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Editorial on the Research Topic: 


The effects of climate change and anthropogenic activities on patterns, structures and functions of terrestrial ecosystems


Climate change and anthropogenic activities are two profound forces influencing terrestrial ecosystems. The extent, velocity, and interplay of their effects offer a rich tapestry for scientific exploration, as the myriad of interactions and feedbacks are both nuanced and wide-reaching. This Research Topic, comprising 17 meticulous studies, delves deep into the multifaceted impacts of these forces on various ecological parameters, offering insights, patterns, and predictions of potential futures.

In Eurasian grasslands, where precipitation and productivity share a complex relationship, the pioneering work by Zhang et al. elucidates how these dynamics can be instrumental in identifying ecosystem transitions. Extending this analysis to a global scale, Chen et al. evaluates the determinants of photosynthetic capacity in grasslands, shedding light on the intertwined nature of ecosystems and their climatic contexts.

The role of human intervention, often regarded as a primary perturbing force, is sometimes positive. Liu et al. provides evidence of how, under the ever-evolving climate change scenario, anthropogenic activities have bolstered ecosystem productivity between 1983 and 2018.

Urban sprawl and land use changes, while central to human needs, reverberate through ecological processes. The study by Tao et al. focused on the Nanjing metropolitan circle, dynamically simulates these impacts on carbon storage under various development trajectories. Meanwhile, Cheng et al., Zhao et al., Su et al., and Chen et al. deliver comprehensive assessments of China’s forest carbon distribution, extreme temperatures in the Qilian Mountains, the rich biodiversity of the evergreen-deciduous karst forests, and the merits of the National Key Ecological Function Areas, respectively.

Drought—a significant concern in the era of climate change—is examined through its impacts on microbial genes in alpine peatland (Yan et al.) and on critical enzyme genes in Scutellaria baicalensis (Li et al.). The role of rainfall and its influence on temperate forest ecosystem services is adeptly tackled in Liang et al., reiterating the significance of water as an ecological driver.

The systematic review by Liu et al., which collates insights from multiple ecological restoration studies in China, underscores the importance of policy-driven ecological initiatives. It serves as a precursor to Lv et al. and Tang et al., focusing on carbon sequestration and the vulnerabilities in the karst regions, offering a roadmap for sustainable restoration.

The technological integration of modern research techniques finds its representation in this Research Topic too. The study on maize by Peng et al. combines an optimized model to unravel the connections between photosynthesis, evapotranspiration, and dry matter distribution. Furthermore, the use of a hybrid machine learning model (He et al.) showcases the potential of modern computational tools in mapping seagrass habitats.

In conclusion, this Research Topic paints a vivid and comprehensive portrait of the myriad ways in which climate change and anthropogenic activities shape, mold, and sometimes challenge terrestrial ecosystems. It is our hope that these contributions not only enhance understanding but also guide future actions and policy decisions, ensuring a balanced coexistence of human aspirations and ecological imperatives.
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Introduction: The National Key Ecological Functional Areas (NKEFAs) are location-oriented ecological engineering of China, which rely on the main functional area planning. The co-benefits of ecological product supply and ecological environment improvement of NKEFAs has not been fully assessed in the literature.

Methods: NKEFAs is considered a quasi-natural experiment, and the time-varying difference-in-differences (DID) model is used to assess the impact of NKEFAs on carbon sequestration (CS) and environmental quality (EQ) based on the panel data of 330 cities in China from 2001 to 2019. Then, we explore whether the co-benefits of ecological product supply and eco-environment protection can be achieved.

Results and discussion: NKEFAs can enhance CS and EQ and thus achieve co-benefits for both. NKEFAs can achieve the co-benefits of CS and EQ through territory spatial allocation and labor force aggregation, but industrial structure upgrading only positively mediates the impact of NKEFAs on CS. The co-benefits of CS and EQ are heterogeneous across functional area types, geospatial locations, and quantiles, while only CS at windbreak-sand fixation area, northwestern region, and low quantile regions is enhanced. This study makes a theoretical and methodological contribution to the existing literature on the policy effect assessment of ecological engineering. It also provides a comprehensive framework for evaluating the ecological effects of relevant policies in other countries by integrating the co-benefits of ecological products and eco-environment, analyzing regional heterogeneity, and exploring the underlying mechanisms.

KEYWORDS
 National Key Ecological Function Areas, carbon sequestration, environmental quality, co-benefits, time-varying difference-in-differences, China


1. Introduction

The effectiveness of ecological policies and environmental regulation has received widespread global attention in recent decades, regarding that climate change and environmental degradation are already critical problems that threatening humankind (Dong et al., 2022). Facing the above threat, Chinese government has committed to reaching peak carbon emissions by 2030 and carbon neutrality by 2060 (Yu and Zhang, 2021). Therefore, achieving the goals of dual-carbon strategy and improving ecological environment are the basic need of high-quality green development. Territorial space use is mainly expressed as the interaction between ecosystems and human activities (Ball et al., 2010). Inappropriate ways and unreasonable structure of human activities induce terrestrial ecosystem degradation, which significantly explains the growing carbon emission intensity and environmental problems (Gao et al., 2013). The rough expansion of industrialization and urbanization results in structural contradiction in land space utilization, encroaching on the ecological space (Lin et al., 2020).

In order to reasonably use the territory, China issued the National Main Function Area Planning in December 2010, which specifies the main functions of different regions (Liu J. et al., 2017; Liu W. et al., 2017), gradually form a spatial development pattern of the national territory in harmony with population, economy, resources and environment. According to the development content, the main functional areas can be divided into urbanized areas, main agricultural producing areas, and key ecological functional areas. Among them, the National Key Ecological Function Areas (NKEFAs) are important to ensure national ecological security, primarily for protecting the ecological environment and enhancing the ecological product supply. NKEFAs bear important ecological functions such as water conservation, soil conservation, windbreak sand fixation and biodiversity maintenance. Currently, China established the first batch of NKEFAs covering 436 counties at the end of 2010 (Xu et al., 2018), to which 240 new counties were added in 2016 (Figure 1). Since 2011, NKEFAs have become the largest regional ecological policy in China (Zhu and Chen, 2020).

[image: Figure 1]

FIGURE 1
 The distribution map of NKEFAs.


Over the years since the establishment of NKEFAs, it is worthwhile to explore its ecological benefits in the context of the dual carbon strategy. The existing studies focus on the effect of fiscal transfer payments, the quantitative of ecosystem service changes in NKEFAs, etc. (Miao and Zhao, 2019; Xu et al., 2019; Liu et al., 2020). Early studies indicated that the ecological benefits of NKEFAs is unobvious, which is related to the precision and target matching of its transfer payment policy (Li et al., 2013, 2014; Li and Li, 2014). found that the transfer payment of NKEFAs promoted environment quality in the Qinba Mountains of Shaanxi, but relatively weak. In contrast, Xu and Zhang (2017) found that the positive ecological effect of transfer payment was relatively significant for NKEFAs in Shaanxi Province, with the ecological environment in the base period playing an indispensable role. Additionally, by comparing the environmental changes before and after the NKEFAs through GIS technology, its eco-environment shows an improvement trend (Liu et al., 2018; Zhang M. et al., 2022, Zhang T. et al., 2022), varying with different function area types (Hou et al., 2018). In addition, The afforestation area of NKEFAs received the attention of scholars (Bryan et al., 2018; Pan, 2021), and there is also literature focusing on the carbon reduction effect or air pollution control of ecological policies (Dong et al., 2022; Gao et al., 2022; Liu et al., 2022).

Existing studies have deeply investigated the ecological effect of NKEFAs but have limitations. First, the relevant literature focuses on transfer payment, most of which is the experience summary and theoretical discussion. Second, the quantitative analysis is mostly case studies, and the interference of other ecological policies is nearly unavoidable in GIS-based analysis. More importantly, existing studies focus more on the eco-environmental effect, but neglect the major goal of NKEFAs to enhance the ecological product supply (Zhang M. et al., 2022; Zhang T. et al., 2022). Carbon sequestration (CS) is the ability of vegetation to absorb and store carbon dioxide, which is an important ecological product (Liu and Song, 2022). So, the achievement of NKEFAs’ ecological goals requires both enhancing CS and improving environmental quality (EQ), and to promote the joint improvement of both, which is also known as co-benefits. Therefore, it is necessary to assess the NKEFAs’ CS capacity and co-benefits of CS and EQ.

Specifically, we consider the NKEFAs as a “quasi-natural experiment” (Zhang M. et al., 2022; Zhang T. et al., 2022). Then the panel data of 330 cities in China from 2001 to 2019 and a time-varying difference-in-differences (DID) model are used to assess the impact of NKEFAs on CS and EQ, so as to identify the co-benefits of ecological product supply and ecological environment improvement. This study contributes to experience accumulation and institutional improvement to implement sustainable ecological policies in China. It also provides a reference for the synergistic balance between ecological product supply and eco-environmental protection in other countries.

This paper has the advantage of the policy stripping of DID model and large sample data to effectively assess the policy effect of NKEFAs. In addition, the marginal contributions are as follows. First, unlike previous studies, this paper integrates CS and EQ into a framework to investigate whether NKEFAs can achieve the co-benefits of ecological product supply and ecological environment. Second, existing assessments based on inter-provincial average treatment effect (ATE) can hardly accurately reflect individual differences in ecological features within provinces. So, a more detailed examination at a smaller-scale of prefecture level (Rosenthal and Strange, 2003) can eliminate the homogenization error in provincial macro data. Third, existing studies based on GIS technology to compare and analyze the changes of ecological effect before and after the policy implementation or between covered and non-covered areas are difficult to exclude the influence of other ecological policies. The identification using DID model can effectively strip the interference of other similar policies in the same period.



2. Materials and methods


2.1. Data sources

The panel data of 330 cities at the prefecture level and above in China from 2001 to 2019 are selected as the study samples. The areas covered by NKEFAs are manually collated according to relevant policy documents (Table 1). NPP is obtained from the MOD17A3HGF product based on the MODIS satellite launched by NASA, the spatial resolution is 500 m. EQ data came from the CHEQ dataset (2001–2019) released by China’s National Earth System Science Data Center,1 with a spatial resolution of 0.0089°. The land use data is derived from the global land cover product data2 of the European Space Agency’s (ESA) Climate Change Initiative (CCI), with a resolution of 300 m. The data of temperature, precipitation, and sunshine hours were obtained from the annual data set of China’s surface climate data from the China Meteorological Data Network.3 The socio-economic data is provided by the China City Statistical Yearbook, China Regional Economic Statistical Yearbook, and provincial statistical yearbooks of previous years.4 The missing data is supplemented by prefecture statistical yearbooks or by interpolation. The variance inflation factor (VIF) of each variable is significantly <10, there is no obvious multicollinearity problem among the explanatory variables.



TABLE 1 Descriptive statistics of the variables.
[image: Table1]



2.2. Variable selection


2.2.1. Explained variables: Carbon sequestration and environmental quality

1. Carbon sequestration (CS). The scale of CS is measured by the net primary productivity (NPP) of vegetation, which can indicate the supply scale of ecological products. CS is mainly the process of absorbs CO2 from the atmosphere through photosynthesis of plants (UNFCCC, 1997). NPP is the residual of gross primary productivity (GPP) minus the value of autotrophs respiration, which can be deduced from the CO2 absorbed by plants and the dry matter produced (He et al., 2018). The chemical equation is 6CO2 + 6H2O → C6H12O6 + 6O2. Vegetation photosynthesis can fix 1.63 kg of CO2 for 1 kg of dry matter produced, and the carbon content of dry matter is about 45% in the total NPP. Therefore, the CO2 per unit area fixed by vegetation is WCO2 = NPP/0.45 × 1.63 (g/m2). The scale of CS is WCO2 multiplied by the vegetation cover area (Chen et al., 2020).

2. Environmental quality (EQ). EQ mainly reflects the overall condition of ecological environment, which is characterized by historical data from China’s High-resolution Eco-Environmental Quality (CHEQ) dataset (Xu et al., 2021). The dataset is developed based on indicators such as habitat, greenness, dryness, heat, humidity, and abundance index, with a data range of 0–1. It is highly consistent with the environmental index provided by the Ministry of Ecology and Environment of China and can reflect the quality effect of environmental benefits.



2.2.2. Core explanatory variable: NKEFAs

1. The scope of cities covered. Given that the list in the policy document is at the county level, according to the summary and collation of counties, there are 171 prefecture-level cities covered by the NKEFAs (111 first list and 60 additional list).

2. The time node of policy implementation. According to the different times of policy introduction and new list, 2011 and 2016 are the starting time of the two batches, respectively.



2.2.3. Control variables

In the econometric model, exogenous variables of socio-economic and natural climatic variables need to be controlled (Zhang M. et al., 2022; Zhang T. et al., 2022). In this paper, the following are included, population density (DEN), reflects the expansion of population size; economic growth (GDP per capita, PGDP), reflects the general situation of regional economic (Tang et al., 2021a); urbanization rate (URBAN), reflects the expansion of urbanization; industrial structure adjustment (STURC), reflects the change in the share of the three industries in total output (Guo et al., 2020); urban–rural income gap (GAP), reflects the change in income of urban and rural residents; opening to trade (OPEN), reflects the level of openness to foreign trade; transportation conditions (TRANS), reflects the gradual improvement of transportation infrastructure. The variables of natural conditions select precipitation (PRE), temperature (TEM), and sunshine hours (SUN) to test the shock of climate change on eco-environment.




2.3. Theoretical framework

As specific areas in the main function area plan to undertake ecological functions and maintain ecological security, the NKEFAs belong to the location-oriented ecological engineering in China (Lin and Qi, 2021). The positive incentives for NKEFAs are mainly formed by transfer payments to local governments. The ecological compensation transfer payment contract signed between central government and local governments form a principal-agent relationship, thus motivate local governments to invest more efforts in ecological governance (Zhang and Li, 2015), and also enhance the fiscal capacity of local governments to provide basic public services (Fu and Miao, 2015). The NKEFAs can mainly enhance the service function of ecological products and the eco-environment quality with government actions. To this end, we have established a framework system for NKEFAs to influence the co-benefits of CS and EQ (Figure 2).

[image: Figure 2]

FIGURE 2
 The framework of NKEFAs affecting CS and EQ.


Theoretically, fiscal support and social participation can help NEKFAs protect and restore the ecological environment, thereby enhancing CS and EQ. We argue that NKEFAs can influence the co-benefits of CS and EQ through territory space allocation, industrial structure upgrading, and labor force aggregation. First, the NKEFAs comprehensively delineate the ecological red line. This requires strict control of development intensity and scope in territorial development. Moreover, urban construction and industrial development should match the regional carrying capacity of resources and environments (Huang et al., 2021). Restricted development areas and ecological red lines assume different main functions, promote the optimization of the territorial utilization pattern, and help improve the efficiency of land spatial allocation (Jiang and Chen, 2021). The land spatial allocation reinforces the target requirement of prioritizing eco-environmental protection (DeFries et al., 2007), while the ecological space expansion contributes to co-benefits. Second, in NKEFA construction, a targeted negative list system is implemented for industrial access, which specifies a list of industries restricted and prohibited for suitable industry development. For industries that do not match the main function, strict industrial policy can promote the gradient transfer of polluting enterprises to areas with low environmental costs or to service industries with less pollution (Zhou et al., 2017; Luo and Qi, 2021). Then NKEFAs can promote industrial structure upgrading, conducive to pollutant emission reduction. In addition, the accompanying technical upgrade has also reduced the constraints of environment on economic development (Liu and Lin, 2020). Third, the reallocation of NKEFAs to the territory space and industrial layout has accelerated the adjustment of factors and the mobility of labor. Territorial allocation and industrial upgrading enable the labor force to move orderly from restricted development areas to key development areas or urbanized areas (Zhang M. et al., 2022; Zhang T. et al., 2022). As a result, urban population clustering also alleviates employment pressure (Fan, 2016). Labor force aggregation in space with permissible environmental capacity promotes the reallocation and structural adjustment of factors. This is conducive to preventing environmental pollution and effectively using resources.



2.4. Baseline regression

The DID (difference in difference) model is a widely used method for evaluating policy effects in recent years (Tang et al., 2021b). Its basic idea is to set the implementation of a policy as an exogenous “quasi-natural experiment” (Wang and Ge et al., 2022), so as to strip the net effect of this specific policy. The NKEFAs can lead to ecological differences not only between the policy-covered and non-covered areas but also before and after the policy implementation (Zhang M. et al., 2022; Zhang T. et al., 2022). Therefore, DID model can be applied to assess the policy effects of the NKEFAs.

Considering that the National Plan for Main Functional Areas was launched at the end of December 2010, the first batch of NKEFAs was announced simultaneously. And the list of additional counties was announced in 2016. This paper selects 2011 as the starting year for the NKEFAs. Considering the difference in time for the establishment of NKEFAs, time-varying DID model is employed, which is constructed as follows:

[image: image]

Where Yit denotes the explained variable, including CS and EQ, DIDit denotes the core explanatory variable, i.e., a dummy variable for this ecological policy. If region i is established as an NKEFA in year t, DIDit = 1; otherwise, DIDit = 0. β reflects the net effect of NKEFAs, if the NKEFAs help to enhance CS and EQ, β is significantly positive. controlit indicates the set of control variables, μi denotes the area-fixed effect, γt denotes the time-fixed effect, and εit is the random disturbance term.

The list in the document is at the county scale, while the scale of this research is at the prefecture level. In the DID model, for a prefecture-level city, if a NKEFA cover the county within its jurisdiction, this city belongs to the coverage of this NKEFA, then the list of counties can be summarized to the prefecture-level city. If the counties in a city are covered in both the first batch and the added batch, then the policy starting time of this city is 2011.



2.5. Parallel trend test and dynamic effect

DID model needs to satisfy the parallel trend hypothesis. Before the establishment of NKEFAs, the ecological effects of the treatment and control groups maintained basically the same trend of change. The parallel trend hypothesis test generally uses the event study approach (ESA), which also looks at the dynamic effect and persistence of policy impact. In this way, whether a significant difference exists in the changing trend can be accurately determined between the treatment and control groups in the NKEFAs (Wu et al., 2021). So, the ESA is applied to test the parallel trend hypothesis, and then analyze the dynamic policy effect (McGavock, 2021).

Considering that the Ministry of Finance promulgated the Transfer Payment (Pilot) Measures for NEKFAs in 2009, and some important ecological regions have started to pilot transfer payment. The year before the NKEFA implementation (2010) is used as the reference group for the parallel trend test. Referring to related studies (Chen, 2017; Tao et al., 2021), Eq. (1) is expanded as:

[image: image]

Where treati × yeart is the interaction term of the grouping variable treati and the year dummy variable yeart. The year before this policy (2010) is not introduced. βt denotes the policy effect in each year. If βt is not significant until 2010, the parallel trend hypothesis is satisfied.




3. Results


3.1. Baseline regression result

The baseline regression results show that (Table 2), whether or not controlling for city fixed effect and year fixed effect, or controlling for characteristic variables, the coefficients of DID are all positive significantly. NKEFAs exert a significant positive impact on CS, indicate that the NKEFAs enhanced the CS and EQ of the covered cities significantly, and achieve the ecological co-benefits. According to the coefficients of DID in columns (4) and (8), compared to that of cities in non-NKEFAs, the ATE of cities at the prefecture level is improved by about 2.1625 and 0.0031, respectively.



TABLE 2 Results of baseline regression.
[image: Table2]



3.2. Parallel trend test and policy dynamic effect

The coefficients of the NKEFAs on CS and EQ are all insignificant, fluctuated around 0 for each year before 2010 (Figure 3). CS and EQ prior this policy was introduced did not differ significantly between treatment groups and control groups. Hence, the parallel trend hypothesis is satisfied, and the treatment and control groups are comparable ex ante, this policy is suitable for evaluation using DID model.

[image: Figure 3]

FIGURE 3
 Parallel trend hypothesis and dynamic effects of NKEFAs on CS (A) and EQ (B).


For dynamic effects, the coefficients of NKEFAs changed from negative to significantly positive, the positive contribution to ecological benefits gradually became prominent. After the establishment of NKEFAs, the impact on CS and EQ was significantly positive in the ATE, which showed a dynamic upward trend with time. For CS, the positive effect begins to stabilize 2 years after the establishment of the NKEFAs, and the obvious positive contribution after 2017 due to the second list of added regions, further contributing to the CS scale. For EQ, the positive effect basically maintained a stable upward trend. The dynamic effect results further showed that the NKEFAs promoted the co-benefits of CS and EQ in the covered areas.



3.3. Robustness test


3.3.1. Placebo test

The purpose of placebo test is to rule out the influence of omitted variables, randomness factors, etc., before and after this policy. Then a counterfactual framework is used to carry out the placebo test (Cisilino et al., 2019). Specifically, the non-parametric permutation test is employed with an unduplicated random sampling of all cities and times (Lu et al., 2021). Since there are 171 cities covered by the two batches, so 171 cities are first randomly selected from the overall samples as the treatment group and other cities as the control group. Then a certain year is randomly selected from 2001 to 2019 as the establishment time of the NKEFAs. Finally a quasi-randomized experiment at two levels of city-time is constructed. To improve the explanatory power of placebo test, this random process is repeated 500 times, and obtain the kernel density distribution map of the DID coefficients under multiple random shocks (Figure 4). The coefficient distribution of CS and EQ is slightly deviated from 0, most of the p-values are >0.1, and the DID coefficients of the baseline regression also are located in the low tail of the kernel distribution, which are obvious outliers. So, the placebo test based on the counterfactual perspective confirms that the model setting is less disturbed by issues such as omitted variables or random factors, and does not affect the reliability of the baseline results.

[image: Figure 4]

FIGURE 4
 The placebo test of CS (A) and EQ (B). The X-axis is the coefficients of DID for the 500 random processes. The vertical lines on the right side are the baseline coefficients of DID, all significantly located in the low-tailed of the kernel density distribution.




3.3.2. PSM-DID

According to the goal of optimizing the spatial pattern of land use, the NKEFAs are important areas selected to undertake ecological functions and maintain ecological security, so their delineation may not be completely random (Lin and Qi, 2021), and prone to endogeneity caused by selection bias. If endogeneity exists, Propensity Score Matching (PSM) is an effective way to solve the problem under the non-randomized experiments (Shi et al., 2018). To reduce the selection bias of DID, the PSM combined with DID (PSM-DID) is used to assess the ecological co-benefits of NKEFAs. First, the control variables are used to predict the probability of each city being set as a NKEFA (Logit regression), and the treatment group is delineated. Second, the k-nearest neighbor matching method in the caliper (k takes 1, that is, matches according to 1:3) is used to match the control group for the treatment group, ensure that there is no significant systemic difference between the treatment group and the control group before the policy. Third, the matching sample is used for DID evaluation.

The regression results are shown in columns (1) and (2) of Table 3, the estimated coefficients of DID are 2.2004 and 0.0029 significantly, which are consistent with the baseline regression, respectively. So the positive promotion effects of NKEFAs on CS and EQ are robust.



TABLE 3 Robustness tests.
[image: Table3]



3.3.3. Excluding other ecological policy interference

Some other ecological policies to improve the environment was underway at the same time when the NKEFAs was established. Other ecological policies such as the Grassland Ecological Protection Subsidy and Incentive Policy began in 2011, the New Round of Plans for Returning Farmland to Forests and Grasses in 2014, the Opinions on Accelerating the Construction of Ecological Civilization in 2015, may also affect the CS and EQ. To exclude the interference of other ecological policies, the interaction terms of the grouping variable (treat) with the time dummy variables for 2011, 2014, and 2015 are introduced in the baseline regression model (Tao et al., 2021). The results in column (3) and column (4) of Table 3 show that the impacts of NKEFAs on CS and EQ are still all significantly positive, the results are robust.



3.3.4. Substituting explained variables

Ecological improvement is positively correlated with vegetation change. Meanwhile, Normalized Difference Vegetation Index (NDVI) is closely related to vegetation cover, biomass and productivity, which can also indirectly reflect the supply capacity of ecological products. So, NDVI can be used as a proxy variable for CS. The EQ is mainly measured by the inverse indicator of atmospheric pollution level (Wang and Tang, 2019). In view of the availability of data, water environment-related indicators are not considered for the time being. The level of atmospheric pollution is characterized by PM2.5 concentration from RS interpretation, and PM2.5 is made positive by taking the inverse. It can be found that the estimated coefficients of DID on both NDVI and 1/PM2.5 are significantly positive. NKEFAs can significantly enhance NDVI and reduce haze pollution, indicating that the positive contribution of NKEFAs on CS and EQ remains robust.



3.3.5. Eliminating special samples

The NKEFAs is closely related to the ecological characteristics and environmental carrying capacity of the covered areas, while cities such as municipalities directly under the central government, provincial capitals, special economic zones may have obvious systematic differences in ecological endowments from other cities due to their own positioning. To further ensure reliability, the baseline models are re-estimated after eliminating these special samples (292 remaining). The results in columns (7) and (8) of Table 3 show that the coefficients of DID are still all significantly positive. After eliminating some samples, the positive effect of NKEFAs to CS and EQ remains robust.




3.4. Mechanism analysis

According to the framework system, the transmission mechanism of NKEFAs affecting CS and EQ is explored in terms of territorial spatial allocation, industrial structure upgrading, and labor force aggregation. For the model setting, the stepwise method is borrowed (Baron and Kenny, 1986; Chan et al., 2012; Tang et al., 2020): first test the impact of NKEFAs on mediating variables, second test the effects of NKEFAs and mediating variables on CS and EQ (Table 4).



TABLE 4 The results of mechanism test.
[image: Table4]

Based on the theoretical framework, the mediating variables included territorial spatial allocation (TERRI), industrial structural upgrading (INDUS), and labor force transfer (LABOR). Ecological space mainly provides functions such as ecological products or ecological services, include forest land, grassland, water, et al. TERRI is characterized by the proportion of ecological space to the national territory. INDUS is characterized by the ratio of added-value of the tertiary industry to added-value of the secondary industry, so as to reflect the transformation trend of the leading industry to the service industry (Yu, 2015). Due to the high overlap in spatial distribution between counties covered by NKEFAs and national poverty-stricken counties (Wang and Gao, 2018), LABOR is characterized by the proportion of labor in agriculture, forestry, animal husbandry and fishery to the total population year-end, to reflect the rural labor mobility among urban–rural areas and industries.


3.4.1. Territory spatial allocation effect (TERRI)

The NKEFAs has a markedly positive impact on TERRI, and TERRI has an obvious positive influence on CS and EQ. Therefore, the territory space allocation positively mediates the co-benefits of NKEFAs on CS and EQ. NKEFAs can enhance CS and EQ by enhancing the share of ecological space to optimize the spatial allocation structure of the territory, thus achieving ecological co-benefits.



3.4.2. Industrial structure upgrading effect (INDUS)

NKEFAs has a remarkably positive influence on INDUS. However, INDUS only exerts a positive effect on CS but failed to obviously contribute to EQ in the covered areas. This indicates that INDUS only positively mediates the CS enhancement in NKEFAs. The industrial structure upgrading by increasing the tertiary industry proportion in the national economy only promotes the enhancement of CS in NKEFAs, instead of EQ, thus failing to realize ecological co-benefits.



3.4.3. Labor force aggregation effect (LABOR)

NKEFAs has a significant positive impact on the LABOR, which can increase the labor proportion in agriculture, forestry, animal husbandry, and fisheries. Meanwhile, NKEFAs makes a significant positive contribution to both CS and EQ. Therefore, labor force agglomeration positively mediates the effect of NKEFAs on CS and EQ. NKEFAs can enhance CS and EQ through inter-industrial mobility and labor agglomeration to achieve ecological co-benefits.

In summary, the NKEFAs can achieve ecological co-benefits of CS and EQ through territory spatial allocation and labor force aggregation, and industrial structure upgrading only plays a positive mediating role in the impact of NKEFAs on CS.




3.5. Heterogeneity analysis

The ecological co-benefits of NKEFAs vary according to ecological foundation, endowment conditions, geographical location and other factors, and it is necessary to understand them through heterogeneity analysis. Heterogeneity analysis is carried out from the following perspectives: different ecological function types, different geospatial locations, different quantiles of CS and EQ.


3.5.1. Differences in ecological function types

According to the differences in ecological product supply and functional positioning, NKEFAs can be classified into four types: water conservation, soil conservation, windbreak sand fixation, and biodiversity maintenance (Table 5). In summary, the NKEFAs of water conservation, soil conservation and biodiversity maintenance achieve co-benefits of CS and EQ. In contrast, the windbreak sand-fixation type only has the strongest enhancement effect on CS, followed by the soil conservation type. The soil conservation type showed the greatest improvement effect on EQ, followed by the water conservation type.



TABLE 5 Heterogeneity analysis: differences based on function type.
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3.5.2. Differences in geospatial locations

According to the different geographical locations, the country is divided into six geographic regions, i.e., Northeast China (NEC), North China (NC), Northwest China (NWC), Southwest China (SWC), Middle and Lower Reaches of the Yangtze River regions (MLY), and Southeast Coastal regions (SEC). Among them, NEC, NC, and NWC belong to the North, while the SWC, MLY, and SEC are part of the South (Table 6).



TABLE 6 Heterogeneity analysis: regional differences based on geographic space.
[image: Table6]

Among the NKEFAs in the six geographic regions, the NKEFAs in SWC, MLY, and SEC of the South achieve co-benefits of CS and EQ, while NEC, NC, and NWC of the North only significantly enhance the CS. In comparison, NKEFAs represent the strongest enhancement effect on CS in NWC, followed by NEC; the NKEFAs show the strongest promotion effect on EQ in SWC and SEC, followed by MLY. Taken together, the enhancing effect of NKEFAs on CS is stronger in the North, while that on EQ is more obvious in the South.



3.5.3. Differences in quantiles of CS and EQ

There are differences in the degree of policy dependence and response among regions with different endowment conditions. The heterogeneity distribution of CS and EQ of NKEFAs is further examined by a panel quantile regression model (Table 7).



TABLE 7 Heterogeneity analysis: differences in distribution based on quantile levels.
[image: Table7]

The NKEFAs show a rising and then declining positive effect on CS with the increasing quantile, and represent an overall growing trend. The highest positive effect appears near the 75% quantile, in areas with good ecological endowment base, the positive enhancement effect of NKEFAs on CS is higher. Regions with excellent ecological endowment have a larger scale of CS and can better absorb and store CO2. The NKEFAs promote the optimization of national land space, limit large-scale and high-intensity urbanization and industrialization, which help to release more potential of carbon sink.

The effect of NKEFAs on EQ shows a “positive → negative → positive” U-shaped trend with the increasing quantile, with an obvious negative effect near the 25% quantile and a gradual change to a positive effect after the 40% quantile. This identifies that the NKEFAs do not tremendously improve the EQ in areas with relatively poor ecological endowment and high ecological vulnerability, consistent with the results of the windbreak sand-fixation area and NWC. Additionally, NKEFAs can better improve the EQ in areas with excellent eco-environment.





4. Discussions


4.1. Ecological co-benefits of NEKFAs and its mechanism

As a command-and-control ecological policy (Blackman et al., 2018), the distribution of NKEFAs forms an important ecological barrier of China. DID analysis can effectively capture the co-benefits of ecological product supply and the eco-environment quality of NKEFAs, consistent with Pan and Tang (2020). The coefficient of CS turned significantly positive in 2009. We found in 2009, China has begun to pilot ecological transfer payments in some important ecological regions to enhance environmental investment, relevant government departments responded in advance following the policy guidance. That is, the NKEFAs can produce an expected effect on CS and EQ (Du et al., 2020). Moreover, the improvement of CS is superior to that of EQ, and thus the environment quality improvement still has a long way to go, this is similar to Liu et al. (2022). In general, the co-benefit enhancement of CS and EQ is a long-term process that evolves gradually. The ecological effect of transfer payment and policy rollout to NKEFAs is relatively weak in the short term, but gradually increase in the long term. Through providing continuous vertical ecological compensation to NKEFAs, the co-benefits can be effectively promoted in a sustainable manner (Zhu and Chen, 2021).

The NKEFAs can achieve co-benefits of CS and EQ by optimizing the territory spatial pattern and promoting the labor force transformation. The expansion of ecological space is the primary means of NKEFA establishment, which inevitably require urbanization and industrial development to match the carrying capacity of resources and the environment (Huang et al., 2021). It also provides carriers and opportunities for industrial aggregation and labor mobility. However, restrictive development and industrial upgrading make it challenging for ecological functional areas to carry a larger labor force. Although the overloaded population has transferred in an orderly manner, the active population migration policy can increase population aggregation and absorption capacity, and the development of ecological industries can also attract the return of outflowing labor. The NKEFAs encourage industries development to be compatible with the positioning of the main functional areas. Industrial upgrading enhances the ecological product supply capacity but minimally improves EQ in the short term.

In summary, the research findings make theoretical and methodological contributions to the scientific assessment of policy effect on ecological engineering. This article focuses on the ecological goals achievement of NKEFAs, and provides a complete framework for assessing the implementation effect of ecological engineering by integrating the co-benefits of ecological products supply and environment quality improvement. The assessment framework and policy insights can provide methodological reference and application value for ecological engineering in other countries. However, it should be noted that the selected indicators of policy assessment depend on the specific ecological engineering and socio-economic development reality in China. Once this framework is extended to other countries or regions, an appropriate assessment framework that fits the ecological conditions needs to be constructed according to the special operating dynamics of ecological engineering in this country or region.



4.2. Localization and precision in the management of NKEFAs

NKEFAs undertake important ecological functions, such as water and soil conservation, windbreak sand fixation, and biodiversity maintenance (Pan et al., 2021). The difference in the leading ecological function determines the direction of development and protection of each NKEFA (Zuo and Gao, 2021). The water conservation type can realize precipitation retention, runoff regulation, soil desertification control and vegetation restoration. The soil conservation type has the function of avoiding soil erosion through watershed management, restriction of resource development, returning farmland to forest and grass, etc. The biodiversity maintenance type has the function of maintaining and restoring the balance of wildlife species, preventing habitat changes due to ecological construction. All three types of NKEFAs can achieve co-benefits of CS and EQ, and similar to Liu et al. (2020), the soil conservation type has the greatest improvement effect. In contrast, the windbreak sand-fixation type only positively contributes to CS, probably because deserts, as an important part of terrestrial ecosystems, can sequester large amounts of carbon dioxide and play a key role as carbon sinks (Yang et al., 2020). However, the windbreak sand-fixation type is generally located in fragile ecosystems with high desertification and severe grassland degradation, with limited environmental benefits and still has a long way to go.

NWC presents a more consistent performance of the windbreak sand-fixation type. The functions of different types in the NWC are intertwined, which can improve the capacity of CS. Nevertheless, most areas of NWC show arid and semi-arid climate characteristics, with a poorer ecological endowment base and more prominent environmental problem. In contrast, areas with better ecological conditions are mainly located near the Qinling Mountains in Shaanxi. Differently, NC is a traditional agricultural production area, where the contradiction between population, economy, and environmental carrying capacity induces prominent haze problems. Although air quality has gradually improved in recent years, improving EQ is an evolutionary process that needs sustained effort in the long term.

The performance of different ecological function areas and geospatial locations conform to the quantile heterogeneity law of the ecological environment. Areas with richer ecological foundation and environmental conditions are the key areas restricted and prohibited from development. NKEFAs with higher environmental carrying capacity can provide more ecological goods and services, then improve ecological co-benefits. In contrast, it is difficult for NEKFAs with poorer ecological endowment base to improve EQ greatly in a short time, and the improvement of environmental benefits is a lasting and stable process. In short, there is a need for differentiation and precision in the institutional arrangement of NKEFAs (Gao et al., 2021).




5. Conclusion

This study considers the NKEFAs as quasi-natural experiment, a time-varying DID model is used to assess the impact of NKEFAs on CS and EQ. In conclusion, the NKEFAs enhance both CS and EQ and achieve the ecological co-benefits. Compared to those of non-NKEFAs, the CS and EQ of NKEFAs are elevated by 2.1625 and 0.0031 in ATE, respectively. The NKEFAs can enhance CS and EQ through the positive mediating role of territory spatial allocation and labor force aggregation. Nevertheless, the NKEFAs only enhance CS by industrial structure upgrading. The policy effects of NKEFAs are heterogeneous across ecological function types, geospatial locations, and quantiles. Except for the NKEFAs of windbreak sand-fixation type, northwestern region and low quantiles where only promote CS, all other function areas can achieve the ecological co-benefits.

The conclusions have abundant policy implications: (1) Improving the sustainability and stability of NKEFAs. While the establishment of NKEFAs has achieved ecological co-benefits currently, effective sustainability incentives depend on local government action in ecological governance and protection. In order to form a long-term positive incentive, avoid the ecosystem rebound in NKEFAs, a mechanism of continuous support and supervision is necessary nation widely. (2) Implementing a more dynamic and efficient industrial policy. The covered areas can actively develop eco-agriculture and service industries. More policies about the active population migration and household registration management should be introduced to attract transferred labor to new industries. By doing this, market-oriented and cross-regional mobility of labor and other factors will be promoted. (3) Building a diversified and precise ecological governance and compensation system. Due to the existence of heterogeneity, the institutional arrangement of NKEFAs should be more adapted to local conditions and more precise. The NKEFAs need to focus on areas with lower ecological endowment base to maintain synergy between land utilization and eco-environment. For example, the northwestern region in China mainly belongs to the ecological functional area of windbreak sand fixation, the transfer funds of the central government need to be tilted more toward these areas. In this way, ecological governance and service functions are expected to be strengthened.
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Introduction: Accurate assessment of the net ecosystem productivity (NEP) is very important for understanding the global carbon balance. However, it remains unknown whether climate change (CC) promoted or weakened the impact of human activities (HA) on the NEP from 1983 to 2018.

Methods: Here, we quantified the contribution of CC and HA to the global NEP under six different scenarios based on a boosted regression tree model and sensitivity analysis over the last 40 years.

Results and discussion: The results show that (1) a total of 69% of the areas showed an upward trend in the NEP, with HA and CC controlled 36.33 and 32.79% of the NEP growth, respectively. The contribution of HA (HA_con) far exceeded that of CC by 6.4 times. (2) The CO2 concentration had the largest positive contribution (37%) to NEP and the largest influence area (32.5%). It made the most significant contribution to the NEP trend in the range of 435–440 ppm. In more than 50% of the areas, the main loss factor was solar radiation (SR) in any control area of the climate factors. (3) Interestingly, CC enhanced the positive HA_con to the NEP in 44% of the world, and in 25% of the area, the effect was greater than 50%. Our results shed light on the optimal range of each climatic factor for enhancing the NEP and emphasize the important role of CC in enhancing the positive HA_con to the NEP found in previous studies.
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1. Introduction

Terrestrial ecosystems play an most important role in the carbon cycle (Keenan et al., 2016). Vegetation can fix atmospheric carbon through photosynthesis. The net ecosystem productivity (NEP) is the photosynthetic product that is deducted from the photosynthetic product of plant photosynthesis after deducting the consumption of the plant’s autotrophic respiration and the consumption of microbial heterotrophic respiration (Steffen et al., 1998; You et al., 2020). Usually, it is an indicator used to check whether the ecosystem can fix or release carbon from the atmosphere (Grant et al., 2012; Yu et al., 2013; Kong et al., 2022; Wang et al., 2022). In previous studies, it has been generally believed that NEP ≥ 0 represents a carbon sink while NEP < 0 represents a carbon source (Luyssaert et al., 2008; Yu et al., 2014).

The contribution of internal variations in global carbon sinks is currently under debate. Several studies have shown that the global terrestrial carbon sink has gradually increased over the past decade (Keenan et al., 2016; Ballantyne et al., 2017), and it has experienced large inter-annual changes (Fu et al., 2017; Ni et al., 2017). The carbon sink capacity in the semi-arid regions of the world has been increasing during the last 34 years (Zhang L. et al., 2020). The average annual NEP was 0.007 Gt C/yr in China from 1981 to 2000 (Cao et al., 2003). Tao et al. (2007) found that the terrestrial ecosystem generally played the role of a carbon sink from 1981 to 2000 in China. Terrestrial carbon absorption in China accounts for 8–11% of the global carbon sink (Piao et al., 2009). Climatic factors were once seen as important constraints on terrestrial ecosystems. The increase in the CO2 concentration in the atmosphere increases the net carbon uptake (Sitch et al., 2007). And the CO2 concentration is the main climate factor leading to the net carbon absorption in China (Tian et al., 2011; Piao et al., 2012). Elevated CO2 concentrations could increase productivity by increasing the water use efficiency (WUE) of plants in semi-arid areas (Fay et al., 2003; Izaurralde et al., 2011). The increase in the CO2 concentration is positively correlated with the NEP in global (Zhang L. et al., 2020). In addition, climate warming usually increases carbon sequestration by extending the carbon sequestration period (Peng et al., 2013; Keenan et al., 2014). In the same ecosystem, carbon sinks exhibit regular growth and are weak in warm and humid environmental conditions and relatively dry and cold environmental conditions, respectively, suggesting that proper precipitation and temperature are important for increasing the NEP. Global warming may promote the increase in the capacity of carbon sinks in cold regions (Chuai et al., 2018). However, an increase in temperature will reduce the NEP by increasing soil respiration (Bond-Lamberty and Thomson, 2010; Chen S. T. et al., 2012). Therefore, continued warming may impair carbon sinks and may even transform them into carbon sources (Medvigy et al., 2010). Increased precipitation will increase cloud cover and reduce solar radiation (SR), which is very important for vegetation (Mathur, 2014). Previous studies have shown that the monsoon climate system, which is characterized by large changes in precipitation, may be an important driver of the changes in the global carbon cycle (Zhang et al., 2018). The impact of precipitation on the NEP was positively correlated in China (Fang et al., 2001), India (Nayak et al., 2013), Asia (Tian et al., 2003), and other places (Poulter et al., 2014). The severe drought caused by the continuous decrease in precipitation in southwestern China led to a significant reduction in carbon absorption in 2009 and 2010 (Chen S. et al., 2019; Li et al., 2019). In China’s typical karst areas, vegetation carbon and water use efficiency is also an important factor affecting vegetation’s role in climate change and land use (Xiao et al., 2023). Overall, high precipitation and temperature increase the NEP, but excess precipitation and temperature have a negative effect on the NEP. In addition, SR is considered to be an important factor affecting the annual NEP (Zhang et al., 2009; Kitamura et al., 2012). SR is considered to be an important factor contributing to the large carbon sinks of the subtropical forests in southwestern China (Tan et al., 2011). Precipitation (P), Temperature (T), and SR together affect about 10% of the NEP in the semi-arid regions of the world, and drought is a combination of precipitation and soil moisture decline (Zhang L. et al., 2020). As a result, soil moisture is also considered to be one of the important driving factors affecting the NEP (Krishnan et al., 2006; Ru et al., 2018). In ecosystems with limited water, the soil moisture has a greater impact on the NEP than the temperature (Liu et al., 2010), and they all have an important impact on the NEP. In the past, many scholars have paid attention to the impact of climate change on the NEP, but the vegetation carbon caused by human activities should not be ignored (Li et al., 2020). Piao et al. (2010) pointed out that climate change and the restoration of woodland and shrubs through human activities were mainly affected factors to carbon balance in China. In addition, the contributions of the various factors to the NEP may have offsetting and diluting effects.

However, there are two issues that cannot be ignored. First, few previous studies have quantitatively distinguished the impact of each factor on the NEP. In addition, the optimal range of the interactions of the climate factors, the pairwise factors affecting the NEP, and whether climate change impacts the HA to improve the NEP on large scales are not known, which to some extent affects the understanding of global NEP differences in the past 40 years. Thus, in this study, we aimed (1) to study the changes in the carbon sink/source regions, the NEP, and climate factors from 1983 to 2018; (2) to calculate the optimal intervals for the contribution of the climate factors to the NEP; and (3) to identify the controlling areas in which the CC and HA contribution to NEP increasing or decreasing. (4) The optimal interval for the contribution of a single climate factor to the NEP, and the change in the NEP when the two climate factors work together were investigated. (5) Whether CC has increased the positive HA_con to the NEP was analyzed. If yes, where does this enhancement primarily occur? How strong is the enhancement? Understanding the spatial distribution of the global carbon sources/sinks and the mechanisms of influence could enhance our understanding of the global carbon cycle.



2. Materials and methods


2.1. Materials


2.1.1. Gross primary productivity dataset

Based on about 40 years of remote sensing Advanced Very High Resolution Radiometer (AVHRR) data and observations from hundreds of flux sites around the world, a long-term, global, high-resolution series of Gross Primary Productivity (GPP) data was generated from 1982 to 2018 (Wang and Zhang, 2020).1 The resolution is 1 month, and the data unit is gCm–2d–1. Previous research has shown that NIRv was strongly correlated with GPP under various ecosystem and climate conditions based on hundreds of flux points and continuous ground-based observations (Badgley et al., 2019; Baldocchi et al., 2020; Dechant et al., 2020), with determination coefficient (R2) values higher than 0.6, and the mean values of fixed points and verification points were 0.71 and 0.70, respectively, and the root mean square error (RMSE) of the data are 0.02 and 1.95 gCm–2d–1. This dataset can be used for research on global climate change and the carbon cycle (Deng et al., 2021; Sun et al., 2021; Wang et al., 2021; Wu and Jiang, 2022). All of the data were analyzed at the spatial resolution of 0.25° × 0.25°.



2.1.2. Meteorological data

The Precipitation (P) and Temperature (T) data were obtained from GLDAS-2.1 datasets provided by the National Aeronautics and Space Administration (NASA),2 with a spatial resolution of 0.25° from 01/1983 to 12/2018 (Li et al., 2022; Song et al., 2022; Xiong et al., 2022). The SR dataset derived from the THRGPU (Terrestrial Hydrology Research Group of Princeton University).3 The CO2 concentration data were obtained from the Climate Data Store,4 which is an authoritative website that gathers data from several websites, including the European Commission Joint Research Centre, implemented by the ECMWF (European Centre for Medium-Range Weather Forecasts), and the Climate Change Service. The CO2 concentration data were for the period 1979–2020 and have resolution of 3 h. The soil moisture (SM) data were derived from the Global Land Data Assimilation System (GLDAS) and were provided by NASA (see text footnote 2). The four land surface process models, including Noah, contain simulated SM products with various spatiotemporal resolutions based on surface observations and satellite remote sensing monitoring data (Rodell et al., 2004). In this study, the SM products from the Noah (version 2.7.1) model were used, which include four layers of SM data. The SM contents of the average layer (unit: kg/m2) were used. This dataset has been used many times in soil moisture research (Deng et al., 2020).




2.2. Methods


2.2.1. Theil–Sen median trend analysis

The Theil–Sen Median Trend Analysis is a robust non-parametric statistical method for trend calculation (Sen, 1968; Tian et al., 2017). The formulas is as follows:

[image: image]

Where i and j was time series data. The time series was showed an upward trend when SNEP was greater than 0, and vice versa.

The Mann–Kendall test was one of the most widely used non-parametric tests for trend and variation analysis of long-time series data (Mann, 1945; Kendall, 1975). The Mann–Kendall test focuses on the sequence than the number. The purpose was to compare the number of different sequences.

Set the {NEPi }, i = 1983, 1984,…, 2018;

Define the Z-statistic as:
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n is the number of data in the sequence, and NEPi and NEPj are the NEP value in the ith year and the jth year, respectively. sg is a symbolic function. In this study, the significance of the NEP trend was judged at a confidence level of a = 0.05. The results were divided into significant changes (Z ≥ 1.96 or Z ≤ 1.96) and insignificant changes (−1.96 < Z < 1.96) according to the trend change characteristics and the results. According to the above criteria, we further divided the results into five grades: significant increase, slight increase, basically unchanged, slight decrease, and significant decrease (Table 1).


TABLE 1    The table of trend change rating.
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2.2.2. Mann–Kendall mutation test

Mann–Kendall Mutation test was applicable to the analysis of time series data with a continuous increasing or decreasing trend (monotonic trend). It is a nonparametric test that applies to all distributions (i.e., the assumption that the data need not satisfy a normal distribution). This method was usually used to check the reliability of the results of trend analysis. First, create an order column for X with n sample sizes.
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Under the assumption of the random independence of the time series, the statistic was defined as follows:

[image: image]

UFk, E (yk), and Var (yk) are the mean values and variances of the cumulative number of yk. When x1, x2,…, xn are independently and interdependently, the computational formula is as follows:
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Based on this method, the value passes the 0.05 significance test when UF > 0, indicating a continuous growth trend at the 0.05 significance level. Simultaneously, the UB curve was calculated. If the intersection of the UF and UB curves was within the confidence level interval [−1.96, 1.96], and the specific year of the intersection point was determined, the parameters of the year exhibited a sudden growth state. If the intersection point was not within the test range, the intersection point did not passed the 0.05 test. Therefore, the sudden increase in the parameter in this year did not exhibit a sudden change.



2.2.3. NEP

The concept of the NEP was first proposed by Woodwell et al. (1978). In previous studies, it was usually obtained by subtracting the autotrophic respiration (Ra) and heterotrophic respiration (Rh) from the GPP. The Re is the sum of the Ra and Rh. The GPP data used in this article were obtained through observations from hundreds of flux sites around the world. We refer to the research of Wang et al. (2015). On the small-scale, the calculation models for the NEP are simulated based on the local climate and hydrological conditions (Gong et al., 2017; Zhang X. Z. et al., 2020), and the differentiation of vegetation types is conducted using the statistics of the NEP algorithm (Yuan et al., 2009; Xiao et al., 2013; Chen S. et al., 2019). Considering the complexity of the global scale, we used a more recognized algorithm (Yu et al., 2013; Wang et al., 2015). The optimal approach for the Re was determined through the positive correlation of the spatial coupling between the GPP and Re. The formulae is as follows:
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In previous research, it has been confirmed that there is a significant linear relationship between the GPP and Re, and the average Re/GPP ratio is always 0.87 ± 0.04 (Chen et al., 2013, 2015).
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Zhu et al. (2014) developed three kinds of assessment schemes to assess the spatial patterns of carbon fluxes based on the results from Yu et al. (2013). The results show that 68% of the per-unit GEP contributed to ER and 29% to NEP in terms of the spatial variations. Therefore, a carbon flux assessment scheme was recommended as the formula (13) (Zhu et al., 2014; Wang et al., 2015). The MAT (average annual temperature) and MAP (average annual temperature) refer to the average annual temperature and average annual Precipitation, respectively. This formula passed the correlation test. It has a high credibility, with correlation coefficients ranging from 0.8 to 0.9 (Zhu et al., 2014).



2.2.4. Statistical analysis

In this study, the least square method was used to determine the linear trend of each pixel.
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Where n represents the 36-year time span from 1983 to 2018, NEPi was the annual NEP value of year i, i = 1983, 1984,…, 2018. As same, ΔT,ΔP, ΔSR,ΔSM < cps:it > and < /cps:it > ΔCO2 on behalf of the trends of T, P, SM, SR, and CO2, respectively.



2.2.5. Sensitivity of NEP on climate change and human activities

Various methods have been used to isolate the contribution of factors, such as the residual trend (RESTREND) method (John et al., 2016; Zhou et al., 2018), the LPJ-GUESS ecosystem model (Smith et al., 2014) and Miami models (Krausmann et al., 2009; Zhou et al., 2015, 2017) was used to separate human activity and climate change from multiple influencing factors, Nevertheless, there was high uncertainty in the simulation results (Wu et al., 2020). After comparing various research methods, we finally chose the method from the research of Forzieri (Wang et al., 2014; Forzieri et al., 2018, 2020; Wu et al., 2020), this method assumes a linear interaction between response variables and predictive variables. Firstly, we derived the partial derivative sensitivity terms of NEP to five climate factors (precipitation (P), temperature (T), soil moisture (SM), solar radiation (SR) and CO2 concentration, respectively) by multiple regression method. On the basis of defining the sensitivity of the four climate factors to NEP as the total derivative, the variation of single factor was separately expressed as a function of NEP. The sensitivity of NEP to changes in CC was computed between 1983 and 2018.
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Where δPNEP was the P change associated with the long-term change of NEP, In the same way,δSMNEP, [image: image], δTNEP and δSRNEP represents the SM, CO2 concentration, T and SR associated to NEP, respectively. Derived from Equation 15, variations in climate factors associated to NEP were expressed by the following equation:
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Where ΔNEP, ΔT, ΔP,ΔSR, ΔSMand ΔCO2 represents the linear trend of the NEP, annually averaged T, P, SR, SM and CO2 concentration, respectively (Zhou et al., 2001; Liu et al., 2021). [image: image] was the sensitivity of P to NEP quantified between 1983 and 2018. The Equation 16 was extended to Equation 18 according to the rules of Equation 17.
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The derived signal [image: image] integrates the bidirectional interactions between P and NEP, the [image: image] integrates between T and NEP, the[image: image] integrates between T and NEP. The [image: image] integrates between SM and NEP, the [image: image] integrates between CO2 concentration and NEP.



2.2.6. The contribution of climate change and human activities of the NEP

In order to achieve a more accurate quantitative analysis of the contribution of Climate Change (CC_con) and Human Activities (HA_con), the CC_con and HA_con in this table differ from the contribution rates in Equations 15, 17, where the contribution rate represents the population, whereas here it is expressed by cases. Six typical scenarios were used to describe it (Table 2; Zhou et al., 2017; Yan et al., 2019): this paper define NI as the NEP increase of HA and CC, so, the HNI and CNI represents the NEP increase by HA and CC, respectively. The ND was NEP decrease by HA and CC, Breaking it down, the CND was NEP decrease by CC_con and the HND represents the decrease by HA. We have known the contribution of CC and HA to NEP through continuous comparison and analysis.


TABLE 2    Different scenarios for estimate the CC_con and HA_con to NEP increase and decrease.
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The relationship is expressed as Equation 18:

Where Z > 0 was represents the NEP increasing, and Z < 0 was represents the NEP decreasing. When ZHAincreasing and ZHA_dreasing combine, that’s HNI, they represent the positive HA_con and the negative HA_con to NEP, respectively. The same, When ZCCincreasing and ZCC_dreasing combine, that’s CNI, they represent the positive and negative CC_con to NEP, respectively.
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2.2.7. Boosted regression tree

The boosted regression tree (BRT) machine learning method can effectively select the relevant variables and identify the nonlinear relationship between the input and output based on multivariate regression trees (Elith et al., 2008; Mitchell et al., 2018). The BRT was performed using the gem function in the dismo package in R studio (Pourghasemi and Rahmati, 2017). Nearly 50,000 points were selected to participate in the calculation. Furthermore, the number of trees, the learning rate, and the tree complexity were used to reduce model uncertainly. The highest AUC (area under the curve) of the training data, the optimal parameters of the number of trees, the tree complexity, and the learning rate were selected.

A five-fold cross-validation method was implemented for the BRT model, and we determined the best contribution relationship between the dependent variable (NEP) and all of the climate factors based on this model. We evaluated the accuracy of the model based on the AUC value. When AUC > 0.9, the accuracy of model is excellent; when 0.8 < AUC < 0.9, the accuracy of model is good; and if AUC < 0.7, the accuracy of model is poor (Swets, 1988). In addition, the fit is better if the ratio of the actual to the predicted NEP is close to one, the fitting effect is better. By this model can accurately identify the best contribution of all climate factors on the NEP interval, and the interval was conducted on the basis of 2.2.5 of determining if 2.2.5 part can get is the contribution of each factor to the NEP contribution in the size and spatial distribution, so this model, the precision will be able to get the best contribution of interval, and it is not limited to a single factor.





3. Results


3.1. The trend of NEP

A total of 69% of the areas showed an increase trend of NEP, and 20% exhibited a decrease from 1983 to 2018 based on the Theil–Sen and MK trend analysis results (Figure 1A). The average annual NEP increased from 228.62 g C m–2 yr–1 in 1983 to 256.71 g C m–2 yr–1 in 2018 (Figure 1D). The significant growth of the C sink area was mainly concentrated in the 60–69°N region, and the C source area was located in the 48–65°N region (Figure 1B). These results are similar to those of Chan et al. (2019). In a previous study, Luyssaert et al. (2007) found that the global NEP was 2.1 Pg C yr–1. Piao et al. (2013) reported an average global NBP of 2.0 ± 0.8 Pg C yr–1 during 1980–2009. The growth rate of the global terrestrial carbon sink during 1998–2012 (0.17 ± 0.05 Pg C yr–2) was 3 times that during 1980–1998 (Piao et al., 2018). The respiration of the terrestrial ecosystems was limited to 1.4 ± 0.1 Pg C yr–1 (Mahecha et al., 2010). The global NEP obtained in this study is 3.22–3.71 Pg C yr–1. Results based on the updated time series are relatively closed compared to previous studies. On a regional scale, China’s estimated NEP was determined to be 1.4–1.6 Pg C yr–1 (excluding desert values) in this study, which is slightly lower than the values obtained by Wang et al. (2015) (1.89 Pg C yr–1) and the average NEP obtained by the author by redefining the relationship between NEP and NPP was 1.34 ± 0.12 PgC yr–1. In addition, (Zhu et al., 2014) developed a statistical evaluation scheme to estimate the NEP of China in the 2000s as 1.91 ± 0.15 PgC yr–1. And Wang et al. (2020) estimated that the average annual terrestrial carbon sink in China from 2010 to 2016 was 1.11 ± 0.38 Pg C yr–1. Therefore, the results of this paper have a certain degree of credibility on a regional scale. In the future, with the improvement of relevant results, it is easy to improve the estimation results of NEP synchronously by using the estimation process of this study, such as the study on some provinces in China (Lu et al., 2013; Gong et al., 2017; Zhang X. Z. et al., 2020) and statistics of NEP algorithm for distinguishing vegetation types (Chen S. et al., 2019).
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FIGURE 1
The trend of NEP. (A) Spatial pattern of the Theil–Sen trend of NEP between 1983 and 2018; (B) latitude map of NEP trend in different classification, strong decrease is STD, slight decrease is SLD, no change is NC, strong increase is STI, and slight increase is SLI; (C) the ΔP (the carbon sink areas difference between the current year and the previous year) and ΔN (the carbon source areas difference between the current year and the previous year) and (D) the mean value of NEP; (E) the Mann–Kendall mutation test of NEP.


About 79.4–82.6% of the area served as a Carbon sink from 1983 to 2018 (Supplementary Figure 1), which was 3.9–4.7 times the Carbon source area. The largest increase (1.4%) in the Carbon sink area occurred in 1990 based on the changes in the areas of the Carbon sources and Carbon sinks (Figure 1C). Supplementary Figure 1 and Supplementary Table 1 show the dynamic changes and spatial trends of the NEP, SR, SM, T, P, and CO2.



3.2. Contribution of climate change to the NEP

The spatial distribution of the climatic factors contribution to the NEP based on the sensitivity analysis is shown in Figure 2. The single factor correlation analysis revealed that the NEP has the strongest correlation with P (R = 0.84), followed by temperature (R = 0.56) (Figure 2F). This is similar to the results of Chen et al. (2013), Xiao et al. (2013), and Chen S. et al. (2019). Nonetheless, considering that there may be some autocorrelation problems in the correlation analysis between a single factor and NEP, we analyzed the contribution of each climate factor to NEP through Equation 16, which excluded the interaction between factors and recognized this contribution in space (Figure 2A). The results show that the CO2 concentration had the highest contribution rate (37%), although it made a negative contribution in many areas (Figure 2A). The SR made negative contributions in many areas in India, Africa, and North America, and its negative contribution rate was the highest (−11.7%) (Figure 2D). Although the correlation coefficient between P and NEP was the highest, it made a negative contribution to the NEP (−10.5%; Figure 2B). The negative contribution of T was mainly concentrated in the high latitude regions of the Northern hemisphere (Figure 2E). The SM made a large contribution in the high latitude regions such as Russia (Figure 2C).
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FIGURE 2
Sensitivity of NEP to climate factor. Sensitivity of NEP to changes in CO2 concentration (A), P (B), SM (C), SR (D), and T (E); correlation analysis between NEP and climate factors (F).




3.3. Main area controlled and main load controlled by climatic factors

In order to identify the factors that play a key role in the NEP in different regions, we explored the major latitudes and regions for each climate factor. The results showed that the CO2 concentration had the largest positive contribution (37%) to NEP and the largest influence area (32.5%; Figure 3). Although the main area controlled by the SR was the next largest, the SR made a negative contribution to the NEP (Figure 3B), and the SR made the lowest contribution to the NEP (−11.7%). Among the other factors, the main region controlled by T was the smallest, and it exhibits a divergent distribution. P mostly played an active role in the mosit and semi-humid terrestrial regions, and the main regions controlled by the SM were mostly located in the Northern Hemisphere. Interestingly, we found that in more than 50% of the areas, the main loss factor was the SR in any area controlled by the climate factors (T, P, SM, and CO2).
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FIGURE 3
(A) The main controlling factors and (B) the main load controlling factor influencing the NEP. The five driving factors include CO2 concentration, T, P, SR, and SM. (C,D) The contributions of the five driving factors at latitudes of 55°S–80°N.




3.4. Best ranges for climatic factors for the NEP

To explore the changes in the sensitivity of the NEP trend to the climate factors, we used boosting and regression tree (BRT) models to evaluate the optimal interval for the contribution of the climatic factor to the NEP. We adjusted the tree complexity (2, 3, and 4) and the learning rate (0.01, 0.05, and 0.001) to generate the best model (Supplementary Figure 3) according to Equation 6. The prediction accuracy was good when the AUC was 0.875 (i.e., >0.8). The ratio between the actual value and the predicted value was 0.86, which indicates a good prediction accuracy. Therefore, the BRT model was suitable for determining the optimal value of the climate factor for the NEP.

Figure 4 shows the best ranges for two climate factors for the NEP, as well as the optimal contribution interval for a single factor and the NEP calculated based on the BRT model (in the small diagram in Figure 4). In addition, in order to better view the optimal contribution interval of a single factor, a detailed version is listed in Supplementary Figure 3. When the precipitation was greater than 2000 mm and the SR was between 3500 and 7500 (Figure 4F and Supplementary Figures 3B, E), the NEP was relatively stable. An increase in temperature can promote an increase in the NEP, but the upward trend drops sharply after 25°C (Supplementary Figure 3F). However, the NEP is more likely to be lower in the areas with less precipitation. Interestingly, the NEP decreased with increasing SM (Supplementary Figure 3C). There is a well-defined positive gradient with increasing precipitation and temperature. In general, when the temperature was between 16 and 27.7°C, the annual precipitation reached 900 mm, the SR was 4295–7000, the SM was 550–800 kg/m2, the CO2 concentration was greater than 380 ppm, and the NEP was high. The NEP was particularly high when the precipitation was greater than 900 mm, the SR was greater than 5200, and the SM was greater than 350 kg/m2. The CO2 concentration was the most complicated factor, and its contribution to the NEP trend was the most significant between 435 and 440 ppm (Figure 4D). The contribution to the NEP was most significant when the CO2 concentration increased and the precipitation exceeded 1200 mm.
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FIGURE 4
The best contribution interval of each climatic factor to the NEP. Annual NEP in the climate domains based on the (A) T and P; (B) T and SR; (C) T and SM; (D) T and CO2; (E) P and CO2; (F) P and SR; (G) P and SM; (H) CO2 and SM; (I) CO2 and SR; (J) SM and SR; (K) NEP test data; and (L) NEP training data.




3.5. The contribution of human activities and climate change to the NEP

Human activities and CC made positive contributions to the NEP in 57.6 and 60.3% of the area, respectively (Figures 5A, B). The HA_con to the NEP reached 86.48%, far exceeding the CC_con of 13.54% (i.e., by 6.4 times). So, HA was the main factor affecting the NEP.
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FIGURE 5
The HA_con (A) and the CC_con (B) to NEP, the CC_con and HA_con to NEP increasing (C,E) and decreasing (D,F); spatial pattern of the CC and HA controlled the increasing (G) and decreasing (H) of the NEP; spatial diagram of the positive of CC_con to HA_con (I); the proportions that CC enhances the HA_con (J); the trend of NEP in the top 50 countries of global (K).


In addition, for the purpose of this study, the CC_con and HA_con were quantitatively analyzed for increasing or decreasing NEP using the method of Table 1. The positive effect of HA_con was obvious in North America and India (Figure 5C), and the NEP in South America, southern-central Africa, northern Asia, and eastern China was mainly due to the CC_con (Figure 5E). Negative HA_con was mainly found in northern Asia, such as northern China, northern Kazakhstan and northern Russia (Figure 5D). In the Europe and Australia, CC_con played a negative role to NEP (Figure 5F). By studying the main controlled areas, the HA and CC controlled 36.33 and 32.79% of the NEP growth areas and controlled 11.76 and 16.13% of the NEP degradation areas (Figures 5G, H) in the world, respectively. In addition, the countries in Figure 5K are ranked according to their NEP trends. Figure 5J shows the proportions that CC enhances the HA_con the NEP and factor contributions for the 167 major countries of the world are shown in Supplementary Table 1. Moreover, when comparing the CC_con and HA_con, we found that the CC_con improved the positive HA_con in 44% of the world. In addition, in one-fifth of the regions, the enhancement effects reached more than half (Figure 5I). Understanding how the CC_con improves the HA_con will help us to further understand what role CC plays in promoting the NEP.




4. Discussion


4.1. Comparison with the driving mechanisms of GPP and NEP

In contrast to the research results, in this study it was found that the CO2 concentration gives the highest contribution to the NEP trend, the T_con was very low and the main regions it controlled was the smallest. This is consistent with the results of previous studies (Chuai et al., 2018; Fernández-Martínez et al., 2019; Zhang L. et al., 2020). The NEP was controlled by a complex interplay between a range of climatic factors. Our further analysis revealed that the main factors driving the GPP were inconsistent with those driving the NEP, but the HA_con was consistentlymuch larger than the CC_con. The HA_con and CC_con to the NEP were 86.48 and 13.54%, respectively, while the GPP was almost entirely controlled by the HA. The CO2 concentration made the largest positive contribution to the GPP (12%), T made the smallest contribution (0.04%), and SR made the largest negative contribution (−11%). Previous studies have shown that the sensitivities of the GPP and NEP to T and SR are not much different (You et al., 2020), and there is no significant relationship between the GPP and P (Chen W. et al., 2019). However, an increase in the annual average T will cause the vegetation growing season to be prolonged and cause an increase in the GPP, and the inter-annual variation in the GPP is not significantly correlated with T on a global scale (Piao et al., 2013). Our study shows that HA had a positive effect on the NEP, and we believe that CC deepened this positive contribution. Overall, assessing the impacts of the climatic factors on the NEP is critical to more accurately predicting the future dynamics of the global carbon cycle and its feedback on the climate system.



4.2. Regional differences

Of the six continents in the world, Australia has the lowest NEP trend and South America the highest (Figure 6). Interestingly, in North America, Africa, and Europe, the NEP was almost entirely controlled by HA, and the main negative contributions of the climatic factors was from the SR. The NEP in South America was entirely controlled by CC, of which the SR_con was 85.42%. HA and CC both contributed positively to the NEP in Australia and Asia, and the HA_con to NEP also contributed positively to the NEP, with values of 85.25 and 81.25%, respectively. SR made a major negative contribution on these two continents, with values of −81.25 and −13.11%, respectively. Among climate factors, the CO2 concentration had the highest positive contribution to the NEP on all six continents except South America.
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FIGURE 6
The HA_con and CC_con to NEP in the world and six continents.


Among the top seven countries in terms of land area in the world (Russia, Canada, China, the United States, Brazil, Australia, and India) (Figure 6), CC played the absolute dominant role in the NEP trend in Brazil, and the SR_con was the largest. CC also contributes positively to the NEP trend in China, with CO2 concentration contributed 42.55%, while the opposite was true for the rest of the countries, where HA_con was the strongest. SR made the largest negative contribution to the NEP in India, Australia and the United States. Russia had the strongest negative P_con. The CO2_con for the seven major countries was 43–59%. The CO2 concentration contributed only made a small negative contribution in 10 of the 167 major countries in the world.



4.3. Uncertainties

Overall, the limitations of this study are mainly reflected in the following: Firstly, although climate factors (T, P, CO2, SR, and SM) are closely related to NEP, some natural factors, such as forest age, vegetation type and growing season length, also have a definite impact on NEP (Tang et al., 2014; Migliavacca et al., 2015), which is the direction of our next research. In addition, considering that most of the factors causing nitrogen deposition are man-made factors, such as unreasonable fertilization in farmland, poor management of livestock and poultry manure in livestock farms, coal burning, and automobile exhaust emissions, which will increase the emission of man-made reactive nitrogen into the atmosphere, nitrogen deposition can be summarized in human activities from this perspective. Even though the role of N deposition on NEP has been mentioned in much literature, some studies have shown that the increase in global N deposition since 1981 has only weakly affected the Carbon sink area (Nadelhoffer et al., 1999; Chen H. et al., 2012; Chen J. M. et al., 2019). And, since the 21st century, nitrogen deposition has increased from 316.16 to 331.88, with little overall change. Therefore, the role of nitrogen deposition in HA is included in this paper. This involves the inclusion of other factors (including nitrogen deposition) in the scope of HA in this paper (although we believe that most of the causes of nitrogen deposition are still caused by human activities) will increase the contribution rate of HA to a certain extent, such as food collection, timber harvesting, burning of plant residues, fires (Yin et al., 2020), water erosion and other geological processes that cause carbon leakage. However, this paper is limited by the difficulty of obtaining data and the lack of long-term monitoring of human activities (such as ecological engineering and timber logging), which leads to the inadequacy of this part. Of course, in the next study it will be very necessary to include the effect of nitrogen deposition in the study of long time series. This is also a direction for our further research on how to more carefully quantify the contribution of various factors in human activities to the NEP. We believe that it is of scientific importance to clarify the main limiting factors affecting regional NEP. There are certain uncertainties in the generation of the GPP data products from the modeling results. These errors can be caused by a number of factors, including roughness of the meteorological data and different resolutions of this pixels. In addition, in this study, the spatial data used for the analysis were unified in a 0.25° space due to the limitations of the data. An attempt to evaluate with more fine-resolution multi-source data and measurements will be made in further studies. These limitations should be overcome in future studies. In addition, it is necessary to explore NEP and climate change on the monthly and quarterly scales. Moreover, since the important impact of CO2 concentration on NEP has been obtained in this paper, it is instructive to clarify how the dynamic contribution of CO2 concentration can be used to achieve the goal of carbon neutrality in different future emission scenarios.

In general, in this study, the global NEP from 1983 to 2018 was evaluated, the responses of the NEP to CC and HA were discussed, and detailed analysis was performed on different continents in 167 countries. Despite these uncertainties, this study is critical to improving the understanding of the carbon cycle, and it provides a theoretical understanding of how CC enhances the positive contributions of HA in the context of a changing climate.




5. Conclusion

In this study, the change in the global NEP and its responses to climate change and human activities over the last 40 years were assessed based on sensitivity analysis and BRT models. We choose temperature (T), precipitation (P), solar radiation (SR), soil moisture (SM), and CO2 concentration as the most important climatic factors. A regression model and sensitivity analysis were used to evaluate the CC_con and HA_con to the NEP under six different scenarios on the global scale. The results of this study enhance our knowledge of the CC and HA to the global NEP. The conclusions of this study are as follows.


(1)The NEP increased in 69% of the world between 1983 and 2018, about 79.4–82.6% of the area served as a Carbon sink, i.e., 3.9–4.7 times greater than the carbon source area. And HA and CC controlled 36.33 and 32.79% of the NEP growth, respectively. However, the contribution of HA far exceeded that of CC (i.e., by 6.4 times).

(2)The CO2 concentration had the largest positive contribution (37%) to NEP and the largest influence area (32.5%). Our paper use the BRT models to evaluate the optimal interval that the contribution of climate factor to NEP. We have further measured the optimal contribution interval of each factor, providing a more accurate guide to global NEP. It made the most significant contribution to the NEP trend in the range of 435–440 ppm. In more than 50% of the areas, the main loss factor was SR in any of the areas controlled by the climatic factors. HA and CC controlled 37.33 and 34.79% of the NEP growth, respectively. However, the contribution of HA far exceeded that of CC (i.e., by 6.4 times).

(3)The CC_con and HA_con have been identified in different countries, interestingly, CC improved the positive HA_con to the NEP in 44% of the world. Moreover, in 25% of the area, the enhancement effect reached more than 50%.



Our results clarify a long-standing problem and emphasize the important role of CC to the NEP. Therefore, this study quantitatively distinguishes the influence of each factor on NEP, and determined the best range of climate factor interaction. It is also understood that CC can affect HA to improve NEP on a large scale compared with previous studies.
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Seagrass meadows provide essential ecosystem services globally in the context of climate change. However, seagrass is being degraded at an accelerated rate globally due to ocean warming, ocean acidification, aquaculture, and human activities. The need for more information on seagrasses’ spatial distribution and health status is a serious impediment to their conservation and management. Therefore, we propose a new hybrid machine learning model (RF-SWOA) that integrates the sinusoidal chaos map whale optimization algorithm (SWOA) with a random forest (RF) model to accurately model the suitable habitat of potential seagrasses. This study combines in situ sampling data with multivariate remote sensing data to train and validate hybrid machine learning models. It shows that RF-SWOA can predict potential seagrass habitat suitability more accurately and efficiently than RF. It also shows that the two most important factors affecting the potential seagrass habitat suitability on Hainan Island in China are distance to land (38.2%) and depth to sea (25.9%). This paper not only demonstrates the effectiveness of a hybrid machine learning model but also provides a more accurate machine learning model approach for predicting the potential suitability distribution of seagrasses. This research can help identify seagrass suitability distribution areas and thus develop conservation strategies to restore healthy seagrass ecosystems.
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1. Introduction

Seagrasses are large submerged angiosperms with the general characteristics of vascular plants, a fully adapted aquatic environment, and the only angiosperm that can flower, fruit, and germinate in seawater (Hemminga and Duarte, 2000). Seagrasses are one of the extremely important marine resources that provide significant ecological value (Fourqurean et al., 2012; Cullen-Unsworth and Unsworth, 2018). Globally, seagrass habitats are rapidly degrading, and the loss of seagrass habitats will lead to multiple risks, such as the increased impacts of global climate change, shoreline destruction, and declining biodiversity (Orth et al., 2006; Waycott et al., 2009; Kendrick et al., 2019; Moksnes et al., 2021). Seagrass suitability habitat distribution patterns in the world are changing as the effects of global change severely threaten seagrass suitability habitats. The accurate knowledge of seagrass habitat and understanding of what factors limit or even threaten seagrass distribution has become an urgent issue (Short and Wyllie-Echeverria, 1996; Waycott et al., 2009). Unfortunately, many seagrass habitats around the world do not have clear spatial information (McKenzie et al., 2001; Short et al., 2007; He et al., 2022b), which seriously hinders marine environmental management and seagrass conservation. The traditional experimental method of mapping seagrass distribution requires large-scale field investigations, which are time consuming and cost-effective (McKenzie et al., 2001; Krause-Jensen et al., 2004). In recent years, due to the development of remote sensing technology, a mushrooming number of data and methods have been applied to marine predictive modeling, such as satellite data, unmanned aerial vehicles (UAV), acoustic surveys, and Geographic Information Systems (GIS; Picart et al., 2014; Ouellette and Getinet, 2016; Fingas, 2019; Belkin, 2021).

Species distribution models (SDMs) are used to predict regional distribution maps (Gonzalez-Irusta et al., 2015; Bittner et al., 2020) and to assess the degree of habitat suitability (Miller, 2010; Zimmermann et al., 2010; Pollock et al., 2014). As SDM has been intensively studied, more and more studies have chosen to use machine learning for SDM modeling and have produced excellent results (Evans et al., 2011; Li and Wang, 2013). Downie et al. (2013) used GAM and MaxEnt models to predict seagrass distribution, and their results showed that machine learning could accurately predict seagrass distribution. However, Bittner et al. (2020) found the differences in the relative importance of environmental factors in predicting the distribution of seagrasses between machine learning models when predicting the distribution of species. Therefore, a more accurate and robust machine learning model should be selected for prediction, such as random forest model that is widely used in SDM modeling methods. As a very representative tree modeling algorithm, random forest model can provide high prediction accuracy and stability (Kosicki, 2017; Mi et al., 2017; Kosicki, 2020; Luan et al., 2020; Saranya et al., 2021).

In recent years, with the development of machine learning, hybrid machine learning models have been widely used (Bies et al., 2006; Ardabili et al., 2019). Meta-heuristic algorithms have been found to improve the classification accuracy of models significantly (Beheshti and Shamsuddin, 2013; Singh and Kottath, 2021). Further, population-based hybrid optimization algorithms can dramatically increase the speed and power of search algorithms by moving from many individuals to collaborative groups (Abdel-Basset et al., 2018; Dokeroglu et al., 2019). The excellent performance and optimal solutions of metaheuristic algorithms solve the puzzles of multidisciplinary research, ranging from engineering and social sciences to ecology (Yang, 2009, 2013). This led to the widespread use of metaheuristics in many studies (de Melo and Carosio, 2013; Talbi, 2016; Dokeroglu et al., 2019; Hassan and Pillay, 2019; Cruz-Duarte et al., 2021; Moya et al., 2021), e.g., the whale optimization algorithm (WOA; Mirjalili and Lewis, 2016; Kaur and Arora, 2018; He et al., 2022a).

Some applications have demonstrated the usability of hybrid machine learning models in providing insights into various knowledge’s domains (Tsai and Chen, 2010; Pinter et al., 2020). Still, few have explored the use of hybrid machine learning models to predict species suitability distributions. This study combines WOA into a Sinusoidal (S) chaotic graph and couples it with Random Forest (RF) to form a new hybrid machine learning model (RF-SWOA). The model is able to more accurately model seagrass habitat suitability. Thus, the objectives of this study are: (1) to develop a hybrid machine learning model for more accurately predicting potential seagrass habitat; (2) to explore the effects of environmental variables on seagrass habitat; and (3) to evaluate the predictive advantages and limitations of the hybrid machine learning model.



2. Materials and methods


2.1. Seagrass occurrence data

Hainan Province, located in the southernmost island of China, is the largest province in China in terms of land area (land plus sea). Hainan Province has a latitude and longitude range of 3.30°N to 20.07°N and 108.15°E to 120.05°E, respectively. The climate of Hainan Island belongs to the monsoon tropical climate, which is between the two temperature zones of the tropics and subtropics. Its annual average temperature is 24°C. Hainan Island is rich in plant and animal resources, of which seagrass is one of the main aquatic seed plant resources.

Hainan Island accounts for 64% of China’s total seagrass area (Zheng et al., 2013). Therefore, this study conducted a field survey to determine the distribution of seagrass on Hainan Island from March to August 2021 (Figure 1). The presence of seagrass was marked with latitude and longitude, and samples were collected to identify seagrass species according to the method advocated by international seagrass researchers (Kuo and Den Hartog, 2001). The literature and field survey data were also combined to form the known distribution of seagrass beds on Hainan Island. We used GPS (ICEGPS 610) to record seagrass bed boundaries, as well as the latitude and longitude coordinates at low tide, to determine the spatial extent of seagrass distribution on Hainan Island, when the large areas of seagrass beds are more easily exposed at low tide (Yang and Yang, 2009; Jiang et al., 2017). A total of 42 actual seagrass distribution sites were used in this study, including seven species of seagrass (i.e., Halophila ovalis, Halophila minor, Thalassia hemprichii, Halodule uninervis, Halodule pinifolia, Enhalus acoroides, and Halophila beccarii), while a random sampling of pseudo-absence in the Hainan seagrass distribution area produced a total of 31,700 records (Barbet-Massin et al., 2012).

[image: Figure 1]

FIGURE 1
 Study area and seagrass field distribution location sites.




2.2. Environmental data

The distribution of seagrasses is regulated by external environmental factors and key physiological processes. A total of 15 environmental prediction layers were used in this study (Table 1), each of which was important in determining the prediction of potentially suitable habitat for seagrasses (Dennison, 1987; Duarte, 1990, 1991; Nguyen et al., 2021). Temperature, salinity, velocity, nitrate, phosphate, silicate, phytoplankton, calcite, pH, and attenuation were obtained by Bio-ORACLE 2.2 version.1 Ocean slope data are from GMED 2.0 version.2 Ocean chlorophyll-a concentration data are from Google Earth Engine.3 Photosynthetically active radiation data are from the Moderate-resolution Imaging Spectroradiometer (MODIS) aqua sensor.4 Distance to nearest-shore data is from NASA’s Ocean Biology Processing Group.5 Bathymetric dataset is from The General Bathymetric Chart of the Oceans (GEBCO) global network.6 Table 2 shows the minimum (MIN), maximum (MAX), mean (MEAN), and standard deviation (STD) of the 15 different environmental variables. All environmental variables were interpolated to 1 km spatial resolution using kriging interpolation in the ArcGIS 10.8 version of geostatistical analysis. To reduce spatial autocorrelation between variables (Legendre, 1993; Koenig, 1999; Dormann et al., 2007), correlation coefficients (r > 0.7) were excluded using spdep R package (Bivand et al., 2015).



TABLE 1 Environmental variables used in this study.
[image: Table1]



TABLE 2 Statistical analysis results for different environmental variables.
[image: Table2]



2.3. Machine learning models and evaluation


2.3.1. Random forest model

Random Forest (RF) algorithm is an extension of Bagging (Breiman, 1996, 2001), in which base learners are fixed as decision trees and a forest is made up of multiple trees (Figure 2). Compared with bagging integration of decision trees, RF has poor starting performance. However, as the number of base learners increases, RF tends to converge to a lower generalization error. Also, unlike bagging, in which the decision tree selects the optimal division attributes from all attribute sets, RF selects the division attributes from only a subset of the attribute set and thus is more efficient to train. In this study, the gini importance built-in algorithm of random forests was used to calculate the importance of the environmental features of the potentially suitable habitats for seagrasses.

[image: Figure 2]

FIGURE 2
 Random forest model structure.




2.3.2. Hybrid model

Whale Optimization Algorithm (WOA) was introduced by Mirjalili and Lewis (2016). Inspired by the way whales hunt, the predation behavior is organized into three mathematical models: prey encirclement, bubble net attack, and prey search (Mirjalili and Lewis, 2016; Aljarah et al., 2018). A whale encircles its prey while locating the best search position with an increasing number of iterations, while updating in real time. The mathematical expression of this behavior is

[image: image]

where [image: image] represents the distance between whale and prey, [image: image] and [image: image] are the coefficient vectors, [image: image] indicates the current iteration, [image: image] is the position vector of the best solution obtained so far, [image: image] is the position vector, [image: image] is the absolute value, and * is an element-wise multiplication. [image: image] and [image: image] are calculated via
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where [image: image] is a random vector, and [image: image] is linearly decreased from 2 to 0 during iterating. A new position must be defined between the initial search position and the optimal search position so as to adjust the parameters. In this case, it is described as follows:

[image: image]

where [image: image] is a constant coefficient, and [image: image] is a random vector whose items are all within [0, 1]. The whale contraction or spiral model approach is selected based on a 50% probability. Based on the mathematical model, the whale’s prey is simulated in a spiral circle as follows:

[image: image]

Contraction envelope and spiral position updates are performed simultaneously, with contraction according to [image: image] and spiral wandering according to [image: image], where [image: image].

As the whale searches for prey, it moves toward the local optimal location while expanding the global optimal location search, and this phase can be described as follows:

[image: image]

where [image: image] is a vector of random locations. A more detailed explanation of the WOA algorithm can be found in Mirjalili and Lewis (2016).

WOA becomes SWOA after adding a chaotic map to optimize global search capabilities. SWOA is mathematically described as follows:

[image: image]

where [image: image] is the number of iterations, and [image: image] is the description parameter within [image: image]. For more information on SWOA algorithm, please refer to (He et al., 2022a).

The model in this study randomly selects 80% of the seagrass occurrence data for training and the remaining 20% for testing. The RF and RF-SWOA models were developed in Python 3.8 (Python, 2021).



2.3.3. Model evaluation

A comprehensive evaluation of the model was conducted using six evaluation metrics. They are AUC, Omission rate, Correct classification rate, Sensitivity, Specificity, Kappa.
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3. Results


3.1. Correlation analysis between environments

The results of the study clearly show the spatial autocorrelation among all environmental variables (Figure 3). Correlation analysis of environmental variables was used to identify and remove variables with high multicollinearity (r > 0.7) in order to prevent model over-fitting. After removing phosphate, phytoplankton, par, and attenuation environmental variables, and the remaining variables were introduced into the model training.

[image: Figure 3]

FIGURE 3
 Correlation analysis matrix for different environmental variables.




3.2. Importance of environment features

The results of the importance of environmental characteristics showed that the most important ones to predict the potential habitat of seagrass were the distance to land (38.2%) and the depth of the ocean (25.9%). The rest of the environmental variables showed small contribution values (<6%) to the prediction of the potential habitat of seagrass (Figure 4).

[image: Figure 4]

FIGURE 4
 Importance analysis of 11 environmental features.




3.3. Potential seagrass habitat

Both models (RF and RF-SWOA) mapped potential seagrass habitat areas (Figure 5). RF model overestimates the potential habitat of seagrass and makes a more optimistic prediction, but this is not consistent with actual observations (Figure 1). In contrast, the potential seagrass habitat areas estimated by RF-SWOA model are closer to actual observations. From Figure 5, it can be found that the further is the potential seagrass habitat from land, the less likely it exists. This is reflected in both models.

[image: Figure 5]

FIGURE 5
 Potential habitat areas (Predicted by (A) RF model and (B) RF-SWOA model).




3.4. Model performance evaluation

RF-SWOA and RF models are compared in Figure 6. Their results show that RF-SWOA has a higher AUC, correct classification rate, Kappa, and lower omission rate than RF. RF-SWOA produced a more accurate and stable prediction of seagrass habitat than RF. In Figure 7, the sensitivity and specificity of the proposed model (RF-SWOA) are better than those of RF model. Hybrid machine learning algorithms with higher sensitivity and specificity in prediction can reduce errors in the potential distribution of seagrass, achieving more reliable results.

[image: Figure 6]

FIGURE 6
 RF and RF-SWOA model performance evaluation.


[image: Figure 7]

FIGURE 7
 Sensitivity and specificity tests of RF and RF-SWOA models. The upper part of the panel shows the statistical test results of frequentist analysis, and the lower part of the panel shows the statistical test results of Bayesian analysis. The results follow the gold standard of statistical reporting (Patil, 2021).





4. Discussion


4.1. SWOA hybrid model evaluation

Intelligent optimization algorithms are widely used in various engineering practices (Su et al., 2014; Wang et al., 2020; Li et al., 2021), and simple operation is one of the advantages of WOA algorithm. It has excellent optimization capabilities and few parameters, which can dramatically increase the accuracy of the solution and convergence speed in the process of optimizing machine learning functions (Sun et al., 2018; Chakraborty et al., 2021). Although WOA has obvious advantages compared with other intelligent algorithms, it has similar problems like other intelligent algorithms, such as being easily trapped into a local optimum. The SWOA algorithm proposed in this paper can update its position according to its adaptive parameter strategy while updating the optimal individual to achieve the ability of optimizing global search. This study further verified the performance of the SWOA algorithm through simulation experiments. Four standard test functions (Table 3) were used to assess the performance of the algorithm. F1 and F2 test functions were used to determine how quickly and efficiently the SWOA algorithm finds an optimal value (Figures 8A,B). F3 and F4 test functions were used to see if the algorithm can jump out of its local optimum (Figures 8C,D). Each simulation test is to solve the performance of a 1,000-dimensional test function. By testing the performance of the SWOA and WOA algorithms through simulations, the SWOA algorithm has better global convergence and robustness (Figure 8). In this study, a random forest model was also used, which is increasingly being used in ecology due to its predictive accuracy and stability (Cutler et al., 2007; Evans et al., 2011). In particular, random forest models are still very robust at predicting species distributions with limited sample sizes (Luan et al., 2020). After coupling SWOA with RF, we found that the SWOA algorithm greatly influenced the performance of RF on classification. Based on the above findings, hybrid machine learning models can improve predictions of marine species distributions (e.g., seagrasses).



TABLE 3 Four simulation test functions.
[image: Table3]
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FIGURE 8
 RF and RF-SWOA model performance evaluation. (A) Griewank simulation function; (B) Schwefel 2.20 simulation function; (C) Ackley simulation function; (D) Rastrigin simulation function.




4.2. Environmental drivers of seagrass habitat

The potential adaptability of seagrass habitat is influenced by a combination of environmental elements. In this study, those environmental variables were combined to model potential seagrass habitats. Our results show that the most critical environmental factors affecting seagrass habitat are the distance from land, ocean depth, and current velocity. It reflects the particular importance of physical environmental variables for seagrass habitats. However, this does not mean that chemical and biological types of environmental variables do not affect seagrass survival. We found that modeling the distribution of seagrasses in different study areas and scales was influenced by different environmental drivers. A global model showed that the temperature of the sea surface and the distance to the land were the most important environmental variables to predict the distribution of seagrass (Jayathilake and Costello, 2018). At a regional scale, surface nitrate concentration and the availability of benthic light became the most important environmental variables for predicting seagrass distribution in a model of seagrass species distribution in the Gulf of Mexico, while in another sea area, the distance to the sandy shore and depth were the most important environmental drivers (Downie et al., 2013; Bittner et al., 2020). Therefore, we proposed to establish a seagrass habitat simulation in the local study area to identify which environmental factors will lead to seagrass distribution limitation in order to better target local seagrass conservation and restoration (Mao et al., 2022).




5. Conclusion

This study proposed a new hybrid machine learning model (RF-SWOA) to accurately predict suitable habitats for potential seagrasses. The results of this study indicated that the RF-SWOA model could effectively be applied to model seagrass distribution. The results of the RF-SWOA model compared with RF model showed that RF-SWOA was able to identify potential seagrass habitats more accurately and stably. This hybrid machine learning model was demonstrated to be effective in improving the prediction of SDM. The most important environmental factors affecting seagrass distribution were the distance from land, ocean depth, and current velocity. Therefore, seagrass potential adaptability habitat maps based on the RF-SWOA model can assist in the adequate conservation and restoration of seagrass and provide scientific guidance for seagrass area planning.
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Land use and land cover (LULC) change is a pattern of alteration of the Earth’s land surface cover by human society and have a significant impact on the terrestrial carbon cycle. Optimizing the distribution of LULC is critical for the redistribution of land resources, the management of carbon storage in terrestrial ecosystems, and global climate change. We integrated the patch-generating land use simulation (PLUS) model and integrated valuation of ecosystem services and trade-offs (InVEST) model to simulate and assess future LULC and ecosystem carbon storage in the Nanjing metropolitan circle in 2030 under four scenarios: natural development (ND), economic development (ED), ecological protection (EP), and collaborative development (CD). The results showed that (1) LULC and carbon storage distribution were spatially heterogenous in the Nanjing metropolitan circle for the different scenarios, with elevation, nighttime lights, and population being the main driving factors of LULC changes; (2) the Nanjing metropolitan circle will experience a carbon increase of 0.50 Tg by 2030 under the EP scenario and losses of 1.74, 3.56, and 0.48 Tg under the ND, ED, and CD scenarios, respectively; and (3) the CD scenario is the most suitable for the development of the Nanjing metropolitan circle because it balances ED and EP. Overall, this study reveals the effects of different development scenarios on LULC and ecosystem carbon storage, and can provide a reference for policymakers and stakeholders to determine the development patterns of metropolitan areas under a dual carbon target orientation.
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1. Introduction

Human society interacts with the natural environment through land use and land cover (LULC) change (Sleeter et al., 2017; Homer et al., 2020; Yee et al., 2021; Zhai et al., 2021; Lal et al., 2022). Scientific planning for LULC is essential for the achievement of global sustainable development goals, as it has a significant impact on global climate change, food security, biodiversity conservation, and carbon sources and sinks (Lambin and Meyfroidt, 2011; Arneth et al., 2014; Popp et al., 2014; Powers and Jetz, 2019). LULC and its dynamics are key scientific issues in the study of human carbon emissions in the current dual-carbon context (Tang et al., 2021; Bukoski et al., 2022; Wang et al., 2022) and global climate change (Winkler et al., 2021; Meyfroidt et al., 2022; Tian et al., 2022b). Indeed, global climate change is already an indisputable fact (Wilfried, 2007; Gauthier et al., 2014; Lawal et al., 2019; Tian and Fu, 2020) and atmospheric concentrations of greenhouse gases (GHG; e.g., CO2 and CH4) directly influence the global average temperature (Solomon et al., 2009; Cramer et al., 2018; Tian et al., 2022a). Some research suggests that in order to prevent warming by more than 1.5°C, GHG emissions need to be reduced by 7.6% per year from 2019 to 2030 (Huppmann et al., 2018; Rogelj et al., 2018; United Nations Environment Programme, 2019). This will require joint efforts from governments worldwide. Over the past few decades, most of the world’s major cities have expanded, with more than 50% of the population already living in cities, and by 2050, the urban population is expected to reach 66% (Ayanlade, 2016). However, as urbanization continues to accelerate, the driving force of economic development (ED) has gradually shifted from agriculture to industry and services and the increasing level of urbanization has led to dramatic changes in LULC, which significantly impacts terrestrial ecosystem functions and directly affects the carbon storage of terrestrial ecosystems (Feddema et al., 2005; Newbold et al., 2015; Li et al., 2019). Carbon storage in terrestrial ecosystems is widely recognized as an indicator of ecosystem services and plays a key role in the global carbon cycle (Lu et al., 2013; Wang et al., 2022). Reducing carbon emissions from land use and sequestering CO2 from the atmosphere into terrestrial ecosystems is one of the most economical and environmentally friendly ways to mitigate global climate change (Molotoks et al., 2018; Dybala et al., 2019). For example, increasing the area of forest ecosystems through afforestation could contribute to increasing carbon storage in terrestrial ecosystems (Tian et al., 2022b).

Previous studies indicated that LULC changes are affected by climate change and human activity (Sleeter et al., 2017; Homer et al., 2020; Lal et al., 2021; Yee et al., 2021; Zhai et al., 2021). In recent decades, the conflict between humans and land has intensified and human activities have significantly affected changes in LULC, causing problems for ecosystems, climate, and biodiversity (Foley et al., 2005; Thonfeld et al., 2020; Lee, 2021). Since the implementation of the reform and opening-up policy, the urbanization process in China has accelerated significantly (Li et al., 2018), with a dramatic increase in the urbanization rate from 17.92 to 59.58% (Zhu et al., 2020). Liu et al. (2020) mapped the global annual urban dynamics from 1985–2015 using Landsat data, and the results showed urbanization accelerated in developing countries (for example, China, India, Saudi Arabia and a few urban clusters in Africa) but decelerated in developed countries (for example, United States, Canada, Japan and European countries). For example, in the Shanghai area of China, the average growth rate of urban lands is 49.5 km2 yr.−1, By contrast, in the Chicago area, one of the most urbanized regions in the United States, the mean increase in urban area during 1985–2015 is 21.3 km2 yr.−1. Furthermore, many Chinese cities are exhibiting an accelerated pace of urbanization due to the dependence of financial revenues on real estate and land transactions (Huang et al., 2017). Rapid ED and intensive land development have decreased the carbon storage in terrestrial ecosystems and destroyed local ecological environments, which further contributes to climate warming (Zhu et al., 2021; Tian et al., 2022b). Therefore, there is a need for anthropogenic planning of LULC development patterns to coordinate ED and ecological conservation, which is essential for optimizing future regional urban planning and maintaining ecosystem carbon balance (Liao et al., 2022; Sun et al., 2022; Tian et al., 2022b).

In the process of urbanization, cities develop to a mature stage and will form urban agglomerations, which is a new geographical unit (Schoenberger and Walker, 2017). It is a spatially compact, economically connected, and ultimately highly co-located and integrated group of cities formed by a well-developed transportation and communication infrastructure network. The Nanjing metropolitan circle, the first inter-provincial metropolitan area planned and built in China, its goal is to form an economic zone with Nanjing as the center and to develop and strengthen the zone as a whole; that is, to take one city as the leader to drive the development of surrounding cities and towns. The Nanjing metropolitan circle plays an important role in the construction of the “One Belt and Road,” the integrated development of the Yangtze River Delta, the development of the Yangtze River Economic Belt, and other major strategies. With the continuous strengthening of policy guidance for the synergistic development of urban agglomerations, an optimal layout of urban agglomeration land use that reflects the national strategic intent and scientific, sustainable, and equitable development is urgently required. Therefore, integrated planning of the urban development pattern of the Nanjing metropolitan circle is necessary to optimize the future urban structure, protect local ecological environment, and maintain regional carbon balance.

Several models have been developed for land use simulation, such as the cellular automata (CA)-Markov model (Wu H. et al., 2019; Zhao et al., 2019), Logistic-CA-Markov model (Guan et al., 2019), Artificial Neural Network-CA model (Yang et al., 2016; Xu et al., 2019), Mixed-cell CA model (Liang et al., 2021a), CLUS-S model (Luo et al., 2010; Jiang et al., 2017), and FLUS model (Liu et al., 2017; Liang et al., 2018). Yet, in spite of some successful applications of the above models in land use simulation, the inability to effectively identify the factors affecting LULC and the inability to simulate land use units in a dynamic spatio-temporal manner, which clearly limits the application of LULC simulation under multi-factor-driven conditions (Wang et al., 2022). The patch-generating land use simulation (PLUS) model developed by Liang et al. (2021b) is a future land use simulation model used to improve the understanding of the driving factors of LULC change and has a higher simulation accuracy than other CA models. The model is capable of performing future land use change simulation by deciphering the deep relationships between sites and resolving land use change strategies, thereby improving land use simulation accuracy (Liang et al., 2021b). For example, Zhai et al. (2021) predicted the land distribution pattern in Wuhan, China, in 2029 using the PLUS model based on the spatiotemporal pattern of LULC changes during the urbanization process in the city from 2000 to 2019. Zhang et al. (2022) integrated the PLUS model with multiple linear regression and Markov chain models to predict the landscape patterns in the Fujian Delta region by 2050. Furthermore, studies have combined the PLUS model and integrated valuation of ecosystem services and trade-offs (InVEST) model to assess carbon storage changes in terrestrial ecosystems caused by changes in LULC (Wang et al., 2022; Tian et al., 2022b). Current urban land use layout optimization strategies can consider urban agglomerations as a whole or each city as an isolated individual. Denoting the regional synergistic development of urban agglomerations, establishing optimization objectives applicable to the urban agglomeration scale, and carrying out urban agglomeration land use layout optimization remains a major challenge in land use research. Therefore, it is important to explore the land use distribution patterns of future cities under different scenarios and their impacts on carbon storage to find the optimal solution for planning scenarios of metropolitan areas under the dual carbon target (i.e., carbon peaking and carbon neutrality) and to provide a leading and demonstration role for other metropolitan areas in China.

Here, we set four future development scenarios for the Nanjing metropolitan circle and integrated the PLUS and InVEST models to dynamically simulate land use distribution patterns under different scenarios and assess the changes in carbon storage due to changes in LULC. Specifically, we aimed to (1) simulate the spatial distribution of LULC in the Nanjing metropolitan circle for a temporal range of 2020–2030 using the PLUS model; (2) assess the dynamics of carbon storage under different development scenarios; and (3) explore the optimal scenario of future urban development in the Nanjing metropolitan circle. Overall, this work is important for optimizing the land use development pattern of the Nanjing metropolitan circle, providing guidance to government departments and decision makers in urban planning, facilitating the formulation of reasonable policies, and for the rational use and synergistic development of land resources in urban agglomerations.



2. Materials and methods


2.1. Study area

The Nanjing metropolitan circle, an economic zone centered around Nanjing, in eastern China, covers a core area of the urban zone along the middle and lower reaches of the Yangtze River. It spans over the Jiangsu and Anhui provinces and is the first planned cross-provincial metropolitan circle in China. The Nanjing metropolitan circle ranges from 29°57’N–34°05’N and 117°09′ E–119°58′E and includes 33 municipal districts, 11 county-level cities, and 16 counties, with a total area of 66,000 km2 (Figure 1). The Nanjing metropolitan circle connects the north, south, east, and west of China, with a special geographical location and various city types. It is an important conduction area for the Yangtze River Delta to drive the development of the central and western regions and has an important position in the national Yangtze River Economic Belt development strategy. In 2021, the Nanjing metropolitan circle had a resident population of 3,582.47 million and a regional gross domestic product (GDP) of 4.6 trillion RMB. It contains 0.7% of the country’s land area and 2.5% of the resident population and generates 4.1% of China’s GDP (National Bureau of Statistics, 2021).
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FIGURE 1
 Location of Nanjing metropolitan circle with a digital elevation model (DEM).


The Nanjing metropolitan circle has a humid northern subtropical climate with four distinct seasons and abundant rainfall. The average annual rainfall days per year is 117, with an average annual precipitation and temperature of approximately 912 mm and 16.18°C, respectively. The topography of the Nanjing metropolitan circle is high in the south and low in the north and most cities in the region have flat terrain. The southern area has a high forest coverage rate with rich forestry resources. Moreover, the region has many river systems with large lakes and rivers, such as Hongze and Gaoyou Lakes and the Yangtze and Huai Rivers, and a large area of water and wetlands.



2.2. Data acquisition and preprocessing

The data used in this study include LULC data and its driving factors (i.e., socioeconomic data and natural environmental data), as shown in Table 1. Specifically, the LULC data for the Nanjing metropolitan circle for 2000, 2010, and 2020 were obtained from the GLOBELAND30 dataset produced by the National Geomatics Center of China. Based on the actual land use types in the study area, the LULC data (with a spatial resolution of 30 m) were reclassified into six categories: cropland, forest, grassland, water, artificial surface, and other (Figure 2). The socioeconomic data included population density, GDP, nighttime lights, government, residents, train station locations, and various levels of road vector data.



TABLE 1 Spatial driving factors of the land use change in this study.
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FIGURE 2
 Historic LULC data in (A) 2000, (B) 2010, and (C) 2020 for the Nanjing metropolitan circle.


The natural environment data included temperature, precipitation, soil type, digital elevation model (DEM), and slope data, with the slope data being obtained by DEM processing. All the above driving factor data has been processed to 30 m spatial resolution after a series of preprocessing steps as requirement of PLUS Model (Liang et al., 2021b). These preprocessing steps included projection transformation, Euclidean distance generation, resampling, and cropping. The temporal range of the data was kept as close as possible to that of the LULC data in 2020; however, owing to data acquisition limitations, data from similar years were used for some factors (Long et al., 2013).



2.3. Methods


2.3.1. Scenarios setting

Historical LULC change trends and Markov chain methods have been used to estimate future land use demand (Munsi et al., 2012; Nor et al., 2017; Li et al., 2021). Specifically, land use dynamics changes and land use conversion matrices were used to adjust the conversion probabilities in Markov chains to estimate land use demand for different scenarios. In order to effectively evaluate the potential effects of future LULC changes on regional carbon storage, four LULC change scenarios were developed for the Nanjing metropolitan circle from 2020 to 2030 (Wang et al., 2018; Zhai et al., 2021; Zhang and Gu, 2022): natural development (ND), ED, ecological protection (EP), and collaborative development (CD) scenario. The four scenarios were set as follows:


2.3.1.1. ND scenario

On the basis of the historical change trends of each land use type from 2000 to 2020, this scenario makes a linear prediction of land use patterns in the Nanjing metropolitan circle in 2030. This scenario implies that each land use type’s demand only evolves linearly in accordance with its historical evolutionary trajectory and is unaffected by other external causes (conversion probability matrix for the period 2000–2020), making it an ideal state land use development scenario.



2.3.1.2. ED scenario

As the core engine of ED in the Yangtze River Economic Belt, the Nanjing metropolitan circle is one of the most economically dynamic international urban agglomerations. The ED scenario simulates a land use structure that prioritizes ED, with the goal of maximizing economic benefits by availing all land use types. Under this scenario, the conversion probability of cropland, forest, grassland, and other land, except water, to artificial surfaces increases by 30% and the conversion probability of artificial surfaces to any other land type decreases by 40%. This scenario helps to scientifically grasp the risk of land use conflicts in the fast-growing Nanjing metropolitan circle, and reveals the potential menace of the “GDP-only” development model to social stability and environmental carrying capacity.



2.3.1.3. EP scenario

The dense population and rapidly developing economy in the Nanjing metropolitan circle have caused considerable real or potential harm to the local ecological environment. To promote further optimization and enhancement of the Nanjing metropolitan circle, it is necessary to place EP in a prominent position. The conversion of cropland, forest and grassland with ecological functions to Artificial surface was strictly controlled by referring to the Ecological restoration planning of land space in Anhui Province (2021–2035) and the Draft of master plan of land and space of Nanjing Municipality (2021–2035). The EP scenario ensures that land types providing ecological services, such as forests, grasslands, and water bodies, are conserved and prioritized for development by setting ecological priority development strategies. Under this scenario, the expansion of urban areas is restricted and water is not transferred to other land uses; therefore, the conversion probability of forests, grasslands, and artificial surfaces decreases by 35%, the conversion probability of cropland to forests and grasslands increases by 25 and 20%, respectively, and the conversion probability of grassland to forest increases by 15%. This scenario is an important reference for mitigating land-use conflicts, promoting the delineation of ecological red lines, establishing a nature reserves mainly as national parks, and implementing the national main function zone system.



2.3.1.4. CD scenario

ED and EP are not opposites and can promote each other and develop together. With according to the Territorial Spatial Planning of Anhui Province (2021–2035) (Draft for comments) and the Draft of master plan of land and space of Nanjing Municipality (2021–2035). The CD scenario takes into consideration high-quality ED while balancing good economic and ecological benefits of regional synergistic development. This scenario constructs a harmonious human-land relationship in the Nanjing metropolitan circle by harmonizing ED and EP. The transition probability of forest and grassland to artificial surfaces was reduced by 40%, the transition probability of cropland to artificial surfaces was reduced by 50%, the transition probability of cropland to other land was reduced by 20%, and the transition probability of other land to grassland and forest land increased by 50%. This scenario is important for coordinating economic and ecological benefits, promoting the development of the Nanjing metropolitan circle in harmonious economic and ecological conditions, and promoting high quality development of homeland space.




2.3.2. LULC simulation using PLUS model

The PLUS model was used to simulate the distribution pattern of LULC in Nanjing metropolitan circle in 2030 under different scenarios, which consists of two main components: (1) land expansion analysis strategy (LEAS) model for obtaining the development probabilities of various land use types; (2) CA model based on the multi-type random patch seeds (CARS) model for spatio-temporal dynamics simulation of land patches (Liang et al., 2021b). The LEAS module first extracts the fraction of expansion of each land type between the two periods of LULC change and samples it together with the responding driving factors, and uses the random forest (RF) algorithm to obtain the contribution of the driving factors and the development potential of each land category. Subsequently, the CARS model incorporates stochastic seeding and a threshold decreasing mechanism for land use simulation under the constraint of development probability. Previous studies confirmed that the PLUS model can mine the potential linkages between various driving factors and geographic units to develop future land use change patterns with higher accuracy and more realistic landscape patterns (Zhai et al., 2021; Wang et al., 2022; Tian et al., 2022b).

In this study, 18 driving factors (Figure 3) were collected to facilitate LULC simulations, as described in Section 2.2. First, the 2020 LULC data were simulated based on the 2000 and 2010 LULC data (Figure 2) to assess the model accuracy. Moreover, the PLUS model based on the RF algorithm was used to assess the contribution of each driving factor to future land use patterns, which aids in understanding the effect of the driving factors on future land use changes.
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FIGURE 3
 The 18 driving factors affecting LULC. Note: The legend of soil type represents, 1: yellow-brown soils; 2: yellow-cinnamon soils; 3: limestone soils; 4: chisley soils; 5: fluvo-aquic soils; 6: paddy soils; 7: red earths; 8: yellow earths; 9: water; and 10: others.




2.3.3. InVEST model for carbon storage estimation

The InVEST model estimates terrestrial ecosystem carbon storage by the carbon density of each land use type and the corresponding area (Sharp et al., 2020). We set the carbon densities of the LULC ecosystem using values from previous studies, as shown in Table 2 (Wang et al., 2011; Xu et al., 2014; Fang et al., 2021). Furthermore, the economic value of sequestering one ton of carbon is assumed to be 57.50 RMB (from the carbon market trading price in China on September 30, 2022), with the annual rate of change in carbon prices and the market discount rate of 0 and 3%, respectively (Babbar et al., 2021). Specifically, we combined the PLUS model with the InVEST model to explore the effects of land use change on the carbon storage of the Nanjing metropolitan circle from 2020 to 2030 under the different scenarios. The general research framework included (1) simulation of LULC data based on the PLUS model and (2) assessment of ecosystem carbon storage changes due to LULC changes using the InVEST model (Figure 4).



TABLE 2 Carbon density for each LULC (kg/m2).
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FIGURE 4
 Research framework.






3. Results


3.1. Contribution of the driving factors for land use change

The contributions of the driving factors for each land use type based on the RF algorithm, as illustrated in Figure 5. It should be noted that the contribution of the driving factor of the water body is not given in Figure 5 due to the small area of change in the water, which was mainly affected by a single driving factor, which is the distance to the water (96.73%). The main driving factors for the change in cropland were nighttime light (12.90%), distance to water (12.39%), and temperature (10.30%). Nighttime lights are indicators of urban development and can represent the rate of urban expansion. The loss of cropland was mainly due to urban expansion and agricultural restructuring. The main driving factors affecting forests were elevation (13.68%), population (13.09%), and nighttime lights (9.73%). Specifically, forests are mainly distributed in the higher elevation areas in the southern part of the study area (Figures 1, 3) and elevation may have affected the interconversion of forest to non-forest land use types. Elevation (17.48%) is the main driving factor for grassland changes. Distance from water (16.50%), nighttime lights (14.72%), and elevation (12.70%) were the main driving factors for artificial surface expansion. The water area generally does not convert to other land use types and urban expansion tends to avoid water areas. Elevation (12.70%) was also the primary driving factor for other land use types. In conclusion, the main driving factors of LULC change in the Nanjing metropolitan circle are elevation, nighttime lights, and population.
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FIGURE 5
 Contributions of driving factors.




3.2. Simulation of LULC spatiotemporal distribution

Overall accuracy (OA) and Kappa coefficients were used to evaluate the accuracy of the PLUS model. The comparison of the simulated 2020 LULC data with the actual 2020 LULC data shows that the OA and Kappa coefficient are 91.8% and 0.85, respectively, which indicates that the PLUS model simulates land use data with high accuracy and can be reliably applied to simulate LULC.

Subsequently, the 2030 LULC data for the Nanjing metropolitan circle under four development scenarios were successfully simulated using the PLUS model (Figure 6), and its statistics are shown in Table 3. Furthermore, Figure 7 illustrates the different land use type conversions for the period of 2020–2030 under the different scenarios. Specifically, under the ND scenario, the land use pattern in 2030 for the Nanjing metropolitan circle was similar to that of the historical (i.e., 2010–2020 land use change trend, which was consistent with our expectations). The artificial surface maintained relatively high growth, with an increase of 1597.40 km2, which was achieved by encroaching on cropland, forest land, and grassland. Under the ED scenario, the artificial surface area expanded sharply, reaching 11,554.77 km2, which is an increase of 3,400.07 km2 (41.69%) compared to 2020. The urban expansion pattern emerged in the form of Nanjing as the center, with neighboring cities expanding in all directions (Figure 6B). As forests and grasslands were not effectively protected under this scenario, the area of cropland significantly decreased, and water and other land areas saw varying degrees of decrease. Overall, the ED scenario demonstrated a future land-use development pattern with economic primacy and unrestricted urban expansion.
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FIGURE 6
 Simulation results of LULC in 2030 under four scenarios: (A) ND; (B) ED; (C) EP; and (D) CD.




TABLE 3 LULC area for four scenarios (km2).
[image: Table3]
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FIGURE 7
 Land use type conversions from 2020–2030 under four scenarios: (A) ND; (B) ED; (C) EP; and (D) CD.


Under the EP scenario, the area of artificial surface increases only 265.93 km2 by 2030. Forest land and grassland were effectively protected, with an increase in area of 861.27 km2 and 13.42 km2, respectively. The area of water remained virtually unchanged and other land areas showed a slight increase. The land use pattern under the CD scenario was more balanced than those under the other three scenarios because this scenario integrates the consideration of EP and ED, which is reflected in the land use change pattern that the artificial surface is maintained with a certain increase, while the forest and grassland are effectively protected. This scenario is of great significance to the Nanjing metropolitan circle for implementing EP, high-speed ED policies, optimizing urban functions and spatial structure, and empowering high-quality and sustainable urban development.



3.3. Spatiotemporal patterns of carbon storage

The distribution of carbon storage in the Nanjing metropolitan circle in 2030 under different scenarios is illustrated in Figure 8, and the carbon storage under different scenarios is significantly different (Figure 9; Table 4). Under the ND scenario, the carbon storage of other land slightly increased in 2030 (0.04 Tg); however, the other land use types showed varying degrees of decrease in carbon storage: cropland, forest land, and grassland decreased by 1.42, 0.34, and 0.02 Tg, respectively, resulting in a net total decrease in carbon storage of 1.74 Tg. This implies that if the Nanjing metropolitan circle is developed according to the ND scenario, the carbon storage of vegetation will continue to decrease, which is not beneficial for stabilizing the carbon balance.
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FIGURE 8
 Carbon storage distribution in 2030 under four scenarios: (A) ND; (B) ED; (C) EP; and (D) CD.
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FIGURE 9
 Sequestered carbon content of different land uses over 2020–2030 under four scenarios.




TABLE 4 Carbon storage dynamic changes of LULC under four scenarios in Nanjing metropolitan circle over 2020–2030 (Unit: Tg).
[image: Table4]

The ED scenario resulted in a significant decrease in total carbon storage of 3.56 Tg by 2030, with the carbon storage of cropland, forest land, and grassland decreasing by 2.89, 1.57, and 0.03 Tg, respectively. Under this scenario, the Nanjing metropolitan circle showed a spatial distribution pattern of decreasing carbon storage over a wide range (Figure 8B). Evidently, the ED scenario critically affected the carbon balance of the Nanjing metropolitan circle. Under the EP scenario, the ecological condition of the Nanjing metropolitan circle has improved significantly and the total carbon storage increased by 0.50 Tg. By 2030, forest land, grassland, and other land carbon storage increased by 1.74, 0.01, and 0.03 Tg, respectively, while that of cropland decreased by 1.16 Tg. As can be seen, the increased carbon storage mainly came from forest land, which offset the decrease in that of cropland and contributes to carbon sequestration in ecosystems.

The CD scenario strikes a balance between ED and EP by preserving the local ecosystem as much as possible while ensuring a certain level of ED. Under the CD scenario, the carbon storage of forest land and other land increased by 0.51 and 0.01 Tg, respectively, that of cropland decreased by 1.00 Tg, while that of grassland remained stable. Although the total carbon storage in the Nanjing metropolitan circle decreased by 0.48 Tg under the CD scenario, the trend of decreasing carbon storage under the CD scenario was effectively mitigated compared to that of the ND and ED scenarios. According to this scenario, the Nanjing metropolitan circle is expected to have a positive increase in total carbon storage by 2040. This indicates that the trend of decreasing carbon storage in the Nanjing metropolitan circle could be reversed through integrated and coordinated development.

Figure 10 illustrates the economic value of carbon sequestration in terrestrial ecosystems under different scenarios, with positive values representing carbon sequestration and negative values representing carbon loss. In this study, we assumed that the future carbon sequestration and current carbon sequestration values were the same and the discount rate of carbon sequestration and social value were constant (i.e., 3%). The economic values of carbon loss of Nanjing metropolitan circle in 2020–2030 under ND and ED scenarios were 96.83 million and 201.38 million RMB, respectively. Under the EP scenario, the carbon sequestration economy of the Nanjing metropolitan circle will be positive in 2020–2030, with a value of 32.03 million RMB. Under the CD scenario, the economic value of carbon loss in the Nanjing metropolitan circle in 2020–2030 was 24.59 million. Although the sequestration economy was still negative compared with the EP model, the economic value of carbon loss was significantly lower than those under the ND and ED scenarios. Overall, this ecosystem carbon sequestration function, expressed as a monetary value, can effectively demonstrate the value of ecosystem services and convey it to policymakers (Babbar et al., 2021).

[image: Figure 10]

FIGURE 10
 Net present value (unit RMB) of Nanjing metropolitan circle in 2020–2030 under four scenarios: (A) ND; (B) ED; (C) EP; and (D) CD.





4. Discussion


4.1. Impact of LULC on carbon storage

We evaluated the impacts of four future development scenarios on LULC and carbon storage in the Nanjing metropolitan circle. Significant spatial heterogeneity was observed in the distribution of LULC changes and carbon storage in 2020–2030 under the four scenarios. The effects of different drivers on LULC were reflected in the impact of LULC on carbon storage changes.

Forest land had the highest carbon density in this study, followed by cropland and grassland (Table 2), which implies that forest land, cropland, and grassland accumulated more carbon storage than other land use types (Li et al., 2020). The area of cropland decreased under all scenarios, but by different degrees; in contrast, the artificial surface showed the opposite result, instead of increasing under all scenarios (Table 3). The change in the cropland area was driven more by nighttime lights, whereas the expansion of the artificial surface was mainly affected by the distance to water, nighttime lights, and elevation (Figure 5). Nighttime lights are indicators of urban development and can represent the rate of urban expansion (Liu et al., 2012; Ma et al., 2012; Zhang and Su, 2016). Previous studies have shown that nighttime lights are positively correlated with regional GDP and population (Shi et al., 2014; Bennett and Smith, 2017; Lan et al., 2020). Increased GDP and population growth require larger urban areas (capacity), while urban expansion usually occurs through encroachment on natural land and cropland, which results in a vicious circle. Similar results were reported in other studies. He et al. (2016) and Jiang et al. (2017) also reported great carbon storage losses, and the occupation of natural land and farmland is the main reason for the losses of carbon storage in the Beijing and Changsha-Zhuzhou-Xiangtan urban agglomerations. Moreover, another study on the loss and loss rate of carbon storage in the Yangtze River Delta urban agglomeration from 1990 to 2015 also showed that the reduction of natural land and arable land surrounding the urban area was the main reason for the loss of carbon storage (Gao and Wang, 2019). In addition, topographical factors influence the difficulty and cost of urban construction, which also determine urban expansion. Generally, cities are established in areas with flat topography, fertile soil, and easy access to agriculture, which facilitates transportation links and saves on building investments, thus urban expansion avoids large topographic undulations (e.g., mountains; Zhai et al., 2021). The general pattern of urban development determines that the expanded artificial surface is mainly distributed in flat areas with relatively low topographic relief (Figure 6). Under the ED scenario, carbon storage in terrestrial ecosystems decreases by 35.07 Mg, which is due to the increase in artificial surface. Urban expansion, which provides more jobs and rapidly increases GDP, seems profitable, but will reduce carbon storage in regional ecosystems in the long term (Weisberg et al., 2007; Eigenbrod et al., 2011).

The expansion of forest land differed between the development scenarios, with a decrease in forest land area under the ND and ED scenarios and an increase in area under the EP and CD scenarios. Correspondingly, different forest land area changes resulted in different carbon storage patterns. Specifically, under the ND and ED scenarios, 222.52 and 313.56 km2 of forest land are projected to be converted to other types of land by 2030, decreasing the forest ecosystem carbon storage by 2.47 and 5.95 Mg, respectively. Under the EP scenario, 655.53 km2 of cropland is expected to be converted to forest land by 2030, increasing carbon storage by 6.24 Mg. This was confirmed by the study of Zhang et al. (2010) that the ecological engineering of grain to feed conversion can significantly increase the carbon sink of soil ecosystems in China. In addition, 222.65 km2 of grassland will be converted to forest land, increasing carbon storage by 2.62 Mg. Overall, the conversion from other land use types to forest land contributes 8.86 Mg of carbon storage under the EP scenario. The CD scenario is similar to the EP scenario, with a projected increase in forest land area of 285.74 km2 by 2030 and increase in carbon storage of 2.72 Mg. Balancing urban expansion and ecological conservation can maintain woodland and grassland areas, slow urban sprawl (Yang et al., 2020), and contribute to the growth of carbon storage in forest ecosystems (Zhao et al., 2019).

In the study area, forests were mainly distributed at higher elevations of the mountains. Zhang and Xie (2019) believe that population expansion not only requires forests to provide more forestry products, but people also need to enjoy the value of ecological services provided by forests, which may explain the impact of population expansion on forests. Moreover, previous studies have shown that the growth of forest land area benefits from lower economic growth rates and more stable climatic conditions (Angelsen and Kaimowitz, 1999; Noss, 2001; Tian et al., 2022b) and that and that areas with higher ecological quality are more suitable for forest growth (Weisberg et al., 2007). Forest ecosystems tend to be more influenced by various factors, and have the greatest impact on carbon storage in terrestrial ecosystems. Therefore, protection of forests from destruction and increasing the area of forested land through measures such as natural restoration and artificial afforestation would help increase the carbon sink capacity of forest ecosystems and increase the carbon storage of the entire terrestrial ecosystem (Tian et al., 2022b).



4.2. Suggestions for future development

Urban development patterns are particularly important in the context of increased climate and socioeconomic uncertainty in the future, especially for urban agglomerations such as the Nanjing metropolitan circle, which are nationally planned and built at the inter-provincial level. If urban expansion is carried out according to the ND or ED scenarios, the artificial surface area of the Nanjing metropolitan circle will continue to increase and natural vegetation land use types, such as forest land, will continue to degrade, leading to an increasingly fragile ecological environment. Carbon storage in terrestrial ecosystems will also be significantly reduced in recent decades. If urban expansion is carried out according to the EP scenario, there will be an increase in the forest and grassland area of the Nanjing metropolitan circle will increase, artificial surface area, and carbon storage of terrestrial ecosystems. However, this scenario ignores the demonstration role of the Nanjing metropolitan circle as the leading city in the ED of the Yangtze Delta region of China, which is not conducive to the realization of future ED of the Nanjing metropolitan circle and the national development strategy.

The CD scenario balances the ED and EP of the Nanjing metropolitan circle and maintains a balance of local carbon storage with stable economic growth. Although the terrestrial ecosystem carbon storage will decrease by 0.48 Tg by 2030 under this scenario, the carbon storage reduction of the scenario will decrease significantly and the terrestrial ecosystem carbon storage under the scenario will be positive by 2040. Therefore, reasonable planning of the future urban structure, optimization of land use types, and an increase in carbon storage are particularly important for the future urban development of the Nanjing metropolitan circle. The results of this study show that rapid economic growth will lead to a continuous decrease in carbon storage and a gradual deterioration of the ecological environment. Therefore, slowing the rate of economic growth and promoting ED from “high speed” to “high quality” could improve the carbon storage and ecosystem service value of the study area (Wang et al., 2022). Limiting the disorderly expansion of urban boundaries and constructing ecological red lines can help stabilize the structure of local ecosystems and improve EP (Wu Y. et al., 2019). Moreover, in order to mitigate the effects of climate change, it is necessary to further increase the proportion of clean energy use in the energy structure and reduce the use of fossil fuels (Tian et al., 2022b). More importantly, protecting forests from destruction and increasing the area of forest land can contribute to increasing carbon storage in terrestrial ecosystems (Cao et al., 2009; Xiao, 2014).



4.3. Strengths and uncertainties

In this work, we developed a novel approach for spatial simulation and carbon storage assessment of future LULC based on four set future development scenarios of the Nanjing metropolitan circle and land use demand combining the PLUS and InVEST models (Figure 2). We determined the most suitable future urban development scenario for the Nanjing metropolitan circle to be the CD scenario and simulated a reasonable spatial distribution of LULC and carbon storage. This framework provides relatively accurate spatial and temporal simulations of LULC and carbon storage, and is useful for assessing the distribution of LULC and the impact on carbon storage under different scenarios, which is important for LULC management of urban agglomerations (Gao and Wang, 2019). Our study reveals the model for the dynamic evolution of factors controlling carbon storage in a key area of urban agglomerations, which provides support for decision-making on sustainable regional urbanization. China has three national urban agglomerations and several small urban agglomerations. The rapid growth of urban agglomerations affects carbon storage and threatens other multi-ecosystems, such as water yields, biodiversity conservation, and recreation opportunities (Nelson et al., 2009). Therefore, future research should focus on the following aspects: (1) Different regions have different geographic environments, development patterns, and cultural climates, etc. Scenarios should be set according to the individual characteristics of the regions. Therefore, it is necessary to explore the different driving mechanisms of urban agglomerations in other regions. (2) Besides carbon storage, other ecosystem services can also be assessed by the InVEST model (Nelson et al., 2010; Gao and Wang, 2019). PLUS model combined with InVEST model is meaningful and feasible for simulating LULC and carbon storage changes under different scenarios. Future studies should also examine the spatiotemporal variation of LULC and carbon storage in different regions.

However, the setting of different development scenarios needs to consider more factors, such as the urban planning layout and national forest park reserve planning (Liang et al., 2021b). In addition, the GDP, population, temperature, and precipitation data in this work were resampled to 30 m. This scale difference may cause some uncertainty in the results (Fang et al., 2022). Additionally, the limitations of the InVEST model remain a major challenge in current carbon storage estimations. The model assumes that the carbon storage of the LULC type does not change over time and is equal to the mean value of the carbon storage of the LULC type, which obviously simplifies the carbon cycle process. A second limitation is that the accuracy of the model in estimating carbon storage is dependent on the carbon density estimates for each LULC type. However, the acquisition of carbon density for each land use type is labor-intensive, and regional carbon density values usually cannot be applied to other regions (Sharp et al., 2020). For this purpose, carbon density data were collected for all land use types in the study area to the extent possible to minimize uncertainty in the assessment of carbon storage. Despite these limitations, our work revealed the spatial and temporal distribution patterns of possible future LULCs and the dynamics of carbon storage in the Nanjing metropolitan circle. Based on the results of this study, we explored an optimal future urban development scenario for the Nanjing metropolitan circle, which can aid the Nanjing metropolitan circle achieve a win-win situation for both ED and EP, formulate policies for sustainable socio-ED, and achieve a reasonable future urban LULC layout.




5. Conclusion

We analyzed and simulated the spatial and temporal changes in LULC and its caused ecosystem carbon storage in the Nanjing metropolitan circle under four scenarios for 2020–2030 using the PLUS and InVEST models. The driving factors of LULC changes and the spatial and temporal differences in carbon storage were discussed and the main conclusions were as follows. (1) integrating the PLUS and InVEST models can effectively simulate LULC changes and the resulting carbon storage changes under different development scenarios. (2) The dominant driving factors for LULC changes in the Nanjing metropolitan circle were elevation, nighttime lights, and population. (3) The Nanjing metropolitan circle agglomeration experienced a carbon storage increase of 0.50 Tg under the EP scenario and losses of 1.74, 3.56, and 0.48 Tg under the ND, ED, and CD scenarios from 2020–2030. (4) The conversion of cropland and forest land to artificial surface in Nanjing metropolitan circle is the main cause of carbon storage loss, and this reduced ecosystem carbon storage can be effectively offset by increasing forest ecosystem carbon storage. Overall, the CD scenario was the most appropriate for the future development of the Nanjing metropolitan circle as it balanced ED and EP. Increasing the area of forested land through afforestation can improve the carbon sink capacity of forest ecosystems and increase carbon storage in terrestrial ecosystems. The results provide new perspectives for future land resource reallocation and ED strategies on a regional scale and provide data to support the achievement of China’s carbon neutrality goals.
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Introduction: China’s forests have sequestrated a significant amount of carbon over the past two decades. However, it is not clear whether China’s forests will be able to continue to have as much carbon sequestration potential capacity in the future.

Methods: In order to research China’s forest carbon storage and carbon sequestration potential capacities at spatial and temporal scales, we built a digital forest model for each province of China using the data from The China Forest Resources Report (2014– 2018) and calculated the carbon storage capacity and sequestration potential capacity of each province with the current management practices without considering natural successions.

Results: The results showed that the current forest carbon storage is 10.0 Pg C, and the carbon sequestration potential in the next 40 years (from year 2019 to 2058) will be 5.04 Pg C. Since immature forests account for the majority of current forests, the carbon sequestration capacity of the forest was also high (0.202 Pg C year−1). However, the forest carbon storage reached the maximum with the increase of stand maturity. At this time, if scenarios such as afforestation and reforestation, human and natural disturbances, and natural succession are not considered, the carbon sequestration capacity of forests will continue to decrease. After 90 years, all stands will develop into mature and over-mature forests, and the forest carbon sequestration capacity is 0.008 Pg year−1; and the carbon sequestration rate is ~4% of what it is nowadays. The change trend of forest carbon in each province is consistent with that of the country. In addition, considering the large forest coverage area in China, the differences in tree species and growing conditions, the forest carbon storage and carbon sequestration capacities among provinces were different. The growth rate of carbon density in high-latitude provinces (such as Heilongjiang, Jilin, and Inner Mongolia) was lower than that in the south (Guangdong, Guangxi, or Hunan), but the forest carbon potential was higher.

Discussion: Planning and implementing targeted forest management strategies is the key to increasing forest carbon storage and extending the service time of forest carbon sinks in provinces. In order to reach the national carbon neutrality goals, we recommend that each province have an informative strategic forest management plan.

KEYWORDS
 forest carbon storage, carbon sequestration, forest carbon modeling, national and provincial scale, spatial–temporal distribution


1. Introduction

Since the Industrial Revolution, a large amount of fossil fuel has been utilized and a significant amount of carbon dioxide has been released into the atmosphere. The carbon emission is far more than the amount absorbed by the marine and terrestrial ecosystems. Forest carbon sequestration is the most cost effective nature-based way to reduce the CO2 in the atmosphere (Münnich Vass, 2017). Accurate estimates of carbon storage and the carbon sequestration potential of forests are critical for achieving the strategic goal of carbon neutrality (Broadstock et al., 2021). In order to reduce CO2 emission, many countries and regions have promised to achieve carbon neutrality within certain time frames. At the United Nations Climate Action Summit in September 2019, 66 parties committed to achieve net-zero emissions, and China committed to achieve carbon neutrality by the year 2060 (UNFCCC, 2019). The carbon sequestration capacity depends on the photosynthesis (P) and respiration (R) potential of the trees (Jiang et al., 2020). E.P.Odum’s ecological succession hypothesis is one of the main hypotheses to explain the overall development of forest community. Trees sequestrated CO2 through photosynthesis and released carbon through respiration. According to the hypothesis, the biomass increases in the early stage of ecological succession when P/R > 1. The value of P/R will be close to 1 when the stands in the forest reach mature growth. The carbon budget of the ecosystem will reach a balance, and the forest biomass will reach the maximum limit (Odum Eugene, 1969). In other words, the forest carbon sink tends to be zero when the stands in the forest reach mature stages. Meanwhile, a crucial issue has emerged for our world: if forests lost the function of doing carbon sequestration, what would be the fate of the CO2 emitted by the industry? This is why scientists need to estimate and predict future changes in forest carbon storage and carbon sequestration capacity.

There are 4.1 billion ha forests in the world, and the annual forest carbon sequestration is about 1.1 ± 0.8 Pg C year−1 (Pan et al., 2011). Existing forests will continue to absorb large amounts of CO2, but the future sequestration capacities will depend on forest management. Studies have shown signs of carbon sequestration saturation in tropical rainforests in Africa and in the Amazon (Hubau et al., 2020), tropical Borneo (Qie et al., 2017) and in parts of Europe (Nabuurs et al., 2013). The carbon sequestration rate of forests is closely related to their age structure (Pan et al., 2004). The carbon sequestration rate of young and middle-aged forest is relatively high, and the carbon sequestration capacity rate begins to decline gradually (Pregitzer and Euskirchen, 2004; Zhou et al., 2015) because of stand aging. In theory, by the end of the life cycle, trees will eventually die and become a carbon source, resulting in carbon release (Maia et al., 2020).

Since the 1970s, China has implemented large-scale afforestation and reforestation programs to protect the ecological environment. At present, the area of plantation forests in China ranks the first in the world, and the forest area has increased from 12.7% in early 1970 to 21.6% in 2013. China’s forests are making a positive response to global carbon neutralization (China, S.F.A.O, 2014). Previous forest carbon sequestration studies have predicted the future carbon sequestration capacities, for example, He et al. (2017) predicted the change of carbon storage and carbon sequestration rate of Chinese forests from 2010 to 2050, Cai et al. (2022) predicted carbon sequestration rate for the time period 2010–2060, while Xu et al. (2010) predicted carbon sequestration rates for the period 2000–2050, and Yao et al. (2018) predicted carbon sequestration rate for the period 2010–2040. These results show that Chinese forests will be able to maintain a higher carbon sequestration rate and absorb more CO2 from the atmosphere in the next 30–50 years. These studies play an important role in the specific contribution of forests to conduct carbon neutralization by the year 2060. However, how the forest carbon sequestration capacity will change after 2060 is unknown. We need to learn more about the forest carbon sequestration capacity to make smart forest management decisions to achieve and maintain carbon neutrality after the year 2060.

The Bonn Challenge1 launched in 2011, encourages countries to restore 150 million ha of forest by 2020 and 350 million ha (Hawes, 2018) by 2030, and countries around the world have actively responded to global climate change. China has implemented a series of measures since the 1970s, such as the Three-North Shelter Forest program, the Natural Forest Protection program and many other programs. From 2001 to 2010, the total carbon sequestration of these programs was 132 Tg C year−1 (Lu et al., 2018), which made a significant contribution to China’s current and future CO2 emission reduction (Wang et al., 2018). So far, China has nearly 60 million ha of plantation forests, accounting for 31.76% of the total forest area in China, and most areas are still in the juvenile stages. Due to excessive deforestation over the last decades, more than 60% of the second growth natural forests are still at young and middle-age stages (Dai et al., 2018). The potential carbon sequestration capacity for the near future (from 2010 to 2060) will be significant, however, the carbon sequestration capacity for the distant future (after 2060) is not clear yet. Therefore, the analysis of forest carbon storage and carbon sequestration capacity is required at both a national scale and provincial scales.

The carbon storage and carbon sequestration capacities are particularly important for China’s long-term forest management. The objectives of this research are to predict the carbon storage and sequestration capacities of China in the long-term based on the current management practice and the data of the China Forest Resources Report (2014–2018).



2. Data and Methods


2.1. Data collection and compilation

China is located in the northern hemisphere, with forests covering a wide range of latitudes from north to south. The latitude and climatic differences between the north and south of China make the country’s climate complex and diverse. The latitudinal spatial of forests makes China’s forest types diverse, such as tropical rain forests, subtropical evergreen broad-leaved forests, warm temperate deciduous broad-leaved forests, temperate coniferous and broad-leaved mixed forests, and cold temperate coniferous forests. The longitude spatial makes the country’s forests mainly concentrated in the east, and the west is mostly grassland and desert.

Since the 1970s, every 5 years, the State Forestry Administration of China has published statistics about forest resources. According to the data, forests are divided into three major categories: arborescence forest, economic forests and bamboo forests (this study does not include economic forests or bamboo forests). Furthermore, according to the dominant tree species, the forest was divided into 36 forest types, and each forest type was divided into five age classes: young forest, middle-aged forest, premature forest, mature forest and over-mature forest. The classification of age classes will be carried out with the age classes and age groups of main tree species in the Technical Regulations on Forest Resource Inventory of China (Supplementary Table 1; Administration, C.S.F, 2014). The study covers the entire national forest area of 31 provinces of China.

The key to the prediction of forest carbon storage is to understand the relationship between biomass accumulation and forest ages. In recent years, many studies have found that the Logistic equation can better describe the relationship between biomass density and forest ages (Zhou et al., 2014; He et al., 2017). Xu et al. (2010) used the logistic function to fit the biomass growth curves statistically. In this study, we used the logistic curves of forest stand types by Xu, combined with the latest national forest inventory data in China, to calculate and predict the forest carbon storage capacities of each province.

[image: image]

where B is the biomass density (Mg C ha−1); t is the forest age (year); w k and c are the model parameters. Xu used China’s forest data to fit logistic curves of biomass and age of different forest types. We can see the fitted parameter values (w k and c) for each forest type in Supplementary Table 2.



2.2. Carbon storage calculations

China Certified Emission Reduction (CCER) was launched in 2011, from which the development of forestry carbon sequestration projects has attracted widespread attention from around the world (Ye et al., 2021). At present, the CCER forestry carbon sequestration project is divided into Afforestation carbon sequestration methodology, forest management and carbon sequestration methodology, bamboo afforestation carbon sequestration methodology, and bamboo management and carbon sequestration methodology. Those methodologies accord with the present situation of ecological development in China, and have the characteristics of being universal, cost effective, and environmentally integrated as well as being scientific and reasonable (Li L. et al., 2019).

Forest management and carbon calculation methodology was used to calculate the carbon storage amount of each province. The carbon storage amount mainly included four carbon pools, living trees, dead trees, litter, and harvested wood production. The carbon storage of this study was calculated and predicted based on the current forest area without considering afforestation and reforestation, or any human and natural disturbances in the future using Eq. 2.
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where [image: image] is the total forest carbon of the country; [image: image] [image: image] [image: image] [image: image] represent the carbon pools of live trees, dead wood, litter carbon, and harvested wood production, respectively; A is the total area of each forest stand type; i, t, and j parameters represent the forest stand types, age groups, and provinces. [image: image] is generally calculated as the biomass multiplied by the carbon density of each tree species. Many studies used the default values of 0.5 to transfer biomass to carbon storage (Taeroe et al., 2017; Cai et al., 2022; Chen et al., 2022), but there were significant differences in carbon density among different species. The average carbon density of the deciduous species was <0.5, and the coniferous species was higher than 0.5. We calculated the carbon storage using the average carbon density of each tree species based on the Forestry Standard—Standing tree Biomass Model and Carbon parameters (forestry standard number: LY/T2258-2014, LY/T2259-2014, LY/T2260-2014, LY/T2261-2014, LY/T2262-2014, LY/T2263-2014, LY/T2264-2014, LY/T2655-2016, LY/T2654-2016, LY/T2659-2016, LY/T2661-2016, LY/T2660-2016, LY/T2656-2016, LY/T2657-2016, LY/T2658-2016). In addition, CHWP is equal to zero because forest harvesting was not involved in this study.

The biomass of the whole tree was mainly composed of two parts: aboveground biomass and belowground biomass. Most studies ignore the belowground biomass or use the average ratio of 0.25 given by FAO (Chen et al., 2022). We calculated the belowground carbon according to the ratio of belowground biomass to aboveground biomass of each tree species given by the National Greenhouse Gas Inventory Report of China 2005 (Commission, N.D.a.r, 2014) as Eqs 3, 4.
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where [image: image] is the carbon density of the tree species i. [image: image] is the live tree biomass. [image: image] and [image: image] represent aboveground biomass and belowground biomass, respectively.
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where [image: image] is the dead wood carbon of tree species i; [image: image] is live tree carbon; [image: image] is the ratio of dead wood carbon and live tree carbon of tree species i.

According to the Chinese forest biomass database, we discovered that the correlation between the ratio of litter biomass to the aboveground biomass and aboveground biomass was given by Eq. 6.

[image: image]

where [image: image] is litter carbon of the tree species i; [image: image] is the carbon rate of litter in tree species i, and 0.37 is the amount of C per kg of dry litter biomass; [image: image] is the percentage of litter biomass to the aboveground biomass (%).



2.3. Carbon storage predictions

In our study, the entire carbon pool change was affected by the changes of trees, dead wood, and litter. We did not consider the changes of soil organic carbon pool and carbon storage of shrub and grass under the forest. In addition, the change of carbon pool caused by extreme climate (fire, flood, and drought) was not within the scope of our study. This function was used to determine forest carbon sequestration capacity:
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where [image: image] is the total carbon stock in year t1; [image: image] is the current carbon storage; [image: image], and [image: image] represent the variation of the change of carbon storage of trees, dead wood, and litter during t1-t0, respectively. Forest Simulation and Optimization System (FSOS)2 were used for the analysis in this study (Liu et al., 2006). FSOS is a forest planning system with artificial intelligence algorithm to balance and optimize multiple forest functions using cloud computing. FSOS is a widely used decision support system with stand dynamic modeling and landscape modeling.




3. Results


3.1. Temporal patterns of forest carbon storage and carbon sequestration capacity

The current forest carbon storage in China is 10.0 Pg, and this rate will continue to increase in the future. The total carbon storage will increase from 10.0 Pg to 16.2 Pg, with a total growth potential of 62% in the next 200 years (Figure 1). The total forest carbon storage will increase gradually and attain a stable stage with the increase of time. On the national scale, the carbon sequestration capacity has already reached its peak and has begun to gradually decrease. Forest carbon sequestration capacity is currently the greatest (0.202 Pg year−1), and the decline of forest carbon sequestration capacity has changed from fast to slow, which is what it will be in the future. If forests continue to develop at this trend, they will play a smaller role in achieving the goal of carbon neutrality.

[image: Figure 1]

FIGURE 1
 The carbon storage and carbon sequestration capacity of China’s forests in contemporary times and in the future.


Using the age and age classification of each forest type, we drew a national forest age structure figure. At present, the forest area of each age class accounts for 32.67% (young forest), 30.39% (middle-aged forest), 15.59% (premature forest), 14.11% (mature forest), and 7.24% (overmature forest) of the total forest area, respectively (Figure 2). Combined with the changes of forest carbon sequestration capacity, the current forests are mainly young, and the carbon sequestration capacity is at its peak. The proportion of young and middle-aged forests gradually decreased with stands beginning to age. The forest will change from a young state to a mature state, and the carbon sequestration capacity also will decrease. After 35 years, all the young forests will have been transformed into middle-aged forests, and the carbon sequestration capacity will drop from 0.202 Pg year−1 to 0.063 Pg year−1; additionally, the carbon sequestration rate might decrease 69%. The middle-aged forest will develop into premature forests over the next 70 years, the carbon sequestration capacity of the forest will be 0.016 Pg year−1, and the carbon sequestration capacity will decrease by 92%. After 90 years, all the stands will have developed into mature and overmature forests, and the carbon sequestration capacity of forest will be 0.008 Pg year−1, and the carbon sequestration rate will be ~4% of the current forest carbon sequestration capacity. When the forest is all overmature (after 130 years), the carbon sequestration capacity will be 0.0017 Pg year−1, and the carbon sequestration rate will be reduced by 99%.

[image: Figure 2]

FIGURE 2
 The age structure of China’s forests in currently and in the future.




3.2. Spatial patterns of forest carbon storage and carbon sequestration capacity

There are great differences in carbon storage capacities among the different provinces (Figure 3). The regions with higher carbon storage capacities are mainly in northeastern and southwestern China. Heilongjiang province has the highest carbon storage of 1.49 Pg C, followed by Sichuan (1.28 Pg C), Inner Mongolia (1.16 Pg C) and Yunnan (0.87 Pg C). The forest carbon storage of the eastern coastal provinces is lower than that in the northeastern or southwestern provinces. The lowest carbon storage was in the central area (Henan, Anhui, Shandong, Shanxi, Jiangsu, and Shanghai) of China, which ranged from 0.002 Pg to 0.16 Pg. Although the land area of this western regions is very large, the forest area is relatively small. Due to the harsh environment, there are few types of woodlands suitable for tree growth, the trees grow slowly, and the forest carbon storage potential is lower than that in other areas.

[image: Figure 3]

FIGURE 3
 Carbon storage of China’s forests by the provinces.


The carbon sequestration capacities in forest ecosystems were distributed heterogeneously across China. The current forest carbon sequestration capacities in the southwestern and eastern regions are at their peaks, and have greatly reduced with stand aging (Figure 4). Most regions in the central-southern region (Guangdong, Guangxi, Hunan, Hubei et al.) have not yet reached the maximum carbon sequestration capacities yet and they will reach the maximum around the year 2028. Through the comparative analysis of carbon storage and the carbon sequestration capacity of 31 provinces in China, generally speaking, there is a positive correlation between forest carbon sequestration capacity and carbon storage, such as in Heilongjiang or in Inner Mongolia, Sichuan or the Yunnan provinces. The corresponding carbon sequestration capacity is also higher than that of other provinces. Interestingly, although the carbon sequestration capacity of forests in the Guangxi Province is lower than that in the Yunnan Province, it is still higher than that in Heilongjiang, Inner Mongolia or Sichuan. In addition, the carbon sequestration capacity of other provinces in the southern regions (Guangdong, Hunan, Hubei) is also higher than that of most other provinces in China.

[image: Figure 4]

FIGURE 4
 Carbon sequestration capacities (Tg C year−1) of 31 provinces over the next 200 years. Forests in China are divided into six regions: Northwestern region (Shaanxi, Gansu, Xinjiang, Qinghai, and Ningxia), Northern region (Inner Mongolia, Hebei, Inner Mongol, Shanxi, Beijing, and Tianjin), Northeastern region (Heilongjiang, Jilin, and Liaoning), Southwestern region (Sichuan, Yunnan, Tibet, Guizhou, and Chongqing), Central southern region (Guangxi, Guangdong, Hubei, Hunan, Henan, and Hainan), and Eastern region (Fujian, Jiangxi, Zhejiang, Shanghai, Anhui, Shandong, and Jiangsu).




3.3. Spatial and temporal patterns of future forest carbon densities

At present, the average carbon density of all forest is 56.69 Mg C ha−1 in China, and only 9 provinces are above the average level (Figure 5). The areas with higher carbon densities are mainly concentrated in the northeast, northwest and southwest of China, and the lower carbon density areas are in the eastern and south-central regions. The forest carbon density (91.68 Mg C ha−1) of Xinjiang is the highest, followed by Tibet (84.78 Mg C ha−1), Sichuan (83.18 Mg C ha−1), Jilin (75.57 Mg C ha−1), Heilongjiang (75.07 Mg C ha−1) and other regions. The carbon density in Tianjin, Jiangsu and Guangxi is much lower than other provinces, and the forests of Guangxi are mainly young plantation forests. The carbon density of provinces in the eastern and southeastern regions is low, and the carbon density is between 20 and 40 Mg C ha−1, but the future growth rate is expected to be faster.

[image: Figure 5]

FIGURE 5
 Carbon density (Mg C ha−1) of 31 provincial regions.


In the next 40 years, the average forest carbon density of China will increase greatly in the eastern, central and southern regions of China, from 56.69 Mg C ha−1 in 2018 to 86.38 Mg C ha−1 in 2058. We also found that the increment rate of carbon density in most provinces in southern China was higher than that in the north, but the potential of forest carbon sequestration in southern China will likely account for a major part of the whole carbon uptake process in the future.




4. Discussion


4.1. Uncertainties of future forest carbon storages

Forest carbon sequestration provides a low-cost, nature-based solution for national carbon neutral strategies with enormous potential capacities for the future. Piao et al. (2022a) compared and analyzed four large-scale ecosystem carbon storage and carbon sequestration capacity methods. The existing carbon storage estimation methods of forest vegetation have been relatively mature. Our study uses the inventory method to calculate the carbon storage of China’s forests without including economic forests and bamboo forests. The total carbon storage is 10.0 Pg C of various vegetation types of 31 provinces. Tang et al. (2018) also calculated the carbon storage of China’s forests by vegetation types. The carbon storage of Chinese forests is 10.5 ± 2.0 Pg C. Chen et al. (2022) calculated that the carbon storage of natural forest of China was 9.4 ± 1.45 Pg C using a similar method and the data of 762 natural forest sites in 2010. The previous studies estimated that the carbon storage is 1.4 Pg C in the plantation forests (Zhang et al., 2015), and 10.8 Pg C in the natural forests. The results of all these studies are consistent with those of this study. Due to the lack of economic forest and bamboo forest data, the total carbon storage of this study is slightly lower than that of other studies.



4.2. Temporal changes of carbon storage and carbon sequestration capacity of provinces

To better understand the characteristics of forest carbon sequestration and the contribution to carbon neutrality, based on the calculation of carbon storage, we forecasted the forest carbon storage and sequestration capacities of China for the next 200 years. From 2019 to 2048, the increment of forest carbon storage will be 4.48 Pg C, and the average carbon sequestration will be 0.15 Pg C year−1. He et al. (2017) predicted that the increment of carbon storage of forest vegetation of China will be 13.92 Pg C and the average carbon sequestration will be 0.34 Pg C year−1 from 2010 to 2050, which is much higher than our results. While Yao et al. (2018) predicted that the increment from 2010 to 2050 will be 6.69 Pg C (the average carbon sequestration is 0.17 Pg C year−1). Xu et al. (2010) predicted 7.23Pg C (0.14 Pg C year−1) from 2000 to 2050, and Cai et al. (2022) predicted 0.211 Pg C year−1 from 2010 to 2060. These results are similar to ours. Our results showed that in the next 40 years, the carbon storage will increase from 10.0 Pg C to 15.04 Pg C, and the average carbon sequestration will be only 0.13 Pg C year−1. However, it is worth noting that after 90 years, when all forests have transitioned to a mature state, the carbon sequestration capacity of forests will be only 4% of the current level, and forests almost lost their carbon sequestration capacity. Our results supported E.P.Odum’s ecological succession hypothesis. The forests will gradually enter the old seral stages, the carbon sequestration capacities will decrease greatly, and the carbon storage of the whole forest will gradually reach the upper limit in stable environment conditions (Odum Eugene, 1969; Hubau et al., 2020; Piao et al., 2022b). Of course, our research object is only the current forests in China. In the future, due to afforestation and reforestation, human management, natural succession of forests, and natural disturbances such as hurricanes, floods, droughts, and wildfires that forests may suffer. These factors will affect the carbon storage and carbon sequestration capacity of forests (Fekete et al., 2017; Ceccherini et al., 2020; Walker et al., 2020; Anderegg et al., 2022; Phillips et al., 2022). Studies showed that China’s terrestrial carbon sequestrations will offset 2.8%–18.7% of fossil fuel emissions by the year 2060 (Cai et al., 2022; Yang et al., 2022). However, China will also face more severe challenges in achieving the goal of carbon neutrality because of the decrease in forest carbon sequestration capacities. The carbon sequestration capacity will tend to be zero as the forest gradually enters the mature stage (Odum Eugene, 1969).



4.3. Spatial distribution of carbon storage and carbon sequestration capacities

The study showed that the carbon storage and carbon sequestration capacities have large spatial heterogeneity in China, and the carbon storage capacity in the northeastern and southwestern regions is much higher than that in other regions. The difference in carbon storage among the different provinces is mainly related to the forest areas of each province. In the last 20–25 years, carbon storage in the northeast of China has increased from 1.79 Pg C from 1994 to 1998 to 2.17 Pg C from 1997 to 1999 (Fang et al., 2001), a 45.95% increase because of plantations (Luo et al., 2020), mainly due to the 3-North Shelter Forest Program that has been implemented by China since 1979. The project requires that the afforestation areas in the three northern areas increase from 5.05% to 15.95% by 2050. The fast-growing trees absorb CO2 quickly because of the good climatic conditions in the southeast of the Tibet Plateau, with suitable temperature and sufficient precipitation. Another main reason for the carbon storage increase is that the area is less disturbed (Keith et al., 2009). Forest disturbances have always been the major factors affecting forest carbon storage and carbon sequestration capacity (Seidl et al., 2014). Storms, droughts, pests, wildfires and human disturbances have a great impact on the global carbon storage. For example, Kurz et al. (2008) predicted that continued insect outbreaks in British Columbia will lead to forest loss of about 374,000 square kilometers of forest area between 2000 and 2020, and they also indicated that the forest fires in western Canada have also released a huge amount of carbon. With global warming, climate extremes such as droughts and storms can decrease the regional ecosystem carbon stocks (Reichstein et al., 2013). Lasslop et al. (2020) used simulations from seven global vegetation models to estimate the fire impacts on global tree cover and the carbon cycle, and found that global fires reduce forest cover and vegetation carbon storage by 10%. In addition, there is sufficient evidence to prove that deforestation has reduced forest carbon stocks in the Amazon by 5.1 ± 3.7% (Li et al., 2022).

According to the 2014 IPCC’s report, forest carbon sequestration is the most cost-effective way for national carbon neutral strategies. Forest carbon sequestration capacities can be increased by reducing deforestation, sustainable management and afforestation (IPCC, 2004). In China, forests are widely distributed, with large latitude and longitude spans, and complex terrain. In general, the national forest area, the forest carbon storage and the carbon sequestration capacity have been positively correlated. In areas with high carbon storage, forest carbon sequestration capacity will also be stronger. However, it is worth noting that some low-latitude provinces have lower carbon storage than high-latitude provinces, but their carbon sequestration capacity is stronger than that of high-latitude provinces. For example, the total carbon storage of the Guangxi Province is lower than that of Heilongjiang and Inner Mongolia, but its carbon sequestration capacity is also greater. The reasons may be as follows: First, the proportion of young and middle-aged forests in the Guangxi Province is 84% higher than that in Heilongjiang (61%) and in Inner Mongolia (53%), and the carbon sequestration capacity of young and middle-aged forests is still relatively strong. Second, there are great differences in forest types among the provinces. The southern forests are dominated by short-life cycle tree species with a short maturity period, while the northern tree species have a longer life cycle. The southern forests mainly have the fastest growth and shortest rotation species (Populus spp., Cunninghamia lanceolata, Eucalyptus robusta, Larix spp.), which have greater carbon sequestration capacities if we manage them properly. Third, the environment in the southern region is more suitable for tree growth, with suitable temperatures and precipitation enabling trees to grow year-round, while the annual growth of the cycle of trees in the northern region is short. Here, we also found that although the current carbon sequestration capacity of some south-central provinces (Guangdong, Hunan, and Hubei) is not much different from that of Heilongjiang and Inner Mongolia, the carbon sequestration capacity in the future will decline much more rapidly than in these other provinces. This is related to the growth characteristics of the forest ecosystems in each province. Long life-cycle tree species have a longer carbon sink service time. To maintain a higher level of forest carbon sequestration capacity after achieving the carbon neutralization, China needs to manage forests more effectively to improve forest carbon sequestration capacity as much as possible. Ameray et al. (2021) proposed three management strategies for boreal, temperate and tropical forests: extensive forest management, intensive forest management and old-growth forest conservation. Old-growth forests can store more carbon than young forests, and although older forests have a slower rate of carbon sequestration, old-growth forest will release more carbon after logging (Harmon et al., 1990). Intensive forest management is one way to increase the carbon sequestration capacity of fast-growing tree species. Extensive forest management increases forest carbon sequestration capacity and soil carbon storage through partial cutting (Dalmonech et al., 2022). Due to the strong spatial heterogeneity of China’s forest carbon, it is very necessary to implement corresponding management strategies for forest conditions in different regions. For example, forests in Guangxi, Guangdong, and Fujian should focus on intensive forest management to improve the carbon sequestration capacity of fast-growing species such as Cunninghamia lanceolata and Eucalyptus robusta. Provinces such as Heilongjiang, Inner Mongolia, Jilin, and Liaoning have long forest life cycles. It is recommended to adopt extensive forest management and increase forest and soil carbon storage through partial cutting. Forests in Yunnan, Sichuan and Tibet are less disturbed and have higher carbon density, so it is recommended to focus on protection.

Currently, the forests of China will have largest carbon storage potential and strongest carbon sequestration capacities by the year 2058, but the role of forest carbon sequestration will decline gradually. Therefore, the key to maintaining the high carbon sequestration capacity of forests lies in two points. First, increase the forest area as much as possible and increase the carbon storage potential. From the late 1990s to 2010, the cumulative afforestation area of six key forests projects begun in China increased by 106.31 × 106 ha. The potential afforestation area in the future (2010–2050) is about 300,000 ha, and the carbon sequestration potential of afforestation may reach 2.52 Pg. These afforestation projects are the key to increasing carbon storage in China’s forest ecosystems (Huang et al., 2012). Second, maintain a reasonable forest age structure and maintain a certain proportion of young and middle-aged forests through forest management measures. Here we suggest that national-scale forest planning should implement targeted measures on a province-by-province basis. For forests with fast growing trees in the south, high-intensity management and reforestation methods are used to maintain the high carbon sequestration capacity of forests (Busch et al., 2019; Veldkamp et al., 2020). Aiming at the slow-growing forests in the north, increasing the forest area is not the main goal, but improving forest quality through low-intensity management is the key (Canadell and Raupach, 2008; Feng et al., 2022; Kreier, 2022). The objectives of this research are to comprehensively analyze forest carbon reserves and carbon sequestration potential at a national scale as well as to understand the changes of forest carbon sequestration capacities, and provide a reference for decision-makers so that they can make more effective and more intelligent decisions.



4.4. Carbon density in forest ecosystems

Forest stand ages are important factors for the carbon sequestration capacities of forest ecosystems because the carbon accumulation greatly depends on forest stand ages (Yao et al., 2018). At present, 63.06% of China’s forests are young and middle-aged forests, so China’s forests currently maintain a high forest carbon sequestration capacity. But the carbon sequestration capacity declines rapidly with the succession of ecosystems. When the forest is fully succeeded to a mature state (after 90 years), the carbon sequestration capacity of the forest decreases by 68%. Therefore, to maintain the high carbon sequestration capacity of forests, a certain proportion of young forests must be maintained. The forest carbon sequestration capacities of China have increased by 34% through afforestation and reforestation after the forests were destroyed before the 1990s (Pan et al., 2011). The high proportion of young and middle-age forests make China’s current forest carbon density (56.69 Mg C ha−1) lower than the United States (88 Mg C ha−1; Pan et al., 2011; Nelson et al., 2017). The areas with high carbon densities in China are mainly concentrated in the Northeast, Northwest and Southwest, and the carbon densities in South-Central and Eastern areas are relatively small. The mature and over-mature forests are mainly located in the Northeast, Northwest and Southwest.

The current forest is dominated by immature forest stands, with strong carbon sequestration capacities, and the carbon density will increase from 56.69 Mg C ha−1 to 86.38 Mg C ha−1 over the next 40 years (by 2058). However, the forest carbon sequestration capacities will decrease after the stands reach the mature and over-mature stageswithin the next 40 years. The average carbon density of the national forest will reach the stable stage 91.93 Mg C ha−1 after 100 years, and the carbon density of New Zealand’s natural forest will be 227 Mg C ha−1 when it reaches the stable stage. There are two main reasons for the differences: the natural forest of New Zealand Forest Inventory is mainly composed of primordial forest, which has a more stable structure and a higher carbon storage capacity with a longer growing season and good rainfall (Paul et al., 2021). Reasonable age structure is the key to maintaining high carbon sequestration capacity of forests (Li Y. et al., 2019).




5. Conclusion

The results of this study analyzed the changes of forest carbon storage and carbon sequestration capacities in China. The current forest carbon storage in China is 10.0 Pg C. Before the national carbon neutrality strategic goal is achieved in 2060, the forest still has 5.04 Pg increment space. However, in the next 40 years, the carbon sequestration capacity will be greatly reduced, from 0.202 Pg year−1 to 0.050 Pg year−1, and the carbon sequestration capacity will decrease by 75%. These changes in the trends of forest carbon in the provinces are basically the same as those in the country, and as the new forests, the possible disturbances in the future, and the forest succession are not considered, the carbon sequestration capacity of forest tends to zero with the forest age. Therefore, in order to maintain a high forest carbon sequestration capacity and a longer service time for forest carbon sinks, we have to make more comprehensive strategic plans for our forests. At present, restoration, afforestation, reforestation and sustainable forest development will be the main methods through which to extend the service time of forest carbon sinks. Because of the strong spatial–temporal heterogeneity of forest carbon in China, to formulate and implement afforestation and management strategies according to the changes of forest carbon pools and the carbon sequestration capacity in each province, strategies need to be developed and implemented.

We suggest that the carbon trades should include the carbon storage amount and time in the future because the carbon sequestration of all forests will be gradually reduced to zero when the forests recover to the stable stages. Paying fees by carbon storage amount and time will be a more effective way to keep carbon in the forests and reduce the amount of carbon in the atmosphere. The combination of carbon storage fee and the carbon sequestration fee can be a long-term effective way to reduce the greenhouse gas amount in the atmosphere.
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Atmospheric nitrogen (N) deposition is among the main manifestations of global change and has profoundly affected forest biogeochemical cycles. However, the threshold of N deposition to soil nutrient contents and enzyme activities has rarely been studied in a forest. In this study, we explored the effects of N deposition on soil nutrients and enzyme activities in a Larix principis-rupprechtii plantation on the northern Yanshan Mountain through multigradient N addition experiments (0, 5, 10, 20, 40, 80, and 160 kg N ha−1 year−1) after fertilization for 2 years. Compared with the controls, N addition first led to a decrease in soil NH[image: image]-N and NO[image: image]-N, which then increased significantly. N addition had no significant effects on other soil nutrients. N addition overall elevated soil β-glucosidase activity. N application of >40 kg N ha−1 year−1 significantly reduced soil leucine aminopeptidase activity but had no significant effects on soil acid phosphatase, N-acetyl-β-D-glucosidase, and urease activities. N addition increased the overall stoichiometry ratio of EEA C:N and EEA C:P, but EEA N:P started decreasing after N application of 40 kg N ha−1 year−1. The ratios of C, N, and P acquisition activities changed from 1:1.2:1 under the control conditions to 1:1.1:1 under the N application of 160 kg N ha−1 year−1. N addition increased the overall vector length and had no significant effects on the vector angle. Correlation and redundancy analyses revealed that N addition-induced change in available soil N was the main factor affecting soil enzyme activity and stoichiometry. In general, different enzyme activities had different sensitivities to N addition. Moderate N addition or atmospheric N deposition (e.g., <40 kg N ha−1 year−1) had beneficial effects on soil nutrient cycling and microorganisms in a Larix principis-rupprechtii plantation.
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nitrogen addition, Larix principis-rupprechtii, soil nutrients, soil enzyme activity, North China


1. Introduction

With industrial development, increases in population, and excessive use of fossil fuels, atmospheric nitrogen (N) deposition is increasing year by year. Some studies have predicted that the global nitrogen deposition rate will increase by 2.5 times in the twenty-first century (Davidson, 2009). By the end of the twentieth century, China had become among the three major N deposition regions globally. Although recent studies have shown that N deposition in China has exhibited a stabilizing or even decreasing trend (Yu et al., 2019; Wen et al., 2020), it remains at a high level. Increased N deposition affects the growth and diversity of ecosystem plants and alters the species and structure of soil microorganisms, thereby affecting soil enzyme activity and nutrient cycling (Isbell et al., 2013). Carbon, nitrogen, and phosphorus acquisition enzymes are widely present in soil and have a crucial role in organic matter decomposition and nutrient cycling in soil (Burns et al., 2013), which reflect the microbial requirement for C, N, P, and other nutrient elements and changes in the soil environment (Gutknecht et al., 2010; Guo et al., 2022; Wang et al., 2022). Therefore, they are often used to indicate the response of soil microorganisms to global changes (Kelley et al., 2011) and have a profound terrestrial ecosystem biogeochemical cycle (Sinsabaugh et al., 2009; López-Aizpún et al., 2017). Investigating the effect of N addition on soil nutrients and enzyme activity is crucial for a deeper understanding of soil nutrient cycling in the background of increasing atmospheric N deposition.

The results of studies on the effect of N addition on soil nutrients are generally consistent. Most of them have reported that N addition increases the content of forest soil organic carbon, soluble organic carbon, total nitrogen (TN), and available nitrogen (AN) (Liu and Greaver, 2010), whereas excessive nitrogen input leads to phosphorus limitation (Elser et al., 2009; Deng et al., 2017) and loss of calcium, magnesium, and other nutrients (Huang et al., 2015; Lu et al., 2018). However, the results of studies investigating the effect of N addition on the activity of soil carbon, nitrogen, and phosphorus acquisition enzymes differed considerably. For example, with N addition, the activity of carbon acquisition-related β-1,4-glucosidase (BG) showed an increasing trend in one study (Sinsabaugh et al., 2005), no significant change in another study (Zeglin et al., 2007), and a decreasing trend in other studies (Ramirez et al., 2012; Zhang et al., 2017). Moreover, different enzyme species responded differently to the same N addition treatment. For example, Fan et al. (2018) found that N addition (40 and 80 kg N ha−1 year−1) increased acid phosphatase (ACP) activity but decreased N-acetyl-β-D-glucosidase (NAG) activity in a subtropical Castanopsiscarlesii forest soil. The differential effects of N addition on the activities of different soil enzymes may be closely related to N application rates. However, most current experimental gradients of forest N addition are few (generally 3–4) (Sinsabaugh et al., 2005; Zhang et al., 2017), and the starting fertilizer application is high (generally >40 kg N ha−1 year−1) (Fan et al., 2018), which limits us to determine the sensitivity of soil enzyme activity to nitrogen addition. Finding the threshold at which nitrogen addition starts to influence a certain enzyme activity is difficult.

Larix principis-rupprechtii is among the major silvicultural species on the northern Yanshan Mountain and is widely distributed in warm temperate areas in China. Simultaneously, North China has gradually become one of the new high deposition areas in China (Yu et al., 2019), and studying the effect of N deposition on Larix principis-rupprechtii plantations is important. In this study, we conducted a multigradient N addition experiment in a typical Larix principis-rupprechtii plantation and measured soil nutrients, microbial biomass, and activities of soil carbon and phosphorus acquisition enzymes after 2 years of fertilizer application. We hypothesized that different soil nutrients and enzyme activities have different sensitivities and threshold values to N addition. Available nutrients, such as NH[image: image] or NO[image: image], and nitrogen acquisition enzymes have high sensitivity and low threshold values to N addition. This study clarified the response and threshold values of soil nutrients and enzyme activities to N addition and thus provided a scientific basis for long-term management of Larix principis-rupprechtii plantations under the N deposition background.



2. Methods


2.1. Study sites

The study area is located in Mulanweichang National Forestry Administration of Hebei Province (41°35′N−42°40′N, 116°32′E−118°14′E). This area is in the transition zone between the Inner Mongolia Plateau and the northern mountains of Hebei Province and has a flat terrain and altitude of 1,200–2,000 m. The area has a typical temperate continental plateau monsoon climate. This climate is characterized by cold and dry winters and cool and heat-free summers, with an average annual temperature of ~3.3°C. The average annual precipitation is 445 mm, mostly concentrated in July and August.

In this study, one side of a hill with consistent stand conditions was selected as the experimental sample site for N addition. The stand type was a Larix principis-rupprechtii plantation on the northern slope of the hill, a shady slope of ~15°. This 30-year-old stand has an average tree diameter at a breast height of 13.2 cm, an average tree height of 10.5 m, and a density of ~1,575 trees hm−2. The understory shrubs mainly include Rosa dahurica, Lespedeza bicolor, Armeniacasibirica, and Spiraea pubescens Turcz. The main herbs are Carex siderosticta, Campanula punctata, Moehringia trinervia, Artemisia mongolicau, etc.



2.2. Experimental design

In July 2018, 28 sample plots (area of each plot: 20 m × 20 m) were set up in a row along the slope's contour. The plots were separated by a 10-m separation zone to avoid the interaction between different N application treatments. All plots were fenced to exclude human and animal interference. Before fertilization, 0–10 cm of surface soil was collected from each site by using a five-point sampling method, and soil indices such as pH, soil organic carbon (SOC), TN, total phosphorus (TP), available phosphorus (AP), ammonium nitrogen (NH[image: image]-N), nitrate nitrogen (NO[image: image]-N), and available nitrogen (AN) were measured (Table 1). No significant differences were observed in the soil background of each site and were moderate for the nutrient addition control experiments.


TABLE 1 Background data of soil nutrients in nitrogen addition plots.

[image: Table 1]

The N addition gradient fertilization experiments were conducted in August 2019. N addition was divided into seven levels with four replications for each treatment in a randomized block design. Using the rain gauge method, we found that the annual atmospheric wet N deposition flux in this area is 5.03 kg N ha−1 year−1, and 88% of it is deposited in the growing season from May to September. Thus, N concentrations for addition to the seven levels were 0 (N0), 5 (N5), 10 (N10), 20 (N20), 40 (N40), 80 (N80), and 160 (N160) kg N ha−1 yr−1 from low to high, and the fertilizer type was urea (CH4N2O). Urea was dissolved in 40 L of water in each sample plot and sprayed in each plot evenly. Equal amounts of water were sprayed in the control sample plot. The soil was fertilized every month in the growing season.



2.3. Field sampling

Soil surface (0–10 cm) sampling was conducted in September 2020, 2 years after fertilization was completed in the sample plots. Soil from five points on each plot was sampled and mixed into one sample. The soil were passed through a 2-mm soil sieve to remove debris such as animal residues and stones. A part of the sieved soil sample was stored in a refrigerator at 4°C to determine soil enzyme activity and microbial carbon. Another part of the soil was stored at room temperature and dried naturally to determine basic soil nutrient indices.



2.4. Measurement methods
 
2.4.1. Soil chemical properties

Soil organic carbon was determined using the potassium dichromate-external heating method; recalcitrant organic carbon (ROC) was determined through acid hydrolysis; soil easily oxidized organic carbon (EOC) was determined using the potassium permanganate colorimetric method; and microbial quantity carbon (MBC) was determined using the chloroform fumigation-potassium sulfate leaching method. Soil TN was determined through potassium dichromate-sulfuric acid digestion; ammonium nitrogen (NH[image: image]-N) and nitrate nitrogen (NO[image: image]-N) were extracted with 2 mol L−1 KCI and determined using a continuous flow analyzer (Skalar san++, Skalar, Netherlands); AN was a sum of NH[image: image]-N and NO[image: image]-N. Soil TP and AP were detected using the continuous flow analyzer (Hedley et al., 1982). Soil pH was determined using an acidity meter with the soil–water ratio (1:2.5). These methods can be seen in Bao (2000).



2.4.2. Determination of enzyme activity and calculation of enzyme stoichiometric ratio

Soil urease (UE), soil leucine aminopeptidase (LAP), soil ACP, soil NAG, and soil β-glucosidase (BG) were determined using the microplate fluorometric method (Chen et al., 2018). According to the requirements of the test kit, soil samples were placed in 96-well cell culture plates with the corresponding reagents and detected using a microplate reader (Thermo Scientific™, USA). The substrates of BG, NAG, UE, LAP, and ACP are 4-MUB-β-D-glucopyranoside, 4-MUB-N-acetyl-β-D-glucosaminide, urea, L-leucine-7-amino-4-methylcoumarin, and 4-MUB-phosphate, respectively.

The equations for determining the stoichiometry of soil extracellular enzymes (Keeler et al., 2009) are as follows:

[image: image]
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where EEA represents the soil extracellular enzyme activity, BG represents soil β-glucosidase, NAG represents soil N-acetyl-β-D-glucosidase, LAP represents leucine aminopeptidase, and ACP represents acid phosphatase.



2.4.3. Vector characteristics of enzyme activity

To quantify the limitation of microbial metabolism of C, N, and P, vector analysis was performed on the relative proportion of enzyme activity. Vector length represents the C limitation, and the vector angle represents relative P and N limitations. Microbial C limitation increases with the vector length. A vector angle of >45° represents microbial P limitation, and that of < 45° represents N limitation (Fanin et al., 2016; Moorhead et al., 2016).

[image: image]
 


2.5. Data analysis

Data statistics and analysis were performed using Microsoft Excel 2019 and SPSS 22.0. One-way ANOVA and Duncan multiple comparisons of enzyme activities for N addition treatments were performed at a significance level of p < 0.05 and plotted using SigmaPlot 14.0 software. The Pearson correlation analysis analyzed the correlation between soil enzyme activities and their stoichiometric ratios with soil physicochemical properties and other indicators. Redundancy analysis (RDA) was performed using Canoco 5.0 software to determine the inter-relationships between soil enzyme activities and their environmental conditions. In the forward selection step, the variable was excluded due to its collinearity with the currently selected variable. The constrained step based on a Monte Carlo permutation moved unimportant explanatory variables, and significant variables (p < 0.05) were used in the final analyses.




3. Results and analysis


3.1. Effects of N addition on soil chemical properties

Table 2 and Figure 1 present the effects of N addition on total soil nutrients, effective nutrients, and pH. SOC, TN, and TP with their ratios, pH, AP, and MBC exhibited no significant difference among the different levels of N added (p > 0.05). Soil EOC content tended to increase with increasing N addition, but it did not reach a significant level (p > 0.05). Soil NH[image: image]-N and NO[image: image]-N displayed a decreasing trend with low N applications and tended to increase after the N20 or N40 treatment (Figure 1), and soil AN also exhibited the same trend as soil NO[image: image]-N.


TABLE 2 Effects of nitrogen addition on soil chemical properties.

[image: Table 2]


[image: Figure 1]
FIGURE 1
 Effects of nitrogen addition on soil ammonium nitrogen (A) and nitrate nitrogen (B) in a Larix principis-rupprechtii plantation in North China.




3.2. Effects of N addition on soil enzyme activity and enzyme stoichiometry

Figure 2 presents the effects of N addition on the activity of each soil enzyme. Among them, N addition influenced BG activity, with an overall trend of increase and then decrease, with the highest activity observed after the N5 treatment (Figure 2A). NAG, LAP, and UE presented different responses to N addition. NAG displayed large variations in activity among N treatments and showed no obvious regularity with an increase in N addition. LAP activity first increased and then decreased with the increase in N addition, reaching its peak after the N40 treatment. No significant change was observed in UE activity after the N treatments. ACP activity also did not exhibit significant changes (Figure 2D).


[image: Figure 2]
FIGURE 2
 Effects of nitrogen addition on soil enzyme activity of a Larix principis-rupprechtii plantation in North China. (A–E) BG, NAG, LAP, ACP, and UE, respectively.


Figure 3 presents the influences of N addition on the stoichiometric ratio of soil enzymes. With an increase in N addition, EEA C:N and EEA C:P presented a trend of first increasing and then decreasing. At the same time, EEA N:P exhibited an overall trend of decreasing and reached its highest value after the N10 treatment (Figure 3C).


[image: Figure 3]
FIGURE 3
 Effects of nitrogen addition on soil enzyme stoichiometry in a Larix principis-rupprechtii plantation in North China. (A–C) BG: (LAP+NAG), BG:ACP, and (LAP+NAG):ACP, respectively.




3.3. Effect of N addition on vector characteristics of soil enzyme activity

Overall, the vector length increased with N addition (p < 0.05), except after the N80 treatment (Figure 4A). The vector length was the longest after the N5 treatment, thereby indicating that microorganisms experience the largest carbon limitation at the N5 level. Compared with the controls, N addition had no significant effects on the vector angle (Figure 4B). Vector angles under different gradient N addition enzymes were all < 45°. This indicates that microbial communities experience nitrogen limitation to some extent, and short-term N addition did not significantly change this status.


[image: Figure 4]
FIGURE 4
 Effect of nitrogen addition on the length (A) and angle (B) of enzyme activity vector.




3.4. Analysis of soil enzyme activities and stoichiometric ratios with soil environmental factors
 
3.4.1. Correlation analysis

The results of correlation analysis between soil enzyme activities, stoichiometric ratios, and soil environmental factors in a Larix principis-rupprechtii plantation after N addition are presented in Table 3. Soil BG activity significantly and negatively correlated with pH and EOC and significantly and positively correlated with MBC (p < 0.05). Soil LAP activity was significantly and negatively correlated with NO[image: image]-N and AN. Soil ACP activity was extremely and positively correlated with TP (p < 0.01) and significantly and negatively correlated with MBC. Soil UE activity was significantly and positively correlated with NH[image: image]-N. Soil NAG activity was not significantly correlated with any of the environmental factors (p > 0.05).


TABLE 3 Pearson correlation between soil enzymes, stoichiometric ratios, and soil physicochemical properties.

[image: Table 3]

EEA C:N was significantly and positively correlated with soil MBC. EEA C:P was significantly and negatively correlated with AN and significantly and positively correlated with MBC. EEA N:P significantly and positively correlated with soil NH[image: image]-N and ROC (p < 0.05).



3.4.2. Redundancy analysis

As shown in Figure 5, the total interpretation rate of environmental variables on soil enzyme activities was 65.66%. The total interpretation rates on the first and second axes were 57.65% and 8.01%, respectively. NH[image: image]-N and ROC were the first two factors for explaining the variation in soil enzyme activities and enzyme stoichiometry, and their interpretation rates were 20.6% and 18.6%, respectively.


[image: Figure 5]
FIGURE 5
 Redundant analysis diagram of the influence of soil nutrients on soil enzyme activity and stoichiometric ratios. Soil enzyme activity and the ecological enzyme stoichiometric ratio were used as response variables, and soil environmental factors were used as explanatory variables for redundancy analysis (RDA). The arrows connecting soil microbial enzyme activities and enzyme stoichiometric ratios are in blue, and the arrows connecting the soil environmental factors are in red.






4. Discussion


4.1. Effects of N addition on soil chemical properties

In this study, short-term fertilizer application exhibited no significant effect on soil SOC, TN, TP, TK, ROC, and pH but had significant effects on AN, NH[image: image]-N, NO[image: image]-N, and MBC (Figure 1; Table 2). Most studies have reported an increase in soil AN, NH[image: image]-N, and NO[image: image]-N contents with high N addition (Fang et al., 2009; Hu et al., 2009; Xu et al., 2009). In the present study, these factors also increased with high N addition, but they first decreased with low N application. This phenomenon has rarely been reported in forest ecosystems because the starting fertilizer application rate was usually high in previous studies (Fan et al., 2018). Boreal forests are typically nitrogen-deficient ecosystems (Du et al., 2020). A study also found that nitrogen addition increased plant N uptake and plant biomass in North China (Du et al., 2014). N addition stimulated Larix principis-rupprechtii growth, but this effect was greater at a low N addition level (< 40 kg N ha−1 year−1) and lower with high N addition (unpublished data). Therefore, high N uptake by trees with low N addition is possibly the main reason for the decreased available N. Simultaneously, N addition promotes the mineralization of soil organic N, and decomposition of soil organic N after exogenous N addition directly increases the soil NH[image: image]-N content (Aber, 2002) and the nitrification reaction (Bejarano et al., 2014). Therefore, when the content of available soil N exceeds the range that plants could absorb, soil NH[image: image]-N and NO[image: image]-N accumulate and increase with high N addition.

Soil microorganisms are the most active part of soil organic matter, and MBC is a sensitive index that reflects small changes in the soil environment. Most studies have indicated that N addition causes a reduction in soil MBC content (Treseder, 2008; Janssens et al., 2010; Liu and Greaver, 2010; Zhang et al., 2017), whereas N addition did not reduce soil MBC content in this study (Table 2). In a meta-analysis, Treseder (2008) concluded that two main reasons lead to a decrease in MBC content with N addition. The first is “aluminum toxicity” in soil due to the decrease in soil pH with N addition, and the second is the microbial “carbon starvation” caused by the decrease in lignose activity, increase in melanin content, or decrease in plant carbon allocation to the subsurface with N addition. Soil MBC did not decrease in the present study because, on the one hand, short-term fertilizer application had not led to soil acidification, and on the other hand, the herbaceous plant community under the larch forest in North China was growing vigorously, and N addition significantly increased its biomass (unpublished data). The rapid turnover of herbaceous plants might have increased the soil EOC (Table 2), thereby alleviating the microbial “carbon starvation” possibly after N addition. Therefore, the role of understory plants in connection to the effect of N addition on soil nutrients needs to be further explored.



4.2. Effect of N addition on soil enzyme activities and stoichiometric ratios

Atmospheric N deposition can affect the balance of energy flow and nutrient cycle within forest ecosystems (Liu et al., 2017). Soil enzymes are more sensitive to environmental changes, so they act as an indicator of the soil response to N deposition (Sinsabaugh et al., 2005). We here focused on the activities of five soil carbon, nitrogen, and phosphorus acquisition enzymes. A total of 2 years after N addition, BG and LAP activities exhibited regular changes, whereas NAG, UE, and ACP activities exhibited no significant regular changes. LAP activity was significantly lower after high N treatment (>80 kg N ha−1 year−1) than in the control and low N groups. High N addition reduced N acquisition enzyme activity, which is consistent with the results of most studies (Dong et al., 2019). According to the resource allocation model (Allison and Vitousek, 2005), N addition can alter soil enzyme activity by affecting the effectiveness of soil nutrients (Wallenius et al., 2011), and enzyme activity associated with N acquisition decreases because of an increase in the effective soil N content under N addition conditions (Berg and Matzner, 2011). The correlation analysis results revealed that the increase in soil AN and NO[image: image]-N after N addition was the primary cause of the decreased LAP activity (Table 3).

The resource allocation model also suggested that the activities of carbon acquisition enzymes increase after N addition. The increase in BG activity after N addition, in this study, is consistent with the results obtained from the USA (Sinsabaugh et al., 2005). N application generally stimulates microbial activity, thereby increasing the demand for carbon and the activity of carbon-associated soil enzymes (Keeler et al., 2009). In the present study, pH was negatively correlated with BG activity, which agrees with the results of a meta-analysis (Sinsabaugh et al., 2008). The decreased pH and the high H+ concentration could inhibit the biomass of soil microorganisms, which in turn had an inhibitory effect on enzyme activity. In addition, the change in pH induces a change in the binding state of soil particles, thus leading to a consequent change in soil enzyme activity. In this study, EOC was negatively correlated with BG activity. This may be because when the content of EOC, as a more active part of organic carbon, increases, the organic carbon-decomposing extracellular enzymes would have negative feedback. Soil microorganisms reduce the energy required to synthesize enzymes to a certain extent. This would allow the effective promotion of microbial growth by nutrients, thereby limiting the release of nutrients and inhibiting carbon hydrolase activity in the soil (Enrique et al., 2008).

At the global scale, the ratio of specific C, N, and P acquisition activities is 1:1:1 (Sinsabaugh et al., 2008). In this study, this ratio changed from 1:1.2:1 under the control condition to 1:1.1:1 after treatment with 160 kg N ha−1 year−1, thereby indicating that N limitation occurred in this area. The vector angle also exhibited this phenomenon (Figure 4B). Short-term N addition alleviated this N limitation to some extent but led to no change in this situation. In the present study, the overall increase in BG activity, enzyme EEA C:N, and enzyme vector length with N addition also indicated that N addition exacerbated carbon limitation, which accorded to the “optimal allocation” principle of ecological economics (Sinsabaugh and Moorhead, 1994). Therefore, soil microorganisms in this area were simultaneously under C and N limitation, and N addition aggravated the C limitation. These results were obtained due to short-term N addition, and we believe that it can be alleviated when plant litter increases after long-term N addition.



4.3. Implication for forest ecosystem management

Notably, in this study, the sensitivities of enzyme activities related to carbon, nitrogen, and phosphorus differed in response to N addition in Larix principis-rupprechtii plantation soils. The activities of carbon acquisition enzymes (e.g., BG) were altered with low N addition, and those of nitrogen acquisition enzymes (e.g., LAP) responded significantly with medium N addition (~40 kg N ha−1 yr−1). By contrast, the activities of phosphorus acquisition enzymes (e.g., ACP) did not change significantly. The different sensitivities of these soil enzymes to the N addition rate had important implications for ecosystem management. Unlike plants, which are typically limited from accessing nitrogen in terrestrial ecosystems (LeBauer and Treseder, 2008), heterotrophic microorganisms are more susceptible to carbon limitation. In this study, soil microorganisms were simultaneously under C and N limitations. Moreover, with high N addition (>40 kg N ha−1 year−1), the soil enzyme N:P ratio decreased, and the vector angle increased slightly, thereby indicating a risk of phosphorus limitation. A healthy forest needs a nutritive element balance between C, N, and P. Therefore, in this study, moderate N addition or atmospheric N deposition had beneficial effects on soil microbial growth and nutrient cycling and promoted forest growth with positive ecological effects on the ecosystem.




5. Conclusion

In this study, the effects of 2 years of N addition on soil nutrients, enzyme activities, and stoichiometric ratios were investigated in a Larix principis-rupprechtii plantation on the northern Yanshan Mountain in China. Our results revealed that short-term N addition had no significant effects on total nutrients, AP, soil pH, or MBC in larch plantations. Soil AN, NH[image: image]-N, and NO[image: image]-N contents decreased with low N addition and significantly increased with high N addition. The sensitivities of different enzyme activities in response to N addition varied. BG activity increased with low N treatment, and LAP activity started to decrease significantly with medium N application (40 kg N ha−1 year−1) treatment. The other three enzymes exhibited no sensitivity to short-term N addition. Soil NH[image: image]-N and NO[image: image]-N contents were the main environmental factors influencing soil enzyme activity and altered enzyme stoichiometric ratios under N addition. In general, moderate N addition or atmospheric N deposition was beneficial for soil nutrient cycling and microorganisms in Larix principis-rupprechtii plantations.
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An increase in extreme temperature events could have a significant impact on terrestrial ecosystems. Reanalysis temperature data are an important data set for extreme temperature estimation in mountainous areas with few meteorological stations. The ability of ERA5-Land reanalysis data to capture the extreme temperature index published by the Expert Team on Climate Change Detection and Indices (ETCCDI) was evaluated by using the observational data from 17 meteorological stations in the Qilian Mountains (QLM) during 1979–2017. The results show that the ERA5-Land reanalysis temperature data can capture well for the daily maximum temperature, two warm extremes (TXx and TX90p) and one cold extreme (FD0) in the QLM. ERA5-Land’s ability to capture temperature extremes is best in summer and worst in spring and winter. In addition, ERA5-Land can capture trends in all extreme temperature indices except the daily temperature range (DTR). The main bias of ERA5-Land is due to the difference in elevation between the ground observation station and the ERA5-Land grid point. The simulation accuracy of ERA5-Land increases with the decrease of elevation difference. The results can provide a reference for the study of local extreme temperature by using reanalysis data.
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1. Introduction

Between 2011 and 2020, the average temperature of the global surface was 1.1°C warmer than it was at the end of the 19th century (before the Industrial Revolution) (IPCC, 2021). Since the 1950s, all inhabited regions have seen more frequent and more intense heat waves, while extreme cold temperatures have become fewer and milder, which affects people’s lives and property safety (Shtober-Zisu and Wittenberg, 2021). Global warming has also led to the spread of extreme events to places where they have not been common before. The extent of warming projected by models after the 2050s is associated with taking action against climate change. If carbon dioxide emissions are drastically and rapidly reduced from now on and throughout the 21st century, warming will stop around the middle of the century, and warming will be around 1.5°C or 2°C by the end of the century. With global warming, heat waves, heavy rainfall and droughts will continue to become more severe and frequent (Ruml et al., 2017; Sun et al., 2017; Supari et al., 2017).

Generally, previous research on extreme temperatures utilized observational data (Lin et al., 2017; Ruml et al., 2017; Sun et al., 2017; Supari et al., 2017). However, in mountainous areas with complex climatic conditions and terrain, there are few meteorological stations, limiting the availability of data. Reanalysis data such as ERA-Interim, ERA5, and NCEP have been extensively applied because of their higher resolution and longer time series (Zhao P. et al., 2020; Virman et al., 2021; Araujo et al., 2022; Zhao and He, 2022b; Zou et al., 2022). However, biases between observations and reanalysis data may exist, suggesting that it is necessary to compare reanalysis error with observations (Liu L. et al., 2020; Huai et al., 2021; Rakhmatova et al., 2021; Wu et al., 2021a,b; Xin et al., 2021; Li et al., 2022). European Centre for Medium-Range Weather Forecasts (ECMWF) implements the Copernicus Climate Change Service (C3S) on behalf of the European Union. As part of the Copernicus project, ECMWF has provided ERA5-Land, a state-of-the-art reanalysis data set for land applications, which is available for free in the Copernicus Climate Data Store (Joaquín et al., 2021). ERA5-Land reanalysis data have finer resolution (0.1° × 0.1°) than ERA5 and ERA-Interim reanalysis data (Alexander and Gregor, 2020; Cao et al., 2020; Jiang et al., 2020; Liu J. et al., 2020; Luis and Johannes, 2020; Pelosi et al., 2020; Konstantinos et al., 2021; Pelosi and Chirico, 2021). Several studies evaluated ERA5-Land data (Cao et al., 2020; Pelosi et al., 2020; Zandler et al., 2020; Jiao et al., 2021; Rakhmatova et al., 2021; Ruqing et al., 2021; Wu et al., 2021b; Jintao et al., 2022). For example, Zou et al. (2022) found that ERA5-Land underestimated the observed temperature of coastal urban agglomerations in southeast China with a mean bias of 0.90°C. Araujo et al. (2022) found that the ERA5-Land reanalysis temperature was reliable for Pernambuco, Brazil. Hong et al. (2021) found that the performance of ERA5 precipitation products in Jiangxi Province, China was worse than that of ERA5-Land in 2019.

The Qilian Mountains are an important ecological protection barrier in northwest China and an important water source for Hexi Corridor (Deng et al., 2013; Yang et al., 2021). Due to the complex terrain and climatic conditions of the QLM, meteorological stations are rare, especially above 3,500 m (Lin et al., 2017; Wang L. et al., 2019; Wang X. et al., 2019; Zhou et al., 2019), necessitating the use of reanalysis data. Zhao and He (2022a) assessed ERA5-Land reanalysis monthly average temperature for the QLM and found that the observed temperature variation was captured very well. Li et al. (2022) found that ERA5-Land was more suitable than China Meteorological Forcing Dataset for analyzing temperature trends in the QLM. However, previous studies which evaluated reanalysis data for the QLM were primarily focused on monthly averages but rarely examined extreme temperature events. The Qilian Mountains and Hexi Corridor are affected by different circulation systems, and the local climate changes are more complicated, with frequent meteorological disasters such as drought, flood, sandstorm, dry hot air, low temperature freezing damage and snow disaster. Therefore, evaluating the reliability of ERA5-Land data is necessary in understanding extreme temperature events in the QLM.

Here, we used temperature data for the years 1979 to 2017 from 17 meteorological stations in the QLM to evaluate the ability of ERA5-Land reanalysis data to capture extreme temperature events. Evaluation of the extremes of temperature with reanalysis datasets provides a reference for the research on climate change in the QLM.



2. Data and methods


2.1. ERA5-Land temperature data (Te)

ERA5-Land hourly data were downloaded from the website of ECMWF (link:1). We used ERA5-Land hourly 2 m temperature data for years 1979 to 2017 in this study. The location of cell grid points ranged from 35.8 to 40°N and from 93.5 to 104°E, which covered the entire QLM region (Figure 1). According to the latitude and longitude coordinates of the 17 stations, the ERA5-Land cell closest to each station is selected to avoid spatial interpolation (Zhao and He, 2022a). ERA5-Land hourly reanalysis data is given for UTC time, with an 8-h difference from Beijing time in China; we matched the times of observation and ERA5-Land reanalysis with a time-difference conversion method (Zhao P. et al., 2020; Xu et al., 2022). ERA5-Land grid elevation is extracted from the Digital Elevation Model (DEM) of Geospatial data cloud,2 with the information of ASTER GDEM 30 m. The spatial range of DEM used in this study is 33.94–45.29°N, 88.81–107.24°E, which can cover the entire the Qilian Mountains (Table 1; Figure 1).

[image: Figure 1]

FIGURE 1
 Distribution of ERA5-Land grid points and 17 meteorological stations in the QLM.




TABLE 1 Geographical information about meteorological stations used in this study (Zhao and He, 2022a).
[image: Table1]



2.2. Observations (To)

In this study, observational daily temperature data including daily mean temperature (T_mean), daily maximum temperature (T_max) and daily minimum temperature (T_min) at 17 meteorological stations in the QLM were obtained from China Meteorological Data Sharing Service of National Meteorological Information Center.3 These data can be directly used in scientific research after strict quality control by provider from five aspects: climate limit value and allowable value checking, extreme value checking, internal consistency checking between timing value, daily average, and daily extreme value, time consistency checking, and space consistency checking (Zhao C. et al., 2020; Zhao P. et al., 2020; Zhao and He, 2022a). Spatial distribution and specific information on the meteorological stations can be found in Figure 1 and Table 1, respectively.



2.3. Extreme temperature indices

Eleven extreme temperature indices were selected from ETCCDI (Yin and Sun, 2017) based on their application in climatology research in the region (Hu et al., 2017; Yin and Sun, 2017; Yu et al., 2020; Xu et al., 2022). These indices were grouped into four types: (1) absolute indices (TNx, TNn, TXn, and TXx), (2) threshold indices (ID0 and FD0), (3) percentile-based indices (TN10p, TX10p, TN90p, and TX90p), and (4) other indices (DTR) (Table 2).



TABLE 2 Description of extreme temperature indices.
[image: Table2]



2.4. Evaluation methods

In this study, we used DISO (the distance between indices of simulation and observation) indicator combined with correlation coefficient (r) and mean absolute error (MAE) to assess the reliability of ERA5-Land in capturing daily temperature data and 11 extreme temperature indices in the QLM (Hu et al., 2019; Zhou et al., 2021; Hu et al., 2022; Xu et al., 2022). The equation of DISO is shown in Table 3. DISO is more flexible in expressing the quality of data than other indices (Zhou et al., 2021). The results of DISO value can be divided into two categories in this study: above 0.5 and 0.0–0.5 to analyze the reliability of ERA5-Land in capturing extreme temperature events in the QLM (Hu et al., 2019). It is suggested that ERA5-Land can capture extreme temperature events well when DISO is less than 0.5 (Hu et al., 2019). DISO greater than 0.5 indicates a poor simulation (worst if greater than 1.0), and less than 0.5 indicates a good simulation (best if close to 0.0). In addition, RB was divided into two groups: below 0.0 and above 0.0. The RB below 0.0 or above 0.0 was considered to indicate that ERA5-Land relatively underestimates or overestimates the observational data, respectively. NRMSE shows the mean error of ERA5-Land. NMAE can eliminate the effect of positive and negative offsetting of ERA5-Land errors. The CC is a important indicator of the correlation between ERA5-Land and Observations (Lei et al., 2022).



TABLE 3 Evaluation criteria used in this study.
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3. Results and discussion


3.1. Comparisons of daily temperatures

The correlation coefficient (r) between ERA5-Land and observed T_mean, T_max, and T_min was all larger than 0.9 (Table 4), the determination coefficient (R2) between ERA5-Land and observed T_mean, T_max, and T_min was 0.99, 0.99, and 0.98, respectively (Figure 2), indicating excellent agreement between ERA5-Land daily temperature and observational daily temperature. The average MAE of T_mean, T_max, and T_min at all stations was 2.24, 3.52 and 2.69, respectively (Table 4). Station No.16 has the smallest r value and the largest MAE, which may be due to the larger altitude difference (1,309 m) between Te and To at Station No.16 (Table 1). The DISO value for T_mean and T_max was <0.5 for 47 and 53% of the stations, respectively (Table 5). The DISO value of T_min at all stations is greater than 0.5. The average DISO at all stations of T_mean, T_max, and T_min was 2.44, 0.62, and 2.19, respectively. The spatial distribution of DISO value for T_mean and T_max is shown in Figure 3. In general, the DISO value was higher within the QLM than in the Hexi Corridor, indicating that the ability of ERA5-Land to capture T_mean and T_max in this mountainous area was worse than that in the oasis area. In general, reliability of ERA5-Land to capture T_max is best in the QLM.



TABLE 4 Correlation coefficient (r) and mean absolute error (MAE) between observational daily temperature and ERA5-Land daily temperature at 17 stations in the QLM from 1979 to 2017.
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FIGURE 2
 Scatter plots of ERA5-Land daily temperature and observed values of T_mean (A), T_max (B), and T_min (C). The solid line is 1 :1 line.




TABLE 5 Statistics of DISO for ERA5-Land daily temperature at 17 stations in the QLM from 1979 to 2017.
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FIGURE 3
 Distribution of DISO for T_mean,T_max and extreme temperature indices of 17 meteorological stations in the QLM.




3.2. Comparisons of extreme temperatures

High correlation coefficient (r) of 11 extreme temperature indices between Te and To indicates that ERA5-Land can capture the extreme temperature indices well (Table 6). Only the average r at all stations of DTR is less than 0.8, and the average r at all stations of other extreme temperature indexes is above 0.85. After comparing the MAE of 11 extreme temperature indices between Te and To, we can learn that TX90p have MAE smaller than 1 at all stations (Table 7). DISO of DTR at individual stations ranged from 0.28 to 0.69 with an average across the stations of 0.46, indicating that ERA5-Land simulates DTR in the QLM well (Table 8). ERA5-Land captured FD0 very accurately, with DISO <0.5 for 15 meteorological stations and an average of 0.27. ERA5-Land reanalysis performed better for TXx than for TXn, TNn, and TNx. DISO for TXx was <0.5 at 12 stations accounting for approximately 71% of all stations. TX90p performed better than TN90p, TX10p and TN10p. DISO for TX90p was <0.5 at 9 stations accounting for approximately 53% of all stations. Zhu et al. (2016) found that ERA-Interim and 20CR reanalysis can capture intensity indices better than frequency indices over China, in agreement with this study. The mean DISO values of the warmest days (TXx) in spring, summer, autumn and winter were 0.31, 0.16, 0.32, and 0.93, respectively (Table 9). The spring DISO values of TXn, TNn and TNx were the largest. Overall, ERA5-Land reanalysis performed well in summer and poorly in spring and winter, similar to previous studies (Zhao P. et al., 2020; Xu et al., 2022). Figure 3 shows the spatial distribution of DISO values of extreme temperature index. In general, FD0 has the best performance within the Qilian Mountains region.



TABLE 6 Correlation coefficient (r) between observational extreme temperature indices and ERA5-Land extreme temperature indices at 17 stations in the QLM from 1979 to 2017.
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TABLE 7 Mean absolute error (MAE) between observational extreme temperature indices and ERA5-Land extreme temperature indices at 17 stations in the QLM from 1979 to 2017.
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TABLE 8 Statistics of DISO for ERA5-Land extreme temperature indices at 17 stations in the QLM from 1979 to 2017.
[image: Table8]



TABLE 9 DISO for ERA5-Land daily temperature and extreme temperature indices at seasonal scales from 1979 to 2017.
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3.3. Trends in daily and extreme temperatures

Figures 4–7 shows trends in daily temperature and extreme temperature indices based on ERA5-Land and observations during 1979–2017 in the QLM. Daily temperature data obtained from ERA5-Land reanalysis and observation datasets showed significant positive trends from 1979 to 2017. This indicated that the warming trend in observed data at daily scale was captured accurately by the ERA5-Land reanalysis temperature. TXx (warmest day), TNx (warmest night), TX90p (warm days), and TN90p (warm nights) exhibited a significant positive trend. With global warming, extreme heat events are increasing in intensity and frequency (Xu et al., 2022). Also, extreme high-temperature indices were captured by ERA5-Land well. In addition, TX10p (cool days), TN10p (cool nights), ID0 (ice days), and FD0 (frost days) based on observations and ERA5-Land exhibited negative trends. Both TNn (coldest night) and TXn (coldest day) calculated from Te and To showed a positive trend, showing that the intensity of extreme low temperature events in the QLM increases with global warming. Zhou et al. (2016) analyzed the variation in extreme temperature indices over China using high-resolution gridding data (CN05), and found that the coldest day (TXn) had less variability than the coldest night (TNn), and the warmest day (TXx) had less variability than the warmest night (TNx), similar to the results of this study. Our conclusion is that the trend in extreme low-temperature indices can be captured by ERA5-Land well. The observational DTR showed a large decreasing trend (−0.162°C/decade), while DTR of ERA5-Land showed only a slightly decreasing trend (−0.009°C/decade), indicating that ERA5-Land did not capture the trend in DTR well (Table 10). Generally, all tendencies in extreme temperature events except DTR were captured well by ERA5-Land in the QLM.
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FIGURE 4
 Trends in daily temperature and DTR in observation and ERA5-Land datasets from 1979 to 2017 in the QLM.
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FIGURE 5
 Trends in absolute indices of extreme temperature in observation and ERA5-Land datasets from 1979 to 2017 in the QLM.
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FIGURE 6
 Trends in percentile-based indices of extreme temperature in observation and ERA5-Land datasets from 1979 to 2017 in the QLM.


[image: Figure 7]

FIGURE 7
 Trends in threshold indices of extreme temperature in observation and ERA5-Land datasets from 1979 to 2017 in the QLM.




TABLE 10 Trends in daily temperature and extreme temperature indices in ERA5-Land and observation datasets in the QLM from 1979 to 2017 (The units of T_mean, T_max, T_min, TXn, TNn, TXx, TNx, and DTR are°C/decade; the units of TX10p, TN10p, TX90p, TN90p, ID0, and FD0 are day/decade).
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3.4. Possible bias analysis

Observational data in the QLM were underestimated by ERA5-Land for daily temperature, DTR, and absolute indices of extreme temperature (Figures 4, 5). Our results are similar to previous studies. (Zhao P. et al., 2020; Huai et al., 2021; Zou et al., 2022; Zhao and He, 2022a). Many studies indicated that the main reason for bias in reanalysis temperature data is the elevation difference between Te and To (Gao et al., 2014, 2018; Xu et al., 2022). The linear relationship between Te and To bias and elevation difference is shown in Figure 8, the R2 values of T_mean, T_max and T_min were 0.541, 0.454, and 0.469, respectively. The daily biases were related to the elevation difference between Te and To, especially for T_mean. The simulation reliability of ERA5-Land increased with a decrease in the elevation difference (Zhao and He, 2022a). Therefore, it is possible to correct ERA5-Land reanalysis temperature through a temperature lapse-rate model to further reduce the error and improve the precision of temperature reanalysis (Dee and Uppala, 2009; Gao et al., 2012; Di Giuseppe et al., 2013; Gao et al., 2017). The number of meteorological stations used in this study is small, especially above 3,500 m. However, many studies have shown that the limited number of meteorological stations is sufficient to effectively and accurately evaluate the applicability of reanalysis data (Huai et al., 2021; Jiao et al., 2021). We believe that the bias is mainly caused by the elevation difference between Te and To. Other factors, such as the interpolation method, terrain complexity, and glaciers, are also potential sources of bias (Huang et al., 2022; Zhao and He, 2022a). The DISO values of T_mean, T_max and T_min were 2.44, 0.62 and 2.19, respectively. Due to the high altitude of the Qilian Mountain, complex terrain and few meteorological observation points, the accuracy of simulation is influenced (Xu et al., 2022). Large DISO values have been found at those stations located within the QLM. Therefore, the bias between the observed values and the reanalysis values within the QLM is higher than that in the surrounding areas such as Hexi Corridor. This may be due to the complicated terrain inside the Qilian Mountains (Zhao and He, 2022a).

[image: Figure 8]

FIGURE 8
 Relationship of bias and elevation differences between ERA5-Land daily temperature and daily observations in the QLM during the period of 1979–2017.





4. Conclusions

In this study, we evaluated the ability of ERA5-Land reanalysis to capture extreme temperatures in the Qilian Mountains. The R2 between ERA5-Land and observed T_mean, T_max, and T_min was 0.99, 0.99, and 0.98, respectively, which indicates that ERA5-Land can capture observational daily temperature data well. However, an average DISO at all stations of T_mean, T_max, and T_min was 2.44, 0.62, and 2.19, respectively, indicating that the reliability of capturing the T_max of ERA5-Land reanalysis temperature data is better than that of the T_mean and T_min in the QLM. ERA5-Land performed well in capturing extreme temperature indices TXx, TX90p and FD0. DISO for TXx was <0.5 at 12 stations accounting for approximately 71% of all stations. DISO for TX90p was <0.5 at 9 stations accounting for approximately 53% of all stations. ERA5-Land captured FD0 very well, with DISO <0.5 for 15 meteorological stations and an average of 0.27. The mean DISO values of the warmest days (TXx) in spring, summer, autumn and winter were 0.31, 0.16, 0.32 and 0.93, 131 respectively, showing that evaluation results of the extreme temperature index on the seasonal scale show that the capture results of ERA5-Land on the extreme temperature index are best in summer. Furthermore, our results show that ERA5-Land is able to capture trends in all extreme temperature indices except DTR, for the observational DTR showed a large decreasing trend (−0.162°C/decade), while DTR of ERA5-Land showed only a slightly decreasing trend (−0.009°C/decade). The R2 values between temperature bias and elevation difference of T_mean, T_max, and T_min were 0.541, 0.454 and 0.469, respectively, showing that the elevation difference between ERA5-Land reanalysis temperature data and observation data may be the main cause of temperature bias. Generally, ERA5-Land reanalysis temperature data were reliable in simulating temperature data and identifying extreme temperature events; we conclude that ERA5-Land can be applied in the QLM for climate change research.
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With a growing body of literature on the topic of ecosystem service (ES), there is an urgent need to summarize ES research in the context of ecological restoration programs (ERPs) in China and identify knowledge gaps for future directions. We conducted a systematic literature review of articles to examine the use of ES approaches for ERP assessments. Our results showed that previous studies mainly focused on the Shaanxi Province, and more than half of the reviewed studies considered no more than three ES types simultaneously. All ES categories were not covered equally; most of the studies focused on provisioning and regulating services, while cultural services have received little attention. Although regional-scale and short-term assessments dominated the reviewed papers, we suggest that multiple temporal and spatial scales for ERP assessments should be given more attention in future work. Moreover, we highlight that an oversimplified land use/land cover (LULC) categorization scheme may potentially lead to inaccuracies and biases in ESs detection under restoration programs. Based on this review, our findings can guide future ERP assessments by using the ES approach. Meanwhile, given the global LULC change brought by the proliferation of plantations under ERPs, our results are also expected to provide a path forward to assess ESs associated with LULC change globally.

KEYWORDS
 China, ecological restoration program, ecosystem services, LULC, systematic review


1. Introduction

Ecosystem services (ESs) are widely defined as the benefits that people derive from ecosystems (Millennium Ecosystem Assessment (MEA), 2005). ESs are grouped into four categories including provisioning services (e.g., food, water, and timber), regulating services (e.g., carbon sequestration, water purification, and soil conservation), supporting services (e.g., biodiversity conservation, biomass production, and nutrient cycling) and cultural services (e.g., education, recreation, aesthetic; Zheng et al., 2013; Jiang et al., 2018; Cui et al., 2021). Sustainably managing and utilizing the ESs can improve human well-being (Millennium Ecosystem Assessment (MEA), 2005). However, intensive interference from human activities (e.g., extensive deforestation, cropland, and urban expansion) has dramatically altered ecosystems (Xu W. et al., 2017), causing reductions in two-thirds of all ESs over the last few decades (Millennium Ecosystem Assessment (MEA), 2005; Gao et al., 2017). Ecological restoration has become a major strategy to restore the degraded ecosystem and improve ESs (Chazdon, 2008; Bullock et al., 2011; Keesstra et al., 2018).

Since the beginning of this century, the Chinese government has implemented several ecological restoration programs (ERPs), including the Grain-for-Green Program (GTGP), Natural Forest Conservation Program (NFCP), Soil and Water Conservation Programs (SWCP), and so on (Li et al., 2016; Zhang et al., 2016; Bryan et al., 2018; Jiang et al., 2021). Correspondingly, increasing interest has been focused on temporal and spatial changes in ecosystem services in the context of ecological restoration (Wang et al., 2017; Lu et al., 2018; Zhou et al., 2021). Currently, applications of remote sensing monitoring and biophysical model simulation have demonstrated that these restoration programs promoted vegetation restoration (Li et al., 2015; Zhang et al., 2018, 2019), carbon sequestration (Zhou et al., 2020), biomass increase (Brandt et al., 2018), and soil conservation (Xia et al., 2021). With the continuous implementation of ERPs, it is important to monitor the efficiency and impacts of these ERPs (Hua et al., 2018). A review of previous ERP assessments is particularly important for adjusting current and planning for future ERPs more effectively and efficiently.

Evaluating ERPs has attracted extensive attention and a growing number of studies have been carried out in China for this purpose (Wang et al., 2017; Liu et al., 2019; Tang et al., 2019; Qi et al., 2021). A variety of methodological approaches are available to assess ERPs, such as monetary valuation (Geng et al., 2020), field measurements (Guo et al., 2021), or modeling approaches (Liang et al., 2021). In addition, these studies assess changes in ES caused by ERPs at different scales: Qi et al. (2021) at the county scale, Zhou et al. (2021) at the regional scale, and Wang et al. (2021) at the national scale. Previous review papers related to ERP assessment using ES approaches have been carried out by D’Amato et al. (2016) and Wen and Théau (2020). However, the former focused primarily on monetary valuation studies of forest ES between 2000 and 2012 rather than on the approaches themselves used to assess the ERPs; the latter examined the use of ES approaches by selecting only the peer-reviewed English journal articles and assessed the only two ERPs (i.e., GTGP and NFCP), which may lead to biases in ERPs assessment results. Therefore, integrating local publications and more restoration projects is necessary to obtain a fuller picture of ERP assessment.

In this context, we conducted a more comprehensive systematic review of the literature on ERP assessments using ES approaches in China. Particularly, we focused on answering the following two questions: (1) What is the prevalence of using ES approach on ERP assessments in China? (2) What are the methodological approaches employed to assess ERP? Here, we address these questions by systematically reviewing the relevant literature published in both English and Chinese journals. Our objective was to provide a basis for assessing ERP using ES approaches, identify current challenges and offer recommendations for future research directions.

Several important national or provincial ecological policies in China are relevant to the reviewed papers; they are described briefly below. As one of China’s largest ecological restoration projects, the GTGP, which consists of 10 subprograms covering >73% of China’s territory, has been devoted to converting sloping farmland (farmland land with a slope great than 25°) to forest and grassland since 2000 (Zhou et al., 2020). The NFPP, as another large-scale restoration program, is aimed to protect natural vegetation for sustainable development (Ouyang et al., 2016). The SWCP, which is designed and implemented to reduce soil loss and enhance the soil retention function of the ecosystem (e.g., Duan et al., 2020; Jiang et al., 2021), has gradually developed into a national key ecological construction project. The emerging Ecological Conservation Red Line (ECRL) policy, which was initiated in 2011, aimed to protect ecologically fragile areas and important ecological functional zones, and enhance various ecosystem services (Zhou et al., 2021). The Three-North Shelter Forest Program, which is known as the “Green Great Wall” because its massive area spans half of northern China, has led to desired reductions in local land desertification and soil erosion as well as decreases in airborne sand and dust regionally (Li et al., 2021). The Beijing-Tianjin Sand Source Control Project was initiated in 2001 to promote environmental conservation near the capital of China (Beijing) by controlling the risk of wind-sand and soil erosion disasters. The Returning Grazing Land to Grassland Project was launched in 2003 to reduce the impacts of overgrazing and promote grassland productivity (Lu et al., 2018).



2. Methods

We conducted a systematic literature review of peer-reviewed articles published in English and Chinese journals, using the ISI Web of Science (WOS) database and the China Academic Journal Network Publishing Database of the China National Knowledge Infrastructure (CNKI). Keywords for the search in WOS included a combination of the following: “ecosystem service*” AND (“forest recovery” OR “forest restoration” OR “ecological restoration” OR “vegetation recovery” OR “vegetation restoration”) AND (“China” OR “Chinese”). Additionally, we search CNKI using the combining sets of “生态系统服务” AND (“生态恢复” OR “森林恢复” OR “植被恢复”; the translation of the search terms in WOS) in the topic. We limited the search to the timeframe of 2005–2021 because few ES studies were conducted before the publication of the Millennium Ecosystem Assessment (Dade et al., 2019; Zheng et al., 2019), and China has implemented numerous forest restoration projects since 2000 (Qi et al., 2019). We defined two specific criteria to select papers to be reviewed in this study. First, we only consider papers that assess the ERPs using ES approaches because assessment of ES change could reveal the successes and limitations of the ERPs geared toward enhancing ES (Tallis et al., 2008; Jenerette et al., 2011). Second, we grouped ES assessments into two categories based on De Groot et al. (2012): economic and non-economic assessment. Though economic valuation is easy for implementation and requires minimal data, it generally suffers from measurement and generalization errors, possibly leading to invalid and unreliable results (TEEB, 2010; Jiang, 2017). In addition, since the non-economic valuation encompasses the health state of the ecosystem, which is more applicable to the sustainability evaluation of ecosystem services than the economic assessment (Fu et al., 2013), we only included studies on non-economic assessment of ESs. Our review consisted of a two-step screening process (Figure 1). We first screened article abstracts for relevancy and, if relevant, we then read the entire paper in the second stage of screening. We identified 640 scientific articles meeting the search criteria and 542 articles after the first screening, which removed review articles, conceptual papers, or ones that lacked consideration of ES changes driven by ERPs (Figure 1). We then excluded papers that did not our screening criteria and resulted in 100 papers. See the Appendix for a full list of papers included.

[image: Figure 1]

FIGURE 1
 Overview of the selection process of the peer-reviewed publications identified in the review.


From each of the selected publications, we retrieved the following information: geographical location, driver factors, ESs that were assessed, and spatial and temporal scales (Table 1). We also reviewed assessment methodologies used to assess the ERPs. Methodologies were categorized into three classes: (1) field measurement refers to the use of field observations or laboratory analysis to provide information on ESs, (2) model simulation refers to the incorporation of representations of physical processes underpinning the functioning of the ecosystem to map ESs, and (3) questionnaire survey refers to the evaluation using a perception study that presented a questionnaire or interview, which is often used to evaluate cultural services. We further recorded whether to consider interactions among ESs in each study. Finally, we recorded the changes in ESs related to ERPs based on the findings reported in the literature (i.e., increased, decreased, or no change), considering the differences in the response of ESs to ERPs (Wilson et al., 2017; Benra et al., 2019; Wu et al., 2019). This classification allowed us to synthesize results consistently from different methodological approaches.



TABLE 1 Details of variables extracted from each paper during the literature review.
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3. Results and discussion


3.1. The publication trends and geographical distribution

We identified 100 papers in total on the topic of ERP assessments using ES approaches in China in the WOS and CNKI from 2005 to 2021 that met our specific criteria. The first paper was published in 2007 (Wu et al., 2007), and it assessed the change in soil conservation brought about by the ecological restoration in the karst region. Figure 2 shows the number of related studies per year on this topic. It shows that since 2015, the number of studies has dramatically increased. Furthermore, nearly a quarter of the studies were published in 2019 and no studies were published from 2008 to 2010. Although the ES research work became popular and exponentially increase after the publication of the millennium assessment report in 2005 (Schägner et al., 2013), the ES approach used to assess ERPs started rather late in China. China implemented multiple ERPs in the 2000s, and the high number of publications two decades later may reflect the intense interest in understanding these programs’ outcomes.
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FIGURE 2
 Number of studies on ecosystem services in China has increased in recent years. The line is the cumulative number of studies.


The spatial distribution of ES study regions within China was heterogeneous (Figure 3). Nearly half of the reviewed papers chose a case study located in Shaanxi Province, of which Bojie Fu and his research team from Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences made the biggest contribution to ES research related to ERPs assessment within this province, of 16 percentage points. The Qinghai Province was the next most studied area (38% of studies). However, the eastern coastal regions (e.g., Fujian, Shandong and Jiangsu Province) received the least amount of attention in terms of ERP assessment. This is likely because these regions were not covered by the two largest ERPs (i.e., GTGP and NFCP). Moreover, studies in the southwestern and northeastern regions also received less attention, as each province accounted for <16% of the reviewed paper considered. As the southwestern and northeastern regions are the two largest forested areas in China, massive deforestation for timber production in the past has led to the deterioration of the ecological environment in these regions, which may induce severe catastrophic events (Li, 1999; Cai et al., 2014). Indeed, a large-scale flood occurred in the Yangtze River basin in 1998, and the southwestern and northeastern regions were the source areas of this flood, indicating the importance of these regions in water conservation (Li, 1999). Since then, the Chinese government has launched a series of ERPs in these regions, which has resulted in a significant increase in tree cover (Hua et al., 2018). Despite the clear importance of ES on environmental impacts, the changes in ES under restoration programs remain poorly understood because of the paucity of studies for this purpose conducted in these regions. Thus, we need more studies in these regions to determine if the impacts and effectiveness of restoration programs are similar or different across China.
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FIGURE 3
 Geographical distribution of case studies included in the review. Colors represent the number of ecosystem service case studies (as a few studies consider several regions, the sum of studies in this figure exceeds the total number of studies reviewed).




3.2. Findings through the review analysis


3.2.1. Number of ecosystem service considered

The number of ES considered concurrently in each study varied from 1 to 11 (Figure 4). However, most studies considered between one and five ES types. More than two-thirds of all studies (71%) considered only three or fewer ES types simultaneously, with 42% only considering a single ES, while only 8% of studies considered more than five ES types (Figure 4). The ecosystem should be considered as a whole because the changes or impacts on one part of an ecosystem can have consequences for the whole system (Wen and Théau, 2020). The narrow focus on one or a few ES types may provide little information to policymakers for an appropriate management of ES, and therefore a comprehensive assessment of a broad array of ES is necessary.

[image: Figure 4]

FIGURE 4
 Frequency distribution of the number of ecosystem services evaluated in each case study. The proportion of studies that considered no interaction among ecosystem services is in gray, while the proportion that considered interactions among ecosystem services is in dark gray.


Change of ESs under ecological restoration programs has revealed interactions (i.e., trade-off and synergy) between multiple ES types (Fu et al., 2015): a single service’s supply might have a positive or negative impact on the supply of another ES. Although an increasing number of studies have begun to focus on the relationships among ESs, nearly half of the reviewed papers, which excluded the studies considered a single ES, analyzed ESs in isolation (i.e., without considering any interactions; Figure 4). Given that identifying interrelations of ESs is critical to the sustainable management of ES (Raudsepp-Hearne and Peterson, 2016), interactions of multiple ESs need to be further examined to maintain ecosystem health.



3.2.2. Types of ecosystem service

Following the Millennium Ecosystem Assessment (MEA) (2005) and De Groot et al. (2002), ESs are grouped into four broad categories: provisioning, regulating, cultural and supporting ES. Even though ES approaches have been widely used to analyze the ecological impact of ERPs, reviewed ERP assessment studies showed that not all ESs were considered (Figure 5). Specifically, five types of ESs (i.e., genetic resources, biochemicals, ornamental resources, pollination, and knowledge systems) were not evaluated in the reviewed papers, whereas 77% of studies evaluated the impact of ERPs on regulation services. In addition, reviewed studies primarily focused on provisioning services, particularly services associated with agricultural activities (i.e., fresh water provision and food provision), which has also been evaluated in other studies (Foley et al., 2005; Paudyal et al., 2019; Sylla et al., 2020). However, the reviewed papers showed little interest in evaluating the impacts of ERPs on cultural services, with only 7% of the studies related to these topics. Also, we observed an uneven distribution of types of ESs within each category: of the regulating services, 62 studies estimated the impacts of ERPs on erosion regulation, but only 10 studies focused on air quality regulation; of the cultural services, most studies mainly looked at spiritual and religious values, whereas few studies considered other cultural services (e.g., education and aesthetic). Similarly, studies evaluating provisioning services mostly focused on fresh water provision, and studies evaluating supporting services mostly focused on opportunities for soil formation (Figure 5). Ecosystem services provide benefits to people across various dimensions. While much focus has been placed on the ES categories of provisioning and regulating, cultural services have received little attention in previous studies. One reason often cited is the difficulty in assessing cultural ESs because of their subjective and intangible character (Daniel et al., 2012; Schirpke et al., 2018; Kalinauskas et al., 2021). Cultural services are of great importance, not only for understanding the human-nature relationship but also for policy development (Jiang, 2017). We suggest that future research should take cultural services into account to build a more comprehensive assessment of ESs.
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FIGURE 5
 The number of studies that address each type of ecosystem service and their distribution across each year (because most of the studies consider several ecosystem services, the sum of studies in this figure exceeds the total number of studies reviewed).


To summarize the features of regionalized differences, we further analyzed the focus of existing literature and the gaps of major ecosystem services within each region or province by taking into account the spatial distribution of the key ecological function zones (KEFZs) in China. Given that KEFZs are categorized by their functions of fresh water provision, sand fixation, soil and water conservation, water regulation, and biodiversity conservation (from the Resource and Environment Science and Data Center, https://www.resdc.cn; Figure 6A), we analyzed the spatial coverage of its corresponding ESs (i.e., fresh water provision, air quality regulation, erosion regulation, water regulation and biodiversity/habitat for species) in the reviewed papers. We found that the study site selection in the reviewed papers was not evenly distributed throughout KEFZs. Specifically, many papers chose Shaanxi Province as the case study sites to assess changes in fresh water provision and erosion regulation caused by ERPs (Figures 6B,C), which was in line with major local ecological characteristics or problems (e.g., water shortage and soil erosion; Cao et al., 2009). However, the northwest regions of China (e.g., Xinjiang and Tibet) and the southwestern regions (e.g., Guizhou, Guangxi and Chongqing) received less attention in terms of fresh water provision and erosion regulation evaluations, respectively, although there are a few KEFZs located in these regions (Figures 6B,C). Similarly, uneven distribution was detected in air quality regulation and water regulation evaluations related to ERPs assessments (Figures 6D,E). Moreover, we observed that the research on biodiversity conservation in some specific regions like Yunnan, Xinjiang and Tibet was still rare (Figure 6F). So there need to be more studies in these regions to better understand the effect of ecological restoration on biodiversity maintenance, especially for biodiversity hotspots such as Yunnan Province. Due to the importance of the KEFZs that contain degraded ecosystems and affect the ecological security of the entire country or large regions within it (Fan et al., 2017; Sun et al., 2021), we recommend that full consideration should be given to the regions with different ecosystem service functions, to provide targeted regional ecological restoration strategies.
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FIGURE 6
 The key ecological function zones in China (A), the number of ESs and their geographical distribution. (B–F) Stand for fresh water provision, air quality regulation, erosion regulation, water regulation and biodiversity/habitat for species, respectively.




3.2.3. Spatial and temporal scales

Scale plays an important role in estimating ESs and analyzing their interactions (Gret-Regamey et al., 2014). This is not surprising because ESs and their interactions in response to ERPs vary across spatiotemporal scales (Haines-Young et al., 2012; Costanza et al., 2014; Locatelli et al., 2014; Sannigrahi et al., 2019). We found that regional-level assessments account for 80% of the review papers, followed by county-level assessment (13%). Only 7% of studies considered national scales (see Appendix). Studies focused on the regional and national scales can detect the dynamic changes of ESs at large geographical extents but are limited in their ability to provide detailed information on local scale changes in ES (Raudsepp-Hearne and Peterson, 2016). However, studies focused on small spatial scales limit the ability of policy-makers to assess the full ecological impacts of restoration programs because ecological restoration could provide substantial influences to areas outside the region through the flow of ESs (Wolff et al., 2015). For instance, some specific ESs are provided locally but the benefits can accrue at different scales, ranging from local (e.g., food) to global (e.g., carbon sequestration; Xu S. et al., 2017). Certain ESs may be best considered at specific scales (Millennium Ecosystem Assessment (MEA), 2005). Generally, regulating and provisioning services may be best considered on a broad and small scale, respectively, while some specific services (e.g., carbon sequestration, climate regulation) should be considered on a national or global scale (Fu et al., 2011).

Additionally, the spatial patterns of ESs and their interactions are closely associated with the spatial scale (Sannigrahi et al., 2019), and thus findings from studies conducted in the same regions but on different spatial scales may not be consistent (Qiao et al., 2019). For instance, a study conducted in the floodplain of the Piedra River in central Spain found that the scale effects on changes in ES change will increase with spatial scale, as a higher pairwise correlation was observed at a larger scale (Felipe-Lucia et al., 2014). However, other studies identified a high correlation between changes in ES at fine spatial scales, with this trend disappearing as the spatial scale increases (Hou et al., 2017; Xu W. et al., 2017; Xu S. et al., 2017). Despite the differences in response to different spatial scales, few studies in the reviewed papers examined the variations in relationships among ESs across multiple spatial scales. Given that ecosystems are complex, and some ecological processes may occur across multiple scales (Agarwal et al., 2002), the single-scale observations may capture, miss, or distort ES interactions (Raudsepp-Hearne and Peterson, 2016). Therefore, determining the spatial patterns of ES and identifying associations that exist among them at multiple spatial scales is a critical need of future research aimed at accurately assessing the impacts of ERPs.

The temporal scale is also critical for ES research about ERPs as ESs vary from the short-term (e.g., amenity services) to the long-term (e.g., carbon sequestration; Turner et al., 2000; Limburg et al., 2002). Understanding the temporal changes in multiple ESs and their interactions contributes to assessing the long-term environmental impact of restoration programs (Hein et al., 2016). However, our results indicated that studies covered temporal scales unevenly; 76% of the total reviewed papers evaluated the changes in ESs related to the ERPs in the short term (<20 years; see Appendix), and 28% papers focused on evaluating <10 years of temporal extent. Only 24% papers analyzed more than 20 years of data. Furthermore, 45% of studies in the reviewed papers are based on static or semi-static (two-time points) analysis, without considering a temporal dynamic (at several time intervals or a continuous time series). These studies may ignore the uncertainty in analyzing changes in ESs and their interactions. For instance, changes in modeled ES may likely be dominated or overwhelmed by the external environment (e.g., fluctuations in weather in 1 year), which may result in detecting biased interactions between ESs (Li et al., 2017). Instead, studies based on temporal dynamic analysis may help detect continuous changes in ecosystem services and threshold or lag effects in interactions among ES (Li et al., 2017; Yin et al., 2019).



3.2.4. Changes in ESs and driver factors

Changes in ESs related to ERPs were different among multiple ESs (Figure 6). Generally, after the implementation of ERPs, all the studies in reviewed papers showed an increase in raw materials, air quality regulation, water purification, education and nutrient cycling, followed by erosion regulation (93%), climate regulation (90%), and biodiversity/habitat for species (89%) (Figure 7). However, more than half of the studies (60%) showed that the ERPs resulted in a decrease in fresh water provision. There are also studies demonstrating that no change in ESs is related to ERPs, for instance, 11% of studies found no change in primary production. Overall, ecological restoration was beneficial to improving ESs (except for fresh water provision in some areas). This is likely because ecological restoration can improve the environment of the region (Chen et al., 2020; Tan et al., 2021). In addition, the landscape diversity caused by ecological restoration, and the consequent livelihood changes may make the public perceive more cultural ESs in several ways (Xian et al., 2020). However, our results also indicated that previous studies have yielded inconsistent results regarding ERPs’ effect on ESs. This may be explained by geographical differences, historical factors, and economic conditions of the study regions. In China, most of the ERPs were not tailored for the local hydrological, climate, and land conditions of all regions covered by the program (Cao et al., 2011), and therefore, these programs may have negative impacts on ESs in some areas. More studies are needed to examine the interactions between multiple ESs and the mechanism behind these relationships, which could help improve the program’s effectiveness.
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FIGURE 7
 Changes in ecosystem services after ERPs.


Changes in ESs mentioned above were mainly driven by the implementation of ERPs. Indeed, ecological restoration engineering, including the GTGP, NFCP, SWCP, was the main factor that is responsible for improving ESs in China. However, previous reviews assessed only two ERPs (GTGP and NFCP; Wen and Théau, 2020), neglecting other ERPs’ impacts. Our review found that there was a wide variety in the type of driver factors identified in the reviewed papers (see Appendix). The most identified driver was GTGP (n = 53), followed by NFCP (n = 10) and SWCP (n = 6). However, 33 studies in the reviewed papers did not specify the restoration programs. Although there was considerable variation in the number of papers focusing on each driver, GTGP and NFCP were two of the most studied drivers in ERPs assessment. This is likely because NFPP and GTGP are the two largest ERPs almost cover two-thirds of the Chinese territory (Liu et al., 2008) and have raised wider attention (Lu et al., 2018; Liu et al., 2019; Niu and Shao, 2020; Tan et al., 2021). However, to obtain a fuller picture of the influences of ERPs on ESs, restoration projects with different emphases (e.g., the emerging Ecological Conservation Red Line policy, ecological restoration after earthquake and the Three-North Shelter Forest Program) should be included in ERP assessments.



3.2.5. Methodologies used to assess the ERPs

Eighty-two reviewed papers assessed the ERPs based on model simulation, which shows the dominance of using simulation models in ES assessment (see Appendix). In particular, relatively simple ES models like the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST; https://naturalcapitalproject.stanford.edu/software/invest) or other comprehensive hydrological models such as the Soil Water Assessment Tool (SWAT; Arnold et al., 1998) can generate maps of the delivery and temporal distribution of water-related ESs across the landscape (Leh et al., 2013). The soil conservation assessment methods are mainly based on empirical soil erosion models, i.e., the Revised Universal Soil Loss Equation (RUSLE; Renard, 1997) or the Universal Soil Loss Equation (USLE; Wischmeier and Smith, 1978). Carbon sequestration mapping was commonly modeled using the CASA (Carnegie-Ames-Stanford Approach) model, which is fundamental to vegetation carbon sequestration assessment (Lü et al., 2012). Moreover, 16 reviewed papers used field observations or laboratory analysis to assess the ERPs. This approach can collect information directly from sample plots and is usually used to assess the soil formation services (e.g., soil moisture, soil organic carbon and soil nutrient elements) and biodiversity (e.g., Li L. et al., 2018; Li Y. et al., 2018). Only two papers used a questionnaire survey and the application focused on evaluating cultural ESs after ERPs.

Although our results indicated that model-based assessments have been widely used to evaluate ESs about ERPs, some uncertainties identified from the process of modeling physical quantities remain in these model-based studies that may affect the accuracy of results (Qiao et al., 2019). For example, using undifferentiated modeling parameter values can lead to uncertainties due to spatial heterogeneity in the environmental conditions (e.g., climate and soil; Jiang and Zhang, 2016). Using the land use/land cover (LULC) data as the main source of input data can be another possible source of uncertainty. Since the availability of LULC data depends largely on the spatial resolution of the remotely sensed images (Ghassemian, 2016), the broad categories of LULC obtained from the interpretation of the remote sensing images may cause the loss of some critical information (Su and Fu, 2013). Specifically, ERPs are usually achieved by afforestation and conservation of native forests, while current LULC classifications of forest cover do not differentiate between plantations and native forests. This can be problematic for assessing ERPs impacts on ES, as previous research has shown that plantations and native forests differ in their capacity to provide ESs; for example, plantations may support lower biodiversity, and lower soil and water provisioning services compared with native forests (Wilson et al., 2017; Hua et al., 2018, 2022). Therefore, using the oversimplified LULC categorization scheme may potentially lead to inaccuracies and biases in ESs detection under restoration programs.

Similarly, uncertainties also exist in field measurement because these plot-level studies can often not account for the heterogeneity of complex landscapes and therefore do not sufficiently represent all the study areas (Birkhofer et al., 2015). Additionally, observations at large spatial scales and long-term, consecutive temporal-scale are usually scarce (Martínez-Harms and Balvanera, 2012), which may bring a difficulty to assess ERPs at large scales. This can be resolved by adding more field experiments, but they are usually time-consuming and labor-intensive. In addition, our results indicated that a questionnaire survey is usually used to identify the influences of ERPs on cultural ESs from human perceptions. Unlike some ESs that can be quantified based on the objective units of measure (e.g., the mass of pollutants sequestered per acre per year as a measure of the regulating service), the concept of cultural ESs is more difficult to quantify because they are subjective and driven by personal preferences (Booth et al., 2017), which potentially causes results uncertainties.

The uncertainties associated with the use of simulation models and the loss of information when using the oversimplified LULC categorization scheme may limit the accuracy and precision of evaluation results. Thus, it is necessary to find ways to reduce such uncertainties to improve the accuracy of results. First, a combination of methodology (e.g., field measurement and modeling) could be a possible solution. Model parameters for a regional scale or smaller spatial scale should be adjusted by using the results from field measurements which could provide direct on-ground data for parameterization and parameter optimization of ecosystem process models (Yu et al., 2018). Second, a more rigorous LULC categorization scheme that classifies the subtypes of forests (i.e., plantations versus native forests) is necessary. This is of particular importance as China’s remarkable increase in forest cover has been dominated by tree plantations, usually monocultures following restoration (Hua et al., 2016), while native forests continue to decrease (Zhai et al., 2014). A multi-source data integration strategy that results from the comparison of historical aerial photographs and remote sensing data with high resolutions can be applied to reduce the imprecision and inconsistencies in LULC detection (Balthazar et al., 2015). Additionally, other datasets such as the China National Forestry Inventory should be considered as important Supplementary material, which not only can help us to differentiate between plantations and native forests (Hua et al., 2018) but also can be used to validate the results whether the simulation results or questionnaire survey results to improve the accuracy and precision of evaluation results.





4. Conclusion

This study reviewed 100 papers to evaluate ERPs using ES approaches in China. Our results show that most studies focused on specific regions and specific ES types (e.g., provisioning service and regulating service). Many studies did not consider the association among ES types, which may lead to an incomprehensive understanding of the ecological impact of China’s restoration programs. In addition, the oversimplified LULC categorization scheme used in previous studies may limit the accuracy and precision of ERPs assessment results. Although our review showed that ES approaches have been widely used to analyze the ecological impact of ERPs in China, we identify some major elements that can improve future ERPs assessments. Priority should be given to performing studies on different regions, especially southwestern and northeastern China. Additionally, we suggest that multiple ESs, particularly cultural services, the interactions between multiple ESs, and multiple temporal and spatial scales for ERP assessments should be given more attention in future work. Further, we recommend that future studies should develop a more detailed LULC categorization scheme that differentiates the plantations from native forests to improve the accuracy and precision of evaluation results.
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Introduction: Scutellaria baicalensis is rich in bioactive flavonoid, which are widely used in clinical therapy. Many environmental factors, such as water and temperature, affect gene expression and secondary metabolites accumulation in plants.

Methods: In this study, to explore the effect of drought stress on the accumulation of flavonoids and gene expression in S. baicalensis seedlings, 4-week-old Scutellaria baicalensis seedlings were treated with different concentrations of PEG6000 to simulate drought stress. The contents of four root-specific flavones (baicalein, wogonin, baicalin, and wogonoside) in samples under different treatments were quantitatively analyzed by high performance liquid chromatography (HPLC). The expression levels of flavonoid biosynthesis-related genes (PAL1, PAL2, CHS, and UBGAT) were determined by real-time quantitative PCR (qRT-PCR). Also, a correlation analysis between flavonoid contents and gene expression levels was made.

Results: The HPLC results revealed that 5 and 10% PEG6000 treatments significantly increased the content of four flavonoids, with 5% PEG 6000 treatment being the most beneficial to the flavonoids accumulation. The qRT-PCR results showed that PAL2 and CHS gene expressions differed significantly in different organs, while PAL1 and UBGAT had poor organ-specific. For genes in roots, the expression of PAL1 and UBGAT was the highest in 5% PEG6000 treatment, and PAL2 and CHS were the highest in 10% PEG6000 treatment. Compared with other concentrations of PEG6000, 5 and 10% PEG6000 were more advantageous for gene expression. Collectively, PEG6000 at a low concentration promoted the accumulation of flavonoids and the expression of related genes. Additionally, the correlation results demonstrated that PAL1, PAL2, CHS, and UBGAT genes in roots stimulated the formation and accumulation of the four flavonoids to varying degrees, while the exception of PAL2 gene expression in roots was negatively correlated with wogonin content.

Discussion: This study for the first time investigated the effect of drought stress on the downstream gene UBGAT in S.baicalensis seedlings as well as the correlation between gene expression and flavonoid content in S. baicalensis seedlings under drought stress, providing a new sight for studying the effects of drought stress on flavonoid accumulation and related gene expression in S. baicalensis.

KEYWORDS
 Scutellaria baicalensis, drought stress, gene expression, qRT-PCR, HPLC, flavonoids


1. Introduction

Scutellaria baicalensis (Baikal skullcap), known locally as Huangqin, is a perennial herb native to East Asia (Vrabec et al., 2022). Its dried roots have been an important herb in traditional Chinese medicine for a long time (Wu et al., 2022; Zhou et al., 2022). It has significant therapeutic effects on a wide range of illnesses, including various cancers, inflammation, diabetic nephropathy, oxidative stress (Men et al., 2021; Zhou et al., 2021). Baicalein, wogonin, baicalin, and wogonoside are called as root-specific flavones of S. baicalensis (Zhao et al., 2018). There is a lack of 4′-hydroxy (4′-deoxyflavone) in ring B, which is mainly responsible for the pharmacological activities of S. baicalensis (Zhao et al., 2016). Baicalein has been shown to suppress lipopolysaccharide-induced acute lung injury, ameliorate osteoporosis, and exert an antitumor effect on cervical cancer (Cai et al., 2021; Luo et al., 2021; Jiang et al., 2022). It has been reported that wogonin inhibits cardiac hypertrophy and alleviates kidney tubular epithelial injury (Lei et al., 2021; Shi et al., 2021). Baicalin has been proven to have remarkable effects on various cancer treatments and cardiovascular, hepatic, and renal protection (Singh et al., 2021; Yang et al., 2021; Zhao et al., 2021). Wogonoside can also treat cancer and inflammation (Gu et al., 2021; Huang et al., 2021). Thus, the accumulation of root-specific flavones is an essential aspect of studying S. baicalensis.

Flavonoid synthesis and accumulation depend on the crucial enzymes in their synthesis pathway (Zhao et al., 2018; Wang S. et al., 2019). Studying crucial enzyme genes of the biosynthetic pathway can provide a theoretical basis for the molecular mechanism of active flavonoid accumulation. Flavonoids are usually synthesized through the phenylpropanoid pathway (Ahmed et al., 2021). Their biosynthetic routes are shown in Figure 1. Phenylalanine ammonia-lyase (PAL) catalyzes the first and rate-limiting step of the phenylpropanoid pathway, which provides precursors for a diversity of secondary metabolites, including flavonoids (Liu et al., 2006). It converts primary metabolism into secondary metabolism (Olsen et al., 2008). Chalcone synthase (CHS) is a crucial enzyme that catalyzes the first rate-limiting step of the flavonoid biosynthesis pathway (Wang et al., 2018). UDP-glucuronate (baicalein 7-O-glucuronosyltransferase, UBGAT) is responsible for catalyzing the formation of flavonoid glycosides. Nagashima analyzed the properties of UBGAT purified from cultured cells of S. baicalensis and catalyzed the reaction with various glycosides. The outcomes demonstrated that it only reacted with UDP-glucuronide, baicalein, and wogonin as substrates (Nagashima et al., 2000). Studies show that the flavonoid content of the planted S. baicalensis is lower than that of wild resources (Li et al., 2018; Tian et al., 2018). Therefore, exploring the method to improve the flavonoid content of cultivated medicinal materials is conducive to protecting the wild medicinal resources and preventing the wild resources from being excessively excavated. It has been proven crucial gene expression correlates with flavonoid accumulation (Ma et al., 2014). Accordingly, it is of practical significance for protecting medicinal plant resources and improving the quality of herbs to explore active compound accumulation and crucial enzyme gene expression.

[image: Figure 1]

FIGURE 1
 Biosynthetic pathways of four root-specific flavones (baicalin, baicalein, wogonin, and wogonoside) in Scutellaria baicalensis. Highlighted genes are the studied genes in this paper.


Abiotic factors are fundamental components of the environment that determine plant distribution and productivity (Zhang H. et al., 2022). In nature, plants are constantly challenged by adverse abiotic environmental conditions such as drought, heat, and excess salt levels in the soil, which negatively affect crop productivity (Xie et al., 2021; Mahecha et al., 2022; Paparella et al., 2022). The gene expression and bioactive component accumulation are affected by environmental stress (Xu et al., 2020; Jiang et al., 2021; Xu et al., 2021). Accumulating evidence has proven that appropriate drought stress has the potential to promote the production of bioactive metabolites like flavonoids (Jia et al., 2018; Jia and Wang, 2019; Yang et al., 2020; Zhang et al., 2020). Thus, comprehending how plants respond to abiotic stresses and adverse environmental conditions is critical for protecting the ecology and evolution of living systems.

Polyethylene glycol (PEG) is composed of a large molecular size and is nontoxic (Chen et al., 2020). It can reduce the water potential of the surrounding environment of the cells, causing and cause drought (Wang et al., 2020). PEG6000 is often used to simulate drought stress treatments (Jian et al., 2022; Tang et al., 2022). Thus, this study proposed the hypothesis that appropriate drought treatment can promote the accumulation of flavonoids and gene expression in S. baicalensis seedlings. PEG6000 was used to treat seedlings to simulate drought stress. The accumulation of four bioactive root-specific flavones in roots during drought stress was determined by high performance liquid chromatography (HPLC). Simultaneously, the expression of four crucial genes related to flavonoid synthesis in the roots, stems, and leaves of S. baicalensis was determined by real-time quantitative PCR (qRT-PCR). And the effect of drought on the expression of related genes was comprehensively analyzed. This study would provide meaningful information on the accumulation of compounds in S. baicalensis and insights into the study of quality improvement under stressed conditions.



2. Materials and methods


2.1. Plant material and chemicals

The seeds of S. baicalensis were collected from Inner Mongolia, China. Healthy seeds were selected for the pot experiment. They were sown in a 16.8 cm × 15.5 cm (height × upper diameter) pot and cultured in an artificial illumination incubator (25°C, 16 h of light, and 8 h of dark light).

Compounds wogonoside (CAS: 51059–44-0), baicalin (CAS: 21967–41-9), wogonin (CAS: 632–85-9), and baicalein (CAS: 491–67-8) were procured from Yuanye (Shanghai, China) and had purity >98%. Acetonitrile (CAS: 75–05-8, HPLC) and formic acid (CAS:6449-79-2, LC/MS) were acquired from Fischer Scientific (Hampton, NJ, United States). The remaining reagents were bought locally and were of analytical grade.



2.2. Drought stress treatment

Four-week-old healthy seedlings were selected to be subjected to the follow-up treatment. There were six groups in each of the three replicates (three pots per replicate, 30 seedlings per pot). The six experimental groups were treated with 0, 5, 10, 15, 20, and 25% PEG 6000 under drought stress (Meher and Shivakrishna, 2018; Wang Z.Y. et al., 2019; Batool et al., 2022). The drought stress experiment lasted 5 days, and the solution was poured every other day for three times. Immediately after the experiment, the seedlings were frozen in liquid nitrogen and stored at −80°C.



2.3. Content determination

Thirty seedlings of similar growth were selected per replicate for each treatment for content determination. Dried the roots of S. baicalensis at 55–60°C and rushed them (Zhang L.W. et al., 2022). The powder was precisely weighed to approximately 0.1 g and placed in a triangular flask. Then, flavonoids from S. baicalensis were extracted by the extraction method optimized by our research group. 1 mL of 50% ethanol was added. The sample was accurately weighed and extracted with an ultrasonic step for 23 min. The sample was then filtered through a 0.22 μm filter.

The content of flavonoids in S. baicalensis was determined by HPLC established by our research group. The mobile phase was acetonitrile (A) −0.1% formic acid aqueous solution (B). The gradient elution was used under the following conditions: 0.01–4 min, 10–20% A; 4–12 min, 20–22% A; 12–22 min, 22–24% A; 22–49 min, 24–28% A; 49–52 min, 28–35% A; 52–60 min, 35–45% A; 60–64 min, 45% ~ A; 64–70 min, 55–10% A; 70–85 min, 10% A. The volume flow rate was 0.8 mL/min. The detection wavelength was 274 nm. The injection volume was 10 μL. The column temperature was 30°C.



2.4. Total RNA extraction, cDNA synthesis, and qRT-PCR

Total RNA was extracted from the roots, stems, and leaves of S. baicalensis according to TRNzol Universal Total RNA Extraction Reagent Operation Guide (Tiangen, Beijing, China). RNase-free water was used to dissolve the purified RNA. Using the extracted RNA as a template, cDNA was obtained by reverse transcription based on the instructions of the Evo M-MLV Mix Kit with gDNA Clean for qPCR kit (AGBio, Hunan, China) and carried out qRT-PCR following the instructions of the ChamQ Universal SYBR qPCR Master Mix (Vazyme, Nanjing, China) using an SYBR Green-based PCR assay. The information on primers used in this research is shown in Table 1. The expression levels of PAL1, PAL2, CHS, and UBGAT were determined using CT values and calculated using the 2–△△Ct method (Liu et al., 2019). Each qRT-PCR reaction technique was three replicates. Each experiment has three biological repetitions.



TABLE 1 The information on primers used in this research.
[image: Table1]



2.5. Statistical analysis

The HPLC results were monitored and analyzed through Lab Solutions 5.92 (Shimadzu Scientific Instruments INC.). GraphPad Prism 8.3.0 (GraphPad Software INC.) and Adobe Illustrator 2020 (Adobe INC.) were applied to mapping analyses. OriginPro 2021 (OriginLab Corporation.) and IBM SPSS® Statistics 25 (International Business Machines Corporation) were used in this research work for data evaluation. All the biological samples were three replicates.




3. Results


3.1. Accumulation of root-specific flavones in roots Scutellaria baicalensis under drought stress

The significance of the Levene variance homogeneity test was greater than the significance level of 0.05 (Table 2), so it can be considered that the variance between sample data is homogeneous. The result indicated that one-way ANOVA could be used. The significance of the F value for all four compounds was 0.000, which was lower than the significance level of 0.05 (Table 2). It demonstrated that drought stress significantly affected the accumulation of four flavonoids.



TABLE 2 Results of statistical analysis of four root-specific flavones content.
[image: Table2]

In the LSD test, the mean difference results of each group showed that different PEG6000 concentrations treatments could lead to significant differences in flavonoid content. There was no significant difference in baicalein between 15 and 25% PEG6000 groups, but there were significant differences among other groups. For baicalin, there was no significant difference between 15, 20, and 25% PEG6000, but there were significant differences between other groups. As to wogonin and wogonoside, different treatments resulted in significant differences among all groups.

The contents of baicalein, wogonin, baicalin, and wogonoside were shown in Figure 2. The concentrations of baicalein under drought stress of 10% PEG6000 and 15% PEG6000 were 8.124 and 7.502 mg/g, respectively, which increased by 20.44 and 11.22% compared with the control group (0% PEG6000). Compared with 0% PEG6000, baicalin in the treated group of 10% PEG6000 and 15% PEG6000 was 68.72 and 35.86% higher. Correspondingly, the content of wogonoside increased by 82.75 and 56.59%, respectively, under the two treatments. Compared with the control group, the 5% PEG6000 group increased the content of wogonin by 45.81%.

[image: Figure 2]

FIGURE 2
 The contents of baicalein (A), baicalin (B), wogonin (C), and wogonoside (D) under different concentrations of PEG6000 solution treatment. Different letters indicate significant differences by t-test between different treatment (p < 0.05).




3.2. Expression of crucial genes in roots, stems, and leaves of Scutellaria baicalensis under drought stress

Under drought stress, the RNA of the samples was extracted and the RNA quality is shown in Supplementary Figure S1 and Supplementary Table S1. Then the expression of four crucial enzyme genes was detected in different organs of S. baicalensis (Figure 3). The effects of different organs of S. baicalensis and the concentration of PEG6000 on gene expression were analyzed by multivariate analysis of variance (Table 3). Results of tests of between-subjects effects revealed that the effects of different concentrations of PEG6000 on CHS, PAL1, PAL2, and UBGAT were significant, and the expression levels of CHS, PAL1, and PAL2 were significantly different in various organs of S. baicalensis.

[image: Figure 3]

FIGURE 3
 The results of the expression levels of PAL1 (A), PAL2 (B), CHS (C), and UBGAT (D) in stems, leaves, and roots under drought stress. Different letters indicate significant differences by t-test between different treatment (p < 0.05).




TABLE 3 Significance results for tests of between-subjects effects.
[image: Table3]

The LSD results suggested that the relative expression of CHS was significantly different from other treatments when treated with 10% PEG6000. Compared with other treatment groups (except 10%), the relative expression of PAL1 in the 5% PEG6000 treatment group was significantly different. Between the 5% PEG6000 treatment group and the other treatment concentration groups, the relative expression of UBGAT was considerably different. In the case of PAL2, the 10% PEG6000 treatment group was significantly different from the control group, as were the 15% PEG6000 and 25% PEG6000 treatment groups. In addition, the gene expression levels of genes in roots treated with different concentrations of PEG6000 were compared to explore the best treatment of four genes that affect the production of root-specific flavones. For PAL1 and UBGAT, gene expression was highest when 5% treatment was used.

Meanwhile, the highest expression of PAL1 and UBGAT genes was observed in the 5% treatment, and the highest expression of PAL2 and CHS genes was observed in the 10% treatment, suggesting that low concentration (5 and 10%) of PEG6000 treatment was preferable for the expression of the four crucial enzyme genes. To further explore the gene function, these two concentrations of PEG6000 can be selected to treat samples to increase gene expression.



3.3. Correlation analysis

Pearson correlation method was used to analyze the association between gene expression and flavonoid accumulation by OriginPro 2021 (Figure 4). The findings demonstrated that the amounts of the four flavonoid components were highly positively connected, which indicated that the accumulation patterns of the four flavonoid components were similar under the treatment of PEG6000.

[image: Figure 4]

FIGURE 4
 The results of correlation analysis between the indicators in this study. The correlation type is Pearson. *p < 0.05, **p < 0.01, and ***p < 0.001.


The expression of the CHS in roots was positively correlated with the content of baicalein, which indicated that the CHS could promote the accumulation of baicalein. The expression of CHS and PAL1 in roots was positively correlated with baicalin content, which indicated that these genes played a critical role in regulating the accumulation of baicalin content. Correlation analysis showed that PAL1 and UBGAT in roots were also essential regulators of wogonin accumulation. Moreover, PAL1, CHS, and UBGAT in roots had significant effects on the accumulation of wogonoside. The most crucial enzyme gene expression positively impacted the amount of flavonoid. Only PAL2 and wogonin have a negative correlation. It was speculated that PAL2 might inhibit the accumulation of wogonin.




4. Discussion

Plants respond physiologically to environmental changes to maintain their individual or reproductive fitness. Flavonoid is a very significant class of secondary metabolites. Their synthesis and accumulation are related to the growing environment of plants, and they are involved in the process of plant resistance (Rodriguez-Calzada et al., 2019). They are essential protective substances for plants against the adverse external environment. Secondary metabolism is crucial for coping with environmental changes and maintaining plant homeostasis. Compared with primary metabolism, it is more susceptible to environmental changes (Yang et al., 2020). Previous studies have confirmed drought stress influenced flavonoid accumulation in S. baicalensis. The effects of PEG6000 stress on the accumulation of baicalin and baicalein in the suspension system of S. baicalensis were studied (Yang et al., 2011). Cheng et al., showed the accumulation of baicalin in the root of S. baicalensis under drought stress through controlled irrigation (Cheng et al., 2018). However, these studies only focused on the content of baicalin and baicalein. Wang et al., studied the PEG effect on the contents of baicalin, wogonoside, baicalein, and wogonin, while the object was suspension cells (Wang et al., 2020). Therefore, the response of four root-specific flavones in seedlings to drought stress was studied in this study. The results showed that proper drought stress could promote the accumulation of flavonoids in S. baicalensis. However, when the concentration of PEG6000 was increased, the content of flavonoids in S. baicalensis decreased significantly (Figure 2). This could be due to extreme drought reducing the plant’s metabolic capacity. The best concentration for accumulating root-specific flavones out of all those tested was 5%.

Many interconnected metabolic branches constitute the biosynthesis pathway of plant flavonoids, which involves multiple enzyme genes whose expression is highly dependent on tissue type and responses to internal or external signals (Sun et al., 2022). The synthesis and accumulation of flavonoids depend on crucial enzymes in its synthesis pathway (Ahmad et al., 2019). These enzymes are usually located at the bifurcation of the metabolic branch in the plant secondary metabolites synthesis pathway and can further determine the metabolic flow direction (Zhao et al., 2018; Wang S. et al., 2019). In this study, PEG6000 was used to treat S. baicalensis seedlings to explore how drought stress affected the related gene expression. The data showed that crucial enzyme genes in the flavonoid biosynthesis pathway responded to abiotic stress differently. The effects of progressive drought stress on the expression patterns of key enzymes upstream of baicalin biosynthesis were investigated during the vegetative period in 2-year-old S. baicalensis. And it was found that appropriate drought treatment resulted in increased gene expression, and over-treatment caused decreased expression (Cheng et al., 2018). This result is similar to our results, but it does not study the downstream key enzyme genes. Yang et al., studied the effects of PEG6000 stress on the expression of PAL, CHS, and UBGAT genes in the S. baicalensis suspension system. It was found that 10% PEG treatment of suspension cells significantly increased the expression of PAL and 20% PEG treatment significantly increased the expression of UBGAT, while there was no significant change in the expression of CHS, which was different from our results (Yang et al., 2011). In this paper, seedlings of S. baicalensis were used for the study. The newly discovered genes PAL1, PAL2, and UBGAT of S. baicalensis were reported. And the effect of drought stress on the downstream gene UBGAT in S.baicalensis seedlings was studied for the first time. The highest expression levels of four genes in roots were found at 5 and 10%, respectively, which indicated that these concentrations were more favorable for gene expression (Figure 3). These findings shed light on variations in the secondary metabolism of medicinal plants.

The biosynthesis of plant secondary metabolites is regulated by the spatial and temporal expression of biosynthesis genes (Lan et al., 2016). LSD results revealed significant differences in the relative expression levels of the PAL2 and CHS genes among organs. Expression results displayed that the expression level of PAL2 showed the highest gene expression level in stems, followed by the root and, finally, the leaf (Figures 3B,C). It may be because PAL is closely related not only to flavonoid synthesis but also to lignin formation. And the lignification of stems and roots was higher than that of leaves (Li et al., 2019). The expression of CHS in roots was the highest (Figure 3C). Generally, flavonoid biosynthesis genes were more strongly expressed in roots with higher flavonoid concentrations. As the medicinal organs, the taproots of Polygonum minus had a higher expression level of CHS (Roslan et al., 2012). The only organs in purple-fleshed sweet potato for anthocyanin biosynthesis are the purple tuberous roots, where CHS expression levels are significantly higher than in any other organ (Mano et al., 2007). However, the relative expression of the UBGAT gene differed significantly only between leaf and root, and the relative expression of the PAL1 gene only differed significantly between stem and leaf (Figures 3A,D). It means that the expression of these two genes was not organ-specific. PAL is the first rate-limiting enzyme in the metabolism of phenylpropanes. CHS is the first rate-limiting enzyme in flavonoid synthesis. Both catalyze the rate-limiting step and affect the speed and direction of the metabolic pathway. And UBGAT is responsible for synthesizing aglycone into glycoside. Therefore, this study selected these four genes as representatives to study the effects of drought stress. Moreover, there are other key enzymes (e.g. CLL, CHI, F8H, OMT, and FNSII) in the flavonoid biosynthesis pathway (Lu et al., 2022). Among them, CHI and OMT have been proven to be able to respond to drought stress in other species (Castellarin et al., 2007; Gharibi et al., 2019). Subsequent experiments may be able to carry out more extensive research on the genes related to flavonoid biosynthesis in S. baicalensis.

There is some previous information on the effect of drought on the flavonoids or genes of S. baicalensis. However, up to now, there is no study on the correlation between the four root-specific flavones and crucial gene expression in S. baicalensis seedlings under drought stress. Therefore, we studied the correlation for the first time and found that there was a positive correlation between gene expression and flavonoid content, except for the negative correlation between PAL2 and wogonin. And the correlation between the expression of CHS, PAL1, and UBGAT and flavonoid content was more significant (Figure 4). Therefore, it is suggested that CHS, PAL1, and UBGAT made a greater contribution to the drought-promoted flavonoid biosynthesis in S. baicalensis seedlings. These results showed that the increase in flavonoid content is related to the expression of the enzymes. Proving the relationship between flavonoids and gene expression may provide a theoretical basis for the gene function research. Given that 5% is the most suitable concentration for flavonoid accumulation and gene expression, subsequent experiments can use this as the optimal concentration to treat samples, and in-depth screen and verify gene function by multiple methods including comparing transcriptome and genetic engineering.

Altogether, this study found that drought stress had a significant effect on the accumulation of four flavonoids as well as the expression of four related genes in the medicinal and edible plant S. baicalensis. These findings deepen the understanding of the drought stress regulating function in S. baicalensis, which regulates the accumulation of flavonoids and gene expression. Overall, this research establishes a theoretical foundation for further exploration into the molecular mechanism of S. baicalensis in response to abiotic stresses, and it provides new insights into the metabolic regulation mechanism of S. baicalensis flavonoids.
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In the context of global climate change, temperate forests in climate-sensitive areas are inevitably affected. To deepen the understanding of the impact on precipitation changes into the relationship between key ecosystem services (ESs), this study selected net primary productivity (NPP), soil conservation (SC) and water yield (WY) of temperate forest in northern China as objects, and the Spearman correlation test and redundancy analysis were applied to analyze the response of ESs relationship to precipitation gradient. The results show that precipitation is the meteorological factor with the greatest impact (contribution 21.2%, p<0.01) on ESs and their relationships in temperate forests. The 600-700 mm precipitation gradient is the key turning point in the change of ESs relationship of WY with NPP and SC. This indicates that attention should be paid to the spatial variation of the 600-700 mm precipitation region in the future warm-wet in northern China, which should be used as a dividing line of forest management and policy development. Based on the results, future restoration projects in northern temperate forest should focus on (1) in areas with less than 600-700 mm of precipitation, attention should be paid to the selection of tree species for afforestation to maintain regional water balance; (2) in areas with more than 700 mm of precipitation, soil and water conservation projects need to be planned, especially in mountainous area. The research can not only support the management of temperate forest ecosystems in northern China, but also provide reference to other forest ecosystems to cope with climate change.
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1. Introduction

Forest ecosystems cover 30% of Earth’s land surface and are the primary ecosystems supporting terrestrial life (FAO, 2020). As the source of essential ecosystem services (ESs) such as timber supply, soil conservation, carbon sequestration, and climate regulation (Gamfeldt et al., 2013; Brockerhoff et al., 2017; Ding et al., 2022), forest ecosystems are susceptible and vulnerable to global climate change (Seidl et al., 2017; Wan et al., 2018; Anderegg et al., 2022). Changes in precipitation are an important indicator of global climate change, which can directly or indirectly affect the growth and distribution of forests, altering their structure and function, and thus affecting ESs and their interrelationships (Weltzin et al., 2003; Xu et al., 2020; Chen J. et al., 2021; Liu et al., 2022). From the perspective of the impact path on ESs on forest ecosystem, the intensity and duration of precipitation can affect the flow production mechanism and water yield, along with soil properties (Balasubramanian, 2017; Li M. et al., 2021; Wu et al., 2022); Spatial and temporal variations of precipitation can affect vegetation growth, change vegetation productivity and biomass (Wang et al., 2020), and then affect the carbon sequestration of forest. Forest canopy density and fine root distribution, which are affected by precipitation, can also impact on water yield and soil conservation (Lozano-Parra et al., 2015; Jiang et al., 2016; Thompson et al., 2016). In addition, temperate forest growth and ESs are more sensitive to water restriction (Gilliam, 2016; Seidl et al., 2020; Zhang et al., 2020). Therefore, exploring the response of temperate forest ESs and their inter-relationships to precipitation can not only support local forest management, but also provide basis for forest ecosystems to cope with global climate change.

Forest ecosystems provide a variety of ESs to human beings. Till now, most research on forest ESs focuses on the spatio-temporal changes and the cold and hot spots identification (Ditt et al., 2010; Mamat et al., 2018; Vatandaslar, 2022). Also, there are studies on forest ESs under different water conditions. In water-scarce temperate drylands, more attention has been paid to the dynamic interactions between rainfall and vegetation coverage and the ESs they provide (Wang et al., 2011; Rohatyn et al., 2018; Wang H. et al., 2022). In areas with abundant hydrothermal conditions, studies have revealed the effects of forest supply and support services on precipitation gradients (Alamgir et al., 2016; Thomas et al., 2021). In addition, the influence of temporal variation in precipitation on forest ESs is also one of the hotspots, e.g., the effects of inter-annual and intra-annual temporal dynamics of precipitation on forest area and regulation services (soil erosion, nutrient retention and etc.) in eco-sensitive zones (Suescún et al., 2017; Nelson et al., 2018; Rodrigues et al., 2020).

However, tradeoffs and synergies of ESs exist extensively in forest ecosystem (Liu et al., 2019; Wang et al., 2021; Feng et al., 2022; Jia et al., 2022), the dynamic of which can significantly affect the forest growth and management (Biber et al., 2020). Compared with the impact of precipitation on forest ESs (Hely et al., 2006; Lu et al., 2014), we still have relatively little understanding of the effects of precipitation on the interrelationships of forest ESs, especially the interconversion between tradeoffs and synergies. Due to the various response of different ESs and precipitation, the interrelationships among ESs with precipitation should be diverse. Therefore, it is of necessity to clarify the response of forest ES relationships to precipitation variation, especially in the temperate zone which is sensitive to climate change (Galicia et al., 2015; Wang et al., 2019).

The temperate forests of northern China are selected as the study area, of which is important national ecological security barriers. Forests in this area play the important role in regulating the local and regional carbon and water cycles and mitigating climate change (Thom et al., 2017; Jiao et al., 2021). In addition, the temperate zone is climate sensitive (Wan et al., 2017, 2018), and water conditions are the primary limiting factor for forest growth and ESs supply (Fang et al., 2005; Galicia et al., 2015). Therefore, in this study, three ESs, e.g., Net Primary Product (NPP), soil conservation (SC) and water yield (WY), which closely related to water resources in temperate forests were selected. The specific objectives are (1) to identify the relationship between the three ESs and precipitation; (2) quantify the interrelationships of ESs in response to precipitation gradients; and (3) assess the contribution of precipitation to interrelationship of ESs. The results can provide insight into the impact of precipitation changes on ES relationships and the information for coping with possible damage to forest due to climate change.



2. Materials and methods


2.1. Study area

To cover the overall temperature zone, the study area covers the Songliao River Basin and Haihe River Basin in the north of China (Figure 1). The area has warm-rainy summer and cold-dry winter with 445–973 mm in annual average rainfall and −7 to 13°C in annual average air temperature. Based on the statistical results of national weather stations in the study area, there was a significant downward trend in precipitation in the region, with a precipitation change rate of −7.35 mm/10a during the period 1960–20181. However, existing models predict that the precipitation trend in the region will reverse in the future (Jiang et al., 2020; Jiang R. et al., 2021). The model simulations combined with IPCC SRES A2 scenario also indicate an increasing precipitation trend of 0.08-2 mm/d in the future (2035–2044) (Tang et al., 2009).

[image: Figure 1]

FIGURE 1
 Distribution of precipitation gradients and forest natural reserves in the Songliao River Basin and Haihe River Basin, Northern China.


The forests of this region are not only capable of providing high-quality supplies and support services, but are also essential for local and regional regulation services (Mao et al., 2019). Climate fluctuations at large spatial and temporal scales will have irreversible effects on the distribution and function of forest ecosystems. In order to remove the influence of human disturbance, forest in 77 nature reserves were selected as typical objects (Xu et al., 2017), and the forest types are mainly coniferous broad-leaved mixed forest and deciduous broad-leaved forest. Based on dry-wet boundary, precipitation is divided into five gradients every 100 mm (i.e., <500, 500–600, 600–700, 700–800, and >800 mm).



2.2. Quantification of ecosystem services

Based on the previous studies on temperate forest ESs, three major ESs were selected, i.e., net primary product (NPP), soil conservation (SC), and water yield (WY) (Li et al., 2020; Li X. et al., 2021; Wang R. et al., 2022).


2.2.1. Net primary productivity

Net primary productivity (NPP) refers to the total amount of dry organic matter accumulated by vegetation per unit of time and area. It measures the net amount of carbon fixed in vegetation by photosynthesis of [image: image] (Field et al., 1998). NPP is an important component of the terrestrial carbon cycle, not only directly reflecting the production capacity of vegetation communities under natural environmental conditions, representing the quality of the land ecosystem, but also determining the main factors of the carbon source and sink and regulating the ecological process, playing an important role in global change and carbon balance (Zhao and Running, 2010; Ji et al., 2020).



2.2.2. Soil conservation

Soil conservation service is the regulatory capacity of an ecosystem to prevent soil erosion. In this study, soil conservation is calculated based on the Revised Universal Soil Loss Equation (RUSLE), using the difference between actual and potential soil erosion (Ouyang et al., 2016). The calculation method is as follows:

[image: image]

where, R is the rainfall erosion force factor ([image: image]); K is the soil erodibility factor ([image: image]); LS is the slope length slope factor; C is the cover and management factor; P is the soil conservation measure factor.



2.2.3. Water yield

In this study, the water yield module of the InVEST model was used for the simulation estimation of water yield (Sharp et al., 2018). The module is based on the Budyko curve and the average annual rainfall (Hamel and Guswa, 2015). The principle is briefly defined as the amount of precipitation per calculation unit minus the amount of water lost to storage and evapotranspiration, and the difference is the water yield (Ouyang et al., 2016), as follows:

[image: image]

where, [image: image] is the average annual water supply in raster [image: image], [image: image] is the average multi-year precipitation in raster [image: image], [image: image] is the average annual evaporation in raster [image: image] of the jth land use and land cover type.




2.3. Data sources

Based on regional precipitation frequency analysis, the year 2015, which is closest to the precipitation frequency p = 50% (around 617.8 mm), is selected as the reference year. The datasets involved used for assessing ESs based on the ArcGIS platform were listed in Table 1. ANUSPLIN interpolation was used for station data, and the spatial scale of raster data was finally unified to 1 km.



TABLE 1 Data sources for ecosystem services assessment.
[image: Table1]



2.4. Analysis of trade-offs and synergies of ecosystem services

To derive trade-off/synergistic relationships between multiple ecosystem services, we analyzed the correlation between the two ecosystem services using the Spearman correlation test using the R language. A negative correlation coefficient indicates a trade-off between the two ESs, which means that as one ES increases, the other decreases. In contrast, a positive value indicates a synergistic relationship that grows or synergizes. The larger the absolute value of the correlation coefficient, the stronger the trade-off/synergy between the ESs and vice versa.

[image: image]

where, [image: image] and [image: image] represent the rank of two ESs, [image: image] is the correlation coefficient between [image: image] and [image: image]; n is the rainfall gradient; [image: image] is the correlation coefficient between [image: image] and [image: image] at rainfall gradient n. [image: image]>0 indicates a synergistic relationship between [image: image] and [image: image]; [image: image] = 0 indicates no correlation between [image: image] and [image: image]; [image: image]< 0 indicates a trade-off relationship between [image: image] and [image: image]; a more significant of [image: image] indicates a stronger correlation between [image: image] and [image: image].



2.5. Redundancy analysis

Redundancy analysis (RDA) is a direct gradient analysis extension of principal components analysis (Šmilauer and Lepš, 2014). It can identify trends in the scatter of data points that are maximally and linearly related to a set of constraining (explanatory) variables (Makarenkov and Legendre, 2002). Mostly used by researchers to test hypotheses relating response (e.g., species data) to explanatory (e.g., environmental) variables (Legendre and Anderson, 1999; Dai et al., 2020). In this study, ES were clustered to better understand the analysis of the relationships between ES under different rainfall gradients (trade-offs and synergies) and their relations to other environmental factors.




3. Results


3.1. Correlations between ESs and precipitation

Throughout the study area (Figure 2), there was a significantly synergistic correlation with ecosystem services, with NPP having the strongest correlation, followed by WY and SC. Between ESs, WY had a significant synergy relationship with NPP and SC, respectively, and there was no significant correlation between NPP and SC.

[image: Figure 2]

FIGURE 2
 Relationship between ESs and precipitation. ***p < 0.001; **p < 0.01; *p < 0.05. Blue and red represent significant positive and negative, respectively. Gray represents all the study areas, and successive ones represent different precipitation gradients.


Under different precipitation gradients, the heterogeneity of the relationships among ESs and precipitation was obvious. Precipitation has a synergistic correlation with NPP only at 500-600 mm gradient, and with water yield at >800 mm gradient. From the perspective of internal relations between ESs, synergistic relationship was found only between soil conservation and water yield at 600–700 mm gradient. Besides, NPP exhibited trade-off relationship with the other ESs at 500–600 and 600–700 mm gradients.



3.2. Characteristics of ESs along the precipitation gradients

As shown in Figure 3, all three ESs upraised with the increase of precipitation, but there was significant variability in the growth trend. By the analysis of variance between groups, it was also found that there was considerable variability in the service values between different precipitation gradients. The mean values of NPP under different rainfall gradients were 481.4 g C/m2, 546.1 g C/m2, 657.2 g C/m2, 694.5 g C/m2, and 710.7 g C/m2, respectively, with the growth rate decreased significantly over 600–700 mm of gradient. The mean values of soil conservation under different rainfall gradients were 77.7 t/km2, 139.8 t/km2, 259.5 t/km2, 441.9 t/km2, and 535.4 t/km2, respectively, with the growth rate increased significantly over 600–700 mm of precipitation. The mean values of WY under five rainfall gradients were 8.4, 30.8, 50.9, 67.4, and 118.2 mm, respectively, with a significantly increased growth rate over the 600–700 mm of precipitation.

[image: Figure 3]

FIGURE 3
 Three ESs in the forest natural reserves and the average of ESs under each precipitation gradient (A); Variation of ESs along the precipitation gradients (B: NPP; C: Soil conservation; D: Water yield).




3.3. Ecosystem services relationships under different precipitation gradients

The relationships between NPP, SC, and WY showed different trends under precipitation gradients (Figures 4A–C). The relation between NPP and SC showed a shift from tradeoff to synergy with rainfall increase. The relations of NPP with soil conservation and water yield showed an upward parabolic and downward parabolic trend, respectively, along the rainfall gradient. The peak and valley values of the relationship both appear in the precipitation gradient of 600-700 mm.

[image: Figure 4]

FIGURE 4
 Changes in ES relationships between precipitation gradients [(A) soil conservation and NPP; (B) water yield and NPP; (C) water yield and soil conservation and RDA analysis (D)]. SC, soil conservation; WC, water yield; and PET, potential evapotranspiration. Explanation of ESs by influences in RDA and the permutation test result is 0.002, the explanatory variables account for 85.1% (adjusted explained variation is 83.3%).


RDA results (Figure 4D) showed that precipitation was the most contributing meteorological factor (with contribution of 21.2%), after the slope (with contribution of 68.5%), followed by NDVI (4.5%) and Potential evapotranspiration (3.2%). Precipitation showed a positive correlation with all three ESs, while WY and SC showed more distinct clustering than NPP at different precipitation gradients. ESs under 600 mm precipitation are more distributed in the third quadrant, which also indicated that ESs are relatively small in these gradients. Under a 600–700 mm gradient, ESs are distributed in the second or fourth quadrant, meaning that there is a clear trade-off between NPP, WY, and SC. Meanwhile, in areas with precipitation less than 700, WY and SC are significantly influenced by slope, temperature and potential evapotranspiration. In areas with precipitation greater than 700, ESs are all in the first quadrant, which indicates that the ESs are relatively high, and the increasing trend is reflected in SC and WY driven by NDVI and slope.




4. Discussion


4.1. Response of key ESs and their relations to precipitation gradient

Our results quantify NPP, SC, and WY in temperate forest ecosystem, which are consistent with previous studies in northern China (Wang C. et al., 2020; Qi et al., 2021; Yan et al., 2021). Although the three ESs showed an increasing trend with precipitation, there was a clear difference in the rate of increase with the 600–700 mm gradient as the dividing line (Figure 3). As precipitation increased, NPP tended to increase faster and then slower, on the contrary, WY and SC showed a increase of slow first and then fast. The main reason for this difference is that the water limitation threshold in the climax community of temperate forest is about 700 mm (Chi et al., 2018). In the area where the rainfall is less than 700 mm, the forest community gradually succeed from shrubbery to arboreal forest, which leads to rapid increase in vegetation productivity and NPP. However, the vegetation cover is not yet high, and the water surplus is low after meeting the needs of vegetation growth, the growth of SC and WY is slow. In areas where rainfall is greater than 700 mm, the vegetation community structure is stable and the growth of NPP slows down. Moisture conditions in this area are already adequate for forest growth, so WY has increased significantly. Although increased precipitation also intensified the risk of soil erosion, these negative effects were offset by changes in forest structure and improvements in the water-holding capacity of the litter and soil water storage capacity, minimizing actual soil erosion (Hart and Frasier, 2003; Wu et al., 2020).

In addition, the relationship between the three ESs showed different trends with the precipitation gradient (Figure 4). As precipitation increased, the relationship between NPP and SC changed from a trade-off to synergy, while the synergy and trade-off between WY with SC and NPP reached the maximum on the 600–700 mm precipitation gradient. For NPP and SC, increased precipitation improved vegetation cover, while increased temperature and vegetation uptake accelerated soil water evaporation and soil erosion (Lu et al., 2014; Wang H. et al., 2020), resulting in the relationship between NPP and SC changing from a trade-off to a synergy (Figure 4D). For NPP and WY, NPP increased significantly with precipitation, and the succession of shrubbery to arboreal forest led to a relative decrease in WY, which intensifies the trade-off; after the community structure stabilized (above the 600–700 mm precipitation gradient), NPP and WY gradually reverted to synergy. For WY and SC, in areas with less precipitation, where shrubs still account for a certain proportion, and the combined effects of vegetation structure succession, temperature and other environmental factors keep SC and WY at a low level, showing a synergy between them; in areas with high precipitation (>700 mm), the growth of forest has been less restricted by water conditions (Chi et al., 2018), and excessive precipitation will cause soil erosion, making the synergistic relationship between SC and WY gradually weakened (Dai et al., 2022; Li et al., 2022).



4.2. Response of ESs and their relations to other environment factors

Slope (contribution = 68.5%; p < 0.01) was the most important factor influencing the relationship between ESs and ESs, and had a strong impact on ESs in areas with rainfall greater than 600–700 mm. Under this gradient, water demand of forest has stabilized, and slope can directly influence runoff velocity, alter infiltration, and have a positive correlation with erosion rates (Sun et al., 2018; Vanacker et al., 2019). Larger slope enhance the possibility for runoff generation (Hümann et al., 2011; Balasubramanian, 2017), increase the scouring force on the soil surface (Emmett, 1968), and change the relationship between WY and SC from synergy to trade-off. Also, slope is an important factor influencing local meteorological factor, which is closely related to precipitation (contribution = 1.0%; p < 0.05).

NDVI can reflect the state of vegetation coverage and biomass, and is influenced by environmental conditions such as precipitation and temperature (Defries and Townshend, 1994; Seidl et al., 2020). In the RDA results, NDVI (contribution = 4.5%; p < 0.01) was the important vegetation factor affecting NPP and WY, and was correlated with precipitation significantly and positively. Under the gradient of less than 600–700 mm, vegetation growth and carbon sequestration in temperate forest are limited by water (Mao et al., 2014; Higgins et al., 2023); when rainfall is greater than 700 mm, community succession and vegetation cover in temperate forests stabilize, and ESs become progressively less influenced by NDVI.

Potential evapotranspiration (PET) is comprehensively affected by meteorological factors, higher PET means less water resources available (Donohue et al., 2010; Tu and Yang, 2022). In the RDA results, PET (contribution = 3.2%; p < 0.01) had a significant negative effect on ESs in areas with less than 600 precipitation, indicating that in areas with less precipitation, precipitation has difficulty in meeting the water requirements of vegetation growth, which limit the provision of temperate forest ESs (Rohatyn et al., 2018), and will also exacerbates trade-off between ESs.

Except for the four environmental factors SLOPE, PRE, NDVI, and PET that have outstanding contributions, the influence of other environmental factors is not significant: temperature (contribution = 1.0%; p = 0.042), vegetation type (contribution = 0.2%; p = 0.8) and soil type (contribution = 0.7%; p = 0.1). At the same time, based on the multi-year average temperature gradient, and it was found that there was no inter-group difference in WY under different temperature gradients (ANOVA; p = 0.085) (Supplementary Figure S1). It can be inferred when precipitation increases and the vegetation community tends to be stable, the sensitivity of forest water yield changes to temperature will be weakened (Zhou et al., 2015; Chen X. et al., 2021).



4.3. Implications of ESs interrelations for forest restoration and managements

Since 1960, both Northeast China and North China have experienced a shift from wet to dry climates (Fu et al., 2009; Shi et al., 2014), however, in the context of global climate change, it has been predicted that the future climate change in northern China will tend to be more wetter than warmer (Wu et al., 2010; Liu et al., 2017; Hui et al., 2018).

The increase in rainfall and temperature will favor the growth of promote the increase in the extent of coniferous and broad-leaf forests and broadleaf forests (Zhao et al., 2013; Zhang et al., 2022). The future increase of precipitation will bring westward shift of precipitation contour in northern China. For the new area with rainfall from 400 mm to 700 mm, it is vital to select vegetation types based on matching environmental elements such as temperature and topography with plant characteristics. Besides, Higher soil erosion rate may also be closely related to local topography, slope, temperature and other environmental factors (Fang and Guo, 2015). In areas with a future rainfall gradient of below 600 mm, the scrub-dominated vegetation types require less water for growth and are less capable of soil conservation, promoting a shift to a trade-off between the two ESs, and therefore further soil conservation measures are needed in this part of the area. Moreover, in the area where rainfall may increase to more than 700 mm, there is still a need to focus on the construction of soil and water conservation forests to cope with the potential for increased trade-offs. In addition, to better capture the inflection points and thresholds of ESs trade-offs, it is suggested that additional ground-based data monitoring sites should be added in the future, to avoid possible errors in ESs assessment of this study. For other regions that are significantly affected by global climate change, e.g., the forest area of the southeast Tibetan Plateau, attention should also be paid to the changes in ES relationships. Studies predict that the alpine meadows in the hinterland of the plateau will be converted to shrub areas on a large scale (Korcz et al., 2021). Our results reveal that in the region dominated by shrubs, particular attention should be paid to the trade-offs between vegetation growth and water related ESs (Jiang C. et al., 2021; Jia et al., 2022). Therefore, in the restoration and management of vegetation in these areas, it is necessary to comprehensively consider the vegetation selection, the trade-off between vegetation water use and other water uses such as grain production, in order to reduce the trade-off between ESs.




5. Conclusion

This study revealed the response of major ESs interrelationships to precipitation gradient in temperate forest of northern China. The results show that 600–700 mm is a clear inflection point of the ESs and their correlations. The tradeoff between the regulation services (SC and NPP) gradually turned into synergy with the increase in precipitation, while the relationship between supply (WY) and regulation services (SC and NPP) presents a parabolic relationship.

The results indicated that afforestation and forest management should pay attention to the selection of tree species and the density of planting in areas where precipitation is less than 700 mm; while in high precipitation area, especially in mountainous areas, soil and water conservation projects should be paid focused. This study improve the current understanding of the impact of rainfall on ESs and relationships in temperate forests and provide predictive information to proactively address the potential damage to ESs in temperate forests from climate change.



Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.



Author contributions

ML and RL: conceptualization. ML, JM, and RL: methodology. ML, TH, RL, XQ, HS, and YY: investigation and data. ML, RL, and HZ: writing – original draft preparation. ML, TH, JM, RL, YY, XQ, HS, and HZ: writing—review and editing. All authors have read and agreed to the published version of the manuscript.



Funding

This work was supported by the National Natural Science Foundation of China (42171099 and 41871218).



Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.



Supplementary material

The Supplementary material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fevo.2023.1132396/full#supplementary-material



Footnotes

1   http://data.cma.cn




References

 Alamgir, M., Turton, S. M., Macgregor, C. J., and Pert, P. L. (2016). Assessing regulating and provisioning ecosystem services in a contrasting tropical forest landscape. Ecol. Indic. 64, 319–334. doi: 10.1016/j.ecolind.2016.01.016

 Anderegg, W. R. L., Wu, C., Acil, N., Carvalhais, N., Pugh, T. A. M., Sadler, J. P., et al. (2022). A climate risk analysis of Earth’s forests in the 21st century. Science 377, 1099–1103. doi: 10.1126/science.abp9723 

 Balasubramanian, A., (2017). Surface water runoff. India: Centre for Advanced Studies in Earth Science, University of Mysore.

 Biber, P., Felton, A., Nieuwenhuis, M., Lindbladh, M., Black, K., Bahýl', J., et al. (2020). Forest biodiversity, carbon sequestration, and Wood production: modeling synergies and trade-offs for ten Forest landscapes across Europe. Front. Ecol. Evol. 8:547696. doi: 10.3389/fevo.2020.547696

 Brockerhoff, E. G., Barbaro, L., Castagneyrol, B., Forrester, D. I., Gardiner, B., González-Olabarria, J. R., et al. (2017). Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 26, 3005–3035. doi: 10.1007/s10531-017-1453-2

 Chen, X., Liu, L., Su, Y., Yuan, W., Liu, X., Liu, Z., et al. (2021). Quantitative association between the water yield impacts of forest cover changes and the biophysical effects of forest cover on temperatures. J. Hydrol. 600:126529. doi: 10.1016/j.jhydrol.2021.126529

 Chen, J., Wang, Y., Sun, J., Liang, E., Shen, M., Yang, B., et al. (2021). Precipitation dominants synergies and trade-offs among ecosystem services across the Qinghai-Tibet plateau. Glob. Ecol. Conserv. 32:e01886. doi: 10.1016/j.gecco.2021.e01886

 Chi, D., Wang, H., Li, X., Liu, H., and Li, X. (2018). Estimation of the ecological water requirement for natural vegetation in the Ergune River basin in northeastern China from 2001 to 2014. Ecol. Indic. 92, 141–150. doi: 10.1016/j.ecolind.2017.04.014

 Dai, X., Wang, L., Huang, C., Fang, L., Wang, S., and Wang, L. (2020). Spatio-temporal variations of ecosystem services in the urban agglomerations in the middle reaches of the Yangtze River, China. Ecol. Indic. 115:106394. doi: 10.1016/j.ecolind.2020.106394

 Dai, E., Wang, X., Zhu, J., and Tian, Q. (2022). Quantifying co-benefits and trade-offs between Forest ecosystem Services in the Gan River Basin of South China. Sustainability 14:8271. doi: 10.3390/su14148271

 Defries, R. S., and Townshend, J. R. G. (1994). NDVI-derived land cover classifications at a global scale. Int. J. Remote Sens. 15, 3567–3586. doi: 10.1080/01431169408954345

 Ding, Z., Zheng, H., Wang, J., O’Connor, P., Li, C., Chen, X., et al. (2022). Integrating top-down and bottom-up approaches improves practicality and efficiency of large-scale ecological restoration planning: insights from a social-ecological system. Engineering. doi: 10.1016/j.eng.2022.08.008

 Ditt, E. H., Mourato, S., Ghazoul, J., and Knight, J. (2010). Forest conversion and provision of ecosystem services in the Brazilian Atlantic Forest. Land Degrad. Dev. 21, 591–603. doi: 10.1002/ldr.1010

 Donohue, R. J., McVicar, T. R., and Roderick, M. L. (2010). Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. J. Hydrol. 386, 186–197. doi: 10.1016/j.jhydrol.2010.03.020

 Emmett, W. W. (1968). “The hydraulics of overland flow on hillslopes” in Dynamic and Descriptive Studies of Hillslopes (Geological Survey Professional Paper 662-A). U.S. Govt. Print. Off. Available at: https://doi.org/10.3133/pp662A 

 Fang, H., and Guo, M. (2015). Aspect-induced differences in soil erosion intensity in a gullied hilly region on the Chinese loess plateau. Environ. Earth Sci. 74, 5677–5685. doi: 10.1007/s12665-015-4648-4

 Fang, J., Piao, S., Zhou, L., He, J., Wei, F., Myneni, R. B., et al. (2005). Precipitation patterns alter growth of temperate vegetation. Geophys. Res. Lett. 32:L21411. doi: 10.1029/2005GL024231

 FAO. (2020). Global Forest Resources Assessment 2020. Food and Agriculture Organization of the United Nations (FAO). Available at: https://doi.org/10.4060/ca8753en

 Feng, J., Chen, F., Tang, F., Wang, F., Liang, K., He, L., et al. (2022). The trade-offs and synergies of ecosystem Services in Jiulianshan National Nature Reserve in Jiangxi Province, China. Forests 13:416. doi: 10.3390/f13030416

 Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240. doi: 10.1126/science.281.5374.237 

 Fu, G., Charles, S. P., Yu, J., and Liu, C. (2009). Decadal climatic variability, trends, and future scenarios for the North China plain. J. Clim. 22, 2111–2123. doi: 10.1175/2008JCLI2605.1

 Galicia, L., Gómez-Mendoza, L., and Magaña, V. (2015). Climate change impacts and adaptation strategies in temperate forests in Central Mexico: a participatory approach. Mitig. Adapt. Strateg. Glob. Change 20, 21–42. doi: 10.1007/s11027-013-9477-8

 Gamfeldt, L., Snäll, T., Bagchi, R., Jonsson, M., Gustafsson, L., Kjellander, P., et al. (2013). Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4:1340. doi: 10.1038/ncomms2328 

 Gilliam, F. S. (2016). Forest ecosystems of temperate climatic regions: from ancient use to climate change. New Phytol. 212, 871–887. doi: 10.1111/nph.14255 

 Hamel, P., and Guswa, A. J. (2015). Uncertainty analysis of a spatially explicit annual water-balance model: case study of the cape fear basin, North Carolina. Hydrol. Earth Syst. Sci. Discuss. 19, 839–853. doi: 10.5194/hess-19-839-2015

 Hart, R. H., and Frasier, G. W. (2003). Bare ground and litter as estimators of runoff on short- and mixed-grass prairie. Arid Land Res. Manage. 17, 485–490. doi: 10.1080/713936119

 Hely, C., Bremond, L., Alleaume, S., Smith, B., Sykes, M. T., and Guiot, J. (2006). Sensitivity of African biomes to changes in the precipitation regime. Glob. Ecol. Biogeogr. 15, 258–270. doi: 10.1111/j.1466-822X.2006.00235.x

 Higgins, S. I., Conradi, T., and Muhoko, E. (2023). Shifts in vegetation activity of terrestrial ecosystems attributable to climate trends. Nat. Geosci. 16, 147–153. doi: 10.1038/s41561-022-01114-x

 Hui, P., Tang, J., Wang, S., Niu, X., Zong, P., and Dong, X. (2018). Climate change projections over China using regional climate models forced by two CMIP5 global models. Part II: projections of future climate: Projections of climate over China with multi-RCM driven by CMIP5 GCM. Int. J. Climatol. 38, e78–e94. doi: 10.1002/joc.5409

 Hümann, M., Schüler, G., Müller, C., Schneider, R., Johst, M., and Caspari, T. (2011). Identification of runoff processes – the impact of different forest types and soil properties on runoff formation and floods. J. Hydrol. 409, 637–649. doi: 10.1016/j.jhydrol.2011.08.067

 Ji, Y., Zhou, G., Luo, T., Dan, Y., Zhou, L., and Lv, X. (2020). Variation of net primary productivity and its drivers in China’s forests during 2000–2018. For. Ecosyst. 7:15. doi: 10.1186/s40663-020-00229-0

 Jia, G., Dong, Y., Zhang, S., He, X., Zheng, H., Guo, Y., et al. (2022). Spatiotemporal changes of ecosystem service trade-offs under the influence of forest conservation project in Northeast China. Front. Ecol. Evol. 10:978145. doi: 10.3389/fevo.2022.978145

 Jiang, C., Guo, H., Wei, Y., Yang, Z., Wang, X., Wen, M., et al. (2021). Ecological restoration is not sufficient for reconciling the trade-off between soil retention and water yield: a contrasting study from catchment governance perspective. Sci. Total Environ. 754:142139. doi: 10.1016/j.scitotenv.2020.142139

 Jiang, C., Li, D., Wang, D., and Zhang, L. (2016). Quantification and assessment of changes in ecosystem service in the Three-River headwaters region, China as a result of climate variability and land cover change. Ecol. Indic. 66, 199–211. doi: 10.1016/j.ecolind.2016.01.051

 Jiang, R., Sun, L., Sun, C., and Liang, X.-Z. (2021). CWRF downscaling and understanding of China precipitation projections. Clim. Dyn. 57, 1079–1096. doi: 10.1007/s00382-021-05759-z

 Jiang, Z., Tian, Z., Dong, G., Sun, L., Zhang, P., Buonomo, E., et al. (2020). High-resolution projections of mean and extreme precipitation over China by two regional climate models. J. Meteorol. Res. 34, 965–985. doi: 10.1007/s13351-020-9208-5

 Jiao, Y., Bu, K., Yang, J., Li, G., Shen, L., Liu, T., et al. (2021). Biophysical effects of temperate forests in regulating regional temperature and precipitation pattern across Northeast China. Remote Sens. 13:4767. doi: 10.3390/rs13234767

 Korcz, N., Koba, J., Kobyłka, A., Janeczko, E., and Gmitrowicz-Iwan, J. (2021). Climate change and informal education in the opinion of Forest users in Poland. Sustainability 13:7892. doi: 10.3390/su13147892

 Legendre, P., and Anderson, M. J. (1999). Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24. doi: 10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2

 Li, M., Liang, D., Xia, J., Song, J., Cheng, D., Wu, J., et al. (2021). Evaluation of water conservation function of Danjiang River basin in Qinling Mountains, China based on InVEST model. J. Environ. Manage. 286:112212. doi: 10.1016/j.jenvman.2021.112212 

 Li, Z., Lu, Y., Wang, Y., and Liu, J. (2022). The Spatio-temporal evolution of the soil conservation function of ecosystems in the north–south transition zone in China: a case study of the Qinling-Daba Mountains. Sustainability 14:5829. doi: 10.3390/su14105829

 Li, J., Wang, Y., and Liu, L. (2020). Responses of the terrestrial ecosystem productivity to droughts in China. Front. Earth Sci. 8:59. doi: 10.3389/feart.2020.00059

 Li, X., Zhang, C., Zhang, B., Wu, D., Zhu, D., Zhang, W., et al. (2021). Nitrogen deposition and increased precipitation interact to affect fine root production and biomass in a temperate forest: implications for carbon cycling. Sci. Total Environ. 765:144497. doi: 10.1016/j.scitotenv.2020.144497 

 Liu, J., Du, H., Wu, Z., He, H. S., Wang, L., and Zong, S. (2017). Recent and future changes in THE combination of annual temperature and precipitation throughout China: changes in the combination of temperature and precipitation over China. Int. J. Climatol. 37, 821–833. doi: 10.1002/joc.4742

 Liu, L., Wang, Z., Wang, Y., Zhang, Y., Shen, J., Qin, D., et al. (2019). Trade-off analyses of multiple mountain ecosystem services along elevation, vegetation cover and precipitation gradients: a case study in the Taihang Mountains. Ecol. Indic. 103, 94–104. doi: 10.1016/j.ecolind.2019.03.034

 Liu, Z., Ye, L., Wei, Z., Jiang, J., Zhang, Q., and Lv, X. (2022). Water use by trees is linked to precipitation: a case study of a mixed forest in a hilly area in southern China. Ecol. Indic. 143:109343. doi: 10.1016/j.ecolind.2022.109343

 Lozano-Parra, J., Schnabel, S., and Ceballos-Barbancho, A. (2015). The role of vegetation covers on soil wetting processes at rainfall event scale in scattered tree woodland of Mediterranean climate. J. Hydrol. 529, 951–961. doi: 10.1016/j.jhydrol.2015.09.018

 Lu, N., Fu, B., Jin, T., and Chang, R. (2014). Trade-off analyses of multiple ecosystem services by plantations along a precipitation gradient across loess plateau landscapes. Landsc. Ecol. 29, 1697–1708. doi: 10.1007/s10980-014-0101-4

 Makarenkov, V., and Legendre, P. (2002). Nonlinear redundancy analysis and canonical correspondence analysis based on polynomial regression. Ecology 83, 1146–1161. doi: 10.1890/0012-9658(2002)083[1146:NRAACC]2.0.CO;2

 Mamat, Z., Halik, Ü., Keyimu, M., Keram, A., and Nurmamat, K. (2018). Variation of the floodplain forest ecosystem service value in the lower reaches of Tarim River, China. Land Degrad. Rehab. 29, 47–57. doi: 10.1002/ldr.2835

 Mao, D., He, X., Wang, Z., Tian, Y., Xiang, H., Yu, H., et al. (2019). Diverse policies leading to contrasting impacts on land cover and ecosystem services in Northeast China. J. Clean. Prod. 240:117961. doi: 10.1016/j.jclepro.2019.117961

 Mao, D., Wang, Z., Wu, C., Song, K., and Ren, C. (2014). Examining forest net primary productivity dynamics and driving forces in northeastern China during 1982–2010. Chin. Geogr. Sci. 24, 631–646. doi: 10.1007/s11769-014-0662-9

 Nelson, H. P., Devenish-Nelson, E. S., Rusk, B. L., Geary, M., and Lawrence, A. J. (2018). A call to action for climate change research on Caribbean dry forests. Reg. Environ. Chang. 18, 1337–1342. doi: 10.1007/s10113-018-1334-6

 Ouyang, Z., Zheng, H., Xiao, Y., Polasky, S., Liu, J., Xu, W., et al. (2016). Improvements in ecosystem services from investments in natural capital. Science 352, 1455–1459. doi: 10.1126/science.aaf2295

 Qi, L., Zhang, Y., Xu, D., Zhu, Q., Zhou, W., Zhou, L., et al. (2021). Trade-offs and synergies of ecosystem services in forest barrier belt of Northeast China. Chin. J. Ecol. 40, 3401–3411. doi: 10.13292/j.1000-4890.202111.020

 Rodrigues, A. R., Botequim, B., Tavares, C., Pécurto, P., and Borges, J. G. (2020). Addressing soil protection concerns in forest ecosystem management under climate change. For. Ecosyst. 7:34. doi: 10.1186/s40663-020-00247-y

 Rohatyn, S., Rotenberg, E., Ramati, E., Tatarinov, F., Tas, E., and Yakir, D. (2018). Differential impacts of land use and precipitation on “ecosystem water yield.”. Water Resour. Res. 54, 5457–5470. doi: 10.1029/2017WR022267

 Seidl, R., Honkaniemi, J., Aakala, T., Aleinikov, A., Angelstam, P., Bouchard, M., et al. (2020). Globally consistent climate sensitivity of natural disturbances across boreal and temperate forest ecosystems. Ecography 43, 967–978. doi: 10.1111/ecog.04995

 Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., et al. (2017). Forest disturbances under climate change. Nat. Clim. Chang. 7, 395–402. doi: 10.1038/nclimate3303 

 Sharp, R., Chaplin-Kramer, R., Wood, S., Guerry, A., Tallis, H., Ricketts, T., et al. (2018). InVEST3.2.0: User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund. Available at: https://doi.org/10.13140/RG.2.2.32693.78567

 Shi, P., Sun, S., Wang, M., Li, N., Wang, J., Jin, Y., et al. (2014). Climate change regionalization in China (1961–2010). Sci. China Earth Sci. 57, 2676–2689. doi: 10.1007/s11430-014-4889-1

 Šmilauer, P., and Lepš, J. (2014). Multivariate analysis of ecological data using CANOCO 5. 2nd Edn Cambridge University Press.

 Suescún, D., Villegas, J. C., León, J. D., Flórez, C. P., García-Leoz, V., and Correa-Londoño, G. A. (2017). Vegetation cover and rainfall seasonality impact nutrient loss via runoff and erosion in the Colombian Andes. Reg. Environ. Chang. 17, 827–839. doi: 10.1007/s10113-016-1071-7

 Sun, J., Fan, D., Yu, X., and Li, H. (2018). Hydraulic characteristics of varying slope gradients, rainfall intensities and litter cover on vegetated slopes. Hydrol. Res. 49, 506–516. doi: 10.2166/nh.2017.097

 Tang, J., Chen, X., Zhao, M., and Su, B. (2009). Numerical simulation of regional climate change under IPCC A2 scenario in China. J. Meteorol. Res. 23, 29–42.

 Thom, D., Rammer, W., and Seidl, R. (2017). The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes. Ecol. Monogr. 87, 665–684. doi: 10.1002/ecm.1272 

 Thomas, E., Jansen, M., Chiriboga-Arroyo, F., Wadt, L. H. O., Corvera-Gomringer, R., Atkinson, R. J., et al. (2021). Habitat quality differentiation and consequences for ecosystem service provision of an Amazonian Hyperdominant tree species. Front. Plant Sci. 12:621064. doi: 10.3389/fpls.2021.621064 

 Thompson, A., Davis, J. D., and Oliphant, A. J. (2016). Surface runoff and soil erosion under eucalyptus and oak canopy: surface runoff and soil erosion under eucalyptus and oak canopy. Earth Surf. Process. Landf. 41, 1018–1026. doi: 10.1002/esp.3881

 Tu, Z., and Yang, Y. (2022). On the estimation of potential evaporation under wet and dry conditions. Water Resour. Res. 58. doi: 10.1029/2021WR031486

 Vanacker, V., Ameijeiras-Mariño, Y., Schoonejans, J., Cornélis, J.-T., Minella, J. P. G., Lamouline, F., et al. (2019). Land use impacts on soil erosion and rejuvenation in southern Brazil. Catena 178, 256–266. doi: 10.1016/j.catena.2019.03.024

 Vatandaslar, C. (2022). Spatial assessment of ecosystem services provisioning changes in a forest-dominated protected area in NE Turkey. Environ. Monit. Assess. 194:539. doi: 10.1007/s10661-022-10212-7 

 Wan, J.-Z., Wang, C.-J., Qu, H., Liu, R., and Zhang, Z.-X. (2018). Vulnerability of forest vegetation to anthropogenic climate change in China. Sci. Total Environ. 621, 1633–1641. doi: 10.1016/j.scitotenv.2017.10.065 

 Wan, J.-Z., Wang, C.-J., and Yu, F.-H. (2017). Spatial conservation prioritization for dominant tree species of Chinese forest communities under climate change. Clim. Chang. 144, 303–316. doi: 10.1007/s10584-017-2044-7

 Wang, Y., Dai, E., Ge, Q., Zhang, X., and Yu, C. (2021). Spatial heterogeneity of ecosystem services and their trade-offs in the Hengduan Mountain region, Southwest China. Catena (Amst) 207:105632. doi: 10.1016/j.catena.2021.105632

 Wang, S., Fu, B.-J., He, C.-S., Sun, G., and Gao, G.-Y. (2011). A comparative analysis of forest cover and catchment water yield relationships in northern China. For. Ecol. Manage. 262, 1189–1198. doi: 10.1016/j.foreco.2011.06.013

 Wang, C., Jiang, Q., Deng, X., Lv, K., and Zhang, Z. (2020). Spatio-temporal evolution, future trend and phenology regularity of net primary productivity of forests in Northeast China. Remote Sens. 12:3670. doi: 10.3390/rs12213670

 Wang, R., Peng, Q., Zhang, W., Zhao, W., Liu, C., and Zhou, L. (2022). Ecohydrological service characteristics of Qilian Mountain ecosystem in the next 30 years based on scenario simulation. Sustainability 14:1819. doi: 10.3390/su14031819

 Wang, H., Sun, B., Yu, X., Xin, Z., and Jia, G. (2020). The driver-pattern-effect connection of vegetation dynamics in the transition area between semi-arid and semi-humid northern China. Catena 194:104713. doi: 10.1016/j.catena.2020.104713

 Wang, H., Wang, W. J., Liu, Z., Wang, L., Zhang, W., Zou, Y., et al. (2022). Combined effects of multi-land use decisions and climate change on water-related ecosystem services in Northeast China. J. Environ. Manage. 315:115131. doi: 10.1016/j.jenvman.2022.115131 

 Wang, C.-J., Zhang, Z.-X., and Wan, J.-Z. (2019). Vulnerability of global forest ecoregions to future climate change. Glob. Ecol. Conserv. 20:e00760. doi: 10.1016/j.gecco.2019.e00760

 Weltzin, J. F., Loik, M. E., Schwinning, S., Williams, D. G., Fay, P. A., Haddad, B. M., et al. (2003). Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience 53:941. doi: 10.1641/0006-3568(2003)053[0941:ATROTE]2.0.CO;2

 Wu, C., Qiu, D., Gao, P., Mu, X., and Zhao, G. (2022). Application of the InVEST model for assessing water yield and its response to precipitation and land use in the Weihe River basin, China. J. Arid. Land 14, 426–440. doi: 10.1007/s40333-022-0013-0

 Wu, X., Shi, W., Guo, B., and Tao, F. (2020). Large spatial variations in the distributions of and factors affecting forest water retention capacity in China. Ecol. Indic. 113:106152. doi: 10.1016/j.ecolind.2020.106152

 Wu, S., Zheng, D., Yin, Y., Lin, E., and Xu, Y. (2010). Northward-shift of temperature zones in China’s eco-geographical study under future climate scenario. J. Geogr. Sci. 20, 643–651. doi: 10.1007/s11442-010-0801-x

 Xu, W., Xiao, Y., Zhang, J., Yang, W., Zhang, L., Hull, V., et al. (2017). Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. 114, 1601–1606. doi: 10.1073/pnas.1620503114 

 Xu, H., Zhao, C., and Wang, X. (2020). Elevational differences in the net primary productivity response to climate constraints in a dryland mountain ecosystem of northwestern China. Land Degrad. Dev. 31, 2087–2103. doi: 10.1002/ldr.3587

 Yan, M., Xue, M., Zhang, L., Tian, X., Chen, B., and Dong, Y. (2021). A Decade’s change in vegetation productivity and its response to climate change over Northeast China. Plan. Theory 10:821. doi: 10.3390/plants10050821 

 Zhang, L., Sun, P., Huettmann, F., and Liu, S. (2022). Where should China practice forestry in a warming world? Glob. Change Biol. Bioenergy. 28, 2461–2475. doi: 10.1111/gcb.16065 

 Zhang, X., Xing, Y., Wang, Q., Yan, G., Wang, M., Liu, G., et al. (2020). Effects of long-term nitrogen addition and decreased precipitation on the fine root morphology and anatomy of the main tree species in a temperate forest. For. Ecol. Manag. 455:117664. doi: 10.1016/j.foreco.2019.117664

 Zhao, M., and Running, S. W. (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943. doi: 10.1126/science.1192666 

 Zhao, D., Wu, S., and Yin, Y. (2013). Responses of terrestrial ecosystems’ net primary productivity to future regional climate change in China. PLoS One 8:e60849. doi: 10.1371/journal.pone.0060849 

 Zhou, G., Wei, X., Chen, X., Zhou, P., Liu, X., Xiao, Y., et al. (2015). Global pattern for the effect of climate and land cover on water yield. Nat. Commun. 6:5918. doi: 10.1038/ncomms6918 









 


	
	
TYPE Original Research
PUBLISHED 28 April 2023
DOI 10.3389/fevo.2023.1126659






Village ecosystem vulnerability in karst desertification control: evidence from South China Karst

Jiuhan Tang, Kangning Xiong*, Qi Wang, Yue Chen and Qinglin Wu


School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, China

[image: image2]

OPEN ACCESS

EDITED BY
 Wei Zhao, Chinese Academy of Sciences (CAS), China

REVIEWED BY
 Manob Das, University of Gour Banga, India Fengtai Zhang, Chongqing University of Technology, China

*CORRESPONDENCE
 Kangning Xiong, xiongkn@gznu.edu.cn 

RECEIVED 18 December 2022
ACCEPTED 10 April 2023
PUBLISHED 28 April 2023

CITATION
 Tang J, Xiong K, Wang Q, Chen Y and Wu Q (2023) Village ecosystem vulnerability in karst desertification control: evidence from South China Karst. Front. Ecol. Evol. 11:1126659. doi: 10.3389/fevo.2023.1126659

COPYRIGHT
 © 2023 Tang, Xiong, Wang, Chen and Wu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
 

Against the background of global environmental changes and the intensification of human activity, the village ecosystem faces enormous challenges. In particular, the rural areas in South China Karst face serious problems, such as karst desertification and human–land conflicts. In recent decades, the Chinese government and scientific researchers have committed to controlling karst desertification. However, village ecosystems in the context of karst desertification control (KDC) remain fragile. To promote the sustainable development of villages in KDC, this study considered village ecosystems in different karst desertification areas as study cases. Based on the model of susceptibility-exposure-lack of resilience, we constructed an index system of vulnerability research, used the entropy method to determine the weight, and introduced a contribution model to clarify the vulnerability level and vulnerability driving factors to recommend related governance strategies. We found that (1) the village ecosystem vulnerability levels under KDC were different. Village ecosystems were mildly vulnerable in none-potential KDC areas, moderately vulnerable in potential-mild areas, and moderately and highly vulnerable in moderate–severe KDC areas. (2) The combined effects of the natural environment and human activity have led to the vulnerability of village ecosystems in KDC in South China Karst. Among them, topography, climate, forest coverage, landscape pattern, soil erosion, karst desertification, economic development level, and production and living activity are the main factors affecting the village ecosystem vulnerability of KDC in South China Karst, and the differences in these factors lead to differences in vulnerability levels of different village ecosystems. (3) We designed adaptive governance strategies for village ecosystems based on the factors influencing the characteristics and vulnerability of different karst desertification areas, with the primary goal of sustainable development. They provide a decision-making basis for promoting sustainable development of the village ecosystems in KDC.
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1. Introduction

Global environmental changes, social and economic development, a decrease in species diversity, an increase in desertification, extreme weather events, and other issues of ecosystem degradation seriously threaten the sustainability of society, the economy and the survival of human beings (Easterling et al., 2000; Guo et al., 2020; Li et al., 2021). Concurrently, the rapid urbanization, environmental pollution and waste of resources places ecosystems under tremendous pressure, which further exacerbates the degradation of ecosystems (Meng et al., 2018). The increase in human activity and global climate change have led to tremendous pressure on the ecosystem (Li and Song, 2021; Wang et al., 2023), aggravating the expression of ecosystem vulnerability and destroying the supply capacity of ecosystem services. It is estimated that 60% of ecosystem services worldwide are degraded because of human activity (Zhang et al., 2018), resulting in ecological problems such as the degradation of water, loss of biodiversity (Vitousek et al., 1997; Foley et al., 2005), and land degradation. The contradiction and conflict between humankind’s pursuit of social and economic prosperity and the ecological environment have become the main challenges facing current global sustainable development. Therefore, the environment, development, and sustainability have become major issues of concern worldwide (Nandy et al., 2015; Zhang et al., 2022).

Driven by globalization, industrialization, and urbanization, the countryside is undergoing a holistic reconstruction. In particular, rural areas in developing countries generally experience population reduction, economic non-agricultural transformation, and environmental pollution, which lead to rural decline and affects the sustainability of rural economic and social development (Li, 2020). Rural populations have declined, and village labor shortages, economic recession, and social degradation have caused rural decline to become global issues (Liu and Li, 2017). Villages are more at risk due to poor infrastructure, low human development, high dependence on agriculture, and lack of government attention, which places villages more at risk (Jamshed et al., 2020). In the past few decades, rural areas worldwide have faced tremendous pressure due to land-use changes that threaten ecosystem services and environmental sustainability (Yu, 2022). In the context of rapid urbanization, many villages are experiencing a sharp increase in the proportion of construction land, leading to a reduction in ecosystem services (Zhang et al., 2020), and the destruction of the ecological environment. Currently, the elements and functions of village systems have undergone transformation and restructuring, while simultaneously, the stability of the villages has been disrupted, which makes them vulnerable (Yang and Pan, 2021). The driving factors of village ecosystem vulnerability differ across geographical environments. For example, coastal villages are vulnerable because of the disturbance caused by hurricanes, storm surges, tsunamis, and the lack of adaptability of the villages themselves (Colburn et al., 2016; Karuppusamy et al., 2021). The impact of extreme weather events, earthquakes, and harsh natural environments has contributed to the vulnerability of Himalayan villages (Pandey et al., 2017; Dasgupta and Badola, 2020). Villages in river regions are adversely affected by repeated flooding and riverbank erosion, which destroy property, agricultural land, and habitat, and cause social and economic crises and food security problems, leading to the vulnerability of villages (Ahmad and Afzal, 2021). Drought-type villages are affected by the high variability of seasonal water and long-term, frequent droughts, which intensify the exposure and sensitivity of the ecosystem (Tessema et al., 2021). In areas with frequent geological disasters, the higher the altitude, the more fragile is the village ecosystem (Liu et al., 2020). However, approximately half of the world’s population lives in rural regions (Bavinck et al., 2017). The livelihoods of rural populations directly dependent on ecosystem services are particularly at risk (Malmborg et al., 2018). Village ecosystems provide ecosystem services, such as water filtration, carbon absorption, and wildlife habitat, as well as food, freshwater, and energy that sustain both rural and urban residents (Miller Hesed et al., 2020). Concurrently, rural areas also provide the functions of supporting the population, maintaining culture, sightseeing tourism, and providing for the older urban residents (Huang, 2019). As an indispensable part of the global ecosystem, village ecosystems are of great significance for the sustainability of global development. Therefore, it is necessary to study the vulnerability of villages to provide scientific guidance for improving the service capacity of village ecosystems and promoting their sustainable development.

Therefore, it is of great scientific significance to construct a scientific and adequate vulnerability research index system, analyze the vulnerability level of village ecosystems, and reveal the driving factors of vulnerability. However, previous studies on the vulnerability of karst areas have neglected the analysis of the vulnerability of the human-land coupling system and its driving factors in karst desertification control villages. Therefore, they provide weak guidance to the consolidation of poverty alleviation achievements and the implementation of rural revitalization in karst desertification areas. To study the vulnerability of KDC villages, enhance their ecosystem service capacity, and promote the coordinated and sustainable development of their socio-economic and natural environment to consolidate the achievements of poverty alleviation and help rural revitalization, this paper provides a scientific and technological reference. As research cases, we selected villages in three different levels of KDC in the karst plateau mountainous areas, representing the overall structure of the karst desertification ecological environment type in South China Karst. The aim was to explore the level and influencing factors of village ecosystem vulnerability in the context of KDC and propose an adaptive management strategy for the KDC village ecosystem to provide a scientific and technological reference for the overall coordination and sustainable development of the KDC village ecosystem.



2. Literature review

Environmental changes are one of the biggest threats to global ecosystems in the coming decades, and currently scholars believe that vulnerability research should be incorporated into protection and planning to deal with the threat of environmental change to the sustainability of ecosystems (Lee et al., 2018). As one of the research themes in regional sustainable development, vulnerability assessment originates from the study of natural disasters. Since then, it has been widely used in geography, ecology, management, and other disciplines (Tai et al., 2020). Broadening of research on human factors in ecosystems led to the evolution of the concept of vulnerability from natural vulnerability to multi-dimensional vulnerability, which includes nature, the environment, society, the economy, and other factors (Wang et al., 2019). Research on the vulnerability of the social-ecological system, which considers the human-earth system to be the core, has become the focus of regional sustainable development research (Tian et al., 2013). Current research on the vulnerability of socio-ecological systems has focused on mountainous area (Brunner and Grêt-Regamey, 2016; Li et al., 2022), arid and semiarid areas (Liu et al., 2016; Chen et al., 2018), coastal areas (Hagenlocher et al., 2018; Silva et al., 2019; Koehn et al., 2022), and tourist areas (Jia et al., 2021; Li et al., 2022).

Studying the driving mechanisms of regional ecosystem vulnerability will be helpful in formulating ecological environment governance guidelines (Kang et al., 2018). Many international scientific programs (International Geosphere–Biosphere Program, Man and the Biosphere Program, and International Biological Program) have also included vulnerability as a topic of sustainability research in the context of global environmental changes (Hong et al., 2016). The current frameworks of vulnerability research mainly include the “pressure-state-response” (P-S-R; Hu et al., 2021), “exposure-sensitivity-adaptability” (V-S-D; Polsky et al., 2007), “sensitivity-resilience-pressure” (S-R-P; Li et al., 2015; Chen X. et al., 2021), driving force-pressure-state-impact-response (DPSIR; Malekmohammadi and Jahanishakib, 2017) and exposure-susceptibility-lack of resilience (E-S-LoR; Birkmann et al., 2013) models. Research methods used include principal component analysis (Xenarios et al., 2016), fuzzy evaluation method (Liu H. et al., 2014), analytic hierarchy process (Chen et al., 2022), comprehensive evaluation method (Guo and Huang, 2016), grey relational analysis (Luo and Zhang, 2018) and entropy method (Tai et al., 2020). Because the research purposes, regional characteristics, and foci may be very different, there is no unified indicator system (Li et al., 2021). However, sustainable governance strategies based on large-scale regions are not applicable to the village ecosystems. Scholars in all disciplines have conducted studies on village ecosystems in different types of ecological environments. Ghosh and Ghosal (2021) proposed improving the adaptability of residents through education, migration, increase in income, crop diversification, infrastructure and disaster early warning system construction aimed at the vulnerability factors of rural households in the Himalayan foothills. Farmers’ resistance to drought in arid rural areas can be enhanced by increasing income and crop diversification, promoting non-agricultural employment, and other strategies (Keshavarz and Moqadas, 2021). Villages in geological disaster risk areas should establish disaster warning systems, publicise and educate farmers about disaster reduction, and strengthen professional personnel and infrastructure construction at the grassroots level (Xu et al., 2020). Villages in coastal areas that are susceptible to meteorological disasters should adjust their industrial structure, choose more favorable places to live and produce, cultivate a variety of skills, and develop diversified livelihoods to enhance farmers’ adaptability to climate change (Touza et al., 2021). Poor villages in rocky desertification areas should establish a regional economic system, abandon extensive and predatory development at the expense of the environment and resources, and promote the transformation of rural development from a backward model to high-quality and sustainable development (Zuo et al., 2022). Thus far, research on rural sustainability has mainly analyzed rural adaptability to poverty, sustainable livelihood of farmers, and resilience of rural families to cope with disasters. Studies on the sustainability of village ecosystems from the perspective of human–environment coupling systems are lacking. However, the sustainability of villages in the KDC areas is mainly influenced by human activity and the natural environment, and the sensitive basic environment is fragile under the pressure of unsustainable human activity. Therefore, to promote sustainable development of the village ecosystem in the KDC, we must study its vulnerability characteristics.

Studying ecosystem vulnerability can effectively assist in monitoring environmental changes and mastering the motivation for environmental evolution to guide the rational protection and governance of the environment (Kang et al., 2018), At present, research on the vulnerability of karst areas includes the vulnerability of water resources (Marín et al., 2015; Zhu et al., 2019), nature reserve vulnerability (Chen Y. et al., 2021), vulnerability of mountain ecosystem (Guo et al., 2020), ecological environment vulnerability (Liu C. et al., 2014), livelihood vulnerability (Ren et al., 2020; Wang C. et al., 2022), vulnerability of land system (Lu et al., 2019), grassland ecosystem vulnerability (Guo et al., 2014), and vulnerability of the agricultural ecological environment vulnerability (Shu et al., 2020). However, current research on the vulnerability of karst areas cannot provide scientific guidance for sustainable development of village ecosystems in the KDC region. A large numbers of people live in karst mountain villages with poor soil and steep terrain, poor transportation infrastructure, and underdeveloped production technologies (Zhao and Hou, 2019), and the entire system is fragile. Karst landforms are formed by the development of soluble rocks such as limestone, dolomite, and gypsum. Karsts occur in over 10–15% of continental areas and are inhabited by approximately 17% of the world’s population (Ford and Williams, 2013; Zhang et al., 2018). Because of special natural conditions and dense human activity, the karst ecosystem has degraded, which is mainly reflected in karst desertification, the most obvious outcome in South China Karst (Xiong and Chen, 2010). Karst desertification has resulted in fragile soil, vegetation, hydrology, and human environment in karst areas (Xiong and Chi, 2015). This seriously restricts the sustainability of the development of karst areas. Therefore, local governments and scientific researchers have actively promoted the control of karst desertification and achieved considerable results. However, the existing governance strategies designed for large-scale ecosystems are not applicable to village ecosystems. Therefore, it is necessary to study the vulnerability of village ecosystems and provide a scientific basis for the design of management strategies in for KDC.



3. Materials and methods


3.1. Study area

The South China Karst region, centered on the Guizhou Plateau, is the largest and most concentrated karst ecological vulnerable zone in the world and is facing serious karst desertification (Cheng et al., 2017; Chen Q. et al., 2021). This case study was conducted in the karst mountainous area of the Guizhou Plateau. Karst landforms are typical in Guizhou Province; there are karst distribution areas in 95% of the counties of the province, and 91.7% of the cultivated land, 88.3% of the rural population, 94% of the grain output, and 95.7% of the gross national product come from counties with karst distribution. The industry, agriculture, transportation, urban construction, tourism, ecology, and other aspects of the province are directly or indirectly affected by karst (Su and Zhu, 2000). Excessive human activities, such as deforestation and rapid population growth, have contributed to the degradation of the ecosystem quality in the region (Han et al., 2020). We selected village ecosystems at different levels of KDC as research cases (two villages selected in each KDC area) to investigate vulnerability levels and influencing factors. The none-potential KDC area is located in the east of Guizhou Province, it is typical dolomite karst, and it belongs to the subtropical humid monsoon climate. The potential-mild KDC area is located in the northwest Guizhou Province. The landform type is mainly plateau mountain, and the rock type is mainly carbonate limestone. The moderate–severe KDC area is located on both sides of the Beipan River Canyon at the junction north of Zhenfeng County and south of Guanling County, Guizhou Province (Figure 1). The landform type is mainly a plateau canyon, the terrain fluctuates significantly, and the rock is mainly carbonate limestone.
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FIGURE 1
 Location of study area.




3.2. Research framework and indicator system construction

The combination of human society and the environment has resulted in ecosystem vulnerability, and the factors influencing different ecosystem vulnerabilities vary (Kang et al., 2018). South China Karst has broken terrain, steep slopes, high vegetation sensitivity, low environmental carrying capacity, and poor land quality (Yang, 1990). Strongly developed underground cave systems lead to a lack of surface runoff, groundwater utilization is difficult, and engineering drought may occur (Liu C. et al., 2014; Qiu et al., 2021). According to the sensitive basic environmental characteristics, there is high system exposure and low resilience of village ecosystems in KDC. Therefore, we referred to relevant literature and selected the framework of E–S–LoR (Birkmann et al., 2013), and constructed an evaluation index system for the village ecosystem vulnerability of KDC with three dimensions of “exposure, susceptibility, and lack of resilience” and 26 indicators (Table 1). The details of the dimensions were as follows: (1) Susceptibility is the degree to which a system changes easily when disturbed, which reflects the stability of the underlying environment. Therefore, we chose the annual average temperature, annual precipitation, annual sunshine hours, altitude, average slope, terrain undulation, proportion of karst desertification area, soil erodibility K, landscape fragmentation, landscape diversity, and forest coverage as the indicators to measure susceptibility. (2) Lack of resilience is the system’s self-adaptive capacity to deal with risk stress, including pre-event risk reduction for prevention, and post-event adaptive strategies. Herefore, we chose the length of roads open to traffic, livelihood strategies, net income per inhabitant, proportion of the population with high school education or above, number of pools, food production per unit of arable land area, area of returning farmland to forest, and annual control rate of karst desertification to reflect resilience. (3) Exposure reflects the extent to which an ecosystem is exposed to human activity and the external environment. The most direct manifestation is the pressure on production and population activity in the environment. We chose population density, population dependency ratio, proportion of building area, amount of fertilizer used on farmland, amount of pesticide used on farmland, proportion of labor outflow, and per capita cultivated land area to measure exposure.



TABLE 1 Village ecosystem vulnerability indicator weights.
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3.3. Data sources

Basic natural and socio-economic data were used in this study. Basic natural data included meteorological, topographic, land-use type, and soil texture data. Socioeconomic data included demographic, economic income, production and population, and ecological governance-related data. Meteorological data were obtained from The China Meteorological Data Service Center.1 We downloaded the 30 m resolution digital elevation model from the geospatial data cloud2 and then used ArcGIS10.2 to extract the elevation, slope, and topographic relief. The land-use type data were interpreted using 30 m resolution remote sensing image data downloaded from the geospatial data cloud. Based on land-use data, we calculated landscape diversity and landscape fragmentation using Fragstats 4.2. We referred to the classification standard of karst desertification (Xiong et al., 2002) to extract karst desertification data in the study area. Soil type data were obtained from the Resource and Environment Science and Data Center of the Chinese Academy of Sciences.3 Demographic, economic income, production, and ecological governance-related data were obtained through village group statistics and interviews with farmers. All the data were obtained in December 2020.



3.4. Methods


3.4.1. Data standardization

Because each indicator has different attributes and dimensions, it is necessary to standardize the original data before assessment. There are two types of relationships between an indicator and vulnerability: positive and negative (Zhao et al., 2018). Therefore, this study referred to relevant research and selected the following formula to normalize the indicators (Kan et al., 2018).

Positive indicators: (1).
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Negative indicators: (2).
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where Xij is the standardized indicator value, X is the original value of the indicator, Xmin is the minimum value of the original indicator, and Xmax is the maximum value of the original indicator.



3.4.2. Weight calculation

The methods used to determine the weight of the indicator include the expert scoring method, analytic hierarchy process, entropy method, and principal component analysis (PCA). However, the entropy method is more objective and accurate. Therefore, this study used the entropy method to determine the weight coefficients of the indicators.
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where Pij is the proportion of each indicator; Ej is the information entropy value of the indicator; Wj is the indicator weight; m is the sample size; and n is the number of indicators.



3.4.3. Vulnerability calculation

Based on the above weight calculation, we used Equation (6) to calculate the ecosystem vulnerability value of the village ecosystem of the KDC.

[image: image]

where V is the vulnerability value: the higher the value of V, the higher the vulnerability level, Wj is the weight of the jth indicator, and Xij is the standardized value of the jth indicator of the ith village.



3.4.4. Contribution calculation

In addition to analyzing its vulnerability level and spatial distribution, research on vulnerability should also analyze the causes of ecosystem vulnerability. To clarify the driving factors of the village ecosystem vulnerability of the KDC, we referred to the relevant literature to introduce a factor contribution model (Wang L. et al., 2022), Based on the results of the study, we selected the indicators with a contribution of more than 5% as the main contributing factors.
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where Cj represents the contribution of the jth indicator to vulnerability, Ur represents the contribution of the rth element layer to vulnerability, Ij is the standardized value of the jth indicator, and Wj is the weight of the jth indicator.





4. Results


4.1. Village ecosystem vulnerability characteristics in KDC

The vulnerability values of the three KDC areas (six villages) are listed in Table 2. The average village ecosystem vulnerability values was 0.468, with a minimum value of 0.29, and the maximum value was 0.646. We referred to the relevant research (Zhang et al., 2017), and divided the vulnerability into five levels according to the vulnerability values: slight (0–0.2), mild (0.2–0.4), moderate (0.4–0.6), high (0.6–0.8), and extreme vulnerability (0.8–1). The vulnerability values of the Baiduo and Yuntai Villages in the none-potential KDC area were 0.318 and 0.29, respectively, indicating mild vulnerability. The vulnerability values of Chaoying and Chongfeng Villages in the potential-mild KDC area were 0.494 and 0.532, respectively, indicating moderate vulnerability. The vulnerability values of Chaeryan and Xiagu Villages in the moderate–severe KDC area were 0.527 and 0.646, respectively, indicating moderate and high vulnerability. Overall, the village ecosystem vulnerability of the KDC area was mild, moderate, and high.



TABLE 2 Village ecosystem vulnerability level.
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4.2. Susceptibility value and contribution analysis

Based on statistical results (Figure 2A), the susceptibility values of Baiduo and Yuntai Villages in the none-potential KDC area were 0.167 and 0.105, respectively, whereas those of Chaoying and Chongfeng Villages in the potential-mild KDC area were 0.266 and 0.314, respectively. The susceptibility values of Chaeryan and Xiagu Villages in the moderate–severe KDC area were 0.204 and 0.289, respectively. We found that the susceptibility of the village ecosystem in the none-potential KDC area was the smallest, whereas that of the mild-potential KDC area was the highest. The village ecosystem susceptibility contributions in the none-potential karst desertification areas were 52.5 and 36.3%, and in the potential-mild karst desertification areas were 53.9 and 58.9%, respectively. The contributions in the moderate–severe karst desertification areas were 38.7 and 44.8%, respectively (Figure 2B).
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FIGURE 2
 Susceptibility analysis of villages ecosystem in the KDC. (A) susceptibility values. (B) Contribution of susceptibility factor.




4.3. Lack of resilience value and contribution analysis

The lack of resilience values for village ecosystems in the different KDC areas differed (Figure 3A). The lack of resilience values were smallest for Baiduo and Yuntai Villages in the none-potential KDC area at 0.072 and 0.078, respectively. The lack of resilience values were largest in Chaoying and Chongfeng Villages in the potential-mild KDC area, at 0.154 and 0.171, respectively. The lack of resilience values of Chaeryan and Xiagu Villages in the moderate–severe KDC area were 0.121 and 0.145, respectively, which fall between the other two grades of karst desertification areas. The contributions of the lack of resilience of the village ecosystems of the none-potential KDC areas were 22.7 and 27%, respectively, in the potential-mild KDC area were 31.1 and 32.1%, respectively, and 23 and 22.4% in the moderate–severe KDC area, respectively (Figure 3B).
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FIGURE 3
 Lack of resilience analysis of villages ecosystem in the KDC. (A) Lack of resilience values. (B) Lack of resilience factors contribution.




4.4. Exposure value and contribution analysis

Through the analysis of the exposure of the study area (Figure 4A), we found that the exposure values between the village ecosystems of the KDC displayed large differences, with a minimum exposure value of 0.048 and a maximum value of 0.211. The exposure values of the Baiduo and Yuntai Villages in the none-potential KDC area were 0.079 and 0.106, respectively. The exposure values of the village ecosystems in the potential-mild karst desertification area were the lowest, and the exposure values of the Chaoying and Chongfeng Villages were 0.074 and 0.048, respectively. The exposure values of the village ecosystem in the moderate–severe KDC area were the largest, and the exposure values of the Chaeryan and Xiagu Villages were 0.202 and 0.211, respectively. In general, there was little difference in the exposure values of village ecosystems in the same KDC area. The exposure values of village ecosystems in different KDC areas were in the order of moderate–severe KDC areas > none-potential KDC areas > potential-mild KDC areas. The contribution of exposure differs from that of vulnerability. The exposure contribution of the village ecosystems in the none-potential KDC area was 24.8 and 36.7%, respectively, in the potential-mild KDC area, it was 15 and 9%, respectively, and in the moderate–severe KDC areas, it was 38.3 and 32.7%, respectively (Figure 4B).
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FIGURE 4
 Exposure analysis of villages ecosystem in the KDC. (A) Exposure values. (B) Exposure factors contribution.





5. Discussion


5.1. Causes of village ecosystem vulnerability

It is very important to reveal the level and influencing factors of village ecosystem vulnerability in KDC to further restore vulnerable karst ecosystems. The differences in the natural and socio-economic conditions of village ecosystems in different KDC areas lead to significant spatial differences in vulnerability. According to our research, the vulnerability level of the village ecosystems of KDC in South China Karst showed mild and moderate vulnerability. The unique geology and lithology are the basis of ecosystem vulnerability, and the unreasonable human social and economic activities are the external pressure factors of ecosystem vulnerability in the South China Karst (Li et al., 2002).

We calculated the contribution rate of each indicator to the vulnerability of the village ecosystem and screened factors with a large contribution rate. In the none-potential KDC area, the maximum contribution rates of landscape diversity, landscape crushing, soil corrosive factor, slope (Figure 2B), and labor loss factors were 14.3, 11.8, 8.4, 7.1, and 14.1%, respectively. The maximum contribution rates of pesticide and fertilizer use were 8 and 9.7%, respectively (Figure 4B). In the potential-mild KDC area, the maximum contribution rates of the annual average temperature, altitude factor, maximum soil corrosive factor (Figure 2B), livelihood strategies, per capita net income (Figure 3B), and population density were 14.1, 15.2, 5.9, 9.2, 8, and 5.8%, respectively (Figure 4B). In the moderate–severe KDC area, the maximum contribution rates of precipitation, topography, karst desertification, landscape diversity, forest coverage (Figure 2B), construction land, and pesticides were 8.3, 6.9, 8.3, 6.3, 8.7, 15, and 7.9%, respectively (Figure 4B). The terrain significantly affects the stability of the slope material and conditions for agricultural farming. Rainfall and temperature have an important impact on ecosystem stability. The landscape pattern index, degree of karst desertification, and forest coverage were the main factors that causeing ecosystem sensitivity. Soil erodibility is an important factor affecting soil and water loss. The use of chemical fertilizers and pesticides affects the quality of cultivated land. Livelihood strategies, population density, and labor loss have caused pressure on local residents, increasing their exposure. A low per capita income leads to a lower adaptability of farmers.

In none-potential KDC areas, local residents have a low level of education. To increase agricultural output, farmers use more pesticides and fertilizers during cultivation. There are few employment opportunities in the countryside; many young people choose to go away for work, leaving behind many older adults and children who are exposed to uncertain risks. The potential-mild KDC area is high in altitude, the average annual temperature is low, and the annual precipitation is insufficient. Serious soil erosion, low labor efficiency, and low economic income mainly rely on labor exports and small-scale farming, and the incidence of poverty is extremely high (Ji et al., 2020; Ren et al., 2020). Our survey found that most local farmers’ livelihoods came from labor output acquisition income, and small-scale planting and breeding industries, while the population pressure was high. The moderate–severe KDC area surface is crushed, the terrain of the area is steep, the surface soil and soil reservation capacity is insufficient (Mu et al., 2021), and annual precipitation is low. Karst in the region has a strong role; the soil formation rate is low, and a large amount of unreasonable reclamation in the early days has led to poor soil and discontinuous soil cover (Ren et al., 2020). This results in poor landscape diversity and forest cover. This shows serious karst desertification, which is difficult to control. To facilitate water access and agricultural cultivation, many people are concentrated in the valley area, accompanied by many construction facilities. Farmers use many pesticides to increase the output of Chinese red pepper and dragon fruit. According to the analysis of the difference in indicator vulnerability values (Figure 5), we found that topography, climate, forest coverage, landscape pattern, karst desertification degree, soil erodibility, KDC rate, production and construction activity, livelihood, and per capita net income were the key factors leading to the differences in village ecosystem vulnerability in the three different levels of KDC areas.
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FIGURE 5
 Indicator vulnerability value difference.




5.2. Comparison with previous studies

In recent years, scholars have conducted relevant research on karst ecological vulnerability. These studies included vulnerability and impact-factor analyses. Chen (2007) pointed out that owing to the deep soil layer and continuous soil cover in the karst trough area, there is a slight vulnerability. This is consistent with the results of our study of the karst plateau trough area (none-potential KDC area). Wang et al. (2021) studied the ecological vulnerability of karst areas in Yunnan Province, China, and revealed high vulnerability and extreme vulnerability in moderate-to-severe karst desertification areas. However, our results show that the moderate-to-severe karst desertification areas are moderately vulnerable and highly vulnerable. This may be due to the differences in KDC measures, leading to different ecological restoration effects and different degrees of vulnerability. Guo et al. (2017) analyzed the vulnerability level and influencing factors were analyzed of mountain ecosystem in Southwest China Karst using the remote sensing method, and found that the vulnerability of regions with strong karst development, low vegetation coverage, and high bedrock exposure rate was higher than that of regions with high vegetation coverage, low karst desertification and better ecological environment in karst mountain areas in southwest China. The results of this study are consistent with the actual vulnerability of the village ecosystems in the three KDC areas. Many studies demonstrated that vegetation cover factors, precipitation, topography, soil erosion factors, and the degree of karst desertification on the impact of karst ecosystem vulnerability is more significant (Wang and Yu, 2005; Chen, 2007; Wang et al., 2021). However, the KDC village ecosystem was characterized by karst ecosystem vulnerability. Owing to the differences in spatial scale, data accuracy, and measurement indicators, large-scale studies cannot reflect the characteristics of small-scale ecosystem vulnerability. For example, the influence mechanism of farmers’ production activities, living activities, and socio-economic development on the vulnerability of karst ecosystems is a problem that has not been investigated in current large-scale research. The study of vulnerability at the village ecosystem scale can accurately reveal the factors influencing vulnerability. This has important significance for providing guidance to the government in formulating planning policies, which is also the significance and necessity of small-scale research.



5.3. Adaptive governance measures

Various ecosystem problems caused by karst desertification seriously affect the lives of local residents and hinder the coordinated development of the local socioeconomic and ecological environments (Xiong and Chi, 2015). Over time, humans have attempted to control the deterioration of karst desertification in karst areas. For example, the Italian government restricts the cutting of firewood and prohibits goat breeding (Ford and Williams, 2013). KDC mainly adopts the measures of water storage, land management, returning farmland to forest and grassland, afforestation, three-dimensional ecological agriculture, and agricultural and forestry management development in the South China Karst (Xiong et al., 2006; Jiang et al., 2009). However, different levels of vulnerability still exist in rural areas of the KDC environment. Therefore, in view of the current situation of the village ecosystems of KDC, we should concentrate on both ecological management and socio-economic development, focusing on the sustainability of village development and proposing feasible adaptive management measures. In none-potential KDC areas, existing vegetation coverage should be maintained, the population scale should be controlled, population quality should be improved, and the rural labor force should be retained. Organic fertilizers and non-residual pesticides should be popularized and the use of stereoscopic agriculture in mountains should be developed. Forestry should be developed on mountain tops, the middle area of the mountain should be used for fruit industry development, and crop cultivation and livestock and poultry breeding should be carried out at the foot of the mountain and in low flat areas. The development of eco-tourism and the promotion of the sale of ecological products could promote economic development of the eco-industry. In mild-potential and moderate–severe KDC areas, the population size should be controlled, population quality should be improved, and population skills training should be strengthened along with the implementation of ecological and water storage irrigation engineering measures. The selection of an economic fruit forest with drought tolerance, calcium preference, and developed root systems for planting, implementing mountain closures for afforestation, and returning farmland to forests to increase vegetation coverage and reduce water and soil loss are recommended while popularizing the use of organic fertilizers and non-residual pesticides and developing stereoscopic agriculture on mountains. Projects for transforming slopes into terraces and building of water-saving, intensive agricultural production systems should be implemented. In addition, unreasonable human activities, such as grazing and felling of trees, should be prohibited in stone and semi-stone mountainous areas. Local scientific research departments should increase their investments in scientific and technological research and investigate new processed agricultural products to increase their added value. Local governments should take advantage of local natural conditions to build research and tourism bases with karst characteristics and promote local employment while simultaneously promoting the coordinated development of socio-economic and ecological factors.

In general, it is necessary to change the current development mode and concurrently improve the ecological and socio-economic benefits to promote high-quality and sustainable development of rural areas in karst desertification areas. Talents, technology, capital, and superior management modes are necessary to achieve high-quality and sustainable development, enhancing the management ability of grassroots leaders, strengthening the training of farmers’ knowledge and skills, and comprehensively enhancing the production skills and environmental awareness of residents. Based on the advantages of rural resource endowment, we should optimize the allocation of resources, build a sustainable production system, integrate various industries, strengthen the construction of rural industrial chains, and promote the transformation and upgrading of the industrial structure and technological innovation. A reciprocal mechanism between rural industry development and farmers’ interests should be established to promote the integration and development of the rural industry. We should vigorously develop the ecological industry and promote the specialization and integration of production, processing, storage, transportation, and sales of ecological products. Furthermore, amendments to the quality requirements of ecological products should focus on improvements in product quality and economic benefits. We should rationally plan land-use patterns and optimize the spatial structure of rural production, life, and ecology. The quality of the ecological environment and the service function of the system should be improved. We should abandon the development model of destroying the environment for economic benefit, build a virtuous rural system, and form a local sustainable and high-quality development model.



5.4. Future research

Current vulnerability research has been applied to ecological, natural, and societal subsystems, and coupled socio-ecological systems (Gallopín, 2006). Research on the vulnerability of coupled socio-ecological systems has not yet resulted in the formulation of a perfect theoretical system, and is not unified in terms of concept connotation, research framework, and evaluation methods. Analysis of the process and mechanism of human–environment coupling is still an unresolved issue in research on ecosystem vulnerability (Tian and Chang, 2012). Currently, empirical research is mostly quantitative, the research methods are immature, existing models are used to build the index system, and there is a lack of innovation and lack of pertinence (Tang et al., 2022). Moreover, there is a lack of analysis on the formation process and internal mechanisms of ecosystem vulnerability. The research mainly focuses on a particular spatial and temporal scale and lacks a dynamic comparative analysis of vulnerability at different spatial and temporal scales (Huang et al., 2014). In future research, it is necessary to improve the indicator system, research models, and innovative research methods. We should pay attention to the process of the comprehensive action of human and natural factors and analyze the impact of the human–environment coupling mechanism on the formation mechanism of ecosystem vulnerability. We need to extend the spatial and temporal scales of research and use the 3S technology to reveal the spatial and temporal dynamic change processes of ecosystem vulnerability to realize dynamic monitoring and prediction. We should analyze the interaction mechanisms of material flow, energy flow, information flow, and ecological processes in the social-ecological system, and the relationship between stakeholders and ecological processes, to reveal the coupling mode of social economic factors and ecological environment factors. We should explore the breakthrough point of the social-ecological system from one steady state to another to reveal the threshold of vulnerability of the social-ecological system. The mutual feedback mechanism of the relationship between social activities and ecological environment degradation or restoration should be studied to explore the mode of balance and coordination between human production, living activities, and ecological restoration to combine theoretical research and practical applications and provide a decision-making basis for promoting sustainable governance of fragile ecosystems.




6. Conclusion

In this study, we analyzed the vulnerability level and driving factors of village ecosystems in different KDC based on the framework of “exposure–susceptibility–lack of resilience.” Finally, we propose sustainable governance strategies for the village ecosystems of KDC areas. The results showed that topography, climate, and land cover were the main natural factors affecting the vulnerability of villages to KDC. Social and economic activities are external stress factors for of village ecosystem vulnerability in KDC. Due to differences in geographical factors, the level and influencing factors of village ecosystem vulnerability in different KDC may vary. Villages in the none-potential KDC have a mild vulnerability level, villages in the potential-mild KDC are moderately vulnerable, and villages in moderate–severe KDC have moderate and high vulnerability levels. Landscape diversity, fragmentation, soil erodibility, labor loss rate, slope, and the use of pesticides and fertilizers are the main reasons for the vulnerability of village ecosystems in the none-potential KDC. The average annual temperature, altitude, soil erodibility, livelihood strategies, per capita income, and population density were the main factors affecting village ecosystem vulnerability in the potential-mild KDC. Annual precipitation, topographic relief, karst desertification degree, landscape diversity, forest coverage, construction land proportion, and pesticide usage are the main factors affecting village ecosystem vulnerability in moderate–severe KDC. We found that terrain, climate, forest coverage, landscape pattern, karst desertification degree, soil erodibility, KDC effect, production and construction activity, livelihood strategies, and per capita net income were the key factors influencing the differences in village ecosystem vulnerability in KDC. Finally, our suggestions for the sustainable development of village ecosystems in KDC are to govern the ecological environment, control population size, improve population quality, retain more labor, develop local characteristic industries, increase employment opportunities, increase residents’ economic income, promote the development of the ecological industry to drive economic increase, and promote sustainable development of village ecosystems in KDC.
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Introduction: Mid-season lodging in maize (Zea mays L.) often restricts grain yield potential and is a great hurdle in improving production efficiency. The aim of this research was to study the effects of lodging on photosynthesis, evapotranspiration, dry matter accumulation, and distribution in a maize population.

Methods: We examined the effects of lodging on photosynthesis, dry matter accumulation, and distribution of maize in Zhengzhou Agro-meteorological station in August 2016, following a strong wind lodging process. Based on observational data of crops, meteorology, and CO2/H2O flux from milk maturity to maturity of maize in a normal growth year (2017), a model of population photosynthesis and evapotranspiration of maize under normal growth conditions was constructed. The validated model was used to simulate the theoretical value of photosynthesis and evapotranspiration in lodging years (2016), then the measured value of population photosynthesis and evapotranspiration after lodging was calculated based on the measured data of CO2/H2O flux from milk maturity to maturity of maize, and the difference between the simulated value and the measured value of population photosynthesis and evapotranspiration in lodging years (2016) was compared and analyzed. The correlation between dry matter accumulation and population photosynthetic accumulation was examined in order to estimate the reduction of dry matter accumulation after lodging. The effect of lodging on dry matter accumulation, distribution, and yield was analyzed using field biomass data. The population photosynthesis model and evapotranspiration model could accurately simulate the characteristics of normal growth conditions of summer maize.

Results: The population photosynthesis model absolute error between the simulated value and the measured values in 2017 was −0.43 mg m−2 s−1, and the relative error was −3.3%; the evapotranspiration model absolute error between the simulated value and the measured values in 2017 was −0.005 mm·30 min−1, and the relative error was −10.7%. In 2016, the measured value of photosynthesis after lodging was significantly lower than the simulated value, and the daily average population photosynthesis rate decreased by 13.99 mg m−2 s−1 or 53%. Under the same condition, the daily average evapotranspiration decreased by 1.03 mm d−1 or 28%. The lodging process altered the accumulation and distribution of dry matter in maize. The dry weight of the stem and sheath increased by 5.5% and the ear weight decreased by 10.9% after lodging, compared to without lodging but there was no significant effect on leaf dry weight. After lodging, the proportion of stem sheath distribution increased by 3.0%, while the proportion of ear distribution decreased by 3.0%. After lodging, 100-grain weight and plant grain weight decreased by 2.8 and 10.8%, respectively. According to the lodging rate and density theory of computation yield, the yield of the entire field was reduced by 5.0%.

KEYWORDS
 maize lodging, CO2 flux, evapotranspiration, population photosynthesis, dry matter partition


1. Introduction

Maize is the most widely cultivated food crop in the Huanghuai area, and its perennial sown area and yield account for more than 20% of maize in China (National Bureau Of Statistics Of China, 2018). In the growing season of maize, strong convective weather is frequent which makes lodging possible. Lodging is a critical meteorological disaster that affects the yield and quality of maize. Lodging alters the population structure and spatial distribution of leaves in maize, resulting in a mutual shielding of plants and leaves, thereby reducing the ventilation and light transmission between plants and the photosynthetic rate of the population (Alam et al., 2018; Wang et al., 2022). Furthermore, lodging destroys the grooming tissues of the stem and negatively affects the transportation of water and nutrients from roots to leaves; at the same time, the transportation of photosynthetic products to underground organs and ear filling are hindered (Elmore and Ferguson, 1999; Yoon-Sup et al., 2013; Jun et al., 2016), all of which directly affect yield and components of yield (Minami and Ujihara, 1991; Jun et al., 2017; Xue et al., 2021). Various studies have shown that lodging reduces the yield of maize by 5–25% every year, and the yield decreases by 90–120 kg hm−2 for every 1% increase in lodging rate (Elmore and Ferguson, 1999; Kang et al., 1999).

Lodging during grain filling can reduce the content of crude fat and crude protein in maize grains, thus affecting the quality of maize (Cao, 2016). Previous studies have made in-depth analyses of the effects of lodging on dry matter accumulation, distribution, yield, and quality of maize, as well as causes of lodging, remedial measures, and the evaluation of lodging resistance on varieties of maize (Zhang et al., 2009; Wang et al., 2011; Chen et al., 2012). However, few studies have been conducted on the various characteristics of maize photosynthetic rates and evapotranspiration after lodging; observation methods have been identified as one of the main reasons for limited research in this field. The plants become mutually shaded after lodging, so it is necessary to measure the population photosynthesis and evapotranspiration to reflect the real disaster situation on the field. At present, the recognized photosynthetic measurement systems such as LI-6800 are limited to the measurement of the photosynthetic capacity of a single leaf. Since summer maize is a high-stem crop, it is difficult to measure community photosynthesis directly. However, considerable numbers of research have been carried out on the photosynthesis of maize leaves, the characteristics of the population photosynthesis, and the establishment of photosynthesis and evapotranspiration models by numerical analysis (Yu et al., 1998; Zhang et al., 2004; Wang, 2006). The findings of this research provide new ideas for analyzing the characteristics of summer maize population photosynthesis and evapotranspiration changes after lodging.

In this study, we examined the effects of a maize lodging catastrophe at the Zhengzhou Agricultural Meteorological Experimental Station on photosynthesis, evapotranspiration, dry matter accumulation, and distribution of the maize population in August 2016. Based on the flux observation system and crop observation data of summer maize from the milk stage to the maturation stage without lodging in 2017, photosynthesis and evapotranspiration simulation models were constructed and verified under normal growth conditions. In 2016, the verified models were used to simulate the theoretical value without lodging. In addition, after lodging, according to the observed data of CO2 flux, the actual photosynthetic rate and evapotranspiration were determined by using the carbon and water cycles theory of farmland ecosystem as the measured value, and the decrease in population photosynthesis and evapotranspiration after lodging was compared and analyzed. The Richards dry matter accumulation model was used to simulate and analyze the relationship between daily photosynthesis and daily dry matter accumulation after lodging. The dry matter accumulation after lodging was calculated by the decrease in group photosynthesis. At last, we analyzed the effects of lodging on dry matter distribution and yield formation by using field biomass data.



2. Materials and methods


2.1. Experimental site

The experimental site was located at the Zhengzhou Agro-meteorological Station, Henan Province, China (34 ° 43 ′ N, 113 ° 39 ′ E, altitude 110.4 m). The annual average temperature and precipitation at the station were 14.9°C and 670 mm, respectively. The mid-mature hybrid variety “Xundan 20” was sown in 2016 and 2017. There were no meteorological disasters during the 2017 growing season, and there were no major meteorological disasters except for a strong wind on August 25, 2016. The station experienced a strong wind at a maximum wind speed of 18.1 m s−1 and an hourly average wind speed of 3.8 m s−1 at 12:20 on August 25, 2016 (the third day after milk maturity). This time, the wind was accompanied by precipitation, with daily precipitation of 23.8 mm. Approximately half of the entire field was lodged, with broken stems mainly occurring between the third and fourth nodes, and the broken parts were approximately 20 to 30 cm away from the ground.



2.2. CO2 flux data observation and data quality control

The CO2 flux observation system is based on the eddy covariance system (Campbell Scientific Company of America), which also incorporates a gradient observation system and a vorticity observation system. The gradient observation system consisted of a set of PAR LITE photosynthetically active radiation sensors, five layers of air temperature and humidity probes, and four layers of wind direction anemometers. The eddy covariance system was composed of an LI-7500 CO2/H2O analyzer (with a height of 3 m), a CSAT3 3D ultrasonic anemometer, a CNR2 net radiation sensor, and the HFP01 soil heat flux plate. The daily maintenance and flux data download of instruments were carried out in accordance with the data format by the standers of the China Meteorological Administration. The half-hour flux data was processed in accordance with the general flux data processing method through outlier elimination, coordinate axis rotation, and WPL transformation (Vickers and Mahrt, 1997; Li et al., 2008; Xu et al., 2008). The average day and night method and nonlinear regression method were used to interpolate for the data missing due to precipitation, power failure, and other factors. As a result, the continuity of the data was ensured (Falge et al., 2001; Guo et al., 2007).

The CO2 data was analyzed from August 22 to September 12 before and after lodging in 2016, and the data on the day of lodging (August 25) was excluded due to rainfall. In 2017, the corresponding data from milk maturity to maturity (August 28 to September 22) was selected for analysis, and the data from August 29 to 30 were excluded because of rainfall.



2.3. Investigation on lodging disaster of maize

On the second day after maize lodging (August 26, 2016), the lodging type and lodging rate were investigated. This lodging was caused by stem breakage, and 100 plants were continuously examined to record the lodging number. Based on statistical analysis and image recognition (Figure 1), it was determined that the lodging number divided by the total number of investigated plants resulted in a lodging rate of 46.0% recognition (Jia et al., 2015).

[image: Figure 1]

FIGURE 1
 Comparison of maize before and after lodging.




2.4. Crop observation

The data of maize growth was observed by manual methods from planting to harvest, and the agricultural meteorological observation data was completed in 2016 and 2017 (National Meteorological Administration, 1993). After lodging, lodging data was collected according to the disaster situation in 2016.


2.4.1. Observation of growth stage

This mainly included the observation of the three-leaf stage, seven-leaf stage, jointing stage, tasseling stage, milk-ripe stage, and mature stage.



2.4.2. Determination of dry matter

The samples were taken before lodging at the three-leaf stage, seven-leaf stage, jointing stage, tasseling stage, and milk ripe stage. After lodging occurred, samples were taken and determined according to “lodging” and “not lodging” in the mature period. Four measuring points were fixed in the field, 10 plants were selected continuously from each measuring point, and the height of 40 plants at each measuring point was measured, which was divided into five groups with the same date range according to the dispersion degree of data regarding plant height. Each measuring point was sampled according to the average plant height of each group as the reference height, and one plant was taken from each reference height; five plants were taken from each measuring point, which was cut off on the ground and brought back into the room. The leaves, stem sheaths, ears, and other organs were separated and dried before weighing.

Taking lodging into account, the average dry matter accumulation at the field level was calculated as follows:

[image: image]

where DLE is the average dry matter accumulation at the field level, Lr is the lodging rate (46.0%), DL is the dry matter accumulation of lodging plants, and DNL is the dry matter accumulation of non-lodging plants.



2.4.3. Determination of leaf area index

We collected leaves for leaf area measurement in the same manner for dry matter sampling as mentioned above using the length-width coefficient method:

[image: image]

where LSi is the leaf area per plant (cm2), Li is leaf length (cm), Di is leaf width (cm), and k is the leaf area correction coefficient, which is 0.70. The leaf area index LAI was obtained by multiplying the leaf area per plant by the number of plants per square meter.



2.4.4. Yield investigation and theoretical yield calculation

At the mature period of maize, four measuring points were randomly selected, and 10 plants were taken from each measuring point based on lodging and non-lodging. Plants were cut off evenly and dried in the sun and the yield component, ear length, ear diameter, total grain weight, 100-grain weight, and grain-to-stalk ratio were analyzed. The theoretical yield was calculated as:
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where YR is the theoretical yield (kg·hm−2), YNL is the yield of the non-lodging part, and YL is the yield of the lodging part. SWNL is the grain weight of a non-lodging plant (kg·plant−1). Lr is the lodging rate, which is 46.0% according to statistics. ED is the total planting density (plant·hm−2), and SWL is the grain weight of the non-lodging plant (kg·plant−1).

According to the theoretical output, the yield reduction rate was calculated as follows:
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Pr is the yield reduction rate (%). YE is the expected theoretical yield (kg·hm−2).




2.5. Simulation of population photosynthesis under normal growth conditions

The crop population photosynthetic rate was equal to the difference between the total population photosynthetic rate and dark respiration rate, otherwise known as the net population photosynthetic rate, which was the simulated population photosynthetic rate under normal growth conditions:

[image: image]

Acm is the simulated value of the net photosynthetic rate of the population, A is the total photosynthetic rate of the population (mg m−2 s−1), and Rd is the population dark breathing rate (mg m−2 s−1), which is calculated by COLLATZ G. JAMES (Collatz et al., 1991). The total photosynthetic rate (A) of the population was simulated by the scale expansion method (Yu and Sun, 2006). Firstly, according to the modified Farquhar biochemical model of photosynthesis (Farquhar et al., 1980), the total photosynthetic rate (P) of a single leaf was calculated as:
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where α is the initial quantum efficiency (μmol μmol−1), I is light intensity (μmol m−2 s−1), Pmax is the maximum photosynthetic rate (μmol m−2 s−1), θ is convexity, and the value is 0.55 μmol μmol−1.

Using the photosynthetic rate of a single leaf, it was then extended to the scale of crop population, and the single-leaf model was applied. The total photosynthetic rate of the population was as follows:

[image: image]

where LAIL is the daily leaf area index. LAIL is simulated by a modified Logistic equation (Peng and Yang, 2018):

[image: image]

where LAImax is the measured maximum leaf area index during the growth period, DS is the normalized accumulated temperature, and a, b, and c are the fitting parameters.



2.6. Estimation of the photosynthetic rate of measured population

Based on the carbon cycle theory of farmland ecosystems, the population photosynthetic rate can be calculated from the CO2 flux and soil respiration as the measured value of population photosynthesis. CO2 flux mainly includes the net photosynthesis of crops and the respiration of soil. By using the black box method, the calculation formula for the net photosynthetic rate of crop population was (Liu et al., 2015):

[image: image]

where Acs is the net photosynthetic rate of population (mg m−2 s−1), and Fc is CO2 flux (mg m−2 s−1), which can be observed by the flux observation system. Rs is soil respiration rate (mg m−2 s−1) which increases exponentially with the increase of soil surface temperature (Ts) (Tjkelker et al., 2001; Wang et al., 2004):
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where R0 is the soil respiration rate (0.11 mg m−2 s−1) when the soil temperature is 25°C, Q10 is a constant, the value is 2.14, and Ts is 5 cm soil temperature.



2.7. Shuttleworth–Wallace dual-source model

Shuttleworth and Wallace studied the evapotranspiration of soil surface under sparse soil cover conditions and developed a dual-source model (S-W model) consisting of vegetation and soil surface under vegetation cover with the assumption that the crop canopy was uniformly covered in vegetation.
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where CcPMc is transpiration of summer maize, CsPMs is the evaporation of soil, Cc is canopy coefficient, Cs is soil surface coefficient, Rn is net canopy surface radiation (W m−2), G is soil heat flux, ρis is air density (kg m−3), Cp is the specific heat of the air (1,012 J kg−1 K−1), D is air saturation vapor pressure difference (hPa), γ is the dry and wet meter constant (0.67 hPa K−1), △ is the slope of saturation vapor pressure–temperature curve (hPa K−1), [image: image] is the net radiation of soil surface (W m−2), [image: image] is canopy resistance (s m−1), [image: image] is the resistance of the canopy inner boundary (s m−1), [image: image] is the height of the crop canopy, and [image: image] is aerodynamic resistance between surface and canopy height (s m−1).



2.8. Model verification

The theoretical simulation value of the population photosynthetic rate calculated by Formula (8) was verified by using the measured value of the population photosynthetic rate calculated by Formula (12). The actual value of evapotranspiration is measured by the flux observation system, and the simulated value is calculated by the S-W model. The simulation result was evaluated by using Absolute Error (AE) and Relative Error (RE). The smaller the error, the higher the simulation accuracy will be.
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[image: image]

where AE is the absolute relative error, RE is the relative error, Si is the ith simulated value, and Oi is the ith observed value.



2.9. Estimation of dry matter accumulation

According to Richards equation, the daily growth model of maize biomass was constructed by using the measured biomass at different development stages (Zhang et al., 2018):

[image: image]

where y is the daily dry matter weight per unit area and the unit is g m−2, A, B, C, and D are fitting parameters, and t is the normalized accumulated temperature.

As 2016 was a lodging year, according to the sampling data of lodging and non-lodging biomass, two types of daily growth biomass were simulated.



2.10. Data processing

All the data and statistical analyses were performed using SPSS Statistics package 19.0 (SPSS Inc., Chicago, IL, USA). Microsoft Excel 2016 was used for data processing and drawing.




3. Results


3.1. The effect of lodging on photosynthesis and evapotranspiration of maize population


3.1.1. Population photosynthesis simulation

Based on the observational data of maize in the normal growth year (2017) from the milk stage to the maturity stage, the simulation model of population photosynthesis was constructed, and the parameters of the model were calibrated to simulate the photosynthetic rate of the maize population under normal growth conditions (Figure 2). The simulated values of photosynthesis of normal maize farmland population were in accordance with the observed values. There was a significant positive correlation between the simulated value and the observed value, and the correlation coefficient was 0.95. The absolute error of the simulation was 0.43 mg m−2 s−1 and the relative error was −3.3%. The results showed that the model could accurately simulate the change rate in photosynthesis of the maize population from the milk stage to the mature stage under normal growth conditions.

[image: Figure 2]

FIGURE 2
 Population photosynthesis of maize from milking to mature stage in a normal year and lodging year.


Based on the constructed photosynthesis model of the maize population, the theoretical value of simulating the photosynthesis rate of the maize population from the milk stage to the mature stage in 2016 was taken as the control value. The differences between the measured population photosynthesis and simulated control value after lodging are shown in Figure 2. The photosynthesis of the observed population after maize lodging (August 25, 2016) was significantly lower than the simulated value, which indicated that the photosynthesis of maize farmland decreased significantly after lodging. In the period from lodging to mature harvest, the average daily photosynthesis rate decreased by 13.99 mg m−2 s−1, with an average decrease of 53%. Among the maize population, lodging was more significant under sunny conditions (sunshine hours ≥7 h), and the rates of average daily photosynthetic activity decreased by 60 cloudy days, resulting in weak photosynthesis as a whole, and the average daily photosynthetic rate decreased by 39% after lodging.



3.1.2. Simulation of evapotranspiration by the Shuttleworth–Wallace dual-source model

The S–W dual-source model was used to calculate the evapotranspiration for summer maize from the milking to maturity stage in a normal growth year type (2017; Figure 3). The simulated and measured evapotranspiration values of summer maize in a normal year were in good agreement; the correlation coefficient was 0.88, the simulated absolute error was −0.005 mm 30 min−1, and the relative error was −10.7%. The results showed that the model could accurately simulate the evapotranspiration variation from the milk stage to the maturity stage of summer maize under normal growth conditions. The S–W model was used to simulate the theoretical evapotranspiration of summer maize from the milk stage to the maturity stage in 2016 as a control, and the difference between the measured group evapotranspiration and the simulated control value after lodging was compared. After the lodging of summer maize (August 25, 2016), the measured evapotranspiration was significantly lower than the simulated value, which suggested that lodging significantly reduced the evapotranspiration of summer maize. On average, the daily evapotranspiration decreased by 1.03 mm d−1 or 28% from lodging to harvest.

[image: Figure 3]

FIGURE 3
 Evapotranspiration of maize from milking to mature stage in a normal year and lodging year.





3.2. The effect of lodging on dry matter accumulation of maize


3.2.1. Estimation of dry matter accumulation of maize after lodging based on population photosynthetic model

In the study, the dry matter accumulation was simulated using the Richards model (Formula (16)) of summer corn based on dry matter sampling data in a normal year (2017) at different growth stages. As a consequence, the measured and simulated values of population photosynthesis every half hour were converted into the cumulative values of daily photosynthesis, and the daily cumulative amounts of population photosynthesis were calculated accordingly. The data in Figure 4 shows the results of correlation analysis with the accumulated amount of dry matter over the corresponding period. Under normal growth conditions, the measured and simulated values of daily population photosynthetic accumulation were significantly positively correlated with daily dry matter accumulation. The correlation coefficient between measured and simulated values of daily population photosynthetic accumulation were 0.9977 and 0.9965, respectively, which indicated that the change of daily dry matter accumulation after the milk stage of maize could be estimated by using the accumulated value of population photosynthesis.

[image: Figure 4]

FIGURE 4
 The fitting relationship between the accumulation of photosynthetic product and dry matter accumulation in normal summer maize after the milk stage.


Based on the positive correlation between photosynthesis accumulation and dry matter accumulation, the change in dry matter accumulation after lodging in 2016 was estimated. Taking the dry matter sampling data of non-lodging samples as the substitute for the Richards model of daily dry matter growth of maize, the daily dry matter growth of maize was simulated, which was taken as the “reference value of dry matter growth” under normal growth conditions. The calculated daily photosynthetic rate decreased in percentage after lodging, and multiplying the daily photosynthetic rate decreased percentage by the reference value of daily dry matter increase gave us the estimated amount of daily dry matter increase after lodging (Figure 5). After lodging, photosynthesis and daily average photosynthetic products decreased significantly, resulting in the decrease of dry matter accumulation. If lodging did not occur, the dry matter accumulation in the milk-ripe stage to the mature stage could increase by 368.2 g m−2. However, lodging occurred, and it was estimated that the dry matter accumulation increased by 299.6 g m−2 in the milk-ripe stage, which was 68.6 g m−2 lower than the theoretical value. Dry matter accumulation decreased by 18.6% (Table 1).

[image: Figure 5]

FIGURE 5
 Estimation of dry matter growth after lodging.




TABLE 1 Growth and meteorological conditions of maize in 2016 and 2017.
[image: Table1]



3.2.2. Dry matter accumulation of maize after lodging based on field sampling calculation

After the disaster, samples of dry matter were taken from lodging and non-lodging plants. The changes in dry matter in maize are shown in Table 2. The total dry matter weight per unit area in the mature period increased by 181.0 g m−2 (lodging) and 299.8 g m−2 (non-lodging), and the total dry matter weight of lodging plants decreased significantly by 118.8 g·m−2 (α = 0.05). According to Formula (1), the average total dry matter weight per unit area of the whole field after lodging was 245.2 g·m−2, which was 18.2% lower than the theoretical value without lodging. Moreover, the dry matter accumulation of field sampling results was basically consistent with the decreased range (18.6%) of dry matter accumulation estimated by population photosynthesis in 2.2.1.



TABLE 2 The effects of lodging on dry matter accumulation and partition ratio for organs of maize.
[image: Table2]




3.3. The effect of lodging on dry matter distribution of maize

Compared with the milk-ripe period, the leaf dry weight at the mature stage decreased by 37.5 g m−2 (lodging) and 24.6 g m−2 (not lodging), and the stem sheath weight increased by 141.6 g m−2 (lodging) and 129.2 g m−2 (not lodging). The dry weight of ears in the mature stage increased by 77.0 g m−2 (lodging) and 195.2 g m−2 (not lodging) compared with the milk-ripe period, and the weight of ears in the lodging stage decreased significantly (α = 0.05) by 118.2 g m−2, with a decrease of 60.6%. It can be seen from the above that the decrease in the dry weight of the spike after lodging is the main reason for the decrease in total dry matter weight.

As a result of lodging, there was a significant decrease in dry matter accumulation and changes in the distribution ratio of dry matter in various organs (Table 2). After lodging, the dry matter partition ratio in stem and sheath increased significantly by 3.0%. The partition ratio of the ear significantly reduced by 3.0% after lodging than without lodging. The dry weight of aging leaves no longer increased because it was in the middle and late growth stages of maize, and the distribution ratio of lodging and non-lodging leaves had little difference. The total weight of maize plants decreased after lodging, the photosynthetic products were more distributed to the vegetative organs, and the dry matter accumulation in reproductive organs decreased, resulting in a decrease in maize yield.



3.4. The effect of lodging on maize yield

After harvest, samples were taken from lodging and non-lodging plants. The yield structure analysis of maize is shown in Table 3. As lodging occurred in the middle and late filling stages of maize, there was little difference in the ear length and ear diameter between lodging and non-lodging maize. After lodging, the weight of 100 grains of maize decreased by 0.88 g, which was significantly reduced by 2.8% (α = 0.05), compared with without lodging. After lodging, the total grain weight of the plant decreased by 18.0 g which was significantly lower than without lodging (α = 0.05). After lodging, the grain-to-stalk ratio of maize was significantly lower than that of non-lodging, indicating that more dry matter distribution was allocated to the stem and sheath, and the harvest index decreased. Compared with non-lodging, the theoretical yield of lodging plants decreased significantly by 1172.9 kg hm−2. The yield of a whole field decreased by 539.5 kg hm−2 when the lodging rate was about 46.0%, and the yield reduction rate was approximately 5.0% when the lodging rate was approximately 46.0%.



TABLE 3 The effect of lodging on the yield component of maize.
[image: Table3]




4. Discussion

The population photosynthesis model extends the physiological and ecological models at the leaf scale to the canopy scale by means of scale expansion, and the large leaf model, the two-leaf model, and the multi-layer model are widely used. In this study, the Farquhar biochemical model (1980), which is widely used, was extended to the canopy-scale photosynthesis model of large leaves. It is generally believed that the hypothesis of the big leaf model is basically valid when the leaf area index (L ≥ 3) of the canopy is taken into account (Ren et al., 2004). At present, canopy-scale photosynthesis models mostly focus on simulating crop responses to light, temperature, water, CO2, and other environmental factors, ignoring the simulation of the physiological and ecological processes that allow crops to adapt to the environment, and thus, the models cannot predict how crops will respond to the environment under adverse conditions. In this study, based on two aspects of crop photosynthesis and ecosystem carbon cycle combined with CO2 flux observation data of the vorticity correlation system, the characteristic changes of group photosynthesis of maize during normal growth from milk maturity to maturity were compared and analyzed by two methods, and the model parameters were calibrated. In 2017, the simulated values of milk maturity to maturity in the normal growing season of maize were consistent with comparative values, and the change characteristics of group photosynthesis after lodging in maize in 2016 were further analyzed.

Photosynthesis is the source of dry matter accumulation and yield formation in maize, and the accumulation of photosynthetic products is generally calculated using dry matter accumulation through a model. The CO2 assimilation module in the WOFOST model calculates the parameters of photosynthesis cumulative conversion to dry matter mass. Lizaso et al. (2005) introduced CO2 flux observation data and used the CERES-Maize model to simulate the changes in dry matter accumulation and parameter sensitivity at the canopy scale, obtaining good simulation results. After maize lodging in 2016, the accumulation of photosynthetic products and dry matter decreased. In addition, a previous study showed that (Liu et al., 2019) parameter correction was necessary for calculating the conversion of photosynthesis accumulation of other plants into dry matter mass of plants, and the correction coefficient was not fixed, so a certain error occurred when calculating the daily dry matter accumulation through the decrease percentage of photosynthetic rate in section (2.2.1). The accumulated amount of dry matter after lodging was reduced by 18.6% calculated by daily photosynthetic rate reduction percentage, and by field sampling, the accumulated amount of dry matter after lodging was reduced by 18.2%. Although there were some errors, they were consistent.

Lodging changes the cumulative distribution of dry matter in maize. Under normal growth conditions, the vegetative organs of maize generally stop growing at the late growth stage, and the increase of dry matter in the population is mainly manifested in the accumulation of grains. Several studies have shown that the stem is the main organ for the redistribution of photosynthetic products, and the redistribution amount of stem dry matter can reach 35% of its dry weight during grain filling (Ma and Zhou, 2016). This study shows that after maize lodging, not only the photosynthesis ability of plants decreases but the accumulation of total dry matter also decreases. Moreover, the cumulative distribution law of dry matter changes, and the plant grows uprightly and in reverse, and some dry matter transfers from ear to stem (Li et al., 2015a). Several studies have shown that the earlier lodging resulted in serious yield reduction (Li et al., 2015b). On the other hand, adversity accelerates the senescence of crops, which is beneficial for their reproductive growth process, thus avoiding adversity stress and maintaining population stability (Gao et al., 2017). In this study, maize lodging occurred at the milking stage and did not have any significant effect on grain number per ear, ear length, ear diameter, and leaf dry matter distribution. There was no significant effect of lodging on yield, but it did have an effect on grain weight per ear and 100-grain weight.

The photosynthesis model of the maize population has a strong mechanism, but there are many model parameters that make it more difficult to calculate the model accurately (Zhnag et al., 2001; Zhang, 2016; An et al., 2021). Meanwhile, crop dark respiration and soil respiration are regarded as functions only depending on air temperature and soil temperature, respectively, but the model parameters are too simple, resulting in the accumulation of simulation errors (Sun et al., 2013; Chen et al., 2017; Shah et al., 2017). In addition, due to the sudden and sporadic wind lodging disaster and the poor repeatability of natural lodging, there is still a lack of observation data after large-scale lodging to verify the simulation results of population photosynthesis.



5. Conclusion

The simulation model of population photosynthesis and evapotranspiration under normal growth conditions of maize was constructed by using the Eddy-Covariance system and crop observation data during the period from milk maturity to maturity in 2017 without lodging, and the model was verified by the measured population photosynthesis calculated by CO2/H2O flux observation data. The results showed that the absolute error of the population photosynthesis model simulation was −0.43 mg m−2 d−1 and the relative error was −3.3% under the normal growth of maize. Under normal growth conditions, the simulated values of photosynthesis were in good agreement with the measured values. The verified model was used to simulate the theoretical population photosynthesis of maize in the lodging year (2016). Compared with the calculated measured population photosynthesis, the average daily photosynthesis decreased by 13.99 mg m−2 s−1 and 53% after lodging.

Lodging reduced photosynthesis, evapotranspiration, and decreased dry matter accumulation. The dry matter accumulation of maize simulated by the Richards model was positively correlated with the population photosynthesis accumulation. The dry matter accumulation of lodging year (2016) was estimated from the population photosynthesis accumulation, and the dry matter accumulation decreased by 18.6%.

Lodging changed the distribution ratio of dry matter in maize. After lodging, the stem and sheath dry weight of maize increased by 5.5% and ear weight decreased by 10.9%, but there was no significant effect on the leaf dry weight. After lodging, the partition ratio of stem and sheath increased by 3.0% and the partition ratio of ear decreased by 3.0%. After lodging, the 100-grain weight significantly decreased by 2.8%, and the grain weight per plant decreased by 10.8%. Calculating theoretical yield according to lodging rate and density, lodging resulted in a yield reduction rate of approximately 5.0% for the whole field.

Experts have conducted extensive research on crop lodging, but the lodging process of summer maize is very complex, for example, various factors such as high or low stems. There are also meteorological factors such as strong winds or heavy precipitation and planting factors such as excessive planting density or unreasonable field management. The meteorologist, agronomists, physiologists, molecular actors, and breeders require further exploration to fix this challenging problem.
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The karst region of southwest China showed a significant increase in vegetation cover and vegetation carbon stocks under the implementation of a series of ecological restoration projects. However, the relative contribution of ecological restoration projects to terrestrial carbon sequestration in the context of climate change has yet to be well quantified. Here, we used the Community Land Model (CLM4.5) to investigate the trend of net ecosystem productivity (NEP) and attribution to multiple environmental factors in the karst region of southwest China during 2000–2018. The result showed that ecosystems with a significant increasing trend of NEP covered about 46% of the study region, which were mainly located in the peak forest plain region, colliculus region, peak cluster depression region, and middle-high hill region. The simulation experiments suggested that land use change associated with ecological restoration projects caused a large contribution of 53% to the increasing NEP trend, followed by CO2 fertilization (72%), while climate factors and nitrogen deposition showed minor negative effects. Especially, the NEP trend induced by land use change in the 100 pilot counties with the implementation of rocky desertification control project was significantly higher than that in the other karst area. Moreover, moderate and high levels of restoration efforts invested into recovery led to a larger increasing trend (0.66 gC/m2/yr2 and 0.48 gC/m2/yr2) in NEP than the low efforts level (0.22 gC/m2/yr2). Our results highlight the important role of ecological restoration projects in the enhanced terrestrial carbon sequestration in the karst region of southwest China, and recommend a comprehensive assessment of ecological restoration projects for policymaking.
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1. Introduction

The karst region of southwest China holds one of the largest continuous karsts in the world, which is highly sensitive to the increasing climate variability and extreme climate events (Kharin et al., 2013; Seddon et al., 2016). Meanwhile, the increase in population expanded the demand for natural resources and caused a severe rocky desertification (Sweeting, 2012; Delang and Yuan, 2016). Approximately 0.13 million km2 of karst areas were transformed into rocky landscapes from natural vegetation (Yuan, 1997; Wang et al., 2004). To combat land degradation and improve the ecological security situation, Chinese governments have invested more than 130 billion yuan in launching a series of ecological restoration projects since 1999 (Delang and Yuan, 2016). The Grain to Green Project is the most ambitious project for restoring natural vegetation and prevention of sloping farmland in human history (Ouyang et al., 2016; Xu et al., 2017). The government has also set up the rocky desertification control projects in the karst region of Southwest China since 2008, which covered from 100 pilot counties at first to all 451 rocky desertification counties in 2015. With the implementation of these ecological restoration projects, many studies have found that a recent increase in the Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) (Cai et al., 2014; Xu and Zhang, 2014), aboveground biomass carbon (ABC) (Tong et al., 2020), and vegetation optical depth (VOD) (Brandt et al., 2018) in the karst region of Southwest China. This region’s ecosystem quality increased simultaneously (Zhang M. et al., 2022). Estimation of the effect of ecological restoration projects on ecosystem functions (especially carbon sequestration function) in the karst region of Southwest China is crucial to the ecosystem management and performance assessment of ecological civilization construction.

Previous studies have confirmed the positive effect of ecological restoration projects on vegetation cover and vegetation carbon stocks based on different methods (Zhang et al., 2015; Zhang M. et al., 2016; Tong et al., 2017, 2018). Based on residuals between observed and predicted vegetation cover and biomass trends, Tong et al. (2017) found a direct positive effect of management in Guizhou, Yunnan, and Guangxi. Residual analysis also indicated that ecological services were improved by rocky desertification control in a typical karst region of northwest Guangxi (Zhang M. et al., 2016). The positive impacts of rocky desertification control measures on the vegetation carbon services were found in the typical karst area of northwest Guangxi through the method of canonical correspondence analysis (Zhang et al., 2015). By comparing the results of satellite products and dynamic vegetation models, Tong et al. (2018) pointed out that the areas of high ecological restoration projects have stronger positive trends in vegetation cover and vegetation carbon stocks, while the areas of little ecological restoration projects have weaker positive trends in vegetation cover and vegetation carbon stocks in Guizhou, Yunnan, and Guangxi after 2000. Besides the role of ecological restoration projects, these changes on vegetation cover and vegetation carbon stocks are also associated with other environmental drivers (Wang et al., 2014), such as changing climate, rising atmospheric CO2 concentration, and increasing nitrogen deposition (Choi, 2004; Seabrook et al., 2011). Climatic conditions, human management, and disturbances may influence the effectiveness of ecological restoration projects. High annual rainfall and soil moisture after drought events help increase vegetation cover, especially in the areas where ecological restoration projects are implemented (Brandt et al., 2018). High investments of ecological restoration projects combined with sufficient rainfall generally increase the effectiveness of ecological restoration projects (Tong et al., 2017). However, the relative contribution of ecological restoration projects on ecosystem functions (especially carbon sequestration function) in the context of climate change and human activities in the karst region of Southwest China has not been well quantified.

The primary actions of the ecological restoration projects include expanding the natural vegetation, reducing sloping farmland, and cultivating crops on more fertile and less erodible soils (Tong et al., 2020). The implementation of ecological restoration projects directly influences the ecosystem functions (especially carbon sequestration function) through the land use change (Qin et al., 2022). The objectives of this study are to investigate the trend of NEP in the karst region of southwest China during 2000–2018, and to analyze the relative contribution from multiple environmental factors (i.e., climate change, atmospheric CO2 concentration, nitrogen deposition, and land use change). Here, we used the Community Land Model version 4.5 (CLM4.5) to simulate the temporal variation of net ecosystem productivity (NEP) and region contribution in different karst region, and conducted a series of simulation experiments to quantify the impacts from different drivers on NEP trend.



2. Materials and methods


2.1. Study region

As one of the most typical, complex, and extensive karst landforms worldwide, the karst region of Southwest China includes Chongqing, Hubei, Hunan, Guangdong, Guangxi, Guizhou, Sichuan, and Yunnan provinces (Figure 1). With poor soil formation ability, thin soil depth, and poor surface water retention (Jiang et al., 2014), the environment in this region is vulnerable and very sensitive to climate change and anthropogenic activities (Yuan et al., 1990). Subtropical monsoon climate is the main climate types, with a mean manual temperature of 15.00°C and a mean manual precipitation of 1,100 mm. The vegetation coverage is high with a proportion of forest land and grassland equaling 82.43%. According to similarities of the karst geomorphology and its formation causes, the karst region of Southern China could be divided into eight karst regions, namely Peak forest plain region (I), Trough valley region (II), Colliculus region (III), Gorge region (IV), Peak Cluster Depression region (V), Faulted Basin region (VI), Plateau region (VII), and Middle-high Hill region (VIII) (Supplementary Table S1; Wang et al., 2015). Because of the increasing intensity of human exploitation of natural resources, about 0.13 million km2 of karst areas were turned into rocky landscapes. A series of ecological restoration projects has been implemented to improve the environment (Tong et al., 2018). The 100 pilot counties with the implementation of rocky desertification control project since 2008 are mainly located in the regions of Colliculus (II), Gorge (IV), and Plateau (VII). According to the total area of ecological restoration projects, the 100 pilot counties are divided into three groups: (1) less than 50 km2 (low efforts), (2) 50–100 km2 (moderate efforts), and (3) more than 100 km2 (high efforts) (Tong et al., 2018).
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FIGURE 1
 The vegetation type in karst region in Southwest China (A) and three groups of the 100 pilot counties of rocky desertification control since 2008 (B): (1) less than 50 km2 (low efforts), (2) 50–100 km2 (moderate efforts), and (3) more than 100 km2 (high efforts). I: Peak forest plain, II: Trough valley, III: Colliculus, IV: Gorge, V: Peak Cluster Depression, VI: Faulted Basin, VII: Plateau, VIII: Middle-high Hill.




2.2. Data

The input data of CLM4.5 mainly include seven climate variables (i.e., air temperature, precipitation, relative humidity, downwelling longwave radiation, downwelling short-wave radiation, surface pressure, and wind speed), two atmospheric environment variables (i.e., atmospheric CO2 concentration and nitrogen deposition), and other environment variables, such as plant function type, and dynamic land use and land cover change data. Climate data (1979–2018) were extracted from the high spatial and temporal resolution surface meteorological element driven dataset in China with a temporal resolution of 3 h and a spatial resolution of 0.1o (He et al., 2020). The atmospheric CO2 concentration (1850–2015) with a spatial resolution of 1o comes from Mauna Loa Observatory (Lamarque et al., 2010). The atmospheric nitrogen deposition data (1980–2015) with a spatial resolution of 0.05o were calculated based on the atmospheric inorganic nitrogen wet deposition data proposed by Jia et al. (2019) and the dry and wet nitrogen deposition ratio developed by Yu et al. (2019). The plant functional type and dynamic land use and land cover changes data (1990–2015) with a spatial resolution of 0.05o were processed based on the land cover data of China (ChinaCover) produced by Wu et al. (2014) and climate variables (Wang et al., 2017) using the method reported in Bonan et al. (2018). The parameter values of ratio of leaf carbon to nitrogen for each plant functional type were revised against the inventory data (Tang Z. et al., 2018). All input data of CLM4.5 was resampled to a unified spatial resolution (0.5o). Climate data has a temporal resolution of 6 h. Other input data have a temporal resolution of 1 year. Then we could use these data to force the CLM4.5.

Modelled outputs were evaluated by estimated carbon flux production from Yao et al. (2018) and Jung et al. (2011), and field inventory data of vegetation and soil carbon density (Fang et al., 2018; Tang X. et al., 2018) in the study region. Yao et al. (2018) used a machine learning algorithm to develop a GPP dataset based on observation data from 40 stations in China and surrounding countries during 1982–2015. Jung et al. (2011) also used a machine learning algorithm to develop a terrestrial land-atmosphere energy fluxes dataset based on observation data from FLUXNET during 1982–2011. Machine learning algorithms have been applied to the upscaling of eddy covariance measurements from local to continental (Xiao et al., 2018). Therefore, these products produced by machine learning algorithms could be approximately regarded as the observed data.

We used the method in Vicente-Serrano (2006) to calculate Standardized Precipitation Index (SPI) data using monthly precipitation data (Lv et al., 2022). The SPI computed on shorter scales (e.g., 3 months) describes the short-term moisture conditions that affect the ecosystem. We used the SPI 3 to identify drought events. The drought events were extracted with SPI 3 data <−1.0, which indicates when water shortages were developing or imminent (Vicente-Serrano et al., 2014). To quantify the influence of annual water stress on the karst ecosystems, the SPI 3 products at monthly resolution were aggregated to an annual mean.



2.3. CLM4.5


2.3.1. Model description

The CLM4.5 model is a state-of-the-art land surface model for simulating bio-geophysical and bio-geochemical processes in the atmosphere-vegetation-soil continuum (Oleson et al., 2013), which has a good performance in estimating carbon and water fluxes for terrestrial ecosystems (Zhang L. et al., 2016; Li et al., 2018) and has been well applicated in China’s terrestrial ecosystem (Jia et al., 2018; Lu et al., 2021; Xue et al., 2021).



2.3.2. Experiment design

We performed five simulations to assess the relative contributions of changing climate, rising atmospheric CO2 concentration, increasing nitrogen deposition, and historical land use change on the carbon sequestration (Table 1). In simulation S1, we kept the climate driver constant for the entire period 1990–2018 and varied the other environmental factors. In simulation S2, only the atmospheric CO2 concentration was hold constant. In simulation S3, we used the varied climatic factors, atmospheric CO2 concentration, and land use change and held the nitrogen deposition at 1990. In simulation S4, we only kept the land use constant, while varying the other environmental factors. Finally, in simulation S5, we allowed all factors to change throughout the full simulation. The effects of each individual factor are calculated by subtracting S1, S2, S3, and S4 from simulation S5. The simulated yearly variables for gross primary productivity (GPP), ecosystem respiration (ER), and NEP from 2000 to 2018 were used for the analysis in this study.



TABLE 1 The description of simulation experiments.
[image: Table1]



2.3.3. Model simulation

We determined the initial conditions by first running the CLM4.5 to equilibrium using a two-stage spin-up method. Initial spin-up followed the accelerated decomposition approach for 600 simulation years with the long-term average climate and all other environmental factors. Then a normal decomposition spin-up was operated for 1,000 years using a repeating 40-year (1979–2018) cycle of climatic factors and constant other environmental factors until a dynamic equilibrium was reached. After initialization, we performed a transient run from 1901 to 2018 of the time series data of all driving factors. In this study, we choose 1990 as the base year. The annual temperature (13.64°C) and annual precipitation (1,364 mm) in 1990 are close to the multi-year average value during 1990–2018 (13.96°C and 1,370 mm). Moreover, the “base year” of emission reduction stipulated in the Kyoto Protocol is 1990. The emission reduction effect of greenhouse gases needs to be referenced and measured relative to 1990.





3. Results


3.1. Model evaluation

We evaluated modelled annual GPP by CLM4.5 with the GPP estimation extracted from the results of Yao et al. (2018) and Jung et al. (2011). Modelled annual GPP has a similar spatial pattern with the estimation based on eddy-flux observations in the karst region of Southwest China (Figures 2A–C). The Pearson correlation coefficients between GPP modelled by CLM4.5 and the estimated data of Yao et al. (2018) and Jung et al. (2011) across the eight regions were 0.94 and 0.87, respectively. For those areas with high GPP in the Peak forest plain region (I), Trough valley region (II), Colliculus region (III), Peak Cluster Depression region (V), and Plateau region (VII), the model bias for GPP varied from −8.65 to 3.35% (Figure 2D). The mean total annual GPP in the study area modelled by CLM4.5 is 1.56 Pg C/yr., which was slightly higher than that in the previous studies by 11–16%.
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FIGURE 2
 Comparison of mean gross primary productivity (GPP) between Yao et al. (2018), Jung et al. (2011), and the CLM4.5 model. The spatial pattern of mean GPP in different karst regions in Yao et al. (2018), Jung et al. (2011), and the CLM4.5 model (A–C). The mean GPP in different karst regions in Yao et al. (2018), Jung et al. (2011), and the CLM4.5 model (D). I: Peak forest plain, II: Trough valley, III: Colliculus, IV: Gorge, V: Peak Cluster Depression, VI: Faulted Basin, VII: Plateau, VIII: Middle-high Hill.


Figure 3 shows the comparison of observed and modelled mean vegetation carbon and soil carbon density for different forest types in the karst region of Southwest China. The CLM4.5 model could capture the variation in vegetation carbon density among different forest types but overestimate by 14.0% for ENF, 19.7% for DBF, 25.3% for MF, and 26.8% for EBF (Figure 3A). The mean values of the modelled soil carbon density were well consistent with the inventory data, with relative errors ranging from −2.6 to 3.9% for DBF, EBF, and MF, except 17.7% for ENF (Figure 3B).
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FIGURE 3
 Comparison of vegetation carbon density (A) and soil carbon density (B) in different plant types in karst region of Southwest China between the observation and CLM4.5. EBF: evergreen broadleaved forest, DBF: deciduous broadleaved forest, ENF: evergreen needle leaved forest, MF: mixed forest.




3.2. Long-term trend of NEP and regional contribution

There was an increasing trend in NEP, although it was not statistically significant (0.16 Tg C/yr2, p = 0.87). However, the trend of NEP showed a large spatial heterogeneity in the karst region of Southwest China. About 76% of the study region shows an increasing trend, among which 33% is significant at p = 0.05 level, which were mainly located in the Peak forest plain region (I), Colliculus region (III), Peak Cluster Depression region (V), and Middle-high Hill region (VIII) (Figures 4A,B). The increasing trend in NEP in these areas reached to 0.93 Tg C/yr2 (Figure 4C), because a larger increasing rate in GPP (3.46 Tg C/yr2) than that in ER (2.53 Tg C/yr2). The accumulated NEP increased from 24.95 to 380.16 Tg C/yr in these areas (Figure 4C), which highlighted the important role in these areas in carbon sequestration.
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FIGURE 4
 Temporal change and regional contribution of net ecosystem productivity (NEP) in karst region of Southwest China over the period 2000–2018 estimated by the CLM4.5 model. (A) Significance of the NEP trend in karst region of Southwest China during 2000–2018. (B) Temporal changes of the NEP in karst region of Southwest China during 2000–2018. (C) Annual NEP and accumulated NEP in the region of significant variation in NEP during 2000–2018. (D) Regional contribution of the NEP trend. I: Peak forest plain, II: Trough valley, III: Colliculus, IV: Gorge, V: Peak Cluster Depression, VI: Faulted Basin, VII: Plateau, VIII: Middle-high Hill.


The trend of NEP in different karst regions over the period 2000–2018 was shown in Figure 4D. Ecosystems in the Peak forest plain region (I), Peak Cluster Depression region (V), and Middle-high Hill region (VIII) dominated the increase in NEP, with the contribution of 28, 82, and 33%, respectively. The increasing rate of NEP in the Peak Cluster Depression region (V) was the highest (0.14 Tg C/yr2, p = 0.06), followed by Peak forest plain region (I) and Middle-high Hill region (VIII) with similar trend of 0.057–0.059 Tg C/yr2. Besides these three regions, the Plateau region (VII) also had a large contribution to the NEP trend (32%). The increases in NEP in these regions were all resulted from the higher enhancement in GPP than that in ER.



3.3. Contribution of environmental factors to the trend in NEP

Simulation experiments suggested that atmospheric CO2 concentration (73%) and land use change (53%) dominated the increasing NEP trend, while climate change and nitrogen deposition led to the decrease in NEP (−26% and − 0.2%, respectively). CO2 fertilization significantly stimulate NEP due to larger response of GPP than ER (3.05 vs. 2.96 Tg C/ppm), especially in the Peak forest plain region (I), Trough valley region (II), and Middle-high Hill region (VIII) (Figure 5B).
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FIGURE 5
 Effects of environmental factors (i.e., climatic factors (Climate), atmospheric carbon dioxide concentration (CO2), nitrogen deposition (Ndep), land use change (LUCC), and all environmental factors (All)) on the net ecosystem productivity (NEP) trend (A) in karst region of Southwest China and different karst regions (B). I: Peak forest plain, II: Trough valley, III: Colliculus, IV: Gorge, V: Peak Cluster Depression, VI: Faulted Basin, VII: Plateau, VIII: Middle-high Hill. * means p < 0.05.


The increasing NEP trend induced by land use change (0.09 Tg C/yr2, p < 0.05, Figure 5A) was mainly related to the large-scale afforestation (3,964 km2), and cropland abandonment (13,517 km2) under the implementation of a series of ecological restoration projects since 2000 (Supplementary Figure S1D). Especially in the Colliculus region (III) and Plateau region (VII), the area of afforestation is eight times that of other karst regions (Supplementary Table S3). In addition, the contribution of land use change to the NEP trend is higher than the contribution of CO2 in the Colliculus region (III), Plateau region (VII), and Middle-high Hill region (VIII) (Figure 5B).

There was a larger increase in NEP (+0.44 gC/m2/yr2, p < 0.05, Figure 6B) induced by land use change in the 100 pilot counties of rocky desertification control than that in the other karst area due to higher trend in GPP (+0.21 gC/m2/yr2, p < 0.05) and less in ER (−0.23 gC/m2/yr2, p < 0.05). Moreover, the positive effect of land use change on NEP trend varied with ecological restoration projects efforts. The difference in impacts of land use change were analysed at the county level by dividing the 100 pilot counties of rocky desertification control into three groups according to the total ecological restoration projects areas (Figure 1B). The difference in the area of conversion of farmland into forest in the low ecological restoration projects area (625 km2) and the moderate and high ecological restoration projects areas (3,900 and 3,075 km2, respectively) led to the difference of NEP trend driven by land use change in three groups. The NEP trend induced by land use change in the counties with moderate and high ecological restoration projects efforts (0.66 and 0.58 gC/m2/yr2, p < 0.05, respectively) significantly greater than those with low efforts (0.22 gC/m2/yr2, p < 0.05). In addition, the trend in NEP increased significantly with increasing forest coverage (Slope = 0.46, p < 0.05, Figure 6C) in the 100 pilot counties of rocky desertification control. These results indicated that the implementation of ecological restoration projects in the karst region of Southwest China play a remarkable role in enhancing carbon sequestration, especially in the moderate and high ecological restoration projects efforts areas. The positive NEP trend induced by land use change in counties of high ecological restoration projects efforts area was slightly lower than those with moderate efforts area, which might be associated with the drought events in 2009 and 2011. The karst region of Southwest China experience drought events in 2009 and 2011, of which 13 and 5%, respectively, in the high ecological restoration projects area (Supplementary Figure S2).
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FIGURE 6
 Temporal change of land use change (LUCC) in 2000 and 2015 in the 100 pilot counties of rocky desertification control (A), land use change (LUCC) driven net ecosystem productivity (NEP) in the 100 pilot counties of rocky desertification control and other karst area, and in the three groups of the 100 pilot counties of rocky desertification control during 2008–2018 (B), and the relationship between the increase in forest coverage and trend of LUCC driven NEP (C). According to their total area of ecological restoration projects, the 100 pilot counties of rocky desertification control were divided in three groups: (1) less than 50 km2 (low efforts), (2) 50–100 km2 (moderate efforts), and (3) more than 100 km2 (high efforts). a and b on the bar chart mean that there is a significant difference in the trend of NEP between different groups.


The negative effect of climate on the NEP trend in this region (−0.04 Tg C/yr2, p = 0.83, Figure 5A) was mainly caused by the significant warming with the rate of 0.023°C/yr (p < 0.05; Supplementary Figure S1C). The increasing temperature led to a faster increase in ER (2.65 Tg C/yr2, p = 0.09) than GPP (2.10 Tg C/yr2, p < 0.05). This negative effect of climate was mainly in the Trough valley region (II), Colliculus region (III), and Faulted Basin region (VI) (Figure 5B). The Trough valley region (II) and Colliculus region (III) had the large increase of temperature and the high response of NEP to temperature (Supplementary Table S4). In addition, the minor contribution of nitrogen deposition to the trend in NEP was mainly due to the significant decrease of nitrogen deposition (Supplementary Table S2) and the large response of NEP to nitrogen deposition in the Trough valley region (II) (Supplementary Table S4).




4. Discussion

Southwest China has been one of the largest coherent regions with positive biomass and vegetation cover trends since 2000 (Brandt et al., 2018). Consequently, vegetation carbon sequestration has increased since 2000 as revealed by both remote sensing data (Zhang et al., 2017; Tong et al., 2020) and ecosystem process models (Zhang M. et al., 2016; Tong et al., 2018). Our study demonstrated the increase in carbon sequestration in the karst region of Southwest China during 2000–2018, especially in the Peak Forest Plain region (I), the Peak Cluster Depression region (V), and the Middle-high Hill region (VIII). This increasing trend of carbon sequestration in the karst region of Southwest China is also supported by the terrestrial land-atmosphere energy fluxes dataset from Jung et al. (2011) with a significant increasing rate of 11.74 Tg C/yr2 (p < 0.05) for GPP and 5.75 Tg C/yr2 (p < 0.05) for NEP in 2000–2011, and Yao et al. (2018) with the increasing rate of GPP (1.24 Tg C/yr2, p = 0.50) during 2000–2015.

The increase in carbon sequestration in the karst region of southwest China has been proven to be associated with high ecological restoration projects after 2000 (Zhang M. et al., 2016; Brandt et al., 2018; Tong et al., 2018; Zhang X. et al., 2022). Our results suggested that land use change was the second large contributor to the sustained carbon sequestration besides elevated atmospheric CO2 concentration. To alleviate ecological degradation and ameliorate regional poverty, the Chinese government has invested in a series of mitigation initiatives, which are aimed at converting farmlands and degraded lands into conservation or production forests and grasslands (Delang and Yuan, 2016). The land use change resulted in a large increase in carbon sequestration by increasing the aboveground and underground carbon density (Hong et al., 2020) and the turnover of carbon storage (Chen and Tian, 2007). With the increase of forest coverage driven by ecological restoration projects, the average ratio of the ecosystem service index increased (Zhang M. et al., 2022). With the increase of ecological restoration projects efforts, the growth rate of vegetation cover and carbon density became faster (Lv et al., 2018; Tong et al., 2018). We found the differences of increasing trend in carbon sequestration between low and other (i.e., moderate and high) ecological restoration projects efforts (Figure 6B). The positive impact of the ecological restoration projects may be influenced by climatic conditions, human management, and disturbances. The temperate climate with sufficient rainfall and high investments generally lead to the high effectiveness of ecological restoration projects in Peak Forest Plain region (I) and Peak Cluster Depression region (V) (Tong et al., 2017).

Such a positive effect of land use change on the increase of carbon sequestration in China on the national scale had been demonstrated by Tian et al. (2011) using process-based models and Houghton and Nassikas (2017) using the bookkeeping model but was underestimated by Jia et al. (2020) based on results of the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP). The low contributions of land use change to GPP might be related to the underestimates of the forest area in China (33,292 km2) in the land use change dataset produced by Hurtt et al. (2006) and Yu et al. (2022). On the other hand, the model assumptions relating to whether the productivity of secondary vegetation is smaller or larger than that of the vegetation it replaces are also important (Zhu et al., 2016). We found the land use change has a higher contribution to carbon sequestration (0.44 Tg C/yr2) in the karst region of southwest China, compared with the effect of land use change on carbon sequestration in China (0.27 Tg C/yr2). These results suggested that the ecological restoration projects in the karst region of southwest China play a crucial role in the increase of carbon sequestration in China. When considering the carbon emissions caused by land use change, the net biome productivity (NBP) still increased in the karst region of southwest China (1.23 Tg C/yr2, p = 0.28, Supplementary Figure S3).

The effects of atmospheric CO2 concentrations on carbon sequestration were consistent with previous studies in China (Tian et al., 2011; Jia et al., 2020) and the globe (Keenan et al., 2021) due to photosynthesis increases as CO2 concentrations rise (Huntingford and Oliver, 2021). In contrast, climate had a negative effect on the carbon sequestration in this karst region of southwest China as shown in both this study and Tong et al. (2017), which might be due to the increase in temperature and decrease in soil water during drought events in recent years (e.g., 2009 and 2011) (Song et al., 2019). Compared to the result of Tian et al. (2011), the nitrogen deposition’s contribution to carbon sequestration was lower in this study. The main reason is that the reference level of nitrogen deposition and other factors was assigned to the value in 1990 not that in 1900 as Tian et al. (2011). Right now, the nitrogen deposition level increased by 7.06 TgN/yr. than that of 1990 and 11.09 TgN/yr. than that of 1900 (data came from Tian et al., 2011) in China, but the nitrogen utilization efficiency (10.6 gC/gN) was similar to that (10.1 gC/gN) of Tian et al. (2011).

Under the recommendations for formulating China’s 14th five-year development plan and the long-range goals for 2035, the karst regions of southwest China will control more than 10,760 km2 of rocky desertification in Hubei, Guizhou, and Yunnan provinces. In Hunan province, more than 7.50 km2 of afforestation and grassland construction were carried out (Gao et al., 2021). Moreover, constructing the national rocky desert park is essential, which could realize the combination of rocky desertification control and poverty control. The implementation of these actions in 451 counties of karst desertification control will continue to increase carbon sequestration in forest and grassland, protect against soil erosion, and create a more biodiversity-rich landscape (Hogarth et al., 2013; Tong et al., 2020). Nevertheless, large-scale ecological restoration projects can have an adverse impact on the ecosystem by decreasing soil moisture and water availability (Feng et al., 2016; Jia et al., 2017; Zhao et al., 2021). Therefore, the ecological restoration projects require adjusted according to different situations. Such as, better water-conservancy areas are suitable for tropical and subtropical economic fruit species, while water-deficient areas should be planted drought tolerant savanna woody species (Zhang et al., 2012). And the benefits of ecological restoration projects should be comprehensively evaluated when considering the sustainability of ecosystems.

The impacts of multiple environmental factors on carbon sequestration have been in the spotlight of science (Qian et al., 2019; Liu et al., 2023). Based on process-based model, the simulation experiments could quantify the influence of changing climate, rising atmospheric CO2 concentration, increasing nitrogen deposition, and historical land use change on the carbon sequestration (Tian et al., 2011; He et al., 2019). The large contribution (53%) of land use change to the increasing NEP trend in our study is similar to the result of Yu et al. (2022), who pointed out that forest expansion increased China’s land carbon sink since 1980 using the simulation experiments in DLEM with a contribution of 44%. In addition, such an important role of land use change in stimulating the positive trend in carbon sequestration in China is also supported by previous studies using other approaches, such as residual analysis (Tong et al., 2017), canonical correspondence analysis (Zhang et al., 2015), comparison of the differences between satellite products and dynamic vegetation models (Tong et al., 2018), and comparison of the differences between the baseline period and post-period (Lu et al., 2018). However, we did not include the legacy of previous land use change, which might cause uncertainty about the estimated effect of land use change. Tian et al. (2011) pointed out that the land use change could cause a change of 2.7 to 4.1% in total carbon stocks in the first half of the 20th century. These land use legacy effects in the karst regions of southwest China require further exploration in the future. Other factors, such as forest management, grazing, irrigation and disturbances, were not included in the CLM4.5 in our study. Such a comprehensive assessment of ecological restoration projects requires the strengthening of long-term observation and research, and more efforts to better simulate the effects of land cover changes and land management practices on karst ecosystems (Chen et al., 2020) in the next generation process-based models.



5. Conclusion

In this study, we investigated the trend of carbon sequestration and the impacts of environmental factors in the karst region of Southwest China during 2000–2018 using the CLM 4.5 model. Our result showed that areas with a significant trend of NEP covered about 45.6% of the study region. This increasing NEP trend was mainly contributed by the peak forest plain region, peak cluster depression region, and the middle-high hill region. We found that land use change plays an important role in stimulating the positive trend in NEP besides atmospheric CO2 concentration in this region, while climate and nitrogen deposition had relatively small negative contributions. Moreover, with the large-scale afforestation and cropland abandonment, a notable increase in NEP was found in the 100 pilot counties of rocky desertification control project, when compared with the other karst areas. Furthermore, the areas with moderate and high ecological restoration efforts had a higher increasing rate of NEP than the low effort areas. Our study demonstrated the benefits of ecological restoration projects on carbon sequestration in the karst region of Southwest China, which could keep contributing to the achievement of China’s carbon neutrality.
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Ecosystem maximum photosynthetic rate (Amax) is an important ecosystem functional property, as it is critical for ecosystem productivity modeling. However, little is known about the mechanisms that regulate the seasonal variation of Amax in grasslands, one of the dominant vegetation types worldwide. In this study, we analyzed the seasonal variability of Amax of grassland sites across the globe and its environmental drivers. We found that grassland Amax had strong seasonal variations, which were influenced by the climate and agricultural management, such as grass cutting and grazing. Second, the seasonal variation of Amax at all arid grasslands [mean annual vapor pressure deficit (VPD) > 10 hPa] was driven more by changes in canopy physiological property (i.e., maximum photosynthetic rate per leaf area Amaxa) than canopy structural property (i.e., leaf area, presented by LAI), because Amaxa had stronger temporal variability than LAI in these ecosystems. Third, temperature and VPD were the most influential factors for the seasonal variability of Amax and LAI, but environmental variables only explained a small proportion of the seasonal variation of Amaxa, which was probably because Amaxa was more related to plant traits. Our findings provide new ideas for better parameterizations of Amax in terrestrial ecosystem models.
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1. Introduction

Amax refers to ecosystem light-saturated CO2 assimilation rates and represents the potential of an ecosystem’s photosynthetic capacity. It is an important ecosystem functional property (Reichstein et al., 2014), determining ecosystem carbon assimilation. Seasonal variations in Amax are critical in determining the seasonality and magnitude of gross primary productivity (GPP) in terrestrial ecosystem modeling (Wilson et al., 2001; Medvigy et al., 2013). Therefore, understanding the seasonal variability of Amax and its drivers is vital for improving the understanding of the variability of GPP and the impact of climate change on the terrestrial ecosystem carbon cycle (Luo and Schuur, 2020).

Many studies have shown that Amax has strong seasonal variability in many ecosystem types (Hollinger et al., 1999; Zhang et al., 2006; Polley et al., 2010). Evidence suggests that environmental factors, such as light, temperature, and water, impact the seasonal variations of Amax (Zhang et al., 2006; Polley et al., 2010; Ryan et al., 2017). For example, water stress can directly affect stomatal conductance and the availability of the CO2 substrate and thus reduce plant photosynthetic capacity (Reich et al., 2018). Leaves can adjust their photosynthetic rates to acclimate or adapt to changes in air temperature and solar radiation on intermediate to long-term timescales (Way and Yamori, 2014; Luo and Keenan, 2020). These environmental variables impact vegetation photosynthetic capacity through two different mechanisms. One is through influencing the canopy’s physiological properties (i.e., the maximum photosynthesis rate per leaf area Amaxa) (Joswig et al., 2021), and the other is through affecting the canopy’s structural properties (i.e., leaf area) (Hu et al., 2018; Li et al., 2019). Nevertheless, little literature has investigated to what extent the two mechanisms contribute to Amax.

Grasslands cover approximately 20–30% of the global land area (O’Mara, 2012), and have a great impact on the inter-annual variations in the global terrestrial carbon cycle (Poulter et al., 2014; Ahlström et al., 2015), thus it is important to understand grassland photosynthetic processes. However, knowledge of the mechanisms behind the seasonal variations in Amax of grassland ecosystems is limited. Therefore, in this study, we investigated the seasonal variations of grassland Amax. First, we derived the time series of Amax from flux measurements for 15 grassland sites in the FLUXNET 2015 dataset and analyzed its seasonal variations. Second, Amax was decomposed into leaf area index (LAI) and Amaxa (Amax = LAI × Amaxa), and their relative contributions to the variations of Amax were quantified. Third, we investigated the effect of environmental variables on the seasonal variations of Amax, Amaxa, and LAI.



2. Data and methods


2.1. Site information and meteorological data

Half-hourly eddy covariance (EC) flux data were used in this study to estimate the Amax of global grasslands. Data were retrieved from the FLUXNET 2015 Tier 1 dataset.1 Intotal, 15 EC flux sites were analyzed in this study. These sites were selected based on the data availability (i.e., sites with more than 60% of Amaxa data over the available years). Meteorological data measured alongside the flux data were also used, including soil water content (SWC), vapor pressure deficit (VPD), air temperature (Ta), and solar shortwave radiation (Rad). Detailed information for the sites used in this study is listed in Table 1.



TABLE 1 Grasslands used in this study.
[image: Table1]



2.2. Remote sensing data

Leaf area index data (LAI) were extracted from the moderate resolution imaging spectroradiometer (MODIS) Leaf Area Index/FPAR Products version 6.1 (MOD15A2H v061). This product was an 8-day composite dataset with a spatial resolution of 500 m. We filtered out those data points where significant clouds or snow were present, or where the data quality was poor according to the quality flags (FparLai_QC and FparExtra_QC) provided by this dataset. The average LAI of pixels within a 500 m radius around the flux tower was used to represent the LAI of the site, because Chu et al., 2021 suggested that target areas with a smaller radial distance from the flux tower tend to be less biased in representing the land surface characteristics as covered by the flux footprint climatology. Then, the LAI time series were smoothed using the Savitzky–Golay (SG) filter, which has widely been used to remove the noises in MODIS LAI data (Zhu et al., 2016; Huang et al., 2021).

Normalized difference vegetation index (NDVI) data were downloaded from the MODIS C6 (MOD13C1) which had a resolution of 16-day and 500 m. The average NDVI of pixels that are within a 500 m radius around the flux tower was used to represent the NDVI of the site. To match the temporal resolution of LAI, we interpolated the NDVI time series to the LAI dates using linear interpolation.



2.3. Estimation of ecosystem maximum photosynthetic rate

We used the daytime flux partitioning method to derive the parameters of photosynthesis and respiration. The daytime flux partitioning method uses a light response curve to fit the flux of CO2. We followed the method proposed by Lasslop et al. (2010), with a small modification of separately estimating day-time and night-time reference respiration rates to account for light inhibition of leaf respiration (Keenan et al., 2019):

[image: image]

where α (μmol C J−1) is the canopy-scale quantum yields; β (μmol C m−2 s−1) is canopy light-saturated CO2 assimilation rate; Rg (W m−2) is incoming shortwave radiation; and Fr (μmol C m−2 s−1) is the ecosystem respiration term. Parameter β is estimated as an exponentially decreasing function of VPD, to account for the effect of VPD on apparent photosynthesis:
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where β0 and k are fitted parameters and VPD0 is set to 10 hPa, as in Lasslop et al., (2010). β0 is the canopy light-saturated CO2 assimilation rate after removing the influence of VPD, which is equivalent to Amax.

Ecosystem respiration Fr is described by the Lloyd and Taylor model as

[image: image]

where Rref (μmol C m−2 s−1) is the reference respiration rate at the reference temperature (Tref = 15°C) and E0 (°C) is the temperature sensitivity. Tair is the air temperature and the parameter T0 (°C) is set to a constant of −46.02°C following Lloyd and Taylor (1994).

To get the seasonal variations of the parameters in the above model, we fitted the equations above to a dynamic window of 2–14 days of Fc depending on the availability of flux measurements, and assumed that every day in the same time window has the same daily parameters. We retrieved the time series of all parameters in the above model (i.e., α, β0, k, Rref, and E0) for each site by implementing Equations (1)–(3) using the REddyProc R package.2 The estimated Amax time series were smoothed with a nonparametric method for estimating regression surfaces (LOESS).

The light-saturated photosynthetic rate per unit leaf area (Amaxa) was calculated as the ratio of Amax to LAI. The unit of Amax is μmol m−2 ground area s−1 and the unit of Amaxa is μmol m−2 leaf area s−1. Then, the reason why the ratio of Amax to LAI is Amaxa is demonstrated in Equation (4):

[image: image]



2.4. Statistical analyses

We used linear regression coefficients to quantify the environmental control on the seasonal variations in Amax, Amaxa, and LAI. Environmental variables included air temperature (Ta), solar radiation (Rad), SWC, VPD, and day length (Dlen). Day length was defined as the number of hours with Rad >4 W m−2 each day. The effects of other environmental factors were also analyzed, but the other environmental factors did not show significant effects on Amax, Amaxa, or LAI. For Amaxa, we also added NDVI into the independent variables, because environmental variables had little explanatory power for Amaxa.

Data used for the seasonal analysis were integrated for every adjacent and non-overlapped eight-day window. Because the time series were multiyear, we divided the 8-day time series each year by the annual mean of that year to remove the inter-annual variations in the variables (Baldocchi et al., 2021). To make the regression coefficients of different variables comparable, we applied z-score standardization to the normalized time series before we conducted the linear regression.

The log–log scaling slope analysis was used to quantify the relative contribution of Amaxa and LAI to variations in Amax because Amaxa and LAI are related to Amax in a multiplicative manner (i.e., Amax = Amaxa × LAI) (Renton and Poorter, 2011). The relative contributions of Amaxa and LAI can be calculated as the regression coefficient of log(Amax) in the following equations:
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where aAmaxa, aLAI, bAmaxa, and bLAI are coefficients of the linear regression between Amax and Amaxa and LAI, in which bAmaxa and bLAI represent the relative contribution of Amaxa and LAI to the variations of Amax. bAmaxa + bLAI will always equal 1. If bAmaxa is close to 1 and bLAI is close to 0, then Amaxa is largely responsible for variations in Amax, whereas if bAmaxa is close to 0 and bLAI is close to 1, then LAI is largely responsible for variations in Amax. If bAmaxa and bLAI are both close to 0.5, then Amaxa and LAI are similarly responsible. More information about the derivation and effectiveness of this method can be found in Renton and Poorter (2011).




3. Results


3.1. Seasonal patterns of Amax, Amaxa, and LAI

The seasonal dynamics of Amax, Amaxa, and LAI and their multiyear averages for each site are shown in Figure 1 and Table 2, respectively. Amax had strong seasonal variations, mainly showing unimodal curves over the season. Amax at North Hemisphere sites usually exhibited a cyclical character each year, but some grasslands in Australia had variable temporal patterns of Amax, which were different for each year, such as at AU-Emr, AU-Stp, and AU-TTE. The seasonal pattern of Amaxa varied substantially among sites. CH-Cha and IT-MBo did not exhibit any clear seasonal trend in Amaxa, while Amaxa at other sites had strong seasonal variations, and often had a similar trend with Amax over the growing season. LAI also varied a lot over the season.

[image: Figure 1]

FIGURE 1
 Seasonal patterns of maximum photosynthetic capacity (Amax), maximum photosynthetic capacity per leaf area (Amaxa), and leaf area index (LAI) for each grassland site. The time series presented in the graph are smoothed with a nonparametric method for estimating regression surfaces (LOESS). The abbreviation after each site name is the Köppen-Geiger climate classification dataset (Beck et al., 2018). Aw, Tropical, savannah; BSh, Arid, steppe, hot; BSk, Arid, steppe, cold; BWh, Arid, desert, hot; Cfa, Temperate, no dry season, hot summer; Csa, Temperate, dry summer, hot summer; Dfb, Cold, no dry season, warm summer.




TABLE 2 Ecosystem maximum photosynthetic capacity (Amax), maximum photosynthetic capacity per leaf area (Amaxa), and leaf area index (LAI) for each grassland.
[image: Table2]

The climate influenced the seasonal patterns of Amax, Amaxa, and LAI. In grasslands located in no dry season climate according to Köppen-Geiger climate classification (e.g., AT-Neu, CH-Cha, CH-Fru, IT-MBo, US-AR1, US-ARc, and US-Goo), Amax, Amaxa, and LAI were higher in higher temperature and radiation season. In contrast, in arid or dry summer sites, the seasonal pattern of Amax, Amaxa, and LAI was driven more by water availability (Figure 2). For example, at the US-SRG, US-Var, and US-Wkg sites, Amax was significantly greater during higher water availability periods, but lower in high temperature and radiation periods because of the associated low water availability.

[image: Figure 2]

FIGURE 2
 Seasonal patterns of air temperature (Ta), solar radiation (Rad), and soil water content (SWC) for each grassland site. The time series presented in the graph are smoothed with a nonparametric method for estimating regression surfaces (LOESS). The abbreviation after each site name is the Köppen-Geiger climate classification dataset (Beck et al., 2018). Aw, Tropical, savannah; BSh, Arid, steppe, hot; BSk, Arid, steppe, cold; BWh, Arid, desert, hot; Cfa, Temperate, no dry season, hot summer; Csa, Temperate, dry summer, hot summer; Dfb, Cold, no dry season, warm summer.


In addition to climate, agricultural management practices also impacted the seasonal variation of Amax, Amaxa, and LAI. At sites under intensive management practices (i.e., AT-Neu, CH-Cha, CH-Fru, IT-MBo, US-Goo), the unimodal curve of Amax and LAI changed by grass cutting and grazing, which can reduce Amax and LAI. As shown in the seasonal patterns of Amax at these sites, Amax decreased after each cutting or grazing event and later gradually recovered, which added fluctuation into the unimodal seasonal pattern of Amax (Figure 1). For example, at the AT-Neu site, the meadow was cut three times a year, the three cuts taking place between DOY 153 ~ 167, DOY 204 ~ 224, and DOY 264 ~ 301 (Wohlfahrt et al., 2008). We can observe decreases and recovery of Amax and Amaxa around the three cutting periods in our estimated Amax and Amaxa time series (Figure 1). After each cutting, the grassland could not recover to the same level of Amax as before cutting. Therefore, Amax was decreasing with each of the three cuttings. A similar pattern was also observed in IT-MBo, CH-Cha, and CH-Fru.



3.2. Relative contribution of Amaxa and LAI to the seasonal variation in Amax

Amaxa and LAI jointly influenced the seasonal variations of Amax (bAmaxa and bLAI ≠ 0) at all sites (Table 3). bLAI > 0.5 at all managed sites, except CH-Cha, meaning that LAI contributed more to the seasonal variations in Amax than Amaxa at these sites, which might be because cutting and grazing caused more changes in LAI than in Amaxa.



TABLE 3 Relative contribution of Amaxa and LAI to the seasonal variation in Amax.
[image: Table3]

We investigated the effect of air dryness on the relative contribution of LAI to Amax, and we found that bLAI < 0.5 and bAmaxa > 0.5 in all arid grasslands (mean annual VPD > 10 hPa), which indicated that Amaxa had more influence on Amax than LAI in these sites. In comparison, among moist grassland sites (mean annual VPD < 10 hPa), there were LAI-driven sites and Amaxa-driven sites (Figure 3).

To explain the difference between arid and moist grasslands in the relative contribution of LAI and Amaxa to Amax, we further investigated the relationship of bAmaxa with the relative magnitude of the seasonal variability of Amaxa and LAI and the relationship of mean annual VPD and SWC with the seasonal variability of Amaxa and LAI (Figure 4). We found that at sites where CVAmaxa > CVLAI, Amaxa contributed more to the seasonal variations of Amax than LAI (bAmaxa > 0.5), and bAmaxa < 0.5 at sites where CVAmaxa < CVLAI (Figure 4). Sites with CVAmaxa > CVLAI tended to have higher mean annual VPD (Figure 4A). Therefore, Amaxa dominated the seasonal variation of Amax at sites with higher mean annual VPD. Mean annual SWC did not show any correlation with the relative magnitude of CVAmaxa and CVLAI, but grasslands with higher mean annual SWC had lower absolute CVAmaxa (Figure 4B).
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FIGURE 3
 Effects of mean annual VPD on the relative contribution of (A) LAI (bLAI) and (B) Amaxa (bAmaxa) to the seasonal variation of Amax. bLAI + bAmaxa = 1.




3.3. Effects of environmental factors on the seasonal variations of Amax and its components Amaxa and LAI

Among the environmental variables, air temperature (Ta) showed strong control effects for the seasonal variations of Amaxa, LAI, and Amax (Table 4), with Ta having the largest absolute regression coefficient with them in most sites. Air dryness (VPD) also greatly influenced the seasonal variations of Amaxa, LAI, and Amax, especially for grasslands with a mean annual VPD > 10 hPa. It was consistently negatively associated with them at all sites. However, SWC, representing soil water condition, had a much smaller impact on Amaxa, LAI, and Amax. It positively correlated with them at all arid sites, but negatively correlated with them at some moist sites. Solar radiation and photoperiod were positively correlated with Amaxa, LAI, and Amax at many sites.



TABLE 4 Results (regression coefficients) of linear regression analysis with 8-day average Amax, Amaxa, and LAI as dependent and 8-day average Ta, Rad, SWC, VPD, and Dlen as independent variables.
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Environmental variables explained on average 38, 70, and 62% of the seasonal variations in Amaxa, LAI, and Amax, respectively, which suggested environmental variables had a greater impact on LAI than on Amaxa. Therefore, environmental factors affected the seasonal variations of Amax mainly through its impact on LAI rather than through its impact on Amaxa.

Environmental variables had little explanatory power for Amaxa, except a few arid grasslands (i.e., AU-DaP, AU-TTE, US-Var, US-Wkg) where environmental factors can account for over 50% variance of Amaxa. The low average R2 across sites suggested that environmental factors could affect Amaxa, but were not the main drivers for the seasonal variations of Amaxa. We further investigated whether vegetation greenness (represented by NDVI) was better correlated with Amaxa and found that the average R2 for Amaxa with NDVI as one of the independent variables was 0.44, which was slightly greater than without NDVI. Coefficients of NDVI for Amaxa were significant at 11 of the 15 sites. These results suggested that the seasonal variations of Amaxa cannot be well explained by classical environmental factors, but may be more correlated with variations in plant traits such as pigment contents.




4. Discussion


4.1. Relative contribution of Amaxa and LAI to the seasonal variation in Amax

Our results suggested that Amaxa and LAI jointly determined the seasonal dynamics of Amax. The seasonal variation of Amax at all arid grasslands (mean annual VPD > 10 hPa) was driven more by changes in Amaxa than LAI, but the drivers of Amax for the moist grasslands (mean annual VPD < 10 hPa) were bimodal in that some sites were Amaxa-driven and others LAI-driven. The relative contribution of Amaxa and LAI to Amax was related to the relative magnitude of the temporal variability (CV) of Amaxa and LAI, which in turn, was influenced by mean annual VPD.

Annual air dryness influenced the relative magnitude of CVAmaxa and CVLAI from two aspects. On one hand, mean annual VPD was negatively correlated with LAI (the correlation coefficient between them was-0.77, p < 0.001), suggesting that drier grasslands tended to have lower LAI, and hence the magnitude of temporal variation in LAI would be smaller. On the other hand, VPD could affect leaf photosynthetic capacity directly by its control on leaf stomatal conductance (Fu et al., 2022), and indirectly by its impact on leaf traits. Moreover, environmental variables explained a large proportion of the variance in Amaxa in arid grasslands (Table 4) compared with wetter grasslands, which also suggested Amaxa in arid grasslands were more sensitive to changes in the environment. Therefore, lesser LAI and greater sensitivity of Amaxa to environmental variables in arid grasslands resulted in a greater contribution of Amaxa to Amax.



4.2. Effects of environmental factors on the seasonal variations of Amax, Amaxa, and LAI

At the seasonal scale, air temperature and air dryness were the driving factors for the variation in Amax. Other studies also identified the two factors as the most important factors to regulate grassland C fluxes (Polley et al., 2010; Scott et al., 2015; Wang et al., 2019). We also found that VPD was more correlated with Amax than SWC at the seasonal scale, which was also observed in previous studies (Ryan et al., 2017; Fu et al., 2022). The possible reason for this higher correlation of VPD and Amax at the seasonal scale could be related to the non-linear relationship between SWC and Amax, as suggested by previous studies (Xu and Zhou, 2011; Fu et al., 2022). Xu and Zhou (2011) found that the Amax of two grass species was enhanced under moderate soil moisture with reductions under both severe water deficit and excessive water conditions. Fu et al. (2022) suggested that Amax was also non-linearly correlated with soil moisture at the ecosystem scale, while VPD was consistently negatively related to Amax.

The environmental factors used in our study can explain the variances in LAI better than Amax and Amaxa. The explanatory power (R2) of linear regression can be impacted by intensive management practices or other irregular natural events, such as fire and extreme temperatures (Moore et al., 2016). For some sites, such as AT-Neu, IT-MBo, CH-Cha, and CH-Fru, previous studies at these sites have demonstrated that management practices, like cutting, grazing, and fertilization, can obscure the response of photosynthesis to environmental variables (Wohlfahrt et al., 2008; Zeeman et al., 2010; Marcolla et al., 2011; Rogger et al., 2022).

In our study, environmental variables only explained a small proportion of variance in Amaxa on the 8-day scale, much less than that of Amax and LAI, which is probably because canopy photosynthetic capacity per leaf area (Amaxa) was controlled more by leaf traits, such as nitrogen (N) and chlorophyll (Chl) content, than by environmental factors, compared with Amax and LAI. According to its definition in our study, Amaxa is the average of the maximum photosynthetic rate per leaf area of individual plants in the ecosystem, or more precisely, all plants within the footprint of the flux tower, a variable independent of the ecosystem structure embedded in LAI and intrinsically related to individual plants. Reichstein et al. (2014) have summarized that environmental variables can account for only a fraction of the temporal and spatial variance of flux-derived ecosystem functional properties (EFP), e.g., seasonal carbon-use efficiency and light-saturated gross primary production (similar to Amax), and suggested that a substantial part of the variation in EFP would be explained by plant traits. Furthermore, Feng and Dietze (2013) examined the relationship between the seasonal variation of Amax and leaf traits on 25 grassland species. They found that leaf N and Chl content significantly correlated with leaf Amax in both mass-and area-based manner. Therefore, we thought that the large unexplained variance in Amaxa was related to plant traits.
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FIGURE 4
 Effects of the relative magnitude of the temporal variability of Amaxa (CVAmaxa) and LAI (CVLAI) on the contribution of Amaxa to Amax (bAmaxa) with circle size indicates (A) mean annual VPD and (B) mean annual SWC. The color indicates the contribution of Amaxa to Amax (bAmaxa). bAmaxa > 0.5 represents the seasonal variation of Amax is driven more by Amaxa, while bAmaxa < 0.5 represents the seasonal variation of Amax is driven more by LAI. The black dotted line is a 1:1 line.




4.3. Uncertainties

There are still some uncertainties in our estimation and analysis. The LAI data and Amax estimates used in this study had some uncertainty, which could propagate into Amaxa. To reduce the uncertainty of LAI, we tested whether the radius we used to extract LAI from the MODIS LAI dataset could have impacted the temporal dynamics of LAI. We extracted the average LAI of pixels within a 250, 500, 1,000, and 3,000 m radius centered at the flux tower. We found that these buffer sizes did not have much impact on the temporal dynamics in LAI. Then we assessed the influence of the uncertainty of the LAI dataset on Amaxa. Following He et al. (2014), we calculated the relative uncertainty in Amaxa induced by the uncertainty in LAI, which was expressed as the standard deviation for each LAI observation provided by the MODIS LAI dataset. The result (Table 5) showed that on average, the uncertainty in LAI could introduce 27.28% of uncertainty in Amaxa.



TABLE 5 The uncertainty in Amaxa induced by the uncertainty in LAI.
[image: Table5]

The uncertainty of Amax estimates was assessed by the fitting quality flag provided by the REddyProc package. The results were shown in Figure 5. On average, each site had 52% of the Amax estimates that were of good quality, 48% of moderate quality, and no bad quality estimates.

[image: Figure 5]

FIGURE 5
 Percentage of the different qualities of the Amax estimates. High quality means all parameters in the fitted curve are within a reasonable range, moderate quality means the light response curve is fitted but some of the parameters are out of the reasonable range, and low quality means the light response curve cannot be well constrained using available data in 2 weeks.
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Diverse microorganisms drive biogeochemical cycles and consequently influence ecosystem-level processes in alpine peatlands, which are vulnerable to extreme drought induced by climate change. However, there are few reports about the effects of extreme drought on microbial function. Here we identify microbial functional genes associated with carbon and nitrogen metabolisms of extreme drought experiments that occurred at different periods of plant growth, the results show that early extreme drought reduces the abundance of functional genes involved in the decomposition of starch and cellulose; midterm extreme drought increases the abundance of lignin decomposition functional genes; late extreme drought reduces the hemicellulose but increases cellulose decomposition functional genes. In the carbon fixation pathway, extreme drought mainly changes the abundance of functional genes involved in the reductive citrate cycle process, the 3-hydroxy propionate bi-cycle, the dicarboxylate-hydroxybutyrate cycle and the incomplete reductive citrate cycle. Among the nitrogen cycling functional genes, amoA involved in oxidizing ammonia to hydroxylamine significantly increases under early extreme drought; midterm extreme drought reduces nrtC and nifD genes, which participate in nitrate assimilation and nitrogen fixation, respectively; late extreme drought significantly increases hcp genes involved in ammonification. pH and TN had the largest effects on the carbon degradation, fixation and nitrogen cycling functional genes. The composition of microbial community structures involved in carbon fixation differed between treatments in early extreme drought. There is a good linear fit between the diversity of gene abundance and corresponding microbial communities in the reductive citrate cycle, hydroxy propionate-hydroxybutyrate cycle, dicarboxylate-hydroxybutyrate cycle and nitrogen cycling, which suggests that the functional genes and community composition of microorganisms involved in these processes are consistent in response to extreme drought. This study provides new insights into the adaptability and response characteristics of microbial communities and functional genes in plateau peatland ecosystems to extreme drought events.
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1 Introduction

Peatland is a carbon-rich ecosystem covering 185-423 million hectares of the earth’s surface (Ribeiro et al., 2021). It is an important organic carbon (C) and nitrogen (N) pool and its C and N reserves account for 30% (ca. 644 Gt C) and 10% (8 – 15 Gt N) of the total reserves of the whole terrestrial ecosystem, respectively (Limpens et al., 2006; Wang et al., 2014). A large amount of greenhouse gases is produced and discharged due to C and N migration and transformation in peatlands (Chen et al., 2014; Yao et al., 2022). Global warming is affecting precipitation patterns in a complex way, as heating promotes evaporation, leading to soil surface drying, thus increasing the duration and intensity of drought events (Pokhrel et al., 2021). The global climate model predicts that the frequency and intensity of extreme drought events will increase in the future (Hoover and Rogers, 2016). Extreme drought has seriously affected soil biogeochemical C and N cycling and related greenhouse gas fluxes (Deng et al., 2021), leading to the loss of ecosystem functions (Du et al., 2018; Kang et al., 2018). Therefore, the fate of the large amount of C and N stored in peatland and the response of peatland to extreme drought is very important for the future climate. It is becoming increasingly apparent that in addition to drought intensity, the timing of drought has important effects on the ecosystem C and N cycling (Dietrich and Smith, 2016). Some studies have shown that drought events, occurring at different plant growth stages (i.e., rapid growth, full bloom, and decline stages), have differently influenced ecosystem production and functioning (Knapp et al., 2008; Dietrich and Smith, 2016). However, the ecological implications of greater intra-season variability of rainfall extremes have received minimal notice, especially concerning variable timing of extreme drought at different plant growth stages, which might have the largest ecological consequences.

Extreme drought events mainly lead to water stress in plants, which can alter the distribution pattern of plant biomass (Jentsch et al., 2011), cause a decrease in photosynthetic, transpiration rates (Lefi et al., 2004) and water use efficiency, then decrease in plant suitability (Loik, 2007). Extreme drought events not only directly affect plant growth, but also indirectly affect the supply of soil nutrients through changes in soil moisture content. Studies have shown that extreme drought in summer significantly reduces soil C and N mineralization, leading to a decrease in soil nutrient supply (Borken & Matzner, 2009). Soil microorganisms play an intermediary role in the key steps of all biogeochemical cycles and maintain ecosystem functions (Bell et al., 2005; Zhang et al., 2012; Bastida et al., 2021). Therefore, the effect of extreme drought events on soil water and nutrients regime is highly likely to cause changes in soil microbial activity. As the soil dries, water membranes form on soil particles, concentrating water-containing pore water components (e.g., dissolved nutrients, solutes, toxins), limiting the diffusion of stroma and extracellular enzymes and increasing interactions between microbial populations (Malik and Bouskill, 2022). There is overwhelming evidence that microorganisms will respond to drought in terms of microbial community composition and diversity (Zhou et al., 2012; Guo et al., 2020; Yuan et al., 2021). In addition, changes in microbial communities can in turn regulate soil nutrient regimes through metabolism and decomposition. Under drought conditions, microorganisms can mediate soil C sequestration and alleviate the impact of reduced soil water availability caused by climate change by increasing soil carbon sequestration (Canarini et al., 2016). Drought can reduce the decomposition of soil organic matter by reducing the characteristics of microorganisms (e.g., enzyme activity and functional gene abundance) (Alster et al., 2013; Vogel et al., 2013). Therefore, the understanding of soil microbial ecology is crucial to our ability to evaluate terrestrial C and N cycling, but the complexity of soil microbial communities and the multiple ways that they may be affected by extreme drought hinder our ability to draw clear conclusions on this topic and the metabolic kinetics and phenotypic characteristics of microbial communities are still unclear (Bardgett et al., 2008; de Vries et al., 2018), though microbial communities drive biogeochemical cycles through their specific metabolic activities.

Litter decomposition is a key link between carbon budget and nutrient cycling. In general, drought can cause a decrease in the rate constant of litter decomposition, and the decomposition of C and N in various plant litter leaves has decreased (Sardans and Penuelas, 2010). Sudden drought may have a greater effect on litter decomposition than long-term drought (García-Palacios et al., 2016). In addition, the decomposition rate of different carbon components is also inhibited to varying degrees by drought. For example, the proportion of cellulose in litter under drought treatment in the Mediterranean region increased by 10.9% compared to the ambient conditions, while the lignin content increased by 17.5% (Tu et al, 2017). Some studies suggest that drying conditions have a negative effect on soil microorganisms. Drought can lead to a decrease in soil microbial biomass, diversity and relative abundance, thereby affecting the litter decomposition rates (Zhou et al., 2018). Therefore, understanding the decomposition, transformation, and sequestration of organic matter in soil requires a further understanding of how microbial physiology regulates the processes that control biogeochemical cycling, climate change, and ecosystem sustainability (Bardgett et al., 2008; Roth et al., 2019). Liang et al. (2017) defined two pathways (i.e., ex vivo modification and in vivo turnover) to jointly explain the dynamics of soil C driven by microbial catabolism and/or anabolism. However, it has been difficult to link specific taxa to these ecosystem processes and consequently predict the functional responses of soil microorganisms (Fierer, 2017). Thus, a better understanding of the diversity and abundance of microbial functional genes that predict the functional potential of soil microorganisms can link the knowledge of microbial communities to their key ecosystem functions. Soil microbial genes coding for specific enzymes related to particular ecosystem processes can help us to establish links between genetic diversity, community structure and further to ecosystem functions, such as carbon cycling through studying carbohydrate-active enzymes (CAZy) (Yang et al., 2014; Manoharan et al., 2017).

N cycling is a collection of important biogeochemical pathways mediated by microbial communities. In most northern peatlands, the slow decomposition of dead plant material returns organic N to the soil and causes peat accumulation (Moore, 2002). Microbial conversion of N is usually described as a cycling consisting of denitrification, nitrification, nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA) (Glaze et al., 2022). Drought stresses directly or indirectly affect the ecosystem N cycling (Deng et al., 2021). The effect of drought on net N mineralization and flux in soils of different climates, soil, and ecosystem types varies (Hartmann et al., 2013). The increase in duration and intensity of drought is usually related to N mineralization, mobility, and a decrease in the plant uptake rate of inorganic nutrients (Deng et al., 2021). Recent efforts have focused on characterizing functional genes involved in multiple N cycling processes using genetic approaches and relating genetic information to ecosystem functioning. It has been made clear that amoA genes regulate the availability of inorganic N and the production of N2O through nitrification, while nirK and nirS genes are involved in NO3- consumption and N2O production, nosZ genes mediate the conversion of N2O to N2 during denitrification (Dai et al., 2020). Tu et al. (2017) have also correlated soil N cycling with microbial genetic data, which were mainly concentrated in a few gene families by PCR. Petersen et al. (2012) analyzed nitrification and denitrification processes across a vegetation gradient in Alaska by qPCR amplification of gene families including amoA, nirK/S, and nosZ, and suggested that the abundance of these functional genes can be used as good predictors for biogeochemical process rates. Drought was reported to affect the diversity and composition of microbial communities, and therefore the abundance of functional genes related to N cycling in arable land (Banerjee et al., 2016) and pasture soils (Radl et al., 2015). However, comprehensive surveys of genes involved in all N cycling processes in peatland ecosystems under extreme drought events have rarely been carried out.

The Qinghai-Tibet Plateau has large soil C and N stocks that turn over at low rates (Chen et al., 2013; Fu et al., 2021). In alpine peatland soils, microbial metabolism is limited by harsh environments, such as low temperatures or oxygen levels, and microorganisms are less able to decompose and recover soil organic material. The purpose of this study is to conduct a prospective study on whether the functional genes involved in the process of C and N cycling changed significantly after extreme drought events using metagenomics methods and to explore which specific processes and microbial groups are most affected. To address these objectives, an in-situ field extreme drought simulation experiment was conducted for five years in an alpine peatland ecosystem was performed and the functional genes of soil C and N cycling were screened in detail. Finally, we explore the role of drought-affected microbial communities in the C and N cycling at the genetic level.




2 Materials and methods



2.1 Study area experimental design and soil sampling

The location of the peatland investigated in this research is at an altitude of 3430 m above sea level, located in the Zoige plateau (33°47′56.61″ N, 102°57′28.43″ E) on the northeast edge of the Qinghai-Tibet Plateau. The largest alpine peatland in the world is found in this area due to the region’s unique climatic and hydrological regimes and its geomorphologic and soil conditions (Ma et al., 2016). The mean annual temperature and mean annual precipitation are -1.7°C to 3.3°C and 650 mm to 750 mm, respectively and 90% of the annual precipitation occurs from April to September. The soil is highland peat soil. For this study, the vertical depth of peat at the study site was approximately 1.2 m. The SOC content was between 179 g·kg-1 to 276 g·kg-1 and the soil pH was between 6.8 to 7.2. The vegetation was primarily composed of Carex meyeriana, Koeleria tibetica, Carex muliensis, Eriophorum gracile, Blysmus sinocompressus, and Carex secbrirostris.

The extreme drought events were designed by statistical extremity concerning a historical reference period (extreme value theory) independent of biological effects. We focused on one extreme drought event, not a long-term drought, so local rainfall statistics at the study site have been collected over the past 50 years (China Meteorological Data Network). Daily rainfall of ≤ 3 mm is defined as non-effective rainfall and the minimum duration of non-effective rainfall during the study period was set to 32 days (where the days without effective rainfall are the duration of the drought) (Jentsch et al., 2011), which has the same design idea with the previous research(Zhou et al., 2019). Different periods of extreme drought events were applied during the growing season. The experiment consisted of a control (CK) with ambient precipitation and then different periods of extreme drought. The names and dates of three drought periods were: early drought (ED) from June 18 to July 20, 2019; midterm drought (MD) from July 20 to August 23, 2019; and late drought (LD) from August 23 to September 25, 2019, following 5 years of continuous extreme drought events from 2014 to 2018.

Precipitation was excluded from the study site using a transparent awning (length × width × height: 2.5 m × 2.5 m × 1.8 m). The light transmittance of the shelter material was more than 90%. Each drought treatment consisted of three replicate plots of 2 m × 2 m each, and these were selected randomly in the study field. The iron plates around each experimental community are smashed into the ground for 1m to prevent the lateral flow of water. During rain, roof water was collected with gutters along the shelter awning and transported 50 m downhill of the experimental site, and after each extreme drought event, we removed the shelters and then allow the extreme drought plots to receive natural precipitation. Three soil cores of 0–20 cm in depth were collected and mixed from each plot at the end of each simulated extreme drought period (i.e., ED, MD and LD). One part of the soil samples was transported to the laboratory in coolers with dry ice and then were stored at −80°C for later DNA extraction, the other part was passed through a 2–mm sieve to remove the plant roots and determine soil biochemical properties.




2.2 Measurements of soil properties

The soil pH was determined in a 1:2.5 soil/water solution using a pH meter. soil water content (SWC) was determined using the oven-drying method. Soil ammonium (NH4+) and nitrate (NO3−) concentrations were determined by the colorimetric method. Soil organic carbon (SOC) was determined by the rapid dichromate oxidation-titration method. Dissolved organic carbon (DOC) was measured using a continuous-flow analyzer. Soil total nitrogen (TN) was determined by the Kjeldahl procedure. These have already been demonstrated in our previous research (Kang et al., 2022; Yan et al., 2022).




2.3 DNA extraction, library construction, and metagenomic sequencing

Total genomic DNA was extracted from the soil samples using the E.Z.N.A.® Soil DNA Kit (Omega Bio-tek, Norcross, GA, U.S.) according to the manufacturer’s instructions. The concentration and purity of extracted DNA were determined using TBS-380 and NanoDrop2000, respectively. DNA extract quality was checked using 1% agarose gel.

DNA extract was fragmented to an average size of about 400 bp using Covaris M220 (Gene Company Limited, China) for paired-end library construction. A paired-end library was constructed using NEXTFLEX Rapid DNA-Seq (Bioo Scientific, Austin, TX, USA). Adapters containing the full complement of sequencing primer hybridization sites were ligated to the blunt-end of fragments. Paired-end sequencing was performed on an Illumina NovaSeq (Illumina Inc., San Diego, CA, USA) at Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China) using NovaSeq Reagent Kits according to the manufacturer’s instructions (www.illumina.com). Sequence data associated with this project have been deposited in the NCBI Short Read Archive database (Accession Number: SRP368675).




2.4 Sequence quality control and genome assembly

The data were analyzed on the free online platform, Majorbio Cloud Platform (www.majorbio.com). The paired-end Illumina reads were trimmed of adaptors, and low-quality reads (length<50 bp or with a quality value <20 or having N bases) were removed by fastp (Chen et al., 2018) (https://github.com/OpenGene/fastp, version 0.20.0). Metagenomics data were assembled using MEGAHIT (Li et al., 2015) (https://github.com/voutcn/megahit, version 1.1.2), which makes use of succinct de Bruijn graphs. Contigs with a length being or over 300 bp were selected as the final assembling result, and then the contigs were used for further gene prediction and annotation.




2.5 Gene prediction, taxonomy, and functional annotation

Open reading frames (ORFs) from each assembled contig were predicted using MetaGene (Noguchi et al., 2006) (http://metagene.cb.k.u-tokyo.ac.jp/). The predicted ORFs with length being or over 100 bp were retrieved and translated into amino acid sequences using the NCBI translation table (http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/index.cgi?chapter=tgencodes#SG1. A non-redundant gene catalog was constructed using CD-HIT (Fu et al., 2012) (http://www.bioinformatics.org/cd-hit/,version4.6.1) with 90% sequence identity and 90% coverage. Reads after quality control were mapped to the non-redundant gene catalog with 95% identity using SOAPaligner (Li et al., 2008) (http://soap.genomics.org.cn/, version 2.21), and gene abundance in each sample was evaluated.

Representative sequences of non-redundant gene catalog were aligned to the NCBI and NR databases with an e-value cutoff of 1e-5 using Diamond (Buchfink et al., 2015) (http://www.diamondsearch.org/index.php, version 0.8.35) for taxonomic annotations. The KEGG annotation was conducted using Diamond (Buchfink et al., 2015) (http://www.diamondsearch.org/index.php, version 0.8.35) against the Kyoto Encyclopedia of Genes and Genomes database (http://www.genome.jp/keeg/) with an e-value cutoff of 1e-5.




2.6 Statistical analyses

Independent sample t-tests were used to analyze the functional genes related to C and N affected by extreme drought in different periods. Linear discriminant analysis (LDA) effect size analysis (LEfSe) was conducted using the Galaxy server (http://huttenhower.sph.harvard.edu/galaxy) to analyze the microbial communities at genus level affected by extreme drought in different periods, and the linear fitting variance was used to test the consistency of microbial community and functional gene diversity. Constrained ordination (redundancy analysis, RDA) was used to investigate the relationships between soil factors and the functional genes involved in C degradation, C fixation and N cycling. The differences of microbial community structure between the control and extreme drought treatments were determined using non-metric multidimensional scaling analysis (NMDS) in the “vegan” package of R software. Analysis of variance was performed by SPSS 26.0, and the figures were drawn with OriginPro.





3 Results



3.1 The effects of extreme drought on C cycling functional genes

In this study, a total of 65 functional genes (Table S1) responsible for the process of soil C decomposition were selected and 116 functional genes involved in the soil C sequestration pathway were detected (Table S2).

Extreme drought significantly affected many important microbial functional genes involved in C decomposition (Figure 1). Specifically, the functional genes involved in Chitin, Pectin and Aromatics decomposition were not significantly affected by ED. nplT significantly decreased (P < 0.05) by 23.73% in the ED, and the abundance of the PGM3 gene changed from 0.38% to 0, which participated in the decomposition of starch, and the abundance of bglB gene involved in cellulose decomposition was significantly reduced (P < 0.05) by 6.16%; In the MD, pmm-pgm and xynB were significantly reduced (P < 0.05) by 5.08% and 7.52%, while treS and gmuG were significantly increased (P < 0.05) by 4.58% and 42.28%, they participated in the decomposition of starch and hemicellulose, and the glx gene involved in the decomposition of Lignin was changed from 0 to 4.55%. The abf1 gene significantly decreased (P < 0.05) by 56.89%, but the glucan 1, 3-beta-glucosidase (EC: 32.1.58) significantly increased (P < 0.05) by 84.94%. These are involved in the decomposition of hemicellulose and cellulose, respectively. In general, the ED reduced the abundance of functional genes involved in the decomposition of starch and cellulose, and the MD increased the abundance of genes involved in the decomposition of Lignin, but had different effects on the functional genes involved in the different processes of the decomposition of starch and cellulose. The LD reduced the functional genes involved in the decomposition of hemicellulose, but increased the functional genes involved in the decomposition of cellulose.




Figure 1 | Significantly changed C degradation functional genes are compared between extreme drought and control sites. CK: light color; Extreme drought: dark color; Red: ED; Yellow: MD; Blue: LD. Error bars represent standard error (n = 3). The differences between extreme drought and control sites were analyzed by two-tailed paired t-tests. *P < 0.05.



Extreme drought also significantly affected many important functional genes involved in different C fixation pathways (Figure 2), including the reductive citrate cycle, the 3-hydroxypropionate bi-cycle, the dicarboxylate-hydroxybutyrate cycle and the incomplete reductive citrate cycle, while the hydroxy propionate-hydroxybutyrate cycle, the reductive acetyl-CoA pathway, and the phosphate acetyltransferase-acetate kinase pathway were almost unchanged. In the ED, korC decreased by 30.78% and 28.39% (P < 0.05) in the Reductive citrate cycle and in the Incomplete reductive citrate cycle, respectively. The abundance of E4.2.1.2B, participating in the 3-Hydroxypropionate bi-cycle process, increased significantly by 3.18%. In the MD, sdhC in the reductive citrate cycle, the 3-hydroxy propionate bi-cycle and the dicarboxylate-hydroxybutyrate cycle significantly increased (P < 0.05) by 7.63%, 9.42%, and 6.57%, respectively. mch and smtA1 decreased significantly (P < 0.05) by 18.58% and 19.78%, respectively, while K15052 increased significantly (P < 0.05) by 38.46% in the 3-Hydroxypropionate bi-cycle. In the LD, sucC significantly decreased (P < 0.05) by 4.61% in the Dicarboxylate-hydroxybutyrate cycle.




Figure 2 | Significantly changed C degradation functional genes compared between extreme drought test plots and control test plots. CK: light color; Extreme drought: dark color Red: ED; Yellow: MD; Blue: LD. Error bars represent standard error (n = 3). The differences between extreme drought and control sites were analyzed using two-tailed paired t-tests. **P < 0.01, *P < 0.05.



Results of the RDA indicated that microbial functional genes involved in C degradation and fixation across the different treatments could be distinguished by soil factors (Figure 3). pH and TN had the largest effects on the C degradation and fixation functional genes. The first axis described 52.38% of the variation in microbial C degradation functional genes, and the second axis explained 4.26% of the variation. The first axis described 37.21% of the variation in microbial C fixation functional genes, and the second axis explained 4.58% of the variation.




Figure 3 | Ordination biplots of redundancy analysis (RDA) showing the relationship of C degradation and fixation functional genes to soil characteristics at 0–20 cm soil layers.






3.2 The effects of extreme drought on N cycling functional genes

In this study, a total of 50 genes (Table S3) related to the N cycling were detected, including those associated with ammonification, nitrate assimilation, assimilatory N reduction, dissimilatory N reduction, nitrification, denitrification and N fixation. In different periods of extreme drought, the affected functional genes and their response processes were different (Figure 4). When the ED event occurred, the abundance of the ammonia oxidation key gene of nitrification (amoA) in the extreme drought soil increased significantly by 55.32% compared with the control (P < 0.05). This gene is responsible for oxidizing ammonia to hydroxylamine. The abundance of nrtC and nifD genes of soil microorganisms significantly decreased by 13.51% and 25.21%, respectively, compared with the control under the MD (P < 0.05), they participate in the process of nitrate assimilation and N fixation respectively. In the LD, the abundance of hcp genes involved in the soil amelioration process was significantly reduced by 57.78% compared with the control (P < 0.05). Results of the RDA indicated that pH, TN and NO3- had the largest effects on the N cycling functional genes. The first axis described 20.62% of the variation in microbial C degradation functional genes, and the second axis explained 12.59% of the variation (Figure 5).




Figure 4 | The extreme drought effect on N cycling genes. The percentages in brackets indicate changes in average abundances of functional genes between extreme drought and control sites. Red and green represent the increase and decrease in the average abundance by extreme drought, respectively.






Figure 5 | Ordination biplots of redundancy analysis (RDA) showing the relationship of N cycling functional genes to soil characteristics at 0–20 cm soil layers.






3.3 The effects of extreme drought on soil microbial communities

In all the samples in this study, the detection numbers at different community classification levels were that Domain: 4; Kingdom: 7; Phylum: 87; Class: 161; Order: 293; Family: 501; Genus: 1631; Species: 6269. The co-occurrence relationship between the sample and the microbial community (Phylum and Genus level) is shown in Figure 6. At the Phylum level, the dominant communities were mainly Proteobacteria, Actinobacteria, Acidobacteria and Chroroflexi. They accounted for about 40%, 20%, 9% and 3% of all communities in the different drought treatments.




Figure 6 | Co-occurrence relationship between samples and species. (A) Microbial community at phylum level; (B) Microbial community at genus level.



Extreme drought also significantly affected many microbial groups at the genus level (Figure 7). In the ED, MD and LD, there were 32, 41 and 2 microbial communities at the genus level that changed significantly, indicating that the impact of ED and MD on microbial community structure was stronger than that of LD. Among microbial communities that have undergone significant changes, extreme drought during different periods leads to different directions of change in microbial communities. ED reduced the abundance of 90.63% of microbial communities, while MD increased the abundance of 95.12% of microbial communities. LD significantly reduced the community abundance of Thermobacterium and Gallionella. In addition, only ED significantly reduced the composition of the Mycobacteriaceae, which belongs to Archaea. In other treatments, there were no significant changes in the Archaea or Fungal categories, indicating that extreme drought mainly changed the composition of bacterial groups.




Figure 7 | A linear discriminant analysis effect size (LEfSe) method identifies the responses of soil microbial abundant taxa under extreme drought treatment. The threshold on the logarithmic LDA score was 3.0. Red indicates a significant increase in abundance in CK plots, and green indicates a significant increase in abundance in extreme drought plots. The replicate (n = 3).



Based on the abundance information of species and function, α diversity of species and function were calculated, respectively, and linear regression analysis was performed to evaluate the consistency of species and function. In this study, the microbial communities of some C sequestration processes exhibited good consistency with the corresponding functional genes, including the reductive citrate cycle, the hydroxypropionate-hydroxybutylate cycle and the dicarboxylate-hydroxybutyrate cycle (Table 1), The associated linear fits were y=1.643X+0.8031 (R2 = 0.37, P < 0.01), y=0.7463X+4.9030 (R2 = 0.28, P < 0.05) and y=0.6539X+4.2184 (R2 = 0.24, P < 0.05), respectively. The species and functional gene α diversity of the N cycling also showed good consistency, and the linear fit was y=0.3084X+4.8109 (R2 = 0.28, P < 0.05). NMDS analyses showed that the composition of microbial community structures involved in C fixation differed between treatments in early extreme drought (Figure 8), while the microbial community structure involved in C degradation and N cycling has little change under extreme drought treatment in different periods. Furtherly, the relative contributions of the top ten functional genes to microbial communities involved in C degradation, C fixation and N cycling processes (Figure 9) showed that as the abundance of microbial communities decreased, although the composition of related functional genes changed, the functional categories did not show significant changes, indicating a complex relationship between microbial community composition and functional gene abundance. The changes in population abundance were not consistent with the changes in function.


Table 1 | Regression relationship of α diversity (Shannon index) for species at the genus level and their corresponding functions in different processes.






Figure 8 | Non–metric multidimensional scaling (NMDS) ordination of the microbial community involved in C degradation, C fixation and N cycling at different treatments. The Bray–Curtis distance matrix based on the abundance of microbial community at genus level was used to determine the compositional variation.






Figure 9 | The relative contributions of the top ten functional genes to microbial communities involved in C degradation, C fixation and N cycling processes. The taxonomy of the bacterial communities is shown at the genus level, and the relative contributions are represented by different colors.







4 Discussion



4.1 Extreme drought changed C cycling functional genes

Microorganisms have two distinct and critical roles in controlling terrestrial C fluxes i.e., facilitating the release of C into the atmosphere through their catabolic activities, but also blocking it by stabilizing it into a form that is not easily decomposed (Liang and Balser, 2011; Liang et al., 2017). Microbial necromass rather than standing biomass may be a better indicator of microbial contributions to soil C pools, and research increasingly shows a substantial microbial role in the sequestration of C into stable soil C pools (Ludwig et al., 2015).

Our research showed that different periods of extreme drought events have different effects on the functional genes involved in organic C decomposition. After five years of extreme drought, only 15.38% of the selected key functional genes show significant changes. The impact of extreme drought on the different organic matter has certain complexities, and the time of occurrence of extreme drought events within the seasonal cycle plays an important role. In addition, although the changing trend of functional genes is also not consistent, our research showed that the change of functional genes for the decomposition of labile C is relatively complex, and the functional genes for the decomposition of lignin are significantly increased. The production of extracellular degrading enzymes may be reduced under drought conditions because of the lower rate of return of decomposition products due to diffusion limitations (Sardans and Penuelas, 2010). The microbial community is very sensitive to changes in precipitation conditions and even a slight precipitation event can cause rapid microbial response (Nielsen and Ball, 2015). Yue et al. (Yue et al., 2015) used gene chips to study soil microorganisms in alpine meadows and noted that the relative abundance of catabolic genes related to C and N cycling decreased with the increase of temperature, with the most obvious change being in genes related to stable C. Our study also suggests that drought significantly increases the catabolic genes related to lignin and has complex effects on labile C such as cellulose and hemicellulose. This is consistent with research that has indicated that extreme drought promotes more gene expression in microorganisms degrading stable C, and reduces the long-term stability of soil C. Due to the huge diversity of microorganisms and the unclear ecological functions of most species, detection methods for specific functional microbial groups need to be greatly improved (Rinke et al., 2013).

Similar to the decomposition process of soil organic matter, the genes involved in the C fixation process exhibited different changes for different extreme drought periods, although the response trend of related processes was not consistent, indicating that the response of microorganisms to extreme drought is very complex. However, it is difficult to deduce the change direction of the final C fixation capacity from the change of a certain function. Assimilation of CO2 by soil autotrophic microorganisms is an important process of the soil C cycling, particularly in vegetation-constrained ecosystems with environmental stresses such as on the Tibetan Plateau which is characterized by low temperature and high UV radiation levels. Lynn et al. (2017) showed that the C sequestration rate of autotrophic microorganisms in wetland soil was 85.1 mg C m-2 d-1, and that of autotrophic microorganisms in grassland and woodland soil was 21.9 mg C m-2 d-1 and 32.9 mg C m-2 d-1, respectively. Precipitation and latitude together accounted for 76.00% difference in soil C sequestration microbial metabolic pathways in differently vegetated areas. In addition, oxygen sensitivity can also one of the reasons for differences in CO2 sequestration pathways (Liu et al., 2016).




4.2 Extreme drought changed N-related functional genes involved in ammonia oxidation, N fixation, nitrate assimilation and denitrification processes

In our study, nirK and nirS genes in denitrifying microbial communities for reducing nitrite (NO2−) to nitric oxide (NO), and nosZ genes in denitrifying bacterial communities for reducing N2O to N2 (Jetten, 2008; Levy-Booth et al., 2014) were not affected by extreme drought. This may greatly influence the nitrification and denitrification rates and associated N2O emissions. Keil et al. (Keil et al., 2015) used qPCR to study microbial communities. Their results showed that the abundance of nirK, nirS and nosZ all changed, while the abundance of the nosZ denitrifying gene decreased by 3.1%, which was greatly affected by drought. Hartmann et al. (Hartmann et al., 2013) studied the response of soil N cycling microorganisms to simulated drought through qPCR. Drought increased the N mineralization rate by 14%, and reduced the relative abundance of denitrification gene nirS by 7%. In an incubation experiment, it was found that under both flooded and non-flooded conditions, warming increased the N mineralization rate, which was reflected in the increase of denitrification rate and the abundance of copper reductase (nirK) (Gao et al., 2009; Fang et al., 2021).

Snider et al. (2015) documented significant changes in denitrification gene abundance (nirS, nosZ), which increased after heavy rainfall events increased WFPS from < 40% to > 70%, consistent with large fluxes of N2O. A meta-analysis found that the effect sizes of nirK and nosZ showed a U-shaped relationship with the effect sizes of soil moisture (Li et al., 2020), contrary to the belief that lower soil moisture and correspondingly higher soil oxygen concentration may inhibit nirK and nosZ genes under drought conditions (Delgado-Baquerizo et al., 2014; Homyak et al., 2017). Although our experiment was carried out continuously for 5 years, rewetting during the period of non-shielding may play a great role in the recovery of microorganisms. Some studies have pointed out that the significant resistance and/or resilience of the functional microbial community participating in the N cycling to extreme weather events may indicate that the microorganisms in silt are better adapted to the expected pressure conditions (Hammerl et al., 2019).

Ammonia oxidation is the first step of nitrification, which is the key process in the global N cycling and forms nitrate through microbial activities (Leininger et al., 2006). We observed an increase in abundance of amoA genes from the ED plots. This suggests that the ammonia oxidation process increases after extreme drought events. Che et al. (2017) used N cycling gene abundance (amoA) to find that a major shift in the N cycling led to a five-fold increase in nitrobacteria during grassland degradation in Tibet. Nitrification produces easily leached nitrates, which are the limiting substrate for denitrification in alpine meadows (Xie et al., 2014). Therefore, nitrates increase during periods of high soil moisture or in moist soil microhabitats. However, it has also been reported that both ammoxidation archaea (AOA) abundance and community composition are unaffected by drought, supporting earlier observations of AOA resistance to drought stress (Gleeson et al., 2010) and AOA’s good adaptation to a wide range of growing conditions and substrate concentrations (Schleper, 2010). Our study did not distinguish between AOA and AOB, but the increase of overall gene abundance indicates that extreme drought events in peatland may enhance the ammonia oxidation process. Previous studies have reported that although total N concentration sharply decreases under drought, the availability of soluble organic N and mineral N significantly increases, thereby promoting plant N absorption in the short term (Rennenberg et al., 2009). The opposite research results suggest that drought does not affect the inorganic N content in the soil, even under long-term drought treatment. Part of the reason for these two results is the difference in drought intensity and timing (Hartmann et al., 2013). We demonstrated that the soil pH, TN and NO3- had the largest effects on the N cycling functional genes (Figure 5).




4.3 Relationship between microbial community composition and functional potential

Most biogeochemical transformations appear to be mediated by a limited set of metabolic pathways in multiple taxa (Louca et al., 2018). We still do not know the appropriate solutions to establish links between microbial diversity and ecosystem processes in order to be able to capture the taxonomic distribution, metabolic capacity and response to environmental perturbations of microorganisms, although the diversity of microbes is incredible (Gans et al., 2005). The relationship between microbial biodiversity and ecosystem function is mainly inferred by measuring the change of species diversity and community composition derived using the marker gene method, but this inference does not explain the causal relationship between microbial diversity and ecosystem function (Krause et al., 2014). Research on the relationship between microbial biodiversity and ecosystem function needs to further characterize the functional performance and role of microorganisms in the ecosystem (Wang et al., 2019).

Our results showed that the composition of microbial community structures involved in C fixation function differed between treatments in early extreme drought (Figure 8). In addition to the derailed ecosystem function and microbial community function mentioned above, microbial taxonomic composition and functional potential may not always be linearly correlated. In our study, microbial community diversity involved in the N cycling process exhibited a good linear relationship with functional gene diversity, and only 3 out of 7 microbial C fixation processes had a good linear relationship. However, the diversity of genes involved in soil C degradation screened by us showed no linear relationship with the corresponding microbial communities, indicating that the decomposition of organic matter was involved in the decoupling between microbial groups and genes. This may be caused by different microbial groups having the same functional genes. This separation of microbial functional and taxonomic composition raises key questions about the relative spatial and temporal value of information on microbial phylogenetic diversity versus metabolic diversity of functional microorganisms for understanding biogeochemical reactions (Wertz et al., 2007).

For microorganisms performing relatively “extensive” functions, such as the decomposition and turnover of organic matter, the recombination of functional gene diversity (i.e. the functional potential of the community) does not necessarily lead to changes in ecosystem functions, such as decomposition rate (Allison and Martiny, 2008; Miki et al., 2014). A recent meta-analysis based on a metagenomic dataset of 365 samples worldwide revealed a consistent pattern in the relative frequencies of eight metabolic pathways associated with N transformation, hinting at the ability of metagenomic approaches to make potential inferences about the role of microorganisms in mediating biogeochemical cycles (Nelson et al., 2016). Studies have shown strong evidence to support the hypothesis of functional redundancy in soil microorganisms, as the degree of variation in microbial taxonomic composition is greater than the functional potential based on metagenomic gene abundance in global terrestrial ecosystems (Chen et al., 2022). In the future, we need to further integrate macro genomics, experimental culture and field measurement technology to link the information on microbial classification, phylogeny and functional genes with the measured phenotypic traits and environmental preferences (Barberan et al., 2017).





5 Conclusion

In this study, it was shown that under extreme drought conditions, microbial communities with low abundance underwent more significant changes than those with high abundance, and the abundance of functional genes involved in related processes showed a similar pattern, pH and TN had the largest effects on microbial functional genes. Changes in α diversity of microbial communities and functional genes were consistent in some C fixation processes and N cycling. In summary, progress has been made in understanding the potential negative impacts and positive contributions of soil microorganisms to extreme drought by considering the direct and indirect impacts of climate change on microorganisms and the ability of such impacts to amplify or inhibit key processes in the C and N cycling, despite uncertainties in predicting ecosystem function. We believe that in the future it will be necessary to link microbial ecology with whole-ecosystem scale flux measurements and C cycling feedback models. It is possible for ecosystem models to make better predictions of the ecosystem effects of future extreme drought by better evaluating microorganisms’ functional capacity and response.
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In the face of accelerated global dryland expansion and grassland degradation, signaling grassland ecosystem state transitions is an ongoing challenge in ecology. However, there is still a lack of effective indicators and understanding of the mechanisms of grassland ecosystem state transitions at the continental scale. Here, we propose a framework that links ecosystem function-based indicators and critical slowing down (CSD) theory to reveal grassland state transitions. Across precipitation gradients, we quantified the statistical characteristics and spatial patterns in ANPP and PUE dynamics (variability, asymmetry, and sensitivity to precipitation and temperature) in Eurasian grasslands. We show that the CVANPP, CVPUE, AANPP, APUE, SPUE-P, and SANPP-P of temperate steppes were significantly higher than those of alpine steppes, while the SPUE-T and SANPP-T were the inverse. In temperate grasslands, AANPP, APUE, and SANPP-P indicated the transition of typical steppes, and CVANPP, APUE, and SPUE-T indicated the transition from meadow to typical steppes. In alpine grasslands, APUE indicated the transition between alpine deserts and alpine steppes, and AANPP and SANPP-P indicated the transition between alpine steppes and meadow steppes. The interannual variability of precipitation strongly affected xerophyte proportion and demographic processes, which control state transitions in low-resilience grasslands. Community structures and limiting factors (nutrient, light, and/or temperature) regulate state transitions in high-resilience grasslands. Our results demonstrate that function-based indicators are predictive of impending state transitions of temperate and alpine grasslands, highlighting the complementation of ANPP and PUE dynamics that have the potential for predicting grassland ecosystem regime shifts and their underlying mechanisms.




Keywords: Eurasian grasslands, precipitation-use efficiency, productivity, regime shift, state transitions




1 Introduction

With the impacts of global warming and human activities, planetary boundaries have already been overstepped (Lenton et al., 2019; Lade et al., 2020). Climate factors are undergoing abrupt change at different spatiotemporal scales (Wang et al., 2020; Duffy et al., 2021). With global warming-accelerated drying, dryland ecosystems risk regime shifts without warning in structural and functional states and recovery from perturbations requires more time (Arani et al., 2021; Rietkerk et al., 2021). As one of the main types of terrestrial ecosystem, grassland ecosystems maintain the habitat for various wildlife and contribute to human well-being (Berdugo et al., 2020; Bardgett et al., 2021). However, grassland ecosystems are sensitive to climate change and face increasing risk of state transitions, which could have catastrophic impacts on ecosystem services (Berdugo et al., 2020; Maurer et al., 2020; Dietz et al., 2021). Therefore, indicators to predict state transitions and explore the underlying ecological mechanisms are necessary to cope with the regime shifts of grassland ecosystems caused by global climate change.

State transitions occur in a system when it is forced outside the basin of attraction of the original state, allowing a perturbation to trigger self-propelled change toward a contrasting state (Liu et al., 2019; Rietkerk et al., 2021). This phenomenon has been extensively applicated in ecological research, such as the sudden collapse of coral ecosystems (Hughes et al., 2018), the rapid degradation of arid ecosystems (Berdugo et al., 2020), and lake eutrophication (Liu et al., 2017; Su et al., 2021). The critical slowing down (CSD) theory of dynamical systems has provided a theoretical foundation for understanding ecosystem state transitions (Scheffer et al., 2009). The theory suggests that ecosystems subject to low resilience, with high variability, asymmetry, and sensitivity to external environment perturbations, and those systems in a state near the critical threshold (tipping point) are most likely to undergo a state transition (Scheffer et al., 2009; Clements and Ozgul, 2018). Experimental perturbations and natural time series have demonstrated that CSD-based indicators (e.g., variability, asymmetry, and temporal autocorrelation) are useful metrics to serve as potential metrics of systems undergoing a state transition (Carpenter and Brock, 2006; Dakos et al., 2012; Hu et al., 2018). Consistent with the theory, eigenvalue, skewness, variability, sensitivity, and autocorrelation estimated from a state variable increase abruptly before a regime shift occurs (Ratajczak et al., 2018; Cheng et al., 2021; Liang et al., 2021). However, these metrics are directly derived from general theoretical expectations and, as such, lack a link to specific ecological mechanisms (Dakos et al., 2015; Hu et al., 2022). Exploring useful indicators and ecological mechanisms in practice remains a big challenge for those concerned about implementing effective coping measures.

Aboveground net primary productivity (ANPP), as a principal ecosystem function, determines energy flow and facilitates carbon-water cycles within ecosystems (Haberl et al., 2014). ANPP dynamics (e.g., inter-annual variability and asymmetric and climatic sensitivity) have been used as indicators, identifying state transitions caused by demographic and limiting factors at the regional scale (Scheffer et al., 2009; Hu et al., 2018). Recent research has provided empirical support for the usefulness of ANPP dynamics as metrics of state transitions in grassland and forest ecosystems (Hu et al., 2018; Liu et al., 2019). Precipitation-use efficiency (PUE), as an aspect of ecosystem function–environment (Hu et al., 2022), represents the adaptive strategies of xerophyte proportion changes to cope with precipitation resource changes, especially in grassland ecosystems (Hu et al., 2010; Gherardi and Sala, 2019; Zhang et al., 2021). Therefore, PUE may be useful for identifying grassland state transitions. We suppose that the complementation of ANPP and PUE dynamics probably has more potential to detect state transitions and understand the underlying ecological mechanisms of grassland ecosystems. However, we still lack the combination of ANPP and PUE dynamics to detect grassland state transitions and reveal the underlying ecological mechanisms at the continental scale.

Eurasian grasslands have a large and continuous spatial distribution, a wide range of environment gradients, and various types of grassland, which will serve as an indispensable and ideal natural laboratory for understanding the indicators of state transitions and shifting ecological mechanisms at the continental scale. Here, we present a framework connecting ANPP and PUE dynamics to detect the state transitions of grassland ecosystems (Figure 1). Our framework focuses on the spatial variation in ANPP and PUE dynamics for variability, asymmetry, and climatic sensitivity along with precipitation. In our study, we hypothesize that intensified precipitation restrictions will lead to ecosystem states approaching the critical threshold (i.e., tipping point) and trending toward the alternative state. If there is a peak point in the spatial pattern of the ANPP and PUE dynamics along the mean annual precipitation (MAP) and corresponding to the shift of grassland type, the dynamic indicators can serve as metrics for state transitions.




Figure 1 | Schematic illustration of alternative stable states by means of ball-and-cup diagrams representing the stability properties at different external conditions. In (A), the upper branch represents one stable ecosystem state, and the lower branch represents another stable state. Ecosystems are in one state of the upper branch under external disturbances (φ). Ecosystems are in two transitional states under external disturbances (κ-μ), where, in ecosystem states near the tipping point (for example point F1 or point F2), minor disturbances may cause a significant shift. Ecosystems are in one state of a lower branch under external disturbances (⑤). (B) shows the corresponding ball-and-cup explanations of alternative stable states at the different external conditions from ① to ⑤. In (C), the temporal variance, skewness, covariance, and autocorrelation in state and functional variables serve as CSD state-based indicators of dynamical systems. In (D), we assume that these CSD function-based indicators (variability, asymmetry, and climatic sensitivity) can also potentially serve as metrics of state transitions in terrestrial ecosystems.



We integrated field surveys of ANPP, the long-term Normalized Difference Vegetation Index (NDVI), and annual precipitation to produce long-term ANPP and PUE datasets from 1982 to 2021, then calculated the ANPP and PUE dynamics (variability, asymmetry, and sensitivity to precipitation and temperature) at each pixel in Eurasian grasslands. The main objectives of this study were to identify: (1) the spatial pattern and statistical characteristics of ANPP and PUE dynamics for variability, asymmetry, and climatic sensitivity in Eurasian grasslands; (2) the spatial pattern of ANPP and PUE dynamics along the MAP in temperate and alpine grasslands; and (3) effective indicators of ANPP and PUE dynamics to detect state transitions of grassland ecosystems in Eurasia. Moreover, we aimed to understand the shifting ecological mechanisms underlying ANPP and PUE dynamics related to abiotic and biotic factors that could help optimize regional grassland management strategies for achieving sustainable development.




2 Materials and methods



2.1 Study area

The Eurasian grasslands are located in the middle latitude region of the Northern Hemisphere (30°N ~ 55°N, 30°E ~ 125°E) (Figure 2A). The precipitation and temperature gradients are from 70 mm to 1030 mm and −9 to 15°C, respectively (Zhang et al., 2020). We used the International Geosphere-Biosphere Program (IGBP) terrestrial ecoregions map (Olson et al., 2001), Moderate Resolution Imaging Spectroradiometer (MODIS) production (https://lpdaac.usgs.gov/), and vegetation classification map of China (http://www.geodata.cn/) to obtain the geographical extent and grassland types. Previous research showed that the response of ANPP and PUE to precipitation is distinct in water-limited temperate steppes and temperature-limited alpine grasslands (Guo et al., 2015; Zhang et al., 2020). We hypothesize that ANPP and PUE dynamics have contrasting spatial patterns with MAP in temperate and alpine grasslands, respectively. According to the geographical environment and plant compositions of Eurasian grasslands, they could be divided into two categories: temperate grasslands (i.e., temperate desert steppes (TDS), typical steppes (TTS), and meadow steppes (TMS)) and alpine grasslands (i.e., alpine desert steppes (ADS), alpine steppes (AS), and alpine meadow steppes (AMS)) (Figure 2A). Desert steppes are characterized by short shrubs, semi-shrubs, and low diversity (Zhang et al., 2016). Typical steppes are dominated by relatively meso-xerophytic species. Meadows are located in the sub-humid district and have the highest coverage and biodiversity, which is dominated by mesophyte species (Artemisia frigida, Agropyron cristatum and Stipa baicalensis, etc.) (Hu et al., 2018). Alpine desert steppes are characterized by xerophyte species (Ceratoides compacta and Stipa purpurea etc.) with low productivity. Alpine steppes and meadows are mainly composed of drought-resistant and hardy species (Alpine forbs, Carex moorcroftii, Stipa purpurea, etc.) (Yang et al., 2010). The grassland types have clear divides and represent different ecosystem states along the MAP (Figures 2B, C), allowing us to diagnose if there are signals in the ANPP and PUE dynamics that correspond to state transitions.




Figure 2 | Spatial distributions of grassland types and measured aboveground net primary productivity (ANPP) (A); the frequency distributions of mean annual precipitation (MAP) in temperate grasslands (B) and alpine grasslands (C). TDS, TTS, TMS, ADS, AS, and AMS represent the six grassland types, i.e., temperate desert steppes, temperate typical steppes, temperate meadow steppes, alpine desert steppes, alpine steppes, and alpine meadow steppes, respectively.






2.2 In situ measured ANPP data

In this study, we collected three datasets of ANPP observations. This field sampling data approximates the ANPP of grassland ecosystems. The first ANPP dataset was extracted from published literature, in which the AGB was measured at 267 sites on the Eurasian grasslands during July and August of 2002–2004 (Yang et al., 2010). The second ANPP dataset was supported by the Ministry of Agriculture of China (Hu et al., 2010). A background survey was organized in the peak growing seasons of 1983–1995 to study the forage yield of the region, in which the ANPP was measured at 503 sites on the Eurasian grasslands. The third dataset was extracted from the Oak Ridge National Laboratory (ORNL) (seven sites) and obtained directly from field surveys (81 sites) (Jiao et al., 2017). A total of 858 sites were selected from three sources (Figure 2A), which were used to estimate the long-term ANPP remote sensing products in Eurasian grasslands.




2.3 ANPP and PUE estimations from remote sensing products

The Global Inventory Modeling and Mapping Studies Normalized Difference Vegetation Index (GIMMS NDVI) and Moderate Resolution Imaging Spectroradiometer NDVI (MODIS13A2) data were used to construct the empirical mode between ANPP measurements and their corresponding NDVI at the sites. Specifically, we used the biweekly NDVI with a spatial resolution of 8 km from the GIMMS group as derived from the Advanced Very High Resolution Radiometer (AVHRR) from 1982 to 2015 (http://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/). The preprocessing of GIMMS NDVI remote sensing images consisted of 15-day maximum-value compositions (MVC), corrected to reduce the effects of residual clouds, the solar zenith angle, viewing geometry, and atmospheric perturbations (Jiao et al., 2017; Chen et al., 2019).

The MODIS NDVI product (MOD13A2) comes from the National Aeronautics and Space Administration (NASA, https://lpdaacsvc.cr.usgs.gov), with a temporal resolution of 16 days and a spatial resolution of 1 km. The MODIS NDVI data were corrected for cloud cover, atmosphere, and solar elevation angle (Liu et al., 2022). The bilinear interpolation method was used to resample the data to the spatial resolution of the GIMMS NDVI (Parker et al., 1983). Previous studies showed that seasonally integrated NDVI are more direct measures of vegetation activity, and therefore, frequently estimate ANPP (Verma et al., 2014; Maurer et al., 2020). We compared and found that the GIMMS and MODIS NDVIint had some linearity errors in the years between 2004 and 2013 (Figure 3A). We established an empirical relationship between the GIMMS and MODIS NDVIint (R2 = 0.93) (Figure 3B). Then, we recalibrated the MODIS NDVIint and obtained the long-term NDVIint from 1982 to 2021 in the study area.




Figure 3 | Comparisons NDVI between the GIMMS_NDVIint and MODIS_NDVIint from 1982 to 2021 in the entire Eurasian grasslands. (A) The time series of ANPP of the GIMMS_NDVIint and MODIS_NDVIint. (B) The linear relationships between ANPP of the GIMMS_NDVIint and MODIS_NDVIint from 2003 to 2013.



The NDVI is highly correlated to biomass across spatial scales and commonly used to estimate the quantities of vegetation ANPP in grasslands (Hu et al., 2018; Maurer et al., 2020). For these reasons, we established the relationship between ground-based measurements of ANPP and integrated NDVI during the growing season. A significant exponential relationship between measured ANPP and the corresponding integrated NDVI for the growing season was derived as (Figure 4):




Figure 4 | Regression function between the NDVIint and measured ANPP.



	

With this relationship, ANPP was estimated for the entire study region based on long-term NDVI data from 1982 to 2021. The PUE was produced by the ratio of ANPP to the corresponding annual precipitation at each pixel during 1982 to 2021 in Eurasian grasslands (Zhang et al., 2021).




2.4 Precipitation and temperature data

The monthly precipitation and temperature data (0.5° × 0.5°) from 1982 to 2021 were obtained from the Climate Research Unit 4.06 dataset (CRU) (https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.06/) (Harris et al., 2020). We calculated the annual precipitation and temperature from the monthly datasets. MAP was calculated as a multi-year averaged value from 1982 to 2021. The nearest neighbor interpolation method was used to resample the data to the spatial resolution of ANPP (8 km at the equator) for subsequent analysis (Parker et al., 1983).




2.5 ANPP and PUE dynamics for variability, asymmetry, and sensitivity

The ANPP and PUE dynamics for variability, asymmetry, and precipitation and temperature sensitivity were calculated based on the inter-annual ANPP and PUE data of the remote sensing products. The interannual variability in ANPP and PUE was calculated as the coefficient of variation in ANPP (CVANPP) and PUE (CVPUE), namely, the ratio of standard deviation of the mean with long-term ANPP and PUE at each pixel from 1982 to 2021 (Knapp and Smith, 2001; Hu et al., 2018), according to



where CV is the coefficient of variation, X is ANPP, PUE, t is the year from 1982 to 2021, and   is mean value of variables.

Asymmetry (A) as an indicator is broadly analogous with skewness in system dynamics. With the disturbance of environmental factors, resilience decreases with increasing A (Wu et al., 2018; Al-Yaari et al., 2020). We estimated A as



where AX is the asymmetry of ANPP (AANPP) and PUE (APUE), Xmax is the maximum and Xmin is the minimum of ANPP and PUE during 1982–2021. An A value > 1 implies that ANPP gains in wet/warm years are larger than reduced in dry/cold years, and vice versa. The A value equal to 1 means the ecosystem is in a stable equilibrium state. The greater the degree of the ecosystem state deviating from the equilibrium is characterized by the deviation degree of A to 1, which indicates the ecosystem state is closer to the tipping point.

An ecosystem state closer to the tipping point responds more sensitively (S) to external perturbations (Hu et al., 2022; Zeng et al., 2022). To evaluate the sensitivity of ecosystems to climate variability, we estimated the response of ANPP and PUE to precipitation (SANPP-P, SPUE-P) and temperature (SANPP-T, SPUE-T) for each pixel during 1982–2021 using a multiple regression method (He et al., 2019):



where y’ is the detrended anomaly of the ensemble mean of ANPP and PUE. AP’ and AT’ are the detrended anomalies of annual precipitation and temperature, respectively. δint and γ int represent the sensitivity of ANPP and PUE to climate factors, respectively, and ε is the residual error.

In addition to the variability and asymmetry of ANPP and PUE, we also calculated the annual precipitation variability (CVP) and asymmetry (AP) to evaluate the effect that precipitation dynamics plays in determining the ecosystem state.

The spatial pattern of ANPP and PUE dynamics were mapped using ArcGIS 10.7 software. The multiple regression analysis was achieved using Sigmaplot 14.0 software.




2.6 Data processing and methodology

We calculated the arithmetic average and standard error value of ANPP and PUE dynamics (CVANPP, CVPUE, AANPP, APUE, SANPP-P, SANPP-T, SPUE-P, SPUE-T) at 20 mm intervals in the MAP. The simple line regression analysis was applied to explore the spatial pattern of ANPP and PUE dynamics with MAP, according to Equation (4):



where y is ANPP or PUE dynamics, MAP is mean annual precipitation, α is the constant term, β is the regression coefficient for MAP, and ξ is the residual error.

We also used a piecewise linear regression model to diagnosis the critical threshold of ANPP and PUE dynamics (CVANPP, CVPUE, AANPP, APUE, SANPP-P, SANPP-T, SPUE-P, SPUE-T) in response to MAP (Hu et al., 2018), determined by the least square error. According to Equation (5):



where y is the ANPP and PUE dynamics, and MAP is the mean annual precipitation. α is the value of the turning point. β0 is the constant term. β1 and β2 are the regression coefficients for MAP. A t-test was applied to test the null hypothesis “β2 is not different from zero”.





3 Results



3.1 Spatial pattern and statistical characteristics of ANPP and PUE dynamics in Eurasian grasslands

Our results showed that the range of CVANPP, AANPP, SANPP-P, and SANPP-T in Eurasian grasslands were 0.02–0.56, 0.3–3.1, −0.05–0.32, and −12–21, respectively (Figures 5A–D). A high CVANPP and SANPP-P were found in the northern typical and meadow steppes. In contrast, a low CVANPP and SANPP-P were found in the southern desert grasslands and alpine grasslands (Figures 5A, C). The CVPUE, APUE, SPUE-P, and SPUE-T varied from 0.02 to 0.45, 0.4 to 3.2, −0.006 to 0, and −0.05 to 0.28, respectively (Figures 5E–H). A high SPUE-P and SPUE-T occurred in the eastern temperate grasslands. A low SPUE-P and SPUE-T appeared in the desert steppes and southwestern alpine steppes (Figures 5G, H). However, the spatial distribution of AANPP, SANPP-T, CVPUE, and APUE showed no clear rule of territorial differentiation.




Figure 5 | Spatial distribution of interannual variability of aboveground net primary production (CVANPP) (A) and precipitation use efficiency (CVPUE) (E), ANPP asymmetry (AANPP) (B) and PUE asymmetry (APUE) (F), ANPP precipitation sensitivity (SANPP-P) (C) and PUE precipitation sensitivity (SPUE-P) (G), and ANPP temperature sensitivity (SANPP-T) (D) and PUE temperature sensitivity (SPUE-T) (H) in Eurasian grasslands.



The magnitude of ANPP and PUE dynamics of temperate grasslands were generally larger than those of alpine grasslands (Supplementary Figure S1). In temperate grasslands, the magnitude of CVANPP, SANPP-T, CVPUE, SPUE-P, and SPUE-T in desert steppes were generally lower than in meadow steppes, while the magnitude of AANPP and APUE was the converse (Figure 6). We also found that the magnitude of SANPP-P in typical steppes was larger than in desert and meadow steppes (Figure 6C). In alpine grasslands, the magnitude of CVANPP, SANPP-T, CVPUE, and SPUE-P in alpine desert steppes were significantly lower than alpine meadows (Figures 6A, D, E, G), while the magnitude of AANPP was the converse (Figure 6B). It is worth noting that the SANPP-P and SPUE-T in alpine steppes were lower than in alpine desert and meadow steppes (Figures 6C, H). We also found that the ANPP and PUE sensitivity to precipitation were positive and negative values, respectively. In addition, the ANPP and PUE sensitivities to temperature had positive and negative values, respectively. These results indicated that ANPP and PUE dynamics have different meanings in grassland state transitions.




Figure 6 | Statistical characteristics of interannual variability of aboveground net primary production (CVANPP) (A) and precipitation use efficiency (CVPUE) (E), ANPP asymmetry (AANPP) (B) and PUE asymmetry (APUE) (F), ANPP precipitation sensitivity (SANPP-P) (C) and PUE precipitation sensitivity (SPUE-P) (G), and ANPP temperature sensitivity (SANPP-T) (D) and PUE temperature sensitivity (SPUE-T) (H) in temperate and alpine grasslands. TDS, TTS, TMS, ADS, AS, and AMS represent the six grassland types, i.e., temperate desert steppes, temperate typical steppes, temperate meadow steppes, alpine desert steppes, alpine steppes, and alpine meadow steppes, respectively.






3.2 Spatial patterns of ANPP and PUE dynamics with MAP in temperate and alpine grasslands

In temperate grasslands, the spatial patterns of CVANPP, AANPP, SANPP-P, APUE, and SPUE-T appeared as peaks along the MAP, which were consistent with the transition of grassland types (Figures 7A–C, F, H). AANPP, SANPP-P, and APUE peaked at the regime shift of typical steppes (Figures 7B, C, F), indicating it was an available CSD-based indicator for state transitions between the desert and typical steppes. In addition, the spatial patterns of CVANPP, AANPP, and SPUE-T appeared as peaks at the transition zone between the typical and meadow steppes (Figures 7A, B, H). On the contrary, SANPP-T, CVPUE, and SPUE-P showed no peaks corresponding to regime shifts between grassland types along the MAP (Figures 7D, E, G), indicating it failed to capture state transitions in temperate grasslands. These results showed that CVANPP, AANPP, SANPP-P, APUE, and SPUE-T were effective indicators for state transitions of temperate grasslands.




Figure 7 |     Spatial pattern of interannual variability of aboveground net primary production (CVANPP) (A) and precipitation use efficiency (CVPUE) (E), ANPP asymmetry (AANPP) (B) and PUE asymmetry (APUE) (F), ANPP precipitation sensitivity (SANPP-P) (C) and PUE precipitation sensitivity (SPUE-P) (G), and ANPP temperature sensitivity (SANPP-T) (D) and PUE temperature sensitivity (SPUE-T) (H) along the mean annual precipitation (MAP) in Eurasian temperate grasslands. The broken lines with ANPP and PUE dynamics denote 95% confidence intervals for the regressions. The vertical dashed lines denote the edge of the desert and typical steppes at 280 mm and 450 mm, respectively (based on Figure 2B). The data exemplified were bin-average at 20 mm MAP intervals. Yellow, green, and blue represent the three grassland types, i.e., temperate desert steppes, typical steppes, and meadow steppes, respectively.



We found that the spatial pattern of ANPP and PUE dynamics with the MAP differed in alpine and temperate grasslands (Figures 7, 8). In alpine grasslands, APUE peaked at the dry edge of alpine steppes (Figure 8F), indicating APUE was an available CSD-based indicator for the state transition between alpine desert and alpine steppes. In addition, AANPP and SANPP-P peaked at the wet edge of alpine steppes and near the critical zone between alpine steppes and alpine meadows (Figures 8B, C). The CVANPP, CVPUE, and SPUE-P showed an increasing trend with MAP and did not peak corresponding to the transition interval of grassland types (Figures 8A, E, G). Although the spatial pattern of SANPP-T and SPUE-T appeared as peaks along the MAP (Figures 8D, H), it was inconsistent with ecotone, and thus also could not indicate state transitions in temperate grasslands. These results showed that SANPP-P, APUE, and AANPP were available indicators for state transitions of alpine grasslands.




Figure 8 | Spatial pattern of interannual variability of aboveground net primary production (CVANPP) (A) and precipitation use efficiency (CVPUE) (E), ANPP asymmetry (AANPP) (B) and PUE asymmetry (APUE) (F), ANPP precipitation sensitivity (SANPP-P) (C) and PUE precipitation sensitivity (SPUE-P) (G), and ANPP temperature sensitivity (SANPP-T) (D) and PUE temperature sensitivity (SPUE-T) (H) along the mean annual precipitation (MAP) in Eurasian alpine grasslands. The broken lines with ANPP and PUE dynamics denote 95% confidence intervals for the regressions. The vertical dashed lines indicate the edge of alpine desert steppes and alpine steppes at 200 mm and 400 mm, respectively (based on Figure 2C). The data illustrated were bin-average at 20 mm MAP intervals. Yellow, blue, and red represent the three grassland types, i.e., alpine desert steppes, alpine steppes, and alpine meadow steppes, respectively.







4 Discussion



4.1 Ecological significance of variability, asymmetry, and sensitivity of ANPP and PUE

Overall, we found that the ANPP and PUE dynamics (e.g., CVANPP, SANPP-T, CVPUE, SPUE-P, and SPUE-T) in desert steppes were generally lower than in meadow steppes in temperate and alpine grasslands, respectively (Figure 6). It is likely because the short xerophytic species and low diversity in deserts are adapted the low precipitation and poor nutrient availability, causing low ANPP and PUE dynamics (Davidowitz, 2002; Huang et al., 2015; Hu et al., 2022). On the contrary, meadow steppes are characterized by the highest coverage and abundant biodiversity, likely causing the high variability and sensitivity of ANPP and PUE to climate change (Bai et al., 2004; Wang et al., 2005; Guo et al., 2015). These results were consistent with previous analyses based on long-term observations of ANPP dynamics in temperate grasslands (Zhou et al., 2006).

We have also found that the magnitude of AANPP and APUE in desert steppes were larger than typical and meadow steppes in temperate grasslands (Figure 6). The AANPP and APUE were positive values, which suggested a more significant decrease of ANPP and PUE in dry years than increases in wet years (Knapp and Smith, 2001; Zhou et al., 2006; Wu et al., 2018). Previous research showed that the hysteresis effects of soil moisture of earlier years alleviate the substantial declines of ANPP and PUE, meaning that AANPP and APUE in the dry region were larger than in the wet region (Sala et al., 2012; Petrie et al., 2018). In dry regions, the hysteresis effects of soil moisture from previous years was limited. In contrast, in a wet region, other resources such as soil nutrient availability, light, or temperature limitations associated with wet periods countervailed the effect of increased precipitation on ANPP and PUE (Wu et al., 2018).

In addition, we found that CVP in desert steppes was generally larger than in meadow steppes (Supplementary Figure S2). Collectively, we demonstrated that ANPP and PUE dynamics were available to indicate the stability and resilience of grassland ecosystems. Abiotic and biotic factors are essential factors influencing the variability, asymmetry, and climatic sensitivity of ANPP and PUE in grassland ecosystems (Hector et al., 2010; Willis et al., 2018).




4.2 Underlying ecological mechanisms shape the spatial patterns of ANPP and PUE dynamics

We found that the CVANPP exhibited an initial ascending and then declining spatial pattern with MAP in temperate grasslands (Figure 7A), while it increased with MAP in alpine grasslands (Figure 8A). These results were consistent with previous analyses based on long-term observations of ANPP dynamics in temperate grasslands (Knapp and Smith, 2001; Hu et al., 2018). In our study, we once again illustrated the relationship between CVANPP and precipitation and enhanced robustness by using long-term remote sensing products and climate data sets of grassland ecosystems on a large spatial scale. In addition, CVPUE and CVANPP had reverse spatial patterns along the MAP in temperate grasslands, and were consistent in alpine grasslands (Figures 8A, E). It is worth noting that the CVANPP, CVPUE, and CVAP were inconsistent with MAP in temperate and alpine grasslands (Supplementary Figure S3). This result showed that CVANPP was not completely controlled by spatial patterns in CVP.

The AANPP exhibited a piecewise mode with MAP and peaked at the wet edge of temperate desert, typical, and alpine steppes in Eurasian grasslands. In this region, precipitation strongly shaped xerophyte proportion and demographic processes, which could cause the transition between shrub and steppe (Huxman et al., 2004; Liu et al., 2012; Zhang et al., 2020). These results were consistent with the spatial pattern of AANPP in desert and typical steppes of temperate grasslands (Hu et al., 2018). In addition, the APUE showed a similar piecewise pattern with MAP in temperate and alpine grasslands and peaked at the moist edge of temperate and alpine desert steppes. We suggested that the ANPP gains in rainy years were larger than reduced in lower rainfall years and intensified with the MAP in desert steppes. Conversely, ANPP gains in wet years and reductions in dry years could be offset, causing AANPP to decrease with the MAP in meadow steppes (Wilcox et al., 2017; Wu et al., 2018). In addition, the spatial pattern of AANPP and APUE was inconsistent with AP in temperate and alpine grasslands, respectively (Figure S3). Consequently, we inferred that the proportion of opportunistic species, demographic, and ecosystem traits regulated the asymmetry of ANPP and PUE in temporal (Huxman et al., 2004; Luo et al., 2017).

The SANPP-P peaked at the moist edge of temperate desert and alpine steppes (Figures 7C; 8C), where the importance of ecosystem traits and xerophyte proportion on ecosystem temporal dynamics of ANPP and PUE were higher. We also found that SPUE-T peaked at the wet edge of alpine steppes (Figure 8H), where light, temperature, ecosystem traits, and soil nutrient limitations on ANPP and PUE dynamics were higher (Guo et al., 2015; Ganjurjav et al., 2016). In addition, low temperature and soil nutrients limited the ability of plants to use soil moisture and caused the decline of SANPP-P and SANPP-T in temperate and alpine meadow steppes (Kou et al., 2020).




4.3 Indicators of grasslands ecosystem state transitions at the continental scale

Our study confirmed that ANPP and PUE dynamics are useful indicators in detecting state transitions at the continental scale. ANPP as a principal ecosystem function has been demonstrated, but PUE is rarely mentioned (Hu et al., 2018; Berdugo et al., 2020). The adaptive strategies of communities to precipitation are important for understanding state transitions, especially in grassland ecosystems (Knapp et al., 2017; Wu et al., 2018; Wang et al., 2022). We based our study on the magnitude of ANPP and PUE dynamics magnitude and divided temperate and alpine grasslands into low and high resilience states, respectively (Figure 9). Spatial patterns of ANPP and PUE dynamics with MAP were used to analyze state transitions of low and high resilience in Eurasian grasslands. Notably, we found that the complementation of ANPP and PUE dynamics was helpful in identifying state transitions and understanding its underlying ecological mechanisms in Eurasian grasslands.




Figure 9 | Schematic illustration of early warning signals and ecological mechanisms of state transitions in the processes underlying their distribution along MAP. Precipitation, light/temperature, and species composition regulated high and low resilience state transitions in Eurasian grasslands. In the inner rectangular list, peak ANPP asymmetry (AANPP), PUE asymmetry (APUE), and ANPP precipitation sensitivity (SANPP-P) signal transitions at the edge of desert steppes of low resilience temperate grasslands. Interannual variability of ANPP (CVANPP), APUE, and PUE temperature sensitivity (SPUE-T) peak at the transition of high resilience temperate grasslands. APUE signals transitions of the low resilience alpine grasslands. AANPP and SANPP-P signal transitions of the high resilience alpine grasslands. Precipitation and xerophyte proportion controlled state transitions in low resilience grasslands. Community structure and limiting factors (nutrient, light, and/or temperature) regulated state transitions in high resilience grasslands. Low and high resilience represent the desert and meadow steppes in temperate and alpine grasslands, respectively. Phase I, II, and III correspond to desert steppes, typical steppes, and meadow steppes in temperate grasslands, respectively, or alpine desert steppes, alpine steppes, and alpine meadow steppes in alpine grasslands, respectively.



In our study, AANPP, APUE, and SANPP-P peaked at the wet edge of desert steppes (Figure 7C), and CVANPP, AANPP, and SPUE-T peaked at the moist edge of typical steppes (Figures 7B, E, H). Thus, these grassland types lie functionally approach a state transition in temperate grasslands. APUE peaked at the edge of alpine desert steppes (Figures 8C, G), and AANPP and SANPP-P peaked at the wet edge of alpine steppes (Figure 8D), all of which peaked at the transition region in alpine grasslands. A previous study showed that CVANPP and AANPP could indicate state transitions between desert and typical steppes, and SANPP-P was available to detect typical and meadow steppe regime shifts in temperate grasslands (Hu et al., 2018). We suggest that CVP and xerophyte proportion explained the relative state transitions in low resilience grassland ecosystems (Gherardi and Sala, 2019; Deng et al., 2021; Hu et al., 2022). Community (species traits, composition, and competition) and limiting factors (light, temperature, and nutrients) regulate the relative abrupt transition of high resilience grassland ecosystems (Kou et al., 2020; Sun et al., 2021) (Figure 9). Note that, although MAP itself has a clear threshold between grassland types (Figures 2B, C), ecosystems may be undergoing a state transition without detectable signals in precipitation changes (Scheffer et al., 2009; Lenton, 2011; Hou et al., 2021). In addition, we also found that the ANPP and PUE dynamics closely linked to precipitation are a promising complementary method for understanding the underlying mechanisms.

Overall, ANPP and PUE dynamics were predictive of critical state transitions of grassland ecosystems, and this was our motivation for connecting function-based indicators and CSD to identify state transitions. However, not all indicators could serve as metrics of state transition. For instance, CVPUE, SPUE-P, and SANPP-T did not peak corresponding to the transitions between grassland types. Note that the theory predicts positive feedback for the cascading effects of multiple elements (species, soil water, plant biomass, root system, and water uptake, etc.) as a critical fundamental mechanism for state transition (Grace et al., 2007; Estiarte et al., 2016; De Boeck et al., 2018). Unfortunately, we lacked the data to assess the connection between the dynamics and feedback. Furthermore, the quality and quantity of data, as well as the temporal and spatial scales, all affected the robustness of the indicators (Dakos et al., 2015; Rietkerk et al., 2021). In future research, we would further consider the feedback processes of ecosystems, and use long-term in situ observation data to explore the indicators for state changes in terrestrial ecosystems at the continental scale.





5 Conclusion

With long-term ANPP and PUE remote sensing products, our study proposed a theoretical basis for ecosystem function-based indicators to detect state transitions in Eurasian grasslands. We greatly extended the analysis of ANPP and PUE dynamics across the conterminous Eurasia grasslands, thereby firmly establishing functional ecosystem indicators to signal state transitions at the continental scale. Of greater significance, we have comprehensively confirmed valuable indicators for state transitions, and revealed its underlying ecological mechanisms in low and high resilience in Eurasian grasslands. CVANPP, AANPP, APUE, SANPP-P, and SPUE-T displayed distinct spatial patterns, with peaks signaling state transitions of grassland ecosystems. We highlight the essential roles of hydrothermal conditions, community structures, and limiting factors in regulating ecosystem state transitions. We suggest that grassland management strategies and climate change research focus on areas that are highly vulnerable to climate variability and are changing rapidly due to multiple factors in the grassland transition zone.
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The effects of habitat filtering on community assembly have been extensively researched, and topography has been identified as a critical factor influencing the spatial distribution of trees. In this study, a 25-ha plot was established in karst evergreen–deciduous broadleaf forests in southwestern China. Eight topographical factors were used to divide plots into four habitat types, i.e., hilltop, steep slope, gentle slope, and depression, using a multivariate regression tree. A total of 85 evergreen and deciduous tree species were recorded in these four habitats and classified into three life stages, the differentiation of which was assessed using torus-translation tests. A total of 65 species significantly positively associated with at least one habitat and 79 species significantly negatively associated with at least one habitat were identified. Most species, whether evergreen or deciduous, exhibited a positive correlation with steep slopes, whereas relatively few species were adapted to depressions. Moreover, the percentage of evergreen species positively associated with hilltops and steep slopes was higher than that of deciduous species. Both evergreen and deciduous species showed an increasing percentage of positive correlation with hilltops from the sapling stage to the mature stage. However, more evergreen species grew on steep slopes in the sapling stage, whereas deciduous species grew in the mature stage. Canonical correspondence was used to analyze the relationship between species and the eight topographical factors. Regardless of life form or life stage, results showed that species distribution was significantly affected by topography. Furthermore, the distribution of evergreen species on sapling-stage trees was found to be more influenced by topography, whereas deciduous species were more influenced by topography in the mature stage. Finally, elevation was identified as the most crucial topographical factor affecting species distribution.
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1 Introduction

The coexistence of species has long been a central focus of community ecology research (Nakashizuka, 2001; Wright, 2002; Silvertown, 2004), with niche differentiation and species diffusion limitation theories being among the most important in this regard (Whitfield, 2002; Lai et al., 2009). According to the niche theory, community structure is affected by environmental heterogeneity and the interactions between species, with each species carving out unique niches to avoid competitive exclusion (Chesson, 2000; Potts et al., 2002). Therefore, environmental factors, such as topography and soil, can shape the distribution of species through their species-level associations with habitats (Whittaker, 1956). Thus, it is important to investigate species–habitat associations at the community scale.

Previous research has demonstrated that niche differentiation plays a critical role in community maintenance and species coexistence at various scales (Clark et al., 1999; Tuomisto et al., 2003; Potts et al., 2004). However, the association between a single species and its habitat is often not determined during the early stages of seed germination or seedling growth but rather undergoes developmental changes at different life stages (Webb & Peart, 2000; Yamada et al., 2006; Comita et al., 2007; Lai et al., 2009). Moreover, the adaptability of specific species to particular habitats may not be constant, as their response to extreme weather events and global changes can vary (Condit et al., 1995). In addition, topography has been identified as a crucial driver of habitat diversity and variations in soil moisture and nutrient levels (Harms et al., 2001; Daws et al., 2002; Sorensen et al., 2006; John et al., 2007), which are essential for plant growth and development. In this respect, karst areas, which are characterized by a complex topography consisting of cliffs, caves, and sinkholes, as well as variable climate conditions (Clements et al., 2006), offer a diverse range of ecological niches that promote high species diversity. As a result, the uniqueness of the karst ecosystem makes it an especially valuable reservoir of biodiversity (Schilthuizen et al., 2004).

The phenology of leaves is of great importance in community appearance, understory environment, litter decomposition, and ecosystem productivity, as leaves are the main site of plant photosynthesis (Quigley & Platt, 2003). Deciduous tree species can avoid damage and the effects of adverse environmental conditions, such as low temperatures and drought, on growth by shedding leaves (Reich et al., 2004; Poorter & Markesteijn, 2008). Previous studies have shown that plants with different life forms have differences in leaf nutrient uptake efficiencies (Liu et al., 2006). Typically, deciduous species have a higher rate of nitrogen mineralization than evergreen species (Malhi et al., 2010), which are often found in barren habitats and, thus, considered to have higher nutrient re-uptake efficiencies (Chapin & Kedrowski, 1983; Chapin & Moilanen, 1991).

Southwest China is one of the three largest karst regions in the world (Jiang et al., 2014). The area features a distinctive evergreen–deciduous broadleaf forest, which boasts a complex community structure, high species diversity, and unique habitat heterogeneity (Du et al., 2017). However, the mechanisms underlying the species’ coexistence in local-scale plots were unclear, and consequently, based on studies conducted on Barro Colorado Island, Panama, we surveyed a 25-ha forest plot in Mulun National Natural Reserve in 2014. Our hypotheses are that there are significant species–habitat associations in the karst evergreen–deciduous broadleaf forest and that topographical factors significantly affect species distribution. Furthermore, we assume that the percentage of species–habitat association ratio for evergreen species in slope habitats is lower than that of deciduous species. We anticipate that this result will be evident even in the mature stage. The results of this study will serve as a foundation for future research on the structure of tree communities in the highly heterogeneous, species-rich karst evergreen–deciduous broadleaf forest. This study will also aid in preserving the vulnerable ecosystem in the area.




2 Materials and methods



2.1 Study area

The study was conducted in the Mulun National Natural Reserve (MNNR) (25°07′01″–25°12′22″N, 107°54′01″–108°05′51″E), located in the northwest of Huanjiang County, Guangxi Province, Southwest China. The study area’s maximum elevation is 1,028.0 m. The region has an annual average temperature of 15.7°C, January has an average temperature of 10.1°C, July has an average temperature of 28°C, the minimum temperature is 5.2°C, the frost-free period is 290 days, the average annual sunshine is 1,451 h, the average relative humidity is 70%, the average evaporation is 1,571.1 mm, the and average annual rainfall is 1,389.1 mm, with precipitation from April to September accounting for 70% of the annual total (Du et al., 2017). The geomorphological type comprises depressions between the karst hills. The soil is mainly dark or brown calcareous soil developed over carbonate rocks, which is a non-zonal shallow soil with high rock exposure, and the pH ranges from 7.06 to 7.68 (Du et al., 2019).

In 2014, we established a 25-ha (500 m × 500 m) forest plot within the MNNR. We subdivided the plot into a grid of 625 cells, each of which was 20 m × 20 m in size. Within these grids, we measured plant characteristics and topographical factors, i.e., elevation, slope, and slope aspect, as previously described by Condit (1998). This plot belongs to the Chinese Forest Biodiversity Monitoring Network (CForBio) and is currently the largest forest plot in the karst region, with elevations ranging from 442.6 m to 651.4 m and slopes ranging from 0.12° to 66.97° (Du et al., 2017) (Figure 1).




Figure 1 | Topographic map of the 25-ha forest dynamics plot in Mulun, south of China.






2.2 Data collection

In the year of plot establishment, we mapped the individuals of all tree species with a diameter at breast height (DBH) ≥ 1 cm and tagged them following standard field procedures of the Center for Tropical Forest Science (CTFS). The first census documented 144,552 free-standing individual trees. The region is characterized by a subtropical mixed evergreen deciduous broadleaf forest, dominated by Cryptocarya microcarpa F. N. Wei and Lindera communis Hemsl. Other important species include Itoa orientalis Hemsl, Platycarya longipes Wu, Decaspermum gracilentum (Hance) Merr. et Perry, Brassaiopsis glomerulata (Bl.) Regel, Diospyros dumetorum W. W. Smith, and Clausena dunniana Levl. (Lu et al., 2021).

Trees were divided into the sapling, juvenile, and mature stages based on DBH (Bagchi et al., 2011). Within each species, trees were ranked by DBH, and the 99th percentile (DBH99) was determined. All trees with a DBH > DBH992/3 were classified as the mature stage, trees with a DBH < DBH991/2 were classified as saplings, and those with a DBH991/2 ≤DBH < DBH992/3 were classified as juveniles (Guo et al., 2017). The species–habitat associations were examined for those species with individual stems greater than 25 in the sapling, juvenile, and mature stages. In total, 85 species including 52 evergreen species and 33 deciduous species were included (Supplementary Table S1).

In terms of topographical factors, average elevation (ELE), slope (SLO), aspect (ASP), convexity (CON), soil thickness (STK), rock outcrop ratio (ROC), topographic wetness index (TWI), and altitude above channel (ACH) were used as eight major topographical factors. The first four factors were computed following the methods described by Du et al. (2017), and the remaining factors were assessed following Liu et al. (2020). TWI and ACH were used to quantify topographical control on hydrological processes, where the TWI was calculated as the ratio of the area upslope from any given point on the landscape to the local slope at that point, and the ACH was calculated as the vertical distance from the channel network (Punchi-Manage et al., 2013); these two indicators make up the lack of hydrology.




2.3 Statistical analysis



2.3.1 Multivariate regression tree analysis

For species–habitat association analysis, we used a multivariate regression tree (MRT) to classify habitats into four categories, i.e., hilltop, steep slope, gentle slope, and depression (Supplementary Figures S1, S2). We computed the MRT procedure using the “mvpart” package. The data are presented in Table 1.


Table 1 | The characteristic parameters of habitat categories in the 25-ha Mulun permanent plot.






2.3.2 Species–habitat association analysis

To determine the association between a species and a particular type of habitat, we used the torus-transformation test, which is the most commonly used method in this regard (Harms et al., 2001), with a slight modification as described by Comita et al. (2007). This test entails calculating the probability of the true distribution of a species in each habitat under the condition of random distribution and determining whether a species is significantly correlated with a certain type of habitat based on probability. Detailed descriptions of the test can be found in a paper published by Harms et al. (2001). Our field survey obtained a species abundance data matrix for 625 samples in three size classes. We computed the torus-transformation test using the tt_test function of the “fgeo” package. Using canonical correspondence analysis (CCA) in the “vegan” package (Oksanen et al., 2020), we assessed the influence of topographical factors, and we used the Monte Carlo permutation test to evaluate their significance. We used the hierarchical partitioning method to distinguish a single topographical factor’s contribution via the “rdacca.hp” package in R (Lai et al., 2022). We performed all the above analyses in R4.0.2 (Team, 2020).






3 Results



3.1 Topographical habitat types and their characteristics

The forest plot covers a topographically heterogeneous area that contains two small peaks and a complete depression. The cross-validation relative error (CVRE) value of the MRT analysis was approximately 0.716 (Supplementary Figure S1). Hilltop was exposed to limestones characterized by high rock exposure, received direct sunlight, and was dry. The steep slope was the largest of the assessed Mulun habitats, whereas the gentle slope was located at the foot of the hill and contained large amounts of rubble and a number of caves, and the depression was low-lying and moist. With respect to tree density, steep slopes and the depression were found to have the highest and lowest densities, respectively (Supplementary Figure S2). The Shannon–Wiener index values (species diversity per quadrat) ranged from 1.03 (depression habitats) to 1.68 (steep slope habitats), whereas the values of the Patrick index (species richness per quadrat) ranged from 20.82 to 35.06. Steep-slope habitats had both the highest species richness and diversity (Table 1).




3.2 Associations of species with the four habitat types

Based on the torus-translation test analysis, only Pistacia weinmannifolia J. Poisson ex Franch among the total 85 species was neither positively nor negatively associated with any of the four habitat types, whereas 65 (75.6%) species were positively associated with at least one habitat, and 79 (91.9%) species were negatively associated with at least one habitat. Furthermore, 44 species showed a positive association with steep slopes, whereas only C. microcarpa F. N was positively associated with depression. However, most species were negatively associated with depression habitats.

We conducted separate analyses for evergreen and deciduous species and found that 73.1% of evergreen species and 79.4% of deciduous species were positively associated with at least one habitat. Species in two life forms showed similar habitat association distributions, with a higher percentage found on slopes or hilltops and a lower percentage in depressions. However, evergreen species were found to have a higher percentage of growth on hilltops and steep slopes than deciduous species, whereas the percentage of evergreen species growing on gentle slopes was lower than that of deciduous species. There was little difference between the evergreen and deciduous species in terms of their habitat association with depressions.

The percentage of evergreen and deciduous species growing on hilltops increased from the sapling stage to the mature stage. Among all species and evergreen species in particular, the highest percentage of sapling stage trees was found on steep slopes, whereas deciduous species had the highest percentage on mature stage trees. Additionally, both evergreen and deciduous species had the highest number of mature-stage trees on gentle slopes and in depressions (Figure 2).




Figure 2 | Number and percent of species in different stages positively and negatively associated with the four habitat types. (A) Whole, (B) evergreen, and (C) deciduous species. “+” and “−” indicate positive and negative, respectively.






3.3 The relationship between species distribution and topographical factors

Species distribution patterns as explained by CCA for all, evergreen, and deciduous species were similar. Regardless of life form or life stage, the permutation test showed that species distribution was significantly affected by topographic factors. When all, evergreen, and deciduous species were taken into consideration, topographical factors explained approximately 20.4%, 21.0%, and 18.2% of the variation, respectively (Table 2). The first axis explains most of the explainable parts across different stages (Figure 3) (Supplementary Figure S2). Among the eight topographic factors, ELE was the most important factor affecting species distribution in different life forms and stages, followed by SLO, CON, and ROC. Topographic factors explained the most variation in evergreen species at the sapling stage and deciduous species at the mature stage while explaining the least variation in evergreen and deciduous species at the juvenile stage (Table 2).


Table 2 | Canonical correspondence analysis (CCA).






Figure 3 | CCA diagram showing the relationship of species with the eight topographic factors. The black dots represent species. The percentage on the CCA axis represents the fraction of total explained variation. ELE, average elevation; SLO, slope; ASP, aspect; CON, convexity; STK, soil thick; ROC, rock outcrop ratio; TWI, topographic wetness index; ACH, altitude above channel; CCA, canonical correspondence analysis.







4 Discussion



4.1 Topographic habitat types and their characteristics

Karst, in southwest China, is characterized by large slopes and high rock exposure, which contribute to high habitat heterogeneity (Su et al., 2019). Although the habitat tends to be more homogeneous at the 20-m scale, a diverse range of niche types are widely distributed throughout the entire experiment plot because of the strong fragmentation of karst (Harms et al., 2001; Punchi-Manage et al., 2013; Guo et al., 2017). Along a hilltop-depression gradient within the MNNR, different habitat types occur. Our MRT analysis resulted in a CVRE value of 0.716, which is similar to values reported in previous studies (Kanagaraj et al., 2011; Punchi-Manage et al., 2013). Our study found that four habitat classifications covered most of the observed topographical variation. Given the spatial distribution of ecological factors (e.g., light, temperature, soil moisture, and soil nutrients), the differentiation of topography creates diverse habitats that contribute to distinct patterns of plant diversity and spatial distribution (Sorensen et al., 2006; John et al., 2007; Kanagaraj et al., 2011). On steep slopes, sunlight is more likely to penetrate the forest floor, thereby facilitating the regeneration and survival of a larger number and more diverse species. As a result, we found that steep slopes had the highest diversity index among the four habitat types assessed, whereas depressions tended to be more suitable for a small number of shade-tolerant plants (Table 1).




4.2 Habitat associations of species and the importance of topographical factors

We conducted torus-translation tests to examine the association between species with a DBH ≥ 1 cm and a density higher than 25 individuals in the 25-ha MNNR plot. The result showed that 84 (98.8%) species were significantly associated with at least one habitat type, with 65 (75.6%) and 79 (91.9%) species showing positive and negative associations, respectively. Values of 98.8% were compared with significant species–habitat association in the BCI, Sinharaja in the tropics, and Gutianshan in the subtropics at 33%, 79%, and 86%, respectively (Harms et al., 2001; Gunatilleke et al., 2006; Lai et al., 2009). However, our study found a lower percentage of positive associations (75.6%) when compared to Nonggang (85.1%), a tropical karst area in the same region (Guo et al., 2017). Only P. weinmannifolia J. Poisson ex Franch showed no clear habitat associations, likely due to its rapid growth and adaptability. Furthermore, we found that the distribution of 24 dominant species with importance > 1 was significantly correlated with habitat type (Du et al., 2017). These results suggest that species distribution in karst forests is strongly influenced by their responses to the environment, promoting strong habitat filtering. However, Baldeck et al. (2013) suggested that habitat filtering is stronger during the early stages of growth (DBH < 1 cm), leading to an underestimation of the percentages of species–habitat associations.

In this study, we found that most of the assessed species demonstrated a stronger species–habitat association on steep slopes, gentle slopes, and hilltops, whereas species growing in depressions were less common (Figure 2). Although the extent of the depression in the study plot was greater than that of hilltops (Table 1), the lack of sunlight in depressions limits plant survival, resulting in only a large number of shade-tolerant plants such as C. microcarpa F. N. Guo et al. (2017) suggested that the greater dependence of karst species on sunlight and their higher adaptability for higher elevations contribute to the higher abundance and diversity of species on slopes and hilltops. Consistent with this premise, we observed a greater number of species–habitat associations on steep slopes, which are characterized by greater sunlight exposure and a larger number of niches.

The number of species positively associated with hilltops increased from the sapling stage to the mature stage (Figure 2), indicating that while hilltops in karst areas are suitable for the growth and survival of trees, the greater abundance of pioneer species will be gradually replaced by other species during succession. Webb et al. (2002) and Wu et al. (2017) found that seed dispersal and seedling establishment are more likely to occur in moist habitats in a Bornean rainforest. In contrast, we recorded the highest number of species positively associated with steep slopes in the sapling stage, suggesting that species–habitat associations vary significantly according to different life stages (Battaglia et al., 2000; Dovciak et al., 2003). Negative density dependence in survival is incompatible with genetic shifts in resource requirements (Lusk, 2004; Comita et al., 2007). Our results show that the percentage of deciduous species at the mature stage was higher than that of evergreen species on steep slopes. This is because deciduous tree species have a greater requirement for sunlight, leading to higher tree height (Brando, 2018). Additionally, the crown coverage of dense species assemblages in depressions tends to create unfavorable conditions for deciduous tree growth (Malhi et al., 2010). Contrastingly, we found that both evergreen and deciduous species had the highest number in the mature stage on gentle slopes and depression, consistent with the result of the hilltops, which further shows that the germination of species was under strong environmental stress. These findings are generally consistent with those of previous studies (Comita et al., 2007; Bagchi et al., 2011; Hu et al., 2012), suggesting that species–habitat associations are largely influenced by the size class in a heterogeneous environment.

Based on our observations, there is little difference in the species–habitat associations of deciduous and evergreen species, except for a higher percentage of deciduous species growing on steep slopes at the mature stage (Figure 2). However, those observed differences may be attributed to the uniqueness of the karst study plot and strong niche differentiation (Guo et al., 2017). Furthermore, the results of CCA (Table 2) indicated that while topographical factors can explain the lower variation at juvenile trees, the distributions of the sapling, juvenile, and mature stages were relatively similar, further confirming the strong habitat filtering association with the karst ecosystem. Similar studies have suggested that seed dispersal may be the main driver of habitat change among different species (Comita et al., 2007; Kanagaraj et al., 2011). Therefore, in further studies, it is necessary to pay more attention to seed dispersal and seedling distribution. Furthermore, given the ecological fragility of karst areas and the fact that plants are primarily adapted to porous limestone bedrock and are highly sensitive to human activities, it is imperative to develop sound land-use regulations to protect biodiversity and prevent the further degradation of karst habitats.





5 Conclusion

Our study reveals that habitat heterogeneity plays an important role in maintaining diversity in the evergreen–deciduous broadleaf karst forests. The association between species and their habitats was found to be the strongest on slopes and hilltops and the weakest in depressions. Hilltops were suitable for tree growth and survival to maturity. Our results show that the proportion of evergreen species at the sapling stage was the highest on steep slopes, while deciduous species were dominant at the mature stage. Moreover, ELE emerged as the most important topographical factor affecting species distribution in the MNNR plot.





Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. Requests to access the datasets should be directed to hudu@isa.ac.cn.





Author contributions

HD, FZ, WP, and TS conceived and designed the experiments. HD, LS, LL, and ML conducted the experiments. LS, HD, and HW discussed the results. LS wrote the manuscript. The authors read and approved the final manuscript.





Funding

National Key Research and Development Program of China (2022YFF1300703), National Natural Science Foundation of China (42071073, 31971487), Youth Innovation Promotion Association of the Chinese Academy of Sciences (2021366), Guangxi Key Research and Development Program (AB17129009), and Hechi Distinguished Expert Program to FZ.




Acknowledgments

The authors thank two reviewers for helpful remarks on an earlier version of the paper.





Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.





Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fevo.2023.1148910/full#supplementary-material




References

 Bagchi, R., Henrys, P. A., Brown, P. E., Burslem, D. F. R. P., Diggle, P. J., Gunatilleke, C. V. S., et al. (2011). Spatial patterns reveal negative density dependence and habitat associations in tropical trees. Ecology 92, 1723–1729. doi: 10.1890/11-0335.1

 Baldeck, C. A., Harms, K. E., Yavitt, J. B., John, R., Turner, B. L., Valencia, R., et al. (2013). Habitat filtering across tree life stages in tropical forest communities. Proc. R. Soc B 280, 20130548. doi: 10.1098/rspb.2013.0548

 Battaglia, L. L., Fore, S. A., and Sharitz, R. R. (2000). Seedling emergence, survival and size in relation to light and water availability in two bottomland hardwood species. J. Ecol. 88, 1041–1050. doi: 10.1046/j.1365-2745.2000.00518.x

 Brando, P. (2018). Tree height matters. Nat. Geosci. 11, 390–391. doi: 10.1038/s41561-018-0147-z

 Chapin, F. S., and Kedrowski, R. A. (1983). Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous Taiga trees. Ecology 64, 376–391. doi: 10.2307/1937083

 Chapin, F. S., and Moilanen, L. (1991). Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves. Ecology 72, 709–715. doi: 10.2307/2937210

 Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366. doi: 10.1146/annurev.ecolsys.31.1.343

 Clark, D. B., Palmer, M. W., and Clark, D. A. (1999). Edaphic factors and the landscape-scale distributions of tropical rain forest trees. Ecology 80, 2662–2675. doi: 10.1890/0012-9658(1999)080[2662:efatls]2.0.co;2

 Clements, R., Sodhi, N. S., Schilthuizen, M., and Ng, P. K. L. (2006). Limestone karsts of southeast Asia: Imperiled arks of biodiversity. Bioscience 56, 733–742. doi: 10.1641/0006-3568(2006)56[733:lkosai]2.0.co;2

 Comita, L. S., Condit, R., and Hubbell, S. P. (2007). Developmental changes in habitat associations of tropical trees. J. Ecol. 95, 482–492. doi: 10.1111/j.1365-2745.2007.01229.x

 Condit, R. (1998). Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots (Berlin: Springer).

 Condit, R., Hubbell, S. P., and Foster, R. B. (1995). Mortality-rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecol. Monogr. 65, 419–439. doi: 10.2307/2963497

 Daws, M. I., Mullins, C. E., Burslem, D., Paton, S. R., and Dalling, J. W. (2002). Topographic position affects the water regime in a semideciduous tropical forest in Panama. Plant Soil 238, 79–90. doi: 10.1023/a:1014289930621

 Dovciak, M., Reich, P. B., and Frelich, L. E. (2003). Seed rain, safe sites, competing vegetation, and soil resources spatially structure white pine regeneration and recruitment. Can. J. For. Res.-Rev. Can. Rech. For. 33, 1892–1904. doi: 10.1139/x03-115

 Du, H., Hu, F., Zeng, F., Wang, K., Peng, W., Zhang, H., et al. (2017). Spatial distribution of tree species in evergreen-deciduous broadleaf karst forests in southwest China. Sci. Rep. 7, 15664. doi: 10.1038/s41598-017-15789-5

 Du, H., Liu, L., Su, L., Zeng, F., Wang, K., Peng, W., et al. (2019). Seasonal changes and vertical distribution of fine root biomass during vegetation restoration in a karst area, Southwest China. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.02001

 Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Esufali, S., Harms, K. E., Ashton, P. M. S., Burslem, D. F. R. P., et al. (2006). Species-habitat associations in a Sri Lankan dipterocarp forest. J. Trop. Ecol. 22, 371–384. doi: 10.1017/s0266467406003282

 Guo, Y., Wang, B., Mallik, A. U., Huang, F., Xiang, W., Tao, D., et al. (2017). Topographic species-habitat associations of tree species in a heterogeneous tropical karst seasonal rain forest, China. J. Plant Ecol. 10, 450–460. doi: 10.1093/jpe/rtw057

 Harms, K. E., Condit, R., Hubbell, S. P., and Foster, R. B. (2001). Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. J. Ecol. 89, 947–959. doi: 10.1046/j.0022-0477.2001.00615.x

 Hu, Y. H., Lan, G. Y., Sha, L. Q., Cao, M., Tang, Y., Li, Y. D., et al. (2012). Strong Neutral Spatial Effects Shape Tree Species Distributions across Life Stages at Multiple Scales. PloS One 7, e38247. doi: 10.1371/journal.pone.0038247

 Jiang, Z., Lian, Y., and Qin, X. (2014). Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Sci. Rev. 132, 1–12. doi: 10.1016/j.earscirev.2014.01.005

 John, R., Dalling, J. W., Harms, K. E., Yavitt, J. B., Stallard, R. F., Mirabello, M., et al. (2007). Soil nutrients influence spatial distributions of tropical tree species. Proc. Natl. Acad. Sci. United States America 104, 864–869. doi: 10.1073/pnas.0604666104

 Kanagaraj, R., Wiegand, T., Comita, L. S., and Huth, A. (2011). Tropical tree species assemblages in topographical habitats change in time and with life stage. J. Ecol. 99, 1441–1452. doi: 10.1111/j.1365-2745.2011.01878.x

 Lai, J. S., Mi, X. C., Ren, H. B., and Ma, K. P. (2009). Species-habitat associations change in a subtropical forest of China. J. Veg. Sci. 20, 415–423. doi: 10.1111/j.1654-1103.2009.01065.x

 Lai, J. S., Zou, Y., Zhang, J. L., and Peres-Neto, P. R. (2022). Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods Ecol. Evol. 13, 782–788. doi: 10.1111/2041-210X.13800

 Liu, C., Berg, B., Kutsch, W., Westman, C. J., Ilvesniemi, H., Shen, X., et al. (2006). Leaf litter nitrogen concentration as related to climatic factors in Eurasian forests. Glob. Ecol. Biogeogr. 15, 438–444. doi: 10.1111/j.1466-822x.2006.00251.x

 Liu, L., Zeng, F. P., Song, T. Q., Wang, K. L., and Du, H. (2020). Stand structure and abiotic factors modulate karst forest biomass in Southwest China. Forests 11. doi: 10.3390/f11040443

 Lu, M. Z., Du, H., Song, T. Q., Peng, W. X., Su, L., Zhang, H., et al. (2021). Drivers of tree survival in an evergreen-deciduous broadleaf karst forest in southwest China. For. Ecol. Manage. 499, 119598. doi: 10.1016/j.foreco.2021.119598

 Lusk, C. H. (2004). Leaf area and growth of juvenile temperate evergreens in low light: species of contrasting shade tolerance change rank during ontogeny. Funct. Ecol. 18, 820–828. doi: 10.1111/j.0269-8463.2004.00897.x

 Malhi, Y., Silman, M., Salinas, N., Bush, M., Meir, P., and Saatchi, S. (2010). Introduction: Elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Glob. Change Biol. 16, 3171–3175. doi: 10.1111/j.1365-2486.2010.02323.x

 Nakashizuka, T. (2001). Species coexistence in temperate, mixed deciduous forests. Trends Ecol. Evol. 16, 205–210. doi: 10.1016/s0169-5347(01)02117-6

 Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P., O’hara, R., et al. (2020). Community ecology package (R package version 2.5-7 2).

 Poorter, L., and Markesteijn, L. (2008). Seedling traits determine drought tolerance of tropical tree species. Biotropica 40, 321–331. doi: 10.1111/j.1744-7429.2007.00380.x

 Potts, M. D., Ashton, P. S., Kaufman, L. S., and Plotkin, J. B. (2002). Habitat patterns in tropical rain forests: A comparison of 105 plots in Northwest Borneo. Ecology 83, 2782–2797. doi: 10.2307/3072015

 Potts, M. D., Davies, S. J., Bossert, W. H., Tan, S., and Nur Supardi, M. N. (2004). Habitat heterogeneity and niche structure of trees in two tropical rain forests. Oecologia 139, 446–453. doi: 10.1007/s00442-004-1525-3

 Punchi-Manage, R., Getzin, S., Wiegand, T., Kanagaraj, R., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., et al. (2013). Effects of topography on structuring local species assemblages in a Sri Lankan mixed dipterocarp forest. J. Ecol. 101, 149–160. doi: 10.1111/1365-2745.12017

 Quigley, M. F., and Platt, W. J. (2003). Composition and structure of seasonally deciduous forests in the Americas. Ecol. Monogr. 73, 87–106. doi: 10.1890/0012-9615(2003)073[0087:casosd]2.0.co;2

 Reich, P. B., Uhl, C., Walters, M. B., Prugh, L., and Ellsworth, D. S. (2004). Leaf demography and phenology in Amazonian rain forest: A census of 40000 leaves of 23 tree species. Ecol. Monogr. 74, 3–23. doi: 10.1890/02-4047

 Schilthuizen, M., Hoekstra, R. F., and Gittenberger, E. (2004). Hybridization, rare alleles and adaptive radiation. Trends Ecol. Evol. 19, 404–405. doi: 10.1016/j.tree.2004.06.005

 Silvertown, J. (2004). Plant coexistence and the niche. Trends Ecol. Evol. 19, 605–611. doi: 10.1016/j.tree.2004.09.003

 Sorensen, R., Zinko, U., and Seibert, J. (2006). On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrol. Earth Syst. Sci. 10, 101–112. doi: 10.5194/hess-10-101-2006

 Su, L., Du, H., Zeng, F., Peng, W., Rizwan, M., Nunez-Delgado, A., et al. (2019). Soil and fine roots ecological stoichiometry in different vegetation restoration stages in a karst area, southwest China. J. Environ. Manage. 252, 109694. doi: 10.1016/j.jenvman.2019.109694

 Team, R.C (2020). R: A Language and Environment for Statistical Computing.

 Tuomisto, H., Ruokolainen, K., and Yli-Halla, M. (2003). Dispersal, environment, and floristic variation of western Amazonian forests. Science 299, 241–244. doi: 10.1126/science.1078037

 Webb, C. O., Ackerly, D. D., McPeek, M. A., and Donoghue, M. J. (2002). Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505. doi: 10.1146/annurev.ecolsys.33.010802.150448

 Webb, C. O., and Peart, D. R. (2000). Habitat associations of trees and seedlings in a Bornean rain forest. J. Ecol. 88, 464–478. doi: 10.1046/j.1365-2745.2000.00462.x

 Whitfield, J. (2002). Neutrality versus the niche. Nature 417, 480–481. doi: 10.1038/417480a

 Whittaker, R. H. (1956). Vegetation of the great smoky mountains. Ecol. Monogr. 26, 1–69. doi: 10.2307/1943577

 Wright, J. S. (2002). Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130, 1–14. doi: 10.1007/s004420100809

 Wu, H., Franklin, S. B., Liu, J. M., and Lu, Z. J. (2017). Relative importance of density dependence and topography on tree mortality in a subtropical mountain forest. For. Ecol. Manage. 384, 169–179. doi: 10.1016/j.foreco.2016.10.049

 Yamada, T., Tomita, A., Itoh, A., Yamakura, T., Ohkubo, T., Kanzaki, M., et al. (2006). Habitat associations of Sterculiaceae trees in a Bornean rain forest plot. J. Veg. Sci. 17, 559–566. doi: 10.1111/j.1654-1103.2006.tb02479.x




Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.


Copyright © 2023 Su, Du, Zeng, Wang, Lu, Luo, Peng and Song. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




[image: image]


OPS/images/fevo-11-1116083/fevo-11-1116083-M28.jpg
Omission rate

False negative

False negative + True negative

(8)





OPS/images/fevo-11-1116083/fevo-11-1116083-M29.jpg
Correct classification rate =

True number

Total sample

©)





OPS/images/fevo-11-1116083/fevo-11-1116083-M3.jpg





OPS/images/fevo-11-1116083/fevo-11-1116083-M30.jpg
True positive

— 10
(True positive + False negative) 10k

Sensitivity =





OPS/images/fevo-11-1116083/fevo-11-1116083-M24.jpg





OPS/images/fevo-11-1116083/fevo-11-1116083-M25.jpg





OPS/images/fevo-11-1116083/fevo-11-1116083-M26.jpg
O<a<4





OPS/images/fevo-11-1116083/fevo-11-1116083-M27.jpg
AUC=

True positive

4+ Twepositive
True positive + False negative

False positive

" False positive + True negative

True number * False number

@)





OPS/images/fevo-11-1116083/fevo-11-1116083-M22.jpg
Xrand





OPS/images/fevo-11-1116083/fevo-11-1116083-M23.jpg
prot =apy sin(zpy ), po €[01].0<a <4,

(6)





OPS/images/fevo-11-1135895/fevo-11-1135895-g007.jpg
Do FDO

y=-00258 +5244
RI=0.1636 15 y=-0.04865 + 17.484
R*=0761

/>

R I

——T ——T0





OPS/images/fevo-11-1135895/fevo-11-1135895-g006.jpg
001835 = 3.4082
e =0.0854

y=-00375 +37511
R =03162

y=00713x + 15562

)

R OO

——Ts —To

TX90p

04185 +22075

¥=0.048x + 20375
RF=04678

SO

R

——T¢ ——To





OPS/images/fevo-11-1135895/fevo-11-1135895-g005.jpg
TXx TXn
¥= 00758 +25841 ¥= 003875 +5.0259
T ORE=0s3s1 o RE=02911

00673x +20993

Temperature (°C)

®
R
TNx O
Y= 00853 - 14362 y=008s <3410
-10 RE= 06547 2= 0,733

Temperature (°C)

Temperature

00594 +2.4009

y= 00558 - 15.597 R = 06148

Ri=03693

SEEEE NPT TSSO

2017

———T —=T>





OPS/images/fevo-11-1135895/fevo-11-1135895-g004.jpg
T_mean G s T_max =008 11185

R = 06055 1 R = 05583

¥=00379x +20082

: =05283

Temperature (°C)

eeaoes  BEEEBEESRAAEEREE:
SRS

200
2005
2017

S Sy
SEFFASELS S

—~I —To

T_min DTR
16 y=-00162x

‘02 155 i
gl 15
g3 145
£ g 1
£as g5 000095 + 12393
L3 g R = 0.0035
g5 g12s
L ¥=00384x 42635 "o

45 Ri= 05252 15

& “ 1 o @ n 2 “

g8 SRSR2RABEIRBEESY g8






OPS/images/fevo-11-1135895/fevo-11-1135895-g003.jpg
0 500 1,000 km
S E— |






OPS/images/fevo-11-1135895/fevo-11-1135895-g002.jpg
<
% ]
m,
=
°
=N
=N
= =]
-3
2
2
= g = = = &
(Do) aameradwe) pueT-SVIH
2
=
&
>
g
3
£ i =
&
o 2
2 g
=4
o
0 ]

20

(Do)

= o < =
= &

ameleduwiay v:nq.,mzxmm.

)

Observations (°C

Observations (°C)

R
i

= = > = = =
& S = & B

0 10
Observations (°C)

-10

-20





OPS/images/fevo-11-1135895/fevo-11-1135895-g001.jpg
Meteorological stations

ERAS-Land grid points






OPS/images/fevo-11-1135895/crossmark.jpg
(®) Check for updates






OPS/images/fevo-11-1116083/fevo-11-1116083-M9.jpg





OPS/images/fevo-11-1116083/fevo-11-1116083-t001.jpg
Notation
silicate
Attenuation
Calcite
Chlorophyll
Depth

Land

Nitrate

Par

pH
Phosphate
Phytoplankon
Salinity
Slope
Temperature

Current

Descriptiol

Ocean silicate concentration
Diffuse attenation

Constituent minerals in the ocean
Ocean chlorophyll-a concentration
Ocean depth

Distance from land

‘Ocean nitrate concentration
Photosynthetically active radiation

Hydrogen ion concentrati

n
Ocean phosphate concentration
Phytoplankion in the ocean
Ocean salinity

Ocean slope

Ocean surface temperature

Currents velocity

Units

mol.m

mol.m

mol.m™






OPS/images/fevo-11-1116083/fevo-11-1116083-t002.jpg
Notation Max Meai Std
Silicate 587 1312 813 1.9
Atenuation 0.04 027 015 006
Calcite 0.00 004 001 001
Chlorophyll 012 056 025 010
Depth ~10009 -1 -3082 18.70
Land 0.02 028 014 005
Nitrate 0.02 193 052 051
Par 3604 4237 3921 154
pH 818 5819 819 000
Phosphate 0.00 010 005 003
Phytoplankion 092 297 153 045
Salinity 3294 331 3318 008
Slope 0.02 019 009 004
Temperature 2497 2713 2620 067

Current 012 055 024 0.09





OPS/images/fevo-11-1116083/fevo-11-1116083-M5.jpg





OPS/images/fevo-11-1116083/fevo-11-1116083-M6.jpg
XL





OPS/images/fevo-11-1116083/fevo-11-1116083-M7.jpg





OPS/images/fevo-11-1116083/fevo-11-1116083-M8.jpg





OPS/images/fevo-11-1116083/fevo-11-1116083-M31.jpg
True positive

Specificity = —— e positive____
PeCelly = (False positive + True negative)

an





OPS/images/fevo-11-1116083/fevo-11-1116083-M32.jpg
Kappa

Fobserved — Foychance 12

1= Ryychance





OPS/images/fevo-11-1116083/fevo-11-1116083-M4.jpg





OPS/images/fevo-11-1116083/fevo-11-1116083-M11.jpg
A=2a*r-a

C=2%r

2)





OPS/images/fevo-11-1116083/fevo-11-1116083-M12.jpg





OPS/images/fevo-11-1116083/fevo-11-1116083-g007.jpg
Sensitivity
twecn (5.93) = ~10.77 | p = 4.126 -05, Ghesges = -5.90 , Closy, [-9.33  -2.46 ] nops = 10

0.925 -
0.900 -
°
=
S
> 0875 -
0.850 -
RF RF-SWOA
109,(BFo1) = 7.62 | Bhipenne = -0.07  CIF! [-0.09 | 0.05] rauen, = 0.71
Specificity
tweicn (7.57) = -7.43 p = 9.79 -05 QGhedges = -4.22  Clasy, [-6.55 -1.83] nops = 10
096 -

0.94 - ’-v-\{ﬁmm:om]

0.92 -

Value

0.90 -

0.88 -

RF RF-SWOA

109,(BFor) = -5.36 | lomer _ .0.05 OO [:0.07 0,031 riZS,,, = 0.71





OPS/images/fevo-11-1116083/fevo-11-1116083-g008.jpg
F1 fitness value

F3 fitness value

0%

T

10

L

pres

fres

o0

200
Iterations

200

© F2 fitness value

F4 fitness value

0

107

100

10m

. : . Groups
100 200 300 400 500
— swon
— won
50 00 150 200
Iterations





OPS/images/fevo-11-1116083/fevo-11-1116083-M1.jpg
D=lC* X1 (1)~ X (1),

(1)
X(t+1)=Xp(1)-A*D,





OPS/images/fevo-11-1116083/fevo-11-1116083-M10.jpg





OPS/images/fevo-11-1116083/fevo-11-1116083-g003.jpg
oo M 048 031 [N -.@ -0.052)

0.48 2| 0.75 -0.25( 0.79 | -0.53 | -0.2 | -0.74 JUEYIN -0.88 | -0.56 | -0.64 (-0.059]
0 oSN 1 0 -0.26 VRN -0.28 | -0.62 | -0.53 {1 -0.28|-0.56 | -0.4 |-0.21
-0.52 1 (0.028|-0.14 WPZY -0.63 -0.093 81 -0.74ﬂ
0.36 (X7 0.028| 1 |[-0.38 JkZM -0.17 7, -0.29 [-0.49 | -0.14 | -0.59
d -0.14|-0.38| 1 |0.025(-0.13 ¢ -0.06 (-0.16 |V -0.13 |-0.076| 0.
0 0 0.025( 1 |-0.61|-0.92|-0.81 Jukil -0.45 |-0.45 | -0.79 [}
-0.052( -0.53 | -0.28 | -0.63 | -0.17. -061| 1 | 097 Ukl -0.61 MELN-0.095( 09 |-0.15
-0.018( -0.2 |-0.62-0.78 | -0.56 092097 | 1 | 0.82 |-0.79 0.5 WP
EO -0.85 | -0.74 -0.81 iy 082 1 [0.024 075 L l’é;gi:}
-0.48 R 0 (P2 -0.61 | -0.79 0.024
0.064 [ -0.88 | -0.28 |-0.093 -0.29 -0.45 gvEtd
-0.64 [ -0.56 -0.56“-0.49 -0.13 [ -0.45 |-0.095 0.5 [0.75
-0.12(-0.64 | -0.4 |-0.74 [-0.14 |-0.076(-0.79 | 0.9 [
-0.099(-0.059| -0.21 [l Il -0.15 -0.33 1—

-0.018| -0.85 | -0.48

0.064 | -0.64 | -0.12 [-0.099)






OPS/images/fevo-11-1116083/fevo-11-1116083-g004.jpg
Land”

Depth”

Current
Temperature”
Calcite”™

Slope™

Salinity™

Silicate™

Environmental features

Nitrate™

pH’

Chiorophyll”

oA
3
g

3
IS
&

Importance

-
I s
1 s

erature





OPS/images/fevo-11-1116083/fevo-11-1116083-g005.jpg
RF Model






OPS/images/fevo-11-1116083/fevo-11-1116083-g006.jpg
075

0s0-
025+
0.00- name
o - e " e ey H~
©
3 Omission Kappa B rF-swoa
075~
050-
025~
0.12
- =
- =——
RF RF-SWOA RF RF-SWOA

reorder(name, Value)





OPS/images/fevo-11-1116083/fevo-11-1116083-M21.jpg
D= C* Xeana = X (1),

5]
X(l+l):Xmm|fA*D, 2





OPS/images/fevo-11-1116083/fevo-11-1116083-M18.jpg





OPS/images/fevo-11-1116083/fevo-11-1116083-M19.jpg





OPS/images/fevo-11-1116083/fevo-11-1116083-M2.jpg





OPS/images/fevo-11-1116083/fevo-11-1116083-M20.jpg
refol]





OPS/images/fevo-11-1116083/fevo-11-1116083-M14.jpg
X(r+

)
cos(2al)+ X (t
1)=Dxe"

3)





OPS/images/fevo-11-1116083/fevo-11-1116083-M15.jpg





OPS/images/fevo-11-1116083/fevo-11-1116083-M16.jpg





OPS/images/fevo-11-1116083/fevo-11-1116083-M17.jpg
X (1)-4=D if p<0.5
D xcos(2al)+ Xy (1) if p0.5

X(I+l)={





OPS/images/fevo-11-1116083/fevo-11-1116083-M13.jpg





OPS/images/fevo-10-1101135/email.jpg





OPS/images/fevo-10-1101135/fevo-10-1101135-e000.jpg
'NEP,—NEP;

Syep = mean ( ) 1983 <i<j<2018 (1)






OPS/images/fevo-10-1101135/fevo-10-1101135-e001.jpg
@)





OPS/images/fevo-11-1093135/fevo-11-1093135-t005.jpg
Biodiversity

Water conservation Soil conservation Windbreak sand-fixation EITETEED
paribles cs EQ cs EQ cs EQ cs £Q
(1) (5) (6) @) (8)

DID 1.1967%% 0.0026%+* 204117+ 0.0048%+ 77708+ ~0.0098%+* 06964+ 00023+

02137) (©.0006) (02815) (0.0008) (03853) ©0011) (0.2543) (0.0007)
cons 224709+ 0.5430%+% 2673255+ 05528+ 2514385 05443+ 20204254+ 0547245

(29962) ©0168) (3.0078) (0.0084) (28970) (0.0083) (2.9958) (0.0084)
Controls Yes Yes Yes Yes Yes Yes Yes Yes
AR 01516 01716 01546 01742 02020 0.1800 0.1482 0.1705
City FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
No. of NKEFAs 95 95 I I 18 18 52 52
No. of cities 330 330 330 330 330 330 330 330

#%p<0.01. **p<0.05. *p<0.10. The sum of functional areas number included in each type is not equal to 171, because some cities belong to two types.





OPS/images/fevo-11-1093135/fevo-11-1093135-t006.jpg
\ELELIES

DID
cons
Controls
AdjR
City FE.
Year FE

No. of cities

Variables

DID
cons
Controls
Adj-R
City FE.
Year FE

No. of cities

246797%* (0.4665)
41.7258%%% (9.8409)
Yes

03559

Yes
36
swe
cs
)
0.7847* (0.4041)
53.7831%** (8.1748)
Yes
03891
Yes
Yes

47

0.0021 (0.0015)
0.6805%** (0.0320)
Yes
05762
Yes
Yes

36

EQ

®
0.0069** (0.0012)
0462144 (0.0235)

Yes

04182
Yes
Yes

47

2,0233%%% (0.2149)

2608827 (4.9821)

MLY
cs
©)

0.5737%** (0.1501)

28.3889%% (3.5909)

67

0.0001 (0.0009)

0.5214%%* (0.0231)

EQ

(10)
0.0055** (0.0008)
06579+ (0.0195)

Yes

03834

3.7120%%% (0.7461)

16.5328%** (10.7054)

cs
an
0.6091*** (0.2186)
38.7921%"* (4.5361)
Yes
0.2888
Yes
Yes

58

~0.0007 (0.0011)

0.44445%%% (0.0161)

EQ

(12)
0.0069%* (0.0011)
062457 (00234)

Yes

05850

¥*%p<0.01. **p<0.05. *p<0.10. The six geographic regions specifically include the following provinces: Heilongjiang, Jilin and Liaoning in NEC, Beijing, Tianjin, Hebei, Henan, Shandong and
Shansi in NC, Inner Mongolia, Shaani, Gansu, Ningxia, Qinghai and Xinjiang in the NEC, Sichuan, Chongqing, Guizhou, Yunnan and Tibet in the SWC, Jiangsu, Shanghai, Anhui, Jiangxi, Hubei
and Hunan in MLY, and Zhejiang, Fujian, Guangdong, Guangxi, Hainan and Hong Kong, Macao and Taiwan in SWC.





OPS/images/fevo-11-1093135/fevo-11-1093135-t007.jpg
Quantiles Explained variable: Explained variable:

Cs EQ

DID DID
005 42911%%* (0.1783) 0.0114%*% (0.0004)
025 605424%* (0.1052) ~0.0089* (0.0039)
050 1748555+ (0.2128) 0.0018%** (0.0003)
075 35.0966%* (0.2275) 0.0132%%* (0.0004)
095 16,5249+ (1.1962) 0.0156%** (0.0001)
Controls Yes Yes
City FE Yes Yes
Year FE Yes Yes
No. of cities Yes Yes

##p<0.01. **p<0.05. *p<0.10. Bootstrap 1,000 times o obtain the coeffcient covariance, and
the optimization technique selects the adaptive MCMC method.





OPS/images/fevo-10-1101135/cross.jpg
@ Check for updates.





OPS/images/fevo-11-1093135/fevo-11-1093135-t002.jpg
Explained variable: CS Explained variable: EQ

Variables
@) (3) (6) @)
DID 35388+ 23985%%% 21615%%+ 2.1625%%+ 0.0076++% 0.0043%+% 0.0033%#+ 0.0031%%+
(0.1333) (0.1683) (0.1678) (0.1743) (0.0004) (0.0005) (0.0005) (0.0010)
cons 316003+ 28,6806+ 19,6504+ 25.4192%%% 0539475 0.5395%+% 0.5387%4% 0.5482%%%
(1.7518) (0.1896) (23671) (2.9588) (0.0069) (0.0006) (0.0066) (0.0083)
Controls NO NO YES YES NO NO YES YES
Adj-R? 0.1062 0.1582 01424 0.1688 0.0621 01026 01316 01745
City FE NO YES NO YES NO YES NO YES
Year FE NO YES NO YES NO YES NO YES
No. of cities 330 330 330 330 330 330 330 330

#4p<0.01. **p<0.05. *p<0.10. Robust standard errors clustered at city level appear in parentheses.





OPS/images/fevo-11-1093135/fevo-11-1093135-t003.jpg
Variables

DID

cons

Controls
AdjR
City FE.
Year FE

No. of cities

PSM-DID
€S| EQ
(1)

22004%%% 0.0029%#*
(0.0043) (0.0005)
271356+ 0.5537%%%
(3.2617) (0.0089)
Yes Yes.
01757 01992
Yes Yes
Yes Yes
330 330

Excluding other policy

interference
(e EQ
(3) 4
21679+ 0003245
(0.1781) (0.0005)
25.4126%* 0548245
(2:9581) (0.0083)
Yes Yes
0,169 01750
Yes Yes
Yes Yes
330 330

Substituting explained

variables

NDVI 1/PM2.5
(5) (6)

00185%%%  0.0010% (0.0005)
(0.0011)

0.6039%++* 00917+
(0.0195) (0.0102)
Yes Yes
0.4931 04195
Yes Yes
Yes Yes
330 330

Eliminating special

samples
(e EQ
1.9909%4% 0.0028+4
(0.1895) (0.0003)
2120405+ 0.5553%4
(3.1719) (0.0088)
Yes Yes
0.1692 01822
Yes Yes
Yes Yes
292 292

#£2p<0.01. *#p<0.05. *p<0.10. Remove samples that do not satisfy the common support hypothess after nearest neighbor matching, NDV1 is derived from the Chinese annual vegetation index
(NDVI) spatial distribution dataset of the Data Center for Resource and Environmental Sciences, Chinese Academy of Sciences, with a spatial resolution of 1 km. PM2.5 is obtained from Surface

PM2.5 data (V5.GL.02) with 0.01°x0.01° resolution (V5.GL02;

11, 2021), which were made available to the public by the University of Washington.





OPS/images/fevo-11-1093135/fevo-11-1093135-t004.jpg
\ELELIES

DD 00025+ 20658+ 00022+ 00121% 21437555
(0.0003) 0.1753) (0.0005) (0.0065) (01737)
TERRI IBIEIE 03392045
(8.4921) (0.0236)
INDUS 15487
(0.2341)
LABOR
cons 04885+ 67750 03825+ 03239%% 29176+5
(0.0045) (5.0929) (0.0141) (0.1638) (2.9491)
Controls Yes Yes Yes Yes Yes
AR 03338 01716 02024 06547 03345
City FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
No. of cities 330 330 330 330 330

0.0031%+%
(0.0005)

~00008
(0.0007)

05485+
(0.0084)

Yes
01747
Yes
Yes

330

0.0070%%*
(0.0013)

0.2968+*
(0.0222)

Yes
0.3305
Yes
Yes

330

2112875
(0.1745)

70843+
(1.7342)

231687+
(2.9993)

Yes
01711
Yes
Yes

330

0.0030++
(0.0005)

0.0140%5%
(0.0049)

0544155
(0.0085)

Yes
01756
Yes
Yes

330

#+%p<0.01. *%p<0.05. *p<0.10. Robust standard errors clustered at ciy level ppear in parentheses The dirct effct + mediated effct is slightly deviated from the total ffect s the result of the

retention of decimal points.





OPS/xhtml/Nav.xhtml




Contents





		Cover



		The effects of climate change and anthropogenic activities on patterns, structures and functions of terrestrial ecosystems



		Editorial: The effects of climate change and anthropogenic activities on patterns, structures and functions of terrestrial ecosystems



		Author contributions



		Acknowledgments



		Conflict of interest









		Co-benefits of the National Key Ecological Function Areas in China for carbon sequestration and environmental quality



		1. Introduction



		2. Materials and methods



		2.1. Data sources



		2.2. Variable selection



		2.2.1. Explained variables: Carbon sequestration and environmental quality



		2.2.2. Core explanatory variable: NKEFAs



		2.2.3. Control variables









		2.3. Theoretical framework



		2.4. Baseline regression



		2.5. Parallel trend test and dynamic effect









		3. Results



		3.1. Baseline regression result



		3.2. Parallel trend test and policy dynamic effect



		3.3. Robustness test



		3.3.1. Placebo test



		3.3.2. PSM-DID



		3.3.3. Excluding other ecological policy interference



		3.3.4. Substituting explained variables



		3.3.5. Eliminating special samples









		3.4. Mechanism analysis



		3.4.1. Territory spatial allocation effect (TERRI)



		3.4.2. Industrial structure upgrading effect (INDUS)



		3.4.3. Labor force aggregation effect (LABOR)









		3.5. Heterogeneity analysis



		3.5.1. Differences in ecological function types



		3.5.2. Differences in geospatial locations



		3.5.3. Differences in quantiles of CS and EQ















		4. Discussions



		4.1. Ecological co-benefits of NEKFAs and its mechanism



		4.2. Localization and precision in the management of NKEFAs









		5. Conclusion



		Data availability statement



		Author contributions



		Funding



		Acknowledgments



		Conflict of interest



		Publisher’s note



		Footnotes



		References









		Climate change enhanced the positive contribution of human activities to net ecosystem productivity from 1983 to 2018



		1. Introduction



		2. Materials and methods



		2.1. Materials



		2.1.1. Gross primary productivity dataset



		2.1.2. Meteorological data









		2.2. Methods



		2.2.1. Theil–Sen median trend analysis



		2.2.2. Mann–Kendall mutation test



		2.2.3. NEP



		2.2.4. Statistical analysis



		2.2.5. Sensitivity of NEP on climate change and human activities



		2.2.6. The contribution of climate change and human activities of the NEP



		2.2.7. Boosted regression tree















		3. Results



		3.1. The trend of NEP



		3.2. Contribution of climate change to the NEP



		3.3. Main area controlled and main load controlled by climatic factors



		3.4. Best ranges for climatic factors for the NEP



		3.5. The contribution of human activities and climate change to the NEP









		4. Discussion



		4.1. Comparison with the driving mechanisms of GPP and NEP



		4.2. Regional differences



		4.3. Uncertainties









		5. Conclusion



		Data availability statement



		Author contributions



		Funding



		Conflict of interest



		Publisher’s note



		Supplementary material



		Footnotes



		References









		Mapping seagrass habitats of potential suitability using a hybrid machine learning model



		1. Introduction



		2. Materials and methods



		2.1. Seagrass occurrence data



		2.2. Environmental data



		2.3. Machine learning models and evaluation



		2.3.1. Random forest model



		2.3.2. Hybrid model



		2.3.3. Model evaluation















		3. Results



		3.1. Correlation analysis between environments



		3.2. Importance of environment features



		3.3. Potential seagrass habitat



		3.4. Model performance evaluation









		4. Discussion



		4.1. SWOA hybrid model evaluation



		4.2. Environmental drivers of seagrass habitat









		5. Conclusion



		Data availability statement



		Author contributions



		Funding



		Acknowledgments



		Conflict of interest



		Publisher’s note



		Footnotes



		References









		Dynamic simulation of land use and land cover and its effect on carbon storage in the Nanjing metropolitan circle under different development scenarios



		1. Introduction



		2. Materials and methods



		2.1. Study area



		2.2. Data acquisition and preprocessing



		2.3. Methods



		2.3.1. Scenarios setting



		2.3.1.1. ND scenario



		2.3.1.2. ED scenario



		2.3.1.3. EP scenario



		2.3.1.4. CD scenario









		2.3.2. LULC simulation using PLUS model



		2.3.3. InVEST model for carbon storage estimation















		3. Results



		3.1. Contribution of the driving factors for land use change



		3.2. Simulation of LULC spatiotemporal distribution



		3.3. Spatiotemporal patterns of carbon storage









		4. Discussion



		4.1. Impact of LULC on carbon storage



		4.2. Suggestions for future development



		4.3. Strengths and uncertainties









		5. Conclusion



		Data availability statement



		Author contributions



		Funding



		Conflict of interest



		Publisher’s note



		References









		The spatial and temporal distribution of China’s forest carbon



		1. Introduction



		2. Data and Methods



		2.1. Data collection and compilation



		2.2. Carbon storage calculations



		2.3. Carbon storage predictions









		3. Results



		3.1. Temporal patterns of forest carbon storage and carbon sequestration capacity



		3.2. Spatial patterns of forest carbon storage and carbon sequestration capacity



		3.3. Spatial and temporal patterns of future forest carbon densities









		4. Discussion



		4.1. Uncertainties of future forest carbon storages



		4.2. Temporal changes of carbon storage and carbon sequestration capacity of provinces



		4.3. Spatial distribution of carbon storage and carbon sequestration capacities



		4.4. Carbon density in forest ecosystems









		5. Conclusion



		Data availability statement



		Author contributions



		Funding



		Acknowledgments



		Conflict of interest



		Publisher’s note



		Supplementary Material



		Footnotes



		References









		Short-term responses of soil nutrients and enzyme activities to nitrogen addition in a Larix principis-rupprechtii plantation in North China



		1. Introduction



		2. Methods



		2.1. Study sites



		2.2. Experimental design



		2.3. Field sampling



		2.4. Measurement methods



		2.4.1. Soil chemical properties



		2.4.2. Determination of enzyme activity and calculation of enzyme stoichiometric ratio



		2.4.3. Vector characteristics of enzyme activity









		2.5. Data analysis









		3. Results and analysis



		3.1. Effects of N addition on soil chemical properties



		3.2. Effects of N addition on soil enzyme activity and enzyme stoichiometry



		3.3. Effect of N addition on vector characteristics of soil enzyme activity



		3.4. Analysis of soil enzyme activities and stoichiometric ratios with soil environmental factors



		3.4.1. Correlation analysis



		3.4.2. Redundancy analysis















		4. Discussion



		4.1. Effects of N addition on soil chemical properties



		4.2. Effect of N addition on soil enzyme activities and stoichiometric ratios



		4.3. Implication for forest ecosystem management









		5. Conclusion



		Data availability statement



		Author contributions



		Funding



		Conflict of interest



		Publisher's note



		References









		Evaluation of ERA5-Land reanalysis datasets for extreme temperatures in the Qilian Mountains of China



		1. Introduction



		2. Data and methods



		2.1. ERA5-Land temperature data (Te)



		2.2. Observations (To)



		2.3. Extreme temperature indices



		2.4. Evaluation methods









		3. Results and discussion



		3.1. Comparisons of daily temperatures



		3.2. Comparisons of extreme temperatures



		3.3. Trends in daily and extreme temperatures



		3.4. Possible bias analysis









		4. Conclusions



		Data availability statement



		Author contributions



		Funding



		Conflict of interest



		Publisher’s note



		Footnotes



		References









		Ecosystem service assessment under ecological restoration programs: A systematic review of studies from China



		1. Introduction



		2. Methods



		3. Results and discussion



		3.1. The publication trends and geographical distribution



		3.2. Findings through the review analysis



		3.2.1. Number of ecosystem service considered



		3.2.2. Types of ecosystem service



		3.2.3. Spatial and temporal scales



		3.2.4. Changes in ESs and driver factors



		3.2.5. Methodologies used to assess the ERPs















		4. Conclusion



		Author contributions



		Funding



		Acknowledgments



		Conflict of interest



		Publisher’s note



		Supplementary Material



		References









		Root-specific flavones and critical enzyme genes involved in their synthesis changes due to drought stress on Scutellaria baicalensis



		1. Introduction



		2. Materials and methods



		2.1. Plant material and chemicals



		2.2. Drought stress treatment



		2.3. Content determination



		2.4. Total RNA extraction, cDNA synthesis, and qRT-PCR



		2.5. Statistical analysis









		3. Results



		3.1. Accumulation of root-specific flavones in roots Scutellaria baicalensis under drought stress



		3.2. Expression of crucial genes in roots, stems, and leaves of Scutellaria baicalensis under drought stress



		3.3. Correlation analysis









		4. Discussion



		Data availability statement



		Author contributions



		Funding



		Acknowledgments



		Conflict of interest



		Publisher’s note



		Supplementary Material



		References









		Response of temperate forest ecosystem services to rainfall: A case study in the forest nature reserves of northern China



		1. Introduction



		2. Materials and methods



		2.1. Study area



		2.2. Quantification of ecosystem services



		2.2.1. Net primary productivity



		2.2.2. Soil conservation



		2.2.3. Water yield









		2.3. Data sources



		2.4. Analysis of trade-offs and synergies of ecosystem services



		2.5. Redundancy analysis









		3. Results



		3.1. Correlations between ESs and precipitation



		3.2. Characteristics of ESs along the precipitation gradients



		3.3. Ecosystem services relationships under different precipitation gradients









		4. Discussion



		4.1. Response of key ESs and their relations to precipitation gradient



		4.2. Response of ESs and their relations to other environment factors



		4.3. Implications of ESs interrelations for forest restoration and managements









		5. Conclusion



		Data availability statement



		Author contributions



		Funding



		Conflict of interest



		Publisher’s note



		Supplementary Material



		Footnotes



		References









		Village ecosystem vulnerability in karst desertification control: evidence from South China Karst



		1. Introduction



		2. Literature review



		3. Materials and methods



		3.1. Study area



		3.2. Research framework and indicator system construction



		3.3. Data sources



		3.4. Methods



		3.4.1. Data standardization



		3.4.2. Weight calculation



		3.4.3. Vulnerability calculation



		3.4.4. Contribution calculation















		4. Results



		4.1. Village ecosystem vulnerability characteristics in KDC



		4.2. Susceptibility value and contribution analysis



		4.3. Lack of resilience value and contribution analysis



		4.4. Exposure value and contribution analysis









		5. Discussion



		5.1. Causes of village ecosystem vulnerability



		5.2. Comparison with previous studies



		5.3. Adaptive governance measures



		5.4. Future research









		6. Conclusion



		Data availability statement



		Author contributions



		Funding



		Conflict of interest



		Publisher’s note



		Supplementary Material



		Footnotes



		References









		Mid-season lodging modulates photosynthesis, evapotranspiration, and dry matter accumulation and distribution simulated by the optimized model in maize



		1. Introduction



		2. Materials and methods



		2.1. Experimental site



		2.2. CO2 flux data observation and data quality control



		2.3. Investigation on lodging disaster of maize



		2.4. Crop observation



		2.4.1. Observation of growth stage



		2.4.2. Determination of dry matter



		2.4.3. Determination of leaf area index



		2.4.4. Yield investigation and theoretical yield calculation









		2.5. Simulation of population photosynthesis under normal growth conditions



		2.6. Estimation of the photosynthetic rate of measured population



		2.7. Shuttleworth–Wallace dual-source model



		2.8. Model verification



		2.9. Estimation of dry matter accumulation



		2.10. Data processing









		3. Results



		3.1. The effect of lodging on photosynthesis and evapotranspiration of maize population



		3.1.1. Population photosynthesis simulation



		3.1.2. Simulation of evapotranspiration by the Shuttleworth–Wallace dual-source model









		3.2. The effect of lodging on dry matter accumulation of maize



		3.2.1. Estimation of dry matter accumulation of maize after lodging based on population photosynthetic model



		3.2.2. Dry matter accumulation of maize after lodging based on field sampling calculation









		3.3. The effect of lodging on dry matter distribution of maize



		3.4. The effect of lodging on maize yield









		4. Discussion



		5. Conclusion



		Data availability statement



		Author contributions



		Conflict of interest



		Publisher’s note



		References









		Ecological restoration projects enhanced terrestrial carbon sequestration in the karst region of Southwest China



		1. Introduction



		2. Materials and methods



		2.1. Study region



		2.2. Data



		2.3. CLM4.5



		2.3.1. Model description



		2.3.2. Experiment design



		2.3.3. Model simulation















		3. Results



		3.1. Model evaluation



		3.2. Long-term trend of NEP and regional contribution



		3.3. Contribution of environmental factors to the trend in NEP









		4. Discussion



		5. Conclusion



		Data availability statement



		Author contributions



		Funding



		Conflict of interest



		Publisher’s note



		Supplementary Material



		References









		Seasonal variation of ecosystem photosynthetic capacity and its environmental drivers in global grasslands



		1. Introduction



		2. Data and methods



		2.1. Site information and meteorological data



		2.2. Remote sensing data



		2.3. Estimation of ecosystem maximum photosynthetic rate



		2.4. Statistical analyses









		3. Results



		3.1. Seasonal patterns of Amax, Amaxa, and LAI



		3.2. Relative contribution of Amaxa and LAI to the seasonal variation in Amax



		3.3. Effects of environmental factors on the seasonal variations of Amax and its components Amaxa and LAI









		4. Discussion



		4.1. Relative contribution of Amaxa and LAI to the seasonal variation in Amax



		4.2. Effects of environmental factors on the seasonal variations of Amax, Amaxa, and LAI



		4.3. Uncertainties









		Data availability statement



		Author contributions



		Funding



		Conflict of interest



		Publisher’s note



		Footnotes



		References









		Effects of extreme drought on soil microbial functional genes involved in carbon and nitrogen cycling in alpine peatland



		1 Introduction



		2 Materials and methods



		2.1 Study area experimental design and soil sampling



		2.2 Measurements of soil properties



		2.3 DNA extraction, library construction, and metagenomic sequencing



		2.4 Sequence quality control and genome assembly



		2.5 Gene prediction, taxonomy, and functional annotation



		2.6 Statistical analyses









		3 Results



		3.1 The effects of extreme drought on C cycling functional genes



		3.2 The effects of extreme drought on N cycling functional genes



		3.3 The effects of extreme drought on soil microbial communities









		4 Discussion



		4.1 Extreme drought changed C cycling functional genes



		4.2 Extreme drought changed N-related functional genes involved in ammonia oxidation, N fixation, nitrate assimilation and denitrification processes



		4.3 Relationship between microbial community composition and functional potential









		5 Conclusion



		Data availability statement



		Author contributions



		Funding



		Acknowledgments



		Conflict of interest



		Supplementary material



		References









		Using the dynamics of productivity and precipitation-use efficiency to detect state transitions in Eurasian grasslands



		1 Introduction



		2 Materials and methods



		2.1 Study area



		2.2 In situ measured ANPP data



		2.3 ANPP and PUE estimations from remote sensing products



		2.4 Precipitation and temperature data



		2.5 ANPP and PUE dynamics for variability, asymmetry, and sensitivity



		2.6 Data processing and methodology









		3 Results



		3.1 Spatial pattern and statistical characteristics of ANPP and PUE dynamics in Eurasian grasslands



		3.2 Spatial patterns of ANPP and PUE dynamics with MAP in temperate and alpine grasslands









		4 Discussion



		4.1 Ecological significance of variability, asymmetry, and sensitivity of ANPP and PUE



		4.2 Underlying ecological mechanisms shape the spatial patterns of ANPP and PUE dynamics



		4.3 Indicators of grasslands ecosystem state transitions at the continental scale









		5 Conclusion



		Author contributions



		Funding



		Conflict of interest



		Supplementary material



		References









		Habitat associations of woody plant species in evergreen–deciduous broadleaf karst forests in southwest China



		1 Introduction



		2 Materials and methods



		2.1 Study area



		2.2 Data collection



		2.3 Statistical analysis



		2.3.1 Multivariate regression tree analysis



		2.3.2 Species–habitat association analysis















		3 Results



		3.1 Topographical habitat types and their characteristics



		3.2 Associations of species with the four habitat types



		3.3 The relationship between species distribution and topographical factors









		4 Discussion



		4.1 Topographic habitat types and their characteristics



		4.2 Habitat associations of species and the importance of topographical factors









		5 Conclusion



		Data availability statement



		Author contributions



		Funding



		Acknowledgments



		Conflict of interest



		Supplementary material



		References























OPS/images/fevo-11-1093135/fevo-11-1093135-g002.jpg
Control development intensity
Prohibit patchy expansion

%

Ecological space

Industrial access

Labor aggregation

Territory spatial
allocation

Tdustrial structure
upgrading

Labor force
transfer

Carbon sequestration

(CS)

Environmental quality

(EQ)

Co-benefits






OPS/images/fevo-11-1093135/fevo-11-1093135-g003.jpg
s o






OPS/images/fevo-11-1093135/crossmark.jpg
(®) Check for updates






OPS/images/fevo-11-1093135/fevo-11-1093135-g001.jpg
R
~aN

[

f$EE 2.8
53228
3184538
§22 P58 <
222382873
5333
fEifiz
§8 8= %%
5EEz:2E
zEE2EE
__7 o-






OPS/images/fevo-11-1093135/fevo-11-1093135-M2.jpg
2019
Yizao+B Y. treatix yean + i +y, +eq )
1=2001,1#2010





OPS/images/fevo-11-1093135/fevo-11-1093135-t001.jpg
Variables  Variable definition

cs Carbon sequestration scale (Million tons) 6270 31734 35.868 0061 430523
EQ Environmental quality index from CHEQ 6270 0.541 0131 009 0.861

Core explanatory variable

DID NKEFAs 6,270 0.198 0.398 0 1

e
TERRI Ecological space/territory area 6270 0.490 0.288 0.001 0.996
INDUS Value added of tertiary industry/value added of secondary industry 6,270 0958 0542 0026 5500
LABOR Agricultural labor force/total population 6270 0.223 0,095 0.001 0.485

B
DEN “Total population/land area (people/kn’) 6,270 402861 485.234 0656 6729490
InPGDP Logarithm of GDP per capita (2001 as base period)/RMB yuan 6270 10010 0.937 6898 12,657
URBAN Urbanization rate of resident population/% 6270 42574 19.694 7435 100
STRUC Gross secondary industry/GDP. 6,270 0384 0.094 0.086 0835
GAP. Urban per capita disposable income/rural per capita net income 6,270 2685 0.784 0917 7.378
OPEN Total import and export trade/GDP 60 | o 0375 0 | s
TRANS Road mileage/land area (km/km?) 60 | os 0559 0009 5887
PRE Average annual precipitation /mm 6,270 954358 539.161 29.289 2680360
TEM Average annual temperature/°C 6270 13.883 5.451 ~2908 25636

SUN Sunshine hours/h 6270 2068.952 511408 784.640 3407.62





OPS/images/fevo-11-1093135/fevo-11-1093135-g004.jpg
Coctticicnts

donsit o i

EQ

-

\

il
~

20

aons oo oo 0

Coefticients

dems





OPS/images/fevo-11-1093135/fevo-11-1093135-M1.jpg
i = o + BDIDy + Scontroly + 1 +y; + &ir





OPS/images/fevo.2023.1296292/crossmark.jpg
©

2

i

|





OPS/images/fevo-10-1101135/fevo-10-1101135-g004.jpg
C

— 1200 1500
5000 - " 1200 . - (C) 1200
w ) gL - 277 |l 1042 800077 - 1042 w - - 1042
4000 20 f 400 / | 884 — --j:: | 884 1200 o m 16.3 - | 884
w 200 200 ) 150- )
~ / i L 726 & @ L | = - 726
2 3000 A ,/ o] 1 e E- 6000 -1 140 2.900_ o, 6030
_g': I W | 568 : 000 4000 . G000 3000 | 568 5 o e - 568
-]
s 5000 - )
—(— =) = - 409
2-2000 a9 g 409 Z g0
=3 | BT s - 251
o 251 S 4000 L2518 | 550
1000 - 95
- 93 3000 - - 93 300+ ;
2 T T T - . T . -65
20 10 0 10 20 . ' : ' ; N =
- . : 20 -10 0 20 30
D Temperation Temperation
460 — S— 1200 460 : — 1200 1200
9.5 B, i N A = o~ [
. - % (d) L e - 1042 i Y a0 Ty 1042 8000 1042
4404 =0 2” J\V\ kg 440- : ;
r//’ 2004 e sa s ¢ i 884 E - 884 7000 . 884
2 150 Vr ..L !.'i’, ; : W
{ant = |l 726 - 726 S e
420" '°° 4t : %‘; 420 £ 6000
O 20 10 oTemw 20 30 380 40000510 440 450 2 | 568 n 0 1000 2000_3000 4000 5000 | 568 : 568
o 8 ”
S S £ 5000
400 - 409 400- 409 g 1
S 4000
- 251 L = 251
450 251
R = il ol Fo3 30001 : v ||pr93
: 65 ,I o .. g , 3:10 40000320 0 ;f(.) ' 65 |: : : . : 65
20 1000 2000 .. 3000 4000 5000 1000 2000 3000 4000 5000
G H Precipitation Precipitation
1200 1200 1200
800 | 1042 800- L 1042 8000 1042
700 - 884 700- - 884 7000 - S
7. 72 XY 1T
S.600- 726 S, 600- 2 e & 726
J— ". “500. e: 6000 -
g.soo- 568 2 500 : 568 568
= @ 2. 5000
_:1 400 - 409 2 400- -409 B° 409
® ] = ' =
3001 F 251 300 Fas1 5 40007 251
| . o) 150
20 \ 93 200 * - 93 30001 93
= T T T 5 T -65 38 woaﬁzo 4 4% 65 000 4000 6000 3000 ” 65
1000 2000 3000 4000 5000 : ' ; : . ' ' ' . 1 -
J Precipitation 380 400 Co, 420 440 460 L 380 400 Cco 420 440 460
2
1200
Histogram of testdataSNEP Histogram of traindataSNEP
8000 - 1042 i - S
7000 - 884 5 g -
7] =]
) - 726 -
56000 - = | g -
q @©
et ftedidas 568 g g o
2.5000 S 8- =
£ 409 = R
= s | S -
S'4000 5
3000 Pl 03 = i
. : ; ; ; : 265 o -
200 300 400 700 800

.5 600
Soil moisture

testdataSNEP

traindataSNEP





OPS/images/fevo-10-1101135/fevo-10-1101135-g005.jpg
150°W__ 120°W__ 90°W___ 60°W___ 30°W 0° 30°E 60°E 90°E 120°E __ 150°E 150°W __ 120°W__ 90°W___ 60°W___ 30°W 0° 30°E 60°E 90°E 120°E _ 150°E
T T T T T e — T T T T S P—— T T T T T T

—_—

90°
90°

60°N
30°N__ 60°N

30°N

00
00

30°S
30°S

B\

: S
1983-2018 HA_con

‘. - : 5
.| 5000 - '1983-2018 CC con

g -16-14-12-10 -8 -6 = MO 6 810 12 116 g 16-14-12-10 8 6 4 2 0 2 4 810 12 16 '—O_k‘m
\ol B =T T—I=F
5 150°W  120°W _ 90°W _ 60°W __ 30°W 0° 30°E  60°E_ 90°E__ 120°E _ 150°E o 150°W __120°W___90°W___ 60°W___ 30°W 0° 30°E____60°E __ 90°E___120°E__ 150°E
8 P T T e ——— T T T e — T T g = T T T T T T T — T T
z[~=3 z[~=%
. S|
£l £l
=l al
25 > B
2| i |
= ‘ : =i ; : . ] ]
X : ’ 9 . : ]
5000 itive EHu fod -' - 000 Negative Human Activity effects
® - Positive Human Activity effects = | ¢| ot il N PR 4 .
%Imzosowsommsommo km %Ilozosnmsoaomsowmo km
o o o o o o o o o o o o 150°W  120°W  90°W  60°W  30°W 0° 30°E 60°E 90°E 120°E _ 150°E
Lr IS0°W__120°W _ 90°W _ 60°W _ 30°W 0 30°E60°E 90°E  120°E 150°E o J J 20°W__60° , , , 60°E___90 ] ,
o s
3l_.:
z
OO
o
SR
RLUGR
?D I ‘Q ,'
‘
o
OO""
. 0 :. . &
Positive Climate effects -
& e o | S—C =
%.wznsowsosommsomo km %Ilozomwsawmsosom
é‘ 15Q W 12Q W 90°W 60'W 3O.W 0 301 E 60°E 90. E 12(? E 159 E iﬁ . ISQ°W 12Q°W 90°W 60‘:W 30"’W Q° 30'°E 60°E 90.°E 129°E 159°E
s
g ==

0° 30°N

30°S

{77 HA dominated {7 HA dominated

»| I CC dominated »| I CC dominated
& | km 3l
=} =}
5 150°W _ 120°W__ 90°W___ 60° 30°W 0° 30°E 60°E 90°E  120°E  150°E
g " T T S — T T T e — T T
Z. 80 B %
SOO 1
69.16

> 60
S
on

40

00

wl
et
A .
v 5000 h Erih
% 510 30 50 100 Bo ; nnrancement
3| km 5 10 30 50 100 >100






OPS/images/fevo-10-1101135/fevo-10-1101135-g006.jpg
North America _ Europe _ Asia

2.5 2.5 2.5
2 2: 2
1.5 ;

¢ )
\ '
|  pemmmm |  pem—

L2+ T T e X v -1.5+— T T : , ; T r - IR~ - - ; ; ; ; :
CC HA CO2 SM SR T P NEP CC HACO2SM SR T P NEP CC HA CO2SM SR -.T P NEP
World South America - Africa o ~ Australia

2.5¢






OPS/images/fevo-10-1101135/fevo-10-1101135-i000.jpg
ICONEP





OPS/images/fevo-10-1101135/fevo-10-1101135-e024.jpg
ZeNt = ZCCinaeasing—ZCCorening 19)





OPS/images/fevo-10-1101135/fevo-10-1101135-g001.jpg
180°  150°W 120°W  90°W  60°W 30_‘"_W 0° 30°E 60°E 90°E  120°E  150°E B .. Areas
— 100
66
°Z“ 551 - 80
S
' m
7 e 60
oc- I =
o -%22_
- 40
11
ol
S ’ 01 20
Classfication of Theil_Sen slope 11
o} [ Strong decrease . 2 0
“*1 [JSlight decrease =
" [INo change
L1 [Slight increase -44.
< .
S| [ Strong increase s
0.02 E
0.01 4
0 ®
-0.01 - ::
-0.02 M 1 2 1 2 1 2 1 . 1 = 1 o 1 N sl
299 - D NEP| i
E. -
. ;
. 19ISS 19;0 19I95 20I00 ‘20IOS 2(;10 2(;15

1985 1990 1995 2000 Year 2005 2010 2015 2020 Year





OPS/images/fevo-10-1101135/fevo-10-1101135-g002.jpg
4 2
o g
T

/ . / ‘4" )’"’ len
a7 R=0.56 R=0.35 R=0.54 R=-0.03| R=0.87
0 600 1200 357 408 459 0 2500 S000 300 600 900 0 3600 7200 108






OPS/images/fevo-10-1101135/fevo-10-1101135-g003.jpg
2500 5000

5

CcO2 P

Latitude

CcCO2 P SM SR T CO2 P SM SR 1





OPS/images/fevo-10-1101135/fevo-10-1101135-e022.jpg
Zn1 = Zunt + Zent





OPS/images/fevo-10-1101135/fevo-10-1101135-e023.jpg
NI = ZHA; "~ ZHAdreasing
ZiNt = ZHAinaeasing
H Z)





OPS/images/back-cover.jpg
Frontiers in

Ecology and Evolution
Ecological and evolutionary research into our
natural and anthropogenic world

This multidisciplinary journal covers the spectrum

of ecological and evolutionary inquiry.
insights into our natural and anthropogenic world,
and how it can best be managed:

Discover the latest
Research Topics






OPS/images/fevo-11-1116083/crossmark.jpg
(®) Check for updates






OPS/images/fevo-11-1116083/fevo-11-1116083-g001.jpg
LETLED

&

Legend
o Data sites






OPS/images/fevo-11-1116083/fevo-11-1116083-g002.jpg
Decision Tree 1

Result 1

See

Dataset

Decision Tree 2

Result 2

Majority Voting

v

Final Class

Decision Tree N

Result N

e





OPS/images/fevo-10-1101135/fevo-10-1101135-i005.jpg





OPS/images/fevo-10-1101135/fevo-10-1101135-i006.jpg
Ll A






OPS/images/fevo-10-1101135/fevo-10-1101135-t001.jpg
Theil-Sen Z Trend

S < 0.00005 <-196 Strong decrease
S < 0.00005 —1.96 <Z < 1.96 Slight decrease
—0.00005 < S < 0.00005 —1.96 <Z < 1.96 No change

S > 0.00005 —1.96 <Z < 1.96 Slight increase
S > 0.00005 >1.96 Strong increase






OPS/images/fevo-10-1101135/fevo-10-1101135-t002.jpg
Scenario

CC_con

HA_con

Contribution proportion

of CC (%)

Contribution proportion
of HA (%)

X increasing Z>0 NI >0 >0 T X 100 ool x 100
CNI >0 <0 100 0
HNI <0 >0 0 100

X decreasing Z<0 ND <0 <0 Tt X 100 Toeaasl— X 100
CND <0 >0 100 0
HND >0 <0 0 100






OPS/images/fevo-10-1101135/fevo-10-1101135-i002.jpg





OPS/images/fevo-10-1101135/fevo-10-1101135-i003.jpg





OPS/images/fevo-10-1101135/fevo-10-1101135-i004.jpg





OPS/images/fevo-10-1101135/fevo-10-1101135-e010.jpg
GPP = 107.02MAT + 2.18MAP — 0.10MAT x MAP — 544.35
(11)





OPS/images/fevo-10-1101135/fevo-10-1101135-e011.jpg
Re = 54.08MAT + 1.19MAP — 0.05MAT x MAP — 103.04
(12)





OPS/images/fevo-10-1101135/fevo-10-1101135-e006.jpg
UFx

_n—E(o)

Vvar ()

@)





OPS/images/fevo-10-1101135/fevo-10-1101135-e007.jpg
E(y) = n(n+0.25)

®)





OPS/images/fevo-10-1101135/fevo-10-1101135-e008.jpg
Var (y) =

n(n—1)(2n+5)
72

©)





OPS/images/fevo-10-1101135/fevo-10-1101135-e009.jpg
NPP = GPP — Ra
NEP = NPP — Rh
NEP = GPP — (Ra + Rh)
NEP = GPP — Re

(10)





OPS/images/fevo-10-1101135/fevo-10-1101135-e002.jpg
n-1

s=
> sg(NER—NEP)

3)

1

=1





OPS/images/fevo-10-1101135/fevo-10-1101135-e003.jpg
1, NEP; — NEP;)0
sg (NEP, — NEP;) = { 0, NEP; — NEP, = 0 )
—1, NEP, — NEP;(0





OPS/images/fevo-10-1101135/fevo-10-1101135-e004.jpg
var (§) =

n(n—1)(2n+5)
18

(5)





OPS/images/fevo-10-1101135/fevo-10-1101135-e005.jpg
1, (6)0, 1<k <n)

©)





OPS/images/fevo-10-1101135/fevo-10-1101135-e021.jpg
ONEP NEP
ANEP = HAcon + il S ASR+
ONEP ONEP
ASM + ACO, (18)

SM T 8CO,






OPS/images/fevo-10-1101135/fevo-10-1101135-e017.jpg





OPS/images/fevo-10-1101135/fevo-10-1101135-e018.jpg
SSRVEP

@NEP

ASR
R





OPS/images/fevo-10-1101135/fevo-10-1101135-e019.jpg
SSMNEP =

ONEP
SM

ASM





OPS/images/fevo-10-1101135/fevo-10-1101135-e020.jpg
17






OPS/images/fevo-10-1101135/fevo-10-1101135-e013.jpg
NEP = 48.98MAT + 0.79MAP — 0.05MAT x MAP — 313.85
(14)





OPS/images/fevo-10-1101135/fevo-10-1101135-e014.jpg
Sl x NEP)—3 5L, i x 3L, NEP;
ANEP = e
ro

(15)






OPS/images/fevo-10-1101135/fevo-10-1101135-e015.jpg
ANEP = HAcon + CCoon = HAcon + SPVEF 4 6TNEP

NED . y
+SSRVEP 4 GSMMEP 4 5CONEP (16)





OPS/images/fevo-10-1101135/fevo-10-1101135-e016.jpg





OPS/images/fevo-10-1101135/fevo-10-1101135-e012.jpg
Re = 0.68GPP + 81.9 (13)





OPS/images/fevo-11-1178609/fevo-11-1178609-e024.jpg





OPS/images/fevo-11-1178609/fevo-11-1178609-e023.jpg
=01, 1o
o

i





OPS/images/fevo-11-1178609/fevo-11-1178609-e022.jpg
AE = S; - 0,(17)





OPS/images/fevo-11-1178609/fevo-11-1178609-e021.jpg





OPS/images/fevo-11-1178609/fevo-11-1178609-e020.jpg
a





OPS/images/fevo-11-1178609/fevo-11-1178609-e019.jpg





OPS/images/fevo-11-1178609/fevo-11-1178609-e018.jpg





OPS/images/fevo-11-1178609/fevo-11-1178609-g003.jpg
Normal year
—— Simulated values ©  Observed values

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23

Day sequence from milking to mature stage





OPS/images/fevo-11-1178609/fevo-11-1178609-g002.jpg
Population photosynthesis rate
g0y m2 st

° - » w

cambBivhuwih

o
&

Ee NN ww
oo o in

gCOym2 st

oS
S

Population photosynthesis rate

o
s

—— Simulated values © Observedvalues

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2 23

Day sequence from milking to mature stage





OPS/images/fevo-11-1178609/fevo-11-1178609-g001.jpg





OPS/images/fevo-11-1135895/fevo-11-1135895-t007.jpg
No DTR

n TNn TXx TNx X10p TN10p TN90p TX90p DO FDO

1 293 172 223 183 160 047 072 096 053 134 0.96
2 296 161 250 140 183 056 091 084 0.63 084 L2
3 241 159 216 136 190 070 0388 081 056 0.69 0.99
4 230 203 155 292 164 053 090 070 0.66 165 112
5 217 160 225 223 171 052 124 075 0.62 159 133
6 194 127 145 139 148 043 077 105 0.60 054 0.94
7 243 126 356 158 185 091 159 074 051 165 L11
8 455 433 172 446 254 072 101 091 079 286 133
9 455 420 194 442 240 051 126 066 057 370 0.76
10 409 432 379 546 255 131 159 074 0.66 474 248
1 400 678 607 7.68 439 109 193 067 0.64 819 408
12 374 699 648 7.57 374 145 193 072 0.66 745 313
13 403 458 213 498 262 0.63 098 088 0.66 470 168
14 238 130 165 157 224 0.66 084 071 057 125 187
15 266 178 239 290 162 102 135 063 0.65 256 187
16 470 812 629 9.09 517 143 189 096 084 981 428
17 221 278 303 303 205 0.69 121 079 061 157 257

Average 318 331 301 376 243 0.80 124 079 0.63 324 1.86





OPS/images/fevo-11-1193607/fevo-11-1193607-e005.jpg
log(Amaxy) = agmas, + bamax, *log( Amax)(5)





OPS/images/fevo-11-1135895/fevo-11-1135895-t006.jpg
No DTR

TNn TXx TNx X10p TN10p TN90p TX90p DO FDO

1 0.746 0.991 0984 0994 0.980 0.980 0.955 0943 0977 0.967 0989
2 0.808 0.988 0978 0992 0.985 0974 0.932 0946 0.965 0972 0982
3 0.790 0.984 0.980 0991 0.982 0.965 0.941 0.956 0974 0.962 0986
4 0825 0.987 0986 0991 0.985 0977 0.936 0.965 0.963 0.966 0986
5 0829 0.988 0967 0989 0.982 0977 0.891 0.961 0.967 0.965 0981
6 0839 0.988 0984 0991 0.984 0.988 0.952 0921 0.969 0.984 0989
7 0718 0.987 0960 0979 0978 0937 0.828 0.963 0977 0978 0987
8 0819 0.982 0980 0988 0.979 0.962 0.925 0945 0.954 0895 0983
9 0.663 0.994 0986 0995 0.980 0976 0.882 0.968 0973 0.909 0994
10 0727 0973 0922 0980 0971 0872 0.827 0.960 0.968 0.884 0949
1 0.760 0971 0912 0964 0.974 0915 0.763 0.965 0973 0755 0896
12 0743 0976 0926 0961 0975 0.850 0.762 0.963 0.967 0.769 0937
13 0.650 0.991 0975 0992 0973 0.964 0.928 0.948 0.965 0.889 0970
14 0.669 0.985 0982 0992 0.980 0.964 0.952 0.965 0973 0978 0970
15 0.669 0978 0949 0990 0977 0921 0.875 0974 0971 0956 0960
16 0.591 0.963 0934 0948 0970 0853 0.767 0.945 0.957 0.688 0891
17 0.786 0.983 0954 0987 0.981 0954 0.889 0952 0.967 0927 0946

Average 0743 0.983 0962 0984 0979 0943 0.882 0.955 0.968 0.909 0964





OPS/images/fevo-11-1193607/fevo-11-1193607-e004.jpg
Amax  gmol m™> ground area

Lal m? leaf area

2
m? ground area

— umol m™® ground areas™" xm* ground area

m? leaf area @

umol s~

= umol m™2 leaf areas™ = Amax,

m? leaf area





OPS/images/fevo-11-1135895/fevo-11-1135895-t005.jpg
Statistics T_max
0-0.5(%) a7 53 0
>05 (%) 53 47 100

Average 244 0.62 219





OPS/images/fevo-11-1193607/fevo-11-1193607-e003.jpg
1 1
Fr = Rper E)| ————-———1|3)
e “’[ O[Tw/~7'o z..,—rn]]()





OPS/images/fevo-11-1135895/fevo-11-1135895-t004.jpg
No

T_mean

0992

0.989

0.991

0992

0.988

0.992

0977

0.982

0.991

0.970

0.968

0.969

0.987

0.988

0.983

0.960

0.987

0.983

T_max
0991
0.990
0.986
0.987
0.987
0.988
0.978
0.983
0993
0.969
0.961
0.960
0.990
0.987
0982
0.949
0.983

0.980

T_min
0976
0972
0978
0980
0969
0981
0953
0963
0971
0949
0941
0944
0961
0966
0961
0925
0963

0962

T_mean
120
189
138
120
126
121
157
225
175
283

463

MAE
T_max
180
140
145
249
203
135
152
462
430
485
729
7.01
480
139
222
851
274

352

T_min
206
255
209
186
203
166
255
243
221
294
436
425
265
252
197
486
270
269





OPS/images/fevo-11-1193607/fevo-11-1193607-e002.jpg
. {ﬁgexp(fk(l/l’ﬂ ~VPDy)),VPD > VPDy
Bo.VPD <VPDy @





OPS/images/fevo-11-1135895/fevo-11-1135895-t003.jpg
Formula Optimal value Unit

o ¥
NMAE Normalized mean absolute error o I
RB Relative bias i 0 %
S (E -0
El 00
u
20
i=l
cc Pearson correlation coefficient 1 ¥
DISO Distance between indices of simulation and observation o '
RMSE Root-mean-square-error o °c

s represents the number of samples; £ and ) represent the mean values of extreme temperature indices obtained from ERAS-Land and abservations,respectively; and E; and O, are values of
extreme temperature indices obtained from ERAS-Land and observations, respectively.






OPS/images/fevo-11-1193607/fevo-11-1193607-e001.jpg
apR,

+F(1)
aRg +p





OPS/images/fevo-11-1135895/fevo-11-1135895-t002.jpg
Index Name Definition Unit

TS Max Toue Monthly maximum of maximum daily temperatures “c
TNx Max Ty Monthly maximum of minimum daily temperatures “c
TXn Min Ty Monthly minimum of maximum daily temperatures “c
TNn Min Ty Monthly minimum of minimum daily temperatures “c
DO Frost days Number of days per year when TN (daily minimum) <0°C d
Do e days Number of days per year when TX (daily maximum) <0°C d
TNI0p Cool nights Percentage of days when TN < 10th percentile d
TX10p Cool days Percentage of days when TX < 10th percentile d
TN9Op ‘Warm nights Percentage of days when TN > 90th percentile d
TX90p Warm days Percentage of days when TX >90th percentile d

DTR Diurnal temperature range Monthly mean difference between TX and TN °c
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Site Coefficients Ta Rad swc Dlen
AT-Neu Amax [ ~0.19%% —0.14 077 079
Amax, ~057** -025 0.97%%% 039 Yes
LAl 094+ 0394+ ~006 0430+ 057 Yes
AU-DaP Amax 028+ 02745 o1 017+ 084 Yes
Amax, 0.16 0.18% 0.04 0.24% 059 Yes
LAl 03204 053+ ) 007 079 Yes
AU-Emr Amax ~006 0617+ ~0.07 0.56% 021 Yes
Amax, ~0.53% [ 042 012 Yes
LAI 00 092+ 023 —135%5 005 039 Yes
AU-Rig Amax 0.06 0.36% 0.28%5% ~0.994* 001 065 Yes
Amax, [E 015 0.08 ~0.62% —0730 027
LAl —041%% 031 0.26%+% ~0.654+* 021 065 Yes
AU-Stp Amax 077%e 0.26%% 0.22¢ —072%5 ~0.26% 048 Yes
Amax, 077%4 0.29%%% 0.06 —0.8%+ ~0.06 04 Yes
LAI 0.53%% 0.5 046%+% 045+ ~0.46++ 054 Yes
AU-TTE Amax Logs* 02 0 088+ 042 063 Yes
Amax, 0.85%* 009 0.08 ~0.54% 0447+ 065 Yes
LAI Loger 0.28°% ~005 ~0.79%%% ~032* 03 Yes
CH-Cha Amax 061+ 0.23* 0.08 ~0.46+* 0475 056
Amax, 0.28 ~0.02 0.19% -0.15 0.04 005
LA 0545 02* —0.374% 0.73%%% 067
CH-Fru Amax 0.48%+* —0.22%%% —0.17e —0.7%5 0,674+ 072
Amax, —094%4 028 01 0.15 0.05 021 Yes
LA 066+ —0.15%%% —0.2% 071 073
IT-MBo Amax 052+4 008 ~0.12¢ 0.65%%% 0.66
Amax, 0.24 03 007 ~026+* ~0.64++ 019 Yes
LAI 0 001 Loy 073
US-ARI Amax 022 014 003 062 04 Yes
Amax, ~047 005 ~0.03 0864+ 023
LAI 0.76%* 0.08 003 0.43%%% 084 Yes
US-ARe Amax 0.96%+* -022 ~0.08 0584+ 065
Amax, 134se -005 ~0.14 ~066%* 0.5 058
LAl 0.5+ -005 008 —0.42+5% 05455+ 091 Yes
US-Goo Amax 0.84%%+ 065+ 0.04 ~054+%% ~0.06 066
Amax, 0.66%+* 0,694+ ~011 076+ ~036 0.21
LAI 063+ 0267 ~0.02 ~027%%% 0350 091 Yes
US-SRG Amax 15355 0397+ 0.2 —L12we -005 07 Yes
Amax, 093+ 041555 041555 ~0.86%% 023 05 Yes
LAI Lgeer 0.25%%% 0.06 —1.094% —0330 076 Yes
US-Var Amax .18 033455 06145 —0544% 0.36%%% 067 Yes
Amax, ~026%% 0.15¢ 052455 —034+5% o 07 Yes
LAl -009 0487+ 058+ —0.54%5 0.65%%% 062 Yes
US-Wkg Amax 163%%% 0487+ 003 ~L1gsss —021% 069 Yes
Amax, 125%%% 04xxx 007 086+ ~004 056 Yes
LAI 1759+ 04345+ 004 —1.25%5 ~037+% 071 Yes

Ta, air temperature; Rad, solar radiation; SWC, soil water content; VP, vapor pressure deficit; Dlen, day length. For some regression, dependent variables are log.-transformed according to
the normality of regression residuals. *p<0.05, **p<0.01, ***p<0.001.
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AT-New 056 044
AU-DaP 043 057
AU-Emr 042 058
AU-Rig 098 002
AU-Stp 04 06
AU-TTE 0.28 072
CH-Cha 031 069
CH-Fru 072 028
IT-MBo. 092 0.08
US-ARL 033 067
US-ARc 04 06
US-Goo 059 041
US-SRG 043 057
US-Var 035 065
US-Wkg 0.41 059

b represents the relative contribution of LAT to Amax, and by, represents the relative
contribution of AMaX, 10 AMaX. b+ by, = 1. Ifbyy >0.5, LAI contributes more to Amax
than Amax.; otherwise, Amas, contributes more to Amax.
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Site ax

AT-Neu 4624 368
AU-DaP 5656 343
AU-Emr 127 129
AU-Rig 2957 327
AU-Stp 1629 0.96
AU-TTE 565 1451 041
CH-Cha 4845 92 605
CH-Fru 4693 2012 352
IT-MBo 3973 1612 35
US-ARI 1895 2075 104
US-ARe 5633 3262 175
US-Goo 5077 17.62 363
US-SRG 1972 231 083
US-Var 2537 1216 214
US-Wkg 1034 18.06 057

Amax, Amax,, and LAI were calculated as the multiyear averages of the 90th percentile of the variables each year for each site.
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Latitude Longitude Elevation  Mean Mean Mean Mean Managed References
©) ) (m) annual annual annual annual

Ta (°C) Rad VPD SwC
(Wm=)  (hPa) (%)

Neustift, Austria a7.12 132 970 679 260.72 323 33.00 Yes Wohlfahrt etal.
(AT-Neu) (2008)

Daly River Savanna, ~1406 13132 67 2546 47900 1412 932 No Beringer et al.
Australia (AU-DaP) (011)
Emerald, Australia -23.86 148.47 / 2157 441.29 1302 1054 ! /

(AU-Emr)

Riggs Creck, ~36.65 145.58 162 1557 39346 895 2161 Yes Beringer et al.
Australia (AU-Rig) (2016)

Sturt Plains, Australia | —17.15 133.35 225 2615 50388 2094 10.08 No Beringer et al.
(AU-Stp) (2011)

Ti Tree East, 2229 13364 553 2431 489.92 2469 261 No Beringer et al.
Australia (AU-TTE) (2016)
Chamau, Switzerland 4721 841 393 9.48 265.09 283 5300 Yes Zeeman etal.
(CH-Cha) (2010)
Friebitel, Switzerland 7.2 8.54 982 7.63 266.98 216 4537 Yes Rogger et .
(CH-Fru) (2022)

Monte Bondone, Italy 4601 1105 1550 521 31040 234 4855 Yes Marcolla
(IT-MBo) (2011)

ARM USDA UNL 3643 9942 611 1526 40237 902 2016 No Raz-Yaseef et al.
0SU Woodward 2015
Switchgrass 1, USA

(US-AR1)

ARM Southern Great 3555 —98.04 a2 15.67 40150 780 20,14 No

Plains control site- (2015)
Lamont, USA (US-

AR¢)

Goodwin Creek, USA 3425 ~89.87 87 1615 35287 478 3266 Yes Runkle et al
(US-Goo) 2017)

Santa Rita Grassland, 3179 ~11083 1291 1877 46202 1640 7.38 No Scott etal. (2015)

USA (US-SRG)

Vaira Ranch, USA 3841 ~12095 129 1583 41644 1044 1223 No Maetal. (2007)
(US-Var)
Walnut Gulch 3174 ~109.94 1531 1729 47120 1494 684 No Scott etal. (2010)

Kendall Grasslands,
USA (US-Wkg)
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Variables extracted

Geographical location

Consideration of the ES relati

Driver factors

ESs that were assessed

Changes in ESs

Assessment methodologies

Spatial scale

Temporal scale

Categol

'S

Province(s) where the study was located

Whether to consider interactions among ESs
Ecological restoration program(s) the study evaluated

Categorized based on Millennium Ecosystem Assessment (MEA) (2005) and De Groot et al. (2002), group level: regulating services

(i., air-quality regulation, climate regulation, pollination, erosion regulation, water regulation and water purification); provisioning
services (i, food production, fresh water provision, fiber and timber, genetic resources, biochemicals and ornamental resources),
supporting services (i, nutrient cycling, primary production, soil formation, and biodiversity/habitat for species); cultural services

(i, aesthetic values, cultural diversity, educational values, knowledge systems, recreation and ecotourism, spiritual and religious

values)
Increased, decreased, or no change

us reviews (Andrew et al., 2015; Thom and Seidl, 2016), group level: field measurement, model

survey
Categorized based on Wen and Théau (2020), group level: the county level assessment refers to the evaluation of ERPs in a specific

county; the regional level assessment refers to watershed or catchment, and provincial scales; the national level assessment refers to
the assessment of ERPs across China

As for the period covered, we defined two classes: the short-term evaluation (<20 years); the long-term evaluation (more than

20years)
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Land use types

ND scenario ED scenario EP scenario CD scenario
Cropland 3893661 37437.12 3587918 3770464 37.879.10
Forest 1072206 1054254 10,390.70 11,583.33 10,990.00
Grassland 128396 126551 1249.43 129738 128493
Water 6044.46 6036.43 6031.97 604158 603197
Artificial surface 815470 9752.10 1155477 842063 888539

Other 31026 364.29 29194 35043 326.60
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Data res:

cel
GLOBELAND30 dataset

https://www.resde.cn

hitps://eogdata.mines.edu/products/vnl/

hitps://lbs.amap.com

OpenStreetMap (https://wiwwopensireetmap.org)

https://wwwawvebmap.cn

LULC in 2020

ASTER GDEM 30 M dataset

hitps/fwww.resde.cn

http://www.geodata.cn
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Categary

C degradation

C fixation

N cycling

ubcategary P value R? Formula
Starch 0.7094 0.0089
Hemicellulose 0.2977 0.0675
Cellulose 0.8325 0.0028
Chitin 0.0854 0.1735
Pectin 0.4307 0.0392
Aromatics 0.7814 0.0049
Lignin 0.4307 0.0392
Reductive citrate cycle 0.0077 0.3664 y=1.643X+0.8031
3-Hydroxypropionate bi-cycle 03362 0.0578
Hydroxypropionate-hydroxybutylate cycle 0.0235 0.2811 y=0.7463X+4.9030
Dicarboxylate-hydroxybutyrate cycle 0.0389 02402 ) y=0.6539X+4.2184
Reductive acetyl-CoA pathway 0.4449 0.0369
Phosphate acetyltransferase-acetate kinase pathway 0.102 0.1582
Incomplete reductive citrate cycle 0.1383 0.132
N cycling 0.0239 0.2801 y=0.3084X+4.8109
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Data set Data sources and description

NPP

Land use
Meteorological Data
NDVI

Elevation

Potential

evapotranspiration
Vegetation type

Soil property

Data for 2015 were derived from the Global Land Surface Satellite (GLASS) Products (Index of /NPP/AVHRR/GLASS_NPP_00SD_YEAR)
Land use data in 2015 was taken from the Resources and Environmental Science Data Center (https://wiwwresdc.cn/)

Acquired from China Meteorological Administration (http://data cma.cn/), including precipitation, temperature and evapotranspiration.
Data for 2015 was obtained from the Resources and Environmental Science Data Center (ttps://wiwiresdc.cn/)

‘Acquired from Resources and Environmental Science Data Center (hitps:// v resde.co/)
‘Acquired from National Tibetan Plateau/Third Pole Environment Data Center (hitps://data.ipdc.ac.cn/)

‘Acquired from National Tibetan Plateau Data Center (http://swiw.(pdc.ac.cn/zh-hans/)

‘Acquired from National Tibetan Plateau Data Center (http://wyow.(pdc.ac.cn/zh-hans/)
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Average elevation (m)
Slope (°)

Aspect

Convexity (m)
Rock outcrop (%)
Soil thickness (cm)
TWI

ACH (m)
Individual
Shannon index

Patrick index

TWI, topographic wetness index; ACH, altitude above channel.

A: Hilltop
4.56
576.02 + 28.87
50.77 + 6.39
-0.23 + 0.58
209 +3.77
63.65 + 23.96
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2.67
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1.64 +0.81

32.72 £ 13.70

Steep slope
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3.46
172.32 +74.23
1.38 + 041

26.34 + 14.89

6.04
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-0.73 £ 0.86

22.05 + 23.40

34.92 + 14.06
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Dimension  Indicator Indicator attributes Weights Description of indicator

layer and numbers

Susceptibility Annual average temperature X1(-) 0.069 Indicates impact on villages of climate, light, temperature and
Annual precipitation ey 0044 precipitation factors affecting the quality of the ecosystem
Annual sunshine hours X3(-) 0.021
Altitude Xd(+) 0077 Indicates impact of terrain on ecosystem. The slope and terrain
Average slope X5(+) 0031 undulation will affect the stability of slope materials, and the
- altitude will affect the temperature and precipitation
Terrain undulation X6 (+) 0.042
Proportion of karst X7 (+) 0045 Indicates the degree of karst desertification of the village

desertification area

Soil erodibility-K X8(-) 0029 Indicates the sensitivity to soil erosion
Landscape fragmentation X9(+) 0038 Reflects the degree of human disturbance on the landscape
Landscape diversity X10(=) 0.046 Represents the richness and complexity of landscape types and

reflects the diversity of ecosystem structure
Forest coverage Xi1(+) 0053 Reflects the vegetation and ecological environment under the
KDC environment
Lack of resilience ~ Length of road open to traffic X12(-) 002 Reflects the interference intensity of human activity on the

ecological environmen

Data based on the statistics of village

committees

Livelihood strategies X13(=) 0046 Indicates the degree of diversification of farmers'livelihood

sources. Data based on interviews with farmers

Net income per inhabitant X14(-) 0043 Reflects the risk response ability of farmers. Data based on

interviews with farmers

Proportion of population X15(-) 002 Represents the education level of residents. Data based on the
with high school education or statistics of village committees

above

Number of pools X16(-) 0019 Reflects degree of residential water safety. Data based on the

statistics of village committees

Food production per unit of X17(=) 0018 Indicates village land production capacity. Data based on the
arable land area statstics of village committees

Area of returning farmland to X18(-) 0026 Reflects efforts of ecosystem governance. Data based on the
forest statstics of village committees

Annual control rate of karst X19.(-) 0031 Reflects effect of karst desertification control. Data based on
desertification remote sensing image interpretation

Exposure Density of population X20(4) 0029 Reflects pressure of popul

ion on village ecological
environment and resources. Data based on the statistics of

village commitiees

Dependency ratio of X21 (+) 0.028 Reflects the pressure of residents’ life. Data based on the

‘population statistics of village committees

Proportion of building area X22(-) 0.079 Represents the interference of human activities to the ecological
environment. Data based on remote sensing image
interpretation

Amount of fertilizer used on X23(+) 0031 Use of chemical fertilizers and pesticides pollute the soil and

farmland water, thus damaging the ecosystem. Data based on interviews

Amount of pesticide used on X24 (+) 0051 with farmers.

farmland

Proportion of labor outflow X25(4) 0041 Represents the loss of village labor force. Data based on the
statstics of village committees

Per capita cultivated land area X26(+) 0023 Reflects the pressure of population on cultivated land resources.

Data based on the statistics of village committees

“+” indicates that the indicator i positively correlated with vulnerabilty; ~” indicates tha the indicator s negatively correlated with vulnerabilit.
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BG NAG P UE ACP EEAC EEA C:P
pH —0.450* —0.197 0.126 0.163 —0.187 —0.283 —0.263 —0.043
soc 0.130 0.379 —0.223 —0.077 0.388 —0.137 —0.080 0.138
TN —0.265 0.430 —0.297 —0.015 0.194 —0.145 —0.428 0304
TP 0.162 0.055 0.090 0323 0.557** 0.295 0.118 —0.241
AP 0.114 0.402 —0.025 —0.052 0.079 0.090 —0.109 0.349
AN —0.427 —0.096 —0.490* 0.379 —0.052 —0.251 —0.497% —0.355
NH:-N —0.278 —0.395 —0.047 0.460* 0.101 —0.252 —0.028 —0.438*
NO;-N —0.349 0.000 —0.464* —0.159 0.344 —0.311 —0.237 —0.241
MBC 0.557* —0.219 0.111 —0.258 —0.480* 0.448* 0.548* 0.053
SOC:TN 0.364 —0.104 0.084 —0.045 0.031 0.042 0352 —0.193
SOC:TP —0.041 0.231 —0.228 —0.110 —0.328 —0.320 —0.155 0262
TN:TP —0.286 0.261 —0.258 —0.230 —0.225 —0.274 —0.367 0.367
EOC —0.481* —0.257 —0.336 —0.087 —0.228 —0.372 —0.251 —0.240
ROC —0.013 —0.428 —0.124 0.157 0.116 0.038 0.213 —0.529*

*Significant correlation between two different variables (p < 0.05); ** An extremely significant correlation (p < 0.01).
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Treatme NO N5 N1 N20 N40 0 N1

SOC (gkg™") 7798 + 4.5% 67.90 £ 6.12bc 70.87 £ 3.04abc | 64.41 % 3.12abe 69.97 £ 5.04¢ 7255+ 5.74abc | 75.56 % 5.21abe
TN (gkg™") 6004023 534+ 0422 538+ 0.102 527+ 041a 5.16 £ 0.43a 5.41 40482 5.98 +0.76a
TP (gkg™") 062 £ 0.02¢ 062 0.46¢ 0.73 £ 0.00a 065 % 0.34bc 0.72 £ 0.07ab 0.62 % 0.04c 0.68 % 0.03abe
SOGTN 12.99 4+ 0.38 12.82 £ 2200 13.15 £ 0.73a 1225+ 1.26a 13.66 + 2,02 13.40 £ 0.17a 1281 +221a
TN:TP 9.60 % 0.70a 8.63 % 1.25ab 7.32 40,09 8.07 £ 0.94ab 7.11 £ 0.80b 8.64 % 0.553b 870 % 0.92ab
SOCTP 12464 % 10.19% 108.91 % 2.95bc 9622+ 4.39¢ 98.10 = 2.07¢ 96.80  15.37¢ 11583 £7.06ab | 110.10 % 7.28abe
AN (mgkg™) 2575 0.76b 22.19 % 1.02¢ 2138 +0.16¢ 2046 = 0.76¢ 2562 1.43b 25.44 + 0.24b 2838 +0.33
AP (mgkg™") 7.01%0.48a 670%0.76a 711£0.152 684+ 0.62 670%0.15 625 % 1.50a 6.88 % 0.58
ROC (gkg™") 343+ 0.03b 3.45 % 0.05ab 3.47 £ 0.07ab 3534 0.03 353+ 0.04a 3.52+0.02 3.49 £ 0.01ab
EOC (gkg™") 400+ 0.48a 4010261 400+ 0.67a 496+ 0.72a 4524062 464£0.13 505+ 06la
MBC (mg 75230 = 2.00b 857.63+£2297a | 7041554090 | 72430£6323b | 69526+ 1691b | 765.04£22.87ab | 718.37 £43.76b
kg™")

pH 625+ 0.04a 623%+0.16a 6.13 % 0.06a 628 % 0.09 626 % 0.05a 6.23%001a 616+ 051a

Different letters in the same row indicate significant differences between different nitrogen addition gradients (p < 0.05).
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Treatment NO N10 N20 N40 N80 N160

SOC (gkg™") 69453402 | 67.19+48% | 6398+23la | 6606£560a | 6946+375a | 6438208 67.07 +7.3%
TN (gkg™") 5624073 5794 0.12a 5524 1.07a 559:+0.13 5404057 5254035 5454049
TP (gkg™") 1.0240.23a 096+ 0.19 092:+027a 092:£007a 09240072 092+0.192 0924009
AP (mgkg™) 10.98+200a | 10954022 | 13.92£6.13% | 1043%155% | 1152£12% | 1262£291a 12.18 % 1.65a
NH}-N (mgkg™") 7.55+2.66a 11042662 | 156949062 | 13.94%7.60a | 1162£20la | 1045+ 3.4% 872+ 1742
NO3-N (mgkg™) 2556+1051a | 1801£877a | 2673+99la | 22.66+349 | 2324%10la | 2324%10la 25.56 & 2.66a
pH 6.110.192 6.01£0.072 594%0.14a 6.12£0.05 6.060.12a 6.02+0.11a 59940.10a

The letters “a” in the same row indicate that there is no significant differences between different nitrogen addition gradients (p > 0.05).
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