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Editorial on the Research Topic

Exploring causal risk factors for metabolic and endocrine disorders
Metabolic and endocrine disorders remain a significant global health concern, with

their prevalence steadily increasing in recent years. These disorders, including conditions

but not limited to hypertension, diabetes and its complications, dyslipidemia, obesity,

metabolic syndrome, hyperuricemia, non-alcoholic fatty liver disease, polycystic ovary

syndrome, thyroid disorders, parathyroid disorders, pituitary disorders, and adrenal

disorders, not only cause of morbidity and mortality and affect well-being but also pose

substantial challenges to healthcare systems worldwide (1). The rising burden of metabolic

and endocrine disorders has prompted extensive research to understand their causal risk

factors. Identifying these factors is crucial for developing effective preventive strategies and

improving public health outcomes. The main purpose of the editorial is to summarize the

current state of research on causal risk factors for metabolic and endocrine disorders,

highlighting the need for further investigation and collaboration in this critical area

of study.

Etiological inference is the core of epidemiological research, which informs etiological

modeling and prevention efforts. Large-scale epidemiological studies, genetic analyses, and

clinical trials are the main study design for etiological inference, which have specific

advantages and disadvantages that can complement each other to some extent (2, 3). In

recent years, with the large-scale release of GWAS data, Mendelian randomization study

has been widely applied in causal inference (4, 5), in which genetic data may partially

address the limitations of confounding and reverse causality and provide more convincing

evidence to explain the underlying causal associations. It remains challenges associated

with identifying causal factors due to complex interactions between genetic, environmental,

and lifestyle factors.

In this Research Topic, cross-sectional, cohort, meta-analysis, and Mendelian

randomization study designs were used to explore the risk factors for metabolic and

endocrine disorders. As metabolic and endocrine disorders could act as risk factors for

diseases or adverse outcomes of risk factors, several studies investigated the bidirectional
frontiersin.org015
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causal relationship of metabolic and endocrine disorders as

exposures or outcomes. In addition, there is a mutual relationship

between metabolic disorders and endocrine dysregulation. When

there is dysfunction in the endocrine system, it can lead to

metabolic abnormalities and the development of metabolic

disorders. On the other hand, metabolic disorders can also affect

the functioning of the endocrine system.

The findings of Tan et al., determine the genetic structure

shared between NAFLD and T2D, offering a new reference for

the genetic pathogenesis and mechanism of NAFLD and

T2D comorbidities.

Chen et al.‘s systematic review and meta-analysis indicates that

clopidogrel might be a modifiable and causal risk factor of

hypoglycemia, especially in the Asian population.

Cheng et al. demonstrate that levels of triglycerides and

remnant-C, but not TC or LDL-C, were associated with NAFLD

outcomes independent of other risk factors, in the middle aged and

elderly subset of the Chinese population, especially those who were

women, non-CVD status, non-diabetes status and middle BMI

status (24 to 28 kg/m2).

In a Mendelian randomization study, Du et al. discover an

important role of polycystic ovary syndrome in the development of

chronic kidney disease, underlying the importance of regular

follow-up of renal function in patients with polycystic

ovary syndrome.

Xu et al. show that genetically predicted causal relationship of

inflammatory bowel disease with bone mineral density and

osteoporosis using evidence from two-sample Mendelian

randomization.

Yang et al. demonstrate the potential role of bile acids in bone

metabolism among T2DM patients in a north China population.

Using an ethnic-specific GWAS of 146 metabolites and 1-

sample Mendelian randomization analyses in a UK multi-ethnic

birth cohort, Fuller et al. confirm and demonstrate the presence of

ethnic-specific causal relationships between metabolites and

dysglycemia in mid-pregnancy in a UK population of SA and WE

pregnant women.

Yang et al. assess the usefulness of a newly proposed metabolic

score for visceral fat in predicting future diabetes, and finds that

Metabolic Score for Visceral Fat is positively correlated with

diabetes risk.

Ren et al. show that increased serum Cat-S is associated with the

progression of albuminuria and decreased renal function in

T2DM patients.

Nasr et al. conclude that serum estradiol levels may have a

causal effect on kidney function, based on evidence from a

MR analysis.

Gatta et al. show that 50% of patients developed autoimmune

polyglandular syndrome type 4 within the first ten years, don’t

suggest any particular follow-up time and don’t specify any

particular disease.

Li et al. find that psychological stress is associated with

hypertension both in cross-sectional and MR studies, suggesting

targeting hypertension-related factors in interventions might

improve mental and metabolic health.
Frontiers in Endocrinology 026
Zhang et al. explore the risk factors for cognitive impairment

(CI) in patients with type 2 diabetes mellitus (T2DM), screen

potential therapeutic drugs for T2DM-CI, and provide evidence

for preventing and treating T2DM-CI, using artificial intelligence

interpretation and graph neural networks.

Based on data from the national health and nutrition

examination survey (2007–2018), Tan et al. find an association

between serum uric acid and hypertriglyceridemia.

Using data from the NHANES 2007-2014, Liu et al. show an

association of serum 25-hydroxyvitamin D with urinary

incontinence in elderly men.

Zhang et al. use clinical and genetic data from different public

biological databases and perform two-sample and two-step

Mendelian randomization analyses. The study suggests that

exposure to heavy air pollutants causally increases risks for obesity.

Ren et al. investigate distinct risk factors for hyperuricemia in

native Tibetan and immigrant Han populations in Tibet, China, and

confirms the distinctive biochemistry between Tibetans and Hans.

Si et al. indicate a causality between polycystic ovary syndrome

and susceptibility and severity of COVID-19 using a bidirectional

Mendelian randomization study.

This unique insight will significantly contribute to the

development of innovative prevention strategies for metabolic and

endocrine disorders. This Research Topic aims to bring together

important research findings from distinguished researchers and

scientists worldwide. We strive to provide readers with ample

opportunities to stay informed about the latest research and

cutting-edge advances in this field through this collaboration. By

fostering interdisciplinary collaboration and facilitating knowledge

sharing, we firmly believe that we can pave the way for new avenues

of research in the prevention of metabolic and endocrine disorders.
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Background: Clopidogrel is a cornerstone antiplatelet drug used in

cardiovascular, cerebrovascular, and peripheral artery diseases. The sulfhydryl

group of clopidogrel metabolite could induce insulin autoimmune syndrome

(IAS) with hypoglycemia as the major symptom. Discontinuing clopidogrel and

substituting it with ticagrelor has been revealed as an effective treatment in

previous studies. Since hypoglycemia serves as a risk factor for cardiovascular

and cerebrovascular events, we aimed to determine the association between

hypoglycemia/IAS and clopidogrel and to investigate whether clopidogrel is a

modifiable and causal risk factor of hypoglycemia/IAS.

Methods: MEDLINE, Embase, Cochrane databases, and clinical trial registries

were searched for randomized controlled trials (RCTs) of clopidogrel from

inception to 28 February 2022. RCTs comparing clopidogrel with placebo or

other antiplatelet drugs were eligible if meeting the inclusion criteria: 1)

clopidogrel was administrated 75 mg qd orally as a long-term antiplatelet

prescription at least for months, and 2) hypoglycemia-inducible drugs were

not used in the control arm. One investigator abstracted articles and performed a

quality assessment. Uncertainties were resolved by discussions with two

investigators independently. Odds ratio (OR) and risk difference (RD) were

calculated and performed with subgroup analyses. The pre-specified protocol

was registered in PROSPERO (CRD42022299622).

Results: Six trials with 61,399 participants in total fulfilled the criteria and were

included in the meta-analysis. Clopidogrel might not be associated with higher

hypoglycemia odds (OR 0.95, 95% CI 0.65 to 1.40). However, Asian participants

(p = 0.0437) seemed more likely to develop clopidogrel-associated

hypoglycemia. Clopidogrel-associated hypoglycemia occurred at the highest
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rate of 0.03% (RD −0.00023, 95% CI −0.00077 to 0.00031), and this increased

to 0.91% (RD 0.00210, 95% CI −0.00494 to 0.00914) in an aging population

and to 0.18% (RD 0.00040, 95% CI −0.00096 to 0.00177) when Asian ratio of

the population was elevated.

Conclusions:We raise the concern that clopidogrel might be a modifiable and

causal risk factor of hypoglycemia. The Asian population might be more

vulnerable and need additional care.

Systematic review registration: https://www.crd.york.ac.uk/prospero,

identifier CRD42022299622.
KEYWORDS

clopidogrel, hypoglycemia, insulin autoimmune syndrome, meta-analysis,
adverse event
1 Introduction
Hypoglycemia is a relatively uncommon condition with non-

specific symptoms; however, its occurrence can be associated with

daily performance disruption and physical injury involving the

cardiovascular and central nervous systems (1, 2). Morbidities

include myocardial ischemia, myocardial infarction, cardiac

arrhythmia, transient ischemic attack, stroke, coma, seizure,

cognitive impairment, and dementia (3, 4). Insulin autoimmune

syndrome (IAS) is a cause of hypoglycemia characterized by

hyperinsulinism and elevation in insulin autoimmune antibodies

(IAAs), which might be triggered by drugs with sulfhydryl groups.

The incidence is higher in populations with genetic background of

susceptible human leukocyte antigen (HLA) alleles (1).

Clopidogrel is an anti-platelet drug prevalently prescribed for

cardiovascular and cerebrovascular diseases, including acute

coronary syndrome, myocardial infarction, stroke, and peripheral

arterial disease. After activation in the hepatic P450 system, it

transforms into a thiol derivative with a sulfhydryl group. As

reported in previous cases (5), clopidogrel could induce IAS and

trigger severe episodic hypoglycemia, making the drug threatening

for the patients’ primary diseases. The phenotype frequency of

HLA-DRB1*0403–one of the most IAS-susceptible alleles—is 6.94%

in Asians and 2.07% in Caucasians (6, 7) (calculation method is

described in the Materials and Methods section). Given that the

cardiovascular disease is a global burden and among the top leading

causes of death (8, 9), it is reasonable to postulate there are several

millions of individuals carrying susceptible HLA alleles and taking

clopidogrel at the same time. Among this possible affected

population, clopidogrel plays the role of a double-edged sword.

In this article, we were the first to raise the concern that if

clopidogrel induced IAS in such a population, the harm could

exacerbate the state of illness and even threaten their life. However,

in previous studies comparing clopidogrel with other antiplatelet

drugs, whether hypoglycemia was associated with clopidogrel
029
remained undetermined. Whether hypoglycemia was more

prevalent in populations with a higher frequency of susceptible

HLA genotypes, such as Asians, also lacked evidence. Therefore, it

was urgent to find out if clopidogrel was a risk factor for

hypoglycemia through a systematic review and meta-analysis of

randomized controlled trials (RCTs) of clopidogrel.
2 Materials and methods

2.1 Search strategy

The meta-analysis was conducted according to a pre-specified

protocol (PROSPERO: CRD42022299622). RCTs comparing

clopidogrel to other antiplatelet drugs or placebos were searched in

clinical registries and published literature. Terms (clopidogrel OR

Plavix) were searched on ClinicalTrials.gov, www.controlled-

trials.com, and www.clinicaltrialsregister.eu from inception to 16

February 2022. The syntax (clopidogrel OR Plavix) was searched in

free-text and MeSH terms on PubMed, Embase, and the Cochrane

Library from inception to 28 February 2022. The search strategy in

PubMed was as follows: ((“clopidogrel”[Title/Abstract] AND

“clopidogrel”[MeSH Terms]) OR “plavix”[Title/Abstract]) AND

(meta-analysis[Filter] OR meta analysis[Filter] OR systematic review

[Filter]). Meta-analyses and systematic reviews were filtered out (see

details in Supplementary Method). No restriction was set on language

or publication time. For each search result, those meeting these criteria

were included: a) systematic review or meta-analysis on RCTs of

clopidogrel and b) clopidogrel was compared to placebo or other

antiplatelet drugs. Those meeting these criteria were excluded: a)

duplicated publications; b) clopidogrel was used in both groups; c)

meta-analyses or systematic reviews on pharmacokinetics,

pharmacodynamics, pharmacogenetics, or cost-effective studies; and

d) in vitro or animal studies. Then, for each eligible meta-analysis and

systematic review, abstracts and full texts were retrieved to screen and

extract RCTs included in the search process.
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2.2 Selection criteria

For each search result in the clinical registries and RCT extracted

from the literature, we reviewed results displayed on the websites and

related publications. Trial inclusion criteria were as follows: a) since

trials with small sample size may have selection bias and overestimate

the effect, we included trials recruiting 100 ormore participants in total;

b) hypoglycemia-inducible antiplatelet (or anticoagulant) drugs were

not used in the control arm; c) since the optimal administrating dose of

clopidogrel remained undetermined with variable and non-standard in

children, we included trials enrolling adults (age ≥18 years); d)

clopidogrel was administrated 75 mg qd orally as a long-term

antiplatelet prescription at least for months; e) patients’ combination

drugs were balanced in the clopidogrel arm and the comparing arm;

and f) the trial provided information on the occurrence of

hypoglycemia. Drugs meeting these criteria were considered as

hypoglycemia-inducible: a) chemical structures containing sulfhydryl

groups and b) had been reported to induce hypoglycemia at therapeutic

dose in literature (electronic searching strategy: generic name AND

brand name AND (hypoglycemia OR hypoglycaemia OR (insulin

autoimmune syndrome)).
2.3 Data extraction and quality assessment

A standard data extraction form was used to extract baseline

characteristics, interventions, and adverse events amount of

hypoglycemia. Other associated hypoglycemic symptoms, such as

coma, seizure, and shock, were not counted. The quality of included

trials was assessed using the Cochrane Collaboration risk-of-bias tool

(10). Literature search, review, data extraction, and risk assessment

were performed by JQ. Uncertainties were resolved by discussing with

SC and consulting a third investigator (YZ) for arbitration.
2.4 Data synthesis and analysis

Publication bias was tested with a funnel plot and Egger’s test

(11). To quantify the potential risk of hypoglycemia in clopidogrel

compared to control groups, odds ratios (ORs) and associated 95%

confidence intervals (CIs) were first calculated using the random-

effects model and the Mantel–Haenszel method. Statistical

heterogeneity among trials was evaluated with I2 statistics (12).

Subgroup analyses of OR were performed by comparing clopidogrel

with drugs in the control arm individually (ticagrelor, edoxaban,

aspirin + extended-released dipyridamole, and placebo). In meta-

regression analyses, the association between covariates (mean age,

female ratio, Caucasian ratio, Asian ratio, and follow-up duration)

and the OR was investigated using the DerSimonian–Laird method

to estimate the between-study variance Tau2 and the Hartung–

Knapp method to adjust type I error. Sensitivity analyses were

conducted by excluding trials with placebo, restricting to trials using

aspirin as background treatment, using Peto’s method to calculate
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the random-effects estimate of OR, and not using the Hartung–

Knapp method adjustment in meta-regression.

To estimate the numbers needed to harm, a meta-analysis was

next performed on risk difference (RD) by using the random-effects

model and Mantel–Haenszel method. Subgroup analyses were

performed using the median as the division boundaries, including

mean age (>66.6 and ≤66.6 years), female sex ratio (>28.6% and

≤28.6%), Caucasian ratio (>81% and ≤81%), and Asian race ratio

(>12% and ≤12%). Individual comparisons were also performed on

clopidogrel versus drugs in the control arm (ticagrelor, placebo,

aspirin + extended-released dipyridamole, and edoxaban).

Statistical analysis was completed in R (version 4.0.0) with the

“meta” (version 4.16.2) (13) package. Confidence intervals not

containing values of 1.00 and two-sided p-values of less than 0.05

were considered statistically significant.
2.5 HLA frequency calculation

HLA phenotype frequency is the percentage of individuals carrying

the specific HLA allele in the population. We searched allele frequency

(AF) and phenotype frequency (PF) of susceptible HLA alleles carried

by IAS patients in the Allele Frequency Net Database (AFND) (6, 7).

Asian race incorporated data of “Oriental” and “Asian” of ethnic origin

labels in selection choice; Caucasian race incorporated “Caucasoid” and

“Hispanic”. For items with missing phenotype frequency, the formula

PF = 1 − (1 − AF)2 was used.
3 Results

A total of 752 publications of RCTs from databases and 325

RCTs from clinical trial registries were extracted. A total of 10 RCTs

with reports of hypoglycemia were extracted. One trial that

recruited less than 100 participants (NCT01864005), one trial that

enrolled infants (NCT00396877), and two trials (14, 15) using

prasugrel (containing sulfhydryl group in active metabolite) in the

control arm were excluded. Six trials with 61,399 participants in

total fulfilled the inclusion criteria and were included (Figure 1).

Adverse events reported by 61,048 participants were included in the

statistical analyses. Baseline characteristics are shown in Table 1.

Risk-of-bias assessment identified some concerns for two of six

trials (Supplementary Table 1). Egger’s test yielded p = 0.453, and a

funnel plot was graphed (Supplementary Figure 1). All trials were

distributed symmetrically around the vertical stripped line, showing

no underlying publication bias.

Compared to control groups, clopidogrel was associated with 5%

decreased odds (OR 0.95, 95% CI 0.65 to 1.40) of hypoglycemia

(Figure 2). Test of heterogeneity yielded I2 = 0%, indicating low

heterogeneity between trials. We undertook mono-factor meta-

regression analyses to identify potential sources of trial heterogeneity.

In subgroup analyses comparing clopidogrel with drugs in the control

arm, clopidogrel versus ticagrelor yielded OR = 0.76 (95% CI 0.43 to
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1.34), clopidogrel versus edoxaban yielded OR = 3.00 (95% CI 0.12 to

74.53), clopidogrel versus aspirin + extended-released dipyridamole

yieldedOR = 1.17 (95%CI 0.67 to 2.02), and clopidogrel versus placebo

yielded OR = 0.50 (95% CI 0.05 to 5.53) (Figure 3). Among the
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covariates, a higher Asian ratio was related to higher OR (p = 0.0437),

whereas the others were not (age, p = 0.7486; female ratio, p = 0.5872;

Caucasian ratio, p = 0.0501; follow-up duration, p = 0.8451) (Figure 4).

In sensitivity analyses, excluding trials with placebo (ACTIVE A)

yielded OR 0.97 (95% CI 0.65 to 1.43); restricting to trials using aspirin

as background treatment (ACTIVE A, PLATO, PHILO, and ePAD)

yielded OR 0.87 (95% CI 0.39 to 1.93); using Peto method to calculate

the random-effects estimate yielded OR 0.96 (95% CI 0.66 to 1.41); not

using Hartung–Knapp method in meta-regression yielded no

significant results of all covariates, with p = 0.7646 in age, p = 0.6157

in female ratio, p = 0.1315 in Caucasian ratio, p = 0.1246 in Asian ratio,

and p = 0.8547 in follow-up duration.

Clopidogrel decreased the risk of hypoglycemia incidence by

0.023% (RD −0.00023, 95% CI −0.00077 to 0.00031) (Figure 5). In a

subgroup of age older than 66.6 years, clopidogrel increased the risk

by 0.210% (RD 0.00210, 95% CI −0.00494 to 0.00914). In a

subgroup with an Asian ratio higher than 12%, clopidogrel

increased the risk by 0.040% (RD 0.00040, 95% CI −0.00096 to

0.00177), whereas the other subgroups did not present increasing

RD (Figure 6). To interpret, one in at least 3,220 patients taking

clopidogrel was under threat of hypoglycemia manifesting in IAS. If

the average age of the population exceeded 66.6 years, the number

was 109. If the Asian ratio of the population increased, the number

was one in at least 565. In subgroup analyses comparing clopidogrel

with drugs in the control arm, clopidogrel versus ticagrelor yielded

RD = −0.00038 (95% CI −0.00140 to 0.00063); clopidogrel versus

edoxaban yielded RD = 0.00990 (95% CI −0.01717 to 0.03698),

clopidogrel versus aspirin + extended-released dipyridamole yielded

RD = 0.00029 (95% CI −0.00109 to 0.00167), and clopidogrel versus
TABLE 1 Baseline characteristics for participants in clopidogrel RCTs.

Trial Publication
year

Indication Treatment Follow-
up

period

Mean
age

(years)

Female
sex (%)

Race (%)

Caucasian Asian

EUCLID (16)
NCT01732822
(N = 13,885)

2017 Peripheral artery
disease

Ticagrelor 90 mg bid vs clopidogrel 75
mg od

30
months

66.6
(8.4)

28.0 0.81 0.12

ACTIVE A
(17)
NCT00249873
(N = 7,554)

2009 Atrial fibrillation
vascular risk

Clopidogrel 75 mg od vs placebo od, all
received aspirin 75 to 100 mg od

3.6 years 71.0
(10.2)

41.8 0.94 0.04

PLATO (18)
NCT00391872
(N = 18,624)

2009 Acute coronary
syndrome

Ticagrelor 90 mg bid vs clopidogrel 75
mg od, all received aspirin 75 to 100 mg
od

13
months

62.2
(22.4)

28.4 0.92 0.06

PHILO (19)
NCT01294462
(N = 801)

2015 Acute coronary
syndrome,
percutaneous
coronary
intervention

Ticagrelor 90 mg bid vs clopidogrel 75
mg od, all received aspirin 75 to 100 mg
od

13
months

67 (11) 23.5 0.00 1.00

PRoFESS (20)
NCT00153062
(N = 20,332)

2008 Stroke Aggrenox (aspirin 25 mg plus extended-
release dipyridamole 200 mg) bid vs
clopidogrel 75 mg qd, and telmisartan 80
mg/placebo qd

2.5 years 66.1
(8.6)

36.0 0.62 0.33

ePAD (21)
NCT01802775
(N = 203)

2018 Peripheral arterial
disease

Edoxaban 60 mg qd vs clopidogrel 75
mg qd, all received aspirin 100 mg qd

6 months 67.4
(9.5)

28.6 0.94 0.00
frontie
N, the number of participants in actual enrollment; RCT, randomized controlled trial.
FIGURE 1

Flowchart of literature search to identify randomized controlled
trials of clopidogrel.
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FIGURE 3

Forrest plot of odds ratio estimation in individual comparisons of clopidogrel versus drugs in the control arm.
FIGURE 2

Forest plot of odds ratio estimation.
D

A B

E

C

FIGURE 4

Meta-regression between clopidogrel-associated hypoglycemia and (A) mean age (years), (B) female ratio, (C) Caucasian ratio, (D) Asian ratio, and
(E) follow-up duration (months).
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placebo yielded RD = −0.00026 (95% CI −0.00116 to

0.00063) (Figure 7).
4 Discussion

This study focused on clopidogrel as a modifiable and causal

risk of hypoglycemia manifesting in IAS. Since hypoglycemia

deteriorates the risks of primary cardiovascular diseases, we

conducted this research and generated the main findings, as

follows: a) clopidogrel might not be associated with higher

hypoglycemia risk, but Asians seemed more likely to develop

clopidogrel-associated hypoglycemia; b) clopidogrel-associated

hypoglycemia occurred at the highest rate of 0.03%, and this

increased to 0.91% if it is an aging population and to 0.18% when

Asian ratio of the population was elevated.

The mechanism for clopidogrel to trigger IAS has been revealed

before. After ingestion, clopidogrel is transformed into a sulfhydryl

derivative by hepatic enzymes CYP2C19, CYP2B6, CYP3A4, etc.,

which disrupts the disulfide bonds of the insulin molecule. The

conformation-changed insulin molecule acquires immunogenicity

and stimulates the proliferation of T cells and the production of

IAAs. IAAs bind to insulin and dissociate in an unregulated way.

When the insulin pool is discharged, blood glucose level decreases

and induces hypoglycemia symptoms (22–24). In this autoimmune

process, susceptible HLA alleles include HLA-DRB1*0406,
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DRB1*0403, and DQB1*0302 (25–27). In our calculation of HLA

allele frequency (6), HLA-DRB1*0406 is carried by 3.59% Asians

and 0.13% Caucasians, DRB1*0403 by 6.94% Asians and 2.07%

Caucasians, and DQB1*0302 by 9.50% Asians and 30.40%

Caucasians (calculation method is described in the Materials and

Methods section).

Clopidogrel is commonly used in a massive number of

cardiovascular, cerebral vascular, and peripheral artery disease

patients. In the 2020 Medical Expenditure Panel Survey (MEPS)

released by the Agency for Healthcare Research and Quality

(AHRQ), the prescription of clopidogrel was 19,377,527, even

higher than aspirin in the United States (28, 29). To multiply the

prescription number and susceptible HLA allele frequency, the

estimated number of victims is considerable. However,

clopidogrel-induced IAS/hypoglycemia was rarely reported in

either case or RCTs. Moreover, no systematic review or meta-

analysis was conducted to reveal the association or evaluate the

potential risks. The earliest case dated back to 2004, but the authors

did not realize the triggering effect of clopidogrel on IAS (30). Until

2016, the concept of clopidogrel-induced IAS was formally

proposed by Japanese scientists (22).

In the meta-analysis, clopidogrel appears to reduce the risk of

hypoglycemia but with a non-confirmative trend. Result

discrepancies between our postulation and meta-analysis could be

attributed to several factors: a) hypoglycemia is a rare adverse event

in traditional RCTs of non-diabetes mellitus participants and with

strict recruitment criteria; b) clopidogrel metabolism depends on

certain P450 enzyme, possibly not carried by all participants; c)

participants of these trials were mainly Caucasians in their sixties,

not balanced in age and race, whereas Asians are more susceptible

to IAS due to genetic background; d) since hypoglycemia emerges

asymptomatically or symptomatically with variable manifestation

and onset time, it might not be identified during follow-up; e) some

IAS are self-limiting and thus not reported (31).

Trials with higher Asian ratios seemed to have higher OR of

clopidogrel-associated hypoglycemia, suggesting that Asians were

probably more vulnerable. Consistently, geographic distribution

was observed in IAS in previous studies (32). Asians, especially

Japanese people, carrying HLA-DRB1*0406 at a higher frequency

were more likely to develop IAS (33). This was validated by higher

Asian carrier proportions of DRB1*0406 and DRB1*0403 alleles

from our calculation (32). Although we also observed a considerable

frequency of susceptible HLA allele carried by Caucasians, the odds
FIGURE 5

Forest plot of risk difference estimation.
FIGURE 6

Forest plot of subgroup analysis in risk difference estimation.
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and risks of clopidogrel-induced hypoglycemia remain evidence-

less in this population based on the meta-analysis result. Additional

care might not be given to these patients.

As the association of clopidogrel and IAS/hypoglycemia is

supported by biological plausibility and temporal relationship, we

believe it necessary to estimate patients to be affected. One in at least

3,220 people (0.031%) in all patients, one in at least 109 people

(0.91%) in the population with an average age above 66.6 years, and

one in at least 525 people (0.18%) in higher-Asian-ratio subgroups

might be affected by clopidogrel-induced hypoglycemia.

Considering the massive sales of clopidogrel, we estimated that

the actual number under threat was huge. Also, relatively rare

adverse events have been drawing attention due to their serious

outcomes, for instance, rhabdomyolysis induced by statins (at a risk

of one in 66,667) (34) and allopurinol hypersensitivity syndrome

(AHS) induced by allopurinol (at a risk of one in 1,000) (35).

Since clopidogrel administration is a modifiable and causal risk

factor, drug discontinuation is the first-line therapy when

hypoglycemia manifests. Drug substitution after clopidogrel

discontinuation is also essential to maintain antiplatelet control

over cardiovascular disease risk in treatment. The situation also

depends on the clinical indications. For patients with non-ST-

segment elevation acute coronary syndrome, a previous

pharmacovigilance study based on data mining of the Food and

Drug Administration Adverse Event Reporting System (FAERS)

proposed ticagrelor as an alternative to substitute clopidogrel (36).

Individual comparisons of clopidogrel versus drugs in the

comparing arm in this meta-analysis might also provide

information on which drug to switch to. Clopidogrel has higher

(but not statistically significant) odds and risks than edoxaban and

aspirin + dipyridamole to induce hypoglycemia while lower odds

and risks (but not statistically significant) than ticagrelor. These

results suggested that edoxaban is a possible substitute for patients

with peripheral artery disease undergoing endovascular treatment

and that aspirin + dipyridamole is a possible substitute for patients

with ischemic stroke. Since our result lacked statistical significance,
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the inconsistent effect of clopidogrel vs. ticagrelor in the previous

study probably needed further validation.

Although we revealed the association between hypoglycemia and

clopidogrel according to widely acknowledged standards and

guidelines, there were some limitations to mention. First, only

aggregate data were available in included RCTs, whereas individual

participant data (IPD) provide a more precise estimation of baseline

characteristic effects. However, previous methodological research

demonstrated that IPD and traditional aggregate data meta-analysis

do not differ much in the combined effects (37). Second, observational

studies were not included in our meta-analysis, so some cases with

clopidogrel-induced IAS reported in previous publications may be

missed in our evidence synthesis. Third, missing data might come from

RCTs of clopidogrel published but not included in any of our searched

clinical registries, meta-analysis or systematic review; or might have

been published without reporting hypoglycemia. Fourth, the study

population might contain more participants of certain races from

developed countries that carried out more RCTs. Since hypoglycemia

of IAS has geographical and racial distribution differences, the over-

representation of participant races might lead to inaccurate estimation.

Last, all included trials reported hypoglycemia instead of IAS. There

was the possibility that some hypoglycemia events were not IAS

manifestations. Moreover, to avoid duplication, reports on

hypoglycemia-associated symptoms were excluded.

In summary, we were the first to explore the potential risk of

IAS/hypoglycemia triggered by clopidogrel and estimated the

incidence rate. We also pointed out that the Asian population

might need extra attention. Clopidogrel substitution with

alternative antithrombotic drugs might be effective in treatment.

Future studies are expected to provide more robust evidence on the

association between clopidogrel and IAS/hypoglycemia. We also

recommend that hypoglycemia and IAS are specified as secondary

endpoints in future large endpoint clopidogrel trials. We believe this

study will arouse physicians’ consciousness of hypoglycemia

occurrence in prescribing clopidogrel and provide practical

benefits for patients taking clopidogrel from a novel perspective.
FIGURE 7

Forrest plot of risk difference estimation in individual comparisons of clopidogrel versus drugs in the control arm.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1091933
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chen et al. 10.3389/fendo.2023.1091933
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Author contributions

SC, BZ, RT, TY, MiL, MeL, YL, and HZ conceived the study. SC,

JQ, and YZ designed the study. JQ and YZ collected the systematic

review data. SC, JQ, YZ, and HP analyzed and interpreted the data.

SC, JQ, and YZ drafted the manuscript. All authors revised and

approved the final version of the manuscript. All authors had full

access to all the data in the study. HP accessed and verified the

underlying data and had final responsibility for the decision to

submit for publication. All authors contributed to the article and

approved the submitted version.
Funding

Chinese Academy of Medical Sciences Innovation Fund for

Medical Sciences (2021-I2M-1-023).
Frontiers in Endocrinology 0815
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fendo.2023.1091933/

full#supplementary-material
References
1. Kittah NE, Vella A. Management of endocrine disease: Pathogenesis and management
of hypoglycemia. Eur J Endocrinol (2017) 177:R37–47. doi: 10.1530/EJE-16-1062

2. Frier BM. Hypoglycaemia in diabetes mellitus: Epidemiology and clinical
implications. Nat Rev Endocrinol (2014) 10:711–22. doi: 10.1038/nrendo.2014.170

3. Wright RJ, Frier BM. Vascular disease and diabetes: is hypoglycaemia an
aggravating factor? Diabetes Metab Res Rev (2008) 24:353–63. doi: 10.1002/dmrr.865

4. Frier BM, Heller S, McCrimmon R. Hypoglycaemia in clinical diabetes. 3rd Edition.
Chichester, West Sussex, UK: John Wiley & Sons Ltd., Wiley-Blackwell (2014). p. 392.

5. Rajpal A, Kassem LS, Moscoso-Cordero M, Arafah BM. Clopidogrel-induced
insulin autoimmune syndrome: A newly recognized cause of hypoglycemia in a patient
without diabetes. J Endocr Soc (2017) 1:1217–23. doi: 10.1210/js.2017-00316

6. Gonzalez-Galarza FF, McCabe A, Santos EJMD, Jones J, Takeshita L, Ortega-
Rivera ND, et al. Allele frequency net database (AFND) 2020 update: Gold-standard
data classification, open access genotype data and new query tools. Nucleic Acids Res
(2020) 48:D783–8. doi: 10.1093/nar/gkz1029

7. Gonzalez-Galarza FF, Christmas S, Middleton D, Jones AR. Allele frequency net:
a database and online repository for immune gene frequencies in worldwide
populations. Nucleic Acids Res (2011) 39:D913–919. doi: 10.1093/nar/gkq1128

8. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global,
regional, and national incidence, prevalence, and years lived with disability for 310
diseases and injuries, 1990-2015: A systematic analysis for the global burden of disease
study 2015. Lancet (2016) 388:1545–602. doi: 10.1016/S0140-6736(16)31678-6

9. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-
specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a
systematic analysis for the global burden of disease study 2017. Lancet (2018)
392:1736–88. doi: 10.1016/S0140-6736(18)32203-7

10. Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The
cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ (2011)
343:d5928. doi: 10.1136/bmj.d5928

11. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected
by a simple, graphical test. BMJ (1997) 315:629–34. doi: 10.1136/bmj.315.7109.629

12. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat
Med (2002) 21:1539–58. doi: 10.1002/sim.1186

13. Balduzzi S, Rücker G, Schwarzer G. How to perform a meta-analysis with r: a
practical tutorial. Evid Based Ment Health (2019) 22:153–60. doi: 10.1136/ebmental-
2019-300117
14. Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W, Gottlieb S,
et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J
Med (2007) 357:2001–15. doi: 10.1056/NEJMoa0706482

15. Roe MT, Armstrong PW, Fox KAA, White HD, Prabhakaran D, Goodman SG,
et al. Prasugrel versus clopidogrel for acute coronary syndromes without
revascularization. N Engl J Med (2012) 367:1297–309. doi: 10.1056/NEJMoa1205512

16. Hiatt WR, Fowkes FGR, Heizer G, Berger JS, Baumgartner I, Held P, et al.
Ticagrelor versus clopidogrel in symptomatic peripheral artery disease. N Engl J Med
(2017) 376:32–40. doi: 10.1056/NEJMoa1611688

17. ACTIVE Investigators, Connolly SJ, Pogue J, Hart RG, Hohnloser SH, Pfeffer M,
et al. Effect of clopidogrel added to aspirin in patients with atrial fibrillation. N Engl J
Med (2009) 360:2066–78. doi: 10.1056/NEJMoa0901301

18. Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C, et al.
Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med
(2009) 361:1045–57. doi: 10.1056/NEJMoa0904327

19. Goto S, Huang C-H, Park S-J, Emanuelsson H, Kimura T. Ticagrelor vs.
clopidogrel in Japanese, Korean and Taiwanese patients with acute coronary
syndrome – randomized, double-blind, phase III PHILO study. Circ J (2015)
79:2452–60. doi: 10.1253/circj.CJ-15-0112

20. Sacco RL, Diener H-C, Yusuf S, Cotton D, Ounpuu S, LawtonWA, et al. Aspirin
and extended-release dipyridamole versus clopidogrel for recurrent stroke. N Engl J
Med (2008) 359:1238–51. doi: 10.1056/NEJMoa0805002

21. Moll F, Baumgartner I, Jaff M, Nwachuku C, Tangelder M, Ansel G, et al.
Edoxaban plus aspirin vs dual antiplatelet therapy in endovascular treatment of
patients with peripheral artery disease: Results of the ePAD trial. J Endovasc Ther
(2018) 25:158–68. doi: 10.1177/1526602818760488

22. Yamada E, Okada S, Saito T, Osaki A, Ozawa A, Yamada M. Insulin
autoimmune syndrome during the administration of clopidogrel. J Diabetes (2016)
8:588–9. doi: 10.1111/1753-0407.12385

23. Uchigata Y, Hirata Y, Iwamoto Y. Drug-induced insulin autoimmune
syndrome. Diabetes Res Clin Pract (2009) 83:e19–20. doi: 10.1016/j.diabres.2008.10.015

24. Eisenbarth GS. MEDICAL INTELLIGENCE UNIT 13: Molecular mechanisms of
endocrine and organ specific autoimmunity. Texas, U.S.A: R.G. Landes Company (1999).

25. Uchigata Y, Kuwata S, Tokunaga K, Eguchi Y, Takayama-Hasumi S, Miyamoto
M, et al. Strong association of insulin autoimmune syndrome with HLA-DR4. Lancet
(1992) 339:393–4. doi: 10.1016/0140-6736(92)90080-m
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fendo.2023.1091933/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2023.1091933/full#supplementary-material
https://doi.org/10.1530/EJE-16-1062
https://doi.org/10.1038/nrendo.2014.170
https://doi.org/10.1002/dmrr.865
https://doi.org/10.1210/js.2017-00316
https://doi.org/10.1093/nar/gkz1029
https://doi.org/10.1093/nar/gkq1128
https://doi.org/10.1016/S0140-6736(16)31678-6
https://doi.org/10.1016/S0140-6736(18)32203-7
https://doi.org/10.1136/bmj.d5928
https://doi.org/10.1136/bmj.315.7109.629
https://doi.org/10.1002/sim.1186
https://doi.org/10.1136/ebmental-2019-300117
https://doi.org/10.1136/ebmental-2019-300117
https://doi.org/10.1056/NEJMoa0706482
https://doi.org/10.1056/NEJMoa1205512
https://doi.org/10.1056/NEJMoa1611688
https://doi.org/10.1056/NEJMoa0901301
https://doi.org/10.1056/NEJMoa0904327
https://doi.org/10.1253/circj.CJ-15-0112
https://doi.org/10.1056/NEJMoa0805002
https://doi.org/10.1177/1526602818760488
https://doi.org/10.1111/1753-0407.12385
https://doi.org/10.1016/j.diabres.2008.10.015
https://doi.org/10.1016/0140-6736(92)90080-m
https://doi.org/10.3389/fendo.2023.1091933
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chen et al. 10.3389/fendo.2023.1091933
26. Uchigata Y, Omori Y, Nieda M, Kuwata S, Tokunaga K, Juji T. HLA-DR4
genotype and insulin-processing in insulin autoimmune syndrome. Lancet (1992)
340:1467. doi: 10.1016/0140-6736(92)92654-x

27. Uchigata Y, Tokunaga K, Nepom G, Bannai M, Kuwata S, Dozio N, et al.
Differential immunogenetic determinants of polyclonal insulin autoimmune syndrome
(Hirata’s disease) and monoclonal insulin autoimmune syndrome. Diabetes (1995)
44:1227–32. doi: 10.2337/diab.44.10.1227

28. Agency for Healthcare Research and Quality (AHRQ), Rockville MD.
Clopidogrel - drug usage statistics, ClinCalc DrugStats database, in: Medical
expenditure panel survey (MEPS) 2013-2020 (2022) (Accessed October 21, 2022).

29. Agency for Healthcare Research and Quality (AHRQ), Rockville MD. Aspirin -
drug usage statistics, ClinCalc DrugStats database, in:Medical expenditure panel survey
(MEPS) 2013-2020 (2022) (Accessed October 21, 2022).

30. Yaturu S, DePrisco C, Lurie A. Severe autoimmune hypoglycemia with insulin
antibodies necessitating plasmapheresis. Endocr Pract (2004) 10:49–54. doi: 10.4158/
EP.10.1.49

31. Lupsa BC, Chong AY, Cochran EK, Soos MA, Semple RK, Gorden P.
Autoimmune forms of hypoglycemia. Med (Baltimore) (2009) 88:141–53.
doi: 10.1097/MD.0b013e3181a5b42e
Frontiers in Endocrinology 0916
32. Uchigata Y, Hirata Y, Omori Y, Iwamoto Y, Tokunaga K. Worldwide differences
in the incidence of insulin autoimmune syndrome (Hirata disease) with respect to the
evolution of HLA-DR4 alleles. Hum Immunol (2000) 61:154–7. doi: 10.1016/s0198-
8859(99)00144-5

33. Censi S, Mian C, Betterle C. Insulin autoimmune syndrome: from diagnosis to
clinical management. Ann Transl Med (2018) 6:335. doi: 10.21037/atm.2018.07.32

34. Francisco Lopez-Jimenez M.D. Rhabdomyolysis from statins: What’s the risk?.
(Oct 28th 2022). Available at: https://www.mayoclinic.org/diseases-conditions/high-
blood-cholesterol/expert-answers/rhabdomyolysis/faq-20057817.

35. Qurie A, Bansal P, Goyal A, Musa R. Allopurinol. Available at: https://www.ncbi.
nlm.nih.gov/books/NBK499942/.

36. Chen S, Qiang J, Tian R, Yuan T, Li M, Li Y, et al. Clopidogrel-associated
hypoglycemia and alternative antiplatelet therapy: A real-world, pharmacovigilance study.
Eur Heart J Cardiovasc Pharmacother (2022) 9(1):8-9. doi: 10.1093/ehjcvp/pvac050

37. Tudur Smith C, Marcucci M, Nolan SJ, Iorio A, Sudell M, Riley R, et al.
Individual participant data meta-analyses compared with meta-analyses based on
aggregate data. Cochrane Database Syst Rev (2016) 9:MR000007. doi: 10.1002/
14651858.MR000007.pub3
frontiersin.org

https://doi.org/10.1016/0140-6736(92)92654-x
https://doi.org/10.2337/diab.44.10.1227
https://doi.org/10.4158/EP.10.1.49
https://doi.org/10.4158/EP.10.1.49
https://doi.org/10.1097/MD.0b013e3181a5b42e
https://doi.org/10.1016/s0198-8859(99)00144-5
https://doi.org/10.1016/s0198-8859(99)00144-5
https://doi.org/10.21037/atm.2018.07.32
https://www.mayoclinic.org/diseases-conditions/high-blood-cholesterol/expert-answers/rhabdomyolysis/faq-20057817
https://www.mayoclinic.org/diseases-conditions/high-blood-cholesterol/expert-answers/rhabdomyolysis/faq-20057817
https://www.ncbi.nlm.nih.gov/books/NBK499942/
https://www.ncbi.nlm.nih.gov/books/NBK499942/
https://doi.org/10.1093/ehjcvp/pvac050
https://doi.org/10.1002/14651858.MR000007.pub3
https://doi.org/10.1002/14651858.MR000007.pub3
https://doi.org/10.3389/fendo.2023.1091933
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Xiao Wang,
Lund University, Sweden

REVIEWED BY

Akio Nakashima,
Jikei University School of Medicine,
Japan
Slobodan Kapor,
University of Belgrade, Serbia
Milan Aksic,
Institute of Anatomy, University of
Belgrade, Serbia

*CORRESPONDENCE

Li Ding

dinglitml@tmu.edu.cn

Ming Liu

mingliu@tmu.edu.cn

SPECIALTY SECTION

This article was submitted to
Systems Endocrinology,
a section of the journal
Frontiers in Endocrinology

RECEIVED 09 December 2022

ACCEPTED 06 March 2023
PUBLISHED 15 March 2023

CITATION

Du Y, Li F, Li S, Ding L and Liu M (2023)
Causal relationship between polycystic
ovary syndrome and chronic kidney
disease: A Mendelian randomization study.
Front. Endocrinol. 14:1120119.
doi: 10.3389/fendo.2023.1120119

COPYRIGHT

© 2023 Du, Li, Li, Ding and Liu. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 15 March 2023

DOI 10.3389/fendo.2023.1120119
Causal relationship between
polycystic ovary syndrome
and chronic kidney disease: A
Mendelian randomization study

Yufei Du, Fengao Li, Shiwei Li , Li Ding* and Ming Liu *

Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital,
Tianjin, China
Objective: Polycystic ovary syndrome is one of the most common endocrine

disorders among women of childbearing age. The relationship between

polycystic ovary syndrome and chronic kidney disease remains unclear and

controversial. In this study, we investigated the causal role of polycystic ovary

syndrome in the development of chronic kidney disease using the two-sample

Mendelian randomization method.

Methods: Public shared summary-level data was acquired from European-

ancestry genome wide association studies. We finally obtained 12 single

nucleotide polymorphisms as instrumental variables, which were associated

with polycystic ovary syndrome in European at genome-wide significance (P <

5 × 10−8). Inverse-variance weighted method was employed in the Mendelian

randomization analysis and multiple sensitivity analyses were implemented.

Outcome data were obtained from the Open GWAS database.

Results: A positive causal association was observed between polycystic ovary

syndrome and chronic kidney disease (odds ratio [OR]=1.180, 95% confidence

interval [CI]: 1.038-1.342; P=0.010). Further analyses clarified that causal

relationship exist between polycystic ovary syndrome and some serological

indicators of chronic kidney disease (fibroblast growth factor 23: OR= 1.205,

95% CI: 1.031-1.409, P=0.019; creatinine: OR= 1.012, 95% CI: 1.001-1.023,

P=0.035; cystatin C: OR= 1.024, 95% CI: 1.006-1.042, P=0.009). However,

there was no causal association of polycystic ovary syndrome with other

factors in the data sources we employed.

Conclusions: Our results indicate an important role of polycystic ovary

syndrome in the development of chronic kidney disease. This study suggests

that regular follow-up of renal function in patients with polycystic ovary

syndrome is necessary for the early treatment of chronic kidney disease.

KEYWORDS

polycystic ovary syndrome, chronic kidney disease, Mendelian randomization, single
nucleotide polymorphisms, causality
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Introduction

Polycystic ovary syndrome (PCOS) is one of the most common

endocrinopathies , a ffect ing 4–21% of women among

premenopausal women (1–3). The features of PCOS include

oligomenorrhoea, infrequent ovulation, polycystic ovarian

morphology (4) and a series of metabolic disorders including

hyperandrogenism, hyperinsulinemia, gonadotropin imbalance,

dyslipidemia, and often accompanied by increased visceral fat (5).

The etiology and pathological mechanism of this disease remains

unclear. Genome-wide association studies (GWAS) provided

genetic evidence for further PCOS research (6–9). As mentioned

above, patients with PCOS are accompanied by a series of metabolic

disorders, and whether this leads to the occurrence of other chronic

diseases is still lacking sufficient evidence.

Chronic kidney disease (CKD) is a common chronic disorder

that refers to the long-term loss of renal function, eventually may

progress into end-stage renal disease with a high rate of mortality

(10). It affects millions of patients worldwide (11). The global

burden of CKD is growing year after year, and almost 10% of

adults around the world are affected by some subtypes of CKD,

resulting in 1.2 million deaths and 28 million patients suffer from

the disease each year (12, 13). CKD can occur for many reasons,

including that more common and well-researched such as diabetes,

glomerulonephritis, and cystic kidney diseases, however, the precise

influencing factors of CKD are still not comprehensively studied

(14). Recent studies have shown that long-term metabolic disorders,

which could irreversibly impair the renal function and structure, are

closely related to the occurrence of CKD (15).

The various metabolic disturbances caused by PCOS might lead

to increasing incidence of CKD in later life in these PCOS patients,

but few studies have focused on the long-term changes in renal

function in patients with PCOS. Duleba et al. found that urinary

albumin excretion (UAE) can occur in patients with PCOS with

cardiovascular risk factors (16). Gozukara et al. found that although

the test results of renal function were in the normal ranges in

patients with PCOS, the GFR, urinary albumin excretion, and

serum uric acid levels were all higher in PCOS patients than that

in the controls (17). In previous animal experiments, Mohadetheh

Moulana found that PCOS rats had higher renal mast cells

infiltration which may lead to alteration of the immunological

niche and persistent damage of kidney (18). Pruett et al.

demonstrated that renal SGLT2 inhibitor could decreased the fat

mass, plasma leptin, and additional therapies needed to improve

renal injury in PCOS rats (19). These studies provide some

supportive clues for us to understand the relationship between

PCOS and CKD, but no human studies have been done to our

knowledge to determine whether PCOS causes the occurrence of

CKD or increase the risks for renal disease.

To gain further insight into the relationship between PCOS and

CKD, we employed the Mendelian randomization (MR), a novel

genetic epidemiological method that uses genetic variants as

instrumental variables, to determine whether an observational

association between a risk factor and an outcome is consistent

with a causal effect (20). The MR methods capitalizes on the
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presumed random assortment of genes from parents to offspring,

which provides unbiased detection of causal effects, since genetic

variants are less susceptible to environmental factors (21). Using the

findings for PCOS provided by the extensive GWAS data, we

conducted two-sample (exposure and outcome measured in

different samples) MR study to evaluate the causal effects of

patients with PCOS on the risk of developing CKD, and further

investigate the causal effects between genetic variants that

determine the variation of PCOS and CKD risk factors,

s e ro log i ca l ind ica tor s o f CKD, rena l tubu le in jury

biomarkers, separately.
Methods

Study design

We used a two-sample MR to investigate the causal relationship

between PCOS and CKD or other factors including CKD risk

factors, serological indicators of CKD and renal tubule injury

biomarkers in the European population. For MR analysis, we

used the inverse variance weighted (IVW) analysis accounting for

correlations between instrument variables and outcomes. For the

sensitivity analysis, weighted-median and MR-Egger analyses were

performed. Exposure data derived from a meta-analysis, and ethics

approval was obtained from the relevant research ethics committee

(22). Outcome data can be obtained from the Open GWAS database

(http://gwas.mrcieu.au.uk). Since this study was based on the public

GWAS database, ethics approval was not required (23). This study

was conducted based on the Strengthening the Reporting of

Observational Studies in Epidemiology using Mendelian

Randomization (STROBE-MR) guideline (24).
Instrument variable selection

The SNPs associated to PCOS were derived from a large-scale

genome-wide meta-analysis of polycystic ovary syndrome (22). The

PCOS cohort included 113,238 European subjects (10,074 cases and

103,164 controls). We selected single nucleotide polymorphisms

(SNPs) that have been shown to be significantly associated with

PCOS (14 SNPs) at a genome-wide significance level (P < 5 × 10−8).

Linkage disequilibrium analysis was performed based on a

threshold of r2 < 0.001. In this study, 13 extracted SNPs passed

the test and 1 was excluded (rs853854) for being palindromic with

inter mediate allele frequencies (Supplementary Table 1). To avoid

weak instrument bias, we calculated the F-statistic. In our study, F-

statistics for the instrumental variables were strong (> 10) (25).

These selected SNPs must meet the following three core

assumptions. Firstly, SNPs are significantly correlated with

exposure which means that the SNPs can predict exposure

effectively. Secondly, the SNPs have to be independent of the

outcome, namely the SNPs can only affect outcome through

exposure. Thirdly, the SNPs must be independent of the

confounding factors associated with exposure or outcome. Studies
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have found that PCOS is associated with type 2 diabetes, obesity and

hypertension, which may increase the risk of CKD. The above-

mentioned risk factors may also be potential confounding factor

between PCOS and CKD. In order to satisfy the assumptions, we

conducted further analysis after taking into account confounding

factors. To investigate whether PCOS associated SNPs are

significantly correlated with other confounding factors at the

genome-wide level, we searched the PhenoScanner database

(http://www.phenoscanner.medschl.cam.ac.uk/) for these PCOS

associated SNPs. We found that rs2271194 is associated with

Body mass index (BMI), which is a risk factor for CKD. The

remaining SNPs are not associated with common confounding

factors interrelated to PCOS and CKD such as diabetes,

hypertension, obesity, glomerulonephritis and polycystic kidney

disease. To rule out potential confounding factors, rs2271194 was

excluded and 12 SNPs were eventually included for further analyses.
Outcome data source

The summary level dataset of CKD was retrieved from the Open

GWAS database (https://gwas.mrcieu.ac.uk/), which included

216761 participants with CKD (3902 cases and 212841 controls).

Summary-level statistics of the CKD risk factors were obtained from

the Open GWAS database (23). we selected several well-established

risk factors for CKD, including type 2 diabetes, autoimmune

diseases, cystic kidney disease, obesity, and hypertension from a

review of Chen et al. (26). In order to explore the relationship

between PCOS and CKD serological indicators, we also obtained

data from the database and selected some serological indicators that

would be used in clinical practice for analysis, mainly including

fibroblast growth factor 23, creatinine, cystatin C, estimated

glomerular filtration rate, b2-microglobulin and urinary albumin-

to-creatinine ratio. Finally, to explore whether renal tubular injury

is associated with PCOS, we also obtained biomarkers of renal

tubular injury from the Open GWAS database and selected a part of

common biomarkers for analysis, including insulin-like growth

factor-binding protein 7, epidermal growth factor, monocyte

chemoattractant protein-1, tumor necrosis factor receptor 1,

tumor necrosis factor receptor 2, chitinase-3-like protein 1,

kidney injury molecule 1, neutrophil gelatinase-associated

lipocalin, interleukin 6 and interleukin 10 from a review of Zhang

et al. (27). All data for analysis are based on European population.
Statistical analysis

We utilized 12 genetic variants as instrumental variables to

estimate the causal association between PCOS and CKD and other

factors. In this study, variable selection was relied on prior

information. We selected outcome variables based on previous

research reports to be as close to the clinical application as

possible, and we also pay attention to the latest biomarkers to

explore the possibility of new discoveries. In the present study, the

robust methods: inverse variance weighting (IVW), MR Egger, and

weighted median were employed to assess the causal relationship.
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IVW, the main dependent method, equates to implement a

weighted linear regression of the associations between the

outcome instrumental variables (IVs) and the exposure, merges

the Wald ratio estimates of each IV in a meta-analysis manner (28,

29). Sensitivity analyses, including MR-Egger and weighted median.

MR Egger considers the horizontal pleiotropic effects, in which the

intercept may provide evidence for potential pleiotropic effects

across IVs, although its estimates may be imprecise. The weighted

median estimator is a method in which at least 50% of the weights

are considered valid instrumental variables (30). Weighted median

method allows some genetic variants are invalid, but only if at least

half of them are valid instruments (31). Heterogeneity is another

major concern in MR analyses, suggesting the possible concurrent

presence of pleiotropy. To evaluate the heterogeneity between the

IVs, IVW, MR-Egger, and Maximum likelihood methods were

used. Cochran ’s Q statistic was employed to quantify

the heterogeneity.
Results

The association between PCOS and CKD

We first used the selected 12 SNPs as the instrumental variables

to assess the association between CKD and PCOS. The inverse

variance weighted (IVW) method was used for the MR analysis,

while the other four methods (MR Egger, Simple mode, Weighted

median and Weighted mode) were applied to confirm the

robustness of the results (Figure 1). In the IVW analysis, the

effect odds ratio (OR) of PCOS on CKD was 1.180 (95% CI,

1.038-1.342; P = 0.010) (Table 1), which positive association

exists between PCOS and CKD. MR-Egger do not detect potential

horizontal pleiotropy for PCOS (P = 0.726), and there was no

significant heterogeneity detected through Cochran’s Q test with

both MR-Egger and IVW methods (P = 0.361, P =

0.435, respectively).
No causal relationship between PCOS and
CKD risk factors

The occurrence of CKD is associated with many risk factors. We

wondered whether PCOS could contribute to the occurrence of

CKD by enhancing the risk factors of CKD. Several common CKD

risk factors were selected and analyzed by multiple methods (MR

Egger, WM, IVW), and none of them were statistically significant.

The beta value and p value are as follows: Type 2 diabetes (0.964,

95% CI, -0.908-1.024; P = 0.235), Autoimmune diseases (1.012, 95%

CI, 0.952-1.076; P = 0.704), Cystic kidney disease (1.089, 95% CI,

0.790-1.500; P = 0.604), Obesity class 1 (defined as BMI ≥ 30 kg/m2,

-0.979, 95% CI, -0.906-1.058; P = 0.594), Obesity class 2 (defined as

BMI ≥ 35 kg/m2, -0.904, 95% CI, -0.798-1.025; P = 0.117), Obesity

class 3 (defined as BMI ≥ 40 kg/m2, -0.940, 95% CI, 0.736-1.200; P =

0.618), Hypertension (0.999, 95% CI, 0.994-1.004; P = 0.585)

(Supplementary Figure 1). Significant heterogeneity was observed

between hypertension and PCOS (IVW analysis: Q = 21.780,
frontiersin.org

http://www.phenoscanner.medschl.cam.ac.uk/
https://gwas.mrcieu.ac.uk/
https://doi.org/10.3389/fendo.2023.1120119
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Du et al. 10.3389/fendo.2023.1120119
P=0.026). No horizontal pleiotropy was identified by MR-

Egger test.
PCOS affects the changes of fibroblast
growth factor 23, creatinine and cystatin
C of CKD

Serological indicators are generally used to diagnose diseases or

reflect the severity of diseases. We want to know whether there is a

causal relationship between some serological indicators of CKD and

PCOS. The IVW analysis showed that PCOS and some indicators

have causal relationship such as fibroblast growth factor 23 (1.205,

95% CI, 1.031-1.409; P = 0.019), creatinine (0.012, 95% CI, 1.001-

1.023; P = 0.035), cystatin C (1.024, 95% CI, 1.006-1.042; P = 0.009).

There are no relationships between PCOS and other serological

indicators: estimated glomerular filtration rate (-0.803, 95% CI,

0.470-1.371; P = 0.421), b2-microglobulin (1.233, 95% CI, 0.850-

1.791; P = 0.270), urinary albumin-to-creatinine ratio (0.994, 95%

CI, 0.925-1.067; P = 0.861) (Figure 2). The heterogeneity was
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observed between PCOS and serological indicators for CKD by

the IVW analysis: fibroblast growth factor 23 (Q = 5.593, P= 0.848),

creatinine (Q =12.209, P = 0.348), cystatin C (Q = 24.178, P= 0.012),

estimated glomerular filtration rate (Q = 14.978, P= 0.092), b2-
microglobulin (Q =1.172, P = 0.760), urinary albumin-to-creatinine

ratio (Q = 33.101, P<0.001). For the horizontal pleiotropy, we found

that there was no evidence between PCOS and serological indicators

of CKD: fibroblast growth factor 23 (P= 0.971), creatinine (P =

0.212), cystatin C (P= 0.357), estimated glomerular filtration rate

(P= 0.180), b2-microglobulin (P = 0.600), except for urinary

albumin-to-creatinine ratio (P= 0.046).
No causal association between PCOS and
renal tubule injury biomarkers

An increasing number of renal tubule injury biomarkers are

being discovered and applied in the diagnosis and treatment of

CKD. However, whether there should be a relationship between

PCOS and renal tubule injury biomarkers still remains a mystery.
TABLE 1 The causal effect between PCOS and CKD.

Exposure Outcome Methods nSNP SE OR (95%CI) P value

Polycystic ovary syndrome Chronic kidney disease

MR Egger 12 0.341 1.046(0.536,2.042) 0.898

Weighted median 12 0.086 1.141(0.963,1.352) 0.127

Inverse variance weighted 12 0.065 1.180(1.038,1.342) 0.011

Simple mode 12 0.146 1.123(0.844,1.495) 0.443

Weighted mode 12 0.131 1.141(0.882,1.475) 0.337
fron
SNP, single-nucleotide polymorphism; SE, standard error; OR, odds ratio; 95%CI, 95% confidence interval.
FIGURE 1

Two-sample MR analysis of the effect of PCOS on CKD using different methods. X-axis represents the effect of SNP on exposure (polycystic ovary
syndrome) and the Y-axis represents the effect of SNP on outcome (chronic kidney disease), and the colored lines indicate the results of fitting
different MR methods. MR, Mendelian randomization; SNP, single-nucleotide polymorphism.
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We next performed IVW analyses for PCOS and those biomarkers.

The result shows that there was no causal relationship between the

two: insulin-like growth factor-binding protein 7 levels (0.918, 95%

CI, 0.741-1.135; P = 0.429), epidermal growth factor levels (0.978,

95% CI, 0.902-1.060; P = 0.588), monocyte chemoattractant

protein-1 levels (1.036, 95% CI, 0.959-1.118; P = 0.368), tumor

necrosis factor receptor 1 levels (1.035, 95% CI, -0.970-1.104; P =

0.301), tumor necrosis factor receptor 2 levels (1.063, 95% CI, 0.974-

1.160; P = 0.173), chitinase-3-like protein 1 levels (1.014, 95% CI,

0.944-1.088; P = 0.712), kidney injury molecule 1 levels (1.006, 95%

CI, -0.937-1.080; P = 0.868), neutrophil gelatinase-associated

lipocalin (1.033, 95% CI, 0.880-1.214; P = 0.688), interleukin 6

(1.118, 95% CI, 0.956-1.306; P = 0.163), interleukin 18 (1.042, 95%

CI, 0.854-1.270; P = 0.688), interleukin 10 (0.985, 95% CI, 0.578-

1.681; P = 0.957) (Supplementary Figure 2). For the heterogeneity,

we found that monocyte chemoattractant protein-1 levels (IVW: Q

= 25.601, P= 0.007), tumor necrosis factor receptor 2 levels (IVW: Q

= 34.016, P< 0.001), chitinase-3-like protein 1 levels (IVW: Q =

22.586, P= 0.020) were statistically significant. MR-Egger do not

detect potential horizontal pleiotropy.
Discussion

Previous researches have demonstrated that comorbidities

related to PCOS included obesity, type 2 diabetes, cardiovascular

disease, etc., but the relationship between PCOS and CKD is still

contradictory (32–34). Patil et al. showed that women with PCOS

may be at increased risk for development of CKD with advanced age

(32). Behboudi-Gandevan et al. found that the risk of CKD in

patients with PCOS was like the common female population, and

larger studies with long-term follow-up was needed (33). Since

there is no consensus, this study used Mendelian randomization to

explore the potential casual association of PCOS and CKD. Our

result suggested that the association between PCOS and CKD was

statistically significant when using IVW analysis, and the trend of

other sensitivity analyses were consistent with the results of IVW,

which indicated that the causal relationship between PCOS and

CKD we obtained is relatively robust. Our findings indicated that
Frontiers in Endocrinology 0521
PCOS is causally linked to CKD. To learn more about the role and

impact of PCOS in CKD development, the risk factors were evolved

as outcomes and MR analysis were conducted (26). Several studies

suggest that PCOS causes CKD because of metabolic-related factors

such as obesity and disordered hormone secretion (32, 33).

However, our research did not find the causal relationship

between PCOS and CKD risk factors. Future studies with larger

sample sizes need to be performed to clarify the relationship

between the two.

The clinical diagnosis of CKD mainly relies on the classical

definition: estimated glomerular filtration rate (eGFR) <60 ml/

min/1.73m2, or markers of kidney damage, such as albuminuria,

hematuria or abnormal structure on imaging, persistent for at

least 3 months (15). With the deepening of research on CKD

diagnosis and treatments, other indicators were validly used in

fundamental and clinical research. Elevated levels of urinary

albumin-to-creatinine ratio often indicates glomerular injury.

Previous reports showed the high level of urinary albumin-to-

creatinine ratio in patients with PCOS (35).b2-microglobulin is

another early and sensitive diagnostic indicator of kidney disease.

However, our results suggested no causal relationship between

PCOS and those indicators mentioned above (eGFR, urinary

albumin-to-creatinine ratio and b2-microglobulin). Creatinine

was used as an important indicator for CKD patients, and it

also formed a collaboration equation for estimating glomerular

filtration rate (36). New eGFR equations that incorporate

creatinine and cystatin C (37) could provide more accurate

information for diagnosing CKD. Thus, we also studied Cystatin

C (Cys C), another novel predictor for the development of CKD

(38). Cys C has been proposed as a potential glomerular filtration

rate (GFR) marker for the early detection of CKD and skin

interstitial fluid (ISF) Cys C equipment has been developed (39).

Cystatin-C levels was associated with an increase in IL-6 and a

decrease in SOD in PCOS patients. This result suggested immune

dysregulation exist in PCOS patients may affect the function of

other organs (40). Fibroblast growth factor 23 (FGF23), a bone-

der ived phosphatur ic hormone for regu la t ing 1 ,25-

dihydroxyvitamin D3 (calcitriol), could decrease the number of

sodium-phosphate cotransporter 2a (NaPi-2a) on the basolateral
frontiersin.or
FIGURE 2

Causal effect of PCOS on CKD Serological indicators. Forest plots showing the range of OR values for different serological indicators. The green
point (p>0.05) and red point (p<0.05) represents OR values of each CKD serological indicators, the vertical lines on either side of the point represent
the 95% confidence interval. OR, odds ratio; 95%CI, 95% confidence interval.
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membrane of proximal tubule cells. In recent years, the role of

FGF23 in CKD has gradually been discovered. Makoto Kuro-o

considered that FGF23 increase is deemed necessary to

compensate for the decrease in the nephron number during

CKD progression (41). Previously studies have reported that

FGF23 increasing, calcitriol decreasing, and parathyroid

hormone increasing occur in this order during CKD progression

(41). Another research suggested that decreased FGF23 could

improve outcomes in CKD (42). Anyhow, FGF23 has been

served as a marker and potential pathogenic factor for CKD

progression (41). We performed MR analysis to determine

whether PCOS influenced those indicators of CKD. These

results showed that there might be a causal relationship between

PCOS and those three indicators including creatinine, Cys C and

FGF23 which hint a possible association between PCOS and CKD.

Renal tubular damage is the important pathological process

leading from CKD to the end stage of various renal disease (43). We

wondered whether PCOS might be directly targeting the renal

tubular. We selected reported renal tubular injury markers to

explore whether PCOS is causally related to them (27). The

results showed that PCOS could not cause the changes of these

biomarkers, which might imply that CKD induced by PCOS is not

mediated by these biomarkers of renal tubular injury.

Overall, Mendelian randomization (MR) is a powerful tool in

investigating the relationship between exposures and outcomes, it

could help prioritize potential causal relationships. The advantage

of MR is that confounding factors could be controlled, and the

wastes of manpower and material resources could be overcome

comparing with the randomized controlled trial. In addition, MR

studies are generally considered to provide higher-quality evidence

than observational studies. Our results suggested that PCOS can

lead to CKD, might be an independent causal relationship.

Nevertheless, the study also has certain limitations that must be

acknowledged. The sample size is a limiting factor in such studies.

The larger the sample size, the more reliable the conclusion. Gender

factor is a possible bias in the current study because the CKD data

included data on mixed-gender loci, but the PCOS data included

only female data. This may have influenced the results to some

extent, but it is difficult to isolate female CKD data alone. For

further study, a long-term cohort stratified by age and sex is needed

to validate our conclusions. In addition, our study sample was all

European ancestry, so the generalizability of our results to other

races/ethnicities is uncertain.

This is the first study to investigate the causal relation of PCOS

and CKD according to our knowledge. In conclusion, our results

revealed that there is a causal relationship between PCOS and CKD,

but whether this causal relationship is direct or indirect is still

unclear, large-scale prospective cohort studies are needed to validate

the preliminary findings of our study, and even more basic

experimental research need to be done with human tissue, to

further clarify the deep molecular mechanisms. The clinical

significance of this study is that in addition to the prevention of
Frontiers in Endocrinology 0622
cardiovascular and diabetes complications in patients with PCOS,

more attentions should also be paid to the long-term follow-up of

renal function to provide an opportunity for early intervention to

slow down the progression of CKD.
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A genome-wide analysis
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Background: The incidence of complications of non-alcoholic fatty liver disease

(NAFLD) and type 2 diabetes (T2D) has been increasing.

Method: In order to identify the shared genetic architecture of the two disease

phenotypes of NAFLD and T2D, a European population-based GWAS summary

and a cross-trait meta-analysis was used to identify significant shared genes for

NAFLD and T2D. The enrichment of shared genes was then determined through

the use of functional enrichment analysis to investigate the relationship between

genes and phenotypes. Additionally, differential gene expression analysis was

performed, significant differentially expressed genes in NAFLD and T2D were

identified, genes that overlapped between those that were differentially

expressed and cross-trait results were reported, and enrichment analysis was

performed on the core genes that had been obtained in this way. Finally, the

application of a bidirectional Mendelian randomization (MR) approach

determined the causal link between NAFLD and T2D.

Result: A total of 115 genes were discovered to be shared between NAFLD and

T2D in the GWAS analysis. The enrichment analysis of these genes showed that

somewere involved in the processes such as the decomposition andmetabolism

of lipids, phospholipids, and glycerophospholipids. Additionally, through the use

of differential gene expression analysis, 15 core genes were confirmed to be

linked to both T2D and NAFLD. They were correlated with carcinoma cells and

inflammation. Furthermore, the bidirectional MR identified a positive causal

relationship between NAFLD and T2D.

Conclusion:Our study determined the genetic structure shared between NAFLD

and T2D, offering a new reference for the genetic pathogenesis and mechanism

of NAFLD and T2D comorbidities.

KEYWORDS

non-alcoholic fatty liver disease, type 2 diabetes, GWAS, differential gene expression,
shared genetics, mendelian randomization
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1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is a clinicopathological

syndrome that is characterized by hepatic parenchymal steatosis and

fat storage in the absence of a history of binge drinking. In simple

terms, NAFLD is usually benign, but if linked with an unhealthy

lifestyle, obesity, and other metabolic syndromes, it may develop

from simple fat accumulation to non-alcoholic steatohepatitis

(NASH), liver fibrosis and cirrhosis, and, in rare cases, liver cancer

(1). It is a complex disease that results from the interaction of

environmental and genetic factors, so it has multiple pathogenic

factors such as insulin resistance (IR), lipid metabolism disorders,

oxidative stress, and cytokine effects (2). In addition to being

considered a manifestation of IR in the liver, NAFLD often

coexists with metabolic syndromes such as obesity, type 2 diabetes

(T2D), and hyperlipidemia (3). Among them, T2D is a typical

endocrine and metabolic disease that is affected by multiple

pathogenic factors, and its incidence is increasing rapidly

worldwide. T2D, the most prevalent type of diabetes, is

characterized by hyperglycemia, IR, and lipid metabolism disorder

as the pathological basis (4). In recent years, it has been found that

NAFLD and T2D show similar pathological characteristics and often

coexist as commondiseases that seriously endanger public health. On

one hand, T2D can lead to dysfunction of glycolipid metabolism in

the body through the development of factors such as IR, chronic

inflammation and oxidative stress, which results in NAFLD and

further liver damage and worsens the prognosis of NAFLD (5)? On

the other hand, through fat deposition, inflammation, endoplasmic

reticulum stress, and oxidative stress, NAFLD can also exacerbate

hepatic IR and promote metabolic abnormalities including

hyperglycemia, creating the ideal environment for the development

of T2D (6).

Related studies have shown that NAFLD and T2D interact with

each other, and that there is a complex two-way relationship

between the two that can accelerate deterioration. Targher et al.

(7) found that NAFLD was ubiquitous in patients with T2D (7).

Similarly, Jarvis et al. (8), in a meta-analysis of population-based

cohort studies, found that the occurrence of T2D was associated

with a more than two-fold increase in the risk of severe liver disease

events among those at risk of or diagnosed with NAFLD (8). This

finding was the same as that found by Mantovani et al. (9) in a study

of the impact of NAFLD on the risk of development of T2D (9).

Also, Pinero et al. (10) reported that the global incidence of NASH

had reached 3% to 5%. NASH occurs in 20% to 30% of patients with

T2D and obesity, and NAFLD occurs in 69% to 87% of those

patients (10). Hence, the incidence of NAFLD combined with T2D

is higher than that of NAFLD alone or T2D alone (5). Thus, the

identification of the shared genetic architecture of NAFLD and T2D

has important implications for the prevention and treatment of

these diseases.

In recent years, the development of next-generation sequencing

and high-throughput genotyping arrays has led to the GWAS and

exome-wide association studies (EWAS), which are methods for the

identification of genetic factors for many complex diseases (11). The
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use of GWAS, which is larger-scale than EWAS, has led to the

identification of many polymorphisms and genetic variants that are

associated with NAFLD and T2D and the investigation of new

therapeutic targets. In addition, differentially expressed genes

(DEGs) are key to learn about gene activity. They have now

become one of the most important tools for the discovery of

biomarkers (12). This method can be used to find genes that

exhibit notable variations in expression, to analyze statistically the

findings to pinpoint particular genes that are associated with those

conditions, and then to analyze the biological importance of those

particular genes. More importantly, DEGs can complement the

knowledge of important target tissues and cell types that the GWAS

approach lacks in disease pathogenesis, thus realizing the

transformation of relevant gene loci into mechanisms. Hence it

can be seen that the integration of GWAS summary statistics and

gene expression data can identify disease-related tissues and cell

types without bias, increase the credibility of the analysis results,

and provide a sufficient basis to explain the pathogenesis.

Current genetic studies that target NAFLD and T2D require the

discovery of more significant genetic association signals to support

and translate the research through various novel analytical methods

into biological and potentially therapeutic knowledge. Therefore,

this study first conducted a comprehensive genetic analysis through

the use of GWAS to identify susceptibility genes for NAFLD

combined with T2D. The core shared genes were further screened

as this information was combined with the results of DEG analysis.

Subsequently, functional annotation analysis was performed to

identify the underlying biological pathways of these core, shared

genes. At the same time, a two-sample MR analysis was conducted

to explore the causal relationship between NAFLD and T2D. The

above analysis provided a robust theoretical basis for the study of

NAFLD and T2D complications and new ideas and opportunities

for the further development of prevention and treatment strategies.
2 Methods

2.1 Data summary

To identify genetic variants in NAFLD combined with T2D, the

GWAS summary statistics for this study were obtained from the US

National Human Genome Research Institute GWAS catalog

(https://www.ebi.ac.uk/gwas/), including NAFLD (1,483 cases and

17,781 controls) and T2D (4,040 cases and 113,735 controls). (13,

14). For the DEG analysis, the organism was Homo sapiens, and the

experiment type was expression profiling by array, which set the

screening conditions of the dataset. The related gene expression

datasets GSE48452, GSE25724, GSE17470, and GSE20966 were

downloaded from the Gene Expression Omnibus database

(https://www.ncbi.nlm.nih.gov/geo/), which included human liver

biopsy (18 NASH, 14 NAF, 27 obese, 14 controls), human islets, and

NASH liver biopsy (6 case and 4 controls) and beta-cells from

pancreatic tissue (n=10) (15–18). All data sources can be found

in Table 1.
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2.2 Study-level quality control

The “GWASInspector” R package was used to conduct

harmonized quality control (QC) on the GWAS statistics of

NAFLD and T2D phenotypes to ensure that false positive signals

were eliminated and that low-quality data did not obscure actual

signals (19, 20). NAFLD and T2D GWAS summary data were

performed separately in the QC. The reference dataset was the 1000

genomes project reference panel (21), the specific genome build

version was GRCh37, and we included the relevant information

from the European population. The QC involved: the deletion of

variants that contained missing fundamental values or were

duplicated; the deletion of monomorphic variants; the checking of

the consistency of allele frequencies with reference datasets; the

alignment of alleles with reference datasets, and the comparison of

those alleles to ensure that the resulting allele frequencies were

correct; the removal of unverifiable mismatches and multi-allelic

variants, and; the setting of a threshold plot_cut-off_p = 0.01 to

exclude low-significance SNPs.
2.3 Cross-trait meta-analysis

Cross-trait meta-analysis was performed using the CPASSOC

software package. CPASSOC is a method for studying cross-

phenotypic (CP) associations by using summary statistics from

GWAS of multiple phenotypes. It combines effect estimates and

standard errors of GWAS summary statistics to test the hypothesis of

an association between SNPs and traits (22). Cross-phenotype

associations increase statistical power when the traits analyzed

share common variants or common genetic pathways, which are

often associated with pleiotropy (23). CPASSOC includes two tests,

SHom and SHet. In this study, R v.4.1.3 was used to perform the SHet

test considering the effect of trait heterogeneity, which can increase
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the power when the genetic effect size of different traits is different

(24). At this time, the gamma distribution parameters are estimated

by setting N = 1E4 and calling the EstimateGamma function. Due to

the many hypothesis tests that may be applied in GWAS studies, the

threshold is strictly controlled to minimize the number of false

positives reported. Currently, the most significant threshold is

generally recognized as p<5×l0-8, and this threshold also applies to

CPASSOC (24, 25). Then, hg19 was used as the reference genome,

and the refGene database was used to annotate the SNPs that reached

the threshold of significance level using the ANNOVAR software

(http://www.openbioinformatics.org/annovar/). Finally, the shared

genes of NAFLD combined with T2D were obtained.
2.4 Enrichment analysis

In this study, SNPs that showed significant variation in meta-

analysis and the genes from which they came were used for

functional enrichment analysis to explore the potential biological

function of shared susceptibility genes between NAFLD and T2D.

The online tool Metaspace (https://metascape.org/gp/index.html#/

main/step1) was used to analyze comprehensively these

susceptibility genes. Metaspace integrates more than 40 gene

function annotation databases such as Gene Ontology (GO) and

DisGeNET, providing multiple functional and diversified

visualization methods such as gene enrichment analysis and

protein interaction network analysis, which can be used for easy

exploration and analysis of gene function (26). The GO enrichment

analysis of candidate genes was focused on the use of the

“clusterProfiler” package of R v.4.1.3 (https://www.r-project.org/).

In addition, the online platform TissueEnrich (https://

tissueenrich.gdcb.iastate.edu/) was used as a calculating input-

gene centralized organization-specific enrichment tool to

complete the tissue-specific expression analysis (27).
TABLE 1 Data source information summary.

Phenotype Data Source Population Cases’
size

Controls’
size

Total’
size

Number
(SNPs)

PubMed
ID

Download Link

NAFLD GWAS Catalog European 1,483 17,781 19,264 6,797,908 32298765 https://www.ebi.ac.uk/gwas/
studies/GCST90011885

T2D GWAS Catalog European 4,040 113,735 117,775 8,404,432 26961502 https://www.ebi.ac.uk/gwas/
studies/GCST006801

NAFLD
(Discovery set)

GEO database
(GSE48452, GPL11532)

Germany 32 41 73 – 23931760 https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi

NAFLD
(Validation
set)

GEO database
(GSE17470, GPL2895)

USA 7 4 11 – 20221393 https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi

T2D
(Discovery set)

GEO database
(GSE25724, GPL96)

Italy 6 7 13 – 21127054 https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi

T2D
(Validation
set)

GEO database
(GSE20966, GPL1352)

USA 10 10 20 – 20644627 https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi
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2.5 Differential gene expression analysis
and enrichment

To confirm which of the chosen genes were the core shared genes

in NAFLD and T2D, four GEO datasets were selected for DEG

analysis. The specific dataset information is shown in Table 1. Of

the four, GSE48452 and GSE25724 were used as discovery sets, while

GSE17470 and GSE20966 were used as validation sets to verify the

validity and disease association of the identified genes. In addition,

each dataset was divided into two groups of samples, with NAFLD

patients or T2D patients as the experimental group and healthy people

as the control group. GEO data were processed through the application

of the online analysis tool GEO2R (https://www.ncbi.nlm.nih.gov/geo/

geo2r/) to identify DEGs. The visualization of overlapping genes in

GEO datasets is realized through the online platform jvenn (http://

www.bioinformatics.com.cn/static/others/jvenn/example.html) (28).

After the discovery and validation sets were merged, the final DEGs

were screened through use of adjust.P.Value, which is applied to adjust

the p-value for multiple tests to control the false discovery rate (FDR).

The FDR is calculated as expected rate x (false positive/(false positive +

true positive)) (29). The value of adj.pwas set at <0.05 to screen out the

DEGs of NAFLD and T2D. Then, the genes that overlapped with those

found through the GWAS were identified as the shared core genes of

NAFLD and T2D. Differential gene expression analysis is to identify

shared genes through differential expression analysis between two

phenotypes and to find overlapping genes with cross-trait analysis

based on the GWAS summary statistics. Using multiple analytical

methods to explore the reproducibility of our results between the two

phenotypes can make the findings more reliable and robust. Next, the

enrichment analysis described in section 2.4 was carried out for the

genes that were found to overlap in the GWAS and DEG analyses.
2.6 Mendelian randomization analysis

The QC-processed GWAS data were used in the MR analysis.

The potential causal effect between T2D and NAFLD was explored

through the use of a bidirectional MR analysis, in which the two

traits were evaluated alternately as exposure and outcome, and

independent SNPs that were closely related to exposure and

outcome traits were used as instrumental variables. Among them,

the screening of exposure was essential. The parameters p=5×10-8

specified the p-value of the SNP in the exposure; that is, only SNPs

with p-values of <5×10-8 were extracted (30). The NbDistribution

simulation calculation was set to 1000 and the p-value threshold for

judging whether the SNP was an outlier was set to 0.05 before the

MR analysis was performed. Then, the calculation of MR pleiotropy

residual sum and outlier (MR-PRESSO) was performed to identify

the existence of the outliers (31). Once outliers were located, they

were eliminated, and subsequent MR analysis was performed. MR

and sensitivity analyses were performed through the use of the

inverse variance weighted (IVW) method (32) with multiplicative

random effects, supplemented by MR Egger (33, 34), weighted

median (33), simple mode, and weighted mode methods (35). It

is important to note that horizontal pleiotropy is a potential
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confounding factor in MR analysis; i.e., instrumental variable

SNPs influence the outcome through a non-causal pathway,

which may affect the measurement of the relationship between

traits. To examine the impact of pleiotropy on the results of the MR

analysis, MR-PRESSO was also used to test for horizontal

pleiotropy for multiple instrumental variables. In addition,

heterogeneity statistics and leave-one-out analyses were included

in the MR analysis. Heterogeneity statistics mainly test the

differences between individual SNPs, and leave-one-out analysis

mainly tests the stability of MR results. The “TwoSampleMR” and

“MRPRESSO” packages were used for MR analysis in R v.4.1.3.
3 Results

3.1 Study-level QC

QC was performed through the use of “GWASInspector”. 100%

of NAFLD GWAS summary data (6,797,908 SNPs) and 99.7% of

T2D GWAS summary data (8,380,746 SNPs) passed the QC

procedure (Table 2). SNPs that passed the QC were included in

the subsequent cross-trait meta-analysis and MR analysis.
3.2 Cross-trait meta-analysis

In total, CPASSOC identified 241 SNPs that were significantly

associated (p<5×10-8) between NAFLD and T2D (Supplementary

Table 1). In the results of the cross-trait meta-analysis, the SNP with

the most significant p-value is rs73233361 (p=6.78×10-11), which is

located on chromosome 12. Most of the remaining SNPs are located

on chromosome 6, chromosome 2, and chromosome 3. 115 genes

were obtained by ANNOVAR annotation (Supplementary Table 1).
3.3 Enrichment analysis

The DisGeNET enrichment analysis revealed that 115 shared

genes were enriched in physical activity measurement, substance-

related disorders, lean body mass, smoking behaviors, substance

abuse problem, etc. (Figure 1A). The relevant results that were

identified based on DisGeNET enrichment analysis are listed in

Supplementary Table 2. GO enrichment analysis (Supplementary

Table 3; Supplementary Figure 1) showed that the shared genes of

NAFLD and T2D were enriched in the biological processes of
TABLE 2 The number of SNPs after QC processing.

NAFLD T2D

Input variant count 6,797,908 8,404,432

Missing crucial variable 0 2

Duplicated variants 0 12,367

Monomorphic variants 0 0

Output variant count 6,797,908 8,380,746
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processes of glycerophospholipids, phospholipids, lipid

decomposition, glycerolipid metabolism, and they also

participated in the enrichment in the molecular function of

activity of various enzymes. Among them, the most were

associated with sensory system development, a total of 7 genes

(FASLG, ISL1, TULP1, TBC1D32, ATP8A2, MAX , and

ADAMTS18). In addition, tissue enrichment analysis showed that

NAFLD and T2D shared genes were mainly enriched in 14 tissues:

the urinary bladder, prostate, cerebral cortex, stomach, rectum,

tonsil, heart muscle, skin, lymph node, small intestine, placenta,

liver, testis, and fallopian tube (Figure 1B). Among these tissues, the

liver is closely related to the pathogenesis of NAFLD and T2D.
3.4 Differential gene expression analysis
and enrichment

The DEG analysis results for each dataset are shown in

Supplementary Figures 2–5. The discovery sets GSE48452 and

GSE25724 contained 11,795 shared genes for NAFLD and T2D

(Supplementary Figures 6A, B), whereas the validation sets

GSE17470 and GSE20966 contained 15,557 shared genes for

NAFLD and T2D (Supplementary Figures 6C, D). A combination

of all discovery and validation sets yielded 9711 DEGs

(Supplementary Figure 6E). Subsequently, 5545 DEGs shared by

NAFLD and T2D were screened by adj.P (Supplementary Table 4).

Consideration of these genes with the candidate genes that had been

obtained through the GWAS produced fifteen core genes that were

shared by NAFLD and T2D, namely DNAJB9, VPS53, SCGN,

CMAS, RGS6, FASLG, ABHD10, ATRN, PLA2G2F, ITIH2,

ROBO1, SGCG, SH3GL2, CNR1, and FOXN3 (Table 3).
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DEG analysis of the above core genes (Supplementary Table 5)

showed that seven genes were upregulated (logFoldChange>0) and

eight genes were downregulated (logFoldChange<0) in disease.

These fifteen core genes were subjected to enrichment analysis,

and DisGeNET enrichment analysis revealed that they were

enriched in carcinoma cells and inflammation (Figure 2A).

Relevant findings from the DisGeNET enrichment analysis are

provided in Supplementary Table 6.

GO enrichment analysis showed significant enrichment of

several biological processes including regulation of endopeptidase

and peptidase activity, lipid catabolic process, fatty acid metabolic

process, response to lipopolysaccharide, and positive regulation of

proteolysis; cellular components of the distal axon, endoplasmic

reticulum lumen, and glutamatergic synapse; and molecular

functions such as carboxyl ic ester hydrolase activity

(Supplementary Table 7; Supplementary Figure 7). In addition,

tissue enrichment analysis showed that NAFLD and T2D core

shared genes were enriched in the urinary bladder, stomach,

rectum, tonsil, heart muscle, lymph node, skeletal muscle, liver,

skin, cerebral cortex, and testis (Figure 2B). The above enrichment

results supported the earlier finding that the fifteen core shared

genes, DNAJB9, VPS53, SCGN, CMAS, RGS6, FASLG, ABHD10,

ATRN, PLA2G2F, ITIH2, ROBO1, SGCG, SH3GL2, CNR1, and

FOXN3, were closely related to NAFLD and T2D.
3.5 Mendelian randomization analysis

No outliers were detected after processing with the

“MRPRESSO” R package. The results of MR analysis in T2D and

NAFLD are listed in Table 4. Among the results, regardless of
A

B

FIGURE 1

Enrichment analysis of shared genes in NAFLD and T2D. (A) DisGeNET enrichment analysis results. (B) Tissue enrichment results.
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whether NAFLD or T2D was used as exposure or outcome, the p-

value obtained by the IVW method was less than 0.05, indicating a

causal relationship between T2D and NAFLD; the related beta-

value was more than zero, which indicated that the causal

relationship between T2D and NAFLD was positive; this meant

that increasing exposure (T2D) increased the risk of the outcome

(NAFLD). From the scatter plot of the MR results (Figure 3), it can

be seen that the IVW method yielded the most significant results

among the five methods that were used for MR analysis. The plot
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also demonstrates the positive relationship between T2D and

NAFLD, as did the forest plot (Supplementary Figure 8).

The statistical results of heterogeneity show that there was no

heterogeneity between the instrumental variable SNPs (Q_pval was

>0.05), which can be confirmed from the funnel plot

(Supplementary Figure 9). The results of the pleiotropy test show

that there was no statistical difference (p>0.05), which indicates that

there was no horizontal pleiotropic effect. Through leave-one-out

analysis (Supplementary Table 8; Supplementary Figure 10), it can
A

B

FIGURE 2

Enrichment analysis results of DEGs shared by NAFLD and T2D. (A) DisGeNET enrichment analysis results. (B) Tissue enrichment results.
TABLE 3 Core genes after GWAS analysis and differential gene expression analysis combined.

Gene Cytogenetic region Description Remark

1 VPS53 17p13.3 VPS53 subunit of GARP complex Not novel gene

2 SCGN 6p22.2 secretagogin, EF-hand calcium binding protein Not novel gene

3 RGS6 14q24.2 regulator of G protein signaling 6 Not novel gene

4 SGCG 13q12.12 sarcoglycan gamma Not novel gene

5 FOXN3 14q32.11 forkhead box N3 Not novel gene

6 DNAJB9 7q31.1 DnaJ heat shock protein family (Hsp40) member B9 Novel gene

7 CMAS 12p12.1 cytidine monophosphate N-acetylneuraminic acid synthetase Novel gene

8 FASLG 1q24.3 Fas ligand Novel gene

9 ABHD10 3q13.2 abhydrolase domain containing 10, depalmitoylase Novel gene

10 ATRN 20p13 attractin Novel gene

11 PLA2G2F 1p36.12 phospholipase A2 group IIF Novel gene

12 ITIH2 10p14 inter-alpha-trypsin inhibitor heavy chain 2 Novel gene

13 ROBO1 3p12.3 roundabout guidance receptor 1 Novel gene

14 SH3GL2 9p22.2 SH3 domain containing GRB2 like 2, endophilin A1 Novel gene

15 CNR1 6q15 cannabinoid receptor 1 Novel gene
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be seen that no matter which SNP was removed, it would not have a

fundamental impact on the results. So the MR results are robust.
4 Discussion

This study used GWAS summary data for 6,797,908 NAFLD

and 8,404,432 T2D from European populations to determine the

shared genetic architecture of these two phenotypes. A cross-trait

meta-analysis identified 115 shared genes, and subsequent DEG

analysis identified fifteen core shared genes: DNAJB9, VPS53,

SCGN, CMAS, RGS6, FASLG, ABHD10, ATRN, PLA2G2F, ITIH2,

ROBO1, SGCG, SH3GL2, CNR1, and FOXN3.

The liver is a vital organ that regulates glucose and lipid

metabolism, and hepatic fat deposition is a critical factor in the

pathogenesis of NAFLD and T2D (36). The twin-cycle hypothesis

based on T2D explains that a gradual increase in the level of fat in
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the liver can lead to IR, which weakens the ability of insulin to

suppress hepatic glucose production. This leads to an aggravation of

hepatic gluconeogenesis and rises in blood sugar levels (37). The

excess glucose is used to synthesize triglycerides, which results in

increased levels of liver fat and reduced capacity to use glucose.

These processes create a vicious circle between the liver and

pancreas (38). At the same time, hepatic triglyceride synthesis is

increased in NAFLD patients. When the level of free fatty acids

(FFAs) produced by lipoprotein lipase exceeds the lipid storage

capacity of adipose tissue, b-cells will take up many fatty acids and

store them as triglycerides. This damages the b cells and causes IR

(39). This may eventually promote the progression of liver damage

to HCC.

Relevant studies to date have shown that the mechanism of

action of the mechanisms mentioned above has become a tool for

the conduct of research in clinical practice. Previous studies have

suggested some potential links between these mechanisms and the
A B

FIGURE 3

Scatter plots of the MR analysis. The light blue line shows the result of the IVW method, which has the most significant impact. The dark blue line
shows the result of the MR Egger method; the light green is the result of the simple model method; the dark green is the result of the weighted
median mode; and the red line represents the result of the weighted mode method. (A) Scatter plot of T2D as exposure and NAFLD as outcome.
(B) Scatter plot of NAFLD as exposure and T2D as outcome.
TABLE 4 Results of two-sample MR analysis of NAFLD and T2D.

Outcome Exposure Method nsnp b(exposure/outcome) se pval OR (95%CI)

NAFLD T2D

MR Egger 62 0.01109 0.00652 0.09406 1.01115 (0.99832-1.02415)

Weighted median 62 0.00278 0.00184 0.13017 1.00278 (0.99918-1.00639)

Inverse variance weighted 62 0.00343 0.00129 0.00801 1.00344 (1.00090-1.00599)

Simple mode 62 -0.00016 0.00461 0.97296 0.99984 (0.99084-1.00892)

Weighted mode 62 -0.00016 0.00359 0.96526 0.99984 (0.99283-1.00690)

T2D NAFLD

MR Egger 217 0.00344 0.00573 0.54896 1.00344 (0.99224 -1.01477)

Weighted median 217 0.01771 0.00389 5.36E-06 1.01787 (1.01013-1.02566)

Inverse variance weighted 217 0.02414 0.00302 1.24E-15 1.02443 (1.01839-1.03051)

Simple mode 217 0.02673 0.01887 0.15799 1.02709 (0.98980-1.06578)

Weighted mode 217 0.02673 0.01909 0.16297 1.02709 (0.98936 -1.06625)
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identified, core shared genes. Forkhead box N3 (FOXN3), an

important member of the FOX transcription factor family, is an

important tumor suppressor gene that plays a crucial role in several

cancers such as liver cancer, lung cancer, and colon cancer (40). The

FOXN3 gene locus is associated with fasting blood glucose levels.

Hepatic FOXN3 increases fasting blood glucose by inhibiting

hepatic glucose utilization while also regulating the expression of

amino acid transporters and catabolic enzymes (41, 42). Studies

have shown that FOXN3 suppresses the mRNA and protein

expression of E2F5 by inhibiting the promoter activity of

potential oncogene E2F5, thereby inhibiting the proliferation of

HCC cells in vitro and in vivo (43). Another tumor suppressor,

regulator of G protein signaling 6 (RGS6), is upregulated in the liver

of NAFLD patients, forms a complex with ATM in the liver,

promotes ATM phosphorylation, and drives hepatic steatosis (44,

45). A study confirmed that hepatic RGS6 increases oxidative stress

and inflammation, which drive lipid deposition, fibrosis, and

nonalcoholic fatty liver disease (46). In contrast, RGS6 deficiency

effectively ameliorated fat deposition, attenuated alcohol-dependent

liver injury, and enhanced liver regeneration (47).

Other genes that may play a role in NAFLD and T2D include

SGCG, a single-pass transmembrane glycoprotein implicated in the

pathogenesis of obesity and T2D in humans (48). It has beneficial

effects on glucose homeostasis, and elevated levels in diabetic

patients may be compensatory for IR (49). Furthermore, SCGN is

highly enriched in pancreatic b-cells and has pronounced effects on

lipolysis and lipogenesis (50). It also regulates insulin expression

and secretion, which is downregulated in type 2 diabetes (51, 52).

Studies have shown that the SCGN-insulin interaction can stabilize

insulin, enhance the hypoglycemic activity of insulin in vivo, and

reduce hepatic steatosis and cholesterol metabolism disorders (51).

In addition, the homologous gene HCCS1 of VPS53 also has a

strong anti-tumor effect on liver cancer cells (53, 54).

Through a combination of the results of this study with the

known mechanisms of action of NAFLD and T2D and related

research findings, it can be shown that essential pathways affecting

NAFLD and T2D include catabolism of lipids such as fatty acids,

glycerides, and phospholipids. These biological processes affect

lipid levels in tissues and hence affect hepatic fat accumulation

and IR. Further research on this aspect of our findings should

be considered.

In conclusion, the determination of triglyceride, FFA, and

cholesterol levels can assist in the clinical observation of the

dynamic changes in liver fat levels and IR and is of great

significance in the prediction of comorbidities. At the same time,

through the continuous deepening of genetic research, the

development of targeted drugs to regulate the level of liver fat and

the regulation of liver fat content is expected to become a key and

effective treatment method for comorbidities. In addition, once the

relevant mechanism of action is identified, specific gene therapy for

NAFLD and T2D is expected to be realized.

One limitation of this study was that the shared genes were all

screened from the results of GWAS studies in European

populations, so other populations were not considered. Few

replicated validation studies of the susceptibility loci associated

with NAFLD and T2D have been conducted in other populations.
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Genetic and environmental factors influence the genetic

backgrounds of populations and result in variations in allele

frequencies, which affect illness incidence rates and the findings

of GWAS analyses of susceptibility genes. Therefore it is uncertain

whether the susceptibility genes identified in this study exist in

other populations. However, the results of this study can provide a

reference for research on NAFLD combined with T2D in other

populations. GWAS research involves not only different

populations but also different genders and different ages, and this

richness of the data should be exploited for further exploration.

It is essential to note that this study cannot avoid the

shortcomings of GWAS itself, such as the fact that the study is

focused on the loci that achieve the significance threshold for

genome-wide association, even though these loci account only

partially for the complicated heredity of the disease (55). GWAS

studies often overlook signals of mild or moderate association and

ignore the effects of other variants such as gene deletions, copy

number variations, etc. These neglected factors may involve

underlying biological mechanisms that ultimately lead to the

occurrence of disease. While NAFLD and T2D are complex

diseases in which genetic and environmental factors interact, the

pathogenesis is often caused by mutations or abnormalities of

multiple genes, and each gene may play a part in a specific

pathway but its role cannot explain the whole mechanism.

Therefore, the study design can be effectively improved to make

up for these issues with GWAS and the complexity of the disease.

For example, the candidate gene method is used to find low-

frequency variants, or the data from multiple studies can be

combined in a meta-analysis to increase the sample size, and rare

variants with substantial genetic effects can be found in this way

(56, 57).

The strength of this study was that it involved the first

comprehensive use of GWAS and DEG analysis to identify shared

genes for NAFLD and T2D. During gene screening, strict thresholds

were used to ensure the accuracy of the results, and significant

shared genes were discovered efficiently. The study reconfirmed the

association of the unveiled core genes, VPS53, SCGN, RGS6, SGCG,

and FOXN3, with NAFLD and T2D, which had been reported in

previous studies. The core genes DNAJB9, CMAS, FASLG,

ABHD10, ATRN, PLA2G2F, ITIH2, ROBO1, SH3GL2, and CNR1

were found to be related to NAFLD and T2D for the first time, and

this provides a new research target for the precise treatment of

NAFLD and T2D comorbidities.
5 Conclusion

In summary, this study found a causal relationship between

NAFLD and T2D, which will be beneficial for the elucidation of the

pathogenesis of NAFLD and T2D comorbidities. Fifteen core genes,

DNAJB9, VPS53, SCGN, CMAS, RGS6, FASLG, ABHD10, ATRN,

PLA2G2F, ITIH2, ROBO1, SGCG, SH3GL2, CNR1, and FOXN3,

were identified as shared between NAFLD and T2D. This finding

provided new ideas for the genetic study of NAFLD combined with

T2D. Further gene expression verification and functional

mechanism research should be carried out on these candidate
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genes in the future to explore the specific biological mechanisms of

NAFLD and T2D comorbidities and to provide new drug-targeting

sites for the prevention and treatment of comorbidities.
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Taian, China, 3School of Public Health, Shandong First Medical University and Shandong Academy of
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Shandong University, Jinan, China, 7Department of Endocrinology, Shandong Provincial Hospital
Affiliated to Shandong First Medical University, Jinan, China, 8Department of Gastroenterology, The
Second Affiliated Hospital of Shandong First Medical University, Taian, China
Objective: Bile acids have underlying protective effects on bones structure.

Long-term diabetes also causes skeletal disorders including osteoporosis,

Charcot arthropathy and renal osteodystrophy. Nevertheless, few studies have

reported whether bile acid is associated with bone metabolism in diabetics. This

study aimed to explore the relationship between total bile acid (TBA) and bone

mineral density (BMD) among patients with type 2 diabetes mellitus (T2DM).

Methods: We retrospectively included 1,701 T2DM patients who were

hospitalized in Taian City Central Hospital (TCCH), Shandong Province, China

between January 2017 to December 2019. The participants were classified into

the osteopenia (n = 573), osteoporosis (n= 331) and control groups (n= 797)

according to BMD in the lumbar spine and femoral. The clinical parameters,

including TBA, bilirubin, vitamin D, calcium, phosphorus and alkaline

phosphatase were compared between groups. Multiple linear regression was

used to analyze the relationship between TBA and BMD in lumbar spine, femoral,

trochiter, ward’s triangle region. A logistic regression was conducted to develop

a TBA-based diagnostic model for differentiating abnormal bone metabolism

from those with normal BMD. We evaluated the performance of model using

ROC curves.

Results: The TBA level was significantly higher in patients with osteoporosis

(Median[M]= 3.300 mmol/L, interquartile range [IQR] = 1.725 to 5.250 mmol/L)

compared to the osteopenia group (M = 3.200 mmol/L, IQR = 2.100 to 5.400

mmol/L) and control group (M = 2.750 mmol/L, IQR = 1.800 to 4.600 mmol/L)

(P <0.05). Overall and subgroup analyses indicated that TBA was negatively

associated with BMD after adjusted for the co-variates (i.e., age, gender, diabetes

duration, BMI, total bilirubin, direct bilirubin, indirect bilirubin) (P <0.05). Logistic

regression revealed that higher TBA level was associated with increased risk for
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abnormal bone metabolism (OR = 1.044, 95% CI = 1.005 to 1.083). A TBA-based

diagnostic model was established to identify individuals with abnormal bone

metabolism (T-score ≤ -1.0). The area under ROC curve (AUC) of 0.767 (95% CI =

0.730 to 0.804).

Conclusion: Our findings demonstrated the potential role of bile acids in bone

metabolism among T2DM patients. The circulating TBAmight be employed as an

indicator of abnormal bone metabolism.
KEYWORDS

type 2 diabetes mellitus (T2DM), total bile acid (TBA), bone mineral density (BMD),
osteoporosis, abnormal bone metabolism
Introduction

Type 2 diabetes mellitus (T2DM), one of metabolic diseases, is

mainly caused by insulin deficiency or resistance (1). More than 460

million persons suffer from T2DM globally, accounting for 6.28% of

the world’s population in 2020 (2). Long-term diabetes commonly

induces dysfunctions in multiple tissues and organs, such as brain,

cardiovascular system, kidneys and eyes (3). Besides, skeletal

disorders have been observed in association with DM, including

osteoporosis, Charcot arthropathy and renal osteodystrophy (4). It

is believed that disorders of glucose metabolism can damage bone

microstructure and increase the incidences of osteoporosis and

osteoporosis-associated fracture (5, 6). Bone mineral density

(BMD) is a key parameter of bone health and an osteoporosis

predictor (7, 8). Clinical evidences have evidenced that T2DM

increases the risk of low BMD, osteoporosis and fractures,

particularly in older men and postmenopausal women (9).

Total bile acids (TBA), a series of signaling molecules

synthesized by liver cells, display biological functions, such as

metabolism of glucose and lipid, and regulation of intestinal flora

(10). Bile acid-induced activation of G protein-coupled bile acid

receptor (TGR5) promotes insulin secretion by increasing

intracellular calcium concentration (11). Studies have also

identified that circulating TBA was positively correlated with

BMD, indicating the potential role of bile acids in the regulation

of bone metabolism (12, 13). Bile acids regulate bone metabolism

via the activation of nuclear receptor, farnesoid X receptor (FXR),

membrane receptor, TGR5 and intestinal flora (14–16).

Since TBA regulating bone metabolism is one of the

pathophysiological pathways of osteoporosis, we hypothesized

that TBA is associated with osteoporosis in diabetic. However, to

date, no studies have reported the association with TBA and BMD

in diabetic patients. We conducted this retrospective study to

identify the relationship between serum TBA and bone

metabolism, and to explore the potential role of TBA in the

development of osteoporosis in diabetics.
0235
Methods

Study participants

A total of 550 T2DM patients who did not fulfill the inclusion

criteria or lacked clinical data were excluded. Finally, 1701 patients

with T2DM were included from Taian City Central Hospital

(TCCH) between January 2017 and December 2019 (Figure S1).

The participants were classified into three groups: (1) osteoporosis,

(2) osteopenia, and (3) control groups.

The diagnosis of T2DM and osteoporosis was based on World

Health Organization (WHO) criteria (17–19), T-score ≤ -2.5 for

osteoporosis, between -2.5 to -1.0 for osteopenia, > -1.0 for

normality and T-score ≤ -1.0 for abnormal bone metabolism.

Inclusion criteria were as follows: (1) Individuals diagnosed

with T2DM; (2) No severe somatic disorders including

cardiovascular diseases and cancers; (3) No mental disorders; (4)

No diabetic acute complications, including ketoacidosis, lactic

acidosis and diabetic hyperosmolarity; (5) Not taking any

medications that affect bone metabolism and bile acid metabolism

in 6 months. Exclusion criteria: (1) Patients diagnosed with T1DM,

gestational diabetes mellitus or other specific types of diabetes; (2)

Patients with chronic kidney insufficiency, chronic hepatic

insufficiency, liver or renal dysfunction; (3) Patients with

endocrine diseases that affect bone metabolism, including

parathyroid dysfunction, gonadal diseases and adrenal diseases;

(4) Patients with diseases that seriously affect bone metabolism

and lead to secondary osteoporosis, such as rheumatic diseases,

hematological diseases and digestive disease; (5) Individuals with

family history of osteoporosis; (6) Patients with a history of recent

exposure to radioactive materials; (7) Patients with history of

prolonged bed rest.

This study has been reviewed and approved by the ethics

committee of TCCH (No. 2021-05-001). As a retrospective study

of clinical dataset, this research was exempt from the request of

informed consent from subjects.
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Data collection

The characteristics of age, gender, height, weight, body mass

index (BMI), systolic blood pressure (SBP), diastolic blood pressure

(DBP) and diabetes duration were collected from clinical records.

Total cholesterol (TC), triglyceride (TG), low density

lipoprotein cholesterol (LDL), high density lipoprotein cholesterol

(HDL), calcium ions, phosphorus, alkaline phosphatase (ALP),

TBA, total bilirubin, direct bilirubin and indirect bilirubin were

measured by Modular P800 automatic biochemical analyzer

(Roche, German). Glycated hemoglobin A1c (HbA1c) was

detected via high-performance liquid chromatography (Bio-Rad

Laboratories, CA, USA). Fasting blood glucose (FBG) was measured

with an automatic analyzer (Hitachi, Tokyo, Japan). Fins, C-peptide

and vitamin D were determined by Cobas 6000 electro

chemiluminescence (Roche, German). BMD of lumbar spine,

femoral, trochiter and ward’s triangle region were measured by

dual energy X-ray absorptiometry (GE Lunar IDXA, USA).
Statistical analysis

Continuous data were presented as means and standard

deviations (SDs) when normally distributed, otherwise presented

as median (M) and interquartile range (IQR). Categorical data were

presented as frequencies. For comparisons between multiple

groups, one-way analysis of variance (ANOVA) followed by

Least-Significant Difference (LSD) test was used for normally

distributed data. Kruskal-Wallis test followed by Bonferroni post
Frontiers in Endocrinology 0336
hoc test was used for non-normal distributed data. Chi-square test

was used for comparison of categorical data. Jonckheere–Terpstra

test was used to assess the trend in TBA level between multiple

groups. Multiple linear regression was used to analyze the

associations between TBA and BMD. Logistic regression analysis

was used to establish a TBA-based diagnostic model to identify

individuals with abnormal bone metabolism from those with

normal (T-score ≤ -1.0). The receiver operator characteristic

(ROC) curve and the area under the curve (AUC) were employed

to evaluate the model’s performance. Subgroup analysis is

performed to assess the association between TBA and BMD based

on gender, age group, BMI and menstrual conditions.

A two-side P-value < 0.05 was considered statistically

significant. Statistical analyses were performed using R packages

4.1.0 (R Core Team) and SPSS 25.0 (IBM, New York).
Results

Clinical characteristics of the participants

The basic characteristics of the 1,701 T2DM patients are listed

in Table 1. They were classified as control group: 797 individuals

with normal BMD, aged (54.8 ± 11.3) years, of whom 68.4% (545/

797) were male; osteopenia group: 573 individuals with osteopenia,

aged (61.9 ± 9.2) years, of whom 50.3% (288/573) were male; and

osteoporosis group: 331 individuals with osteoporosis, aged (67.1 ±

8.7) years, of whom 21.1% (70/331) were male. The results of

hepatobiliary metabolism indicators are shown in Table 2 and
TABLE 1 Characteristic description of T2DM patients.

Indicators Osteoporosis (n=331) Osteopenia (n=573) Control (n=797) c²/F P

Male [n (%)] 70 (21.1) 288 (50.3) 545 (68.4) 212.273 <0.001

Female [n (%)] 261 (78.9) 285 (49.7) 252 (31.6)

Age (year) 67.1 ± 8.7 *# 61.9 ± 9.2# 54.8 ± 11.3 195.389 <0.001

Diabetes duration (month) 120.0 (72.0,204.0) *# 120.0 (48.0, 180.0) # 84.0 (36.0, 144.0) 46.854 <0.001

BMI<25 [n (%)] 195 (85.5) 269 (47.7) 304 (38.8) 41.020 <0.001

BMI≥25 [n (%)] 33 (14.5) 295 (52.3) 480 (61.2)

SBP 143 ± 19# 141 ± 21# 139 ± 20 4.665 0.010

DBP 76 ± 11*# 78 ± 11# 81 ± 11 22.305 0.001

TC (mmol/L) 4.540 (3.655,5.365) 4.460 (3.600, 5.295) 4.510 (3.700,5.300) 0.905 0.636

TG (mmol/L) 1.310 (0.890,2.075) # 1.380 (0.960,2.125) 1.470 (1.010, 2.412) 7.570 0.023

LDL (mmol/L) 2.780 (2.110,3.483) 2.800 (2.010,3.390) 2.870 (2.170,3.500) 1.641 0.440

HDL (mmol/L) 1.370 (1.160,1.670) # 1.320 (1.100,1.161) 1.270 (1.080,1.510) 17.978 <0.001

C-Peptide (ng/ml) 0.910 (0.600,1.520) # 1.050 (0.640,1.600) 1.150 (0.708,1.760) 8.265 0.016

FINS (uIU/ml) 3.300 (1.725,5.250) 8.145 (5.538,12.335) 8.750 (6.100,13.523) 3.773 0.152

HbA1C (%) 8.786 ± 2.366 8.945 ± 2.257 8.957 ± 2.188 0.639 0.528

FBG (mmol/L) 9.250 (6.980,12.060)# 9.235 (7.355,12.260) 9.820 (7.630,13.185) 11.942 0.003
frontie
BMI, body mass index; SBP, Systolic blood pressure; DBP, diastolic blood pressure; FINS, Fasting insulin; HbA1c, Hemoglobin A1c; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-
density lipoprotein cholesterol; TC, cholesterol; TG, triglycerides; FBG, Fasting blood glucose; *P < 0.05 compared with osteopenia group; #P < 0.05 compared with the controls group.
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Figure 1. The results of bone metabolism indicators are presented

in Table 3.

Significant differences were identified between age, gender,

BMI, diabetes duration, total bilirubin, direct bilirubin, indirect

bilirubin, SBP, DBP, FBG, TG, LDL, C-peptide, ALP and BMD

indicators between the multigroup (i.e., control, osteopenia and

osteoporosis groups) (P < 0.05).

Age showed a gradual increase in the values and there was a

significant difference in pairwise comparisons between the

multigroup. In addition, DBP presented a decreasing trend among

control, osteopenia and osteoporosis groups (P < 0.05) (Table 1).
The relevance between serum TBA levels
and BMD

The serum TBA levels in the osteopenia group were (3.200

mmol/L [IQR = 2.100 to 5.400 mmol/L]), which were significantly

higher than that in the control group (2.750 mmol/L, [IQR = 1.800

to 4.600 mmol/L]) (P < 0.05). Furthermore, Jonckheere–Terpstra

test found TBA levels presented a significant increasing trend

among control, osteopenia and osteoporosis groups (P<

0.05) (Table 2).
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Multiple linear regression revealed that TBA level were

independent determinants associated with BMD in third lumbar

vertebrae (L3), fourth lumbar vertebrae (L4), total lumbar spine,

femoral neck, and ward’s triangle region (P< 0.05) (Table 4).
Subgroup analysis

Based on gender, age group (classify into < 60 and ≥ 60 years),

BMI (classify into < 25 and ≥ 25) and menstrual conditions, a

subgroup analysis is listed in Tables S1–S3.

Among the participants aged < 60 and BMI < 25, including men

and women, TBA level was negatively associated with total lumbar

spine BMD (Table S1). For men with normal BMI (BMI<25), TBA

level was negatively associated with BMD levels in the femoral and

ward’s triangle region (Table S2). In postmenopausal population,

TBA level was negatively associated with the BMD levels in first

lumbar vertebrae(L1), second lumbar vertebrae(L2), third lumbar

vertebrae (L3), fourth lumbar vertebrae (L4), femoral neck and total

lumbar spine (Table S3).
TBA-based diagnostic model for abnormal
bone metabolism

Logistic regression analysis was used to establish a TBA-based

diagnostic model to identify individuals with abnormal bone

metabolism among T2DM patients (Table 5). A higher TBA level

(OR = 1.044, 95% CI = 1.005 to 1.083) was associated with increased

risk for abnormal bone metabolism. Older age (OR = 1.060, 95% CI

= 1.042 to 1.079) and female (OR = 2.236, 95% CI = 1.619 to 3.087)

correlated with a higher risk for abnormal bone metabolism. Higher

BMI (OR =0.872, 95% CI =0.831 to 0.916) was associated with a

lower risk for abnormal bone metabolism (Figure 2).

We then established a diagnostic model using TBA, age, gender

and BMI. As depicted in Figure 3, a ROC curve was used to assess

the performance of model, which showed the AUC of 0.767(95% CI

= 0.730 to 0.804), with a sensitivity of 65.4% and a specificity of

77.2% at a cut-off-value of 0.656.
Discussion

Our findings identify, for the first time in T2DM patients, the

TBA level among diabetic patients with osteoporosis was higher

than those with the normal BMD and osteopenia. TBA level
A B

DC

FIGURE 1

Hepatobiliary metabolism indicators. (A) total bile acid; (B) total
bilirubin; (C) direct bilirubin; (D) indirect bilirubin.
TABLE 2 Hepatobiliary metabolism indicators of T2DM patients.

Indicators Osteoporosis (n=331) Osteopenia (n=573) Control (n=797) c² P

TBA (mmol/L) 3.300 (1.725,5.250) 3.200 (2.100,5.400) # 2.750 (1.800,4.600) 6.435 0.040

Total bilirubin (mmol/L) 8.600 (6.650,11.600) *# 10.400 (7.775,13.500) 10.800 (8.100,14.100) 48.848 <0.001

Direct bilirubin (mmol/L) 3.700 (3.000,4.750) *# 4.300 (3.400,5.500) 4.400 (3.400,5.500) 35.291 <0.001

Indirect Bilirubin (mmol/L) 4.800 (3.600,6.900) *# 6.100 (4.250,8.000) 6.200 (4.500,8.500) 40.169 <0.001
frontie
TBA, total bile acid; *P < 0.05 compared with osteopenia group; #P < 0.05 compared with the controls group.
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negatively correlated with BMD in lumbar spine, femoral neck,

femoral shaft and ward’s triangle region. The serum TBA level

could be employed as a predictor of BMD in T2DM patients. The

TBA may be employed as a new therapeutic target for osteoporosis

in diabetics (20), which has clinical significance for prevention of

osteoporosis in diabetics.

Diabetes mellitus is a complex multifactorial disease (21). In

mainland China, diabetes affects 11.2% of adults (22). An important

complication of diabetes is osteoporosis. In diabetic, the disorder of

glucose and lipid metabolism changes tissue structure and adversely

affects bone metabolism, which increased the risk of osteoporosis

and fracture (23). Diabetic people suffer a higher risk of fracture

compared to the healthy (24, 25), which also correlated with

diabetes duration (26–28). Circulating sclerostin level is

significantly higher in diabetic persons, which inhibits the

function of osteoblasts and bone formation, thus increasing

the risk of osteoporosis (29). Osteocalcin is an essential protein

for the process of bone formation. Hyperglycemia impairs the

function of osteoblasts on synthesis of osteocalcin and then

downregulates the osteocalcin level, leading to inhibition of bone
Frontiers in Endocrinology 0538
formation (30). Increased oxidative stress of platelet mitochondria

in T2DM patients interferes with physiological function of bone

marrow cells and impairs bone metabolism (31).

TBA, inc luding Chenodeoxycho l i c ac id (CDCA) ,

Tauroursodeoxycholic acid (TUDCA), Deoxycholic acid (DCA),

Lithocholic acid (LCA), and 6-alpha-ethyl-chenodeoxycholic acid (6‐

ECDCA) and a series of endocrine substance with various physiological

functions, is generally synthesized in the liver (32). Multiple

pathophysiological mechanisms support the relation between TBA

and bone metabolism, including FXR, intestinal flora and Oxidative

stress. First, TBA facilitates the differentiation of bone marrow

mesenchymal cells into osteoblasts in vitro (33, 34). After being treated

withDCA in vitro, the activity of ALP in bonemarrow stromal cells was

improved, leading to bone erosion (35). Second, TBA have a positive

regulatory effect on osteogenesis by FXR, the principle is CDCA and 6‐

ECDCA activates bile acid nuclear receptor FXR. FXR increases the

activity of extracellular regulatory protein kinase (ERK) by upregulating

runt‐related transcription factor 2 (Runx2), which promotes

differentiation of mesenchymal progenitor cells into osteoblast (36).

FXR, provokes the expression of ALP, and DNA-binding activity of
TABLE 4 The association of TBA levels with BMD.

Sites b 95% CI of b P

L3 BMD -0.003 -0.003 ~ -0.001 0.019

L4 BMD -0.003 -0.005 ~ -0.001 0.043

Total lumbar spine BMD -0.003 -0.005 ~ -0.001 0.013

Femoral neck BMD -0.003 -0.004 ~ -0.001 0.037

Ward’s triangle region BMD -0.004 -0.007 ~ -0.001 0.003
BMD, bone mineral density; TBA, total bile acid; b, regression coefficient; CI, confidence intervals; L3, third lumbar vertebra; L4, fourth lumbar vertebra; Adjusted for gender, age, BMI, diabetes
duration, total bilirubin, direct bilirubin, and indirect bilirubin.
TABLE 3 Bone metabolism indicators of T2DM patients.

Indicators Osteoporosis (n=331) Osteopenia (n=573) Control (n=797) c²/F P

Calcium ion (mmol/L) 2. 380 (2.300, 2.460) 2.380 (2.310, 2.445) 2.380 (2.310, 2.450) 1.222 0.295

Phosphorus (mmol/L) 1.170 (1.065,1.280) 1.180 (1.030, 1.280) 1.170 (1.043, 1.290) 0.608 0.738

Vitamin D (ng/ml) 17.150 (11.800,22.275) 17.750 (12.600, 24.200) 18.600 (13.750, 23.775) 4.325 0.115

ALP (u/l) 71.00 (61.00,87.00) # 71.00 (60.00, 85.25) # 67.00 (56.00, 82.00) 4.664 0.010

L1BMD (g/cm²) 0.787 ± 0.167*# 0.940 ± 0.150# 1.100 ± 0.177 433.627 <0.001

L2BMD (g/cm²) 0.831 ± 0.135*# 1.033 ± 0.150# 1.203 ± 0.171 662.445 <0.001

L3BMD (g/cm²) 0.911 ± 0.158*# 1.124 ± 0.162# 1.286 ± 0.186 554.659 <0.001

L4BMD (g/cm²) 0.942 ± 0.172*# 1.135 ± 0.176# 1.281 ± 0.200 389.901 <0.001

Total lumbar spine BMD (g/cm²) 0.872 ± 0.133*# 1.068 ± 0.147# 1.228 ± 0.176 590.632 <0.001

Femoral neck BMD (g/cm²) 0.726 ± 0.309*# 0.821 ± 0.128# 1.001 ± 0.256 190.556 <0.001

Trochiter BMD (g/cm²) 0.635 ± 0.113*# 0.749 ± 0.133# 0.881 ± 0.147 411.295 <0.001

Femoral shaft BMD (g/cm²) 0.967 ± 0.194*# 1.133 ± 0.198# 1.288 ± 0.185 339.836 <0.001

Ward’s triangle region BMD (g/cm²) 0.514 ± 0.122*# 0.636 ± 0.115# 0.800 ± 0.290 109.966 <0.001

Total femoral BMD (g/cm²) 0.827 ± 0.521*# 0.916 ± 0.139# 1.076 ± 0.197 25.255 <0.001
frontie
ALP, Alkaline Phosphatase; L1BMD, first lumbar vertebra BMD; L2BMD, second lumbar vertebra BMD; L3 BMD, third lumbar vertebra BMD; L4 BMD, fourth lumbar vertebra BMD; *P < 0.05
compared with osteopenia group; #P < 0.05 compared with the controls group.
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Runx2, thebone transcription factor (37).Third, intestinalfloraregulates

bone metabolism through its 7-dehydroxylation producing LCA, a

ligand for the vitamin D receptor. Vitamin D regulates the gene

coding of bone protein, osteocalcin and receptor activator of nuclear

factor-kB ligand (RANKL) (38). Furthermore, LCA affect the formation

of osteoblasts and osteoclasts by repressing the expression of calcitonin

gene and RANKL gene (16). A dynamic balance exists between diet and

intestinal flora-bile acid (39). However, high-fat and cholesterol diet can

alter the composition of bile acids in the gut, causing imbalance of

intestinalflora and aggravationof bile acidmetabolismdisorders (40). In

addition, oxidative stress plays a role of inhibit osteogenesis by affecting

the differentiation, proliferation and apoptosis of osteocytes, and TBA

regulates bone metabolism through alleviating oxidative stress (41–44).

Thus far, the clinical evidence for the connection between TBA

and bone metabolism is limited. Bile acid malabsorption(BAM) can

reduce the absorption of vitamin D and then patients may develop

low BMD (45). TUDCA enhance bone tissue regeneration in skull

defect models, which can be used as a potential alternative drug for

bone regeneration (46).

Following the STROBE guideline (47), we conducted subgroup

analyses to make a better use of the data. A retrospective study in

China of 2230 healthy persons with aged < 60 and BMI < 25 pointed

out that serum TBA was positively correlated with BMD (13). We

have different findings, which is that TBA and BMD are negatively

related in diabetics with aged < 60 and BMI < 25. Study reported the

TBA level was positively correlated with the BMD in

postmenopausal healthy population (12). However, we found the

TBA level was negatively related with the BMD in postmenopausal
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diabetics. The above indicated that the pathway of bile acids

regulating bone metabolism might be interfered in diabetics. By

reference to the mechanism of insulin resistance, we hypothesize

that bile acids present a compensatory elevation and have an

antagonist effect to osteoporosis. The protective role of TBA in

bone metabolism is needed to be explored. In accord with our

findings, study reported older age was correlated with decreased

BMD and a positive correlation between BMI and BMD (48).
Limitations

Our findings provided a novel insight into skeletal health in

diabetics. Nevertheless, there are some limitations. First, this is a

retrospective study based on clinical dataset, which cannot prove

the causal relationship between TBA level and bone metabolism.

Second, some of participants with osteoporosis has a history of

supplementation of calcium and vitamin D, which might bias our

findings. Third, although the sample size of this study is high, our

evidence might lack of high generalizability and extrapolation due

to a single-center study design. Therefore, multi-center prospective

studies are needed to offer further identification.
FIGURE 2

Forest plots of logistic regression analysis. CI, confidence interval.
FIGURE 3

Receiver operator characteristic (ROC) curves for diagnostic model
of abnormal bone metabolism. AUC, area under the curve.
TABLE 5 Logistic regression of abnormal bone metabolism influence factors in T2DM patients.

Factors b SE Walds c2 P OR (95%CI)

Gender (male) 0.805 0.165 23.909 <0.001 2.236 (1.619~3.087)

Age 0.059 0.009 42.355 <0.001 1.060 (1.042~1.079)

Diabetes duration 0.001 0.001 2.051 0.152 1.001 (0.999~1.003)

BMI -0.136 0.025 30.765 <0.001 0.872 (0.831~0.916)

TBA 0.043 0.019 5.017 0.025 1.044 (1.005~1.083)
BMI, body mass index; TBA, total bile acid; SE, standard error; OR, odds ratio; CI, confidence intervals; b, regression coefficient.
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Conclusion

We observed the negative relevance between TBA and BMD in

diabetics, suggesting that a role of bile acids in BMD and bone

metabolism among T2DM patients. The circulating TBA level

might be employed as an indicator of abnormal bone metabolism.
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Remnant cholesterol, stronger
than triglycerides, is associated
with incident non-alcoholic
fatty liver disease

Yiping Cheng1,2, Qiang Zhang3, Haizhen Li4, Guangshuai Zhou5,
Ping Shi1,2, Xu Zhang1,2, Liying Guan6*, Fang Yan7

and Chao Xu 1,2*

1Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong
First Medical University, Jinan, Shandong, China, 2Department of Endocrinology and Metabolism,
Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China, 3Department of Critical
Care Medicine, Zibo Central Hospital, Zibo, Shandong, China, 4Department of Endocrinology,
Dongying City District People Hospital, Dongying, Shandong, China, 5Department of Scientific
Research and Cooperation, Zibo Central Hospital, Zibo, Shandong, China, 6Department of Health
Examination Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University,
Jinan, Shandong, China, 7Department of Pain Management, Shandong Provincial Hospital, Shandong
University, Jinan, Shandong, China
Introduction: Non-alcoholic fatty liver disease (NAFLD) is characterized by

excess accumulation of triglycerides within the liver. However, whether the

circulating levels of triglycerides and cholesterol transported in triglyceride-rich

lipoproteins (remnant cholesterol, remnant-C) are related to the occurrence of

NAFLD has not yet been studied. This study aims to assess the association of

triglycerides and remnant-C with NAFLD in a Chinese cohort of middle aged and

elderly individuals.

Methods: All subjects in the current study are from the 13,876 individuals who

recruited in the Shandong cohort of the REACTION study. We included 6,634

participants who had more than one visit during the study period with an average

follow-up time of 43.34 months. The association between lipid concentrations

and incident NAFLD were evaluated by unadjusted and adjusted Cox

proportional hazard models. The potential confounders were adjusted in the

models including age, sex, hip circumference (HC), body mass index (BMI),

systolic blood pressure, diastolic blood pressure, fasting plasma glucose (FPG),

diabetes status and cardiovascular disease (CVD) status.

Results: In multivariable-adjusted Cox proportional hazard model analyses,

triglycerides (hazard ratio[HR], 95% confidence interval [CI]:1.080,1.047-1.113;

p<0.001), high-density lipoprotein cholesterol (HDL-C) (HR, 95% CI:

0.571,0.487-0.670; p<0.001), and remnant-C (HR, 95% CI: 1.143,1.052-1.242;

p=0.002), but not total cholesterol (TC) or low-density lipoprotein cholesterol

(LDL-C), were associated with incident NAFLD. Atherogenic dyslipidemia

(triglycerides>1.69 mmol/L, HDL-C<1.03 mmol/L in men or<1.29 mmol/L in

women) was also associated with NAFLD (HR, 95% CI: 1.343,1.177-1.533;

p<0.001). Remnant-C levels were higher in females than in males and

increased with increasing BMI and in participants with diabetes and CVD

compared with those without diabetes or CVD. After adjusting for other
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factors in the Cox regression models, we found that serum levels of TG and

remnant-C, but not TC or LDL-C, were associated with NAFLD outcomes in

women group, non-cardiovascular disease status, non-diabetes status and

middle BMI categories (24 to 28 kg/m2).

Discussion: In the middle aged and elderly subset of the Chinese population,

especially those who were women, non-CVD status, non-diabetes status and

middle BMI status (24 to 28 kg/m2), levels of triglycerides and remnant-C, but not

TC or LDL-C, were associated with NAFLD outcomes independent of other risk

factors.
KEYWORDS

Non-alcoholic fatty liver disease, Remnant cholesterol, Triglyceride, Fat metabolization,
Longitudinal retrospective cohort study
1 Introduction

Non-alcoholic fatty liver disease (NAFLD), characterized by

excessive intrahepatic lipid accumulation, is the most prevalent

chronic liver disease in the world (1). In addition to progression

from simple steatosis to nonalcoholic steatohepatitis (NASH),

cirrhosis and hepatocellular carcinoma, NAFLD patients have an

increased risk for cardiovascular disease (CVD) morbidity and

mortality. Despite the huge investment in drug development,

there are still no effective therapies targeting NAFLD. Clearly,

identification and elimination of the risk factors that promote

NAFLD development and progression are essential and promising

therapeutic strategy that can reduce the incidence of NAFLD.

Because intrahepatic lipid accumulation results from lipid

metabolism abnormalities, it takes for granted that dyslipidemia

can cause NAFLD. However, there are very few studies on the role

of different types of dyslipidemia in the development of NAFLD,

and the research conclusions are inconsistent. Sun et al. have found

the elevation of low-density lipoprotein cholesterol (LDL-C) level

within the normal range appears to make a significant contribution

to an increased risk of developing NAFLD (2) and previous studies

have demonstrated that patients with NAFLD have significantly

increased of oxidized LDL-C levels (3, 4). A cross-sectional and

hospital-based study in Alexandria was performed to verify that

NAFLD in outpatient schoolchildren aged 6-18years was

significantly associated with high triglycerides (TG) and low high-

density lipoprotein cholesterol (HDL-C) (5). A population-based
e; NASH, nonalcoholic

ow-density lipoprotein

rotein cholesterol; TC,

RLs, triglyceride-rich

sity lipoproteins; LPL,

nsulin resistance; BMI,

plasma glucose; SBP,

FFAs, free fatty acids;

0243
study has shown NAFLD in 6814 participants aged 45-84 years was

associated with higher fasting TG, lower serum HDL-C but no

difference in total cholesterol (TC) or LDL-C (6). However, a

detailed description, whether the progression of time affects the

association between components of dyslipidemia and NAFLD, has

been lacked in adults over the past decades.

Remnant cholesterol (Remnant-C) is the residue produced by

triglyceride-rich lipoproteins (TRLs) metabolism, that is,

chylomicrons (CM) and very low-density lipoproteins (VLDL)

are lipolyzed by lipoprotein lipase (LPL) to lose TG and produce

metabolic residues rich in cholesterol esters (7). Recently, studies

have shown that remnant-C is highly correlated with coronary heart

disease (CHD) and insulin resistance (IR) in the general population.

As the fact that NAFLD is associated with CHD and IR has been

widely recognized, exploration on the relationship between serum

remnant-C levels and NAFLD developing is also sorely needed.

In this longitudinal retrospective cohort study, we aimed to

explore the association of the components of dyslipidemia and

serum remnant-C levels with the occurrence of NAFLD in a

Chinese cohort of middle aged and elderly individuals(middle-aged,

45~59 years old; elderly, 60 years old and above; the average age is

56.94 years; mainly from Shandong Province), in an attempt to

expand our understanding of the remnant-C as a possible risk factor

of NAFLD. To our knowledge, our study is the first and largest

analysis specifically led to evaluate the association between serum

remnant-C levels and NAFLD risk in a longitudinal retrospective

cohort. Knowledge of this association is important for perfect health

care resource allocation and prevention andmanagement of NAFLD-

related diseases, in turn to attenuate the society medical burden.
2 Methods

2.1 Ethical approval

The Ethics Committee of Shanghai Jiao Tong University and

Shandong Provincial Hospital (NO.2021-323) approved this study
frontiersin.org
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which was conducted with the principles in the Declaration of

Helsinki. And the consent obtained from all subjects included in the

study was both informed and written.
2.2 Subjects

This is a longitudinal study and the data were retrospectively

reviewed. All subjects in the current study are from the 13,876

individuals who recruited in the Shandong cohort of the

REACTION study, which is a prospective, multicenter,

observational cohort study conducted from 2011 and has

recruited more than 200, 000 people in China so far (8). We

included 6,634 participants who had more than one visit during

the study period with an average follow-up time of 43.34 months

and assessed for eligibility.

As our main research objective was to assess the association of

TG and remnant-C with the outcome of NAFLD, for the present

analysis we have excluded individuals with (1) missing vital data,

such as age, sex, body mass index (BMI), or baseline lipid profile (2);

under 45 years old (3); NAFLD has occurred at or before the

baseline investigation; (4) any severe chronic illness, such as

coagulation failure, respiratory failure and circulatory failure; (5)

other causes of liver steatosis or drugs affecting lipid metabolism or

alcohol addiction; and (6) any conditions that affect lipid

metabolism, such as severe liver dysfunctions, renal dysfunction,

pregnancy, lactation, or malignant tumor (Figure 1). The date of the

first recruited participant was April 2011, and the end of the follow-

up was July 2017.
2.3 Measurements

Data was collected at local health stations by trained

investigators to minimize instructor variability. Demographic

characterist ics were obtained from a well-established

questionnaire through a face-to-face interview. All subjects were

asked to fast for at least 10 hours before the health examinations.

When subjects wore light clothing and took off their shoes, height

and weight were measured in kilograms and centimeters,

respectively. BMI (kg/m2) was calculated by dividing weight by

the square of the height. Waist circumference (WC) was measured
Frontiers in Endocrinology 0344
at the midpoint between the lower rib cage and the iliac crest in

centimeters. Hip circumference (HC) was measured at the widest

protrusion of buttocks in centimeters. Using an electronic

sphygmomanometer (HEM-7117; Omron, Kyoto, Japan), blood

pressure was measured three times after 5 min rest, and the

average of the three measurements was calculated.

Blood samples were collected in the morning after a minimum

10-hour fasting. Fasting plasma glucose (FPG) was measured within

2 hours using the glucose oxidase method. Using the VARIANT II

Hemoglobin Testing System (Bio-Rad Laboratories), glycated

hemoglobin (HbA1c) was measured by high-performance liquid

chromatography. After serum and plasma samples were separated

and then shipped by air to the Clinical Laboratory for

Endocrinology, Shanghai Institute of Endocrine and Metabolic

Diseases, the lipid profile measurements including TG, TC, LDL-

C, and HDL-C were performed using an autoanalyzer (ADVIA-

1650 Chemistry System, Bayer, Leverkusen, Germany). Remnant-C

was estimated as TC minus LDL-C minus HDL-C.

Diabetes was defined as fasting blood glucose ≥7.0 mmol/L and/

or HbA1c ≥6.2% and/or taking glucose- lowering medication and/

or self- report of diabetes (9). The CHD definition and diagnostic

criteria are included in the previous guidelines (10). In this study,

CHD mainly refers to diagnosed angina pectoris, myocardial

infarction, heart failure or coronary heart disease.
2.4 Outcome ascertainment

The primary outcome was NAFLD status at the end of the

follow-up. The sources of information to identify outcome were

yearly revisions of medical records by trained investigators and

clinical technicians. All medical records related to outcome were

evaluated by the outcome adjudication committee. As described by

the Chinese Liver Disease Association, NAFLD was diagnosed by

ultrasound (US) (2). In brief, the definition of NAFLD was a

diffusion-enhanced near-field echo in the liver region and gradual

decay of the far-field echo with one of the following conditions:

mild to moderate hepatomegaly with peripheral and marginal

passivation; the structure of the hepatic lacunae cannot clearly

displayed; the blood flow distribution was normal, but the blood

flow signal was reduced; or the unclear or incomplete right liver

lobe and diaphragm muscle capsule (11).
2.5 Statistical analysis

The Kolmogorov-Smirnov Test was used to test the normality

of all variables prior to performing parametric tests. Normally

distributed continuous parameters were represented as the mean

± SD, while nonnormally distributed continuous variables were

represented as the medians with interquartile ranges. Categorical

variables were summarized as numbers (percentage). To analyze

differences of remnant-C distribution at baseline between the sex,

diabetes status, CHD status and BMI categories groups, data were

tested by the nonparametric test.
FIGURE 1

The flow chart of our study.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1098078
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Cheng et al. 10.3389/fendo.2023.1098078
Follow-up time was calculated as the interval between the date

of recruitment in the study and the date of the incident NAFLD, the

date of the last visit, or the last record of the deceased subjects while

he or she was alive. The association between lipid concentrations

(either as continuous or categorical variables) and incident NAFLD

were evaluated by unadjusted and adjusted Cox proportional

hazard models. The potential confounders that may affect the

association between lipid concentrations and incident NAFLD

were all adjusted in the Cox proportional hazard models,

including age, sex, HC, BMI, systolic blood pressure (SBP),

diastolic blood pressure (DBP), FPG, diabetes status and CHD

status (12, 13). All p values were two-tailed, and p values less than

0.05 were considered statistically significant. SPSS version 25.0

(SPSS, Chicago, IL, USA) and R (version 4.1.1) was used for all

parametric tests.
3 Results

3.1 Description of study subjects

Table 1 lists the baseline characteristics of the subjects

(N=5,834) in the current study. The participants’ average age was

56.94 years, 39.06% were men, median BMI was 25.08 kg/m2,
Frontiers in Endocrinology 0445
median HC was 97cm. Diabetes and CHD were present in

29.16% and 6.05% of participants, respectively.
3.2 Baseline lipid profile of study subjects

Table 2 depicts the lipid profile at baseline of study subjects.

Median TC and TG was 5.12 and 1.19 mmol/L, respectively. The

lipid alterations characteristic of atherogenic dyslipidemia

(TG>1.69 mmol/L and HDL-C<1.03 mmol/L in men or<1.29

mmol/L in women) are present in 9.65% of the baseline population.

Median remnant-C was 0.58 mmol/L (Table 3), and its

distribution was differed by BMI categories (<24 kg/m2:0.53

(0.34,0.75) mmol/L; 24 to 28 kg/m2: 0.60(0.40,0.88)mmol/L; ≥28

kg/m2: 0.63(0.41,0.96) mmol/L), CHD status (no CHD: 0.57

(0.37,0.84) mmol/L; CHD:0.62(0.41,0.89) mmol/L) and diabetes

status (no diabetes:0.56(0.36,0.79) mmol/L; diabetes:0.64

(0.41,0.97) mmol/L) (Figure 2).
3.3 Baseline lipid concentrations and
NAFLD events

After adjusting for age, sex, HC, BMI, SBP, DBP, FPG, CHD

and diabetes, the serum concentrations of TG were associated with
TABLE 2 Baseline lipid profile of study subjects.

All Participants Female Male p

TC, mmol/L 5.12 (4.41,5.88) 5.20 (4.48,5.98) 5.00 (4.29,5.75) <0.001

TG, mmol/L 1.19 (0.86,1.72) 1.18 (0.86,1.73) 1.19 (0.85,1.70) 0.801

HDL-C, mmol/L 1.40 (1.19,1.64) 1.43 (1.22,1.67) 1.34 (1.15,1.60) <0.001

LDL-C, mmol/L 3.00 (2.44,3.63) 3.02 (2.47,3.67) 2.96 (2.4,3.57) <0.001

TG/HDL 0.86 (0.57,1.35) 0.83 (0.57,1.33) 0.90 (0.58,1.39) 0.001

TG>1.69 mmol/l +HDL-C<1.03/1.29 mmol/L (in men/women) 563 (9.65) 454(12.77) 109 (4.78) <0.001
frontie
Values are median (IQR: interquartile range) or n (%). TC, Total cholesterol; TG, Triglycerides; HDL-C, High-density lipoprotein cholesterol; LDL-C, Low-density lipoprotein cholesterol.
TABLE 1 Description of study subjects.

Total Female Male p

N 5834 3555 2279

Age, yrs 56.94 ± 7.38 56.43 ± 7.24 57.74 ± 7.51 <0.001

HC, cm 97.00 (91.00,102.50) 97.00 (91.00,102.00) 97.00 (92.00,103.00) 0.086

BMI, kg/m2 25.08 (22.76,27.46) 25.20 (22.81,27.59) 24.96 (22.64,27.34) 0.024

SBP, mmHg 138 (125,153) 136 (123,152) 141 (128,155) <0.001

DBP, mmHg 81 (74,89) 79 (72,87) 84 (76,92) <0.001

FPG, mmol/L 5.83 (5.40,6.50) 5.77 (5.36,6.39) 5.94 (5.49,6.65) <0.001

Diabetes 1701 (29.16) 988 (27.79) 713 (31.29) 0.004

CHD 353 (6.05) 219 (6.16) 134 (5.88) 0.661
Values are mean ± SD or median (IQR: interquartile range) and n. (%). HC, Hip circumference; BMI, Body mass index; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; FPG, Fasting
plasma glucose; CHD, Coronary heart disease.
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an 8.0% higher risk of NAFLD per every 1-SD increase, whereas

serum remnant-C was associated with a 14.3% higher risk per every

1-SD increase (Table 4). Conversely, for every 1-SD increase in

HDL-C, the risk of NAFLD decreased 42.9% (HR = 0.571, 95%

CI:0.487-0.670, p< 0.001). The lipid alterations characteristic of
Frontiers in Endocrinology 0546
atherogenic dyslipidemia (TG>1.69 mmol/L and HDL-C<1.03

mmol/L in men or<1.29 mmol/L in women) were also associated

with a 34.3% higher risk of the incident NAFLD. No significant

interactions were observed between TC (p=0.371) or LDL-C

(p=0.597) and the risk of NAFLD.
FIGURE 2

Remnant cholesterol distribution at baseline by sex, diabetes tatus, CHD status and BMI (kg/m2) categories. BMI, Body mass index; CHD, Coronary
heart disease.
TABLE 3 Baseline remnant-C and categories of TC and remnant-C levels of study subjects.

All Participants Female Male p

Remnant-C, mmol/L 0.58 (0.38,0.84) 0.59 (0.39,0.86) 0.56 (0.36,0.81) <0.001

TC and remnant-C groups <0.001

TC≤ 6.2mmol/L& remnant-C≤ 0.58mmol/L 2696 (46.21) 1561 (43.91) 1135 (49.80)

TC≤ 6.2mmol/L& remnant-C>0.58mmol/L 2146 (36.78) 1309 (36.82) 837 (36.73)

TC>6.2mmol/L& remnant-C≤ 0.58mmol/L 287 (4.92) 196 (5.51) 91 (3.99)

TC>6.2mmol/L& remnant-C>0.58mmol/L 705 (12.08) 489 (13.76) 216 (9.48)

TG and remnant-C groups 0.004

TG≤ 1.7mmol/L& remnant-C≤ 0.58mmol/L 2833 (48.56) 1665 (46.84) 1168 (51.25)

TG≤ 1.7mmol/L& remnant-C>0.58mmol/L 1524 (26.12) 981 (27.59) 543 (23.83)

TG>1.7mmol/L& remnant-C≤ 0.58mmol/L 150 (2.57) 92 (2.59) 58 (2.54)

TG>1.7mmol/L& remnant-C>0.58mmol/L 1327 (22.75) 817 (22.98) 510 (22.38)
frontie
Values are median (IQR: interquartile range) or n (%). Remnant-C, Remnant-cholesterol; TC, Total cholesterol; TG, Triglycerides.
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3.4 Subgroup analysis of TG, HDL-C and
remnant-C

In order to better understand the risk factors in the lipid profile

that may affect NAFLD incidence and to further identify potential
Frontiers in Endocrinology 0647
information, subgroup analysis of TG, HDL-C and remnant-C was

performed. As the serum concentrations of TG increase, the risk of

the incident NAFLD increases. On the contrary, the risk of NAFLD

decreases as the HDL-C levels increase. Particularly, the incidence

of NAFLD was high in subjects in the upper quartiles of the
A

B

C

FIGURE 3

Risk of NAFLD across quartiles of baseline lipid parameters. To assess the risk of Non-alcoholic fatty liver disease (NAFLD) associated with the
baseline lipid values of interest, we calculated hazard ratios (HR) for the second, third, and fourth quartiles (compared with the first quartile) of levels
of (A) Triglycerides (TG), (B) High-density lipoprotein cholesterol (HDL-c), and(C) Remnant cholesterol (Remnant-C). Analyses were adjusted for age,
sex, hip circumference, body mass index, systolic blood pressure, diastolic blood pressure, fasting plasma glucose, cardiovascular disease and
diabetes. CI, confidence interval.
TABLE 4 Association of baseline lipid values with NAFLD outcomes.

No Event
(n=4,165)

Event
(n=1,669)

Hazard Ratio (95% CI) p

TG, mmol/L 1.10 (0.81,1.57) 1.43 (1.01,2.16) 1.080 (1.047-1.113) <0.001

HDL-C, mmol/L 1.43 (1.22,1.69) 1.33 (1.12,1.53) 0.571 (0.487-0.670) <0.001

LDL-C, mmol/L 2.98 (2.43,3.59) 3.06 (2.49,3.72) 0.985 (0.931-1.042) 0.597

TC, mmol/L 5.10 (4.40,5.84) 5.21 (4.45,5.98) 0.980 (0.938- 1.024) 0.371

Remnant-C, mmol/L 0.56 (0.36,0.80) 0.63 (0.42,0.94) 1.143 (1.052-1.242) 0.002

TG/HDL 0.77 (0.52,1.19) 1.07 (0.73,1.76) 1.072 (1.042,1.103) <0.001

TG>1.69 mmol/L +HDL-C< 1.03/1.29 mmol/L (in men/women) 262 (6.29) 301 (18.03) 1.343 (1.177-1.533) <0.001
frontie
Values are median (IQR: interquartile range) or n (%), unless otherwise indicated. Hazard ratios (HRs) were estimated by Cox proportional hazards regression models adjusted for age, sex, hip
circumference, body mass index, systolic blood pressure, diastolic blood pressure, fasting plasma glucose, coronary heart disease and diabetes. The “TG”, “HDL-C”, “LDL-C”, “TC”, “Remnant-
C”, “TG/HDL” and the “TG>1.69 mmol/L +HDL-C< 1.03/1.29 mmol/L (in men/women)” are included in the Cox model, respectively. CI, confidence interval; other abbreviations as in Table 2.
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remnant-C compared with the lowest quartiles (HR = 1.235, 95%

CI:1.074-1.421, p=0.003) (Figure 3).
3.5 Risk of NAFLD based on categories of
TC or TG and remnant-C levels

As the residues rich in cholesterol esters and one of the

components of serum TC, the relationship between the different

combinations of remnant-C and TC levels and the occurrence of

NAFLD is worth exploring. The abnormally high levels of remnant-

C were defined to the remnant-C>50th percentile of the cohort
Frontiers in Endocrinology 0748
(0.58mmol/L). Conventionally, high levels for TC were defined as

>6.2mmol/L. When TC values ≤ 6.2mmol/L, high baseline

remnant-C identified subjects are at a higher risk of NAFLD

compared with those at lower concentrations (Figure 4). When

TG values > 1.7mmol/L, high baseline remnant-C identified

subjects are at a higher risk of NAFLD compared with those at

lower concentrations (Figure 4). Data were adjusted for age, sex,

HC, BMI, SBP, DBP, FPG, CHD and diabetes. Cumulative hazard

curve was constructed to assess the incidence of NAFLD by

categories of low and high TC or TG and remnant-C. NAFLD

incidence was low in the low remnant-C groups, regardless of TC

levels (Figure 5).
FIGURE 5

Incidence curves of NAFLD based on pre-defined categories of TC or TG and remnant-C levels. (A) Pre-defined categories of TC and remnant-C
levels. (B) Pre-defined categories of TG and remnant-C levels. Remnant-C, Remnant-cholesterol; TC, Total cholesterol; TG, Triglycerides.
FIGURE 4

Risk of NAFLD based on categories of TC or TG and remnant-C levels. Data were adjusted for age, sex, hip circumference, body mass index, systolic
blood pressure, diastolic blood pressure, fasting plasma glucose, cardiovascular disease and diabetes. HR, hazard ratio; CI, confidence interval;
Remnant-C, Remnant-cholesterol; TC, Total cholesterol; TG, Triglycerides.
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3.6 Sensitivity analysis

The distributions of remnant-C were differed by sex groups,

BMI categories, cardiovascular disease status and diabetes status.

Next, we supplemented some subgroup analyses for these factors to

explore the robust associations of remnant-C or other lipids with

NAFLD. After adjusting for other factors in the Cox regression

models, we found that serum levels of TG and remnant-C, but not

TC or LDL-C, were associated with NAFLD outcomes in women

group (Supplementary Figure 1), non-cardiovascular disease status

(Supplementary Figure 2), non-diabetes status (Supplementary

Figure 3) and middle BMI categories (24 to 28 kg/m2)

(Supplementary Figure 4).
4 Discussion

Among the middle aged and elderly subset of the Chinese

population in this longitudinal retrospective cohort study, the main

findings were that serum levels of TG and remnant-C, but not TC or

LDL-C, were associated with NAFLD outcomes, independent of

other risk factors, regardless of age, sex, HC, BMI, SBP, DBP, FPG,

CHD and diabetes. To the best of our knowledge, this is the first

epidemiological and longitudinal study reporting the association

between serum remnant-C and the risk of NAFLD outcomes.

Methods to assess risk factors for NAFLD may include autopsy

studies, hospital population-based studies, and community

population-based screening studies. Autopsy can easily provide

evidence of NAFLD, but the main limitation of autopsy research

is that it cannot provide the true prevalence of NAFLD in living

people. Because NAFLD patients may be asymptomatic and often

do not go to the hospital, studies based on the hospital population

cannot provide true risk factors for NAFLD. In contrast, a

community-based population-based screening study of random

samples can more objectively assess the true risk factors of

NAFLD. In the diagnosis of NAFLD, US has a sensitivity of 80%-

95% and a specificity of 90%-95% and has a wide range of

application value in the screening of NAFLD in the general

population (14–16). In addition, reports from Japan showed that

NAFLD was more prevalent in the middle-aged subjects (17).

Hence, using a community US survey, we determined the risk

factors of NAFLD in a Chinese cohort of middle aged and

elderly individuals.

Our longitudinal cohort results confirmed previous cross-

sectional evidence on the risk role of TG in NAFLD, that is, the

increase concentrations of serum TG were associated with higher

risk of NAFLD as time goes by. In the characterization of the

pathogenic mechanisms of NAFLD, the ‘first hit’ is triggered by the

lipid accumulation in hepatocytes, a trait in which exacerbated fat

intake and IR would play a key role (18). Although NAFLD is

associated with excess triglycerides in the liver, current evidence

suggests that free fatty acids (FFAs), not TG, accumulate in lipid

droplets to cause inflammatory liver damage in nonalcoholic

steatohepatitis. The liver metabolism of FFAs leads to the

formation of toxic metabolites, which are mainly responsible for
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the production of oxidative stress, inflammation and liver

parenchymal damage (19–21). However, the accumulation of TG

in the liver is currently considered to be a non-toxic and safer form

of liver lipid storage, which is an epiphenomenon that reflects

changes in the balance of hepatocyte FFA flux and cellular stress

(22); therefore, steatosis can be recognized as an early adaptive

response to hepatocyte stress as a result of increased caloric

consumption. Through this process, potentially lipotoxic FFAs are

segmented into relatively inert intracellular TG molecules (23).

Many studies have found that IR is the most important and

common potential factor involved in the accumulation of free

fatty acids in the liver. The current dominant paradigm is that IR

leads to dyslipidemia. Our results show that serum TG

concentration is a risk factor for NAFLD over time. So, is

hypertriglyceridemia triggering IR or IR causing changes in serum

TG concentration in the occurrence of NAFLD? It is important to

determine whether hypertriglyceridemia plays a causal role in the

etiology of insulin resistance in NAFLD since it can reveal new

avenues to combat NAFLD.

Remnant-C is the residue of the TRLs metabolism that consists

of chylomicron remnants in the non-fasting state and VLDL and

intermediate density lipoproteins in the fasting state. Previous

evidence depicted remnant-C was associated with the increased

risk of major adverse cardiovascular events (MACEs), but the

relationship between serum remnant-C level and the occurrence

of NAFLD has not been studied longitudinally (24). The study from

Italian hospitals including 798 unselected patients with cardio-

metabolic diseases and 79.2% with the presence of NAFLD

showed that there was a correlation between values of the

circulating remnant-C levels and liver disease severity in patients

with NAFLD (25). Consistent with this, teenagers with high

remnant-C levels had more severe fat accumulation in their livers

compared to those with low remnant-C levels in the Raine Study

(26).Particularly, in our longitudinal retrospective cohort study, we

found a significant correlation between levels of serum remnant-C

and the incidence of NAFLD after adjusting for age, sex, HC, BMI,

SBP, DBP, FPG, CHD and diabetes. In other words, serum

remnant-C was associated with a 14.3% higher risk per every 1-

SD increase and the incidence of NAFLD was high in subjects in the

upper quartiles of the remnant-C compared with the lowest

quartiles (HR = 1.235, 95%CI:1.074-1.421, p=0.003), which can

expand our knowledge of the remnant-C as a possible risk factor of

NAFLD to some extent.

Atherogenic dyslipidemia, characterized by plasma

hypertriglyceridemia, increased small dense LDL particles, and

decreased serum HDL-C concentration, is often present in a wide

range of chronic cardio-metabolic disorders within the NAFLD,

overweight, obesity and diabetes and considered as one of the main

causes of lipid-dependent residual risk, regardless of LDL-C

concentration (27–29). It’s worth noting that we also found the

lipid alterations characteristic of atherogenic dyslipidemia were

associated with a 34.3% higher risk of the incident NAFLD. Aside

from IR, several other factors include diet composition, gut

microbiota and genetic factors also contribute to the pathogenesis

of atherogenic dyslipidemia in patients with NAFLD (30).
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Furthermore, remnant-C, but not TC, was the major cholesterol

fraction contributor to NAFLD in our cohort of participants who

had no previous NAFLD. No significant interactions were observed

between TC and the risk of NAFLD. Cumulative hazard curve,

constructed to assess the incidence of NAFLD by categories of low

and high TC and remnant-C, found that NAFLD incidence was low

in the low remnant-C groups, regardless of TC levels. It is critical to

identify potentially modifiable risk factors of NAFLD is of

importance, so as to help develop targeted therapies that decrease

the risk of NAFLD. In addition, consistent with the study by

Catanzaro R et al. (31), we demonstrated that higher TG/HDL-C

ratio is associated with NAFLD, so TG/HDL-C could be used as a

reliable non-invasive marker in diagnostics of NAFLD in the future.

Notably, our subgroup analyses found that serum levels of TG and

remnant-C, but not TC or LDL-C, were associated with NAFLD

outcomes in women group, non-cardiovascular disease status, non-

diabetes status and middle BMI categories (24 to 28 kg/m2).

Therefore, more TG and remnant-C monitoring should be given

to individuals with the above characteristics for early prevention

and intervention in the occurrence and development of NAFLD.

Recently, the relevant data of Guideline for the Management of

Diabetes Mellitus in the Elderly in China (2021 edition) (32) show

that the prevalence of diabetes in the elderly in China is 30.2%,

which is much higher than the 19.3% of diabetes prevalence in the

elderly in the world. The number of patients suffering from diabetes

in China reached 35.5 million, accounting for a quarter of the

world’s elderly diabetes and ranking first in the world. Our

population fits this prevalence rate, so the results of the study are

of great significance.

The study is not without its limitations. First, our research was

observational and the causal role of remnant-C on the risk of

NAFLD incident should be verified in further studies. Second, since

we focused on plasma lipid related levels, we collected data on a

patient’s BMI, blood pressure, and other relevant indicators. We

failed to measure or collect data on diet and physical exercise, which

are very important influencing factors for NAFLD. And the lack of

data on plasma insulin that could drive dyslipidemia or NAFLD

may influencing the presented data. Third, the value of remnant-C

in our study might have been overestimated by indirect calculation

in comparison to direct measurement and more complicated and

expensive measurement of remnant-C could be required for

accurate results in vulnerable patients.
5 Conclusions

In summary, our study identified levels of TG and remnant-C,

but not TC or LDL-C, were associated with NAFLD outcomes

independent of other risk factors in the middle aged and elderly

subset of the Chinese population, especially in those who were

women, non-cardiovascular disease status, non-diabetes status and

middle BMI status (24 to 28 kg/m2). Consequently, the

demonstration of an association between TG or remnant-C and

NAFLD in those individuals could aid in the identification of subjects

who might benefit from targeted risk factor assessment and

management before the occurrence of adverse NAFLD outcomes.
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SUPPLEMENTARY FIGURE 1

Sensitivity analysis for the associations of remnant-C or other lipids with

incident NAFLD in sex groups. Data were adjusted for age, hip circumference,
body mass index, systolic blood pressure, diastolic blood pressure, fasting

plasma glucose, cardiovascular disease and diabetes status. HR, hazard ratio;

CI, confidence interval; other abbreviations as in Table 2.
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SUPPLEMENTARY FIGURE 2

Sensitivity analysis for the associations of remnant-C or other lipids with
incident NAFLD in different diabetes status. Data were adjusted for age, sex,

hip circumference, body mass index, systolic blood pressure, diastolic blood

pressure, fasting plasma glucose and cardiovascular disease status. HR,
hazard ratio; CI, confidence interval; other abbreviations as in Table 2.

SUPPLEMENTARY FIGURE 3

Sensitivity analysis for the associations of remnant-C or other lipids with
incident NAFLD in different cardiovascular disease status. Data were adjusted

for age, sex, hip circumference, body mass index, systolic blood pressure,
Frontiers in Endocrinology 1051
diastolic blood pressure, fasting plasma glucose and diabetes status. HR,
hazard ratio; CI, confidence interval; other abbreviations as in Table 2.
SUPPLEMENTARY FIGURE 4

Sensitivity analysis for the associations of remnant-C or other lipids with
incident NAFLD in different body mass index categories. Data were adjusted

for age, sex, hip circumference, body mass index, systolic blood pressure,

diastolic blood pressure, fasting plasma glucose, cardiovascular disease and
diabetes status. HR, hazard ratio; CI, confidence interval; BMI, body mass

index; other abbreviations as in Table 2.
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Introduction: Gestational diabetes mellitus (GDM) is the most common

pregnancy complication worldwide and is associated with short- and long-

term health implications for both mother and child. Prevalence of GDM varies

between ethnicities, with South Asians (SAs) experiencing up to three times the

risk compared to white Europeans (WEs). Recent evidence suggests that

underlying metabolic difference contribute to this disparity, but an

investigation of causality is required.

Methods: To address this, we paired metabolite and genomic data to evaluate

the causal effect of 146 distinct metabolic characteristics on gestational

dysglycemia in SAs and WEs. First, we performed 292 GWASs to identify

ethnic-specific genetic variants associated with each metabolite (P ≤ 1 x 10-5)

in the Born and Bradford cohort (3688 SA and 3354WEwomen). Following this, a

one-sample Mendelian Randomisation (MR) approach was applied for each

metabolite against fasting glucose and 2-hr post glucose at 26-28 weeks

gestation. Additional GWAS and MR on 22 composite measures of metabolite

classes were also conducted.

Results: This study identified 15 novel genome-wide significant (GWS) SNPs

associated with tyrosine in the FOXN and SLC13A2 genes and 1 novel GWS SNP

(currently in no known gene) associated with acetate in SAs. Using MR approach,

14 metabolites were found to be associated with postprandial glucose in WEs,

while in SAs a distinct panel of 11 metabolites were identified. Interestingly, in

WEs, cholesterols were the dominant metabolite class driving with dysglycemia,

while in SAs saturated fatty acids and total fatty acids were most commonly

associated with dysglycemia.
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Discussion: In summary, we confirm and demonstrate the presence of ethnic-

specific causal relationships between metabolites and dysglycemia in mid-

pregnancy in a UK population of SA and WE pregnant women. Future work will

aim to investigate their biological mechanisms on dysglycemia and translating this

work towards ethnically tailored GDM prevention strategies.
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1 Introduction

Pregnancy is accompanied by a period of intense maternal

metabolic adaptation to meet the energy demands of the foetus (1–

3). Mild maternal insulin resistance (IR) is a natural adaption to

prioritise adequate glucose for the growing foetus (4). However, if

gestational IR exceeds healthy levels and glycaemia is uncontrolled,

moderate IR can progress to gestational diabetes mellitus (GDM)

(1, 5). GDM is characterised by persistent maternal and foetal

exposure to elevated levels of glucose, and places the mother and

offspring at risk during pregnancy (i.e., macrosomia and

haemorrhaging) and in later life (i.e. from obesity, type 2 diabetes

(T2D) and cardiovascular disease) (6).

Globally, GDM is the most common pregnancy complication,

affecting up to one in every seven births; however, its prevalence

varies between ethnic groups, with South Asian (SA) women at 3-

fold greater risk compared to white European (WE) women,

irrespective of BMI and country of residence (5, 7). Furthermore,

SA women are more likely to develop T2D in later life following a

GDM diagnosis (8). Factors driving this disparity in prevalence are

not fully understood but metabolism is thought to play a key role

(6), given emerging evidence demonstrating (i) differences in

metabolic profiles between GDM and non-GDM pregnancies in

an ethnic-specific manner (2, 9); and (ii) that a single dietary

strategy to manage GDM across all ethnic groups appears

ineffective (10, 11). However, heterogeneity of reported

metabolite-GDM associations between studies (due to differences

in quantification methods, GDM diagnostic criteria (12, 13), ethnic

and cultural groups), as well as residual confounding in

observational studies have prevented complete understanding

and, moreover, advancement to improved equitable care. In short,

the field requires a clear and accurate understanding of ethnic-

specific metabolic drivers of gestational dysglycemia to inform

appropriate and effective prevention and management strategies

across ethnic groups.

Mendelian Randomisation (MR) is an instrumental variable

technique that can provide estimates of causal associations between

an exposure (such as metabolites) and outcome (such as

dysglycemia) (14–16). However, no study has yet used MR to

establish the presence of casual associations between metabolites

and measures of glycaemia at or before the 28 week of pregnancy in

an ethnic-specific manner. The present study aimed to address this
0253
using the multi-ethnic Born in Bradford (BiB) cohort to identify

ethnic-specific metabolic drivers of GDM.
2 Material and methods

2.1 Exposure data

BiB is a prospective longitudinal birth cohort that aimed to

recruit all mothers receiving maternity care in the Bradford Royal

Infirmary between 2007-2010 (17). Bradford, a large city in the

north of England, has high levels of deprivation and a large SA

population, predominantly of Pakistani ancestry. A total of 12,453

women (mean maternal age 27.8) were recruited, 45% of which

were of SA ancestry (17, 18). The study was not pre-registered but

(SP622) was approved by Born in Bradford. All participants

provided written consent and ethnical approval was obtained

from the Bradford Research Ethnics Committee (ref07/H1302/

112) (17).

Fasted plasma sample collection and high-throughput

metabolite quantification by automated NMR (Nightingale

Health©; Helsinki, Finland) has been previously described and

validated to a high accuracy (2). Briefly, samples were taken by

trained phlebotomists from BiB participants (26-28 weeks’

gestation) and were processed in the absence of freeze-thaw cycles

within 2.5 hours before storage at -80°C. One hundred and forty-six

absolute measures of metabolites were included in the analysis

following the removal of metabolites expressed as a percentage or

ratio to minimise redundancy. In total, 10 overarching classes of

metabolites were included in the analysis: lipoproteins (n=97),

amino acids (n=9), apolipoproteins (n=2), cholesterols (n=8),

fatty acids (n=8), glycerides and phospholipids (n=8), glycolysis

related metabolites (n=4), ketone bodies (n=2), measures of fluid

balance and inflammation (n=3) and measures of lipoprotein

particle diameter (n=3). A full list of included metabolites can be

found in Supplementary Table 1.
2.2 Outcome data

All participants were assesed prior to GDM diagnosis and the

28th week of pregnancy. Individuals were diagnosed with GDM if
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either their fasting glucose or if 2-hour post-load glucose

concentration exceeded 6.1 mmol/L or 7.8 mmol/L following a

75g oral glucose tolerance test (OGTT) (19). The OGTT was

performed in the morning following an overnight fast. To

maximise power, MR analyses were performed using continuous

metabolite values and fasting glucose and 2-hour post glucose.

Fasting glucose and 2-hour post glucose values were log normalised

prior to analysis.
2.3 Metabolite data

Information on metabolite data preparation has been described

in full elsewhere (9). In brief, 11,480 blood samples were

metabolically profiled from BiB, 54 of which were excluded due

to failure of any one of five Nightingale© quality control measures

leaving 11,426 samples for imputation. Missing data was imputed

via multiple imputation using the missMDA package in R (20).

After combining with postprandial glucose data, 3,693 SA and

3,377 individuals whose samples were taken before the 28th week of

pregnancy were retained before outlier removal (Supplementary

Figure 1). Outliers were removed (those outside of 1.5 x IQR) for

each metabolite in each ethnicity separately and metabolite values

were normalised by taking the log, square root or normal score

transformation (NST) as appropriate following the visual inspection

of histograms and QQ plots. Following the removal of outliers, the

number of individuals available for GWAS analysis of each

metabolite varied (Supplementary Table 2) but was relatively

consistent: for SAs the average sample size for each metabolite was

3622 (range 3472-3688), while for WEs it was 3301 (range 3158-

3345). Information on gestational age at sample collection and parity

was obtained from obstetric records. Ethnicity was self-reported or

obtained from primary care records if missing. Individuals of a SA

descent other than Pakistani were excluded from the analysis due to

the small sample sizes of these populations. Differences in the

distribution of continuous variables between ethnic groups were

assessed by Mann-Whitney tests, while differences in the

distribution of categorical variables were assessed by chi-squared

tests. Women of SA ancestry tended to be older than WE women

(27.9 ± 0.1 vs 26.7 ± 0.1 years) and were more likely to be overweight/

obese (64.5% vs 53.4%), and be on their ≥2nd pregnancy (67.1% vs

48.8%), but were less likely have smoked during pregnancy (2.9% vs

30.9%) (Supplementary Table 3).
2.4 Genetic data

Imputed genetic data were obtained from BiB. All samples were

genotyped using two chips: the Infinium Global Sequencing Array-

24 v.1 (GSA) (~640K SNPs) and the Infinium CoreExome-24 v1.1

BeadChip (~550K SNPs) (21). Genetic data from the Illumina

Global Sequencing Array (GSA) and Illumina CoreExome SNPs

were combined. Where SNPs were missing in >5% of individuals,

they were excluded (21). When evaluating imputed data, the R2

value can be a measure of quality control as it reflects to the

estimated proportion of genetic variation maintained in the
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imputed data. As a result, SNPs with an R2 <0.9 were excluded

prior to analysis.
2.5 GWAS analysis

Conventionally a GWAS assumes individuals are unrelated and

the inclusion of related individuals can potentially lead to spurious

associations (22, 23). However, the removal of individuals from the

BiB sample with close ancestry would substantially reduce the sample

size. In addition, high rates of consanguinity in the SA stratum of the

cohort makes relatedness difficult to assess (24). As such, a GWAS

mixed linear model association (MLMA) analysis was conducted in

PLINK (version 1.9) that allowed for the inclusion of related

individuals (23, 25–27). MLMA models include a fixed effect,

adjusted covariates, and an additional random effect comprised of a

variance-covariance matrix that models the correlation (here

relatedness) between individuals to be accounted for (23, 25).

GWAS MLMA models were implemented using the GCTA

(Genome-wide Complex Trait Analysis) command line tool for

each metabolite in both ethnicities (28). To increase power,

MLMA-loo (leave-one-out) analysis was used, preventing a SNP

from being included in both the fixed and random effects

concurrently, thereby avoiding double fitting (25). MLMA models

also included parity and principal components (PC) 1 and 2 to

account for population stratification (Supplementary Figure 2,

Supplementary Table 4). Gestational age, which showed little

variation, was not included in the modelling (median gestational

age SA = 184 days, IQR= 182-186.7, median gestational age WE =

184 days, IQR= 182-187). Genomic inflation factors (l) were

calculated for all models for a range of minor allele frequency

(MAF) cut-offs (MAF <0.001, 0.001≤ MAF < 0.005, 0.005 ≤ MAF

< 0.01, 0.01 ≤MAF < 0.05, 0.05 ≤ MAF < 0.1, and MAF ≥ 0.1) to

minimise data loss while also minimising false positives. l ≥ 1.1 was

considered indicative of genomic inflation (29, 30). A MAF cut-off of

<0.05 was the least stringent cut-off found to reduce l to ~1 meaning

this cut off was used in the analysis (Supplementary Table 5).

When a SNP was found to be associated with a metabolite value

in only one ethnicity, a fixed effect inverse-variance weighted meta-

analysis was implemented to assess the heterogeneity (via the I2

statistic) of identified associations between ethnicities and to see if

the SNP retained significance in a larger sample. Meta-analyses

were conducted within the command-line tool METAL (31) and

supplemented with FUMA (v1.5.2) (32) to investigate SNP function

based on their effect on phenotypes.
2.6 One-sample MR

2.6.1 Genetic instruments
One-Sample MR was conducted for all 146 metabolite values in

both ethnic groups using SNPs identified as significant at a genome-

wide suggestive level (p-value ≤ 1 x 10-5) in the GWAS. All variants

were also entered into MR-base (33) to test for other reported

known associations that may be in horizontal or vertical pleiotropy.

Metabolites were grouped into their overall classes and SNPs in
frontiersin.org

https://doi.org/10.3389/fendo.2023.1157416
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Fuller et al. 10.3389/fendo.2023.1157416
each class were thinned by linkage disequilibrium (LD) (R2<0.2) via

the NIH LDlink online tool (https://ldlink.nci.nih.gov) reducing the

overlap of instruments in each class (34, 35). For individuals of WE

ancestry, all European (EUR) and South Asian (SAS) populations in

LD link (software that utilises 1000 Genome data) were used to

estimate LD due to the expected similarity in their LD structure

allowing for an increase sample size and resultant improvement in

the accuracy of LD estimates (36). Similarity between 1000 Genome

SA samples and BiB samples was assessed using principal

components analysis (PCA) in PLINK (version 1.9) because

Pakistani samples from BiB originate from a different region of

Pakistan (the Mirpur Region) from the 1000 Genome SA samples

(26, 27). This is of particular importance in SA as even

geographically close populations can have differing allele

frequencies due to differing Biraderi (‘Brotherhood’) membership

between population subgroups. Biraderi membership is assigned at

birth, is an indicator of male lineage as well as social-occupational

status which largely governs partner choice and can result in higher

levels of consanguinity in the population (21). PCA plots were

created using the ggplot2 package in R studio (version 4.0.2) (37,

38). No clear separation in SA BiB samples and SA 1000 Genome

(1000G) samples was identified indicating that LD estimates

obtained from 1000G was suitable for use in BiB (Supplementary

Figures 3-5).

2.6.2 Analysis
Genetic Risk Scores (GRS) were created in PLINK (version 1.9)

for each metabolite with each SNP receiving a weight based on its

estimated effect size on the metabolite obtained from the GWAS

(39). One-sample MR was then performed by Two-Stage Least

Squares regression (TSLS; ivpack, ivreg, and AER packages in R

version 4.0.2) to obtain a causal estimate for the effect of each

metabolite value on the log-normalised continuous measures of

fasting glucose and 2-hour post glucose following a 75g oral glucose

tolerance test (OGTT) (37, 40, 41). Here, the level of a metabolite is

regressed on its respective GRS and, subsequently, the outcome is

regressed onto these fitted GRS-metabolite values in the second

stage. All MR results have been reported according to STROBE-MR

guidelines (42).

When significant associations were identified, leave-one-out

analysis was performed. For this, SNPs were removed sequentially

from the instrument and changes to the effect estimate and F-

statistic was assessed. If the exclusion of a SNP was found to alter

either the effect estimates or F-statistic (through the visualisation of

forest plots) it is possible that the SNP is influencing the outcome

via an alternative pathway to other SNPs, potentially highlighting a

violation of the 2nd or 3rd MR assumption. To further test for

violations of these assumptions, included SNPs were searched for in

both the Phenoscanner and GWAS Catalogue databases to identify

previously identified associations (43–45) with potential

confounders in horizontal (i.e., multiple pregnancies, type-1

diabetes, deprivation index, parity) rather than vertical pleiotropy

(i.e., along causal pathway, such anthropometrics). In both
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databases a p-value ≤ 1 x 10-5 was interpreted as indicative of an

additional association. Differences between MR and linear

regression results were also evaluated via the Wu-Hausman

statistic to assess deviation of the instrumental variable estimate

from the ordinary least squares (OLS) estimate (46). Deviations in

these two measures can indicate either confounding in the OLS

estimate (indicating a need for MR) or violations of the MR

assumptions due to pleiotropy.

2.6.3 Post-hoc power analyses
For metabolites that associated with a measure of postprandial

glucose in only one ethnic group, post-hoc power analyses were

performed using the mRnd CNS genomics tool (https://

shiny.cnsgenomics.com/mRnd/) to assess whether the absence of

an association in the alternate ethnicity was due to limited power

(47). Observational and ‘true’ associations required by the tool were

obtained by performing linear regression of the outcome on the

metabolite and obtaining unadjusted and adjusted estimates

(adjusted for maternal age (years), BMI (continuous), smoking

status, multiple pregnancy, parity, and gestational age)

respectively. Due to the post-hoc nature of this analysis, additional

power analyses could be conducted assuming the MR estimate to be

the true causal effect in the MR calculation. This analysis was

performed in the non-significant population for each metabolite

associated in only one ethnicity. If power was found to be adequate

(80%) at the 5% level (a = 0.05) power was also assessed at the 1%

level (a = 0.01).
3 Results

3.1 GWAS of metabolite measures

A total of 6184 SNPs were associated with at least one

metabolite in WEs at the suggestive level (1 x 10-5), with 2616

(42.3%) SNPs being associated with a single metabolite measure.

However, no SNPs were identified below the genome-wide

significant level (p-value <5 x 10-8) in WEs.

Fewer SNPs were identified at the suggestive level in SAs, with

3685 SNP-metabolite associations in total, of which 1544 (41.9%)

SNPs being associated with only one metabolite measure. SNP

associations were identified for 138/146 (94.5%) metabolite

exposures in SAs (Supplementary Table 6). No SNP was

identified as being associated at the suggestive level in both

ethnicities, although shared genomic regions were identified

between ethnicities (Supplemental Excel). Using FUMA to

investigate SNP function based on their effect on phenotypes in

both ancestries (32), of the 85 genetic variants meta-analysed that

surpassed suggestive GWAS significance: 54 were intergenic (i.e.,

between genes), 21 were intronic (i.e., between exons of a gene), 5

were upstream (i.e., within 250 bps before transcription start site), 3

were downstream (i.e., within 500 bps after transcription start site),

and 2 (2%) were exonic (i.e., within protein coding region).
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To evaluate the possibility of shared genomic predictors of

metabolites, a pooled meta-analysis of effect estimates in both

ethnicities was performed. For 90 metabolite values, no

associations were found to exceed the genome-wide suggestive

level (p<10-5) following meta-analyses of both ethnicities. SNP

associations were identified at the suggestive level for four

metabolite measures (concentration of XL-HDL, total lipids in M-

VLDL, mean density of VLDL and citrate) despite these differing in

direction of effects in SAs and WEs. In addition, 4 SNPs were

associated with alanine, despite these SNPs initially being associated

with alanine only in the SA population. These SNPs (rs12256633,

rs17121228, rs7096521, rs12240368) are all found on chromosome

10 in the receptor gene SORCS1 and have not been associated with

alanine levels previously (48, 49).
3.2 MR Results

After LD thinning, genetic instruments were available for all

146 metabolites inWEs and for 136/146 (93.2%) metabolites in SAs.

In WEs, 1040 SNPs were retained following LD thinning including

423 (40.67%) that were unique to an individual metabolite. Fewer

SNPs were identified in SAs, where 383 SNPS remained after LD

thinning, 195 (50.9%) of which were unique to a single metabolite.

Only 2.7% of included genetic instruments (4 metabolites) in WEs

and 12.5% (9 metabolites) of included genetic instruments in SAs

had an F-statistic < 10, indicating that most instruments were at low

risk of weak instrument bias (50). The average F-statistic for WEs

instruments was 72.4, while in SAs it was considerably lower at 26.7

(Supplementary Figure 6). Screening of genomic predictors using

Phenoscanner and GWAS databases did not raise major concerns

for horizonal pleiotropy (Supplementary Table 7) but did suggest

that modification of anthropometrics is a common pathways by

which metabolites elicit their effect on dysglycemia − i.e., vertical

pleiotropy. However, where horizontal pleiotropy was a possibility

(e.g., cholesterol levels), sensitivity analyses were performed (see

3.2.1.1 and 3.2.2.1 Sensitivity Analyses). Using MR-Base, we report

that [in agreement with recent GWAS (51)], almost all SNPs

included in an instrument have been previously associated with

dysglycemia metrices or diabetes (Supplementary Table 8).

However, since most evidence of genomics-diabetes associations

are sourced from non-SA populations, these results may not

accurately reflect genetic associations in SAs.

3.2.1 White Europeans
Two metabolite values, leucine and mean density of HDL

lipoproteins (HDL_D), were associated with both fasting glucose

and 2-hour post glucose (Table 1; Supplementary Figures 7, 8).

Specifically, a 1mmol/L increase in blood leucine associated with

lower fasting glucose (-0.193 mmol/L, 95% CI -0.069, -0.319) and 2-

hour post glucose (-0.443 mmol/L, 95% CI -0.113, -0.774). Likewise,

a 1nm increase in mean diameter of HDL associated with lower

fasting glucose (-0.082 mmol/L, 95% CI 0.026, 0.138) and 2-hour

post glucose (-0.191, 95% CI 0.043, 0.339 mmol/L). No other

metabolites were associated with both measures of glucose in WEs.
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For fasting glucose, an increase of 1mmol/L total cholesterol in

M-HDL (M-HDL-C) and cholesterol esters in M-HDL (M-HDL-

CE) were associated with lower fasting glucose measures (-0.189

mmol/L, 95% CI -0.021, -0.358, and -0.327 mmol/L, 95% CI -0.069,

-0.586 respectively). For 2-hr post-glucose, 8 metabolite values were

positively associated with this (HDLC, HDL2C, HDL3C,

triglycerides in XS-VLDL, cholesterol esters in XL-HDL, total

concentration of L-HDL, total lipids in L-HDL and cholesterol

esters in S-HDL) and one (total concentration of S-LDL) was

negatively associated (Table 1). Cholesterol metabolites, measures

of total cholesterols in lipoproteins and total cholesterols in

lipoproteins were the most common types of metabolite class to

be associated with postprandial glucose in WEs, with leucine being

the only amino acid identified. Wu-Hausman p-values < 0.05

indicate deviations of the instrumental variable estimate from the

OLS estimate (Table 1).

3.2.1.1 Sensitivity analyses

For 6 of 13 metabolite values, leave-out one analyses maintained

significance (P≤ 0.05) indicating that no individual SNP was driving

the identified associations in WEs: leucine, mean diameter of HDL,

total lipids in L-HDL, cholesterol esters in S-HDL and cholesterol

esters in M-HDL (Supplementary Figure 9). For the remaining 8

metabolites, b values were consistent across leave-one-out analyses

although not all associations remained significant. Additionally, for

12/13 metabolites (all but M-HDL-CE), the F-statistic did not

substantially differ through the exclusion of individual SNPs from

the instruments, which suggests they were not substantially driven

by a single SNP (Supplementary Figure 9). The exception to this was

cholesterol esters in M-HDL, where the exclusion of rs2138011 or

rs739018 increased the F-statistic.

Three of the metabolites (leucine, L-HDL-L, L-HDL-C) that

were associated with postprandial glucose in WEs included a SNP

that previous studies have associated (p ≤ 1 x 10-5) with at least one

potential confounder (BMI, hypertension or waist circumference)

(Supplementary Table 7). The removal of these SNPs from the

instrument did not impact the significance of the associations

identified for leucine or L-HDL-L (Table 2). However, for L-

HDL-C instrument, the exclusion of two SNPs (rs5576825 and

rs6811162) previously associated with a potential confounder (waist

circumference and hypertension respectively) resulted in non-

significant association between L-HDL-C and 2-hour post

glucose. Importantly, for both SNPs, it is conceivable that the

confounders could reside on their causal pathway (i.e., vertically

pleiotropic, where L-HDL-C effects 2-hr post-prandial glucose

through its effect on weight gain) rather than be in horizontal

pleiotropy and may, therefore, violate the 2nd MR assumption (50).

3.2.2 South Asians
No metabolite was associated with both fasting glucose and 2-

hour post glucose in SAs (Supplementary Figures 7, 8). Although,

for fasting glucose, a 1 mmol/L increase in either total FAw3 or S-

HDL-C was associated with an increase of fasting glucose by 0.432

mmol/L (95% CI 0.063 – 0.798) and 1 mmol/L (95% CI 0.116 –
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1.882) respectively. No metabolite associated with a decrease in

fasting glucose in SAs.

Nine metabolites associated with 2-hour post glucose levels in

SAs. Of these, 4 metabolites, LA, FAw6, total lipids in M-VLDL (M-

VLDL-L) and total phospholipids in L-HDL (L-HDL-PL),

associated with an increase in with 2-hour post glucose, with the

largest effect being identified for L-HDL-PL. Specifically, a 1mmol/L

increase in L-HDL-PL associated with a 0.692 mmol/L increase

(95% CI 0.106 - 1.280) in 2-hour post glucose. A further 5 additional

metabolites were associated with a decrease in 2-hour post glucose:

concentration of L-LDL (L-LDL-P), total cholesterols in IDL (IDL-

C), cholesterol esters in IDL (IDL-CE) concentration, total

cholesterols in IDL (IDL-C), total lipids in small S-LDL (S-LDL-
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L), and total lipids in small S-HDL (S-HDL-L). The largest decrease

in 2-hour post glucose was observed for L-LDL-P where a 1mmol/L

increase in L-LDL-P associated with a 3.86 mmol/L decrease (95%

0.467 - 7.27) in 2-hour post glucose levels (Table 3).

Fatty acids were the class of metabolites most frequently

associated with postprandial glucose in SAs. All three fatty acids

(LA, FAw3 and FAw6) associations identified in SAs were of similar

magnitude: a 1 mmol/l increase of FAw3 associated with a +0.4

mmol/l increase in fasting glucose or and a 1 mmol/increase of

FAw6 and LA associated with a +0.4 mmol/l increase of 2-hour

post glucose.

No metabolite found to be associated with postprandial glucose

measures inWEswas found to be associated with postprandial glucose in
TABLE 1 Significant MR results in white Europeans.

Class Metabolite Outcome F statistic b estimate
(95% CI) WuH

Lower Glucose

S-LDL S-LDL-P 2-hour post 41.7
-1000

(-20, -1984)
0.017

Amino Acids Leucine

Fasting glucose

67.3

-0.193
(-0.069, -0.319)

0.005

2-hour post
-0.443

(-0.113, -0.774)
0.008

M-HDL

M-HDL-CE Fasting glucose 62.4
-0.327

(-0.069, -0.586)
0.043

M-HDL-C Fasting glucose 117
-0.189

(-0.021, -0.358)
0.117

Increase Glucose

Lipoprotein Density HDL_D

Fasting glucose

131

0.082
0.026, 0.138)

0.004

2-hour post
0.191

(0.043, 0.339)
0.024

L-HDL

L-HDL-P 2-hour post 108
220

(41.3, 397)
0.02

L-HDL_L 2-hour post 131
0.264

(0.062, 0,464)
0.014

L-HDL-C 2-hour post 120
0.279

(0.012, 0.544)
0.048

Cholesterol

HDL2C 2-hour post 103
0.288

(0.007, 0.583)
0.025

HDLC 2-hour post 90.6
0.296

(0.007, 0.583)
0.047

HDL3C 2-hour post 66.6
1.58

(0.002, 3.15)
0.074

XL-HDL XL-HDL-CE 2-hour post 109
0.541

(0.079, 1.00)
0.039

XSVLDL XS-VLDL-TG 2-hour post 87.8
0.841

(0.098, 1.58)
0.042

S-HDL S-HDL-CE 2-hour post 41.9
1.78

(0.448, 3.11)
0.007
frontie
Glucose measures are expressed as mmol/L. HDL_D, mean diameter of HDLs (nm); HDLC, total cholesterol in HDL (mmol/L); HDL2C, total cholesterol in HDL2 (mmol/L); HDL3C, total
cholesterol in HDL3 (mmol/L); L-HDL-C, total cholesterols in L-HDL (mmol/L); L-HDL_L, total lipids in L-HDL (mol/L); L-HDL-P, concentration of L-HDL (mol/L); M-HDL-C, total
cholesterol in M-HDL (mmol/L); M-HDL-CE, cholesterol esters in M-HDL (mmol/L); S-HDL-CE, cholesterol esters in S-HDL (mmol/L); S-LDL-P, concentration of S-LDL (mol/L); XL-HDL-
CE, cholesterol esters in XL-HDL (mmol/L); XS-VLDL-TG, triglycerides in XSVLDL (mmol/L); WuH, Wu-Hausman p-value.
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SAs. However, in both populations, members of the S-HDL and L-HDL

class were found to be associated with increased postprandial glucose.

3.2.2.1 Sensitivity analyses

Six instruments in SAs were comprised of a single SNP meaning it

was not possible to perform a leave-one-out analysis for these

metabolites. For the remaining 5 metabolites, associations were

consistent across each leave-one-out analyses (Supplementary

Figure 9). Likewise, no large differences in F-statistics following the

removal of individual SNPs were identified (Supplementary Figure 10).

Just as in WEs, 3 metabolites identified in SAs included SNPs

associated with cholesterol or hypertension, which are potential

confounders of the association between metabolites and

dysglycemia (Supplementary Table 7). Significance was

maintained following the removal of SNP rs7486176 (found

within the C12orf76 gene) from the total phospholipids in L-HDL
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instrument. For the LA and FAw6 exposures, the removal of SNP

rs12720820 (found within the APOB gene) resulted in a non-

significant association indicating that this SNP was the main

driver of the identified association (Table 2). In leave-one-out

analyses, the removal of SNP rs58865405 from the FAw6

instrument resulted in non-significance, although the biological

role of this SNP remains unknown.
3.3 Post-hoc analysis: analysis of
metabolite classes

Numerous SNPs were found to be associated with more than

one metabolite measure, particularly for metabolites in the same

metabolite class (Supplementary Figures 11-12). This was

anticipated since many metabolomic pathways are biologically
TABLE 2 Removal of potentially pleiotropic SNPs.

Ethnicity Metabolite SNP Gene Associated confounder

Initial Confounder
removal

b esti-
mate

(95% CI)
WuH

b esti-
mate

(95% CI)
WuH

WE

Leucine rs2984433 ACTG1P9 BMI, Obesity class 1, weight

-0.193
(-0.319,

-0.068) FG
0.004

-0.203
(-0.339,

-0.068) FG
0.006

-0.443
(-0.774,

-0.113) 2H
0.024

-0.547
(-0.909,

-0.185) 2H
0.002

L-HDL_L rs6811162 ENPEP
Self-reported hypertension, diagnosed high blood

pressure

0.264
(0.062,
0.464)

0.014
0.301
(0.092,
0.510)

0.006

L-HDL-C

rs5576825
LINC01621
ELOVL4

Waist circumference

0.279
(0.012,
0.544)

0.048

0.323
(0.0456,
0.602)

0.107

rs6811162 ENPEP
Self-reported hypertension, diagnosed high blood

pressure

0.241
(-0.037,
0.519)

0.026

rs5576825 +
rs6811162

- -
0.287
(-0.004,
0.578)

0.063

XL-HDL class rs5576825
LINC01621
ELOVL4

Waist circumference
-0.285
(-0.552,
-0.018)

0.015
-0.244
(-0.528,
0.040)

0.135

SA

LA rs12720820 APOB
Self-reported high cholesterol, coronary artery disease,

treatment with cholesterol lowering medication

0.477
(0.013,
0.939)

0.030
0.335
(-0.982,
0.763)

0.459

FAw6 rs12720820 APOB
Self-reported high cholesterol, coronary artery disease,

treatment with cholesterol lowering medication

0.445
(0.094,
0.794)

0.007
0.223
(-0.398,
0.843)

0.105

L-HDL-PL rs7486176 C12orf76
Systolic blood pressure, diagnosed high blood pressure,

hypertension

0.692
(0.106,
1.28)

0.021
0.853
(0.170,
1.54)

0.013

Fatty Acid
class

rs12720820 APOB
Self-reported high cholesterol, coronary artery disease,

treatment with cholesterol lowering medication

0.172
(0.018,
0.327)

0.018
0.142
(-0.049,
0.334)

0.119
frontie
2H, 2-hour post glucose; FAw6, Total n-6 fatty acids; FG, fasting glucose; LA, 18,2 linoleic acid (mmol/L); L-HDL-C, total cholesterols in L-HDL (mmol/L); L-HDL_L, total lipids in L-HDL
(mmol/L); L-HDL-PL, phospholipids in L-HDL (mmol/L); SA, South Asian; WE, White European; WUH, Wu-Hausman p-value.
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intertwined. To minimise the risk of violation of the third MR

assumption (that the genetic instrument must only influence the

outcome via the exposure and not via an alternative biological

pathway) (14), the collective effect of an entire class of metabolites

on postprandial glucose measures was examined. A composite score

for each metabolite class was created by placing all metabolites in a

single class (e.g. all LDL metabolites), conducting a PCA and

extracting PC1. This was only possible for 20 classes in WEs and

21 classes in SAs that had > 2 metabolites and ≥70% of the class

variation was explained by PC1 (Supplementary Table 9). To assess

the impact of outliers on PCA, outliers were defined and removed

based on two cut-offs: standard (1.5 X IQR from the median) and

stringent (3 x IQR from the median). For all classes, PC1 and PC2

scores were comparable after removal of both types of outliers so

only 3xIQR outl iers were removed prior to analyses

(Supplementary Table 10).

138 SNPS remained after LD thinning in WEs, 87 (63.04%) of

which were unique to a single metabolite class exposure. 19/20 (95%)

of the metabolite classes examined inWEs had an F-statistic ≥10 (the

only exception being the MHDL class). 54 SNPS remained after LD

thinning in SAs, 42 (77.78%) of which were unique to a single
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metabolite class. Screening of metabolite class predictors in

Phenoscanner and GWAS databases did not raise concerns for

horizonal (Supplementary Table 11). Despite the lower number of

SNPs identified in SAs,17/20 (85%) of the metabolite classes

examined had a F-statistic ≥10 indicating that instrument strength

was still sufficient, for all classes except for the non-branched amino

acids, LLDL class, and all VLDL classes. On average, the mean F-

statistic of metabolite class instruments was 19.83%. On average

genetic instruments of composite measures of the metabolite classes

were weaker than the instruments for individual metabolites in both

WEs and SAs (Supplementary Figure 13).

In WEs, 4 metabolite classes were associated with a glucose

measure: S-LDLs associated with fasting and 2-hour post glucose;

M-LDL and all LDLS (i.e. the collective grouping of HDLs, MDLs

and SDLs) were associated with fasting glucose, and XL-HDLs were

associated with 2-hour post glucose (Table 4). In SAs, the fatty acid

metabolite class were associated with 2-hour post glucose levels. No

other associations were identified in SAs.

As with the sensitivity analyses of individual metabolites, the

removal of individual SNPs was not found to greatly impact the F-

statistic of most instruments (Supplementary Figures 14-15).
TABLE 4 Significant MR results from the analysis of metabolite classes.

Ethnicity Metabolite class Outcome F statistic b estimate
(95% CI) WUH

White European

XL-HDL 2-hour post glucose 96.2 -0.285 (-0.018, -0.552) 0.015

M-LDL Fasting glucose 95.5 -0.048 (-0.004, - 0.091) 0.024

S-LDL
Fasting glucose 98 0.084 (0.007, 0.162) 0.024

2-hour post glucose 98 -0.249 (-0.016, -0.482) 0.066

All LDL Fasting glucose 95 0.038 (-0.005, -0.068) 0.016

South Asian Fatty Acids 2-hour post glucose 32.8 0.172 (0.018, 0.327) 0.0184
frontie
Glucose measures are expressed as mmol/L. WuH: Wu-Hausman p-value.
TABLE 3 Significant MR results in South Asians.

Class Metabolite Outcome F statistic b estimate
(95% CI) WuH

Lowers Glucose L-LDL LDL-P 2-hour post 11.7 -2238 (-4828 -193.7) 0.024

S-LDL SLDL-L 2-hour post 11.1 -3.86 (0.467, -7.27) 0.015

IDL
IDL-C 2-hour post 10.9 -1.19 (-0.12, -2.27) 0.021

IDL-CE 2-hour post 11.8 -1.34 (-0.144, -2.55) 0.023

S-HDL S-HDL-L 2-hour post 11.4 -1.23 (-0.137, -2.32) 0.012

Increases Glucose

Fatty Acids

LA 2-hour post 20.9 0.477 (0.013, 0.939) 0.030

FAw3 Fasting glucose 10 0.432 (0.063, 0.798) 0.008

FAw6 2-hour post 33.4 0.445 (0.094, 0.794) 0.007

M-VLDL M-VLDL-L 2-hour post 68.4 0.046 (0.009, 0.083) 0.008

L-HDL L-HDL-PL 2-hour post 43.3 0.692 (0.106, 1.28) 0.021

S-HDL S-HDL-C Fasting glucose 22 1 (0.116,1.882) 0.012
Glucose measures are expressed as mmol/L. FAw3, total n-3 fatty acids; FAw6, total n-6 fatty acids; IDL-C, total cholesterols in LDL (mmol/L); IDL-CE, cholesterol esters in LDL (mmol/L); LA,
18,2 Linoleic Acid (mmol/L); LDL_P, concentration of LDL particles (mol/L); L-HDL-PL, phospholipids in L-HDL (mmol/L); M-VLDL-L, total lipids in M-VLDL (mmol/L); S-HDL-C, total
cholesterols in S-HDL (mmol/L); S-HDL-L, total lipids in S-HDL (mmol/L); S-LDL-L, total lipids in S-LDL (mmol/L); WuH, Wu-Hausman p-value.
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However, for the fatty acid metabolites class, the exclusion of

rs12720820 or rs7159441, and for ‘XL-HDL’, the removal of

rs55768285, resulted in non-significant associations, suggesting

that these SNPs are key drivers of the association. (Table 4;

Supplementary Table 10).
3.4 Power analysis

R2 values were consistently lower in the ethnic group where an

effect was not detected but all genetic instruments for the metabolite

values had an F-statistic ≥ 10, indicating that weak instrument bias

was not responsible for the absence of significant effects. Where an

association was identified in one ethnic group but not another, to

determine whether the absence of an association was potentially due

a lack of power in the other ethnicity rather than an ethnic-specific

effect, post-hoc power analyses were performed.

When using MR estimates as an estimate for the true causal effect

both the analyses of FAw3 and the overall fatty acid class inWEs were

adequately powered to detect the observed MR effect in both

populations. Therefore, the absence of an effect of FAw3 in WEs is

unlikely due to inadequate power (Supplementary Table 12). The

analysis of HDL2C and HDL3C in SAs was also sufficiently powered

to detect the observed MR effect in WEs.
4 Discussion

This study has identified ethnically distinct associations

between a range of metabolites and postprandial glucose

measures taken during pregnancy in SAs and WEs, with notably

no shared associations were identified. Fourteen metabolites were

found to be associated with postprandial glucose measures in WEs.

Whereas, a distinct set of 11 metabolites were associated in SAs. In

WEs, cholesterols and lipoproteins were the metabolite classes

associated with postprandial glucose measures, while in SAs fatty

acids were the most commonly associated.

Furthermore, through an extensive GWAS of metabolites, this

study identified novel genome-wide significant associations in

relation to acetate (1 SNP, rs10945476) and tyrosine (15 SNPs, all

on chromosome 17) in SAs. No previous associations have been

identified for SNP rs10945476, found within the non-coding

transcript gene PRDM15 in relation to acetate or any

other exposure.

Interestingly, 3 of the 15 SNPs associated with tyrosine are

found in a transmembrane transporter gene, SLC13A2. Moreover,

an additional 10 of the newly identified 15 SNPs associated with

tyrosine were found in the FOXN gene, a transcription factor that

has previously been identified to be associated with ceramide levels

(a lipid metabolite) in a GWAS from a Chinese cohort (52).

Moreover, ceramide has been shown to induce tyrosine

phosphorylation in membrane proteins meaning it is plausible

that a gene associated with ceramide is also associated with

tyrosine levels in an Asian population (51). Interestingly,

ceramide has been proposed as a mediator of the interaction
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between saturated fat and insulin resistance and has been

associated with T2D and cardiovascular disease (53). To the best

of our knowledge tyrosine levels have not previously been

associated with either FOXN SLC13A2. The remaining 2 of the 15

SNPs identified as being associated with tyrosine in SAs, are

currently not in any known genes. All 15 SNPs identified as being

associated with tyrosine in SAs are in LD with each other in 1000G

SA populations (all R2 ≥ 0.38). In agreement with a recent GWAS of

GDM and T2D (54), almost all SNPs included in an instrument

significantly associated with either outcome (fasting glucose or 2-

hour post glucose) have previously been associated with a diabetes

related disease outcome, providing additional evidence for their

validity as instrumental variables. However, since most evidence of

genomics-diabetes associations are sourced from non-SA

populations, these results may not accurately reflect genetic

associations in SAs.
4.1 Identified associations in white
Europeans (WEs)

4.1.1 Leucine
Branched chain amino acids (BCAAs), including leucine, are

predominantly metabolised in skeletal muscles where they regulate

protein synthesis and mitochondrial functions (55). In addition,

BCAAs are hormonal signalling regulators and are expected to

module insulin resistance (IR) through increasing insulin secretion

in human pancreatic b-cells (56, 57). Our study found leucine to be

negatively associated with both fasting glucose and 2-hour post

glucose levels during pregnancy in WEs; with 1 mmol/L of leucine

associated with a decrease of 0.193 mmol/L in fasting glucose and

0.327 mmol/L 2-hour post glucose respectively. Although few

studies have investigated the role of leucine in glucose regulation

during pregnancy, interestingly the ratio of leucine/isoleucine was

similarly found associated with reductions in fasting glucose in the

HAPO study, a multi-ethnic cohort of pregnant women of Afro-

Caribbean, Mexican American, Northern European, and Thai

ancestry (58). Common dietary sources of leucine include meat

products and cheese, with smaller amounts also being present in

other dairy products (such as dairy and yoghurt), fish and in certain

legumes and nuts, such as dried raw broad beans and pine nuts (55).

Hence, dietary interventions aimed at increasing leucine levels

during pregnancy, possibly through a dietary intervention

promoting the consumption of lean animal protein, low-fat dairy

and nuts, may help improve pregnancy hyperglycaemia in WEs.
4.1.2 Cholesterols
HDL cholesterol is colloquially described as ‘good cholesterol’

due to its role in the removal of cholesterols from atherosclerotic

plaque, thereby reducing an individual’s risk of CVD (59).

Furthermore, low HDL levels have commonly been associated

with diabetes in humans, with HDL shown to increase insulin

secretion and b-cell survival (60, 61). We identified four

associations between HDL cholesterol and postprandial glucose
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measures in WEs. Herein, 1 mmol/L increase in S-HDL-CE confers

a 1.78 mmol/L increase (95% CI 0.49 – 3.11) in 2-hour post glucose.

This is consistent with previous evidence from a Finnish sample of

overweight and obese women where cholesterol esters in S-HDL

were higher in the serum samples of GDM cases at ~14 weeks

gestation (62). Discrepancies in the direct effect of HDL cholesterol

on dysglycemia have also been identified in the genetic literature

(61), with a recent review highlighting that while a genetic study

utilising linear relation analysis did find HDLs to have a protective

effects against T2D (n cases = 2,447) (63), the same effect was not

been replicated in an MR setting (n cases= 47,627) (64). When

considering LDL cholesterols, only S-LDLs was found to be

significantly associated with a postprandial glucose measure

(fasting glucose) in WEs. Additionally, in our composite analysis

of metabolite classes, S-LDLs were associated with fasting glucose

and 2-hour post glucose inWEs, whereas the M-LDL and all LDL (a

combined measure of S-LDLs, M-LDLs and HDLs) classes were

associated with fasting glucose. Unfortunately, because composite

scores were comprised of PC1 coordinates the direction of effect of

these associations could not be evaluated. To our knowledge, no

previous study has conducted an MR of metabolites on dysglycemic

predictors of GDM.

4.1.3 Triglycerides
Triglycerides are an abundant class of lipid particles found in

the blood, originating from either from the consumption of dietary

fats or as a result of hepatic metabolism (65, 66). Once in the blood,

triglycerides can be incorporated into HDL and LDL cholesterol

particles. In addition to dietary triglyceride consumption, dietary

fatty acids can be converted into triglycerides before they enter

circulation, highlighting the complex relationship between

triglyceride, cholesterol, and fatty acid levels (65).

Our results suggest triglycerides in XSVLDL (XS-VLDL-TG)

associate with increased 2-hour post glucose (0.841 mmol/L) in

WEs. In agreement with these findings, increased triglycerides in

XSVLDL levels have also previously been associated with increased

likelihood of GDM in a Finnish population (62). No other

triglyceride was found to be associated with in WEs. One

explanation no additional associations were detected could be due

to the average BMI of the WEs in BiB. For example, an analysis of a

prospective Irish cohort (~94% WE) found that triglyceride levels

were only associated with GDM in obese individuals, a higher

average BMI than that observed in the BiB cohort (67). Further

confirmation of these findings of increased triglycerides in XS-

VLDLs would suggest that this association is, at least in part,

responsible for the identified associations between diets high in

fats and increased prevalence of GDM in WEs (10).
4.2 Identified associations in South
Asians (SAs)

4.2.1 Fatty acids
Polyunsaturated acids (PUFAs) are consumed in the diet and

can be converted to long-chain PUFAs (LC-PUFAs) through a

process of desaturation and elongation reactions that
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predominately occur in the liver (68). Changes in dietary patterns

can have a large impact on fatty acid composition in the body and

with-it disease risk. For example, a western dietary pattern, which

has high levels of n-6 fatty acids, has been associated with GDM risk

(10, 69). In a cohort of Chinese adults, total n-6 fatty acids and 18:2

n-6 levels at baseline in venous blood samples were both found to

associate with an increased risk of T2D after ~8 years of follow up,

while increased n-3 fatty acid levels were protective (70). However, a

recent two-sample MR suggested only a negligible effect of n-6

PUFA synthesis on T2D in a predominantly WE cohort (71).

Moreover, the relationship between n-3, n-6, n-9 fatty acids and

GDM remains inconclusive, and in a recent (2021) systematic review

none of the identified studies (n=15) was conducted in a SA

population (69), highlighting the need for more studies exploring

the role of fatty acids in GDM development in Asians (72).

This study provides evidence of an association between LA and

total FAw6 levels and an increase in 2-hour post glucose levels

during pregnancy in SAs. In addition, the fatty acid class associated

with 2-hour post glucose in SAs. Through a leave-out-one

sensitivity analyses for the FAw6 and LA instruments, the

removal of the SNP rs12720820 (found within the APOB gene)

resulted in non-significant associations for both exposures,

indicating that this rs12720820 was the largest contributor to the

identified associations and has previously been associated with

cholesterol levels and the use of cholesterol lowering drugs (73).

Interestingly, FAw3 also associated with increased 2-hour post

glucose in SAs; however, with only one SNP potential pleiotropy

could not be explored.

It is well established that fatty acid profiles can impact blood

cholesterol levels (74–76). In addition, increased dietary cholesterol

has previously been associated with an increased risk of GDM in a

systematic review of observational studies (77). Taken together, our

data confirm that fatty acids and cholesterol metabolites are in

vertically pleiotropy and are likely impacting gestational

dysglycemia via the same causal pathway. Unlike horizontal

pleiotropy, vertical pleiotropy does not result in a violation of the

2nd MR assumption as cholesterol is not acting as a confounder,

meaning MR estimates are still valid (Figure 1). Furthermore, it is

also possible that this interaction between fatty acids and

cholesterols may be ethnic-specific due to the absence of

associations identified between fatty acids and postprandial

glucose measures in WEs. In addition to possible variations in

cholesterol metabolism, it is plausible that variations in fatty acid

synthesis are also partially responsible for the increased GDM risk

experienced by SAs. For example, variants within the FADS genes

impact LC-PUFA conversion (78, 79). Current evidence suggests

that SAs are likely to synthesise LC-PUFA more quickly than WEs,

which could contribute to elevated risk of prolonged exposure to

elevated LC-PUFA levels (namely, w6) and risk of dysglycemia (78,

79). If these ethnic differences in fatty acid metabolism are

confirmed to be linked to disease risk, it would aid in the

development of tailored GDM prevention strategies that focus on

modifying fatty acid profiles in an ethnic-specific manner.

The analyses found no association between triglycerides and

dysglycemia in SAs. This agrees with a recent meta-analysis that

concluded, although triglyceride levels associated with likelihood of
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GDM (I2 ≥ 84%) (80), after stratification by culture/geographical

location, they found no association between triglyceride levels and

likelihood of GDM. The reasons for this are unclear but it has also been

shown that SAs have a higher prevalence of hypertriglyceridemia than

WEs and at lower BMI levels, meaning it is possible that the difference

in triglyceride levels and in SA GDM cases and controls is less

pronounced than in WEs (81).
4.3 Strengths and limitations

This analysis has several strengths. Firstly, this study involved a

large and comprehensive panel of metabolites allowing for the

relationships between metabolites and postprandial glucose to be

thoroughly investigated. Secondly, this is the first MR study to

investigate dysglycemia during pregnancy while also being one of

the few MR studies to be conducted in a SA population. Finally,

through leave-one-out analyses and the searching of both

Phenoscanner and GWAS Catalog databases, violations of the 2nd

and 3rd MR assumptions were thoroughly investigated meaning

that it was possible to conclude that identified robust associations

between genetic variants and outcomes (1st assumption of MR) may

not be subjected to horizontal pleiotropy and that identified causal

associations are valid due to the absence of detectable violations of

the MR assumptions.

Nonetheless, this study has some limitations. Firstly, metabolites

are highly correlated meaning it is not possible to confidently

interpret that an individual metabolite is independently associated

with a postprandial outcome measure. To account for this limitation

MR analyses were performed on composite measures of each

metabolite class (when PC1 explained ≥70% of the variation in the

metabolite class) to assess the overall impact of each metabolite class

on pregnancy dysglycemia. Secondly, MR also assumes the level of

genetically conferred exposure from conception to the time of

measurement is constant, which is unknown when studying

metabolites − therefore, we cannot presume that these associations

would be observed outside of pregnancy. Thirdly, limited sample size

may have led to some underpowered analyses and combined with
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high consanguinity persuaded us to use statistical modelling to

account for ‘relatedness’ (rather than participant pruning) to

preserve analytical power and study integrity. We acknowledge that

this strategy has limitations, and tested for their effect (i.e., LOO

analysis) (25), and look forward to the future when larger SA

prospective cohort are available, and we can validate these results

with increased confidence. In addition, the limited sample size meant

that further adjustment could not be made at the GWAS stage since

missing data in certain variables would further reduce sample size

(e.g., age) and some associations may have been underpowered to

detect an effect. However, a post hoc power analyses found that for

some metabolite values significant effects only identified in one

ethnicity were possible to detect in the alternate ethnicity. Fourthly,

some genetic instruments included only one SNP meaning it was not

possible to evaluate the impact of pleiotropy for any identified

associations involving these instruments. Fifthly, it was not possible

to fully assess the presence of associations between SNPs included in

significant instruments, potential confounders and T2D traits in SAs

due to the limited number of GWAS conducted in SAs. Although it is

likely that many of the associations in WEs are also present in SAs, it

is possible that not all associations identified inWE are present in SAs

and that some SA-specific pleiotropic associations are unknown.

Lastly, due to limitations in data availability in SAs a two-sample MR

could not be conducted meaning it was not possible to assess the

generalisability of these findings.
5 Conclusions

The presence of causal relationships between a comprehensive

set of distinct metabolites and metabolite families with postprandial

glucose measures (fasting glucose and 2-hour post glucose) in mid-

pregnancy has been established in a UK SA and WE population.

This study has found a range of metabolite values to be associated

with postprandial glucose measures in WEs and high-risk SA

women, although more associations were identified in WEs

despite these individuals being at lower risk of GDM. In high-risk

SA women, total n-6 fatty acids and the n-6 fatty acid, LA appear to
A

B

FIGURE 1

Schematic of potential horizontal and vertical pleiotropy in relation to fatty acid and cholesterol metabolites and postprandial glucose measures. (A)
Illustration of horizontal pleiotropy. (B) Illustration of vertical pleiotropy. Vertical pleiotropy does not result in a violation of the 2nd MR assumption
because the metabolites progress along a single linear causal pathway.
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increase postprandial glucose levels suggesting that fatty acids may

be responsible for a large proportion of metabolically driven risk for

GDM experienced by this population. Future work in a larger

sample (potentially using a two-sample MR) and a larger panel of

metabolites is needed to investigate our findings and hypotheses

more closely, ideally over the course of a pregnancy in order to aid

in GDM prevention in this high-risk population.
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Mendelian randomization
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Affiliated Hospital of Wenzhou Medical University, Wenzhou, China, 5Institute of Cancer and Basic
Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China, 6Department of Hospital
Infection-Control, Cancer Hospital of the University of Chinese Academy of Sciences,
Hangzhou, China, 7Department of Hospital Infection-Control, Zhejiang Cancer Hospital,
Hangzhou, China, 8Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang
University, Hangzhou, China
Background: Many existing studies indicated that patients with inflammatory

bowel disease (IBD), including ulcerative colitis (UC) and Crohn’s disease (CD),

tend to have the risk of low total body bone mineral density (BMD), and are more

likely to have osteoporosis (OS). To determine the causal relationship between

IBD and bone metabolic disorders, we herein performed a two-sample

Mendelian randomization analysis (TSMR) using publicly available summary

statistics.

Methods: Summary statistics of total body BMD, OS and IBD were downloaded

from the Open Genome-Wide Association Study (GWAS), FinnGen consortium

and International Inflammatory Bowel Disease Genetics Consortium (IIBDGC).

The European and East Asian populations have consisted in this Mendelian

Randomization (MR) work. A range of quality control procedures were taken to

select eligible instrument SNPs closely associated with total body BMD, OS and

IBD. To make the conclusions more reliable, we applied five robust analytical

methods, among which the inverse variance weighting (IVW) method acted as

the major method. Besides, heterogeneity, pleiotropy and sensitivity were

evaluated.

Results: In the European population, the genetic association of UC on total body

BMD (OR=0.97, 95%CI=0.96,0.99, P<0.001) and overall IBD on total body BMD

(OR=0.98, 95%CI=0.97,1.00, P=0.013) were significant, while the effect of CD on

total body BMD was not significant enough (OR=0.99, 95%CI=0.98,1.00,

P=0.085). All of UC, CD and overall IBD can be the genetic risk factor of

having OS with pathological fracture (UC: OR=1.13, 95%CI=1.02,1.26, P=0.024,
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CD: OR=1.14, 95%CI=1.05,1.25, P=0.003, overall IBD: OR=1.13, 95%

CI=1.02,1.24, P=0.015). In East Asian groups, only CD had a causal

relationship with OS (OR=1.04, 95% CI=1.01,1.07, P=0.019).

Conclusion:Our study revealed genetically predicted associations between IBD

on total body BMD and OS in European and East Asian populations. This work

supplemented the results of previous retrospective studies and demonstrated

the necessity of BMD monitoring in patients with IBD.
KEYWORDS

ulcerative colitis, Crohn’s disease, inflammatory bowel disease, bone mineral density,
osteoporosis, Mendelian randomization
Introduction

Ulcerative colitis (UC) and Crohn’s disease (CD) are major

forms of inflammatory bowel diseases (IBD), that mainly occurred

in children and young adults (1). There is also some evidence

showing that the incidence and prevalence of UC and CD in the

older population are increasing in recent years (2). The

characteristic of chronic and continuous inflammation of the

intestines contributes to the susceptibility of colitis-associated

colorectal cancer, posing a threat to the life quality and life span

of IBD patients (3, 4). Besides, IBD patients are always accompanied

by lower total body bone mineral density (BMD), which indicates

that they are more likely to suffer from osteoporosis (OS) with or

without pathological fracture or even other skeletal diseases (5–7).

The most typical features of OS are both bone quality and

quantities being impaired. Meanwhile, osteoporotic fractures lead

to a great disease burden in the USA with more than 25 billion

dollars in predicted annual cost in 2025 (8). Fractures in some

common vulnerable but important sites, represented by the hip,

vertebral column and ankle, dramatically raise the risk of mortality

among OS patients (9). Notably, BMD serves as a significant

criterion for diagnosing and measuring the severity of OS (10).

Although quantities of clues linked IBD with low total body BMD

and OS, the bidirectional causal relationship between them is still

ambiguous. Thus, the exploration of the genetically predicted causal

relationship of IBD with BMD and OS using a novel method is

urgently required.

Mendelian randomization (MR) analysis, a method of

epidemiological analysis, can bolster causal inferences by

employing genetic variation as an instrumental variable (IV) of

the exposure factor (11). In addition to avoiding irrelevant

confounders like environmental exposures, MR analysis can also

lessen the impact of reverse causality, enhancing the plausibility of

the causal inference (12).. In this two-sample MR work, we tried to

figure out the genetically predicted causal association between IBD

and skeletal diseases. Limited by the available datasets, we

conducted the impact of IBD on total body BMD and OS with

pathological fracture (FG) in the European population. And the

impact of IBD on OS was performed in the East Asian population.
0267
Methods

Study design

There are three main assumptions to be satisfied in the MR

analysis: (1) instrumental variables (IVs) are closely related to

exposure; (2) IVs are independent of any possible confounders;

(3) IVs only affect the outcome through exposure (Figure 1). The

above principles are the core of MR analysis. Two-sample MR was

performed in this work, which requires two different genetic

datasets to be consistent in one certain MR analysis. Of note, the

data used in this work are publicly available and free to global

researchers, so there was no need to provide further ethical approval

and informed consent here.
Data sources

Genetic association with the total body BMD was obtained from

the meta-analysis of 30 genome-wide association studies (GWASs) of

total body BMD, consisting of 56,284 European cases and 16,162,733

SNPs (13). The related summary statistics were available in the Open

GWAS database (https://gwas.mrcieu.ac.uk/). Summary data of

association with UC were derived from International Inflammatory

Bowel Disease Genetics Consortium (IIBDGC). IIBDGC is the biggest

global inflammatory bowel disease genetics database, in which

European UC-associated SNPs were obtained from 13,768 cases and

33,977 controls, European CD-associated SNPs were obtained from

5,956 cases and 14,927 controls, and European overall IBD-associated

SNPs were obtained from 31,665 cases and 33,977 controls (14, 15).

East Asian datasets of IBD were also downloaded from IIBDGC, with

1,134 cases/3,719 controls in UC, 1,690 cases/3,719 controls in CD, and

2,824 cases/3,719 controls in overall IBD. The summary statistic of

EuropeanOSwith FGwas gotten from the FinnGen database including

785 cases, 172,834 controls and 16,380,281 SNPs. And the data of East

Asian OS were downloaded from Biobank Japan (GWAS ID: bbj-a-

137; 7,788 cases/204,665 controls). To avoid genetic bias derived from

ethnic differences, all the TSMR results are for the corresponding

ethnicity only.
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Selection of genetic instruments

We selected the genetic instruments (IVs) according to the

following inclusion criteria: (1) Single-nucleotide polymorphisms

(SNPs) should be strongly associated with exposure, with the

genome-wide significance level (P < 5×10-8); (2) Genetic variants

with LD (r2 > 0.001) were eliminated. To clump the independence

of SNPs, the linkage disequilibrium (LD) between selected SNPs

was evaluated; (3) The F-statistics (beta2/se2) > 10. The F-statistics

were calculated to assess the intensity of IVs. If the F-statistics of

certain SNPs were less than 10 may designate less statistical power

(16). All the IVs applied in this study were summarized in

Supplementary Tables 1–6.
Statistical analysis

In our study, two-sample Mendelian randomization (TSMR)

analyses were conducted through the TwoSampleMR package

(version 0.5.6) with R software (version 4.2.1) (17). After IVs

being selected, the IVs’ data associated with both exposure and

outcome was harmonized. The primary approach of MR analysis is
Frontiers in Immunology 0368
the inverse-variance-weighted (IVW) method, which uses weighted

regression of SNP-specific Wald ratios to evaluate the causal effects

of genetically predicted exposure on outcome. Moreover, four other

sensitivity assessment approaches were conducted simultaneously,

namely Weighted median, MR Egger, Simple mode and Weighted

mode, to test the consistency and heterogeneity of our results (18,

19). We also applied MR-PRESSO to evaluate pleiotropy and

identify the outliers (20). The leave-one-out method was used to

analyze the sensitivity of MR studies.
Results

Selected genetic instruments

We selected the IVs strictly in accordance with the criteria

described above. As a result, 88, 53 and 134 independent SNPs

were selected to be the IVs of European UC, CD and overall IBD

respectively. And the amounts of IVs representing East Asian UC,

CD and overall IBD were 10, 14 and 11 (details in Supplementary

Tables 1–6). There was no evidence of weak instrumental bias shown

by F statistics, which were also listed in the supplementary data.
A

B

FIGURE 1

Overview of the study design. (A) shows the study investigating the genetic effect of IBD on total body BMD and OS with FG in the European
population, while (B) denotes the genetic impact of IBD on OS in the East Asian population. (1) Assumption one: instrumental variables (IVs) are
closely related to exposure; (2) Assumption two: IVs are independent of known or unknown confounders; (3) Assumption three: IVs only affect the
outcome via exposure.
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The causal effect of IBD on total body
BMD, OS in the European population

In the current MR study, outlier SNPs were excluded by the

MR-PRESSO method. Therefore, the final SNPs used to conduct

TSMR were less than the amounts of IVs above. The TSMR results

of the IVW method and SNPs number were displayed in Table 1.

Scatter plots were presented in Figure 2. All three exposures (UC,

CD and IBD) demonstrated a negative genetic impact on total body

BMD. However, the UC (OR=0.97, 95%CI=0.96,0.99, P<0.001) and

overall IBD (OR=0.98, 95%CI=0.97,1.00, P=0.013) showed a

significant association with total body BMD, while the genetic

predicted effect of CD on total body BMD was not significant

enough (OR=0.99, 95%CI=0.98,1.00, P=0.085). Hence, in the

European population, UC and overall IBD were the causal risk

factors for total body BMD.

As for the genetic effect on OS with FG, 6,5 and 5 outlier SNPs

in UC, CD and IBD were excluded in the following TSMR. All three

exposures indicated a significant positive association with OS with

FG: UC (OR=1.13, 95%CI=1.02,1.26, P=0.024), CD (OR=1.14, 95%

CI=1.05 ,1 .25 , P=0.003) , overa l l IBD (OR=1.13, 95%

CI=1.02,1.24, P=0.015).
The causal effect of IBD on OS in the East
Asian population

To make clear the impact of IBD on OS in different ethnic

populations, we conducted TSMR in the East Asian population.

After performing the MR-PRESSO test, 7,14 and 10 SNPs were

included to uncover the genetically predicted relationship of UC,

CD and IBD on OS in East Asian groups. Interestingly, the results

showed a significant causal effect of CD on OS (OR=1.04, 95%

CI=1.01,1.07, P=0.019). While the genetic association was not
Frontiers in Immunology 0469
significant in UC and overall IBD groups: UC on OS (OR=0.99,

95% CI=0.93,1.06, P=0.80), IBD on OS (OR=1.04, 95%

CI=0.99,1.10, P=0.14). Scatter plots of IBD on OS in East Asian

people were presented in Figure 3. Thus, we concluded that CD

could serve as a genetically predicted causal risk factor of OS in the

East Asian population, while UC and overall IBD could not.
Sensitivity analysis

To approve the weak IV bias in the selected IVs of UC, CD and

overall IBD, the F-statistic was calculated and ensured to be larger

than 10. To validate the robustness of the above MR analyses, we

performed multiplicity, heterogeneity and sensitivity analyses

(details in Supplementary Table 7). The MR-Egger intercept and

MR-PRESSO tests demonstrated no horizontal multiplicity in any

of the above analyses (all P>0.05). In addition, heterogeneity was

found in the heterogeneity tests of MR-Egger and IVW methods of

some analyses, which are acceptable in the MR study. The results of

leave-one-out sensitivity analyses indicated that the estimates of the

causal effects of genetically predicted UC, CD and IBD on BMD and

OS were robust (details in Supplementary Figures 1–9).
Discussion

In adults with no underlying chronic disease, OS is an age-

related abnormality of bone metabolism, which is most frequent in

postmenopausal women (21). Nevertheless, previous retrospective

studies have found that patients with IBD, consisting of children,

adolescents and adults, tend to have lower BMD and are more likely

to develop osteoporosis with or without pathological fractures (7).

A population-based matched cohort study revealed that IBD

patients have a 40% higher incidence to get fractures than people
TABLE 1 The inverse variance weighting (IVW) method results of the TSMR analyses.

Exposure Outcome nSNP Beta SE OR OR_lCI95 OR_uCI95 P_value

European

UC BMD 85 -0.026 0.008 0.974 0.959 0.990 <0.001*

CD BMD 51 -0.010 0.006 0.990 0.979 1.001 0.085

IBD BMD 131 -0.018 0.007 0.982 0.968 0.996 0.013*

UC OS with FG 82 0.122 0.054 1.130 1.016 1.257 0.024*

CD OS with FG 48 0.133 0.044 1.142 1.047 1.246 0.003*

IBD OS with FG 129 0.120 0.049 1.128 1.024 1.242 0.015*

East Asian

UC OS 7 -0.008 0.032 0.992 0.932 1.056 0.801

CD OS 14 0.038 0.016 1.038 1.006 1.072 0.019*

IBD OS 10 0.039 0.026 1.040 0.988 1.095 0.135
fro
An asterisk was placed if the p value of TSMR analysis was less than 0.05, which considered as significant. The BMD here refers to total body bone mineral density. SE, standard error; OR, odds
ratio; CI, confidence interval; OR_lCI95, the lower 95%CI of OR; OR_uCI95, the upper 95%CI of OR; UC, ulcerative colitis; CD, Crohn’s disease; IBD, inflammatory bowel disease; OS,
osteoporosis; FG, pathological fracture.
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who don’t have IBD (22). Therefore, the mechanisms of how IBD

affects bone metabolism is remaining a heated research topic in

these decades.

In the present work, we applied TSMR analyses to find out the

genetic predicted association between overall IBD (including UC
Frontiers in Immunology 0570
and CD) and total body BMD or OS. Two different samples of each

exposure and outcome which have different data structures were

included to avoid possible confounding factors (23). According to

our TSMR results, causal relationships differed in various ethnic

groups. In the European population, UC and overall IBD acted as
A B C

FIGURE 3

Scatter plots of MR analyses show the statistical relationship between IBD and OS in the East Asian population. Each dot represents an instrumental
SNP. The x-axis indicates the genetic relationship with exposures (UC, CD and IBD), while the y-axis reflects the genetic association with outcomes
(OS). (A) UC on OS: the genetically predicted UC is associated with a higher risk of OS; (B) CD on OS: the genetically predicted CD is associated with
a higher risk of OS; (C) overall IBD on OS: the genetically predicted overall IBD is associated with a higher risk of OS. The slope of each line shows
the estimated causal effect of IBD on OS for each approach.
A B

D E F

C

FIGURE 2

Scatter plots of MR analyses show the statistical relationship between IBD and total body BMD and the risk of OS with FG in the European
population. Each dot represents an instrumental SNP. The x-axis indicates the genetic relationship with exposures (UC, CD and IBD), while the y-axis
reflects the genetic association with outcomes (total body BMD and OS with FG). (A) UC on total body BMD: the genetically predicted UC is
associated with a lower level of total body BMD; (B) CD on total body BMD: the genetically predicted CD is associated with a lower level of total
body BMD; (C) overall IBD on total body BMD: the genetic predicted overall IBD is associated with a lower level of total body BMD; (D) UC on OS
with FG: the genetic predicted UC is associated with a higher risk of OS with FG; (E) CD on OS with FG: the genetic predicted CD is associated with
a higher risk of OS with FG; (F) overall IBD on OS with FG: the genetic predicted overall IBD is associated with a higher risk of OS with FG. The slope
of each line shows the estimated causal effect of IBD on the bone metabolic status for each approach.
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risk factors for total body BMD, and all three factors (UC, CD and

overall IBD) had a positive causal correlation with the risk of OS

accompanied by FG. As for the East Asian group, CD was the only

exposure that had a positive causal relationship with OS.

There were varieties of acquired mechanisms leading to low

BMD in IBD populations. Firstly, inflammations in IBD patients

can be one of the most important contributors to induce bone

metabolic disorders. Pro-inflammatory cytokines are engaged in the

inflammation of IBD, leading to persistent gastrointestinal

inflammation and tissue destruction, as well as modulating bone

defects (24, 25). Secondly, nutritional deficiencies are quite

common in IBD populations, which play an essential role in bone

loss (26, 27). Furthermore, glucocorticoids have long been

considered first-line therapeutic agents for patients with IBD (28).

In addition to their conventional anti-inflammatory function,

glucocorticoids have been reported to enhance intestinal epithelial

barrier function (29). Hence, strategies attempting to maximize the

gastrointestinal local benefits of steroids while minimizing the

systemic negative effects are urgently required.

Research was increasingly focusing on the relationship between

the gut microbiota and OS. It appeared that there was a

bidirectional interaction between bone metabolism and gut

microbiota. In rats, OS has been demonstrated to cause intestinal

dysfunction. Additionally, reprogramming intestinal function

through the gut-bone axis, drugs potentially modulate bone

metabolism (30, 31). By producing metabolites, which enter the

systemic circulat ion from the gastrointestinal tracts ,

microorganisms were known to have an impact on bone (32).

Given the mystery and complexity of the gut microbiota and gut-

bone axis, there are still many unknown fields to be investigated.

Previous studies reported several genetic factors which may

determine bone metabolism in IBD populations. The variation of

IL-6 and IL1-ra genes acted as independent determinants of bone

loss in patients with IBD (33). As revealed, the extent of bone loss is

positively correlated with the amount of variation in specific genes

mentioned above. Another gene ties to the secretion level of IL-1b,
called IL1B-511*2, whose polymorphism could also be a predictor

for the risk of osteopenia or osteoporosis in IBD patients (34). Low

bone mass is more likely to be present in IBD among carriers of the

IL1B-511*2 gene, who are also along with IL-1beta hypersecretion.

Besides, a GWAS study performed in the Japanese population

pointed out that the SLC22A23 gene and the MECOM gene

determined distinct genetic risk factors for bone loss in IBD

patients from those in the general population (35). The genetic-

related research above suggested that genetic variability plays an

important role in bone metabolism in IBD.

According to the harmonizing results of the present MR study,

we identified the SNPs with the strongest associations with total

body BMD and OS, rs780094 (OR=1.03, 95%CI=1.02,1.04,

P=2.54E-07) and rs34779708 (OR=8.40, 95%CI=7.56,9.34,

P=1.24E-03), respectively (Supplementary Tables 8 and 9). Based

on the search results of GWAS database, rs780094 was located on

GCKR gene (Location: 2:27518370; Cytogenetic region:2p23.3), and

rs34779708 was located on CREM gene (Location: 10:35177257;

Cytogenetic region:10p11.21). Therefore, we targeted the known

functional and disease associations of these two genes to explore
Frontiers in Immunology 0671
whether IBD has an overlapping genetic background with BMD

and OS.

cAMP responsive element modulator (CREM) is a gene

encoding the bZIP transcription factor that binds to cAMP

response elements in many viral and cellular promoters.

Associated with immune system regulation, CREM has been

implicated to play a role in various immune-mediated

inflammatory processes. Aberrant expression of CREM was

detected in patients with SLE. The expression product of CREM

could promote the expression of inflammatory factors represented

by IL-2 and IL-17 (36, 37), which in turn mediate the associated

inflammatory processes. Also, CREM impacts T-cell activity in

homeostasis and participates in the regulation of NF/kB signaling

pathway (38). In addition to its role in inflammation and

autoimmune diseases, Taiwanese scholars found that CREM

expression was increased in patients with rheumatoid arthritis

and its variants were involved in the progression of the disease

(39). Single-cell sequencing studies showed that CREM regulons

were most active in preosteoblast-S1 (40), implying that CREM

variants are engaged in osteogenesis and bone homeostasis.

Glucokinase regulator (GCKR) gene encodes the glucokinase

regulator, which is involved in metabolic modifications and is

closely associated with skeletal and inflammatory phenotypes.

Kasher et al. identified SNPs of the GCKR gene were consistently

appeared in the osteoporosis phenotypes and C-reactive protein by

co-localization analysis (41). The known coverage of CREM and

GCKR genes reveals, to some extent, a common genetic background

between IBD and bone metabolism. The effects of these loci might

be diverse in UC and CD, which leads to different genetic effects

observed in UC and CD subtypes.

This work is not perfect with some limitations to be mentioned

here. First, based on the TSMR analysis design, this study can only

provide genetic evidence for the causal relationship between IBD

and OS. As a consequence, this finding can supplement earlier

retrospective investigations and provide guidance for upcoming

observational studies. Besides, the study was limited by the specific

ethnicity. The derivation of analyses of the different ethnic

populations will not be valid. It was therefore hard to generalize

the result to other ethnic groups.

Some strengths also need to be highlighted. Large sample sizes

in the datasets helped to reduce the bias that population

stratification may cause. All of the information was gathered from

reliable organizations or websites. Moreover, OS often affects older

people, whereas IBD affects teenagers more frequently.

Consequently, individuals with OS in IBD must be excluded from

typical baseline investigations, which force applied a considerable

amount of time and effort. In contrast, the current study avoided the

aforementioned issues by assessing the genetic causation of the two

using strongly correlated SNPs as IVs.
Conclusion

This MR work revealed that in European population, UC and

overall IBD had negative causal relationships on total body BMD,

and UC, CD and overall IBD had positive causal relationships on
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OS with FG. While only CD showed a positive causal association

with OS in East Asian population. Our results complemented

former retrospective investigations and served as a reference for

future animal research and clinical treatments.
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Background: Identification of risk factors that have causal effects on the

occurrence of diabetic kidney disease (DKD), is of great significance in early

screening and intervening for DKD, and in delaying the progression of DKD to

end-stage renal disease. Cathepsin S (Cat-S), a novel non-invasive diagnostic

marker, mediates vascular endothelial dysfunction. The diagnostic value of Cat-S

for DKD has rarely been reported in clinical studies.

Objective: To analyze whether Cat-S is a risk factor for DKD and evaluate the

diagnostic value of serum Cat-S for DKD.

Methods: Forty-three healthy subjects and 200 type 2 diabetes mellitus (T2DM)

patients were enrolled. T2DM patients were divided into subgroups according to

various criteria. Enzyme-linked immunosorbent assay was used to detect serum

Cat-S levels among different subgroups. Spearman correlation analysis was used

to analyze correlations between serum Cat-S and clinical indicators. Multivariate

logistic regression analysis was performed to analyze risk factors for the

occurrence of DKD and decreased renal function in T2DM patients.

Results: Spearman analysis showed that serum Cat-S level was positively

correlated with urine albumin creatinine ratio (r=0.76, P<0.05) and negatively

correlated with estimated glomerular filtration rate (r=−0.54, P<0.01). Logistic

regression analysis showed that increased serum Cat-S and cystatin C(CysC)

were independent risk factors for DKD and decreased renal function in T2DM

patients (P<0.05). The area under the receiver operating characteristic (ROC)

curve was 0.900 of serum Cat-S for diagnosing DKD, and when the best cut-off

value was 827.42 pg/mL the sensitivity and specificity were 71.6% and 98.8%,

respectively. Thus, serum Cat-S was better than CysC for diagnosing DKD (for

CysC, the area under the ROC curve was 0.791, and when the cut-off value was

1.16 mg/L the sensitivity and specificity of CysC were 47.4% and 98.8%,

respectively).

Conclusion: Increased serum Cat-S were associated with the progression of

albuminuria and decreased renal function in T2DM patients. The diagnostic value

of serum Cat-S was better than that of CysC for DKD. Monitoring of serum Cat-S
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levels could be helpful for early screening DKD and assessing the severity of DKD

and could provide a new strategy for diagnosing DKD.
KEYWORDS

type 2 diabetes mellitus, diabetic kidney disease, cathepsin S, risk factor,
diagnostic value
1 Introduction

Diabetic kidney disease (DKD) is one of the most common and

serious microvascular complications of diabetes, with the incidence

as high as 20%-40% in patients with type 2 diabetes mellitus

(T2DM) (1). There are usually no obvious symptoms and signs in

the early stage of DKD, which leads to delayed treatment, losing the

best opportunity for early intervention and progressing to end-stage

renal disease (ESRD) gradually. Therefore, the identification of risk

factors with causal effects on the incidence of DKD is crucial for the

prevention of the onset of DKD and also lays a foundation for

achieving the early screening of DKD, reducing the morbidity rate

and delaying progression of DKD to ESRD.

Renal biopsy pathology is the gold standard for the diagnosis of

DKD, but it is not suitable for diagnosing early DKD because of the

risk of bleeding. Therefore, non-invasive screening for diagnosing

early DKD is more valuable for clinical studies. Some studies have

suggested serum cystatin C (CysC) as an indicator for diagnosing

early DKD, but this is controversial (2–4). Therefore, it is of great

importance to explore novel non-invasive biomarkers for early

diagnosing DKD.

Cathepsin S (Cat-S) was a secreted cysteine proteolytic enzyme

that is mainly expressed in macrophages (5). Macrophages

undergoing chemotaxis adhere to the basement membrane of

blood vessels and secrete Cat-S, and the secreted Cat-S was

involved in hydrolysis of elastin, laminin, collagen and other

extracellular matrix components, causing vascular damage (6).

The deficiency of Cat-S gene or the activity of Cat-S was inhibited

were strongly associated with neovascularization (7). In recent

years, studies have shown that upregulation of Cat-S was

associated with the development of IgA nephropathy, lupus

nephritis, insulin resistance, diabetes and other renal diseases (8–

10). Monocyte/macrophage-derived Cat-S has been found to

activate protease-activated receptor-2 on glomerular endothelial

cells, causing endothelial damage, albumin leakage, inflammation

and glomerulosclerosis (11). Inhibition of Cat-S has been shown to

reduce infiltration of renal inflammatory cells and downregulate the

expression of inflammatory cytokines in kidney tissues in a DKD

mouse model, as well as delaying the progression of DKD (11).

However, few clinical studies have evaluated the correlation

between serum Cat-S and the diagnostic value for DKD.

Vascular injury was among the main mechanisms in the

pathogenesis of DKD (12). Therefore, detecting the expression of

Cat-S which is a vascular injury marker and determining whether

serum Cat-S in T2DM patients is a risk factor for the incidence of
0275
DKD are of great significance for preventing the incidence of DKD,

strengthening early screening for DKD, and searching for new

therapeutic targets for the treatment of DKD in T2DM patients.

Therefore, in this study, we detected the expression of serum Cat-S in

DKD patients, analyzed the correlation between serum Cat-S and the

severity of DKD and analyzed whether serum Cat-S was a risk factor

for DKD in T2DM patients, and investigated the diagnostic value for

DKD, to provide a theoretical basis for early screening of DKD.
2 Materials and methods

2.1 Participants

A total of 200 patients with T2DM aged between 18 and 80

years were selected as subjects. A further 43 healthy subjects who

underwent physical examination in Henan Provincial People’s

Hospital during the same period were selected as the healthy

control group, which was matched with the enrolled T2DM

participants in gender and age (18 females and 25 males, with an

average age of 53.72 ± 9.95 years). The healthy controls had no

history of diabetes, kidney disease or any major diseases, and did

not meet any of the diagnostic criteria for diabetes. This study was

approved by the Ethics Committee of Henan Provincial People’s

Hospital [approval number: (2021) No. (153)], and all research

subjects signed informed consents.
2.2 Inclusion criteria

Patients were eligible for inclusion if they: (1) aged between 18

and 80 years old; (2) met the diagnostic criteria for diabetes mellitus

(DM) formulated by the ADA in 2020 (13) and/or the Chinese

Guidelines for Clinical Diagnosis and Treatment of Diabetic Kidney

Disease in 2021 (14); (3) had complete clinical data available; (4)

signed the informed consent form voluntarily.
2.3 Exclusion criteria

Participants were excluded if they (1) had other types of

diabetes; (2) had diabetes combined with acute or chronic

infection; (3) had diabetes combined with acute cardiovascular or

cerebrovascular diseases; (4) had diabetes combined with chronic

obstructive pulmonary disease and aspartate aminotransferase or
frontiersin.org

https://doi.org/10.3389/fendo.2023.1180338
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ren et al. 10.3389/fendo.2023.1180338
alanine transaminase ≥2 times the upper limit of normal

simultaneously; (5) had complications involving other renal

diseases; (6) were women who were pregnant or lactating; (7)

were affected by diabetic ketoacidosis, hypoglycemia coma, lactic

acidosis, hyperosmolar coma, surgery, trauma or other stress states;

(8) had undergone dialysis or renal transplantation.
2.4 Grouping scheme

In grouping mode 1, T2DM patients were divided into three

groups according to urine albumin creatinine ratio (UACR) which

reflects the severity of albuminuria: T2DM group (UACR <30 mg/g,

n=84); early DKD group (UACR 30–300 mg/g, n=41) and clinical

DKD group (UACR >300 mg/g, n=75). In grouping mode 2, T2DM

patients were divided into two groups according to estimated

glomerular filtration rate (eGFR): normal renal function group

(eGFR ≥90 mL/min/1.73 m2, n=141) and decreased renal

function group (eGFR <90mL/min/1.73 m2, n=59).
2.5 Clinical data collection

The patients’ gender, age, body mass index (BMI), admission

systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting

blood glucose (FBG), total cholesterol (TC), triglycerides (TG), high-

density lipoprotein cholesterol (HDL-C), low-density lipoprotein

cholesterol (LDL-C), retinol-binding protein (RBP), blood urea

nitrogen (BUN), serum creatinine (Scr), serum uric acid (SUA),

CysC and other clinical data were collected. The eGFR was calculated

using the Modification of Diet in Kidney Disease equation: eGFR =

186 × age (Scr/88.4) -1.154 × age-0.203 (women × 0.742) (15).
2.6 Sample collection and Cat-S detection

All patients were required to fast for more than 8 h. In the early

morning of the following day, 5 mL of non-anticoagulant venous

blood was taken on an empty stomach and allowed to coagulate at

room temperature for 2 h. After centrifugation (1000×g for 15 min at

4°C), the serum was collected and stored in a freezer at −80 °C until

use. Serum Cat-S concentration (pg/mL) was detected by enzyme-

linked immunosorbent assay (ELISA; Wuhan Huamei Biological

Engineering, Co., Ltd.) and the operation was carried out strictly

according to the instructions. Finally, 5 mL of morning urine was

collected for the determination of UACR by immunoturbidimetry.
2.7 Statistical analysis

Measurement data conforming to a normal distribution were

expressed as mean ± standard deviation (�X ± s ), and measurement

data with non-normal distribution were expressed as M (Q1, Q3). As

this study involved comparisons of multiple measurement data, a

homogeneity of variance test was performed. The homogeneity of

variance was analyzed by one-way analysis of variance, and the
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multiple comparison LSD was used for the comparison between

samples. Non-parametric test was used for uneven variance, Kruskal–

Wallis test was used for multiple group comparisons, and Bonferroni

correction was used for pairwise comparisons. Qualitative data were

compared between groups with chi-square test. Spearman rank

correlation analysis was used to analyze the correlations between

serum Cat-S level and clinical indicators. Multivariate logistic

regression was used to analyze the risk factors for DKD in T2DM

patients. The AUC (area under the receiver operating characteristic

curve (ROC)) was used to analyze the diagnostic value of serum Cat-S

and CysC in early DKD. All tests were two-tailed and P<0.05 was

considered to indicate statistical significance. All statistical analysis

were performed by SPSS 25.0.
3 Results

3.1 Comparison of clinical parameters and
serum Cat-S under grouping mode 1

Forty-three healthy subjects (healthy control group), 84 T2DM

patients (T2DM group), 41 early DKD patients (early DKD group),

and 75 clinical DKD patients (clinical DKD group) were enrolled in

this study. There were significant differences in BMI, FBG, HbAlC,

SUA, Scr, eGFR, BUN, UACR, TG, TC, HDL-C and LDL-C among

the four groups (P<0.05). There were no significant difference in the

ratio of male to female and age among the four groups (P>0.05).

There were significant differences in SBP, DBP, CysC and RBP

among the T2DM group, early DKD group and clinical DKD group

(Table 1). Serum Cat-S concentrations in each group were as

follows: healthy control group: 312.51 (216.58,476.86) pg/mL;

T2DM group: 476.45 (257.98,616.72) pg/mL; early DKD group:

684.61 (468.21,834.20) pg/mL; clinical DKD group: 1688.71

(1236.28, 2227.65) pg/mL. There were significant differences in

serum Cat-S concentration among the T2DM group, early DKD

group and clinical DKD group (P<0.05). The serum Cat-S level in

the T2DM group was higher than that in the healthy control group,

but the difference was not statistically significant (P>0.05) (Table 1).
3.2 Correlations between serum Cat-S and
clinical parameters

The serum Cat-S level was positively correlated with UACR

(r=0.76), RBP, BUN, Scr, TC, SUA, CysC (r=0.548) (P<0.05) and

was negatively correlated with eGFR (r=−0.54) (P<0.001). The

serum CysC level was positively correlated with UACR (r=0.604),

RBP, BUN, Scr, TG, SUA, Cat-S (r=0.548) (P<0.05) and was

negatively correlated with eGFR (r=−0.779) (P<0.001) (Table 2).
3.3 Univariate logistic regression analysis of
all parameters under grouping mode 1

Taking the occurrence of DKD or not as the dependent variable

(assignment: T2DM=1, early DKD=2, clinical DKD=3) and SBP,
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TABLE 2 Spearman analysis between serum Cat-S, CysC and clinical parameters (n=200).

Projects
Cat-S CysC

r P Value r P Value

UACR (mg/g) 0.76 < 0.001 0.604 < 0.001

eGFR mL/min/(1.73 m2) -0.54 < 0.001 -0.779 < 0.001

RBP (mg/L) 0.38 < 0.001 0.610 < 0.001

BUN (mmol/L) 0.40 < 0.001 0.609 < 0.001

Scr (mmol/L) 0.53 < 0.001 0.749 < 0.001

FBG (mmol/L) -0.08 0.28 -0.127 0.074

TC (mmol/L) 0.14 0.04 0.108 0.126

TG (mmol/L) 0.12 0.09 0.216 0.002

LDL-C (mmol/L) 0.07 0.35 0.076 0.282

(Continued)
F
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TABLE 1 Comparison of clinical indicators and serum Cat-S under grouping mode 1.

Projects Healthy control group T2DM group Early DKD group Clinical DKD group P Value

Gender
(female/male)a

25/18 32/52 14/27 26/49 0.960

Age(year)b 53.72 ± 9.95 56.26 ± 10.73 57.78 ± 10.72 53.69 ± 9.71 0.113

BMI(Kg/m2)b 24.20 (23.00, 25.20) 25.09 (23.44, 27.61)* 26.11 (23.84, 28.58)* 26.41 (24.22, 29.06)* < 0.001

Duration of DM (years)c 0 9.5(4.0~16.75) 9.0(4.0~18.0) 10.0(3.0~16.0) 0.793

SBP (mmHg)b 124.6 ± 7.85 131.57 ± 16.67 134.80 ± 14.75 147.15 ± 18.70$& < 0.001

DBP (mmHg)b 74.77 ± 8.42 75.31 ± 10.98 77.05 ± 12.43 81.90 ± 3.55$ 0.001

FBG (mmol/L)c 4.91(4.60, 5.15) 7.37(5.89, 9.07)* 8.18(6.27, 9.83)* 7.79(5.29, 9.17)* < 0.001

HbAlC(mmol/L)c 5.40(4.90, 5.60) 8.00(7.23, 9.80)* 8.90(7.50,10.65)* 8.00(7.18, 9.00) * < 0.001

SUA (mmol/L)c 295(241, 340) 275(227, 357) 280(215, 346) 358 (289, 425) *$& < 0.001

Scr (mmol/L)c 60.0(55.0, 67.0) 57.5(44.0, 64.0) 55.0(48.0, 62.5) 95.0(68.0,156.0)*$& < 0.001

eGFR
mL/min/(1.73 m2)c

111.62 (96.12, 126.74) 132.45 (109.63, 158.73)* 135.56 (108.91, 152.09)* 66.28 (36.39, 101.24)*$& < 0.001

BUN (mmol/L)c 4.86(4.13, 5.82) 5.83(4.87, 7.00)* 5.52(4.83, 6.39) 8.97(6.11,12.20)*$& < 0.001

UACR (mg/g)c 10.2(6.4, 11.0) 10.0(6.4, 17.1) 92.4(53.9,188.1)*$ 3271.0(1378.0, 6012.5)*$& < 0.001

TG (mmol/L)c 1.20(0.90, 1.58) 1.42(1.08, 2.28) 1.64(1.19, 2.59)* 1.81(1.46, 2.36)*$ < 0.001

TC (mmol/L)c 4.38(3.69, 5.12) 4.58(3.85, 5.46) 4.19(3.49, 5.10) 5.18(4.32, 6.59)*$& < 0.001

HDL-C (mmol/L)c 1.37(1.17, 1.52) 1.10(0.98, 1.29)* 1.06(0.90, 1.36)* 1.08(0.88, 1.31)* < 0.001

LDL-C (mmol/L)c 2.92(2.14, 3.59) 2.73(2.10, 3.40) 2.43(1.93, 3.08) 2.88(2.41, 3.96)& 0.011

Cat-S (pg/mL)c 312.51 (216.58,476.86) 476.45 (257.98,616.72) 684.61 (468.21,834.20)*$ 1688.71 (1236.28, 2227.65)*$& < 0.001

CysC (mg/L)c – 0.84(0.75, 0.93) 0.88(0.84, 0.96) 1.57(1.04, 2.30)$& < 0.001

RBP (mg/L)c – 38.0(33.9, 46.2) 39.2(33.8, 46.7) 53.9(46.0, 66.3) $& < 0.001
fron
BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting blood glucose; HbAlC, glycosylated hemoglobin; SUA, blood uric acid; Scr, serum creatinine;
eGFR, estimated glomerular filtration rate; BUN, blood urea nitrogen; UACR, urinary albumin/creatinine ratio; TG, triglyceride; TC, total cholesterol; HDL⁃C, high-density lipoprotein
cholesterol; LDL⁃C, low-density lipoprotein cholesterol; Cat-S, Cathepsin S; CysC, cystatin C; RBP, retinol-binding protein; Data are presented as( x ± s)or M (1/4, 3/4) unless indicated; *: P <
0.05 compared with healthy controls; $: Comparison with T2DM group P < 0.05; &: comparison with early DKD group P < 0.05; a c2 test; b one-way analysis of variance; c rank sum test.
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DBP, SUA, TC, TG, LDL-C, eGFR, BUN, RBP, Cat-S and CysC as

the independent variables. Univariate logistic regression analysis

showed that: Cat-S may be an influential factor on the occurrence of

early DKD (P<0.001); and SBP, DBP, SUA, TC, LDL-C, eGFR,

BUN, RBP, Cat-S and CysC may be influential factors on the

occurrence of clinical DKD (P<0.01) (Table 3).
3.4 Multivariate logistic regression
analysis of serum Cat-S and CysC under
grouping mode 1

The data of this study did not meet the requirements of the

ordered logistic regression parallelism test, so multivariate logistic

regression analysis was used to analyze the risk factors for early

DKD and clinical DKD. Taking whether DKD occurs or not as the

dependent variable (assignment: T2DM=1, early DKD=2, clinical

DKD=3), the results showed that after correcting SBP, DBP, SUA,

TC, eGFR, BUN, RBP and other factors, we found that Cat-S and

CysC were independent risk factors for DKD and clinical DKD in

T2DM patients (P<0.05). For every 0.1 unit increase in Cat-S, the

relative risks of early DKD and clinical DKD in T2DM patients

increased by 1.541 times and 5.690 times, respectively. For every 10

units increase in CysC, the relative risks of early DKD and
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clinical DKD in T2DM increased by 1.611 and 2.880 times,

respectively (Table 4).
3.5 Logistic regression analysis of serum
Cat-S on DKD

When UACR ≥ 30 mg/g was defined as the standard for the

diagnosis of DKD, UACR < 30 mg/g was defined as DKD (-) group,

while UACR ≥ 30 mg/g was defined as DKD (+) group. Taking

whether DKD occurs or not as the dependent variable (assignment:

DKD (-) =1, DKD (+) =2) and Age, Weight, Hight, SBP, DSP, Cat-

S, BMI, HbAlC, eGFR, BUN, SUA, FBG, CysC, RBP, TC, TG, LDL-

C, LDL-C and other factors as independent variables, the univariate

logistic regression analysis showed that SBP, DSP, eGFR, BUN,

SUA, RBP, TC, Cat-S, CysC may be the influencing factors of DKD

(+) (P < 0.05) (Table 2). Taking whether DKD occurs or not as the

dependent variable (assignment: DKD (-) =1, DKD (+) =2), the

multivariate logistic regression analysis was performed and the

results showed: after adjusting for SBP, DSP, eGFR, BUN, SUA,

RBP, TC and other factors, we found the increased Cat-S and CysC

were risk factors for the onset of DKD (P < 0.05). The relative risk of

DKD in T2DM patients increased by 1.626 times for every 0.1 unit

increase in Cat-S. For every 10 units of CysC, the relative risk of

DKD in T2DM increased by 1.657 times (Table 5).
TABLE 3 Univariate Logistic regression analysis of all parameters under grouping mode 1.

Independent variable
Eraly DKD Clinical DKD

OR (95%CI) P Value OR (95%CI) P Value

SBP (mmHg) 1.012(0.989~1.036) 0.298 1.055(1.033~1.078) < 0.001

DPB (mmHg) 1.01(0.981~1.049) 0.409 1.05(1.023~1.086) 0.001

SUA (mmol/L) 0.99(0.993~1.003) 0.377 1.00(1.004~1.012) < 0.001

TC (mmol/L) 0.86(0.633~1.190) 0.378 1.59(1.243~2.051) < 0.001

TG (mmol/L) 1.02(0.846~1.238) 0.810 1.01(0.857~1.193) 0.898

LDL-C (mmol/L) 0.76(0.506~1.160) 0.202 1.58(1.157~2.161) 0.004

eGFR mL/min/(1.73 m2) 0.99(0.989~1.007) 0.661 0.96(0.949~0.971) < 0.001

BUN (mmol/L) 0.88(0.712~1.102) 0.278 1.50(1.285~1.762) < 0.001

RBP (mg/L) 0.98(0.952~1.010) 0.194 1.04(1.020~1.067) < 0.001

Cat-S (0.1ng/dL) 1.50(1.242~1.814) < 0.001 2.90(2.131~3.957) < 0.001

CysC (10mg/L) 1.28(0.997~1.648) 0.053 2.09(1.619~2.722) < 0.001
TABLE 2 Continued

Projects
Cat-S CysC

r P Value r P Value

HDL-C (mmol/L) -0.08 0.27 -0.159 0.025

SUA (mmol/L) 0.25 < 0.001 0.451 < 0.001

Cat-S (pg/mL) – – 0.548 < 0.001

CysC (mg/L) 0.548 < 0.001 – –
frontiersin.org

https://doi.org/10.3389/fendo.2023.1180338
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ren et al. 10.3389/fendo.2023.1180338
3.6 Diagnostic value of serum Cat-S
and CysC in clinical DKD under
grouping mode 1

UACR >300 mg/g was defined as the standard for the diagnosis

of clinical DKD. The ROC curve analysis gave a result of AUC

which was 0.978 for serum Cat-S for diagnosing clinical DKD, and

when the cut-off value of serum Cat-S was 974.14 pg/mL, the

sensitivity was 96% and the specificity was 96% for diagnosing

clinical DKD (P<0.001). While the AUC of CysC was 0.874 for

diagnosing clinical DKD, and when the cut-off value of CysC was

1.16 mg/L, the sensitivity was 72% and the specificity was 98%

(P<0.001). Results indicated that serum Cat-S was superior to CysC

in the diagnosis of clinical DKD. The AUC for the combined

diagnosis of clinical DKD was 0.991, the sensitivity increased to

98% and the specificity was 96% (Figure 1 and Table 6).
3.7 Diagnostic value of serum Cat-S and
CysC in DKD under grouping mode 1

Defining UACR ≥30 mg/g as the standard for the diagnosis of

early DKD, we assessed the diagnostic value of serum Cat-S and

CysC based on the AUC of the ROC curve. The AUC for Cat-S in

the diagnosis of DKD was 0.900, the cut-off value was 827.42 pg/

mL, and the sensitivity and specificity were 71.6% and 98.8%,

respectively. The AUC for CysC in the diagnosis of DKD was

0.791, and, when the cut-off value was 1.16mg/L, the sensitivity and
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specificity of CysC in the diagnosis of DKD were 47.4% and 98.8%,

respectively (Figure 2 and Table 7).
3.8 Comparison of clinical parameters and
serum Cat-S under grouping mode 2

There was no significant difference in gender, age, BMI, FBG or

HDL-C between the normal renal function group and decreased

renal function group (P>0.05). The SBP, DBP, SUA, Scr, BUN,

UACR, TC, TG, LDL-C, Cat-S and CysC in the normal renal

function group were significantly lower than those in the

decreased renal function group (P<0.05) (Table 8).
3.9 Logistics regression analysis of renal
function decline in T2DM patients under
grouping mode 2

Taking whether eGFR declined or not as the dependent variable

(assignment: eGFR ≥90 mL/min/(1.73 m2)=0, eGFR <90 mL/min/

(1.73 m2)=1) and SBP, DBP, SUA, BUN, UACR, TC, LDL-C, Cat-S,

CysC and RBP as independent variables, univariate logistic

regression analysis was performed using the “enter” method. The

results identified SBP, DBP, SUA, BUN, UACR, TC, LDL-C, Cat-S,

CysC and RBP as potential risk factors for eGFR <90mL/min/(1.73

m2) (P<0.05). We took the significantly meaningful variables (SBP,

DBP, SUA, BUN, UACR, TC, LDL-C, Cat-S, CysC and RBP) from

the univariate logistic regression analysis as independent variables
TABLE 5 Multivariate logistic regression analysis of serum Cat-S on DKD.

Independent variable
Univariate Multivariate

OR P Value OR P Value

SBP (mmHg) 1.038(1.019, 1.057) <0.001 1.004(0.972, 1.037) 0.824

DSP (mmHg) 1.039(1.012, 1.067) 0.04 1.030(0.986, 1.076) 0.180

eGFR mL/min/(1.73 m2) 0.980(0.973, 0.987) <0.001 1.004(0.990, 1.018) 0.588

BUN (mmol/L) 1.278(1.129, 1.447) <0.001 0.825(0.627, 1.084) 0.167

SUA (mmol/L) 1.005(1.001, 1.008) 0.006 0.999(0.994, 1.005) 0.821

RBP (mg/L) 1.022(1.002, 1.042) 0.027 0.995(0.975, 1.016) 0.657

TC (mmol/L) 1.304(1.056, 1.610) 0.014 1.180(0.820, 1.699) 0.374

Cat-S (0.1 ng/dL) 1.700(1.435, 2.014) <0.001 1.626(1.335, 1.981) <0.001

CysC (10 mg/L) 1.640(1.339, 2.009) <0.001 1.657(1.111, 2.470) 0.013
TABLE 4 Multivariate Logistic regression of Cat-S and CysC under grouping mode 1.

serum Cat-S (0.1ng/L) serum CysC (10mg/L)

OR (95%CI) P Value OR (95%CI) P Value

T2DM 1 1

Eraly DKD 1.541(1.244~1.910) <0.001 1.611(1.041~2.492) 0.032

Clinical DKD 5.69(1.856~17.506) 0.002 2.880(1.175~7.062) 0.021
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for multivariate logistic regression analysis by the “backward: LR”

method. The results showed that increased SBP (odds ratio (OR)

=1.044, 95% CI=1.004–1.087, P=0.033), increased BUN (OR=1.674,

95% CI=1.228–2.280, P=0.001), increased TC (OR=1.956, 95%

CI=1.324–2.889, P=0.001), increased Cat-S (OR=2.835, 95%

CI=1.260–6.381, P=0.012) and elevated CysC (OR=1.345, 95%

CI=1.116–1.620, P=0.002) were independent risk factors for eGFR

<90 mL/min/(1.73 m2). Moreover, the relative risk of eGFR <90

mL/min/(1.73 m2) increased with increasing Cat-S concentration;

that is, the higher the levels of SBP, BUN, TC, Cat-S and CysC, the

higher the probability of eGFR <90 mL/min/(1.73 m2) (Table 9).
3.10 Diagnostic value of serum Cat-S
and CysC in T2DM with decreased
renal function

When eGFR <90 mL/min/(1.73 m2) was defined as the

diagnostic criterion for renal function decline. The ROC analysis

gave an AUC of 0.854 for serum Cat-S in diagnosing decreased

renal function of DKD, and when the cut-off value of serum Cat-S

was 974.14 pg/mL, the sensitivity and specificity of serum Cat-S in

diagnosing DKD were 85% and 80% respectively. While the AUC of

serum CysC was 0.937 for diagnosing decreased renal function of

DKD; and when the cut-off value of serum CysC was 1.08mg/L, the

sensitivity and specificity of serum CysC in the diagnosis of

decreased renal function were 88% and 93%, respectively. These

results indicated that CysC was superior to serum Cat-S in

diagnosing renal function decline (eGFR <90mL/min/(1.73 m2))

in T2DM patients. The combination of serum CysC and Cat-S in
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the diagnosis of renal function decline showed an improved

diagnostic value, with the AUC increased to 0.945, the sensitivity

to 90% and the specificity to 85% compared with diagnosing by

serum Cat-S only (Table 10 and Figure 3).
4 Discussion

DKD is characterized by persistent increased albuminuria

excretion and/or progressive decline in renal function, which

eventually progress to ESRD and severely affects the quality of life

of patients (16). We found that elevated serum Cat-S was associated

with the progression of albuminuria and decreased renal function in

T2DM patients and could be used to assess the severity of DKD, and

presented better diagnostic value than traditional biomarker CysC for

diagnosing DKD. These results lay a foundation for the exploration of

novel biomarkers for diagnosing early DKD and also indicate

potential possibility for the prevention of DKD, early diagnosis,

early treatment, as well as improving prognosis of patients.

The pathogenesis of DKD was complex and involved multiple

pathways including injury of glomerular endothelial cells, activation

of transforming growth factor-b1 and inflammatory responses (17).

Cat-S was a proteolytic enzyme that remains active in both acidic

and neutral environments, and injection of recombinant Cat-S has

been shown to damage glomerular endothelial cells to induce

proteinuria and glomerulosclerosis in DKD mice (11). Cat-S was

also found to promote renal fibrosis by regulating the TGF-b1/
Smad pathway in TGF-b1-stimulated renal tubular epithelial cells,

which resulting in decreased renal function (18). In addition, Cat-S
TABLE 6 The diagnostic value of serum Cat-S and CysC in clinical DKD under grouping mode 1.

Subjects AUC P Value 95%CI optimal cut-off value Sensitivity% Specificity% youden index

Cat-S 0.978 < 0.001 0.957~1 974.14pg/mL 0.96 0.96 0.920

CysC 0.874 < 0.001 0.814~0.934 1.16mg/L 0.72 0.98 0.704

Cat-S+CysC 0.991 < 0.001 0.978~1 – 0.98 0.96 0.947
FIGURE 2

ROC curve of serum Cat-S and CysC in diagnosing DKD. Cat-S,
Cathepsin S; CysC, cystatin C.
FIGURE 1

ROC curve of serum Cat-S and CysC in diagnosing clinical DKD.
Cat-S, Cathepsin S; CysC, cystatin C.
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promoted the secretion of pro-inflammatory cytokines such as

tumor necrosis factor-a and interleukin-1 and activated ELR +

CXC chemokines, thereby recruiting inflammatory cells such as

macrophages, which secreted Cat-S to exacerbate the inflammatory

response in turn (19, 20). The above results suggest that Cat-S is

involved not only in dysfunction of glomerular endothelial cells and

injury of glomerular filtration barrier that leading to proteinuria,

but also in renal fibrosis and inflammatory response which

promoting the development of DKD and leading to the decline in

renal function. The relationship between Cat-S and DKD has been

limited to fundamental research, and few clinical studies have

evaluated the relationship between serum Cat-S and DKD in

patients with T2DM. We grouped T2DM patients according to

UACR and eGFR to investigate the correlation between serum Cat-

S level and the severity of DKD, and to assess the diagnostic value of

serum Cat-S for diagnosing DKD and the role of serum Cat-S in the

assessment of renal function.
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Serum Cat-S levels in T2DM patients were closely related to the

severity of DKD. In this study, DKD was staged according to UACR

which reflected the level of albuminuria in T2DM patients. The results

showed that the level of serum Cat-S in patients with different DKD

stages tended to increase with the increasing UACR; that is, the serum

Cat-S level was positively correlated with the level of UACR. A study

involving 103 DM patients found that serum Cat-S levels were higher

in DM patients than in healthy control group (21), which is consistent

with the results of our study, but they did not analyze the relationship

between serum Cat-S and the severity of DKD. T2DM patients were

further grouped according to eGFR. We found serum Cat-S was

negatively correlated with eGFR, indicating that the increase of serum

Cat-S was concurrent with the decrease of renal function. SerumCat-S

has been found to be negatively correlated with eGFR in German

chronic kidney disease (CKD) patients and Swedish community CKD

patients (22), which were consistent with the results of this study.

These results suggest that serum Cat-S in T2DM patients increases
TABLE 7 The diagnostic value of serum Cat-S and CysC in DKD under grouping mode 1.

Subjects AUC P Value 95%CI optimal cut-off value Sensitivity% Specificity% youden index

Cat-S 0.900 < 0.001 0.858~0.943 827.42pg/mL 0.716 0.988 0.706

CysC 0.791 < 0.001 0.731~0.852 1.16mg/L 0.474 0.988 0.462
TABLE 8 Comparison of clinical indicators and serum Cat-S under grouping mode 2.

Projects Normal renal function
group (n=141)

Decreased renal function
group (n=59) Z/c2/t P Value

Gender(female/male) a 47/94 25/34 1.475 0.225

Age (year) b 55.29 ± 10.56 56.32 ± 10.21 0.636 0.526

BMI (Kg/m2) b 25.94 ± 3.33 26.73 ± 3.92 1.447 0.149

SBP (mmHg) b 133.37 ± 15.75 149.32 ± 19.68 5.528 < 0.001

DBP (mmHg) b 76.89 ± 10.71 81.12 ± 13.03 2.383 0.018

FBG (mmol/L) c 7.45 (5.98, 9.33) 7.00 (5.28, 9.29) -1.421 0.155

HbAlC (mmol/L) c 8.40 (7.25, 9.90) 8.00 (7.35, 8.90) -1.644 0.100

SUA (mmol/L) c 281.0 (228.5, 347.0) 374.0 (323.0, 447.0) -5.754 < 0.001

Scr (mmol/L) c 57.0(46.0, 64.0) 124.0 (85.0, 193.0) -10.663 < 0.001

eGFR
mL/min/(1.73 m2) c 131.75 (110.42, 158.49) 48.66 (28.88, 71.84) -11.143 < 0.001

BUN (mmol/L) c 5.65 (4.87, 6.71) 9.57 (7.65, 13.58) -8.388 < 0.001

UACR (mg/g) c 26.30(9.85, 172.00) 3896.70(1487.40, 6345.60) -8.503 < 0.001

TC (mmol/L) c 4.57 (3.72, 5.44) 5.20 (4.32, 6.62) -3.682 < 0.001

TG (mmol/L) c 1.52 (1.18, 2.27) 2.00 (1.46, 2.59) -2.644 0.008

HDL-C (mmol/L) c 1.08 (0.96, 1.31) 1.09 (0.91, 1.31) -0.441 0.659

LDL-C (mmol/L) c 2.67 (2.02, 3.29) 3.13 (2.49, 4.04) -3.338 0.001

Cat-S (pg/mL) c 594.24(374.05, 787.46) 1642.78(1107.57, 2192.67) -7.889 < 0.001

CysC (mg/L) c 0.87 (0.78, 0.96) 1.78 (1.25, 2.37) -9.740 < 0.001

RBP (mg/L) c 39.0 (33.8, 47.0) 58.8 (47.3, 71.3) -7.823 < 0.001
normal renal function group (eGFR≥90mL/min/1.73 m2); decreased renal function group (eGFR<; 90mL/min/1.73 m2); a c2 test; b one-way analysis of variance; c rank sum test.
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with the progression of DKD. Thus, serum Cat-S is expected to

applicate as a novel biomarker for the early diagnosis of clinical DKD.

We grouped T2DM patients according to UACR which reflected

the severity of albuminuria and according to eGFR, and found that the

elevated serumCat-S and CysC were independent risk factors for early

DKD and decreased renal function in T2DM patients. Multivariate

logistic regression analysis under grouping mode 1 showed that with

an increase of 0.1 units of Cat-S, the relative risks of early DKD and

clinical DKD increased 1.541 times and 5.690 times, respectively;

whereas with an increase of 10 units of CysC, the relative risks of early

DKD and clinical DKD increased by 1.611 times and 2.880 times,

respectively. Multivariate logistic regression analysis under grouping

mode 2 showed that elevated serum Cat-S and CysC were

independent risk factors for eGFR < 90mL/min/(1.73 m2); that is,

the higher the serum Cat-S and CysC levels, the higher the probability

of eGFR < 90mL/min/(1.73 m2). In db/db mice with type 2 diabetes,

Cat-S inhibitors or PAR2 inhibitors have been reported to reduce

albuminuria and glomerulosclerosis, as well as other organ

complications such as diabetic retinopathy (11). Therefore, we

conclude that serum Cat-S was associated with the development of

increased albuminuria and decreased renal function, and could be a

potential new therapeutic target for the prevention of DKD.

Serum Cat-S performed valuable diagnostic efficacy in the

diagnosis of DKD. Previous studies have suggested that serum

CysC in T2DM patients was positively correlated with UACR

(23), which was a sensitive indicator of renal impairment and

could be used as a marker for early diagnosis of DKD (24).

However, in this study, serum CysC increased significantly in
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T2DM patients with massive albuminuria, which indicating that

serum CysC could not be used to diagnose early DKD effectively.

Therefore, we further analyzed and compared the diagnostic value

of serum Cat-S and serum CysC in DKD. When UACR ≥30mg/g

was used as the criterion for the diagnosis of early DKD, ROC

analyzed the diagnostic value of serum Cat-S showed that when the

optimal cut-off value for serum Cat-S was 827.42 pg/mL, the

diagnostic sensitivity and specificity of serum Cat-S were higher

than those of serum CysC, suggesting that serum Cat-S has better

diagnostic efficacy for the diagnosis of DKD. When eGFR < 90mL/
TABLE 9 Logistics regression analysis of renal function decline in T2DM under grouping mode 2.

Independent variable
Univariate Multivariate

OR P Value OR P Value

SBP (mmHg) 1.055 (1.034~1.077) < 0.001 1.044 (1.004~1.087) 0.033

DBP (mmHg) 1.033 (1.005~1.061) 0.02 0.943 (0.885~1.003) 0.064

SUA (mmol/L) 1.011 (1.007~1.015) < 0.001 1.006 (0.999~1.014) 0.093

BUN (mmol/L) 1.949 (1.589~2.390) < 0.001 1.674 (1.228~2.280) 0.001

UACR (mg/g) 1.001 (1.001~1.001) < 0.001 – –

TC (mmol/L) 1.630 (1.288, 2.063) < 0.001 1.956 (1.324~2.889) 0.001

LDL-C (mmol/L) 1.855 (1.359~2.531) < 0.001 – –

Cat-S (0.1ng/mL) 5.501 (3.264~9.272) < 0.001 2.835 (1.260~6.381) 0.012

CysC (10mg/L) 1.799 (1.489~2.174) < 0.001 1.345 (1.116~1.620) 0.002

RBP (mg/L) 1.058 (1.034~1.082) < 0.001 – –
TABLE 10 The diagnostic value of serum Cat-S and CysC in T2DM with renal function decline.

Subjects AUC P Value 95%CI optimal cut-off value Sensitivity Specificity youden index

Cat-S 0.854 < 0.001 0.797~0.911 974.14pg/mL 0.85 0.80 0.632

CysC 0.937 < 0.001 0.893~0.981 1.08mg/L 0.88 0.93 0.810

Cat-S+CysC 0.945 < 0.001 0.909~0.982 – 0.90 0.85 0.813
FIGURE 3

ROC curve of serum Cat-S and CysC in diagnosing renal function
decline in T2DM.
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min/(1.73 m2) was used as the diagnostic criterion for decreased

renal function, we found that serum Cat-S and serum CysC had

similar diagnostic value for decreased renal function in T2DM

patients. However, the combined diagnostic value of serum Cat-S

and serum CysC for diagnosing decreased renal function in patients

with T2DM was better than that of either of the two alone,

suggesting that serum Cat-S level could reflect the decline of renal

function of T2DM patients to a certain extent.

However, this study had some limitations. However, this study

had some limitations. Researchers have found that strict control of

blood glucose can delay the progression of DKD in T2DM patients

(25). Considering that diabetes medications may be used, there were

no differences in HbAlC between subgroups in this study. We did not

count the application of hypoglycemic drugs, but it will be a new

direction in our following study. Patney et al. demonstrated that

hypertension accelerated the progression of renal disease and led to

increased morbidity andmortality from cardiovascular complications

in DKD patients (26). We found that elevated SBP and DBP were

influential factors in the occurrence of early DKD and decreased renal

function. Therefore, controlling cardiovascular complications such as

blood pressure may be one of the directions to slow the progression of

DKD. It will be an important direction to research DKD with other

cardiovascular complications. In the follow-up study, we will explore

the diagnostic value of Cat-S for diagnosing DKD with or without

cardiovascular complications. It was a single-center cross-sectional

study, and further verification is needed in a multi-center prospective

study with a large sample size and we plan to follow up DKD patients

to analyze the correlation between Cat-S and the prognosis of DKD.

In addition, most DKD patients we enrolled didn’t undergo renal

biopsy, thus the relationship between Cat-S and renal pathology was

not clarified in our study. It was a single-center cross-sectional study,

and further verification is needed in a multi-center prospective study

with a large sample size. In addition, most DKD patients were

clinically confirmed but not pathologically confirmed because

clinically confirmed DKD patients usually did not undergo renal

biopsy, thus the relationship between Cat-S and renal pathology was

not clarified in our study.
5 Conclusion

In conclusion, we concluded that the elevated serum Cat-S were

associated with the progression of albuminuria and decreased renal

function in T2DM patients. Serum Cat-S increased with the severity

of albuminuria in patients with DKD, and the diagnostic value of

serum Cat-S was better than that of CysC for diagnosing DKD. The

level of serum Cat-S could reflect the decline of renal function in

T2DM patients to a certain extent. As a risk factor that affects the

incidence of DKD, serum Cat-S is expected to be a new biomarker

for the early diagnosis and severity assessment of DKD.
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Background: Accumulating evidence suggests that elevated serum uric acid

(SUA) may be a risk factor for hypertriglyceridemia (HTG). However, the

epidemiological evidence for the association between SUA and HTG is limited.

This article aimed to use the data fromNational Health and Nutrition Examination

Survey (NHANES) (2007–2018) database to bridge the research gap.

Methods: This cross-sectional study used data from 10027 adults involved in

NHANES from 2007-2018. We designed the exposure variable as SUA and the

outcome variable as HTG. The covariates included demographics,

questionnaires, laboratory, and examination information. Weighted logistic

regression and subgroup analysis were used to explore the independent

association between SUA and HTG. Furthermore, interaction tests were also

carried out to evaluate the strata differences. Generalized additive models (GAM),

smooth curve fittings, and threshold effect analysis were applied to examine the

non-linear relationship.

Results: A total of 10027 participants were included, of which 3864 were HTG

participants and 6163 were non-HTG participants. After fully adjusting for

confounders, weighted multiple logistic regression models revealed a 77%

increase in the risk of HTG when each unit of log2-SUA increased. There was

also a positive association between elevated log2-SUA and developed risk of

HTG in the quartile (Q) groups (Q1 OR: 1.00; Q2 OR: 1.17 [95%CI: 0.95,1.45]; Q3

OR: 1.43 [95%CI: 1.16,1.78]; Q4 OR: 1.68 [95%CI: 1.36,2.08]. The subgroup

analysis results remained consistent across strata, with a strong positive

correlation between SUA and HTG. Interaction tests showed no dependence

on physical activity (PA), gender, BMI, smoking status, alcohol intake,

hypertension, and diabetes for this positive association between log2-SUA and

HTG (all p for interaction >0.05). The participants’ age may impact the strength of

the association between SUA and HTG (p for interaction <0.05).
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Conclusion: There is a positive association between SUA and HTG in US adults.

Considering that SUA may be a risk factor for HTG, individuals diagnosed with

HTG should prioritize the daily management of SUA as part of their

comprehensive care.
KEYWORDS

serum uric acid, hypertriglyceridemia, NHANES, weighted logistic regression analysis,
subgroup analysis
Introduction

Hypertriglyceridemia (HTG), characterized by fasting serum

triglyceride (TG) levels exceeding 1.7 mmol/L (1), represents a

prevalent lipid metabolism disorder (2). The development of HTG

involves a complex interplay of genetic and non-genetic factors (3),

leading to its classification into primary HTG and secondary HTG

based on the underlying etiology (4). According to NHANES data,

it is estimated that there are approximately 10.84 million

individuals diagnosed with HTG in the United States (5).

Moreover, severe HTG has been linked to a substantial rise in

healthcare costs, ranging from 33% to 38% annually (6), thereby

significantly amplifying the societal healthcare burden. Studies have

shown that HTG poses not only a risk for pancreatitis and

cardiovascular disease but also exhibits a robust association with

obesity, diabetes, and nonalcoholic fatty liver disease (NAFLD) (7–

9). Notable is the potential link between NAFLD and bladder cancer

development (10). In a comprehensive cohort study, researchers

observed that elevated serum triglyceride (TG) levels were

independently associated with a more severe progression of

pancreatitis and a higher likelihood of complications (11).

Furthermore, a previous study revealed that serum TG levels

reaching 10.20 mmol/L or higher were linked to a 10% to 20%

increased risk of pancreatitis (12). The implementation of lifestyle

interventions, such as dietary modifications, weight management,

and increased physical activity, is considered the primary and most

valuable approach for treating HTG. By significantly lowering TG

levels through these interventions, it is possible to not only prevent

pancreatitis but also reduce the risk of cardiovascular disease (2,

13, 14).

SUA is the final oxidation product of exogenous and

endogenous purine metabolism and is produced in the intestine,

liver, and muscle (15–17). Endogenous purines are the main

component of purines in the body, accounting for 80% of total

purines, which are mainly derived from the oxidative breakdown of

the body’s nucleic acids (16). Exogenous purines are derived from

dietary intake, including seafood, fatty and organ meats (e.g., liver

and kidney), fructose, and alcohol (18). In recent years, there has

been an observed increase in people’s SUA levels, leading to the

emergence of hyperuricemia as a significant public health concern.

Previous data have indicated that the prevalence of hyperuricemia

in the United States is as high as approximately 20% (19). Notably,

research has demonstrated an association between hyperuricemia
0286
and urological cancer (20). This may be related to dietary habits,

lifestyle changes, and medication use (21, 22). Over the years,

numerous studies have consistently demonstrated a strong

association between high SUA levels and the development of

cardiovascular disease. Furthermore, elevated SUA has been

linked to increased risks of all-cause mortality and cardiovascular

mortality (23, 24). High SUA is also associated with the

development of many other diseases, including diabetes,

hypertension, NAFLD and kidney disease (25–27). Above all,

elevated SUA levels can alter the body’s physiopathology and

heighten the susceptibility to diseases.

One hypothesis is that SUA levels may be related to HTG. It is

thought-provoking that both HTG and high levels of SUA can lead to

the development of NAFLD (9, 27). Gout patients have been shown to

have an increased risk of urologic cancers (20), and HTG-induced

NAFLD has also been shown to indirectly raise this risk (10). Research

investigating the relationship between SUA and metabolic syndrome

(MetS) found that hyperuricemia showed the strongest association with

high TG (PR = 2.32, 95% CI: 1.84-2.91) (28). A 5-year cohort study

conducted in Japan revealed an increased risk of low-density

lipoprotein (LDL) and HTG with elevated SUA levels (29).

Additionally, previous evidence indicates that elevated SUA levels

can induce mitochondrial abnormalities, contributing to the

progression of HTG (8). Notably, an animal experiment

demonstrated lower lipase activity in the high SUA group compared

to the low SUA group (30). Decreased lipase activity is associated with

reduced TG catabolism (31). Moreover, apolipoprotein E (ApoE) has

been implicated in SUA-induced HTG (32).

Drawing from the existing evidence, it is suggested that SUA could

serve as a risk factor for HTG. Accordingly, we collected NHANES data

(2007–2018) to provide epidemiological evidence, and conducted an

investigation into the relationship between SUA and HTG by

employing weighted multivariate logistic regression and performing

subgroup analysis.
Materials and methods

Data source

The NHANES database is a nationally conducted cross-

sectional study aiming to evaluate the health and nutritional

status of non-institutionalized residents in the United States.
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Administered by the National Center for Health Statistics (NCHS),

NHANES collects data through interviews and examinations. The

study design employs a stratified multistage probability sampling

method, ensuring a highly representative sample. The NHANES

protocol has been reviewed and approved by the Research Ethics

Review Committee of the National Center for Health Statistics, and

all participants have provided written informed consent. The

publicly available data used in our analysis can be accessed at

https://www.cdc.gov/nchs/nhanes/. This study adhered strictly to

the Strengthening the Reporting of Observational Studies in

Epidemiology (STROBE) principle for cross-sectional studies

(Supplementary material 1) (33).
Study population

The study incorporated data from six cross-sectional cycles

(2007–2018) of NHANES. The initial inclusion of 59842

participants in the study was based on the inclusion criteria that

participants were at least 20 years old and that SUA and HTG data

was available. To ensure data integrity, participants with missing
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data on prescription for cholesterol (PFC), alcohol intake, the ratio

of family income to poverty (PIR), education level, body mass index

(BMI), and sedentary time were excluded. Ultimately, a total of

10,027 participants who satisfied the aforementioned inclusion and

exclusion criteria were included in the data analysis (Figure 1).
Measurements and definition of variables

Exposure variable and outcome variable
SUA was used as the exposure variable in this study. To account

for its right-skewed distribution, log2 transformation was applied to

SUA during subgroup and regression analyses. HTG was defined as

an outcome variable, with HTG being classified as serum TG

content greater than or equal to 1.7 mmol/L, according to

endocrine clinical guidelines (4).

Covariates
Based on prior research and clinical experience, we have

incorporated the following summary of covariates that might

influence the relationship between SUA and HTG (34, 35). The
FIGURE 1

Flowchart of the sample selection from the 2007–2018 National Health and Nutrition Examination Survey (NHANES).
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study considered the following continuous covariates: age (years),

sedentary time (minutes), Alanine aminotransferase (ALT, U/L),

Aspartate aminotransferase (AST, U/L), creatinine (µmol/L), blood

urea nitrogen (mmol/L), and total cholesterol (mmol/L). Categorical

variables included: gender (Male/Female), race (Mexican American/

other Hispanic/Non-Hispanic White/Non-Hispanic Black/Other

Race), educational level (High school or above high school/less

than High school), smoking status (Yes: smoking at least 100

cigarettes; No: smoking less than 100 cigarettes), PA (yes was

defined as engaging in any moderate recreational activities for at

least 10 continuous minutes), hypertension (yes/no), diabetes (yes/

no), prescription for cholesterol (PFC) (yes/no), and ratio of family

income to poverty (PIR). Hypertension was defined as an average

systolic blood pressure ≥130mmHg or diastolic blood pressure ≤

80mmHg, or taking medication for hypertension (36). Diabetes was

diagnosed based on three criteria (1): self-reported diagnosis by a

physician or healthcare professional (2), HbA1c (glycated

hemoglobin) level over 6.5%, and (3) fasting blood glucose (FPG)

level over 126 mg/dL (37). PIR was classified as low-income (PIR ≤

1.3), middle-income (PIR > 1.3–3.5), and high-income (PIR> 3.5)

(38). Marital status was divided into living alone, married, or living

with a partner (34). Alcohol intake was classified as mild, moderate,

and heavy. Heavy alcohol use was defined as ≥3 drinks per day for

females or ≥ four drinks per day for males (39). Moderate alcohol use

was defined as 2-3 drinks per day for females and 3-4 drinks per day

for males. Mild alcohol use was regarded as others (40). The BMI was

categorized as underweight or normal (<25 kg/m2), overweight (≥25

to <30 kg/m2), and obese (≥30 kg/m2) (38).
Statistical analysis

All statistical analyses were conducted according to CDC

guidelines. Considering the complicated multistage cluster survey

design, NHANES-generated sampling statistics strata, clusters, and

weights were used to ensure the results were generalizable to the U.S.

population (41).

Continuous variables were presented as mean with standard

deviation (SD), while categorical variables were expressed as

percentages. To address the right-skewed distribution of SUA data,

log2 transformation was applied for regression and subgroup analysis.

The statistical analysis comprised four main steps, aiming to examine

the association between SUA levels and HTG among the selected

participants. Firstly, participants’ TG levels were categorized into HTG

and non-HTG groups based on clinical guidelines. Differences between

these groups were assessed using the chi-square test for categorical

variables and the weighted Student’s t-test for continuous variables. In

the second step, weighted multivariate logistic regression models were

employed to examine the independent association between SUA and

HTG in three models. Model 1 did not include any covariate

adjustments. Model 2 was adjusted for gender, age, and race. Model

3 included adjustments for all covariates, including age, gender, race,

education level, sedentary time, AST, ALT, creatinine, blood urea

nitrogen, total cholesterol, PIR, body mass index (BMI), smoking

status, alcohol intake, physical activity (PA), hypertension, diabetes,

and PFC. Furthermore, SUA was transformed from a continuous
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variable to a categorical variable (Q) for further analysis. In the third

step, a subgroup analysis was conducted to examine the impact of

different subgroups on the results. Interaction tests were employed to

explore potential heterogeneity between these subgroups. Additionally,

GAM, smooth curve fittings, and threshold effect analysis were utilized

to investigate the non-linear relationship between SUA and HTG in

greater detail.

If the two-sided value P < 0.05, the null hypothesis was rejected.

Al l analysis was performed using Empower software

(www.empowerstats.com; X&Y solutions, Inc., Boston MA) and R

software (version 4.1.2; http://www.R-project.org, R Foundation for

Statistical Computing, Vienna, Austria).
Results

Basic characteristics of the
included participants

Table 1 presents the weighted baseline characteristics of

participants selected from NHANES 2007 to 2018, stratified by

the presence of HTG. The analysis included 3,864 participants with

HTG. The average age of the HTG group was 50.95 ± 22.04 years,

with 58.47% being male and 41.53% female. In comparison, the

non-HTG group consisted of 6,163 participants with a mean age of

49.15 ± 30.04 years, with 44.56% being male and 55.44% female.

Significant differences between the HTG and non-HTG groups

were observed in terms of age, gender, race, education level, PIR,

marital status, BMI, drinking, smoking status, PA, hypertension,

cholesterol prescription, diabetes, PFC, ALT, AST, SUA, creatinine,

blood urea nitrogen, and total cholesterol (all p < 0.05).
Association between SUA and the HTG

Table 2 presents the association between SUA and the risk of HTG.

A significant positive correlation was observed between SUA and HTG.

InModel 1, the odds ratio (OR) was 3.40 (95%CI: 2.84-4.06), indicating

a significant association. Model 2, which adjusted for age, gender, race,

BMI, education level, PIR, PA, sedentary time, hypertension, diabetes,

creatinine, blood urea nitrogen, total cholesterol, ALT, AST, smoking

status, drinking, and PFC, also showed a positive association (OR =

3.17, 95% CI: 2.62-3.84). Furthermore, in Model 3, after full adjustment,

a positive association between SUA and HTG was still observed (OR =

1.77, 95% CI: 1.44-2.18).

To gain further insights into the relationship between SUA and

HTG, log-transformed SUA was categorized into quartiles. In the fully

adjusted Model 3, when comparing the highest quartile (Q4) with the

lowest quartile (Q1), the OR was 1.68 (95% CI: 1.36-2.08), indicating a

stable positive association between higher SUA levels and HTG.
Subgroup analysis

While informative, subgroup analysis was conducted to

further assess the robustness of the association between SUA
frontiersin.org

http://www.empowerstats.com
http://www.R-project.org
https://doi.org/10.3389/fendo.2023.1215521
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Tan et al. 10.3389/fendo.2023.1215521
TABLE 1 Weighted baseline characteristics of participants.

Non-Hypertriglyceridemia (n = 6163) Hypertriglyceridemia (n = 3864) P-value

Age (year) 49.15 ± 30.04 50.95 ± 22.04 <0.001

Sedentary time (minute) 394.38 ± 348.66 405.25 ± 297.01 0.0831

AST (U/L) 24.39 ± 14.01 26.74 ± 23.15 <0.001

ALT (U/L) 23.09 ± 17.62 29.20 ± 27.27 <0.001

Creatinine (µmol/L) 77.27 ± 30.84 80.28 ± 28.22 <0.001

Blood Urea Nitrogen (mmol/L) 4.98 ± 3.20 5.20 ± 3.17 0.001

Serum uric acid (µmol/L) 310.67 ± 112.35 348.06 ± 111.47 <0.001

Total Cholesterol (mmol/L) 4.89 ± 1.80 5.45 ± 2.06 <0.001

Gender (%) <0.001

Male 44.56 58.47

Female 55.44 41.53

Race (%) <0.001

Mexican American 4.83 7.52

other Hispanic 4.36 5.17

Non-Hispanic White 73.27 75.12

Non-Hispanic Black 11.37 4.93

Other Race 6.16 7.26

Education Level (%) <0.001

High school or above high school 92.20 90.44

Less than high school 7.80 9.56

PIR (%) 0.0099

low-income 12.95 15.15

middle-income 31.83 32.97

high-income 55.22 51.88

Marital status (%) <0.001

Married 59.51 63.51

living alone 33.84 5.01

living with a partner 6.65 6.63

BMI (kg/m2) (%) <0.001

underweight or normal 33.89 14.09

overweight 34.04 33.58

obese 32.07 52.34

Smoking status (%) <0.001

Yes 43.17 51.89

No 56.83 48.11

Alcohol intake (%) <0.001

Mild 53.94 54.84

Moderate 35.17 30.57

Heavy 10.89 14.59

(Continued)
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and HTG. Interaction tests were also performed to assess the

influence of different variables (Supplementary material 2). The

results of the subgroup analysis revealed a consistent positive

correlation between SUA and HTG across different subgroups,

indicating the robustness of the association. Notably, no

significant interactions were observed for gender, BMI, smoking

status, drinking, hypertension, diabetes, and PA, suggesting that

the association was not dependent on these variables (all p for

interaction > 0.05).

However, age was found to significantly impact the strength of

the SUA-HTG association (all p for interaction < 0.05). The results

indicated that participants under the age of 60 were at a higher risk

compared to those aged 60 and older, with an odds ratio of 2.47

(95% CI: 1.96-3.12). This suggests that age plays a role in modifying

the association between SUA and HTG, with younger individuals

exhibiting a stronger association.
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Identification of non-linear relationship

This study revealed a non-linear relationship between SUA and

HTG, as demonstrated by the results of GAM and smoothed curve

fitting presented in Figure 2. The log-likelihood ratio test showed a

p-value of less than 0.001 when comparing the linear regression

model to a two-piecewise linear regression model, indicating that

the two-piecewise linear regression model provided a better fit for

the data. Using the two-piecewise linear regression model and

recursive algorithm, Table 3 presents the findings. The point of

inflection in the U-shaped association between SUA and HTG was

identified as 7.86 umol/L for log2-SUA. To the left of the inflection

point, the effect size (log2 transformed) was 0.76 (95% CI: 0.45,

1.28) with a p-value of 0.30, suggesting a non-significant

association. However, to the right of the inflection point, SUA

showed a significant positive correlation with HTG. The effect size
TABLE 1 Continued

Non-Hypertriglyceridemia (n = 6163) Hypertriglyceridemia (n = 3864) P-value

Physical activity (%) <0.001

Yes 54.42 48.80

No 45.58 51.20

Hypertension (%) <0.001

Yes 32.24 44.45

No 67.76 55.55

Cholesterol prescription (%) <0.001

Yes 27.05 40.88

No 72.95 59.12

Diabetes (%) <0.001

Yes 7.41 15.73

No 92.59 84.27
fron
ALT, alanine transaminase; AST, aspartate transaminase; PIR, Ratio of family income to poverty; BMI, body mass index.
All values are presented as proportion (%), or mean ± standard deviation.
TABLE 2 Weighted Multivariate logistic regression models of SUA with hypertriglyceridemia.

log-SUA (umol/L)
ORa(95% CI), P-value

Model 1b Model 2c Model 3d

Continuous 3.40 (2.84, 4.06) <0.001 3.17 (2.62, 3.84) <0.001 1.77 (1.44, 2.18) <0.001

Categories

Quartile 1 (≤8.06) Reference Reference Reference

Quartile 2 (8.06-8.33) 1.48 (1.22,1.80) <0.001 1.41 (1.15,1.73) <0.001 1.17 (0.95,1.45) 0.14

Quartile 3 (8.34-8.57) 2.20 (1.81,2.70) <0.001 2.01 (1.63,2.48) <0.001 1.43 (1.16,1.78) 0.0018

Quartile 4 (>8.57) 3.29 (2.73,3.97) <0.001 3.02 (2.46,3.69) <0.001 1.68 (1.36,2.08) <0.001
SUA, serum uric acid; 95% CI, 95% confidence interval; OR, odds ratio.
In sensitivity analysis, SUA is converted from a continuous variable to a categorical variable (quartile); ORa, effect size; Model 1b, no covariates were adjusted; Model 2c, adjusted for gender, age,
and race; Model 3d, adjusted for gender, age, race, PA, sedentary time, ALT, AST, creatinine, blood urea nitrogen, education level, the ratio of family income to poverty, marital status, body mass
index, alcohol intake, smoking status, hypertension, cholesterol prescription, total cholesterol, and diabetes.
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(log2 transformed) was 2.16 (95% CI: 1.82, 2.56) with a p-value of

<0.001, indicating a strong and significant association between

higher SUA levels and HTG.
Discussion

Our study revealed a significant positive association between

SUA and HTG. Subgroup analysis indicated that this association

was consistent across different subgroups. Interaction tests

demonstrated that the association was independent of gender,

BMI, smoking status, alcohol intake, physical activity,

hypertension, and diabetes. Interestingly, participants under the

age of 60 had a higher risk of developing HTG compared to those

aged 60 and older. Moreover, we observed a U-shaped association

between SUA and HTG, with an inflection point identified at 7.86

umol/L.
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The association between SUA and Metabolic Syndrome (MetS)

has been extensively studied in previous research. MetS is

characterized by the abnormal accumulation of multiple

metabolic components, such as obesity, HTG, low high-density

lipoprotein cholesterol (HDL-C), hypertension, and insulin

resistance (IR). Several studies have indicated that SUA might

serve as an independent risk factor for MetS (42, 43). These

studies have provided evidence supporting the potential role of

SUA in the development of MetS (44–46). The result of a cohort

study revealed that high SUA concentrations may increase the risk

of MetS among Chinese adults (47). There is evidence that SUA

may be associated with IR, which is one of the diagnostic indicators

of MetS (48). Furthermore, Xanthine oxidoreductase (XO), an

important enzyme involved in the production of SUA, has been

suggested to play a crucial role in the development of MetS (49).

Animal experiments have shown that lowering SUA levels can

prevent and reverse MetS features in fructose-fed rats, including

lower blood pressure, reduced serum triglycerides, decreased

hyperinsulinemia, and weight gain (50). These findings, along

with our study results, support the connection between SUA and

the development of MetS.

The underlyingmechanism linking SUA andHTG remains unclear.

However, studies have suggested that high intracellular SUA levels can

lead to increased oxidative stress in mitochondria. In an in vitro study by

Yang et al. (51), hepatocytes treated with different concentrations of SUA

exhibited increased apoptotic activity, accumulation of Reactive Oxygen

Species (ROS), and elevated 8-hydroxydeoxyguanosine levels compared

to control cells, indicating mitochondrial DNA damage. This

mitochondrial dysfunction could contribute to the release of citrate

into the cytosol, initiating lipogenesis and triglyceride synthesis (52). In

addition, Wang et al. (53) found that the prevalence of the E2 allele of

ApoE was correlated with increased SUA level. ApoE is known to play a

role in regulating lipoprotein metabolism. Studies have suggested that

ApoE may contribute to decreased clearance of very low-density

lipoprotein (VLDL) through the interaction with the hepatic remnant

receptor, leading to elevated levels of VLDL cholesterol and VLDL

triglycerides (54). In addition, it has been suggested that elevated SUA

may be associated with reduced lipase activity (30). In the study by

Zheng et al. (31), it was found that elevated SUA levels may hinder the

breakdown of triglycerides (TG) by reducing lipase activity. This

inhibition of TG catabolism could contribute to a higher prevalence of

HTG in individuals with high SUA levels.

In our subgroup analysis, we found that the association between

SUA and HTGwas more pronounced in participants under 60 years

old compared to those over 60 years old. This observation is

consistent with previous evidence suggesting that the health

effects of SUA are stronger in younger individuals (55). For

example, Kawamoto et al. (56) reported higher risk factor values

for cardiovascular disease induced by SUA in women aged <55

compared to older participants. However, the underlying

mechanism for this age-related effect of SUA on HTG is not yet

well understood and requires further exploration in future scientific

research. Moreover, our threshold effects analysis revealed that the

inflection point for the association between log2-SUA and HTG was

7.86 umol/L. Beyond this threshold, there was a significantly higher

risk of HTG. However, more experimental studies are needed to
FIGURE 2

smoothed curve fitting: Dose-response relationship between SUA
and hypertriglyceridemia.
TABLE 3 Threshold effect analysis of SUA on HTG using two-piecewise
linear regression model.

log2-SUA (umol/L) Adjust OR (95% CI) P
value

Fitting by linear regression model 1.84 (1.60, 2.13) <0.0001

Fitting by two-piecewise linear regression
model

Inflection point 7.86

< 7.86 0.76 (0.45, 1.28) 0.30

> 7.86 2.16 (1.82, 2.56) <0.0001

Log likelihood ratio test <0.001
Adjusted for gender, age, race, PA, sedentary time, ALT, AST, creatinine, blood urea nitrogen,
education level, ratio of family income to poverty, marital status, body mass index, alcohol
intake, smoking status, hypertension, cholesterol prescription, total cholesterol,and diabetes.
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determine more precise threshold effects and to elucidate the

mechanisms involved.

This study has several strengths that contribute to its scientific

value. Firstly, it utilized a large sample size of 10,027 participants,

providing robust statistical power for accurately assessing the

association between SUA and HTG. Secondly, the study utilized

data from the NHANES database, which is a nationally

representative population-based sample. By incorporating

appropriate sampling weights, the study results can be generalized

to the entire US population. Lastly, the study accounted for various

confounding covariates based on previous research and clinical

experience, minimizing the potential bias caused by these factors.

However, there are certain limitations that should be

acknowledged. Firstly, being a cross-sectional study, it is unable to

establish a causal relationship between SUA and HTG. Further

longitudinal studies are needed to explore the temporal nature of this

association. Secondly, despite adjusting for several potential

confounding factors, it is possible that other unmeasured variables

might have influenced the results. Additionally, caution should be

exercised when extrapolating the findings to populations outside of the

United States, as the study was restricted to American participants.

Finally, due to the limited amount of relevant research published in the

last five years, not all of our primary references are recent works, which

may have an impact on the timeliness of this study.
Conclusions

In conclusion, our study demonstrates a strong positive

association between SUA levels and HTG in the US adult

population, indicating that elevated SUA may contribute to an

increased risk of HTG. These findings highlight the importance of

managing and controlling SUA levels in HTG patients to prevent

disease progression. Crucial for future research is to conduct large-

scale and high-quality prospective studies to validate our conclusions

and further explore the underlying mechanisms of this association.
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Objective: Visceral adipose tissue assessment holds significant importance in

diabetes prevention. This study aimed to explore the association between the

newly proposed Metabolic Score for Visceral Fat (METS-VF) and diabetes risk and

to further assess the predictive power of the baseline METS-VF for the

occurrence of diabetes in different future periods.

Methods: This longitudinal cohort study included 15,464 subjects who

underwent health screenings. The METS-VF, calculated using the formula

developed by Bello-Chavolla et al., served as a surrogate marker for visceral fat

obesity. The primary outcome of interest was the occurrence of diabetes during

the follow-up period. Established multivariate Cox regression models and

restricted cubic spline (RCS) regression models to assess the association

between METS-VF and diabetes risk and its shape. Receiver operating

characteristic (ROC) curves were used to compare the predictive power of

METS-VF with body mass index (BMI), waist circumference (WC), waist-to-

height ratio (WHtR), and visceral adiposity index (VAI) for diabetes, and time-

dependent ROC analysis was conducted to assess the predictive capability of

METS-VF for the occurrence of diabetes in various future periods.

Results: During a maximum follow-up period of 13 years, with a mean of 6.13

years, we observed that the cumulative risk of developing diabetes increased

with increasing METS-VF quintiles. Multivariable-adjusted Cox regression

analysis showed that each unit increase in METS-VF would increase the risk of

diabetes by 68% (HR 1.68, 95% CI 1.13, 2.50), and further RCS regression analysis

revealed a possible non-linear association between METS-VF and diabetes risk (P

for non-linearity=0.002). In addition, after comparison by ROC analysis, we

found that METS-VF had significantly higher predictive power for diabetes than

other general/visceral adiposity indicators, and in time-dependent ROC analysis,

we further considered the time-dependence of diabetes status andMETS-VF and
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found that METS-VF had the highest predictive value for predicting medium- and

long-term (6-10 years) diabetes risk.

Conclusion: METS-VF, a novel indicator for assessing visceral adiposity, showed

a significantly positive correlation with diabetes risk. It proved to be a superior risk

marker in predicting the future onset of diabetes compared to other general/

visceral adiposity indicators, particularly in forecasting medium- and long-term

diabetes risk.
KEYWORDS

diabetes, METS-VF, predictive power, time-dependent ROC analysis, visceral adiposity
Introduction

Diabetes is one of the most common chronic diseases that

endangers the physical health of the world population and cause

disability and death (1, 2). The treatment and management of

diabetic patients heavily burden the world’s healthcare systems and

have become an important global public health challenge (3, 4).

Under the background that diabetes currently cannot be completely

cured, the early identification of people at risk of developing

diabetes and primary prevention of diabetes are of great public

health importance (5).

Obesity is an important risk factor for the development and

progression of diabetes (6), and obese people are usually at a higher

risk for diabetes. Notably, compared to general adiposity due to

increased subcutaneous fat, visceral adiposity is more harmful to the

organism, especially fat deposits in organs such as the liver and

skeletal muscle, which cause more pronounced hepatic and

peripheral insulin resistance thereby leading to the development

of metabolic diseases such as diabetes (7–9). The gold standard

measure for clinical assessment of visceral adiposity is magnetic

resonance imaging (MRI), but it is not suitable for diabetes

screening and clinical prevention in large populations due to its

expensive testing costs and complex procedures (10). In addition,

anthropometric abdominal adiposity indicators WC, WHtR, and

waist-to-hip ratio can also indicate the risk of visceral adiposity, but

they cannot accurately distinguish between abdominal visceral

adipose tissue and subcutaneous adipose tissue (11).

METS-VF is a newly developed surrogate for assessing visceral

adiposity that integrates demographic parameters (age and sex),

anthropometric obesity parameters (BMI andWHtR), and glycemic

lipid parameters [fasting plasma glucose (FPG), triglyceride (TG),

and high-density lipoprotein cholesterol (HDL-C)]. It was

developed by Bello-Chavolla OY et al. Following validation and

comparison by Bello-Chavolla OY et al., METS-VF was found to

provide a significantly superior estimate of human visceral adiposity

compared to other commonly used surrogate indicators for

abdominal adiposity. Moreover, it exhibited high agreement with

gold standard measurements (12). Several subsequent observational

studies have shown that METS-VF had good risk assessment/

predictive power for metabolic diseases closely related to visceral
0295
adiposities such as chronic kidney disease, hypertension, and

hyperuricemia (13–16). However, the correlation between METS-

VF and diabetes risk has only been explored in a rural population

in China (17), and the predictive power of baseline METS-VF for

the future development of diabetes in the general population and

the effect of temporal progression on the predictive power of

METS-VF are currently unknown. Therefore, the current study

comprehensively analyzed and compared the risk assessment/

predictive ability of METS-VF for diabetes based on a larger

sample size general population cohort and further explored the

predictive power of METS-VF for the occurrence of diabetes in

different future periods using time-dependent ROC analysis.
Methods

Study design and ethics approval

We conducted a retrospective cohort study of subjects in the

NAGALA cohort (NAfld in the Gifu Area, Longitudinal Analysis)

to assess the usefulness of the newly proposed METS-VF for

predicting future diabetes. Information on the NAGALA cohort

study was described in detail in a previously published article (18).

In brief, the NAGALA cohort was established in 1994 and included

a study sample of people who underwent health screenings at

Murakami Memorial Hospital. Given that the vast majority of

people who underwent health screenings at the hospital will have

repeat screenings in the future, with 60% of these subjects receiving

one or two health screenings per year, the NAGALA research

project team conducted a long-term follow-up survey for future

incident diabetes and incident non-alcoholic fatty liver disease. In a

previously published article, Prof. Okamura reported that the

NAGALA cohort study was approved by the Murakami Memorial

Hospital ethics committee and written informed consent was

obtained from all study participants, and that detailed data from

the study were uploaded to the Dryad public database for sharing

(19). The current study is a secondary analysis of the NAGALA

study, and the subjects’ identifying information has been

anonymized in the data set used. Therefore, the Ethics Committee

of Jiangxi Provincial People’s Hospital waived the process of
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obtaining written informed consent for the current study, approved

the protocol of the current study, and supervised the entire process

of the current study. See STROBE statement (S1Text).
Study population

The current study extracted data from the NAGALA cohort of

20,944 subjects who underwent health screenings between May

1994 and December 2016. We further excluded subjects with the

following conditions according to the study objectives: (1) At

baseline, 323 who had been diagnosed with diabetes, 416 with

liver disease (other than fatty liver), and 808 with FPG ≥6.1mmol/L;

(2) 2,321 who were taking medications at baseline, 739 with

excessive alcohol consumption (20), and 863 with incomplete

data; (3) 10 who withdrew from the study during follow-up for

unknown reasons. Ultimately, 15,464 subjects were included in the

current study for analysis, and the detailed flow chart was shown

in Figure 1.
Baseline data collection and definition
of diabetes

Standardized trained medical examiners collected basic

information on sex, age, smoking and drinking status, and

exercise habits by means of a questionnaire. Smoking status was

defined using never, past and current smoking; drinking status was

defined as non/small, light, moderate, and heavy drinking based on

the subject’s weekly alcohol consumption in the month prior to

study participation (20); and having an exercise habit was defined as

the subject having at least one physical activity per week.

Anthropometric indicators of height, weight, WC, and systolic

and diastolic blood pressure (SBP and DBP) were measured

indoors with subjects wearing light clothing and no shoes using
Frontiers in Endocrinology 0396
standard methods. Fatty liver diagnosis was based on the evaluation

of liver contrast and brightness in abdominal ultrasound images by

gastroenterologists (18, 21). In addition, forearm venous blood

samples were drawn from subjects after fasting for at least 8

hours and sent to a standard laboratory, and then using an

automated biochemical analyzer measured concentrations of

biochemical parameters such as aspartate aminotransferase

(AST), HDL-C, alanine aminotransferase (ALT), glycosylated

hemoglobin (HbA1c), FPG, gamma-glutamyl transferase (GGT),

TG, and total cholesterol (TC).
Primary outcome

The incidence of diabetes among the subjects during the follow-

up period was considered the primary outcome in the current study.

According to the American Diabetes Association criteria, diabetes

was defined as HbA1c ≥6.5% or FPG ≥7.0 mmol/L measured during

follow-up or self-reported diabetes (verified through the

examination of subjects’ medical records or blood glucose

measurements) by the subject (22).
Calculation formulas for METS-VF, BMI,
WHtR, and VAI

METS-VF = 4.466 + 0.011*[(Ln((Ln((2 * FPG) + TG) * BMI)/

(Ln(HDL- C))))3] +3.239*[(Ln(WHtR))3] + 0.319 * sex + 0.594 *

(Ln(age)) (12). Note: sex in the METS-VF calculation formula was a

binary response variable (men=1, women=0).

BMI = weight(kg)½height(m)�2

WHtR = WC(cm)=height(cm)

VAI(men) = (WC=(39:68 + (1:88*BMI))*(TG=1:03)*(1:31=HDL

− C)

(23)

VAI(women) = (WC=(36:58

+ (1:89*BMI))*(TG=0:81)*(1:52=HDL − C)

(23)
Statistical analysis

All statistical analyses for the current study were done on R

Language 3.4.3 and Empower(R) 2.0 software and were set to be

significant at two-sided P<0.05. METS-VF values were calculated

and all subjects were grouped according to quintiles of METS-VF

values [Quintile 1 (Q1)<5.03, Q2 (5.03 to 5.58), Q3 (5.58 to 6.00),

Q4 (6.00 to 6.42), Q5 ≥6.42] using the quantile function. Described

the baseline data of the subjects according to the quintiles of METS-

VF, and chose different description methods and comparison

methods between groups according to the type of data; among
FIGURE 1

Flowchart of the selection process of study subjects.
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them, continuous variables with normal and skewed distribution

were described as mean (standard deviation) and median

(interquartile range), respectively, and comparisons between

groups were performed using one-way ANOVA and Kruskal-

Willis H test, respectively, while categorical variables were

described as frequencies (%), and comparisons between groups

were made using chi-square tests. In addition, we used Kaplan-

Meier curves to describe the cumulative hazard of developing

diabetes in each METS-VT quintile during the follow-up period

and subsequently examined the differences between the groups

using log-rank tests and finally made a preliminary determination

of whether the proportional hazards assumption for establishing

multivariate Cox regression models was met based on the results of

Kaplan-Meier analysis (24).

To clarify the association between baseline indicators and

diabetes risk and to initially explore the association of METS-VF

with diabetes risk, we first estimated the hazard ratio (HR) and 95%

confidence interval (CI) for each baseline indicator associated with

diabetes risk using univariate Cox regression analysis. Subsequently,

we checked for collinearity between all covariates and METS-VF by

multiple linear regression analysis and excluded collinear variables

with a final variance inflation factor greater than 5 from later model

adjustments (25). According to the recommendations of the

STROBE guidelines (26), we established four stepwise adjusted

multivariate Cox regression models; Model 1 was adjusted for

age, sex, and BMI; Model 2 considered the potential effects of

fatty liver and lifestyle-related factors (smoking and drinking status

and exercise habits) on the basis of Model 1; Model 3 was further

adjusted for liver function-related indicators (ALT, AST, and GGT);

finally, Model 4 continued to adjust for SBP, TG, HDL-C, TC, and

HbA1c on the basis of Model 3. We incorporated METS-VF into 4

multivariate Cox regression models as continuous variables and

categorical variables in quintiles, respectively, and calculated trends

associated with diabetes risk based on the median of METS-VF

quintiles in the models. Furthermore, to detect any possible linear

or non-linear dependence between METS-VF, BMI, WC, WHtR,

and VAI and diabetes risk, we utilized a 4-knot RCS model to fit

dose-response curves for these variables at the 5th, 35th, 65th, and

95th percentiles. Prior to plotting the dose-response curves, we also

conducted separate collinearity screenings to examine the presence

of collinearity between BMI, WC,WHtR, VAI, and other covariates.

Based on the results of the collinearity screening analysis, we

adjusted for covariates that showed no collinearity with the

respective obesity indicators in the RCS regression models.

ROC curves were constructed and the area under the curves

(AUCs) was calculated to assess the predictive power of baseline

METS-VF and several traditional visceral adiposity indicators, WC,

WHtR, VAI, and BMI, for diabetes, and the differences in predictive

power between METS-VF and the other indicators were compared

using the DeLong test (27). Additionally, to assess the effect of time

factors on the ability of METS-VF to predict the future occurrence of

diabetes, we also calculated the AUCs, optimal thresholds, sensitivity,

and specificity of baseline METS-VF for predicting the occurrence of

diabetes at each time point from 2 to 12 years in the future using

time-dependent ROC analysis. Subsequently, we evaluated the
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calibration of the predictive model by plotting calibration curves to

assess the agreement between predicted probabilities and observed

probabilities; internal validation was conducted using the bootstrap

algorithm with 1,000 repetitions (28).
Results

Baseline characterization

After screening the study population according to inclusion and

exclusion criteria, a total of 15,464 subjects were eventually enrolled in

the current study (Figure 1), with a mean age of 43.71 years, of which

54.51% were men. Table 1 groups all subjects according to the

quintiles of METS-VF and describes and compares the baseline

information of each group; we found that with the increase of

METS-VF quintile, the proportion of subjects who were men, fatty

liver patients, alcohol drinkers, and current and past smokers all

gradually increased, while the proportion of those with an exercise

habit gradually decreased (All P<0.001). Regarding the

anthropometric indicators and biochemical parameters of the

subjects, except for HDL-C levels, which decreased with the increase

of METS-VF quintile, the levels of other indicators such as age, height,

weight, BMI, WC, ALT, AST, GGT, TC, TG, FPG, HbA1c, SBP, and

DBP increased with the increase of METS-VF quintile (All P<0.001).

During a follow-up period of up to 13 years with an average

duration of 6.13 years, a total of 373 individuals developed diabetes,

resulting in an incidence rate of 39.88/10,000 person-years. Notably,

the incidence rate of diabetes demonstrated a gradual upward trend

across the quintiles of METS-VF. Specifically, the incidence rates for

Q1-Q5 were 0.4%, 0.9%, 1.3%, 2.5%, and 7.0%, respectively.

Moreover, we used Kaplan-Meier curves to describe the

cumulative hazard of developing diabetes in each METS-VF

quintile during the follow-up period (Figure 2), and the results

also showed a progressive increase in the risk of developing diabetes

with increasing METS-VF quintiles and no significant intersection

of the curves (log-rank P<0.0001), which also suggested that our

data followed the proportional hazard assumption.
Association of METS-VF with diabetes

Supplementary Table 1 shows the results of the univariate Cox

regression analysis between baseline variables and diabetes risk,

where we found that all baseline variables were significantly

associated with diabetes risk (P<0.0001) except for exercise habits,

which was borderline positive [(HR 0.76, 95% CI 0.56, 1.02),

P=0.0641], where each unit increase in METS-VF increased the

risk of diabetes by 414% (HR 5.14, 95% CI 4.27, 6.19). To further

explore the independent association of METS-VF with diabetes risk,

we included METS-VF as continuous and categorical variables,

respectively, in four multivariate Cox regression models (Table 2),

in which the non-collinear variables were adjusted stepwise while

the collinear variables weight, WC, and DBP were excluded

(Supplementary Table 2). When we preliminarily adjusted age,
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sex, and BMI in Model 1, we found that METS-VF as a continuous

variable remained significantly positively correlated with diabetes

risk (HR 2.81, 95% CI 1.92, 4.12), while as a categorical variable,

taking Q1 as a reference, the risk of diabetes increased gradually

with the increase of METS-VF quintile and the two were linearly

correlated (P-trend<0.001). After further adjusting the fatty liver
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and lifestyle indicators (Model 2), and liver function-related

parameters (Model 3), the HR of METS-VF associated with

diabetes risk decreased slightly, while the direction and linear

trend of the association remained unchanged. Ultimately, we

additionally adjusted for SBP, TG, HDL-C, TC, and HbA1c in

Model 4 and found that each unit increase in METS-VF would
TABLE 1 Baseline characteristics of subjects and incidence of diabetes grouped according to METS-VF quintiles.

METS-VF quintiles P-value

Quintile 1
(< 5.03)

Quintile 2
(5.03 to 5.58)

Quintile 3
(5.58 to 6.00)

Quintile 4
(6.00 to 6.42)

Quintile 5
(≥ 6.42)

Subjects, n 3091 3090 3091 3090 3091

Sex <0.001

Women 2405 (77.81%) 1834 (59.35%) 1297 (41.96%) 910 (29.45%) 588 (19.02%)

Man 686 (22.19%) 1256 (40.65%) 1794 (58.04%) 2180 (70.55%) 2503 (80.98%)

Age, year 38.00 (35.00-43.00) 40.00 (36.00-47.00) 42.00 (37.00-49.00) 45.00 (39.00-52.00) 49.00 (41.00-55.00) <0.001

Height, m 1.63 (0.08) 1.64 (0.09) 1.66 (0.09) 1.67 (0.08) 1.67 (0.08) <0.001

Weight, kg 49.66 (6.32) 55.36 (7.41) 60.22 (8.10) 65.10 (8.83) 72.82 (10.95) <0.001

BMI, kg/m2 18.73 (1.45) 20.51 (1.42) 21.82 (1.52) 23.39 (1.73) 26.13 (2.76) <0.001

WC, cm 65.09 (3.91) 71.33 (3.40) 76.32 (3.41) 80.97 (3.77) 88.63 (6.16) <0.001

ALT, U/L 13.00 (11.00-17.00) 14.00 (11.00-18.00) 16.00 (12.00-22.00) 19.00 (15.00-26.00) 24.00 (18.00-34.00) <0.001

AST, U/L 16.00 (13.00-19.00) 16.00 (13.00-19.00) 17.00 (14.00-21.00) 18.00 (15.00-22.00) 20.00 (16.00-25.00) <0.001

GGT, U/L 12.00 (9.00-15.00) 13.00 (10.00-17.00) 15.00 (11.00-21.00) 18.00 (13.00-27.00) 23.00 (16.00-34.00) <0.001

HDL-C, mmol/L 1.71 (0.38 1.59 (0.39) 1.47 (0.37) 1.34 (0.35) 1.20 (0.30) <0.001

TC, mmol/L 4.82 (0.81) 4.95 (0.81) 5.13 (0.84) 5.27 (0.86) 5.46 (0.85) <0.001

TG, mmol/L 0.50 (0.37-0.69) 0.59 (0.42-0.81) 0.75 (0.53-1.05) 0.93 (0.64-1.33) 1.19 (0.84-1.72) <0.001

FPG, mg/dL 88.77 (6.92) 90.95 (6.89) 93.06 (6.90) 95.02 (6.88) 97.01 (6.63) <0.001

HbA1c, % 5.10 (0.30) 5.13 (0.30) 5.16 (0.31) 5.20 (0.32) 5.27 (0.34) <0.001

SBP, mmHg 105.32 (12.22) 109.63 (12.55) 114.21 (13.06) 118.55 (13.50) 124.75 (15.23) <0.001

DBP, mmHg 65.14 (8.37) 67.99 (8.88) 71.17 (9.47) 74.62 (9.52) 78.97 (10.22) <0.001

Exercise habits 510 (16.50%) 574 (18.58%) 594 (19.22%) 550 (17.80%) 478 (15.46%) <0.001

Fatty liver 9 (0.29%) 77 (2.49%) 291 (9.41%) 761 (24.63%) 1599 (51.73%) <0.001

Drinking status <0.001

Non/small 2720 (88.00%) 2494 (80.71%) 2305 (74.57%) 2193 (70.97%) 2090 (67.62%)

Light 213 (6.89%) 330 (10.68%) 397 (12.84%) 405 (13.11%) 409 (13.23%)

Moderate 131 (4.24%) 214 (6.93%) 279 (9.03%) 324 (10.49%) 409 (13.23%)

Heavy 27 (0.87%) 52 (1.68%) 110 (3.56%) 168 (5.44%) 183 (5.92%)

Smoking status <0.001

Never 2395 (77.48%) 2045 (66.18%) 1769 (57.23%) 1554 (50.29%) 1264 (40.89%)

Past 273 (8.83%) 455 (14.72%) 604 (19.54%) 722 (23.37%) 895 (28.96%)

Current 423 (13.68%) 590 (19.09%) 718 (23.23%) 814 (26.34%) 932 (30.15%)

Diabetes incidence 11 (0.4%) 27 (0.9%) 41 (1.3%) 77 (2.5%) 217 (7.0%) <0.001
fron
Values were expressed as mean (SD) or medians (quartile interval) or n (%). BMI, body mass index; WC, Waist circumference; ALT, alanine aminotransferase; AST, aspartate aminotransferase;
GGT, gamma-glutamyl transferase; HDL-C, high-density lipoprotein cholesterol; TC, total cholesterol; TG, triglyceride; HbA1c, hemoglobin A1c; FPG, fasting plasma glucose; SBP, systolic blood
pressure; DBP, Diastolic blood pressure; METS-VF, Metabolic Score for Visceral Fat.
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increase the risk of diabetes by 68% (HR 1.68, 95% CI 1.13, 2.50); in

addition, Q5 still had the highest diabetes risk (HR 2.15, 95% CI

0.98, 4.70) with Q1 as a reference in Model 4, but the linear

association between METS-VF quintiles and diabetes risk was not

significant after trend test (P-trend=0.0946), which suggested that

there may be a non-linear relationship between the two.
Non-linear association between METS-VF,
BMI, WC, WHtR and VAI and diabetes risk

We employed a 4-knot RCS regression model to fit the dose-

response curves for METS-VF, BMI, WC, WHtR, and VAI in

relation to the risk of diabetes. Adjustments for non-collinear

variables were made in the corresponding RCS regression models

based on the results of collinearity analysis (Supplementary

Tables 2-6). The RCS analysis revealed that the association

between METS-VF and diabetes risk was non-linear (P for non-

linearity=0.002) (Figure 3); when the METS-VF value was in the Q3

(5.58-6.00) interval, the slope of the curve increased significantly

with the increase of METS-VF, implying that METS-VF had a

stronger correlation with diabetes risk in the Q4 and Q5 intervals

compared to the Q1 and Q2 intervals. Moreover, BMI, WC, WHtR,

and VAI demonstrated similar shapes of association with the risk of

diabetes, with evident threshold points on the curves, and all

exhibiting non-linear correlations (Supplementary Figures 1-4; All

P for non-linearity<0.05).
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Comparison of METS-VF with BMI, WC,
WHtR, and VAI in predicting diabetes and
time-dependent ROC analysis

Table 3 shows the AUC, Sensitivity, Specificity, Positive

predictive value and Negative predictive value (NPV) of METS-

VF, BMI, WC, WHtR, and VAI for predicting diabetes. Overall,

BMI, VAI, WC, WHtR, and METS-VF all had a good predictive

performance for diabetes with AUC values of 0.73 (0.71, 0.76), 0.74

(0.71, 0.77), 0.74 (0.72, 0.77), 0.74 (0.72, 0.77), 0.77 (0.75, 0.80),

respectively. After comparison, it was found that METS-VF had a

significantly higher AUC value (0.77) than other indicators,

showing the highest predictive accuracy for future diabetes risk

(All P<0.05, DeLong test). In addition, all the aforementioned

indicators of visceral obesity exhibited high NPV, with METS-VF

having the highest NPV of 99.10%.

This study also used time-dependent ROC analysis to further

explore the predictive power of METS-VF for each time point over

the next 2-12 years regarding the occurrence of diabetes (Table 4).

Additionally, the calibration ability of METS-VF in predicting long-

term diabetes risk (7-12 years) was evaluated using calibration

curves (Figure 4). The results of the analysis showed that the

predictive power of METS-VF for future diabetes risk gradually

increased from the 2nd year of follow-up, until the AUC reached the

highest value of 0.79 at the 7th and 8th year of follow-up, and then

gradually decreased from the 9th year; specifically, METS-VF had

higher AUC values (>0.77) and more stable prediction thresholds
FIGURE 2

Kaplan-meier curve of METS-VF quartiles over time. METS-VF, Metabolic Score for Visceral Fat.
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(6.03-6.37) for predicting diabetes over the next 6-10 years, which

was an ideal risk marker for predicting the occurrence of diabetes in

the future medium- and long-term. Furthermore, the calibration

curves in Figure 4 demonstrated that the predicted diabetes risk by

METS-VF aligned well with the observed diabetes risk in the year-7

to year-12 period. This indicated that METS-VF had a reliable

predictive accuracy for diabetes.
Discussion

In this longitudinal cohort study conducted on a large general

population, we had the following important findings: (1) There was

a significant and positive correlation between METS-VF, a novel
Frontiers in Endocrinology 07100
indicator for assessing visceral adiposity, and diabetes risk, but this

correlation may be non-linear, and when METS-VF exceeded the

Q3 (5.58-6.00) interval, its correlation with diabetes risk was further

enhanced. (2) METS-VF demonstrated significantly better

performance compared to several other commonly used surrogate

indicators of visceral adiposity, VAI, WC, WHtR, and BMI, in

predicting future diabetes risk. (3) For the first time, we discovered

that METS-VF exhibited higher AUC values and more stable

predictive thresholds for predicting diabetes risk over the next 6-

10 years, and was an ideal risk marker for future medium- to long-

term diabetes risk.

The global prevalence of diabetes and obesity has shown an

almost parallel increase in recent years, particularly in Asian

populations, primarily in East Asia (6, 29). Importantly,
TABLE 2 Multivariable Cox regression analyses for the association between METS-VF and the incidence of diabetes.

HR (95%CI)

Model 1 Model 2 Model 3 Model 4

METS-VF (continuous) 2.81 (1.92, 4.12) 2.75 (1.87, 4.03) 2.45 (1.67, 3.58) 1.68 (1.13, 2.50)

Quintile 1 Ref Ref Ref Ref

Quintile 2 1.70 (0.83, 3.45) 1.70 (0.84, 3.46) 1.77 (0.87, 3.60) 1.63 (0.80, 3.33)

Quintile 3 2.01 (1.00, 4.02) 2.03 (1.01, 4.05) 2.05 (1.03, 4.10) 1.60 (0.79, 3.24)

Quintile 4 2.51 (1.26, 5.02) 2.52 (1.26, 5.03) 2.48 (1.24, 4.95) 1.67 (0.82, 3.40)

Quintile 5 4.08 (1.94, 8.60) 4.13 (1.96, 8.71) 3.81 (1.80, 8.06) 2.15 (0.98, 4.70)

P-trend <0.001 <0.001 0.0001 0.0946
HR, Hazard ratio; CI, confidence interval; other abbreviations as in Table 1.
Model 1 adjusted for age, sex, and BMI.
Model 2 adjusted for age, sex, BMI, fatty liver, habits of exercise, smoking status, and drinking status.
Model 3 adjusted for age, sex, BMI, fatty liver, habits of exercise, smoking status, drinking status, ALT, AST, and GGT.
Model 4 adjusted for age, sex, BMI, fatty liver, habits of exercise, smoking status, drinking status, ALT, AST GGT, SBP, TG, HDL-C, TC, and HbA1c.
FIGURE 3

Restricted cubic spline analysis of METS-VF for the estimation of the risk of diabetes. METS-VF, Metabolic Score for Visceral Fat. Restricted cubic
spline model adjusted for sex, age, fatty liver, height, BMI, exercise habits, ALT, AST, GGT, HDL-C, TC, TG, HbA1c, drinking status, smoking status,
FPG, and SBP.
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epidemiological evidence indicates that the overall body fat content

in Asian populations is typically lower compared to Western

populations. However, abdominal obesity, characterized by the

accumulation of fat around the abdomen, is a prominent feature

of obesity in Asian populations (30–32). It is also a significant risk

factor for metabolic disorders such as diabetes and cardiovascular

disease (33, 34). In previous studies related to the mechanism of

abdominal obesity leading to metabolic complications, most of

them emphasized the importance of increased visceral fat rather

than subcutaneous fat (35, 36), because subcutaneous adipose tissue

is considered to be the largest and least metabolically harmful

storage site for excess fat in the body (37), while deposition of

excess adipose tissue such as ceramide or diacylglycerol in organs

such as the liver and skeletal muscle will cause endocrine

dysfunction, dysfunction of pro-inflammatory factors and

mitochondrial dysfunction in visceral adipose tissue and also lead

to increased levels of free fatty acids thereby antagonizing hepatic

insulin (38–40). Given that abdominal subcutaneous adipose tissue

and visceral adipose tissue may have opposite biological functions

on the body’s glucose metabolism, accurate differentiation and

measurement of visceral adipose tissue will help to assess and

predict the occurrence and progression of diabetes.

Although MRI techniques and dual-energy X-ray

absorptiometry (DXA) techniques can currently be used in

clinical practice to accurately measure visceral fat content, the

high economic and technical costs of these ancillary techniques

make them unsuitable for use in primary health care and large-scale

epidemiological investigations of diabetes (10). To address this

issue, a large number of researchers are working to develop

simple parameters that can more accurately identify and assess

visceral adiposity. METS-VF is a new parameter for assessing

visceral adiposity tissue developed and validated by Bello-

Chavolla OY et al. in July 2019, and the detailed steps of its
Frontiers in Endocrinology 08101
development and validation have been described elsewhere (12).

Briefly, Bello-Chavolla OY et al. prospectively recruited a discovery

cohort of 366 subjects with DXA measurements from healthcare

institutions and used the visceral fat content of subjects obtained

from DXA measurements as the dependent variable, and used

several simple indicators (metabolic score for insulin resistance,

age, sex, and WHtR), which are considered to be closely related to

visceral fat content, as independent variables (41, 42), and then used

non-linear regression analysis to fit the prediction model with the

highest agreement with DXA measurements, namely METS-VF.

METS-VF was subsequently validated by applying it to two

validation cohorts of subjects with DXA+MRI measurements and

subjects with bio-electrical impedance measurements, respectively.

Their results showed that METS-VF was more accurate in

predicting visceral adiposity than other obesity indicators such as

WC, WHtR, VAI, and BMI both in the discovery cohort and in the

validation cohort. In several subsequently published observational

studies, cross-sectional data from Yu P et al. and longitudinal cohort

data from Feng L et al. showed that METS-VF was significantly and

independently positively associated with chronic kidney disease and

had stronger risk assessment/predictive power for chronic kidney

disease compared to other obesity indicators (13, 14). In addition,

METS-VF has also been shown to be an independent predictor of

hypertension and hyperuricemia (15, 16).

In the current study, we found a significant association between

METS-VF and diabetes risk after adjusting for a large number of

confounding factors associated with diabetes risk, with each unit

increase in METS-VF increasing the risk of diabetes by 68%.

Additionally, by observing Model 4 in Table 2 and the dose-

response curve in Figure 3, we found that there may be a non-

linear correlation between METS-VF and diabetes risk, with a

change in the correlation around the Q3 (5.58 to 6.00) interval of

METS-VF, and a significantly stronger correlation with diabetes
TABLE 3 Area under the ROC curve, Sensitivity, Specificity, PPV, and NPV of METS-VF, BMI, WC, VAI, and WHtR to predict diabetes.

AUC 95%CI low 95%CI up Specificity Sensitivity PPV NPV

BMI* 0.7327 0.7068 0.7585 71.82% 62.73% 5.22% 98.73%

VAI* 0.7410 0.7145 0.7674 68.18% 71.58% 5.27% 98.98%

WC* 0.7424 0.7164 0.7685 71.63% 65.42% 5.39% 98.82%

WHtR* 0.7424 0.7167 0.7682 77.01% 60.32% 6.09% 98.74%

METS-VF 0.7731 0.7493 0.7969 65.07% 76.14% 5.12% 99.10%
frontie
ROC, receiver-operating characteristic curve; AUC, area under the ROC curve; PPV, positive predictive value; NPV, negative predictive value; VAI, visceral adiposity index; WHtR, waist-to-
height index; CI, confidence interval; Other abbreviations as in Table 1; *, P<0.05 compared with METS-VF.
TABLE 4 Areas under the time-dependent ROC curves, Best thresholds, Sensitivity, and Specificity for METS-VF predicting future diabetes risk.

2-years 3-years 4-years 5-years 6-years 7-years 8-years 9-years 10-years 11-years 12-years

AUC 0.70 0.75 0.74 0.76 0.77 0.79 0.79 0.77 0.77 0.76 0.75
6.08

Best threshold 6.14 6.34 5.93 6.36 6.37 6.13 6.37 6.06 6.03 6.03

Sensitivity 64.77% 59.63% 77.01% 61.13% 61.71% 76.21% 63.92% 76.76% 77.15% 76.58% 71.06%

Specificity 67.05% 76.62% 56.58% 78.25% 78.79% 67.00% 79.02% 63.84% 62.76% 63.25% 65.98%
AUC, area under the time-dependent ROC curves.
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risk when METS-VF was located in the Q4 and Q5 intervals than in

the Q1 and Q2 intervals. This finding was consistent with the

findings of Feng Y et al. who also found a non-linear association

between METS-VF and type 2 diabetes in a study of a rural

population in Henan, China (17). Therefore, we recommend that

both healthy and diabetic people should control their fat intake,

body weight, and WC to keep METS-VF below the Q3 interval

(METS-VF<6) as much as possible to minimize the risk of diabetes.

Furthermore, in line with the conclusions of Bello-Chavolla OY

et al, the results of the ROC analysis of the current study showed

that METS-VF had a significantly better predictive performance for
Frontiers in Endocrinology 09102
diabetes compared to WC, WHtR, VAI, and BMI (All P<0.05,

DeLong test), which may be thanks to its higher predictive accuracy

for visceral adiposity (12). It is worth mentioning that in the study

by Feng Y et al., they found that although METS-VF had the highest

AUC value (0.69) for predicting diabetes compared to other obesity

indicators, the power of METS-VF was not significantly different

from WC and WHtR for predicting diabetes (P=0.058) (17); this

result may be related to the smaller study population and relatively

short follow-up period (up to 6 years) of Feng Y et al.

Based on the longest 13-year follow-up data of 15,464 subjects,

the current study used time-dependent ROC analysis to further
B

C D

E F

A

FIGURE 4

(A-F) were calibration curves of the prediction for diabetes event at year-7 to year-12, respectively. Dashed lines on the diagonal are reference lines.
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explore the predictive power of METS-VF for the occurrence of

diabetes at each time point over the next 2-12 years, showing that

the predictive power of METS-VF for diabetes exhibited a slowly

increasing trend from year 2 to year 7 of follow-up, while the highest

predictive power was reached in years 7 and 8 (AUC=0.79),

followed by a gradual decrease in the predictive power of METS-

VF from year 9 to year 12. Therefore, it was more accurate to say

that METS-VF should be more suitable for predicting future

diabetes risk in the medium- and long-term (6-10 years), whereas

the maximum 6-year follow-up period in the study by Feng Y et al.

may have led them to underestimate the predictive power of METS-

VF for future diabetes risk (17). Furthermore, it is worth noting that

although the study by Feng Y et al. was also a longitudinal cohort

study with follow-up, the time-dependence of diabetes status and

METS-VF was not considered in their ROC analysis, which may

also lead to some bias in their results (43). In summary, the results

of the current study regarding the predictive power of METS-VF for

the occurrence of diabetes in different future periods obtained by

using time-dependent ROC analysis were more realistic and reliable

(44). Given the higher predictive accuracy and more stable

predictive thresholds of METS-VF for medium- and long-term

diabetes risk, we recommended adding METS-VF to patients’

physical examination reports in primary health care and clinical

practice as a novel risk marker for predicting future medium- and

long-term diabetes risk and, meanwhile, we believed it was relatively

safe to keep METS-VF below 6.
Strengths and limitations

The strengths of the current study are the following: (1) the

current study has a larger sample size (n=15,464) and a longer

follow-up period (up to 13 years) of the general population cohort

compared to the previous studies. (2) The current study explored

the predictive power of baseline METS-VF for the occurrence of

diabetes in different future periods using time-dependent ROC

analysis, and for the first time, it was clear that METS-VF may be

most suitable for predicting the risk of diabetes in the medium- and

long-term (6-10 years), which provided a more accurate reference

for the application of METS-VF for diabetes screening and

prevention in primary health care.

This study also has the following limitations: (1) Subjects in the

current study did not undergo MRI or DXA examinations to

measure visceral fat mass, so we were unable to further compare

the correlation between METS-VF and actual visceral fat mass and

diabetes risk. (2) Diabetes was defined based on HbA1c ≥6.5% or

FPG ≥7.0 mmol/L or subject self-report and did not include patients

with abnormal 2-hour postprandial glucose, which may

underestimate the correlation between METS-VF and diabetes

risk. (3) The current study did not distinguish between types of

diabetes, but considering that insulin resistance due to visceral

adiposity is the pathogenesis of type 2 diabetes, and that type 2

diabetes accounts for more than 95% of all diabetes, and that type 1

diabetes and type 2 diabetes have different pathogenic

characteristics, the results of the current study may be more

applicable to type 2 diabetes (45, 46). (4) Although the current
Frontiers in Endocrinology 10103
study adjusted a large number of confounding factors related to the

risk of diabetes, there may still be some risk factors for diabetes that

have not been adjusted due to it being an observational study, which

may lead to some residual confounding. (5) The current study was a

single-center cohort study, so the applicability of the findings to

other ethnic populations will need to be further validated in future

studies. (6) The current study did not repeat the measurement of all

baseline indicators for the subjects during the follow-up period,

which limited further exploration of the impact of dynamic changes

in METS-VF on the risk of developing diabetes. This aspect needed

to be further investigated in future studies.
Conclusion

In conclusion, the current study demonstrated a significant

positive correlation between METS-VF, a novel indicator for

assessing visceral adiposity, and the risk of diabetes in the general

population. Furthermore, compared to other surrogate indicators

for general/visceral adiposity (BMI, WC, WHtR, VAI), baseline

METS-VF had a better predictive performance for future diabetes

risk and was particularly suitable for predicting future diabetes risk

in the medium- and long-term.
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Background: Among the 382 million diabetic patients worldwide, approximately

30% experience neuropathy, and one-fifth of these patients eventually develop

diabetes cognitive impairment (CI). However, the mechanism underlying

diabetes CI remains unknown, and early diagnostic methods or effective

treatments are currently not available.

Objective: This study aimed to explore the risk factors for CI in patients with type

2 diabetes mellitus (T2DM), screen potential therapeutic drugs for T2DM-CI, and

provide evidence for preventing and treating T2DM-CI.

Methods: This study focused on the T2DM population admitted to the First

Affiliated Hospital of Hunan College of Traditional Chinese Medicine and the First

Affiliated Hospital of Hunan University of Chinese Medicine. Sociodemographic

data and clinical objective indicators of T2DM patients admitted from January

2018 to December 2022 were collected. Based on the Montreal Cognitive

Assessment (MoCA) Scale scores, 719 patients were categorized into two

groups, the T2DM-CI group with CI and the T2DM-N group with normal

cognition. The survey content included demographic characteristics,

laboratory serological indicators, complications, and medication information.

Six machine learning algorithms were used to analyze the risk factors of T2DM-

CI, and the Shapley method was used to enhance model interpretability.

Furthermore, we developed a graph neural network (GNN) model to identify

potential drugs associated with T2DM-CI.

Results: Our results showed that the T2DM-CI risk prediction model based on

Catboost exhibited superior performance with an area under the receiver

operating characteristic curve (AUC) of 0.95 (specificity of 93.17% and

sensitivity of 78.58%). Diabetes duration, age, education level, aspartate

aminotransferase (AST), drinking, and intestinal flora were identified as risk

factors for T2DM-CI. The top 10 potential drugs related to T2DM-CI, including

Metformin, Liraglutide, and Lixisenatide, were selected by the GNNmodel. Some
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herbs, such as licorice and cuscutae semen, were also included. Finally, we

discovered the mechanism of herbal medicine interventions in gut microbiota.

Conclusion: The method based on Interpreting AI and GNN can identify the risk

factors and potential drugs associated with T2DM-CI.
KEYWORDS

type 2 diabetesmellitus, cognitive impairment, risk factors, drug discovery, graph neural
network (GNN)
Introduction

Cognition is the natural process whereby the brain recognizes

and acquires information (1). Cognitive impairment (CI) refers to

decreased cognitive processing speed and efficiency, affecting

functions such as working memory, task execution, and attention

(2). Memory impairment is the most common cognitive change and

may progress to dementia in severe cases (3). In recent years, CI has

become increasingly recognized as one of the most important

cerebrovascular complications of type 2 diabetes (T2DM) (4).

There is an increasing consensus suggesting that T2DM is one of

the most important causes of CI (5), with reports suggesting that

diabetes can lead to a 20%–70% decline in cognitive ability, and the

risk of dementia is 60% higher in diabetic patients than in non-

diabetic patients (6). Diabetes is the most prevalent metabolic

disease worldwide, with 500 million T2DM patients globally, one-

third of whom are in China (7). With the changing social structure

and the global aging trend, the number of CI cases caused by T2DM

is expected to increase exponentially. Studies have shown that the

incidence of mild CI in T2DM patients is significantly higher than

in non-diabetic patients (8, 9). Mild CI may affect daily activities,

such as impaired intelligence, slow thinking speed, reduced

flexibility, and lack of concentration (10). CI caused by diabetes

can be classified into diabetes-related cognitive decline, mild CI

(MCI), and dementia according to severity (11). Therefore, CI can

be considered as an intermediate transition between diabetes and

dementia, and this process is reversible. Therefore, it is urgent to

identify the risk factors for T2DM-CI and prevent its occurrence

and development. Research on the risk factors for T2DM-CI has

gained significant momentum in recent years. However, no

consensus has been reached, and the literature has been

predominantly based on foreign populations. The risk factors for

T2DM-CI in China have been largely underinvestigated, and the

clinical and demographic data included are not comprehensive and

cannot reflect the real risk factors for T2DM patients with CI. This

study aims to comprehensively analyze the risk factors for T2DM-

CI, focusing on demographic characteristics and relevant clinical

and physical indicators, to identify T2DM patients with possible CI

early, discover potential drugs, improve patient quality of life, and

reduce the burden on society.
02107
Materials and methods

Study design and patients selection

The study included a population of patients with type 2 diabetes

mellitus (T2DM) who were admitted to the Endocrinology

Department of the First Affiliated Hospital of Hunan College of

Traditional Chinese Medicine and the First Affiliated Hospital of

Hunan University of Chinese Medicine between January 2018 and

December 2022, and who met the specified inclusion criteria. The

selection of research subjects involved a rigorous screening process

conducted by at least two medical professionals, who assessed the

patients using cognitive scales. Based on the assessment criteria, the

patients were divided into two groups: the T2DM group with

normal cognition (T2DM-N group) and the T2DM group with

cognitive impairment (T2DM-CI group).
Diagnostic criteria

The diagnosis criteria for T2DM were based on the “Chinese

Guidelines for the Prevention and Treatment of Type 2 Diabetes

(2013 edition)” (12). According to these criteria, T2DM can be

diagnosed if patients presenting with diabetes-related symptoms

(such as polyphagia, polydipsia, polyuria, and unexplained weight

loss) meet any of the following three conditions: (1) random blood

glucose (blood glucose at any time within a day) ≥11.1mmol/L; (2)

fasting blood glucose (without calorie intake in 8 h) ≥ 7.0mmol/L;

(3) blood glucose value ≥ 11.1mmol/L measured 2 h after 75 g oral

glucose tolerance test. For individuals without diabetes symptoms,

the blood glucose is re-tested on another day to confirm

the diagnosis.

The diagnostic criteria for cognitive impairment are based on

the 5th edition of the “Diagnostic and Statistical Manual of Mental

Disorders” (DSM-5) and the official manual of the Montreal

Cognitive Assessment (MoCA) scale (13). The following three

conditions must be met to diagnose cognitive impairment: (1)

The Chinese version of the MoCA score is<26 points; (2) the

patient, their family, or those who know the patient well provide

relevant descriptions of memory decline; (3) the patient has basic
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daily living abilities, with a score ≥16 on the instrumental activities

of daily living scale (IADL).
Inclusion and exclusion criteria

The inclusion criteria for the study population were as follows:
Fron
1. T2DM-N group: patients diagnosed with type 2 diabetes

mellitus according to the diagnostic criteria outlined in the

“China Type 2 Diabetes Prevention and Control Guidelines

(2013 Edition).”

2. T2DM-CI group: patients diagnosed with both T2DM and

cognitive impairment.

3. Age between 30 and 85 years.

4. T2DM disease duration of more than 1 year.

5. Patients with complete data on relevant indicators.
The exclusion criteria were as follows:
1. Patients who have experienced acute metabolic

complications of diabetes, such as diabetic ketoacidosis or

hyperosmolar hyperglycemic state, within the past month.

2. Patients who recently experienced diseases that may affect

glucose and lipid metabolism, such as infection, trauma,

stress, or surgery.

3. Patients with severe cardiovascular disease, hematological

system disease, malignant tumor, or other serious primary

diseases, severe liver or kidney dysfunction, or mental

illness.

4. Patients who have experienced serious acute brain diseases

within the past 3 months, such as acute cerebral infarction,

intracranial hemorrhage, or acute meningitis.

5. Pregnant or lactating women, or those planning to become

pregnant.

6. Patients who have participated in other clinical trials within

the past 3 months.
Analysis variables

This study extracted patients’ personal information and

laboratory examination data from the hospital information

system. The analyzed variables included gender, age, body mass

index (BMI), heart rate, blood pressure, duration of type 2 diabetes

mellitus (T2DM), family history, smoking and drinking history,

exercise habits, and more. Laboratory indicators encompassed total

cholesterol (TC), triglycerides (TGs), high-density lipoprotein

cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-

C), very-low-density lipoprotein cholesterol (VLDL-C),

homocysteine (HCY), fasting blood glucose (FBG), 2-h

postprandial blood glucose (2hPBG), glycosylated hemoglobin

(HbA1c), fasting plasma insulin (FINS), fasting C-peptide,
tiers in Endocrinology 03108
creatinine (Crea), aspartate aminotransferase (AST), alanine

aminotransferase (ALT), and gut microbiota. In addition, this

study utilized data from various databases, including Traditional

Chinese Medicine Systems Pharmacology (TCMSP) (14), Online

Mendelian Inheritance in Man (OMIM) (15), Therapeutic Target

Database (TTD) (16), Pharmacogenomics Knowledgebase (Pharm

Gkb) (17), and Drug Bank (18), to conduct drug discovery research

for T2DM-CI.
Machine learning methods

The raw data were processed by organizing and standardizing

them. Any feature with missing values exceeding 50% was removed

from the dataset. For the remaining features with missing values,

continuous features were imputed using the mean and categorical

features using the mode. Six machine learning models were selected

as candidates for analysis, which included random forest (RF),

gradient boosted decision tree model (GBDT), light gradient

boosting machine (LGBM), extreme gradient boosting (XGBoost),

and categorical features gradient boosting (CatBoost) (19).
• Random Forest is an algorithm that utilizes multiple

decision trees to train and predict samples. The output

category is determined by the mode of the individual

decision tree output categories. Random Forest is

insensitive to missing values, capable of handling

imbalanced data, and exhibits robustness to outliers.

• Gradient Boosting Decision Tree (GBDT) is a boosting

ensemble algorithm based on decision trees incorporating

gradient descent. The algorithm consists of multiple

decision trees, and the conclusions of all trees are

accumulated to provide the final answer. GBDT can

handle various types of data, including continuous and

discrete values, in a flexible manner. It exhibits high

prediction accuracy with relatively less parameter tuning

time. Moreover, it demonstrates strong robustness to

outliers by utilizing robust loss functions.

• LightGBM is a decision tree algorithm based on histograms,

which transforms the storage of feature values into the

storage of bin values and does not require the indexing of

feature values to samples. LightGBM employs an exclusive

feature bundling algorithm to reduce the number of features

during the training process, resulting in exceptionally fast

training speeds. Therefore, it is highly suitable for

classification problems involving high-dimensional

datasets.

• XGBoost is a boosting algorithm based on CART trees.

XGBoost uses the second-order Taylor expansion of the loss

function as a surrogate function, which is then minimized

to determine the optimal split point and leaf node output

value of the regression tree. XGBoost offers reduced

learning time and exhibits high flexibility in its approach.

• CatBoost is an algorithm that utilizes symmetric decision

trees (oblivious trees) as its base learner. It incorporates a
frontiersin.org
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specialized method to handle categorical features and

employs ordered boosting with combined categorical

features to prevent gradient estimation bias. CatBoost

demonstrates exceptional performance, reduces the need

for hyperparameter tuning, and exhibits strong robustness.
The characteristics of logistic regression are simple calculation

and strong interpretability, which are widely used in fields such as

finance, healthcare, social networks, and marketing. Random Forest

is characterized by no need for feature normalization and feature

selection. Random Forest is mainly used for training sets with high

square error and low deviation. The characteristics of Adaboost are

low generalization error rate, easy coding, and sensitivity to outliers.

Adaboost is suitable for baseline classification tasks. CatBoost is

particularly adept at handling category features. CatBoost is suitable

for processing categorical data. The characteristic of GBDT is high

prediction accuracy, suitability for low dimensional data, and ability

to handle nonlinear data. GBDT is applicable to regression

problems (linear and nonlinear), and it is also applicable to

binary classification problems and multiclassification problems.

The characteristic of XGBoost is its support for parallel

computing, fast training speed, suitability for high bias, low

variance training sets, and suitability for numerical vectors.

The entire dataset was randomly split into an 80% training set

and a 20% testing set for model training and evaluation.

Performance metrics from the validation set were utilized to

compare the models and estimate their generalization ability. The

Shapley method was employed to enhance the interpretability of the

model, providing insights into the factors influencing T2DM-CI at a

local level. Furthermore, a graph neural network model was utilized

for drug discovery research on T2DM-CI, identifying potential

therapeutic drugs with beneficial effects on T2DM-CI.
Evaluation indicators

This study employed k-fold cross-validation formodel validation

to evaluate the robustness of the models. The training set was divided

into K subsets, with one subset reserved as the validation data, while

the remaining K-1 subsets were used for model training. The cross-

validation process was repeated K times, with each subset being used

as the validation set once, and the results were averaged or combined

using othermethods to obtain a single estimate. The key advantage of

this method is that it repeatedly utilizes randomly generated subsets

for training and validation, ensuring a comprehensive evaluation of

the models. In this study, the value of k was set to 5.

The experiment adopts the area under the ROC curve (AUC) as

the main evaluation indicator and specificity (Spe) and sensitivity

(Sen) as secondary indicators. The higher the specificity, the higher

the probability of accurate diagnosis; the higher the sensitivity, the

lower the probability of missed diagnosis. The calculation formula is

as follows:

Spe =
TN

FP + TN
1

tiers in Endocrinology 04109
Sen =
TP

TP + FN
2

where TP represents the number of true positive samples, TN

represents the number of true negative samples, FP represents the

number of false-positive samples, and FN represents the number of

false-negative samples.
Statistical analysis

The statistical analysis in this study was conducted using SPSS

22.0 software. Continuous data were reported as mean ± standard

deviation (�x ± s). Prior to analysis, normal distribution and

homogeneity of variance tests were performed. If the data

satisfied the assumptions of normal distribution and homogeneity

of variance, t-tests or ANOVA were employed for analysis. On the

other hand, if the data did not meet these assumptions, non-

parametric Wilcoxon rank sum tests were utilized. The

comparison of count data was assessed using a chi-square test. A

p-value< 0.05 was statistically significant.
GCNN4Micro-Dis model for discovery of
potential drugs

We obtained 269 drugs, 598 diseases, and 18,416 disease–drug

associations from the Comparative Toxicology Database (CTD).

Then, we obtained more information from LTM-TCM, including

1,928 disease symptoms, 9,122 herb medicines, and 1,170,133

associations. In this study, the performance parameters of the

ROC and AUPR curves are used as the criteria for selecting drugs

based on the graph neural network model. The GCNN4Micro-Dis

model evidently performed well and can help identify potential

disease–drug associations. The correlation scores were calculated

through the model to ensure the relevance between the selected

drugs and T2DM-CI.

The model GCNN4Micro-Dis (20), previously developed by a

research team, was used to predict potential drugs. The structure of

GCNN4Micro-Dis is shown in Figure 1. The model consists of three

main steps: (1) performing a graphic Fourier transform on the input

data, (2) convolving the transformed result in the spectral domain,

and (3) processing the convolution result using inverse

Fourier transform.
Results

Demographic and clinical characteristics of
study participants

This study involved 719 patients, with 255 (33.62%) diagnosed

with type 2 diabetes cognitive impairment and 464 (66.38%)

without cognitive impairment. A comparison of the data between

patients with and without the endpoint event indicated no
frontiersin.org
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significant differences in gender, BMI, smoking, total cholesterol

(TC), triglycerides (TGs), and other variables (p>0.05). However,

significant differences were observed in age, education level,

duration of diabetes, hypertension, intestinal flora, and LDL-C

value (p<0.05). More details are provided in Table 1.
Comparison of performance of T2DM-CI
risk prediction models

In this study, the performance of six machine learning

algorithms, namely, Logistic Regression, Random Forest, GBDT,

Adaboost, XGBoost, and CatBoost, was compared in predicting the

risk of T2DM-CI. The results (Table 2, Figure 2) showed that
Frontiers in Endocrinology 05110
CatBoost exhibited higher AUC and Spe values than the other

models in the validation set. The AUC value in the validation set

was 95.34%, surpassing the AUC values of the other five models.

Additionally, the specificity was 93.17%, outperforming the other

four models. The Random Forest model achieved the highest

sensitivity (78.58%). Overall, the experimental data from this

study demonstrated that the CatBoost model was superior to

other models in predicting the risk of T2DM-CI.
Discovery of risk factors for T2DM-CI

To explore the risk factors influencing T2DM-CI, this study

introduced an interpretive T2DM-CI prediction model based on
FIGURE 1

The flowchart of GCNN4Micro-Dis.
TABLE 1 Comparison of information among T2DM patients.

T2DM-CI (n=255) T2DM-N (n=464) c2/t/Z p-value

Gender

1.34 0.26Male 135(52.94%) 244(52.59%)

Female 120(47.06%) 220(47.41%)

Age (year) 64.32±8.32 60.12±10.85 −3.37 <0.01

Education level

18.51 <0.01Below middle 110(43.14%) 166(35.78%)

Middle and above 145(56.86%) 298(64.22%)

BMI(kg/m2) 24.01±2.25 25.93±3.12 2.53 0.08

Diabetes duration (year) 13.85±8.11 11.36±6.49 −0.37 <0.01

Smoke

0.02 0.96No 131(51.37%) 221(47.63%)

Yes 124(48.63%) 243(52.37%)

Drink

1.12 0.04No 117(45.88%) 207(44.61%)

Yes 138(54.12%) 257(55.39%)

Hypertension 7.29 <0.01

(Continued)
fro
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CatBoost and TreeSHAP (21). From a global perspective, the

importance of features contributing to T2DM-CI was ranked and

presented in Figure 3. The analysis revealed that T2DM-CI might be

associated with factors such as diabetes duration, age, education

level, AST, drinking habits, and intestinal flora.
Frontiers in Endocrinology 06111
Discovery of potential drugs related
to T2DM-CI

In the previous section, intestinal flora was identified as a risk

factor for T2DM-CI. In this section, we analyzed the relationship
TABLE 1 Continued

T2DM-CI (n=255) T2DM-N (n=464) c2/t/Z p-value

Normal 129(50.59%) 231(49.78%)

Abnormal 126(49.41%) 233(50.22%)

Cerebral infarction

8.28 <0.01Normal 117(45.88%) 196(42.24%)

Abnormal 138(54.12%) 268(57.76%)

Intestinal flora

7.67 <0.01Normal 129(50.59%) 188(40.52%)

Abnormal 126(49.41%) 276(59.48%)

TC (mmol/L) 8.91±3.01 8.85±3.65 −0.53 0.61

TG (mmol/L) 11.79±3.04 11.37±3.86 −0.96 0.38

LDL-C (mmol/L) 11.15±9.93 16.21±10.98 −1.88 0.04

HCY (µmol/L) 13.72±10.41 14.73±11.28 −0.83 0.45

FBG (mmol/L) 9.11±3.44 9.01±3.81 −0.57 0.59

2hPBG (mmol/L) 11.85±3.53 11.48±3.77 −0.89 0.34

HbA1c (%) 9.44±2.04 9.13±1.99 −1.89 0.05

FINS (µIU/ml) 12.55±10.21 16.94±11.17 −1.76 0.03

HoMA-IR 4.64±4.11 7.94±4.73 −0.37 0.74

Crea (µmol/L) 73.83±27.36 72.11±21.66 −0.55 0.63

AST (U/L) 15.75±8.23 18.93±13.84 −1.84 0.04

ALT (U/L) 15.42±7.79 17.91±7.26 −0.72 0.47
fro
TABLE 2 Comparison of results among different machine learning algorithms.

DataSet Algorithms AUC (%) Specificity(%) Sensitivity(%)

Training set

Logistic regression 96.94 93.76 80.35

Random Forest 99.99 99.99 99.99

GBDT 99.46 98.83 90.32

Adaboost 98.35 96.18 88.86

XGBoost 99.99 99.99 99.99

CatBoost 99.81 98.12 94.51

Test set

Logistic regression 95.14 90.92 77.27

Random Forest 93.24 91.27 78.58

GBDT 93.17 90.23 72.73

Adaboost 93.15 91.15 72.73

XGBoost 94.28 91.19 77.27

CatBoost 95.34 93.17 77.27
The bold values means the highest value.
ntiersin.org

https://doi.org/10.3389/fendo.2023.1213711
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2023.1213711
between “T2DM-CI_intestinal flora_drug.” Subsequently, we

utilized the GCNN4Micro-Dis model (20) to identify potential

drugs associated with T2DM-CI. Table 3 presents the top 10

drugs ranked by their association scores with T2DM-CI. Some

herbs were included, such as licorice and cuscutae semen. It is worth

mentioning that the results obtained have been validated in the

published literature (22).
Frontiers in Endocrinology 07112
Discussion

In this study, our approach based on artificial intelligence

interpretation and graph neural networks enabled the

identification of risk factors and potential drugs that impact the

progression of T2DM to cognitive impairment. These findings offer

valuable insights for the comprehensive treatment of T2DM and the

prevention of dementia. The analysis highlighted the significance of

diabetes duration, age, education level, AST, alcohol consumption,

and intestinal flora as important risk factors for T2DM-CI.

Importantly, the present study focused on the T2DM population

and assessed relevant risk factors, enabling more accurate and

convenient screening and early prevention in clinical practice.

Furthermore, this study encompassed a comprehensive range of

potential risk indicators. While previous research primarily

concentrated on common clinical indicators, this study

incorporated emerging potential risk indicators such as HoMA-

IR, FINS, and intestinal flora. This expansion of the risk screening

scope provides a valuable reference value for future research and

enhances our understanding of the multifaceted nature of

T2DM-CI.

However, it should be borne in mind that this study has some

limitations. The available case data were limited, which restricted

the ability to conduct a stratified analysis of certain influencing

factors, and the findings may be biased to some extent. Therefore,

our results can only reflect the influencing factors of cognitive

impairment in the T2DM population to some extent and should be

interpreted with caution. Nonetheless, the findings still provide

valuable guidance for preventing and treating cognitive impairment

in T2DM patients. Clinical data comprise patient visit information,

yet accurately reflecting all patients’ symptoms through electronic

medical records can be challenging for doctors, resulting in

incomplete data. Indeed, some symptoms that go unnoticed by

doctors may go unrecorded, leading to missing records in hospital

documentation of patient visits. Furthermore, different hospitals

may have varying records for the same disease, and symptoms can

vary among patients. Consequently, there is a limited availability of

clinical samples for real-world data. The sample size in this study

was determined based on the existing data, without prior power

calculation for sample size. Consequently, the study is limited by a

small sample size of clinical samples, which impacts the research

quality. To enhance the robustness of the results, this study

necessitates a larger sample size and a more standardized research

paradigm. On the one hand, we plan to explore alternative methods

to increase the sample size or utilize additional data sources from

public databases to complete multicenter validation studies, such as

the Pima Indians Diabetes Database. On the other hand, we plan to

create a questionnaire and distribute it to third-party survey teams,

such as the PowerCX Wind Chime System, which can target a

sample of people to answer the questionnaire. Over the past decade,

third-party survey teams have become increasingly popular and

even trusted by professional research companies. With the advent of

big data and the continuous improvement of multisystem network

connections, favorable conditions should be established to facilitate

further research into the influencing factors. This will contribute to
FIGURE 2

ROC curves of different machine learning algorithms on the test set.
FIGURE 3

T2DM-CI features importance.
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the generation of more optimized clinical evidence, enabling a

deeper understanding of the complex interactions and variables

involved in various medical conditions.

The results of this study highlight several important findings

regarding the relationship between type 2 diabetes and mild

cognitive impairment. First, the duration of diabetes was

identified as a potential risk factor for cognitive impairment. A

longer duration of diabetes (more than 20 years) was associated

with a higher likelihood of cerebral vascular injury, brain atrophy,

and impaired cognitive function. This can be attributed to the

chronic metabolic dysfunction associated with diabetes, which leads

to ischemic and hypoxic changes in brain tissue and increased

inhibitory neurotransmitters (23). Additionally, age was a

significant factor in the development of mild cognitive

impairment in patients with type 2 diabetes. Older patients,

particularly those between 60 and 75, were more susceptible to

cognitive impairment. This observation is consistent with previous

research, suggesting that age-related decline in dopamine

neurotransmission efficiency and frontal gyrus system function

contribute to the deterioration of cognitive function over time (24).

Furthermore, education level was identified as a strong

determinant of cognitive impairment in individuals with type 2

diabetes. Higher education levels were associated with better

cognitive function, attributed to engaging in intellectual labor,

maintaining good learning habits, and keeping brain cells

active. Conversely, lower education levels, often associated with

more physical labor and limited brain usage, led to a decline in

brain neuron reserve and decreased awareness of health

management (25).

Furthermore, this study revealed that intestinal flora may be a

potential risk factor for mild cognitive impairment in patients with

type 2 diabetes. Intestinal flora primarily influences the host

through its bacterial bodies and metabolic byproducts (26).

Intestinal dysbiosis in individuals with diabetes can directly affect

central function and promote other pathways that impact cognitive

function. These pathways are interconnected. Intestinal flora can

influence metabolic and neurological diseases, offering a novel

perspective for treating T2DM-CI. The altered flora in diabetic
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patients plays a crucial role in their cognitive impairment,

highlighting the potential of regulating intestinal flora as an

effective treatment target for T2DM-CI (Figure 4).

Most traditional Chinese medicine formulas can modulate the

composition of the symbiotic flora. A multicenter, randomized,

open-label clinical trial demonstrated that a combination of

metformin and a traditional Chinese medicine formula

containing Salvia miltiorrhiza, Anemarrhena asphodeloides,

Schisandra chinensis, Coptis chinensis, red yeast rice, aloe vera,

bitter melon, and dried ginger could improve type 2 diabetes with

hyperlipidemia by promoting the growth of beneficial flora, such as

Blautia and Faecalibacterium (27). Furthermore, another Chinese

medicine formula Ge-Gen-Qin-Lian decoction, has been found to

enrich beneficial flora, including Faecalibacterium, in the gut,

associated with its anti-diabetic effects (28). Chinese medicine

exerts its regulatory effects through intricate chemical interactions

in the gut, thereby maintaining a healthy gut ecosystem, controlling

insulin resistance, and reducing host inflammation.

Considering further experimental validation of our results, the

planned experiments and validation methods are as follows. First

are the molecular and cellular experiments. In vitro experiments
TABLE 3 Top 10 potential drugs related to T2DM-CI.

Rank Related drugs Scores Evidence

1 Metformin 0.00061 PMID: 31975558

2 Liraglutide 0.00060 PMID: 31790314

3 Lixisenatide 0.00059 PMID: 21391833

4 Liquorice 0.00058 PMID: 36232291

5 Dulaglutide 0.00057 PMID: 30394576

6 3-n-Butylphthalide 0.00056 Unconfirmed

7 Cuscutae Semen 0.00056 Unconfirmed

8 Lycii Fructus 0.00055 PMID: 16689001

9 DPP-4i 0.00054 PMID: 30394576

10 Rhizoma Dioscoreae 0.00054 PMID: 31717456
FIGURE 4

Mechanism of herbal medicine interventions in gut microbiota.
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involve applying this candidate drug to the cell model of the

relevant disease, observing whether it can affect the related

pathological changes of this disease model. The techniques we

may use include immunofluorescence staining, Western blot,

qPCR, etc., to detect changes in key biomarkers. Second are

animal experiments. If in vitro experiments prove that the drug

has an effect on specific targets or pathways, then in vivo research is

conducted, usually in animal models. At this stage, we need to

observe whether the administration of the candidate drug in a

specific disease model can improve symptoms or pathological

changes. Third are clinical trials. If in both in vitro and in vivo

experiments, the drug demonstrates the potential to alter biological

processes and exhibits good safety, a clinical trial is then conducted

to verify the drug’s effects and safety in humans. This is a key step in

our final confirmation of the drug’s applicability and safety.
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The causal association between
polycystic ovary syndrome and
susceptibility and severity of
COVID-19: a bidirectional
Mendelian randomization
study using genetic data

Yu Si, Yuye Fei, Hua Ma, Yating Xu, Li Ning, Xiu Li
and Qingling Ren*

The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
Introduction: Observational studies have reported an association between

polycystic ovary syndrome (PCOS) and COVID-19, but a definitive causal

relationship has not been established. This study aimed to assess this

association using two-way two-sample Mendelian randomization (MR).

Methods: A summary of PCOS characteristics was compiled using the PCOS

summary statistics from the Apollo University of Cambridge Repository. COVID-

19 susceptibility and severity statistics, including hospitalization and extremely

severe disease, were obtained from genome-wide association studies from the

COVID-19 Host Genetics Initiative. The primary analysis used the inverse

variance-weighted method, supplemented by the weighted median, MR-

Egger, and MR-PRESSO methods.

Results: The forward MR analysis showed no significant impact of PCOS on

COVID-19 susceptibility, hospitalization, or severity (OR = 0.983, 1.011, 1.014;

95% CI = 0.958–1.008, 0.958–1.068, 0.934–1.101; and p = 0.173, 0.68, 0.733;

respectively). Similarly, reverse MR analysis found no evidence supporting

COVID-19 phenotypes as risk or protective factors for PCOS (OR = 1.041,

0.995, 0.944; 95% CI = 0.657–1.649, 0.85–1.164, 0.843–1.058; and p = 0.864,

0.945, 0.323; respectively). Consequently, no significant association between

any COVID-19 phenotype and PCOS was established.

Conclusion: This MR study suggested that PCOS is not a causal risk factor for the

susceptibility and severity of COVID-19. The associations identified in previous

observational studies might be attributable to the presence of comorbidities in

the patients.

KEYWORDS

COVID-19, polycystic ovarian syndrome, Mendelian randomization, SARS-CoV-
2, diabetes
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1 Introduction

COVID-19 is a systemic disease caused by the SARS-CoV-2

virus, primarily affecting the lungs. The pathophysiological

mechanisms underlying COVID-19 involve the binding of SARS-

CoV-2 to angiotensin-converting enzyme 2 (ACE2) on cell

membranes, triggering local and systemic inflammatory reactions,

oxidative stress, and tissue hypoxia (1). These processes involve

multiple organs, including the lungs, spleen, liver, heart, and

kidneys. While mild cases may be asymptomatic, severe cases can

lead to dyspnea/hypoxemia, acute respiratory distress syndrome,

septic shock, metabolic acidosis, and multiple organ dysfunction

syndrome, often culminating in death (2). The COVID-19

pandemic, a serious global epidemic and a significant public

health concern, had reached unprecedented levels of incidence

and mortality at the time of writing (3, 4).

PCOS is one of the most common gynecological endocrine

disorders affecting women of reproductive age, with a global

incidence ranging from 8% to 13% (5). The main clinical features

of PCOS include hyperandrogenism, anovulation, insulin

resistance, hyperinsulinemia, abnormal menstruation, and

reproductive disorders. Moreover, PCOS is associated with an

increased risk of developing metabolic syndrome, cardiovascular

and cerebrovascular diseases, tumors, and type 2 diabetes

mellitus (6).

Epidemiological research has indicated that individuals with

metabolic syndrome, which encompasses conditions such as type 2

diabetes mellitus, obesity, dyslipidemia, and hypertension, are more

susceptible to severe clinical outcomes of COVID-19 (7–10).

Although PCOS is not explicitly implicated in these findings, it

shares common complications with these metabolic conditions

(11). Consequently, it is hypothesized that women with PCOS

may be more vulnerable to contracting COVID-19 and

experiencing severe clinical symptoms. Several small observational

studies have suggested a potential predisposing role of PCOS in

COVID-19. These studies have shown that compared to healthy

women, those with PCOS have a 28%–50% higher likelihood of

SARS-CoV-2 infection, coupled with increased incidence rates of

hospitalization and mortality (12). Hyperandrogenism and chronic

low-grade inflammation, which are pivotal factors in the

pathogenesis of PCOS, may contribute to the progression of

COVID-19 infection (13). Furthermore, COVID-19 may induce

pancreatic beta-cell failure and adipocyte dysfunction, resulting in

insulin resistance and potentially augmenting the risk of future

PCOS development (14). However, the observed association

between COVID-19 infection and PCOS in observational studies

remains subject to confounding factors and the reversal of causal

relationships, necessitating further investigation to establish a

robust causal link between them.

MR represents a novel epidemiological method that employs

genetic data to explore causal relationships between exposures and

outcomes (15). By leveraging the random distribution of genetic
Frontiers in Endocrinology 02117
variants during meiosis, MR helps to overcome the limitations

associated with confounding and reverse causality that are

commonly encountered in observational studies (16). In this

study, we conducted a two-way MR analysis to elucidate the

potential causal relationship between PCOS and the risk of

COVID-19 infection.
2 Methods

2.1 Study design

A bidirectional two-sample MR research was conducted to

evaluate the causal association between PCOS and COVID-19

susceptibility and severity. The instrumental variables employed

in the analysis were chosen based on three key principles: (1) a

robust correlation between genetic variation and the exposure of

interest; (2) a minimal correlation between genetic variation and

potential confounding factors; and (3) genetic variation that does

not directly influence the outcomes under investigation (17). In this

study, bidirectional MR was used to assess the effects of PCOS on

COVID-19 (forward MR) and the effects of COVID-19 on PCOS

(reverse MR), using the genome-wide association study (GWAS)

data for PCOS and COVID-19, respectively.
2.2 Data sources

The data utilized in this study were derived from the COVID-19

Host Genetics Initiative GWAS round 7 meta-analyses (18). The

dataset comprised 112,612 European patients with COVID-19 who

were enrolled for the susceptibility phenotypic study. These patients

were categorized based on laboratory-confirmed SARS-CoV-2

infection, which was identified through electronic health records

(identified through the International Classification of Diseases codes

or physician annotations) or self-reporting. The control group

consisted of 2,474,079 individuals without confirmed COVID-19

infection. To evaluate the severity of COVID-19, two separate

cohorts were utilized. The first cohort compared 24,274

hospitalized patients with 2,061,529 control patients, whereas the

second cohort compared 8,779 individuals with very severe COVID-

19 outcomes with 1,001,875 control individuals who were not part of

the case group (source: https://www.covid19hg.org/results/r7/).

Further information on the phenotypic characteristics of the study

participants is presented in Table 1.

A comprehensive analysis of statistical data on PCOS was

conducted, utilizing data obtained from the authoritative repository

available at https://www.repository.cam.ac.uk/items/3ccbf35f-5f69-

4b46-b4fc-12cb67af71ae. The summary encompasses the findings

of a GWAS comprising seven independent cohorts (19). The PCOS

cohort consisted of 10,074 individuals diagnosed with PCOS, whereas

the control group comprised 103,164 healthy female participants. To
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ensure accuracy, the statistical analysis accounted for variables such

as age, age squared, and gender. For further information regarding

the characteristics of the seven independent cohorts, interested

readers can refer to the original article (19). Information pertaining

to ethical approval and consent for data utilization was obtained by

referencing the original article.
2.3 Selection of genetic instruments

To ensure the reliability of the analysis and minimize

potential statistical biases that could originate from the original

GWAS, rigorous criteria were applied during the selection of

genetic instruments. Specifically, only single nucleotide

polymorphisms (SNPs) with a significance threshold of p < 5 ×

10−8 were considered for inclusion. Subsequently, only SNPs

exhibiting linkage imbalance (R2 < 0.01) and clustering within

genomic regions separated by at least 10 Mb were retained for

further analysis.

Uti l iz ing the PhenoScanner database (http://www.

phenoscanner.medschl.cam.ac.uk/), several instrumental variables

related to other phenotypes that could potentially influence the

outcomes were identified. These variables included rs9264740

(associated with diabetes mellitus diagnosed by a doctor, self-

reported type 1 diabetes, and treatment with insulin product),

rs1128175 (associated with diabetes diagnosed by a doctor;

medication for cholesterol, blood pressure, or diabetes mellitus:

insulin, started insulin within one year of diagnosis of diabetes

mellitus, treatment with insulin product), rs550057 (associated with

type 2 diabetes mellitus; medication for cholesterol, blood pressure,

or diabetes mellitus: cholesterol-lowering medication), rs1498399

(associated with body mass index and weight), and rs1634761

(associated with weight). These selected SNPs for exposure to

COVID-19 were found to be significantly correlated with diabetes

phenotypes (e.g., diagnosed with diabetes mellitus, history of insulin

therapy) and body mass phenotypes (e.g., weight, body mass index).
Frontiers in Endocrinology 03118
Noteworthy studies have indicated that diabetes mellitus represents

a prominent risk factor for susceptibility to and severity of SARS-

CoV-2 infection. Compared to non-diabetic patients, patients with

diabetes mellitus who contract SARS-CoV-2 exhibit elevated IL-6

and CRP levels. This phenomenon might be attributed to the

inherent proinflammatory effect of diabetes mellitus, which may

contribute to the systemic inflammatory response observed in

COVID-19 (20). Moreover, patients with diabetes mellitus

experience prolonged hospital stays, more severe pneumonia

symptoms, and higher clinical mortality rates (21). Recent

evidence further suggests that SARS-CoV-2 can directly induce

acute or chronic damage to the pancreas, thereby influencing the

regulation of glucose metabolism and insulin sensitivity, and even

potentially inducing diabetes mellitus in individuals without prior

diabetic conditions (22). Meanwhile, inflammation and the immune

system in obese individuals could play a role in relation to viral

diseases. Adipose tissue produces pro-inflammatory cytokines in

high amounts, causing chronic low-grade inflammation and

immune dysregulation (23). Consequently, these instrumental

variables were excluded both before and after conducting the

MR analysis.

The coefficient of determination (R2) reflects the potential of

genetic factors to account for variations in exposure scenarios.

Additionally, F statistics (F > 10) were utilized to ensure the

inclusion of robust instrumental variables while excluding weaker

ones. Comprehensive details regarding the chosen SNP are available

in the Supplementary Document.
2.4 MR analysis

Data on PCOS were analyzed using a two-sample MR approach.

The primary method employed in this study was the inverse-

variance weighted (IVW) method (24), followed by MR Egger

and weighted median as secondary methods (25). It is important

to note that the MR Egger method typically yields larger standard
TABLE 1 Data sources for the analysis.

Phenotype Source of Genetic Variants

Consortium Participants

Polycystic ovarian
syndrome

–
Cases: 10,074 participants diagnosed with PCOS.

Controls: 103,164 individuals not diagnosed with PCOS.

COVID-19
susceptibility

Susceptibility

Cases: 112,612 participants who were verified as COVID-19 through laboratory testing for SARS-CoV-2 infection, electrical
health records, or self-reporting.

Controls: 2,474,079 participants who were a part of the cohorts but were not counted as cases.

COVID-19 severity

Hospitalized
Cases: 9,986 patients with COVID-19 were hospitalized.

Controls: 1,877,672 participants who were excluded from the analysis.

Very severe
disease

Cases: There were 8,779 individuals classified as very severe patients who either passed away or needed breathing assistance
Controls: 1,001,875 individuals who were excluded from the analysis and served.
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errors of causal estimation and lower causal effect estimates

compared to IVW (26). Thus, IVW was utilized to investigate the

causal link between exposure and outcomes, and the findings were

presented as ORs with corresponding 95% confidence intervals

(CIs). Additionally, three sensitive assessments were performed,

including weighted median and MR-Egger methods, to assess the

impact of different assumptions and investigate potential

pleiotropy-induced biases (25, 27, 28). If more than 50% of the

instrumental variables are reliable, the weighted median approach

determines the median of the empirical distribution of MR

estimates, providing trustworthy estimates (25).

Several other sensitivity analyses were performed to evaluate

and address the potential sources of bias in the study. Cochran’s Q-

test was used to assess heterogeneity among the instrumental

variables, whereas MR-PRESSO was employed to detect and

correct violations of the instrumental variable assumptions (28).

MR-PRESSO is particularly useful when the horizontal pleiotropic

effects account for less than 10% of the total variation (29). Leave-

one-out analysis was utilized to examine the influence of individual

SNPs on the MR findings. Additionally, the statistical power of the

studies was assessed using the website (http://glimmer.rstudio.com/

kn3in/mrnd/) (30). A flowchart illustrating the step-by-step process

of the MR analysis is presented in Figure 1.
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This study utilized the two-sample MR and MR-PRESSO

software packages for conducting the MR analysis. All research

involving statistics was conducted using R software (version 4.2.1),

and STATA 12.0 and R software were combined to visualize

the data.
3 Results

3.1 PCOS and COVID-19: a causal link

PCOS was neither a risk factor nor a protective factor in the

susceptibility to COVID-19, hospitalization, or a severe disease

phenotype. The IVW method yielded an OR of 0.983 (95% CI =

0.958–1.008, p = 0.173) for susceptibility to COVID-19, an OR of

1.011 (95% CI = 0.958–1.068, p = 0.68) for hospitalization, and an

OR of 1.014 (95% CI = 0.934–1.101, p = 0.733) for a severe disease

phenotype. Furthermore, evaluations using the Q test, MR Egger

intercept, and MR-PRESSO showed no notable heterogeneity,

pleiotropy level, or outliers linking PCOS to the risk of COVID-

19. Table 2 and Figure 2 demonstrate the comprehensive outcomes

of the various MR analyses. Scatter plots, funnel plots, and leave-

one-out analyses are available in the supplementary documents.
3.2 COVID-19 and PCOS: a causal link

Likewise, our investigation found no supportive evidence

indicating that susceptibility to COVID-19, hospitalization, or the

manifestation of a severe disease phenotype has a significant impact

on the risk or protection against PCOS. Employing the IVW

method, the ORs were estimated as 1.041 (95% CI = 0.657–1.649,

p = 0.864) for susceptibility to PCOS, 0.995 (95% CI = 0.85–1.164,

p = 0.945) for hospitalization, and 0.944 (95% CI = 0.843–1.058, p =

0.323) for very severe disease phenotype due to COVID-19. None of

these associations reached statistical significance. During the

analysis, we identified instrumental variables such as rs9264740,

rs1128175, rs550057, rs1498399, and rs1634761, which were

significantly associated with diabetes mellitus and body mass

which may act as confounding factors in the COVID-19

phenotype. To address this concern, these instrumental variables

were excluded from the analysis, and the MR analysis was re-

evaluated, leading to consistent conclusions with the initial analysis.
FIGURE 1

Flowchart detailing the analytical techniques and the step-by-step
process of the MR analysis.
TABLE 2 MR-derived evaluation of the causal impact of PCOS on COVID-19.

Outcome nSNP IVW Weighted Median MR-Egger

OR (95%CI) P OR (95%CI) P OR (95%CI) P

PCOS

COVID-19 susceptibility 12
0.983

(0.958,1.008)
0.173

0.980
(0.949,1.013)

0.231
1.039

(0.918,1.175)
0.562

COVID-19 hospitalization 12
1.011

(0.958,1.068)
0.684

1.012
(0.940,1.090)

0.743
1.223

(0.931,1.606)
0.178

COVID-19 severity 12
1.014

(0.934,1.101)
0.733

0.995
(0.892,1.110)

0.925
1.174

(0.768,1.795)
0.476
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Furthermore, our study revealed that none of the COVID-19

phenotypes emerged as protective factors for PCOS (p > 0.05). To

mitigate the potential heterogeneity in research findings, we

employed the IVW random effects approach. The comprehensive

results of this analysis are shown in Table 3 and Figure 3. Scatter

plots, funnel plots, and leave-one-out analyses are available in the

Supplementary Documents.
4 Discussion

COVID-19, which has been declared by the WHO as a global

public health epidemic, has becomeone of themost concerningdiseases

in recent years. As of September 26, 2022, there were nearly 620million

laboratory-reported cases of COVID-19 worldwide, withmore than 6.5

million deaths (https://www.worldometers.info/coronavirus/).

Although COVID-19 can affect people of all ages and backgrounds,

patients with pre-existing medical conditions are at an increased risk of

experiencing severe outcomes and increased mortality rates (31, 32).

Our bidirectional two-sample MR study incorporated data from

two distinct consortiums, particularly focusing on individuals of

European ancestry. To ensure the reliability and accuracy of our
Frontiers in Endocrinology 05120
genetic instruments, a meticulous screening process was conducted

utilizing the PhenoScanner database.

Large sample size and a homogeneous study population are the

prerequisites for the validity of the MR analysis results, and the

assumptions of association, independence, and exclusion should be

met to obtain valid causal inferences between the exposure and

outcome variables.

In conclusion, our extensive MR analysis indicated no evidence

of a causal relationship between PCOS and susceptibility to or

severity of COVID-19. The results suggest that PCOS has minimal

to no effect on the likelihood or severity of COVID-19 infection.

Previous observational studies have suggested a potential

association between PCOS and COVID-19, which may be

influenced by confounding factors and reverse causality. A closed

cohort study conducted in the British population (12) aimed to

investigate this relationship. The study included 21,292 women

diagnosed with PCOS and randomly selected 78,310 healthy

women. The incidence rate of COVID-19 was higher in women

diagnosed with PCOS, at 18.1 per 1000 person-years, compared to

women without PCOS, at 11.9 per 1000 person-years.

Findings from basic research indicate that androgens may

contribute to the progression of COVID-19 by modifying androgen-

mediated immune control and upregulating the expression of

TMPRSS2, a cellular co-receptor required for SARS-CoV-2 infection

(33). Immune dysfunction and a persistent inflammatory state are

brought on by the endocrine–immune axis of patients with PCOS. The

compensatory hyperglycemia, hyperandrogenism, and insulin

resistance associated with PCOS may render individuals more

susceptible to COVID-19 (13, 34, 35). Additionally, PCOS may

increase susceptibility to COVID-19 through comorbidities such as

obesity (36, 37). Notably, a study revealed significantly increased

mRNA expression of ACE2 and TMPRSS2, key molecules involved

in SARS-CoV-2 cell entry, in the livers of patients with advanced

nonalcoholic fatty liver disease (NAFLD) (38).

Owing to the existence of conflicting findings among studies, not

all studies have reached a consistent conclusion regarding the

association between PCOS and the susceptibility to and severity of

COVID-19. One such study conducted by HIPAA Limited, a

subsidiary of the University of California Coronavirus Disease

Research Dataset (UC CORDS), utilized health records and

statistical analyses of patients undergoing COVID-19 testing at the

University of California medical institutions. The results of this study
FIGURE 2

OR and 95% CI of the causal relationship between PCOS and the
risk of COVID-19.
TABLE 3 MR-derived estimates of the causal influence of COVID-19 on PCOS.

Outcome nSNP IVW Weighted Median MR-Egger

OR (95%CI) P OR (95%CI) P OR (95%CI) P

COVID-19 susceptibility

PCOS

13
1.041

(0.657,1.649)
0.864

1.271
(0.752,2.145)

0.370
1.282

(0.538,3.055)
0.586

COVID-19 hospitalization 30
0.995

(0.850,1.164)
0.945

1.078
(0.875,1.328)

0.480
1.072

(0.807,1.424)
0.636

COVID-19 severity 25
0.944

(0.843,1.058)
0.323

1.052
(0.917,1.206)

0.471
0.975

(0.796,1.945)
0.810
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did not provide evidence to support an increased risk of COVID-19

infection, hospitalization, or mortality among women with acne

vulgaris, PCOS, or hirsutism. Consequently, establishing a causal

relationship between PCOS and susceptibility to and severity of

COVID-19 based solely on observational studies is challenging.

Although our study did not yield positive results, we formulated

certain assumptions to understand the relationship between PCOS and

COVID-19. Notably, PCOS is influenced by both genetic and

environmental factors and is associated with comorbidities such as

obesity, insulin resistance, diabetes mellitus, NAFLD, cardiovascular

diseases, and cerebrovascular diseases. These comorbidities are

established risk factors for COVID-19 susceptibility and severity,

suggesting their potential role in the pathogenesis of COVID-19. The

interaction between PCOS and COVID-19 involves a complex

interplay of comorbidities rather than a straightforward causal

relationship. The use of instrumental variables in MR analysis to

control for confounding factors, such as diabetes mellitus and body

mass phenotype, is a robust approach to strengthen the validity of the

findings. By excluding these variables from the analysis, we aimed to

minimize potential biases and ensure amore accurate assessment of the

potential causal relationship between PCOS and COVID-19 infection.

While the study did not establish a direct causal relationship between

PCOS and COVID-19 infection and severity, it highlights the

importance of considering the broader context of comorbidities and

underlying risk factors that may influence disease outcomes.

MR analysis aims to minimize the impact of confounding

variables to the greatest extent possible. Furthermore, we

employed an extensive collection of independent datasets to

secure genetic instruments, thereby diminishing the probability of

bias introduced by a limited number of cases. However, given that

our study exclusively focuses on individuals of European ancestry,

there are inherent limitations to our conclusions, highlighting the

importance of expanding the sample study to other populations.

Although MR studies are valuable tools for investigating causal

relationships between exposures and outcomes using genetic variants as
Frontiers in Endocrinology 06121
instrumental variables, they cannot account for other non-genetic

factors, such as lifestyle and environmental factors, which may also

play a role in the observed association. Therefore, this conclusion should

be interpreted with caution, and further research is needed to fully

understand the causal relationship between PCOS and COVID-19.
5 Conclusion

In conclusion, MR analysis does not provide evidence

supporting PCOS as a causal risk factor influencing the

susceptibility or severity of COVID-19. The previously observed

correlation between PCOS and COVID-19 may be attributed to the

influence of comorbidity factors. These comorbidities, such as

obesity, insulin resistance, diabetes, and other cardiovascular and

metabolic conditions, rather than PCOS itself, could be contributing

to the association observed in these studies.
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Association of serum
25-hydroxyvitamin D with
urinary incontinence in elderly
men: evidence based on
NHANES 2007-2014

Li Liu †, Mingming Xu †, Hang Zhou †, Xuexue Hao, Xiangyu Chen
and Xiaoqiang Liu*

Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
Background: The correlation between serum 25-hydroxyvitamin D (25(OH)D)

and different sub-types of urinary incontinence in elderly men continues to be

uncertain. Hence, we performed this research to evaluate whether serum 25(OH)

D levels are correlated with urinary incontinence among elderly men.

Methods: The present study incorporated themale population aged 50 years and

above from four cycles of the NHANES database spanning from 2007 to 2014, for

the purpose of analysis. The assessment of urinary incontinence was carried out

through a correlation questionnaire, while standardized liquid chromatography-

tandem mass spectrometry (LC-MS/MS) was adopted to quantify serum 25(OH)

D. A weighted multi-factorial logistic regression analysis was carried out to

ascertain and investigate any potential correlation that may exist between

serum 25(OH)D and urinary incontinence in senior males.

Results: Ultimately, a sum of 4663 elderly men were involved in our analysis. The

outcomes of the univariable analysis illustrated that the group with vitamin D

deficiency exhibited augmented odds of all three urinary incontinence types in

comparison to the vitamin D-sufficient group. After accounting for age, race, and

BMI, no appreciable variations in the outcomes were noticed. However, after

accounting for all covariates, only SUI (OR = 1.677; 95% confidence interval (CI) =

1.074–2.618) and MUI (OR = 1.815; 95% confidence interval (CI) = 1.010–3.260)

demonstrated statistical significance.

Conclusion: Decreased serum 25(OH)D levels were connected with stress

urinary incontinence and mixed urinary incontinence in elderly men.
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urinary incontinence, 25-hydroxyvitamin D, NHANES, elderly men, vitamin D deficiency
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Introduction

Urinary incontinence (UI) is a prevalent disorder characterized

by the uncontrollable leakage of urine (1). This disorder has a

profound effect on the affected individual’s standard of living and

imposes a huge cost on society (2). Stress urinary incontinence

(SUI), urge urinary incontinence (UUI), and mixed urinary

incontinence (MUI) are the three most common forms of urinary

incontinence (3). While UI is more prevalent in women, it is not

limited to this gender and is also widespread in a significant

percentage of men, particularly in older age groups. According to

the European Association of Urology guidelines, UI affects

approximately 11% of men between the ages of 60–64 years and

up to 31% of men aged 85 years (1). Hence, the impact of UI on

men, especially the elderly, should not be overlooked.

Vitamin D is a fat-soluble vitamin synthesized primarily by

human skin after exposure to ultraviolet radiation and secondarily

by food or other forms of supplementation (4). Its primary function is

to maintain calcium and phosphorus metabolism and bone health in

the body, with its main form in the body being 25-hydroxyvitamin D

(25(OH)D) (5). A serum level of 25(OH)D below 50 nmol/L is

typically considered a sign of vitamin D deficiency (6, 7). Vitamin D

deficiency is a pervasive condition affecting a significant population

worldwide. Studies have shown that approximately 1 billion people

are impacted by vitamin D insufficiency or deficiency, particularly

among the elderly population (8). Notably, there is a clear correlation

between vitamin D deficiency and bone diseases (9). Furthermore,

research has revealed that vitamin D insufficiency or deficiency is also

linked to various conditions such as muscle weakness, tumors,

depression, metabolic diseases, and cardiovascular diseases (8,

10–12).

Numerous studies have demonstrated a significant correlation

between vitamin D deficiency and urinary incontinence in women

(13, 14). Interestingly, a study has even suggested that vitamin D

supplementation may improve urinary incontinence in

premenopausal women (15). However, relatively little is known

regarding the association between vitamin D deficiency and urinary

incontinence in older men. Accordingly, the primary aim of this

research endeavor is to explore the correlation between vitamin D

deficiency and urinary incontinence in older men, using data

obtained from the National Health and Nutrition Examination

Survey (NHANES).
Methods

Study participants

The NHANES database is a publicly available repository of

comprehensive health and nutrition data for the United States

population. In this study, we extracted data from four NHANES

cycles, spanning from 2007 to 2014, which contained consolidated

serum 25(OH)D data. The study enrolled exclusively males aged 50

years and above, with exclusion criteria eliminating older men who

did not provide urinary incontinence information or vitamin D

data (Figure 1).
Frontiers in Endocrinology 02125
Serum 25(OH)D levels

Standardized l iquid chromatography-tandem mass

spectrometry (LC-MS/MS) was utilized to measure serum 25

(OH)D concentrations. It must be noted that total serum 25(OH)

D levels below 50 nmol/L were classified as vitamin D deficient,

while levels ranging from 50–75 nmol/L were considered vitamin D

insufficient. On the other hand, levels of 75 nmol/L or higher were

categorized as vitamin D sufficient, as per established guidelines (6).
Definition of urinary incontinence

The assessment of urinary incontinence was conducted through

the administration of a standardized questionnaire. In accordance

with the criteria, any instance of urine leakage or loss of control

during activities such as coughing, weight lifting, or exercise within

the preceding 12-month period was classified as stress urinary

incontinence (SUI). Urge urinary incontinence (UUI) was defined

as involuntary urine leakage or loss of control as a result of the urge

or pressure to urinate without the ability to reach a toilet in time.

Concurrent manifestations of both SUI and UUI are categorized as

mixed urinary incontinence (MUI).
Covariates

In this study, hypertension is defined as having received a

diagnosis of hypertension or having an average blood pressure of

140/90 mmHg or higher as indicated by a medical professional.

Smoking status is categorized as either never, former, or current.
FIGURE 1

Flowchart for research.
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Alcohol use is defined as having consumed at least 12 alcoholic

beverages within one year. Depression status is evaluated using the

PHQ-9, with a score of 10 or higher indicating depression.

Additional covariates in the study include age categories (50–59,

60–69, and 70 or older), race, BMI (<25, 25–29.99, and 30 or

higher), diabetes status (yes, no, or borderline), and family poverty

ratio (<1.3, 1.3–3.49, and 3.5 or higher).
Statistical analysis

Categorical variables were described using quantitative or

proportional (%), while the mean ± standard error (SE) was used

to express continuous variables. The analysis of the correlation

between serum 25(OH)D and urinary incontinence was conducted

utilizing weighted multivariate logistic regression models.

Furthermore, in our research, we developed three models and

determined their respective odds ratios (ORs). The first model

was univariable and did not account for covariates, while model 1

adjusted for age, race, and BMI, and model 2 adjusted for age, race,

BMI, alcohol use, diabetes, hypertension, family poverty rate,

depression, and smoking. The level of statistical significance
Frontiers in Endocrinology 03126
utilized in this study was determined to be a two-tailed p-value

less than 0.05. The statistical analyses were conducted using

software tools such as Stata and SPSS.
Results

Our study included a total of 4663 older males who were

selected for analysis. Out of these participants, 1263 were

identified as vitamin D deficient, 1833 were classified as

insufficient in vitamin D, and 1567 were found to have sufficient

levels of vitamin D. A comprehensive overview of the study

demographics can be found in Table 1. The prevalence of SUI,

UUI, and MUI in the vitamin D deficient group was 8.3%, 26.8%,

and 5.5%, respectively. The vitamin D insufficient group had a

prevalence of 7.2%, 22.7%, and 4.3% for SUI, UUI, and MUI,

respectively. Finally, the prevalence of SUI, UUI, and MUI in the

vitamin D sufficient group had been recorded as 7.8%, 23.4%, and

4.4%, respectively.

The findings of the univariable analysis revealed that the group

with vitamin D deficiency exhibited augmented odds of all three

urinary incontinence types in comparison to the vitamin D
TABLE 1 A comprehensive overview of the study demographics.

25(OH)D < 50 nmol/l 50–75 nmol/l ≥ 75 nmol/l P Value

Participants (n) 1263 1833 1567

Age, Mean ± SE 62.68 ± 0.25 64.61 ± 0.22 66.87 ± 0.24 <0.001

BMI, n (%) <0.001

<25 298(23.6) 356(19.4) 427(27.2)

25-29.99 426(33.7) 761(41.5) 690(44.0)

≥30 509(40.3) 699(38.1) 426(27.2)

missing 30(2.4) 17(0.9) 24(1.5)

Race, n (%) <0.001

Non-Hispanic White 340(26.9) 919(50.1) 1064(67.9)

Non-Hispanic Black 502(39.7) 301(16.4) 180(11.5)

Other Hispanic 117(9.3) 199(10.9) 105(6.7)

Other races 304(24.1) 414(22.6) 218(13.9)

Alcohol use, n (%) 0.967

yes 1035(81.9) 1510(82.4) 1299(82.9)

no 226(17.9) 321(17.5) 266(17.0)

missing 2(0.2) 2(0.1) 2(0.1)

Hypertension, n (%) 0.009

yes 812(64.3) 1108(60.4) 1004(64.1)

no 434(34.4) 709(38.7) 556(35.5)

missing 17(1.3) 16(0.9) 7(0.4)

Smoking, n (%) <0.001

(Continued)
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sufficient group. Upon making adjustments for age, race, and BMI,

no significant changes in the results were observed. However, after

accounting for all covariates, only SUI (OR = 1.677; 95% confidence

interval (CI) = 1.074–2.618) and MUI (OR = 1.815; 95% confidence

interval (CI) = 1.010–3.260) demonstrated statistical significance. A

detailed account of the results can be referenced in Table 2

and Figure 2.
Discussion

The present study seeks to examine the correlation between

serum 25(OH)D and urinary incontinence in elderly males. This

study is novel in that it is the first national study to examine the

association between serum 25(OH)D and various sub-types of

urinary incontinence in older men. Our findings indicate that, in

both the univariable model and model 1, vitamin D deficiency was

linked with increased odds of urinary incontinence, including urge,

stress, and mixed. However, model 3, which adjusted for all

covariates , revealed that serum 25(OH)D was l inked

independently with stress and mixed urinary incontinence in

older men. This discovery constitutes the most significant finding

of our study.

Urinary incontinence and vitamin D deficiency were prevalent

disorders in the elderly population. For females, there was

substantial evidences supporting a strong association between

vitamin D and urinary incontinence (13). A randomized
Frontiers in Endocrinology 04127
controlled trial demonstrated that vitamin D supplementation

improved urinary incontinence in premenopausal women (15).

However, conflicting results have been reported that moderate

doses of vitamin D supplements did not diminish urinary

incontinence in older women, and the underlying causes of this

discrepancy require further exploration (16). In contrast, research

on the relationship between vitamin D and urinary incontinence in

males was relatively limited. One previous study found a correlation

between vitamin D deficiency and moderate to severe urinary

incontinence in adult men, though this data may be subject to

bias due to testing technology at the time (17). Moreover, they failed

to investigate the relationship further with older men. Instead, the

present study focused on older men and investigated the association

between vitamin D deficiency and urinary incontinence in older

men through a large national sample.

The precise mechanisms behind the correlation between

vitamin D and urinary incontinence in elderly men have yet to be

fully elucidated and require further investigation. Nonetheless,

multiple mechanisms may potentially be at play. Initially, it was

recognized that the processes that govern urination were intricate

and predominantly governed by neural, muscular, and other

influences. Studies on neuromodulation evidenced that vitamin D

plays a protective role by elevating antioxidant levels in neurons

(18). Furthermore, vitamin D has been found to regulate the

expression of several neurotransmitters, including acetylcholine

and dopamine (18, 19). Also, as demonstrated in in vitro

experiments, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) was
TABLE 1 Continued

25(OH)D < 50 nmol/l 50–75 nmol/l ≥ 75 nmol/l P Value

never 452(35.8) 725(39.6) 579(36.9)

former 449(35.6) 808(44.1) 758(48.4)

current 360(28.5) 300(16.4) 230(14.7)

missing 2(0.2) 0(0.0) 0(0.0)

Depression, n (%) 0.004

yes 112(8.9) 101(5.5) 99(6.3)

no 1127(89.2) 1705(93.0) 1442(92.0)

missing 24(1.9) 27(1.5) 26(1.7)

Diabetes, n (%) 0.027

yes 313(24.8) 368(20.1) 319(20.4)

no 909(72.0) 1385(75.6) 1189(75.9)

borderline 41(3.2) 78(4.3) 58(3.7)

missing 0(0.0) 2(0.1) 1(0.1)

Family poverty ratio <0.001

<1.3 397(31.4) 449(24.5) 330(21.1)

1.3-3.49 452(35.8) 654(35.7) 511(32.6)

≥3.5 314(24.9) 584(31.9) 600(38.3)

missing 100(7.9) 146(8.0) 126(8.0)
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effective in mitigating neuroinflammation through the inhibition of

MAPK pathways, as well as promoting neural stem cell proliferation

and enhancing their differentiation into neurons and

oligodendrocytes (20, 21).

Secondly, the presence of vitamin D receptors throughout

various tissues and organs, such as muscle, bladder, prostate, and

urethra, has been well established (22). Recent studies have

demonstrated that vitamin D has an impact on muscle strength

and function by influencing various cellular processes such as cell

proliferation, differentiation, protein synthesis, and myotube size

(23). Experiments in vitro have displayed that the signaling of

vitamin D and the vitamin D receptor effectively abrogated skeletal

muscle atrophy through its inhibitory effect on the renin-

angiotensin system (24). Furthermore, deficient levels of vitamin

D may give rise to an array of consequences. Such consequences

may encompass the deregulation of calcium metabolism, which can

lead to anomalous contraction of the detrusor muscle.

Abnormalities of the detrusor muscle are usually one of the most

significant factors causing urinary incontinence, and surgery can

improve the associated symptoms to a certain extent (25). And

some studies have reported that a postoperative combination of

Ospemifene can significantly improve patients’ symptoms without

increasing postoperative adverse events (26). Additionally, recent

findings suggest that low levels of vitamin Dmay facilitate increased

inflammatory cytokine activity, provoking inflammation in the

bladder wall and thereby impairing urinary function (27).

In addition to its direct impact, vitamin D may also have an

indirect influence on urinary incontinence through various means.

Benign prostatic hyperplasia (BPH) was a frequent contributor to

bladder outlet obstruction and a significant factor in urinary

incontinence experienced by men in their senior years (28). Several

research studies have pointed out a possible correlation between

vitamin D deficiency and BPH. Vitamin D supplementation, on the

other hand, has been suggested as a potential option to alleviate BPH

symptoms. To elaborate, VDR agonists like elocalcitol could

potentially enhance bladder contractility and obstruct prostate

enlargement, thereby alleviating BPH symptoms (29). Furthermore,

low serum vitamin D levels have been attributed to an increased risk

of falls in old age, which could possibly increase the risk of urinary

incontinence to some extent. Other than that, evidence-based

medicine pointed out that individuals suffering from depression

encountered more severe urine incontinence symptoms. According

to one study, vitamin D supplementation may alleviate depression

(30, 31). Beyond that, there may be other mechanisms, so more

research was required to explore them.

Finally, this research presents various advantages. At first, it

represents the first nationwide research assessing the relationship of

serum 25(OH)D with distinct sub-types of urine incontinence in

older males. In the second place, we incorporated data from four

cycles, yielding a huge sample size. And third, serum vitamin D in

the present investigation was detected via the LC-MS/MS method,

which provided higher accuracy compared to previous assay

techniques. Lastly, in the multi-factorial logistic regression

analysis, we controlled for plenty of variables. However, several

flaws remained. This was an observational study, and even though

we controlled for numerous confounders, we couldn’t rule out the
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influence of any unmeasured confounding factors. Additionally,

attrition bias may exist. Hence, further studies are still required to

confirm the causal relationship between them and the

underlying mechanisms.
Conclusion

Decreased serum 25(OH)D levels were connected with stress

urinary incontinence and mixed urinary incontinence in

elderly men.
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Objective: Observational evidence reported that air pollution is a significant risk

element for numerous health problems, such as obesity and coronavirus disease

2019 (COVID-19), but their causal relationship is currently unknown. Our

objective was to probe the causal relationship between air pollution, obesity,

and COVID-19 and to explore whether obesity mediates this association.

Methods:Weobtained instrumental variables strongly correlated to air pollutants

[PM2.5, nitrogen dioxide (NO2) and nitrogen oxides (NOx)], 9 obesity-related

traits (abdominal subcutaneous adipose tissue volume, waist-to-hip ratio, body

mass index, hip circumference, waist circumference, obesity class 1-3, visceral

adipose tissue volume), and COVID-19 phenotypes (susceptibil ity,

hospitalization, severity) from public genome-wide association studies. We

used clinical and genetic data from different public biological databases and

performed analysis by two-sample and two-step Mendelian randomization.

Results: PM2.5 genetically correlated with 5 obesity-related traits, which obesity

class 1 was most affected (beta = 0.38, 95% CI = 0.11 - 0.65, p = 6.31E-3). NO2

genetically correlated with 3 obesity-related traits, which obesity class 1 was also

most affected (beta = 0.33, 95% CI = 0.055 - 0.61, p = 1.90E-2). NOx genetically

correlated with 7 obesity-related traits, which obesity class 3 was most affected

(beta = 1.16, 95% CI = 0.42-1.90, p = 2.10E-3). Almost all the obesity-related traits

genetically increased the risks for COVID-19 phenotypes. Among them, body

mass index, waist circumference, hip circumference, waist-to-hip ratio, and

obesity class 1 and 2 mediated the effects of air pollutants on COVID-19 risks

(p < 0.05). However, no direct causal relationship was observed between air

pollution and COVID-19.

Conclusion: Our study suggested that exposure to heavy air pollutants causally

increased risks for obesity. Besides, obesity causally increased the risks for

COVID-19 phenotypes. Attention needs to be paid to weight status for the

population who suffer from heavy air pollution, as they are more likely to be

susceptible and vulnerable to COVID-19.
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COVID-19, air pollution, obesity, Mendelian randomization, mediation
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Introduction
First reported in late 2019, coronavirus disease 2019 (COVID-

19), caused by severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), is a pandemic affecting people’s health worldwide

(1). The latest epidemiological data from World Health

Organization shows that COVID-19 has caused nearly 757

million infections and more than 6.85 million deaths worldwide

as of Feb. 23, 2023. Over 40% of COVID-19 survivors suffered from

unresolved symptoms at four months, regardless of hospitalization

status (2). Over 10% of people survived with long-term impacts on

multiple organ systems, known as long COVID-19 (3). Although

vaccination has reduced the incidence of severe COVID-19 to some

extent, no specific treatment can target SARS-CoV-2 infection until

now other than hormonal drug therapy for oxygen-dependent

COVID-19 patients (4). Many exposures increase the

susceptibility and severity of COVID-19, such as cardiovascular

and metabolic disorders, high BMI, C-reactive protein (CRP), and

smoking (5). Numerous genome-wide association studies (GWASs)

in healthy populations of patients have allowed us to begin

identifying the genetic correlation between exposure and disease

at the genetic level. Identifying and uncovering novel factors

influencing COVID-19 is essential for understanding this

pandemic and enhancing its treatment.

With the rapid development of socioeconomic, air pollution

remains a global health threat. Air pollution contributes to many

acute and chronic diseases, such as respiratory tumors, pneumonia,

chronic obstructive pulmonary disease (COPD), stroke, and heart

and mental health disease (6, 7). Air pollution, including particulate

matter with a diameter smaller than 2.5 µm (PM2.5), nitrogen

oxides (NOx), nitrogen dioxides (NO2), and ozone (O3), are

common and highly concentrated substances in modern cities

and are relevant to people’s daily lives (8). Air pollution

molecules entering the respiratory tract can cause respiratory

tract damage through pathological mechanisms such as

inflammation and oxidative stress, thereby increasing the

susceptibility and severity of respiratory diseases (9). Recent

observational research indicates that PM2.5 and carbon monoxide

can increase the number of daily cases, cumulative cases, and

cumulative deaths of COVID-19 (10). However, the causal

relationship between these components (PM2.5, NOx, and NO2)

and COVID-19 risk (susceptibility, hospitalization, and severity)

remains largely unclear.

Due to multiple factors (genetics, epigenetics, environment,

socioeconomic status, etc.), obesity has become another health

problem that plagues a large number of young people. It is a

medical problem that increases the risk for certain illnesses, such as

cardiovascular disease, metabolic disease, neurodegenerative disease,

and certain tumors (11, 12). Obesity generally cannot often be

prevented through just eating a healthier diet, increasing activity,

and behavioral change as evidenced by the fact that most obesity

prevention strategies geared towards healthy diets, increasing activity,

and other behavioral changes have been ineffective or at best only

minimally effective (13). Obesity often plays a very important role as a

mediator in the influence of many environmental factors on various
Frontiers in Endocrinology 02132
diseases. In particular, BMI, an important obesity-related trait,

directly contributed to COVID-19 Susceptibility (14).

Genome-wide association study (GWAS) is a genetics research

methodology used to identify genomic variants that are statistically

associated with the risk of a disease or a specific trait. However, the

relationship between other obesity traits and COVID-19 still needs

to be further investigated, which is made possible by the increasing

availability of GWAS data related to these traits. Moreover, studies

suggest that prolonged environmental exposure is strongly

associated with obesity and/or metabolic disease. A multicenter

study found that positive association between chronic exposure to

PM2.5 during working and fasting plasma glucose among

asymptomatic adults (15). A meta-analysis approach indicated

that PM2.5 increase obesity (OR = 1.96, 95% CI = 1.21-3.18)

among adolescents in Latin American cities (16). Considering the

close connection between air pollution, obesity, and COVID-19, it is

vital to explore their causal relationship and mediating role based

on GWAS and two-step Mendelian randomization (MR).

Mendelian randomization (MR) is a novel epidemiologic method

that uses a genetic variation to infer a causal correlation between

exposure and outcome based on genetic variation closely related to

exposure as potentially unconstrained instrumental variables (IVs).

First proposed by Katan in 1986 to disclose whether low LDL

cholesterol levels increase cancer risk, MR has become increasingly

popular as genetic information on health and disease has expanded

with data from genome-wide association studies and genome

sequencing (17). The cardinal principle of MR assumes that genetic

variants are randomly allocated at conception, mimicking the

randomized controlled studies and operating independently of

potential confounding variables such as environmental and lifestyle

factors. MR also avoids the bias from reverse causality because

diseases cannot affect genotypes. It provides a way to answer

questions of causality without the typical errors that affect

conclusions prevalent in many traditional epidemiological methods

(18, 19). Based on the fact that the prevalence of obesity and long-

COVID and the threat of air pollution have not yet been fully

controlled, in order to reduce the morbidity and mortality of

COVID-19, to better detect and prevent the occurrence of related

diseases in key populations, and to advocate the importance of

environmental protection, we discussed in detail the relationship

between the three. In this paper, we applied an initial MR to explore

the causal role of air pollution on COVID-19 and then explored

whether obesity plays an intermediary role using a two-step MR. In

step one, genetic IVs robustly associated with air pollution (PM2.5,

NOx, NO2) were used to assess the causal relationship with obesity.

In step two, genetic IVs robustly associated with obesity were used to

assess the causal relationship with COVID-19 risk (susceptibility,

hospitalization, severity).
Methods

Data sources for air pollution

All data used for analysis in our paper were obtained from

publicly available GWAS datasets and therefore do not require
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ethical approval or informed consent. Summary statistics of GWAS

data for the participants exposed in different levels of air pollution

(PM2.5, NOx, NO2) were obtained from the UK Biobank (UKB)

(20). The UK Biobank is a large biomedical database and research

resource, an organization that collected in-depth genetic and health

information on approximately 500,000 UK participants between

2006 and 2010 through questionnaires, medical tests and other

methods. New data are added regularly to the database, which is

accessible to all researchers worldwide. The extents of air pollution

were estimated in different sites in the UK by a land use regression

for annual average 2010 (21). The mean PM2.5 was 9.99 ± 1.06

micro-g/m3, ranging from 8.17 - 21.31 micro-g/m3, in a GWAS

including 423,796 individuals and a total of 9,851,867 single-

nucleotide polymorphisms (SNPs) (22). The mean NO2 was 26.71

± 7.58 micro-g/m3, ranging from 12.93 - 108.49 micro-g/m3, in a

GWAS including 456,380 individuals and a total of 9,851,867 SNPs

(23). The mean NOx was 44.11 ± 15.53 micro-g/m3, ranging from

19.74 - 265.94 micro-g/m3, in a GWAS including 456,380

individuals and a total of 9,851,867 SNPs (23).
Data sources for obesity

Summary statistics of obesity were obtained from the GIANT

consortium (https://portals.broadinstitute.org/collaboration/giant/

index.php/GIANT_consortium_data_files) (24, 25) and Liu et al.

GWAS meta-analyses (26). The GIANT Alliance is an international

collaboration of researchers from different groups, institutions,

countries and research organizations. The consortium aims to

identify genetic loci that regulate human size and shape

(including obesity-related traits such as height, BMI, waist

circumference, etc.), primarily through meta-analysis of genome-

wide association data and other large-scale genetic datasets. The

GWAS of the volume of abdominal subcutaneous adipose tissue

(ASAT) and visceral adipose tissue (VAT) included 32,860

individuals and a total of 9,275,407 SNPs, respectively. The

GWAS of body mass index (BMI) included 681,275 individuals

and a total of 2,336,260 SNPs. The GWAS of hip circumference

(HC) included 213,038 individuals and a total of 2,559,739 SNPs.

The GWAS of obesity class 1 (OB1) included 98,697 individuals and

a total of 2,380,428 SNPs. The GWAS of obesity class 2 (OB2)

included 72,546 individuals and a total of 2,331,456 SNPs. The

GWAS of obesity class 3 (OB3) included 50,364 individuals and a

total of 2,250,779 SNPs. The GWAS of waist circumference (WC)

included 232,101 individuals and a total of 2,565,408 SNPs. The

GWAS of waist-to-hip ratio (WHR) included 212,244 individuals

and a total of 2,560,782 SNPs.
Data sources for COVID-19

Summary statistics of COVID-19 were obtained from the

COVID-19 host genetic websites released on April 8, 2022 (round

7, GRCh38, https://www.covid19hg.org/results/r7/) (27). The
Frontiers in Endocrinology 03133
GWAS of COVID-19 susceptibility included 2,597,856 cases and

14,496,978 SNPs (C2_ALL_eur_leave_23andme). The GWAS of

COVID-19 hospitalization included 2,095,324 cases and 12,469,431

SNPs (B2_ALL_eur_leave_23andme). The GWAS of COVID-19

severity included 1,086,211 cases and 12,174,527 SNPs

(A2_ALL_eur_leave_23andme).
Mendelian randomization

Three principles genetic tools were followed for MR analysis: a.

genetic tools were strongly correlated with corresponding exposures

(p < 5×10-5), which could avoid the possibility of insufficient

powered instrumental variables (IVs) and has been applied on

previous studies (28, 29); b. genetic tools were independent of

outcomes and could only influence outcome through exposure; and

c. when conducting MRs between air pollutions and COVID-19

risks, the genetic tools were independent of the mediators (30). The

IVs of SNPs were conjugated using the PLINK algorithm (LD <

0.001 and < 10 MB from the index variant) to select independent

IVs. The F-statistic was calculated by the (R2/K)/[(1-R2) (N-K-1)],

where K is the number of SNP, N is the sample size, R2 is the

variance explained by SNPs calculated by 2*EAF*(1-EAF) * (Beta/

SE)2. The IVs with F < 10 were excluded to retain the reliable SNPs

which robustly represented the exposures. The random effects

inverse variance weighting (IVW) was used as the main analysis

method, which combines the Wald ratios of the causal effect of each

SNP on the outcome and provides the most accurate estimates (31).

Meanwhile, MR-Egger regression method and weighted median

method were used as supplements to IVW. Moreover, MR-Egger

intercept test, Cochran’s Q test, MR-Egger intercept test and leave-

one-out analysis were used to determine the presence of pleiotropy

and to assess the reliability of the results.
Mediated effects analysis

Three beta values would be gained through two-step MR,

namely beta0 (initial MR of exposures on outcomes), beta1 (step

one MR of exposures on mediators), and beta2 (step two MR of

mediators on outcomes). The results are interpreted as follows: 1. If

beta0, beta1 and beta2 are all significant, this indicates that there is a

causal association from exposure to outcome and that this

association may be partially mediated by the mediating variable;

2. If beta0 is not significant but both beta1 and beta2 are significant,

meanwhile the quantified indirect effects are significant, this

indicates that the causal association from exposure to outcome is

indirect and mediated by this variable; 3. If beta0 is significant, at

least one of beta1 and beta2 is insignificant, indicating that there is

no mediating effect mediated by this mediating variable in the

causal association from exposure to outcome (32).

The indirect effects were recognized as the effects of exposures

on outcomes mediated through the causal mediators, which was

quantified by the product of coefficients method (32, 33).
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Statistical analysis

Results of Mendelian analysis were presented using beta, 95%

confidence interval (95%CI) and p values. P < 0.05 was considered as

statistical significance. R (version 4.0.5) packages (TwoSampleMR,

version 0.5.6) was applied to perform statistical analysis.
Results

We used graphical figures to demonstrate the entire analytical

process of Mendelian randomization (Figure 1). In summary, 251,

295 and 254 index SNPs were obtained to demonstrate the genetic

characteristics of PM2.5, NO2, and NOx, respectively

(Supplementary Tables S2–4); 155, 837, 178, 96, 77, 38, 152, 165,

136 index SNPs were obtained to demonstrate the genetic

characteristics of ASAT, BMI, HC, OB1, OB2, OB3, VAT, WC,

and WHR, respectively (Supplementary Tables S5-13). First, we

performed two sample MR to calculated the casual relationship

between air pollution and obesity traits (Figure 2A and Table 1).

IVW analysis indicated a positive causal relationship between

PM2.5 exposure and ASAT (p = 1.49E-02), BMI (p = 5.73E-03),

OB1 (p = 6.31E-03), VAT (p = 4.38E-02), WC (p = 2.85E-02); a

positive causal relationship between NO2 exposure and HC (p =

3.77E-02), OB1 (p = 1.90E-02), WC (p = 2.90E-02); a positive causal

relationship between NOx exposure and BMI (p = 4.84E-02), HC

(p = 1.74E-03), OB1 (p = 3.60E-02), OB2 (p = 1.85E-03), OB3 (p =

2.10E-03), WC (p = 1.61E-03), WHR (p = 6.37E-03).

Second, we performed two sample MR to calculated the casual

relationship between air pollution and COVID-19 (Figure 2B and

Table 2). IVW analysis suggested that there is no direct causal

relationship between them.

Third, we performed two sample MR to calculated the casual

correlation between obesity traits and COVID-19 (Figure 2C and

Table 3). IVW analysis indicated a positive causal relationship

between ASAT and COVID-19 susceptibility (p = 7.35E-03),

COVID-19 hospitalization (p = 5.88E-03). IVW analysis indicated

a positive causal relationship between BMI and COVID-19

susceptibility (p = 1.74E-27), COVID-19 hospitalization (p =

2.46E-40), COVID-19 severity (p = 1.44E-40). IVW analysis

indicated a positive causal relationship between HC and COVID-

19 susceptibility (p = 1.95E-07), COVID-19 hospitalization (p =

1.09E-09), COVID-19 severity (p = 1.64E-09). We also found a

positive causal relationship between OB1 and COVID-19

susceptibility (p = 1.20E-05), COVID-19 hospitalization (p =

7.97E-08), COVID-19 severity (p = 1.75E-07). There was a

positive causal relationship between OB2 and COVID-19

susceptibility (p = 1.51E-04), COVID-19 hospitalization (p =

5.77E-10), COVID-19 severity (p = 1.20E-07).

Meanwhile, our paper revealed a positive causal relationship

between VAT and COVID-19 susceptibility (p = 3.33E-03),

COVID-19 hospitalization (p = 1.23E-04), COVID-19 severity (p

= 2.24E-2). WC was positively related to the risks of COVID-19
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susceptibility (p = 1.44E-08), COVID-19 hospitalization (p = 3.23E-

16), COVID-19 severity (p = 5.99E-13). WHR was positively related

to the risks of COVID-19 susceptibility (p = 3.03E-04), COVID-19

hospitalization (p = 4.37E-05), COVID-19 severity (p = 3.32E-03).

In addition, MR Egger and Weighted median were used as

supplementary analysis methods for IVW, and detailed results are

presented in Supplementary Table S14. The above results suggested

that air pollution may indirectly increase the risk of COVID-19 by

affecting obesity, with obesity traits playing a mediating role.

Next, we to calculate the indirect effect played by obesity traits

in air pollution affecting COVID-19 (Figure 3 and Supplementary

Table S16). Our results found that PM2.5 indirectly increased the

risk of COVID-19 susceptibility by affecting BMI (OR = 1.01, 95%

CI = 1.00-1.02, p = 7.41E-03), OB1 (OR = 1.01, 95% CI = 1.00-1.02,

p = 2.05E-02), and WC (OR = 1.01, 95% CI = 1.00-1.02, p = 4.10E-

02). PM2.5 also indirectly increased the risk of COVID-19

hospitalization by affecting BMI (OR = 1.03, 95% CI = 1.01-1.06,

p = 6.82E-03), OB1 (OR = 1.04, 95% CI = 1.01-1.08, p = 1.49E-02),

and WC (OR = 1.04, 95% CI = 1.00-1.07, p = 3.44E-02). Moreover,

PM2.5 indirectly increased the risk of COVID-19 severity by

affecting BMI (OR = 1.05, 95% CI = 1.01-1.09, p = 6.82E-03),

OB1 (OR = 1.06, 95% CI = 1.01-1.10, p = 1.55E-02), and WC (OR =

1.05, 95% CI = 1.00-1.09, p = 3.61E-02) (Figure 3A and Table 4).

Moreover, NO2 indirectly increased the risk of COVID-19

susceptibility by affecting OB1 (OR = 1.01, 95% CI = 1.00-1.02,

p = 3.87E-02) and WC (OR = 1.01, 95% CI = 1.00-1.02, p = 4.16E-

02). Our data also indicated that NO2 indirectly increased the risk of

COVID-19 hospitalization by affecting HC (OR = 1.03, 95% CI =

1.00-1.05, p = 4.92E-02), OB1 (OR = 1.04, 95% CI = 1.00-1.07, p =

3.16E-02), and WC (OR = 1.04, 95% CI = 1.00-1.07, p = 3.49E-02)

(Figure 3B and Table 4).

Furthermore, NOx indirectly increased the risk of COVID-19

susceptibility by affecting HC (OR = 1.02, 95% CI = 1.00-1.03, p =

7.29E-03), OB2 (OR = 1.02, 95% CI = 1.00-1.03, p = 1.62E-03), WC

(OR = 1.02, 95% CI = 1.01-1.03, p = 5.85E-03), and WHR (OR =

1.01, 95% CI = 1.00-1.02, p = 2.95E-02). NOx indirectly increased

the risk of COVID-19 hospitalization by affecting HC (OR = 1.04,

95% CI = 1.01-1.07, p = 5.35E-03), OB2 (OR = 1.05, 95% CI = 1.02-

1.09, p = 5.41E-03), WC (OR = 1.06, 95% CI = 1.02-1.10, p = 3.26E-

03), and WHR (OR = 1.03, 95% CI = 1.00-1.06, p = 2.33E-02). NOx

indirectly increased the risk of COVID-19 severity by affecting HC

(OR = 1.06, 95% CI = 1.02-1.10, p = 5.45E-03), OB2 (OR = 1.07,

95% CI = 1.02-1.12, p = 7.30E-03), WC (OR = 1.07, 95% CI = 1.02-

1.13, p = 3.86E-03), and WHR (OR = 1.03, 95% CI = 1.00-1.07, p =

4.56E-02) (Figure 3C and Table 4).

Finally, to enhance the reliability of our results, we used MR-

Egger-intercept test, Cochran’s Q test, and leave-one-out analysis to

perform sensitivity analysis on our results (Supplementary Figures S1–

3 and Supplementary Table S15). The results of Cochran’s Q test in

IVW showed that there is basically no heterogeneity, and the MR-

Egger-intercept test and leave-one-out analysis showed that our results

are quite reliable. The F-statistic for the instrumental variables were all

greater than 10, also indicating the reliability of the results.
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FIGURE 1

Study design overview. (A) Explore the causal relationship between air pollution and obesity. (B) Explore the causal relationship between obesity and
COVID-19. (C) Explore the intermediary role of obesity between air pollution and COVID-19. Figure built by the Biorender.
A B C

FIGURE 2

IVW results of the causal relationship between air pollution, obesity, and COVID-19 risk. (A) IVW results of the causal relationship between air
pollution and obesity. (B) IVW results of the causal relationship between air pollution and COVID-19. (C) IVW results of the causal relationship
between obesity and COVID-19. The red color means the p-value is less than 0.05.
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Discussion

To date, several epidemiological studies have found that certain

airborne pollutants are risk factors for obesity and COVID-19 (34),

but the limitations of traditional observational study methods make

it difficult to establish a causal relationship between them. In this

paper, we conducted two-sample and two-step MR to assess the role

of air pollution exposure on obesity traits and COVID-19 based on

large-scale GWAS datasets. We found that prolonged exposure to

three air pollutant molecules (PM2.5, NO2, and NOx) increased the

risk of obesity, suggesting a causal relationship between them. There

is also a causal relationship between obesity traits and COVID-19

susceptibility, hospitalization and severity. Chronic exposure to
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three air pollution molecules (PM2.5, NO2, and NOx) did not

directly contribute to COVID-19 risk, but rather increased COVID-

19 susceptibility, hospitalization and severity by affecting obesity.

Given these findings, we believe that among those living in areas

with heavy air pollution, maintaining a healthy weight may help

prevent COVID-19 infections.

In recent years, numerous epidemiological studies have

explored the relationship between long-term exposure to air

pollution and obesity in different regions and populations.

However, the findings of these observational studies are

controversial. To date, most of the current evidence supports that

air pollution can contribute to the development of obesity in

children and adults, but there is also a small amount of evidence
TABLE 1 MR results of air pollution effects on obesity traits by IVW.

Exposure Outcome nSNP Beta LCI UCI p

PM2.5

ASAT 240 0.12 0.023 0.21 1.49E-02

BMI 99 0.082 0.024 0.14 5.73E-03

HC 119 0.058 -0.043 0.16 2.63E-01

OB1 113 0.38 0.11 0.65 6.31E-03

OB2 113 0.37 -0.048 0.79 8.27E-02

OB3 113 0.54 -0.21 1.30 1.59E-01

VAT 240 0.093 0.0026 0.18 4.38E-02

WC 118 0.094 0.0099 0.18 2.85E-02

WHR 119 0.074 -0.010 0.16 8.44E-02

NO2

ASAT 283 0.013 -0.083 0.11 7.87E-01

BMI 110 0.013 -0.047 0.074 6.69E-01

HC 133 0.10 0.0057 0.19 3.77E-02

OB1 127 0.33 0.055 0.61 1.90E-02

OB2 127 0.35 -0.10 0.80 1.27E-01

OB3 123 0.59 -0.13 1.31 1.10E-01

VAT 283 -0.0042 -0.090 0.081 9.23E-01

WC 131 0.090 0.0092 0.17 2.90E-02

WHR 132 0.077 -0.0093 0.16 8.04E-02

NOx

ASAT 240 0.070 -0.034 0.17 1.87E-01

BMI 99 0.062 0.00044 0.12 4.84E-02

HC 119 0.16 0.060 0.26 1.74E-03

OB1 113 0.28 0.019 0.55 3.60E-02

OB2 113 0.66 0.24 1.07 1.85E-03

OB3 113 1.16 0.42 1.90 2.10E-03

VAT 240 0.048 -0.047 0.14 3.20E-01

WC 118 0.15 0.057 0.24 1.61E-03

WHR 119 0.13 0.036 0.22 6.37E-03
Beta = log (OR). P < 0.05 were bolded.
PM2.5, Particulate matter air pollution; NO2, Nitrogen dioxide; NOX, Nitrogen oxides; ASAT, abdominal subcutaneous adipose tissue; BMI, body mass index; HC, hip circumference; OB1,
obesity class 1; OB2, obesity class 2; OB3, obesity class 3; VAT, visceral adipose tissue; WC, waist circumference; WHR, waist-to-hip ratio; UCI, Upper confidence interval; LCI, Lower confidence
interval.
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suggesting no relationship or a negative association between the

two. For example, Qian Guo et al. (35) found that the risk of

childhood obesity elevated by 10.0% (95% CI = 3.0-16.0%) for each

10 mg/m3 increment in PM2.5 exposure. Meanwhile, the risk
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associated with PM2.5 was significantly higher in groups that

were older or lived in urban areas. Another prospective cohort

study suggested a negative correlation between decreasing PM2.5

concentrations and the prevalence of obesity in children and
TABLE 3 MR results of obesity trait effects on COVID-19 by IVW.

Exposure Outcome nSNP Beta LCI UCI p

ASAT

Susceptibility

146 0.036 0.0098 0.063 7.35E-03

BMI 812 0.16 0.13 0.19 1.74E-27

HC 174 0.096 0.060 0.13 1.95E-07

OB1 88 0.035 0.020 0.051 1.20E-05

OB2 75 0.024 0.011 0.036 1.51E-04

OB3 37 0.0035 -0.0060 0.013 4.75E-01

VAT 140 0.046 0.015 0.076 3.33E-03

WC 160 0.12 0.079 0.16 1.44E-08

WHR 130 0.093 0.043 0.14 3.03E-04

ASAT

Hospitalization

140 0.083 0.024 0.14 5.88E-03

BMI 806 0.41 0.35 0.48 2.46E-40

HC 174 0.26 0.18 0.35 1.09E-09

OB1 88 0.11 0.069 0.15 7.97E-08

OB2 74 0.078 0.053 0.10 5.77E-10

OB3 37 0.014 -0.0073 0.036 1.95E-01

VAT 134 0.11 0.056 0.17 1.23E-04

WC 160 0.38 0.29 0.48 3.23E-16

WHR 130 0.23 0.12 0.34 4.37E-05

ASAT

Severity

141 0.077 -0.0058 0.16 6.84E-02

BMI 811 0.59 0.50 0.67 1.44E-40

HC 174 0.36 0.25 0.48 1.64E-09

(Continued)
TABLE 2 MR results of air pollution effects on COVID-19 by IVW.

Exposure Outcome nSNP Beta LCI UCI p

PM2.5

Susceptibility

249 0.040 -0.022 0.10 2.06E-01

NO2 289 0.054 -0.0072 0.12 8.35E-02

NOx 247 0.013 -0.052 0.079 6.92E-01

PM2.5

Hospitalization

247 0.10 -0.041 0.25 1.59E-01

NO2 287 0.084 -0.052 0.22 2.24E-01

NOx 247 0.039 -0.10 0.18 5.90E-01

PM2.5

Severity

247 0.044 -0.18 0.27 6.97E-01

NO2 288 0.15 -0.046 0.35 1.31E-01

NOx 247 0.12 -0.093 0.33 2.70E-01
Beta = log (OR).
PM2.5, Particulate matter air pollution; NO2, Nitrogen dioxide; NOX, Nitrogen oxides; UCI, Upper confidence interval; LCI, Lower confidence interval.
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adolescents, suggesting that cleaning up airborne pollutants could

prevent the development of obesity in these populations (36). Sara

Fioravanti et al. (37) found no association between exposure to

vehicle traffic-related air pollutants and obesity-related indicators

such as BMI and abdominal fat during childhood. Jian V Huang

et al. (38) found that high air pollutants in childhood were related to

a lower BMI at age 13 to 15 years.

Limited reports suggested that air pollution may contribute to

obesity by affecting adipocyte function through mechanisms such as

cellular inflammation or oxidative stress. For example, animal

experiments have shown that PM2.5 exposure may cause

metabolic disorders of lipid synthases and fatty acid transporter

proteins in adipose tissue and liver through the Nrf2/PPAR

pathway, leading to adipose tissue overgrowth (39). Cellular

experiments have shown that acute or chronic exposure to PM2.5

can lead to the overproduction of cytoplasmic reactive oxygen

species (ROS), induce oxidative damage and activate the oxygen-

sensitive NRF2 and NF-kB signaling pathways (40). In current

study, we confirmed, using Mendelian randomization analysis,

PM2.5 as a direct cause of various obesity-related parameters
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such as ASAT, BMI, OB1, VAT and WC. In addition, NO2 is a

direct cause of elevated risk for HC, OB1 and WC; and NOx is a

direct cause of elevated risk for BMI, HC, OB1, OB2, OB3, WC

and WHR.

The prevalence of overweight/obesity has continued to increase

worldwide over the past half century, currently affecting 2 billion

adults, with 770 million having obesity (41). Obesity is a major

health challenge because it greatly increases the risk of many

chronic diseases, which leads to reduced quality of life and life

expectancy (42). In particular, with the focus on COVID-19 from

2019, more and more people are focusing on the correlation

between obesity and COVID-19. Studies have shown that obesity

may influence the response and prognosis of COVID-19 through a

variety of mechanisms such as immune response, metabolic

abnormalities and the gut-lung axis (43). An observational study

that included 5,279 participants showed that COVID-19 patients

with a BMI ≥40 kg/m2 had a more than 2-fold increased risk of

hospitalization compared with patients of normal weight (OR = 2.

5; 95% CI = 1.8-3.4), after excluding the effects of age, gender, and

race (44). Similarly, in another study conducted by Norbert Stefan
TABLE 3 Continued

Exposure Outcome nSNP Beta LCI UCI p

OB1 89 0.14 0.089 0.20 1.75E-07

OB2 75 0.10 0.065 0.14 1.20E-07

OB3 37 0.031 -0.0046 0.066 8.87E-02

VAT 134 0.11 0.015 0.20 2.24E-02

WC 160 0.48 0.35 0.61 5.99E-13

WHR 131 0.26 0.087 0.44 3.32E-03
Beta = log (OR). P < 0.05 were bolded.
Abdominal subcutaneous adipose tissue, ASAT; Body mass index, BMI; Hip circumference, HC; OB1, obesity class 1; OB2, obesity class 2; OB3, obesity class 3; Visceral adipose tissue, VAT;
Waist circumference, WC; Waist-to-hip ratio, WHR; Upper confidence interval, UCI, Lower confidence interval, LCI.
A B C

FIGURE 3

The mediating role of obesity between air pollution and COVID-19. (A) The mediating role of obesity between PM2.5 and COVID-19. (B) The
mediating role of obesity between NO2 and COVID-19. (C) The mediating role of obesity between NOX and COVID-19. Figure built by the
Biorender.
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et al. (45), the adjusted OR for admission of COVID-19 inpatients

with currently states obesity or BMI >= 30 kg/m2 in the past 12

months was 1.43. Meanwhile, many evidence support that obesity is

a key indicator for the severity of COVID-19 inpatients (46, 47).

These studies generally concluded that obesity prolongs the time to

intensive care unit admission, intubation, and mechanical

ventilation in COVID-19 patients (48).

Another observational study including more than 140,000

COVID-19 patients showed that the adjusted risk ratio for

patients with BMI >=45 kg/m2 admitted to intensive care unit
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(ICU) was 1.16 (95% CI = 1.11-1.20). And, the adjusted risk ratio

for patients on mechanical ventilation increased from 1.12 (25-29.9

kg/m2) to 2.08 (BMI >= 45 kg/m2) (49). Further studies suggested

that obesity may increase the susceptibility and severity of COVID-

19 by upregulating the expression of angiotensin-converting

enzyme 2 receptors that bind to SARS-CoV-2 (50). Recent studies

suggested that obesity may potentially reduce the long-term efficacy

of COVID-19 vaccine by affecting the collective immune system,

suggesting that we should closely monitor the efficacy of COVID-19

vaccination in this vulnerable group of obesity (51). It has been
TABLE 4 Significant indirect effects of air pollution on COVID-19 mediated by obesity traits.

Exposure Mediate Outcome OR LCI UCI p

PM2.5

BMI

Susceptibility

1.01 1.00 1.02 7.41E-03

OB1 1.01 1.00 1.02 2.05E-02

WC 1.01 1.00 1.02 4.10E-02

BMI

Hospitalization

1.03 1.01 1.06 6.82E-03

OB1 1.04 1.01 1.08 1.49E-02

WC 1.04 1.00 1.07 3.44E-02

BMI

Severity

1.05 1.01 1.09 6.82E-03

OB1 1.06 1.01 1.10 1.55E-02

WC 1.05 1.00 1.09 3.61E-02

NO2

OB1
Susceptibility

1.01 1.00 1.02 3.87E-02

WC 1.01 1.00 1.02 4.16E-02

HC

Hospitalization

1.03 1.00 1.05 4.92E-02

OB1 1.04 1.00 1.07 3.16E-02

WC 1.04 1.00 1.07 3.49E-02

HC

Severity

1.04 1.00 1.08 4.95E-02

OB1 1.05 1.00 1.09 3.24E-02

WC 1.04 1.00 1.09 3.67E-02

NOx

HC

Susceptibility

1.02 1.00 1.03 7.29E-03

OB2 1.02 1.00 1.03 1.62E-02

WC 1.02 1.01 1.03 5.85E-03

WHR 1.01 1.00 1.02 2.95E-02

HC

Hospitalization

1.04 1.01 1.07 5.35E-03

OB2 1.05 1.02 1.09 5.41E-03

WC 1.06 1.02 1.10 3.26E-03

WHR 1.03 1.00 1.06 2.33E-02

HC

Severity

1.06 1.02 1.10 5.45E-03

OB2 1.07 1.02 1.12 7.30E-03

WC 1.07 1.02 1.13 3.86E-03

WHR 1.03 1.00 1.07 4.56E-02
Beta = log (OR).
PM2.5, Particulate matter air pollution; NO2, Nitrogen dioxide; NOX, Nitrogen oxides; ASAT, abdominal subcutaneous adipose tissue; BMI, body mass index; HC, hip circumference; OB1,
obesity class 1; OB2, obesity class 2; OB3, obesity class 3; VAT, visceral adipose tissue; WC, waist circumference; WHR, waist-to-hip ratio; UCI, Upper confidence interval; LCI, Lower confidence
interval.
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shown that the adipocyte membrane receptors ACE2, DPP4 and

CD147 as well as the expression of SARS-CoV-2 entry protease-

furin are upregulated in patients with obesity (52). These receptors

and proteins may therefore be potential targets for SARS-CoV-2

attack and contribute to the severe consequences of COVID-19 in

patients with obesity by enhancing systemic inflammation and

immune responses. However, these observational studies do not

provide powerful evidence for a causal correlation between obesity

and COVID-19 risk. In our MR study, we found that most obesity

traits, including BMI, HC, OB1, OB2, VAT, WC andWHR, directly

increase COVID-19 risk. Our findings are generally consistent with

previous observational studies and will provide theoretical support

for future prevention of COVID-19 and improved prognosis of

patients with COVID-19.

Long-term exposure to air pollution can damage the body’s

immune system to defend against external pathogens, which can

cause a lot of diseases. In recent years, several studies have shown

that exposure to air pollution, such as PM2.5, NO2, and O3, can

increase the susceptibility and severity of COVID-19 (9). Although

the molecular mechanisms by which pollutant exposure affects the

pathogenesis of COVID-19 remain unknown. Studies suggested

that air pollutants may contribute to virus transmission by

modulating mucociliary clearance, altered proteases required for

viruses, interferon production, mediated autophagy, immune

presenting cell activation, and epithelial cell permeability (34). An

epidemiological study from the United Kingdom found that PM2.5

was a major contributor to COVID-19 hospitalization in England,

with a 12% increase in COVID-19 cases for every 1 cubic meter

increase in the long-term mean PM2.5 (53). Moreover, the

relationship between air pollution and COVID-19 mortality

remained significant after adjusting for other relevant variables.

An observational study that collected data on COVD-19 from

3,087 countries in the United States showed that a 1 µg/m3 elevation in

PM2.5 increased COVID-19 mortality by 8% (95% CI: 2%-15%) (54).

In this present study, we used Mendelian randomization and found no

evidence that air pollution directly increased COVID-19 risk.

Interestingly, we found that air pollution can indirectly increase

hospitalization, susceptibility and severity of COVID-19 by

contributing to obesity. We found that PM2.5 and NOx increased

COVID-19 risk (hospitalization and susceptibility) through BMI.

PM2.5, NO2 and NOx increased COVID-19 susceptibility through

WC. NO2 and NOx increased COVID-19 hospitalization through HC.

NOx increased COVID-19 hospitalization through WC and WHR,

and increased COVID-19 severity through WC and HC. More

attention should be paid to those with obesity living in heavy air

pollution in terms of COVID-19 prevention and protection, because

obesity caused by air pollution might mediate increasing COVID-19

susceptibility, hospitalization and severity. Encouraging weight loss for

this population is needed.

According to our understanding, this is the first systematic

exploration of the causal correlation between air pollution and

COVID-19 and whether obesity traits play a possible mediating role

between them, using an MR approach. We used latest and

comprehensive GWAS data (exposure, mediators, and outcomes)

to systematically explore the relationship between the three, and will
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contribute in part to reducing the prevalence of obesity and

COVID-19 in the future, as well as raising awareness of

environmental protection. However, our study has several

limitations. First, our studies were based on online public

databases and, therefore, we could not validate them in our own

or other databases. Second, obesity may be only one of many

mediators of the risk of air pollution affecting COVID-19, and

there may be other mediators between the two. Third, this paper

only explored the causal correlation between air pollution, obesity

and COVID-19 using Mendelian randomization, and the exact

molecular mechanisms of the interactions still need to be explored

in future studies.
Conclusion

To summarize, this study exposes a causal relationship between

air pollution, obesity and COVID-19. Our results suggested that air

pollution can increase the risk of obesity and indirectly increase

COVID-19 susceptibility and severity through mediating factors

such as obesity. However, the specific mechanism of action between

the three has not been clarified, and the detailed pathological

mechanisms and molecular pathways need to be further explored

in future studies.
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Autoimmune polyglandular
syndrome type 4: experience
from a single reference center
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Elena Di Lodovico3, Elda Piovani4, Irene Zammarchi5,
Giorgia Gozzoli4, Virginia Maltese1, Maria Cavadini1,
Barbara Agosti3, Andrea Delbarba3, Ilenia Pirola1,
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Daniele Alfieri5, Walter Bremi5, Paolo Facondo1, Roberto Lupo4,
Francesco Bezzi4, Micaela Fredi4, Anna Maria Mazzola5,
Elena Gandossi3, Maura Saullo3, Fiorella Marini3,
Massimo Licini1, Letizia Chiara Pezzaioli1, Laura Pini6,
Franco Franceschini4, Chiara Ricci5 and Carlo Cappelli 1*

1Department of Clinical and Experimental Sciences, SSD Endocrinologia, University of Brescia, ASST
Spedali Civili of Brescia, Brescia, Italy, 2UOC Medicina Generale ad indirizzo Metabolico e
Diabetologico, ASST Spedali Civili of Brescia, Brescia, Italy, 3Sindacato Unico Medicina Ambulatoriale
Italiana e Professionalità dell’Area Sanitaria – SUMAI, Brescia, Italy, 4Department of Clinical and
Experimental Sciences, Rheumatology and Clinical Immunology, University of Brescia, ASST Spedali
Civili of Brescia, Brescia, Italy, 5Department of Clinical and Experimental Sciences, Gastroenterology
Unit, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy, 6Department of Clinical and
Experimental Sciences, Respiratory Medicine Unit, University of Brescia, ASST Spedali Civili of Brescia,
Brescia, Italy
Purpose: To characterize patients with APS type 4 among those affected by APS

diagnosed and monitored at our local Reference Center for Autoimmune

Polyglandular Syndromes.

Methods: Monocentric observational retrospective study enrolling patients

affected by APS diagnosed and monitored in a Reference Center. Clinical

records were retrieved and analyzed.

Results: 111 subjects (51 males) were affected by APS type 4, mean age at the

onset was 23.1 ± 15.1 years. In 15 patients the diagnosis of APS was performed

during the first clinical evaluation, in the other 96 after a latency of 11 years (range

1-46). The most frequent diseases were type I diabetes mellitus and celiac

disease, equally distributed among sexes.

Conclusions: The prevalence of APS type 4 is 9:100,000 people. Type I diabetes

mellitus was the leading indicator of APS type 4 in 78% subjects and in 9%

permitted the diagnosis occurring as secondmanifestation of the syndrome. Our
frontiersin.org01143

https://www.frontiersin.org/articles/10.3389/fendo.2023.1236878/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1236878/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1236878/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2023.1236878&domain=pdf&date_stamp=2023-10-23
mailto:carlo.cappelli@unibs.it
https://doi.org/10.3389/fendo.2023.1236878
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2023.1236878
https://www.frontiersin.org/journals/endocrinology


Gatta et al. 10.3389/fendo.2023.1236878

Frontiers in Endocrinology
data, showing that 50% of patients developed APS type 4 within the first ten years,

don’t suggest any particular follow-up time and, more importantly, don’t specify

any particular disease. It is important to emphasize that 5% of women developed

premature ovarian failure.
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1 Introduction

Autoimmune polyglandular syndromes (APS) are rare and

registered orphan diseases (ORPHAcode ORPHA:282196)

characterized by insidious presentation and circulating

autoantibodies and lymphocytic infiltration of one or more

endocrine glands, with possible additional involvement of non-

endocrine organs, eventually leading to organ failure (1–3).

There is a broad heterogeneity of APS and these manifest

sequentially with a variable time interval between the occurrence

of the diseases (4). The original classification into 4 types by Neufeld

et al. in 1980 was revised by Betterle and Zanchetta in 2003, sub-

classifying APS type 3 into four different sub-groups (5, 6). Indeed,

some authors considered only APS-1 and APS-2 and did not

consider APS-3 and APS-4 as independent entities (2, 7, 8).

APS type 1 (ORPHA:3453), due to different mutations of the

autoimmune regulator (AIRE) gene on chromosome 21, is

characterized by the presence of chronic candidiasis, chronic

hypoparathyroidism, and Addison’s disease (1, 6). It has onset in

childhood with an estimated prevalence of 1:80,000 live births (9)

and a slight female predominance (10).

APS type 2 (ORPHA:3143), associated with a genetic pattern of

human leukocyte antigen (HLA) DR3/DR4, is characterized by the

presence of Addison’s disease and autoimmune thyroid diseases

and/or type 1 diabetes mellitus (T1DM) (1, 6). The onset is

predominantly in young adulthood (2), with a prevalence of

1:20,000 and a sex ratio male/female 1:3 (11).

Autoimmune thyroid diseases associated with other

autoimmune diseases (excluding Addison’s disease and/or

hypoparathyroidism) fall under APS type 3 (ORPHA:227982) (1,

5, 12). This syndrome is subdivided into type 3A if associated with

other endocrine diseases, type 3B if associated with gastrointestinal

diseases, type 3C with skin, haemopoietic system or nervous system

diseases and type 3D with rheumatic diseases (6). The actual

incidence is estimated at 1:20,000 and it is three times more

frequent among women (11, 13). APS type 4 (ORPHA:227990)

includes all the different clinical combinations of autoimmune

diseases not included in the previous groups and affecting an

endocrine organ (with the exception of Addison’s disease, thyroid

diseases, or hypoparathyroidism) in combination with at least one

more endocrine or non-endocrine organs (1, 6). To the best of our

knowledge, there is scarce clinical data and no epidemiological data

on this category globally.
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The aim of the present study was to characterize patients with APS

type 4 among those affected by APS diagnosed and monitored at our

local Reference Center for Autoimmune Polyglandular Syndromes.
2 Methods

2.1 Subjects

All the medical records of patients referred for autoimmune

disease to the Units of Endocrinology, Diabetology, Gastroenterology,

Rheumatology and Clinical Immunology at the ASST Spedali Civili

in Brescia were retrospectively reviewed from January 2000 up to 30

November 2022. All the patients were screened for the most frequent

autoimmune endocrinopathies annually, as well as for Addison’s

disease and all autoimmune pathologies when clinically suspected. All

patients affected by Autoimmune Polyglandular Syndrome,

according to the ORPHAcode (ORPHA 282196, 3453, 3143,

227982, 227990), were included in this study. The study

(ASST_BS_CLIN_PZ_SPA-BS) was approved by the local Ethics

Committee (no 5517).
2.2 Clinical data collection

Clinical manifestations of APS type 4 [including type 1 diabetes

mellitus or latent autoimmune diabetes in adults (LADA),

premature ovarian failure, celiac disease, atrophic gastritis,

inflammatory bowel disease, rheumatoid arthritis, systemic lupus

erythematosus, scleroderma, Sjogren syndrome, mixed connective

tissue disease, vasculitis, antiphospholipid syndrome, primary

biliary cirrhosis, autoimmune hepatitis, alopecia areata,

autoimmune urticaria, myasthenia gravis, multiple sclerosis,

pernicious anemia, immune thrombocytopenia, vitiligo,

seronegative arthritis, ankylosing spondylitis, psoriasis,

pemphigoid], as well as related patient information such as sex,

onset age or age at diagnosis of the first and subsequent APS

manifestations, were retrospectively retrieved frommedical records.

Diagnosis was performed in accordance with good clinical practice

by antibody serology tests and, where required, histopathological

analysis (i.e., celiac disease, atrophic gastritis, systemic lupus

erythematosus, scleroderma, vasculitis, autoimmune hepatitis). In

agreement with ORPHANET classification all the patients affected
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or showing antibodies suggesting Addison’s disease, thyroid

diseases, or hypoparathyroidism were excluded from this study.
2.3 Statistical analysis

All data were collected in an electronic case report database.

Normal distribution was checked using the Shapiro-Wilk test.

Latency results were nonnormally distributed and were not

normalized by the usual procedures of data transformation; in

these cases, the results are presented as a median, with minimum

andmaximum values. Comparison between groups and differences in

proportion were calculated using the c2 test for categorical variables
and ANOVA for quantitative variables, as appropriate. Between-

group comparison was performed using the Student’s T-test for

unpaired data or Kruskal-Wallis test, as appropriate. The Kaplan-

Meier curve was fitted to determine the APS type 4 diagnosis time. A

p-value < 0.05 was considered statistically significant. The statistical

analyses were performed using SPSS 20.0 software (SPSS, Inc.,

Evanston, IL, USA). The results are reported in compliance with

the STROBE reporting guidelines for cross-sectional studies; the

checklist is reported in Supplementary File 1.
3 Results

A total of 9164 patients were referred to the Units of

Endocrinology, Diabetology, Gastroenterology, Rheumatology and

Clinical Immunology for autoimmune diseases. Among these, 1161

(12.7%) were diagnosed with any autoimmune polyglandular

syndromes in accordance with good clinical practice by antibody

serology tests and, where required, histopathological analysis, such as

for all patients with positive antibodies for celiac disease, atrophic

gastritis and/or vasculitis. Among the 1161 patients with APS, 111

(9.6%) subjects (51 males) were affected by APS type 4 (47.8 ± 17.1

years old, range 20-85) and were enrolled in the present study.

The mean age at the onset of APS was 23.1 ± 15.1 years, with no

significant difference between sexes (22.3 ± 15.2 vs. 23.8 ± 15.0 yrs, M/

F, p = .611). APS type 4 was diagnosed during first clinical evaluation in

15/111 (13.5%) patients (Group 1): celiac disease and multiple sclerosis

were concomitantly diagnosed during T1DM evaluation in 13 and 2

subjects, respectively (Table 1). These patients did not develop further

diseases during follow-up (14.3 ± 8.6, range 1-33 yrs).

APS type 4 was diagnosed in 96 patients in the years following

the first disease (range 1-46 yrs) (Group 2); in detail, the most

frequent first clinical manifestations were T1DM in 72/96 (75%)
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patients, celiac disease in 9 (9%) and vitiligo in 4 (4%) (Table 2).

Groups 1 and 2 were superimposable for age of disease onset (23.5 ±

13.3 vs. 23.0 ± 15.4 yrs, p=.292) and sex (8/7 vs 43/53, M/F, p=.537).

The development of APS over the years (Group 2) is shown in

Figure 1. The diagnosis was reached after a median latency of 11

years (range 1-46) [10 (range 1-46) vs. 11 (range 1.38), M/F,

p=.198]. 50% of subjects developed APS within ten years

(Figure 1). No difference was found after subdividing the first

clinical manifestation into the different diseases to which they

referred [11 (range 1-46) vs. 15.5 (range 1-29) vs. 9 (range 2-22)

for endocrine, gastroenterological, and rheumatologic diseases,

respectively, p=0.643] (Figure 2). Five patients developed two

subsequent concomitant manifestations (2 subjects had both

connective tissue disease and inflammatory bowel disease, 1

vitiligo and T1DM, 1 vitiligo and celiac disease and 1 celiac

disease and rheumatoid arthritis); 3/96 (3%) showed a third

disease with latency from the onset of the second of 34 years

(range 14-36). The developing features of APS are shown in Figure 3

and Table 3. The most frequent pathway was T1DM followed by

celiac disease occurring in 35 (48.6%) patients (15 males) with a

latency of 4 years (range 1-28); conversely, all the celiac patients

developed T1DM with a latency of 14 years (range 1-29) (Table 3).

The demographic characteristics of all patients affected by

autoimmune polyglandular syndrome Type 4 are reported in

Table 4. In detail, 108/111 (97%) subjects (51males) showed

T1DM. In 87/108 (81%) (40 males) it occurred as the first clinical

feature of APS with a mean age at the onset of 22.3 ± 14.8 years old.

Celiac disease was diagnosed in 57 (51%) patients (27 males),

occurring as first disease in 22 (39%) subjects (12 males) at the

age of 23.7 ± 16.3 years old. Rheumatoid arthritis was diagnosed in

12 (11%) patients (2 males). It occurred as first disease in two

females (28.5 ± 3.5 yrs) followed by premature ovarian failure

(POF) or T1DM after 17 and 22 years, respectively. Vitiligo was

diagnosed in 11 (10%) patients, and in 4 (2 males) as first

manifestation followed by three cases of diabetes mellitus and one

case of POF. This last condition was diagnosed in 3/60 women (5%),

showing anti-21-hydroxylase antibodies.
4 Discussion

The present study describes for the first time the prevalence of APS

type 4 among a large series of patients affected by autoimmune diseases.

Autoimmune polyglandular syndromes are rare orphan

diseases encompassing a wide spectrum of autoimmune disease,

with the involvement of endocrine and non-endocrine organs (1,
TABLE 1 Demographic and clinical characteristics of patients with diagnosis of APS type 4 at the first clinical evaluation.

Disease Number of
patients (%)

Sex
M/F

Overall mean age of
diagnosis (years)

Latency before second
manifestation (years)

Total follow-up from first
manifestation (years)

Type I diabetes mellitus
and celiac disease

13 (86.7%) 8/5 23.5 ± 14.3 NA 13.7 ± 6.9

Type I diabetes mellitus
and multiple sclerosis

2 (13.3%) 0/2 23.5 ± 4.9 NA 18.5 ± 20.5
NA, not applicable.
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10). There are many studies that describe these syndromes (2, 3, 6–

8, 11), but few articles, mainly series of case reports, have focused on

APS type 4. This can also be due to the fact that some Authors

consider APS type 2, 3 and 4 as different phenotypes of the same

underlying disease mechanism classifying them as a single entity (2,

7). However, taking in account that each APS type is uniquely

characterized by a unique endocrinopathy, we recognized them as

separate entity in agreement with the Resource of Rare Disease Co-

founded by the Health Programme of European Union (1).
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To the best of our knowledge, there is no data on its prevalence

reported worldwide (1, 14). One possible explanation could be the

large heterogeneity of conditions characterizing the syndrome, which

can lead to over- or under-diagnosis. In fact, the few studies about

APS type 4 include patients affected by autoimmune thyroid disease,

hypoparathyroidism and/or adrenal insufficiency that, according to

the Orphanet definition, exclude a priori APS type 4 (1). Another

reason could be the scarcity of studies performed in a large series of

patients affected by “trigger” diseases referred to a single center; we
FIGURE 1

Temporal trend of manifestation of the second disease.
TABLE 2 Demographic and clinical characteristics of patients developing APS type 4.

Disease Number of
patients (%)

Sex
M/F

Overall mean age of
diagnosis (years)

Median latency before
second manifestation (years)

Total follow-up from first
manifestation (years)

Type I diabetes
mellitus

72 (75.0%) 32/40 22.0 ± 15.1 11.5 (1–46) 26.7 ± 12.6

Celiac disease 9 (9.4%) 4/5 24.0 ± 19.8 13 (1-29) 24.2 ± 11.0

Vitiligo 4 (4.2%) 2/2 19.5 ± 15.2 9 (2-20) 24.3 ± 12.3

Psoriasis 3 (3.1%) 2/1 18.3 ± 6.5 9 (6-16) 31.3 ± 21.1

Inflammatory
bowel disease

2 (2.1%) 1/1 34.0 ± 26.9 19.5 (19-20) 25.5 ± 0.7

Rheumatoid
arthritis

2 (2.1%) 0/2 28.5 ± 3.5 14.5 (7-22) 23.5 ± 9.2

Premature
ovarian failure

1 (1.0%) 0/1 30 8 22

Seronegative
arthritis

1 (1.0%) 0/1 42 2 13

Ankylosing
spondylitis

1 (1.0%) 1/0 42 10 28

Primary biliary
cirrhosis

1 (1.0%) 1/0 41 20 32
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believe that this is the key point of the present study. As reported

above, we carefully selected patients affected by APS type 4, in

accordance with the ORPHAcode, among those referred to our

units for autoimmune diseases. Keeping in mind our data and

taking into account the population of our province (1,253,993

inhabitants) (15), the estimated prevalence of APS type 4 is 9 cases

per 100,000, thus classifying it as a rare disease as defined by the

European Union Regulation on Orphan Medicinal Products (1).

Again, no data about sex distribution are reported. However,

Frommer and Kahaly showed a sex ratio (M:F) of 1:3 in adult patients

affected by APS type 2, 3 and 4 (11). On the contrary, we found amale

to female ratio of 1:1 in our sample. Although most autoimmune

diseases are more common in females, no sex difference in the overall

incidence of youth T1DM is demonstrated (16, 17). Our ratio appears

to be in keeping with literature, since T1DM is present in almost all

patients (97%). T1DM is a key element in and for the diagnosis of

APS type 4. In fact, T1DM was the leading indicator of APS type 4 in

87/111 (78%) subjects and in 21/111 (19%) permitted the diagnosis as

the second manifestation of the syndrome.

About ten years ago, Van den Driessche et al. suggested a

flowchart for screening and follow-up of few associated

autoimmune disorders (autoimmune thyroid diseases, atrophic

gastritis, celiac disease, Addison’s disease, and vitiligo) in patients

affected by T1DM. With the exception of thyroid diseases, the

authors proposed an annual screening for the first three years and

then once every 5 years; the thyroid should be checked annually.

However, this recommendation covered all the autoimmune

syndromes except APS type 1 (18). Our data, showing that 50% of

patients developed APS type 4 within the first ten years, don’t suggest

any particular follow-up time and, more importantly, don’t specify

any particular disease (Figure 1). In other words, these data suggest a

lifelong follow-up, although the cost-effectiveness of this is yet to be

proven. However, in 68% of patients with T1DM developing celiac
Frontiers in Endocrinology 05147
disease this occurred within 10 years. For this reason, the screening of

celiac disease should be done very early since therapy of T1DM is

very difficult in patients with unknown celiac disease (19). In

addition, it is important to emphasize that 5% of women in our

series developed POF. These data reinforce what Li et al. previously

reported on the prevalence of autoimmune disorders in women

affected by POF (20). As is well known, this condition severely

affects women’s lives (21–25). For this reason, we suggest and

recommend that gynecologists perform regular check-ups with

complete blood exams during childbearing age for these patients.

Celiac disease was the second most frequent disease among our

patients (57/111, 51%). Literature data show that females are

affected approximately twice as often as males, although the ratio

varies depending on the strategy used to identify cases (26). Our

male to female ratio was instead 1:1 among our patients. As

reported above, this could be because all these patients were also

affected by T1DM, and celiac disease is known to be closely

associated with type 1 diabetes mellitus (27–31). These conditions

share the same HLA susceptibility alleles, specifically DR3/DQ2 and

DR4/DQ8 molecules (32). However, the co-occurrence of the

disorders is not fully explained by shared genetic risk loci (30).

Few studies in animal models (33, 34) and in humans (35) have

shown that celiac disease may trigger autoimmune processes

leading to diabetes. On the other hand, some authors have

reported the development of celiac autoantibodies after the onset

of diabetes (30, 36, 37). In line with this finding, 61% of our patients

developed celiac disease 1-28 years after T1DM diagnosis (Table 3).

As is widely known, it is the pathologic response to self- or

autoantigens that characterize autoimmune diseases. It is generically

categorized as autoimmunity or autoreactivity, which covers a wide

range of clinical disorders (38). The pathogenesis of autoimmune

disease is still largely unknown: familial or genetic, infectious,

immunologic, and psychological factors have all been implicated as
FIGURE 2

Temporal trend of manifestation of the second disease according to the first “trigger” disease.
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TABLE 3 Pathway of subsequent APS manifestation according to the first clinical feature.

Second disease Number of patients (%) Sex M/F Latency and range (years) Latency M/F (years) p

Type I diabetes mellitus as first disease

Celiac disease 35 (48.6%) 15/20 4 (1 – 28)
M 4 (1-28)

.198
F 4.5 (1-25)

Rheumatoid arthritis 9 (12.5%) 2/7 20 (3 – 38)
M 19.5 (14-25)

.397
F 20 (3 – 38)

Systemic lupus erythematosus 6 (8.3%) 2/4 11 (2 – 37)
M 22.5 (8-37)

.009
F 9 (2-20)

Vitiligo 6 (8.3%) 4/2 20 (2 – 40)
M 20 (2-40)

.696
F 15.5 (9-22)

Seronegative arthritis 5 (6.9%) 2/3 20 (12 – 36)
M 23 (12-34)

.512
F 20 (15-36)

(Continued)
F
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FIGURE 3

Developing features of APS in accordance with the first disease.
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triggers (39, 40). Consequently, it is reasonable to believe that once

the trigger, if any, activates the process, then it can be amplified.

Moreover, a recent observational study by Bechi Genzano et al.

showed that the circulating immune profile was similar in patients

diagnosed with T1DM and those affected by other autoimmune

diseases. The authors demonstrated an increase in CD4 T-cells and a
Frontiers in Endocrinology 07149
consensual reduction in natural killer (NK) cells and CD8 T-cells,

underlying a similar pathogenetic pathway (31). In addition, major

autoimmune disorders share much of their molecular background,

including class II HLA haplotypes (41–45). Houcken et al.

demonstrated that protein tyrosine phosphatase non-receptor type

22 (PTPN22) and cytotoxic T-lymphocyte associated protein 4
TABLE 3 Continued

Second disease Number of patients (%) Sex M/F Latency and range (years) Latency M/F (years) p

Inflammatory bowel disease 4 (5.6%) 2/2 25 (16 – 34)
M 31.5 (34-29)

.054
F 18.5 (16-21)

Multiple sclerosis 4 (5.6%) 1/3 24 (14 – 30)
M 24

NA
F 24 (14-30)

Atrophic gastritis 3 (4.2%) 1/2 8 (4 – 16)
M 4

NA
F 12.0 (8-16)

Psoriasis 3 (4.2%) 3/0 23 (12 – 46) M 23 (12-46) NA

Mixed connective tissue disease 2 (2.8%) 1/1 25 (21 – 29)
M 29

NA
F 21

Vasculitis 1 (1.4%) 1/0 8 M 8 NA

Immune thrombocytopenia 1 (1.4%) 1/0 3 M 3 NA

Celiac disease as first disease

Type I diabetes mellitus 9 (100%) 4/5 13 (1 – 29)
M 15.5 (2-27)

.684
F 9 (1-29)

Vitiligo as first disease

Type I diabetes mellitus 3 (75%) 2/1 7 (2 – 20)
M 11 (2-20)

NA
F 7

Premature ovarian failure 1 (25%) 0/1 11 F 11 NA

Psoriasis as first disease

Type I diabetes mellitus 3 (100%) 2/1 9 (6 – 16)
M 7.5 (6-9)

NA
F 16

Inflammatory bowel disease as first disease

Type I diabetes mellitus 2 (100%) 1/1 19.5 (19 – 20)
M 19

NA
F 20

Rheumatoid arthritis as first disease

Type I diabetes mellitus 1 (50%) 0/1 22 F 22 NA

Premature ovarian failure 1 (50%) 0/1 17 F 17 NA

Premature ovarian failure as first disease

Rheumatoid arthritis 1 (100%) 0/1 7 F 7 NA

Primary biliary cirrhosis as first disease

Vitiligo and Type I diabetes mellitus 1 (100%) 1/0 20 M 20 NA

Seronegative arthritis as first disease

Type I diabetes mellitus 1 (100%) 0/1 2 F 2 NA
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(CTLA-4) polymorphisms are also associated with autoimmune

polyglandular syndromes (46). Most recently, evidence by Fichna

et al. appears to show that BTB domain and CNC homolog 2

(BACH2) gene polymorphism, implicated in lymphocyte

differentiation and function, may also promote multitarget

autoimmunity (47). Genetic screening is growing popular to

identify patients at risk of autoimmune disorders, though this

remains too expensive to be included in routine clinical

management and is not readily available. Furthermore, there is still

a lack of evidence as to the usefulness of this process in daily clinical

practice. Therefore, we have no genetic screening data for the patients
Frontiers in Endocrinology 08150
in our study. It is also widely accepted that autoantibodies play a

crucial role in the diagnosis of autoimmune disease, especially in the

early phases when the patient is still asymptomatic and biochemical

markers are normal (7). In a minority of cases, however, patients may

not show any autoantibodies, a condition that is referred to as

seronegative autoimmune diseases, as recently reviewed by Lenti

et al. (48). In these cases, the diagnosis is more challenging and must

rely on clinical features and other available tests, often including

histopathological evaluation and radiological diagnostic tests. In all

our patients, the diagnosis was confirmed by the presence of serum

autoantibodies and/or histopathological specimens.
TABLE 4 Overall demographic and clinical characteristics of APS patients.

Disease Number of
patients (%)

Sex
M/F

Overall mean age of
diagnosis (years)

Mean age of diagnosis
M/F (years)

p Disease 1st –
2nd – 3rd

Type I diabetes
mellitus

108 (97.3%) 51/57 25.4 ± 16.4
M 25.2 ± 16.8

.828 87 – 20 – 1
F 25.6 ± 16.2

Celiac disease 57 (51.4%) 27/30 25.7 ± 15.3
M 23.6 ± 14.2

.767 22 – 35 – 0
F 25.7 ± 15.3

Rheumatoid arthritis 12 (10.8%) 2/10 40.5 ± 15.0
M 36.7 ± 27.4

.032 2 – 10 – 0
F 41.7 ± 12.0

Vitiligo 11 (9.9%) 7/4 37.1 ± 18.8
M 37.8 ± 24.8

.009 4 – 7 – 0
F 36.0 ± 5.4

Inflammatory bowel
diseases

6 (5.4%) 3/3 47.2 ± 19.7
M 45.3 ± 7.5

.068 2 – 4 – 0
F 49.9 ± 30.0

Systemic lupus
erythematosus

6 (5.4%) 2/4 14.2 ± 13.0
M 22.5 ± 20.5

.018 0 – 6 – 0
F 10.0 ± 8.5

Multiple sclerosis 6 (5.4%) 1/5 29.7 ± 8.6
M 42

NA 2 – 3 – 1
F 27.2 ± 6.8

Psoriasis 6 (5.4%) 5/1 30.0 ± 18.3
M 33.6 ± 17.9

NA 3 – 3 – 0
F 12

Seronegative
arthritis

5 (4.5%) 1/4 27.8 ± 17.1
M 12

NA 1 – 3 – 1
F 31.8 ± 16.9

Atrophic gastritis 3 (2.7%) 1/2 39.0 ± 19.5
M 59

NA 0 – 3 – 0
F 20.0 ± 12.7

Premature ovarian
failure

3 (5.0%) 0/3 36.3 ± 5.7 F 36.3 ± 5.7 NA 1 – 2 – 0

Mixed connective
tissue disease

2 (1.8%) 1/1 58.5 ± 19.1
M 45

NA 0 – 2 – 0
F 72

Immune
thrombocytopenia

1 (0.9%) 1/0 17 M 17 NA 0 – 1 – 0

Vasculitis 1 (0.9%) 1/0 63 M 63 NA 0 – 1 – 0

Primary biliary
cirrhosis

1 (0.9%) 1/0 41 M 41 NA 1 – 0 – 0

Ankylosing
spondylitis

1 (0.9%) 1/0 42 M 42 NA 1 – 0 – 0
NA, not applicable.
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The main limitations of the present study are its retrospective

nature and the possible patient drop-out during follow-up after the

diagnosis of the first “trigger” disease. The latter is a key point, as it

could reduce the prevalence of APS in our cohort of patients.

Unfortunately, we have no data on patient drop-out precisely due

to the retrospective nature of the study. Indeed, it is unlikely that all

these patients were affected by APS type 4. Finally, we must state that

a possible bias of case selection is possible since the data collection has

been performed in a reference center for autoimmune diseases.

However, the large set of patients, the careful selection procedure

and detailed analysis of patient clinical records strengthen our results.

In conclusion, the prevalence of APS type 4 is 9:100,000 people.

Type 1 diabetes mellitus, for its high prevalence among our patients,

could be the clinical “driver” of this syndrome: for this reason,

diabetologists should pay particular attention during clinical

examinations of T1DM patients. Our data don’t suggest any

particular follow-up time and, more importantly, don’t specify

any particular disease, but only indicate a lifelong follow-up.

Finally, we recommend regular gynecological evaluations with

complete blood exams during childbearing age due to the non-

negligible risk of developing premature ovarian failure.
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Center, General Hospital of Chinese People’s Liberation Army, Beijing, China, 4Trauma Repair and
Tissue Regeneration Center, Department of Medical Innovation Study, General Hospital of Chinese
People’s Liberation Army, Beijing, China
Purpose: We sought to identify distinct risk factors for hyperuricemia in native

Tibetan and immigrant Han populations in Tibet, China.

Methods: Three cohorts of male participants aged between 20 and 40 years

were enrolled in this study. Biochemical parameters including serum uric acid

(UA), fasting plasma glucose, insulin, lactate dehydrogenase (LDH), thyroxin,

blood cell count, aminotransferase, and lipid profiles were analyzed. The

association of risk factors with UA levels was evaluated using a multivariable

line regression model. The effect of UA level on the biochemical parameters

between the Hans and Tibetans was evaluated by two-way ANOVA.

Results: The prevalence of hyperuricemia (≥420 mmol/L) was 24.8% (62/250) in

the Hans, similar to 23.8% (29/136) in the Tibetans. In the regression analysis, the

risk factors that were significantly associated with UA in Hans did not apply to

Tibetans. Tibetans had higher fasting insulin (P<0.05) and LDH (P<0.01) levels, in

contrast with lower levels of triglycerides (P<0.05), total cholesterol (P<0.01), and

low-density lipoprotein-cholesterol (P<0.01) than Hans in normal UA

populations. Biochemistry analysis revealed lower albumin levels (P<0.001) and

higher levels of all aminotransaminase and especially alkaline phosphatase

(P<0.01) in Tibetans than in Hans in both populations. Compared with Hans,

Tibetans had lower serum levels of urea, creatinine, and electrolytes in the

normal UA population, which were further exacerbated in the high UA

population. Tibetans had comparable white blood cell counts as Hans in both

normal and high UA populations. In contrast, the red blood cell count and

hemoglobin concentration were much lower in Tibetans than in Hans under high

UA conditions.
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Conclusions: The distinctive biochemistry between Tibetans and Hans may

underlie the different etiologies of hyperuricemia in Tibet, China.
KEYWORDS

Tibetan, hyperuricemia, hypoxia, glycolysis, aminotransferase, lipid metabolism, red
blood cell
GRAPHICAL ABSTRACT
Introduction

Uric acid (UA) is the end product of purine metabolism and

plays a key role in the pathogenesis of gout and other diseases

including diabetes, hypertension, and chronic kidney disease. In

addition, hyperuricemia is significantly associated with the

prevalence of metabolic syndrome (MS) (1, 2). The prevailing

view is that the prevalence of hyperuricemia in Chinese Tibet is

much higher than that in other parts of China, except for one study

that reported a relatively lower prevalence of gout (0.30%) and

hyperuricemia (1.83%) in Naqu, Chinese Tibet (3). However, the

prevalence of hyperuricemia in immigrants in Chinese Tibetan

region was 37.2% in Ganzi (4), 54.2% in Shannan (5), and 40.7% in

general Tibetans region (1). In contrast, the prevalence of

hyperuricemia was 13.3% in inland China (6), 6.4% in Chinese

middle-aged and older adults (7), 10.2% in Chinese rural areas (8),

and 15.4% in Hans from northwest China (9). In two Italian

population, the prevalence of hyperuricemia (>7.0 mg/dL) in men

was 12.9% (56/435) (10) and 7.3%, respectively (11). Regarding

ethnicity, the prevalence of hyperuricemia was much higher in

Tibetans than in Hans (58.8% vs. 28.4%, P<0.001) in the same

Tibetan region (4). Several factors have been suggested to contribute

to the high prevalence of hyperuricemia in the Tibetan Plateau,
02154
including MS components (1), ethnicity, dietary habits, hypoxic

environment, and gene polymorphisms (12).

Nowadays, with the development of economy and tourism,

more inlanders would settle in Chinese Tibet area. The above

surveys raised a great concern that Han inlanders accumulated

increasing levels of UA if they assimilated into the high altitude as

Tibetan highlanders. It has been reported that the clinical indices of

Hans were increasingly similar to those of Tibetans with their

plateau living (13). Tibetans have undergone natural selection

toward a phenotype of exceptional tolerance to hypobaric hypoxia

compared to non-Tibetans living at the same altitude (14).

Adaptation to acute hypoxia consists of a variety of physiological,

metabolic, and molecular changes, such as increased uptake and

oxidation of circulatory glucose during exercise (15), increased

circulating nitric oxide metabolites (16) to increase vasodilatation

and blood flow (16), a shift from aerobic to anaerobic metabolism

that favors glycolytic over fatty acid energy supply (17, 18), an

increase in muscle glucose toward the pentose phosphate pathway

(PPP) (19) to improve muscle energetic performance (18), and

protection against oxidative stress (18) with decreased hemoglobin

concentration [Hb] (20). The advantageous haplotype of

peroxisome proliferator-activated receptor alpha (PPARA) is

associated with a lower capacity for fatty acid oxidation in
frontiersin.org
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skeletal muscle in Tibetans (21) and in high-altitude Sherpas (18).

Adaptation to chronic hypoxia also involves relat ive

hypometabolism in the brain to minimize the impact of oxygen

limitation (22). Therefore, it is necessary to elucidate the different

adaptive mechanisms underlying hyperuricemia between

immigrant Hans and native Tibetans on the Chinese

Tibetan Plateau.

A high-altitude environment features sustained hypobaric

hypoxia (23). Acute hypoxia directly enhances UA production

and secretion. The phosphorylation of critical enzymes for UA

production, xanthine dehydrogenase/xanthine oxidase (XO), was

greatly increased (50-fold) in response to acute hypoxia in rat

pulmonary microvascular endothelial cells (24). Adipose tissue

has abundant expression and activity of xanthine oxidoreductase

(XOR). Adipocyte UA secretion increases under hypoxia (25).

Furthermore, it was demonstrated that hypoxia diminishes

adenosine triphosphate (ATP) utilization by downregulating the

activity of Na-K-ATPase in proximal renal tubular epithelial cells

(26), limiting renal filtration and excretion ability in rats (27). These

findings emphasize that exposure to a hypobaric hypoxic

environment may play a crucial role in the pathogenesis of

hyperuricemia in the Tibetan Plateau. The discrepancy in

evolutionary adaptation toward the cruel environment between

the Hans and Tibetans may underlie the unique etiology of

hyperuricemia in Tibetans.

However, most of the related studies in Tibetans were on

middle-aged or old populations who had already assimilated to

high altitudes for many years and may have developed other

confounding diseases. Considering that hypoxic research on

healthy individuals at high altitudes may be translated into

hypoxemic critically ill patients in a hospital setting (14), we

carried out a thorough survey of three cohorts of populations

aged 20-40 years and compared the biochemical profiles between

native Tibetans and immigrant Hans on the Chinese Tibetan

Plateau. We aimed to identify the distinctive mechanism

underlying the high incidence of hyperuricemia in highland

Tibetans and inland Hans acclimatizing to high altitudes.
Methods

Study participants

All study protocols were approved by the ethics committee of

the Chinese PLA General Hospital (approval identifier S2021-016-

01) and were in accordance with established national and

institutional ethical guidelines. The study was clearly described to

all participants who signed informed consent forms before the

collection of blood and personal information. Healthy adults aged

18-60 years old who had lived in the Tibetan region for > 1 year

were included in the study. Participants with major operation,

tumor, severe lung, heart, digestive, or endocrine diseases

were excluded.
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Survey method and data collection

A comprehensive questionnaire, including questions on

demographics, medical history, and lifestyle risk factors, was

administered by the staff at local health stations according to a

standard protocol. Systolic blood pressure (SBP) and diastolic blood

pressure (DBP) were measured using a standardized automatic

electronic sphygmomanometer (Omron HEM-770A). Body weight

(BW) and height were measured, and body mass index (BMI) was

calculated as weight/height2 (kg/m2).
Sample collection

From April 2018 to October 2022, we recruited three groups of

healthy male adults (18-60 years old) from both the Han and

Tibetan populations in the Chinese Tibetan region (Table 1).

Routine physical examinations were conducted in three counties

at three altitudes: Lhasa (altitude: 3670-3835 m), Nyingchi (altitude:

approximately 2900 m), and Naqu (altitude:4298-4352 m). Group

A (n=149) covered suburban Lhasa and Nyingchi, including

teachers, students, soldiers, workers, and a few farmers. A

standard questionnaire, including information on diet, exercise,

altitude, and smoking, was administered. Plasma samples from

Group A transported and subjected to thorough biochemical

analysis in Beijing, China. Group B (n=226) covered only urban

Lhasa and mainly consisted of civil servants, with a few items of

biochemistry and routine blood cell counts analyzed immediately

on site. Group C (n=111) recruited young adults in Tibetan Naqu,

with routine blood cell counts and a few biochemical parameters

analyzed immediately at the local station (Table 1). Sampling was

conducted between April and October to avoid seasonal variation.

To avoid possible systematic errors, doctors (XWR) instructed local

medical staff and monitored the data col lect ion and

detection procedures.
Collection of blood and measurements

Fasting venous blood (8 ml) was collected in EDTA-K2 tubes.

Hematological parameters were determined immediately using an

automated hematology analyzer (Sysmex KX-21, Japan). Blood

samples were separated by centrifugation at 4,000 rpm for 10 min

within 4 h and then stored at -80°C (Group A) or subjected to

automatic analysis of a few biochemical indicators (Hitachi 7180,

Japan) immediately in Tibetan Peoples’ Hospital (Group B) or

Naqu Peoples’ Hospital (Group C).

Plasma samples in Group A were transported and assayed in the

Department of Laboratory Medicine of Chinese PLA General

Hospital (Beijing) (Group A), including UA, glucose, lactate

dehydrogenase (LDH), albumin, alanine aminotransferase (ALT),

aspartate aminotransferase (AST), g-glutamyl transferase (GGT),

total bilirubin (TBIL), and direct bilirubin (DBIL); renal
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parameters, including creatinine, urea, and cystatin C; and lipid

parameters, including triglyceride (TRIG), total cholesterol

(TCHOL), high-density lipoprotein cholesterol (HDL-CH), low-

density lipoprotein- cholesterol (LDL-CH), and electrolytes, using

an automatic biochemical immunity analyzer (Cobas 8000, Roche,

USA). The remaining plasma (1.5 ml) was used for hormone assays.

The thyroxin concentration was determined using an automated

chemiluminescence immunoassay analyzer (ADVIA Centaur®XP,

S i emens , Ge rmany ) . In su l in was de t e c t ed u s ing a

chemiluminescence immunoassay analyzer (Cobas e601; Roche,

Switzerland). Tissue nonspecific alkaline phosphatase (ALP) was

detected using colorimetry (Roche Diagnostic GMBH,

Mannheim, Germany).

Definitions of hyperuricemia

Considering that the males predominate over the females in the

incidence of hyperuricemia (1, 4), because of the limitation of the

page space and concision of the study, we only present the male data

this time. Hyperuricemia in males was defined as a fasting serum

UA level≥420 mmol/L according to Chinese guidelines (28).
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Statistical analyses

The normality of the variables was analyzed using the “Shapiro-

Wilk test.” The mean and standard deviation were used to describe

variables that met the normal distribution, and the median and

interquartile (IQR) distance were used to describe variables that did

not meet the normal distribution. GraphPad Prism 9.0 (GraphPad

Software, USA) was used for data analysis. The two ethnic

populations in Group A (Lhasa and Nyingchi) were subjected to

multiple line regression analysis to estimate the associations

between the major indices and UA levels, including age, altitude,

BMI, and biochemical parameters. Where the dependent variable

was affected by UA level and ethnicity, the data were analyzed using

two-way ANOVA. When the main effect or interaction was

significant, post-hoc analyses using the Bonferroni correction were

performed. Differences between subjects were analyzed using the

Chi-squared test or Fisher’s exact test for categorical data.

Group B (Lhasa) was subjected to the calculation of the

correlation coefficients (r) between the red blood cell (RBC)

profile and UA level using Pearson’s analysis. A two-sided P<0.05

was considered statistically significant. Multivariate line regression
TABLE 1 Charactteristic of the three populations in high-altitude regions of Tibet, China.

Population Time Demography
Ethnicity

P value
Hans Tibetan

Group A (n=149) Apr, 2018

n 80 69

Age (year), median (IQR) 25 (21-30) 29 (18-41) 0.032

Location Lshsa and Nyingchi,Tibetan

Livelihood teachers, student, soldiers, worker,farmer,herdsman

Altitude 3670-3835 m, 2900 m

Sample analysis PLA General Hospital, Beijing

Hyperuricemia, n (%) 50 (62.5) 24 (34.8)

Group B (n=226) Jan-Dec, 2018

n 70 156

Age, median (IQR) 33 (24-47) 42 (33-52) 0.004

Location Lshsa,Tibetan

Livelihood civil servant

Altitude 3670-3835 m

Sample analysis Lshsa Peoples’ Hospital, Lshsa, Tibet

Hyperuricemia, n (%) 31 (44.3) 51 (32.7)

Group C (n=111) Oct, 2018

n 46 65

Age, median (IQR) 20 (19-22) 19 (18-20) 0.020

Location Naqu,Tibetan

Livelihood student,worker,farmer,herdsman

Altitude 4298-4352 m

Sample analysis Naqu Peoples’ Hospital, Naqu, Tibet

Hyperuricemia, n (%) 16 (34.8) 13 (20.0)
fro
IQR, interquartile range; PLA, Peoples Republic of Chima.
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was used to analyze the associations between RBCs indices and UA

levels in the two populations.

Group C (Naqu) was used for the comparison of demography,

RBCs profile, and blood cell count between Hans and Tibetans. The

Mann–Whitney U test or unpaired t test was used for

intergroup comparisons.
Results

Characteristics of the three cohorts
of populations

The three groups of populations covered the ages 20-30 (Group

A), 30-40 (Group B), and 19-20 (Group C) years old. Tibetans were

older than Hans in the former two populations, whereas they were

younger than Hans in Group C (Table 1).

The survey of Group A was based on a sample drawn from a

larger population. We first enrolled 250 Hans and 136 native

Tibetans for general physical examinations. The incidence of

hyperuricemia was 24.8% in the total Han population (62/250)

with a median (IQR) age (years) of 24 (21-28) and 23.8% in the total

native Tibetan population (29/136) with a median (IQR) age of 31
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(19-46). From the above population, we matched samples with

similar ages and backgrounds into Group A for the following

thorough biochemistry analysis, in which the Hans (n=85) were

still younger than the Tibetans (years) (n=64) [25 (21-30) vs. 29 (18-

41), P=0.032]. However, there was no difference in age between the

subgroups (Table 2). The median (IQR) length of residence (years)

for the Hans in Tibet was similar between the subgroups with high

UA and normal UA levels [3.3 (1.3-7.8) vs. 3.7 (1.3-6.3), P=0.53].

Intriguingly, in the normal UA populations of Group A, the

Tibetans had heavier BW in contrast with shorter height than the

Hans, leading to higher BMI than the Hans (Table 2). The Tibetans

had different professional compositions and dietary habits, but

more alcohol consumption and were more likely to develop

hypertension in both normal and high UA populations, and less

exercise than Hans in normal UA populations.

In Group B, the Hans (n=70) were also younger than Tibetans

(n=156) [33 (24-47) vs. 42 (33-52) (year), P=0.004]. The incidence

of hyperuricemia was 44.3% in the Hans and 32.7% in the Tibetan.

In Group C, the Hans (n=46) were slightly older than native

Tibetans (n=65) (P=0.019). The Hans had a higher height and

heavier BW than the Tibetans, resulting in an identical BMI. The

incidence of hyperuricemia was 40.0% in the Hans and 18.2% in the

Tibetan. Both populations had similar blood pressure and heart
TABLE 2 Comparison of the characteristic between Tibetans and Hans in Tibet, China (Group A).

Variates

Hans Tibetan
P value (Hans
vs.Tibetan)

normal
(n=30)

high
(n=55)

P
value

normal
(n=37)

high
(n=27)

P
value

Normal High

age (year; median, IQR)
23.0 (21.0-

35.0)
26.0 (21.0-

30.0)
0.11

20.0 (17.0-
41.5)

32.0 (25.0-
46.0)

0.61 0.09 0.71

Height (cm)
173.5 (168.0-

177.0)
173.0 (169.0-

176.0)
0.60

168.5(160.0-
173.8)

175.0(169.3-
180.0)

0.002 0.011 0.31

Body weight (kg)
67.0 (58.8-
122.5)

70.0 (62.0-
88.5)

0.59
100.0 (92.00-

140.0)
90.0 (80.0-
103.0)

0.21 0.017 0.11

BMI (median, IQR)
22.50 (20.0-

44.0)
23.5 (21.0-

29.0)
0.44

37.5(32.0-
47.8)

29.5 (25.3-
35.8)

0.13 0.014 0.10

Length of stay in Tibetan 3.7 (1.3-6.3) 3.3 (1.3-7.8) 0.57
18.8 (16.5-

40.6)
31.3 (17.4-

42.0)
0.16 <0.0001 <0.0001

altitude (1<3000m,2:3000-4000m,3≥4000m) 0.38 0.53 0.06 0.45

1 3 2 2 1

2 27 52 29 24

3 0 1 6 2

Profession (1:teacher,2:student,3:army,4: civil
servant,5:worker, 6:farmer)

0.17 0.005 <0.0001 <0.0001

1 6 7 5 4

2 0 0 23 7

3 11 37 0 2

4 2 4 4 4

5 7 5 0 7

(Continued)
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rates (Table 3). The Tibetans differed from the Hans in an extremely

long Tibetan dwelling time (year) [19.0 (18.0-20.0) vs. 2.0 (1.0-4.0),

P<0.001], more meat in diet and water intake, more tap water over

purified water, and less exercise (all P<0.001). Nonetheless, Tibetans

had fewer signs of acute and chronic altitude sickness.
Distinct risk factors associated with serum
UA between the Hans and the Tibetans

Consistent with previous reports (1, 29), almost all risk factors

associated with MS were significantly associated with UA levels in

the Han popu la t ion , inc lud ing age , a l t i tude , BMI ,

aminotransaminase, the product of heme catabolism (bilirubin),

cholesterol transporter (HDL), a biomarker for glomerular filtration

rate (cystatin C), glucose, and insulin levels (Table 4). Meanwhile,

factors that were not significantly associated with serum UA levels
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in Hans were lipid metabolism and transportation (total TRIG,

TCHOL, and LDL-C3), renal function (creatinine and urea),

metabolism of extracellular nucleotides (ALP), and glycolysis

(LDH) (Table 4). Unexpectedly, none of the above factors

contributed to UA levels in Tibetans, suggesting a distinct

mechanism underlying hyperuricemia in native Tibetans.
The Tibetans showed heightened insulin
resistance and glycolysis compared
to the Hans

The normality of biochemical indicators in the three groups was

tested (Supplementary 1). We then investigated glycolysis, which

may allow ATP to be rapidly generated in hypoxic cells. In Group A,

although the glucose levels were similar between the Hans and

Tibetans in the normal UA populations, they were increased by
TABLE 2 Continued

Variates

Hans Tibetan
P value (Hans
vs.Tibetan)

normal
(n=30)

high
(n=55)

P
value

normal
(n=37)

high
(n=27)

P
value

Normal High

6 4 2 5 3

diet (1:meat,2:vegetable,3:balanced) 0.41 0.08 0.0001 0.016

1 4 10 18 12

2 4 3 11 3

3 22 42 8 12

Alcohol(1:never,2:seldom,3:often) 0.73 0.63 0.015 0.14

1 13 19 5 6

2 16 34 27 17

3 1 2 5 4

water intake(1<1000ml,2:1000-2000ml;3≥2000m) 0.45 0.40 0.09 0.13

1 10 20 5 5

2 13 28 25 20

3 7 7 7 2

exercise (1:never,2:seldom,3:often) 0.16 0.34 0.003 0.06

1 2 1 1 3

2 11 31 29 18

3 17 23 7 6

Gout (n,%) 0 5 0.16 2 2 0.74 0.20 0.80

Hypertension (n,%) 0 1 0.46 6 4 0.88 0.021 0.021

Pulmonary arterial hypertension(n,%) 0 0 0 0

Biliary/renal calculus(n,%) 0 1 0.46 1 0 0.39 0.36 0.48

Gastropathy (n,%) 5 3 0.09 8 2 0.12 0.61 0.73

Hepatitis (n,%) 0 1 0.46 1 0 0.39 0.36 0.48

Tuberculosis (n,%) 0 1 0.46 0 2 0.09 - 0.21
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TABLE 3 Comparison of the biochemistry between the Hans and the Tibetans in Naqu, Chinese Tibetan region (Group C).

WBC
(109/L)

Eosinophil
(109/L)

Lymphocyte
(109/L)

Neutrophil
(109/L)

Platelet
(109/L)

MPV (fL) P-LCR%

7.65 (5.8-
9.5)

0.5 (0.4-0.7) 1.60 (1.38-2.00) 5.5 (3.8-7.0)
239.5 (184.3-

259.8)
9.6 (8.8-10.2)

0.22 (0.17-
0.26)

8.15 (5.95-
10.8)

0.6 (0.5-0.8) 1.65 (1.48-2.10) 5.7 (3.8-7.7)
215.5 (166.8-

256.8)
9.8 (9.3-11.3)

0.24 (0.19-
0.35)

0.57 0.55 0.59 0.65 0.32 0.036 0.038

MCH (pg) MCHC (g/L) RDW-SD (fL) RDW-CV (%) RDW %
Uric acid
(mmol/L)

Glucose
(mmol/L)

32.5 (1.5) 357 (352-364) 43.2 (3.5)
0.140 (0.134-

0.143)
11.2 (10.2-

12.6)
373 (362-

382)
3.70 (0.10)

32.9 (2.6) 369 (352-378) 43.2 (4.1)
0.138 (0.131-

0.143)
12.1 (10.7-

14.2)
400 (361-

489)
3.31 (0.44)

0.38 0.76 0.94 0.93 0.40 0.37 0.22

IBIL (mmol/
L)

ALT (U/L) ALP (U/L) GGT (U/L)
Urea (mmol/

L)
Creatinine
(mmol/L)

6.5 (5.4-8.3) 23 (17-30) 102 (79-141) 23 (21-26) 8.85 (1.95) 94.0 (14.0)

9.8 (7.1-
14.8)

24.5 (20.0-40.0) 93 (73-119) 19 (17-24) 8.21 (1.17) 93.3 (10.2)

<0.001 0.20 0.27 0.52 0.36 0.16

dy mass index; RDW, red cell distribution width; MPV, mean platelet volume; BIL, bilirubin; WBC, white blood cell; RBC, red blood cell; SPO2, blood
hemoglobin concentration; RDW, red distribution width; SD, standard deviation; CV, coefficient of variation; MPV, mean platelet volume; P-LCR,
TBIL, total bilirubin; DBIL, direct bilirubin.
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Variate Age (y)
Dwelling
time (y)

Height
(cm)

Body
weight (kg)

BMI

Tibetan,
median (IQR)

19 (18-20) 19 (18-20)
164 (161-

168)
56.0 (50.5-22.0) 20 (19-22)

Hans, median
(IQR)

20 (19-22) 2 (1-4)
170 (168.3-

175)
60.5 (55.0-67.0) 21 (19-22)

P value (t test) 0.019 <0.001 <0.001 <0.001 0.40

Variate
RBC (1012/

L)
SPO2

Hematocrit
(%)

Hemoglobin (g/
L)

MCV (fL)

Tibetan 5.57 (0.7) 86 (84-88)
155 (139-

200)
0.49 (0.47-0.50)

89.5 (87.3-
91.5)

Hans 6.0 (0.6) 88 (83-90)
201 (182.5-

220.5)
0.54 (0.50-0.58)

89.0 (85.9-
92.1)

P value (t test) 0.010 0.71 0.018 0.004 0.73

Variate
Total

protein (g/L)
Albumin (g/L)

globulin (g/
L)

TBIL (mmol/L)
DBIL

(mmol/L)

Tibetan 82.3 (3.8) 48.8 (47.6-49.9)
33.0 (29.6-

35.5)
11.1 (9.4-15.4) 4.4

Hans 80.2 (4.7) 49.2 (47.6-50.8)
30.8 (28.9-

33.8)
14.8 (11.0-22.2) 4.95

P value (t test) 0.18 0.20 0.004 0.003 0.052

Data are expressed as median (IQR) or median (SD). SBP, Systolic blood pressure; DBP, diastolic blood pressure; BMI, bo
oxygen saturation; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular
platelet-larger cell ratio; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, g-glutamyl transferase
;
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high UA exclusively in the Tibetans. Conversely, both fasting

insulin (P<0.05) and LDH (P<0.01) levels were higher in Tibetans

than in Hans in normal UA populations (Figure 1). These results

indicate an increased tendency of insulin resistance and subsequent

glycolysis in Tibetans relative to Hans.

At higher altitudes, as in Group C, the glucose level was further

decreased in the young adults of Hans [3.3 (3.1-3.6) vs. 4.2 (3.9-4.5)

mmol/L, P<0.001] but not in the Tibetans [3.70 (3.6-3.8) vs. 4.1 (3.9-

4.4) mmol/L, P=0.45] compared with the respective ethnic groups in

Group A with normal UA levels. However, the glucose levels were

comparable between the two ethnicities in Group C) (Table 3).
The Tibetans had reduced lipid and biliary
metabolism compared with the Hans

In both groups of our populations, the level of total cholesterol

was 3.21-4.48mmol/L (124-173mg/dl), LDL cholesterol was between

1.85-2.51mmol/L (77-97mg/dl), both were much lower than the total
Frontiers in Endocrinology 08160
cholesterol (224.0 ± 42.9 mg/dl) and LDL cholesterol (145.3 ± 39.3

mg/dl) from an Italian population, respectively. However, the level of

HDL-cholesterol was between 1.00-1.18mmol/L (37-44 mg/dl) and

TG was between 0.86-2.24 mmol/L (55-143mg/dl), similar to those

from the same Italian population with HDL (55.6 ± 15.6 mg/dl) and

TG [96 (69-137) mg/dl], respectively (30).

Surprisingly, in Group A (Figure 2I), the lipid parameters,

including TRIG, TCHOL, and LDL-CH, were significantly lower

in Tibetans than in Hans, even in the normal UA setting. Both

TRIG and TCHOL levels were significantly increased in the high

UA population. TBIL and HDL levels were identical between the

Hans and Tibetans, except that TBIL was only increased by high UA

levels in the Hans. In Group B, at higher altitudes, it was noteworthy

that TRIG, total, direct, and indirect bilirubin levels were

significantly higher in the Hans than in the Tibetans (Figure 2II).

Likewise, in Group C from even higher altitudes of Naqu, Tibetans

showed consistently lower levels of total, direct, and indirect

bilirubin than Hans (Table 3). Bilirubin is a breakdown product

of heme released during RBCs lysis (31). In normal UA populations,
TABLE 4 Multivariate line regression analysis of the risk factors associated with serum uric acid levels between Hans and Tibetans in Tibet, China
(Group A).

Ethnic Chinese-Tibetans Chinese-Hans

Variable OR 95% CI P value OR 95% CI P value

Age 1.29 -10.22 to 2.659 0.22 4.78 -8.316 to -3.333 <0.001

Altitude 0.15 -91.17 to 79.90 0.89 2.54 16.02 to 148.2 0.017

BMI 0.28 -8.118 to 6.295 0.79 2.84 1.912 to 11.79 0.008

Albumin 0.80 -17.93 to 8.383 0.44 2.26 0.6394 to 13.01 0.032

ALT 0.14 -3.176 to 2.794 0.89 2.68 -6.590 to -0.8812 0.012

AST 0.23 -6.670 to 8.198 0.83 2.63 1.446 to 11.52 0.013

GGT 0.58 -2.516 to 1.460 0.57 2.61 0.5106 to 4.235 0.014

ALP 1.21 -0.7793 to 0.2275 0.25 0.91 -1.145 to 0.4411 0.37

TBIL 1.01 -16.19 to 43.56 0.34 4.34 -26.58 to -9.549 <0.001

DBIL 0.71 -104.9 to 53.82 0.49 4.35 28.98 to 80.32 <0.001

TRIG 0.21 -135.4 to 164.4 0.83 0.56 -27.31 to 47.94 0.58

CHOL 0.65 -462.1 to 251.2 0.53 0.06 -113.4 to 107.5 0.96

HDL-CH 0.54 -393.1 to 238.7 0.60 2.37 -321.4 to -23.80 0.025

LDL-CH 0.53 -288.0 to 469.4 0.61 0.40 -91.44 to 136.0 0.69

Creatinine 0.44 -4.761 to 7.131 0.67 1.40 -0.4563 to 2.441 0.17

Cystatin C 1.28 -156.6 to 589.1 0.23 4.80 241.2 to 599.7 <0.001

UREA 0.05 -33.79 to 35.23 0.96 0.74 -13.81 to 6.488 0.47

Glucose 0.30 -44.12 to 33.40 0.77 2.26 3.002 to 59.01 0.031

LDH 0.54 -1.273 to 0.7681 0.60 0.33 -0.3414 to 0.4751 0.74

Insulin 1.09 -2.001 to 5.896 0.30 3.14 -3.128 to -0.6621 0.004
fro
OR, odds ratio; CI, confidence interval; BMI, body mass index; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, g-glutamyl transferase; ALP, alkaline phosphatase; TBIL,
total bilirubin; DBIL, direct bilirubin; TRIG, triglyceride; TCHOL, total cholesterol; HDL-CH, high-density lipoprotein cholesterol; LDL-CH, low-density lipoprotein cholesterol; LDH, lactate
dehydrogenase.
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the relatively lower levels of bilirubin in Tibetans relative to Hans

indicated reduced RBCs hemolysis in Tibetans (Table 3; Figure 2II).
Distinct biochemistry biomarkers for
protein metabolism between Hans and
Tibetans

In Groups A and B, although the total protein levels were

similar between the Han and Tibetan populations, they were

increased by high UA levels in both populations (Figures 3I, II).

Conversely, the albumin levels were elevated by high UA in both

ethnic groups in Group A (Figure 3I), but were still lower in the

Tibetans than in the Hans, regardless of UA level in both Groups A

and B (Figures 3I, II). Biochemistry analysis revealed higher levels of

all aminotransaminase and ALP in Tibetans than in Hans in both

Group A (ALT, AST, GGT, and ALP) and Group B (ALT and AST).

Intriguingly, the levels of aminotransaminase were elevated by high

UA exclusively in the Hans (Figures 3IC–E, 3IIC, D). In Group C,

Tibetans had higher total protein and globulin levels than Hans, but

identical levels of aminotransaminases (Table 3).
The Tibetans had less severe kidney injury
than the Hans

In Group A, UA levels were comparable between the Hans and

Tibetans in both the normal and high UA populations (Figure 4IA).

Tibetans had lower levels of creatinine and urea than Hans, but
Frontiers in Endocrinology 09161
cystatin C levels were similar to those of Hans (Figures 4IB–D). All

the levels of the above biomarkers were greatly increased by high

UA levels in Tibetans. However, the ethnic differences, especially

the differences between the normal and high UA groups, were less

significant in Group B than in Group A (Figure 4II). Although the

levels of urea and creatinine UA were higher in high UA than in

normal UA populations in Groups A and B, they were identical

between Tibetans and Hans in young adults in Group C (Table 3).

As the levels of biomarkers for kidney injury increased with altitude

in the Han population, the difference between the two ethnic

populations seemed to be attenuated with the increase in altitude.

Creatine kinase (CK) and its MB isoenzyme (CK-MB) are the most

commonly used serological biomarkers for the diagnosis of myocardial

infarction. In Group A, CK did not differ between Tibetans and Hans

regardless of theUA level (Figure S2A). CK-MBwas increased by highUA

levels exclusively in Tibetans (Figure S2B). N-terminal fragment B-type

natriuretic peptide (NT-pro-BNP) is frequently used for the diagnosis of

congestive heart failure. NT-proBNP levels are affected by age or the

presence of one or several comorbidities, such as chronic renal failure, type

2 diabetes, and acute coronary syndrome (32). In theHans of GroupA, we

detected decreased NT-pro-BNP levels in the high UA group compared to

the normal UA group (Figure S2C), its significance remains unclear.
The Tibetans had lower serum levels of
thyroxin than the Hans

Regardless of the UA level, thyroid-stimulating hormone

(TSH), triiodothyronine (T3), and free T3 levels were not altered
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between the Hans and Tibetans in Group A (Figure 5). Although L-

thyroxin (T4) levels were similar between the Han and Tibetan

populations in normal UA populations, they were lower in Tibetans

than in Hans in high UA populations. Similarly, serum free T4

levels were lower in Tibetans than in Hans in high-UA populations.

It appears that hyperuricemia exempts Tibetans from T4 synthesis

and the release of free T4.
The Tibetans had lower serum levels of
electrolytes than the Hans

In Group A, all serum electrolyte levels were much lower in

Tibetans than in Hans in the normal and high UA populations

(Figure 6). Interestingly, the electrolyte levels tended to be elevated

by high UA levels exclusively in the Hans rather than in the

Tibetans. This implies that the proximal convoluted tubule, which

is responsible for electrolyte absorption, is more resilient to the

dangerous effects of hyperuricemia in Tibetans than it is in Hans.
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Similar circulating hemolytic counts
between the Tibetans and the Hans

In Group B, Tibetans had similar counts of blood cells as Hans,

except that they had fewer lymphocyte counts but more eosinophil

counts than Hans (Figure 7). Tibetans with high UA had increased

white blood cell (WBC) counts in comparison with those in the

normal UA group. Likewise, in Group C of young adults, Tibetans

were not distinguished from Hans in blood cell counts (Table 3).

The normality of blood leukocyte parameters in Group C was also

tested (Supplementary 1).
The Tibetans exhibited less erythropoiesis
than the Hans under hyperuricemia

In Group B, although both RBC number and [Hb] were beyond

the reference ranges (male: RBC 4.3-5.9×1012/L, [Hb] 137179 g/L),
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they were indistinguishable between the two populations under

normal UA conditions. Both were differentially increased between

Tibetans and Hans under high UA conditions, resulting in higher

levels in Hans than in Tibetans (Figure 8). RBC volume distribution

width (RDW) is a conventional biomarker of erythrocyte volume

variability and an indicator of homeostasis (33). The RDW standard

deviation (SD) and coefficient of variation (CV) were elevated by

high UA only in Tibetans (Figure 8).

In Group C, the Hans rather than the Tibetans developed

polycythemia with extremely high [Hb] and hematocrit values

beyond the normal ranges. In comparison, Tibetans had lower

[Hb] values, reduced RDW%, smaller mean platelet volume (MPV)

and lower platelet-larger cell ratio (P-LCR) % than Hans (Table 3),

indicating greater resilience to severe hypoxia at higher altitudes in

Tibet. This implies that severe hypoxia distinguishes the two ethnic
Frontiers in Endocrinology 11163
populations in the RBC profile, similar to the high UA level in RBC

in Figure 8.

Interestingly, in Group B, although the UA levels correlated

with RDW-SD and RDW-CV significantly in Tibetans (Table S1),

the RBCs profiles were not independently associated with UA levels

in either Tibetans or Hans (Table 5). Similar to that in Group A

(Table 4), only the glucose level was associated with the UA level in

Hans other than Tibetans (Table 5).
Discussion

Although the prevalence of hyperuricemia is much higher in

Tibet than in other places in China, immigrant Hans have

accumulated a high incidence of hyperuricemia in Tibet. When
frontiersin.or
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we compared the incidence of hyperuricemia between native

Tibetans and immigrant Hans at the three altitudes in the

Tibetan region, we found a similarly high prevalence of

hyperuricemia between the two ethnicities but with distinct

biochemical mechanisms. Hyperuricemia is closely associated

with obesity and metabolic disturbances such as insulin

resistance, dyslipidemia, hypertension, and kidney disease in

lowlanders (34) and highlanders in Tibet (1) and Peru (35).

In our study, the high prevalence of hyperuricemia in high-

altitude-adapted native Tibetans reached at the similar level as the

patients with Acute Coronary Syndrome, e.g., acute Heart Failure

(35.8%) (36), which could not be explained simply by traditional

metabolic disturbances. First, the factors that were significantly

associated with UA levels in the Han population were not applied

to Tibetans. Second, Tibetans had higher serum insulin and LDH

levels, indicating heightened anaerobic metabolism compared to
Frontiers in Endocrinology 12164
Hans. Third, Tibetans had increased aminotransferase and ALP

activities, suggesting enhanced protein and nucleic acid turnover

compared with Hans. Fourth, Tibetans had extremely low serum

levels of TRIG, TCHOL, and LDL-CH, implying a lower degree of

lipometabolism. Finally, Tibetans had better hypoxic adaptation with

a lower degree of polycythemia than Hans. The above biochemical

discrepancy between the two populations may be distinctively

associated with hyperuricemia between Tibetans and Hans.
Purine metabolism in hypoxia

UA is primarily produced in the liver as the end product of

exogenous and endogenous purine metabolism, covering the

catabolism, de novo synthesis, and salvage pathways (37). The

intake of fructose or a purine-rich diet, ATP depletion induced by
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ischemia, and degradation of RNA and DNA can activate the purine

metabolism pathway (38).

The high prevalence of hyperuricemia in Tibetans may be

attributed to the activation of the purine metabolism pathways. In

hypoxia, ATP production is hindered by a lack of oxygen, which

accelerates the breakdown of adenosine monophosphate (AMP) to

maintain energy levels (26). Under normal conditions, the majority

of hypoxanthine is reutilized through the salvage pathway. Under

hypoxia, the rate of salvage and degradation decreases because of

energy deficiency, which results in hypoxanthine accumulation
Frontiers in Endocrinology 13165
(39). Therefore, we speculated that metabolic adaptation to

hypoxia may contribute to hyperuricemia in Tibetans.

Serum alkaline phosphatase (ALP) is a traditional indirect

marker of cholestasis. ATP, adenosine diphosphate (ADP), and

AMP can be metabolized to adenosine by two different enzyme

systems. Ecto-5-nucleotidase (CD73) converts AMP to adenosine

(40) and tissue-nonspecific ALP proteins catabolize nucleotides in a

nonspecific manner (41). Soluble adenosine deaminase catabolizes

adenosine to inosine. Therefore ALP is involved in the regulation of

purinergic signaling by participating in the degradation of
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extracellular nucleotides (42). It has been reported that plasma

adenosine concentration and soluble CD73 activity rapidly increase

at high altitude (43). Similarly, serum ALP levels increase with

serum UA levels in patients with peripheral arterial disease (44). In

line with this report, we demonstrated that ALP levels were greatly

increased in Tibetans relative to Hans in both the normal and high

UA groups. Higher ALP levels may be involved in purine

metabolism by mediating nucleotide degradation in Tibetans.

Metabolic adaptation by promoting
glycolytic capacity

At the cellular level, the response to hypoxia results in the

promotion of glycolytic capacity, increased glycolytic flux, and
Frontiers in Endocrinology 14166
lactate efflux in cells (45). LDH is a ubiquitously expressed

enzyme that reversibly catalyzes the reduction of pyruvate to L-

lactate in the Cori cycle (46). Consistent with elevated muscle LDH

activity in highlanders in Sherpas, Nepal (18), native Tibetans had

higher LDH levels than Hans in normal UA populations (Figure 2I).

This result indicated that Tibetans obtained enhanced glycolysis

and gluconeogenesis compared with Hans to maintain adequate

ATP levels in a hypoxic environment.

Accordingly, compared with Hans, Tibetans had higher insulin

levels in the normal UA population and higher fasting glucose levels

in the high UA population in our study (Figure 1). This finding is

interesting because the prevalence of diabetes was significantly

lower in Tibetans than in Hans in China (47), and people

dwelling at high altitudes had a lower diabetes prevalence than
TABLE 5 Multivariate line regression analysis of the blood parameters associated with serum uric acid levels between Hans and Tibetans in Tibet,
China (Group B).

Variable
Hans Tibetan

OR 95% CI P value OR 95% CI P value

age 1.303 -5.461 to 1.183 0.20 0.728 -2.062 to 0.9534 0.47

RBC 0.066 -452.6 to 483.0 0.95 1.068 -261.3 to 873.8 0.29

HGB 0.478 -44.73 to 27.62 0.64 0.310 -33.32 to 24.30 0.76

HCT 0.722 -61.37 to 129.4 0.47 0.244 -122.3 to 95.48 0.81

MCV 0.571 -291.2 to 163.0 0.57 0.043 -0.02467 to 0.02577 0.97

MCH 0.629 -451.1 to 857.9 0.53 1.033 -49.98 to 159.1 0.30

MCHC 0.435 -69.79 to 45.07 0.67 0.374 -22.17 to 15.12 0.71

RDW-SD 0.546 -19.99 to 11.49 0.59 0.100 -34.53 to 31.20 0.92

RDW-CV 0.257 -2.185 to 1.693 0.80 0.280 -93.71 to 124.6 0.78

Glucose 2.248 3.945 to 74.65 0.030 1.491 -3.600 to 0.5060 0.14
fro
OR, odds ratio; CI, confidence interval; RBC, red blood cell; HGB, hemoglobin; HCT, hematocrit; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean
corpuscular hemoglobin concentration; RDW, red cell distribution width; SD, standard deviation; RDW-CV, RDW-coefficient of variation.
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those living at low altitudes (48). However, it was also found that

fasting glucose level was significantly higher in the high UA group

than in the normal UA group on the Tibetan Plateau (1), and

Tibetan highlanders may be vulnerable to glucose intolerance in

both China and India (49). Our results suggest that hyperuricemia

may modify this protection in subjects at high altitudes, thus

increasing the risk of glucose intolerance. Accordingly, the free

T4 level was reduced in Tibetans compared with Hans in high UA

populations, indicating a relatively lower metabolic rate (glycolytic

flux) in this population of Tibetans.

Accumulating evidence suggests that hyperuricemia is

associated with impaired glucose metabolism (50) and insulin

resistance (51). Hyperinsulinemia can lead to hyperuricemia, but

not vice versa (52). Reducing the glycemic quality of carbohydrates

over five weeks could reduce UA levels in American subjects (53).

Recently, an inverted U-shaped association was observed between

major glycemic indices and UA levels in the Chinese population, in

which UA levels were elevated with increasing glycemic indices

before the inflection points and then decreased with further

increases in glycemic indices (54).

In hypoxia-tolerant systems, a shift away from fatty acid

oxidation toward a more oxygen-efficient hypometabolic pathway

with the downregulation of ATP demand is a common strategy

(45). In rats, exposure to hypoxia resulted in the downregulation of

fatty acid oxidation and increased pyruvate oxidation (55). Here, we

provided corroborative evidence that Tibetans had consistently

lower levels of lipometabolism than Hans (Figure 2), indicating

better hypoxia tolerance in Tibetans.
Amino acid metabolism

In the catabolic state of insulin resistance, AST and ALT are

responsible for transferring amino acid groups to produce essential

intermediate products in the gluconeogenesis pathway. ALT,

frequently referred to as glutamic pyruvate transaminase,

catalyzes the reversible transamination of alanine and a-
ketoglutarate into glutamate and pyruvate (46). Therefore, alanine

is a major gluconeogenic precursor. Similar to and often parallel

with lactate in the Cori cycle, pyruvate is transformed into alanine

by transamination in the muscle, and then alanine is deaminated

back to pyruvate in the liver. Therefore, disorders of glucose

metabolism are strongly related to liver enzyme abnormalities; for

example, AST/ALT levels are inversely correlated with the

occurrence of type 2 diabetes (56).

Saliva ALT and glutamic oxaloacetic transaminase levels

increase after hypobaric hypoxia in healthy military aircrews (57).

Hypoxia-reoxygenation results in the release of LDH, AST, ALT,

and XO in the liver of rats (58). Markers of hypoxia correlated

significantly with AST and ALT levels in patients with obstructive

sleep apnea (59). Specifically, ALT and AST levels were significantly

higher in the high UA group than in the normal UA population on
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the Tibetan Plateau (1). Likewise, regardless of UA levels, we found

elevated levels of ALT and AST in Tibetans relative to Hans, in

contrast with lower levels of albumin (Figures 3IB, 3IIB) and urea

(Figure 4I) in Groups A and B, instead of in Group C. The

discrepancy between Groups A, B and C might have contributed

to the higher BMI in Tibetans than in Hans in the former two

groups and similar BMI between Tibetans and Hans in Group C.

These findings indicate that enhanced amino acid utilization and

transamination may underlie hyperuricemia in Tibetans.

Glutathione (GSH) is the principal intracellular antioxidant

buffer against oxidative stress in the form of reduced GSH and

oxidized GSH (GSSG) (19). A favorable reduced/oxidized GSH

ratio (GSH/GSSG) is required for cytosolic antioxidant defenses. In

short-term exposure to hypoxia, GSH/GSSG was only increased in

the muscle of lowlanders but not in highland Sherpa, indicating

superior redox homeostasis in highlanders (18). Under hypoxia, the

ratio of GSH/GSSG was increased in RBCs (60). Recently, it was

found that RBC rely on glutamine to fuel GSH synthesis and

pyruvate transamination during hemorrhagic shock (61). GGT is

a cell surface enzyme that hydrolyzes the g-glutamyl bond of

extracellular reduced and oxidized GSH into glutamate, cysteine

(Cys), and glycine (Gly) (62). In line with the heightened GGT level

at high altitudes (35), we found that GGT levels were much higher

in Tibetans than in Hans. Moreover, higher GGT levels were

reported in the group with impaired fasting glucose than in those

with normal fasting glucose in the Chinese population (63), and

GGT level was increased to a greater extent by high UA in Hans

than in Tibetans (Figure 3I), indicating increased cleavage of GSH

in Hans other than Tibetans. Our findings recapitulated the

assumption of superior redox homeostasis in the highlander, for

example, the Tibetans in our study (18).
PPP in RBCs

The hematological response to hypoxia is characterized by

erythropoiesis, which leads to an increased [Hb] value that

increases the oxygen-carrying capacity. It has been reported that

native Tibetans have lower [Hb] than Han immigrants (64, 65),

which is associated with the positively selected haplotypes of the

egl-9 family hypoxia-inducible factor 1 and PPARA (66). In Chinese

Tibetan immigrants, [Hb] was a positive risk factor for high UA

level (5). Accordingly, we found that native Tibetans had lower

[Hb] than immigrant Hans under both normal and high UA

conditions (Figure 7; Table 3), suggesting a distinctive ethnic

difference in the hematological response to altitude.

Recently, it was speculated that the purinergic system may be

involved in metabolic adaptations of RBCs to hypoxia. PPP

generates ribose sugars for nucleotide synthesis (19). Hypoxia not

only promotes glycolysis, but also deregulates PPP and depresses

purine catabolism, glutathione homeostasis, and arginine/nitric

oxide metabolism in RBCs (60). Likewise, hypoxia can divert
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glucose to PPP in the muscle to mitigate the effects of adenosine

degradation (19). Consequently, the accumulation of AMP,

adenosine, and the PPP product ribose 5-phosphate (ribose-5-P)

may activate de novo synthesis of purines (67).

In humans, exposure to hypoxia immediately increases RBC

glycolysis while shutting down PPP (60). The transient increase in

ATP levels during the early response to hypoxia resulted in the

accumulation of AMP, adenosine, and the PPP product ribose-5-P in

RBCs, proportional to the duration of high-altitude exposure (60).

Therefore, severe polycythemia, which is a sign of poor hypoxic

adaptation, may be associated with increased UA levels in the Han

population (Figure 8; Table 3). In Group B, although the RBC

parameters correlated well with UA levels in the two ethnic

populations (Table S1), none was independently associated with

UA levels in either group (Table 5). However, blood glucose levels

were consistently associated with UA levels only in Hans (Tables 4,

5). People with polycythemia seem to be particularly vulnerable to

glucose intolerance (68), suggesting poorer adaptation to hypoxia in

people with polycythemia than in those without. It should be

explored whether severe polycythemia is possibly associated with a

high incidence of hyperuricemia in the Hans, as in Group C (Table 3).
Kidney function

One of the mechanisms underlying hyperuricemia is insulin

resistance, which causes a significant decrease in the urinary

excretion of UA, sodium, and potassium (69, 70). In healthy

individuals, most glucose filtered at the glomerulus is reabsorbed into

the epithelial cells from the glomerular filtrate via the sodium-glucose

cotransporter (SGLT) in the kidney. Glucose then passes into the

interstitial fluid and peritubular capillary via the glucose transporter

maintained by Na+/K+ ATPase in the proximal tubule (71). In our

study, in normal UA populations, the higher insulin level in Tibetans

relative to Hans indicated possibly worsened insulin resistance in

Tibetans. In light of these studies, it is possible that the diabetogenic

state in Tibetans would prevent glucose and sodium reabsorption via

SGLT, resulting in lower serum sodium concentrations. The disparity

in serum electrocytes between the two ethnicities was exacerbated by

the high UA levels. These results suggest that more severe insulin

resistance in Tibetans may be associated with reduced sodium and

potassium reabsorption (Figure 6).

Overall, Tibetans had increased glucose metabolism at the

expense of lower fatty acid oxidation under anoxia, resulting in

enhanced glycolysis and gluconeogenesis, triggering glucose

conversion to ribose-5-P, an essential component of nucleotide

synthesis via PPP (19). Increased glycolysis also promotes the

transamination of amino acids, resulting in enhanced

gluconeogenesis. Consequently, the higher ALP levels triggered by

hypoxia may mediate the degradation of nucleotides, thus

increasing the production of purine nucleotides. On the other

hand, the immediate shutdown of PPP in RBCs to high altitudes

may activate the purinergic system, which may be associated with

hyperuricemia in the Hans, who exerted poorer hypoxic adaptation

than the Tibetans.
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Study strengths and limitations

These findings are important for the management of metabolic

adaptations in hypoxia-related diseases in critical care settings. Our

study provides thorough descriptions and comparisons of the

biochemical differences between native Tibetans and immigrant

Hans in three relatively young populations simultaneously at

different altitudes in Tibet, China. Based on these findings, we

propose a distinctive etiology underlying the ethnic disparity in

hyperuricemia in the Tibetan Plateau. Moreover, we provide

corroborative evidence for previous high-altitude adaptation and

highlight the complexity of hypoxia-response pathways in humans.

Even so, the study on the influence of the environment in Tibetan

areas may not offset the influence of genetic background. Future

study on the interaction between environment (disease) adaption

and ethnicity would provide more information for managing the

critical illness.

Although we recruited both sexes in the beginning, for the

limitation of the page space, we only present the data from the male

population here. The results including the female population would

reflect the biochemistry of hyperuricemia at the overall level of

population. Because of the religious faith, it is not easy to collect the

blood samples from a larger crowd in Tibetan areas, the limitation

of insufficient effect due to the small sample size should be

considered. In the multiple line regression analysis, other

demographic factors such as the economic status, education, and

profession may also be the potential confounding factors but were

not included in this study. Another limitation was that routine

blood tests, including white blood cell count, red RBCs, and [Hb],

were not conducted in Group A.
Conclusions

The risk factors associated with MS for hyperuricemia in

immigrant Han individuals did not apply to native Tibetans on

the Chinese Tibetan Plateau. However, the higher ALP activity in

Tibetans than in Hans may be involved in purine metabolism by

mediating the degradation of nucleotides. Moreover, heightened

g lyco lys i s , worsened g lucose in to le rance , increased

aminotransferase activity, and reduced UA excretion may

underlie hyperuricemia in native Tibetans.
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SUPPLEMENTARY FIGURE 1

The normality test of variables. The biochemistry data in the respective

Tibetans and the Hans from the three groups, as well as data in the blood
routine test in Group C were analyzed for normality by Shapiro-Wilk test.
SUPPLEMENTARY FIGURE 2

Comparisons of the biomarkers for heart failure between theHans and the Tibetans

with normal or high uric acid (UA) levels inGroupA. *P<0.05, normal UA vs. highUA.
References

1. Yao S, Zhou Y, Xu L, Zhang Q, Bao S, Feng H, et al. Association between

hyperuricemia and metabolic syndrome: A cross-sectional study in Tibetan adults on
the Tibetan plateau. Front Endocrinol (Lausanne) (2022) 13:964872. doi: 10.3389/
fendo.2022.964872

2. Estiverne C, Mandal AK, Mount DB. Molecular pathophysiology of uric acid
homeostasis. Semin Nephrol (2020) 40:535–49. doi: 10.1016/j.semnephrol.2020.12.006

3. Hua X, Wang YY, Jia P, Xiong Q, Hu Y, Chang Y, et al. Multi-level transcriptome
sequencing identifies COL1A1 as a candidate marker in human heart failure
progression. BMC Med (2020) 18:2. doi: 10.1186/s12916-019-1469-4

4. Zhang X, Meng Q, Feng J, Liao H, Shi R, Shi D, et al. The prevalence of
hyperuricemia and its correlates in Ganzi Tibetan Autonomous Prefecture, Sichuan
Province, China. Lipids Health Dis (2018) 17:235. doi: 10.1186/s12944-018-0882-6

5. Song Z, Zhang A, Luo J, Xiong G, Peng H, Zhou R, et al. Prevalence of high-
altitude polycythemia and hyperuricemia and risk factors for hyperuricemia in high-
altitude immigrants. High Alt Med Biol (2023) 24:132–8. doi: 10.1089/ham.2022.0133

6. Liu R, Han C, Wu D, Xia X, Gu J, Guan H, et al. Prevalence of hyperuricemia and
gout in mainland China from 2000 to 2014: A systematic review and meta-analysis.
BioMed Res Int (2015) 2015:762820. doi: 10.1155/2015/762820

7. Song P, Wang H, Xia W, Chang X, Wang M, An L. Prevalence and correlates
of hyperuricemia in the middle-aged and older adults in China. Sci Rep (2018)
8:4314. doi: 10.1038/s41598-018-22570-9

8. Dong X, Zhang H, Wang F, Liu X, Yang K, Tu R, et al. Epidemiology and
prevalence of hyperuricemia among men and women in Chinese rural population: The
Henan Rural Cohort Study. Mod Rheumatol (2020) 30:910–20. doi: 10.1080/
14397595.2019.1660048

9. Liu F, Du GL, Song N, Ma YT, Li XM, Gao XM, et al. Hyperuricemia and its
association with adiposity and dyslipidemia in Northwest China: results from
cardiovascular risk survey in Xinjiang (CRS 2008-2012). Lipids Health Dis (2020)
19:58. doi: 10.1186/s12944-020-01211-z

10. Maloberti A, Maggioni S, Occhi L, Triglione N, Panzeri F, Nava S, et al. Sex-
related relationships between uric acid and target organ damage in hypertension. J Clin
Hypertens (Greenwich) (2018) 20:193–200. doi: 10.1111/jch.13136
11. Maloberti A, Qualliu E, Occhi L, Sun J, Grasso E, Tognola C, et al.
Hyperuricemia prevalence in healthy subjects and its relationship with
cardiovascular target organ damage. Nutr Metab Cardiovasc Dis (2021) 31:178–85.
doi: 10.1016/j.numecd.2020.08.015

12. Zhou D, Liu Y, Zhang X, Gu X, Wang H, Luo X, et al. Functional polymorphisms
of the ABCG2 gene are associated with gout disease in the Chinese Han male
population. Int J Mol Sci (2014) 15:9149–59. doi: 10.3390/ijms15059149

13. Jia Z, Zhao X, Liu X, Zhao L, Jia Q, Shi J, et al. Impacts of the plateau
environment on the gut microbiota and blood clinical indexes in han and tibetan
individuals. mSystems (2020) 5:e00660–19. doi: 10.1128/mSystems.00660-19

14. Gilbert-Kawai ET, Milledge JS, Grocott MP, Martin DS. King of the mountains:
Tibetan and Sherpa physiological adaptations for life at high altitude. Physiol (Bethesda)
(2014) 29:388–402. doi: 10.1152/physiol.00018.2014

15. Lau DS, Connaty AD,Mahalingam S,Wall N, Cheviron ZA, Storz JF, et al. Acclimation
to hypoxia increases carbohydrate use during exercise in high-altitude deer mice. Am J Physiol
Regul Integr Comp Physiol (2017) 312:R400–11. doi: 10.1152/ajpregu.00365.2016

16. Erzurum SC, Ghosh S, Janocha AJ, XuW, Bauer S, Bryan NS, et al. Higher blood
flow and circulating NO products offset high-altitude hypoxia among Tibetans. Proc
Natl Acad Sci U.S.A. (2007) 104:17593–8.

17. Ge RL, Simonson TS, Gordeuk V, Prchal JT, McClain DA. Metabolic aspects of
high-altitude adaptation in Tibetans. Exp Physiol (2015) 100:1247–55. doi: 10.1113/
EP085292

18. Horscroft JA, Kotwica AO, Laner V, West JA, Hennis PJ, Levett DZH, et al.
Metabolic basis to Sherpa altitude adaptation. Proc Natl Acad Sci U.S.A. (2017)
114:6382–7.

19. Chicco AJ, Le CH, Gnaiger E, Dreyer HC, Muyskens JB, D’Alessandro A, et al.
Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia:
Lessons from AltitudeOmics. J Biol Chem (2018) 293:6659–71. doi: 10.1074/
jbc.RA117.000470

20. Wu T, Wang X, Wei C, Cheng H, Wang X, Li Y, et al. Hemoglobin levels in
Qinghai-Tibet: different effects of gender for Tibetans vs. Han. J Appl Physiol (1985)
98:598–604. doi: 10.1152/japplphysiol.01034.2002
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fendo.2023.1229659/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2023.1229659/full#supplementary-material
https://doi.org/10.3389/fendo.2022.964872
https://doi.org/10.3389/fendo.2022.964872
https://doi.org/10.1016/j.semnephrol.2020.12.006
https://doi.org/10.1186/s12916-019-1469-4
https://doi.org/10.1186/s12944-018-0882-6
https://doi.org/10.1089/ham.2022.0133
https://doi.org/10.1155/2015/762820
https://doi.org/10.1038/s41598-018-22570-9
https://doi.org/10.1080/14397595.2019.1660048
https://doi.org/10.1080/14397595.2019.1660048
https://doi.org/10.1186/s12944-020-01211-z
https://doi.org/10.1111/jch.13136
https://doi.org/10.1016/j.numecd.2020.08.015
https://doi.org/10.3390/ijms15059149
https://doi.org/10.1128/mSystems.00660-19
https://doi.org/10.1152/physiol.00018.2014
https://doi.org/10.1152/ajpregu.00365.2016
https://doi.org/10.1113/EP085292
https://doi.org/10.1113/EP085292
https://doi.org/10.1074/jbc.RA117.000470
https://doi.org/10.1074/jbc.RA117.000470
https://doi.org/10.1152/japplphysiol.01034.2002
https://doi.org/10.3389/fendo.2023.1229659
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ren et al. 10.3389/fendo.2023.1229659
21. Ge RL, Simonson TS, Cooksey RC, Tanna U, Qin G, Huff CD, et al. Metabolic
insight into mechanisms of high-altitude adaptation in Tibetans. Mol Genet Metab
(2012) 106:244–7. doi: 10.1016/j.ymgme.2012.03.003

22. Hochachka PW, Clark CM, Monge C, Stanley C, Brown WD, Stone CK, et al.
Sherpa brain glucose metabolism and defense adaptations against chronic hypoxia. J
Appl Physiol (1985) 81:1355–61. doi: 10.1152/jappl.1996.81.3.1355

23. Murray AJ. Energy metabolism and the high-altitude environment. Exp Physiol
(2016) 101:23–7. doi: 10.1113/EP085317

24. Kayyali US, Donaldson C, Huang H, Abdelnour R, Hassoun PM.
Phosphorylation of xanthine dehydrogenase/oxidase in hypoxia. J Biol Chem (2001)
276:14359–65. doi: 10.1074/jbc.M010100200

25. Tsushima Y, Nishizawa H, Tochino Y, Nakatsuji H, Sekimoto R, Nagao H, et al.
Uric acid secretion from adipose tissue and its increase in obesity. J Biol Chem (2013)
288:27138–49. doi: 10.1074/jbc.M113.485094

26. Wheaton WW, Chandel NS. Hypoxia. 2. Hypoxia regulates cellular metabolism.
Am J Physiol Cell Physiol (2011), 300:C385–93. doi: 10.1152/ajpcell.00485.2010

27. Du Y, Qi M, Wang W, Chen B. Effect of high-altitude hypoxia environment on
uric acid excretion, desmin protein level in podocytes, and na+-K+- ATPase activity.
Cell Mol Biol (Noisy-le-grand) (2022) 68:84–91. doi: 10.14715/cmb/2022.68.6.14

28. Multidisciplinary Expert Task Force on H, Related D. Chinese multidisciplinary
expert consensus on the diagnosis and treatment of hyperuricemia and related diseases.
Chin Med J (Engl) (2017) 130:2473–88. doi: 10.4103/0366-6999.216416

29. Yanai H, Adachi H, Hakoshima M, Katsuyama H. Molecular biological and
clinical understanding of the pathophysiology and treatments of hyperuricemia and its
association with metabolic syndrome, cardiovascular diseases and chronic kidney
disease. Int J Mol Sci (2021) 22:9221. doi: 10.3390/ijms22179221

30. Maloberti A, Vanoli J, Finotto A, Bombelli M, Facchetti R, Redon P, et al. Uric acid
relationships with lipid profile and adiposity indices: Impact of different hyperuricemic
thresholds. J Clin Hypertens (Greenwich) (2023) 25:78–85. doi: 10.1111/jch.14613

31. Creeden JF, Gordon DM, Stec DE, Hinds TD Jr. Bilirubin as a metabolic
hormone: the physiological relevance of low levels. Am J Physiol Endocrinol Metab
(2021) 320:E191–207. doi: 10.1152/ajpendo.00405.2020

32. Maries L, Manitiu I. Diagnostic and prognostic values of B-type natriuretic
peptides (BNP) and N-terminal fragment brain natriuretic peptides (NT-pro-BNP).
Cardiovasc J Afr (2013) 24:286–9. doi: 10.5830/CVJA-2013-055

33. Salvagno GL, Sanchis-Gomar F, Picanza A, Lippi G. Red blood cell distribution
width: A simple parameter with multiple clinical applications. Crit Rev Clin Lab Sci
(2015) 52:86–105. doi: 10.3109/10408363.2014.992064

34. Matsuzawa Y, Funahashi T, Nakamura T. The concept of metabolic syndrome:
contribution of visceral fat accumulation and its molecular mechanism. J Atheroscler
Thromb (2011) 18:629–39. doi: 10.5551/jat.7922

35. Gonzales GF, Tapia V. Increased levels of serum gamma-glutamyltransferase
and uric acid on metabolic, hepatic and kidney parameters in subjects at high altitudes.
J Basic Clin Physiol Pharmacol (2015) 26:81–7. doi: 10.1515/jbcpp-2013-0162

36. Rebora P, Centola M, Morici N, Sacco A, Occhino G, Viola G, et al. Uric acid
associated with acute heart failure presentation in Acute Coronary Syndrome patients.
Eur J Intern Med (2022) 99:30–7. doi: 10.1016/j.ejim.2022.01.018

37. Nishino T, Okamoto K. Mechanistic insights into xanthine oxidoreductase from
development studies of candidate drugs to treat hyperuricemia and gout. J Biol Inorg
Chem (2015) 20:195–207. doi: 10.1007/s00775-014-1210-x

38. Furuhashi M. New insights into purine metabolism in metabolic diseases: role of
xanthine oxidoreductase activity. Am J Physiol Endocrinol Metab (2020) 319:E827–34.
doi: 10.1152/ajpendo.00378.2020

39. Chu WY, Allegaert K, Dorlo TPC, Huitema ADR, Group AS. Semi-mechanistic
modeling of hypoxanthine, xanthine, and uric acid metabolism in asphyxiated
neonates. Clin Pharmacokinet (2022) 61:1545–58. doi: 10.1007/s40262-022-01164-9

40. Zimmermann H, Zebisch M, Strater N. Cellular function and molecular
structure of ecto-nucleotidases. Purinergic Signal (2012) 8:437–502. doi: 10.1007/
s11302-012-9309-4

41. Picher M, Burch LH, Hirsh AJ, Spychala J, Boucher RC. Ecto 5’-nucleotidase and
nonspecific alkaline phosphatase. Two AMP-hydrolyzing ectoenzymes with distinct roles
in human airways. J Biol Chem (2003) 278:13468–79. doi: 10.1074/jbc.M300569200

42. Sebastian-Serrano A, de Diego-Garcia L, Martinez-Frailes C, Avila J,
Zimmermann H, Millan JL, et al. Tissue-nonspecific alkaline phosphatase regulates
purinergic transmission in the central nervous system during development and disease.
Comput Struct Biotechnol J (2015) 13:95–100. doi: 10.1016/j.csbj.2014.12.004

43. Liu H, Zhang Y, Wu H, D’Alessandro A, Yegutkin GG, Song A, et al. Beneficial
role of erythrocyte adenosine A2B receptor-mediated AMP-activated protein kinase
activation in high-altitude hypoxia. Circulation (2016) 134:405–21. doi: 10.1161/
CIRCULATIONAHA.116.021311

44. Cheung BM, Ong KL,Wong LY. Elevated serum alkaline phosphatase and peripheral
arterial disease in the United States National Health andNutrition Examination Survey 1999-
2004. Int J Cardiol (2009) 135:156–61. doi: 10.1016/j.ijcard.2008.03.039
Frontiers in Endocrinology 18170
45. Murray AJ, Montgomery HE, Feelisch M, Grocott MPW, Martin DS. Metabolic
adjustment to high-altitude hypoxia: from genetic signals to physiological implications.
Biochem Soc Trans (2018) 46:599–607. doi: 10.1042/BST20170502

46. Gray LR, Tompkins SC, Taylor EB. Regulation of pyruvate metabolism and
human disease. Cell Mol Life Sci (2014) 71:2577–604. doi: 10.1007/s00018-013-1539-2

47. Wang L, Gao P, Zhang M, Huang Z, Zhang D, Deng Q, et al. Prevalence and
ethnic pattern of diabetes and prediabetes in China in 2013. JAMA (2017) 317:2515–23.
doi: 10.1001/jama.2017.7596

48. Santos JL, Perez-Bravo F, Carrasco E, Calvillan M, Albala C. Low prevalence of
type 2 diabetes despite a high average body mass index in the Aymara natives from
Chile. Nutrition (2001) 17:305–9. doi: 10.1016/S0899-9007(00)00551-7

49. Okumiya K, Sakamoto R, Ishimoto Y, Kimura Y, Fukutomi E, Ishikawa M, et al.
Glucose intolerance associated with hypoxia in people living at high altitudes in the
Tibetan highland. BMJ Open (2016) 6:e009728. doi: 10.1136/bmjopen-2015-009728

50. Di Bonito P, Valerio G, Licenziati MR, Campana G, Del Giudice EM, Di Sessa A,
et al. Uric acid, impaired fasting glucose and impaired glucose tolerance in youth with
overweight and obesity. Nutr Metab Cardiovasc Dis (2021) 31:675–80. doi: 10.1016/
j.numecd.2020.10.007

51. Spatola L, Ferraro PM, Gambaro G, Badalamenti S, Dauriz M. Metabolic
syndrome and uric acid nephrolithiasis: insulin resistance in focus. Metabolism
(2018) 83:225–33. doi: 10.1016/j.metabol.2018.02.008

52. McCormick N, O’Connor MJ, Yokose C, Merriman TR, Mount DB, Leong A,
et al. Assessing the causal relationships between insulin resistance and hyperuricemia
and gout using bidirectional mendelian randomization. Arthritis Rheumatol (2021)
73:2096–104. doi: 10.1002/art.41779

53. Juraschek SP, McAdams-Demarco M, Gelber AC, Sacks FM, Appel LJ, White
KJ, et al. 3rd, effects of lowering glycemic index of dietary carbohydrate on plasma
uric acid levels: the omniCarb randomized clinical trial. Arthritis Rheumatol (2016)
68:1281–9. doi: 10.1002/art.39527

54. Zhu YY, Zheng RZ, Wang GX, Chen L, Shi LX, Su Q, et al. Inverted U-shaped
associations between glycemic indices and serum uric acid levels in the general chinese
population: findings from the China cardiometabolic disease and cancer cohort (4C)
study. BioMed Environ Sci (2021) 34:9–18.

55. Essop MF, Razeghi P, McLeod C, Young ME, Taegtmeyer H, Sack MN. Hypoxia-
induced decrease of UCP3 gene expression in rat heart parallels metabolic gene
switching but fails to affect mitochondrial respiratory coupling. Biochem Biophys Res
Commun (2004) 314:561–4. doi: 10.1016/j.bbrc.2003.12.121

56. Niu H, Zhou Y. Nonlinear relationship between AST-to-ALT ratio and the
incidence of type 2 diabetes mellitus: A follow-up study. Int J Gen Med (2021) 14:8373–
82. doi: 10.2147/IJGM.S341790

57. Mominzadeh M, Mirzaii-Dizgah I, Mirzaii-Dizgah MR, Mirzaii-Dizgah MH.
Stimulated saliva aminotransaminase alteration after experiencing acute hypoxia
training. Air Med J (2014) 33:157–60. doi: 10.1016/j.amj.2014.03.004

58. Kooij A, Schiller HJ, Schijns M, Van Noorden CJ, Frederiks WM. Conversion of
xanthine dehydrogenase into xanthine oxidase in rat liver and plasma at the onset of
reperfusion after ischemia. Hepatology (1994) 19:1488–95. doi: 10.1002/
hep.1840190626

59. Norman D, Bardwell WA, Arosemena F, Nelesen R, Mills PJ, Loredo JS, et al.
Serum aminotransferase levels are associated with markers of hypoxia in patients with
obstructive sleep apnea. Sleep (2008) 31:121–6. doi: 10.1093/sleep/31.1.121

60. D’Alessandro A, Nemkov T, Sun K, Liu H, Song A, Monte AA, et al.
AltitudeOmics: red blood cell metabolic adaptation to high altitude hypoxia. J
Proteome Res (2016) 15:3883–95. doi: 10.1021/acs.jproteome.6b00733

61. Reisz JA, Slaughter AL, Culp-Hill R, Moore EE, Silliman CC, Fragoso M, et al.
Red blood cells in hemorrhagic shock: a critical role for glutaminolysis in fueling
alanine transamination in rats. Blood Adv (2017) 1:1296–305. doi: 10.1182/
bloodadvances.2017007187

62. Hanigan MH. Gamma-glutamyl transpeptidase: redox regulation and drug
resistance. Adv Cancer Res (2014) 122:103–41. doi: 10.1016/B978-0-12-420117-
0.00003-7
63. Wu J, Qiu L, Yan WH, Cheng XQ, Wu W, Guo XZ, et al. Serum gamma-

glutamyltransferase and uric acid levels are associated with impaired fasting glucose in
adults from Inner Mongolia, China. BMC Public Health (2013) 13:294. doi: 10.1186/
1471-2458-13-294

64. Beall CM, Goldstein MC. Hemoglobin concentration of pastoral nomads
permanently resident at 4,850-5,450 meters in Tibet. Am J Phys Anthropol (1987)
73:433–8. doi: 10.1002/ajpa.1330730404

65. Curran LS, Zhuang J, Sun SF, Moore LG. Ventilation and hypoxic ventilatory
responsiveness in Chinese-Tibetan residents at 3,658 m. J Appl Physiol (1985) 83
(1997):2098–104.

66. Simonson TS, Yang Y, Huff CD, YunH,Qin G,WitherspoonDJ, et al. Genetic evidence
for high-altitude adaptation in Tibet. Science (2010) 329:72–5. doi: 10.1126/science.1189406

67. Mandal AK, Mount DB. The molecular physiology of uric acid homeostasis.
Annu Rev Physiol (2015) 77:323–45. doi: 10.1146/annurev-physiol-021113-170343
frontiersin.org

https://doi.org/10.1016/j.ymgme.2012.03.003
https://doi.org/10.1152/jappl.1996.81.3.1355
https://doi.org/10.1113/EP085317
https://doi.org/10.1074/jbc.M010100200
https://doi.org/10.1074/jbc.M113.485094
https://doi.org/10.1152/ajpcell.00485.2010
https://doi.org/10.14715/cmb/2022.68.6.14
https://doi.org/10.4103/0366-6999.216416
https://doi.org/10.3390/ijms22179221
https://doi.org/10.1111/jch.14613
https://doi.org/10.1152/ajpendo.00405.2020
https://doi.org/10.5830/CVJA-2013-055
https://doi.org/10.3109/10408363.2014.992064
https://doi.org/10.5551/jat.7922
https://doi.org/10.1515/jbcpp-2013-0162
https://doi.org/10.1016/j.ejim.2022.01.018
https://doi.org/10.1007/s00775-014-1210-x
https://doi.org/10.1152/ajpendo.00378.2020
https://doi.org/10.1007/s40262-022-01164-9
https://doi.org/10.1007/s11302-012-9309-4
https://doi.org/10.1007/s11302-012-9309-4
https://doi.org/10.1074/jbc.M300569200
https://doi.org/10.1016/j.csbj.2014.12.004
https://doi.org/10.1161/CIRCULATIONAHA.116.021311
https://doi.org/10.1161/CIRCULATIONAHA.116.021311
https://doi.org/10.1016/j.ijcard.2008.03.039
https://doi.org/10.1042/BST20170502
https://doi.org/10.1007/s00018-013-1539-2
https://doi.org/10.1001/jama.2017.7596
https://doi.org/10.1016/S0899-9007(00)00551-7
https://doi.org/10.1136/bmjopen-2015-009728
https://doi.org/10.1016/j.numecd.2020.10.007
https://doi.org/10.1016/j.numecd.2020.10.007
https://doi.org/10.1016/j.metabol.2018.02.008
https://doi.org/10.1002/art.41779
https://doi.org/10.1002/art.39527
https://doi.org/10.1016/j.bbrc.2003.12.121
https://doi.org/10.2147/IJGM.S341790
https://doi.org/10.1016/j.amj.2014.03.004
https://doi.org/10.1002/hep.1840190626
https://doi.org/10.1002/hep.1840190626
https://doi.org/10.1093/sleep/31.1.121
https://doi.org/10.1021/acs.jproteome.6b00733
https://doi.org/10.1182/bloodadvances.2017007187
https://doi.org/10.1182/bloodadvances.2017007187
https://doi.org/10.1016/B978-0-12-420117-0.00003-7
https://doi.org/10.1016/B978-0-12-420117-0.00003-7
https://doi.org/10.1186/1471-2458-13-294
https://doi.org/10.1186/1471-2458-13-294
https://doi.org/10.1002/ajpa.1330730404
https://doi.org/10.1126/science.1189406
https://doi.org/10.1146/annurev-physiol-021113-170343
https://doi.org/10.3389/fendo.2023.1229659
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ren et al. 10.3389/fendo.2023.1229659
68. Okumiya K, Sakamoto R, Kimura Y, Ishimoto Y, Wada T, Ishine M, et al. Strong
association between polycythemia and glucose intolerance in elderly high-altitude dwellers
in Asia. J Am Geriatr Soc (2010) 58:609–11. doi: 10.1111/j.1532-5415.2010.02753.x

69. Muscelli E, Natali A, Bianchi S, Bigazzi R, Galvan AQ, Sironi AM, et al. Effect of
insulin on renal sodium and uric acid handling in essential hypertension. Am J
Hypertens (1996) 9:746–52. doi: 10.1016/0895-7061(96)00098-2
Frontiers in Endocrinology 19171
70. Perez-Ruiz F, Aniel-Quiroga MA, Herrero-Beites AM, Chinchilla SP, Erauskin GG,
Merriman T. Renal clearance of uric acid is linked to insulin resistance and lower excretion of
sodium in gout patients. Rheumatol Int (2015) 35:1519–24. doi: 10.1007/s00296-015-3242-0

71. Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit
beyond glycaemic control.Nat Rev Cardiol (2020) 17:761–72. doi: 10.1038/s41569-020-
0406-8
frontiersin.org

https://doi.org/10.1111/j.1532-5415.2010.02753.x
https://doi.org/10.1016/0895-7061(96)00098-2
https://doi.org/10.1007/s00296-015-3242-0
https://doi.org/10.1038/s41569-020-0406-8
https://doi.org/10.1038/s41569-020-0406-8
https://doi.org/10.3389/fendo.2023.1229659
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Di Liu,
Chinese Academy of Sciences (CAS), China

REVIEWED BY

Benson Hamooya,
Mulungushi University, Zambia
Kourosh Zarea,
Ahvaz Jundishapur University of Medical
Sciences, Iran

*CORRESPONDENCE

Yixuan Niu

niuyx2003@126.com

Weiping Guan

guanweiping@126.com

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 26 April 2023
ACCEPTED 07 November 2023

PUBLISHED 08 December 2023

CITATION

Li C, Tao T, Tang Y, Lu H, Zhang H, Li H,
Liu X, Guan W and Niu Y (2023) The
association of psychological stress with
metabolic syndrome and its components:
cross-sectional and bidirectional two-
sample Mendelian randomization analyses.
Front. Endocrinol. 14:1212647.
doi: 10.3389/fendo.2023.1212647

COPYRIGHT

© 2023 Li, Tao, Tang, Lu, Zhang, Li, Liu,
Guan and Niu. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 08 December 2023

DOI 10.3389/fendo.2023.1212647
The association of psychological
stress with metabolic syndrome
and its components: cross-
sectional and bidirectional
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randomization analyses
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and Yixuan Niu2*
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Beijing, China, 2Department of Geriatrics, The Second Medical Center and National Clinical Research
Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
Background: Metabolic syndrome (MetS) is a group of co-occurring conditions

that increase the risk of cardiovascular disease, which include the conditions of

hypertension, overweight or obesity, hyperglycemia, and dyslipidemia.

Psychological stress is gradually being taken seriously, stemming from the

imbalance between environmental demands and individual perceptions.

However, the potential causal relationship between psychological stress and

MetS remains unclear.

Method: We conducted cross-sectional and bidirectional Mendelian

randomization (MR) analyses to clarify the potential causal relationship of

psychological stress with MetS and its components. Multivariable logistic

regression models were used to adjust for potential confounders in the cross-

sectional study of the Chinese population, including 4,933 individuals (70.1%

men; mean age, 46.13 ± 8.25). Stratified analyses of sexual characteristics were

also performed. Bidirectional MR analyses were further carried out to verify

causality based on summary-level genome-wide association studies in the

European population, using the main analysis of the inverse variance-

weighted method.

Results: We found that higher psychological stress levels were cross-sectionally

associated with an increased risk of hypertension in men (odds ratio (OR), 1.341;

95% confidence interval (CI), 1.023–1.758; p = 0.034); moreover, higher levels of

hypertension were cross-sectionally associated with an increased risk of

psychological stress in men and the total population (men: OR, 1.545 (95% CI,

1.113–2.145); p = 0.009; total population: OR, 1.327 (95% CI, 1.025–1.718); p =

0.032). Genetically predicted hypertension was causally associated with a higher

risk of psychological stress in the inverse-variance weighted MR model (OR,

2.386 (95% CI, 1.209–4.710); p = 0.012). However, there was no association

between psychological stress and MetS or the other three risk factors
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(overweight or obesity, hyperglycemia, and dyslipidemia) in cross-sectional and

MR analyses.

Conclusion: Although we did not observe an association between psychological

stress and MetS, we found associations between psychological stress and

hypertension both in cross-sectional and MR studies, which may have

implications for targeting hypertension-related factors in interventions to

improve mental and metabolic health. Further study is needed to confirm

our findings.
KEYWORDS

metabolic syndrome, psychological stress, hypertension, risk factor, cross-sectional
study, Mendelian randomization analysis
Introduction

Metabolic syndrome (MetS), also known as syndrome X or

insulin resistance, is a cluster of co-occurring conditions, including

hypertension, elevated fasting glucose, elevated triglycerides (TG),

lowered high-density lipoprotein cholesterol (HDL-C), and

abdominal obesity (1). Individuals with MetS are more

susceptible to developing cardiovascular disease (CVD), type 2

diabetes mellitus, and cancers and have a higher risk of death (1,

2). MetS and MetS-related conditions are becoming major public

health burdens worldwide. It is reported that over a quarter of the

entire world population (about a billion people) has MetS, including

one-third of the Chinese population (3, 4). Early recognition and

intervention are important to prevent the development of MetS and

its progression to chronic diseases, such as CVD (1, 3).

Psychological stress is a major public health challenge that can

induce a range of physiological responses involving the

neurological, endocrine, and immune systems (5, 6). Because both

psychological stress and MetS are risk factors for CVD, their

association has become a widespread concern in recent years (1,

6). Epidemiological studies suggested that psychological stress may

predict the risk of MetS, hypertension, and obesity (7, 8). This could

be attributed to the chronic nature of psychological stress, which

can induce long-term alterations in emotional, physiological, and

behavioral responses, subsequently influencing susceptibility to

diseases such as MetS (9). In the context of existing Chinese

studies, two focused on occupational stress (10, 11), while one

focused on psychological stress with a relatively small sample size of

345 participants (7). This underscores the necessity of investigating

the association between psychological stress and MetS in more

extensive and representative Chinese populations. Nonetheless,

some data from cross-sectional and cohort studies indicated that

psychological factors, such as psychological stress, were outcomes of

MetS rather than risk factors (12), while other studies reported no

significant associations (13, 14). The aforementioned inconsistent

results emphasize the need to investigate the causal relationship

between psychological stress and MetS and its components. Such

inquiry could provide a scientific foundation for developing
02173
targeted prevention policies aimed at mitigating psychological

stress, MetS, and associated risk factors.

Mendelian randomization (MR) is a novel approach used to

estimate the causal relationship between psychological stress and

MetS using genetic variants robustly related to exposure as

instrumental variables (IVs), which could overcome the

limitations of observational research (15, 16). Due to the random

allocation of genotypes from parents to offspring, the relationship

between genetic variants and outcomes remains unaffected by

common confounding factors, making a causal sequence plausible

(15). Accordingly, in this current study, we aim to investigate the

association of psychological stress with MetS and its components in

general Chinese populations and to assess the causality using a

bidirectional two-sample MR technique.
Method

Study design and population

This cross-sectional study was used to examine the association

of psychological stress with MetS and its components, which

included 4933 patients from the Chinese People’s Liberation

Army General Hospital (Beijing, China) between July 2017 and

June 2019. We included individuals aged 18 years and older who

provided signed informed consent, had no missing data on

standardized questionnaires or clinical characteristics, and were

not enrolled in a clinical trial. Participants were excluded from the

study if they failed to meet the inclusion criteria or had undergone

surgery for cancer or other severe illnesses.
Sample size estimation

Based on one published cross-sectional study in Asia (17), the

psychological stress risk (23%) between the MetS and non-MetS

groups was 24% and 22%, respectively. At 80% power (two-sided

significance level of 0.05), using the sample size estimation formula
frontiersin.org
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for an independent sample comparison, the total sample size was

estimated as:

n = 4� ½(Z
a
2
+ Zb)s
d

�
2

= 4� ½(1:96 + 0:84)� 23
2

�
2

≈ 4, 147 (1)

Consequently, the required sample size would be estimated to

be 4,147. The sample size (4,933) of this current cross-sectional

study meets the criteria of 4,147.
Ethical consideration

This study conforms to the principles of the Declaration of

Helsinki and relevant ethical guidelines. Approval for this study was

granted by the Medical Ethics Committee of the Chinese People’s

Liberation Army General Hospital (S2019-131-01).
Data collection of demographic data and
blood samples

Participants’ demographic data, including age, sex, educational

attainment, marital status, smoking, alcohol consumption, physical

activity, family history of diabetes, family history of hypertension,

family history of CVD, and family history of stroke, was collected

through face-to-face interviews with trained nurses conducting the

interviews. Physical inactivity was defined as less than 2 h of physical

activity per week (18). In addition, participants’ height (with a

standiometer while wearing socks), body weight (with a digital

weighing scale clothed in a light examination gown), waist

circumference (with a measuring tape positioned at the midpoint

between the lowest rib and iliac crest), and hip circumference (with a

measuring tape) were measured by trained nurses. Body mass index

(BMI) was calculated as weight (kg) divided by the square of height

(m2), and the waist-to-hip ratio was calculated as waist circumference

divided by hip circumference. The participants were seated for at least

5 min before two blood pressure measurements were taken by trained

nurses using an automated sphygmomanometer, and the average of

the two measurements was recorded.

Blood samples were collected from the antecubital vein after

overnight fasting. These samples were processed, transported to the

Clinical Laboratory Department of the Chinese People’s Liberation

ArmyGeneral Hospital, and analyzed within 24 h. Fasting blood glucose

(FBG), TG, total cholesterol (TC), low-density lipoprotein cholesterol

(LDL-C), and HDL-C levels were determined using a Roche C8000

automatic biochemical analyzer (Roche, Mannheim, Germany). C-

reactive protein (CRP) was measured using an immunoturbidimetric

assay (Siemens Healthcare Diagnostics, Germany).
Measurement of psychological stress

The Chinese version of the Perceived Stress Scale (CPSS) was

used to reflect psychological stress levels. The CPSS comprises seven

positive and seven negative items rated on a 5-point Likert scale: 0 =

never, 1 = rarely, 2 = sometimes, 3 = often, and 4 = always (19, 20).
Frontiers in Endocrinology 03174
The total CPSS score ranges from 0 to 56, with higher scores

indicating greater psychological stress; a score< 29 was defined as

participants with no or low psychological stress, and a score ≥ 29

was defined as participants with moderate or high psychological

stress (19, 20). The CPSS was verified in a smoking population and

showed good reliability (Cronbach’s alpha = 0.85), structural

validity, and co-validity (20).
Measurement of depression and
anxiety symptoms

Depressive- and anxiety-related symptoms were measured

using the Chinese version of the Zung Self-Rating Depression

Scale (SDS) and the Zung Self-Rating Anxiety Scale (SAS) (21,

22). Both the SDS and SAS questionnaires are composed of 20 items

(10 positive and 10 negative items) scored on a 4-point scale (1 =

never or rarely; 2 = sometimes; 3 = frequently; and 4 = most of the

time), with higher scores representing higher depression or anxiety

symptoms. The index score (range, 25–100) was equal to the raw

score (range, 20–80) × 1.25, and an index score ≥ 50 was defined as

participants with depression or anxiety symptoms; otherwise, they

were classified as not having depression or anxiety symptoms

according to the Chinese norm (21–24). Furthermore, the

Chinese version of the SDS and SAS questionnaires were shown

to have good reliability (Cronbach’s alpha = 0.796; Cronbach’s

alpha = 0.850) and validity in the Chinese population (23, 24).
Measurement of sleep quality

Sleep quality was assessed using the Pittsburgh Sleep Quality

Index (PSQI). The PSQI consists of 19 items under seven

components (subjective sleep quality, sleep latency, sleep

duration, habitual sleep, efficiency, sleep disturbances, use of sleep

medication, and daytime dysfunction) rated on a 4-point scale (0 =

never to 3 = often). The total score on the PSQI scale ranges from 0

to 21, with a score of > 5 indicating poor sleep quality (25). The

Chinese version of the PSQI has been verified in a Chinese group

and has shown good reliability (Cronbach’s alpha = 0.850) and

validity (26).
Definition of MetS and its risk components

In this study, MetS was defined according to the Chinese

Diabetes Society (CDS) criteria as having at least three of the

following metabolic abnormalities: (1) overweight or obesity:

BMI ≥ 25 kg/m2; (2) hypertension: systolic blood pressure

(SBP) ≥ 140 mmHg, diastolic blood pressure (DBP) ≥ 90 mmHg,

and (or) being treated for hypertension; (3) hyperglycemia: FBG ≥

6.1 mmol/L, 2-h oral glucose tolerance test ≥ 7.8 mmol/L, and (or)

being drug treated for type 2 diabetes; and (4) dyslipidemia: TG ≥

1.7 mmol/L and (or) HDL-C< 0.9 mmol/L in men,< 1.0 mmol/L in

women (27). The CDS has been validated in the Chinese
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population, showing good validity (specificity = 0.989) and

reliability (28).
Statistical analyses

The Kolmogorov–Smirnov test was performed for continuous

data. Continuous data of normal distribution are represented as

mean ± standard deviation (SD) (�x ± s), and the analysis was

performed using the two independent samples t-test (Student’s t-

test). Non-normally distributed continuous data were represented

as median and interquartile range (IQR), and the analysis was

performed using the Mann–Whitney U test. The chi-square test

(c2-test) was performed to analyze categorical variables, which were

expressed as frequencies, percentages, or ratios (%). The least

absolute shrinkage and selection operator (Lasso) algorithm was

used to screen potential confounding factors that were significantly

associated with psychological stress, MetS, and its components, thus

avoiding overfitting and effectively controlling the model’s

complexity. Significant potential confounding factors selected

with Lasso were then introduced into multivariate logistic

regression analyses. SPSS (version 25, IBM) statistical software

was used for statistical analysis of the data, and a two-tailed p-

value below 0.05 was considered statistically significant.
MR analysis

A bidirectional two-sample MR analysis was performed to

evaluate the causality between psychological stress and MetS and

its components (i.e., hypertension, BMI, TG, HDL-C, and FBG) to

validate the cross-sectional results. MR depends on three premises:

(1) genetic variation as an instrumental variable (IV) is significantly

associated with exposure, (2) IVs are not related to any confounders

of the exposure–outcome association, and (3) IVs can affect the

outcome only via exposure (Supplementary Figure S1). To avoid

bias due to participant overlap, this MR study relied on the largest

available genome-wide association studies (GWASs) on different

international consortia for exposure and outcomes. For instance, we

obtained summary GWAS data associated with MetS from the most

comprehensive GWAS in the UK Biobank, which included 291,107

individuals (59,677 cases and 231,430 controls) (29). Summary-

level data on psychological stress were collected from the FinnGen

Biobank (ID: finn-b-F5_NEUROTIC), which included 218,792

individuals (20,682 cases and 198,110 controls) (https://

gwas.mrcieu.ac.uk/). The sources of GWAS data on hypertension

(30), BMI, FBG (31), HDL-C, and TG (32) are shown in

Supplementary Table S1.

The inverse variance-weighted (IVW) method, which assumes

that all genetic variants are valid IVs (with no heterogeneity or

horizontal pleiotropy), was used as the primary approach for

evaluating potential causality (33). Thereafter, five alternative

analyses (MR-Egger regression method, weighted median estimator

(WME), MR pleiotropy residual sum and outlier (MR-PRESSO)

weighted mode, and simple mode) were performed to assess the

causal effects. Of these, the WME was regarded as a valid estimation
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when there was heterogeneity in the genetic variants without

horizontal pleiotropy (34). MR-Egger regression was used as the

main evaluation when there was heterogeneity and pleiotropy, and its

intercept was used to test horizontal pleiotropy (35). Meanwhile, the

MR-PRESSO global test was conducted to analyze the directional

horizontal pleiotropy and identify outliers (36). For the selection of

IVs, we chose single nucleotide polymorphisms (SNPs) of

psychological stress that reached the genome-wide significance

threshold (p< 1×10−5), MetS, and its components at p< 5×10−8.

Significant SNPs at linkage disequilibrium (LD) (r2 threshold< 0.001

within a 10-Mb window) were excluded to minimize the effect of

strong LD on the results. In addition, we illustrated the magnitude of

heterogeneity across all IVs using Cochran’s Q statistic and a funnel

plot (37). Furthermore, the leave-one-out method was used for the

sensitive analysis (15). The R2 (Eq. 1: R2   =   2� eaf � (1 −   eaf)�
Beta2] and F statistics (Eq. 2: F statistic  = R2�(N−2)

(1−R2) ) of each SNP were

used to verify the strength of exposure, with an F statistic of > 10

indicating a lower risk of IV bias. We then summed them up to assess

the R2 and F statistics (38). Power calculations were performed using

the mRnd software (https://cnsgenomics.com/shiny/mRnd/) (39). All

data analyses were conducted using the “TwoSampleMR” and “MR-

PRESSO” packages in R version 4.2.2 (R Foundation for Statistical

Computing, Vienna, Austria). Statistical significance was set at a two-

tailed p-value< 0.05.
Results

Cross-sectional study

Participants’ characteristics
After excluding 28,591 individuals due to incomplete

questionnaire results, incomplete blood sample information, or

falling under the exclusion criteria, the data of 4,933 participants

(70.1% men; mean age, 46.13 ± 8.25) were ultimately used for final

analysis (Figure 1). Most participants had completed high school

(87.4%) and were nonsmokers (70.7%). Almost all participants were

married (93.2%). Health-related information revealed that the

percentage of participants who reported a family history of

diabetes, a family history of CVD, a family history of

hypertension, and a family history of stroke were 25.0%, 22.6%,

48.3%, and 10.4%, respectively. A total of 1,489 participants (30.2%)

had MetS, and 543 participants (11.0%) experienced psychological

stress. The characteristics of all participants are shown in Table 1.

Descriptive data and comparison of all variables
in participants with and without MetS by sex

According to the CDS criteria, the percentage of participants

who reported hypertension, overweight or obesity, hyperglycemia,

and dyslipidemia were 39.8%, 50.0%, 41.5%, and 44.2%,

respectively. Overall, the prevalence of MetS among participants

was 30.2%. Notably, MetS was present in 1,345 (38.9%) and 144

(9.7%) men and women, respectively (p< 0.001). There were

significant differences in CPSS, SAS, and PSQI scores between

participants with and without MetS in the total population (p<

0.001). Compared to participants without MetS, those with MetS
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TABLE 1 Characteristics of study population with and without MetS, shown by sex.

Variables Total (n = 4933) Men (n = 3456) Women (n = 1477)

MetS
(1489,
30.2%)

Non-
MetS
(3444,
69.8%)

t/z/
c2 (P)

MetS
(1345,
38.9%)

Non-
MetS
(2111,
61.1%)

t/z/
c2 (P)

MetS
(144,
9.7%)

Non-
MetS
(1333,
90.3%)

t/z/
c2 (P)

Men, n (%) 1345 (90.3) 2111 (61.3)
417.764
(<0.001)

– –
–

– –
–

Age (mean ± SD) 48.33 ± 7.23 45.17 ± 8.48
13.334
(<0.001)

48.07 ± 7.15
45.66
± 8.18

9.146
(<0.001)

50.75±7.58 44.41 ± 8.90
9.365

(<0.001)

BMI, n (%) 1425.443
(<0.001)

809.457
(<0.001)

346.645
(<0.001)

< 25 136 (9.1) 2331 (67.7) 105 (7.8) 1177 (55.8) 31 (21.5) 1154 (86.6)

≥ 25 1353 (90.9) 1113 (32.3) 1240 (92.2) 934 (44.2) 113 (78.5) 179 (13.4)

Educational attainment,
n (%)

2.622
(0.269)

3.191
(0.203)

8.365
(0.015)

Less than high school 190 (12.8) 429 (12.5) 162 (12.0) 262 (12.4) 28 (19.4) 167 (12.5)

High school 957 (64.3) 2290 (66.5) 880 (65.4) 1427 (67.6) 77 (53.5) 863 (64.7)

College degree or more 342 (23.0) 725 (21.1) 303 (22.5) 422 (20.0) 39 (27.1) 303 (22.7)

Marital status, n (%) 41.737
(<0.001)

27.399
(<0.001)

3.537
(0.171)

Unmarried 20 (1.3) 181 (5.3) 16 (1.2) 92 (4.4) 4 (2.8) 89 (6.7)

Married 1433 (96.2) 3166 (91.9) 1298 (96.5) 1976 (93.6) 135 (93.8) 1190 (89.3)

Divorced or widowed 36 (2.4) 97 (2.8) 31 (2.3) 43 (2.0) 5 (3.5) 54 (4.1)

(Continued)
FIGURE 1

Flow chart for the selection of participants in the current cross-sectional study. Chinese PLA General Hospital, Chinese People’s Liberation Army
General Hospital; CPSS, Chinese Perceived Stress Scale; SAS, Self-Rating Anxiety Scale; SDS, Self-Rating Depression Scale; PSQI, Pittsburgh Sleep
Quality Index.
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TABLE 1 Continued

Variables Total (n = 4933) Men (n = 3456) Women (n = 1477)

MetS
(1489,
30.2%)

Non-
MetS
(3444,
69.8%)

t/z/
c2 (P)

MetS
(1345,
38.9%)

Non-
MetS
(2111,
61.1%)

t/z/
c2 (P)

MetS
(144,
9.7%)

Non-
MetS
(1333,
90.3%)

t/z/
c2 (P)

Smoking, n (%) 573 (38.5) 870 (25.3) 87.801
(<0.001)

563 (41.9) 838 (39.7) 1.593
(0.207)

10 (6.9) 32 (2.4) 9.712
(0.002)

Alcohol consumption,
n (%)

1037 (69.6) 1705 (49.5) 170.757
(<0.001)

1019 (75.8) 1445 (68.5) 21.458
(<0.001)

18 (12.5%) 260 (19.5%) 4.174
(0.041)

Physical activity, n (%)

≥ 2 hours/week 696 (46.7) 1694 (49.2) 2.487
(0.115)

603 (44.8) 893 (42.3) 2.143
(0.134)

93 (64.6) 801 (60.1) 1.098
(0.295)

< 2 hours/week 793 (53.3) 1750 (50.8) 742 (55.2) 1218 (57.7) 51 (35.4) 532 (39.9)

Waist-to-hip ratio (IQR) 0.96
(0.93, 0.99)

0.89
(0.81, 0.93)

32.820
(<0.001)

0.96
(0.93, 0.99)

0.93
(0.90, 0.95)

23.494
(<0.001)

0.84
(0.82,
0.86)

0.80
(0.75, 0.83)

13.405
(<0.001)

Family history of
diabetes, n (%)

462 (31.0) 773 (22.4) 40.802
(<0.001)

427 (31.7) 466 (22.1) 40.110
(<0.001)

35 (24.3) 307 (23.0) 0.119
(0.731)

Family history of
hypertension, n (%)

870 (58.4) 1514 (44.0) 87.138
(0.001)

784 (58.3) 948 (44.9) 58.852
(<0.001)

86 (59.7) 566 (42.5) 15.705
(<0.001)

Family history of CVD,
n (%)

356 (23.9) 761(22.1) 1.949
(0.163)

308 (22.9) 439 (20.8) 2.146
(0.143)

48 (33.3) 322 (24.2) 5.830
(0.016)

Family history of stroke,
n (%)

184 (12.4) 331 (9.6) 8.386
(0.004)

173 (12.9) 212 (10.0) 6.599
(0.010)

11 (7.6) 119 (8.9) 0.269
(0.604)

CRP (IQR) 0.12
(0.06, 0.22)

0.08
(0.05, 0.14)

10.556
(<0.001)

0.11
(0.06, 0.23)

0.09
(0.05, 0.15)

7.673
(<0.001)

0.15
(0.07,
0.26)

0.08
(0.05, 0.13)

7.024
(<0.001)

CPSS, n (%) 14.861
(<0.001)

2.776
(0.096)

1.288
(0.256)

< 29 1364 (91.6) 3026 (87.9) 1238 (92.0) 1908 (90.4) 126 (87.5) 1118 (83.9)

≥ 29 125 (8.4) 418 (12.1) 107 (8.0) 203 (9.6) 18 (12.5) 215 (16.1)

CPSS (IQR) 17.0
(12.0, 22.0)

18.0
(13.0, 24.0)

3.561
(<0.001)

17.0
(12.0, 22.0)

18.0
(13.0, 23.0)

1.899
(0.058)

20.0
(13.0,
25.0)

19.0
(14.0, 25.0)

0.239
(0.811)

SAS, n (%) 6.201
(0.013)

1.484
(0.223)

4.571
(0.033)

< 50 1284 (86.2) 2873 (83.4) 1182 (87.9) 1825 (86.5) 102 (70.8) 1048 (78.6)

≥ 50 205 (13.8) 571 (16.6) 163 (12.1) 286 (13.5) 42(29.2) 285 (21.4)

SDS, n (%) 0.009
(0.923)

2.521
(0.112)

5.644
(0.018)

< 50 1006 (67.6) 2322 (67.4) 934 (69.4) 1519 (72.0) 72 (50.0) 803 (60.2)

≥ 50 483 (32.4) 1122 (32.6) 411 (30.6) 592 (28.0) 72 (50.0) 530 (39.8)

PSQI, n (%) 4.171
(0.041)

0.438
(0.508)

0.084
(0.772)

≤5 553 (37.1) 1175 (34.1) 512 (38.1) 780 (36.9) 41 (28.5) 395 (29.6)

>5 936 (62.9) 2269 (65.9) 833 (61.9) 1331 (63.1) 103 (71.5) 938 (70.4)
F
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MetS, metabolic syndrome; SD, standard deviation; BMI, BodyMass Index; IQR, interquartile range; CVD, cardiovascular diseases; CRP, C-reactive protein; CPSS, Chinese Perceived Stress Scale;
SAS, Self-Rating Anxiety Scale; SDS, Self-Rating Depression Scale; PSQI, Pittsburgh Sleep Quality Index.
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were older (p< 0.001), had higher rates of smoking (p< 0.001) and

alcohol consumption (p< 0.001), higher CRP values (p< 0.001), and

family histories of diabetes, hypertension, and stroke (p< 0.001) in

both sexes. In addition, the prevalence of participants with low

educational attainment and a family history of CVD was higher in

women with MetS than in those without MetS. Further information

is provided in Table 1.

Descriptive data and comparison of all variables
in participants with and without psychological
stress by sex

As shown in Table 2, the prevalence of psychological stress

(11.0%) in women (15.8%) was higher than that in men (9.0%) (p<

0.001). For MetS and its components, there were significant

differences in MetS, hyperglycemia, overweight or obesity,

dyslipidemia, SBP, DBP, FBG, TG, and HDL between individuals

with and without psychological stress in the total population, but not

in subgroup analysis by sex (p< 0.05). For the potential confounding

factors, compared to participants without psychological stress, those

with psychological stress had significant differences in age, marital

status, waist-to-hip ratio, SAS, SDS, and PSQI (p< 0.05). Further

information is shown in Table 2.

Associations among psychological stress and
MetS and its components

Logistic regression models with MetS and its risk components

as dependent variables were used to assess whether psychological

stress was associated with MetS, overweight or obesity,

hypertension, hyperglycemia, and dyslipidemia, after adjusting for

potential confounding factors (age, marital status, smoking, alcohol

consumption, physical activity, SAS, SDS, family history of diabetes,

and family history of hypertension) selected via Lasso. The results

indicated that psychological stress was linked to the risk of

hypertension (odds ratio (OR), 1.341 (95% confidence interval

(CI), 1.023–1.758); p = 0.034) in men (Table 3; Figure 2). In

contrast, psychological stress was not associated with MetS or the

three other components. Further information is provided in

Table 3; Figure 2. Additionally, logistic regression models with

psychological stress as dependent variables were used to assess

whether MetS and its individual risk components were independent

risk factors for psychological stress. These models were adjusted for

age, marital status, smoking, alcohol consumption, physical activity,

SAS, and SDS, which were also selected via Lasso. The results

indicated that hypertension could be an independent risk factor in

total participants and men (total population: OR, 1.327 (95% CI,

1.025–1.718); p = 0.032; men: OR, 1.545 (95% CI, 1.113–2.145); p =

0.009). Further information is shown in Table 4; Figure 2.
MR analysis

The causal effect of psychological stress on MetS
and its components

Among the 40 psychological stress-associated variants (p< 1 ×

10−5, LD r2< 0.001) (Supplementary Table S2), two SNPs were not
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available in the summary-level datasets of MetS and hypertension,

21 SNPs were unavailable for the overweight dataset, 17 SNPs were

unavailable for the obesity dataset, 20 SNPs were unavailable for the

BMI dataset, and 23 SNPs were unavailable for the hyperlipidemia

dataset and HDL-C dataset. In addition, owing to incompatible

alleles and ambiguous palindromes, we excluded two variants of

MetS, hypertension, overweight, obesity, BMI, hyperlipidemia, TG,

FBG, and HDL-C. Therefore, we included 36, 36, 17, 21, 18, 38, 15,

15, and 38 variants as IVs for MetS, hypertension, overweight,

obesity, BMI, FBG, hyperlipidemia, HDL-C, and TG levels,

respectively, in the MR analyses.

The causations were analyzed using IVW, MR-Egger, WME,

weighted mode, simple mode, and MR-PRESSO methods. As

depicted in Supplementary Table S3; Figure 3; Supplementary

Figure S2, the ORs with 95% CIs for each log-odd increment in

genetically predicted causal associations between psychological

stress and MetS were obtained using the IVW method (OR, 0.989

(95% CI, 0.853–1.146); p = 0.226). These findings were consistent

with the results from the five other models. The results of the MR-

Egger intercept (p = 0.689) and MR-PRESSO global tests (p = 0.151)

showed no indication of potential horizontal pleiotropy. The

Cochran’s Q value for the IVW model was p = 0.023, but the

funnel plot considered no significant heterogeneity obtained from

individual variants (Supplementary Figure S3). Moreover, leave-

one-out analysis showed that no IVs influenced this causal

inference after gradually eliminating any single SNP

(Supplementary Figure S4). Similarly, no causal relationship was

found between psychological stress and the MetS components. The

results of the MR-Egger regression analyses, MR-PRESSO global

tests, Cochran’s Q value of the IVW model, funnel plot, and

leave-one-out analyses for MetS components are shown in

Supplementary Table S3; Figure 3; Supplementary Figures S2-S5.

Most IVs had an F statistic greater than 10, indicating that IV bias

was unlikely to exist. The statistical power for MR of psychological

stress on MetS and its components was higher than 75%

(Supplementary Table S4).

The causal effect of MetS and its components on
psychological stress

In the reverse MR analysis, after excluding the SNPs for

palindromic alleles, palindromic alleles with intermediate allele

frequencies, and unavailable SNPs in the summary-level dataset

of psychological stress, we utilized 68, 66, 14, 13, 37, 11, 69, 31, and

94 variants for MetS, hypertension, overweight, obesity, BMI,

hyperlipidemia, HDL-C, TG, and FBG as IVs (p< 5 × 10−8, LD

r2< 0.001), respectively (Supplementary Tables S5-S13).

As shown in Figure 4, Supplementary Table S14; Supplementary

Figure S6, the MR results showed that hypertension and psychological

stress had a positive causal relationship in the IVW model (OR, 2.386

(95% CI, 1.209–4.710); p = 0.012), which was in line with the results of

the WME, simple mode, weighted mode, and MR-PRESSO models.

No potential horizontal pleiotropy was observed in the MR-Egger

intercept test (p = 0.330) or the MR-PRESSO global test (p = 0.051).

The Cochran’s Q value for the IVW method indicated that

heterogeneity may exist (p = 0.021); however, the symmetry of the
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TABLE 2 Characteristics of study population according to the presence of psychological stress, shown by sex.

Variable Total (4933) Men (3456, 70.1%) Women (1477, 29.9%)

Stressed
(543,
11.0%)

Non-
stressed
(4390,
89.0%)

t/z/
c2 (P)

Stressed
(310,
9.0%)

Non-
stressed
(3146,
91.0%)

t/z/
c2 (P)

Stressed
(233,
15.8%)

Non-
stressed
(1244,
84.2%)

t/z/
c2 (P)

Men, n (%) 310 (57.1 %) 3146 (71.7%) 48.921
(<0.001)

– – – – – –

Age (mean ± SD) 42.74 ± 9.04 46.55 ± 8.05 9.372
(<0.001)

43.17 ± 8.70 46.93 ±7.71 7.346
(<0.001)

42.16 ± 9.46 45.56 ± 8.79 5.091
(<0.001)

BMI, n (%) 23.644
(<0.001)

4.924
(0.026)

0.824
(0.364)

< 25 325 (59.9) 2142 (48.8) 133 (42.9) 1149 (36.5) 192 (82.4) 993 (79.8)

≥ 25 218 (40.1) 2248(51.2) 177 (57.1) 1997 (63.5) 41 (17.6) 251 (20.2)

Educational attainment,
n (%)

5.626
(0.060)

3.317
(0.190)

1.521
(0.467)

Less than high school 72 (13.3) 547 (12.5) 41 (13.2) 383 (12.2) 31 (13.3) 164 (13.2)

High school 334 (61.5) 2913 (66.4) 193 (62.3) 2114 (67.2) 141 (60.5) 799 (64.2)

College degree or more 137 (25.2) 930 (21.2) 76 (24.5) 649 (20.6) 61 (26.2) 281 (22.6)

Marital status, n (%) 44.252
(<0.001))

27.529
(<0.001)

11.175
(0.004)

Unmarried 51 (9.4) 150 (3.4) 25 (8.1) 83 (2.6) 26 (11.2) 67(5.4)

Married 477 (87.8) 4122 (93.9) 278 (89.7) 2996 (95.2) 199 (85.4) 1126 (90.5)

Divorced or widowed 15 (2.8) 118 (2.7) 7 (2.3) 67 (2.1) 8 (3.4) 51 (4.1)

Smoking, n (%) 167 (30.8) 1276 (29.1) 0.666
(0.414)

155 (50.0) 1246 (39.6) 12.648
(<0.001)

12 (5.2) 30 (2.4) 5.328
(0.021)

Alcohol consumption,
n (%)

253 (46.6) 2489 (56.7) 19.983
(<0.001)

205 (66.1) 2259 (71.8) 4.443
(0.035)

48 (20.6) 230 (18.5) 0.573
(0.449)

Physical activity, n (%) 227 (41.8) 2163 (49.3) 10.785
(0.001)

98 (31.6) 1398 (44.4) 18.905
(<0.001)

129 (55.4) 765 (61.5) 3.087
(0.079)

Waist-to-hip ratio (IQR) 0.87
(0.80, 0.93)

0.92
(0.84, 0.96)

8.902
(<0.001)

0.93
(0.90, 0.96)

0.94
(0.92, 0.97)

4.605
(<0.001)

0.80
(0.74, 0.82)

0.81
(0.77, 0.83)

3.020
(0.003)

Family history of
diabetes, n (%)

139 (25.6) 1096 (25.0) 0.103
(0.748)

79 (25.5) 814 (25.9) 0.022
(0.881)

60 (25.8) 282 (22.7) 1.048
(0.306)

Family history of
hypertension, n (%)

252 (46.4) 2132 (48.6) 0.900
(0.343)

147 (47.4) 1585 (50.4) 0.990
(0.320)

105 (45.1) 547 (44.0) 0.095
(0.758)

Family history of CVD,
n (%)

129 (23.8) 988 (22.5) 0.432
(0.511)

74 (23.9) 673 (21.4) 1.023
(0.312)

55 (23.6) 315 (25.3) 0.308
(0.579)

Family history of stroke,
n (%)

50 (9.2) 465 (10.6) 0.990
(0.320)

30 (9.7) 355 (11.3) 0.736
(0.391)

20 (8.6) 110 (8.8) 0.016
(0.898)

CRP (IQR) 0.09
(0.05, 0.15)

0.09
(0.05, 0.16)

0.304
(0.761)

0.10
(0.05, 0.19)

0.10
(0.05, 0.18)

0.447
(0.655)

0.08
(0.05, 0.13)

0.08
(0.05, 0.15)

0.371
(0.752)

MetS, n (%) 125 (23.0) 1364 (31.1) 14.861
(<0.001)

107 (34.5) 1238 (39.4) 2.776
(0.096)

18 (7.7) 126 (10.1) 1.288
(0.256)

Hypertension, n (%) 205 (37.8) 1756 (40.0) 1.019
(0.313)

154 (49.7) 1472 (46.8) 0.945
(0.331)

51 (21.9) 284 (22.8) 0.099
(0.753)

Hyperglycemia, n (%) 193 (35.5) 1854 (42.2) 8.906
(0.003)

127 (41.0) 1421 (45.2) 2.014
(0.156)

66 (28.3) 433 (34.8) 0.685
(0.055)

Overweight or obesity,
n (%)

218 (40.1) 2248 (51.2) 23.644
(<0.001)

177 (57.1) 1997 (63.5) 4.924
(0.026)

41 (17.6) 251 (20.2) 0.824
(0.364)

(Continued)
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funnel plot showed no evidence of heterogeneity (Supplementary

Figure S7). Furthermore, leave-one-out analysis suggested that the

MR results were stable after the removal of any single SNP.

Nonetheless, neither MetS nor its five other factors were causally

related to psychological stress. Further information is presented in

Supplementary Tables S4, S14; Figure 4; Supplementary Figures S6-S9.
Discussion

MetS has been recognized as a serious health problem

worldwide because of its growing prevalence (3). According to

previous studies, the association between psychological stress and

MetS remains unclear. In this study, we used a cross-sectional
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design to investigate the association of psychological stress with

MetS and its risk components and used bi-directional MR analyses

to explore its causal relationship. We found that psychological stress

was associated with hypertension in men after controlling for

potential covariates in the present cross-sectional study but not in

MR analyses; conversely, hypertension was a risk factor for

psychological stress in cross-sectional and MR analyses.

Psychological stress and MetS are associated with alterations in

CVD; however, their relationship has not yet been fully elucidated.

To reduce the limitations of observational studies, such as the

disturbance of confounding effects, we used MR analysis, a scientific

method, to explore the relationship between psychological stress

and MetS. In the present study, we found no association between

psychological stress and MetS, and similar results were obtained
TABLE 2 Continued

Variable Total (4933) Men (3456, 70.1%) Women (1477, 29.9%)

Stressed
(543,
11.0%)

Non-
stressed
(4390,
89.0%)

t/z/
c2 (P)

Stressed
(310,
9.0%)

Non-
stressed
(3146,
91.0%)

t/z/
c2 (P)

Stressed
(233,
15.8%)

Non-
stressed
(1244,
84.2%)

t/z/
c2 (P)

Dyslipidemia, n (%) 204 (37.6) 1975 (45.0) 10.787
(0.001)

162 (52.3) 1717 (54.6) 0.612
(0.434)

42 (18.0) 258 (20.7) 0.893
(0.345)

SBP (IQR) 117.0
(105.0,
132.0)

122.0
(109.0,
136.0)

4.701
(<0.001)

123.0
(110.0,
137.0)

126.0
(113.0,
138.0)

1.182
(0.237)

109.0
(98.0, 122.0)

112.0
(101.0,
128.0)

3.000
(<0.001)

DBP (IQR) 79.0
(71.0, 89.0)

81.0
(74.0, 89.0)

3.123
(<0.001)

83.0
(75.0, 92.0)

82.0
(75.0, 90.0)

0.884
(0.377)

74.0
(67.0, 82.0)

78.0
(71.0, 85.0)

3.880
(<0.001)

FBG (mmol/L, IQR) 5.09
(4.79, 5.55)

5.24
(4.88, 5.74)

3.796
(<0.001)

5.28
(4.94, 5.83)

5.34
(4.96, 5.92)

1.465
(0.143)

4.96
(4.63, 5.30)

5.00
(4.71, 5.32)

1.323
(0.186)

Triglycerides (mmol/
L, IQR)

1.30
(0.91, 2.05)

1.53
(1.05, 2.29)

4.230
(<0.001)

1.68
(1.20, 2.50)

1.73
(1.22, 2.53)

0.482
(0.630)

1.00
(0.75, 1.37)

1.08
(0.80, 1.52)

2.454
(0.014)

HDL (mmol/L, IQR) 1.29
(1.06, 1.53)

1.20
(1.00, 1.46)

3.717
(<0.001)

1.14
(0.95, 1.32)

1.13
(0.96, 1.33)

0.439
(0.661)

1.48
(1.25, 1.76)

1.48
(1.23, 1.74)

0.812
(0.417)

LDL (mmol/L, IQR) 3.03
(2.44, 3.66)

3.11
(2.54, 3.69)

1.325
(0.185)

3.20
(2.57, 3.75)

3.11
(2.54, 3.70)

0.896
(0.370)

2.94
(2.36, 3.60)

3.12
(2.55, 3.70)

3.097
(0.002)

CHO (mmol/L, IQR) 4.61
(3.99, 5.19)

4.70
(4.11, 5.31)

1.910
(0.056)

4.63
(4.07, 5.30)

4.69
(4.09, 5.31)

0.008
(0.994)

4.64
(3.94, 5.15)

4.75
(4.15, 5.33)

3.084
(0.002)

SAS, n (%) 745.856
(<0.001)

427.120
(<0.001)

269.124
(<0.001)

< 50 239 (44.0) 3918 (89.2) 153 (49.4) 2854 (90.7) 86 (36.9) 1064 (85.5)

≥ 50 304 (56.0) 472 (10.8) 157 (50.6) 292 (9.3) 147 (63.1) 180 (14.5)

SDS, n (%) 735.605
(<0.001)

457.243
(<0.001)

246.306
(<0.001)

< 50 87 (16.0) 3241 (73.8) 57 (18.4) 2396 (76.2) 30 (12.9) 845 (67.9)

≥ 50 456 (84.0) 1149 (26.2) 253 (81.6) 750 (23.8) 203 (87.1) 399 (32.1)

PSQI, n (%) 161.350
(<0.001)

91.845
(<0.001)

60.693
(<0.001)

≤5 57 (10.5) 1671 (38.1) 38 (12.3) 1254 (39.9) 19 (8.2) 417 (33.5)

>5 486 (89.5) 2719 (61.9) 272 (87.7) 1892 (60.1) 214 (91.8) 827 (66.5)
fro
MetS, metabolic syndrome; SD, standard deviation; BMI, Body Mass Index; IQR, interquartile range; CVD, cardiovascular diseases; CHO, total cholesterol; HDL-C, high-density lipoprotein
cholesterol; LDL-C, low-density lipoprotein cholesterol; FBG, fasting blood-glucose; TG, Triglycerides; CRP, C-reactive protein; SBP, systolic blood pressure; DBP, diastolic blood pressure; CPSS,
Chinese Perceived Stress Scale; SAS, Self-Rating Anxiety Scale; SDS, Self-Rating Depression Scale; PSQI, Pittsburgh Sleep Quality Index.
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from the MR analyses. In line with our findings, previous cross-

sectional and longitudinal studies have indicated no relationship

between psychological stress and MetS, regardless of the

instruments used to measure psychological pressure or the

definition of MetS (40, 41). Considering salivary cortisol as an

objective indicator of psychological stress, prior studies have

indicated no significant difference in salivary cortisol levels

between populations with and without MetS (13, 42, 43), thereby

offering an interpretation of our results. Nevertheless, cross-

sectional studies in Japan, Europe, and Pakistan have reported

stress scores of 28, 25, and 31, respectively, observing a positive

association between psychological stress and MetS (44–46). Indeed,

increased psychological stress scores have been associated with an

increased risk of metabolic disorders (9). Consistent with our results
Frontiers in Endocrinology 10181
(mean CPSS score: 18.4), one prior cross-sectional study reporting a

low stress score of 22.7 did not support the effect of stress on

MetS (7).

Hypertension is a major modifiable risk factor for MetS and

CVD. There is growing evidence for an association between

hypertension and the progression of psychological stress (47, 48).

Our cross-sectional and MR analyses revealed that hypertension

may increase the risk of psychological stress. Prior research has

found that hypertension causes damage to small blood vessels,

contributing to neuronal damage in multiple areas, including the

hippocampus, which could promote the development of

psychological stress (49). One animal experiment showed that a

highly activated region in the spontaneously hypertensive rat (the

locus coeruleus) could awaken and regulate autonomic function
TABLE 3 Multivariate analysis of psychological stress on MetS and its risk components, shown by sex.

Variables Total Men Women

OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

MetS 0.823 (0.644, 1.052) 0.120 0.921 (0.696, 1.219) 0.565 0.630 (0.347, 1.144) 0.129

Hypertension 1.140 (0.916, 1.420) 0.239 1.341 (1.023, 1.758) 0.034 0.919 (0.613, 1.378) 0.683

Overweight or obesity 0.786 (0.601, 1.029) 0.082 0.786 (0.601, 1.032) 0.083 0.813 (0.532, 1.241) 0.337

Dyslipidemia 0.816 (0.655, 1.016) 0.069 0.868 (0.666, 1.130) 0.293 0.762 (0.500, 1.161) 0.206

TG (≥ 1.7, mmol/L) 0.828 (0.665, 1.031) 0.092 0.899 (0.690, 1.171) 0.429 0.743 (0.478, 1.156) 0.188

HDL-C (< 0.9 in men,< 1.0 in women, mmol/L) 0.798 (0.590, 1.080) 0.144 0.839 (0.594, 1.185) 0.319 0.728 (0.382, 1.386) 0.333

Hyperglycemia 1.006 (0.804, 1.260) 0.957 1.131 (0.851, 1.503) 0.396 0.872 (0.598, 1.271) 0.476

FBG (≥ 6.1, mmol/L) 0.930 (0.673, 1.285) 0.659 0.950 (0.662, 1.364) 0.782 1.076 (0.477, 2.428) 0.859
fro
All associations were tested using logistic regression, and all results of multivariate analysis were adjusted by age, marital status, smoking, alcohol consumption, physical activity, family history of
diabetes, family history of hypertension, SAS, and SDS. MetS, metabolic syndrome; OR, odd ratio; CI, confidence interval; SAS, Self-Rating Anxiety Scale; SDS, Self-Rating Depression Scale.
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FIGURE 2

Associations of psychological stress with MetS and its components according to sex. (A) The effect of psychological stress on MetS and its
components in the total population. (B) The effect of psychological stress on MetS and its components in men. (C) The effect of psychological stress
on MetS and its components in women. (D) The effect of MetS and its components on psychological stress in the total population. (E) The effect of
MetS and its components on psychological stress in men. (F) The effect of MetS and its components on psychological stress in women. OR, odd
ratio; CI, confidence interval; MetS, metabolic syndrome.
ntiersin.org

https://doi.org/10.3389/fendo.2023.1212647
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2023.1212647
and that enhanced autonomic reactivity is a true indicator of

perceived stress levels (50). Therefore, it is particularly important

to pay attention to the psychological stress experienced by patients

with hypertension to reduce the occurrence of hypertension-related

complications. Conversely, based on MR results, psychological

stress may not be involved in the development of hypertension.

In addition, our cross-sectional study found that psychological

stress may be related to hypertension in men but found no

association in women or the total population. Indeed, gender

plays a role in influencing the aforementioned relationship. In the

current cross-sectional survey, a higher prevalence of hypertension

was observed in men (47.0%) than in women (22.7%), consistent

with results reported in other published studies (51, 52). Research

revealed that women tend to manifest emotions such as anxiety or

depression more frequently, while men, under chronic stress

conditions, are more likely to exhibit an elevated incidence of
Frontiers in Endocrinology 11182
alcohol consumption and an increased risk of hypertension and

MetS (53–55). The mechanisms underlying the relationship

between psychosocial stress and hypertension are diverse and

complex (56). Furthermore, many cross-sectional and cohort

studies have reported that psychological stress is not involved in

the progression of hypertension. Therefore, based on current

evidence, we cannot conclude that psychological stress is a risk

factor for hypertension in the general population (57, 58).

Regarding the relationship between psychological stress and

overweight or obesity, hyperglycemia, and dyslipidemia, no

significant association was observed in our cross-sectional and

MR results, supporting the findings of previous cross-sectional

and cohort studies (59, 60). However, several publications that

additionally adjusted for the confounding effects of dietary behavior

showed a significant relationship between psychological stress and

the aforementioned factors (61, 62). Research related to behavioral
TABLE 4 Multivariate analysis of MetS and its risk components on psychological stress, shown by sex.

Variables Total Men Women

OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

MetS 0.802 (0.536, 1.200) 0.283 0.720 (0.439, 1.182) 0.194 0.700 (0.305, 1.607) 0.401

Hypertension 1.327 (1.025, 1.718) 0.032 1.545 (1.113, 2.145) 0.009 1.104 (0.705,1.728) 0.665

Hyperglycemia 1.114 (0.860, 1.442) 0.414 1.296 (0.918, 1.829) 0.141 0.949 (0.638, 1.412) 0.796

Overweight or obesity 0.818 (0.635, 1.053) 0.119 0.832 (0.607, 1.142) 0.255 0.913 (0.564, 1.479) 0.712

Dyslipidemia 0.903 (0.698, 1.168) 0.437 0.975 (0.709, 1.341) 0.876 0.864 (0.534, 1.398) 0.551
fro
All results of multivariate analysis were adjusted by age, marital status, smoking, alcohol consumption, physical activity, SAS, and SDS. MetS, metabolic syndrome; OR, odd ratio; CI, confidence
interval; SAS, Self-Rating Anxiety Scale; SDS, Self-Rating Depression Scale.
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FIGURE 3

Causal estimates of genetically predicted psychological stress on MetS and its components. (A) Causal estimates of genetically predicted
psychological stress on MetS. (B) Causal estimates of genetically predicted psychological stress on hypertension. (C) Causal estimates of genetically
predicted psychological stress on overweight. (D) Causal estimates of genetically predicted psychological stress on obesity. (E) Causal estimates of
genetically predicted psychological stress on BMI. (F) Causal estimates of genetically predicted psychological stress on hyperlipidemia. (G) Causal
estimates of genetically predicted psychological stress on HDL-C. (H) Causal estimates of genetically predicted psychological stress on TG. (I) Causal
estimates of genetically predicted psychological stress on FBG. MetS, metabolic syndrome; MR, Mendelian randomization; OR, odds ratio; CI,
confidence interval; IVW, inverse-variance weighted; MR-PRESSO, MRPleiotropy Residual Sum and Outlier; BMI, body mass index; FBG, fasting
blood-glucose; HDL-C, high-density lipoprotein cholesterol; TG, triglycerides.
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psychology has indicated that high-income populations respond to

high levels of psychological stress through physical activity, whereas

some low-income populations are more likely to cope with it

through compensatory eating (63). Due to limitations in data

collection for this project, we did not include dietary habits as

covariates in the regression analysis. Additionally, it is worth noting

that most of the study population consisted of high-income

populations, which could be one possible reason for the non-

significant results. Furthermore, the range of CPSS scores in this

current study cannot reflect the psychological stress of highly

stressed individuals, potentially explaining the lack of a significant

correlation (64).
Strengths and limitations

This study had several limitations that should be considered.

Firstly, compared to clinical diagnosis, the self-reported

questionnaires (i.e., SDS, SAS, and PSQI) used in this cross-

sectional study provided limited evidence. Secondly, due to

limitations in data collection for this project, we did not include

dietary habits as covariates in the regression analysis. Additionally,

it is worth noting that most of the study populations consisted of

high-income populations, which could be one possible reason for

the nonsignificant results. Furthermore, the range of CPSS scores in

this current study cannot reflect the psychological stress of highly

stressed individuals, potentially explaining the lack of a significant

correlation. Moreover, the cross-sectional study design cannot

avoid the influence of traditional confounding factors and inverse

causal associations. The reason for the lack of detailed demographic
Frontiers in Endocrinology 12183
information is that we did not perform subgroup analyses in the

MR analyses. Finally, owing to data limitations, the current

observational study in the Chinese population and the MR study

in the European population both constrain the generalizability of

our study results. The strengths of this study are as follows: the

confounding effects of depression, anxiety, and sleep quality, which

have rarely been accounted for in previous epidemiological studies,

were adjusted using regression analysis in the current cross-

sectional study (9). In MR analysis, we investigated the causal

relationship between psychological stress and MetS and its

components from a genetic perspective.
Conclusion

In conclusion, our findings did not indicate a significant association

between psychological stress and MetS. However, we observed

associations between psychological stress and hypertension, with

evidence that individuals with hypertension may be more susceptible

to psychological stress. These findings may have implications for

targeting factors related to hypertension and psychological stress in

interventions aimed at improving mental and metabolic health. The

relationship between psychological stress andMetS and its components

requires further study and careful interpretation.
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FIGURE 4

Causal estimates of genetically predicted MetS and its components on psychological stress. (A) Causal estimates of genetically predicted MetS on
psychological stress. (B) Causal estimates of genetically predicted hypertension on psychological stress. (C) Causal estimates of genetically predicted
overweight on psychological stress. (D) Causal estimates of genetically predicted obesity on psychological stress. (E) Causal estimates of genetically
predicted BMI on psychological stress. (F) Causal estimates of genetically predicted hyperlipidemia on psychological stress. (G) Causal estimates of
genetically predicted HDL-C on psychological stress. (H) Causal estimates of genetically predicted TG on psychological stress. (I) Causal estimates of
genetically predicted FBG on psychological stress. MetS, metabolic syndrome; MR, Mendelian randomization; OR, odds ratio; CI, confidence interval;
IVW, inverse-variance weighted; MR-PRESSO, Pleiotropy Residual Sum and Outlier; BMI, body mass index; FBG, fasting blood-glucose; HDL-C, high-
density lipoprotein cholesterol; TG, triglycerides.
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Context: Chronic kidney disease (CKD) is a public health burden worldwide.

Epidemiological studies observed an association between sex hormones,

including estradiol, and kidney function.

Objective: We conducted a Mendelian randomization (MR) study to assess a

possible causal effect of estradiol levels on kidney function in males and females.

Design: We performed a bidirectional two-sample MR using published genetic

associations of serum levels of estradiol in men (n = 206,927) and women

(n = 229,966), and of kidney traits represented by estimated glomerular filtration

rate (eGFR, n = 567,460), urine albumin-to-creatinine ratio (UACR, n = 547,361),

and CKD (n = 41,395 cases and n = 439,303 controls) using data obtained from the

CKDGen Consortium. Additionally, we conducted a genome-wide association

study using UK Biobank cohort study data (n = 11,798 men and n = 6,835 women)

to identify novel genetic associations with levels of estradiol, and then used these

variants as instruments in a one-sample MR.

Results: The two-sample MR indicated that genetically predicted estradiol levels

are significantly associated with eGFR in men (beta = 0.077; p = 5.2E-05). We

identified a single locus at chromosome 14 associated with estradiol levels in

men being significant in the one-sample MR on eGFR (beta = 0.199; p = 0.017).

We revealed significant results with eGFR in postmenopausal women and with

UACR in premenopausal women, which did not reach statistical significance in

the sensitivity MR analyses. No causal effect of eGFR or UACR on estradiol levels

was found.

Conclusions: We conclude that serum estradiol levels may have a causal effect

on kidney function. Our MR results provide starting points for studies to develop

therapeutic strategies to reduce kidney disease.

KEYWORDS

glomerular filtration rate, steroids, albuminuria, genome-wide association
study, causality
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Introduction

Chronic kidney disease (CKD) due to impaired kidney function

is a major contributor to death and suffering in the 21st century (1),

affecting an estimated 843 million individuals worldwide in 2017.

Between 1990 and 2017, the global all-age mortality rate attributed

to CKD increased by 41.5%. Studies and research continue to be

conducted to identify and evaluate the risk factors associated with

the development of CKD. These risk factors include high blood

pressure and diabetes mellitus type 1 and 2 (1).

Furthermore, sex-associated differences in the epidemiology of

kidney disorders have been observed (2, 3). Studies and trials have

shown that most people who reach end-stage kidney disease

(ESKD) are men, and with a faster disease progression than

women (4, 5). However, randomized controlled trials assessing a

causal effect of estradiol levels on kidney disease are lacking.

Several theories exist to explain the sex-associated differences in

exposure and prognosis of kidney disease. These include unhealthy

lifestyle and habits, which are found to be more prevalent in men

than in women (2, 6). However, one important physiological

difference is the steroidal sex hormones, including testosterone

and estradiol, which play an essential role in the development of

sexual characteristics (7).

Similar to the testosterone levels in men, estradiol levels in

women can vary depending on age and menstrual status. In

premenopausal women, estradiol levels vary throughout the

menstrual cycle starting from 20 pg/mL to 80 pg/mL during the

early phase of menstruation (8), followed by a gradual increase until

the level reaches its maximum at the middle of the cycle, before

decreasing again at the end of it. The estradiol levels could reach 300

pg/mL by the end of the second week of the menstruation cycle (8,

9), with an upper limit even reaching higher than 600 pg/mL.

Estradiol levels are significantly lower in postmenopausal women.

Some studies report average levels between 50 pg/mL and 120 pg/

mL in older women who are no longer menstruating (8, 9).

Sex hormones have secondary functions such as organ

development and prevention of disorders, such as osteoporosis

(10). However, their impact on kidneys is not fully understood.

Studies have shown an association between lower testosterone levels

in men and increased all-cause mortality risk at advanced stages of

CKD (11). A significant association between dialysis and decreased

estradiol levels was also found in women, resulting in the lack of

ovulation and abnormal menstruation cycles (12). The complexity

of the regulation of the estradiol hormone in women has made it

difficult to study its role and association with kidney functions.

However, studies using animal models, which were designed to

uncover the reasons underlying this association, suggested that

estradiol and other estrogens could have a nephroprotective effect

by antagonizing apoptosis of the podocytes, especially in females

(13, 14). Estradiol has also shown protective effects on other kidney-

damaging pathways like nitrogen oxide production and collagen

synthesis. On the other hand, testosterone has shown destructive

effects on kidney function, by either inducing apoptosis of

podocytes or other mechanisms such as fibrosis of kidney cells (2,

15). Most of these studies were conducted in animal models, thus
Frontiers in Endocrinology 02187
creating a need to investigate the effect of sex hormones on kidney

functions in humans (16).

Randomized controlled trials are a well-established method to

assess causality. However, the high cost of conducting these studies

and their challenging feasibility are pertinent drawbacks of this

approach (17). Mendelian randomization (MR) is an alternative

method using genetic associations as instrumental variables to

overcome possible bias due to confounding when drawing causal

inference from observational studies (18). MR methods have been

utilized to investigate causal effects of several phenotypes, including

kidney function (19–22).

Previous studies conducting MR analyses of sex hormones on

kidney function focused on testosterone and sex hormone-binding

globulin (SHBG) by using data from the UK Biobank cohort study

(21, 22). These data revealed that genetically predicted SHBG levels are

associated with a protective effect on kidney function and a reduced

risk of CKD in the male population (21). In addition, genetically

predicted testosterone levels increased the risk of CKD in men (22).

However, there is a lack of studies investigating the causal effect

of estradiol hormone levels on kidney function in both male and

female populations (23). Estradiol levels are subject to wide intra-

individual variation in the premenopausal female population,

whereas they are generally lower in postmenopausal women, and

often below the detection limit in men. These variations complicate

the identification of genetic variants that are significantly associated

with the hormone levels (23, 24).

Here, we conducted a bidirectional MR to assess causality

between the levels of the estradiol sex hormone and kidney traits

in both males and females, using known and novel estradiol-

associated genetic variants as instruments. The significant

findings of the two-sample MR were aimed for validation by

additional pleiotropy-robust MR methods and a one-sample MR

using the UK Biobank cohort study data.
Materials and methods

Study design

We applied MR to assess causal associations of the estradiol

hormone on the urine albumin-to-creatinine ratio (UACR), the

estimated glomerular filtration rate (eGFR) based on serum

creatinine, and CKD using two-sample MR analyses. We included

the single-nucleotide polymorphism (SNP) summary statistics for

males (n = 206,729) and females (n = 229,966), from genome-wide

association studies (GWAS) of two different publications conducted

in the UK Biobank, for instrument selection of estradiol in the two-

sample MR.We used the summary statistics on kidney-related traits

obtained from the CKDGen Consortium (25, 26). The datasets were

limited to individuals of European ancestry aligning them with the

estradiol sample population. The GWAS included 480,698

individuals for CKD (41,395 cases), 567,460 individuals for eGFR,

and 547,361 individuals for UACR. In these studies, both eGFR and

UACR were log-transformed. Additionally, the UACR was inverse-

normal transformed before conducting the GWAS.
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To validate and test the robustness of the significant two-sample

MR findings, we conducted a GWAS on the continuous estradiol

levels in the UK Biobank dataset as a means to discover instruments

for a subsequent one-sample MR. Finally, we tested for a potential

causal effect of the kidney traits on estradiol levels. An overview of

the analyses performed, including its main results, is provided

in Figure 1.

To ensure that the instruments were independent from each

other, we used LocusZoom (https://my.locuszoom.org) with an R2 <

0.01 cut-off value to select the variant with the smallest p-value per

locus (27).
Dataset selection for the two-sample
Mendelian randomization

We applied a two-sample MR, which can use SNP–outcome

and SNP–exposure associations obtained from the GWAS datasets,

to assess causality. Three core assumptions on genetic variants have

to be fulfilled to act as suitable instruments in a MR analyses (1):

association with the exposure (2); independence of the outcome

given the exposure and all the confounders of the exposure–

outcome association; and (3) independence of the factors that
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confound the exposure–outcome relationship (28). We used the

datasets and applied the methods described in detail below to

ensure the validity of the instruments as far as possible. For the

exposure data, we used two different published GWASs that have

investigated genetic associations with estradiol. We chose

instruments with genome-wide significant associations (p < 5*10–

8) with the exposure, and removed variants with pleiotropic effects

on the potential confounders, as described below. Finally, we

applied Mendelian randomization pleiotropy residual sum and

outlier (MR-PRESSO) analysis (29) to identify outliers among the

instruments, which were then removed prior to the subsequent

MR analyses.

The results from Haas et al. (30) included women of European

ancestry stratified by their menstruation status. The second source

for the genetic instruments was obtained from the study by Ruth

et al. (23), in which a GWAS in men with European ancestry was

conducted. Both studies used data from the UK Biobank cohort

study and identified estradiol as a dichotomous variable being above

the detection limit (23, 30). The selection of potential instrumental

variables was performed by following the guidelines for MR

analyses (31).

To assess the causal effects of estradiol levels on kidney function,

we used genetic predictors of log-transformed UACR and eGFR
FIGURE 1

Overview of the Mendelian randomization analyses and its results.The upper scheme illustrates the main goal of our Mendelian randomization (MR)
study investigating a possible causal effect between estradiol levels and kidney function traits as represented by estimated glomerular filtration rate
(eGFR), urinary albumin-to-creatinine ratio (UACR), and risk of chronic kidney disease (CKD). The lower table summarizes the strata, datasets,
methods, and the results of the MR analyses. The green boxes represent validated significant results, where the results in the yellow boxes could not
be confirmed by sensitivity analyses. The figure was created with BioRender.com.
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from the CKDGen Consortium GWAS results as exposure (25, 26).

As the log-transformed UACR was included as sex- and age-

adjusted inverse-rank-normalized residuals in the GWAS, the

unit change corresponds to one standard deviation (SD) change

of the log-transformed UACR. We used the generated summary

statistics of the GWAS in the UK Biobank for the genetic

associations with the log-transformed estradiol levels as an

outcome in males and females.

We looked for proxy SNPs with an R² value > 0.8 if the potential

instrument was not available in the outcome GWAS results.

However, no proxies could be found. All instruments were

primarily associated with the exposure according to the Steiger

test (32). The results were subsequently verified for no association

with body mass index (BMI), body fat mass, and type 2 diabetes as

potential confounders using the PhenoScanner webtool (33).

Details on the instrument selection are provided below.
Details on variant selection in the
published datasets used as instruments
for estradiol

The first data source was obtained from Haas et al. (30). Of the

229,966 women with European ancestry available in the UK

Biobank dataset, 51,081 were premenopausal and 84,194 were

identified as being postmenopausal. The GWAS was conducted

on estradiol as a continuous phenotype (inverse-rank normalized),

and as a dichotomized outcome using PLINK 2.0 (34). The GWAS

on the continuous trait revealed only one significant association

(rs727428), which also represented a known association with SHBG

and testosterone levels (35), and was thus not treated as a valid

instrument for estradiol. Therefore, we only used the results of the

dichotomized trait for the subsequent MR analyses. We extracted all

the independent SNPs with genome-wide significance (p < 5*10–8)

presented in Haas et al. The GWAS results for women overall

provided 10 SNPs with a significant genetic association with

estradiol, only seven of them were suitable candidates for the

following two-sample MR. Two SNPs (rs774021038 and

rs71181755) were excluded, as there were no available

corresponding results in the outcome summary statistics, while

one SNPs (rs34929649) was excluded due to its association with the

fat mass of body parts. Of the selected seven SNPs, four SNPs were

eligible as candidates in the postmenopausal women group and

three in the premenopausal women.

The second source for the genetic instruments for the two-sample

MRwas obtained from the study by Ruth et al. (23), in which a GWAS

in the UK Biobank cohort was conducted. In that GWAS, genetic

variants associated with estradiol levels in men above vs. below the

assay detection limit were analyzed using a linear model. The authors

identified 22 variants with a statistically significant association with

estradiol levels, of which 10 (rs188982745, rs570754094, rs781858752,

rs34019140, rs201687269, rs5933688, rs12850857, rs776715248,

4:69958680_GA_G, and 5:35983283_CA_C) were not available in

the kidney trait GWAS results, and one SNP (rs117826558) was

available only in the summary statistics of the GWAS on CKD.
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One SNP, rs1260326 on chromosome 2, was excluded as an

instrument because it was significantly associated with eGFR in the

CKDGen Consortium summary statistics (p = 2*10–36) used as

outcome, two SNPs were excluded from the analysis due to their

association with possible confounders violating the MR

assumptions (31): rs45446698 was associated with BMI and fat

percentage, and rs727428 due to its association with levels of

testosterone and SHBG. MR-PRESSO identified rs657152 as an

outlier. This variant is located near ABO on chromosome 9, a gene

that shows a considerable association with angiotensin-converting

enzymes (i.e., ACE1/ACE2) (36) and is supposed to have a direct

effect on kidney functionality (37).

All the instruments had a minor allele frequency (MAF) > 1%

and a high imputation quality (info score ≥ 0.8) in both the

exposure and outcome data. The final list of instruments for

estradiol included in the two-sample MR analyses are provided in

Supplementary Tables 1, 2.
Details on variant selection for kidney
trait instruments

Of the 256 genome-wide significant associations associated with

serum creatinine-based eGFR in the European ancestry sample in

the publication of Wuttke et al. (25), 122 variants that were marked

with likely support for kidney function and replicated in the MVP

study (if available) were included as potential instruments. In total,

14 SNPs were excluded due to their association with BMI or body

fat mass (rs10430743, rs10774625, rs10838702, rs112545201,

rs11564722, rs1268176, rs2411192, rs35004449, rs3134605,

rs3905668, rs55759218, rs632887, rs9375694, and rs9828976),

leaving 108 SNPs that passed the selection criteria for instruments

(Supplementary Table 3).

For UACR, the 63 conditionally independent genome-wide

associations of the European ancestry meta-analysis, conducted in

the CKDGen Consortium (26), were selected as potential

instruments. Five of the SNPs (rs17453832, rs557338857,

rs141493439, rs45551835, and rs562661763) were not available in

the GWAS of the outcome, leaving 58 instruments for the two-

sample MR of UACR (Supplementary Table 4).
Data selection for the GWAS and one-
sample Mendelian randomization

The UK Biobank is a prospective cohort study with deep genetic

and phenotypic data of more than five hundred thousand

individuals recruited from England, Scotland, and Wales (38).

Given the large sample size of the UK Biobank study with both

estradiol levels and kidney function markers available, we

conducted a one-sample MR in this dataset. This additional

dataset provided us with the opportunity to assess a causal effect

on kidney function, thus extending the published GWASs by using

the continuous scale of estradiol levels and restricting the sex

hormones to postmenopausal women, which in turn reduced the
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heterogeneity in these measurements. The details of the sample

selection are provided in Supplementary Figure 1.

The eGFR was calculated with the CKD-EPI study equation

using the R (The R Foundation for Statistical Computing, Vienna,

Austria) package “nephro” with serum creatinine levels, age, and

sex as inputs, and it was log-transformed for subsequent analyses to

match with the two-sample MR.

To identify the SNPs with a significant association as being

candidates for instruments, we conducted a GWAS of log-

transformed estradiol levels on the imputed genotypes using a

linear mixed model implemented in BOLT-LMM (39). The

GWAS was conducted for male, female, and sex-combined groups.

For the GWAS and the subsequent one-sample MR, we

included only European ancestry individuals (identified by field

ID: 22006) with available active consent, genotype data, blood

estradiol levels, and creatinine levels measured in urine and

blood. We excluded the individuals with a recorded estrogen-

based treatment to avoid an exogenous confounding effect (24,

31). For the female population, we included only self-reported

postmenopausal women to avoid confounding caused by

uncontrolled changes in estradiol levels during the menstruation

cycle (8, 9).

Out of 502,505 individuals available in the dataset, 92,810 were

excluded because of their non-European ancestry. We excluded 407

individuals due to having estradiol-based treatment (field ID 20003)

and 12 individuals due to consent withdrawal. Of the remaining

409,276 individuals, 84,567 premenopausal women and 303,087

individuals with missing estradiol or genotype data were excluded,

which resulted in 21,622 individuals (6,835 women and 14,797

men). Of these, 14,797 were male and 11,798 individuals had kidney

biomarkers available and were thus included in the subsequent one-

sample MR analyses.

We used BMI and age, and also sex in the combined analysis as

covariates. In each GWAS, SNPs were filtered using a minor allele

frequency (MAF) > 0.001, a Hardy–Weinberg equilibrium p-value >

10–12, and an imputation info score ≥ 0.8. We used a p-value < 5*10–

8 as a threshold for genome-wide significance. As no instruments in

women were found, the one-sample MR was restricted to men.
Statistical analyses

In the two-sample MR analyses, we used the inverse variance-

weighted method (IVW), with multiplicative random effects to

assess the causal effect of the exposure on the respective outcome.
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To test the robustness of the significant MR result, we applied the

pleiotropy-robust but less powerful weighted median (40) and MR

Egger (41) methods. Cochran’s Q was used to test for the

heterogeneity of the causal effect of the individual instruments in

the IVW MR. The MR Egger intercept was tested for directional

pleiotropy. The analyses were conducted using the R

package “TwoSampleMR”.

For the one-sample MR, we applied a two-stage least squares

regression implemented in the R packages “tsls” and “ivreg” for

UACR and eGFR, and the control function estimator for CKD (28).

The analyses were adjusted for age and BMI. Supplementary

Figure 2 provides a schematic overview of the analytical steps

performed in the one-sample MR. The power calculation was

performed with the “Online sample size and power calculator for

Mendelian randomization with a continuous outcome” (https://

sb452.shinyapps.io/power/).

For the two-sample MR, a p-value < 0.05/4 = 0.0125 was

considered statistically significant, correcting for the two different

sex strata and the kidney traits included as outcomes, that is, eGFR

and CKD for kidney function, and UACR as a marker for kidney

damage. For the confirmatory one-sample MR, a p-value < 0.05 was

considered as significant.
Ethics statement

In this project only published GWAS summary statistics and

the data obtained from the UK Biobank cohort study with ethics

approval, as provided on the study website and in the

corresponding publication (38), were used.
Results

Two-sample Mendelian randomization

The MR using selected known genetic variants as instruments

that are associated with estradiol as a dichotomous (above vs. below

the assay detection limit) variable in women using the GWAS

results of Haas et al. (30) revealed a significant association of

genetically predicted higher estradiol levels with a higher eGFR in

postmenopausal women (beta = 0.010; p = 3.7*10–4; Table 1). This

association was not significant in the premenopausal and overall

women groups (Tables 2, 3). The significant association in the eGFR

had the effects of similar size and with the same direction in the MR
TABLE 1 Associations of the inverse variance-weighted two-sample Mendelian randomization of urinary albumin-to-creatinine ratio (UACR), chronic
kidney disease (CKD), and estimated glomerular filtration rate (eGFR) in postmenopausal women using the Haas et al. summary statistics for
genetically predicted estradiol levels.

Outcome #SNPs Estimate/[OR] 95% CI p-value Q pval

UACR 4 −0.035 −0.076 to 0.007 0.105 0.618

CKD 4 [0.851] 0.651 to 1.052 0.115 0.607

eGFR 4 0.010 0.004 to 0.015 3.7E-4 0.814
fron
The Q pval represents the heterogeneity test result p-value. The OR represents the odds ratio of CKD. SNP, number of single nucleotide polymorphism; CI, confidence intervals.
The association results in bold for highlighting statistical significance.
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sensitivity analyses, but without reaching the significance level

(Supplementary Table 5).

In the premenopausal women group, there were higher

genetically predicted estradiol levels significantly associated with a

lower UACR (beta = −0.045; p = 2.1*10–11; Table 2). These effect

sizes were similar in the sensitivity analyses, but were not

statistically significant (Supplementary Table 6).

The MR using the instruments for a dichotomous estimation of

the estradiol levels in the male population from Ruth et al. revealed

that higher genetically predicted estradiol levels are associated with

a higher eGFR (beta = 0.077; p = 5.2*10–5; Table 4). Similar results

were obtained using the weighted median MR, thus confirming the

significant associations (Supplementary Table 7).

No indication of directional pleiotropy or heterogeneity was

found for the results (Tables 1–4 and Supplementary Tables 5-7).

The MR scatter plots of the significant associations are given in

Supplementary Figure 3.

No significant MR results were found for CKD as the outcome

(Tables 1–4).
Genome-wide association study and one-
sample Mendelian randomization

The cohort characteristics of the UK Biobank participants

included in this analysis are provided in Supplementary Table 8.

Our three GWASs on continuous estradiol levels in the male

(n = 14,797), female (n = 6,835), and sex-combined (n = 21,632)

datasets revealed only one genome-wide significant locus (p < 5*10–8)

at chromosome 14 in males (Figure 2). The SNP rs7151019 [T/G,

MAF = 0.42, beta(T) = -0.026, imputation info = 0.90] represents the

variant with the lowest p-value at this locus (p = 6*10–22) explaining

0.73% of the variation of the log-transformed estradiol levels (SD =

0.15). The variant is located close to the immunoglobulin heavy locus
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(IGH), a protein-coding gene with no known direct link to estradiol

metabolism. This locus did not reach statistical significance in the

female or in the sex-combined GWAS (Supplementary Figures 4 and

5). Of note, this locus was not included in the two-sample MR

analyses. The quantile–quantile plots of the GWAS results do not

indicate inflation of the p-values (Supplementary Figure 6). The

PhenoScanner (33) did not show an association with BMI, body fat

mass, type 2 diabetes, or eGFR. No association in the female or sex-

combined samples passed the level of genome-wide significance, thus

no MR analyses could be performed in these datasets.

The one-sample MR using the 11,798 males with available kidney

biomarkers and the SNP rs7151019 as instrument allowed a detection

of at least a 0.3 SD unit change in the kidney trait per SD change in log-

estradiol levels at a 80% power. We identified a significant association

between estradiol levels and eGFR (beta = 0.199; p = 0.017) confirming

the two-sampleMR results. In concordance with the two-sampleMR in

males, no significant results were found for CKD and UACR (Table 5).
Effects of kidney function on estradiol
blood levels

The MR for testing causal effects of kidney function traits on

estradiol levels revealed no significant association of genetically

predicted eGFR or UACR with estradiol levels in males or females

(Supplementary Table 9).
Discussion

Our two-sample MR analysis based on the instruments

assessing estradiol levels below vs. above the detection limit

revealed a significant causal effect in males with a positive effect

direction, implying that higher levels of estradiol could lead to
TABLE 2 Associations of the inverse variance-weighted two-sample Mendelian randomization of urinary albumin-to-creatinine ratio (UACR), chronic
kidney disease (CKD), and estimated glomerular filtration rate (eGFR) in premenopausal women using the Haas et al. summary statistics for genetically
predicted estradiol levels.

Outcome #SNPs Estimate/[OR] 95% CI p-value Q pval

UACR 3 −0.045 −0.058 to −0.032 2.1E-11 0.942

CKD 3 [0.855] 0.637 to 1.074 0.160 0.471

eGFR 3 0.008 0.002 to 0.014 0.013 0.667
fron
The association results in bold for highlighting statistical significance.
TABLE 3 Associations of the inverse variance-weighted two-sample Mendelian randomization of urinary albumin-to-creatinine ratio (UACR), chronic
kidney disease (CKD), and estimated glomerular filtration rate (eGFR) in the overall women population using the Haas et al. summary statistics for
genetically predicted estradiol levels.

Outcome #SNPs Estimate/[OR] 95% CI p-value Q pval

UACR 7 −0.032 −0.088 to 0.024 0.262 0.698

CKD 7 [0.915] 0.586 to 1.243 0.595 0.427

eGFR 7 0.007 −0.005 to 0.018 0.270 0.500
The Q pval represents the heterogeneity test result p-value. The OR represents the odds ratio of CKD.
tiersin.org

https://doi.org/10.3389/fendo.2023.1232266
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Nasr et al. 10.3389/fendo.2023.1232266
higher eGFRs. This association was validated in the one-sample MR

using continuous levels of estradiol above the detection limit. In

addition, such a causal effect on eGFR was suggested by the two-

sample MR in postmenopausal women, and an inverse effect in

premenopausal women on UACR. However, these results did not

reach statistical significance in the sensitivity analyses, and could

not be validated using a one-sample MR on continuous outcomes.

Overall, the MR analyses suggest a causal effect between higher

estradiol levels and better kidney function traits.

To our knowledge, this study is the first MR analysis to

investigate the possible causal effect of estradiol levels on kidney

function traits. Previous research studies investigated the

relationship between the decline in kidney performance in men

and women and the change in sex hormone levels in general (13,

42). Based on the results of these studies, researchers sought to

identify possible mechanisms of the influence of these hormones on

kidney function. For estradiol, most of the studies showed a possible

protective effect, either by inhibiting the pathological processes of

increasing oxidative stress in the diseased kidney (42), or by

inhibiting renal fibrosis aggravation and glomerular sclerosis (13).

Animal studies have shown that estradiol plays a protective role by

reducing albuminuria and enhancing creatinine clearance (43),

which is in line with the effect directions of our MR results.

However, these findings were yet not confirmed by sex-stratified

analyses. Other studies showed contradicting results. In a nationally

representative sample of a United States adult male population,

increased levels of estradiol were associated with a decrease in eGFR

(44); however, other studies failed to identify an association between

endogenous estradiol levels and changes in eGFR or albuminuria

(45). Even though most of these studies attempted to find a

correlation between sex and the risk of kidney disease, the results

of these studies failed to establish a hypothesis for this association.

The aim of our study was to assess a possible causal effect

between estradiol levels and kidney function using the MR
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framework by including summary statistics from published

GWASs and data of the large UK Biobank cohort study. To

reduce sex-specific heterogeneity in estradiol measurements, we

focused on sex-stratified analyses. Our results showed that

genetically predicted estradiol levels were significantly associated

with an increased eGFR in men. Although we reduced heterogeneity

of the estradiol measurements for our two-sample MR analyses in

women by using GWAS results that were stratified by pre- and

postmenopausal status, our findings were indicative in this sample

given the consistent effect direction but not robustly significant. A

reason could be the reduced power in the postmenopausal women

dataset given the small sample size of individuals above the estradiol

detection limit, and the trait variation due to the menstrual cycle in

the premenopausal women obtained from the GWAS of Haas et al.

(30), where they relied on self-reported menopause and age below

60 years at sampling time. Thereby, the women-combined dataset

induces large variation of estradiol levels, thus reducing the

statistical power in both the GWAS and MR analyses.

The GWAS results of the log-transformed estradiol levels,

which we conducted in the UK Biobank cohort study, differed

from the analysis of former studies, and by this also the inclusion of

genetic instruments in the one-sample MR analyses. The possible

reasons for this difference are due to several aspects. Due to the

limited information of the menstruation cycle at time of estradiol

measurement of the female study participants, we limited the

corresponding GWAS to 6,835 self-reported postmenopausal

women. The minimum detectable level in the UK Biobank cohort

study was 175 pmol/L, thus the detection of estradiol in

postmenopausal women was less sensitive compared with other

studies like Pott et al. (24). This detection limit affects to a lesser

extent the analyses in men, who, on average, have higher estradiol

levels than postmenopausal women. In the study of Pott et al., only

one locus harboring the signal peptide peptidase-like 2A gene

(rs12913657 on chromosome 15) reached genome-wide
FIGURE 2

GWAS results for estradiol levels in men in the UK Biobank. A Manhattan plot showing the SNP positions on the x-axis, and their association –log10
(p) on the y-axis. The red line represents the threshold for genome-wide significance of 5*10–8, the green-colored dots represent variants with a p-
value equal or smaller than the suggestive threshold of 10–6.
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significance in 4,191 men, but without a replication sample included

(24). This locus was not associated with estradiol level in the larger

GWAS of the 14,797 men from the UK Biobank dataset. However,

our GWAS revealed a highly significant association on

chromosome 14 (rs7151019), which was used as instrument in

the one-sample MR.

Ruth et al. also conducted a GWAS in the UK Biobank males,

but they dichotomized the estradiol level at the detection limit (23).

Their GWAS revealed more loci associated with estradiol levels by

including a larger sample size. However, the two-sample MR result

using this dataset confirmed our one-sample MR. In addition, these

eGFR MR results were also directionally consistent with the CKD

MR, although not reaching significance after multiple testing. Of

note, our significant GWAS locus at chromosome 14 was also

revealed by Ruth et al., where one of their top SNPs (rs34019140)

was in moderate linkage disequilibrium with our SNP rs7151019

(R² = 0.45). However, rs34019140 (or a suitable proxy) was not

available in the summary statistics of the kidney traits.

The main strength of our project is the different analyses

performed using multiple sources of genetic association data, with

two different exposure populations for the use in the large two-

sample MR, as well as individual-level data from the UK Biobank

cohort study for use in the one-sample analysis. One challenge of

the MR approach is avoiding weak instrument bias (31). Thus, we

selected only independent variants in the one-sample MR having a

strong statistical association with estradiol levels (p < 5*10–8).

Furthermore, it is important that the instruments in a MR are not

associated with (unadjusted) confounders of the estradiol–kidney

function relationship. Therefore, we conducted the one-sample MR

by adjusting for possible confounders, ensuring the robustness of

the association results (46, 47).

On the other hand, our study had several limitations. The first is

the lack of available estradiol instruments from the meta-analysis

results. This shortage is mainly due to the changes in estradiol levels

in premenopausal women during the menstruation cycle. Such daily
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changes make it hard to develop a uniform study design for

measuring estradiol levels. An alternative approach is to include

exclusively postmenopausal women, which results in a small sample

size and is where measurement of estradiol levels is technically

difficult. This heterogeneity of estradiol levels in women is the

second limitation for our study. The available meta-analysis results

for continuous estradiol include populations with relatively small

sample sizes, which results in low power for identifying genetic

instruments. There was no sample overlap between the estradiol

level assessed in the UK Biobank cohort study and eGFR, but the

UACR GWAS included the UK Biobank cohort study dataset,

which could in turn bias the effect estimates of the respective

two-sample MR (48). Finally, no sex-stratified kidney trait

GWASs were available, which could be a reason for the non-

significant two-sample MR results. Although the MR analyses

identified statistically significant associations, the reported effect

sizes are small and hard to interpret. However, the effect sizes itself

obtained from an MR are generally less informative (31).

Although we found a robust and significant MR result in men,

we cannot exclude that there is also a causal effect of estradiol level

on kidney function in women. Taking this into account, our results

do not allow a conclusion on whether or not the observed

differences in kidney disease prevalence between men and women

can be attributed to sex-specific differences in estradiol levels.

Our results also highlight the need to identify additional genetic

variants associated with estradiol levels in men and women

providing instruments for MR analyses, and also in non-

European populations. Finding such associations could be

challenging, especially in the female population. Furthermore,

studies like randomized controlled trials are required to estimate

the magnitude of this potential causal relation. Nevertheless, our

MR results provide starting points for subsequent studies focusing

on the effects of estradiol levels on kidney function which may

finally lead to therapeutic strategies as part of preventing

kidney diseases.
TABLE 4 Associations of the inverse variance-weighted two-sample Mendelian randomization of urinary albumin-to-creatinine ratio (UACR), chronic
kidney disease (CKD), and estimated glomerular filtration rate (eGFR) in males after using the Ruth et al. summary statistics for genetically predicted
estradiol levels.

Outcome #SNPs Estimate/[OR] 95% CI p-value Q pval

UACR 7 −0.024 −0.226 to 0.178 0.819 0.243

CKD 8 [0.522] 0.308 to 1.36 0.512 0.492

eGFR 7 0.077 0.040 to 0.114 5.2E-05 0.216
fron
The Q pval represents the heterogeneity test result p-value.
The OR represents the odds ratio of CKD. The significant results are marked in bold.
TABLE 5 Associations of the one-sample Mendelian randomization of urinary albumin-to-creatinine ratio (UACR), chronic kidney disease (CKD), and
estimated glomerular filtration rate (eGFR) in males of the UK Biobank cohort study.

Outcome #SNPs Estimate/[OR] 95% CI p-value

UACR 1 −0.33 −1.170 to 0.389 0.397

CKD 1 [0.758] 0.508 to 1.18 0.206

eGFR 1 0.199 0.036 to 0.362 0.017
The OR represents the odds ratio of CKD. The significant results are marked in bold.
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