

3.2.3.2 Explaining related complaints
When receiving information using AR, patients stated that

the model should be used to explain potential causes of the
aneurysm and causes of complaints provoked by their
aneurysm or perceived treatment. One patient stated that they
would like their physician to use AR every consult to update them
on the state of their aneurysm.

3.2.3.3 Showing treatment options with AR
Participants stated that they would like to see their treatment

options depicted in AR. Some patients stated they would like AR to
be used to create more insight in treatment risks, whereas others
disclosed that treatment risks should not be visualized in AR because
it would be too confronting.

3.2.3.4 Concerns regarding the use of AR
Concerns were expressed regarding the accuracy of AR.

Participants were afraid details would get lost when transferring
data from a scan to an AR model or that the model will show a
distorted reality.

Another problem that was raised was that patients need time to
get used to the new technology, which could be difficult at an older
age. Proper guidance when using AR and a physician well-trained in
using the device were therefore considered necessary by patients.
Additionally, patients specifically stated that when using AR,

medical education provided by a specialist will always stay
necessary, preferably by a physician.

“My physician could explain it in great detail with a drawing, or
at least well enough, and that gave a soothing feeling. You know
that the physician understands everything about it and that he
will fix it. That feeling should stay if you’re going to do it that
way. (P4)”

Views on preferred AR device were divided. One view was that
using a phone to view AR would make is easy to watch AR at home
and prevent having to purchase a new device. Several patients were
inconclusive about which AR device they would prefer, because they
did not have any experience in using AR. When discussing the
potential disadvantages of AR in patient education, patients stated
that although they would like education using AR, they were afraid it
would not work in practice, because it would consume too much
time during the consultation.

3.2.3.5 Patients’ needs
Several perspectives on patients’ need for AR arose during the

interviews. Patients told us they expected that it depends on the
patient’s coping strategy whether someone wants education with AR
or not. For example, some patients just do not want to know
everything about their condition. It was suspected that AR might
be too confronting when a patient has a more severe diagnosis or
needs to undergo a treatment with more risks. It was specifically
expressed that therefore you should always ask the patient whether
they would like to see an AR model. Additionally, it was stated that
ARwould bemost favorable for patients with a low understanding of
their condition.

3.2.3.6 Necessity
The necessity of AR in patient education was questioned during

the interviews. Participants reported that AR gave them more
insight in their condition, but that it was not necessary for
patient education. Additionally, it was stated that AR would be
more beneficial for conditions that are more difficult to understand
than having an aneurysm.

3.2.3.7 Timing
Participants advised not to provide AR when a patient first hears

about having an aneurysm, but at a later stage. This way, patients
would have time to let the news sink in before further patient
education takes place with AR. However, not all patients agreed: one
patient stated that he would not mind receiving AR patient
education in the acute moment.

3.2.4 Out of hospital use
3.2.4.1 AR at home

Several patients mentioned that they would like to be able to
watch an AR model of their aneurysm at home, for example, by
using an AR-application on a phone or tablet. This would allow
them to rewatch information in a comfortable environment with
relatives. One patient expressed that they wanted to gather as much
information at home as possible. A suggestion that was made by
participants was that an AR recording at home should include the
physician’s explanation that they received at their hospital visit.
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3.2.4.2 AR for relatives
AR could also be used for relatives. A reason patients mentioned

to do this was that using AR could make talking about aneurysms
easier for patients. Another reason was that it would be beneficial
that one would not have to explain everything repeatedly, because
they could instead show their relatives using AR. Reasons mentioned
against using AR for relatives were that AR could make relatives
uncomfortable or that relatives would not be interested in AR.

4 Discussion and conclusion

4.1 Discussion

This study explored the views, expectations and preferences
with regard to the use of AR in educating patients about their
intracranial aneurysms. In general, participants expressed that
AR could be useful in this setting, particularly with regard to
improving patients’ understanding of their medical situation.
Also, AR was suggested to improve the communication between
doctor and patient. It was preferred to use AR later in the
educational process (i.e., not directly after receiving the
diagnosis) and most interviewees saw opportunities regarding
the use of AR at home and in explaining their disease to their
relatives. Nevertheless, interviewees disclosed that AR could be
too time-consuming during consultation and that a physician
trained in using AR is necessary. Also, AR was believed to be
emotionally confronting, although none of the participants
experienced this after viewing the here described AR system.

The few previous studies that have been carried out on the use of
AR in patient education, rarely involved patients in the process of
designing and implementing AR applications (Domhardt et al.,
2015; Calle-Bustos et al., 2017; Azman et al., 2019; Brown et al.,
2019; Calle-Bustos et al., 2019; Wake et al., 2019; Bray et al., 2020;
House et al., 2020; Sezer et al., 2020; Tait et al., 2020). For a recent
review, see (Urlings et al., 2022). End-users often stress
misalignments among their problems and the solutions that
technology systems aim to solve (Calvillo-Arbizu et al., 2019).
Including patient views early on in the process of design of
patient education is important, because physicians and other
healthcare workers might not always be able to judge what is
important to patients (Hilt et al., 2020). Our current study is the
first research that has been performed to explore the views of
patients with unruptured intracranial aneurysms regarding AR
for educational purposes.

The previous studies comprised patients suffering from a diverse
spectrum of chronic diseases (e.g., prostate cancer, diabetes mellitus,
multiple sclerosis, epilepsy). These studies showed benefits of AR
such as (perceived) knowledge gain and increased patient
satisfaction (Urlings et al., 2022). These benefits are similar to
the benefits of AR as suspected by the patients interviewed in
our study. More high-quality studies are needed to conclude
whether AR truly has those beneficial effects on patient
education and whether it could thereby improve doctor-patient
communication.

Additionally, inter-individual differences in visuospatial abilities
significantly impacted student performance when working with AR
(Moro et al., 2020).

Furthermore, it was noted that patient-specific factors, such as
conditions like strabismus that affect three-dimensional vision, could
affect the choice of the most suitable AR device for patient education
(Jakl et al., 2020). Nevertheless, whether spatial abilities and other co-
variates play a significant role when working with AR in patient
education remains elusive and should be investigated in future studies.

Patients in this study emphasized the ongoing necessity of medical
education provided by a specialist, preferably a physician, when
augmented reality (AR) is utilized. This finding corresponds with
the existing literature on the use of visualization tools for patient
education. Previous research on alternative methods such as
videotaped instructions or computer-aided information systems has
produced mixed results. However, existing evidence shows that
providing a combination of spoken and written or visual
information is best (Thomson et al., 2001; Kessels, 2003).

Furthermore, patients expressed their preference to utilize AR later
in the educational process as this would give patients the time to process
their diagnosis before further patient education takes place. We know
evidence exists, indicating that attentional narrowing occurs when
events are perceived as stressful or emotional (Kessels, 2003). In
such situations, the central message, such as “you have an aneurysm
in your brain,” becomes the primary focus, leading to limited attention
towards other provided information. Consequently, any remaining
information, perhaps about treatment options and risks, is not
processed and stored into memory and therefore cannot be recalled.
Considering this, providing AR patient education later in the
educational process could me more beneficial (Kessels, 2003).

Similar to the expectations of patients in our study that AR could
help in communicating with relatives, it was found that an AR
intervention helped parents to talk about a planned procedure with
their children and that it significantly decreased anxiety in parents whose
children were undergoing invasive procedures (Bray et al., 2020). In
another study relatives expressed their preference of an AR application
over a physical model and chose it as the future standard tool for patient
education (House et al., 2020). The latter contrasts with our finding that
some patients feared AR could make relatives uncomfortable or that
relatives would not be interested in AR. Future research should examine
the exact value of using AR between patients and relatives.

Finally, patients in our study expressed their worries about
needing time to get used to the new technology and that this
could be difficult at an older age. Proper guidance when using
AR and a physician well-trained in using the device were considered
necessary. When looking at the existing literature however, most
studies reported a high usability and likability of the AR applications
used (Calle-Bustos et al., 2017; Brown et al., 2019; Calle-Bustos et al.,
2019; Wake et al., 2019; Bray et al., 2020; House et al., 2020; Tait
et al., 2020). These studies comprised patients with an age range
between 8 and 63 years. Five of these studies offered participants
training or assistance in using AR (16, 17, 21, 22, 24). Therefore, the
use of AR might not be problematic for patients with an older age as
long as there is proper guidance.

4.1.1 Strengths and limitations
This study is the first to present the expectations and wishes

concerning the use of AR for patient education among patients with
unruptured intracranial aneurysms. It has been shown in other aspects
of medical treatment that the patient’s expectations and wishes can be
different from those of physicians (Hilt et al., 2020). The identification

Frontiers in Bioengineering and Biotechnology frontiersin.org07

Urlings et al. 10.3389/fbioe.2023.1204643

61

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1204643


of positive and negative expectations and patients’ wishes as perceived
by individual participants allows us to improve the use of ARmodels for
patient education. The results form a basis for future quantitative
studies on the effect of AR in patient education for these patients.
In these studies, it is necessary to determine whether the use of these
models truly contributes to patients’ understanding of their disease, the
procedure, and risks compared with the use of 2D imaging alone.
Another strength of this study is the role of the researchers as an
independent party in relation to the treatment process. This enabled
participants to speak openly.

To seek in-depth information from a wide range of patients
purposive sampling was conducted in this study. As a result, the
participant group comprised patients with varying genders, ages, and
educational backgrounds. It is worth noting that thereweremore female
participants thanmale participants, which aligns with the epidemiology
of unruptured intracranial aneurysms, as these are more commonly
observed in females (Vlak et al., 2011; Brown and Broderick, 2014).

A limitation of this studywas that all study participants were treated
in the same hospital located in the Netherlands. Patients might perceive
AR differently depending on the health resources in a country. This
partially limits the transferability of these findings to other patient
populations.

Another limitation is that we opted for videos to illustrate AR
instead of an AR application or AR-glasses due to practical
considerations. This made it possible to conduct the interviews
online, which was necessitated by the interviews being conducted
during the COVID-19 pandemic. It is possible that this resulted in a
less immersive experience compared to an application or AR glasses.

4.2 Conclusion

This study suggests that patients with unruptured intracranial
aneurysms are open to receive patient education regarding their
disease with AR. Patients expect that AR models can help patients
with intra-cranial aneurysms better understand their disease,
treatment options and risks. Additionally, patients expect AR
could improve doctor-patient communication. The views,
expectations and preferences of patients identified in this study
can contribute to improving information provision and
communication using AR applications by providing insights into
patients’ perceptions.

4.3 Practice implications

Future studies on AR in patient education should take these
expectations and wishes into account and evaluate the extent to

which the use of AR models could positively influence the quality of
patient education.
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Accurate 3D localization of the mandibular canal is crucial for the success of
digitally-assisted dental surgeries. Damage to the mandibular canal may result in
severe consequences for the patient, including acute pain, numbness, or even
facial paralysis. As such, the development of a fast, stable, and highly precise
method for mandibular canal segmentation is paramount for enhancing the
success rate of dental surgical procedures. Nonetheless, the task of mandibular
canal segmentation is fraught with challenges, including a severe imbalance
between positive and negative samples and indistinct boundaries, which often
compromise the completeness of existing segmentation methods. To surmount
these challenges, we propose an innovative, fully automated segmentation
approach for the mandibular canal. Our methodology employs a Transformer
architecture in conjunction with cl-Dice loss to ensure that the model
concentrates on the connectivity of the mandibular canal. Additionally, we
introduce a pixel-level feature fusion technique to bolster the model’s
sensitivity to fine-grained details of the canal structure. To tackle the issue of
sample imbalance and vague boundaries, we implement a strategy founded on
mandibular foramen localization to isolate the maximally connected domain of
the mandibular canal. Furthermore, a contrast enhancement technique is
employed for pre-processing the raw data. We also adopt a Deep Label Fusion
strategy for pre-training on synthetic datasets, which substantially elevates the
model’s performance. Empirical evaluations on a publicly accessible mandibular
canal dataset reveal superior performance metrics: a Dice score of 0.844, click
score of 0.961, IoU of 0.731, and HD95 of 2.947 mm. These results not only
validate the efficacy of our approach but also establish its state-of-the-art
performance on the public mandibular canal dataset.

KEYWORDS

mandibular canal, transformer, feature fusion, segmentation, CBCT

1 Introduction

The mandibular canal (MC) is a tubular anatomical structure situated within the
mandible and chiefly houses the inferior alveolar nerve (IAN) and associated vasculature
(Agbaje et al., 2017). This nerve shares a critical relationship with the third molar (Rai et al.,
2014). Any insult to the MC can lead to adverse outcomes such as patient discomfort, acute
pain, or even facial paralysis (Al-Juboori et al., 2014). Therefore, precise segmentation of the
MC from imaging modalities is instrumental for clinicians to appreciate the spatial
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relationship between the MC and adjacent anatomical landmarks,
thereby minimizing the risk of iatrogenic nerve injury during
surgical interventions (Li et al., 2022). Owing to the cumbersome
and error-prone nature of manual delineation, automated
segmentation of the MC from radiological images has emerged as
a focal point in dental research (Usman et al., 2022).

With the advent of advanced deep learning techniques, neural
network-based segmentation of oral structures has shown significant
progress (Cui et al., 2022; Fontenele et al., 2023). However, the
segmentation of the mandibular canal still falls short when
compared to other anatomical structures. The primary challenges
are multifaceted. First, the mandibular canal occupies a minute
fraction of the overall CBCT image, which can lead the neural
network to prioritize the background over the target foreground.
Second, the low contrast of CBCT images makes it difficult to
distinguish the mandibular canal from surrounding tissues, often
resulting in blurred or indistinct boundaries. Traditional
segmentation approaches such as region growing, level set,
thresholding, and model matching have proven insufficient for
overcoming these obstacles (Kainmueller et al., 2009; Abdolali
et al., 2017). U-Net-based architectures have exhibited excellent
performance across various domains since their introduction.
Nonetheless, they often lack the capability to provide holistic
information, causing them to neglect the topological structure of
the mandibular canal during segmentation tasks (Jaskari et al., 2020;
Lahoud et al., 2022). In recent years, Transformer-based encoder-
decoder frameworks [e.g., TransUNet (Chen et al., 2021), UNETR
(Hatamizadeh et al., 2022a), UNETR++ (Shaker et al., 2022)] have
emerged, demonstrating promising results (Li et al., 2023). These
Transformer-based methodologies utilize a global mechanism to
capture features over long distances, addressing the limitations of
CNN-based networks. However, the existing Transformer-based
segmentation methods predominantly focus on larger organs, and
they still do not provide effective solutions for segmenting the
mandibular canal, which has smaller voxel sizes.

To address the aforementioned challenges, we have enhanced
the Swin-UNetR model specifically for mandibular canal
segmentation. We also incorporate a pixel-level feature fusion
module to augment the model’s capability to discern finer details
of the mandibular canal. To mitigate the severe class imbalance
between the foreground and background, as well as the low contrast
prevalent in mandibular canal data, we introduce a cropping
technique grounded in mandibular foramen localization and a
contrast enhancement strategy based on Contrast-Limited
Adaptive Histogram Equalization (CLAHE). Given the
topological continuity of the mandibular canal, we employ clDice
as the model’s loss function. Moreover, to improve model
robustness, we propose a straightforward yet effective deep label
fusion technique that capitalizes on the sparse data in the dataset.
Our main contributions can be summarized as follows:

(1) We introduce an enhanced Transformer-based segmentation
network tailored for mandibular canal segmentation, offering a
novel avenue for accurate segmentation of this complex
structure.

(2) We proposed a pixel-level feature fusion module to improve the
model’s detail perception ability, and improve the model’s
segmentation accuracy and convergence speed.

(3) We introduce a cropping method that autonomously localizes
the mandibular and mental foramina, coupled with an image
contrast enhancement strategy, as preprocessing steps to
address the challenges of category imbalance and unclear
mandibular canal boundaries. Furthermore, our depth
expansion technique is used to generate fused label datasets,
enhancing the model’s robustness.

The remainder of the paper is structured as follows: Section 2
reviews related work in mandibular canal segmentation. Section 3
provides a comprehensive description of our proposed method.
Section 4 discusses the materials and implementation details. In
Section 5, we present the results along with comparative analyses.
Section 6 contains the analysis and discussion of our work. Finally,
Section 7 concludes the paper.

2 Related work

In the fisrt chapter, we delineated the broader research context,
current state of the field, and specifically emphasized the importance
and challenges associated with mandibular canal segmentation. In
the subsequent chapters, we will delve deeper into the historical
development of various mandibular canal segmentation techniques.
These methods can be broadly categorized based on the underlying
technology into traditional image processing techniques, CNN
(Convolutional Neural Network)-based approaches, and
Transformer-based segmentation methods.

2.1 Traditional image processing-based
segmentation method

To address the clinical issue of solely relying on manual
segmentation of the mandibular canal by dental professionals,
Kainmueller et al. (2009) proposed an automated segmentation
technique that combines the Dijkstra tracking algorithm with the
Statistical ShapeModel (SSM). This method successfully reduced the
average error to 1.0mm, achieving a level of automation.
Subsequently, Kim et al. (2010) presented a segmentation
strategy that employs 3D panoramic volume rendering (VR) and
texture analysis. Their approach captured variations in the curvature
of the mandibular canal using a line tracing algorithm. Furthermore,
threshold-based segmentation technologies have seen some
advancements. Moris et al. (2012) employed a thresholding
technique to identify the mandibular and mental foramina and
then used template matching technology to recursively calculate the
optimal path between them, leveraging strong prior knowledge to
achieve effective segmentation results. Building on Mori et al.’s
work, Onchis-Moaca et al. (2016) enhanced template matching
technology by using the anisotropic generalized Hough transform
of the Gabor filter, significantly improving computational efficiency.
However, these methods suffer from excessive reliance on prior
knowledge and limited generalizability. On the other hand, to tackle
the low contrast of CBCT images, Abdolali et al. (2017) innovatively
employed low-rankmatrix decomposition to enhance image quality,
thereby increasing the visibility of the mandibular canal in the shape
model. Similarly, Wei and Wang (2021) utilized windowing and
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K-means clustering algorithms for data enhancement to improve the
mandibular canal’s visibility and subsequently deployed two-
dimensional linear tracking coupled with tetranomial fitting for
segmentation. In summary, traditional segmentation methods either
depend excessively on prior knowledge or require significant manual
intervention, leading to pronounced human-induced biases.

2.2 CNN-based segmentation method

In recent years, CNN-based segmentation methods have
achieved significant advancements in mandibular canal
segmentation. Jaskari et al. (2020) first employed a Fully
Convolutional Network (FCN) for this task, achieving a Dice
coefficient of 0.57 and thus substantiating the efficacy of CNN
approaches in this domain. Following this, Kwak et al. (2020)
utilized thresholding technology for rapid mandibular canal
localization, converting the full-volume image into a 2D slice
sequence. They then employed SegNet and 3D UNet models for
2D slice-level and 3D volume-level segmentation, respectively.
However, their approach did not adequately consider the
structural information of the mandibular canal. To address this
gap, Widiasri et al. (2022) segmented 3D images into 2D slices and
utilized the Dental-Yolo algorithm for feature detection. This
method computed the dimensions between the alveolar bone and
the mandibular canal, allowing the model to acquire rich positional
information. Additionally, to enhance segmentation accuracy and
mitigate computational limitations, researchers have proposed
generalized hierarchical frameworks (Lahoud et al., 2022;
Verhelst et al., 2021). For instance, Verhelst et al. (2021) initially
downsampled images to reduce resolution, retained only patches
with foreground classes, and employed a 3D UNet in conjunction
with the Marching Cubes algorithm for smoothing and
segmentation. However, this method necessitates some manual
input and struggles with samples that have indistinct mandibular
canal boundaries. To counteract the issue of blurred boundaries,
Faradhilla et al. (2021) introduced a Double Auxiliary Loss (DAL) in
the loss function to make the network more attentive to the target
area and its boundaries, achieving a high Dice accuracy of 0.914 on
their private dataset. To combat class imbalance, Du et al. (2022)
innovatively introduced a pre-processing step involving centerline
extraction and region growing to identify the mandibular canal’s
location. They used a fixed point as a reference to crop a localized
region around the mandibular canal, thereby minimizing the impact
of background samples. Despite the successes of these methods, they
generally sacrifice rich global information during training, leading to
a loss of structural integrity in the segmented mandibular canal.

2.3 Transformer-based segmentation
method

In the realm of medical imaging, Transformer-based techniques
have garnered considerable attention, finding applications across a
range of tasks including segmentation, recognition, detection,
registration, reconstruction, and enhancement (Li et al., 2023;
Dosovitskiy et al., 2020). One key advantage of the Transformer
architecture over Convolutional Neural Networks (CNNs) is its

robust capability for global perception, allowing for a more effective
understanding of global contextual information and capturing long-
range dependencies. Many Transformer-based approaches have
been adapted for segmentation tasks involving major human
organs, and have yielded impressive results (Liu and Shen, 2022;
Pan et al., 2022). For instance, Wang et al. (2021) introduced the
UCTransNet model, which for the first time incorporated the
Transformer into the channel dimension. By leveraging feature
fusion and multi-scale channel attention, the model optimized
the information integration between low- and high-dimensional
spaces (Chen et al., 2021). Hatamizadeh et al. (2022a) then proposed
the UNETR model, which employed the Vision Transformer (ViT)
as the encoding layer. This model leveraged the Transformer’s
strong global modeling capabilities to achieve excellent
performance on multi-organ segmentation datasets. To address
the UNETR model’s relatively weaker performance in capturing
local details, Hatamizadeh et al. (2022b) introduced the Swin
UNETR segmentation model. This variant ensured a global
receptive field while also giving ample consideration to local
details, and it has shown promising results in tasks such as brain
tumor segmentation. Specifically in the context of mandibular canal
segmentation, Jeoun et al. (2022) introduced the Canal-Net, a
continuity-aware context network designed to help the model
understand the spatial structure of the mandibular canal. This
approach achieved a Dice coefficient of up to 0.87. These
outcomes provide compelling evidence to suggest that the
Transformer’s strong context-aware capabilities could be
particularly effective for mandibular canal segmentation tasks.
However, it is worth noting that research in Transformer-based
mandibular canal segmentation is still in its nascent stages.
Recognizing the unique challenges and characteristics of
mandibular canal segmentation, we sought to improve upon the
Swin UNETR model. Our modified approach has yielded promising
segmentation results, underscoring the potential utility of
Transformer-based architectures in this domain.

3 Methods

3.1 Data preprocessing

Considering the impact of preprocessing onmodel performance,
we employ a comprehensive set of preprocessing steps to address
existing challenges in CBCT imagery and thereby enhance the
segmentation accuracy of the mandibular canal. The specific
process is shown in Figure 1. The rectangular box in Figure 1
highlights the changes in the mandibular canal.

3.1.1 Volume cropping
The proportion of voxels representing the mandibular canal in

the entire CBCT image is exceedingly small, exacerbating the class
imbalance between foreground and background. This imbalance
adversely affects the model’s segmentation performance, as
illustrated in Figure 1A. To address this challenge, we introduce
a cropping technique based on the localization of the mandibular
foramen. This approach aims to identify the largest connected
domain of the mandibular canal by locating the jaw foramen, as
depicted in Figure 1B. This method locates the positional
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relationship between the mandibular foramen and chin foramen in
the labeled information, and then maps this positional relationship
to the original image for cropping. Following this preprocessing step,
the total number of voxels is reduced by approximately 60%. This
reduction not only enhances the model’s convergence speed and
segmentation accuracy but also minimizes hardware resource
consumption.

3.1.2 Contrast enhancement
In CBCT imaging, the gray values of the mandibular canal and

surrounding tissues are often similar, which obscures the boundary
of the mandibular canal. Further complicating the matter, some CT
devices may produce images with low resolution and blurriness,
making it difficult to differentiate the mandibular canal from
adjacent structures. To overcome these challenges, we employ
Contrast-Limited Adaptive Histogram Equalization (CLAHE) to
enhance image contrast, thereby improving the model’s
segmentation performance. This enhancement is demonstrated in
Figure 1C.

3.2 Mandibular canal segmentation network
structure

We employ the aforementioned preprocessing techniques on the
CBCT images and use them as input for the segmentation network.
In the encoder portion of the network, a 4-layer Swin Transformer
serves as the feature extractor. This architecture leverages the
Transformer’s robust capability for global modeling, allowing it
to focus more effectively on the overall structural features of the
mandibular canal, compared to traditional CNN-based feature
extractors. The decoder part of the network adheres to the
conventional U-Net decoding structure. In this design features
extracted by the encoder are connected to the decoder via skip
connections at each scale. At each stage of the encoder i the output
features are reshaped to size H

2i ×
W
2i ×

D
2i , which are then fed into a

residual module consisting of two 3 × 3 × 3 convolutional layers.
Subsequently, the feature map is upsampled by 2 times using a
deconvolution layer, and is concatenated with the output of the
previous layer and fed into the residual module. Finally, the output

of the residual module is sent to the DRC module to achieve pixel-
level feature fusion with the previous layer features. The final
segmentation result is calculated by using a 1 × 1 ×
1 convolutional layer and a sigmoid activation function. It
restores the spatial dimensions of the feature map through a
series of five upsampling operations, as shown in Figure 2.

To further improve the network’s ability to perceive the details
of the mandibular canal, we introduce a feature fusion strategy of
element-by-element addition and use the DRC (Deep Residual
Convolution) module for each decoding layer to further extract
features, as shown in Figure 3B. Comparing with traditional CNN
structure, as shown in Figure 3A, this module is mainly composed of
two branches: the first branch consists of a 1 × 1 convolution, the
second branch consists of two 1 × 1 and a 3 × 3 convolution, and to
improve the expressiveness of the convolution, we perform
normalization and ReLU activation operations after each
convolution operation. The output of the DRC module can be
expressed as:

DRC � F X,Y( )L + F X, Y( )R (1)
among them, X represents the input data, F(X,Y)L represents the
output of the left branch, and F(X,Y)R represents the output of the
right branch. The extracted features are fused layer by layer at the
pixel level to obtain the fused feature map F(x, y):

F x, y( ) � Fn x, y( ) +DRC Fn−1 x, y( )( ) (2)
where F(x, y) represents the pixel position in the feature map, and n
represents the nth decoder layer. Through this fusion strategy, the
model can learn more information from different feature map.

3.3 Deep Label fusion

To optimally leverage our set of 256 sparsely labeled data, we
introduce an innovative approach for pseudo-label generation.
Initially, the model is trained using densely annotated data, after
which it generates pseudo-labels for the 256 sparsely annotated
samples. Compared to the original sparse labels, these pseudo-labels
offer a richer semantic context but may lack adequate connectivity.
To address this limitation, we implement an intelligent label fusion

FIGURE 1
Our proposed preprocessing process, (A) represents the original image, (B) represents the cropped image, and (C) represents the contrast-
enhanced image.
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algorithm. This method first integrates instance level features of
circular extended labels and newly generated pseudo labels through
interpolation. More specifically, the pseudo-labels contribute
valuable semantic insights, while the circular extension labels
provide precise boundary delineation. We have coined this
method “Deep Label Fusion,” and employ it to create an
augmented dataset for this study. Utilizing this extended dataset
for pre-training the prediction model led to a notable improvement
in the Dice metric, particularly when compared to the performance
achieved with the original set of 256 circularly extended labels.

3.4 Loss function analysis

The primary objective of the loss function in medical image
segmentation tasks is to quantify the discrepancy between the
predicted segmentation outcomes and the ground-truth labels. Given
that the mandibular canal is a tubular structure, its connectivity is a
crucial consideration. In 2021, Shit et al. introduced a loss function
designed to take into account both vessel topology and connectivity,
known as centerline Dice (clDice). This function is computed based on
the intersection between the segmentation output and the extracted
cartilage scaffold. Importantly, clDice is adept at evaluating the
connectivity of tubular anatomical features. In our research, we
employ clDice as the loss function for training the network. The
expression for the clDice function is as follows:

FIGURE 2
The network diagram used in this article consists of a Transformer encoding module, a decoding module, and a feature fusion module. In addition,
the model accepts three types of labels: sparse label, dense label, and deep fusion label.

FIGURE 3
DRC module structure diagram, where (A) represents the
traditional convolution module (B) represents our proposed DRC
module.
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Tp SP, VL( ) � SP ∩ VL| |
SP| | , (3)

Ts SL, VP( ) � SL ∩ VP| |
SL| | , (4)

LclDice � −2 ×
Tp SP, VL( ) × Ts SL, VP( )
Tp SP, VL( ) × Ts SL, VP( ), (5)

among them, VL and VP refer to the predicted results and real labels
of network segmentation, respectively, SP and SL refer to the soft
skeleton extracted from VL and VP, respectively, Tp(SP, VL) refers to
the topological accuracy, Ts(SL, VP) is the topological sensitivity.
LclDice is the harmonic mean of the above two metrics to focus on

object connectivity. The total loss function Ltotal combines Dice Loss
and clDice Loss, the formula is as follows:

Ltotal � 1 − λ( )LDice + λLclDice, (6)
where λ is a scaling factor.

4 Data and implementation details

4.1 Data

The CBCT dataset utilized in this study was supplied by
Cipriano et al. (2022b) and exists in two versions: old and new.
The old dataset comprises 91 3D densely annotated primary datasets
and 256 2D sparsely annotated auxiliary datasets. This primary
dataset is further divided into 68 training sets, 8 validation sets, and
15 test sets. The spatial resolutions of these CBCT scans range from
148 × 272 × 334 to 171 × 423 × 462, featuring a voxel size of 0.3 ×
0.3 × 0.3 mm³. Conversely, the new dataset consists of 153 densely
annotated primary datasets and 290 sparsely annotated auxiliary
datasets. The spatial resolution in this new version ranges from
148 × 265 × 312 to 178 × 423 × 463. Additionally, the training set in
this new version has been expanded to include 130 datasets. To

TABLE 1 Comparison of results of different segmentation methods.

Test Methods Training set HD IoU clDice# Dice

1 Jaskari et al. (2020) Cir. Exp. — 0.39 — 0.56

2 Ours Cir. Exp. 7.844 0.405 0.845 0.573

3 Cipriano et al., (2022a) 3D Ann. — 0.61 — 0.75

4 Usman et al., (2022) 3D Ann. — 0.79 — 0.77

5 3D UNet 3D Ann. 16.048 0.558 0.809 0.709

6 nn-UNet 3D Ann. 6.363 0.665 0.935 0.796

7 UNetR 3D Ann. 8.027 0.569 0.823 0.722

8 Swin-Unet (Cao et al.) 3D Ann. 7.072 0.482 0.733 0.640

9 Ours 3D Ann. 5.002 0.692 0.933 0.815

Bold represents the optimal result. # is the measurement standard for tubular structure proposed by Shit et al. (2021).

FIGURE 4
Comparison of visualization results of different segmentation methods.

TABLE 2 Quantitative analysis results of different preprocessing methods on
model performance.

Input images HD95 (mm) IoU clDice Dice

Original 6.355 0.656 0.912 0.788

Volume Cutting 5.008 0.684 0.927 0.810

Contrast Enhancement 5.000 0.692 0.933 0.815

Bold values are reports the optimal result.
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maintain a fair and rigorous comparison with other studies, all
comparative analyses were conducted using the old dataset.
Moreover, to demonstrate the cutting-edge nature of our
research, we also conducted verifications using the new dataset
version.

4.2 Experimental details

Our experiments are implemented using NVIDIA Tesla
V100S in the PyTorch and MONAI deep learning libraries.
During the preprocessing, we processed the raw data offline by
the proposed jaw-foramen localization-based volume cropping
method and image contrast enhancement method. During the
training process, Diceloss and clDiceloss are used as the loss
function of the model, the Adam optimizer with momentum
(μ = 0.99) is used, the initial learning rate is set to 0.0001, and
the learning rate is automatically adjusted using cosine annealing,
and the batch size is set to 1, and the number of iterations of the
model is uniformly set to 500. In our experiments, to reduce
memory usage, we use a 96 × 96 × 96 sliding window with a stride
of 48 to crop the original CBCT image, and then feed the cropped
image into the network for training. After outputting the predicted
patch, we restore the output predicted patch to the original image
size by stitching.

4.3 Evaluation indicators

In the test phase, we use four commonly used evaluation
indicators for segmentation tasks to evaluate the performance of
the model: Dice coefficient (Dice), Intersection Over Union (IOU),
Hausdorff distance (HD):

4.3.1 Dice coefficient (Dice)
The Dice coefficient is a set similarity measurement function,

which is usually used to calculate the similarity between two
samples, and the value range is [0, 1].

Dice � 2TP
FP+2TP + FN

(7)

4.3.2 Intersection over union (IOU)
The IOU indicator calculates the overlap rate of predicted

results and real results, that is, the ratio of their intersection and
union.

IOU � A ∩ B

A ∪ B
(8)

4.3.3 Hausdorff distance (HD)
The HD indicator is a metric used to measure the similarity or

difference between two sets.

H A, B( ) � max h A, B( ), h B, A( ){ } (9)
where TP represents true positives, TN represents true negatives, FP
represents false positives, FN represents false negatives, A represents
the set of true labels, and B represents the set of predicted
segmentations.

5 Results

5.1 Evaluation of result

To prove the effectiveness of our proposed mandibular canal
segmentation method, we conducted a performance evaluation. The
specific results are as follows: only trained on 91 dense data, average
Dice = 0.815, average IoU = 0.69, average clDice = 0.93, the average
HD95 = 5 mm, all evaluation indicators have proved the excellence of
our proposed mandibular canal segmentation method. In addition, to
prove the advanced nature of our proposed method, we also compared
and analyzed it with existing methods, and the specific comparison
results are shown in Table 1. From the comparison results, it can be seen
that the improvement of the segmentation method we proposed is very
significant. Compared with the most advanced method that also uses

FIGURE 5
Visual segmentation results obtained by training the network with different loss functions.
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91 densely labeled data, our Dice index has increased by 4.5%. In
addition, using 256 sparse data for pre-training and our proposed deep
label fusion strategy for training, the Dice index reached 0.824 and
0.840, respectively. The specific visual comparison results are shown in
Figure 4.

5.2 Ablation experiment

5.2.1 Preprocessing
In Section 3.2, we proposed two data preprocessing methods,

namely, the cropping method based on jaw hole positioning and the
contrast enhancement method based on Contrast-Limited Adaptive
Histogram Equalization. Figure 4 shows our proposed preprocessing
method in detail. We have analyzed the effectiveness of the two
proposed methods, and the specific results are shown in Table 2. It
can be seen from the table that the Dice index has increased by 2.7%
after data preprocessing.

5.2.2 Feature fusion
To deeply study the impact of our proposed feature fusion

strategy on the performance of mandibular canal segmentation,
we conduct a series of ablation experiments and summarize the
experimental results in Table 3. The results show that the feature
fusion strategy plays an important role in the mandibular canal
segmentation task. The Dice coefficient using this feature fusion
strategy is 0.788, which is significantly improved compared to the
case where this module is not used. In addition, we conduct a
comparative analysis of the proposed DRC module and
traditional convolution. This design can effectively enhance
the representation ability of the model and help to further
optimize our proposed feature fusion strategy to improve
segmentation performance.

5.2.3 Loss function analysis
In our work, we use clDice Loss as the loss function to train the

network. In order to prove that clDice Loss is helpful in improving
the mandibular canal segmentation effect, we compared clDice Loss
with Cross-Entropy (CE) Loss and Dice Loss. The specific results are
shown in Table 4. We found that using clDice Loss as the loss
function achieved the optimal Dice coefficient of 0.815. In addition,
we also compared the impact of different hyperparameters λ in
clDice Loss on model segmentation performance. The specific visual
comparison results are shown in Figure 5. The broken part of the
mandibular canal in the segmentation result is marked with arrows.
From the figure, it can be clearly seen that the segmentation result
has the best connectivity when λ = 0.1.

5.2.4 Deep label fusion
In Section 3.3, we proposed a deep label fusion method, which

generated 256 fused labels on a sparse dataset, forming a new deep
fusion dataset. This deep fusion dataset contains richer semantic
information compared to sparse datasets, which can better guide
model training. To verify the effectiveness of this method, we
conducted a performance evaluation, and the specific evaluation
results are shown in Table 5. From the table, it can be seen that the
Dice index has been significantly improved when using our
proposed deep fusion label for pre training. When using 3D Ann
data for training, using our method for pre training is 1.6% higher
than using circular extended data for pre training Dice index.

6 Discussion

In this study, we propose a Transformer-based method for
automatic segmentation of the mandibular canal, which is
capable of simultaneously focusing on local fine-grained details
and global semantic information of the mandibular canal to
segment the mandibular canal with highly consistent accuracy
across the entire CBCT image. We validate the method on the
largest mandibular canal segmentation dataset, and the evaluation
index Dice coefficient exceeds previous research methods.

Due to the low contrast in CBCT images and the close similarity
in grayscale values between the mandibular canal and surrounding
tissues, neural networks face difficulties in effectively distinguishing
the boundaries of the mandibular canal (Waltrick et al., 2013).
Furthermore, the mandibular canal constitutes only a minute
fraction of the total CBCT image volume, leading to a
pronounced class imbalance between foreground and
background. This imbalance causes the network to
disproportionately focus on background features (Dai et al.,
2023). To address these challenges, we employ two pre-

TABLE 3 Quantitative results of different feature fusion methods.

Test HD95 (mm) IoU clDice Dice

Baseline 10.320 0.629 0.92 0.769

Baseline+C 9.550 0.642 0.894 0.777

Baseline+DRC 6.355 0.656 0.912 0.788

Among them, C means to use the traditional convolution module, and DRC means to use the deep residual convolution module. Bold values are reports the optimal result.

TABLE 4 Quantitative results of training models with different loss functions.

Loss function HD95 (mm) IoU clDice Dice

Cross-Entropy (CE) 8.207 0.660 0.907 0.790

Dice 7.828 0.665 0.888 0.795

clDice (λ� 0.5) 9.392 0.656 0.909 0.787

clDice (λ� 0.4) 6.958 0.680 0.927 0.806

clDice (λ� 0.3) 9.550 0.660 0.907 0.789

clDice (λ� 0.2) 5.005 0.681 0.927 0.806

clDice (λ� 0.1) 5.002 0.692 0.933 0.815

Bold values are reports the optimal result.
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processing techniques aimed at mitigating issues related to blurred
boundaries and class imbalances: a cropping method for automated
localization of the mandibular and mental foramina, and Contrast-
Limited Adaptive Histogram Equalization (CLAHE) for image
contrast enhancement. By eliminating extraneous information
and enhancing the contrast between the mandibular canal and its
surrounding tissue, these techniques facilitate precise localization
and segmentation of the mandibular canal. The efficacy of this
contrast enhancement approach has also been successfully validated
in two-dimensional microscopic images as per Wu et al. (2022). As
demonstrated in Section 5, the implementation of these two
preprocessing methods results in an approximate 4%
improvement in Dice coefficient performance.

Secondly, to maintain the connectivity of the segmented
mandibular canal, we incorporated the Transformer architecture
into the segmentation task. This enables the network to learn both
the local fine-grained details and the global semantic information
pertinent to the mandibular canal (Liu et al., 2021). Given the small
volumetric proportion of themandibular canal in the CBCT images, we
introduced a pixel-level feature fusion strategy to augment the network’s
segmentation performance. The deployment of the Deep Residual
Convolution (DRC) module further enriches the network’s
perception of intricate details. Previous studies have substantiated
the efficacy of feature fusion strategies in enhancing the
segmentation performance for small and indistinct targets (Dai
et al., 2023). Our empirical tests show that the feature fusion
module not only improves segmentation performance but also
accelerates model convergence, reducing training time by as much
as 50%. This acceleration is likely attributed to the enhanced perceptual
capabilities conferred by the module, partially ameliorating the slow
convergence typically associated with Transformer models. Regarding
the loss function, we employed the centerlineDice (clDice) loss function
to better account for the tubular topology of the mandibular canal (Shit
et al., 2021). As evidenced in Section 5, there was a 1% increase in the
Dice coefficient, corroborating the effectiveness of this method in
improving the segmentation of tubular structures. Figure 5 clearly
demonstrates enhanced connectivity in the segmentation results, an
outcome of clDice loss function’s calculation of connectivity disparities
between segmented outcomes and the extracted cartilage scaffolding.
This quantification allows the network to focus more on ensuring
connectivity in the segmentation results, thereby significantly
enhancing the morphological integrity of the mandibular canal’s
tubular structure. Similar findings are reported in Huang et al.
(2022) and Pan et al. (2021). Additionally, we leveraged sparse
existing data to generate an augmented dataset through our
proposed Deep Label Fusion technique. Compared to pre-training
on the circle-extension dataset, our method resulted in a 1.6%

increase in the Dice coefficient, reaching a score of 0.840. When
validated on the new version of the ToothFairy dataset, the Dice
coefficient was further improved to 0.844.

In the segmentation performance of CBCT images, our method
achieved the highest performance on the public mandibular canal
dataset (Cipriano et al., 2022b). Although this research work
achieved the best segmentation results overall, there are still certain
limitations. First of all, compared with the CNN network, the
convergence speed of this network needs to be improved. Secondly,
because the pixel changes of the mandibular canal at the mandibular
and mental foramen are not obvious, the segmentation effect of the
mandibular canal at the head and tail of the foramen is poor. Therefore,
we will focus on the first and last features in future research to further
improve the accuracy of the model.

7 Conclusion

In this study, we introduce a Transformer-based method for the
robust segmentation of the mandibular canal. Our approach adeptly
addresses key challenges, including morphological preservation of the
mandibular canal, class imbalance, and ambiguous boundaries,
subsequently achieving substantial improvements in segmentation
metrics. Firstly, we employ Contrast-Limited Adaptive Histogram
Equalization (CLAHE) to enhance image contrast, substantially
ameliorating the low-contrast issues inherent to original CBCT
scans. This step results in a notable increase in the model’s
segmentation accuracy. Secondly, we implement an image
cropping strategy founded on mandibular foramen localization.
This alleviates the class imbalance issue and substantially reduces
extraneous background information, streamlining the segmentation
process. Further, we introduce a specialized pixel-level feature fusion
module known as the Deep Residual Convolution (DRC). This
module not only amplifies the model’s sensitivity to fine details in
smaller targets such as the mandibular canal but also accelerates the
convergence speed of the model, partially mitigating the known slow-
convergence issue associated with Transformer architectures. To
improve the topological integrity of the segmented mandibular
canal, we utilize the centerline Dice (clDice) loss function. This
forces the network to concentrate on maintaining the connectivity
of the segmented structures, enhancing the morphological integrity of
the mandibular canal. Lastly, we deploy a Deep Label Fusion
technique to mine further information from the original, sparsely-
annotated dataset. This step significantly bolsters the model’s
segmentation performance. Our method was rigorously evaluated
on a publicly available mandibular canal dataset. The empirical results
demonstrate that our proposed segmentation approach outperforms

TABLE 5 Analysis of training results using different labels.

Test Pre-training set Training set HD IoU clDice Dice

1 — 3D Ann. 5.002 0.692 0.933 0.815

2 Cir. Exp. 3D Ann. 4.061 0.704 0.947 0.824

3 Deep fusion 3D Ann. 3.213 0.727 0.960 0.840

4 Deep fusion ToothFairy 2.947 0.731 0.961 0.844

Notes: 3D Ann indicates densely labeled data, Cir. Exp. represents circle expansion data, Deep fusion represents synthetic data sets, and ToothFairy represents new version data sets. Bold values

are reports the optimal result.
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existing methods, underscoring its strong potential for application in
the domain of mandibular canal segmentation.
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This systematic review offers an overview on clinical and technical aspects of
augmented reality (AR) applications in orthopedic and maxillofacial oncological
surgery. The review also provides a summary of the included articles with
objectives and major findings for both specialties. The search was conducted
on PubMed/Medline and Scopus databases and returned on 31 May 2023. All
articles of the last 10 years found by keywords augmented reality, mixed reality,
maxillofacial oncology and orthopedic oncology were considered in this study.
For orthopedic oncology, a total of 93 articles were found and only 9 articles were
selected following the defined inclusion criteria. These articles were subclassified
further based on study type, AR display type, registration/tracking modality and
involved anatomical region. Similarly, out of 958 articles on maxillofacial
oncology, 27 articles were selected for this review and categorized further in
the same manner. The main outcomes reported for both specialties are related to
registration error (i.e., how the virtual objects displayed in AR appear in the wrong
position relative to the real environment) and surgical accuracy (i.e., resection
error) obtained under AR navigation. However, meta-analysis on these outcomes
was not possible due to data heterogenicity. Despite having certain limitations
related to the still immature technology, we believe that AR is a viable tool to be
used in oncological surgeries of orthopedic andmaxillofacial field, especially if it is
integrated with an external navigation system to improve accuracy. It is
emphasized further to conduct more research and pre-clinical testing before
the wide adoption of AR in clinical settings.
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1 Introduction

Augmented reality (AR) is a technology that allows the fusion of
digital content into the real environment. The achieved augmented
continuum is a virtual world in which virtual objects are overlaid on
real elements, in the surrounding actual environment (Azuma et al.,
2001).

The first AR system using a Head Mounted Display (HMD) was
developed by Sutherland in 1968 (Feiner, 2002). Since its discovery,
AR technology has been utilized by experts in many areas; such as
entertainment, sports, gaming, retail, and also medicine. Indeed, the
recent technological advancements in headsets and computer
hardware resulted in many companies, especially in the
entertainment sector, investing in AR devices which have become
increasingly available and accessible. Therefore employed also in
health-related applications particularly in the surgical fields.

When applied to surgery, the AR allows to improve the user’s
perceptual and comprehensive ability by projecting three-
dimensional underlying anatomy directly onto the user’s retina
(via HMDs) or on a display screen.

AR in surgery has enormous potential to help the surgeon in
identifying tumor locations, delineating the planned dissection
planes, and reducing the risk of injury to invisible structures.
Therefore, using AR in the operating room (OR) could be
helpful in performing surgical tasks in a more accurate way.
HMDs are particularly beneficial for AR surgical applications
since they intrinsically provide the surgeon with an egocentric
viewpoint, and offer improved ergonomics if compared to
traditional computer-assisted surgical systems. This allows
surgeons to concentrate on the task at hand without having to
turn their heads away from the surgical field to constantly look at
imaging monitor. The most ambitious goal in surgery is to use AR
for intraoperative navigation. This involves taking data from
preoperative imaging and using anatomical anchors in the
operating field to register the two representations in real time.

Registration is an important step in computer-assisted surgical
navigation in order to correlate the virtual content and the real
surgical scene. In this context, the registration error can be defined
as; the measurement of how much the virtual objects displayed in
AR appear incorrectly positioned relative to the real environment.

For virtual-to-real surgical scene registration, AR systems
typically use a camera coupled to a device marker; such as QR
code, anchored to the patient (marker-based registration). Another
option is marker-less registration which includes a combination of
location data (from Global Positioning System), inertial
measurement unit (IMU) data, and computer vision to track
image features such as scene depth, the object surface, and object
edges (Venkatesan et al., 2021).

The core of the registration modality is tracking, which means to
determine and follow the position and orientation of an object with
respect to some reference coordinate system over time.

Over the past decade, with the advent of multimodal and high-
detailed 4D medical imaging (Bradley, 2008), numerous surgical
specialties have integrated AR into their surgical workflow, namely;
neurosurgery (Cannizzaro et al., 2022), urological surgery (Bianchi
et al., 2021; Schiavina et al., 2021; Roberts et al., 2022),
ophthalmology (Li et al., 2021), gastrointestinal endoscopy
(Mahmud et al., 2015), cardiovascular surgery (Rad et al., 2022),

spinal surgery (Molina et al., 2021a), breast surgery (Gouveia et al.,
2021), and thyroid surgery (Lee et al., 2020). Some authors utilized
AR to perform lateral skull-based surgery for cerebellopontine angle
tumor (Schwam et al., 2021) and some used it in open hepatic
surgery (Golse et al., 2021). Moreover, AR has also been employed in
procedures such as perforator flap transfer (Jiang et al., 2020) and
percutaneous nephrolithotomy (Ferraguti et al., 2022).

Orthopedic and Maxillofacial surgeries have been pioneers in
the use of AR in a surgical setting (Barcali et al., 2022).

These two surgeries may represent very promising fields for the
future clinical implementation of AR, since they are based on bony
hard tissues which make it easier to have fixed references, i.e., bony
structures, to be used for ensuring an accurate virtual-to-real scene
registration between preoperative (virtual) and intraoperative (real)
views.

Regarding orthopedic surgery, Alexander et al. (2020)
formulated a 3D augmented reality system for the placement of
acetabular component during total hip arthroplasty (THA) and
found it to be more precise and faster than standard fluoroscopic
guidance. Similarly, Ogawa et al. (2018) found AR to be more
accurate when comparing it to conventional goniometer for
acetabular cup placement during THA. In 2019, Tsukada et al.
(2019) conducted an in vitro study on sawbone models for
employing AR during total knee arthroplasty and concluded that
the system provided accurate measurements for tibial bone
resection. Consequently, in 2021, the same authors, formulated
prospective cohort study on 72 patients. They emphasized that
AR-assisted navigation to resect distal femur is more precise than
the conventional method (Tsukada et al., 2021).

Augmented reality and its tools have emerged as a new paradigm
also in spinal surgeries. Many authors have validated the use of AR
navigation for the precise placement of pedicle screw (Elmi-
Terander et al., 2018; Elmi-Terander et al., 2019; Gibby et al.,
2019; Dennler et al., 2020) and some compared its accuracy with
free-hand approach (Elmi-Terander et al., 2020). In 2021, Molina
et al. (2021b) conducted the first human trial of using an FDA
approved AR-HMD (X-vision Spine System, Augmedics) and
demonstrated its clinical and technical accuracy in spine surgery.

In the context of oral and cranio-maxillofacial surgery, AR
applications are of increasing interest and adoption (Badiali et al.,
2020).

Sharma et al. (2021) proposed a marker-less AR navigation
system algorithm with greater precision and faster processing time
for jaw surgery. Similar to the article on marker-less image
registration for jaw experiments published by Wang et al. (2019),
this study demonstrated its clinical viability through minimal
registration error and processing time.

Some other experiences of marker-less AR navigation have been
reported for assisting the harvesting of periosteum pedicle flap and
osteomyocutaneous fibular flap in head and neck reconstruction
(Battaglia et al., 2020), as well as for guiding osteotomies in pediatric
cranio-facial surgery (Ruggiero et al., 2023).

Similarly, recent studies in dental implantology have
demonstrated the efficacy of AR for displaying dynamic
navigation systems (Pellegrino et al., 2019; Shrestha et al., 2021).
Ma et al. (2019) proposed an AR-assisted navigation with cone beam
computed tomography (CBCT) registration method to attain the
desired dental implant precision. They compared the navigation

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Nasir et al. 10.3389/fbioe.2023.1276338

76

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1276338


method to physician’s experience and concluded that AR guidance
had better outcomes in terms of mean target error and mean angle
error. Budhathoki et al. (2020) emphasized the use of AR navigation
to visualize deep-seated anatomy, narrow areas and to provide
positioning of surgical instruments to avoid positioning error
complications during jaw surgery. Moreover, Gao et al. (2019)
employed AR in mandibular split osteotomy. Same as, Pietruski
et al. (2019) who incorporated AR navigation and cutting guides for
mandibular osteotomies in 2019 and concluded that this technology
can enhance the surgeon’s perception and hand-eye coordination
during mandibular resection and reconstruction procedures.

Although AR technology has a long history in orthopedic and
maxillofacial surgery, a complete analysis of its clinical and technical
application on oncological cases is still lacking.

In this literature review, we provide the comprehensive up-to-
date overview on current clinical applications of AR in orthopedic
oncology and maxillofacial oncology, pointing out its benefits and
current limitations. Moreover, we also elucidate the different
technological aspects of AR used in each of these experiences to
give an insight on how AR can be administered in oncological
surgical scenarios.

2 Materials and methods

2.1 Searching criteria

This systematic literature review was conducted on PubMed/
Medline and Scopus databases using the terms, “Augmented Reality”
AND “Orthopedic oncology,” “Mixed Reality” AND “Orthopedic
oncology,” “Augmented Reality” AND “Maxillofacial” AND
“oncology,” “Mixed Reality” AND “Maxillofacial” AND “oncology”
and “Augmented Reality” AND “Head and Neck” AND “cancer.” The
same search was also attempted using the term “Cranio-maxillofacial”
AND “oncology” in the place of “Maxillofacial”AND “oncology,” from
which, however, no additional results were obtained with respect to
what was already found. Searches for both specialty domains were done
separately and 2 independent users performed search until 31 May
2023. Relevant articles of only last 10 years were included in this review
paper. Manual search was also done in references of papers to see
missing of any relevant paper. PRISMA-guidelines were kept in mind
while preparing this review article.

The SPIDER (Sample, Phenomena of Interest, Design,
Evaluation, Research type) method was used to construct the
suitable research question: “Can augmented reality be considered
a beneficial tool in orthopedic and maxillofacial oncological fields in
achieving surgical accuracy?”

This review addresses this question by focusing on both clinical
and technical aspects of AR in these two surgical disciplines, as well
as on reporting current limitations and benefits.

Due to the qualitative and mixed-method nature of the included
articles and the heterogeneity of the data, the term “evaluation” was
left intentionally broad.

We performed the study selection based on the following
inclusion criteria: studies on augmented reality applications in
either orthopedic or maxillofacial field, only focused on oncology;
studies reporting applications on different targets (e.g., phantoms,
cadavers, animals and patients). All articles with either quantifiable

or qualitative outcomes on augmented reality confined to both
specialties with case reports were included.

Exclusion criteria were the following: articles “not relevant” (i.e., not
related to augmented reality, not strictly related to oncological surgery,
not related to orthopedic or maxillofacial surgery); articles with
language of publication other than English; theses; conference
papers; editorials; book chapters; review articles (as Review articles
typically do not include sufficient specifics regarding the recommended
solutions and are also considered as secondary source, therefore they
cannot be used in data extraction process).

2.2 Data extraction and analysis

All the search articles available till 31May 2023 were screened by
title first and then abstract.

The authors, date of publication, study design, and data from the
eligible articles were tabulated in Microsoft Excel® (Microsoft
Corporation, WA). All articles meeting the inclusion criteria were
read carefully and stratified following two parallel perspectives: a
clinical one, i.e., focusing on the specific surgical application, the
type of study (on phantoms, on cadavers, on animals, on humans),
the anatomical region of interest, the virtual information provided to
surgeon, and a technical one, i.e., the registration/tracking modality the
type of AR display, the achieved registration and surgical accuracy).

Key findings of each article were also stated in given tables in the
Results section for both orthopedic and maxillofacial specialties, and
also depicted in bar histograms. However, meta-analysis could not be
performed due to heterogeneity of literature. All these findings were
validated by a second independent investigator to ensure the correct
data acquisition and selection of the appropriate relevant literature.

Due to the fact that the included study designs exhibited a
significant level of variability, as is often observed in the case of new
technologies, they are developed individually with distinct features.
Consequently, conventional approaches for evaluating the risk of bias
were not suitable for use in this context. The authors generally evaluated
and assessed the risk of bias to be low or negligible for data description,
but it could be high for the analysis of the effectiveness of approaches
used in these studies. Furthermore, none of the articles included in the
review refers to a specific methodological protocol.

3 Results

The initial search of the PubMed/Medline and Scopus databases
was completed on 31 May 2023, and all available articles were
scrutinized using the above-described criteria.

In the following paragraphs, an analytic overview of the selected
papers and their classification were presented for both orthopedic
oncology and maxillofacial oncology.

As depicted in flowchart (Figure 1), the databases search for
orthopedic oncology returned 89 results while manual search yielded
4 publications. Fifty-nine articles remained after removing duplicates
based on titles and abstracts. According to the inclusion criteria, only
9 of the 59 articles were included in this review. Other articles were
excluded for the following reasons: “not-relevant” (n = 27), review
articles/book chapters/editorials/conference papers (n = 22), non-
English articles (n = 1).
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Similarly, for CMF oncology, 951 articles were found through
PubMed/Medline and Scopus search and 7 frommanual search. Out
of total 958, 738 articles remained after removal of duplicates. Based
on above defined criteria, 27 publications were included and others
were eliminated for the following reasons: “not-relevant” (n = 395),
review articles/book chapters/editorials/conference papers (n =
286), non-English language (n = 30).

For the included articles, both clinical and technical aspects are
summarized separately in given tables for both specialties (Tables
1–4). For the clinical aspects, we classified the papers according to:
the specific surgical application, the number of cases involved, the
involved anatomical region, the type of study (i.e., on phantom, on
cadaver, on patient), the virtual information provided to augment
the surgeon’s view (Tables 1, 3). For the technical aspects, we
considered the type of AR display and device, the used
registration/tracking modality, as well as the achieved registration
error and surgical accuracy (measured in mm) (Tables 2, 4). For
each included article we provided in a separate table a brief
description of the study and the major outcomes (Tables 5, 6).

We also show in bar histograms the breakdown of the studies
according to some of the most interesting aspects above mentioned
(Figures 2, 3).

3.1 Orthopedic oncology

For orthopedic oncology (Cho et al., 2017; Choi et al., 2017; Cho
et al., 2018; Moreta-Martinez et al., 2018; Abdel Al et al., 2020; García-

Sevilla et al., 2021a; Molina et al., 2021c; Moreta-Martinez et al., 2021;
Pose-Díez-de-la-Lastra et al., 2022), four studies were conducted on
phantoms (n = 1) or both on phantoms and prospectively on patients
(n = 3). Three studies were conducted on animal cadavers, whereas,
two studies directly employed AR on patients in OR. In the context of
AR display and registration/trackingmodality, five studies used screen-
based display and eight studies opted for a marker-based registration/
trackingmodality. Regarding the anatomical region of interest, pelvis is
the most involved anatomical region in the selected studies (n = 4).

The main outcomes reported in the included articles referred to
the registration error of the AR systems, the AR-guided surgical
accuracy in performing tumor resection compared to preoperative
planning and/or to standard procedures (i.e., manual
measurements), the placement error in positioning surgical
guides or patient-specific implant under AR assistance.

Despite the fact that the application of AR in the field of
orthopedic oncology has been relatively limited compared to
maxillofacial oncology to date, the included studies demonstrate
the potential future significance of AR technology in this surgical field.

3.2 Maxillofacial oncology

In the field of maxillofacial oncology (Scolozzi and Bijlenga,
2017; Battaglia et al., 2019; Gsaxner et al., 2019; Pepe et al., 2019;
Kim et al., 2020; García-Sevilla et al., 2021b; Gsaxner et al., 2021;
Meng et al., 2021; Ochandiano et al., 2021; Sahovaler et al., 2021;
Scherl et al., 2021; Sugahara et al., 2021; Tel et al., 2021; Ceccariglia

FIGURE 1
A flowchart showing inclusion and exclusion criteria used for the search, and the resulting selected papers.
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et al., 2022; Cercenelli et al., 2022; Chan H et al., 2022; Gao et al.,
2022; Han et al., 2022; Modabber et al., 2022; Shi et al., 2022; Tang
et al., 2022; Winnand et al., 2022; Yang et al., 2022; Necker et al.,
2023; Prasad et al., 2023; Shaofeng et al., 2023; Zhao et al., 2023), in
the majority of articles (n = 14) the proposed AR systems were tested
on phantoms, and 8 on patients only. Five researcher groups carried
out pre-clinical research on phantoms before using AR on patients.
The marker-less registration approach (n = 14) and wearable AR
displays, i.e., HMDs (n = 14), were utilized in the majority of the
research studies. These two investigating factors made up 52% of the
total studies. Mandible, being the most involved anatomical area of
interest for AR implementation, comprises of 52% of total studied
areas (n = 14).

The following are the primary findings that are covered in the
articles: the registration error, the AR-guided surgical accuracy in
performing tumor resection or flap harvesting compared to
preoperative planning, and the AR-guided surgical accuracy
compared to the more conventional use of 3D printed cutting
guides. It is interesting to mention that, some studies in
maxillofacial oncology have also incorporated external tracking
navigation systems into augmented reality to improve accuracy
and spatial relationships. The articles included have shown the
importance of AR and its future perspectives in this field.
Nevertheless, the majority of the studies underlined the need for
additional research before clinical application.

4 Discussion

In the set of orthopedic oncology articles, all studies utilized
marker for registration except 1 (Abdel Al et al., 2020), which opted
for marker-less registration. Mean registration error found to be less
than 3 mmwhere measured (not all articles reported the registration
error) excepting the one case of complex shoulder phantom (Pose-
Díez-de-la-Lastra et al., 2022), where RMSE was slightly more than
3 mm with HoloLens 2.

Out of nine articles, only three randomized controlled trial
studies (RCT) were reported (performed on animal cadavers).
Mean AR-assisted resection was less than 2 mm as compared to
conventional approach (e.g., manual resection) which had mean
resection error more than 2.5 mm in these studies (Cho et al., 2017;
Choi et al., 2017; Cho et al., 2018).

Included studies of orthopedic oncology also reported two cases,
both achieved intended outcomes using AR without any
complications (Abdel Al et al., 2020; Molina et al., 2021c).
Moreover, one study demonstrated a better positioning of
surgical guide in simulated pelvic tumor through AR as
compared to freehand method (García-Sevilla et al., 2021a).

Regarding usability, only one study conducted a questionnaire
survey with patients and surgeons, and the results turned out to be
satisfactory (Moreta-Martinez et al., 2021). Ergonomics of the most
popular AR devices, HoloLens 1 and 2, were discussed by Pose-Díez-

TABLE 1 Distribution of studies by clinical aspects of AR in Orthopedic Oncology.

Reference Authors Year Target
of study

Virtual
content

Specific surgical application Anatomical
region

No. of
cases

Moreta-Martinez et al.
(2021)

Moreta et al. 2021 Phantom
and Patient

Bones, tumors,
cutting planes

2 myxofibrosarcoma,1 liposarcoma, 1 Ewings
sarcoma, 1 fibrous dysplasia,
1 undifferentiated pleomorphic sarcoma

Femur, thigh, calf,
pelvis, shoulder

6

Cho et al. (2017) Choi et al. 2017 Animal
cadaver

Coloured template
of tumor with
normal bone and
safety margin

Simulated femur tumor Femur Total =
123
AR = 82
con = 41

Cho et al. (2018) Choi et al. 2018 Animal
cadaver

Tumor, surgical
plane and safety
margin

Simulated pelvic tumor Pelvis Total =
36
AR = 18,
con = 18

Choi et al. (2017) Choi et al. 2017 Animal
cadaver

Tumor, safety
margin, resection
and saw plane

Simulated pelvic tumor Pelvis Total =
60,
AR = 30,
con = 30

Molina et al. (2021c) Molina et al. 2021 Patient Tumor and
osteotomy
trajectory

L1 chondroma Spine 1

Abdel Al et al. (2020) Abdel et al. 2020 Patient MRI images with
tumor

Soft tissue sarcoma Foot 1

García-Sevilla et al.
(2021a)

Garcia-
Sevilla et al.

2021 Phantom Bones and PSI Simulated Pelvic tumor Pelvis 6

Moreta-Martinez et al.
(2018)

Moreta et al. 2018 Phantom
and Patient

Skin, bone and
tumor

Ewings sarcoma Tibia-fibula 1

Pose-Díez-de-la-Lastra
et al. (2022)

Pose-Díez-
de-la-Lastra
et al.

2022 Phantom
and Patient

Bone, tumor and
surgical guide

Extraosseous Ewing’s sarcoma and
Undifferentiated pleomorphic sarcoma

Tibia-fibula,
shoulder

2
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TABLE 2 Distribution of studies by technical aspects of AR in orthopedic oncology.

Reference Authors Year AR
display
type

AR device Registration/
Tracking
modality

No. of
cases

AR registration
error

AR surgical
accuracy

Moreta-Martinez et al.
(2021)

Moreta
et al.

2021 Screen-
based

Smartphone
iphone 6

Marker-based
(cubic marker)

6 Mean registration error:
2.80 ± 0.98 mm

n.a

Cho et al. (2017) Choi et al. 2017 Screen-
based

Tablet
(Surface
Pro 3)

Marker-based
(ArUCo code)

Total =
123 AR =
82 conv =
41

n.a Mean resection error
(difference between
the obtained and the
planned surgical
margin): AR-assisted
resection: 1.71 ±
0.25 mm;
Conventional
resection (manual
measurement):
2.64 ± 0.5 mm

Cho et al. (2018) Choi et al. 2018 Screen-
based

Tablet
(Surface
Pro 3)

Marker-based
(ArUCo code)

Total = 36
AR =
18 conv =
18

n.a Mean resection error
(difference between
the obtained and the
planned surgical
margin):AR-assisted
resection: 1.59 ±
4.13 mm;
Conventional
resection (based on
CT image): 4.55 ±
9.7 mm

Choi et al. (2017) Choi et al. 2017 Screen-
based

Tablet
(Surface
Pro 3)

Marker-based
(ArUCo code)

Total = 60
AR =
30 conv =
30

Mean registration error:
0.58 ± 0.22 mm

Mean resection error
(i.e., difference
between the obtained
and the planned
surgical margin):
AR-assisted
resection: 0.15 ±
1.02 mm;
Conventional
resection (manual
measurement):
2.89 ± 4.30 mm

Molina et al. (2021c) Molina
et al.

2021 HMD X-Vision
Augmedics

Marker-based 1 n.a n.a

Abdel Al et al. (2020) Abdel el at 2020 screen-
based

Smartphone
(Samsung
Galaxy A5)

Marker-less 1 n.a n.a

García-Sevilla et al.
(2021a)

Garcia-
Sevilla et al.

2021 Screen-
based/
HMD

Smartphone/
HoloLens 2

Marker-based 6 n.a. Median MOD
(Maximum
Osteotomy
Deviation) between
planned and real
osteotomy planes
(for realistic
phantom): AR-
assisted positioning
of surgical guide
(smartphone):
1.54 mm; AR-
assisted positioning
of surgical guide
(HoloLens2):
1.84 mm; Freehand
positioning: 3.37 mm

Moreta-Martinez et al.
(2018)

Moreta
et al.

2018 HMD HoloLens 1 Marker-based 1 (Phantom): Registration
error (Root Mean Square
Error (RMSE) in AR point
localization): 2.90 mm
(Clinical): n.a.

n.a.

(Continued on following page)
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de-la-Lastra et al. (2022) while comparing them on two orthopedic
cases. They indicated that HoloLens 2 has superior ergonomics
(score 4 out of 5) as compared to HoloLens 1 (score 2.84 out of 5).

The primary outcomes of the included articles in orthopedic
segment demonstrated the utility of AR and showed even better
results than conventional procedures in some cases. However, some
of the limitations of the orthopedic segment is that few articles
discuss the usability and ergonomics of this technology. Only three
out of nine articles are randomized controlled trials (RCTs), making
it difficult to derive a statistical comparison value from the current
studies. Furthermore, only four articles provided surgical accuracy
(Cho et al., 2017; Choi et al., 2017; Cho et al., 2018; García-Sevilla
et al., 2021a) and only four provided registration error (Choi et al.,
2017; Moreta-Martinez et al., 2018; Moreta-Martinez et al., 2021;
Pose-Díez-de-la-Lastra et al., 2022) showing the limitation of this
research.

Over all, with consideration of sufficient accuracy achieved in
terms of registration error and surgical accuracy during surgical
simulations, it can be said that AR is beneficial and helpful in
orthopedic oncological surgeries. However, due to limited literature
in orthopedic oncology till date, further testing is recommended.

In maxillofacial oncology, out of eight marker-based studies,
only two reported AR regisration error in terms of fiducial
registration error (<1 mm) (Sahovaler et al., 2021; Chan H et al.,
2022). Marker-less registration error (where measured in articles)
ranges from less than 1 mm to upto 2 cm (Gsaxner et al., 2019;
Gsaxner et al., 2021; Cercenelli et al., 2022; Shi et al., 2022; Yang
et al., 2022). This shows that some articles did not achieve the
desired precision in AR registration through the marker-less
approach.

Marker-based AR surgical accuracy was reported in five articles
and it was demonstrated in terms of deviation from pre-planned
surgical resection. Mean surgical resection error was measured to be
less than 3 mm among these articles (Kim et al., 2020; García-Sevilla
et al., 2021b; Chan H et al., 2022; Gao et al., 2022; Zhao et al., 2023).
Conversely, seven articles reported surgical accuracy using the
marker-less approach. The accuracy ranges from 0.49 to 2.77 mm
in six articles (Ceccariglia et al., 2022; Cercenelli et al., 2022;
Modabber et al., 2022; Shi et al., 2022; Tang et al., 2022;
Winnand et al., 2022), whereas, one study had a maximum
surgical error of 6.08 mm which did not meet surgical
requirement (Yang et al., 2022).

Two studies employed both marker-less and marker-based
registration, the latter being used mainly in the case of lack of
surface features easily recognizable (Shaofeng et al., 2023) or to
introduce a calibration procedure aimed at improving registration
accuracy (Pepe et al., 2019). Particularly in (Shaofeng et al., 2023) the
surgical accuracy, in terms of distance deviation between the
planned osteotomies and postoperative cuts performed under AR
guidance, was measured in the range of 0.88–2.01 mm. Manual
alignment for virtual-to-real registration was performed in five
articles (Meng et al., 2021; Scherl et al., 2021; Han et al., 2022;
Necker et al., 2023; Prasad et al., 2023) and only two of them
reported errors in terms of overlaying AR images. One study showed
average relocation error of 4 mm ± 3.9 mmwith HoloLens 2 (Prasad
et al., 2023), whereas the other measured mean registration error of
1.3 cm with HoloLens 1 (Scherl et al., 2021). Even though it is hard
to comment based on only two results, it seems that chances of error
are more in manual registration as compared to marker-less or
marker-based approach.

Two of the three case reports on maxillofacial oncological
surgery were qualitative, while one case of fibrous histiocytoma
had quantified findings with an overall mean discrepancy of 2.77 ±
1.29 mm using AR (Kim et al., 2020). According to qualitative
studies, the incorporation of mixed reality during pre-surgical
and intra-operative phases allows for precise surgical outcomes
and is helpful for lesion identification and determination of its
extension (Scolozzi and Bijlenga, 2017; Sugahara et al., 2021).

A total of seven studies have examined the utilization and
precision of AR in the context of flap harvesting for mandibular
restoration (Battaglia et al., 2019; Meng et al., 2021; Cercenelli et al.,
2022; Han et al., 2022; Modabber et al., 2022; Winnand et al., 2022;
Zhao et al., 2023). Among these, two of them conducted a
comparison between marker-less AR guidance and cutting guides
in the context of iliac crest harvesting (Modabber et al., 2022;
Winnand et al., 2022). The results indicated that cutting guides
exhibited superior precision compared to AR navigation in terms of,
both distance and angular deviation from pre-determined
trajectories. However, the distance deviations were less than
2.7 mm in AR group. In contrast, Zhao et al. (2023) employed a
marker-based methodology to assess the fibular flap, yielding an
average distance deviation of 1.22 ± 0.12 mm. One possible
explanation for this phenomenon is that the marker-based
approach tends to exhibit more accuracy in comparison to the

TABLE 2 (Continued) Distribution of studies by technical aspects of AR in orthopedic oncology.

Reference Authors Year AR
display
type

AR device Registration/
Tracking
modality

No. of
cases

AR registration
error

AR surgical
accuracy

Pose-Díez-de-la-Lastra
et al. (2022)

Pose-Díez-
de-la-Lastra
et al.

2022 HMD HoloLens 1
and 2

Marker-based 2 Registration error (RMSE
in AR point localization):
−2.16 mm
(HoloLens2–Leg
phantom);
−2.83 mm
(HoloLens1–Leg
phantom);
−3.11 mm
(HoloLens2–shoulder
phantom);

n.a.
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TABLE 3 Distribution of studies by clinical aspects of AR in maxillofacial oncology.

Reference Authors Year Target of
study

Virtual content Specific surgical
application

Anatomical
region

No. of
cases

Chan H et al.
(2022)

Chan et al. 2022 Phantom Tumors and cutting
planes

Simulated Maxillary tumors Maxilla 5

Sahovaler et al.
(2021)

Sahovaler et al. 2021 Phantom Tumors and cutting
planes

Simulated Sinonasal tumors Sinonasal 4

Shi et al. (2022) Jiafeng shi
et al.

2022 Phantom Mandible and osteotomy
line

Mandibular tumor Mandible 1

Ceccariglia et al.
(2022)

Ceccariglia
et al.

2021 Patient Skin, tumor with
surrounding normal bone
and cutting planes

1 maxillary squamous cell
carcinoma,1 osteomyelitis of left
jaw, 1 osteomyelitis of left mandible

Maxilla, mandible 3

Ochandiano et al.
(2021)

Ochandiano
et al.

2022 Phantom
and Patient

Mandible with teeth,
implant position and
angulation, splint
(tracker)

8 mandibular, 1 maxilla,1 tongue
and 1 hard palate

Mandible, maxilla,
tongue, hard palate

7

Gsaxner et al.
(2019)

Gsaxner et al. 2019 Phantom
and Patient

Bone and tumor mass Head and neck cancers (not
specified)

Head and neck (not
specified)

8

Pepe et al. (2019) Pepe et al. 2019 Phantom Tumor, reference
markers, slice of PET-CT
scan

Simulated Head and neck tumor Head and neck (not
specified)

1

García-Sevilla
et al. (2021b)

García-Sevilla
et al.

2022 Phantom
and Patient

Bone, tumor, surgical
resection margin, splint
for tracking

Adenoid cystic carcinoma Hard palate 1

Tel et al. (2021) Tel et al. 2021 Phantom
and Patient

Skull with maxillary
sinuses, muscles and fat,
tumor, infraorbital nerve,
optic nerve

Inferior orbital compartment
tumors (3 cavernous hemangioma,
1 neurofibroma, 1 schwannoma)

Orbit 5

Gsaxner et al.
(2021)

Gsaxner et al. 2021 Phantom Skull and tumor,
orthogonal slices of
imaging in anatomical
planes

Head and neck carcinoma (not
specified)

Head and neck (not
specified)

1

Sugahara et al.
(2021)

Sugahara et al. 2021 Patient Tumor, nasal cavity and
maxillary sinus with
surrounding normal skull

Maxillary calcifying odontogenic
cyst

Maxilla 1

Shaofeng et al.
(2023)

Shaofeng Liu
et al.

2023 Phantom
and Animal

Mandible, teeth, resection
lines, surgical saw,
fixation screw

Bilateral mandibular simulated
tumor

Mandible 9 model trials,
12 animal trials

Prasad et al.
(2023)

Prasad BA
et al.

2023 Human
Cadaver

Simulated cancer 20 different simulated Head and
neck cancers

Head and neck (not
specified)

20

Gao et al. (2022) Gao et al. 2022 Phantom Skull and virtual
recontouring plan

Craniofacial fibrous dysplasia Maxilla 5

Kim et al. (2020) Jin Kim et al. 2020 Patient Skull, tumor and cutting
planes

Malignant fibrous histiocytoma of
the maxilla

Maxilla 1

Yang et al. (2022) Yang et al. 2022 Patient Mandible with tumor and
surgical planes

Mandibular tumor Mandible 4

Tang et al. (2022) Tang et al. 2022 Patient Skull, tumor, surgical
planes, probe

Maxillary and mandibular tumor Maxilla, mandible 7

Scolozzi and
Bijlenga (2017)

Scolozzi et al. 2017 Patient Skull and tumor Pleomorphic adenoma of lacrimal
gland

Orbit 1

Cercenelli et al.
(2022)

Cercenelli
et al.

2022 Phantom Bone, vessels, skin,
osteotomy line

Skin paddle harvesting in
osteomyocutaneous fibular flap

Mandible 1

Scherl et al. (2021) Scherl et al. 2021 Patient Surface of the face,
mandible, masseter,
parotid gland, tumor

Parotid tumor Parotid Gland 6

(Continued on following page)
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marker-less approach in relation to lower limb bones. This might be
attributed to the specific shape and contour of these bones, which
pose challenges for marker-less registration techniques.

It is interesting to outline that five of the studies utilized external
navigator system with mixed reality. Four of them incorporated
external navigation into mixed reality to enhance accuracy and
spatial relationships (Scolozzi and Bijlenga, 2017; Gao et al., 2022;
Tang et al., 2022; Yang et al., 2022) and one study compared AR and
optical tracking system (OTS) accuracy (García-Sevilla et al., 2021b).

García-Sevilla et al. (2021b) compared AR and OTS for surgical
navigation and concluded that they have similar accuracy with
errors below 1 mm. Gao et al. (2022) used HoloLens and OTS on
five patients of cranio-fibrous dysplasia and the mean registration
error across all cranium models was 1.036 ± 0.081 mm. Tang et al.
(2022) conducted a study to evaluate efficacy and accuracy of mixed
reality, which is augmented by surgical navigator, on seven patients
of maxilla and mandibular tumors. The mean deviation from pre-
defined osteotomy plane was 1.68 ± 0.92 mm (set target error was
2 mm). However, in the study by Yang et al. (2022), cross linking of
mixed reality and optical navigator did not produce clinically
required accuracy (maximum error was 6.08 mm), but authors
highlighted that this system enhanced spatial experience and
work efficiency. Furthermore, in one case report, researchers
utilized tracked-microscope-based AR system and they
emphasized that this system was helpful in identifying and
determining the extension of pleomorphic adenoma of lacrimal
gland (Scolozzi and Bijlenga, 2017).

Feasibility and usability studies were conducted in two articles in
maxillofacial oncology. In one study, the standard ISO-9241/
110 feasibility questionnaire based on the 5-point Likert Scale
was conducted on both medical staff and AR experts, and overall
feedback turned out to be positive (Pepe et al., 2019). In another
article by Gsaxner et al. (2021), AR usability evaluation received a
SUS of 74.8 ± 15.9 (>68 indicates above average) with the 5-point
Likert scale of 4.5 ± 0.7 out of 5 (5 representing extremely positive).

In addition, AR guided simulations scored higher as compared
to virtual unguided resections in mental demand, performance,

effort and frustration in preclinical study conducted on
phantoms by Chan H et al. (2022).

Some clinicians find the AR system simple to learn and use,
which improves their decision-making skills (Gsaxner et al., 2021),
whereas, some authors stressed on the importance of pre-clinical
education in managing the technology’s steep learning curve
(Ochandiano et al., 2021).

Despite of the fact that a few studies did not achieve sufficient
accuracy in terms of registration error and surgical accuracy in
maxillofacial oncology, the overall outcomes seem to have a positive
impact of AR in maxillofacial oncological surgeries. For instance,
according to Chan H et al. (2022), AR guided resection improved
negative margin and had more similarities with pre-planned cutting
planes. Similarly, Shaofeng et al. (2023) came to conclusion that AR
system accuracy is similar to that of surgical guide while testing it on
mandibular tumor and fibular reconstruction. They also emphasized
that it enhances surgeon’s hand-eye coordination in executing
surgeries. Ceccariglia et al. (2022) found the discrepancy of under
2 mm between AR projected osteotomy and customized cutting
guide osteotomy. Shi et al. (2022) concluded that AR navigation can
effectively display and guide the surgical path and helps in achieving
desired results. Furthermore, Sahovaler et al. (2021) showed
advantage of AR over unguided simulations. However, some
pressing concerns like limited depth perception and time
required for auto-registration were also mentioned in some
studies (Pepe et al., 2019; Gsaxner et al., 2021; Modabber et al.,
2022).

Similar to orthopedic oncology, maxillofacial oncology section
also lacks in many aspects. Feasibility questionnaire survey and
ergonomics are discussed in only few articles. The different methods
of evaluation in articles limited the ability to provide quantifiable
results. Additionally, only 10 out of 27 articles reported on
registration error and only 14 reported on surgical accuracy.
Conversely, further research is emphasized pre-clinically before
implementing AR in operating rooms.

We should advocate for the development of a technique that is
uniform and consistent in order to investigate this new technology

TABLE 3 (Continued) Distribution of studies by clinical aspects of AR in maxillofacial oncology.

Reference Authors Year Target of
study

Virtual content Specific surgical
application

Anatomical
region

No. of
cases

Necker et al.
(2023)

Necker et al. 2022 Human
Cadaver

Mandible, tumor Mandibular tumor Mandible 1

Han et al. (2022) Lin et al. 2022 Phantom
and Patient

Arteries, veins, bone
tissues

Mandibular ameloblastoma Mandible 1

Zhao et al. (2023) Zhao et al. 2022 Cadaver Fibula, osteotomy lines Mandible (application: fibular flap
harvesting)

Mandible 7

Modabber et al.
(2022)

Modabber
et al.

2021 Cadaver Iliac crest with planned
osteotomies

Mandibular tumor (application:
iliac crest harvesting)

Mandible 10

Meng et al. (2021) Meng et al. 2021 Cadaver Fibula, fibular flap with
cutting planes

Mandible (application: fibula flap
harvesting)

Mandible 1

Battaglia et al.
(2019)

Battaglia et al. 2021 Patient Skin, fibula, cutting
guides, arteries

Mandible (application: fibular flap
harvesting)

Mandible 3

Winnand et al.
(2022)

Winnand et al. 2022 Phantom Iliac crest with planned
osteotomies

Mandible (application: iliac crest
graft harvesting)

Mandible 10
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TABLE 4 Distribution of studies by technical aspects of AR in maxillofacial oncology.

Reference Authors Year AR
display
type

AR device Registration/
Tracking
modality

No. of
cases

AR registration
error

AR surgical
accuracy

Chan H et al.
(2022)

Chan et al. 2022 Projector-
based

Portable high-
definition
projector
(PicoPro,
Celluon Inc.)

Marker-based 5 Fiducial registration
error of ≤1 mm

AR-guided osteotomies
had high similarity with
the preplanned, with
interclass correlation
index (ICC) close to 1
(0.893) in “adequate”
(5–15 mm) margins

Sahovaler et al.
(2021)

Sahovaler
et al.

2021 Projector-
based

Portable high-
definition
projector
(PicoPro,
Celluon Inc.)

Marker-based 4 Fiducial registration
error of ≤1 mm

n.a.

Shi et al. (2022) Jiafeng shi
et al.

2022 HMD HiAR G200 AR
Glasses

Marker-less 1 Surface matching
error: 0.64 ± 0.28 mm

Mean surgical resection
error: 0.49 ± 0.37 mm

Ceccariglia et al.
(2022)

Ceccariglia
et al.

2021 HMD HoloLens 2 Marker-less 3 n.a. Surgical resection error
(deviation between AR-
projected osteotomy and
the one planned and
performed with cutting
guide: <2 mm

Ochandiano
et al. (2021)

Ochandiano
et al.

2022 Screen
-based

Smartphone
(iphone 6)

Marker-based 7 n.a. n.a.

Gsaxner et al.
(2019)

Gsaxner et al. 2019 HMD HoloLens 1 Marker-less 8 Target registration
error: 9.2 ± 1.5 mm

n.a.

Pepe et al. (2019) Pepe et al. 2019 HMD HoloLens 1 Marker-less
Marker-based

1 Mean registration
error along (x, y, z):
Marker-less:
(3.3 ± 2.3, −4.5 ±
2.9, −9.3 ± 6.1) mm;
Marker-based
(7.0 ± 2.1, −12.5 ±
2.5, −19.0 ± 2.0) mm

n.a.

García-Sevilla
et al. (2021b)

García-Sevilla
et al.

2022 Screen
based

Smartphone
(Iphone 6)

Marker-based 1 n.a. Median surgical resection
error: 0.40 mm

Tel et al. (2021) Tel et al. 2021 Screen
based

Smartphone
(Iphone 12 Pro)

Marker-less 5 n.a. n.a.

Gsaxner et al.
(2021)

Gsaxner et al. 2021 HMD/PC HoloLens 1/PC Marker-less 1 Registration error
between a few
millimeters of up
to 2 cm

n.a.

Sugahara et al.
(2021)

Sugahara
et al.

2021 HMD HoloLens 1 Marker-based
(attach to splint)

1 n.a. n.a.

Shaofeng et al.
(2023)

Shaofeng Liu
et al.

2023 HMD HiAR G200 AR
glasses

Marker-less
Marker-based

9 model
trials,
12 animal
trials

Model Trials
Distance deviations:
1.62 ± 0.38 mm
(mandible) 1.86 ±
0.43 mm (fibula); 1.67 ±
0.70 mm (fixation screws)
Angular deviations:
3.68 ± 0.71° (mandible);
5.48 ± 2.06° (fibula); 7.50 ±
1.39° (fixation screws)
Animal trials
Distance deviations:
0.93 ± 0.63 mm (condyle);
2.01 ± 2.49 mm
(mandibular angle); 1.41 ±

(Continued on following page)
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TABLE 4 (Continued) Distribution of studies by technical aspects of AR in maxillofacial oncology.

Reference Authors Year AR
display
type

AR device Registration/
Tracking
modality

No. of
cases

AR registration
error

AR surgical
accuracy

0.61 mm (mandible);
0.88 ± 0.22 mm
(tibiofibular bones)
Angular deviations:
6.81 ± 2.21° (mandible);
6.47 ± 3.03° (tibiofibular
bones)

Prasad et al.
(2023)

Prasad BA
et al.

2023 HMD HoloLens 2 Manual 20 Average relocation
error of 4 mm ±
3.9 mm

n.a.

Gao et al. (2022) Gao et al. 2022 HMD HoloLens 1 Marker-based 5 n.a. Mean surgical error:
1.036 ± 0.081 mm

Kim et al. (2020) Jin Kim et al. 2020 Screen-
based/
HMD

Self-developed AR
viewer (Vive pro,
monitor)

Marker-based 1 n.a. Mean surgical error:
2.77 ± 1.29 mm

Yang et al.
(2022)

Yang et al. 2022 HMD HoloLens 1 Marker-less 4 Registration
error <1 mm

Maximum surgical error:
6.08 mm

Tang et al.
(2022)

Tang et al. 2022 HMD HoloLens 2 Marker-less 7 n.a. Mean surgical error:
1.68 ± 0.92 mm

Scolozzi and
Bijlenga (2017)

Scolozzi et al. 2017 Screen-
based

Microscope-based
AR system

Marker-less 1 n.a. n.a.

Cercenelli et al.
(2022)

Cercenelli
et al.

2022 Screen-
based
HMD

Tablet
HoloLens 2

Marker-less 1 Registration errors
ranging between
1–5 mm

Accuracy: 2.0 mm (100%
success rate with
HoloLens; 97% with
tablet)

Scherl et al.
(2021)

Scherl et al. 2021 HMD HoloLens 1 Manual 6 Mean error of the
alignment: 1.3 cm

n.a.

Necker et al.
(2023)

Necker et al. 2022 HMD HoloLens 2 Manual 1 n.a. n.a.

Han et al. (2022) Lin et al. 2022 HMD HoloLens 2 Manual 1 n.a n.a

Zhao et al.
(2023)

Zhao et al. 2022 Screen-
based

Monitor Marker-based 7 n.a Length difference: 1.18 ±
0.84 mm,
Angular deviation: 5.45 ±
1.47°,
Volume overlap rate:
95.31% ± 2.09%,
Average surface distance:
1.22 ± 0.12 mm.

Modabber et al.
(2022)

Modabber
et al.

2021 Projector-
based

ML750ST,
Optoma projector

Marker-less 10 n.a Angulation of the
osteotomy plane:
AR group: 14.99 ± 11.69°

Cutting guides group:
8.49 ± 5.42°

Osteotomy plane distance:
AR group: 2.65 ± 3.32 mm
Cutting guides: 1.47 ±
1.36 mm

Meng et al.
(2021)

Meng et al 2021 HMD HoloLens 1 Manual 1 n.a Mean location of the
fibular osteotomies: 2.11 ±
1.31 mm
Angular deviation of the
fibular segments: 2.85° ±
1.97°

Intergonial angle
distances: 7.24 ± 3.42 mm

Battaglia et al.
(2019)

Battaglia et al. 2019 Screen-
based

Tablet Marker-less 3 n.a n.a

(Continued on following page)
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and make it possible to conduct meta-analyses for future
investigations. This stage is crucial for gathering data to support
the use of AR in oncological procedures in both disciplines.
Additionally, we stress the importance of including external
navigation in AR in future experiments in order to enhance the
precision and depth perception of this infant, yet useful technology.
Moreover, through the use of standardized questionnaires, SUS, and
a 5-point Likert scale, feasibility and ergonomics should be
evaluated.

We observed from the collected papers that an important aspect
of AR implementation is three-dimensional printing (3D printing),
also referred to as rapid prototyping, which is typically used for
obtaining pre-operative patient-specific phantoms replicating the
anatomical structures of interest. These phantoms are typically used
in the papers to perform the surgical task preoperatively under AR
guidance, as well as to evaluate both the registration error and
surgical accuracy (Moreta-Martinez et al., 2018; Gsaxner et al., 2019;
Pepe et al., 2019; García-Sevilla et al., 2021a; García-Sevilla et al.,
2021b; Gsaxner et al., 2021; Moreta-Martinez et al., 2021;
Ochandiano et al., 2021; Sahovaler et al., 2021; Tel et al., 2021;
Chan H et al., 2022; Gao et al., 2022; Pose-Díez-de-la-Lastra et al.,
2022; Shi et al., 2022; Shaofeng et al., 2023). When using a marker-
based tracking approach, the reference marker which is designed to
fit in a unique position on the patient, is produced by 3D printing
(Moreta-Martinez et al., 2021; Cho et al., 2017; Choi et al., 2017; Cho
et al., 2018; Moreta-Martinez et al., 2018; García-Sevilla et al., 2021b;
Ochandiano et al., 2021; Sugahara et al., 2021; Pose-Díez-de-la-
Lastra et al., 2022; Shaofeng et al., 2023). Moreover, in some cases
(Moreta-Martinez et al., 2018; Ceccariglia et al., 2022) patient-
specific surgical guides used for comparative evaluation with AR
guidance on surgical accuracy are manufactured via 3D printing.
Finally, some studies clearly suggest to use AR and 3D printing in
combination to improve surgical efficacy, accuracy, and patients
experience (García-Sevilla et al., 2021a; Moreta-Martinez et al.,
2021).

4.1 Limitations of AR in surgery

Despite the fact that AR is a growing technology, it is not
without limitations and complications. Surgeons should be well
aware of the limitations of augmented reality in surgery, including
technical challenges, limited field of view which limits the amount of

virtual content available to the user, high implementation costs and
limited user experience. In addition, they should consider how these
limitations may impact the accuracy and efficacy of AR systems, as
well as the surgical outcomes. Before incorporating AR into clinical
practice, it is essential to execute a comprehensive analysis of its
viability and benefits.

For instance, the viewing distance and angle of commercially
available HMDs, such as HoloLens 2, are not optimized for use in
surgery since the focus distance is suboptimal for medical
procedures that are typically carried out at arm’s length and with
the head bowed to observe the operative field (Wong et al., 2022).

To the authors’ knowledge, today only two “surgery-specific”
headsets are available for AR-based intraoperative guidance: the
X-vision Spine System by Augmedics, which received FDA approval
(https://www.augmedics.com/), and the VOSTARS system, still
under investigation (https://www.vostars.eu/). VOSTARS is
promising new wearable AR system designed as a hybrid
Optical-See-Through (OST)/Video-See-Through (VST) HMD
capable to offer a highly advanced navigation tool for
maxillofacial surgery and other open surgeries. An early
prototype of the VOSTARS system (Ruggiero et al., 2023) has
been already evaluated in phantom tests and demonstrated a
sub-millimetric accuracy (0.5÷1 mm) in the execution of high-
precision maxillofacial tasks (Cercenelli et al., 2020; Condino
et al., 2020).

The issue of depth perception is another challenge that surgeons
have to consider when applying AR technology during surgical
procedures (Sielhorst et al., 2006). Surgeons must accurately gauge
the distance between their instruments and the intended targets for
AR surgery to be successful. However, accurate distance estimation
during AR-assisted surgery is complicated by the fact that tools and
target landmarks are 3D-rendered (Choi et al., 2016).

In order to implement AR in surgery, complex technical
solutions, including medical-grade software and hardware
systems, are required. For example, consumer-grade computer
systems are suboptimal for displaying high-quality 3D rendered
objects, and HMDs have a limited battery life (2–3 h), which can
result in technical issues such as system failure, calibration errors,
and latency. These obstacles may limit the accuracy of AR systems
and result in surgical complications (Wong et al., 2022).

In addition, surgeons using AR-HMDs must contend with the
limited field of view, restricted binocular field and projection size
(Lareyre et al., 2021).

TABLE 4 (Continued) Distribution of studies by technical aspects of AR in maxillofacial oncology.

Reference Authors Year AR
display
type

AR device Registration/
Tracking
modality

No. of
cases

AR registration
error

AR surgical
accuracy

Winnand et al.
(2022)

Winnand
et al.

2021 Projector-
based

ML750ST,
Optoma projector

Marker-less 10 n.a Average discrepancy in
osteotomy plane
angulation
AR: 10.21 ± 7.22°

Cutting guides: 6.98 ± 4.70
Mean variations between
the osteotomy planes and
the planned trajectories:
AR: 2.29 ± 1.98 mm
Cutting guide: 1.32 ±
1.00 mm
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TABLE 5 Brief description of each article with aim and major outcomes, on Orthopedic Oncology.

Reference Author, date Brief description with aim and outcomes

Moreta-Martinez et al. (2021) Moreta et al., 2021 Aim: Authors introduced a surgical workflow to orthopedic oncology by combining
3D printing and a smartphone-based AR application. A 3D-printed reference
marker was used for virtual-to-real patient registration. The system was
experienced on six patient-specific phantoms and in two clinical cases. This system
was evaluated in terms of visualization accuracy and usability during the whole
surgical workflow
Results/Conclusion: Phantom experiments provided a visualization accuracy
(i.e., registration error) below 3 mm. Positive feedback was obtained from surgeons
and patients

Cho et al. (2017) Choi et al., 2017 Aim: Authors conducted an experiment on pig femurs using a tablet-based AR
navigation system to evaluate the accuracy of AR-assisted oncological surgeries
compared to conventionally performed surgeries. To simulate a bone tumor in the
pig femur, a cortical window was made in the diaphysis and bone cement was
inserted. A total of 164 surgical removals using the AR technique and 82 resections
using the conventional procedure (i.e., manual measurement as per routine clinical
practice) were performed
Results/Conclusion: The mean resection error (i.e., the difference between the
obtained and the planned surgical margin) was 1.71 mm (0–6) and 2.64 mm (0–11)
for AR-based and conventional interventions, respectively (p < 0.05). In AR-based
navigation resection, 90.2% of the times, the surgical margin of 10 mm was
successfully attained, compared to only 70.7% in conventionally performed
surgeries. The authors concluded that the accuracy of tumor resection achieved
with the proposed AR-based navigation was satisfactory

Cho et al. (2018) Choi et al., 2018 Aim: Authors conducted animal trials showing that AR navigation may prove
useful in pelvic tumor resections. Researchers injected bone cement into the
acetabular dome of 36 cadaver pig pelvises to compare the AR navigation technique
and the conventional navigation technique (based on CT image). Each technique
was assigned with 18 tumor pelvises to operate on with a safety margin of 1 cm
Results/Conclusion: With marker-based AR technology, the mean margin of
resection was 1.59 ± 4.13 mm, whereas in the conventional navigation it was 4.55 ±
9.7 mm. 100% AR-assisted resections had errors <6 mm as compared to 78%
resections done using conventional method, showing the attainability of planned
margins using AR. The authors further emphasized that more in vivo trials are
needed before adopting it for clinical trials

Choi et al. (2017) Choi et al., 2017 Aim: This study was aimed at achieving the margin of cancer resection in
60 porcine acetabular regions using AR navigation method and conventional
method based on manual measurement (30 pelvises were assigned for each
technique). A tablet PC was used for AR visualization and cuboidal reference
markers were used for tracking. 3D dilation technique was used in simulated tumor
model, and separation of this 3D dilation and actual tumor was deemed as safety
margin. The target margin of resection was set at 10 mm. The surgical resection
plane, determined by this safety margin, was adopted in accordance with the
direction of cutting saw in real time, and minimum distance between the cutting
saw and resection plane was measured
Results/Conclusion: The mean fiducial registration error for anatomical landmarks
was 0.58 ± 0.22 mm. After resection, analysis showed the measured resection
margin to be 9.85 ± 1.02 mm for AR navigational resection as compared to 7.11 ±
4.30 mm with conventional resection. The reduction in standard deviation from
4.30 to 1.02 mm demonstrates the high precision of surgical resection margins
using the AR method. With the conventional method, 1/4 of surgical procedures
resulted in invasion of the 5 mm tolerance margin, while none of the surgeries
using the AR method resulted in such invasion. Hence, AR navigation is proved to
be more accurate for guiding surgical resection of complex bone tumors

Molina et al. (2021c) Molina et al., 2021 Aim: Authors presented a first-ever case report using AR-assisted spinal surgery on
L1 chondroma to perform en bloc wide osteotomy via posterior approach
Clinical symptoms: A 69-year-old man experienced lower back pain and
paresthesis 6 months prior to surgery. He had a history of lymphoma for which he
received chemotherapy and radiation.He has been symptom-free since 2010
Investigations: Imaging by MRI revealed an interosseous lesion with spinal
extension at L1 level. And chondroma was diagnosed through a biopsy
Results/Conclusion: The minimal invasive en bloc procedure was performed with
precise lumbar osteotomy and screw placement using AR-HMD devices and
flippable tracker to avoid any line-of-sight obliteration. Postoperatively, there were
no reports of long-term complications, and pathology confirmed a negative
resection margin. Therefore, AR guidance assisted in achieving the intended
navigational trajectories for the placement of pedicle screws

Abdel Al et al. (2020) Abdel el at, 2020 Aim: Authors published a case report of a 39-year-old male with a deep-seated
impalpable soft tissue (synovial fluid) sarcoma of the medial aspect of the left foot.
The resection was done using smartphone-based AR guided MRI images to outline
sarcoma superficially
Clinical Symptoms: Two years ago, the patient complained of pain on the medial
side of the left sole without a relevant medical history. This non-radiating pain

(Continued on following page)
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TABLE 5 (Continued) Brief description of each article with aim and major outcomes, on Orthopedic Oncology.

Reference Author, date Brief description with aim and outcomes

intensified while walking, and topical analgesics had no effect
Investigations: Imaging and biopsy were performed to detect the mass, and synovial
sarcoma was diagnosed. The subsequent physical examination was unremarkable,
and MRI revealed a bilobed lesion on the medial aspect of the left foot. In addition,
the PET-CT scan revealed a small, mildly hypermetabolic lesion, but no distant
metastases
Results/Conclusion: A patient-specific AR application was devised to superimpose
MRI images on foot landmarks. The tumors borders were outlined on skin using
sagittal MRI images. Using AR-guided pre-operative markings for tumor
localization, en bloc excision was performed complication-free, except for decreased
sensation in the medial aspect of the foot. Furthermore, follow-up imaging ruled
out any infection, recurrence, and metastasis. It was emphasized that this
smartphone-based AR application is suitable for small and fixed tumor

García-Sevilla et al. (2021a) Garcia-Sevilla et al. 2021 Aim: Authors conducted a pre-clinical study demonstrating the importance of AR
to guide patient-specific instruments (PSI) placement in pelvic tumor resection. Six
different ilium tumor scenarios were simulated for evaluation. In addition, six pairs
of PSI were designed, resulting in two PSI’s for each case scenario. Experiment was
devised using a smartphone and HoloLens 2 to test the system’s accuracy and
compared it to freehand method. Two varieties of phantoms were utilized for
assessment. i.e., conventional plastic pelvic bone (no silicone layer) and realistic
phantom (silicone layer). System accuracy was analyzed based on PSI
transformation from its intended position to its actual one, which provided the
maximum osteotomy deviation (MOD)
Results/Conclusion: The median values for MOD with smartphone or HoloLens
2 are found to be less than 2 mm in silicone phantom and below 1 mm in
conventional plastic bone, whereas the median values for PSI placed with freehand
were 3.37 mm for realistic phantom and 1.70 mm for non-silicone one. There was
significant difference between freehand method and using either smartphone or
HoloLens (p < 0.001). For phantom’s comparison, high errors were observed in all
cases with silicone phantom (p < 0.001). In the end, authors found encouraging
evidence that AR has the ability to overcome the current constraints of PSIs in a
straightforward and efficient manner

Moreta-Martinez et al. (2018) Moreta et al., 2018 Aim: Authors demonstrated an AR approach for Extra-osseous Ewing sarcoma
(EES) of distal limb. Using patient-specific tools with marker attached, pre-surgical
simulation was done on patient-specific phantom replicating Ewing’s sarcoma
before testing during actual surgical intervention. Two sets of 3D models were
printed. One was used for validation purposes (including conical holes in design)
and the other for surgical application. For system precision, evaluation was done on
the basis of surgical guide placement error and error in AR point localization for
visualization. For that purpose, conical holes on both phantoms and surgical guide
were used as a reference point for registration and error measurement. The
measurement was accomplished using an optical tracking system (Polaris)
Result/Conclusion: Surgical guide placement error and AR visualization error was
measured in average root-mean square and valued 1.87 and 2.90 mm, respectively
among all 3 repetition attempts. In addition, the complete workflow was
implemented by an expert surgeon on actual surgical field using HoloLens, and
satisfactory alignment was achieved. The authors believe that the developed pre-
surgical system will pave the way for the creation of user-friendly AR systems that
can be used in the medical industry for training, simulation, and guidance

Pose-Díez-de-la-Lastra et al. (2022) Pose-Díez-de-la-Lastra et al., 2022 Aim: In this study, researchers evaluated the accuracy of HoloLens 1 and HoloLens
2 using two orthopedic oncological cases. For this purpose, they acquired patient-
based phantom simulating EES of distal leg. Secondly, they examined the accuracy
of HoloLens 2 on more complex case of right shoulder undifferentiated
pleomorphic sarcoma. And finally, researchers employed HoloLens 2 on a real
patient with a pleomorphic sarcoma of the right shoulder in operating room to
evaluate its technical and ergonomic aspects. Additionally, patient-specific surgical
guides were also designed to accommodate AR registration markers. Using an
optical tracking system, the AR projection error was analysed by documenting the
positions of AR spheres on a phantom surface. The procedure was repeated three
times by three researchers
Results/Conclusion: Leg phantom (EES) showed greater accuracy with HoloLens
2 with RMSE of 2.16 mm as compared to HoloLens 1 (RMSE = 2.833 mm).
Significant difference among devices was noted (p < 0.05). In a case of pleomorphic
sarcoma of the shoulder, the RMSE for HoloLens 2 was 3.108 mm. The increased
error by HoloLens 2 in second case was due to larger size and dimensions of
phantom. Lastly, HoloLens 2 were tested on actual patient with pleomorphic
sarcoma and the surgeon praised the enhanced ergonomics of this HMD. In
addition, a survey was conducted to compare both head gears and the HoloLens
1 received a score of 2.84 out of 5 as compared to 4 for the HoloLens 2 indicating the
superior ergonomics of this device. In conclusion, HoloLens 2 had better results in
terms of both accuracy and ergonomics when tested on orthopedic oncological
cases
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TABLE 6 Brief description of each article with aim and major outcomes, on Maxillofacial Oncology.

Reference Author, date Brief description with aim and outcomes

Chan H et al. (2022) Chan et al., 2022 Aim: Authors conducted a preclinical study on phantoms to address the issue of margin control using AR. 5 phantom models with maxillary tumors were
created and 5 resident surgeons carried out both AR-guided simulated resection and virtual unguided resections for comparison. 115 osteotomies were
performed virtually and comparison was done on basis of intralesional cuts (≤0 mm), close (>0 mm and ≤5 mm), adequate (>5 mm and ≤15 mm) and
exceeding distance (>15 mm) from tumor
Results/Conclusion: Registration error was less than 1 mm for AR application. In context of surgical accuracy, Intratumor margin was 0% in AR-guided
resection versus 1.9% in unguided simulation. Close margin also showed low percentage of 0.8% and 7.9% in AR-guided and unguided resections, respectively.
In both cases, p-value was <0.0001. With a p-value of 0.018, the percentage was greater for the AR-guided simulation at 25.3% as opposed to 18.6% in the
unguided simulation for “adequate” resection. No differences were noted for excessive margins. In addition, AR-guided simulations scored higher in mental
demand, performance, effort, and frustration. According to authors, AR-guided resections had more similarities with pre-planned surgical planes.
Consequently, they concluded that AR methodology improves negative margin through more precise rendering of preplan cutting planes

Sahovaler et al. (2021) Sahovaler et al., 2021 Aim: Researchers conducted a preclinical study to compare approach of AR and intraoperative navigation (IN) on sinonasal malignancies removal. five
surgeons performed simulations of virtual cuts to compare AR approach and advance IN approach on four tumor models. Unguided, AR, IN and AR+IN
simulations were performed and statistically compared. Making intratumor cuts the key outcome, the others “close, adequate, and excessive distances” from
tumor were also analyzed in percentages. Additionally, screening timing was calculated based on the information from gaze tracker headset
Results/Conclusion: AR application registration error was <1 mm. Out of 335 cuts, percentage of intratumoral cuts were 20.7%, 9.4%, 1.2% and 0% for the
unguided, AR, IN, and AR+IN simulations, respectively (p < 0.0001) showing the advantage of AR over unguided simulation. IN approach decreases
intratumoral cuts as compared to AR alone approach. Whereas, combination of both AR and IN did not improve intratumoral rate significantly (p-value 0.5).
The screening timing in unguided, AR, IN, and AR+IN turned out to be 55.5%, 0%, 78.5%, and 61.8%, respectively (p < 0.001). The screening time and
workload score (NASA-TLX questionnaire Score) in AR+IN approach improves as compared to IN alone approach. Hence, the authors concluded that AR
navigation improves open sinonasal tumors resections as well as overcome the attention-deteriorating-screening problem of IN. However, more works needs to
be done on this application before clinical implementation

Shi et al. (2022) Jiafeng shi et al., 2022 Aim: In this article, authors conducted a study based on marker-less tracking on mandibular edge for resection of benign maxillofacial tumor to avoid the
complications caused by guiding plate. Before surgery, they replicated the 3D model for diseased bone for pre-surgical simulation and access the lines of
resection of tumor
Results/Conclusion: They analyzed the marker-less surface registration error and turned out to be 0.6453 ± 0.2826 mm (<1 mm), affected by system error and
impact was ignored surgically. Surgical error was assessed using an experimental AR system and found out to be 0.4858 ± 0.3712 mm (<1 mm). The authors
concluded that AR-guided marker-less navigation can effectively display and guide the surgical path. Therefore, it helps in achieving the desired results and has
a positive impact on doctors

Ceccariglia et al. (2022) Ceccariglia et al., 2021 Aim: In this study authors demonstrated the application of marker-less AR registration for removal of maxillofacial tumors, and performed the resectional
surgeries on three patients suffering from oral tumors using AR. Two males and one female patients with the mean age of 56 years underwent seven group of
osteotomies in total. These osteotomies were analyzed by comparing corticotomy lines drawn by AR guidance and customized cutting guides
Results/Conclusion: The difference of under 2 mm was noted between AR projected osteotomy and customized cutting guide osteotomy, hence showing that
marker-free AR navigation is achievable. However, the authors also emphasized that further research is needed to be done on marker-less facial registration for
maxillofacial tumors resection despite being considered safe

Ochandiano et al. (2021) Ochandiano et al., 2022 Aim: Authors published an article emphasizing the role of 3D printing, virtual surgical planning (VSP) and augmented reality in head and neck tumors ablation
and dental implants. They included 11 patients. Out of which, 8 suffered from mandibular, 1 tongue, 1 maxilla and 1 hard palate carcinoma. Total of
56 implants were inserted, but 6 of them were withdrawn from data analysis due to unavoidable intra operative complications. Using intraoperative infrared
optical navigation (for the first four patients), surgeons virtually planned and transferred the prosthetically driven dental implant placement to the patient.
Finally, they used a combination of conventional static teeth supported 3D-printed acrylic guide stent, intraoperative dynamic navigation, and AR for final
intraoperative verification for other seven patients. Differences in implants coronal, apical, and angular location between preoperative 3D planning and guided
intraoperative placement were quantified
Results/Conclusion: Due to jig registration instability, initial simple infrared navigated cases achieved low accuracy. Dynamic navigation cases that follow
achieved 1–1.5 mm insertion point deviation with the help of highly stable acrylic static guides used as reference and to register markers. Hence, Image-guided
surgery, 3D printing, and AR technology could be used to precisely plan, implantation and reconstructive surgeries. The authors went on to stress the
importance of pre-clinical education in managing the technology’s steep learning curve

(Continued on following page)
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TABLE 6 (Continued) Brief description of each article with aim and major outcomes, on Maxillofacial Oncology.

Reference Author, date Brief description with aim and outcomes

Gsaxner et al. (2019) Gsaxner et al., 2019 Aim: Authors employed marker-free inside-out image to face registration for augmented reality in head and neck oncological cases. For that, they 3D printed
eight phantom heads of subjects with tumors in this region and subsequently tested the application’s viability on human subject. For accuracy estimation, target
registration error (TRE) was measured through five different landmarks and compared it with optical tracking system
Results/Conclusion: TRE was repeated 10 times on each phantom and human subject reporting a mean TRE of 9.2 ± 1.5 mm, in comparison to error of high-
precision optical tracking system of 3.9 ± 1.8 mm in translation and 4.9 ± 2.4° in rotation. Even though authors did not achieve the desired precision required
for this type of intervention due to certain restrictions, they still believe that AR is a viable tool for these interventions

Pepe et al. (2019) Pepe et al., 2019 Aim: In this article, authors employed amarker-less approach for a head and neck tumor demonstration on a 3D PET CT scan-acquired model. In model, x and
y axes were marked along the horizontal and vertical axis of the tumor mass for evaluation purposes, whereas the z-axis depicts the direction of gaze. Red points
were added to facial landmarks to measure the registration error against the green virtual points from the AR application, and an experienced user repeated the
measurements four times. Automatic registration error was analyzed with and without user calibration
Results/Conclusion: Errors with user calibration (markers) along the y, x, and z-axes were to be −4.5 ± 2.9 mm, 3.3 ± 2.3 mm and −9.3 ± 6.1 mm, respectively.
These errors had nearly doubled values without user calibration (without markers) along these axes (−12.5 ± 2.5 mm, 7.0 ± 2.1 mm and − 19.0 ± 2.0 mm),
indicating that user calibration guarantees a more precise registration. However, the most anticipated difficulty during this study appears to be physician’s
limited depth perception, which restricted him from viewing the 3Dmodel from certain angles. Moreover, the standard ISO-9241/110 feasibility questionnaire
based on 5-point Likert Scale was conducted and overall feedback turned out to be positive

García-Sevilla et al. (2021b) García-Sevilla et al., 2022 Aim: In this study, authors compared three different navigation techniques for en bloc resection of exophytic invasive adenoid cystic carcinoma of the hard
palate. Preoperative simulation and accuracy of these surgical navigations based on pre-defined surgical margins were estimated on phantom and each
simulation was repeated three times
Results/Conclusion: Initially, an optical tracking system (OTS) facilitating registration using screws (five screws were attached to maxilla before image
acquisition) was examined for surgical guidance. The median deviation from the desired surgical margin was 0.57 mm, but with lowest variations (IQR of
0.24 mm). Whereas, OTS enabling registration with surgical guide (splint), had median and IQR both higher than screw registration. AR navigation, on the
other hand, had the lowest median of 0.40 mm, but with high variation exhibiting IQR of 0.89 mm. However, no statistical difference was noted in terms of
accuracy (errors below 1 mm). But, owing to low error variations, OTS with screw registration was considered for real surgical intervention, giving the fiducial
point registration errors of 0.77, 0.93 and 0.81 mm over three different repetitions. Additionally, AR was also tested in OR for qualitative study. Authors
concluded that these navigational approaches are accurate and convenient for minimal invasive and conservational approaches

Tel et al. (2021) Tel et al., 2021 Aim: The authors conducted a qualitative investigation into the use of computer-assisted pre-operative surgical planning, virtual endoscopy, and AR navigation
for the resection of various histopathological masses in the inferior orbital compartment via transantral approach. Five patients with disease-related main signs
and symptoms were included. Pre-surgical simulation was conducted on patient-specific 3D-printed model
Results/Conclusion: Ultimately, surgery was performed under transmaxillary navigation guidance using virtual models to verify the correct surgical positioning
throughout all essential stages of endoscopic transantral approach. Excisions were performed through a transantral approach on all patients without
intraoperative or long-term postoperative complications. It was determined that each step of virtual planning can be replicated with relative precision during
actual surgery. In the context of AR implementation, accurate tracking and overlaying were performed on each patient-specific phantom for preoperative
simulation, highlighting its role during preoperative study, training, and actual surgery

Gsaxner et al. (2021) Gsaxner et al., 2021 Aim: This article emphasized on practicability and utility of a designed AR system for head and neck tumor simulation and clinical settings. Eleven healthcare
personnel with extensive experience in the head and neck region were recruited. During the initial segment of training, participants received a comprehensive
introduction and demonstration of the HoloLens system using a patient phantom. The researchers were then requested to evaluate the AR system on a healthy
volunteer with a simulated tumor in the head and neck region to demonstrate a clinical case during the testing phase
Results/Conclusion: Registration error was noted between a few millimeters to 2 cm. After completing both phases (training and demonstration), physicians
participated in system feasibility questionnaires and an informal interview. The AR usability evaluation received a System Usability score (SUS) of 74.8 ± 15.9
(>68 indicates above average) with a 5-point Likert scale of 4.5 ± 0.7 out of 5 (with “1” representing extremely negative and “5” representing extremely positive).
According to users, however, registration precision and the time required for auto-registration were pressing concerns. In conclusion, clinicians find this AR
system simple to learn and use, which improves their decision-making skills

(Continued on following page)
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TABLE 6 (Continued) Brief description of each article with aim and major outcomes, on Maxillofacial Oncology.

Reference Author, date Brief description with aim and outcomes

Sugahara et al. (2021) Sugahara et al., 2021 Aim: Authors presented a case report on the resection of maxillary calcifying odontogenic cyst and reconstruction using mixed reality Clinical Symptoms:
27 years old female had a gingival swelling in 2010 and left untreated due to the abstinence of discomfort. Later in 2016, during routine dental care, an x-ray
revealed radiolucent area but again disregarded against the medical advice. Next year, upon displacement of left anterior maxillary teeth, patient was referred to
our department
Investigations: Physical examination revealed left nasal ala deformity along with intraoral and left upper lip swelling. The Electric pulp test showed vital
reaction in this region but no pain upon pressure
Pre-requisites: Partial resection of left maxilla from the lateral incisor to the second pre-molar with iliac cancellous bone and marrow grafting was planned.
Virtual planning and estimation of graft quantity to fill post-resection cavity were accomplished prior to surgery. 3D model with all details on tumor and its
resection was printed. During surgery, tumor and surrounding anatomical structures were virtually visualized by three surgeons using HoloLens
Results/Conclusion: The resection was successfully executed according to plan and post-surgical void was reconstructed using iliac cancellous bone graft. At the
18 months follow-up, there were no complications or relapse. In conclusion, the incorporation of mixed reality during pre-surgical and intra-operative phases
allows for accurate and secure surgery

Shaofeng et al. (2023) Shaofeng Liu et al., 2023 Aim: Authors tested the feasibility and accuracy of marker-less contour-based AR registration for simulated mandibular tumor and fibula-based reconstruction
on phantom models and subsequently compared this AR based system accuracy with surgical guides in animal trials. Virtual tumor tissue of right and left
mandible was designed, and 9 mandibular and fibular models were 3D printed. Based on the trigger detection algorithm, virtual-real registration of osteotomy
instruments for tracking and calibration of instrument’s angle was also accomplished. After virtual-real scene registration of instrument and lesion, mandibular
resection, screw fixation and fibular reconstruction were accomplished under AR guidance and post-surgical CBCT data was analyzed for deviations from pre-
operative planning
Results/Conclusion: For model trials, the distance and angular deviation for mandibular osteotomy surface were 1.62 ± 0.38 mm and 3.68 ± 0.71°, respectively.
And for fixation screws, it was 1.67 ± 0.70 mm and 7.50 ± 1.39°, respectively. In contrast, the distance and angular deviation of reconstructed fibular osteotomy
were 1.86 ± 0.43 mm and 5.48 ± 2.06°, respectively. No statistical difference was noted between pre-operative planning and post-surgical analysis (p < 0.001).
For animal trials, 12 New Zealand rabbits were recruited and divided into six pairs of AR and surgical guide groups. The animals were scanned again for error
analysis in order compare deviation between AR group and surgical guide group. For bilateral condylar outer poles, distance deviations for AR and surgical
guide groups were 0.93 ± 0.63 mm and 0.81 ± 0.30 mm, respectively (p = 0.68). For bilateral mandibular posterior angle, they were 2.01 ± 2.49 mm and 2.89 ±
1.83 mm, respectively (p = 0.50). Whereas, for mandibular osteotomy surface, distance deviation for both groups were 1.41 ± 0.61 mm and 1.21 ± 0.18 mm,
respectively (p = 0.45) and the angular deviation were 6.81 ± 2.21° and 6.11 ± 2.93°, respectively (p = 0.65). The distance deviation for reconstructed tibiofibular
osteotomy surfaces were 0.88 ± 0.22 mm and 0.84 ± 0.18 mm (p = 0.70), whereas, angular deviations were 6.47 ± 3.03° and 6.90 ± 4.01° (p = 0.84), respectively.
There was no statistical difference between two groups (p > 0.05). In conclusion, AR system is feasible with accuracy similar to surgical guide. It also enhances
surgeon’s hand-eye coordination during surgeries. However, more testing is required prior to clinical implementation

Prasad et al. (2023) Prasad BA et al., 2023 Aim: This article demonstrated the feasibility and accuracy of AR-guided re-resections of head, neck and oral cavity cancers. 20 different dissections were
performed on 3 cadavers by 2 head and neck surgeons. Before simulating cancer resection, two sutures were placed: one at the edge of the resection site(S) and
other at adjacent resection bed(R). After resection, 2 fiducial markers were used to pinpoint the precise location of stitch R, which was then removed. Using a
HMD, surgeons manually align the AR hologram to resection bed. Stitch S on the hologram was used as a guide to relocate stitch R and position a new stitch R′.
The distance between R and R′ was measured for accuracy
Results/Conclusion: The statistical analysis showed a mean relocation error of 4.0 ± 3.9 mm. However, errors pertaining to maxillary and mandibular
resections differed significantly from those associated with other resections (10.7 vs. 2.8 mm; p < 0.01). After evaluating its applicability on cadavers, the authors
emphasized on applying this technology to patients in the operating room

Gao et al. (2022) Gao et al., 2022 Aim: Authors conducted a study aimed at treatment of craniofacial fibrous dysplasia with AR navigation and analyze its usability in cranio-maxillofacial surgery.
Randomly selected data from five patients with craniofacial fibrous dysplasia was utilized for virtual planning and 3D printing. As a reference for estimating the
bony resection, the normal contralateral side of the cranium was mirrored on the diseased side. The virtual recontouring plan was then superimposed on a 3D
skull model. For AR registration, a marker fixed to patient’s dental model is tracked by HoloLens and Optical Tracking System (OTS), which was also used to
track the surgical drill in real time. For accuracy measurement, a post-operative 3D model was superimposed onto a pre-operative surgical plan. Using software
for 3D analysis, discrepancies were measured
Results/Conclusion: The mean error across all five recontoured cranium models using AR guidance was 1.036 ± 0.081 mm. It was concluded that the AR
treatment modality for craniofacial fibrous dysplasia is both effective and safe

(Continued on following page)
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TABLE 6 (Continued) Brief description of each article with aim and major outcomes, on Maxillofacial Oncology.

Reference Author, date Brief description with aim and outcomes

Kim et al. (2020) Jin Kim et al., 2020 Aim: In this case report, virtual planning and AR guidance were employed for the resection of a fibrous histiocytoma involving maxillary sinuses on left side
Clinical symptoms: A 39-year-old Korean presented with facial deformity and discomfort in the left maxillary and palate region
Investigations: Physical examination revealed no cervical lymphadenopathy and imaging showed radiolucent lesion. A CT scan revealed an expansile mass
obstructing the left maxillary sinus entirely and extending into the nasal cavity
Pre-requisites: Four osteotomies were planned for the total maxillectomy according to pre-surgical virtual planning. The AR viewer could track forehead
marker and overlay images on actual patient. Additionally, a patient-specific polycaprolactone mesh implant was 3D printed for reconstruction of the orbital
floor. For intervention, a Modified Weber Ferguson incision was made and AR guided surgery was performed using AR viewer. Osteotomies were performed
and post-operative CT scan was collected to assess discrepancies between the pre-planned osteotomies and the actual osteotomies performed
Results/Conclusion: The discrepancies in frontomaxillary, pterygomaxillary, pre-maxillary and zygomaticomaxillary osteotomies were 4.99, 2.25, 1.95, and
1.88 mm, respectively, with overall mean of 2.77 ± 1.29 mm. In conclusion, total maxillectomy performed under the AR guidance is appeared to be a powerful
tool in applied surgery

Yang et al. (2022) Yang et al., 2022 Aim: The authors examined the effect of cross-linking a mixed reality display device (HoloLens) and an optical navigator, analysing its accuracy with enhanced
spatial relationship and graphical conversion on four patients with mandibular tumor. Imaging data was gathered for pre-operative 3D reconstruction and
planning, and it was compared with 1 month postoperative data via error distribution map (3DMeshMetric) for error analysis
Results/Conclusion: Using six marker points (anatomical landmarks), point registration was performed with a controlled registration error of less than 1 mm.
In all cases, the surgical error analysis revealed a maximum error of 6.08 mm, with 4.79 mm in the majority of areas. Due to variations in chin surface and
fibular morphology for reconstruction, the error is confined to the area of the chin in all cases. However, the authors highlighted that despite the fact this system
enhances spatial experience and work efficiency, the overall accuracy still does not meet clinical requirements

Tang et al. (2022) Tang et al., 2022 Aim: The authors conducted a retrospective study on seven patients (four with a maxillary tumor and three with a mandibular tumor) to evaluate the efficacy
and accuracy of mixed reality augmented by surgical navigation. Virtual surgical plan with osteotomy planes was designed following image acquisition and
fusion. Moreover, integration of mixed reality and surgical navigator was accomplished through IGT-link port for the transmission of image data between
workstations. Using a HMD (HoloLens), osteotomy lines were distinguished by predetermined reference points using a navigation probe, and the spatial
relationships between the probe and approaching structures were displayed on the user’s retina
Results/Conclusion: The target error was set at 2 mm and intra-operative frozen section biopsies were performed to guarantee negative resection. A CT scan
was ordered 1 week after surgery. Both pre-operative and post-operative 3D models were analyzed for accuracy. In total of 13 groups of osteotomy planes, the
mean deviation from pre-defined osteotomy plane was 1.68 ± 0.92 mm and 80.16% of mean deviations were within 3 mm.Whereas, in context of maxillary and
mandibular tumor, the mean deviations were 1.60 ± 0.93 mm and 1.86 ± 0.93 mm, respectively. During the follow-up period, no significant complications or
recurrences were observed in any patients. Although considered safe and effective during oral and maxillofacial surgeries, the authors emphasized the need for
additional research on surgical navigation and mixed reality application

Scolozzi and Bijlenga (2017) Scolozzi et al., 2017 Aim: In this case report, researchers utilized tracked-microscope-based AR system for excision of pleomorphic adenoma of lacrimal gland
Clinical Symptoms: In 2015, a 42 years old female was presented with facial asymmetry and an asymptomatic, slow growing mass in the upper lid of her left eye,
resulting in restricted movement and diminished visual acuity
Investigations: CT imaging showed multilobulated mass in the left lacrimal gland as well as erosion of upper and lateral orbital walls. Later, biopsy confirmed
pleomorphic adenoma
Results/Conclusion: The en-bloc excision was performed using AR and neuronavigation. The authors emphasized that this system was beneficial for
identification, extension of lesion as well as en-bloc resection. At 2 years imaging follow-up, no recurrence was detected

Cercenelli et al. (2022) Cercenelli et al., 2022 Aim: Authors evaluated the achievable registration accuracy and the success rate in performing an AR-guided skin paddle incision in fibular flap harvesting for
mandibular reconstruction. They performed the experiment on a patient-specific 3D printed phantom and two display solutions (tablet and HoloLens 2) were
compared
Results/Conclusion: On average, the marker-less AR protocol showed comparable registration errors (ranging within 1–5 mm) for tablet-based and HoloLens-
based solution. In 97% and 100% of cases, the AR-guided task was performed with an accuracy of ±2 mm (error margin of 4 mm), for tablet and HoloLens,
respectively. The authors concluded that the proposed marker-less AR protocol can be suitable for assisting skin paddle harvesting in clinical setting

(Continued on following page)
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TABLE 6 (Continued) Brief description of each article with aim and major outcomes, on Maxillofacial Oncology.

Reference Author, date Brief description with aim and outcomes

Scherl et al. (2021) Scherl et al., 2021 Aim: Authors reported the first ever trial of AR-assisted surgery for parotid tumor ablation on six patients. Segmentation was done using MRI images and 3D
hologram is manually overlaid on patient’s skin to estimate the position of tumor border. Alignment accuracy was measured through pre-defined landmarks
using electromagnetic navigation device
Results/Conclusion: The mean error of alignment was 1.3 cm (0.5–2.1). Statistical difference was noted among central and peripheral structures showing better
accuracy centrally (p = 0.0059). No long-term complication was noted in any AR-guided case. However, authors emphasized that further work need to be done
on skin surface registration and alignment to improve accuracy

Necker et al. (2023) Necker et al., 2022 Aim: Authors introduced a technique for flap sizing after mandible tumor resection on cadaver. A resected mandibular tumor was 3D scanned using
smartphone and annotated with colours for orientation. The 3D scanned virtual specimen was displayed through AR-HMD
Results/Conclusion: The 3D hologram was manually placed back in its original site accurately. After adjusting the size, the hologram was then overlaid on flap
harvesting site for reconstruction planning. Authors concluded that this technique could assist in fibular flap reconstruction of mandibular tumor

Han et al. (2022) Lin et al., 2022 Aim: Authors proposed an integrated approach in mandibular reconstruction based on 3 technologies: 3D printing, mixed reality (MR), Robotic-Assisted
navigation (RAN). MR was used to output the visualized project and matched the anatomical 3D reconstruction model in reality. The 3D plate was printed for
surgical guidance. RAN was used to guide and position the vascularized fibula autograft and the immediate dental implantation
Results/Conclusion: Authors concluded that constructed MR, 3D, and RAN technologies assist each other to make the surgery more accurate and minimally
invasive

Zhao et al. (2023) Zhao et al., 2022 Aim: Authors reported a cadaver study to investigate a novel method of fibula free flap (FFF) osteotomy based on AR technology. AR-based surgical navigation
was used to guide the FFF osteotomy and these fibular segments were used to reconstruct a defective mandible model. After reconstruction, all segments were
scanned by CT and osteotomy accuracy was evaluated by measuring the length and angular deviation between the virtual plan and the final result, and the
volume overlap rate and average surface distance between the planned and obtained reconstruction
Results/Conclusion: The length difference, angular deviation, volume overlap rate and average surface distance were 1.18 ± 0.84 mm, 5.45 ± 1.47°, 95.31% ±
2.09%, and 1.22 ± 0.12 mm, respectively

Modabber et al. (2022) Modabber et al., 2021 Aim: Authors proposed AR guided solution for harvesting grafts for mandibular reconstruction and demonstrated its clinical application and surgical accuracy.
They used human cadavers to demonstrate a projector-based marker-less AR setup for harvesting iliac crest grafts and compared it to a cutting guides
procedure. A total of 10 iliac crests from 5 cadavers were used, and each iliac crest was randomly assigned to either harvested using AR guidance or using cutting
guides. The transplants were digitized using CBCT and accuracy was measured in terms of angles, distances, and volumes of the actual and intended
osteotomies
Results/Conclusion: Both AR and cutting guides effectively replicated the virtually projected transplant volume with precision. Nevertheless, there was a
significant difference (p = 0.018) in the cumulative angulation of the osteotomy plane between the AR group and the group using cutting guides (14.99 ± 11.69°

vs. 8.49 ± 5.42°). The results indicate that the accuracy of AR-guided navigation in terms of cumulative osteotomy plane distance was lower (2.65 ± 3.32 mm)
compared to the cutting guides (1.47 ± 1.36 mm), however this difference was not statistically significant. Furthermore, more research was recommended
before clinical implementation

Meng et al. (2021) Meng et al., 2021 Aim: Authors reported a cadaver study to investigate the feasibility of the application of MR in mandible reconstruction with fibula flap. AR was used to guide
the osteotomy and shaping of the fibular bone. After fixing the fibular segments using the titanium plate, all segments underwent a CT examination. The
planned and the actual postoperative fibula osteotomies were compared in terms of angular deviation of fibular segments, and intergonial angle distances. To
evaluate the accuracy of MR technique, the distance between the postoperative actual cutting edge and preoperative osteotomy plan of each fibular segment’s
was calculated
Results/Conclusion: The mean location of the fibular osteotomies, angular deviation of the fibular segments, and intergonial angle distances were 2.11 ±
1.31 mm, 2.85° ± 1.97°, and 7.24 ± 3.42 mm, respectively

(Continued on following page)

Fro
n
tie

rs
in

B
io
e
n
g
in
e
e
rin

g
an

d
B
io
te
ch

n
o
lo
g
y

fro
n
tie

rsin
.o
rg

N
asir

e
t
al.

10
.3
3
8
9
/fb

io
e
.2
0
2
3
.12

76
3
3
8

93

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1276338


Virtual-to-real scene registration with HMDs is another major
issue when using AR for surgical guidance and simulation, resulting
in inaccurate identification of the deep anatomical structure in
question. Due to the fact that these display devices were not
devised for medical purposes, their technical characteristics are
less suited for surgical procedures (Badiali et al., 2020).

Surely, a marker-less registration, i.e., without the use of fiducial
markers or trackers anchored to the patient, is highly preferable in
surgery, however it is not always feasible for certain surgeries. As also
emerged from our analysis, in maxillofacial oncological surgery a
marker-less based approach seems to be more viable since the edges
of anatomical parts (e.g., mandible or skull) are more accessible and
trackable during surgery; conversely, in orthopedic field the
intraoperative recognition of bone edges may be more difficult.

During surgery, a surgeon using an AR headset may endure
discomfort, weariness, eye strains, and headache. Furthermore, it is
possible that the surgeon’s ability to focus on the surgical operation
field might get impaired due to the visualization of augmented
information. However, in a study conducted on simulation
sickness, in 2018, authors showed that out of 142 HMD’s users
from various fields, only few experienced mild discomfort (Vovk
et al., 2018).

Because this technology is high priced and requires significant
investment to initiate and implement in hospitals, it is not widely
accessible in all medical settings. Consequently, the data associated
with augmented reality in the surgical field are rather preliminary
and require further testing and analysis.

The AR application has a steep and costly learning curve. It
requires expertise, and most surgeons are unfamiliar with AR
utilization. So they must collaborate with biomedical engineers to
implement this technology in the operating room. Personnel must
endure time-consuming hands-on training in order to implement
AR in hospital surgical setups.

When information needs to be electronically distributed to
several departments in order to make patient-specific tools for
AR, patient data privacy is another concern that must be
addressed. When dealing with sensitive information pertaining to
patients, certain national regulations should be followed in order to
protect and secure both their safety and their privacy.

4.2 Future of AR

Augmented reality is being recognized as a promising application
for enhancing the outcomes and standard of care for orthopedic and
maxillofacial oncology patients. Especially in complex oncological cases
that require a strategic planning for execution and comprehension, it is
emphasized that surgeons should consider using augmented reality
where applicable, in combination with 3D printing. However,
implementation of AR and its tools in surgical cases and healthcare
has certain shortcomings which can be improved with future
advancement in technology. Depending on the complexity of cases,
process from procuring CT scan/MRI images to 3D printing of pre-
surgical phantoms and developing a patient-specific AR application
take days, sometimes even months including preoperative surgical
planning and simulation training. Surgeons and biomedical
engineers must work together to refine and successfully execute the
procedure. Therefore, as future perspective, AR cannot be used inTA
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FIGURE 2
Bar histograms depicting types of study (A), anatomical regions involved in the surgery (B), registration/trackingmodality (C) and AR display type (D),
for Orthopedic Oncology.

FIGURE 3
Bar histograms depicting types of study (A), anatomical regions involved in the surgery (B), registration/trackingmodality (C) and AR display type (D),
for Maxillofacial Oncology.
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emergency cases and can only be advised in elective surgeries. Despite
these facts, we continue to believe that AR technology has the potential
to revolutionize the conventional methods of oncological surgical
procedures and overcome all of these limitations. Augmented reality
is expected to help in better understanding of tumor anatomy and in
plan the resection accordingly. This will contribute to improve the
outcomes and standard of care by limiting the recurrence rate while
attaining the desired surgical margins with accuracy.

5 Conclusion

Currently, augmented reality is one of the most innovative
technology in the field of surgery, particularly orthopedic and
maxillofacial surgery. Due to its real-time visualization of
preoperative images and planning directly on the patient, AR can
be particularly beneficial for oncological surgeries in both fields to
achieve the desired surgical accuracy. In oncological surgery, the AR
allows to overcome some limitations of conventional computer-
assisted surgical navigation, such as the surgeon’s attention shift
from the operative field to view the navigation monitor, as well as to
avoid the lead-time in manufacturing 3D-printed cutting guides.
Indeed, AR should be used as a complementary tool to other
computer-assisted technologies, as suggested by our literature
review: particularly for maxillofacial oncology, surgeons have
begun to incorporate external navigation systems into AR to
track the surgical probe or instruments, to further improve
accuracy and spatial relationships.

Even though AR technology is still in its infancy and has certain
limitations, the current outcomes of its application in both disciplines
are promising to support its clinical use. Certain concerning aspects still
remain, related to image-to-patient registration and surgical accuracy.
In the present review, we attempted to identify a range of registration
error and surgical accuracy based on results from both surgical
domains. Although it is difficult to derive general ranges due to the
involvement of various anatomical regions and different complexity for
each domain it can be observed that AR resection error exhibited
greater accuracy compared to conventional un-guided resection, hence
successfully attaining the desired goals without any associated
complications. Additionally, in some studies the AR navigation
showed comparable accuracy with pre-planned virtual cutting planes
and with customized cutting guides.

We believe that the still limiting technical aspects on registration
and surgical accuracy can be improved and overcome with further
development in hardware and software used for AR. For that,

industry-academic partnerships are essential to advance the
technology, in conjunction with clinical studies to assess its
benefits and role in the clinical practice.

In conclusion, although AR is seen to have the capacity to
enhance surgical efficiency and ensure patient’s safety, further
search needs to be done pre-clinically in order to improve its
accuracy and before achieving its wide adoption in clinical settings.
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Retinal blood vessels are the only directly observed blood vessels in the body;
changes in them can help effective assess the occurrence and development of
ocular and systemic diseases. The specificity and efficiency of retinal vessel
quantification technology has improved with the advancement of retinal
imaging technologies and artificial intelligence (AI) algorithms; it has garnered
attention in clinical research and applications for the diagnosis and treatment of
common eye and related systemic diseases. A few articles have reviewed this
topic; however, a summary of recent research progress in the field is still needed.
This article aimed to provide a comprehensive review of the research and
applications of retinal vessel quantification technology in ocular and systemic
diseases, which could update clinicians and researchers on the recent progress in
this field.

KEYWORDS

retinal vasculature, artificial intelligence, ocular diseases, systemic diseases, retinal
vessel quantification

1 Introduction

Recent advancements in ophthalmic imaging technology have led to challenges in
monitoring disease progression during early and advanced stages, largely due to its limited
use for quantitative analysis of diseases; it has been mainly used for qualitative analysis of
diseases. The rise in computational power, imaging data expansion, and ethical system
improvement has led to a rapid development of AI in medicine (Ting et al., 2021). The
retinal vessel quantification technology has been advanced, providing new opportunities for
quantitative analysis of diseases. The retinal blood vessels are the only blood vessels that can
be directly observed without using an invasive approach; their structures and functions are
similar to those of the systemic vascular system. Quantitative research on retinal blood
vessels could provide insights into the conditions of cardiovascular, cerebrovascular, and
systemic blood vessels because they are components of the body’s circulatory system
(Dumitrascu and Koronyo-Hamaoui, 2020). The AI-based retinal vessel quantification
technology can help clinicians and researchers study ocular and systemic diseases,
benefiting disease prevention, diagnosis, and treatment (Gadde et al., 2016; Fuchs et al.,
2022; Fu et al., 2023). A few articles have reviewed this technology; however, summarizing
its recent progress is still needed. This article aimed to provide a comprehensive review of
the research and applications of retinal vessel quantification technology in ocular and
systemic diseases. As shown in Table 1.
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2 Retinal vessel quantification
technology

Retinal vessel quantification is a method to measure and analyze
retinal blood vessels in the fundus through imaging technology, and
extensive research has been conducted in clinical Retinal vessel
quantification based on AI using optical coherence tomography
angiography (OCTA). OCTA utilizes specific algorithms to image
only moving red blood cells in the vessels, providing three-
dimensional (3D) visualization and quantitative analysis of the
blood flow status across different vascular membrane layers of
the retina and choroid (Lommatzsch, 2020; Koutsiaris et al.,
2023). With the continual advancement in AI algorithms and
ophthalmic imaging technology, several quantitative models for
retinal blood vessels have been established, with high levels of
sensitivity and specificity (Nguyen et al., 2013; Nunez do Rio
et al., 2020; Comin et al., 2021; Liefers et al., 2021; Zhou et al.,
2022; Nardini et al., 2023). Retinal vessel quantification is crucial in
studying ocular and systemic diseases. Repeated quantitative
analyses of vascular parameters such as vascular diameter,
vascular fractal dimension (FD), vascular angle, vascular density
(VD), retinal non-perfusion (RNP), and foveal avascular zone (FAZ)
can assist in the comprehension of changes in disease occurrence,
progression, and treatment (Pournaras and Riva, 2013; Lee et al.,
2018; Ramos et al., 2019; Alibhai et al., 2020; Kadomoto et al., 2021).

Quantitative analysis of the normal retina allows for an in-depth
examination of the retinal vascular structure, benefiting the
diagnosis and analysis of vascular abnormalities. The density of
the deep retinal vascular plexus is higher than that of the superficial
retinal vascular plexus. The retina is divided into four sectors
centered on the FAZ. The vascular density of the inferior region,
whether deep or superficial, is higher than that of the other regions
(temporal, superior, and nasal), and age has no significant effect on
VD (Gadde et al., 2016). Macular vascular parameters are related to
sex and age, and the FD and VD of blood vessels in males are
significantly higher than those in females; in contrast, no significant
differences exist in vessel curvature, and the entire macular region’s
FD, VD, and average vascular diameter exhibit negative correlations
with age (Feng et al., 2021). Based on the measurement of the retinal
vascular parameters of individuals aged 50 and over, the greater the
FAZ area and non-circular index, the lower the average capillary
density and superficial vascular density, the poorer visual acuity.
These vascular parameters might be used as biomarkers for
predicting the visual acuity of those aged 50 and over (Li et al., 2023).

Retinal vessel quantification technology has the potential to
foster research on relevant ailments and provide novel methods for
managing systemic and ocular health. Precise quantitative analysis

of the retinal vasculature can provide insight into the
pathophysiological mechanisms of ocular diseases and early
warning and monitoring of systemic diseases as shown in Table 2.

3 Clinical research and applications in
ocular disorders

3.1 Diabetic retinopathy

Diabetic retinopathy (DR) is a prevalent microvascular
complication of diabetes and a frequent cause of blindness; the
disease triggers vascular variations by damaging capillary cells like
the vascular endothelial cells and pericytes, leading to local ischemia.
DR progression leads to an increase in the number of
microaneurysms (Wu et al., 2014; Jiang et al., 2020), vascular
curvature (Lee et al., 2018), RNP area (Baxter et al., 2019;
Alibhai et al., 2020; Kim et al., 2021), FAZ area (Mihailovic et al.,
2019; Ratra et al., 2021; Meng et al., 2022), and non-circular index
and a decrease in VD (Durbin et al., 2017). The RNP area shows a
positive correlation with the emergence of neovascularization (Yu
et al., 2020). These vascular parameters can function as reference
indicators for the onset and progression of DR and predictive
indicators for disease transformation. Certain parameters,
including VD, vascular length, and FAZ area, could undergo
changes prior to the onset of visual impairment in individuals
with DR, and they offer substantial value in facilitating the
detection of DR lesions at an early stage (Zhu et al., 2019).
Among all parameters, there was a statistically significant
difference in vascular curvature between patients with non-DR
and mild non-proliferative diabetic retinopathy (NPDR),
especially within the 1.5-mm area of the superficial layer of the
retina (Lee et al., 2018). Quantitative indicators of retinal blood
vessels can serve as potential biomarkers for DR staging (Xu et al.,
2019; Chua et al., 2020; Boned-Murillo et al., 2021; Xu et al., 2021).
Borrelli and colleagues attempted to utilize 3D analysis of OCTA to
create a 3D image of the retinal vasculature and used a global
threshold algorithm to procure two vascular parameters, 3D
vascular volume, and 3D perfusion density, to assess the status of
macular ischemia in patients with NPDR; the smaller the 3D
vascular volume and 3D perfusion density, the more severe the
macular ischemia (Borrelli et al., 2020). After thorough
examinations, the reliability of 3D analysis for evaluating the
state of retinal blood vessels has been confirmed, indicating
broad potential applications (Borrelli et al., 2020). Retinal vessel
quantification assesses the treatment prognosis of patients with DR,
and it quantifies the alterations in retinal neovascularization pre-

TABLE 1 Summary of key points of the article.

Retinal vessel quantification has become a hot area of research for common eye and related systemic diseases due to its
high specificity and sensitivity

Clinical research and applications of retinal vessel quantification in eye diseases

Clinical research and applications of retinal vessel quantification in systemic diseases

Limitations and solutions in clinical research and applications of retinal vessel quantification

Researching and applying retinal vessel quantification to ocular and systemic diseases is promising
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and post-treatment with anti-vascular endothelial growth factor
(anti-VEGF) therapy to evaluate the susceptibility of patients
with DR to VEGF (Hu et al., 2019); helping informed decisions
for follow-on treatment. Pan-retinal photocoagulation (PRP) can
effectively reverse retinal DR-caused ischemia while maintaining the
integrity of macular microvascular structure. The treatment effect
can be effectively evaluated by quantifying the retinal VD and FAZ
areas after PRP in patients with DR (Abdelhalim et al., 2022;
Sariyildiz et al., 2023).

3.2 Retinal vein occlusion

Retinal vein occlusion (RVO) is the second most common
retinal vascular disease that can cause blindness following DR. It
happens when one or more veins in the retina are blocked or
obstructed. The retina, located at the posterior of the eye, detects
light and transmits signals to the brain for visual perception. Venous
obstruction interferes with normal blood flow on the retina,
potentially resulting in vision impairments. The impact of RVO
on the deep capillary plexus (DCP) of the retina is 1.77–1.84 times
that of the shallow capillary plexus (SCP) (Kim et al., 2020). The
larger the area of RNP, the greater the risk of neovascularization.
Quantifying the area of RNP can effectively assess the risk of
neovascularization (Kadomoto et al., 2021). Neovascularization
and associated neovascular glaucoma are common complications
of RVO that can cause serious damage to a patient’s vision and the
eyeball itself (Hayreh, 2021). PRP can effectively prevent and treat
neovascularization, which could benefit from quantifying the area of
the RNP to select the timing of PRP use. The severity of macular
ischemia increases as the VD in the macular area reduces and the
RNP area expands, accurately quantifying the VD and the RNP area
can be used to grade macular ischemia in RVO patients, and
accurately quantifying the VD and the RNP areas can be used to
grade macular ischemia in patients with RVO and assess disease
severity and prognosis (Ouederni et al., 2019; Tang et al., 2021;
Yeung et al., 2021). Huang et al., 2022 classified patients with branch
vein occlusion (BRVO) into reactive and refractory groups based on
their responses to anti-VEGF treatment, which was determined by
semi-automatic quantitative fluorescein angiography to measure the
amount of fluorescein leakage around and near the fovea of the
macular area in patients with BRVO. The refractory group
demonstrated more severe leakage than the reactive group; thus,

this technique could effectively predict the efficacy of anti-VEGF
treatment for evaluating treatment feasibility (Huang et al., 2022).

3.3 Glaucoma

Glaucoma is an irreversible condition that can cause blindness.
Primary angle closure glaucoma is the most common type of
glaucoma in China, which occurs when the angle between the
iris and cornea in the front chamber of the eye becomes narrow
or even closes completely, preventing the flow of aqueous humor. If
the anterior chamber angle is narrow, the normal outflow of aqueous
humor is impeded, causing an elevation in intraocular pressure,
resulting in optic nerve damage and eventual vision loss. Based on
the quantification of the retinal blood vessels in patients suffering
from primary angle closure, the microvessel density around the optic
disc reduces, despite the absence of any changes in the thickness of
the retinal nerve fiber layer and the ganglion cell complex, the
microvascular density around the optic papilla is a sensitive
indicator of changes in intraocular pressure and a predictive and
monitoring parameter for the onset of glaucoma nerve changes
(Miguel et al., 2021; Nascimento E Silva et al., 2021; Wang et al.,
2021). These observations highlight the potential utility of adjusting
target intraocular pressure based on changes in microvessel density.
Van Melkebeke et al., 2018 showed that the microvascular density
surrounding the optic disc is a prognostic indicator of visual
function in patients with glaucoma. Kromer et al., 2019 used
OCTA to measure macular blood flow density in patients with
open-angle glaucoma and found that macular blood flow density
was significantly decreased in glaucoma patients compared to the
healthy population. A noteworthy correlation exists between the
density of blood flow in the macula and the visual field
(Yarmohammadi et al., 2017), presenting an opportunity to
repeatedly evaluate glaucoma progression by measuring macular
blood flow density.

3.4 Wet age-related macular degeneration

Wet age-related macular degeneration (wAMD) is a common
cause of irreversible visual impairment, typically affecting the central
vision of the eye. It is usually caused by abnormal vascular growth
beneath the retina, resulting in macular region damage and fluid

TABLE 2 The importance of quantifying retinal vessels in ocular and systemic diseases.

Ocular diseases Systemic diseases

DR: Early diagnosis of disease, staging of disease severity, prediction of disease
transformation, and assessment of treatment efficacy

Cerebrovascular diseases: Monitoring the risk of disease occurrence, alternative
invasive or expensive examinations, and early diagnosis of diseases

RVO: Prediction of the risk of neovascularization and complications, selection of timing
for PRP intervention, staging of disease severity, and evaluation of treatment
effectiveness

Hypertension: Monitoring the risk of disease occurrence and predicting the risk of
complications

Glaucoma: Detection of optic nerve injury, evaluation of visual function prognosis, and
detection indicators of disease progression

CAD: Monitoring the risk of disease occurrence

EAMD: Detection indicators for disease progression SCD: Monitoring the risk of disease occurrence

Other eye diseases: Selection of surgical methods and monitoring of disease progression Fabry disease: Monitoring the risk of disease occurrence and predicting the risk of
complications
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exudation; the incidence rate of wAMDhas increased significantly in
recent years (Stahl, 2020). Gao et al. quantitatively analyzed the RNP
areas of the extrafoveal superficial vascular complex (SVC),
intermediate capillary plexus (ICP), and deep capillary plexus
(DCP) in patients with wAMD and healthy individuals, ruling
out related interfering factors. They found that these patients had
larger areas of RNP in SVC, ICP, and DCP (Gao et al., 2022). Hence,
it is evident that the area of the RNP is closely related to the onset
and progression of wAMD; measuring the area of the RNP can be
used in clinical practice to predict and monitor the onset and
progression of wAMD.

Quantitative analysis of retinal effusion secondary to retinal
angiopathy facilitates evaluating disease progression and treatment
responses in patients with retinal effusion like RVO, wAMD, and
diabetes macular edema (Farinha et al., 2020; Schmidt-Erfurth et al.,
2020; Fuchs et al., 2022; Michl et al., 2022; Muste et al., 2022; Reiter
and Schmidt-Erfurth, 2022; Coulibaly et al., 2023). Wu et al., 2021
proposed a new optimized segmentation and quantification
algorithm for neovascularization based on OCTA, which has
higher accuracy and effectively monitors changes in
neovascularization. It can be useful in follow-up monitoring
during diagnosing and treating ischemic ophthalmopathy and
systemic diseases.

3.5 Other ocular diseases

Iris VD is decreased shortly after refractive surgery, and the
densities of superficial and deep retinal blood vessels do not recover
within 3 months of surgery (Olcay et al., 2015). The small incision
corneal stromal lenticule extraction (SMILE) is more significantly
reduced than femtosecond laser in situ keratomileusis (FS-LASIK),
which might be related to an abnormal elevation in intraocular
pressure during the surgical process (Olcay et al., 2015). Thus, it is
necessary to consider the impact of vascular changes and the
selection of surgical approaches for patients requiring refractive
surgery in clinical practice (Cui et al., 2022). Retinal vessel
quantification can monitor and analyze vascular changes in the
occurrence, development, and treatment of eye diseases, such as
retinitis pigmentosa (Wang et al., 2019; Lu et al., 2022), type
2 macular telangiectasia (Chidambara et al., 2016; Pauleikhoff
et al., 2019; Pauleikhoff et al., 2022), familial retinal arteriolar
tortuosity (Saraf et al., 2019), Behcet’s disease (Türkcü et al.,
2020), optic disc drusen (Leal-González et al., 2020), and
retinopathy of prematurity (Cabrera et al., 2021).

4 Clinical research and applications in
systemic diseases

4.1 Cerebrovascular diseases

Retinal and cerebral blood vessels come from the internal
carotid artery and interconnect and influence each other. Thus,
abnormalities in retinal blood vessels are often accompanied by
abnormalities in cerebral blood vessels, and abnormal changes in
retinal blood vessels are associated with stroke, vascular cognitive
impairment, and dementia (Frost et al., 2017; Cabrera DeBuc et al.,

2018; Cabrera DeBuc et al., 2020; Dumitrascu and Koronyo-
Hamaoui, 2020). Widespread retinal arteriolar stenosis is linked
to a high risk of disabling dementia (Jinnouchi et al., 2017), which
could serve as an effective biomarker for populations with disabling
dementia and one of the traditional screening indicators. The APOE
ε4 allele is among the genetic factors most closely linked with
Alzheimer’s disease, and individuals carrying the APOE ε4 allele
have a greater risk of developing Alzheimer’s disease. Carriers of the
APOE ε4 allele have significantly higher vascular width ratios than
normal individuals, and measuring the ratio of retinal vessel width is
an alternative approach to the invasive examination of APOE ε4
(Frost et al., 2017). Brain white matter volume reduction and
enlargement of the inferior lateral ventricle adversely affect brain
function, potentially leading to cognitive impairments, motor
dysfunction, epilepsy, and visual and speech issues, depending on
the extent, location, and cause of the reduction. Brain white matter
volume is typically assessed and evaluated using MRI, and a larger
diameter of retinal venules is associated with a smaller brain white
matter volume (Ikram et al., 2013). Decreased densities of retinal
SCP and perfusion are associated with the enlargement of the
inferior lateral ventricle (Yoon et al., 2019). As an alternative to
MRI, assessing and monitoring changes in brain white matter
volume and the inferior lateral ventricle can be achieved by
measuring retinal venule diameter, retinal SCP density, and
perfusion density. Early abnormalities in brain microvasculature,
that cannot be detected by head MRI, are closely associated with
changes in retinal vasculature. Therefore, quantifying retinal
vascular changes can be used to assess brain vascular function,
achieving early diagnosis and intervention (London et al., 2013;
Wardlaw et al., 2013).

4.2 Hypertension

Hypertension is a common cardiovascular disease. As blood
pressure becomes unstable or consistently rises, the risk of
developing diseases, such as heart, retinal, stroke, and kidney
diseases, also increases. Hypertension typically results in an
elevated ratio of small artery length to diameter and decreased
terminal branch arteries. Alterations in the retina often signal
potential disease risks in other target organs; thus, quantifying
retinal vascular parameters could help evaluate the risk of
hypertension complications (Hughes et al., 2006; Leclaire et al.,
2021). High blood pressure elevates the pressure on blood vessels,
leading to weakened and hardened elasticity of retinal arterioles,
compressing the veins, and resulting in decreased blood flow and
gradual thinning of the veins, known as Gunn’s sign (Wigdahl
et al., 2015). Furthermore, the pressure of arterioles at the
intersection can be transmitted to the veins, resulting in the
characteristic S-shaped appearance; the Salus sign is a term
used to describe a phenomenon at the intersection of retinal
arteries and veins, and quantifying the Gunn and Salus signs
could predict hypertensive retinopathy and RVO development
(Wigdahl et al., 2015). Bringing together deep learning and
OCTA could more precisely quantify the retinal vascular
structure, it is feasible to precisely forecast the onset and
development risk of hypertension and its complications based
on the changes in retinal vascular structure. (Tan et al., 2022).
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4.3 Coronary artery disease

Coronary artery disease (CAD) is a cardiovascular disease
occurring when the coronary artery (one of the main blood vessels
supplying the heart) narrows or becomes blocked. CAD can trigger
angina (chest pain) andmyocardial infarction (severe damage to heart
muscles), endangering the patient’s life. The high incidence and
mortality rates of CAD imply early detection, and intervention are
imperative. Fu et al. used deep learning technology to quantify retinal
vascular parameters from color fundus photography of
57,947 participants without CAD; after approximately 11 years of
follow-up, the FD of blood vessels had decreased, and the reduction in
the number of arterial and small venous segments and arterial and
venous bone densities was closely associated with an increased risk of
subsequent CAD (Fu et al., 2023). Hence, detecting retinal vascular
parameters could help predict CAD (Shokr et al., 2021).

4.4 Sickle cell disease

Sickle cell disease (SCD), also called sickle cell anemia, is a prevalent
hereditary blood disease characterized by the deformation of red blood
cells into sickle or curved shapes, different from the round shape of
normal red blood cells. Such abnormal red blood cells are susceptible to
adhesion and blockage within blood vessels, leading to ischemic
damage. When OCTA was used to determine retinal capillary
perfusion, dynamic changes were observed in retinal capillary
perfusion in patients with SCD compared with healthy individuals
(Zhou et al., 2021). Retinal ischemia and hypoxia can result in various
complications. Non-invasive dynamic monitoring of retinal capillary
perfusion in patients with SCD allows for effective evaluation of the state
of systemic blood vessels, benefiting the early detection and treatment of
the disease and assessing treatment efficacy.

4.5 Other systemic diseases

Fabry disease is a rare genetic disorder where glycolipids
accumulate in multiple tissues and cells due to deficiency or
reduced activity of the enzyme cleavage lipase, resulting in damage
to multiple organs and systems. Quantifying retinal blood vessels
demonstrate a negative correlation between retinal VD and
myocardial damage associated with fabry disease (Cennamo et al.,
2020). Primary nephrotic syndrome (PNS) is typically linked to
dysfunction in glomerular filtration. The VD and blood flow
perfusion density in the macular areas of patients with PNS
significantly decreased compared with healthy individuals and
negatively correlated with urinary protein levels (Yao et al., 2022).
Thus, retinal blood vessels can be quantified to monitor and analyze
the onset and progression of associated systemic illnesses and their
complications and to assess disease alterations throughout treatment.

5 Limitations and solutions

Limitations exist with the retinal vessel quantification technology.
This technology has limited generalization for large clinical applications,
and trust and acceptance of algorithm outcomes vary among physicians

and patients (Ting et al., 2019). Retinal vessel quantification techniques
have some limitations, including inconsistent data quality, high
equipment costs, inconsistent algorithms, and insufficient baseline
data. To address these issues, we propose the following
improvements: Firstly, we suggest improving reproducibility and
reducing costs by enhancing imaging techniques and standardizing
data acquisition and image processing processes. Secondly, we
recommend developing international standards and guidelines to
ensure algorithmic consistency and comparability. Thirdly, we
propose establishing better baseline data through big data analytics
to support clinical applications. Lastly, we suggest adopting data
encryption and privacy protection measures to ensure the security of
patient data. To enhance the acceptance of AI algorithms among
physicians and patients, it is important to further develop
explainable AI algorithms., Limitations and solutions of retinal vessel
quantification are shown in Table 3. Fostering inter-team cooperation,
improving technology, and increasing collaboration with clinicians and
patients would help overcome these limitations, increasing its clinical
applications and benefiting disease diagnosis and treatment.

6 Application trends and prospects

The development of modern technologies, dataset expansion,
improvement in doctor-patient acceptance, data privacy and ethics,
and increased financial support will render retinal vessel
quantification to have broader application prospects in disease
research. By observing changes in the retinal blood vessels of
diverse populations, researchers evaluate the effectiveness of
disease treatment protocols and study pathophysiologic changes
in disease to more accurately diagnose and treat disease and develop
drugs (Al-Shabrawey, 2023; Middel et al., 2023; Yucel Gencoglu
et al., 2023). Prospects and trends of retinal vessel quantification in
clinical disease are shown in Table 4.

Retinal vessel quantification will continue to play an important
role in clinical research. It would improve the effectiveness of disease
diagnosis, treatment, and prevention and promote the further
development of medical science by combining advanced
technologies and data analysis methods.

7 Conclusion

The quantification of retinal vessels has important clinical
research and application values, mainly reflected in the following
aspects. First, it can be used for early diagnosis of diseases. Doctors
can detect early signs of DR, glaucoma, CAD, and other diseases by
quantifying retinal vessels, allowing for early intervention and
treatment to reduce permanent damage. Second, it can be used
to monitor disease progression. Retinal vessel quantification can be
used to monitor disease progression, determine the effectiveness of
treatment, and adjust treatment plans in a timely manner in patients
with eye and related systemic diseases. Third, it can be used for
personalized treatment. By understanding each patient’s retinal
vascular status, physicians can develop more personalized
treatment plans to improve treatment efficacy and reduce side
effects. Fourth, it can assist in replacing relevant clinical
examinations. Retinal vessel quantification can effectively assist in
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replacing some traumatic and costly clinical examinations with
repeatability, helping clinicians evaluate disease occurrence,
development, and treatment effectiveness. Fifth, it can be used
for studying disease mechanisms and pathogenesis, providing a
foundation for new treatment methods and drug development.

Overall, retinal vessel quantification has broad research
application prospects in the diagnosis, treatment, and research of
ocular and systemic diseases, helping prevent disease onset and
development and better protect and maintain the physical health of
patients (Keskinbora and Güven, 2020).
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TABLE 3 Limitations and solutions of retinal vessel quantification.

Limitations Solutions

Data quality is inconsistent Improving imaging technology, standardizing data acquisition and image processing,
and improving repeatability

The equipment used for quantification is complex and expensive, which is not
conducive to dissemination

Reducing the cost of equipment and promoting technology use in remote areas

The inconsistency of retinal vessel quantification algorithms leads to variable results Developing international standards and guidelines to ensure consistency and
comparability of retinal vessel quantification algorithms

The lack of sufficient baseline data for comparison with individual retinal vascular
diseases may limit its clinical applications

By collecting large-scale retinal images and clinical data, baseline data can be better
established; this will help improve disease diagnosis and treatment

Patient privacy and safety issues Taking data encryption and privacy measures to ensure the security and legality of
patient data

Doctors and patients have a low acceptance of AI “black box” algorithms Further development of interpretable AI algorithms

TABLE 4 Prospects and trends of retinal vessel quantification in clinical disease.

Personalized medicine: As technology advances, the quantification of retinal blood vessels will become a part of
personalizedmedicine. Doctors can develop personalized treatment plans based on the specific retinal characteristics of
each patient to improve treatment efficacy

Predictive medicine: AI can help doctors predict eye and systemic health risks by analyzing large-scale retinal image data and cases. This predictive medicine helps with early
intervention and disease prevention

New drug development: Retinal vessel quantification can be used to evaluate the therapeutic effects of new drugs on diseases, speeding up the development of new drugs and
providing more treatment options for patients

Identification of disease subtypes: Vascular quantification can help identify subtypes of different diseases, leading to more accurate diagnosis and treatment

Remote monitoring: The remote acquisition and analysis of retinal images allow doctors to monitor patients regularly without frequent clinic visits. This is particularly beneficial
for managing long-term chronic conditions

Multi-field applications in ocular and systemic diseases: Retinal vessel quantification has applications in ophthalmology and plays a role in various medical fields, such as systemic
health management and cardiovascular disease research
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Optimizing diagnosis and surgical
decisions for chronic
osteomyelitis through radiomics
in the precision medicine era

Qiyu Jia1†, Hao Zheng2†, Jie Lin2†, Jian Guo1, Sijia Fan2,
Abudusalamu Alimujiang1, Xi Wang1, Lanqi Fu2, Zengru Xie1*,
Chuang Ma1* and Junna Wang2*
1The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China, 2The First Affiliated Hospital of
Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine),
Hangzhou, China

Introduction: Chronic osteomyelitis is a complex clinical condition that is
associated with a high recurrence rate. Traditional surgical interventions often
face challenges in achieving a balance between thorough debridement and
managing resultant bone defects. Radiomics is an emerging technique that
extracts quantitative features from medical images to reveal pathological
information imperceptible to the naked eye. This study aims to investigate the
potential of radiomics in optimizing osteomyelitis diagnosis and
surgical treatment.

Methods: Magnetic resonance imaging (MRI) scans of 93 suspected
osteomyelitis patients were analyzed. Radiomics features were extracted
from the original lesion region of interest (ROI) and an expanded ROI
delineated by enlarging the original by 5 mm. Feature selection was
performed and support vector machine (SVM) models were developed
using the two ROI datasets. To assess the diagnostic efficacy of
the established models, we conducted receiver operating characteristic
(ROC) curve analysis, employing histopathological results as the reference
standard. The model’s performance was evaluated by calculating the
area under the curve (AUC), sensitivity, specificity, and accuracy.
Discrepancies in the ROC between the two models were evaluated using
the DeLong method. All statistical analyses were carried out using Python,
and a significance threshold of p < 0.05 was employed to determine statistical
significance.

Results and Discussion: A total of 1,037 radiomics features were extracted from
each ROI. The expanded ROI model achieved significantly higher accuracy
(0.894 vs. 0.821), sensitivity (0.947 vs. 0.857), specificity (0.842 vs. 0.785) and
AUC (0.920 vs. 0.859) than the original ROI model. Key discriminative features
included shape metrics and wavelet-filtered texture features. Radiomics analysis
of MRI exhibits promising clinical translational potential in enhancing the
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diagnosis of chronic osteomyelitis by accurately delineating lesions and identifying
surgical margins. The inclusion of an expanded ROI that encompasses perilesional
tissue significantly improves diagnostic performance compared to solely focusing
on the lesions. This study provides clinicians with a more precise and effective tool
for diagnosis and surgical decision-making, ultimately leading to improved
outcomes in this patient population.

KEYWORDS

chronic osteomyelitis, radiomics, MRI, diagnostic accuracy, surgical decisionmaking,
shape features, region of interest

1 Introduction

Chronic osteomyelitis has long been recognized as one of the
most challenging diseases in themedical field, often referred to as the
“second cancer” (Zhang et al., 2019; Masters et al., 2022). Despite the
refined antimicrobial activity of new-generation antibiotics and the
efficacy of surgical intervention, the recurrence rate of chronic
osteomyelitis remains as high as 20%–30% (Conterno and
Turchi, 2013; Chastain and Davis, 2019; Zeitlinger, 2019; Wang
X. et al., 2023).

Accurate diagnosis of chronic osteomyelitis is essential, as
misdiagnosis can lead to the worst outcomes due to differences
in treatment approaches. Magnetic Resonance imaging (MRI), with
its excellent contrast between bone and soft tissue, is currently one of
the most valuable tools for diagnosing chronic osteomyelitis.
However, relying solely on MRI can be challenging for
differentiating diseases with similar radiographic features, such as
bone tuberculosis and osteosarcoma. These conditions often present
with bone marrow edema, soft tissue masses, and inflammatory
changes, which may overlap in imaging characteristics, thus
complicating differential diagnosis and potentially affecting
subsequent treatment strategies. Furthermore, once a definitive
diagnosis is made, thorough debridement is necessary, as
incomplete debridement can lead to recurrent infections (Bosse
et al., 2002). Therefore, relying on intraoperative judgment based on
experience, experienced orthopedic surgeons have increasingly
adopted expanding debridement as the preferred approach.
However, this practice can result in extensive bone defects, which
pose a significant challenge during the postoperative period (Heng
et al., 2023). On the other hand, narrowing the debridement area
increases the risk of infection recurrence. Thus, it seems challenging
to strike a balance between the two approaches. Moreover, even with
the expansion of the debridement area, there are instances where
chronic osteomyelitis still recurs, highlighting the limitations of
current interventional approaches and the harsh reality faced in
clinical practice (Hotchen et al., 2020).

Radiomics, an emerging diagnostic and adjunctive imaging
technique, has witnessed rapid development in recent years,
offering hope in addressing this issue (Huang et al., 2016; Witt
et al., 2020; Bera et al., 2022; WangW. et al., 2023). High throughput
radiomics transforms traditional medical images into highly reliable,
reproducible, and non-redundant data that can be mined for
valuable information by extracting and analyzing a large volume
of advanced and quantitative image feature data. These extracted
features provide insights into pathological and physiological
phenomena that are not readily discernible by the naked eye in

chronic osteomyelitis, particularly in terms of structural damage and
alterations in image texture (Gillies et al., 2015; Huang et al., 2016;
Bera et al., 2022; Cuce et al., 2023). Currently, this technique is
primarily applied in the classification and prediction of various
cancers (Lambin et al., 2017; Hassani et al., 2019). Its high diagnostic
accuracy can also be leveraged to reduce the misdiagnosis rate of
chronic osteomyelitis by mining big data from radiographic images
and facilitating early diagnosis and treatment.

For orthopedic surgeons, the future potential primary advantage
of this technique lies in optimizing surgical decision-making. The
infected area and its extent can be accurately determined by analyzing
preoperative imaging data and establishing precise three-dimensional
reconstruction images combined with machine learning and image
segmentation techniques. The development of expanded detection
technology provides the foothold for optimal debridement in cases of
osteomyelitis (Wu et al., 2021), which involves improving the
discrimination of the primary lesion area and defining a reliable
and safe zone based on “artificial intelligence” judgments. This
approach can assist in preoperative planning and optimizing
debridement strategies, allowing surgeons to treat patients more
accurately and efficiently while ensuring complete removal of
infected tissue and minimizing bone damage. To achieve the
previously stated objectives, we first need to determine whether
radiomics technology is sufficiently effective in diagnosing chronic
osteomyelitis by assessing the combined area of lesions visible to the
naked eye and their surrounding expanded regions (potential lesions).

Herein, we sought to develop an imaging-based osteomyelitis
diagnosis model using radiomics analysis by comprehensively
analyzing and extracting features from patient MRI data and
evaluating its accuracy and reliability in determining the nature
and extent of lesions. This approach could facilitate diagnosis and
surgical decision-making, achieving a breakthrough in treating
chronic osteomyelitis.

2 Materials and methods

2.1 Data collection

A retrospective analysis was conducted on the clinical and imaging
data of 93 patients with an initial diagnosis suspected to be chronic
osteomyelitis of the long bones (Figure 1) who attended the First
Affiliated Hospital of XinjiangMedical University from January 2016 to
May 2022. The study population comprised predominantly of males
(n = 63/93, 67.7%), with a mean age of 35.5 (range: 19–67 years).
Inclusion/exclusion criteria: Patients with a high suspicion of having
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chronic osteomyelitis of the long bones and requiring surgical
intervention were included. These patients had well-established bone
marrow infection persisting for more than 10 weeks, and the diagnosis
was based on intraoperative histopathological examination or at least
two sites with the same pathogen cultured or well-defined sinus tracts
directly connected to the long bones, excluding cases with specific
infections such as mycobacteria. The medical records of patients
diagnosed with chronic osteomyelitis of the long bones included the
following data: gender, age, anatomical site of infection, intraoperative
microbiological culture results, treatment strategies, serum biomarkers,
and MRI images after admission. Patients who were pregnant,
breastfeeding, had metal implants, or were diagnosed with acute
osteomyelitis, Charcot disease, diabetes, or chronic osteomyelitis in
non-long bone locations were all excluded from the study. Moreover, if
a patient had multiple medical records (multiple hospitalizations), only
the most relevant record related to chronic osteomyelitis of the long
bones was retained for analysis. Based on retrospective pathological
analysis, the study ultimately included 48 patients with chronic
osteomyelitis and 45 patients with non-chronic osteomyelitis. The
Ethics Committee of The First Affiliated Hospital of Xinjiang
Medical University approved the study with an informed consent
exemption (K202308-11). Patients’ personal information was
anonymized and de-identified prior to analysis.

2.2 MR scanning method

The patient image was acquired by a 1.5T MR scanner
(SIEMENS). The following scanning parameters were used: T1WI
TR 600 ms TE 9.5 ms; T2WI TR 3000 ms TE 88 ms; FS T2WI

TR3600 ms TE 83 ms, FOV320 mm, matrix: 256 × 256. All
patients underwent routine scanning, including T1-weighted
sequences, T2-weighted sequences, and a T2-based short tau
inversion recovery (STIR) sequence. Scans were performed in the
coronal, sagittal, and axial planes according to the location of lesions,
with a slice thickness of 4 mm and an interslice gap of 0.4 mm.

2.3 Lesion segmentation and radiomics
feature extraction

2.3.1 Image selection
MRI images of selected patients were extracted from the Picture

Archiving and Communication Systems (PACS). The images were
reviewed by a radiologist with over 10 years of musculoskeletal
imaging diagnostic experience. T1-weighted images (T1WI)
exhibited low signal intensity, whereas T2-weighted images
(T2WI) and Short Tau Inversion Recovery images displayed high
signal intensity for bone marrow inflammation. The presence of
complete sequences without artifacts was confirmed before
proceeding with image delineation.

2.3.2 Lesion and perilesional area delineation
1) Lesion delineation was performed using 3D Slicer (version

5.3.0) software, simultaneously outlining both the outer contour and
bounding box of the lesion. 2) Using the STIR sequence based on the
MRI T2 sequence as a reference, the region of interest (ROI) was
delineated in the coronal plane. 3) Manual delineation was
conducted on each lesion plane while avoiding areas of necrosis
and hemorrhage, with an emphasis on comprehensive coverage of

FIGURE 1
Macroscopic photo of a patient with chronic osteomyelitis.
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the lesion substance. 4) Semi-automatic delineation was applied to
the original region of interest (original ROI), displaying the lesion on
the image, as well as the lesion area expanded by 5 mm (expanded
ROI) from the original ROI. Subsequent manual adjustments were
made to confirm the delineation scope, preventing any extension of
the delineation beyond the bone structure. 5) For lesions with
unclear borders, distinct high-signal areas were delineated. 6) In
the case of multiple lesions, only the largest lesion was delineated.
The results of lesion and perilesional area delineation are illustrated
in Figure 2. 7) The delineation and review of the Regions of Interest
(ROIs) were conducted by two radiologists, each boasting over a
decade of expertise in musculoskeletal imaging diagnostics.

2.3.3 Raiomics feature extraction
In this study, radiomics feature extraction was conducted using

the pyradiomics module within the 3D Slicer software. A total of
1,037 features were automatically extracted for each ROI,
encompassing various categories of features, including shape,
firstorder, glcm, glszm, gldm, glrlm, and ngdtm. Furthermore,
wavelet filtering and Laplacian of Gaussian (LoG) filtering
techniques were applied. Wavelet filtering was applied to
iteratively break down the initial image into various scales,
thereby extracting valuable insights across diverse levels. In
contrast, LoG filtering functioned as an edge enhancement filter,
predominantly highlighting areas with significant variations in gray
levels. By manipulating the sigma parameter in the LoG filtering
process, we could regulate the prominence of texture characteristics.
Smaller sigma values were employed to enhance intricate texture

intricacies, while larger sigma values highlighted textural attributes
on a broader scale (Lambin et al., 2012; van Griethuysen et al., 2017).

2.4 Statistical analysis

We used Python (ver 3.9.13) to process the two sets of radiomics
features extracted from 3D Slicer, encompassing both the original
and expanded ROI. Initially, data standardization was executed on
the two datasets through a standardized method. The patient cohort
was subsequently randomly partitioned into a training set and a
testing set, maintaining a ratio of 7:3. Following this, dimensionality
reduction was implemented on the extracted radiomics features via
t-test, least absolute shrinkage and selection operator (LASSO)
regression analysis, and the SelectKBest classifier.

The support vector machine (SVM) model was employed for
modeling the kernel functions of both the original and expanded
ROIs. The dimensionality-reduced features were employed for
classification tasks. To assess the diagnostic efficacy of the
established models, we conducted receiver operating
characteristic (ROC) curve analysis, employing histopathological
results as the reference standard. The model’s performance was
evaluated by calculating the area under the curve (AUC), sensitivity,
specificity, and accuracy. Discrepancies in the ROC between the two
models were evaluated using the DeLong method (DeLong et al.,
1988). All statistical analyses were carried out using Python (ver
3.9.13), and a significance threshold of p < 0.05 was employed to
determine statistical significance.

FIGURE 2
Osteomyelitis outlined using 3Dslicer. (A,F)Osteomyelitis in the proximal-medial tibia on the coronal view of the STIR sequence. (B,G)Osteomyelitis
outlined within original ROI. (C,H)Osteomyelitis outlined within expanded ROI. (D,I) 3Dmodel of osteomyelitis reconstructed from original ROI. (E,J) 3D
model of osteomyelitis reconstructed from expanded ROI.
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3 Results

3.1 Radiomics feature extraction

Utilizing the pyradiomics module within the 3D Slicer software,
feature extraction was conducted separately on the original ROI and
the expanded ROI, yielding a total of 1,037 features. Following
feature selection through t-tests and the LASSO method, 16 and
11 features were retained for the original and expanded ROI,
respectively.

Figures 3A,B illustrate the feature selection results, displaying the
LASSO-driven selection of lesion texture features. To further reduce
feature dimensionality and construct the SVM model, optimal
polynomial degrees of 2 were determined during the
hyperparameter grid search for SVM. The cost variables for the
original ROI and the expanded ROI were set at 0.5 and 3.05,
respectively, with scaling variables of 0.15 and 0.0625. Subsequent
feature refinement was performed using the SelectKBest classifier,
which employs statistical methods such as the chi-squared test,

F-test, or mutual information to evaluate the relationship between
each feature and the target variable. Features are ranked and selected
based on the magnitude of the computed statistic (Bisong, 2019). By
applying the SelectKBest classifier, we ultimately identified the top
10 features for the original and expanded ROI. Figures 4A,B depicts the
feature weights selected for the original and expanded ROIs. The
correlations between features within the original and expanded ROIs
are visually represented through heatmap matrices in Figures 5A,B,
respectively. All coefficients of total feature values were less than 0.7,
implying the absence of collinearity among the features. The feature
selection process underscores the significance of all gathered parameters
as pivotal predictive elements for machine learning algorithms.

3.2 Comparison of model performance
between original ROI and expanded ROI

The original ROI model demonstrated an excellent diagnostic
performance with an accuracy of 0.821, sensitivity of 0.857, and

FIGURE 3
Texture feature selection using t-tests and selection operator (LASSO) for radiomics. (A) Original ROI texture feature selection. (B) Expanded ROI
texture feature selection.
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FIGURE 4
The features weight selected for original and expanded ROIs. (A) Features weight within the original ROI. (B) Features weight within the
expanded ROI.

FIGURE 5
The correlation matrix heatmap. (A) Original ROI correlation matrix heat map. (B) Expanded ROI correlation matrix heat map.
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specificity of 0.785. Nonetheless, the expanded ROI model exhibited
higher accuracy (0.894), sensitivity (0.947), and specificity (0.842),
significantly outperforming the SVM model based on the original
ROI radiomics features (Table 1). As depicted in Figures 6A,B, the
expanded ROI model’s predictive performance was significantly
superior to the original ROI (AUC value 0.920 vs. 0.859).
DeLong’s test confirmed a significant difference between the two
approaches (Z = 3.336, p < 0.001), indicating the enhanced
diagnostic efficacy of the expanded ROI model.

4 Discussion

MRI stands out for its absence of electromagnetic radiation,
swift examination times, and exceptional contrast depiction between
bone and soft tissues. Beyond its capacity for multi-directional
imaging, MRI boasts superior sensitivity in pinpointing lesion
locations and extents compared to X-rays and CT scans
(Hatzenbuehler and Pulling, 2011; Acikgoz and Averill, 2014).
Furthermore, contrast-enhanced MRI can effectively delineate
abscesses and sinus tracts related to chronic osteomyelitis, thus
improving diagnostic precision. However, the utilization of
gadolinium-based contrast agents presents iatrogenic hazards to
patients. While MRI currently plays a pivotal role in osteomyelitis

diagnosis, significant challenges remain for clinical diagnostics (Lee
et al., 2016; Wong et al., 2019). In cases of chronic osteomyelitis,
MRI reveals distinct patterns with low signal intensity on T1WI and
high signal intensity on T2WI and STIR sequences. Additionally, the
surrounding soft tissues often exhibit edema, inflammatory
alterations, and localized osteolysis. However, distinguishing
chronic osteomyelitis from conditions like osteosarcoma and
osteotuberculosis which present very similar imaging features on
MRI, can be challenging on plain MR scans. In this context,
radiomics becomes particularly important since it can extract
countless quantitative features from MRI images, dynamically
observe lesions and their microenvironments in a non-invasive
manner, discover a large amount of information hidden in MR
image layers to predict clinical endpoints or lesion properties and
provide possibilities for a comprehensive assessment of lesion
heterogeneity (van Griethuysen et al., 2017; Muraoka et al.,
2022), as well as providing more possibilities for precise guidance
of the surgical scope. Studies have shown that the microenvironment
around the lesion has important biological significance in terms of
lesion growth, cell migration, inflammation, and other aspects
(Lambin et al., 2012). However, most radiomics studies of
osteomyelitis have focused on the lesion itself, and the
perilesional area has not been comprehensively explored (DeLong
et al., 1988). Integrating radiomics features extracted from the
perilesional area could improve lesion predictive diagnostic
efficiency and offers extensive prospects for precise surgical scope
guidance by incorporating microtexture intricacies and
multifaceted data.

Although previous studies have evaluated osteomyelitis using
MRI (Oda et al., 2018; Iwasaki and Muraoka, 2020; Massel et al.,
2021), there is limited research on the application ofMRI radiomics in
assessing chronic osteomyelitis. Therefore, further research and
exploration in this field are valuable. In this study, we constructed
two different regions of interest for osteomyelitis: the original ROI
based on the lesion area of osteomyelitis and an expanded ROI

TABLE 1 Diagnostic performance comparison between original ROI and
expanded ROI models.

Original ROI model Expanded ROI model

Accuracy 0.821 0.894

Sensitivity 0.857 0.947

Specificity 0.785 0.842

AUC 0.859 0.920

FIGURE 6
Comparison of model performance. (A) AUC of the original ROI. (B) AUC of the expanded ROI.
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expanding 5 mm beyond the original. Subsequently, two SVMmodels
were developed using these ROIs to assess the diagnostic performance
of MRI radiomics in osteomyelitis diagnosis. SVM, a supervised
learning algorithm, endeavors to identify a hyperplane within the
feature space that maximizes the classification of distinct classes of
data points, thereby facilitating effective classification. In our study,
SVM demonstrated effective applicability; MRI radiomics-based
osteomyelitis diagnosis achieved enhanced sensitivity compared to
previous studies on MRI’s diagnostic performance in osteomyelitis.
For instance, compared to Hulsen et al.’s study (Hulsen et al., 2022),
the sensitivity increased from 0.780 to 0.857, consistent with Hirotaka
et al.’s findings regarding MRI radiomics’ robust diagnostic
performance in pyogenic osteomyelitis (Muraoka et al., 2022).
Expanding the original ROI by 5 mm resulted in the SVM model
yielded marked enhancements in accuracy (0.894 vs. 0.821),
sensitivity (0.947 vs. 0.857), specificity (0.842 vs. 0.785), and AUC
value (0.920 vs. 0.859), attributed to the fact that not all osteomyelitis
lesions manifest as high signal areas inMRI images, and subtle lesions
beyond the high signal region might remain imperceptible to the
naked eye. Importantly, the radiomics-based SVMmodel can identify
these subtle features accurately, improving diagnotic accuracy. Our
findings are consistent with the widely accepted perspective that
eradicating osteomyelitis necessitates expanding the surgical scope
(Lazzarini et al., 2002; McNally et al., 2022; Wu et al., 2023). Our
results indicate that expanding the delineation range from 0 to 5 mm
substantially enhanced MRI radiomics’ diagnostic performance in
osteomyelitis, providing valuable insights for osteomyelitis surgical
scope guidance.

Differentiating healthy tissue from non-viable tissue during
early-stage surgery is inherently complex. Therefore, recognizing
the significance of early, thorough debridement is widely
acknowledged (Li et al., 2020). Eckardt et al. initially proposed
aggressive debridement, akin to managing giant cell bone tumors,
for chronic osteomyelitis treatment (Eckardt et al., 1994). Some
scholars even advocate treating it like malignancy (Simpson et al.,
2001), consistent with our findings. Thus, applying radiomics
techniques to accurately determine lesion extent holds significant
practical benefits for patients, impacting short-term surgical
outcomes and long-term disease control and prognosis.

After applying t-tests and LASSO-based feature extraction, the
original ROI model retained 16 features, while the expanded ROI
model retained 11. The potential drawbacks of excessive features,
including increased false discovery rates, overfitting, and diminished
model generalization efficacy, have been highlighted (Kumar et al.,
2012; Gillies et al., 2015). To mitigate these risks and enhance model
accuracy, the SelectKBest classifier was employed, further reducing
feature dimensionality to 10 for both models.

Based on our feature selection, the original ROImodel highlighted
Elongation, Major Axis Length in the shape features, and the
Minimum feature in the first-order statistical features as optimal
descriptors for characterizing the texture attributes within the
osteomyelitis region. In contrast, within the expanded ROI model,
the waveletfilter’smaximum correlation coefficient (MCC) feature and
sphericity from the shape-related feature set emerged as the most
informative in delineating the textural characteristics of the expanded
osteomyelitis suspicious area. In the original ROI model, Elongation
and Major Axis Length encapsulate the primary directional
characteristics of the region of interest’s shape and the length of its

primary axis within the enclosed ellipsoid. Elongation assesses the
extent to which the ROI’s shape appears elongated, while Major Axis
Length quantifies the principal dimension of the ROI. During
osteomyelitis imaging, a lesion can lead to anomalous enlargement
and morphological alterations within the adjacent bone marrow
architecture. This often manifests as an elongated lesion region with
an irregularly expanded shape, collectively indicating the structural
attributes of the bone and the extent of osteomyelitis infiltration (He
et al., 2021). Utilizing the Minimum feature within the first-order
statistical features primarily assesses the minimum grayscale intensity
within the lesion region. In cases where the original ROI exclusively
encompasses the osteomyelitis area displaying high signal intensity on
the MRI image, the overall image’s minimum grayscale value tends to
be elevated. Conversely, the expanded ROI’s delineation encompasses
regions outside the lesion, often represented by darker areas on the
MRI image. This inclusion leads to a comparatively lower overall
minimum grayscale value, resulting in the reduced significance of the
Minimum feature. Meanwhile, sphericity quantifies an object’s
resemblance to a perfect sphere, with lower values indicating
deviation towards irregularity. In the context of the expanded ROI
model, sphericity emerges as a pivotal discriminatory feature, reflecting
the extent of roundness within the lesion area in relation to a spherical
shape (Priya et al., 2021) Its prominently negative weight might stem
from the indistinct boundaries and unevenness of the expanded ROI,
resulting in a modified shape. Additionally, the MCC feature linked to
the wavelet filter is a gray-level co-occurrence matrix (GLCM)
component, signifying the intricacy of texture patterns (Su et al.,
2023). Given the broader delineation of regions within the
expanded ROI model, implying heightened textural complexity
compared to the original ROI, the MCC feature was more
prominent in the expanded ROI model.

Across the original and expanded ROI models, the shape feature
retained a notably substantial weight ratio among all the screened
features. Previous studies have effectively employed shape features
in delineating tumor aggressiveness (Limkin et al., 2019). Similar to
the invasive characteristics exhibited by tumors, osteomyelitis also
demonstrates comparable aggressiveness. Shape features possess a
unique capability in assessing bone erosion, which can effectively
differentiate chronic osteomyelitis from other conditions in
magnetic resonance imaging.

The application of radiomics ensures a relatively high level of
accuracy in differentiating between residual lesions in chronic
osteomyelitis, such as infected tissue, inflammatory tissue, and
edema, despite their similar high signal intensity on imaging.
Implementing an expanded lesion detection strategy can be
likened to providing young doctors with a vantage point on the
accomplishments of experts, reflecting the inevitable trajectory of
rapid artificial intelligence advancement. However, it should be
borne in mind that despite the immense potential of radiomics
technology, its effective utilization still hinges on the expertise and
experience of medical professionals for thorough analysis and
interpretation. Radiomics technology functions as a
supplementary tool, and doctors must still integrate elements like
clinical history, physical examinations, and other supplementary test
outcomes to arrive at the ultimate diagnosis and treatment decisions.

Our study has several limitations. Firstly, it is a retrospective
study, potentially subject to information bias. Secondly, our discussion
solely pertains to the impact of MRI radiomics on the diagnostic
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efficacy of osteomyelitis. Thirdly, comparing radiomics features with
imaging morphological characteristics is necessary. In our future
research, we plan to construct a fusion model based on both
radiomics and morphological features to further explore and
validate their combined diagnostic value. However, previous
studies have shown that certain clinical factors, such as a history
of previous wounds (Lavery et al., 2009) and microbial infections
(Bury et al., 2021), may also influence the qualitative diagnosis of
osteomyelitis. Therefore, in future research, integrating clinical
features with radiomics may become an expanded focus to provide
a more comprehensive disease diagnosis and treatment guidance.
Additionally, further research is needed to investigate the extent of
expanded delineation in conjunction with radiomics, aiming to
achieve optimal accuracy, sensitivity, specificity, and other
information. We also plan to explore additional radiomics models,
such as random forest models and logistic models, to compare the
diagnostic performance of different models and identify the most
suitable radiomics model for osteomyelitis diagnosis.

5 Conclusion

MRI radiomics-based methods yielded promising results for
diagnosing chronic osteomyelitis, especially when utilizing an
expanded ROI model that enhances diagnostic accuracy. With
further validation from larger-scale, high-quality studies in the future,
this approach can potentially become a valuable tool for guiding surgical
interventions in chronic osteomyelitis, providing accurate diagnosis and
precise localization of the affected lesion areas, ultimately optimizing
surgical decision-making and improving patient outcomes.
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Accurate medical image segmentation is critical for disease quantification and
treatment evaluation. While traditional U-Net architectures and their
transformer-integrated variants excel in automated segmentation tasks.
Existing models also struggle with parameter efficiency and computational
complexity, often due to the extensive use of Transformers. However, they
lack the ability to harness the image’s intrinsic position and channel features.
Research employing Dual Attention mechanisms of position and channel have
not been specifically optimized for the high-detail demands of medical images.
To address these issues, this study proposes a novel deep medical image
segmentation framework, called DA-TransUNet, aiming to integrate the
Transformer and dual attention block (DA-Block) into the traditional U-shaped
architecture. Also, DA-TransUNet tailored for the high-detail requirements of
medical images, optimizes the intermittent channels of Dual Attention (DA) and
employs DA in each skip-connection to effectively filter out irrelevant
information. This integration significantly enhances the model’s capability to
extract features, thereby improving the performance of medical image
segmentation. DA-TransUNet is validated in medical image segmentation
tasks, consistently outperforming state-of-the-art techniques across
5 datasets. In summary, DA-TransUNet has made significant strides in medical
image segmentation, offering new insights into existing techniques. It
strengthens model performance from the perspective of image features,
thereby advancing the development of high-precision automated medical
image diagnosis. The codes and parameters of our model will be publicly
available at https://github.com/SUN-1024/DA-TransUnet.
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1 Introduction

Machine learning and deep learning techniques have emerged as
powerful tools in biomedical research, revolutionizing disease
diagnosis, treatment planning, and personalized medicine (Le,
2024; Tran and Le, 2024). Medical image segmentation is the
process of delineating regions of interest within medical images
for diagnosis and treatment planning. It serves as a cornerstone in
medical image analysis. Manual segmentation is both accurate and
affordable for pathology diagnosis but vital in standardized clinical
settings. Conversely, automated segmentation ensures a reliable and
consistent process, boosting efficiency, cutting down on labor and
costs, and preserving accuracy. Consequently, there is a substantial
demand for exceptionally accurate automated medical image
segmentation technology within the realm of clinical diagnostics.
However, medical image segmentation faces unique challenges, such
as the need for precise delineation of complex anatomical structures,
variability across patients, and the presence of noise and artifacts in
the images (Tran et al., 2023). These challenges necessitate the
development of advanced segmentation techniques that can capture
fine-grained details while maintaining robustness and efficiency.

In the last decade, the traditional U-net structure has been
widely employed in numerous segmentation tasks, yielding
commendable outcomes. Notably, the U-Net model (Ronneberger
et al., 2015), along with its various enhanced iterations, has achieved
substantial success. ResUnet (Diakogiannis et al., 2020) emerged
during this period, influenced by the residual concept. Similarly,
UNet++ (Zhou et al., 2018) emphasizes enhancements in skip
connections. Moving beyond these CNN-based approaches, the
Transformer architecture introduces a completely new
perspective. The transformer (Vaswani et al., 2017), originally
developed for sequence-to-sequence modeling in Natural
Language Processing (NLP), has also found utility in the field of
Computer Vision (CV). ViTs segment images into patches and input
their embeddings into a transformer network for strong
performance. (Dosovitskiy et al., 2020). This signifies a trend of
shifting from traditional CNN models to more flexible Transformer
models. While the above-mentioned U-Net structures have
enhanced the capabilities of models in segmentation tasks
(Ronneberger et al., 2015; Zhou et al., 2018; Diakogiannis et al.,
2020), they do not integrate the more powerful feature extraction
abilities inherent in the Transformer and attention mechanisms,
which limits their potential for further improvement. On the one
hand, several studies have made progress in image segmentation by
leveraging Dual Attention (DA) mechanisms for both channels and
positions. The Dual Attention Network (DANet) utilizes a Position
Attention Block (PAM) and Channel Attention Block (CAM) from
the DA Network for natural scene image segmentation (Fu et al.,
2019). This research primarily focuses on scene segmentation and
does not explore the unique characteristics of medical imagery. Also,
DAResUnet (Shi et al., 2020) introduces a dual attention block
combined with a residual block (Res-Block) in a U-net architecture
for medical image segmentation, demonstrating significant
improvements in this domain. However, in the realm of medical
image segmentation, existing models, including those employing
Dual Attention mechanisms, have not yet extensively explored the
optimal integration of Dual Attention with Transformer models for
enhanced feature extraction; this oversight represents a significant

research opportunity in the task of medical image segmentation.
Therefore, addressing this gap and optimizing the integration of
Transformers and Dual Attention mechanisms in the context of
medical image segmentation poses a significant challenge for future
research in the field.

To overcome the above drawbacks, recent studies have explored
the application of Transformer models in medical image
segmentation. Inspired by ViTs, TransUNet (Chen et al., 2021)
further combines the functionality of ViTs with the advantages of
U-net in the field of medical image segmentation. Specifically, it
employs a transformer’s encoder to process the image and employs
CNN and hopping connections for accurate up-sampling feature
recovery, yet it neglects image-specific features like position and
channel. These aspects are crucial for capturing the nuanced
variations and complex structures often present in medical
images, which are essential for accurate diagnosis and analysis.
Swin-Unet (Cao et al., 2022) combines the Swin-transform block
with the U-net structure and achieves good results. Yet, adding
extensive Transformer blocks inflates the parameter count without
significantly improving results. This study merely stacked multiple
Transformers to enhance models, resulting in inflated parameters
and computational complexity with marginal gains in performance.
Moreover, some studies have specifically focused on incorporating
position and channel attention mechanisms in medical image
segmentation. For instance, DA-DSUnet has been applied to
head-and-neck tumor segmentation, but it doesn’t combine
Position Attention Module (PAM) and Channel Attention
Module (CAM), nor does it discuss the potential filtering role of
DA blocks in skip connections (Tang et al., 2021). Additionally, it
doesn’t leverage ViT for feature extraction. Another example is
research on brain tumor segmentation, which, while applying DA
blocks, limits its scope to brain tumors without validating other
types of medical images (Sahayam et al., 2022). These studies
integrate DA blocks with other blocks but do not thoroughly
explore the role of DA in skip connections or optimize DA
blocks for the unique intricacies of medical imaging.

However, Despite the progress made by these transformer-based
approaches, they often overlook the importance of integrating
image-specific features, such as position and channel
information, which are crucial for capturing the nuanced
variations and complex structures in medical images. Moreover,
the existing methods that incorporate dual attention mechanisms
have not been optimized for the unique characteristics of medical
imagery, leaving room for further improvement. To address these
limitations, we propose DA-TransUNet, which strategically
integrates the Dual Attention Block (DA-Block) into the
transformer-based U-Net architecture, specifically tailored for
medical image segmentation.

In this research, our proposed model DA-TransUNet is an
innovative approach for medical image segmentation that
integrates the Transformer mechanism, specifically the Vision
Transformer (ViT) and a Dual Attention (DA) mechanism
within a U-Net architecture. First, the Transformer ViT is
combined with DA in the encoder of the U-Net structure,
enhancing feature extraction capabilities by leveraging the
detailed characteristics of medical images. This integration allows
the model to capture both local and global contextual information,
which is essential for accurate segmentation of complex anatomical
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structures. Then, to further refine feature extraction tailored to
medical images, DA is optimized for specific channels and
incorporated into every module of the skip connections, enabling
the model to effectively filter out irrelevant information and focus on
the most discriminative features. The skip connections pass the
shallow positional information from the encoder, while the DA
module refines the crucial detailed features. This targeted
optimization is substantiated by extensive ablation studies,
demonstrating its significance in improving the model’s
performance. Lastly, this architecture has been rigorously tested
across five medical image segmentation datasets and extensive
ablation studies, demonstrating its effectiveness and superiority
(Candemir et al., 2013; Jaeger et al., 2013; Bernal et al., 2015;
Landman et al., 2015; Tschandl et al., 2018; Codella et al., 2019;
Jha et al., 2020; Jha et al., 2021).

The main contributions of this article are summarized
as follows:

1) The model of DA-TransUnet is proposed by integrating
Transformer ViT and Dual Attention in U-net
architecture’s encoder and skip connections. This design
enhances feature extraction capabilities in better extracting
detailed features of medical images.

2) We propose an optimized Dual Attention (DA) Block that is
designed for medical image segmentation with two key
enhancements: the optimization of intermediate channel
configurations within the DA block, and its integration into
each skip-connection layer for effectively filtering irrelevant
information. These are validated through comprehensive
ablation experiments.

3) The segmentation performance and generalization ability of
DA-TransUnet are validated on five medical datasets. In
comparison to recent related studies, DA-TransUnet
exhibits superior results in medical image segmentation,
demonstrating its effectiveness in this field.

The rest of this article is organized as follows. Section 2 reviews
the related works of automatic medical image segmentation, and the
description of our proposed DA-TransUNet is given in Section 3.
Next, the comprehensive experiments and visualization analyses are
conducted in Section 4. Finally, Section 5 makes a conclusion of
the whole work.

2 Related work

2.1 U-net model

Recently, attentionmechanisms have gained popularity in U-net
architectures (Ronneberger et al., 2015). For example, Attention
U-net incorporates attention mechanisms to enhance pancreas
localization and segmentation performance (Oktay et al., 2018);
DAResUnet integrates both double attention and residual
mechanisms into U-net (Shi et al., 2020); Attention Res-UNet
explores the substitution of hard-attention with soft-attention
(Maji et al., 2022); Sa-unet incorporates a spatial attention
mechanism in U-net (Guo et al., 2021). Following this,
TransUNet innovatively combines Transformer and U-net

structure (Chen et al., 2021). Building on TransUNet, TransU-
Net++ incorporates attention mechanisms into both skip
connections and feature extraction (Jamali et al., 2023). Swin-
Unet (Cao et al., 2022) improves by replacing every convolution
block in U-net with Swin-Transformer (Liu et al., 2021). DS-
TransUNet proposes to incorporate the tif module (which is a
multi-scale module using Transformer) to the skip connection to
improve the model (Lin et al., 2022). AA-transunet leverages Block
Attention Model (CBAM) and Deep Separable Convolution to
further optimize TransUNet (Yang and Mehrkanoon, 2022).
TransFuse uses dual attention Bifusion blocks and AG to fuse
features of two different parts of CNN and Transformer (Zhang
et al., 2021). Numerous attention mechanisms have been added to
U-net and TransUNet models, yet further exploration is warranted.
Diverging from prior approaches, our experiment introduces a dual
attention mechanism and Transformer module into the traditional
U-shaped encoder-decoder and skip connections, yielding
promising results.

2.2 Application of skip connections in
medical image segmentation modeling

Skip connections in U-net aim to bridge the semantic gap
between the encoder and decoder, effectively recovering fine-
grained object details (Drozdzal et al., 2016; He et al., 2016;
Huang et al., 2017). There are three primary modifications to
skip connections: firstly, increasing their complexity (Azad et al.,
2022a). U-Net++ redesigned the skip connection to include a Dense-
like structure in the skip connection (Zhou et al., 2018), and
U-Net3++(Huang et al., 2020) changed the skip connection to a
full-scale skip connection. Secondly, RA-UNet introduces a 3D
hybrid residual attention-aware method for precise feature
extraction in skipped connections (Jin et al., 2020). The third is a
combination of encoder and decoder feature maps: An alternative
extension to the classical skip connection was introduced in BCDU-
Net with a bidirectional convolutional long-term-short-term
memory (LSTM) module was added to the skip connection
(Azad et al., 2019). Aligning with the second approach, we
integrate Dual Attention Blocks into each skip connection layer,
enhancing decoder feature extraction and thereby improving image
segmentation accuracy.

2.3 The use of attentional mechanisms in
medical images

Attention mechanisms are essential for directing model focus
towards relevant features, thereby enhancing performance. In recent
years, dual attention mechanisms have seen diverse applications
across multiple fields. In scene segmentation, the Dual Attention
Network (DANet) employs position and channel attention
mechanisms to improve performance (Fu et al., 2019). A
modularized DANs framework is presented that adeptly merges
visual and textual attention mechanisms (Nam et al., 2017). This
cohesive approach enables selective focus on pivotal features in both
types of data, thereby improving task-specific performance.
Additionally, the introduction of the Dual Attention Module
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(DuATM) has been groundbreaking in the field of audio-visual
event localization. This model excels at learning context-aware
feature sequences and performing attention sequence
comparisons in tandem, effectively incorporating auditory-
oriented visual attention mechanisms (Si et al., 2018). Moreover,
dual attention mechanisms have been applied to medical
segmentation, yielding promising results (Shi et al., 2020). The
Multilevel Dual Attention U-net for Polyp Segment combines
dual attention and U-net in medical image segmentation (Cai
et al., 2022). While significant progress has been made in medical
image segmentation, there is still ample room for further research to
explore the potential of position and channel attention mechanism
in the field of medical image segmentation.

3 Methods

In the subsequent section, we propose the DA-TransUNet
architecture, illustrated in Figure 1. We start with a
comprehensive overview of the architecture. Next, we detailed the
architecture’s key components in the following order: the dual
attention blocks (DA-Block), the encoder, the skip connections,
and the decoder.

3.1 Overview of DA-TransUNet

In Figure 1, the architecture of DA-TransUNet is presented. The
model comprises three core components: the encoder, the decoder,
and the skip connections. In particular, the encoder fuses a
conventional convolutional neural network (CNN) with a

Transformer layer and is further enriched by the DA-Block,
which are exclusively introduced in this model architecture. In
contrast, the decoder primarily employs conventional
convolutional mechanisms. For the optimization of skip
connections, DA-Blocks serve as pivotal components within the
DA-TransUNet architecture. DA-Blocks filter irrelevant
information in skip connections, enhancing image reconstruction
accuracy. In summary, in contrast to traditional convolutional
approaches and the extensive use of Transformers, DA-
TransUNet uniquely leverages DA-Blocks for the extraction and
utilization of image-specific features of position and channel. This
strategic incorporation significantly elevates the overall performance
of the model.

Compared to traditional U-Net architectures, DA-TransUNet
integrates the Transformer layer in the encoder to capture global
dependencies, while the U-Net relies solely on convolutional layers
for local feature extraction. Moreover, the inclusion of DA-Blocks in
the encoder and skip connections sets DA-TransUNet apart from
both U-Net and Transformer-based models. These DA-Blocks
enable the extraction and utilization of image-specific position
and channel features, enhancing the model’s ability to capture
fine-grained details crucial for medical image segmentation.

To elucidate the rationale behind our proposed DA-TransUNet
model’s design, it’s imperative to consider the limitations and
strengths of both U-Net architectures and Transformers in the
context of feature extraction. While Transformers excel in global
feature extraction through their self-attention mechanisms, they are
inherently limited to unidirectional focus on positional attributes,
thus neglecting multi-faceted feature perspectives. On the other
hand, traditional U-Net architectures are proficient in local feature
extraction but lack the capability for comprehensive global

FIGURE 1
Illustration of the proposed dual attention transformer U-Net(DA-TransUNet). For the input medical images, we feed them into an encoder with
transformer andDual Attention Block (DA-Block). Then, the features of each of the three different scales are purified by DA-Block. Finally, the purified skip
connections are fused with the decoder, which subsequently undergoes CNN-based up-sampling to restore the channel to the same resolution as the
input image. In this way, the final image prediction result is obtained.
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contextualization. To address these constraints, we integrate DA-
Blocks both preceding the Transformer layers and within the
encoder-decoder skip connections. This achieves two goals:
firstly, it refines the feature map input to the Transformer,
enabling more nuanced and precise global feature extraction;
secondly, the DA-Block in the skip connections optimize the
transmitted features from the encoder, facilitating the decoder in
reconstructing a more accurate feature map. Thus, our proposed
architecture amalgamates the strengths and mitigates the
weaknesses of both foundational technologies, resulting in a
robust system capable of image-specific feature extraction.

3.2 Dual attention block (DA-Block)

As shown in the attached Figure 2, the Dual Attention Block
(DA-Block) serves as a feature extraction module that integrates
image-specific features of position and channel. This enables feature
extraction tailored to the unique attributes of the image. Particularly
in the context U-Net shaped architectures, the specialized feature
extraction capabilities of the DA-Block are crucial. While
Transformers are adept at using attention mechanisms to extract
global features, they are not specifically tailored for image-specific
attributes. In contrast, the DA-Block excels in both position-based
and channel-based feature extraction, enabling a more detailed and
accurate set of features to be obtained. Therefore, we incorporate it
into the encoder and skip connections to enhance the model’s
segmentation performance. The DA-Block consists of two
primary components: one featuring a Position Attention Module
(PAM), and the other incorporating a Channel Attention Module
(CAM), both borrowed from the Dual Attention Network for scene
segmentation (Fu et al., 2019).

3.2.1 PAM (position attention module)
As shown in Figure 3, PAM captures spatial dependencies

between any two positions of feature maps, updating specific
features through a weighted sum of all position features. The

weights are determined by the feature similarity between two
positions. Therefore, PAM is effective at extracting meaningful
spatial features.

PAM initially takes a local feature, denoted as A ∈ RC×H×W (C
represents Channel, H represents, and W represents Width). We
then feed A into a convolutional layer, resulting in three new feature
maps, namely, B, C, and D, each of size RC×H×W. Next, we reshape B
and C to RC×N, where N = H× W denotes the number of pixels. We
perform a matrix multiplication between the transpose of C and B
and subsequently use a softmax layer to compute the spatial
attention map S ∈ RN×N:

Sji �
exp Bi · Cj( )

∑N
i�1 exp Bi · Cj( )

(1)

Here, Sjimeasures the impact of the i-th position on the j-th position.
We then reshape matrix D to RC×N. A matrix multiplication is
performed between D and the transpose of S, followed by reshaping
the result to RC×H×W. Finally, we multiply it by a parameter α and
perform an element-wise sum operation with the features A to
obtain the final output E ∈ RC×H×W:

Ej � α∑
N

i�1
SjiDi( ) + Aj (2)

The weight α is initialized as 0 and is learned progressively. PAM
has a strong capability to extract spatial features. It can be
inferred from Eq. 2 that the resulting feature E at each
position is a weighted sum of the features across all positions
and original features, it possesses global contextual features and
aggregates context based on the spatial attention map. This
ensures effective extraction of position features while
maintaining global contextual information.

3.2.2 CAM (channel attention module)
As shown in Figure 4, this is CAM, which excels in extracting

channel features. Unlike PAM, we directly reshape the original
feature A ∈ RC×H×W to RC×N, and then perform a matrix

FIGURE 2
The proposed Dual Attention Block (DA-Block) is shown in the Figure. The same input feature map is input into two feature extraction layers, one is
the position feature extraction block and the other is the channel feature extraction block, and finally, the two different features are fused to obtain the
final DA-Block output.
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multiplication between A and its transpose. Subsequently, we apply
a softmax layer to obtain the channel attention map X ∈ RC×C:

Xji �
exp Ai · Aj( )

∑C
i�1 exp Ai · Aj( )

(3)

Here, xjimeasures the impact of the i-th channel on the j-th channel.
Next, we perform amatrix multiplication between the transpose of X
and A, reshaping the result to RC×H×W. We thenmultiply the result by
a scale parameter β and perform an element-wise sum operation
with A to obtain the final output E ∈ RC×H×W:

Ej � β∑
N

i�1
XjiAi( ) + Aj (4)

Like α, β is learned through training. Similar to PAM, during the
extraction of channel features in CAM, the final feature for each
channel is generated as a weighted sum of all channels and original
features, thus endowing CAM with powerful channel feature
extraction capabilities.

3.2.3 DA (dual attention module)
As shown in the Figure 2, we present the architecture of the Dual

Attention Block (DA-Block). This architecture merges the robust
position feature extraction capabilities of the Position Attention
Module (PAM) with the channel feature extraction strengths of the
Channel Attention Module (CAM). Furthermore, when coupled
with the nuances of traditional convolutional methodologies, the
DA-Block emerges with superior feature extraction capabilities. DA-
Block consists of two components, the first one is dominated by
PAM and the second one is dominated by CAM. The first
component takes the input features and performs one
convolution to scale the number of channels by one-sixteenth to
get α1. This convolution operation not only simplifies feature
extraction by PAM but also helps to adjust the scale and
dimension of features, making them more suitable for the
subsequent attention mechanism computations. Following a
PAM feature extraction and another convolution, α̂1 is obtained,
which further refines the extracted features.

α1 � Conv input( ) (5)
α̂1 � Conv PAM α1( )( ) (6)

The other component is the same, with the only difference being that
the PAM block is replaced with a CAM with the following formula:

α2 � Conv input( ) (7)

α̂2 � Conv CAM α2( )( ) (8)
After extracting α̂1 and α̂2 from the two layers of attention, the
output is obtained by aggregating and summing the two layers of
attention and recovering the number of channels in one
convolution.

output � Conv α̂1 + α̂2( ) (9)

To optimize the DA-Block for medical image segmentation, we
fine-tuned the number of intermediate channels. This optimization
allows the model to focus on the most critical features, enhancing its
sensitivity to key information in the medical images. By adapting the
DA-Block to the specific characteristics of medical images, we enable
the model to better capture the fine-grained details necessary for
accurate segmentation. This targeted optimization sets our approach
apart from previous works, which often overlook the importance of
tailoring attention mechanisms to the unique demands of medical
image segmentation.

3.3 Encoder with transformer and
dual attention

As illustrated in Figure 1, the encoder architecture consists of
four key components: convolution blocks, DA-Block, embedding
layers, and transformer layers. Of particular significance is the
inclusion of the DA block before the Transformer layer. This
design is aimed at performing specialized image processing on
the post-convolution features, enhancing the Transformer’s
feature extraction for image content. While the Transformer
architecture plays a crucial role in preserving global context, the
DA block strengthens the Transformer’s capability to capture
image-specific features, enhancing its ability to capture global
contextual information in the image. This approach effectively
combines global features with image-specific spatial and channel
characteristics.

The first component comprises the three convolutional blocks of
the architecture of the U-Net and its diverse iterations, seamlessly
integrating convolutional operations with downsampling processes.
Each convolutional layer halves the size of the input feature map and
doubles its dimension, a configuration empirically found to
maximize feature expressiveness while maintaining computational
efficiency. The second component uses DA-Block extract features at
both positional and channel levels, enhancing the depth of feature
representation while preserving the intrinsic characteristics of the
input map. The third component is the embedding layer serves as a

FIGURE 4
Architecture of channel attention Mechanism (CAM).

FIGURE 3
Architecture of position attention Mechanism (PAM).

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Sun et al. 10.3389/fbioe.2024.1398237

123

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1398237


critical intermediary, enabling the requisite dimensional adaptation,
a prelude to the subsequent Transformer strata. The fourth
component integrates Transformer layers for enhanced global
feature extraction, beyond the reach of traditional CNNs. Putting
the above parts together, it works as follows: the input image
traverses three consecutive convolutional blocks, systematically
expanding the receptive field to encompass vital features.
Subsequently, the DA-Block refines features through the
application of both position-based and channel-based attention
mechanisms. Following this, the remodeled features undergo a
dimensionality transformation courtesy of the embedding
stratum before they are channeled into the Transformer
framework for the extraction of all-encompassing global features.
This orchestrated progression safeguards the comprehensive
retention of information across the continuum of successive
convolutional layers. Ultimately, the Transformer-generated
feature map is restructured and navigated through skip
connection layers to feed into the decoder.

By combining convolutional neural networks, transformer
architectures, and dual-attention mechanisms, the encoder
configuration culminates in a robust capability for feature
extraction, resulting in a symbiotic powerhouse of capabilities.

3.4 Skip-connections with dual attention

Similar to other U-structured models, we have also incorporated
skip connections between the encoder and decoder to bridge the
semantic gap that exists between them. To further minimize this
semantic gap, we introduced dual-attention blocks (DA-Blocks), as
depicted in Figure 1, in each of the three skip connection layers. This
decision was based on our observation that traditional skip
connections often transmit redundant features, which DA-Blocks
effectively filter. Integrating DA-Blocks into the skip connections
allows them to refine the sparsely encoded features from both
positional and channel perspectives, extracting more valuable
information while reducing redundancy. By doing so, DA-Blocks
assist the decoder in more accurate feature map reconstruction.
Moreover, the inclusion of DA-Blocks not only enhances the
model’s robustness but also effectively mitigates sensitivity to
overfitting, contributing to the overall performance and
generalization capability of the model.

3.5 Decoder

As depicted in Figure 1, the right half of the diagram
corresponds to the decoder. The primary role of the decoder is
to reconstruct the original feature map by utilizing features acquired
from the encoder and those received through skip connections,
employing operations like upsampling.

The decoder’s components include feature fusion, a
segmentation head, and three upsampling convolution blocks.
The first component: feature fusion entails the integration of
feature maps transmitted through skip connections with the
existing feature maps, thereby assisting the decoder in faithfully
reconstructing the original feature map. The second component: the
segmentation head is responsible for restoring the final output

feature map to its original dimensions. The third component: the
three upsampling convolution blocks incrementally double the size
of the input feature map in each step, effectively restoring the
image’s resolution.

Putting the above parts together, the workflow begins by passing
the input image through convolution blocks and subsequently
performing upsampling to augment the size of the feature maps.
These feature maps undergo a twofold size increase while their
dimensions are reduced by half. The features received through the
skip connections are then fused, followed by continued upsampling
and convolution. After three iterations of this process, the generated
feature map undergoes one final round of upsampling and is
accurately restored to its original size by the segmentation head.

Thanks to this architecture, the decoder demonstrates robust
decoding capabilities, effectively revitalizing the original feature map
using features from both the encoder and skip connections.

Furthermore, compared to other transformer-based approaches
that extensively utilize transformer blocks throughout the architecture,
such as Swin-Unet, DA-TransUNet achieves a more favorable balance
between performance and computational efficiency. The judicious
integration of DA-Blocks in the encoder and skip connections
allows DA-TransUNet to enhance feature representation while
maintaining a manageable computational footprint.

4 Experiments

To evaluate the proposedmethod, we performed experiments on
Synapse (Landman et al., 2015), CVC-ClinicDB dataset (Bernal
et al., 2015), Chest X-ray mask and label dataset (Candemir
et al., 2013; Jaeger et al., 2013) Analysis, Kvasir SEG dataset (Jha
et al., 2020), Kvasir-Instrument dataset (Jha et al., 2021), 2018ISIC-
Task (Tschandl et al., 2018; Codella et al., 2019). The experimental
results demonstrate that DA-TransUNet outperforms existing
methods across all six datasets. In the following subsections, we
first introduce the dataset and implementation details. Then show
the results on each of the six datasets.

4.1 Datasets

4.1.1 Synapse
The Synapse dataset consists of 30 scans of eight abdominal

organs. These eight organs include the left kidney, right kidney,
aorta, spleen, gallbladder, liver, stomach and pancreas. There are a
total of 3779 axially enhanced abdominal clinical CT images.

4.1.2 CVC—ClinicDB
CVC-ClinicDB is a database of frames extracted from

colonoscopy videos, which is part of the Endoscopic Vision
Challenge. This is a dataset of endoscopic colonoscopy frames for
the detection of polyps. CVC-ClinicDB contains 612 still images
from 29 different sequences. Each image has its associated manually
annotated ground truth covering the polyp.

4.1.3 Chest Xray
Chest Xray Masks and Labels X-ray images and corresponding

masks are provided. The X-rays were obtained from the
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Montgomery County Department of Health and Human Services
Tuberculosis Control Program, Montgomery County, Maryland,
United States. The set of images contains 80 anterior and posterior
X-rays, of which 58 X-rays are normal and 1702 X-rays are
abnormal with evidence of tuberculosis. All images have been de-
identified and presented in DICOM format. The set contains a
variety of abnormalities, including exudates and corneal
morphology. It contains 138 posterior-anterior radiographs, of
which 80 radiographs were normal and 58 radiographs showed
abnormal manifestations of tuberculosis.

4.1.4 Kvasir SEG
Kvasir SEG is an open-access dataset of gastrointestinal polyp

images and corresponding segmentationmasks, manually annotated
and verified by an experienced gastroenterologist. It contains
1000 polyp images and their corresponding groudtruth, the
resolution of the images contained in Kvasir-SEG varies from
332 × 487 to 1920 × 1072 pixels, and the file format is jpg.

4.1.5 Kvasir-instrument
Kvasir-Instrument a gastrointestinal instrument Dataset. It

contains 590 endoscopic tool images and their groud truth mask,
the resolution of the image in the dataset varies from 720 × 576 to
1280 × 1024, which consists of 590 annotated frames comprising of
GI procedure tools such as snares, balloons, biopsy forceps, etc. The
file format is jpg.

4.1.6 2018ISIC-task
The dataset used in the 2018 ISIC Challenge addresses the

challenges of skin diseases. It comprises a total of 2512 images,
with a file format of JPG. The images of lesions were obtained using
various dermatoscopic techniques from different anatomical sites
(excluding mucous membranes and nails). These images are sourced
from historical samples of patients undergoing skin cancer screening
at multiple institutions. Each lesion image contains only a
primary lesion.

4.2 Implementation settings

4.2.1 Baselines
In our endeavor to innovate in the field of medical image

segmentation, we benchmark our proposed model against an
array of highly-regarded baselines, including the U-net, UNet++,
DA-Unet, Attention U-net, and TransUNet. The U-net has been a
foundational model in biomedical image segmentation
(Ronneberger et al., 2015). Unet++ brings added sophistication
with its implementation of intermediate layers (Zhou et al.,
2018). The DA-Unet goes a step further by integrating dual
attention blocks, amplifying the richness of features extracted
(Cai et al., 2022). The Attention U-net employs an attention
mechanism for improved feature map weighting (Oktay et al.,
2018), and finally, the TransUNet deploys a transformer
architecture, setting a new bar in segmentation precision (Chen
et al., 2021). Through this comprehensive comparison with these
eminent baselines, we aim to highlight the unique strengths and
expansive potential applications of our proposed model.
Additionally, we benchmarked our model against advanced state-

of-the-art algorithms. UCTansNet allocates skip connections
through the attention module in the traditional U-net model
(Wang et al., 2022a). TransNorm integrates the Transformer
module into the encoder and skip connections of standard U-Net
(Azad et al., 2022b). A novel Transformer module was designed and
a model named MIM was built with it (Wang et al., 2022b). By
extensively comparing our model with current state-of-the-art
solutions, we intend to showcase its superior segmentation
performance.

4.2.2 Implementation details
We implemented DA-TransUNet using the PyTorch framework

and trained it on a single NVIDIA RTX 3090 GPU (Paszke et al.,
2019). The model was trained with an image resolution of 256 ×
256 and a patch size of 16. We employed the Adam optimizer,
configured with a learning rate of 1e-3, momentum of 0.9, and
weight decay of 1e-4. All models were trained for 500 epochs unless
stated otherwise. In order to ensure the convergence of the
indicators, but due to different data set sizes, we used 50 epochs
for training on the two data sets, Chest Xray Masks and Labels and
ISIC 2018-Task.

During the training phase on five datasets, including CVC-
ClinicDB, the proposed DA-TransUNet model is trained in an end-
to-end manner. Its objective function consists of a weighted binary
cross-entropy loss function (BCE) and a Dice coefficient loss
function. To facilitate training, the final loss function, termed
“Loss,” is formulated as follows:

Loss � 1
2
× BCE + 1

2
× DiceLoss (10)

To ensure a fair evaluation of the Synapse dataset, we utilized the
pre-trained model “R50-ViT” with input resolution and patch size
set to 224 × 224 and 16, respectively. We trained the model using the
SGD optimizer, setting the learning rate to 0.01, momentum of 0.9,
and weight decay of 1e-4. The default batch size was set to 24. The
loss function employed for the Synapse dataset is defined as follows:

Loss � 1
2
× Cross − Entropy Loss + 1

2
× DiceLoss (11)

This loss function balances the contributions of cross-entropy
and Dice losses, ensuring impartial evaluation during testing on the
Synapse dataset.

When using the datasets, we use a 3 to 1 ratio, where 75% is the
training set and 25% is the test set, to ensure adequacy of training.

4.2.3 Model evaluation
In evaluating the performance of DA-TransUNet, we utilize a

comprehensive set of metrics including Intersection over Union
(IoU), Dice Coefficient (DSC), and Hausdorff Distance (HD). These
metrics are industry standards in computer vision and medical
image segmentation, providing a multifaceted assessment of the
model’s accuracy, precision, and robustness.

The choice of these metrics is based on their complementary
nature and ability to capture different aspects of segmentation
quality. IoU and DSC measure the overlap between the predicted
and ground truth segmentation masks, providing a global
assessment of the model’s ability to accurately identify and
delineate target structures. HD, on the other hand, captures the
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maximum distance between the predicted and ground truth
segmentation boundaries, ensuring that the predicted
segmentation closely adheres to the true boundaries of the target
structures, even in the presence of small segmentation errors or
irregularities.

IOU (Intersection over Union) is one of the commonly used
metrics to evaluate the performance of computer vision tasks such as
object detection, image segmentation and instance segmentation. It
measures the degree of overlap between the predicted region of the
model and the actual target region, which helps us to understand the
accuracy and precision of the model. In target detection tasks, IOU is
usually used to determine the degree of overlap between the
predicted bounding box (Bounding Box) and the real bounding
box. In image segmentation and instance segmentation tasks, IOU is
used to evaluate the degree of overlap between the predicted region
and the ground truth segmentation region.

IOU � TP

FP + TP + FN
(12)

The Dice coefficient (also known as the Sørensen-Dice
coefficient, F1-score, DSC) is a measure of model performance in
image segmentation tasks, and is particularly useful for dealing with
class imbalance problems. It measures the degree of overlap between
the predicted results and the ground truth segmentation results, and
is particularly effective when dealing with segmentation of objects
with unclear boundaries. The Dice coefficient is commonly used as a
measure of the model’s accuracy on the target region in image
segmentation tasks, and is particularly suitable for dealing with
relatively small or uneven target regions.

Dice P, T( ) � |P1 ∩ T1|
|P1| + |T1|5Dice � 2|T ∩ P|

|F| + |P| (13)

Hausdorff Distance (HD) is a distance measure for measuring
the similarity between two sets and is commonly used to evaluate the
performance of models in image segmentation tasks. It is
particularly useful in the field of medical image segmentation to
quantify the difference between predicted and true segmentations.
The computation of Hausdorff distance captures the maximum
difference between the true segmentation result and the predicted
segmentation result, and is particularly suitable for evaluating the
performance of segmentation models in boundary regions.

H A, B( ) � max maxa∈Aminb∈B‖a − b‖,maxb∈Bmina∈A‖b − a‖{ } (14)

We evaluate using both Dice and HD in the Synapse dataset and
both Dice and IOU in other datasets.

4.3 Comparison to the state-of-the-
art methods

4.3.1 Segmentation performance and comparison
We have chosen U-net (Ronneberger et al., 2015), Res-Unet

(Diakogiannis et al., 2020), TransUNet (Chen et al., 2021),
U-Net++(Zhou et al., 2018), Att-Unet (Oktay et al., 2018),
TransNorm (Azad et al., 2022b), UCTransNet (Wang et al., 2022a),
MultiResUNet (Ibtehaz and Rahman, 2020), swin-unet (Cao et al.,
2022) and MIM (Wang et al., 2022b) to compare with our DA-
TransUNet, and the experimental data are tabulated below.

In order to demonstrate the superiority of the DA-TransUNet
model proposed in this paper, we conducted the main experiments
using the Synapse dataset and compared it with its 11 state-of-the-
art models (SOTA) (see Table1).

As shown in the Figure 5, we can see that the average DSC and
average HD evaluation criteria are 79.80% and 23.48 mm,
respectively, which are improved by 2.32% and 8.21 mm,
respectively, compared with TransUNet, which indicates that
our DA-TransUNet has better segmentation ability than
TransUNer in terms of overall segmentation results and organ
edge prediction. As shown in the Figure 6, on the other hand, we
can see that DSC has the highest value of our model. Although
HD is higher than Swin-Unet, it is still an improvement
compared to several newer models and TransUNet. The
segmentation time for an image is 35.98 ms for our DA-
TransUNet and 33.58 ms for TransUNet, which indicates that
there is not much difference in the segmentation speed between
the two models, but our DA-TransUNet has better segmentation
results. In the segmentation results of 8 organs, DA-TransUNet
outperforms TransUNet by 2.14%, 3.43%, 0.48%, 3.45%, and
4.11% for the five datasets of Gallbladder, right kidney, liver,
spleen, and stomach, respectively. The segmentation rate for the
pancreas is notably higher at 5.73%. In a comparative evaluation
across six distinct organs, DA-TransUNet demonstrates superior
segmentation capabilities relative to TransUNet. Nevertheless, it
exhibits a marginal decrement in the segmentation accuracy for
the aorta and left kidney by 0.69% and 0.17%, respectively. The
model achieves the best segmentation rates for the right kidney,
liver, pancreas, and stomach, indicating superior feature learning
capabilities on these organs.

To further confirm the better segmentation of our model
compared to TransUNet, we visualized the segmentation plots of
TransUNet and DA-TransUNet (see Figure 5). From the yellow and
purple parts in the first column, we can see that our segmentation
effect is obviously better than that of TransUNet; from the second
column, the extension of purple is better than that of TransUNet,
and there is no vacancy in the blue part; from the third column, there
is a semicircle in the yellow part, and the vacancy in red is smaller
than that of TransUNet, etc. It is evident that DA-TransUNet
outperforms TransUNet in segmentation quality. In summary,
DA-TransUNet significantly surpasses TransUNet in segmenting
the left kidney, right kidney, spleen, stomach, and pancreas. It also
offers superior visualization performance in image segmentation.

We simultaneously took DA-TransUNet in five datasets, CVC-
ClinicDB, Chest Xray Masks and Labels, ISIC2018-Task, kvasir-
instrument, and kvasir-seg, and compared it with some classical
models (see Table 2). In the table, the values of IOU and Dice of
DA-TransUNet are higher than TransUNet in all five datasets, CVC-
ClinicDB, Chest Xray Masks and Labels, ISIC2018-Task, kvasir-
instrument, and kvasir-seg. Also DA-TransUNet has the best
dataset segmentation in four of the five datasets. As seen in the
table, our DA-TransUNet has more excellent feature learning and
image segmentation capabilities.

We also show the results of image segmentation visualization of
DA-TransUNet in these five datasets, and we also show the results of
the comparison models for the comparison. The visualization results
for Chest X-ray Masks and Labels, Kvasir-Seg, Kvasir-Instrument,
ISIC2018-Task, and CVC-ClinicDB datasets are presented in

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Sun et al. 10.3389/fbioe.2024.1398237

126

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1398237


Figure 7, Figure 8, Figure 9, Figure 10, and Figure 11, respectively. In
the Figure, it can be seen that the segmentation effect of DA-
TransUNet has a good performance. Firstly, DA-TransUNet has
better segmentation results than TransUNet. In addition, compared
with the four classical models of U-net, Unet++, Attn-Unet, and
Res-Unet, DA-TransUNet has a certain improvement. It can be seen
that the effectiveness of DA-TransUNet for model segmentation is
not only confirmed in the Synapse dataset, but also in the five
datasets (CVC-ClinicDB, Chest Xray Masks and Labels, ISIC2018-
Task, kvasir-instrument, kvasir-seg). We further establish that DA-
TransUNet excels in both 3D and 2D medical image segmentation.

4.3.2 Computational complexity and efficiency
The integration of DA-Blocks in the encoder and skip

connections introduces additional computational overhead
compared to the standard TransUNet architecture. Let the
input feature map have a spatial resolution of H × W and C
channels. The computational complexity of the Position
Attention Module (PAM) is O(H2W2C), while the Channel
Attention Module (CAM) has a complexity of O(C2HW). As
the DA-Block consists of both PAM and CAM, its overall
computational complexity is O(H2W2C + C2HW). However, it

is worth noting that the DA-Block itself is not computationally
intensive, as it only involves simple matrix multiplications and
element-wise operations.

Table 3 compares the number of parameters, Dice Similarity
Coefficient (DSC), and Hausdorff Distance (HD) between DA-
TransUNet and TransUNet. The incorporation of DA-Blocks leads
to a modest increase of 2.54% in the number of parameters compared
to TransUNet. This incremental increase in parameters is justifiable
considering the substantial performance gains achieved by DA-
TransUNet, as demonstrated in our experimental results (Section
4). DA-TransUNet achieves an average improvement of 2.99% in
DSC and 25.9% in HD compared to TransUNet. The strategic
placement of DA-Blocks allows for efficient feature refinement
while maintaining a reasonable model size.

4.4 Ablation study

We conducted ablation experiments on the DA-TransUNet
model using the Synapse dataset to discuss the effects of different
factors on model performance. Specifically, it includes: 1) DA-Block
in Encoder. 2) DA-Block in Skip Connection.

TABLE 1 Experimental results on the Synapse dataset.

Model Year DSC
↑ (%)

HD
↓

Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

U-net
(Ronneberger
et al., 2015)

2015 76.85 39.70 89.07 69.72 77.77 68.6 93.43 53.98 86.67 75.58

U-Net++(Zhou
et al., 2018)

2018 76.91 36.93 88.19 68.89 81.76 75.27 93.01 58.20 83.44 70.52

Residual U-Net
(Diakogiannis
et al., 2020)

2018 76.95 38.44 87.06 66.05 83.43 76.83 93.99 51.86 85.25 70.13

Att-Unet (Oktay
et al., 2018)

2018 77.77 36.02 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75

MultiResUNet
(Ibtehaz and
Rahman, 2020)

2020 77.42 36.84 87.73 65.67 82.08 70.43 93.49 60.09 85.23 75.66

TransUNet (Chen
et al., 2021)

2021 77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62

UCTransNet
(Wang et al.,
2022a)

2022 78.23 26.75 84.25 64.65 82.35 77.65 94.36 58.18 84.74 79.66

TransNorm (Azad
et al., 2022b)

2022 78.40 30.25 86.23 65.1 82.18 78.63 94.22 55.34 89.50 76.01

MIM(Wang et al.,
2022b)

2022 78.59 26.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81

swin-unet (Cao
et al., 2022)

2022 79.13 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60

DA-
TransUNet(Ours)

2023 79.80 23.48 86.54 65.27 81.70 80.45 94.57 61.62 88.53 79.73

Average Relative
Improvement

- 2.03 −9.00 −0.73% −1.09% 0.28% 5.21% 0.82% 4.86% 1.97% 4.5%

The bold values indicate the best performance among all the methods compared in each respective evaluation metric. Specifically, for each row in a table, the bold number represents the method

that achieves the highest score or lowest error on that particular metric, demonstrating its superior performance relative to the other approaches.
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4.4.1 Effect of the DA-Block in encoder and skip
connection

In this research (see Table 4), we conducted experiments to
assess the impact of integrating DA-Blocks into the encoder and skip
connections on the model’s segmentation performance. To be
specific, we introduced DA-Blocks into each layer of the skip
connections. The results demonstrated an improvement: the DSC

baseline saw an increase from 77.48% to 78.28%, HD index dropped
from 31.69 mm to 29.09 mm. This indicates that the addition of DA-
Blocks at each skip connection layer provided the decoder with more
refined features, mitigating feature loss during the upsampling
process, thereby reducing the risk of overfitting and enhancing
model stability. Furthermore, incorporating DA-Blocks into the
encoder before the Transformer yielded an enhancement, with

FIGURE 5
Segmentation results of TransUNet and DA-TransUNet on the Synapse dataset.
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the DSC baseline increasing from 77.48% to 78.87%, even though the
HD metric decreased from 31.69 mm to 27.71 mm. In conclusion,
based on the findings presented in Table 4, we can assert that the

inclusion of DA-Blocks both before the Transformer layer and
within the skip connections effectively boosts medical image
segmentation capabilities.

FIGURE 6
Line chart of DSC and HD values of several advanced models in the Synapse dataset.

TABLE 2 Experimental results of datasets (CVC-ClinicDB, Chest Xray Masks and Labels, ISIC2018-Task, kvasir-instrument, kvasir-seg).

CVC-ClinicDB Chest xray
masks and
labels

ISIC2018-task Kvasir-
instrument

Kvasir-seg

Iou ↑ Dice ↑ Iou ↑ Dice ↑ Iou ↑ Dice ↑ Iou ↑ Dice ↑ Iou ↑ Dice ↑

U-net (Ronneberger et al., 2015) 0.7821 0.8693 0.9303 0.9511 0.8114 0.8722 0.8957 0.9358 0.8012 0.8822

Attn-Unet (Oktay et al., 2018) 0.7935 0.8741 0.9274 0.9503 0.8151 0.876 0.8949 0.9359 0.7801 0.8661

Unet++(Zhou et al., 2018) 0.7847 0.8714 0.9289 0.9505 0.8133 0.873 0.8995 0.9389 0.7767 0.8657

ResUNet (Diakogiannis et al., 2020) 0.5902 0.7422 0.9262 0.9505 0.7651 0.8332 0.8572 0.9141 0.6604 0.7785

TransUNet (Chen et al., 2021) 0.8163 0.8901 0.9301 0.9535 0.8263 0.8878 0.8926 0.9363 0.8003 0.8791

DA-TransUNet(Ours) 0.8251 0.8947 0.9317 0.9538 0.8278 0.8888 0.8973 0.9381 0.8102 0.8847

The bold values indicate the best performance among all the methods compared in each respective evaluationmetric. Specifically, for each row in a table, the bold number represents the method

that achieves the highest score or lowest error on that particular metric, demonstrating its superior performance relative to the other approaches.

FIGURE 7
Comparison of qualitative results between DA-TransUNet and existing models on the task of segmenting Chest X-ray Masks and Labels X-ray datasets.
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4.4.2 Effect of adding DA-Blocks to skip
connections in different layers

Building on the quantitative results from Table 5, we experimented
with various configurations of DA-Block placement across three
different layers of skip connections to identify the optimal
architectural layout for enhancing the model’s performance.
Specifically, when DA-Blocks were added to just the first layer, the
DSCmetric improved to 79.36% from a baseline of 78.87%, and theHD

metric decreased to 25.80 mm from 27.71 mm. Adding DA-Blocks to
the second and third layers resulted in some progress.WhenDA-Blocks
were integrated across all layers, there was an improvement, reflected by
a DSC of 79.80% and a HD of 23.48 mm. In contrast to traditional
architectures where skip connections indiscriminately pass features
from the encoder to the decoder, our approach with DA-Blocks
selectively improves feature quality at each layer. The results, as
corroborated by Table 5, reveal that introducing DA-Blocks to even

FIGURE 8
Comparison of qualitative results between DA-TransUNet and existing models on the task of segmenting Kvasir-Seg datasets.

FIGURE 9
Comparison of qualitative results between DA-TransUNet and existing models on the task of segmenting Kavsir-Instrument datasets.

FIGURE 10
Comparison of qualitative results between DA-TransUNet and existing models on the task of segmenting 2018ISIC-Task datasets.
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a single layer enhances performance, and the greatest gains are observed
when applied across all layers. This indicates the effectiveness of
integrating DA-Blocks within skip connections for enhancing both
feature extraction andmedical image segmentation. Therefore, the table
clearly supports the idea that layer-wise inclusion of DA-Blocks in skip
connections is an effective strategy for enhancing medical image
segmentation.

4.4.3 Effect of the number of intermediate
channels in DA-Block

Based on the results shown in the Table 6, we conducted a discussion
regarding the size of the intermediate layer in the DA-Block, which
demonstrates the effectiveness of convolutional layers from an
experimental perspective. The original DA-Block had an intermediate
layer size that is one-fourth of the input layer size. However, since its

FIGURE 11
Comparison of qualitative results between DA-TransUNet and existing models on the task of segmenting CVC-ClinicDB datasets.

TABLE 3 Comparison of model parameters and performance between DA-TransUNet and TransUNet.

Model Params Params increase DSC improvement HD improvement

TransUNet 105,276,066 - - -

DA-TransUNet 107,950,840 2.54% 2.99% 25.9%

The bold values indicate the best performance among all the methods compared in each respective evaluationmetric. Specifically, for each row in a table, the bold number represents the method

that achieves the highest score or lowest error on that particular metric, demonstrating its superior performance relative to the other approaches.

TABLE 4 Effects of combinatorial placement of DA-Blocks in the encoder and through skip connections on performance metrics.

Encoder with DA Skip with DA DSC ↑ HD ↓

DA-TransUNet 77.48 31.69

DA-TransUNet √ 78.28 29.09

DA-TransUNet √ 78.87 27.71

DA-TransUNet √ √ 79.80 23.48

The bold values indicate the best performance among all the methods compared in each respective evaluationmetric. Specifically, for each row in a table, the bold number represents the method

that achieves the highest score or lowest error on that particular metric, demonstrating its superior performance relative to the other approaches.

TABLE 5 Effects of incorporating DA-Block in the encoder and skip connections at different layers on performance metrics.

1st layer 2nd layer 3rd layer DSC ↑ HD ↓

DA-TransUNet 78.87 27.71

DA-TransUNet √ 79.36 25.80

DA-TransUNet √ 78.65 23.43

DA-TransUNet √ 79.49 30.71

DA-TransUNet √ √ √ 79.80 23.48

The bold values indicate the best performance among all the methods compared in each respective evaluationmetric. Specifically, for each row in a table, the bold number represents the method

that achieves the highest score or lowest error on that particular metric, demonstrating its superior performance relative to the other approaches.
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intended application is for road scene segmentation and not specifically
tailored for medical image segmentation, we deemed that setting the
intermediate layer size to one-fourth of the input layer size might not be
suitable for the medical image segmentation domain. As seen in the
graph, whenwe set the intermediate layer size to be the same as the input
size, the evaluation results show a DSC of 78.55% and HD of 28.22 mm.
In the related research DANet (Fu et al., 2019), where the intermediate
layer was set to one-fourth of the input layer, the DSC result was 79.71%,
and HD was 25.90 mm. However, when we further reduced the size of
the intermediate layer to one-sixteenth of the input layer size, we
observed an improvement in DSC to 79.80%, and HD decreased
further to 23.48 mm. It is evident that setting the intermediate layer
to one-sixteenth of the input layer size ismore suitable formedical image
segmentation tasks. The reduction in the intermediate layer size can help
the model mitigate the risk of overfitting, optimize computational
resources, and, given the precision requirements of medical image
segmentation tasks, enable the model to focus more on selecting the
most crucial features, thereby enhancing sensitivity to critical
information for the task.

5 Discussion

In this present study, we have discovered promising outcomes
from the integration of DA-Blocks with the Transformer and their
combination with skip-connections. Encouraging results were
consistently achieved across all six experimental datasets.

5.1 Statistical validation of the improvements
by DA-TransUNet

To enhance the credibility of our results and further validate the
superiority of DA-TransUNet, We evaluated the performance of the
models discussed in the Experiment Section 4 (U-Net, TransUNet,
and DA-TransUNet) on 12 subsets of the Synapse dataset,
constituting 40% of the total data, and obtained their Dice
Similarity Coefficients (DSC). It is important to note that both
DA-TransUNet and TransUNet are based on the U-Net
architecture, which serves as the baseline model. Therefore, using
U-Net as the benchmark to assess whether the improvements of DA-
TransUNet over TransUNet are significant is a valid approach.

We first assessed the normality of the DSC improvement values for
both DA-TransUNet and TransUNet relative to U-Net using the
Shapiro-Wilk test. The results showed p-values of 0.36 and 0.82 for
the improvements of DA-TransUNet and TransUNet, respectively.
Since both p-values are greater than 0.05, we cannot reject the null
hypothesis of normality. This indicates that the DSC improvement
values for both DA-TransUNet and TransUNet relative to U-Net can
be considered approximately normally distributed. We then performed
a paired t-test to compare the significance of the improvements. As
shown in Table 7, the test yielded a t-statistic of 2.45 and a p-value of
0.032, demonstrating a significant difference between the
improvements achieved by DA-TransUNet and TransUNet.

Moreover, to further quantify the superiority of DA-TransUNet
over TransUNet, we calculated the 95% confidence interval for the
difference in improvements between DA-TransUNet and
TransUNet. The results showed that the mean difference was
3.96, with a standard deviation of 5.61, and the confidence
interval was [0.40, 7.53]. This means that, at a 95% confidence
level, the magnitude of the difference in DSC improvements between
DA-TransUNet and TransUNet lies between 0.40 and 7.53.

To provide a comprehensive overview of the models’
performance, we calculated the 95% confidence intervals for their
DSC scores. DA-TransUNet achieved a mean DSC of 79.80 ± 5.01,
with a confidence interval of [74.79, 84.81], while TransUNet
achieved a mean DSC of 75.84 ± 6.77, with a confidence interval
of [69.06, 82.61]. These results, summarized in Table 7, suggest that
DA-TransUNet not only achieves higher average performance but
also exhibits more consistent results compared to TransUNet.

The statistical analysis, confidence intervals, and the
quantification of the relative improvement provide strong
evidence for the superiority of DA-TransUNet over TransUNet
in the task of medical image segmentation. These results highlight
the effectiveness of our proposed approach and its potential to
advance the field of medical image analysis.

5.2 Enhancing feature extraction and
segmentation with DA-Blocks

To start with, drawing from empirical results in Table 4, it is
demonstrated that the integration of DA-Block within the encoder
significantly enhances the feature extraction capabilities as well as its
segmentation performance. In the landscape of computer vision,
Vision Transformer (ViT) has been lauded for its robust global

TABLE 6 Effect of the number of intermediate channels in DA-Block.

1 2 4 8 16 32 DSC ↑ HD ↓

DA-TransUNet √ 78.55 28.22

DA-TransUNet √ 79.35 23.77

DA-TransUNet √ 79.71 25.90

DA-TransUNet √ 79.35 25.66

DA-TransUNet √ 79.80 23.48

DA-TransUNet √ 79.71 24.45

The bold values indicate the best performance among all the methods compared in each

respective evaluation metric. Specifically, for each row in a table, the bold number

represents the method that achieves the highest score or lowest error on that particular

metric, demonstrating its superior performance relative to the other approaches.

TABLE 7 Statistical analysis of DSC improvements and model performance.

Model Mean DSC ± SD 95% CI for DSC

DA-TransUNet 79.80 ± 5.01 [74.79, 84.81]

TransUNet 75.84 ± 6.77 [69.06, 82.61]

Comparison of DSC improvements achieved by DA-
TransUNet and TransUNet relative to U-net

Metric Mean
difference

95% CI for
difference

t-Test
p-value

Improvement 3.96 [0.40, 7.53] 0.032
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feature extraction capabilities (Dosovitskiy et al., 2020). However, its
falls short in specialized tasks like medical image segmentation,
where attention to image-specific features is crucial. To remedy this,
in DA-TransUNet we strategically place DA-Blocks ahead of the
Transformer module. These DA-Blocks are tailored to first extract
and filter image-specific features, such as spatial positioning and
channel attributes. Following this initial feature refinement, the
processed data is then fed into the Transformer for enhanced
global feature extraction. This approach results in significantly
improved feature learning and segmentation performance. In
summary, the strategic placement of DA-Blocks prior to the
Transformer layer constitutes a pioneering approach that
significantly elevates both feature extraction efficacy and medical
image segmentation precision.

Morever, building on empirical data in Table 5, our integration of
DA-Blocks with skip connections significantly improves semantic
continuity and the decoder’s ability to reconstruct accurate feature
maps. While traditional U-Net architectures (Ronneberger et al., 2015)
utilize skip connections to bridge the semantic gap between encoder and
decoder, our novel incorporation of Dual Attention Blocks within the
skip-connection layers yields promising results. By incorporating DA-
Blocks across skip-connection layers, we focus on relevant features and
filter out extraneous information, making the image reconstruction
process more efficient and accurate. In summary, the strategic inclusion
of DA-Blocks in skip connections represents a groundbreaking
approach that not only enhances feature extraction but also
improves the model’s performance in medical image segmentation.

Lastly, our extensive evaluation across six diverse medical image
segmentation datasets demonstrates the effectiveness and
generalizability of the DA-TransUNet. The consistent improvements
over state-of-the-art methods (Table 1) highlight the impact of our
targeted integration of the DA-Block. Moreover, the ablation studies
(4.4) provide valuable insights into the individual contributions of the
DA-Block in different components of the architecture. These findings
not only underscore the novelty of our approach but also shed light on
the importance of strategically integrating attention mechanisms for
enhanced medical image segmentation. The DA-TransUNet represents
a significant step forward in leveraging the power of attention
mechanisms and transformers for accurate and robust segmentation
across a wide range of medical imaging modalities. Our work paves the
way for further exploration of targeted attentionmechanisms inmedical
image analysis and has the potential to impact clinical decision-making
and patient care.

5.3 Limitations and future directions

Despite the advantages, our model also has some limitations. Firstly,
the introduction of the DA-Blocks contributes to an increase in
computational complexity. This added cost could potentially be a
hindrance in real-time or resource-constrained applications. Although
this increase in parameters is relatively modest considering the
performance gains achieved, it could still be a concern in resource-
constrained scenarios or when dealing with very large-scale datasets.
Secondly, the decoder part of our model retains the original U-Net
architecture. While this design choice preserves some of the advantages
of U-Net, it also means that the decoder has not been specifically
optimized for our application. This leaves room for further research and

improvements, particularly in the decoder section of the architecture.
Thirdly, one potential limitation of our DA-TransUNet architecture is
the risk of losing fine-grained details during the tokenization process,
which occurs after the convolution and pooling operations in the
encoder. This is particularly concerning for medical images with thin
and complex structures, where preserving intricate details is crucial for
accurate segmentation. Although our proposed integration of the Dual
Attention (DA) module before the Transformer in the encoder and
within the skip connections helps mitigate this issue to some extent, as
evidenced by the improved segmentation performance, we acknowledge
that there may still be room for further enhancement in capturing and
retaining fine-grained information.

6 Conclusion

In this paper, we innovatively proposed a novel approach to image
segmentation by integrating DA-Blocks with the Transformer in the
architecture of TransUNet. The DA-Blocks, focusing on image-specific
position and channel features, were further integrated into the skip
connections to enhance the model’s performance. Our experimental
results, validated by an extensive ablation study, showed significant
improvements in the model’s performance across various datasets,
particularly the Synapse dataset.

Our research revealed the potential of image-special features
position and channel (DA-Block) in enhancing the feature
extraction capability and global information retention of the
Transformer. The integration of DA-Block and Transformer
substantially improved the model’s performance without creating
redundancy. Furthermore, the introduction of DA-Blocks into skip
connections not only effectively bridges the semantic gap between
the encoder and decoder, but also refines the feature maps, leading to
an enhanced image segmentation performance.

Our model also has some limitations. Firstly, the introduction of
DA blocks increases computational complexity. This added cost may
pose obstacles for real-time or resource-constrained applications.
Secondly, the decoder part of our model retains the original U-Net
architecture. Lastly, the utilization of image feature positions and
channels is only superficial, with deeper exploration possible.

This study has paved the way for the further use of image-special
features position and channel (DA-Block) in the field of medical image
segmentation. At the same time, it provides the idea of leveraging image
characteristics to achieve high-precision medical image segmentation.
Future work may focus on optimizing the decoder part of our
architecture and exploring methods to reduce the computational
complexity introduced by DA blocks without compromising the
model’s performance. We believe our approach can inspire future
research in the domain of medical image segmentation and beyond.
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PL-Net: progressive learning
network for medical image
segmentation

Kunpeng Mao1†, Ruoyu Li2†, Junlong Cheng2, Danmei Huang1,
Zhiping Song3* and ZeKui Liu3*
1Chongqing City Management College, Chongqing, China, 2College of Computer Science, Sichuan
University, Chengdu, China, 3Chongqing University of Engineering, Chongqing, China

In recent years, deep convolutional neural network-based segmentation
methods have achieved state-of-the-art performance for many medical
analysis tasks. However, most of these approaches rely on optimizing the
U-Net structure or adding new functional modules, which overlooks the
complementation and fusion of coarse-grained and fine-grained semantic
information. To address these issues, we propose a 2D medical image
segmentation framework called Progressive Learning Network (PL-Net), which
comprises Internal Progressive Learning (IPL) and External Progressive Learning
(EPL). PL-Net offers the following advantages: 1) IPL divides feature extraction
into two steps, allowing for the mixing of different size receptive fields and
capturing semantic information from coarse to fine granularity without
introducing additional parameters; 2) EPL divides the training process into two
stages to optimize parameters and facilitate the fusion of coarse-grained
information in the first stage and fine-grained information in the second
stage. We conducted comprehensive evaluations of our proposed method on
five medical image segmentation datasets, and the experimental results
demonstrate that PL-Net achieves competitive segmentation performance. It
is worth noting that PL-Net does not introduce any additional learnable
parameters compared to other U-Net variants.

KEYWORDS

progressive learning, coarse-grained to fine-grained semantic information,
complementation and fusion, medical image segmentation, computer version

1 Introduction

Medical image segmentation is a technique used to extract regions of interest for
quantitative and qualitative analysis. For example, it can be used for cell segmentation in
electron microscopy (EM) recordings (Ronneberger et al., 2015), melanoma segmentation
in dermoscopy images (Berseth, 2017; Cheng et al., 2020), thyroid nodule segmentation in
ultrasound images, and heart segmentation in MRI images (Bernard et al., 2018).
Traditionally, medical image segmentation methods relied on manually designed
features to generate segmentation results (Xu et al., 2007; Tong et al., 2015). However,
this approach requires distinct feature designs for various applications. Furthermore, the
large variety of medical image modalities makes it difficult or impossible to transfer a
specific type of feature design method to different image types. Therefore, the development
of a universal feature extraction technique is crucial in the field of medical image analysis.
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The emergence of deep learning technology has revolutionized
medical image segmentation by overcoming the limitations of
traditional manual feature extraction methods. Convolutional
neural networks (CNN) based automatic feature learning
algorithms, such as the fully convolutional network (FCN)
proposed by Shelhamer et al. (Long et al., 2015) and the U-Net
framework for biomedical image segmentation proposed by
Ronneberger et al., 2015, have shown promising results. The
FCN model structure is designed to be end-to-end, which
eliminates the need for manual feature extraction and image
post-processing steps. On the other hand, the U-Net framework’s
encoder-decoder-skip connection network structure has shown
good results on medical image segmentation datasets with small
amounts of data.

To further enhance the adaptability of U-Net for different
medical image segmentation tasks, researchers have continuously
explored and innovated, proposing numerous variant models of
U-Net. These variant models aim to achieve better performance in
medical image segmentation by adding new functional modules or
optimizing the network structure. For instance, Vanilla U-Net
introduces channel/spatial attention mechanisms or self-attention
mechanisms to capture crucial information in medical images,
significantly improving its performance in various segmentation
tasks. Additionally, researchers have optimized the encoder-decoder
structure of Vanilla U-Net or adjusted the skip connections to
generate more refined and abundant feature representations.

However, the introduction of these methods has also brought
new challenges. Although the addition of new parameters and
functional modules enhances model performance, it also
increases model complexity and the risk of overfitting. More
importantly, these methods often overlook the complementarity
and fusion of coarse-grained and fine-grained semantic information.
Most existing semantic segmentation methods assume that the
entire segmentation process can be completed through a single
feedforward process, resulting in homogeneous feature
representations that struggle to excel in extracting fine-grained
feature representations. Therefore, for medical environments with
limited computational resources, it is highly beneficial to ensure
model simplicity while fully integrating and utilizing semantic
information at different scales while maintaining a small number
of parameters. Such a design can not only enhance the generalization
and robustness of the model but also ensure its efficiency and
practicality in real-world applications.

In this paper, we propose a new medical image segmentation
method called progressive learning networks (PL-Net). PL-Net
divide the feature learning process within the U-Net architecture
into two distinct depth “steps” to achieve the combination of
different receptive field sizes, enabling the network to learn
semantic information at varying granularities. The entire
segmentation process is performed through two feedforward
processes (referred to as “stages”). At the end of each stage, the
features obtained from that stage are transferred to the next stage for
fusion. This transfer operation allows the model to leverage the
knowledge learned in the previous training stage to extract finer-
grained information, thereby refining the coarse segmentation
output. Unlike previous works, our proposed method does not
add any additional parameters or functional modules to the
U-Net. Instead, our method fully explores the complementary

relationships between features through a progressive learning
strategy. The main contributions can be summarized as follows:

1) We propose a progressive learning network (PL-Net) designed
specifically for medical image segmentation tasks. Through its
unique design, this network deeply explores the potential of
feature complementarity and fusion in medical image
segmentation. By adjusting the scale of output channels, we
designed both a standard PL-Net (15.03 M) and a smaller
version, PL-Net† (Ocs = 0.5, 3.77 M), to accommodate medical
scenarios with different computational resources.

2) We introduce internal progressive learning (IPL) and external
progressive learning (EPL) strategies. The IPL strategy
effectively captures different receptive field sizes, thereby
learning and integrating multi-granularity semantic
information. The EPL strategy allows the model to extract
finer information based on the knowledge from the previous
stage, thus optimizing the segmentation results.

3) We applied the proposed method to tasks such as skin lesion
segmentation and cell nucleus segmentation. Experimental
results indicate that PL-Net outperforms other state-of-the-
art methods such as U-NeXt and BiO-Net. Moreover, despite
its smaller parameter size, the smaller version of PL-Net† still
demonstrates superior segmentation performance.

2 Releat work

Currently, most semantic segmentation methods assume that
the entire segmentation process can be executed through a single
feedforward pass of the input image, which often overlooks global
information. To address this, researchers have added new functional
modules or optimized the U-Net structure to achieve performance
improvements. These methods can be classified into: 1) U-Net
variants focused on functional optimization; 2) U-Net variants
focused on structural optimization.

U-Net variants focused on functional optimization. Due to the
large number of irrelevant features in medical images, it is crucial to
focus on target features and suppress irrelevant features during the
segmentation process. Recent works have extended U-Net by adding
different novel functional modules, demonstrating its potential in
various visual analysis tasks. Squeeze-and-Excitation (SE) (Hu et al.,
2018) has facilitated the development of U-Net by automatically
learning the importance of each feature channel through an
attention mechanism. Additionally, ScSE (Roy et al., 2018) and
FCANet (Cheng et al., 2020) integrate concurrent spatial and
channel attention modules into U-Net to improve segmentation
performance. Oktay et al., 2018 proposed an attention gate for
medical imaging to focus on target structures of different shapes and
sizes and suppress irrelevant areas of the input image. In addition to
plug-and-play attention modules, researchers have designed specific
functional modules for different medical image segmentation tasks.
For example, Zhou et al., 2019 proposed a contour-aware
information aggregation network with a multi-level information
aggregation module between two task-specific decoders. The
SAUNet (Sun et al., 2020) uses both a secondary shape stream
and a regular texture stream in parallel to capture rich shape-related
information, enabling multi-level interpretation of the external
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network and reducing the need for additional computations. The
CE-Net (Gu et al., 2019) uses a dense atrous convolution (DAC)
block to extract a rich feature representation and residual multi-
kernel pooling (RMP) operation to further encode the multi-scale
context features extracted from the DAC block without additional
learning weights.

The emergence of the Vision Transformer (ViT) (Dosovitskiy
et al., 2020) has had a significant impact on the progress of medical
image analysis. Compared to CNN methods, ViT has less inductive
bias. The U-Transformer (Petit et al., 2021) takes inspiration from
ViT and incorporates multi-head self-attention modules into U-Net,
which helps to obtain global contextual information. The UNeXt
(Valanarasu and Patel, 2022) is the first fast medical image
segmentation network that uses both convolution and MLP. It
reduces the number of parameters and computational complexity
by using tokenized MLP. In contrast to the aforementioned U-Net
variants, our work explores the effectiveness of progressive learning
techniques in capturing both coarse-grained and fine-grained
semantic information. The PL-Net enhances the performance of
different stage U-Nets by reusing learned features.

U-Net variants focused on structural optimization. Unlike
U-Net variants focused on functional optimization, optimizing its
structure allows it to extract feature information at different levels,
which is feasible and effective for many computer vision problems.
One of the simplest andmost effective ways to optimize the encoder-
decoder structure is to replace the basic building blocks with more
advanced ones, such as (Jégou et al., 2017; Diakogiannis et al., 2020;
Hasan et al., 2020), which benefit from residual or dense connections
in deeper network structures. In addition to replacing the building
blocks, performance can also be improved for different tasks by
increasing the number of U-shaped network structures, as
demonstrated in (Jégou et al., 2017; Isensee et al., 2021). One of
the most famous networks in this category is nnU-Net (Isensee et al.,
2021), which proposes three networks based on the original U-Net
structure: 2D U-Net, 3D U-Net, and U-Net cascade. The first stage
performs coarse segmentation of downsampled low-resolution
images, and the second stage combines the results of the first
stage for fine-tuning. ResGANet (Cheng et al., 2022) achieved
segmentation performance improvement by replacing the
encoder in U-Net with a lightweight and efficient backbone.
TransUNet (Chen J. et al., 2021) and FATNet (Wu et al., 2022)
replaced the encoder structure of U-Net with CNN and Transformer
branches in a parallel or serial manner.

Skip connections are considered a key component of U-Net’s
success. U-Net++ (Zhou et al., 2018) has redesigned skip
connections through a series of nested and dense connections,
reducing the semantic gap between the subnet feature map
encoders and decoders. R2U-Net (Alom et al., 2019) effectively
increases the network depth by utilizing residual networks and
RCNN and obtaining more expressive features through feature
summation with different time steps. Xiang et al. designed BiO-
Net (Xiang et al., 2020) with backward skip connections based on
R2UNet, which can reuse the features of each decoding level to
achieve more intermediate information aggregation. The emergence
of BiO-Net allows building blocks to be reused by U-Net in a circular
manner without introducing any additional parameters.

3 Progressive learning network

We now describe PL-Net, a progressive learning framework for
medical image segmentation. As is shown in Figure 1, PL-Net is a
multi-level U-Net network architecture that does not rely on
additional functional modules but has paired bidirectional
connections. The core of our framework is to enhance the feature
representation required for image segmentation through two
progressive learning approaches (internal and external) and to
fuse coarse-grained as well as fine-grained semantic information.

Two U-Nets with different depths form the “stages” of external
progressive learning. In each stage, as the “step” of internal
progressive learning increases, the shallow network is expanded
to a deeper network, learning stable multi-granularity information
from it. In brief, the number of parameters is not increased through
internal progressive learning, but it can learn feature maps with
different sizes of receptive fields. External progressive learning is
defined as the coarse segmentation stage (Stage 1) and the fine
segmentation stage (Stage 2). The input image will be examined at
multiple scales to achieve the fusion of coarse-grained and fine-
grained information.

3.1 Internal progressive learning

Bidirectional skip connections are used in internal progressive
learning to reuse building blocks. In order to enable the network at
each stage to learn distinctive feature representations, we use two
“steps” to gradually mine the features from shallow to deep.

Forward Skip Connections (FSC) are used to assist up-sampling
learning, restore the contour of the segmentation target, and retain
the low-level visual features of encoding. The feature fFSC

s after FSC
can be expressed as:

fFSC
s � Convs x( ), x̂[ ] (1)

Backward Skip Connections (BSC) are used for flexible
aggregation of low-level visual features and high-level semantic
features. In order to realize the complementation and fusion of
semantic information at different stages, multi-granularity
information of different “steps” and “stages” is combined in
feature f BSC:

fBSC �
x, x[ ] s � 1, stage1
Convs fFSC

s( ), x[ ] s � 1, stage2
Convs x̂( ), x[ ] s � 2, stage1, 2

⎧⎪⎨
⎪⎩

(2)

Among them, [·] is the concatenation layer, Convs means that
the convolution operation of the sth “steps” (s ∈ 1, 2{ }) is applied to
the input feature map, x and x̂ are feature maps of the same size in
the down-sampling and up-sampling path respectively.

It is worth noting that the reasoning path of internal progressive
learning can be extended to multiple recursions to obtain instant
performance gains. More importantly, a larger receptive field will be
got in each output of this learning strategy than the previous “steps.”
We use Ki to represent the ith complete encoding-decoding process,
and xiout is used to represent the output. Therefore, xi

out can be
written as:
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xi
out �

xin i � 0
Ki xin( ) i � 1
Ki xi−1

out( ) i≥ 2

⎧⎪⎨
⎪⎩

(3)

In this study, we define i = 2, and through such a setting the
parameters equivalent to BiO-Net can be maintained. In future
research, the setting of i > 2 can be used to further improve the
segmentation accuracy, but the exploration of the optimal
hyperparameter setting is beyond the scope of this paper.

3.2 External progressive learning

The external progressive learning strategy first trains the low
stage (stage 1), and then gradually trains toward the high stage (stage
2). Since “stage1″ is relatively shallow in depth and limited by the
perceptual field and performance ability, it will focus on local
information extraction, while “stage 2″ incorporates the local
texture information learned from “stage 1.” Compared with
directly training the entire network in series, in the model, it is
allowed by this incremental nature to pay attention to global
information as the features gradually enter a higher stage.

For each stage of training, we calculate the loss based on the Dice
coefficient (LDice) (Eelbode et al., 2020) between the ground truth
(ytrue) and the predicted probability (yn

pred) distribution of
different stages:

LDice yn
pred, ytrue( ) � 1 − 2 ×|yn

pred ∩ ytrue|
|yn

pred| + |ytrue| (4)

Here |·| is an operator through which the number of pixels is
found in the qualified area. In each iteration, the input data will be
used in each learning stage (where n ∈ 1, 2{ }). What needs to be clear
is that when the latter stage is predicted, all the parameters of the
previous stage are optimized and updated, which helps each stage in
the model to work together.

Since the low stage is mainly to assist the feature expression and
knowledge reasoning of the high-stage network, we can delete the
low-stage prediction layer (Sigmoid layer) when predicting, thereby
reducing the reasoning time. In addition, the predictions at different
stages are unique, but they can form complementary information
among different granularities. When we combine all outputs with an
equal weight, it will result in a better performance. In other words,
the final output of the model is determined by all stages:

y � 1

1 + e−∑
N−1
n�1 y

n
(5)

3.3 PL-Net architecture

Our framework has a trade-off between performance and
parameters. Like U-Net, the down-sampling and up-sampling

FIGURE 1
Overview of the progressive learning network (PL-Net). PL-Net consists of two parts: internal progressive learning (IPL) and external progressive
learning (EPL).

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Mao et al. 10.3389/fbioe.2024.1414605

139

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1414605


stages of PL-Net only use standard convolutional layers, batch
normalization layers and ReLU layers without introducing any
additional functional modules. Table 1 is the detailed
configuration of U-Net, BiO-Net and our PL-Net.

As shown in Table 1, BiO-Net has a maximum coding depth of
4, using BSC from the deepest coding level, and inputting the
decoded features in each iteration as a whole into the last-stage
block. BSC is also used in PL-Net. Unlike the previous methods, the
convolutional layer is allowed to be used in the model to mine
features from coarse-grained to fine-grained ones in a progressive
manner. It should be noted that a smaller version of PL-Net† can be
obtained only by adjusting the Ocs, whose depth and connection
method will not change.

4 Experiments

4.1 Datasets

ISIC 2017 (Berseth, 2017) is a dataset consisting of 2000 training
images, 150 validation images, and 600 test images. The images in
the original dataset provided by ISIC have different resolutions. To
address this, we first use the gray world color consistency algorithm
to normalize the colors of the images and then adjust the size of all
images to 2242 pixels. All experimental results reported in this paper
for ISIC 2017 are from the official test set results.

PH2 (Mendonça et al., 2013) is a dataset containing
200 dermoscopic images, with a fixed size of 768 × 560 pixels. The
dataset contains 80% benign mole cases and 20% melanoma cases,
with ground truth annotated by dermatologists. Due to the small scale
of the dataset, we use the preprocessing method of the ISIC
2017 dataset and the trained model to directly predict all images
in the dataset to evaluate the performance of different models.

Kaggle 2018 Data Science Bowl (referred to as Nuclei) (Caicedo
et al., 2019) is a dataset provided by the Booz Allen Foundation,
containing 670 cell feature maps with ground truth for each image.
To prepare the dataset for training and testing, we adjust all images
and corresponding ground truth to 2242 pixels and use 80% of the
images for training and the remaining 20% for testing.

The TN-SCUI (Pedraza et al., 2015) dataset is a collection of
3644 nodular thyroid images, each annotated by experienced
physicians. The dataset was originally part of the TN-SCUI
2020 challenge and was processed to remove personal labels to
protect patient privacy. In this study, we randomly divided the
dataset into a training set (60%), validation set (20%), and test set
(20%). To ensure consistency, we uniformly adjusted the resolution
of all images to 2242 pixels.

ACDC (Bernard et al., 2018) is a dataset that includes cardiac
MRI images of 150 patients, from which we collected 1489 slices for
3D images. For training and testing purposes, we used 951 and
538 slices, respectively. Notably, in contrast to the four other datasets
mentioned earlier, ACDC comprises three different categories: left
ventricle, right ventricle, and myocardium. Hence, we employed this
dataset to investigate how various models perform on multi-class
segmentation. Figure 2 displays sample images from these datasets
and their corresponding ground truth.

4.2 Implementation details

We conducted all experiments on Tesla V100 GPUs using Keras
and expanded the training data for all datasets by applying random
rotations (±25°), random horizontal and vertical shifts (15%), and
random flips (horizontal and vertical). For all models, we trained for
more than 200 epochs with a batch size of 16, a fixed learning rate of
1e-4, and an Adam optimizer with a momentum of 0.9 to minimize

TABLE 1 Detailed configuration of U-Net, BiO-Net, and our PL-Net architecture. We use “ [kernel, kernel, channel]” to represent the convolution
configuration.

Input Encoder Output Decoder

U-Net BiO-Net PL-Net U-Net BiO-Net PL-Net

2242 [3, 3, 64]× 2 [3, 3, 32]× 2 [3, 3, 32], step1
[3, 3, 32], step2
stage1, stage2

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

72 — [3, 3, 256]× 2 —

1122 [3, 3, 128]× 2 [3, 3, 32]× 2 [3, 3, 64], step1
[3, 3, 64], step2
stage1, stage2

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

282 [3, 3, 512]× 2 [3, 3, 128]× 2 [3, 3, 256], step1
[3, 3, 256], step2

stage2

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

562 [3, 3, 256]× 2 [3, 3, 64]× 2 [3, 3, 128], step1
[3, 3, 128], step2
stage1, stage2

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

562 [3, 3, 256]× 2 [3, 3, 64]× 2 [3, 3, 128], step1
[3, 3, 128], step2
stage1, stage2

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

282 [3, 3, 512]× 2 [3, 3, 128]× 2 [3, 3, 256], step1
[3, 3, 256], step2
stage1, stage2

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

1122 [3, 3, 128]× 2 [3, 3, 32]× 2 [3, 3, 64], step1
[3, 3, 64], step2
stage1, stage2

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

142 [3, 3, 1024]× 2 [3, 3, 256]× 2 [3, 3, 512], step1
[3, 3, 512], step2

stage2

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

2242 [3, 3, 64]× 2 [3, 3, 32]× 2 [3, 3, 32], step1
[3, 3, 32], step2
stage1, stage2

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

72 — [3, 3, 512]× 2 — 2242 [1, 1, 1], Sigmoid

Parameters 25.59 M 14.30 M 15.03 M

Model size 118 MB 57.7 MB 60.7 MB
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Dice loss. We used an early stop mechanism and stopped training
when the validation loss reached a stable level with no significant
change for 20 epochs. Unless explicitly specified, PL-Net had two
“steps” and “stages,” and BSC was established at each stage of the
network. When testing, all prediction layers are deleted before the
last “stage,” and other configurations remain unchanged.

4.3 Ablation study

To understand the effectiveness of IPL and EPL strategies, we
conducted ablation studies. When there is no IPL strategy, features
are extracted by naturally stacking benchmark blocks, and we
conducted experiments on stacking 1-layer and 2-layer
benchmark blocks, respectively. Adopting an IPL strategy means
that the encoder-decoder must be iterated for n times in different
stages, and we set n = 2 and n = 3. When external progressive
learning is not performed, different “stages” are connected in series

through PL-Net to transfer the feature information learned in each
stage. Only the parameters in the last stage are optimized, and the
segmentation results are output through the model. That is to say,
the feature information obtained in the current “stage” of training is
transferred to the next training “stage” and fused through the EPL
method, allowing fine-grained information to be mined through the
model based on learning in the previous training “stage”.

Table 2 presents our IoU (Dice) scores without/with a
progressive learning strategy on five different medical image
segmentation datasets. We provide the parameters and model
sizes for different scenarios to comprehensively analyze
segmentation performance. In most cases, the best segmentation
performance is achieved through PL-Net when both internal (n = 2)
and external progressive learning strategies are used simultaneously.
Compared to the model with the same parameter settings without
IPL, the segmentation performance is significantly improved. These
results demonstrate the effectiveness of EPL and IPL. Moreover, we
observed that the progressive learning strategy has a significant

FIGURE 2
(A–D) represent samples from the five datasets.

TABLE 2 Ablative results. IoU (Dice), number of parameters, and model size are reported.

Dataset EPL Without IPL With IPL

n = 1 n = 2 n = 2 n = 3

ISIC 2017 × 76.05 (84.43) 77.09 (85.23) 77.15 (85.37) 77.07 (85.44)

✓ 76.69 (84.94) 77.04 (85.27) 77.92 (85.94) 77.49 (85.56)

Nuclei × 85.54 (91.89) 85.13 (91.53) 85.93 (92.14) 84.78 (91.28)

✓ 85.60 (91.84) 85.80 (92.00) 86.14 (92.13) 85.37 (91.70)

PH2 × 83.90 (90.74) 85.88 (91.61) 86.69 (92.47) 86.48 (92.45)

✓ 84.97 (91.00) 86.63 (92.44) 87.27 (92.86) 87.03 (92.77)

TN-SCUI × 72.32 (81.38) 73.72 (82.61) 75.95 (85.36) 76.67 (84.60)

✓ 74.20 (83.33) 75.63 (84.33) 76.66 (85.10) 77.05 (85.55)

ACDC × 74.44 (81.56) 74.66 (82.03) 77.78 (83.84) 77.49 (83.60)

✓ 75.30 (82.19) 76.80 (83.42) 78.06 (84.36) 77.96 (83.91)

Parameters — 10.33M 15.03 M 15.03 M 19.73 M

Model size — 41.60 MB 60.70 MB 60.70 MB 79.70 MB

The bold values indicates the best performance.
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impact on datasets with complex boundaries or multi-category
datasets. On the TN-SCUI dataset, for instance, the IoU
improvement is as high as 2.94% with the same parameter
setting (n = 2). To balance factors such as performance and
parameters, we used the setting of n = 2 in the following
experiments. However, we believe that the setting of n = 3 may
be more effective as the size of the dataset increases.

In addition to the above ablation studies, we also investigated the
impact of the output channel scale (Ocs) on the segmentation
performance of different datasets. Figure 3 shows the
experimental results on three datasets, where we set Ocs ∈ [0.5,
2.0] and take values at an interval of 0.25. Note that Ocs =
0.5 represents a smaller version of PL-Net†.We found that when
Ocs = 1.0, the best segmentation result can be obtained, and the
parameter amount (15.03 MB) is well-balanced. When Ocs > 1.0,
the segmentation performance improves as the number of channels
increases, but it does not exceed that of the standard PL-Net. We
attribute this to the limitation of the data size and the complexity of
the segmentation content. While PL-Net† has slightly lower
segmentation performance than other networks, it has very few
parameters. Thus, it is recommended for use on small datasets.
Additionally, it can be configured to run on servers or mobile devices
with lower hardware requirements.

4.4 Comparison with state-of-the-arts

4.4.1 Quantitative comparison
For the ISIC 2017 and PH2 datasets, we compared our PL-Net to

the baseline U-Net and other state-of-the-art methods (Ronneberger
et al., 2015; Badrinarayanan et al., 2017; Al-Masni et al., 2018; Oktay
et al., 2018; Zhou et al., 2018; Alom et al., 2019; Kaul et al., 2019;
Cheng et al., 2020; Hasan et al., 2020; Jha et al., 2020; Lei et al., 2020;
Xiang et al., 2020; Cao et al., 2021; Isensee et al., 2021; Cheng et al.,
2022; Valanarasu and Patel, 2022; Wu et al., 2022). The functional
optimization-oriented variants of U-Net include (Badrinarayanan
et al., 2017; Al-Masni et al., 2018; Oktay et al., 2018; Alom et al.,

2019; Kaul et al., 2019; Cheng et al., 2020; Valanarasu and Patel,
2022) while the structural optimization-oriented variants of U-Net
include (Zhou et al., 2018; Alom et al., 2019; Hasan et al., 2020; Jha
et al., 2020; Lei et al., 2020; Xiang et al., 2020; Cao et al., 2021; Isensee
et al., 2021; Cheng et al., 2022; Wu et al., 2022). To ensure fairness,
we either used the experimental results provided by the authors on
the same test set or ran their models published in the same
environment.

Table 3 presents the accuracy (Acc), intersection over union
(IoU), Dice coefficient (Dice), sensitivity (Sens), and specificity
(Spec) scores of different segmentation methods on the
ISIC2017 and PH2 datasets. Our PL-Net outperforms other
methods in terms of both IoU and Dice metrics on the
ISIC2017 dataset. Specifically, the IoU and Dice scores of PL-Net
are 0.6% and 0.3% higher than those of BiO-Net (t = 3, INT),
respectively. The smaller sized PL-Net† (3.77 M) achieves the same
Dice score as BiO-Net (t = 3) (14.30 M). Although nnU-Net (Petit
et al., 2021) achieves the best sensitivity on the ISIC2017 test set, its
model size is 3.76 times larger than that of the standard PL-Net. The
PH2 dataset also involves the dermoscopic image segmentation task.
While the number of parameters in UNeXt-L (Dosovitskiy et al.,
2020) is similar to that of our smaller version of PL-Net†, UNeXt-L
completes the entire segmentation process through a single feed-
forward pass of the input image, resulting in low parameter
utilization and insufficient learning. When compared with other
state-of-the-art methods, PL-Net demonstrates superior
performance on the PH2 dataset. Furthermore, PL-Net† hasmuch
fewer parameters than other methods, yet it still achieves
competitive segmentation performance.

Nuclei dataset. The datasets used for nucleus segmentation have
non-uniform feature distributions, and the shapes of positive and
negative samples vary greatly. Table 4 presents the quantitative
comparison results of our method against 14 other methods.
Compared to the state-of-the-art TransAttUnet-R (Chen B. et al.,
2021), our PL-Net achieves better overall segmentation
performance, with improvements ranging from 0.27% to 1.16%
for different evaluation metrics. The segmentation performance

FIGURE 3
Study the impact of Ocs on three public datasets. Results are calculated over 5 runs and are shown with standard errors. We label the parameters of
the model at the top of the bar chart.
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of U-Net++ falls between our PL-Net† and PL-Net, with an IoU of
85.56% and a Dice of 91.59%. Across five cross-validation
experiments, standard PL-Net showed higher stability than PL-
Net†, with a 14% reduction in standard deviation. Although the
Dice score of Att R2U-Net is higher than that of PL-Net, its overall
performance and stability are slightly inferior. Notably, both PL-Net
and BiO-Net use BSC, but our method shows better overall
performance. With a smaller PL-Net† size, almost the same IoU
and Dice scores as BiO-Net (t = 3, INT) can be achieved.

TN-SCUI and ACDC datasets. The boundary of the TN-SCUI
dataset is blurred compared to other datasets, and we found that
methods including CNN may obtain better experimental results in
this case. As shown in Table 5, even lightweight approaches like
PL-Net† can achieve performance similar to Swin-UNet. UNeXt-
L, a hybrid network based on CNN and MLP, has the smallest
model size, but its segmentation performance is inferior to baseline
methods. Our analysis shows that this is because the method has
fewer learnable parameters and cannot make good use of the
learned features. In the ACDC dataset (Table 6), we
demonstrate the segmentation performance of different
methods on different classes. The target area of the
myocardium (Myo) is ringed between the left atrium (LV) and
right atrium (RV) and is relatively small overall. The segmentation

accuracy of different methods on this category tends to be lower
than that of the other two categories. Our PL-Net achieves the
highest IoU and Dice scores. Although TransUNet and EANet can
achieve better average segmentation performance, their model size
is increased by 6 times, making them more complex and requiring
more computing resources than our proposed method.
Additionally, the experimental results of PL-Net on the ACDC
dataset show that our method is also suitable for multi-category
segmentation tasks.

The above quantitative comparison demonstrates that our
proposed network can be applied to different segmentation tasks,
which can include different modalities and categories. Even for
images with blurred boundaries, PL-Net can produce good
segmentation results. Although the overall segmentation
performance of PL-Net† is not as good as that of standard PL-
Net, its smaller parameters and model size will promote its
application in memory-constrained environments. Additionally,
other U-Net variants, which are oriented towards functional
optimization or structural optimization, can improve the
segmentation performance of the original U-Net to some extent,
but the increased computational cost is a difficult problem to avoid.
As PL-Net is a progressive learning framework, it achieves a good
trade-off between segmentation performance and parameters.

TABLE 3 Performance comparison with SOTA methods on ISIC 2017 and PH2 datasets. Red, Green, and Blue indicate the best, second best and third best
performance.

Network ISIC 2017 dataset PH2 dataset #Params Model
size

Acc IoU Dice Sens Spec Acc IoU Dice Sens Spec

FrCN Al-Masni et al. (2018) 0.940 0.771 0.871 0.854 0.967 0.951 0.848 0.918 0.937 0.957 — —

FocusNet Tong et al. (2015) 0.921 0.756 0.832 0.767 0.990 — — — — — — —

SegNet Kaul et al. (2019) 0.918 0.696 0.821 0.801 0.954 0.934 0.808 0.894 0.865 0.966 28.09M 112 MB

DSNet Gu et al. (2019) — 0.775 — 0.875 0.967 — 0.870 — 0.929 0.969 10.00M —

DAGAN Valanarasu and Patel (2022) 0.935 0.771 0.859 0.835 0.976 — — — — — — —

FATNet Wu et al. (2022) 0.933 0.765 0.850 0.839 0.973 — — — — — 27.43 M 109 MB

ResGANet Cheng et al. (2022) 0.936 0.764 0.862 0.842 0.950 — — — — — 39.21M —

U-Net Ronneberger et al. (2015) 0.926 0.736 0.825 0.828 0.964 0.943 0.851 0.915 0.946 0.957 29.59 M 118 MB

U-Net++ Berseth (2017) 0.929 0.753 0.840 0.848 0.965 0.948 0.853 0.917 0.973 0.937 34.48 M 138 MB

Double U-Net Isensee et al. (2021) 0.936 0.765 0.847 0.830 0.970 0.942 0.860 0.915 0.934 0.953 27.94 M 112 MB

FCANet Hu et al. (2018) 0.935 0.776 0.856 0.869 0.962 0.952 0.868 0.926 0.968 0.926 59.97 M 241 MB

Att U-Net Cheng et al. (2020) 0.939 0.757 0.840 0.859 0.957 0.951 0.868 0.926 0.953 0.955 30.42 M 121 MB

R2U-Net Cheng et al. (2022) 0.938 0.776 0.858 0.859 0.969 0.952 0.871 0.927 0.954 0.960 91.61 M 366 MB

Att R2U-Net Cheng et al. (2022) 0.939 0.775 0.857 0.857 0.961 0.954 0.873 0.928 0.949 0.962 92.11 M 368 MB

BiO-Net (t = 3) Zhou et al. (2018) 0.937 0.772 0.852 0.845 0.973 0.944 0.851 0.915 0.963 0.931 14.30M 57.7MB

BiO-Net (t = 3, INT) Zhou et al.
(2018)

0.934 0.754 0.840 0.821 0.976 0.945 0.851 0.909 0.968 0.944 3.99M 15.2MB

UNeXt-L Valanarasu and Patel (2022) 0.935 0.773 0.856 0.864 0.966 0.949 0.859 0.919 0.941 0.955 14.30M 57.7MB

PL-Net† (Our) 0.932 0.769 0.852 0.871 0.953 0.945 0.852 0.915 0.955 0.957 3.77M 15.6MB

PL-Net (Our) 0.940 0.779 0.859 0.848 0.975 0.957 0.873 0.929 0.965 0.966 15.03 M 60.7MB

The bold values indicates the best performance.

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Mao et al. 10.3389/fbioe.2024.1414605

143

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1414605


4.4.2 Qualitative comparison
To better understand the excellent performance of our method,

we present example results of PL-Net and several other methods in

Figure 4 and Figure 5. As shown, our PL-Net and PL-Net† can
handle different types of targets and produce accurate
segmentation results.

TABLE 4 Performance comparison with SOTAmethods on Nuclei dataset. Red, Green, and Blue indicate the best, second-best, and third-best performance.
For the original implementation methods, we report mean ± standard deviation.

Network Nuclei dataset #Params Model size

Acc IoU Dice Sens

PraNet Fan et al. (2020) 95.59 71.08 81.03 80.62 — —

Channel-UNet Chen et al. (2019) 96.27 79.75 87.55 90.70 — —

ResUNet Diakogiannis et al. (2020) 97.05 82.44 89.91 90.00 — —

Double U-Net Jha et al. (2020) — 84.07 91.33 64.07 27.94 M 112 MB

TransAttUnet D Chen et al. (2021a) 97.37 84.62 91.34 91.86 — —

TransAttUnet R Chen et al. (2021a) 97.46 84.98 91.62 91.85 — —

TransUNet Chen et al. (2021b) 97.84 85.21 91.69 91.62 100.4 M 401 MB

FATNet Wu et al. (2022) 98.11 85.24 91.69 91.73 27.43 M 109 MB

U-Net Ronneberger et al. (2015) 97.84 ± 0.24 85.68 ± 1.40 91.90 ± 1.00 92.61 ± 0.52 29.59 M 118 MB

U-Net++ Zhou et al. (2018) 97.87 ± 0.22 85.91 ± 1.35 92.06 ± 1.00 92.48 ± 1.08 34.48 M 138 MB

FCANet Cheng et al. (2020) 97.68 ± 0.31 84.87 ± 1.39 91.33 ± 1.09 91.70 ± 1.50 59.97 M 241 MB

Att U-Net Oktay et al. (2018) 97.84 ± 0.18 85.46 ± 1.20 91.77 ± 0.88 91.93 ± 0.66 30.42 M 121 MB

R2U-Net Alom et al. (2019) 97.93 ± 0.18 85.68 ± 1.26 91.89 ± 0.92 92.28 ± 1.20 91.61 M 366 MB

Att R2U-Net Alom et al. (2019) 97.76 ± 0.34 85.86 ± 1.04 92.15 ± 0.92 92.51 ± 1.46 92.11 M 368 MB

BiO-Net (t = 3) Xiang et al. (2020) 97.81 ± 0.22 85.09 ± 1.42 91.53 ± 1.04 91.99 ± 0.72 14.30 M 57.7MB

BiO-Net (t = 3, INT) Xiang et al. (2020) 97.84 ± 0.20 85.31 ± 1.27 91.68 ± 0.93 91.94 ± 0.76 14.30 M 57.7MB

UNeXt-L Valanarasu and Patel (2022) 97.43 ± 0.15 81.26 ± 1.46 88.75 ± 1.31 88.71 ± 1.65 3.99M 15.2MB

PL-Net† (Our) 97.79 ± 0.22 85.23 ± 1.39 91.60 ± 1.03 91.79 ± 0.59 3.77M 15.6MB

PL-Net (Our) 97.96 ± 0.16 86.14 ± 1.20 92.13 ± 0.88 92.12 ± 1.11 15.03 M 60.7 MB

The bold values indicates the best performance.

TABLE 5 Performance comparison with SOTA methods on TN-SCUI datasets. Red, Green, and Blue indicate the best, second-best, and third-best
performance.

Network TN-SCUI datasets #Params (M) Model size (MB)

IoU Dice

U-Net Ronneberger et al. (2015) 0.718 0.806 29.59 118

SegNet Badrinarayanan et al. (2017) 0.726 0.819 17.94 71.8

FATNet Wu et al. (2022) 0.751 0.842 27.43 109

Swin-UNet Cao et al. (2021) 0.744 0.835 25.86 105

TransUNet Chen et al. (2021b) 0.746 0.837 88.87 401

EANet Wang et al. (2022) 0.751 0.839 47.07 118

UNeXt-L Valanarasu and Patel (2022) 0.693 0.794 3.99 15.2

PL-Net† (Our) 0.742 0.830 3.77 15.6

PL-Net (Our) 0.767 0.851 15.03 60.7

The bold values indicates the best performance.
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The first and second rows of Figure 4 respectively show the
segmentation results of an ambiguous target area and a small
amount of occlusion (hair). As observed, although the results
produced by PL-Net are not as accurate, our method is still effective
for areas with ambiguous targets compared to other methods. When
segmenting occluded images, other models either tend to divide
boundaries incorrectly or mistake masked areas as target areas. The
segmentation target of the image in the third row is clear, and relatively
accurate segmentation results can be produced through other methods.
However, for the content marked in the red box, most methodsmistake
interfering pixels for target pixels for segmentation, and better results
are produced through our method compared to other methods. The
fourth row shows the performance of different models for targets

consisting of tiny targets and dispersed structures. As observed,
U-Net and Att U-Net either recognize the saliency area as the target
area or lose the target area, resulting in poor segmentation results. The
fifth and sixth rows show the segmentation results of different methods
for smaller and larger targets. As seen, ourmodel makes a good decision
on the boundary of the small target, while the area marked in the red
box cannot be segmented well by other models. Compared to the fifth
row, the lesion area shown in the sixth row covers almost the entire
image. Although more accurate segmentation results can be produced
through othermethods, our PL-Net producesmore perfect results as far
as the area marked in the red box is concerned.

Figure 5 presents qualitative comparison results of different
methods on the TN-SCUI and ACDC datasets. From the

TABLE 6 Performance comparisonwith SOTAmethods on ACDCdatasets. Red, Green, and Blue indicate the best, second-best, and third-best performance.

Network ACDC datasets #Params (M) Model size (MB)

RV Myo LV Average

U-Net Ronneberger et al. (2015) 0.743 (0.792) 0.717 (0.812) 0.861 (0.897) 0.774 (0.834) 29.59 118

SegNet Badrinarayanan et al. (2017) 0.738 (0.790) 0.720 (0.817) 0.864 (0.902) 0.774 (0.836) 17.94 71.8

FATNet Wu et al. (2022) 0.743 (0.799) 0.702 (0.805) 0.859 (0.899) 0.768 (0.834) 27.43 109

Swin-UNet Cao et al. (2021) 0.754 (0.805) 0.722 (0.820) 0.865 (0.903) 0.780 (0.843) 25.86 105

TransUNet Chen et al. (2021b) 0.750 (0.800) 0.715 (0.812) 0.872 (0.905) 0.779 (0.839) 88.87 401

EANet Wang et al. (2022) 0.742 (0.791) 0.732 (0.825) 0.864 (0.902) 0.779 (0.839) 47.07 118

UNeXt-L Valanarasu and Patel, (2022) 0.719 (0.779) 0.675 (0.810) 0.840 (0.882) 0.745 (0.824) 3.99 15.2

PL-Net† (Our) 0.723 (0.778) 0.692 (0.796) 0.845 (0.887) 0.753 (0.820) 3.77 15.6

PL-Net (Our) 0.761 (0.807) 0.738 (0.828) 0.872 (0.907) 0.790 (0.847) 15.03 60.7

The bold values indicates the best performance.

FIGURE 4
Qualitative segmentation results of ISIC 2017, Nuclei, and PH2 datasets using different methods.
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experimental results in the first two rows of the TN-SCUI dataset,
PL-Net has a larger true positive area compared to other methods
and is more accurate in lesion boundary segmentation. The third
row shows an example where different methods perform poorly.
Although there is a certain difference between our segmentation
results and the ground truth, the false positive area is significantly
lower than that of other methods, which is particularly important in
medical image analysis. We highlighted different targets in the
ACDC dataset using different colors, and the experimental
results in the fourth-row show that SegNet, TransUNet, and
EANet have poor segmentation results and incomplete
segmentation of the RV area. In the example image in the fifth
row, the Myocardium area accounts for a relatively small
proportion, and FATNet, EANet, and UNeXt do not correctly
segment the ring area, while PL-Net clearly segments the
Myocardium area. The experimental results in the last row
demonstrate the advantage of PL-Net in segmenting small
targets. Although U-Net, EANet, and UNeXt segment the target
area, their category definitions are inaccurate. These experimental
results cover different situations in medical images, including large,
medium, and small lesions, as well as targets of different categories.
These results indicate that PL-Net has good generalization ability
and can handle different types of medical image semantic
segmentation problems.

In addition to the visualization results mentioned above, we
present the features learned by different “stages” and “steps” of PL-
Net in the form of a heat map, as shown in Figure 6. During internal
progressive learning (i.e., “Step1″ and “Step2″), the shallower

“Step1″ tends to focus on coarse-grained semantic information
first, such as the outline of hair or lesions. As the network depth
increases, “Step2″ gives less weight to texture features and focuses
more on fine-grained semantics. PL-Net captures semantic
information from coarse to fine granularity at different “stages”
using internal progressive learning and does not introduce
additional parameters compared to other approaches that replace
deeper encoders. Through the visualization results of different
“stages,” we observe that the heat value of “Stage2″ is higher
than that of “Stage1″ at the same position (i.e., the
corresponding weight value is larger), which benefits from the
fusion of coarse-grained and fine-grained information of the two
stages. In addition, “Fusion” represents the feature map of the last
convolutional layer after the two-stage fusion, with a distribution of
thermal values similar to that of the ground truth and masked from
irrelevant background regions.

4.4.3 Expanding to 3D medical image
segmentation

In this section, we will detail how to effectively apply the proposed
progressive strategy to 3D medical image segmentation tasks. To
validate the effectiveness of this strategy, we chose 3D U-Net as the
baseline network and conducted preliminary experimental validation
on the standard prostate MRI segmentation dataset, PROMISE
2012 Litjens et al. (2014). This dataset contains 50 MRI volumes,
which we split into a training set and a test set in a 3:2 ratio.

In the 3D U-Net Çiçek et al. (2016) structure, we employed basic
blocks consisting of two 3 × 3 × 3 convolutions (excluding batch

FIGURE 5
Qualitative segmentation results of TN-SCUI and ACDC datasets using different methods.
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normalization and activation functions here). The encoder part
includes four such basic blocks, each followed by a
downsampling operation to progressively reduce the spatial
dimensions of the feature maps. The decoder part restores the
feature space through four upsampling operations, each also
followed by a basic block.

To integrate the progressive learning strategy into the 3D U-Net,
we converted the two 3 × 3 × 3 convolutions in the basic block into
an internal progressive learning process, where each convolution
layer is considered a “step.” In the second “step,” we introduced
backward skip connections to fuse features of different levels at the
same scale. This design allows us to effectively incorporate the
internal progressive learning strategy without altering the original
3D U-Net’s basic structure.

Next, we regarded the above network as the first “stage” of
external progressive learning. To construct the second “stage,” we
added a downsampling layer and a basic block at the end of the
encoder, and an upsampling layer and a basic block at the beginning
of the decoder. Similar to the design concept of PL-Net, we built the
second “stage” by reusing the network structure from the first stage
along with the newly added basic blocks. In the second stage, we
used skip connections to effectively fuse the coarse-grained
information from the first stage with the fine-grained features of
the second stage. Through these steps, we extended the original 3D
U-Net into a progressive learning network with two “steps” and
two “stages.”

As shown in Table 7, we compared the experimental results of
the original 3D U-Net with those after introducing the progressive
learning strategy. The data indicates that introducing only the
internal progressive learning strategy improved the Dice score by
0.6% compared to the baseline 3D U-Net. When both progressive
learning strategies were applied, the Dice score improvement was
even more significant, reaching 1.36%. These preliminary
experimental results fully demonstrate the effectiveness and
practicality of our proposed method. Encouraged by these
positive findings, we plan to further explore the potential

performance of progressive learning strategies in a broader range
of 3D medical image segmentation tasks in the future.

5 Discussion

U-Net has been widely used as a benchmark model for medical
image segmentation due to its simple and easily modifiable structure.
Most of its variant approaches enhance segmentation performance by
adding functional modules (e.g., attention module) or modifying its
original structure (e.g., residual, and densely connected structures) in
the feed-forward process. In this paper, we adopt an alternative approach
by recognizing that coarse-grained and fine-grained discriminative
information naturally exists at different stages of the network, which
can be learned incrementally, similar to how humans learn through
shallow and deep network structures. Based on this intuition, we design a
framework with internal and external progressive learning strategies,
called PL-Net. Internal progressive learning strategies are used to mine
semantic information at different granularities, while external progressive
learning strategies further refine segmentation details based on the
features learned in the previous training phase.

Researchers have proposed numerous network architectures based
on U-Net to address various medical image semantic segmentation
problems. However, some approaches that add functional modules
(such as FCANet and Att U-Net) do not consistently improve

FIGURE 6
PL-Net’s heat map of different “stages” and “steps” on the ISIC2017 dataset.

TABLE 7 Extended experiments on the application of progressive learning
strategies to 3D U-Net.

Method PROMISE 2012 dataset

IoU (%) Dice (%)

3D U-Net Çiçek et al. (2016) 56.84 72.48

3D U-Net + IPL 57.58 73.08

3D U-Net + IPL + EPL 58.53 73.84

The bold values indicates the best performance.
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performance across different datasets. Our experimental results
demonstrate that while FCANet improves IoU by 4% over vanilla
U-Net on the ISIC2017 dataset, it degrades performance by 0.81% on
theNuclei dataset, indicating that performance variation is related to the
type, size, and complexity of the dataset. Our proposed PL-Net achieves
consistent performance improvements over vanilla U-Net on five
datasets without adding new functional modules or structural
modifications and remains competitive with state-of-the-art network
frameworks (EANet and ResGANet). Moreover, PL-Net has lower
computational overhead and fewer parameters, resulting in amodel size
reduction of 3.8 times and 6.6 times compared to widely used nnUNet
and TransUNet, respectively. We also provide PL-Net† with a smaller
number of parameters, which can offer options for different medical
imaging scenarios, although the decrease in the number of parameters
results in reduced segmentation accuracy. Our method can run on a
GPU with limited memory, reducing the complex configuration and
tedious preprocessing steps of nnUNet. In otherwords, designing such a
network is crucial to translate medical imaging from the laboratory to
clinical practice.

On the other hand, similar to most existing state-of-the-art
methods, our proposed segmentation network still has limitations in
handling cases with complex boundaries and small targets. As
shown in the first row of Figure 4, when the boundary between
the skin lesion and the background region is difficult to distinguish,
our method and other approaches fail to accurately delineate the
boundary. As shown in the third row of Figure 5, PL-Net’s
segmentation performance is lower when the target region is very
small. However, in these cases, our method is closest to the ground
truth, and the segmentation results are still better than those of other
competitors. From the experimental results in Table 1, we found that
the best results were obtained by performing three internal
progressive learning experiments on the large-scale TN-SCUI
dataset, indicating the necessity of setting different internal
progressive learning strategies. Finally, we believe that
introducing robust functional modules may further improve the
segmentation performance of PL-Net, and we will explore this in
future work. The ideas proposed in this paper mainly provide
inspiration for researchers who are committed to designing
feature representations to improve convolutional neural networks.

6 Conclusion

In this study, we propose a new variant of U-Net called PL-Net
for 2D medical image segmentation, which mainly consists of
internal and external progressive learning strategies. Compared to
U-Net methods that optimize functional or structural aspects, our
PL-Net achieves consistent performance improvements without
additional trainable parameters. We provide both a standard PL-
Net (15.03 M) and a smaller version, PL-Net† (3.77 M), to address
different medical image segmentation scenarios in real-world
situations. We conduct comprehensive experiments on five public
medical image datasets, and the results show that PL-Net can
improve the segmentation IoU of the baseline network by
0.46%–4.9%, demonstrating high competitiveness with other
state-of-the-art methods.

Although our proposed method has shown promising results, it
still has some limitations that need to be further addressed in future

research: 1) Impact of data size: Exploring the parameter settings of
internal and external progressive learning under different data sizes
will help researchers understand the potential of the model under
different scales of data. In the future, we will further explore the
performance of PL-Net on larger datasets. 2) Due to the limitations
of computing power and data, our method mainly focuses on 2D
medical image segmentation. This article has initially demonstrated
the feasibility of the progressive learning strategy in 3D medical
image segmentation. In the future, we will extend PL-Net to more
advanced 3D medical image segmentation frameworks to further
enhance its capabilities in 3D medical image segmentation. 3)
Design of functional modules: How to design functional modules
suitable for PL-Net to improve segmentation performance while
maintaining a concise framework is also a topic for further research
in the future.
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Radiologists encounter significant challenges when segmenting and determining
brain tumors in patients because this information assists in treatment planning.
The utilization of artificial intelligence (AI), especially deep learning (DL), has
emerged as a useful tool in healthcare, aiding radiologists in their diagnostic
processes. This empowers radiologists to understand the biology of tumors
better and provide personalized care to patients with brain tumors. The
segmentation of brain tumors using multi-modal magnetic resonance imaging
(MRI) images has received considerable attention. In this survey, we first discuss
multi-modal and available magnetic resonance imaging modalities and their
properties. Subsequently, we discuss the most recent DL-based models for
brain tumor segmentation using multi-modal MRI. We divide this section into
three parts based on the architecture: the first is formodels that use the backbone
of convolutional neural networks (CNN), the second is for vision transformer-
based models, and the third is for hybrid models that use both convolutional
neural networks and transformer in the architecture. In addition, in-depth
statistical analysis is performed of the recent publication, frequently used
datasets, and evaluation metrics for segmentation tasks. Finally, open research
challenges are identified and suggested promising future directions for brain
tumor segmentation to improve diagnostic accuracy and treatment outcomes
for patients with brain tumors. This aligns with public health goals to use health
technologies for better healthcare delivery and population health management.

KEYWORDS

deep learning, brain tumor segmentation, medical images, multi-modality analysis,
vision transformers, convolutional neural network

1 Introduction

1.1 Background

The brain contains around one hundred billion neurons and is an essential organ in the
human body (Stiles and Jernigan, 2010). Brain and other nervous system tumors are a
significant cause of mortality in developed nations, ranking 10th among the leading causes
of death (Siegel et al., 2023). This condition impacts individuals throughout various age
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groups, including adults and children. According to estimates, the
United States witnessed approximately 18,280 fatalities in 2022 due
to primary brain tumors (Tahir et al., 2022). The brain comprises
various cell types with individual characteristics, rendering
generalizations concerning malignancies in other organs
irrelevant (Charles et al., 2011). Common symptoms of brain
tumors frequently encompass feelings of high blood pressure,
severe fatigue, nausea attacks, physical discomfort with fever, skin
eruptions, and increased cardiac pulsations. Although professionals
attempt to establish a correlation between symptoms and a definitive
diagnosis, it is essential to note that brain tumors do not consistently
exhibit observable symptoms (Desjardins et al., 2019; Kotia
et al., 2020).

Over the last few decades, researchers have conducted
comprehensive fundamental research on brain tumors (Rao and
Karunakara, 2021; Dhole and Dixit, 2022; Jyothi and Singh, 2023).
The primary objective of this research is to understand biological
properties and their transformation into malignant tumors. Over
time, there has been significant progress in comprehending the
genetic and molecular changes associated with brain tumors. This
has significantly contributed to advancing novel methods for
diagnosing and treating brain tumors. Additionally, researchers
have explored the use of several imaging modalities, such as
magnetic resonance imaging (MRI), to aid in identifying brain
tumors and tracking their subsequent development (Guo et al.,
2020; Yang et al., 2021). Due to its exceptional accuracy and clarity,
MRI has emerged as the primary method for examining brain
tumors. Consequently, this technological advancement has paved
the way for innovative surgical techniques, including minimally
invasive procedures (Privitera et al., 2022). These technological
breakthroughs facilitate the accurate removal of brain tumors
while minimizing damage to surrounding tissues. To be more
specific, the primary objective of segmenting brain tumors is to
accurately delineate different areas of tumors by modifying the
representations obtained from MRI. The segmentation outcomes
are subsequently applied to the prognosis and prediction of survival
for brain malignancies.

The broad use of multi-modal MRI images in the
segmentation of brain tumors has been facilitated by
advancements in MRI technology. This method provides a
detailed interpretation of the tumors and the neighboring
tissues. MRI includes four unique modalities: T1-weighted
(T1), T2-weighted (T2), T1-weighted with contrast
enhancement (T1ce), and fluid attenuation inversion recovery
(FLAIR). These modalities provide extra information for
diagnosing and monitoring brain tumors (Menze et al., 2014).
Table 1 provides a detailed overview of these modalities along
with their properties, and Figure 1 shows the MRI modalities of
brain tumors. The T1 is frequently utilized to generate high-
resolution brain images. On the other hand, T2 is useful for
evaluating the fluid content in tissues, which serves as a key
differentiator between tumors and healthy brain tissue.
Additionally, the T1ce provides relevant details on the
vascular structures and the enhancing characteristics of
tumors, hence facilitating the classification of tumor types
(Wang et al., 2023a).

Integrating several MRI modalities provides a comprehensive
and accurate depiction of tumors and adjacent brain tissue, which
is essential for successful segmentation (Salvador et al., 2019). By
employing multi-modal MRI images, researchers can assess the
efficacy of various segmentation algorithms and make
comparisons of their outcomes. This comparative study aims
to stimulate the development of novel methodologies and
improve the precision of brain tumor segmentation. The Brain
Tumor Segmentation (BraTS) Challenge dataset is generally
recognized as the principal resource for assessing brain tumor
segmentation (Menze et al., 2014). The dataset consists of a wide
array of MRI modalities, such as T1, T2, T1ce, and FLAIR,
accompanied by precisely annotated tumor segmentation
masks. The BraTS dataset is a significant resource for
academics and clinicians involved in segmenting gliomas and
diagnosing brain tumors.

Recent advancements in deep learning (DL) have
significantly enhanced the capabilities of computer-aided
analysis in various domains. In particular, the segmentation of
multi-modal brain tumors has witnessed substantial progress,
offering a plethora of techniques with varying degrees of accuracy
and effectiveness (Rao and Karunakara, 2021; Dhole and Dixit,
2022; Jyothi and Singh, 2023). Initially, brain tumor
segmentation relied on manual tracking, where skilled
practitioners manually delineated tumor boundaries on
medical images. However, this method is time-consuming and
prone to inter-observer variability. As computer vision gains the
limelight, automatic ways to separate brain tumors have become
more popular. There are two main groups of these methods:
traditional and DL methods. Some examples of traditional
methods are atlas-based segmentation and region-growing
level-set methods (Hamamci et al., 2011; Hamamci et al.,
2012). Such approaches employ things about the image, like
sharpness, color, etc., to segment the tumor from the
surrounding tissue.

DL methods, especially convolutional neural networks
(CNNs), have gotten much attention lately for how well they
work at segmenting brain tumors than traditional methods.
Traditional models estimate the tumor borders and locations

TABLE 1 Overview of MRI modalities.

Modality Properties

T1 • T1 images provide good anatomical detail
• Highlights differences in tissue composition
• Sensitive to variations in proton density and T1 relaxation times
• Brighter tissue denotes shorter relaxation time

T1ce • T1ce images acquired after administering a contrast agent (e.g.,
gadolinium)

• Contrast agent enhances regions with the disrupted blood-brain
barrier

• Helps identify areas of increased vascularity

T2 • T2 images are sensitive to variations in proton density and
T2 relaxation times

• Emphasizes differences in tissue water content
• Good for highlighting edema and lesions
• Longer relaxation time is associated with brighter tissues

FLAIR • Designed to suppress the signal from cerebrospinal fluid (CSF)
• Particularly useful for highlighting abnormalities in white matter
and gray matter

• Minimizes the signal from the fluid
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using statistical learning techniques (Ilhan and Ilhan, 2017;
Biratu et al., 2021; Khilkhal et al., 2022; Nyo et al., 2022). These
models rely on preprocessing techniques to improve the quality
and clarity of the tumor images before the tumor lesions are
delineated. Traditional models use these techniques to help with
the later investigation, characterization of the tumor, and
precise estimations of tumor boundaries. On the other hand,
CNN leverages DL techniques to autonomously learn
hierarchical representations of features directly from the data
(Pereira et al., 2016). This enables CNNs to adapt and optimize
their performance based on the specific characteristics of brain
tumor images, ultimately leading to more precise and reliable
segmentation results compared to traditional approaches.
Recently, vision transformers have made amazing progress
and are now better at separating brain tumors into their
different parts (Liu et al., 2022a; He et al., 2022). Some
researchers have employed transformer layers that integrate a
self-attention mechanism featuring multiple heads, aiming to
capture additional distinctive global characteristics.
Meanwhile, other researchers have devised transformer-based
modules for modal fusion, facilitating the alignment of multi-
modal inputs and enhancing the integration of diverse data
types. This approach simplifies the process of segregating multi-
modal MRI data. The objective of these studies is to discover
more effective methods for visualizing multi-modal brain
tumors and leveraging appropriate data to enhance tumor
segmentation outcomes.

In this section, we highlight the significance of brain tumor
segmentation through statistical insights. The discussion then
shifts toward the importance of research conducted in the last
decade and the use of MRI. Following this, we explored various
modalities of MRI, such as T1, T2, T1ce, and FLAIR, along with
their properties and utilization of these modalities in brain tumor
segmentation. In the end, we explored the various techniques
used in brain tumor segmentation and the superiority of DL-
based methods. Acknowledging the complexities associated with
segmenting multi-modal brain MRI due to inherent challenges,
the ultimate objective of the study becomes clearer: to provide a
comprehensive overview of recent DL-based models from 2021 to
2023 designed to segment brain tumor lesions in multi-modal
MRI autonomously. The list of all used abbreviations is
summarized in Table 2.

1.2 Related work

AI has demonstrated notable advancements in medical imaging,
specifically in image processing and computer vision. AI models
have emerged as a powerful tool for automating tasks like classifying,
detecting, and segmenting tumor lesions. Thus, utilizing the
capabilities of AI, these models improve the accuracy of
segmentation results, consequently improving the quality of
patient care. Current research contains comprehensive surveys
that dive into cutting-edge advancements, particularly multi-
modality MRI segmentation. Table 3 concisely summarizes
previous studies conducted on the segmentation of brain tumors
using multi-modality MRI with their essential features and
weaknesses while briefly describing our proposed survey. The
research conducted in (Wang et al., 2023b) provides a
comprehensive overview of state-of-the-art (SOTA) vision
transformers (ViT) employed in the segmentation of multi-modal
brain MRI, along with the associated challenges and their potential
future directions. However, it focuses more on statistical analysis of
brain tumor segmentation.

In (Liu et al., 2023), authors analyzed various DL methods for
brain tumor segmentation. In (Mohammed et al., 2023), authors
analyzed machine learning, DL, and hybrid techniques for brain
tumor segmentation using multi-modality MRI. However, the
discussion on challenges and their future direction was neglected.
In (Ranjbarzadeh et al., 2023), the author analyzed the supervised
and unsupervised DL models used in multi-modal brain tumor
segmentation. However, they did not cover the main limitations
and possible ways forward. In (Ali et al., 2022), the authors
covered BraTS challenges from 2012 to 2020 but did not discuss
the problems with BraTS challenges. and the survey is more
specific to the BraTS challenges than the architectural and
performance improvements. Our proposed review aims to
conduct a comprehensive analysis and comparison of DL-
based methods and their architectures for multi-modal MRI.
Additionally, we will include statistical analyses of recent
research articles, widely utilized datasets, evaluation measures,
and a thorough comparison of segmentation performance. To
address existing knowledge gaps and improve the reliability and
efficiency of DL-based models for multi-modal brain tumor
lesion segmentation using MRI, we will emphasize open
research challenges and suggest potential future directions.

FIGURE 1
Illustration of several brain MRI modalities (A) T1, (B) T2, (C) T1ce, (D) FLAIR, and (E) ground truth. The yellow, blue, and purple colors in the ground
truth represent edema, enhancing, and necrosis, respectively.
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1.3 Contributions

This review predominantly focuses on using DL in multi-modal
brain tumor MRI segmentation. Presently, DL demonstrates
exceptional proficiency in this, exhibiting SOTA performance. In
addition, we endeavor to examine the existing challenges and

provide potential direction for future research from diverse
perspectives. In summary, this review presents the subsequent
significant contributions.

• We investigate several aspects of current DL-based
methodologies employed for brain tumor segmentation.

TABLE 2 List of abbreviations.

Abbreviation Full form Abbreviation Full form Abbreviation Full form

AI Artificial Intelligence DL Deep Learning MRI Magnetic Resonance Imaging

FLAIR Fluid Attenuation Inversion
Recovery

T1 T1-weighted T1ce T1-weighted with contrast
enhancement

T2 T2-weighted BraTS Brain Tumor Segmentation CNN Convolutional Neural Network

ViT Vision Transformer MAAB Multiple Atrous Convolutions
Attention Block

MM-BiFPN Multimodal Fusion Bi-
directional Feature Pyramid
Network

CMFT Cross-Modality Feature
Transition

CMFF Cross-Modality Feature Fusion FeG Feature-enhanced Generator

CC Correlation Constraints RFNet Region-aware Fusion Network RFM Region-aware Fusion Module

AABTS-Net Axial Attention Brain Tumor
Segmentation Network

MCC Modality-level Cross Connection AFFM Attentional Feature Fusion
Module

MSFF Multi-Scale Spatial Feature
Fusion

DCFF Dual Path Channel Feature Fusion MAF-Net Modality-Level Attention
Fusion Network

DP Dual Path MAF Multi-scale Attention Fusion IDCM Iterative Dilated Convolution
Merging

mPMRI Multi Parametric MRI FFCM Fast Fuzzy C Means WT Whole Tumor

TC Tumor Core ET Enhance Tumor MFD-Net Modality Fusion Diffractive
Network

GAM-Net Gradient Assisted Multi-
category Network

MSFR-Net Multi-modality and Single-modality
Feature Recalibration Network

DRM Dual Recalibration Module

ViTBIS Vision Transformer for
Biomedical Image
Segmentation

NMaFA Nested Modalityaware Feature
Aggregation

EMSViT Efficient Multi-Scale Vision
Transformer

MMCFormer Missing Modality
Compensation Transformer

TC-inception Transformer-Convolution Inception
mechanism

CAFGL Cross-Attention Fusion with a
Global and Local feature

SCCAF Skip Connection with Cross-
Attention Fusion

GAN Generative Adversarial Network AST Axial Spatial Transformer

MLP Multilayer Perceptron VAE Variational Autoencoder CBAM Convolution Block Attention
Module

ESAB Edge Spatial Attention Block MFIB Multi-Feature Inference Block F2 Net Flexible Fusion Network

CFM Cross-modal Feature-
enhanced Module

MCM Multi-modal Collaboration Module GSP Ghost Spatial Pyramid

GSA Ghost Self Attention DRG Dense Residual Ghost TP True Positive

FP False Positive FN False Negative TN True Negative

DSC Dice Similarity Coefficient IoU Intersection over Union HD Hausdorff distance

NLP Natural Language Processing MICCAI Medical Imaging Computing and
Computer-Aided Intervention
Association

CE Cross Entropy

BCE Binary Cross Entropy WCE Weighted Cross Entropy PWCE Pixel Wise Cross Entropy

SHAP SHapley Additive
exPlanations

Lime Local Interpretable Model-agnostic
Explanations

XAI Explainable AI
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These aspects encompass the background, datasets utilized,
models employed, and current progress trends in this field.

• We summarize the most recent CNN-based, transformer-
based, and hybrid models to segment brain tumors.
These models specifically focus on utilizing multi-

modal MRI data and thoroughly comparing
segmentation performance.

• Our study offers an extensive statistical analysis of recent
research articles, widely utilized datasets, and evaluation
metrics used in the multi-modal brain tumor segmentation.

TABLE 3 Summary of related survey articles.

Reference Essential features Weaknesses Year

Wang et al. (2023b) • Provide SOTA analysis of ViT for brain tumor segmentation
• Include brain tumor databases

• It focuses more on the statistical analysis of the model 2023

Liu et al. (2023) • Analysed DL-based multi-modality MRI brain tumor segmentation
• Future trends were discussed

• Do not include a discussion on multi-modality brain MRI. 2023

Mohammed et al.
(2023)

• Analysed machine learning, DL, and hybrid techniques for brain
tumor segmentation using multi-modality MRI.

• Focus more on a general discussion of various techniques than
architecture

• Discussion on existing challenges and their possible future
direction is neglected

2023

Ranjbarzadeh et al.
(2023)

• Described machine learning and DL models
• Overview of performance measures used in the segmentation

• Do not include the state-of-the-art vision transformers
• Discussion on existing challenges and their possible future
direction is neglected

2022

Ali et al. (2022) • Discussed BraTS challenges from 2012 to 2018 • Do not discuss the problems in the BraTS challenges
• The survey is more specific to the BraTS challenges than the
architectural and performance improvements

2019

Proposed Survey • Examine the prior research, which is based on CNN, transformer, and hybrid models, and cover their architecture in depth
• Perform a thorough comparison of the multi-modal brain tumor segmentation model’s performance
• Provide statistical analysis of recent research articles, widely utilized datasets, and evaluation metrics
• Highlight open research challenges for brain tumor segmentation using multi-modal MRI images and suggest a possible future direction

FIGURE 2
Organization of the DL-based brain tumor segmentation using multi-modality MRI survey.
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• We highlight open research challenges for DL-based brain
tumor segmentation using multi-modal MRI images and
suggest a possible future direction, emphasizing extending
the ability to enhance segmentation.

1.4 Organization of the paper

This study is structured to provide a comprehensive
understanding of multi-modal brain tumor segmentation.
Each section highlights the various aspects involved in
segmenting and evaluating brain tumors using multi-modal
MRI, as shown in Figure 2. Section 1 provides an overview of
this study. This section is divided into four subsections:
background, related work, contributions, and organization of
the paper. In Section 2, recent SOTA studies focusing on DL-
based brain tumor segmentation using MRI are described. This
section is divided into three subsections based on the model
architecture: CNN, vision transformer, and hybrid models.
Section 3 comprises a comprehensive statistical analysis and
is divided into three subsections: publication statistics, datasets
statistics, and evaluation metrics. Section 4 highlights some open
research challenges in DL-based multi-modal MRI brain tumor
segmentation and proposes possible future directions. Finally,
Section 5 concludes the survey.

2 Deep learning-based multi-modality
MRI brain tumor segmentation models

Medical image analysis has experienced an enormous
revolution in recent years with the advent of powerful DL
models. This paradigm change is most visible and important
in multi-modal MRI brain tumor segmentation. The precise and
efficient delineation of brain tumors is critical for clinical
diagnosis, therapy planning, and ongoing patient monitoring
(Philip et al., 2022). In response to this necessity, this analysis
thoroughly examines improvements in DL-based models
specifically designed for the challenging task of segmentation
of brain tumors using MRI data. These models have
demonstrated unparalleled success in extracting meaningful
features from the diverse information encapsulated in MRI
modalities by incorporating cutting-edge technologies such as
CNNs, ViT models, and innovative hybrid architectures,
combining both strengths. Figure 3 shows the classification of

DL-based models according to the architecture and organization
of this section.

The research highlights the technical complexities inherent in
the models and underscores their novel influence on
transforming the domain of medical imaging analysis. The
ongoing purpose for improved accuracy, generalization, and
interpretability urges scholars to continuously analyze and
develop new systems and methodologies. The core purpose of
this endeavor is to enhance the practicality of brain tumor
segmentation models using MRI data, hence introducing an
era of effectiveness in patient treatment. A detailed assessment
of the DL-based models for multi-modal MRI brain tumor
segmentation indicates a dynamic interaction of evolving
architectures. Researchers are exploring this challenging
domain with a desire for innovation, from the impressive
power of CNNs to the transformational promise of vision
transformer models. The use of CNNs, with their inherent
capacity to acquire hierarchical features automatically, has
prepared the path for ground-breaking advances.

The section on CNN-based models delves into the different
architectural details, training methodologies, and data that explain
their effectiveness. Concurrently, the introduction of vision
transformer models marked a new era in image processing.
Vision transformers provide a new viewpoint for feature
extraction and fusion in multi-modal MRI data by relying on
self-attention processes and the capacity to perceive global
contextual information. The investigation of vision transformer-
based models helps to reveal the distinct characteristics and exciting
possibilities they bring ahead. Recognizing the combined effect and
complementarities of both CNNs and vision transformers, the
section on hybrid models delves into how these integrated
architectures strive to strike an optimal balance between local
and global information, aiming to push the boundaries of
accuracy and robustness in brain tumor segmentation. The
ongoing interaction of these diverse techniques and the dynamic
growth of model architectures highlight the vibrant field of DL in
multi-modal MRI brain tumor segmentation, offering a future
where precision and clinical relevance merge to improve
patient outcomes.

2.1 CNN-based models

CNNs have emerged as important tools in the fast-developing
field of medical image processing, showing exceptional proficiency

FIGURE 3
Classification of DL-based multi-modal MRI brain tumor segmentation models.
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across a wide range of imaging applications (Singha et al., 2021).
Within the domain of multi-modal MRI brain tumor
segmentation, CNN-based models distinguish themselves
through their exceptional performance and ongoing evolution.
This section embarks on a detailed exploration, delving into the
complexities of the various architectures and tactics used by CNN-
based models. The exploration intends to highlight the complexity
inherent in multi-modal MRI data, where the fusion of many
imaging modalities brings distinct challenges. The present study
provides nuanced insights into the CNNs for brain tumor
segmentation, ranging from the typical effectiveness of 2D
CNNs to the more advanced and volumetric capabilities of
3D variants.

One of the most important CNN-based architectures is UNet,
designed for semantic segmentation tasks, particularly in medical
image analysis (Ronneberger et al., 2015). It was introduced by
Ronneberger et al., in 2015 and has since become widely used due
to its effectiveness in producing accurate segmentation masks
while efficiently handling limited training data. The UNet
architecture consists of a contracting path, which captures
context and reduces resolution, followed by an expanding
path, which enables precise localization. Its unique feature is
the skip connections that concatenate feature maps from the
contracting path to the corresponding layers in the expanding
path. These skip connections help preserve spatial information,
allowing the model to produce detailed segmentations even for
small structures in the input images. Despite its success, the
original UNet architecture has certain limitations, such as
struggles with handling class imbalance (Oktay et al., 2018)
and difficulties in segmenting objects of varying sizes
effectively (Zhou et al., 2018).

The authors in (Akbar et al., 2021) enhanced the UNet model
for brain tumor segmentation by including attention, multiple
atrous convolutions, and a residual route. This modified version
is referred to as the Multiple Atrous Convolutions Attention
Block (MAAB). The expansion part is included by extracting
pyramid characteristics from each level and using them to
generate the ultimate segmentation result. In (Syazwany et al.,
2021), the authors proposed a multi-modal fusion network that
incorporates a bi-directional feature pyramid network (MM-
BiFPN). This network performs feature extraction from each
modality using a separate encoder. The main objective is to use
the intricate interactions across these modalities effectively.
Furthermore, via the use of the bi-directional feature pyramid
network (Bi-FPN) layer, they specifically concentrate on the
combination of various modalities to examine the
interrelationship between different modalities and the features
at numerous scales.

The work in (Zhang et al., 2021) presented an innovative
approach for segmenting brain tumors using a cross-modality
deep feature learning framework. The fundamental concept is
to extract valuable patterns to compensate for the limited
amount of data available. The proposed framework for deep
feature learning across different modalities comprises two
distinct learning processes: the cross-modality feature transition
(CMFT) process and the cross-modality feature fusion (CMFF)
process. The CMFT process focuses on transferring knowledge
between different modalities to learn comprehensive feature

representations. On the other hand, the CMFF process aims to
merge knowledge from various modalities to enhance the feature
representations.

In (Fang et al., 2021), the proposed framework utilizes a hybrid
fusion technique to combine data from different modalities. The
authors also include a self-supervised learning method in this
approach, and it relies on a fully CNN. Initially, they provide an
architecture with multiple inputs that acquire distinct characteristics
frommulti-modal data. Themodel outperforms single-modal multi-
channel networks by offering an improved feature extractor for
segmentation tasks. This feature extractor effectively captures cross-
modal information from multi-modal input. Furthermore, they
provide a novel method for combining features, which they refer
to as hybrid attentional fusion. This technique allows the acquisition
of the hybrid representation of various characteristics and the
collection of correlation information via an attention mechanism.
Contrary to commonly used techniques like feature map
concatenation, this approach has a complementary nature of
multi-modal data, resulting in remarkable progress in the
segmentation outcomes of certain areas.

The study in (Zhou et al., 2021) introduced an innovative neural
network for segmenting brain tumors when one or more modalities
are absent. The network has three sub-networks: a feature-enhanced
generator (FeG), a correlation constraint (CC), and segmentation.
The FeG employs the existing modalities to create a three-
dimensional image that enhances the features and represents the
missing modality. The CC block leverages the multi-source
correlation and restricts the generator to produce a modality
enriched with features consistent with the existing modalities.
The segmentation network utilizes a U-Net architecture with
multiple encoders to perform brain tumor segmentation
accurately. In (Wang et al., 2021b), the authors developed an
innovative end-to-end modality-pairing learning approach for
segmenting brain tumors. The goal of paralleled branches is to
use distinct modality traits, while a network of layer connections is
employed to collect intricate interactions and ample information
across modalities. In addition, they use consistency loss to reduce the
variability in predictions across two branches. Finally, they use an
average ensemble of different models together with various post-
processing approaches to obtain the ultimate outcomes.

The authors in (Ding et al., 2021a) introduced a Region-aware
Fusion Network (RFNet) that can intelligently and efficiently use
various combinations of multi-modal data for tumor
segmentation. The researchers have developed a Region-aware
Fusion Module (RFM) in RFNet to combine features from
multiple image modalities based on specific brain tumor
locations since different modalities are sensitive to different
regions. RFNet utilizes RFM to intelligently segment tumor
areas from a limited collection of multi-modal images by
efficiently combining modal data. In addition, they also create a
segmentation-based regularizer to address the issue of inadequate
and imbalanced training in RFNet due to missing multi-modal
data. More precisely, in addition to acquiring segmentation
outcomes from combined modal features, they also segment
each imaging modality separately using the associated encoded
features. By using this approach, every modal encoder is compelled
to acquire distinguishing characteristics, hence enhancing the
capacity of the combined features to represent information.
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The CNN model in (Tong and Wang, 2023) has a distinctive
architecture with two prominent characteristics. The feature
extraction block has three pathways to extract full feature
information from the multi-modality input. Each path is
responsible for extracting features from mono-modality, paired-
modality, and cross-modality data. Furthermore, it possesses a
distinct tri-sectioned categorization system to differentiate pixels
belonging to three intra-tumoral groups from the surroundings. The
branches are trained individually to ensure that the updating process
is applied to the parameters precisely using the matching
annotations of the target tumor locations. In (Zhao L. et al.,
2022), a multi-modality feature fusion network called MM-UNet
was developed. This network utilizes a structure with several
encoders and a single decoder to perform brain tumor
segmentation. Within the proposed network, individual encoders
autonomously extract low-level characteristics from their respective
imaging modalities, while the hybrid attention block enhances the
features. The decoder utilizes skip connections to include high-level
semantic information and provide accurate pixel-level
segmentation results.

The researchers in (Tian et al., 2022) devised an axial attention
brain tumor segmentation network (AABTS-Net) to automatically
delineate tumor sub-regions using multi-modality MRIs. The axial
attention mechanism aids in the acquisition of deeper semantic
information, facilitating models by offering both local and global
information while reducing computing complexity. The use of the
deep supervision mechanism serves the purpose of preventing the
occurrence of vanishing gradients and providing guidance to the
AABTS-Net to provide enhanced feature representations. The
authors in (Zhou et al., 2023) introduced a modality-level cross-
connection (MCC) network, which is a 3D UNet based on several
encoders designed for brain tumor segmentation. The MCC
network leverages beneficial information between the different
modalities. Additionally, to improve its ability to learn features,
the researchers introduced the attentional feature fusion module
(AFFM). This module combines many modalities and extracts
valuable feature representations for segmentation. The AFFM
comprises two main elements: the multi-scale spatial feature
fusion (MSFF) block and the dual-path channel feature fusion
(DCFF) block. Their objective is to acquire multi-scale spatial
and channel-wise feature information to enhance the accuracy of
segmentation.

The authors in (Liu et al., 2022) proposed a multi-modal image
fusion approach that combines pixel- and feature-level fusion to
improve the effectiveness and precision of brain tumor
segmentation. The goal is to enhance the exploitation of multi-
modal information. They introduced a convolutional network called
PIF-Net for 3D MR image fusion at the pixel level, enhancing the
segmentation model’s input modalities. The integration of
numerous source modalities might increase the correlation
between various forms of disease information, resulting in an
amplification of modality effects. At the feature level, attention-
based modality selection feature fusion is designed to improve
multi-modal features by addressing the variations among
different modalities for a certain segmentation objective. In the
(Huang et al., 2022), the authors introduced a modality-level
attention fusion network (MAF-Net), which uses patchwise
contrastive learning to extract latent features from several

modalities. Additionally, attention weights are dynamically
assigned to fuse the distinct modalities uniquely.

The work in (Chang et al., 2023) introduced a 3D segmentation
model called DPAFNet. This model is based on integrating a dual-
path (DP) module and amulti-scale attention fusion (MAF)module.
The DPAFNet utilizes DP convolution to expand capacity and
incorporates residual connections to prevent deterioration. An
attention fusion module combines global and local information
at the channel level. This module fuses feature maps of various
sizes to provide enriched features with enhanced semantic
information. This prioritizes the comprehensive examination of
tiny cancers. In addition, the 3D iterative dilated convolution
merging (IDCM) module also enhances the receptive field and
contextual awareness.

A novel approach is presented in (Sahoo et al., 2023), which
combines the Inception V2 network with 16 newly developed
layered segmentation nets to create a hybrid deep neural
network. The network undergoes testing using the BraTs
2020 and BraTs 2017 multi-parametric MRI (mPMRI) datasets to
identify the whole tumor. To recognize the tumor core (TC) and the
edema, the fast fuzzy C-means (FFCM) algorithm is used. In (Hou
et al., 2023), the authors proposed a modality fusion diffractive
network (MFD-Net) for accurately and automatically segmenting
brain tumors. The MFD-Net consists of diffractive blocks and
modality feature extractors. The diffractive block, constructed
using Fraunhofer’s single-slit diffraction principle, highlights
nearby feature points with high confidence while reducing the
prominence of low-quality or isolated feature points. This
improves the interconnectedness of the features. Adopting a
global passive reception mode resolves the problem of fixed
receptive fields. The self-supervised technique efficiently exploits
the inherent generalization information of each modality to extract
modality features. This allows the main segmentation branch to
prioritize the fusion of multi-modal feature information.

The work in (Çetiner and Metlek, 2023) introduced
DenseUNet+, a novel DL method for achieving precise
segmentation of multi-modal images. The DenseUNet + model
included data from four distinct modalities in dense block
structures. Subsequently, the data underwent linear operations
followed by the concatenate operation. The findings acquired
using this method were transmitted to the decoder layer. In
(Wang et al., 2023), the authors introduced a novel segmentation
network called a gradient-assisted multi-category network (GAM-
Net). GAM-net consists of three components: a double convolution
encoder, a gradient extraction branch, and a gradient-driven
decoder. A double convolution encoder extracts detailed features
from MRI images; a gradient extraction branch generates gradient
features to aid in area segmentation, and a gradient-driven decoder
effectively combines contour information and encoding features.

The researchers in (Li et al., 2023a) introduced multi-modality
and single-modality feature recalibration network (MSFR-Net).
Distinct pathways handle the flow of multi-modality and single-
modality information. The multi-modality network captures the
correlations relating to different modalities and various tumor sub-
components. A single-modality network is trained to understand the
connection between a single modality and its closely related tumor
subcomponents. Subsequently, a dual recalibration module (DRM)
is devised to establish a connection between the parallel single-
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TABLE 4 CNN-based models for multi-modal MRI brain tumor segmentation.

Segmentation models Dataset Experimental
parameters

Segmentation
performance

Ref.

Optimizer Loss
function

WT TC ET

UNet with Multiple Atrous convolutions Attention Block
(MAAB)

BraTS 2021 Adam dice DSC = 0.884
HD = 10.70

DSC = 0.829
HD = 23.01

DSC = 0.817
HD = 19.70

Akbar et al. (2021)

Multi-Modality Bi-directional Feature Pyramid Network (MM-
BiFPN)

BraTS 2018 Adam CE DSC = 0.811 DSC = 0.777 DSC = 0.735 Syazwany et al. (2021)

BraTS 2020 DSC = 0.836 DSC = 0.815 DSC = 0.779

Cross Modality Deep Feature Learning BraTS 2017 Adam - DSC = 0.898
HD = 5.155

DSC = 0.823
HD = 6.999

DSC = 0.762
HD = 3.170

Zhang et al. (2021)

BraTS 2018 DSC = 0.903
HD = 4.998

DSC = 0.836
HD = 6.639

DSC = 0.791
HD = 3.992

Self-Supervised Learning Model BraTS 2019 Adam CE and dice DSC = 0.927
HD = 2.446

DSC = 0.895
HD = 1.783

DSC = 0.835
HD = 1.623

Fang et al. (2021)

Feature Enhance Generation and Multi-Modality Fusion Based
Network

BraTS 2018 Nadam dice DSC = 0.866 DSC = 0.858 DSC = 0.769 Zhou et al. (2021)

Madality-Paring Learning BraTS 2020 SGD CE and dice DSC = 0.891
HD = 6.24

DSC = 0.842
HD = 19.54

DSC = 0.816
HD = 17.79

Wang et al., 2021b

Region-aware Fusion Network (RFNet)) BraTS 2015 Adam WCE and dice DSC = 0.861 DSC = 0.719 DSC = 0.589 Ding et al. (2021a)

BraTS 2018 DSC = 0.857 DSC = 0.765 DSC = 0.571

BraTS 2020 DSC = 0.869 DSC = 0.782 DSC = 0.615

CNN Model with Feature Extraction (FE) Block BraTS 2018 - - DSC = 0.886 DSC = 0.801 DSC = 0.787 Tong and Wang (2023)

BraTS 2019 DSC = 0.885 DSC = 0.776 DSC = 0.751

Multi-Modality Fusion network (MM-UNet) BraTS 2020 Adam dice and focal DSC = 0.850
HD = 8.243

DSC = 0.765
HD = 10.76

DSC = 0.762
HD = 6.389

Zhao et al. (2022a)

Axial Attention CNN for Brain Tumor Segmentation
(AABTS-Net)

BraTS 2019 Adam BCE and dice DSC = 0.911
HD = 3.988

DSC = 0.838
HD = 6.028

DSC = 0.777
HD = 3.246

Tian et al. (2022)

BraTS 2021 DSC = 0.922
HD = 3.996

DSC = 0.861
HD = 11.18

DSC = 0.830
HD = 17.73

Modality-Level Cross Connection (MCC) BraTS 2018 Nadam dice DSC = 0.865
HD = 4.60

DSC = 0.870
HD = 3.60

DSC = 0.794
HD = 2.50

Zhou et al. (2023)

(Continued on following page)
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TABLE 4 (Continued) CNN-based models for multi-modal MRI brain tumor segmentation.

Segmentation models Dataset Experimental
parameters

Segmentation
performance

Ref.

Optimizer Loss
function

WT TC ET

Pixel level and Feature level Image Fusion Network BraTS 2019 Adam BCE and dice DSC = 0.894
HD = 5.349

DSC = 0.814
HD = 10.89

DSC = 0.771
HD = 5.855

Liu et al. (2022b)

BraTS 2020 DSC = 0.895
HD = 5.312

DSC = 0.817
HD = 9.429

DSC = 0.775
HD = 4.472

Modality-level Attention Fusion Network (MAF-Net) BraTS 2020 Adam CE DSC = 0.880 DSC = 0.679 DSC = 0.418 Huang et al. (2022a)

Pixel-level and Feature-level Image Fusion Network for Brain
Tumor Segmentation

BraTS 2018 Adam CE DSC = 0.900
HD = 6.51

DSC = 0.839
HD = 5.71

DSC = 0.795
HD = 2.92

Chang et al. (2023)

BraTS 2019 DSC = 0.890
HD = 8.53

DSC = 0.812
HD = 7.43

DSC = 0.782
HD = 3.82

BraTS 2020 DSC = 0.894 DSC = 0.832 DSC = 0.781

Improve DNN with fast Fuzzy C-Means (FFCM) BraTS 2017 - - DSC = 0.891 DSC = 0.847 DSC = 0.865 Sahoo et al. (2023)

BraTS 2020 DSC = 0.904 DSC = 0.858 DSC = 0.865

Modality Fusion Diffractive Network (MFD-Net) BraTS 2018 BCE and dice DSC = 0.908
HD = 5.986

DSC = 0.856
HD = 6.995

DSC = 0.767
HD = 3.409

Hou et al. (2023)

BraTS 2019 SGD DSC = 0.857
HD = 5.83

DSC = 0.767
HD = 3.41

BraTS 2021 DSC = 0.927
HD = 3.51

DSC = 0.887
HD = 5.77

DSC = 0.854
HD = 13.98

DenseUNet + Model FeTS 2021 Adam dice DSC = 0.883 DSC = 0.862 DSC = 0.865 Çetiner and Metlek (2023)

BraTS 2021 DSC = 0.958 DSC = 0.955 DSC = 0.937

Gradient Assisted Multi-Category (GAM-Net) Network BraTS 2020 Adam dice DSC = 0.899
HD = 5.076

DSC = 0.840
HD = 5.096

DSC = 0.758
HD = 5.296

Wang et al. (2023c)

Multi-Modality and Single-Modality Feature Recalibration
Network (MSFR-Net)

BraTS 2015 Adam CE and dice DSC = 0.860 DSC = 0.740 DSC = 0.650 Li et al. (2023a)

BraTS 2018 DSC = 0.909
HD = 4.24

DSC = 0.858
HD = 6.72

DSC = 0.807
HD = 2.73
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modality network and the multi-modality network at various
phases. The purpose of the DRM is to integrate the two kinds of
features into a single feature space.

In this subsection, the advancement of CNN-based brain tumor
segmentation models using multi-modal MRI signifies notable
progress in medical image analysis. Since its first implementation
to the current advanced 3D versions, CNNs have been crucial in
improving the precision of segmentation. However, their inherent
limitation in capturing global characteristics has facilitated the
development of later advancements. As we recognize the
accomplishments and continued difficulties in this field, the
persistent effort to improve CNN designs and methodologies
highlights their ongoing importance in accurately and
therapeutically useful brain tumor segmentation. Finally, the
reviewed studies that used the CNN-based model are
summarized in Table 4.

2.2 Vision transformer-based models

The introduction of ViT models represents an architectural
change in image analysis, demonstrating effectiveness across
several domains. Vision transformers provide a unique viewpoint
for feature extraction and fusion by depending on self-attention
mechanisms and acquiring global contextual information. This
section examines the use of vision transformer models in brain
tumor segmentation using multi-modalMRI, shedding light on their
potential to improve segmentation accuracy and resilience in the
context of multi-modal MRI data. In (Sagar et al., 2021a), the
authors proposed a ViT for biomedical image segmentation
(ViTBIS) model. The model divides input feature maps into
three parts using 1 × 1, 3 × 3, and 5 × 5 convolutions in the
encoder and decoder. The concatenation operator merges features
before feeding them to three transformer blocks with attention
mechanisms. Skip connections link encoder and decoder
transformer blocks. Before linearly projecting the output
segmentation map, decoders employ transformer blocks and a
multi-scale architecture.

In (Pinaya et al., 2022), authors use vector quantized variational
autoencoders’ latent representation and an ensemble of
autoregressive transformers to identify and segment unsupervised
anomalies based on brain imaging data deviation at a low computing
cost. They achieve improved image- and pixel-wise anomaly
detection without post-processing. These findings highlight
transformers’ potential in this most difficult imaging job. The
work in (Peiris et al., 2022a) presents a novel Transformer
architecture designed specifically for volumetric segmentation.
This is challenging as it effectively captures and incorporates
local and global spatial inputs while conserving information
across volume axes. The proposed design’s encoder leverages a
self-attention mechanism to simultaneously encode local and
global cues. Meanwhile, the decoder utilizes a parallel
formulation of self and cross-attention to effectively capture
intricate features for boundary refinement. The proposed model
is computationally efficient and exhibits competitive and promising
outcomes when applied to the BraTS Task.

The authors of (Peiris et al., 2022b) introduced a model that
constructs a U-shaped Volumetric Transformer (CR-Swin2-VT)

using two well-known window-based attention mechanisms: the
Cross-shaped window attention-based Swin Transformer block and
the Shifted window attention-based Swin Transformer block. The
CR-Swin2-VT model employs a parallel configuration of Swin
Transformer blocks and CSWin Transformer blocks to capture
voxel information on the encoder side. However, on the decoder
side, only Swin Transformer blocks are utilized. In (Xing et al.,
2022), authors presented a Nested Modality Aware Transformer
(NestedFormer) that investigates the inter- and intra-modality
relationships. They implemented modality-sensitive gating (MSG)
at lower scales to facilitate more efficient skip connections and
conduct nested multi-modal fusion for high-level representations of
distinct modalities, utilizing a transformer-based multi-encoder and
single-decoder architecture. Their proposed Nested Modality-aware
Feature Aggregation (NMaFA) module provides the basis for
performing multi-modal fusion. This module utilizes a cross-
modality attention transformer to supplement critical contextual
information among modalities and a tri-orientated spatial attention
transformer to enhance long-term dependencies within individual
modalities.

The authors in (Sagar et al., 2021b) proposed an efficient multi-
scale ViT (EMSViT) that divides the input into three parts with
various convolution sizes. Feature maps are merged before being fed
into the three transformer blocks. In the decoder, transformer blocks
and a multi-scale architecture are used to facilitate the linear
projection of the input, resulting in the generation of the output
segmentation map. In (Liu et al., 2022c), authors introduced a self-
attention-based fusion block (SFusion). The proposed block
automatically fuses available modalities without zero-padding
missing ones. To produce latent multi-modal correlations, project
feature representations from the upstream processing model as
tokens and feed them into the self-attention module. The self-
attention module generates latent multi-modal correlations from
upstream processing model feature representations projected as
tokens. A modal attention technique builds a common
representation for the downstream decision model. The proposed
SFusion integrates readily into multi-modal analytic networks, and
they use SFusion on several backbone networks to segment
brain tumors.

The authors in (Karimijafarbigloo et al., 2023) proposed the
missing modality compensation transformer (MMCFormer) to
handle missing information. They utilized 3D-efficient
transformer blocks and co-training to efficiently train a missing
modality network. MMCFormer uses global contextual agreement
modules in each encoder scale to maintain feature consistency
across many scales. Further, they used auxiliary tokens at the
bottleneck stage to depict the interaction between full and
missing-modality channels to transmit modality-specific concepts.
Moreover, they included feature consistency losses to minimize
network prediction domain gaps and enhance reliability for
missing modality paths.

In this subsection, we investigate the ViT for brain tumor
segmentation using multi-modal MRI. ViT overcomes a
significant drawback of CNNs by using self-attention processes to
gather global contextual information effectively. As we acknowledge
the fundamental change introduced by transformers, their
incorporation into the rapidly evolving field of medical image
processing has significant potential to improve accuracy and
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reliability in brain tumor segmentation tasks. Finally, the reviewed
studies that used the transformer model are summarized in Table 5.

2.3 Hybrid models

Hybrid models combine the benefits of both CNN and
transformer. Many studies prefer to combine these two to
improve the model’s performance. CNNs struggle to capture
global feature relations, affecting segmentation accuracy (Li et al.,
2024). Thus, a Transformer network is developed, which can capture
global information but not local details and requires pre-training on
big datasets (Zhang et al., 2023). Therefore, the hybrid model
overcomes the limitations by combining their strengths and aims
to strike a superior balance between local and global information.
The authors in (Wang et al., 2021) utilize a Transformer in 3D CNN
for the first time and propose a TransBTS. To obtain the local 3D
context information, the encoder initially extracts the volumetric
spatial feature maps using 3D CNN. In the meantime, the tokens
from the feature maps are precisely transformed and input into a
Transformer to model global features. To predict the detailed
segmentation map, the decoder employs progressive upsampling
and utilizes the features embedded by the Transformer.

In (Li et al., 2021), the authors introduced Segtran, a
transformer-based segmentation technique with infinite effective
receptive fields at high feature resolutions. Segtran uses a unique
squeeze-and-expansion transformer to regularize self-attention and
learn diverse representations. Additionally, they introduced a
transformer positional encoding method with a continuous
inductive bias for images. The authors in (Jun et al., 2021)
introduced a medical transformer, a transfer learning architecture
that models 3D volumetric images as 2D image slices. For improved
3D-form representation of spatial relations, they utilized a multi-
view technique that integrates information from the three planes of
3D volume and offers parameter-efficient training. They use a large-
scale normal, healthy brain MRI dataset to pre-train a source model
for masked encoding vector prediction, which may be used for
numerous purposes.

The work in (Liang et al., 2022a) introduced a TransConver, a
U-shaped segmentation network that utilizes convolution and
transformer to provide automated and precise brain tumor
segmentation in MRI images. In contrast to the transformer and
convolution models that have been previously proposed, they have
introduced a parallel module called transformer-convolution
inception (TC-inception). This module utilizes convolution
blocks to extract local information and transformer blocks to
extract global information. These two types of information are
integrated through a cross-attention fusion with a global and
local feature (CAFGL) mechanism. The skip connection with
cross-attention fusion (SCCAF) method is an enhanced structure
that may mitigate the semantic disparities between encoder and
decoder features, resulting in improved feature fusion.

In (Zhang et al., 2022a), the authors introduced a new multi-
modal medical transformer (mmFormer) for incomplete multi-
modal learning. It consists of three main parts: a hybrid
modality-specific encoder that models both local and global
contexts in every modality; An inter-modal transformer is
designed to construct and synchronize long-range correlations

among modalities to identify modality-invariant features that
correspond to the global semantics of the tumor region; and a
decoder that generates robust segmentation by progressive up-
sampling and fusion with the modality-invariant features.
Additionally, to make the model even more resistant to
incomplete modalities, auxiliary regularizers are included in the
encoder and decoder.

The authors in (Chen and Wang, 2022) introduced TSEUnet, a
3D nnUNet-based network. This network uses a parallel interactive
transformer module in the encoder to extract local features and
global contexts effectively. The decoder additionally uses SE-
Attention to increase brain tumor segmentation and provide
useful information. The authors in (Wang et al., 2022) designed
a hybrid encoder-decoder that included lightweight convolution
modules as well as an axial-spatial transformer (AST) module in the
encoder. They intergrade axial and spatial attention in the AST
module to capture better multi-view and multi-scale characteristics
to learn long-range relationships, while convolution operations
extract local dependencies and rich local characteristics.

To simplify the process of segmentation, the authors of (Liu
et al., 2022) take advantage of a 2D backbone for segmenting a 3D
brain tumor (Transition Net). To segment 3D brain tumor images,
they make use of the Swin transformer as the encoder, in
conjunction with a decoder that is produced by the process of
3D convolution. To address the issue of cross-domain variation, they
developed the components known as the transition head to turn the
input data into feature maps that are acceptable for Swin
Transformer and the transition decoder to convert the multi-
scale feature maps that were recovered by the backbone. After a
series of stages, these maps are fused with the features sampled on
CNN to obtain the final segmentation results.

In (Li et al., 2022), the authors aimed to use the Transformer
model in a 3D CNN to segment 3D medical image volumes. They
introduced a newmodel called TransBTSV2, built upon an encoder-
decoder architecture. The proposed TransBTSV2 is not just
restricted to brain tumors but emphasizes the broader medical
image segmentation domain. It offers a more robust and efficient
3D foundation for the volumetric segmentation of medical images.
TransBTSV2 is a hybrid CNN-transformer architecture that can
accurately segment medical images without the need for pre-
training. It integrates the strong permanent bias of CNNs with
the excellent global context modeling capacity of transformers. By
proposing a new approach to restructure the internal structure of the
transformer block and introducing the deformable bottleneck
module to capture shape-aware local information, they have
produced a highly efficient architecture with higher performance.

The work in (Huang et al., 2022) introduced a generative
adversarial network (GAN) based on transformers. To optimize
the segmentation process, the network integrates the “generative
adversarial” and “transformer” concepts. The generator network
segments multi-modal MRI brain tumors using a transformer with
the Resnet module in 3D CNN. The transformer and Resnet block
efficiently capture local and global features, thereby facilitating the
progressive upsampling of embedded features to generate full-
resolution predicted maps. In (Liang et al., 2022b), the authors
introduce an effective transformer-based model that incorporates a
3D parallel shifted window-based transformer module (3D
PSwinBTS) to capture long-range contextual information.
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Additionally, to achieve efficient semantic modeling, they make use
of semantic supervision to incorporate eight semantic priors into the
encoder of the 3D PSwinBTS model.

In (Jia et al., 2021), the authors proposed a combined CNN-
transformer model called BiTr-UNet. It contains the main
characteristics and backbone of TransBTS. They validated
their model on the BraTS 2021 datasets and achieved good
performance. The authors in (Dobko et al., 2021) modified the
original TransBTS by adding more CNN layers, squeeze-and-
excitation (SE) blocks, and trainable multilayer perceptron
(MLP) embeddings instead of positional encoding in the
transformer block. This modification enables the transformer
to be adjusted to accommodate inputs of any size while
performing inference. In addition, they chose to integrate our
improved TransBTS into the nnU-Net framework by making
architectural modifications to the nnUNet model according to
our custom model.

The authors in (Pham et al., 2022) introduced a novel
model called SegTransVAE, which utilizes an encoder-
decoder design, including a transformer and a variational
autoencoder (VAE) in the model. SegTransVAE is a
multitask learning model that can simultaneously achieve
brain tumor segmentation and image reconstruction. In
(Yang et al., 2021), the authors proposed a convolution-and-
transformer network (COTRNet) to accurately gather global
information, along with the implementation of a topology-
aware (TA) loss to restrict the learning process to topological
information. In addition, they use transfer learning by using
pre-trained parameters from ImageNet and implement deep
supervision by including multi-level predictions to enhance
segmentation performance.

In (Futrega et al., 2021), the authors introduced a
segmentation model called Swin UNEt TRansformer (Swin
UNETR). The objective of 3D brain tumor semantic
segmentation is transformed into a prediction problem where
multi-modal input data is converted into a one-dimensional
sequence of embeddings. This series is then fed into a
hierarchical Swin transformer, which serves as the encoder.
The Swin transformer encoder employs shifted windows to
compute self-attention and extract features at five distinct
resolutions. The authors in (Wang et al., 2022) introduced a
Trans-NUNet model, they used a convolution block attention
module (CBAM) in the model to improve the performance of
each model while dealing with images of varying sizes throughout
the stage. The CBAM models provide rapid identification of the
region of interest within the feature map by the whole network,
followed by a thorough analysis of that specific area.

The authors in (Hu et al., 2023) proposed a novel
combination of R-Transformer and U-Net, an efficient
R-Transformer with dual encoders (ERTN). To capture global
information and complicated semantic characteristics, ERTN
builds a feature branch and a patch branch. To achieve
accurate localization, the decoder augments low- and high-
resolution CNN data with up-sampled features produced by
the feature branch and patch branch. Finally, ERTN uses the
Transformer’s ranking attention mechanism (RTransformer),
assisting the model in focusing on relevant data for enhanced
training efficiency and decreased computing cost.

In (Zhu et al., 2023a), the authors proposed a model that
fuses deep semantics with edge information. Semantic
segmentation, edge detection, and feature fusion are the
primary components of the proposed model. This module’s
semantic segmentation makes use of the Swin Transformer
for feature extraction and introduces a shifting patch
tokenization technique for enhanced training. A CNN-based
edge detection module is introduced, together with an edge
spatial attention block (ESAB) for feature improvement. They
developed a graph convolution-based multi-feature inference
block (MFIB) to conduct feature reasoning and information
dissemination to achieve successful feature fusion in the feature
fusion module, which is responsible for merging the derived
semantic and edge features.

The study in (Gao et al., 2023) incorporates transformer
layers into a U-shaped design’s encoder and decoder using a
deep mutual learning method. Due to the inherent
complementarity between shallow features and deep features
in a layer, where shallow features encompass plentiful spatial
details but lack semantic information, conversely, the feature
map of the shallowest layer is employed to guide the feature map
of the deeper layers. This approach ensures that the deeper
layers, which retain more edge information, guide the accuracy
of sub-region segmentation. Employing the most profound
classification logits to oversee the less profound logits to
preserve a greater amount of semantic information for the
differentiation of tumor sub-regions. Moreover, the shallow
feature map and the deep logit mutually supervise each other,
leading to an improvement in the overall accuracy of tumor
segmentation.

The researchers in (Yang et al., 2023) introduced a flexible
fusion network (F2 Net) for the segmentation of brain tumors.
The F2 Net is built around an encoder-decoder structure,
including two Transformer-based streams for feature learning
and a cross-modal shared learning network to extract distinct and
common feature representations. To efficiently incorporate
information from multiple types of data, they suggested the
use of a cross-modal feature-enhanced module (CFM) and a
multi-modal collaboration module (MCM). The CFM is designed
to combine features from different modalities in a shared
learning network, while the MCM integrates features from
encoders into a shared decoder.

The authors in (Lu et al., 2023) introduced a new 3D multi-
scale Ghost CNN with an additional MetaFormer decoding path
(GMetaNet). Efficient semantic information extraction was
carried out Through the integration of CNN’s localized
modeling and the Transformer’s capability for long-range
representation. Three new modules are introduced, notably
the lightweight Ghost spatial pyramid (GSP) module, the
Ghost self-attention (GSA) module, and the dense residual
Ghost (DRG) module, which are built upon the existing Ghost
module. Furthermore, the GSP module efficiently acquires
knowledge about various receptive fields to enhance the
multiscale representation while reducing computational
expenses. The GSA module allows the model to capture long-
range relationships effectively. The DRG module, functioning as
a local decoder, enhances information and prevents
deterioration. Furthermore, a comprehensive decoder
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incorporating MetaFormer has been developed to combine local
and global information successfully. Ultimately, the technique of
deep supervision combines three outputs and enhances the rate at
which the system reaches convergence.

To summarize, this section examines the latest research in brain
tumor segmentation techniques, specifically focusing on the use of
multi-modal MRI data. The field has seen a significant movement in
segmentation methodologies, moving from the original use of CNNs
to the introduction of transformers, and finally to the development
of hybrid models. This transition has resulted in more
comprehensive and effective segmentation techniques. The use of
transformers, which excel at collecting global characteristics,
complements the localized capabilities of CNNs in a mutually
beneficial way. The ongoing development of multi-modal MRI
brain tumor segmentation is driven by the junction of CNNs,
transformers, and hybrid architectures, as we seek to achieve the
most effective solutions. Finally, the reviewed studies that used the
hybrid model are summarized in Table 6.

3 Statistical analysis

In this section, we will delve into DL-based brain tumor
segmentation models with an emphasis on statistical insights. To
commence, we look at the data, particularly focusing on the
number of papers published in the preceding 3 years, spanning
from 2021 to 2023. This analysis provides valuable insights into
current trends and achievements, offering a glimpse into the pace
of evolution within the field. Subsequently, we explore the
datasets commonly utilized by researchers in modern brain
tumor segmentation studies. Understanding these datasets is

essential since they give actual data for testing DL models. It
is similar to inspecting the tools in a toolbox: the more we
understand them, the more efficiently we can utilize them.
Finally, we outline the assessment criteria commonly
employed by researchers to evaluate the performance of DL
models in the task of multimodal brain tumor segmentation.
These metrics serve as benchmarks, enabling us to gauge the
efficacy of these models accurately.

3.1 Publication statistics

The field of brain tumor segmentation using DLmodels has seen
tremendous advancements in recent years, with notable
contributions from several architectures. In 2021, Dosovitskiy
et al. (Dosovitskiy et al., 2020) introduced the vision transformer,
which successfully applied the transformer architecture from natural
language processing (NLP) to computer vision, marking a
significant advancement. This pioneering research marked the
beginning of the effective use of transformers in areas outside
natural language processing (NLP), expanding into other
computer vision tasks such as image classification, segmentation,
and detection. Since the introduction of the vision transformer, the
field of DL models has seen a significant increase in innovation, with
the emergence of models that use transformers, CNNs, and hybrid
architectures. This survey presents a thorough overview of brain
tumor segmentation methodologies based on CNN, transformer,
and hybrid models between 2021 and 2023. Figure 4 graphically
represents the patterns in publications over this time, demonstrating
the continuous shifts and diverse contributions from all
these models.

TABLE 5 Vision transformer-based models for multi-modal brain tumor segmentation.

Segmentation models Dataset Experimental
parameters

Segmentation performance Year Ref.

Optimizer Loss
function

WT TC ET

ViT for biomedical image segmentation
(ViTBIS)

BraTS 2019 Adam BCE and dice DSC = 0.903
HD = 5.621

DSC = 0.822
HD = 7.129

DSC = 0.792
HD = 3.71

2021 Sagar et al. (2021a)

Vector Quantised Variational
Autoencoder with an Ensemble of
Autoregressive Transformer

BraTS 2018 - - Avg. DSC = 0.537
Avg. AUPRC = 0.555

2022 Pinaya et al. (2022)

Volumetric transformer UNet (VT
UNet)

MSD AdamW - DSC = 0.919
HD = 3.51

DSC = 0.872
HD = 4.10

DSC = 0.822
HD = 2.68

2022 Peiris et al. (2022a)

CR-Swin2-VT FeTS Adam CE, dice
and VAT

DSC = 0.914
HD = 3.93

DSC = 0.854
HD = 11.19

DSC = 0.817
HD = 14.81

2022 Peiris et al. (2022b)

Nested Modality-Aware Transformer
(NestedFormer)

BraTS 2020 AdamW CE and soft
dice

DSC = 0.920
HD = 4.567

DSC = 0.864
HD = 5.316

DSC = 0.800
HD = 5.269

2022 Xing et al. (2022)

Efficient multi-scale ViT (EMSViT) BraTS 2019 Adam BCE and dice DSC = 0.903
HD = 5.621

DSC = 0.822
HD = 7.129

DSC = 0.792
HD = 3.71

2022 Sagar et al. (2021b)

Self-attention based N-to-One multi-
modal fusion (SFusion)

BraTS 2020 Adam CE DSC = 0.889 DSC = 0.822 DSC = 0.738 2023 Liu et al. (2022c)

Missing modality compensation
transformer (MMCFormer)

BraTS 2018 Adam dice DSC = 0.890 DSC = 0.874 DSC = 0.801 2023 Karimijafarbigloo
et al. (2023)
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3.2 Dataset statistics

The presence of multi-modal MRI datasets is indispensable for the
effective evaluation of DL-based brain tumor segmentation models.
Beginning in 2012, the Medical Imaging Computing and Computer-
Aided Intervention Association (MICCAI) initiated the annual BraTS
challenge. This longstanding challenge serves a pivotal role in fostering
research and establishing a benchmark for evaluating brain tumor
segmentation methods in the field. The BraTS challenge provides a
standardized multi-modal MRI dataset consisting of four distinct scans -
T1, T1, T2, and FLAIR. These modalities collectively offer a
comprehensive view of brain anatomy and pathology, enabling
researchers to develop and assess DL-based brain tumor segmentation
methods. The influence of the BraTS challenge on research
methodologies is profound, with a majority of studies opting to utilize
BraTS datasets for training and testing their segmentation approaches.

Figure 5 provides a quantitative analysis of the utilization of
multi-modal MRI datasets in DL-based models over the past 3 years.
Notably, over 97% of studies have leveraged BraTS datasets, with
BraTS 2018, 2019, and 2020 emerging as the most commonly
employed versions. While a few studies incorporate private
datasets for segmentation performance comparisons, the
prevailing trend emphasizes the use of publicly accessible BraTS
datasets. The widespread availability and standardized nature of
BraTS datasets make them the preferred choice, despite challenges
posed by private datasets, such as the labor-intensive pixel-level
annotations. As we anticipate future studies, the overarching
trajectory is expected to continue toward the refinement and
advancement of brain tumor segmentation methods utilizing the
established and publicly accessible BraTS datasets. Table 7 provides
the top BraTS databases. mostly used in the evaluation of brain
tumor segmentation.

3.3 Evaluation metrics

Evaluation metrics are quantitative measures used to assess
the performance of a segmentation model, as they provide
objective insights into how well a particular model performs
compared to the ground truth. The segmentation model used a
binary classification method in which each pixel belongs to either
the tumorous or non-tumorous regions, usually represented as
1 and 0, respectively. From an input image, we obtained the
segmentation results produced by the segmentation model and
compared them with the ground truth created by experts.
Numerous quantitative segmentation assessment metrics can
be produced using the true positive (TP), false negative (FN),
false positive (FP), and true negative (TN) metrics. A TP is an
outcome in which the model correctly predicts a positive class,
whereas an FP is an outcome in which the model incorrectly
predicts a positive class. Similarly, TN is the outcome in which
the model correctly predicts the negative class, whereas FN is the
outcome in which the model incorrectly predicts the negative
class. The most widely used evaluation metrics for segmentation
tasks are the dice similarity coefficient (DSC), intersection over
union (IoU), accuracy, precision, recall, and Hausdorff
distance (HD).

Firstly, DSC represents the ratio of the overlapping region of
predicted and ground truth over the total region. Mathematically,
DSC is expressed as shown in Eq. (1):

DSC � 2 · Ypre ∩ YGT

Ypre + YGT
(1)

where Ypre represents the segmentation or predicted pixel and YGT

represents the groundtruth pixels.
Regarding the segmentation task, DSC is equal to the F1 score,

and expressed in Eq. (2):

DSC � 2 · TP
2 · TP + FP + FN

(2)

Then, IoU is a metric for quantifying the overlap between the
segmentation prediction and the expert annotation (ground
truth). This metric is defined as the proportion of the overlap
between the segmentation outcome and the actual ground truth
about their unions. The mathematical expression of IoU is
formulated Eq. (3):

IoU � Ypre ∩ YGT

Ypre ∪ YGT
(3)

It is important to highlight that the Jaccard similarity coefficient
and the IoU are equivalent. As a result, we may use TP, FP, and FN
to rewrite the IoU expression as shown in Eq. (4):

IoU � TP

TP + FP + FN
(4)

Precision assesses the accuracy of positive predictions and is
computed as the proportion of correctly identified positive outcomes
relative to the combined total of true positives and false positives. It
provides insight into the accuracy of positive predictions made by
the model by indicating how many were correct. The mathematical
expression for precision is shown in Eq. (5):

Precision � TP

TP + FP
(5)

Recall assesses the model’s capability to accurately identify all
relevant positive instances by determining how many actual
positive instances the model correctly identifies. and is
computed as the proportion of correctly identified positive
instances relative to the combined total of accurately identified
positives and incorrectly identified negatives. The mathematical
expression for recall is shown in Eq. (6):

Recall � TP

TP + FN
(6)

Accuracy is a comprehensive metric measuring the overall
correctness of the model’s predictions, encompassing both
positive and negative predictions. It is calculated as the sum of
true positive and true negative results divided by the total number of
predictions. Accuracy assesses how many predictions, both positive
and negative, the model got correct out of all predictions made. The
mathematical expression for accuracy is shown in Eq. (7):

Accuracy � TP + TN

TP + FP + FN + TN
(7)
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TABLE 6 Hybrid transformer models for multi-modal MRI brain tumor segmentation.

Segmentation models Dataset Experimental parameters Segmentation performance Year Ref.

Optimizer Loss function WT TC ET

Multi-modal brain tumor segmentation using transformer
(TransBTS)

BraTS 2019 Adam dice DSC = 0.900
HD = 5.644

DSC = 0.819
HD = 6.049

DSC = 0.789
HD = 3.736

2021 Wang et al., 2021a

BraTS 2020 DSC = 0.901
HD = 4.964

DSC = 0.817
HD = 9.769

DSC = 0.787
HD = 17.947

Segmentation model based on squeeze and expansion
transformer (SegTran)

BraTS 2019 AdamW PWCE and dice DSC = 0.895 DSC = 0.817 DSC = 0.740 2021 Li et al. (2021)

Medical transformer BraTS 2019 Adam triplet DSC = 0.873 DSC = 0.697 DSC = 0.588 2021 Jun et al. (2021)

Convolution and transformer-based segmentation model
(TransConver)

BraTS 2018 Adam CE and dice DSC = 0.859
HD = 2.587

DSC = 0.838
HD = 1.607

DSC = 0.789
HD = 2.692

2022 Liang et al. (2022a)

BraTS 2019 DSC = 0.859
HD = 2.587

DSC = 0.838
HD = 1.607

DSC = 0.789
HD = 2.692

Multi-modal medical transformer (mmFormer) BraTS 2018 Adam dice DSC = 0.896 DSC = 0.858 DSC = 0.776 2022 Zhang et al. (2022a)

Transformer and SE-Attention (TSEUNet) BraTS 2018 SGD CE and dice DSC = 0.911 DSC = 0.873 DSC = 0.824 2022 Chen and Wang (2022)

Axial-spatial transformer network (AST-Net) BraTS 2018 Adam dice DSC = 0.905
HD = 5.950

DSC = 0.850
HD = 9.200

DSC = 0.795
HD = 2.980

2022 Wang et al., 2022b

BraTS 2019 DSC = 0.899
HD = 5.49

DSC = 0.843
HD = 6.32

DSC = 0.786
HD = 2.90

BraTS 2020 DSC = 0.904
HD = 6.05

DSC = 0.842
HD = 6.12

DSC = 0.778
HD = 30.83

2D backbone to segment 3D brain tumor (Transition Net) BraTS 2019 AdamW weighted region DSC = 0.913
HD = 20.15

DSC = 0.845
HD = 12.21

DSC = 0.749
HD = 10.09

2022 Liu et al. (2022d)

TransBTSV2 BraTS 2019 Adam softmax dice DSC = 0.904
HD = 5.432

DSC = 0.849
HD = 5.473

DSC = 0.802
HD = 3.696

2022 Li et al. (2022)

BraTS 2020 DSC = 0.904
HD = 5.432

DSC = 0.849
HD = 5.473

DSC = 0.802
HD = 3.696

Generative adversarial network (GAN) based on
transformers

BraTS 2018 Adam dice DSC = 0.902
HD = 5.418

DSC = 0.809
HD = 9.405

DSC = 0.769
HD = 5.712

2022 Huang et al. (2022b)

BraTS 2020 DSC = 0.903
HD = 4.909

DSC = 0.815
HD = 7.494

DSC = 0.708
HD = 37.579

(Continued on following page)
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TABLE 6 (Continued) Hybrid transformer models for multi-modal MRI brain tumor segmentation.

Segmentation models Dataset Experimental parameters Segmentation performance Year Ref.

Optimizer Loss function WT TC ET

3D parallel shifted windows for brain tumor segmentation
(3D PSwinBTS)

BraTS 2020 Adam CE and dice DSC = 0.908
HD = 5.573

DSC = 0.842
HD = 7.252

DSC = 0.795
HD = 19.437

2022 Liang et al. (2022b)

BraTS 2021 DSC = 0.926
HD = 3.738

DSC = 0.867
HD = 11.084

DSC = 0.826
HD = 17.531

CNN-transformer combined model (BiTr-UNet) BraTS 2021 Adam - DSC = 0.926
HD = 9.165

DSC = 0.935
HD = 8.200

DSC = 0.951
HD = 3.742

2022 Jia et al. (2021)

Ensemble modified TransBTS and nnUNet BraTS 2021 - CE and dice DSC = 0.928
HD = 4.930

DSC = 0.876
HD = 17.203

DSC = 0.879
HD = 10.426

2022 Dobko et al. (2021)

Hybrid CNN-transformer model with regularization
(SegTransVAE)

BraTS 2021 - VAE and dice DSC = 0.905
HD = 3.570

DSC = 0.926
HD = 5.840

DSC = 0.855
HD = 2.890

2022 Pham et al. (2022)

Convolution-and-transformer network (COTRNet) BraTS 2021 Adam WCE and dice DSC = 0.951
HD = 9.772

DSC = 0.961
HD = 15.560

DSC = 0.935
HD = 3.255

2022 Yang et al., 2021a

Swin UNEt TRansformer (Swin UNETR) BraTS 2021 - soft dice DSC = 0.926
HD = 5.831

DSC = 0.885
HD = 3.770

DSC = 0.858
HD = 6.016

2022 Futrega et al. (2021)

Trans-NUNet Kaggle - CE and dice Avg. DSC = 0.864 2022 Wang et al., 2022a

Efficient R-transformer network (ERTN) BraTS 2017 AdamW focal and dice DSC = 0.832
HD = 5.300

DSC = 0.779
HD = 4.600

DSC = 0.726
HD = 5.500

2023 Hu et al. (2023)

Deep semantics and edge information for brain tumor
segmentation

BraTS 2018 Adam BCE and dice DSC = 0.909
HD = 3.923

DSC = 0.879
HD = 5.217

DSC = 0.819
HD = 3.440

2023 Zhu et al. (2023a)

BraTS 2019 DSC = 0.916
HD = 3.866

DSC = 0.892
HD = 5.118

DSC = 0.838
HD = 3.080

BraTS 2020 DSC = 0.910
HD = 4.719

DSC = 0.882
HD = 5.985

DSC = 0.846
HD = 3.051

Deep mutual learning with fusion network for brain tumor
segmentation

BraTS 2019 Adam focal and active contour DSC = 0.901
HD = 4.800

DSC = 0.840
HD = 6.112

DSC = 0.801
HD = 3.282

2023 Gao et al. (2023a)

Flexible Fusion Network (F2 Net) BraTS 2019 SGD CE and dice DSC = 0.950
HD = 2.21

DSC = 0.943
HD = 1.63

DSC = 0.902
HD = 1.33

2023 Yang et al. (2023)

BraTS 2020 DSC = 0.953
HD = 2.20

DSC = 0.945
HD = 1.59

DSC = 0.905
HD = 1.32

Multi-scale ghost CNN with auxiliary MetaFormer
decoding path (GMetaNet)

BraTS 2018 Adam generalized dice DSC = 0.901
HD = 5.16

DSC = 0.840
HD = 5.26

DSC = 0.820
HD = 2.62

2023 Lu et al. (2023)

BraTS 2019 DSC = 0.902
HD = 4.530

DSC = 0.825
HD = 6.400

DSC = 0.785
HD = 3.590

Fro
n
tie

rs
in

B
io
e
n
g
in
e
e
rin

g
an

d
B
io
te
ch

n
o
lo
g
y

fro
n
tie

rsin
.o
rg

A
b
id
in

e
t
al.

10
.3
3
8
9
/fb

io
e
.2
0
2
4
.13

9
2
8
0
7

166

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1392807


HD serves as a distance-based evaluation metric. Within the
HD, the predictions and the expert annotations are regarded as two
distinct subsets in the measurement space. The mathematical
expression is articulated in Eq. (8):

HD � max sup
Ypre

inf
YGT

d Ypre, YGT( ), sup
YGT

inf
Ypre

d Ypre, YGT( )⎛⎝ ⎞⎠ (8)

Here, “Sup” denotes the supremum, which is the least upper bound of a
set, while “inf” signifies the infimum, which is the greatest lower bound
of a set. So, supYpre denotes the supremum over all possible subsets of
Ypre and infYGT denotes the infimum over all possible subsets of YGT.

In summary, this section has extensively examined deep learning
(DL)-based models for brain tumor segmentation, focusing on
statistical insights. We began by scrutinizing the publication
landscape from 2021 to 2023, revealing dynamic trends and the
rapid evolution of DL-based approaches. Moving to dataset
statistics, the indispensability of multi-modal MRI datasets,
particularly through the MICCAI BraTS challenge, was
emphasized. Figure 5 visually portrays the predominant use of
BraTS datasets, underlining their widespread adoption.
Additionally, we presented a comprehensive overview of common
evaluation metrics, including DSC, IoU, accuracy, precision, recall,
and HD, providing quantitative benchmarks for assessing model
performance. Anticipating future studies, the trajectory is poised to
continue refining brain tumor segmentation methods, leveraging
established datasets and standardized metrics for ongoing
advancements in this critical medical imaging domain.

4 Open research problem and possible
future directions

DL-based segmentation of brain tumors using MRI images is a
prominent area of research in medical imaging and has achieved
good results. The diagnosis, therapy planning, and ongoing
observation of people with tumors depend on precise
segmentation. The development of the DL model for brain tumor
segmentation is complex. In this section, we examine major research
challenges that must be resolved.

4.1 Incomplete modalities

Incomplete modalities pose a significant challenge in medical
image analysis. While numerous studies demonstrate impressive
results when equipped with complete modalities, their efficacy
diminishes when utilizing incomplete modalities as input sources
(Azad et al., 2022). In practice, acquiring all modalities is often
impractical, leading medical institutions to possess only partial
modalities. Leveraging established methods for the segmentation
of brain tumors across multiple modalities. Becomes challenging in
such scenarios, hampering accurate diagnoses. In clinical practices,
medical institutions frequently encounter incomplete MRI
modalities due to limitations in collection devices.

Previous works in brain tumor segmentation typically assume
complete input MRI data, resulting in a notable decline in
performance when confronted with incomplete modality inputs.

For instance, RFNet (Ding et al., 2021) shows the effect of missing
modality using the BraTS 2020 dataset. They achieved a maximum
DSC of 87.32% on WT using only the FLAIR modality, but with the
combination of three modalities, i.e., FLAIR, T1, and T1ce, RFNet
achieved a DSC of 90.69%. On the other hand, RFNet achieved
91.11% DSC using all four modalities. Similarly, in (Zhang et al.,
2022b) mmformer achieved a DSC of 86.10%, 88.14%, and 89.64%
using only FLAIR, three modalities (FlAIR, T1ce, and T2), and all
four modalities using BraTS 2018.

Moreover, various recent models (Zhou et al., 2020; Wang et al.,
2021c; Yang et al., 2022; Diao et al., 2023; Ting and Liu, 2023) were
developed to handle the missing modalities effectively, but there
remains some degradation in the performance compared to all
modalities. To address this limitation, it is imperative to devise
robust segmentation methods capable of handling incomplete
modalities. Recently, some works have been proposed to tackle this
issue (Zhao et al., 2022; Shi et al., 2023), however, most are tailored to
specific cases of incomplete modalities and lack adaptability to diverse
scenarios. Future research efforts should prioritize the development of a
unified framework capable of robustly handling all cases, both complete
and incomplete modalities alike.

4.2 Limited label data

A primary challenge in training the transformer model for
segmentation is insufficiently labeled data. Medical images,
particularly MRI datasets, possess an inadequate number of
sample images compared to non-medical datasets. For example,
the BraTS 2012 data fromMICCAI challenges contain fewer images,
as shown in Table 7. In contrast, non-medical datasets, such as
ImageNet (Deng et al., 2009), contain over 1.2 million images, and
the MNIST dataset (Deng et al., 2012) comprises 70,000 images.
These limitations make transformer-based segmentationmodels less
robust and generalizable for medical tasks because they require
extensive and diverse datasets to understand the complicated and
high-level properties of the tumor and its surrounding tissues.

The problem of limited data, specifically for brain tumors, can be
tackled by using different augmentation techniques. These techniques

FIGURE 4
DL-based multi-modal MRI brain tumor segmentation model
publication statistics from 2021 to 2023.

Frontiers in Bioengineering and Biotechnology frontiersin.org18

Abidin et al. 10.3389/fbioe.2024.1392807

167

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1392807


generate training data and improve themodel’s performance. Generally,
there are two types of data augmentation, i.e., conventional and GAN-
based. In conventional augmentation approaches, different
transformations, such as geometric and photometric
transformations, are used to increase the data quantity. However,
these techniques are not effective in dealing with diverse data. On
the other hand, GAN-based augmentation has gained popularity owing
to its ability to produce synthetic and diverse data that closely resemble
input data. AGAN is composed of a generator and discriminator neural
networks. The generator network learns to create synthetic samples,
whereas the discriminator network determines the differences between
the actual and created samples.

Furthermore, researchers have employed various GAN-based data-
augmentation techniques such as conditional GAN (cGAN) (Isola et al.,
2017), cycle GAN (Sandfort et al., 2019), and parasitic GAN (Sun et al.,
2019) for this purpose. Moreover, test-time augmentation methods can
also be explored, as (Amiri et al., 2022) suggest that test-time
augmentation (TTA) is one of the influential factors in improving
model performance. The list of open-source packages and frameworks
for DL-based medical image data augmentationmethods are as follows:
Augmentor (Bloice et al., 2019), Albumentations (Buslaev et al., 2020),

Batchgenerators (Isensee et al., 2020), CutBlue (Yoo et al., 2020),
CLoDSA (Casado-García et al., 2019), Gryds (Eppenhof and Pluim,
2018), ImgAug (Gu et al., 2019), Keras ImagedataGenerator (Chollet
et al., 2015), MONAI (Cardoso et al., 2022), Pymia (Jungo et al., 2021),
PyTorch Transformer (Paszke et al., 2019), and TorchIO (Pérez-García
et al., 2021).

4.3 Enhancing model efficiency and
deployment

In real-world scenarios, adeptly trained deep models find
applications on terminal devices characterized by constrained
resource availability. These settings’ requirements necessitate
deploying efficient and lightweight deep models. During the training
phase, emphasis is placed on ensuring the efficiency and compactness of
deep models. Model compression strategies, including weight pruning,
quantization, distillation of large models, and the incorporation of low-
rank approximations, are employed to diminish the model’s size. These
techniques effectively minimize the memory and computational
demands of the deep model. Additionally, optimizing network
architectures and implementing tailored training regimens contribute
to alleviating the demand for an excessive number of parameters while
maintaining optimal performance. Regrettably, there exists a dearth of
research addressing the crucial aspects of model efficiency and
deployment in brain tumor segmentation. This represents a pivotal
gap in understanding that needs attention to ensure the successful
utilization of algorithms in upcoming clinical practices.

4.4 Class imbalance

Addressing class imbalance is an essential challenge in the task
of multi-modal brain tumor segmentation due to the tendency of
these tumors to occupy a very limited area of the brain, which in turn
complicates the processing of MRI data. The disparity might lead to
a skewed division that favors the more significant class (healthy
tissue), affecting the precise segmentation of brain tumors with
smaller areas (Akil et al., 2020; Deepak and Ameer, 2023).
Conventional methods include using class reweighting strategies
throughout the training process to tackle this problem. These
strategies provide more importance to the minority class (small
tumor areas) and lesser significance to the majority class, allowing
the model to prioritize the smaller class during training.

Recently, some work has been done to overcome the issue of
class imbalance for multimodal MRI brain tumor segmentation.
Most of the work in the literature is based on the use of different loss
functions, for instance, in (Li et al., 2023b) combined loss function is
used to optimize the network. Here dice and cross entropy losses are
used to overcome class imbalance and stable training process,
respectively. In (Zhu et al., 2023b), the edge detection module is
for the class imbalance problem and they introduce Ledge which is
the combination of edge loss and dice. In (Yeung et al., 2022)
introduce the unified focal loss for the class imbalance problem and
also present the detailed discussion and effect of other loss functions.
Various other loss functions are used in the literature to tackle the
class imbalance problems (Jiao et al., 2023; Rehman et al., 2023; Li
et al., 2024). Another way to deal with the class imbalance problem is

FIGURE 5
Statistical analysis of multi-modal brain tumor segmentation
datasets used in the DL = based models from 2021 to 2023.

TABLE 7 Brain tumor segmentation (BraTS) datasets.

Dataset Number of images Available modalities

BraTS 2012 50 T1, T2, T1ce, FLAIR

BraTS 2013 60 T1, T2, T1ce, FLAIR

BraTS 2014 238 T1, T2, T1ce, FLAIR

BraTS 2015 253 T1, T2, T1ce, FLAIR

BraTS 2016 391 T1, T2, T1ce, FLAIR

BraTS 2017 477 T1, T2, T1ce, FLAIR

BraTS 2018 542 T1, T2, T1ce, FLAIR

BraTS 2019 651 T1, T2, T1ce, FLAIR

BraTS 2020 660 T1, T2, T1ce, FLAIR

BraTS 2021 2000 T1, T2, T1ce, FLAIR
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to remove focus-free images in the dataset during training that are
present in an excessive amount (Gao et al., 2023; Wu et al., 2024).
Future research should focus on expanding current class balancing
approaches and devise adaptive balancing approaches to improve
the efficacy of tiny tumor areas.

4.5 Interpretability

Interpretability poses a difficulty in DL since these methods are
often regarded as completely opaque models with limited insight
into the reasoning behind predictions. The absence of
interpretability is particularly critical in practical scenarios,
notably in the field of clinical treatment, where understanding
the functioning of deep models and the reasoning behind their
choices is essential. One possible method to tackle this problem is
using visual representations of feature maps, emphasizing
prominent areas that influence the model’s results. Researchers
have developed many techniques to display intermediate layers in
deep learning models, such as activation maximization, class
activation maps (Muhammad et al., 2020), and conditional
t-distributed stochastic neighbor embedding (ct-SNE) (Kang
et al., 2021). Recent endeavors have also used feature attribution
techniques to identify the most relevant characteristics for a certain
prediction generated by a DLmodel. The techniques involved in this
process include gradient-based attribution (Ancona et al., 2017),
perturbation-based attribution (Ivanovs et al., 2021) etc.

To further enhance the interpretability of multimodal DLmodels,
eXplainable AI (XAI) offers a suite of techniques aimed at providing
transparency and insights into model decisions. Some notable XAI
methodologies include SHapley Additive exPlanations (SHAP) and
Local Interpretable Model-agnostic Explanations (LIME). SHAP
assesses the outcome for any DL model by determining the
relative contributions of every feature to the resulting estimation
and prediction, making it particularly useful for multimodal models
(Lundberg et al., 2017). LIME explains individual predictions by
approximating the model locally with an interpretable model. It
achieves interpretability by training these models on subsets of the
dataset, enabling users to understand how different features influence
the decision (Ribeiro et al., 2016). Various other techniques have been
developed for XAI, recently one method was developed for
contrasting the decision-making patterns of the black box and
white box models (Žlahtič et al., 2024).

Future research in multimodal brain tumor segmentation,
utilizing Vision Transformers and other advanced architectures,
provides the potential to customize interpretability approaches for
individual purposes. By integrating these XAI techniques, we can
improve the understanding of model functioning, increasing its
transparency and offering useful insights for therapeutic
applications. Emphasizing interpretability in multimodal DL
models not only aids in clinical decision-making but also builds
trust among medical professionals and patients, facilitating the
adoption of AI technologies in healthcare.

5 Conclusion

This study highlights the significance of DL in brain tumor
segmentation using multi-modal MRI, offering critical insights into
treatment planning and personalized care. Beginning with exploring
MRI modalities and the advantages of DL-based segmentation models.
DL models have significantly improved brain tumor segmentation
using multi-modal MRI and offered numerous advantages for tumor
segmentation tasks, such as saving time, eliminating human bias, and
minimizing errors. We thoroughly investigated DL-based models for
brain tumor segmentation using multi-modal MRI and evaluated the
recent existing model. Our study categorizes current research into three
main groups based on the model’s architecture: CNN, transformer, and
hybrid models. We have thoroughly investigated these models,
considering their architectural design, dataset utilized, and
experimental parameters. In addition, we perform a comprehensive
statistical analysis of recent publications, brain tumor datasets, and
evaluation metrics. Finally, open research challenges are identified and
suggested promising future directions for multi-modal MRI brain
tumor segmentation.
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Introduction: Three-dimensional printed models are widely used in the medical
field for surgical and interventional planning. In the context of complex
cardiovascular defects such as pediatric congenital heart diseases (CHDs), the
adoption of 3D printed models could be an effective tool to improve decision-
making. In this paper, an investigation was conducted into the characteristics of
3D printed models and their added value in understanding and managing
complex pediatric congenital heart disease, also considering the associated cost.

Methods: Volumetric MRI and CT images of subjects with complex CHDs were
retrospectively segmented, and the associated 3D models were reconstructed.
Different 3D printing technologies and materials were evaluated to obtain the 3D
printed models of cardiac structures. An evaluation of time and costs associated
with the 3D printing procedure was also provided. A two-level 3D printed model
assessment was carried out to investigate the most suitable 3D printing
technology for the management of complex CHDs and the effectiveness of
3D printed models in the pre-surgical planning and surgical strategies’
simulations.

Results: Among the different techniques, selective laser sintering resulted to be
the most suitable due to its reduced time and cost and for the positive clinical
feedback (procedure simulation, surface finish, and reproduction of details).

Conclusion: The adoption of 3D printedmodels contributes as an effective tool in
themanagement of complex CHDs, enabling planning and simulations of surgical
procedures in a safer way.
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1 Introduction

Three-dimensional printing technology in medicine has
developed very rapidly in recent years due to the several
approaches where it can be applied and the provided advantages
(Bozkurt and Karayel, 2021; Javaid et al., 2022). In the cardiovascular
field, 3D printed models are used for several purposes such as
medical students’ education and training, patients’ communications,
planning of surgical and percutaneous interventions, and
applications in mock circulatory systems to investigate fluid
dynamics in vitro (Medero et al., 2017; Vukicevic et al., 2017;
Buonamici et al., 2022; Santoro et al., 2022; Vignali et al., 2022;
Fanni et al., 2023; Masoumkhani et al., 2023; Stomaci et al., 2023).

This great development is strictly correlated with the advance in
technology of volumetric medical imaging, and the resolution and
signal-to-noise ratio are indeed crucial aspects to obtain an accurate
3D printed model. A certain demarcation between the structures of
interest and the other image regions is one of the main starting
points in the process of 3D model reconstruction (Fan et al., 2019).
Although 3D echocardiography concerns mostly 3D models of
cardiac valves and small defects due to a limited field of view,
computed tomography (CT) and magnetic resonance imaging
(MRI) are the most diffused acquisition techniques suitable for
3D model generation of several cardiovascular pathological
anatomies. CT images are characterized by high spatial resolution
and contrast; however, their adoption is not recommended for
pediatric subjects, given the necessity to inject an iodinated agent
to enhance contrast and the ionizing nature of the radiations
involved. On the other hand, MRI does not involve ionizing
radiation and presents a good tissue to blood contrast but is
affected by a poorer spatial resolution and more artifacts
compared to CT (Celi et al., 2021).

Starting from the elaboration of these aforementioned medical
images, 3D printed models can be realized with several kinds of 3D
printing technologies and materials, resulting in different
characteristics in terms of quality, color, opacity, deformability,
time, and costs (Gharleghi et al., 2021).

The most commonly used 3D printing technologies include
fused deposition modeling (FDM), stereolithography (SLA), and
selective laser sintering (SLS).

Regarding FDM technology, the material is deposited in layers
to form a 3D object by adopting a thermoplastic filament melted
from a heated nozzle (Awasthi and Banerjee, 2021). FDM is adopted
in several works evaluating the inclusion of 3D printed models in the
surgical planning of cardiac defects (Valverde et al., 2017; Capellini
et al., 2020).

The SLA technique consists in a UV laser light that induces a
polymerization process with a tank filled with photo-polymeric
resin. SLA technology allows for only one material printing at a
time, and external and internal supports are required to prevent
model collapse. Rigid or soft resin materials can be used, allowing
the adoption of SLA in cases of training (Mafeld et al., 2017) and pre-
planning for the percutaneous procedure (Capellini et al., 2020;
Kaufmann et al., 2023).

SLS involves the powder bed fusion technology, which utilizes
the laser energy to heat and melt powder particles (Lekurwale et al.,
2022). SLS technology allows for only one material printing at a
time, and it does not require the adoption of external and internal

supports during the fabrication process (Kappanayil et al., 2017). It
is possible to adopt opaque rigid or soft materials.

Congenital heart disease (CHD) is one of the most widespread
congenital pathology in infants (Wu et al., 2020). In particular,
complex CHDs consist in the concomitant presence of more
morphological defects (Festa et al., 2023), and they are
characterized by uncommon anatomic relations; often, they
require complex surgical approaches. The role of 3D models in
the CHD understanding and surgery is well-established in the
literature, together with their utility in teaching, training, and
communication (Capellini et al., 2020; Awori et al., 2021;
Karsenty et al., 2021). Although there are some studies in the
literature that highlight the benefits of 3D virtual models in the
field of CHDs (Ong et al., 2018; Awori et al., 2023), the adoption of
3D printed models is also able to provide a tactile response andmore
realistic understanding of depth and anatomic relationships with
surgeons (Costello et al., 2015; Celi et al., 2021; Illi et al., 2022).

However, clinicians’ feedback arising from both the effectiveness
in the decision-making procedure for pediatric complex CHDs and
the different kinds of 3D printing technologies and materials needs
further investigation. This study aims to assess the additional value
of 3D printed models in the pre-planning of complex CHDs as well,
with respect to different 3D printing techniques and materials.

2 Materials and methods

2.1 Image data

Ten pre-surgical image datasets of patients (five male subjects
and five female subjects with an average age of 4 years) presenting
complex CHDs scheduled for the surgical procedure were
retrospectively analyzed in this study. In particular, two
volumetric CT and eight MRI datasets acquired with 320-
detector scanner (Toshiba Aquilion One, Toshiba, Japan) and 3
Tesla scanners (Ingenia, Philips Medical Systems, Netherlands),
respectively, were considered. Examples of CT and MR datasets
with the associated volume rendering representations are shown in
Figures 1A, B, respectively.

2.2 Image processing

After an operation of image cropping to reduce the dataset
volume to the region of interest, a segmentation process is required
to obtain the 3D model of the anatomical structures. All the
segmentation procedures described below were implemented by
using 3D Slicer, a free and open-source software application (www.
slicer.org) for the analysis and segmentation of biomedical images
(Kikinis et al., 2013). A threshold algorithm was initially applied for
the segmentation of both CT andMRI datasets, given the presence of
contrast between blood in the vessels and heart chambers and non-
vascular tissues. Secondary, a semi-automatic technique based on
the region growing algorithm was applied together with a final phase
of manual editing, often consisting in a slice by slice segmentation,
due to the difficulty for automatic methods to accurately identify
regions with complex defects or artifacts. This procedure was carried
out by highly specialized biomedical engineers in the cardiovascular
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field with specific attention to cardiac structures with more than
5 years of experience in complex CHD segmentation with the
support of clinicians with expertise in cardiac imaging. Starting
from the obtained segmentation binary mask, a preliminary 3D
model was reconstructed and then refined by performing detection
and correction of any mesh holes, a removal of non-manifold edges
and islands. Examples of 3D final models are reported in Figures 1C,
D. To obtain the final 3D model suitable for printing, for all the
models, the surfaces were thickened of 0.8 mm outward from the
mesh to maintain the actual dimensions of the reconstructed
blood cavities.

2.3 Three-dimensional printing technologies

Three different types of 3D printing technology were tested in
this study: FDM, SLA, and SLS.

First, a subset of three 3D models was realized with all
aforementioned 3D printing technologies to perform an accurate
comparison and evaluation of the most suitable technique for the
complex CHDs. Finally, the remaining 3Dmodels were realized with
the chosen technique. Flexible materials with a comparable shore,
approximately 80 A, were chosen, given its availability for each
considered 3D printing technology and its applications for the
realization of anatomical models (Gómez-Ciriza et al., 2021; Lau
et al., 2021; Lau and Sun, 2022; Kaufmann et al., 2023). Regarding

the FDM technology, a G-code file was generated by using slicing SSI
software (3ntr, Oleggio, Italy), allowing the definition of the model
position and orientation on the printing plate and the selection of
supports necessary for the printing. An A4v4 printer (3ntr, Oleggio,
Italy) was adopted (printing volume: 30.0 × 17.1 × 20.0 cm3). The
model was printed in a thermoplastic polyurethane printing
filament (TPU Elasto85) with shore 85 A. With regards to the
printing parameters, the thickness of the layer was chosen according
to the selected material. An adaptable layer ranging from 0.15 mm to
0.25 mm was adopted together with an infill of 100%, given the
thickness of the model. A polyvinyl alcohol (PVA) material (SSU04)
was used as support, given its water-soluble properties. The post-
processing steps consisted in the manual removal of the external
support and then by using a tank filled of warm water with
ultrasound enabled to dissolve the internal support. The FDM
technology needs approximately 310 × 90 cm to house the
printer, the ultrasound washer, and a workbench for the manual
operations. The expanses of this technique include the equipment
cost (evaluated equal 0.8 €/h), the material cost (Elasto85 = 104 €/kg,
SSU04 = 121 €/kg), and the post-processing equipment cost
(estimated 0.1 €/h).

Three-dimensional printing with SLA technology was allowed
by using Preform software (Formlabs, Somerville, United States).
The position and the orientation of the model were defined to allow
the easier removal of supports and guarantee the highest quality of
the printed details. The SLA models were fabricated through Form

FIGURE 1
Examples of CT (A) and MR dataset (B) with the associated volume rendering visualization and the corresponding reconstructed 3D models (C, D).
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3BL printer (Formlabs, Somerville, United States), characterized by
a maximum printing volume of 33.5 × 20.0 × 30.0 cm3. The model
was printed in a deformable resin (Flexible 80 A) with a shore value
of 80 A. Each model was realized with a layer thickness of 0.1 mm,
compatible with the selected material. Post-processing of SLA
consisted of cleaning the model from uncured resin by a washing
procedure using isopropyl alcohol, then curing in an ultraviolet and
warm environment, and finally the removal of the outer and inner
supports by using proper scissors.

The SLA requires approximately 450 × 90 cm of space to
accommodate the printer machine, the washer, the curer, and a
workbench for the post-processing procedures. The equipment cost
of SLA was evaluated to be equal to 1.25 €/h for the printing process
and the material cost of Flexible 80 A was 242.8 €/kg, whereas the
equipment cost for the post-processing was estimated to be equal
to 0.42 €/h.

The SLS technology was defined by using Sinterit Studio
Advanced (Sinterit, Krakow, Poland), where the position and the
orientation of each model were set to guarantee the highest
quality of the model and reduce the printing time. The SLS CHD
models were realized through a Lisa PRO printer (Sinterit,
Krakow, Poland) with a printing volume of 11 × 15 × 25 cm3.
The material used was Flexa Bright, with 79 A of shore. Each
model was realized with a layer thickness of 0.125 mm. SLS post-
processing consisted of cleaning the machine using the
unsintered powder, removing the powder deposited on model
surfaces during printing by vacuum suction, air sanding, and
finally cleaning with soap and water. The SLS needs
approximately 450 × 90 cm to host the printer, the powder
sieve, the sandblaster, the vacuum cleaner, and a workbench
for the manual operations. The equipment cost of SLS was
evaluated to be equal to 1.7 €/h, whereas the material cost of
Flexa Bright was 250 €/kg and the post-processing equipment
cost was estimated to be 0.36 €/h.

Supplementary Table S1 summarizes the main features of 3D
printing technologies adopted in this work. Regarding the 3D
printing equipment, the hourly costs were calculated
considering a lifespan of 5 years (15,000 h). In addition to
the abovementioned costs, the cost of the printer operator
associated with manual activities performed before and after
the printing process was also considered. The operator involved
in this study had more than 1 year of experience in the 3D
printing technologies applied for cardiovascular anatomies, and
the associated hourly labor cost was 20 €/h (it is important to
report that this cost depends on each country and legislation).
The total print time, encompassing setup time (for G-code
generation and printer preparation), printing time, and post-
processing time were assessed.

2.4 Evaluation of 3D printed models’
effectiveness

A two-level 3D printing effectiveness evaluation was carried out.
The effectiveness was evaluated by a clinical team that did not take
part in the pre-planning and surgical phases of the selected cases.
The team was composed by a total of six physicians, of which three
were cardiologists and three were pediatric surgeons. The first level

of evaluation assessed which adopted 3D printing technologies and
materials were the most suitable for the management of complex
CHDs. A subset of 3D models, including the most representative
cardiac defects, such as transposition of the great arteries, crisscross
heart, and ventricular and atrial septal defects, was chosen for the
evaluation and printed with the considered technologies. In
particular, the clinical team assessed three different parameters:

• Surface—surface finishing.
• Details—the capability to replicate anatomical details with
high accuracy.

• Behavior—the material feedback for the simulation of the
surgical procedure, considering the level of deformability and
the behavior of the model to be cut with the scalpel.

Each member of the clinical team was asked to assign a score
from 1 to 5 for these parameters for each printed model. In this way,
each technology was evaluated on the basis of 54 scores (three
parameters × three models × six clinicians), with 18 scores for each
parameter, arising from the clinicians rate to each printed model.

The 3D printing technology characterized by the best scores in
the first assessment was selected to realize all 10 cases included in the
second level of evaluation. This approach allowed cost and time
savings by avoiding the adoption of 3D printing technologies that
received lower ratings from clinicians. For each model, the pre-
planning of the surgical procedure was carried out by the clinical
team. In particular, in this phase, the surgical strategy was defined
considering for each case, at first, only the available clinical images
(a); then, a strategy reassessment was performed including the 3D
printed model as well (b). In this way, the impact of 3D printing on
the management of complex CHDs was estimated by investigating
whether and how the additional information provided by the 3D
printed model modify the course of surgical planning and eventually
the surgical decision. In particular, the clinical team evaluated the
possibility to better understand the pathology as well by exploring
internal heart chambers from different views, the time of pre-
planning, and the potential improvement in the communication
between clinicians. The evaluation was performed on all CHD
models. The clinical team was required to assign a rating (“don’t
know,” “worsen,” “irrelevant,” “quite relevant,” “relevant,” and “very
relevant”) in a specific survey.

3 Results

3.1 Image processing

Regarding the segmentation process, manual editing was
necessary in most of the MRI datasets, especially in the cases of
newborns due to the complexity of structures and presence of
motion artifacts. However, for the CT datasets, which required
further segmentation phase after the threshold algorithm
application, semi-automatic methods limited to restricted volume
regions were preferred due to the higher spatial resolution and size
of datasets. The 3D models were successfully reconstructed for all
selected image datasets, and the segmentation times requested for
the generation of 3Dmodels are reported in Table 1. The time values
varied depending on the complexity of CHDs, the image contrast
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and resolution, and the type of adopted segmentation algorithm,
ranging between 4.5 and 10.4 h. Table 1 also reports the printing
volume associated with the segmented 3D models, and it is possible
to observe that the dimensions of the considered models allow the
adoption of the considered printing technologies.

3.2 Three-dimensional printing

FDM technology allowed the printing of all selected models
without complications related to anatomical complexity,
reproducing both the external and the internal structures without

TABLE 1 Image processing and 3D printing characteristics. “−” means no printed model for the technique.

Case Image modality Segmentation time (h) Printing volume (cm3) Printing time (h)

FDM SLA SLS

1 MR 7.3 8.6 × 6.2 × 11.2 19.3 19.5 16.0

2 CT 9.2 6.5 × 5.8 × 9.7 10.7 15.0 10.3

3 MR 10.4 8.6 × 6.9 × 10.2 17.0 17.1 14.0

4 MR 4.5 9.8 × 6.7 × 12.5 − − 19.1

5 MR 5.3 10.5 × 9.3 × 14.3 − − 23.5

6 MR 8.1 10.6 × 7.0 × 13.0 − − 21.2

7 MR 10.4 8.9 × 6.7 × 7.6 − − 13.0

8 CT 8.5 8.4 × 6.1 × 8.5 − − 14.5

9 MR 7.5 10.6 × 9.3 × 13.2 − − 25.0

10 MR 7.3 14.4 × 10.5 × 9.6 − − 20.0

FIGURE 2
Examples of the 3D printed model of case 3 by using FDM (A), SLA, (B) and SLS (C) for first level of evaluation, with detail magnification. Examples of
3D models and the corresponding 3D printed models of cases manufactured with SLS and used for second level of evaluation (D).
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macroscopic defects (Figure 2A). The printing time to realize the
models with FDM technology increased with the increasing printing
volume of the model, showing a mean value of 15.7 h (Table 1). The
post-processing time was approximately 6 h, considering a washing
time of 5 h, and it is independent from the printing volume in the
range of complex CHDs considered. The cost related to the FDM
process is proportional to the printing volume with a mean
value of 77 €.

SLA technology allowed the printing of all selectedmodels, although
some critical issues arose in the case of small complex structures
characterizing the CHDs. In fact, for all the models analyzed, the
main issues were found in the post-processing phase. In particular,
the extraction of supports without damaging the model was made
difficult by the need to use high-density supports for internal
structures, the small size of the models, and the lack of holes of
access usable for the scissors. In addition, given the presence of high-
density support, support imprints on the surface of the models were
observed (Figure 2B). The printing time of SLA technology increased
with the increasing printing volume of themodel, showing amean value
of 17 h (Table 1). The post-processing time was approximately 2 h,
considering 30 min for model washing and curing, and the support
manual remotion is dependent on the printing volume and the degree of
complexity of the CHDs. The cost related to the SLA process is
proportional to the printing volume, with a mean value of 81€.

The realization of all 3D models was feasible through the SLS
printer. The relatively small dimensions of the printing plate, in fact,
did not represent a limitation for the printing because of the small

size of pediatric heart models. SLS was able to reproduce both the
external and the internal structures of the 3D model without
macroscopic defects, with accurate adhesion of the printer layers
(Figure 2C). As observed for the other two technologies, SLS
exhibited printing time proportional to the model volume, with a
mean value of 13.4 h (Table 1). The post-processing time was
independent from the model weight, and it was equal to 1 h. The
mean cost related to SLS was equal to 56€. Some examples of 3D
printed models by SLS are reported in Figure 2D.

3.3 Evaluation of 3D printed models’
effectiveness

Regarding the comparison of the tested 3D printing
technologies, the mean value of the scores assigned by the
clinical team is shown in Figure 3A. The team assigned the
highest value of Surface score to the SLS technique as it
presented satisfactory layer adhesion and good surface finish.
SLA achieved a Surface rating of 3 as the imprint of the removed
supports was present on some regions of the external surface. The
FDM reached the lower value as it presents a coarse surface with
visible layers. In terms of theDetails parameter, the SLS achieved the
highest value as the anatomical details were reproduced with high
quality on both the external and inner surfaces. The FDM model
showed a lower quality of details on the internal surfaces, while the
SLA model reached the lowest value of 2 as the inspection of the

FIGURE 3
Reports of the clinical team evaluation for 3D printing technologies (first level of evaluation) (A) and for the impact of 3D printed models on pre-
planning (second level of evaluation) (B–D).
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internal details was limited by the presence of the support and the
transparency of the model. The last parameter was Behavior; the SLS
and SLA scored the highest because the elasticity offered allowed
surgical incision and inspection without damaging the model. In
addition, the material compliance was more similar to cardiac tissue
than the FDM material when handled by the surgeon. The lower
score for FDM (equal to 2) was due to the stiffer behavior of the
material, which made the cutting phase more difficult.

As concerns for the second-level assessment, the survey was
completed by the clinicians for all cases. Figures 3B–D report the
results in terms of rating assigned to each parameter. Regarding the
understanding of individual complex CHDs, all experts agreed that
SLS-printed models provide an increase in the comprehension of
anatomical details and relations that characterize the pathology, as
reported in Figure 3B, where five out of six clinicians assigned a rate
of “relevant” and “very relevant.” All clinicians were agreed on the
relevance of the SLS-printed model in the communication among
physicians during the decision-making procedure (Figure 3C). The
inclusion of the 3D printed model in the clinical discussion showed a
relevant impact on the time needed for the decision-making
procedure that resulted to be reduced (Figure 3D). The
importance of performing strategies’ simulations on the 3D
printed model was highlighted in eight cases, and for 4 out of
10 cases, the surgical strategy resulted different, compared to that
performed based only on clinical images.

4 Discussion

In this work, an investigation of the main diffused 3D printing
technologies and added value of 3D printed models in the
management of complex CHDs was carried out. In the last few
years, the adoption of 3D virtual and printed models in the cardiac
field has significantly increased (Gasparotti et al., 2019; Gardin et al.,
2020; Ma et al., 2021). In particular, their usage can be crucial in the
understanding, pre-planning, and simulation of surgical procedures
of pediatric complex CHDs.

In our study, 10 complex CHD anatomies were analyzed starting
from the segmentation of medical images, up to 3D printing
realization and clinical evaluation to assess the applicability of
the 3D printed models in pre-planning. The clinical images play
a central role in the process of 3D model realization, in particular
MR and CT acquisitions are the most used in the cases of complex
CHDs. In addition to the advantages and drawbacks associated with
the above cited imaging modalities and already described in Section
1, the proper balance between spatial resolution and image contrast
is a crucial aspect. A good resolution in terms of small voxel size
allows the visualization and reconstruction of small structures
details but involves a decrease in the signal-to-noise ratio with
consequent difficulties associated with segmentation algorithm
application (Otton et al., 2017).

In the context of a clinical application, the total print time is a
parameter that characterizes the availability of the printed model,
following a clinical request. All considered techniques result in
compliance with the clinical practice, allowing the model to be
available to the clinician within 24 h on average after the
segmentation procedure (7.8 h). Among the techniques, the SLS
resulted to be the fastest method, requiring 34% and 28% less time

with respect to FDM and SLA. This is related to the smaller amount
of material used for printing due to the absence of supports.

Moreover, the spaces required by the 3D printing techniques
inside a clinical environment have to be taken into account. The
considered 3D printing technologies require a comparable amount
of space, and a dedicated room should be needed for any of them due
to the characteristics of materials involved in setup, printing, and
post-processing phases. In addition, the cost associated with 3D
printing is an important aspect discussed in the literature (Lau et al.,
2019; Yoo et al., 2021) since it represents one of the discriminating
factors for the inclusion of this procedure in the clinical routine
management of CHDs. Other technologies are widespread in the
field of 3D printing such as PolyJet technology by Stratasys that
permits the realization of 3D models varying the shore values of the
printed structures. In particular, the Digital Anatomy printer is used
to create cardiac structures with different stiffness. Nevertheless,
these other technologies have an equipment acquisition cost of over
70 k€ (Chae et al., 2015; Chen et al., 2021), while in this work, we
focused on 3D printer machines available in our center,
characterized by a cost lower than 30 k€. The tested 3D printing
technologies were selected, taking into account both the technical
characteristics associated with the printing models and the
associated cost-effectiveness that is fundamental in a clinical
scenario. From the evaluation of the costs of the 3D printing
technologies tested in our work, it appears that, even if the cost
of producing a model is similar for the analyzed technologies and
therefore compatible with clinical application, the SLS process is the
cost-effective method with a cost-benefit ratio 28% and 31% lower
than FDM and SLA, respectively. Although SLS has the highest cost
of material per kilogram, this technology minimizes material waste,
and the costs for post-processing are the lowest due to the absence
of supports.

The accuracy in the delineating anatomical details is an explored
factor for the 3D printing in CHDs. The clinical team attested the
low resolution in the reproduction of complex and small anatomical
details of FDM printed models, together with the worst tactile
feedback due to both the surface roughness and the response to
the surgical incision. Although a good resolution of 3D printed
models was obtained by SLA technology, the impossibility of a
perfect removal of the imprints of external supports negatively
affected the surface finish (Figure 3A). Moreover, the simulation
of the surgical procedure and the exploration of internal cavities was
not always feasible or positively evaluated by the surgical team due to
the presence of internal residual supports. On the other hand, the
tactile feedback and the response to surgical incision were adequate
for all clinicians. Similar behavior was recorded for SLS models,
which provided, in addition, the best model quality both in terms of
surface finish and accuracy in anatomical detail reproduction.
Moreover, the low value of the resulting standard deviation
(Figure 3A) denotes an agreement within the clinicians in the
evaluation of 3D printing techniques. On the basis of the above
reported results, the 3D printed models obtained with SLS
technology turned out to be the most suitable for the surgical
planning of complex CHDs.

The surgical pre-planning phase of complex CHDs is challenging
and time-consuming due to anatomies characterized by uncommon
anatomic relations, morphological abnormalities, and often very small
structures that can be very dissimilar among the patients (Festa et al.,
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2023). The inclusion of SLS-based 3D printed models in the pre-
planning allows the 3D visualization of the anatomical structures
from different perspectives, the manipulation of 1:1 scaled
geometries, the exploration of the heart chambers from a surgical
point of view, the visualization of the vessels, and chamber spatial
relationships. All these aspects have a relevant impact on the decision-
making procedure and surgical strategy, bringing an added value in
terms of understanding, communication, and time-saving as arisen from
clinicians’ response (Figures 3B–D). Regarding the time for the 3D
printed model realization, the duration of the segmentation phase is a
crucial step that is significantly dependent on the quality of image
dataset, the complexity of investigated scenario, and the competences
and experience of the multidisciplinary team. The resulting
segmentation times in this study were obtained by highly specialized
biomedical engineers in the cardiovascular field focused on cardiac
structures with more than 5 years of experience. Even if the artificial
intelligence applied to image processing is an emerging instrument to
obtain an automatic and faster segmentation mask (Garzia et al., 2023),
its adoption in the complex CHDs is challenging (Karimi-Bidhendi et al.,
2020; Yao et al., 2023) due to the structure relations and abnormalities
that can be different for each case. Although the 3D printed models turn
out to be a powerful tool to improve the pre-planning procedure for the
complexCHDs, their inclusion in the clinical setting is still limited due to
the associated costs and time. These aspects could be significantly
improved if the facilities required by the 3D printing procedure are
present inside the clinical structures without using external service.

5 Conclusion

Three-dimensional printing represents an effective instrument for
the management of complex CHDs. Among the main diffused
technologies, the SLS resulted to be the most suitable for the
understanding and planning of surgical procedures, especially for the
accuracy of detail reproduction and for the best tactile feedback. The
effectiveness of 3D printed models obtained with SLS technology arose
from clinicians’ response to a specific satisfaction survey. The presented
work demonstrated the improvement provided by 3D printedmodels in
the process of decision-making in the field of complex CHDs.
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