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Editorial on the Research Topic
Multi-sensor imaging and fusion: methods, evaluations, and applications

Introduction

The technology of multi-sensor imaging and fusion plays an increasingly important role
in various fields such as remote sensing [1], medical imaging [2], contraband detection [3],
and engineering construction [4]. Multi-sensor image fusion focuses on processing images of
the same object or scene captured by multiple sensors, which complement and combine
various sensors with multi-level and multi-spatial information, ultimately providing a
consistent interpretation of the observed environment [5]. In recent years, multi-sensor
image fusion has become a highly active topic, and various fusion methods have been
proposed. Moreover, the performance evaluation and downstream applications of multi-
sensor imaging and fusion technology are receiving increasing attention. This Research
Topic highlights advanced research related to multi-sensor imaging and fusion technology,
including image detection and fusion methods, objective evaluation methods, and specific
applications in engineering problems. After a thorough peer-review process, all 17 of the
articles submitted to this Research Topic were accepted for publication. The following
summarizes the main research findings of these works from three aspects.

Imaging detection, feature extraction, and fusion
methods in multi-sensors

Object detection is an important application of multi-sensor imaging and fusion
technologies. He et al. proposed a deep learning object detection network, MSS-
YOLOv5, which integrates multi-scale information to enhance feature robustness,
improves pooling methods to capture more details, and introduces an angle cost with
new weights to accelerate network convergence and improve accuracy. Yang et al. proposed a
multi spectral pedestrian detection algorithm that includes a cascaded information
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enhancement module and a cross-modal attention feature fusion
module to enhance pedestrian features and reduce background
interference. Chen et al. proposed a network guided by atomic
number Z (ZPGNet), which is used to accurately detect prohibited
items in complex X-ray images while reducing the collection cost of
atomic number images. Zhou et al. proposed an unsupervised
smoke detection algorithm that reduces domain differences and
improves the generalization ability of the model through feature
alignment and fusion. Meanwhile, multi-level feature fusion of
network depth enhances the recognition ability of small targets.
Wang et al. proposed an unsupervised method that uses an
asymmetric convolution feature extraction network and a pose
estimation network with attention mechanisms to solve the
problem of monocular depth estimation. They also used a loss
function that minimizes the reprojection error to solve the
occlusion problem in the projection process. Chen et al.
proposed a two-stage domain gap-aware framework to eliminate
the bias between the synthetic low-light and real low-light domains,
thereby enhancing the generalization capability of low-light image
enhancement methods. By utilizing a reverse domain distance
guidance strategy, the network can better handle low-light image
areas that do not align with the real-world distribution. Liu et al.
proposed a new method for the fusion of infrared and visible light
images, optimizing edge detail through separate processing of
source images and edge detail information. Their two-branch
framework extracts features and edge map features directly from
source images, and a large number of experiments have verified the
effectiveness of their method. Zhou et al. proposed a model to solve
the problem of semantic alignment and feature extraction in person
text-image matching. The model achieves more efficient feature
matching and extraction by adding consistent, clear semantic
information and applying an information supplementation
network. Li et al. proposed a novel cross-modal hashing method
named FSSPDH, which preserves the intrinsic attributes of each
modality by learning the hash codes of each modality and
constructing a fine-grained similarity matrix. In addition, they
used quantization loss to learn hash codes, effectively reducing
information loss during the quantization process. Jin et al. proposed
a polarization image fusion method that fuses intensity images and
linear polarization degrees. It processes the base layer and detail
layer through quality evaluation and attention mechanisms. The
base layer ensures high contrast of the fused image through a
quality evaluation unit, and the detail layer improves the
preservation of detail information through an attention
enhancement unit.

Objective evaluation methods in multi-
sensor imaging

In medical image analysis and evaluation, Xu et al.
developed a 16-electrode capacitance imaging (ECT) system
for two-dimensional tomography of intracerebral hemorrhage
(ICH). The feasibility of ECT in ICH imaging was confirmed
through simulation and physical experiments. Qiu et al.
retrospectively evaluated patients who underwent stent-
assisted coiling (SAC) for intracranial aneurysms, focusing
primarily on the rate of embolization and complications. The

results showed that all hemodynamic parameters significantly
decreased after SAC with four different stents, and laser-cut
stents seemed to be more effective than woven stents in reducing
aneurysm hemodynamics. Finally, there was no significant
difference between the follow-up RROC grades of the four
stents. In traffic safety evaluation, Yang et al. proposed a
method for immersive tunnel traffic safety evaluation based
on the degradation of lighting performance using big data
technology. The method utilized numerical simulation, small
target recognition tests, and developed a real-time model to
illustrate the relationship between the degradation of lighting
performance and visual cognition.

Specific applications of multi-sensor
technology in engineering problems

Multi-sensor technologies play a significant role in fault
detection and signal monitoring. Liu et al. proposed a novel
method that combines Improved Energy Fluctuation Index
(IEFI) and Modified Variational Mode Decomposition
(MVMD) to overcome limitations related to the mode
number and balancing parameters. This method can
effectively resist interference and accurately extract fault
features. Experimental results demonstrate its superior
performance in fault signal detection. Meanwhile, Guo et al.,
by introducing close-range photo grammetry, successfully
monitored the differential deformation of immersed tunnel
element joints. They not only developed a micro-
displacement correction algorithm based on three-
dimensional calibration objects, but also a fully automatic
system for monitoring the differential deformation of
immersed tunnel element joints. In emotion analysis, Yan
et al. proposed a Modal Smoothing Fusion Network
(MSFNet) that can effectively bridge the semantic gap
between text and image at the aspect level of emotional
expression. Through feature smoothing and multi-channel
attention mechanisms, the model has improved performance
in emotion classification. Facing the challenge of defect
classification, Liang et al. proposed a multi-level semantic
method based on residual adversarial learning for sample
enhancement and defect classification. By introducing
residual modules and multiple convolutional layers, the
network structure is optimized, and the feature extraction
capability is enhanced. A multi-level semantic extractor is
designed, combined with Wasserstein loss, to solve the
instability of network training. This method can generate
high-quality defect samples and accurately classify defects.

Conclusion

To conclude, a wide range of related topics have been
collected for the special issue. Especially some of the hot
Research Topics are from object detection, medical image
analysis and evaluation, signal monitoring and fault detection.

Special thanks to Frontier in Physics for the support and efforts
provided to this special issue. We would also like to thank all the
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Atomic number prior guided
network for prohibited items
detection from heavily cluttered
X-ray imagery

Jinwen Chen, Jiaxu Leng*, Xinbo Gao, Mengjingcheng Mo and
Shibo Guan
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Prohibited item detection in X-ray images is an effective measure to maintain public
safety. Recent prohibited item detection methods based on deep learning has
achieved impressive performance. Some methods improve prohibited item
detection performance by introducing prior knowledge of prohibited items, such
as the edge and size of an object. However, items within baggage are often placed
randomly, resulting in cluttered X-ray images, which can seriously affect the
correctness and effectiveness of prior knowledge. In particular, we find that
different material items in X-ray images have clear distinctions according to their
atomic number Z information, which is vital to suppress the interference of irrelevant
background information by mining material cues. Inspired by this observation, in this
paper, we combined the atomic number Z feature and proposed a novel atomic
number Z Prior Guided Network (ZPGNet) to detect prohibited objects from heavily
cluttered X-ray images. Specifically, we propose a Material Activation (MA) module
that cross-scale flows the atomic number Z information through the network to
mine material clues and reduce irrelevant information interference in detecting
prohibited items. However, collecting atomic number images requires much
labor, increasing costs. Therefore, we propose a method to automatically
generate atomic number Z images by exploring the color information of X-ray
images, which significantly reduces the manual acquisition cost. Extensive
experiments demonstrate that our method can accurately and robustly detect
prohibited items from heavily cluttered X-ray images. Furthermore, we
extensively evaluate our method on HiXray and OPIXray, and the best result is
2.1% mAP50 higher than the state-of-the-art models on HiXray.

KEYWORDS

object detection, X-ray image, prohibited items detection, prior knowledge, public safety

1 Introduction

As society develops, the flow of people on public transport is increasing. X-ray security
machine is widely used in the security inspection of railway stations and airports, which is a
critical facility for maintaining public safety and transportation safety. However, traditional
security checks mostly rely on manual identification methods. After prolonged work hours,
security inspectors easily cause fatigue, significantly increasing the risk of missed and false
detection and laying many hidden dangers for public safety. Therefore, it is increasingly
necessary to identify prohibited items through intelligent algorithms.
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Different from traditional detection tasks, in this scenario, there
are various items in the passenger’s luggage and random permutations
between items, resulting in heavily cluttered X-ray images [1–4].
Therefore, object detection algorithms for general natural images
do not perform well on cluttered X-ray images as in Figure 1.
Fortunately, the tremendous success of deep learning [5–11] has
made the intelligent detection of prohibited items possible by

transforming it into an object detection task in computer vision
[12–14]. Hence, many researchers have applied deep learning
methods to prohibited object detection. Flitton et al. [15] explored
3D feature descriptors with application to threat detection in
Computed Tomography (CT) airport baggage imagery. Bhowmik
et al. [16] investigated the difference in detection performance
achieved using real and synthetic X-ray training imagery for CNN
architecture. Gaus et al; [17] evaluated several leading variants
spanning the Faster R-CNN, Mask R-CNN, and RetinaNet
architectures to explore the transferability of such models between
varying X-ray scanners. Hassan et al; [18] presented a cascaded
structure tensor framework that automatically extracts and
recognizes suspicious items in multi-vendor X-ray scans. Zhao
et al; [19] established the associations between feature channels and
different labels and adjust the features according to the assigned labels
(or pseudo labels) to tackle the overlapping object problem. These
methods all improve detection performance to a certain extent but do
not use the unique imaging characteristics of X-ray images to improve
the algorithm.

Recently, some works have tried adding prior information about
X-ray images to guide network learning, as shown in Figure 2 [20].
Obtained edge images by using the traditional edge detection
algorithm Sobel. Chang et al. [4] found that different classes of
prohibited objects have a clear distinction in physical size and used
Otsu’s threshold segmentation algorithm [21] to segment the original
image into foreground and background, treating the foreground
region as the approximate size of the detected object. Although
these two methods improve the detection accuracy to a certain
extent by introducing such prior information, the obtained prior
information is easily disturbed by other irrelevant information due

FIGURE 1
Various items in passengers’ luggage and random permutations
between articles result in cluttered X-ray images. For general object
detectors, a large amount of irrelevant background information
interference can easily lead to missed detections. With the
assistance of the atomic number prior knowledge, our method can
suppress background interference and detect items correctly.

FIGURE 2
Framework comparisons between existingmethods based on prior knowledge and ourmethod. For each row, the left is the network framework, and the
right is the visualization of prior knowledge. The prohibited objects in each X-ray image are annotated in red bounding boxes. (A) The method to obtain the
boundary information of prohibited items will be seriously interfered with by the boundary information of unrelated items. (B) The way cannot fully believe the
accuracy of treating the binarized foreground as the area of the detected object, especially when other items appear inside the detection box. (C) Unlike
them, our method pays more attention to the atomic number feature, taking advantage of the distinction in atomic numbers to reduce the interference of
useless background information.
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to the messy distribution of prohibited items, which hinders further
performance improvement. Specifically, in the presence of cluttered
items, the former method to obtain the boundary information of
prohibited terms is severely interfered with by the boundary
information of irrelevant items. Furthermore, the latter cannot fully
believe the accuracy of treating the binarized foreground as the area of
the detected items, especially when other items appear inside the
detection region.

In this paper, we propose a novel atomic number Z Prior Guided
Network (ZPGNet) for heavily cluttered X-ray images, which can
remove irrelevant background information by effectively
incorporating the atomic number feature. Unlike optical images,
X-ray images are generated by illuminating objects with X-ray.
X-ray security inspection machine is based on the object difference
in absorbing X-ray to detect the effective atomic number and then
show distinct colors [22]. Specifically, the color information in X-ray
images represents material information, where blue represents
inorganic material, orange represents organic material, and green
represents mixture [23], as shown in Figure 3. Atomic number
images of X-ray image variants can directly reflect the material
type of an item, which is the dominant information in X-ray
images. This characteristic motivates us to explore this critical
information to improve detection accuracy by removing irrelevant
background information. Bhowmik et al; [24] examined the impact of
atomic number images via the use of CNN architectures for the object
detection task posed within X-ray baggage security screening and
obviously illustrated a vital insight into the benefits of using atomic
number images for object detection and segmentation tasks. However,
they only simply connect atomic number images with RGB images and
do not fully use atomic number images. In order to make full use of the
atomic number features of items, we designed a Material Activation
(MA) module. It cross-scale flows atomic number information
through the network to mine deep material clues, which is
beneficial to reduce irrelevant information interference in detecting
prohibited items.

Atomic number images need to be collected manually, which
increases the costs. In particularly, X-ray imaging systems render
different materials in different colors. Blue represents inorganic
material, orange represents organic material, and green represents
mixture, as shown in Figure 3. Therefore, we can obtain the material
classification of each pixel by analyzing the color. Thus, we propose an
atomic number Z Prior Generation (ZPG) module, which

automatically generates the atomic number feature according to the
imaging color of X-ray images, as those shown in Figure 4.

Overall, the contributions of our work can be summarized as
follows:

• We propose a novel atomic number Z Prior Guided Network
(ZPGNet) to improve the detection accuracy of cluttered items
by effectively incorporating the atomic number feature. In
addition, the proposed method is generic and can be easily
embedded into existing detection frameworks as a module.

• We propose an atomic number Z Prior Generation (ZPG)
module, which automatically generates the atomic number
feature according to the imaging color of X-ray images.
Compared with the manual collection, the costs are
significantly reduced.

• We design a Material Activation (MA) module to cross-scale
fuse image features with the atomic number feature and then
flow the fused features from high-level to low-level to enhance
the ability of the model to mine deep material clues.

• We evaluate ZPGNet on the HiXray and OPIXray datasets and
demonstrate that the performance of our ZPGNet is superior to
state-of-the-art methods in identifying prohibited objects from
cluttered X-ray baggage images.

2 Related work

In this section, we first introduce the existing public datasets for
detecting prohibited items in X-ray images and then describe some
generic object detection methods and some strategies to solve the
clutter problem in X-ray images.

2.1 Security inspection image dataset

X-ray security inspection machines show different colors for
different material items by the object distinction in absorption
X-ray [22]. Therefore, it has many applications in many tasks, such
as security inspection [4, 25–27]and medical imaging analysis [8,
28–33]. However, there are very few X-ray image datasets due to the
particularity of security inspection scenes. To our knowledge, four
recently published datasets are GDXray [22], SIXray [26], OPIXray

FIGURE 3
From left to right are inorganic matter, organic matter, and mixture.
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[20], and HiXray [34]. The GDXray dataset has 19,407 images
containing three prohibited items, namely, guns, darts, and razors.
However, the GDXray dataset only contains grayscale images, which
are far from realistic scenarios. The SIXray includes 1,059,231 X-ray
images, which only have 8,929 labeled images. The pictures in the
SIXray dataset are obtained by real security machines from several
subway stations, which is more in line with the data distribution of real
scenes. The OPIXray dataset is the first high-quality security target
detection dataset, which contains five categories of prohibited items,
namely, folding knives, straight knives, scissors, utility knives, and
multitool knives, with a total of 8885 X-ray images. The HiXray
dataset contains 44,364 X-ray images from daily security checks at
international airports, which contain eight categories of prohibited
items such as lithium batteries, liquids, and lighters that are common
in daily life. Each image in the HiXray dataset is annotated by airport
staff, which ensures the accuracy of the data.

2.2 Generic object detection

Object detection is an essential part of computer vision tasks,
which supports many downstream tasks [35–38]. Methods based on
convolutional neural networks can be summarized into two categories:
single-stage [39–43] and multi-stage [44–46]. In recent years,
compared with multi-stage detection methods, single-stage
detection methods have been widely adopted due to their simple
design and powerful performance. YOLOv3 [42] considers both real-
time and accuracy by using the region proposal method. RetinaNet
[41] improves the detection accuracy while maintaining the inference
speed by solving the problem of class balance. It is far higher in real-
time performance and accuracy than general multi-stage detection
methods. FCOS [43] is anchor box free, as well as proposal free, to
solve object detection in a per-pixel prediction fashion. In addition,
YOLOv5 [47] makes several improvements based on YOLOv3, which
significantly improves the detection speed and accuracy. However, so
far, most object detection methods are for natural images. In the
security check scene, various items in the passenger’s luggage and

random permutations between the objects resulted in heavily cluttered
X-ray images, so the detection effect is often unperformed.

2.3 Solutions to heavily cluttered problems

Previous works have mainly focused on solving the problem of
highly cluttered X-ray images. Shao et al. [48] proposed a foreground
and background separation X-ray prohibited item detection
framework that separates prohibited items from other items to
exclude irrelevant background information. Tao et al. [34]
proposed a lateral inhibition module to eliminate the influence of
noisy neighboring regions on the interest object regions and activate
the boundary of items by intensifying it.

3 Proposed method

Atomic number images of X-ray image variants can directly reflect
item material, which is the dominant information in X-ray images.
Inspired by this, we propose a novel atomic number Z Prior Guided
Network (ZPGNet) for cluttered X-ray images, as shown in Figure 5.
The ZPGNet consists of three main components: 1) an atomic number
Z Prior Generation (ZPG) module automatically generates atomic
number images, which reduces the cost of manually collecting atomic
number images, 2) a Material Activation (MA) module fuses the
atomic number feature to remove irrelevant background information,
3) a Bidirectional Enhancement (BE) module enriches feature
expression through bidirectional information flow.

Specifically, we first design the ZPG module, combining the
characteristics that different materials will show different colors, to
map a three-channel (RGB) color image to a single-channel atomic
number image. Then, we repeatedly pass the atomic number feature
generated by the ZPG module into the network to pay more attention to
itemmaterial information. To effectively fuse the extracted image features
and the atomic number feature, MA cross-scale flows the atomic number
feature under the extracted multi-scale features and uses a channel

FIGURE 4
The X-ray image samples are from the OPIXray dataset. The left part of each set of photograph is the original image, and the right part is the atomic
number image generated by our proposed ZPG method. The prohibited objects in each X-ray image are annotated in red bounding boxes.

Frontiers in Physics frontiersin.org04

Chen et al. 10.3389/fphy.2022.1117261

11

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1117261


attention module to self-adapt the importance of different features.
Finally, we add a layer of low sampling rate features to obtain more
detailed information and mine contextual semantics for enriching feature
expression.

3.1 Z Prior Generation

Unlike optical images, X-ray images are generated by illuminating
objects with X-rays, whose penetration is related to the material’s
density, size, and composition [22]. X-ray security machines detect the
atomic number of objects based on the difference in absorbing X-rays,
which then display a distinct color. Bhowmik et al. [24] proved that the
introduction of atomic number images is an effective method to
improve detection performance via large experiments. Inspired by
this, the designed ZPG module compresses three-channel X-ray
images into a single-channel to generate atomic number images
that can highlight material differences. Compared with manually
collecting atomic number images, it significantly reduced costs.

For each pixel in the RGB image, the maximum of the three
channels will render its corresponding color. We use its subscripts to
classify different materials.

gij � argmax xijk( ) (1)

where xijk denotes the value of the k-channel at position (i, j) the input
image. argmax (•) denotes the index corresponding to finding the
maximum value of an element.

Materials of the same class tend to present different depths of color
due to different thicknesses.We introduce two variables, base-valueB, and

width-valueW. The former is used to distinguish different materials, and
the latter reflects the difference between the same materials.

Bij � gij + α (2)
Wij � ∑xij − xijgij( )p 1 − β( )p 1 − α( )/ 255 + 255( )

+xijgijpβp 1 − α( )/255 (3)

Where α and β are hyperparameters that respectively control basis-
value B and width-value W.

Finally, the basis-value B and width-value W are added and
normalized, and then passed through a series of convolutional
layers to obtain the atomic number feature Z.

Zij � 0, ifxij � 255, 255, 255( )
Bij +Wij( )/3, if others

{ (4)

Z � ϕn Z( ) (5)
where ϕn(•) denotes the n-layer “Conv-BN-ReLU” operation, Since
no items are in the white area, we specially treat for the pixel (255,
255, 255).

3.2 Material activation

In particular, different material items in X-ray images have clear
distinctions according to their atomic number information, which is
vital to suppress the interference of background information by
mining deep material cues.

In cluttered X-ray images, the boundary and color information
of prohibited items are easily interfered with by background

FIGURE 5
Overall framework of the proposed atomic number Z Prior GuidedNetwork (ZPGNet). The network consists of three keymodules, i.e., an atomic number
Z Prior Generation (ZPG) module generating the atomic number feature, a Material Activation (MA) module cross-scale fusing the image features with the
atomic number feature, and a Bidirectional Enhancement (BE) module mining contextual semantics for enhancing feature representation. CBR is composed
of a convolution layer, a batch normalization layer, and a relu activation function. SENet stands for Squeeze-and-Excitation Networks [49].
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information. MA introduces the atomic number feature to mine
material cues, which is beneficial to reduce useless background
information interference in detecting prohibited items, as shown in
Figure 6.

Specifically, the backbone network has n featuremap outputs F= {f0, . . . ,
fn−1}. As shown in Figure 7, the MA structure makes the former k layers of F
as the input. For Z and F feature maps, which are output by ZPG and
Backbone, we pool the atomic number featureZ to increase the receptive field

FIGURE 6
The bottom part shows the edge detection results obtained directly by the Canny algorithm [50], and the top part is obtained by first passing through the
ZPG module and then through the Canny detection. It is intuitive to see that the edges of the items processed by the ZPG module are more evident than the
original. The prohibited objects in each X-ray image are annotated in red bounding boxes.

FIGURE 7
Illustration of the proposed Material Activation (MA) module, where k indicates that the input of the MA module has k different-scale feature maps.
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and then add Z flowing down from the previous layer to get a more robust
featureM. Furthermore, we concatenate them with F for information fusion
and apply channel attention operation (Squeeze-and-Excitation Networks
[49]) SE(•) on the fused features to adapt the importance between the
material feature and other image features (edge, texture, size, etc.).

Zi′ � Di Z( ) (6)
Fei � ϕ1 SE fi‖Mi( )( ) (7)

where ‖ represents the operation of concatenating, Di(•) denotes the
Pooling operation.

Separate Fei into fi′ and Z′′
i along the channel dimension, whose

dimensions are the same as fi and Zi′, respectively, where the fi′ is used
as the input of the next BE module, and the Z′′

i is passed to the next
layer of the MA module as an enhanced atomic number feature to
obtain the more robust feature.

fi′ � F0
ei

Z′′
i � F1

ei

{ (8)

Mi � Zi′ + U Zi−1″( ) (9)
whereF0

ei and F
1
ei denote the two features obtained by separating Fei along

the channel, U(•) denotes the Upsample operation. Especially,M0 � Z0′.

3.3 Bidirectional Enhancement

When the down-sampling rate is high, it is easy to obtain
larger receptive fields and more large-scale item information,
which is beneficial for detecting large-scale prohibited objects.
However, for some minor prohibited items, too large a
downsampling rate tends to lose too much detail feature
information of small-scale objects.

In the HiXray [34] high-quality prohibited items dataset, the
average resolution of images is 1,200*900, with the largest
resolution being 2000*1,024. The resolution of some small lighters
is only 21*57, which is about 1/1,000 the size of the original image.
After excessive downsampling, the feature information of lighters is
seriously missing, resulting in poor detection in SSD [51], LIM [34],
DOAM [20], and other detection models.

BE module adds a low sampling rate feature to obtain more detailed
information about the tiny-size prohibited items. However, the low
sampling rate feature often contains additional noise information. We
remove noisy information by performing multiple pooling operations.

fi+1
3 � ϕ1 U Di f

i
3( )( ) + fi

3( ) (10)

where f3
3 is the finally denoised low-sampling rate feature, and

specifical f0
3 � f3.

Finally, the material activation feature {f0′, . . . , fk−1′ } obtained by
the MA module, Backbone output feature {fk, . . . , f2}, and f3

3 are
streamed bidirectionally, which mines contextual semantics to enrich
feature expression.

4 Experiments

4.1 Datasets and evaluation Metrics

We conduct extensive experiments to evaluate our proposed
model on two prohibited item detection datasets, HiXray [34] and

OPIXray [20]. HiXray dataset consists of 45,364 X-ray images from
routine security checks at international airports, which contains
8 categories of 102,928 everyday prohibited items commonly seen
in daily life, such as lithium batteries, liquids, lighters, etc. Each image
in the HiXray dataset was annotated by an airport employee, which
ensures the accuracy of the data. OPIXray dataset is the first high-
quality object detection dataset for security, which focused on the
widely-occurred prohibited item “cutter”, annotated manually by
professional inspectors from the international airport. The dataset
contains five categories of prohibited objects with a total of 8885 X-ray
images (7,109 for training and 1,776 for testing).

Average Precision (AP) denotes the area under the precision-recall
curve of the detection results for a single category of objects. To fairly
evaluate the performance of all models, we compute the mean average
precision (mAP)with an IOU threshold of .5. In addition, we calculate AP
for all categories for eachmodel to see the improvement for each category.

4.2 Implementation details

All our experiments were done in Pytorch and trained on one
NVIDIA RTX 3090 GPU with the initial learning rate set to 1e-2.
The parameters were optimized through stochastic gradient
descent (SGD). The momentum and weight decay are set to
.937 and .0005, respectively. Besides, two new hyperparameters
were introduced with respect to the module ZPG, i.e., α and β,
which respectively control base-value B and width-value W, and
values are set to .4 and .5.

4.3 Quantitative results

We test the model performance on HiXray [34] and OPIXray [20]
datasets. Specifically, we embedded ZPGNet into YOLOv3 [42] and
YOLOv5s [47] and compared it with the state-of-the-art methods
DOAM [20] and LIM [34]. Table 1 presents the experimental results of
DOAM, LIM, and the proposed ZPGNet on HiXray and OPIXray
datasets. In order to illustrate the effectiveness of our method and
better compare it with the existing state-of-the-art (SOTA) models, we
use YOLOv3 and YOLOv5s as this baseline.

4.3.1 Results on HiXray dataset
The experimental results of different algorithms on the HiXray [34]

dataset are shown in Table 1. For a fair comparison, we adopt the same
baseline YOLOv5s [47] as DOAM [20] and LIM [34], which performs the
best results on both DOMA and LIM. The proposed method ZPGNet
with YOLOv5s baseline improves to 83.9% in mean average prediction,
outperforming DOAM and LIM by 1.7% mAP50 and .7% mAP50,
respectively. In order to further verify the effectiveness of our model,
we also adopted the YOLOv3 [42] baseline, which is still 1.2% mAP50
higher than the SOTA method (YOLOv5s + LIM).

The (YOLOv3+ZPGNet) experiment results show that our
method is lower than some methods in some categories Water,
Laptop, Mobile Phone, and Tablet, but has an 8.0% AP and 4.8%
AP improvement in the cosmetics and lighter categories,
respectively, compared to the SOTA method LIM. Cosmetics
belong to the mixtures category, commonly disturbed by
organic substances (such as plastics), resulting in decreased
detection confidence or even missed detection. The significant
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improvement in cosmetics indicates that our method, introducing
the atomic number feature map, can better reduce the interference
of useless information in Figure 8. This advantage is facilitated by

our method of paying extra attention to the material information
using atomic number features. Lighters in luggage are tiny in size
and prone to profound feature loss after downsampling. Our

TABLE 1 Quantitative evaluation results on the HiXray dataset and OPIXray dataset. Where PO1, PO2, WA, LA, MP, TA, CO, and NL denote “Portable Charger 1 (lithium-
ion prismatic cell)”, “Portable Charger 2 (lithium-ion cylindrical cell)”, “Water,” “Laptop,” “Mobile Phone,” “Tablet,” “Cosmetic” and “Non-metallic Lighter” in the
HiXray dataset. FO, ST, SC, UT, and MU donate “Folding Knife,” “Straight Knife,” “Scissor,” “Utility Knife,” and “Multi-tool Knife” in the OPIXray dataset, respectively.

Method HiXray OPIXray

mAP50 PO1 PO2 WA LA MP TA CO NL mAP50 FO ST SC UT MU

SSD [51] 71.4 87.3 81.0 83.0 97.6 93.5 92.2 36.1 .01 70.9 76.9 35.0 93.4 65.9 83.3

SSD + DOAM [20] 72.1 88.6 82.9 83.6 97.5 94.1 92.1 38.2 .01 74.0 81.4 41.5 95.1 68.2 83.8

SSD + LIM [34] 73.1 89.1 84.3 84.0 97.7 92.4 92.4 42.3 0.1 74.6 81.4 42.4 95.9 71.2 82.1

Xdet [4] — — — — — — — — — 86.7 90.4 76 91.5 84.3 91.3

FCOS [43] 75.7 88.6 86.4 86.8 89.9 88.9 88.9 63.0 13.3 82.0 86.4 68.5 90.2 78.4 86.6

FCOS + DOAM [20] 76.2 88.6 87.5 87.8 89.9 89.7 88.8 63.5 12.7 82.4 86.5 68.6 90.2 78.8 87.7

FCOS + LIM [34] 77.3 88.9 88.2 88.3 90.0 89.8 89.2 69.8 14.4 83.1 86.6 71.9 90.3 79.9 86.8

ATSS [19] — — — — — — — — — 86.6 92.3 72.0 96.6 80.38 91.7

ATSS + DOAM [19] — — — — — — — — — 85.6 90.7 66.8 96.2 81.8 92.5

ATSS + Lacls [19] — — — — — — — — — 88.3 90.0 75.0 97.6 85.7 93.0

YOLOv5s [47] 81.7 95.5 94.5 92.8 97.9 98.0 94.9 63.7 16.3 87.8 93.4 67.9 98.1 85.4 94.1

YOLOv5s + DOAM [20] 82.2 95.9 94.7 93.7 98.1 98.1 95.8 65.0 16.1 88.0 93.3 69.3 97.9 84.4 95.0

YOLOv5s + LIM [34] 83.2 96.1 95.1 93.9 98.2 98.3 96.4 65.8 21.3 90.6 94.8 77.6 98.2 88.9 93.8

YOLOv5s + ZPGNet (Ours) 83.9 95.7 95.2 92.5 96.5 97.7 94.4 66.4 33.0 90.7 95.0 79.3 98.0 86.8 94.2

YOLOv3 [42] 83.0 96.7 94.9 91.9 97.9 97.7 94.0 71.9 18.6 78.2 92.5 36.0 97.3 70.8 94.4

YOLOv3+ZPGNet (Ours) 84.4 96.6 95.2 92.7 97.7 98.0 95.2 73.8 26.1 85.4 88.5 65.1 96.7 83.5 93.3

Bold values represent the best performance in the same evaluation index.

FIGURE 8
Visualizations of the original images, atomic number images, and detection results of the ZPGNet-integrated model. Our proposed ZPGNet uses atomic
images to pay more attention to material information and thus achieve better performance.
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method achieves 11.7% AP improvement over LIM [34] with the
same baseline YOLOv5s in the lighter category, which is due to the
fact that we use a low sampling rate feature map in the BE module
to increase the information of small prohibited items.

4.3.2 Results on OPIXray dataset
Table 1 represents the performance of our method on the

OPIXray [20] dataset. With the same baseline YOLOv5s [47],
ZPGNet outperforms DOAM [20] and LIM [34] by 2.7% mAP50
and .1% mAP50, respectively. In particular, ZPGNet has the highest
score on mAP50 among all the models. It can be clearly seen that the
proposed method ZPGNet achieves significant performance
improvement based on YOLOv3 [42], especially on AP of the

severely occluded prohibited items named “straight knife”
improved by 29.1%. This benefits from the fact that our method
effectively removes the interference of irrelevant background
information.

4.4 Generality verification

To further evaluate the effectiveness of the proposed model
ZPGNet and verify that ZPGNet can be applied to various
detection networks, we choose the classical detection models
YOLOv3 [42], RetinaNet [41], and YOLOv5s [47] to use our
method. Experiments were performed on the OPIXray dataset
[20]. As shown in Table 2, our approach ZPGNet improves
YOLOv3 by 7.2% mAP50, RetinaNet by .7% mAP50, and
YOLOv5s by 2.9% mAP50, respectively. Many objects are
commonly disturbed by useless items, quickly resulting in low
confidence or even miss detection on the general detection
model. As shown in Figure 9, the comparison plot of the
experimental results in the first and second rows shows that
even with high confidence, there is a particular improvement
after introducing the atomic number features. Embedding
ZPGNet makes the network pay more attention to object
material information to reduce the interference of ineffective
information and alleviate the problems of low confidence and
missed detection. This indicates that our model can be embedded
into most detection networks as a plug-and-play component to
minimize the interference of useless background
information and achieve better performance.

TABLE 2 Comparisons between the ZPGNet-integrated network and three object
detection methods.

Method mAP50 FO ST SC UT MU

RetinaNet [41] 87.4 89.4 69.2 98.2 86.3 94.0

RetinaNet + ZPGNet 88.1 91.3 72.1 98.7 85.8 92.6

YOLOv5s [47] 87.8 93.4 67.9 98.1 85.4 94.1

YOLOv5s + ZPGNet 90.7 95.0 79.3 98.0 86.8 94.2

YOLOv3 [42] 78.2 92.5 36.0 97.3 70.8 94.4

YOLOv3+ZPGNet 85.4 88.5 65.1 96.7 83.5 93.3

We embedded our method into three different baseline models respectively and divided the

models embedded with and without our method into a group, where the bold figures represent

the best performance in a group.

FIGURE 9
Visual results of both the baseline YOLOv3 and the ZPGNet-integrated model. There are many missed and low-confidence prohibited items in baseline
YOLOv3. After embedding the proposed ZPGNet, the ability to detect items has been significantly improved, especially for heavily cluttered X-ray images.
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4.5 Ablation study

In this subsection, we conduct a series of ablation experiments to
analyze the influence of involved hyperparameters and the
contribution of critical components of the proposed ZPGNet. In
the ablation study, all experiments were performed on the HiXray
dataset [34].

4.5.1 Effectiveness of ZPG, MA, and BE
ZPG, MA, and BE are essential modules in ZPGNet, and we

embed them one by one into YOLOv5s [47] to evaluate their
performance. The insertion of ZPG requires the support of MA,
so unity emplaces ZPG and MA together into the model. All
experiments here uniformly set the number of MA layers to 2.
As shown in Table 3, the network embedded with ZPG and MA
modules improves its performance by 1.4%mAP50 compared to the
base model, especially in the cosmetics category, where it improves
by 5.3% mAP50. Cosmetics are commonly disturbed by organic
substances (such as plastics), resulting in low confidence and
missed detection. The significant improvement in cosmetics
indicates that our method, introducing the atomic number
features, can better reduce the interference of useless
information, as shown in Figure 10. After applying the
Bidirectional Enhancement (BE) module, the performance is

2.2% mAP50 higher than the basic module and .8% mAP50
higher than that embedded with MA and ZPG, which proves the
effectiveness of the BE module.

4.5.2 Number of layers in MAs
We also show the effects of different layer numbers in the

proposed MA, as shown in Figure 11. The model performs best
when the layer numbers equal 2. The excessive number of layers
can lead to performance degradation of the MAmodule. We believe
that the possible reason is that the over-introduction of the atomic
number feature leads to the suppression of other essential cues,
which leads to a degradation in performance. When MA layers are
equal to 2, it can well balance the importance between the atomic
number feature and other features. So, in other experiments, we set
the layer numbers in each MA to 2.

5 Conclusion

Prohibited item detection in X-ray images is an effective
measure to maintain public safety. The interference of a large
amount of useless background information caused by object
disordered placement is an urgent problem to be addressed in
prohibited item detection. Inspired by the imaging characteristics
of X-ray images, this paper proposes an atomic number Z Prior
Generation (ZPG) method, which can automatically generate
atomic number images and reduce the cost of manual
acquisition. Furthermore, we designed an atomic number Z
Prior Guided Network (ZPGNet) to solve useless background
information interference in prohibited item detection. The

TABLE 3 Ablation results of the proposed ZPG, MA, and BE on the HiXray dataset.

Method mAP50 PO1 PO2 WA LA MP TA CO NL

YOLOV5s [47] 81.7 95.5 94.5 92.8 97.9 98.0 94.9 63.7 16.3

+ZPG + MA 83.1 95.3 95.5 92.4 94.9 97.7 93.6 69.0 26.0

+ZPG + MA + BE 83.9 95.7 95.2 92.5 96.5 97.7 94.4 66.4 33.0

Bold values represent the best performance in the same evaluation index.

FIGURE 10
Performance comparison of different categories. The number on
the gray line indicates the log-average miss rate. Useless background
information interference can easily lead to prohibited item missed
detections. With the proposed ZPG, MA, and BE, the log-average
miss rate of prohibited items (i.e., cosmetic and lighter) is significantly
reduced.

FIGURE 11
Bar graph of AP variation of all categories corresponding to
different layers number MA module.
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proposed ZPGNet method cross-scale flows the atomic number Z
information through the network to mine deep material clues to
reduce irrelevant background information interference. We
comprehensively evaluate ZPGNet on HiXray and OPIXray
datasets, and this result shows that ZPGNet can be embedded
into most detection networks as a plug-and-play module and
achieve higher performance. There is still a severe occlusion
problem in X-ray images, but this paper does not solve the
occlusion problem. In the future, we intend to use features
such as contour and scale to solve the occlusion problem
between items.
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For deep learning-based object detection, we present a superior network

named MSS-YOLOv5, which not only considers the reliability in complex

scenes but also promotes its timeliness to better adapt to practical

scenarios. First of all, multi-scale information is integrated into different

feature dimensions to improve the distinction and robustness of features.

The design of the detectors increases the variety of detection boxes to

accommodate a wider range of detected objects. Secondly, the pooling

method is upgraded to obtain more detailed information. At last, we add the

Angle cost and assign new weights to different loss functions to accelerate the

convergence and improve the accuracy of network detection. In our network,

we explore four variants MSS-YOLOv5s, MSS-YOLOv5m, MSS-YOLOv5x, and

MSS-YOLOv5l. Experimental results of MSS-Yolov5s show that our technique

improvesmAP on the PASCAL VOC2007 and PASCAL 2012 datasets by 2.4% and

2.9%, respectively. Meanwhile, it maintains a fast inference speed. At the same

time, the other three models have different degrees of performance

improvement in terms of balancing speed and precision in challenging

detection regions.

KEYWORDS

multi-scale fusion, YOLOv5, loss function, softpool, object detection

1 Introduction

With the rapid development of science and technology, object detection technology

has become a hot research problem [1]. Object detection has been useful in enhancing

production and life efficiency in a variety of industries, including intelligent

transportation, steel defect identification, face detection, and others. In terms of smart

transportation, A great many traffic accidents happened in the world because of fatigued

driving and drunk driving. Globally more than 1.25million people died in traffic accidents

and economic losses amount to billions of dollars every year. Due to the increasing

number of vehicles and the irregular operation of drivers, the accident rate is further

increasing, which brings many adverse effects to our production life. The computer-aided

driving system monitors and senses the surrounding environment through deep learning
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algorithms, and transmits information about obstacles in front of

the vehicle to the driver or driverless system to facilitate the next

effective operation, which is of great importance to reducing the

incidence of traffic accidents. For steel defect detection,

numerous steel varieties and complex application scenarios

make it difficult to detect steel defects, which raises the cost of

manual screening. The currently used object detection approach

may efficiently find flaws, considerably increase production

efficiency, and quicken the transition to an intelligent, modern

industry.

Deep learning, as an extension of traditional machine

learning, has developed rapidly in recent years in the context

of big data. The essence of deep learning is the learning process

that enables machines to reach or even surpass human levels. Its

unique advantage is that excellent features can be extracted using

convolutional networks. Currently, it is widely used in machine

vision, pattern recognition, and other fields. A large number of

improved algorithms have achieved significant success in terms

of accuracy and speed, such as SPPnet, Fast R-CNN, Faster

R-CNN, single-shot detector (SSD) [2], You Only Look Once

(YOLO), YOLOv2, YOLOv3, YOLOv4, YOLOv5, and other

object detection networks. However, it is extremely difficult to

achieve a mutual trade-off between speed and precision. So in

this work, inspired by YOLO and SSD, we propose an improved

mobile-friendly and high-accuracy object detection algorithm.

To summarize, our main contributions are as follows:

• We propose an improved YOLOv5 algorithm namedMSS-

YOLOv5 to improve accuracy while keeping the speed

largely unchanged based on YOLOv5 [3–5]. We design an

upsampling and downsampling to the network to facilitate

deeper information fusion and compensate for missing

information. Our design of four YOLO detectors will

facilitate the detection of obstacles of different sizes.

• A new pooling method is adopted in the SPP module to

improve network performance in this paper. Our pool

approach helps reduce information loss compared to

maximum pooling and average pooling. This lossless

boost will not come at any additional cost to the

network. It is friendly to server devices and embedded

deployments.

• Inspired by the structure of the SIoU loss function, we add

the Angle cost to our loss function. Meanwhile, based on

the idea of Focal loss [6], we added the new weight

coefficient to the cross-entropy loss function as a way to

describe the importance of edge loss to the overall loss

function.

• Our improved approach not only performs well on small

models but also on large models as well. Referring to the

model design of YOLOv5, we present four versions of the

model in this paper, MSS-YOLOv5s, MSS-YOLOv5m,

MSS-YOLOv5l, and MSS-YOLOv5x.

The rest of this paper is organized as follows. Section 2

introduces the related works. The methods are presented in

Section 3. The experiments and results are discussed in

Section 4. The conclusions are drawn in Section 5.

2 Related works

With the rise of a deep network, the accuracy of object

detection has been greatly improved. The commonly used object

detection algorithms are divided into two categories. Two of the

most commonly used are two-tier target-detection algorithms

that contain regional recommendation networks, such as R-CNN

[7], Faster-RCNN [8], Mask-RCNN [9], SPP Net [10], etc.

Despite having high accuracy in most detection tasks, these

network models have a large number of parameters. They are

difficult to deploy on embedded devices and do not have a high

recognition accuracy for small targets. The other category is the

single-stage YOLO [11–13] (You Only Look Once) family of

algorithms. In contrast to the two-stage algorithm, it has a fast

inference speed. Because of its ease of deployment, YOLO has a

wide range of applications in many areas such as unmanned

vehicles and the military.

YOLOv5 is the fifth generation version of YOLO which

shows excellent performance in different detect tasks. There

are four types of YOLOv5, which are YOLOv5s, YOLOv5m,

YOLOv5l, and YOLOv5x, while the basic structure of YOLOv5s

is shown in Figure 1. Due to the rapid development of deep

learning, a large number of excellent works to improve

YOLOv5 have emerged. Cheng et al [14] proposed adding

attention mechanisms to YOLOv5 to enable the network to

learn the information we need adaptively. Xing [15] et al.

used YOLOv5 algorithm and DeepSORT algorithm to detect

and track multiple moving targets. Lan et al [16]. proposed an

improved deep learning network model YOLOv5-DN based on

YOLOv5. The CSP-DarkNet module in YOLOv5 was replaced by

CSP-DenseNet to promote the accuracy of target detection and

classification in the model. Howard et al [17] proposed to

combine LRM and Focal loss in YOLOv5 to improve the

average accuracy. Zhao et al [18] used the ghost module to

reduce the parameters and thus further improve the detection

speed. A series of valuable works have contributed to the

development of YOLO algorithm.

YOLOv5s was one of the first networks to use SPP in a single-

stage algorithm. Although the backbone network can extract

some of the features after all the network depth was limited to

extract depth information of the network. The SPP module

contains convolutional kernels of sizes 1, 5, 9, and 13, which

are used to obtain feature information under different perceptual

fields by maximum pooling. Although the ASPP [17] and RFB

[19] modules have appeared in previous studies, these modules

expand the receptive field by dilated convolution and do not
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address the information loss problem caused by maximum

pooling or average pooling.

There are many factors that affect YOLOv5s performance,

such as loss function, backbone networks, pool method, etc. A

great many works were emerged to improve the loss function. Li

et al. proposed GIOU [20] to solve the problem of disappearing

gradients. However, there are some problems such as slow

convergence. Zheng et al. On this basis, the DIoU [21] was

proposed, and the distance between the mass of the prediction

frame and the real frame is considered in the function definition.

Cai et al. found that there is a risk of degradation when the

centroids of two boxes overlap. The aspect ratio of the boxes was

therefore introduced to form the CIoU [22]. Although CIoU

considers the overlap area, centroid distance, and aspect ratio, the

true difference between aspect and confidence is not well

reflected by v in the formula, making it more difficult to

optimize. Min et al. then reconsidered the aspect factors and

proposed EIoU [23] on top of this. The above work is useful for

portraying the difference between the prediction frame and the

true frame. There is still room for improvement in the loss

function.

The pooling method affects the detection performance of the

model to some extent. Kumar et al [24] used a deep network

model using ResNet-50 and global average pooling to solve the

vanishing gradient and overfitting problems. Tan et al [25]

proposed to incorporate maximum pooling into an improved

SPP network to enhance the network’s ability to represent

information. Zhang et al [26] proposed to replace max

pooling and average pooling with random pooling to obtain

deep learning models with better performance. However, the

problem of maximum pooling and average pooling leading to

significant information loss has not been resolved.

In summary, the ability of YOLOv5 to extract detailed

information is limited, and the balance between speed and

accuracy has been a difficult problem to be tackled.

YOLOv5 has significant room for improvement, both in terms

of the loss function and pooling methods or feature fusion.

Therefore, we will also focus on these three improvement

points in this paper.

3 Presented network

In this section, we present some of our design ideas about

MSS-YOLOv5, which help us trade off between speed and

precision. First, we design four branches to integrate different

scale features. Then, we replace Maxpool with an improved

SoftPool in the SPP module. Finally, inspired by the structure

of the SIoU loss function, we add the Angle cost and other

strategies to improve the performance further.

Combining these approaches, we named the improved

YOLOv5 algorithm MSS-YOLOv5. MSS takes the initials

multi-scale fusion, Softpool, and SIoU respectively. Similar

to YOLOv5, we provide four versions, with the number of

model parameters ranging from small to large as MSS-

YOLOv5s, MSS-YOLOv5m, MSS-YOLOv5l, and MSS-

YOLOv5x. The overall flow of the model is shown in

Figure 2. After the data is enhanced, the input pictures are

sent into the model for training. BCE loss is used to calculate

the classification loss and target loss. NMS (non-maximum

FIGURE 1
The network structure of YOLOv5s. The input size of image is 640 × 640. The final output is three effective feature layers, and their output size is
128, 256, 512. The structure inside the algorithm can be used for the extraction of feature information.
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suppression) is used to filter out the boxes with low scores due

to occlusion and other factors. Firstly, the IoU threshold is set

to 0.5. Secondly, all the boxes are sorted, and each box with

IoU >0.5 is set to 0 if it has the highest probability of scoring,

and the opposite is kept. The final output is the location and

labels information of the target.

3.1 Multi-scale feature integration

There are many large differences in the size and shape of

targets in detection tasks. To address this problem, both Scaled-

YOLOv4 [27] and TPH-YOLOv5 [28] use a multi-scale feature

fusion strategy [29, 30] to extract more useful information. Both

decrease the difficulty of detecting target objects of different sizes

by increasing the number of detectors. Inspired by these two

algorithms, we add a branch to integrate different channel

information in the network. And we can use the Concat

operation to integrate these information. A large detector has

extensive coverage and abundant information on feature points,

so it is easier to obtain global information. On the contrary, the

small-scale detector has opposite characteristics. The loss of

feature information is more obvious after the backbone

network. Generally, only single-digit pixel sizes are left,

resulting in small targets that do not match the original image

after mapping through the perceptual field, which ultimately

leads to poor regression and prediction results. Backbone, SPP,

and PANet in YOLOv5s have extracted some feature information

about the target to a certain extent. However, there is still some

room for mining deep semantic information and shallow detailed

information.

According to the above problems, we proposed the following

improved measures. 1) As shown in Figure 3, we add one more

upsampling and downsampling in the PANet of YOLOv5s

(PANet originally had two upsamples and two downsamples).

The sampling structure consists of Convolution, Batch

Normalization [31], and Leaky Relu [32]. Convolution is used

for feature extraction. Batch Normalization can prevent gradients

from exploding or disappearing, speed up network convergence

and improve the stability of the detection network. Leaky Relu

can enhance the ability of non-linear representation of the

network. 2) We add an extra YOLO Head as a detector to

accommodate different scales of target detection. The multi-

scale fusion strategies used in this paper are all methods of fusion

at four different scales.

3.2 Improved SoftPool

The main function of pooling is to reduce the dimensionality

of the feature map, reducing the computational overhead and

thus saving memory, offering the possibility of studying deeper

networks. The prevailing pooling methods are maximum pooling

and average pooling or a combination of both, but extensive

experiments have shown that these types of pooling result in the

loss of important feature information. Therefore, literature

32 proposes the SoftPool [33] method, where each activation

is assigned a corresponding weight through a softmax operation.

The weights can be expressed as follows.

ωi � eai

∑j∈Re
aj

(1)

FIGURE 2
The process of training and testing themodel. Data augmentation is used to acquire high-quality pictures. SIoU loss can help us reduce the loss
of border to train the model more effectively. The model ensemble contains different methods, which can remove those detection boxes with a low
score. The prediction section consists of two parts: location and classification.
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The output of soft pooling (�a) is the weighted sum of all

activations in the kernel neighborhood R.

�a � ∑
i∈R

ωi · ai (2)

Soft pooling performs a normalization operation using the

softmax of a region. Its probability distribution is proportional to

each activation value relative to the neighboring activation values

in the kernel region. Therefore, SoftPool is microscopic. It can

provide a certain gradient at each backpropagation. However,

there are still problems such as limited lifting accuracy and the

return value of the gradient is too small to be optimized.

Therefore, a new SPP structure is proposed in this paper. As

shown in Figure 3, the MaxPool in the SPP is replaced with

SoftPool, while the pooling kernel size is adjusted from [5, 9, 13]

to [3, 5, 7] to retain rich enough depth information and enhance

feature representation. Of course, it is possible to keep the

convolution kernel size the same or resize it to [5, 7, 9].

However, kernel sizes of [3, 5, 7] are significantly less

computationally intensive. At the same time, when the fitting

ability of the network is saturated, it will be beneficial to reduce

more redundant information.

3.3 SIoU loss

Object detection is one of the core problems in the field of

vision and its detection accuracy depends on the definition of the

loss function. In previous studies, the loss function has mostly

been defined using the distance, intersection ratio, and aspect

ratio between the prediction box and the true box. We have not

taken into account the direction in which the predicted boxes do

not match the real boxes. The loss function has disadvantages

such as slow convergence, difficulty in optimization, and low

detection accuracy. Therefore, we adopt a new loss function SIoU

in this paper. SIoU was pioneered by Zhora Gevorgyan [34] in

2022 and consists of four main Cost functions, Angle cost,

Distance cost, Shape cost, and IoU cost. The latter three

elements have been studied enough in previous work to have

a positive impact. However, it does not mean that there is no

room for improvement in the loss function. So Angle cost is

added. This addition ensures that the prediction is effective. This

improved method allows the prediction box to be moved quickly

to the nearest axis. Finally, only the X or Y coordinates are needed

for the regression operation. Overall, the Angle cost penalty

makes the degrees of freedom of loss much lower, making it

FIGURE 3
Multi-scale feature integration architecture. The Backbone is CSPDarknet53, which outputs C2–C5 featuremaps to the neck. The neck is a new
PANet, which inputs four featuremaps and outputs four featuremaps. For YOLOv5-MSSs, the input channel numbers are [20, 40, 80], and the output
channel numbers are [20, 40, 80, 160].
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easier to converge. The following sections show the computation

of the four Cost functions.

3.3.1 Angle cost
The picture of regression loss of borders was shown in Figure 5.

It reflects the relationship between the position of the predicted box

and the real box. We calculate the relevant parameters in Figure 4.

In order to make the function converge quickly, we will first

try to minimize α if α≤ π
4 otherwise minimize β � π

2 − α.

To achieve this first, an angle-aware component is

introduced and defined as follows:

Λ � 1 − 2 · sin 2 arcsin x( ) − π

4
( ) (3)

Where

x � ch
σ
� sin α( ) (4)

σ �
���������������������
bgtcx − bcx( )2 + bgtcy − bcy( )2

√
(5)

ch � max bgtcy − bcy( ) −min bgtcy − bcy( ) (6)

b and bgt are the centers of the predicted and real boxes

respectively. σ is the distance between the center point of the

predicted box and the real box. cw and ch denote the width and

height of the rectangle with σ as the diagonal, respectively. α and

β denote the angles formed by the diagonal and the width and

height respectively, of which α + β � π
2.

3.3.2 Distance cost
The distance is defined in the following way:

Δ � ∑
t�x,y 1 − e−γρt( ) (7)

ρx �
bgtcy − bcy

cw
( )

2

, ρy � bgtcy − bcy
ch

( )
2

, γ � 2 − Λ (8)

The contribution of Distance cost is small when the angle

is small but becomes larger as the angle gradually converges

to π
4.

3.3.3 Shape cost
The shape is defined in the following way:

Ω � ∑
t�w,h

1 − e−ωt( )θ (9)

where

ωw � w − wgt| |
max w,wgt( ),ωh � h − hgt| |

max h, hgt( ) (10)

θ reflects the degree of attention paid to Shape cost and θ is

uniquely determined for each dataset. θ = 4 is calculated by the

genetic algorithm in this paper.

3.3.4 IoU cost
IoU [35] reacts to the ratio of intersection to concatenation

when the prediction box intersects the real box. A Schematic of

the relation of IoU component contribution was shown in

Figure 5. The formula is as follows.

IoU � b ∩ bgt| |
b ∩ bgt| | (11)

3.3.5 SIoU cost
The regression loss of the border is represented below.

Lbox � 1 − IoU + Δ + Ω
2

(12)

3.3.6 Total loss
The final loss function used in this paper is as follows.

FIGURE 4
The relationship between the position of the prediction box
and the real box.

FIGURE 5
Schematic of relation of IoU component contribution.
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Loss � αLossSIoU + βLossconf + γLosscls

� α · λcoord∑
S2

i�0
∑B
j�0
Iobjij xi − x

Λj

i )2 + (yi − y
Λj

i( )2[ ]

+ α · λcoord∑
S2

i�0
∑B
j�0
Iobjij

��
ωj
i

√
−

��
ω
Λj

i

√
)2 +

��
hji

√
−

��
h
Λj

i

√
⎛⎝ ⎞⎠

2⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

− β ·∑S
2

i�0
∑B
j�0
Iobjij C

Λj

i log Cj
i( ) + 1 − C

Λj

i( )log 1 − Cj
i( )[ ]

− β · λnoobj∑
S2

i�0
∑B
j�0
Inoobjij C

Λj

i log Cj
i( ) + 1 − C

Λj

i( )log 1 − Cj
i( )[ ]

− γ ·∑S
2

i�0
Iobjij ∑

c∈classes

P
Λj

i log Pj
i( ) + 1 − P

Λj

i( )log 1 − Pj
i( )[ ]
(13)

In all the above formulas, LossSIoU means SIoU Loss,

Lossconf means confidence loss, Losscls means class Loss.

α, β, γ denote the weighting factors respectively, which are

used to measure the importance of different losses. In this

paper, α, β and γ take the values 0.5, 1, and 4 respectively.

3.4 Other strategies

The K-means [36] clustering method was chosen to

predict more accurate anchor frames in this paper.

Different types of objects have different sized frames, and

the same object may vary depending on how close or far it is

photographed. Each detector uses three anchor frames to

determine the position of the object. There are three

detectors in YOLOv5s, so nine clustering centers are

needed. Based on the experiments conducted, the final

clusters were: [(19,48), (40,40), (35,97), (81,80), (64,176),

(138,145), (117,286), (253,234), (193,428), (485,310),

(330,488), (561,546)]. The distribution of clustering centers

is shown in Figure 6.

Data augmentation is a common way of expanding data.

It can enhance the detection capability of a neural network

with a limited amount of data. In this paper, we have the

requirement to enhance the generalization capability of the

model. Therefore, we adopted the mosaic data augmentation

method to stimulate the maximum performance of the

algorithm. In previous enhancement methods, horizontal

inversion and illumination were often used to enhance the

data, but there were many drawbacks such as poor

generalization and hindering accuracy improvement.

Therefore, we follow the mosaic data enhancement method

[37] of YOLOv4 and YOLOX [38] in this paper. Numerous

experiments have shown that this enhancement method has

an effort on increasing the detection accuracy and enhancing

the generalization ability of the model to a certain extent. The

results of the mosaic data enhancement are shown in

Figure 7.

FIGURE 6
Map of clustering centers.

FIGURE 7
The results of the mosaic data enhancement.
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4 Experiments and results

4.1 Experimental environment and
datasets sources

The hardware setup in the laboratory configured for this

study is as follows: the experimental platform is Windows 10, the

processor is Intel Core i7-11700F 2.50 GHZ, equipped with

NVIDIA GeForce RTX3060-32GB, the development

environment is Pycharm2020, Python3.6, the deep learning

framework is Pytorch1.7, using CUDA11.2.0/CUDNN11.2 for

image acceleration.

The public PASCAL VOC datasets used in the training

process are as follows:

1) PASCAL VOC 2007: a real-world dataset with still different

views from our life. It contains 20 categories with a total of

4952 pictures. Moreover, the training and test sets were

divided according to 9:1, with 4457 training sets and

495 test sets.

2) PASCAL VOC 2012: a real-world dataset with still different

views from our life. It contains 20 categories with a total of

17125 pictures. Moreover, the training and test sets were

divided according to 9:1, with 15412 training sets and

1713 test sets.

The dataset of PASCAL VOC 2007 and PASCAL VOC

2012 were used to validate the effort of the improved method.

At the same time, We compared common lightweight networks

for comparative experiments. FPS and mAP were combined to

compare the superiority of the algorithms.

4.2 Evaluation indicators

Precision, recall, AP, andmAP are used to evaluate the merits

of the model. The formulae are shown below.

Pprecision � TP
TP + FP

(14)

Rrecall � TP
TP + FN

(15)

AP � ∫1

0
P R( )dR (16)

mAP � 1
C

∑
c∈C

AP c( ) (17)

TP represents the total number of correctly classified positive

samples, FP represents the total number of misclassified positive

samples and FN represents the total number of misclassified

negative samples. The precision rate indicates the number of

positive category samples as a proportion of the total number of

samples. The recall indicates the proportion of all positive

samples detected to the number of positive samples in the

dataset. The mAP can be used as a comprehensive evaluation

metric for single category detection, with higher AP values

indicating better detection of a category, and mAP being a

comprehensive evaluation of the entire network. The

complexity of a model is measured by the number of

parameters or computations. In general, the lower the number

of parameters in a model, the faster the detection speed, which is

usually evaluated in terms of FPS.

4.3 Model training

The following settings are made when the model is trained.

To obtain better training results, this experiment uses the pre-

training weights of the CSPDarknet53 backbone, and the model

is optimally trained using SGD (stochastic gradient descent). The

input image size of the model is 608 × 608, the maximum

learning rate is 1e−2, the freeze part batch size is 16, freeze

training for 50 cycles, unfreeze part batch size is 50 cycles of

freeze training. The IoU threshold and momentum are set to

0.5 and 0.937, respectively. Other versions of MSS-YOLOv5 use

the same training method.

The model was trained using the above parameter settings

and a combination of improvements. The final loss function

curve is shown in Figure 8. From the figure, we can see that the

loss function curve has an overall decreasing trend. Meanwhile,

the loss curve has almost approached convergence at the 20th

epoch. The experiments demonstrate that our method is not only

easy to converge but also highly stable.

FIGURE 8
Loss function curve of MSS-YOLOv5s.
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4.4 Ablation experiment

To verify the effectiveness of the algorithm, we conducted

ablation experiments on the improved modules, in order of

four scales, maximum pooling replacement to Softpool, and

GIoU replacement to SIoU, to verify the detection

effectiveness of the improved algorithm. Through

experiments, we found that the improved method has

significant performance gains on small models, but not

much for large models. Therefore, we demonstrate ablation

experiments with MSS-YOLOv5s as an example in this paper.

The results of the ablation experiments of MSS-YOLOv5s are

shown in Table 1.

As we can see that quadruple scale feature fusion,

Softpool, and SIoU loss function, provide a significant

improvement in detection accuracy from Table 2. The

multi-scale fusion sacrifices some of the speed, but after

all, it is minimal and gives a solution for accuracy

improvement. With the introduction of softpool and SIoU,

the model size remains almost unchanged and the speed is

essentially the same, with an average precision improvement

of 2.9%.

4.5 Comparison of different algorithms

To reflect the effectiveness of the algorithm

improvements, we experimentally compared the target

detection algorithms YOLOv4, YOLOv4-tiny, YOLOv3,

YOLOv3-tiny, and YOLOv5. The experimental results are

shown in Table 2.

From Table 3, we can see that although the two-stage Faster

RCNN uses a region suggestion network, it does not achieve

higher accuracy. On the contrary, YOLOv4 works better but

poses some difficulties for model deployment due to its slower

speed. YOLOv4-tiny, YOLOv3-tiny, and YOLO5s, as

commonly used lightweight algorithms, have certain

advantages, but the detection accuracy is too low to meet the

needs of autonomous driving corresponding to complex

scenarios. In the improved model, MSS-YOLOv5s, MSS-

TABLE 1 Ablation experiment of MSS-YOLOv5s.

Multi-scale Softpool SIoU mAP/% FPS/f/s Model size/MB

7 7 7 81.49 65 27.14

✓ 7 7 82.03 54 27.70

✓ ✓ 7 82.73 51 27.70

✓ ✓ ✓ 84.39 50 27.70

The bolded values indicate the best experimental results in the same group of experiments.

TABLE 2 Comparison of different algorithms.

Model Backbone mAP/% FPS/f/s Model size/MB

YOLOv3 Darknet53 79.68 37 235.08

YOLOv4 CSPDarknet53 85.23 24 248.25

YOLOv4- tiny CSPDarknet53-Tiny 77.47 116 22.58

Faster RCNN Resnet50 77.42 7 522.91

YOLOv5s CSPDarknet53 81.49 65 27.14

YOLOv5m CSPDarknet53 87.73 15 80.62

YOLOv5l CSPDarknet53 90.81 10 176.39

YOLOv5x CSPDarknet53 92.67 6 329.38

MSS-YOLOv5s(Ours) CSPDarknet53 84.39 50 27.70

MSS-YOLOv5m(Ours) CSPDarknet53 89.11 14 82.31

MSS-YOLOv5l(Ours) CSPDarknet53 91.53 9 182.05

MSS-YOLOv5x(Ours) CSPDarknet53 92.87 6 340.04

The bolded values indicate the best experimental results in the same group of experiments.

Frontiers in Physics frontiersin.org09

He et al. 10.3389/fphy.2022.1101923

28

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1101923


YOLOv5m, MSS-YOLOv5l, and MSS-YOLOv5x have different

degrees of enhancement. The speed of MSS-YOLOv5s is

essentially the same as YOLOv5s, but there is a significant

improvement in mAP. This is despite a 0.2% improvement in

the large model MSS-YOLOv5x, which tends to be saturated.

This non-destructive improvement of MSS-YOLOv5 is

extremely model friendly, achieving a degree of balance

between speed and accuracy and providing more options for

embedded deployments.

From Figure 9, we can see that the detection accuracy of all

types of targets has been improved to different degrees, especially

for small targets. When using YOLOv5s, the detection effect of

the dining table, sofa and boat are not obvious, but on our

improved algorithm, the improvement is 0.09%, 0.15%, and

0.05% respectively, which shows that our improved strategy is

simple and effective.

To give a more intuitive picture of the detection effect of

the improved algorithm on the PASCAL VOC2007 dataset,

Figure 10 shows the detection of the different algorithms, the

right panel shows the detection effect of the original

YOLOv5s and YOLOv5x model and the left panel shows

the detection effect of the MSS-YOLOv5x and MSS-

TABLE 3 Performance of different algorithms on the PASCAL 2012 dataset.

Model Backbone mAP/% FPS/f/s Model size/MB

YOLOv3 Darknet53 79.88 28 235.08

YOLOv4 CSPDarknet53 85.49 21 248.25

YOLOv4- tiny CSPDarknet53-Tiny 77.52 111 22.58

Faster RCNN Resnet50 77.81 6 522.91

YOLOv5s CSPDarknet53 82.04 62 27.14

YOLOv5m CSPDarknet53 87.81 15 80.62

YOLOv5l CSPDarknet53 90.83 12 176.39

YOLOv5x CSPDarknet53 92.68 6 329.38

MSS-YOLOv5s(Ours) CSPDarknet53 84.44 49 27.70

MSS-YOLOv5m(Ours) CSPDarknet53 89.17 14 82.31

MSS-YOLOv5l(Ours) CSPDarknet53 91.04 11 182.05

MSS-YOLOv5x(Ours) CSPDarknet53 92.91 6 340.04

Through the above comparison, we can easily find that MSS-YOLOv5 not only maintains a faster speed but also outperforms other lightweight networks in terms of accuracy. It proves that

MSS-YOLOv5 can work effectively on different datasets.

FIGURE 9
Comparison of the mAP of YOLOv5s and MSS-YOLOv5s.
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YOLOv5s. From the figure, we can see that the MSS-

YOLOv5x detected significantly more targets than the

YOLOv5x algorithm, and for the targets that were both

detected, the confidence level of the MSS-YOLOv5x was

higher. The same result is found on the MSS-YOLOv5s

and YOLOv5s. This shows that our improved approach

improves the performance of the model both on large and

small models. The MSS-YOLOv5 not only enriched the deep

semantic information of the feature map but also enhanced

the acquisition of shallow detail information to a certain

extent, improving the detection capability of the network for

targets of different sizes.

FIGURE 10
Comparison of test results for different algorithms.

FIGURE 11
Comparison of different algorithms for heat maps.
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4.6 Performance on the PASCAL
VOC2012 dataset

To further validate the effectiveness of the improved method,

we used the PASCAL VOC 2012 dataset to prove the superior

performance of the new framework. The same training approach

was used to retrain the PASCAL VOC 2012 dataset. Figure 11 is a

heat map presentation of the different algorithms on the

PASCAL VOC 2012 dataset.

The heat map represents the area of interest of the network to

the detection target, and the more thermal points, the more

targets are detected. Experiments have shown that our algorithm

is still able to obtain better detection results.

The performance of the different algorithms on PASCAL

2012 is shown in Table 3.

5 Conclusion

In this work, we propose an improved YOLOv5 object

detection algorithm named MSS-YOLOv5 to solve the problem

of a trade-off between the speed and precision of YOLOv5 in object

detection. Multi-scale information is integrated into different

feature dimensions to improve the distinction and robustness of

features. The design of the detectors increases the variety of

detection boxes to accommodate a wider range of detected

objects. The pooling method is upgraded to obtain more

detailed information. We add the Angle cost and assign new

weights to different loss functions to accelerate the convergence

and improve the accuracy of network detection. Experiments have

shown that the improved model has essentially similar inference

speeds to the original model. However, the improvements we

propose are effective in improving accuracy on both large and

smallmodels and performwell on different data sets. SIoU loss and

feature fusion approaches can be considered to optimize other

network structures. We propose a new model with reliable

accuracy and high timeliness.

The presented network not only achieves great performance

on the PASCAL 2007 but also works efficiently on the PASCAL

2012 dataset. However, our proposedmore efficient deep learning-

based YOLO series algorithm still cannot work perfectly to heavily

obscured targets. In the future, we will introduce structural

reparameterization techniques in backbone and FPN to

improve the overall performance of your network and add swin

transformerv2 to backbone to enhance the network’s ability to

capture information over long distances.
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Accurate unsupervised monocular
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Unsupervised monocular depth estimation is challenging in ill-posed regions, such
as weak texture scenes, projection occlusion, and redundant error of detail
information, etc. In this paper, in order to tackle these problems, an improved
unsupervised monocular depth estimation method for the ill-posed region is
proposed through cascading training depth estimation network and pose
estimation network by loss function. Firstly, for the depth estimation network, a
feature extraction network using asymmetric convolution is designed instead of
traditional convolution, which strengthens the extraction of the feature information
and improves the accuracy of the weak texture scenes. Meanwhile, a feature
extraction network integrating multi-scale receptive fields with the structure of
different scale convolution and dilated convolution stack is designed to increase
the underlying receptive field of the depth estimation network, which strengthens
the fusion ability of the network for multi-scale detail information, and improves the
integrity of the model output details. Secondly, a pose estimation network using an
attention mechanism is presented to strengthen the pose detail information of
keyframes and suppress redundant errors of the pose information of non-
keyframes. Finally, a loss function with minimum reprojection error is adopted to
alleviate the occlusion problem of the projection process between adjacent pixels
and enhance the quality of the output depth images of the model. The experiments
demonstrate that our method achieves state-of-the-art performance on KITTI
monocular datasets.

KEYWORDS

unsupervised monocular depth estimation, asymmetric convolution, multi-scale receptive
field, attention mechanism, ill-posed regions

1 Introduction

As an important research focus in the field of computer vision, monocular depth estimation
aims to explore the mapping relationship between image and depth, and predict the depth
information from a single image. Monocular depth estimation plays an important role in visual
tasks, especially in intelligent fields such as autonomous driving, 3D map construction, AR
(Augmented Reality) synthesis, etc.

At present, the mainstream way of monocular depth estimation task is to train the deep
neural network by using a large number of marked real depth images as the training set, so as to
obtain the depth value of the corresponding pixel from the image. In this way, deep neural
networks are used to generate high-quality depth images with different optimization strategies
[1–4]. However, supervised depth estimation methods need to collect a large amount of real-
depth information data and require an immense amount of computing time in the training
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process, which greatly increases the difficulty and complexity of the
algorithm. Comparatively speaking, unsupervised monocular depth
estimation only requires monocular video sequences or stereo image
pairs to realize the depth information estimation of each pixel of a
single image [5–7]. In recent years, unsupervised monocular depth
estimation have been favored by researchers [8–10]. Among them,
Zhou [10] innovatively proposes an unsupervised training framework
which cascades the depth estimation network and the pose estimation
network through the loss function to predict the depth information of
the image, improving the accuracy of model estimation and becoming
one of the most dominant frameworks in current unsupervised
monocular depth estimation.

However, current unsupervised monocular depth estimation studies,
including Zhou’s method, still face great challenges in dealing with ill-
posed regions problems, such as weak texture scenes, occlusion of pixel
projections, and lack of detailed information in depth images, etc. As a
result, the depth information obtained by the model cannot fully reflect
the image-depth mapping relationship. To solve these problems, we
propose an improved unsupervised monocular depth estimation which
included a depth estimation network, pose estimation network, and the
loss function. Firstly, in the depth estimation network, asymmetric
convolution structure and multi-scale field structure are proposed to
enhance the feature extraction capability of the network, to alleviate the
influence of weak texture scenes. Secondly, in the pose estimation
network, the redundant information of pose estimation of adjacent
image frames is reduced by the attention mechanism structure.
Finally, the minimum reprojection error is introduced into the loss
function to reduce the influence of occluded pixels and inter-frame
motion which results in out-of-bounds regions on depth information
prediction during pixel projection. By improving the depth estimation
network, pose estimation network, and loss function, the accuracy of the
unsupervisedmonocular depth estimationmodel for depth information is
improved, and the robustness and generalization performance of the
model is enhanced.

The main contributions of our works are as follows:

• We propose an unsupervised monocular depth estimation
method improved for ill-posed regions by training a depth
estimation network and a pose estimation network in cascade
with loss functions.

• We improve the unsupervised depth estimation network by using
asymmetric convolution, multiscale perceptual field structure, SE
structure andminimum reprojection error in ill-posed regions, such
as weak texture scenes, pixel projection occlusion, lack of detailed
information in depth images, and so on.

• Our approach demonstrate state-of-the-art performance at
KITTI monocular datasets.

2 Approach

At present, the unsupervised monocular depth estimation model
takes video sequences as input and constructs an unsupervised
learning framework for monocular depth and camera pose
estimation based on unstructured video sequences. Specifically, an
end-to-end learning method is used to jointly train a depth estimation
network and a pose estimation network in an encoder-decoder
manner, so as to obtain the depth information in a single frame of
a video sequence in an unsupervised manner [11].

However, current unsupervised monocular depth estimation
algorithms still have limitations when dealing with ill-posed
regions, such as weak texture scenes, occlusion of pixel projection,
detail information lack of depth images, and redundant errors of
continuous image frames for pose information.

In order to further improve the unsupervised monocular depth
estimation model and cope with the above complex scenes, this paper
improves the unsupervised monocular depth estimation model, which
consists of depth estimation network, pose estimation network, and
the loss function. We predict the depth information and pose
information of 2D images by cascading the depth estimation
network and pose estimation network, then we take the pixel error
between the reconstructed image and the input image as the
supervised signal of the whole network to achieve the depth
estimation of unsupervised monocular estimated images. Firstly, for
the depth estimation network, inspired by Ding [11], the AC
(Asymmetric Convolution) is designed to extract the features of the
input image from vertical, horizontal, and overall directions, so as to
alleviate the influence of weak texture scenes. Through RFB (Receptive
Field Block) which is a multi-scale receptive field structure [12], the
ability to obtain all and local information is enhanced in the receptive
field area of different scales of the network. Secondly, for the pose
estimation network, SE(Squeeze-and-Excitation) structure [13] is
introduced to reduce the error region of pose estimation. Finally,
for the loss function, the concept of minimizing reprojection error is
introduced to reduce the impact of pixel projection occlusion in depth
information estimation.

The overall structure of improved unsupervised monocular depth
estimation network is shown in Figure 1. Firstly, multi-scale feature
maps which is equivalent to 1/2, 1/4, 1/8, 1/16 resolution of the input
image frame are generated in the improved depth estimation network,
and then these features are mapped to the depth decoder with
parameter sharing, and the estimated depth is restored to the same
size as the resolution of the input image frame through the upsampling
structure. Secondly, for the improved pose estimation network, the
relative pose of 6 degrees of freedomwhich includes displacement with
3 degrees of freedom and spatial rotation with 3 degrees of freedom is
generated by the pose estimation network. Finally, the depth
information and pose information obtained by the improved depth
estimation network and pose estimation network are jointly trained
using the loss function.

2.1 The depth estimation network
optimization

At present, most unsupervised monocular depth estimation
algorithms cannot effectively deal with weak texture scenes and
miss detailed information of the predicted depth image. In order to
solve this problem, asymmetric convolution and multi-scale receptive
field RFB are used in the depth estimation network to enhance the
recognition of weak texture scenes and strengthen the acquisition of
detailed information. The depth estimation network is improved
accordingly.

2.1.1 Improved ACResNet50 depth estimation
network

Weak texture regions are not distinct and significant features,
which are prone to semantic ambiguity and lead to wrong depth
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estimation, so we deal with this problem in this paper. Our improved
ACResNet50 depth estimation network is shown in Figure 2.

Firstly, in order to effectively mitigate the impact of weak texture
scenes on the accuracy of depth estimation information, the
traditional convolution method is replaced by AC, and each
traditional convolution of ResNet50 network is replaced to
strengthen its feature extraction ability, and the
ACResNet50 network structure is formed. Secondly, in order to
solve the problem of missing details, the RFB structure is
connected to the last structure of ACResNet50. Based on the
convolution of different sizes, the dilated convolution is added and
its expansion rate is adjusted to ensure the network receptive field, so
as to achieve the acquisition of high-resolution features. The fusion of
global feature information and local feature information is
strengthened. Finally, the deconvolution structure is used to restore
the size of the output feature map to the size of the original feature
image, and the prediction function of the entire network depth
information is realized.

2.1.2 Asymmetric convolution
At present, the unsupervised monocular depth estimation network

performs poorly on weak texture scenes. Most unsupervised
monocular depth estimation networks use the ResNet50 network as
the feature extraction backbone network in the encoding process of the
image and extract the feature information of the image by feature
superposition and refinement. Although the residual structure of
ResNet50 can extract the feature information of the image to a
certain extent, it is far from sufficient for the task of unsupervised
monocular depth estimation that requires more accurate depth
information. At the same time, the continuous superposition of the
ResNet50 network and the deepening of the number of network layers
will also lead to many problems, such as too many network

parameters, difficult training, and the degradation of the whole
network.

In order to obtain more feature information of the input image
and alleviate the influence of weak texture scenes on unsupervised
monocular depth estimation tasks, inspired by ACNet research, the
traditional convolution method is improved, and we propose a novel
depth estimation network based on ACNet. The feature extraction of
the input image is carried out from the vertical, horizontal, and overall
directions, which strengthens the feature information extraction
ability of the feature extraction network and alleviates the influence
of weak texture scenes on the depth information.

Figure 3 is the operation process of asymmetric convolution. The
ACNet network in the Figure 3 can be divided into two stages, training
and test reasoning, with Figure 3A indicating the training stage and
Figure 3B indicating the test reasoning stage. Firstly, we set up three
parallel convolution kernels with sizes 1 × 3, 3 × 1, and 3 × 3
respectively, 1 × 3 and 3 × 1 convolution kernels facilitate the
extraction of edge information of weak texture regions and other
regions to identify weak texture regions with other regions, and then
joint 3 × 3 convolution to extract contextual features of weak texture
regions to improve the accuracy of weak texture depth estimation.
Secondly, the input image is processed by these three parallel
convolution kernels respectively, so that the extracted feature
information has the characteristics of horizontal, vertical, and
overall directions, then the three kinds of feature information can
be stacked and output. Finally, the traditional convolutions in the
network are replaced with non-traditional convolutions to form the
improved feature map extraction network on ResNet50.

2.1.3 Multiscale receptive fields
The lack of details in depth maps has always been a difficulty for

unsupervised monocular depth estimation. The reason is that in the

FIGURE 1
Structure diagram of unsupervised monocular depth estimation model: (A) Improved depth estimation network ACResNet50; (B) Improved pose
estimation network SEResNet50.
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theory of deep convolutional neural networks, the perceptual field of
the network gradually increases with the number of layers of the
network, Zhou [14] founds that the network’s ability of detail
acquisition in the receptive field is reduced in deeper networks,
leading to poor network learning. Moreover, in the traditional
convolution process, convolution is used to continuously stack
down sampling to extract abstract information, but continuous
downsampling will lead to the loss of image details and local
information. Zhao [15] points out that the fusion of global and
different scale context information in semantic segmentation is
beneficial to alleviate the loss of detail information and preserve
the spatial structure of the image. Therefore, RFB is adopted to
solve this problem in that the receptive field decreases in the
unsupervised monocular depth estimation model, which leads to
unsatisfactory context information fusion and missing details of the
estimated depth map.

The RFB can achieve the acquisition of high-resolution features
without repeated down-sampling and enhance the ability of
network feature extraction and fusion [12]. At the same time,
different receptive fields are obtained by adjusting different
expansion rates of dilated convolution, so as to enhance the

variability of network receptive field region size. By stacking in
this way, the ability of interfusion between feature information at
different scales of the network is enhanced, and the acquisition of
full and local detail information is strengthened. The multiscale
receptive field RFB structure is shown in Figure 4.

In this paper, a multi-scale receptive field RFB structure is added
after the last convolutional block of the ACResNet50 feature extraction
network. Firstly, in the multi-branch convolution layer, convolution
kernels of 1 × 1, 3 × 3 and 5 × 5 sizes are used to ensure the
performance of the network to deal with scale changes and
improve the multi-scale feature extraction ability of the model.
Secondly, on the dilated convolution, in order to ensure the
consistency of the scale of the multi-branch convolution layer and
the expansion rate of the dilated convolution, by connecting cavity
convolution with expansion rates of 1, 3 and 5, respectively to
convolution of different scales, we enhance the receptive field of
the network and improve the acquisition ability of high-resolution
feature maps and context information. Finally, the image feature
information of different scales is fused by stacking the features to
generate a receptive field spatial array as the input of deconvolution
through 1 × 1 convolution.

FIGURE 2
Depth estimation network model: (A) ACResNet50 structure; (B) Identiy_Block structure; (C) Conv_Block structure; (D) AConv structure; (E) Upproj
structure; (F) RFB structure.
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2.2 Pose estimation network based on
SEResNet50

The pose estimation network is crucial for accurately predicting
depth information. However, in the design process of the pose
estimation network, most unsupervised monocular depth
estimation models directly use the pose information of consecutive
image frames for model prediction, ignoring the redundant error of
pose information, which leads to the reduction of the accuracy of the
model prediction depth information.

In order to reduce the large redundant errors in pose estimation, we
design the SE attention mechanism structure based on ResNet50 in the
pose estimation network, which can focus on the important pose
information of the image frame, suppress the unimportant pose
information of the image frame, and reduce the large error
redundancy. The improved pose estimation network is shown in Figure 5.

2.2.1 SE attention mechanism
For the pose estimation network, its task is to accurately predict

the camera motion trajectory between adjacent frames in the video

FIGURE 3
Asymmetric convolution structure:(A) The ACNet structure in the training stage; (B) The network structure in the test reasoning stage.

FIGURE 4
Multi-scale receptive field RFB structure.
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sequence, so as to obtain the rotation matrix and translation matrix.
Then, the image is reconstructed by combining the internal parameter
matrix of the camera and the depth information predicted by the
depth estimation network. However, in the pose estimation network,
the camera pose motion estimation in the image between two highly
adjacent frames is highly approximate. If the network trains all the
pose information of the video sequence frames and predicts the
camera pose, it will not only increase the amount of information
processed by the network but also lead to an increase in redundancy
error in the pose estimation.

SE structure focuses on exploring the relationship between
different channels in feature information, and this exploration
method has a good performance in balancing the importance of
feature channels and learning global feature information [13]. In
the pose estimation network, the SE structure can be used to pay
more attention to the important pose information in the continuous

image frames of the video sequence, suppress the unimportant pose
information, and effectively enhance the network’s prediction of the
camera pose motion trajectory between image frames, and improve
the ability of pose estimation.

Figure 6 shows the attention mechanism structure of SE channel.
Firstly, given a feature input X, its height, width, number of channels,
and the dimension are H′, W′, C′, and H′ × W′ × C′, respectively.
After a series of transformations such as convolution, a feature U of
size H × W × C is obtained. Secondly, the squeeze operation Fsq(·) is
carried out, so that the feature U is squeezed along the spatial
dimension. Further, each two-dimensional characteristic channel is
turned into a real number, and a feature with the same dimension and
channel number is output, whose size is 1 × 1 × C. Thirdly, the
excitation operation Fex(·,W) is used to generate a weight for each
feature channel, where W represents the correlation between feature
channels. Finally, by doing the scale operation Fscale(·, ·), the weight

FIGURE 5
Improvement of pose estimation network model: (A) SEResNet50 structure; (B) Identiy_Block structure; (C) Conv_Block structure; (D) SE structure.

FIGURE 6
SE channel attention mechanism.
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output by the excitation operation is weighted to the feature U of the
previous layer channel by channel through multiplication, and the
feature X′ with attention mechanism is obtained with size
H × W × C. Through the above operations, we retain important
feature information and strengthen learning ability of global feature
information.

2.2.2 Residual network with attention mechanism
There are multiple block structures in the original

ResNet50 feature extraction network, and each block realizes the
extraction of image features by stacking each other. The original
ResNet50 backbone feature extraction network does not consider
the relationship between different channels in the feature
information. Such a way will lead to the lack of ability to
distinguish the main and secondary channel feature information,
resulting in a weak performance in global feature information
extraction ability.

However, the SE channel attention mechanism makes full use of
the weights of different feature channel information importance to
enhance the information acquisition of important feature channel. In
this paper, the attention mechanism is introduced into the backbone
feature extraction network to strengthen the extraction performance
of global feature information. Its improved residual network with
attention mechanism is shown in Figure 7.

This paper designs the channel attention mechanism SE in each
block structure of the ResNet50 feature extraction network. Firstly, the
feature map of height H, width W, number of channels C and size
H × W × C by ResNet50 is output a feature map of size 1 × 1 × C by
global average pooling. Secondly, the feature map of 1 × 1 × C is input
to the first fully connected layer with ReLU as the activation function
and the output is 1 × 1 × C × α, where the number of neurons isC × α

and the scaling parameter is α , which aims to reduce the channel
reduction calculation. It is input to the second fully connected layer
with sigmoid as the activation function, whose output is 1 × 1 × C and
the number of neurons isC to complete the acquisition of the weight of
the attention mechanism of different channel feature information.
Then, the obtained weights are applied to the H × W × C feature
information of ResNet50 output through the multiplication operation
to obtain the feature channels with weights. Finally, the feature output
of the previous layer and the weighted feature channel are
superimposed to obtain the final feature output. An improved
SEResNet50 residual block with attention mechanism is formed.
This structure can effectively enhance the performance of the
network in extracting feature information of important adjacent

frame image pose changes and reduce the redundancy error of the
pose estimation network.

2.3 Design of the loss function

In the design of the loss function, since the whole unsupervised
monocular depth estimation network consists of two parts: the depth
estimation network and the pose estimation network, which are used
together to predict the depth of a pixel. Therefore, the constraint term
of the loss function is derived from the pixel difference between the
reconstructed image and the input image after information predicted
by the depth estimation network and the pose estimation network. In
the inference of the loss function, let the three adjacent frames of
images at time t be It, It−1, and It+1.We call It the target image and the
other two It−1 and It+1 the source images. Firstly, the depth D

∧
t(pt) of

each pixel pt in the target view It is obtained through the depth
estimation network, and then (It, It−1) and (It, It+1) are fed into the
pose estimation network as a group to obtain the camera motion
T
∧
t→t−1 and T

∧
t→t+1 between neighboring pixels respectively. In this

way, the depth information and pose information of the color image
are obtained.

In the process of image reconstruction, each pixel pt in the target
view It is projected onto the source image Is ∈ (It+1, It−1) at pixel s
according to the predicted depth informationD

∧
t(pt) and camera pose

T
∧
t→t−1, T

∧
t→t+1. Bilinear interpolation is then used to obtain pt which is

the value of the distorted image. The differentiable image warping
process is shown in Figure 8.

For the flush coordinate pt of a pixel in the target frame, then the
projection coordinate of pt corresponding to the ps of the source
frame can be obtained as follows:

ps ~ KT
∧
t→sD

∧
t pt( )K−1pt, (1)

where T
∧
t→s is the camera motion pose from frame t to s,D

∧
t(pt) is the

depth value of pixel pt in frame t, and K is the camera internal
reference matrix.

In this case, let the target image It of the reconstructed frame, the
source image Is as the frame used to reconstruct It, and the
reconstructed image I

∧
s. Let < I1, . . . , IN > be a training image

sequence, where one of the frames is denoted as the target image
It. Is is the source image sequence denoted as Is(1≤ s≤N, s ≠ t). | |
measures the absolute error. Then the loss function L1 is expressed as
follows:

FIGURE 7
SE+ Residual blocks structure.
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L1 � ∑
s
∑

p
It p( ) − Îs p( )∣∣∣∣ ∣∣∣∣. (2)

Since the premise assumptions of invisible change and static scene
need to be satisfied in network construction, if one of the assumptions
is not met, the gradient will be destroyed and the inhibition of training
will occur. In response to these factors, in order to improve the
robustness of the network, the output confidence weight E

∧
S(p) for

each target source pair is given during the cascaded training of the
depth estimation network and the pose estimation network. After
weighting the loss function (2), the loss function L2 is expressed as:

L2 � ∑
s
∑

p
Ês p( ) It p( ) − Îs p( )∣∣∣∣ ∣∣∣∣. (3)

In the original algorithm, the ill-posed region is solved by adding a
smoothing constraint when obtaining the depth map, and the depth of
each pixel is solved by global optimization. However, this method is to
average the reprojection error of multi-source images, which may lead
to problems of pixels which are visible in the target image and invisible
in the source image. If the network predicts the correct depth of a pixel,
then the corresponding color in the blocked source image has a high
probability of mismatch with the target, resulting in a high
photometric error. There are two reasons for this problem. One is
pixels which are on the edge of the image and are out of view due to
motion between frames. The other is the occluded pixels.

In this paper, we use the concept of minimum reprojection error to
deal with the problem of out-of-bounds caused by occluded pixels and
inter-frame motion. At each pixel, the photometric error of all source
images is no longer averaged, but simply the minimum value is used,
which can effectively alleviate the pixels that are visible in the target
image and invisible in the source image in the process of pixel
projection, and solve the occlusion problem caused by pixel
projection. Therefore, the calculation process of the minimum
reprojection loss function Lp is as follows:

Lp � ∑
t′ pe It, It′→t( ), (4)

pe Ia, Ib( ) � α

2
1 − SSIM Ia, Ib( )( ) + 1 − α( ) Ia − Ib‖ ‖1. (5)

Among them, SSIM (Structural Similarity Index Measurement) is
the structural similarity index, Ia and Ib are the adjacent frame images,
t represents the time of each frame image. As known relative pose at
time t′, the source image It′ is the second frame in the stereo pair to It,
and α is set to .85 to make its edge perception smooth.

Finally, the minimum reprojection error constraint is introduced
into the overall loss function to reduce the impact of pixel occlusion on

the model during pixel projection and ensure the accuracy of the
model in predicting depth information. The final loss function of the
model Lfinal is as follows:

Lfinal � ∑
l
Ll
1 + λpL

l
p + λe ∑s

Lreg Ê
l

s( ). (6)

λp and λe are the weight value of minimizes the reprojection error and
the weight value normalized by the target source on the output
confidence. We empirically take the values are .65 and .35,
respectively. Lreg denotes the regularization term [16], and l
represents different image scales, respectively.

3 Experiments

In our experiment, video images of real scenes are utilized as
training data set and test data set, such as urban areas and highways in
KITTI data set. In order to ensure the consistency of the experiment,
the image resolution is uniformly cropped to a size of 640 × 192. The
common methods of data enhancement such as rotation and flip are
also used to expand the data. The SGD (Stochastic Gradient Descent)
algorithm is used to optimize the model parameters. The training
iteration epochs of the whole network is set to 200. The initial learning
rate is set to .001 and dynamic attenuation is adopted. Image
acceleration is CUDA11.2.0/CUDNN8.2.1.

3.1 The ablation experiment

To verify the reliability of the proposed scheme, we validated the
proposed scheme on the KITTI dataset and performed ablation
experiments and compared the proposed method in this paper
with the scheme of Zhou [10], and the experimental scheme and
results are shown in Table 1.

3.2 The depth estimation network

3.2.1 Verification of asymmetric convolution
structure

In order to verify AC, we conduct comparative experiments
between ACResNet50 in this paper and Zhou’s method.

From the quantitative and qualitative analysis of the relevant
evaluation indicators in Table 1 and Figure 9, our method works

FIGURE 8
Differentiable image warping process.
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better than Zhou’s method for weak texture scenes in the ill-posed
regions of the billboard in row 2 and the columnar objects in rows 2 to
3. Only using the asymmetric convolution structure designed to
replace the traditional convolution structure has a certain
improvement in the accuracy of the estimated depth value of the
network. The experimental results show that the improved
asymmetric convolution can effectively enhance the ability of the
network to obtain feature information for the color two-dimensional
image, strengthen the feature extraction of the input image, and make
the unsupervised monocular depth estimation network output depth
images with rich textures and clear edges.

3.2.2 Validation of ACResNet50+ RFB structure
In order to verify the RFB structure, the ACResNet50 + RFB is

compared with Zhou [10].
The relevant quantity and quality evaluation metrics are analyzed

in Table 1 and Figure 10. In this paper, RFB is introduced into the last
module of the ACResNet50 network, so that the model can obtain the
context information of image features at different scales. The obtained
feature information is more continuous and the detail information is
more complete, which ensures the continuity and integrity of the

spatial structure of the output depth image of the network. In
Figure 10, our method is able to retain more detailed information
of vehicle contours, which is significantly better than Zhou’s method.
Experimental results show that the proposed multi-scale receptive
field enhanced RFB structure outperforms Zhou’s algorithm in depth
map detail information and spatial structure presentation. It can
effectively avoid the lack of details in the unsupervised monocular
image depth estimation task, strengthen the control of the model for
detailed information. At the same time, it can further obtain multi-
scale information and rich context information in two-dimensional
color images, and improve the overall prediction accuracy and
generalization performance of the model. The results show that the
method can effectively alleviate the redundancy error problem of
detail information in the ill-posed regions.

3.3 Pose estimation network

In order to verify the actual effect of the pose estimation network
SEResNet50 embedded with the attention mechanism designed in this
paper, the method in this paper is compared with Zhou [10].

TABLE 1 Ablation experimental design protocol and comparison of experimental results.

Category of schemes Error metric Accuracy metric

Zhou [10] ACResNet50 RFB SEResNet 50 Lp Abs rel Rmse Rmse log δ < 1.25 δ < 1.252 δ < 1.253

√ × × × × 0.183 6.709 0.27 0.734 0.902 0.959

√ √ × × × 0.169 6.391 0.262 0.740 0.91 0.963

√ √ √ × × 0.164 6.249 0.258 0.758 0.915 0.965

√ √ √ √ × 0.162 6.211 0.246 0.773 0.918 0.968

√ √ √ √ √ 0.161 6.032 0.235 0.781 0.922 0.970

FIGURE 9
Comparative experimental results of asymmetric convolution module visualization on KITTI dataset: (A) represents the color image input by the model;
(B) represents the depth map result predicted by Zhou et al.; (C) The ACResNet50 prediction of asymmetric convolution to the depth map results.

Frontiers in Physics frontiersin.org09

Wang et al. 10.3389/fphy.2022.1115764

41

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1115764


The relevant evaluation indicators in Table 1 and Figure 11 are
analyzed quantitatively and qualitatively. In this paper, the attention
mechanism SE structure is designed to reduce the redundant error
caused by using the pose information of consecutive frames to predict
the pose information of the next frame in the pose estimation process. The
attentionmechanism SE can pay attention to the important information in
a single frame and suppress the unimportant information, so as to
effectively reduce the redundant error generation and improve the
overall prediction accuracy of the model. From Figure 11, we can find
that our method works well when targeting the projected occlusion region
of bicycle pedestrians and car outline. The experimental results show that

the attention mechanism SE structure designed in this paper can reduce
the redundant error of camera pose estimation in the pose estimation
network. In terms of the accuracy of predicting the depth value, the three
indicators have a corresponding improvement, where δ < 1.25, it is an
obvious improvement over Zhou [10], and the output depthmap is of high
quality. It shows that the pose estimation network designed in this paper
can effectively estimate themotion pose of the camera accurately, and it is a
good contribution to the whole unsupervised monocular depth estimation
network to predict depth information.

At the same time, in order to further verify the absolute trajectory
error estimated as the pose information, the prediction results are

FIGURE 10
Comparative experimental results ofmulti-scale receptive field RFB visualization on KITTI dataset: (A) The color images input by themodel; (B) The depth
map results predicted by Zhou et al.; (C) The depth map results predicted by ACResNet50+ RFB structure.

FIGURE 11
Comparative experimental results of attention mechanism SE module visualization on KITTI dataset: (A) The color image input by the model; (B) The
depth map results predicted by Zhou et al.; (C) The depth map predicted by SEResNet50 embedded attention mechanism in the pose estimation network.
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tested through the pose estimation test data Seq.9 and Seq.10 provided
by the KITTI dataset official website, as shown in Table 2.

As can be seen from Table 2, after designing the attention
mechanism in the pose estimation network, the error of pose
estimation on the KITTI test set is smaller than that of ORB-
SLAM (short) and Zhou’s method, but larger than that of ORB-
SLAM (full). Therefore, the attention mechanism used in the pose
estimation network can effectively reduce the redundant error caused
by the superposition of consecutive multi-frame image information
and improve the robustness of the model.

3.4 Minimum reprojection error loss function

In order to verify the experimental effect of introducing the
minimum reprojection error loss function. The model introduced
with the minimum reprojection error loss function designed in this
paper is compared with the method of Zhou [10].

The relevant evaluation indicators in Table 1 and Figure 12 are
analyzed quantitatively and qualitatively. In this paper, a constraint
term of minimum reprojection error is added to the loss function,
which is beneficial for the prediction of depth information, and can
effectively improve the occlusion problem in the projection process of
adjacent pixels.

Experimental results show that after using the minimum
reprojection error as a constraint term, each error index is reduced
accordingly. It improves the problem of occlusion during the
projection of adjacent pixels and enhances the prediction accuracy

of depth information of the model. At the same time, the robustness
and generalization performance of the model are improved.

3.5 KITTI contrast experiment

At the same time, in order to verify the effectiveness and
generalization of the proposed method, we make qualitative and
quantitative comparison analysis with the research algorithms in
related fields. In order to verify the effectiveness of the method in
this paper, the comparative experiments are based on the KITTI
dataset, verify the generalization of the method in this paper, the
cityscapes dataset is used, but the error of the model increases slightly
when dealing with data sets other than KITTI.

In Table 3, k is the KITTI dataset, CS is the Cityscapes dataset, and
supervision (Y, N) indicates whether it is an unsupervised and supervised
monocular depth estimation task. The relevant evaluation indicators in
Table 3 and Figure 13 are analyzed quantitatively and qualitatively. The
algorithm designed in this paper is .022, .677, and .035 lower than Zhou in
AbsRel (Absolute Relative error), RMS (Root Mean Square error), and
LogRMS (Log Root Mean Square error), respectively. In the three depths
value accuracy evaluation indicators of δ < 1.25, δ < 1.252, and δ < 1.253,
it is .047, .020, and .013 higher, respectively. The accuracy of predicting
depth information frommonocular color image is also better than that of
the algorithm proposed by Zhou [10].

Themethod designed in this paper has good performance in various
evaluation indicators compared with the previous research work.
Among them, compared with the supervised method of Eigen [18],
Liu [19] and Cao [22], the accuracy of the predicted depth value is
greatly improved. Compared with the unsupervised monocular depth
estimation proposed by Zhou [10], the three indexes in this paper are
increased by .047, .020, .013 respectively, and the error index is reduced
accordingly. Compared with the recent work of Yang [21], AdaDepth
[23], S2R-DepthNet [24], etc. which studied the unsupervised
monocular depth estimation task, the proposed method performs
better in all indicators. At the same time, from the depth images
predicted by each algorithm in Figure 13, the proposed algorithm
has good performance in the texture information, detail information,
and spatial structure of the output depth map.

TABLE 2 Absolute trajectory error for validating positional estimation on KITTI
test set.

Methods Seq.9 Seq.10

ORB-SLAM (full) [17] 0.014 ± 0.008 0.012 ± 0.011

ORB-SLAM (short) [17] 0.064 ± 0.141 0.064 ± 0.130

Zhou [10] 0.021 ± 0.017 0.020 ± 0.015

Our method 0.019 ± 0.015 0.018 ± 0.016

FIGURE 12
Comparative experimental results of the per-pixel minimum reprojection error visualized in the KITTI dataset: (A) The color image input by themodel; (B)
The depthmap result predicted by Zhou et al.; (C) The depth map predicted by the whole network structure after improvement; (D) The depthmap predicted
by the whole model after using the minimum reprojection error loss function.
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The experimental results show that the improved unsupervised
monocular depth estimation algorithm designed in this paper can
effectively alleviate the impact of weak texture scenes on the model,
solve the lack of detail of the input image, reduce the redundant error of
pose information, reduce the occlusion problem in the process of pixel
projection, and ensure the prediction accuracy of the unsupervised
monocular depth estimation model. From the analysis of the above
indicators, the unsupervised monocular depth estimation network has

a certain competitive advantage in depth prediction, and can accurately
estimate the depth information of images or video frames.

4 Conclusion

Currently, supervised monocular image depth estimation tasks
require a large amount of real depth data for training, which greatly

TABLE 3 Comparison of experimental results with other related research algorithms.

Methods Supervised Data Error Accuracy, δ

AbsRel RMS LogRMS δ < 1.25 δ < 1.252 δ < 1.253

Eigen [18] Y K 0.214 6.307 0.292 0.673 0.884 0.957

Liu [19] Y K 0.202 6.471 0.275 0.678 0.895 0.965

Zhou [10] N K 0.183 6.709 0.27 0.734 0.902 0.959

UnDeepVO [20] N K 0.183 6.57 0.268 — — —

Yang [21] N K 0.182 6.501 0.267 0.725 0.906 0.963

Cao [22] Y K 0.180 6.311 — 0.771 0.917 0.966

AdaDepth [23] N K 0.167 5.578 0.237 0.771 0.922 0.971

S2R-DepthNet [24] N K 0.165 5.695 0.236 0.781 0.931 0.972

Geonet [25] N K 0.164 6.09 0.247 0.765 0.919 0.968

Mahjourian [26] N K 0.163 6.22 0.25 0.762 0.916 0.966

LEGO [27] N K 0.162 6.276 0.252 — — —

Our method N K 0.161 6.032 0.235 0.781 0.922 0.972

Our method N CS 0.174 6.322 0.259 0.748 0.911 0.964

Our method N K + CS 0.168 6.282 0.26 0.731 0.908 0.963

FIGURE 13
Visual comparison experimental results with other related research algorithms on the KITTI dataset: the first row is the input two-dimensional color
image; rows 2 to 6 show the depth maps predicted by Eigen, Zhou, Yang, Mahjourian et al. and our method, respectively.
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increase the development cost of the model and the difficulty of
landing the model. The improved unsupervised monocular depth
image estimation task designed in this paper only uses continuous
video sequences to complete the depth prediction of each pixel of a
single image, which greatly reduces the model development cost and
accelerates the model implementation process. It can effectively
improve the influence of weak texture scene on depth prediction,
reduce the lack of details of the model predicted depth image, and
reduce the occlusion problem of the model due to the pixel projection
process. Through the improvement of this paper, the prediction
accuracy of the unsupervised monocular image depth estimation
model on depth information is strengthened, which makes the
depth image predicted by the model richer in texture information,
clearer in detail information, and more continuous in spatial structure,
thus enhancing the structure of the predicted depth image and
improving the resolution of the output image. The robustness and
generalization performance of the unsupervised monocular depth
estimation model are improved.

Although our approach does not require labeling of real depth
images as supervised methods do, the framework lacks explicit
estimation of scene dynamics in 3D scene understanding. In future
work, we would like to explore methods for modeling scene dynamics
through motion segmentation to improve the performance of
unsupervised monocular depth estimation in dynamic scenes.
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Cascaded information
enhancement and cross-modal
attention feature fusion for
multispectral pedestrian detection

Yang Yang1, Kaixiong Xu1 and Kaizheng Wang2*
1Faculty of Information Engineering and Automation, Kunming University of Science and Technology,
Kunming, China, 2Faculty of Electrical Engineering, Kunming University of Science and Technology, Kunming,
China

Multispectral pedestrian detection is a technology designed to detect and locate
pedestrians in Color and Thermal images, which has been widely used in automatic
driving, video surveillance, etc. So far most available multispectral pedestrian
detection algorithms only achieved limited success in pedestrian detection
because of the lacking take into account the confusion of pedestrian information
and background noise in Color and Thermal images. Here we propose a
multispectral pedestrian detection algorithm, which mainly consists of a cascaded
information enhancement module and a cross-modal attention feature fusion
module. On the one hand, the cascaded information enhancement module
adopts the channel and spatial attention mechanism to perform attention
weighting on the features fused by the cascaded feature fusion block. Moreover,
it multiplies the single-modal features with the attention weight element by element
to enhance the pedestrian features in the single-modal and thus suppress the
interference from the background. On the other hand, the cross-modal attention
feature fusion module mines the features of both Color and Thermal modalities to
complement each other, then the global features are constructed by adding the
cross-modal complemented features element by element, which are attentionally
weighted to achieve the effective fusion of the two modal features. Finally, the fused
features are input into the detection head to detect and locate pedestrians. Extensive
experiments have been performed on two improved versions of annotations
(sanitized annotations and paired annotations) of the public dataset KAIST. The
experimental results show that our method demonstrates a lower pedestrian miss
rate and more accurate pedestrian detection boxes compared to the comparison
method. Additionally, the ablation experiment also proved the effectiveness of each
module designed in this paper.

KEYWORDS

multispectral pedestrian detection, attention mechanism, feature fusion, convolutional
neural network, background noise

1 Introduction

Pedestrian detection, parsing visual content to identify and locate pedestrians on an image/
video, has been viewed as an essential and central task within the computer vision field and
widely employed in various applications, e.g. autonomous driving, video surveillance and
person re-identification [1–7]. The performance of such technology has greatly advanced
through the facilitation of convolutional neural networks (CNN). Typically, pedestrian
detectors take Color images as input and try to retrieve the pedestrian information from
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them. However, the quality of Color images highly depends on the
light condition. Missing recognition of pedestrians occurs frequently
when pedestrian detectors process Color images with poor resolution
and contrast caused by unfavorable lighting. Consequently, the use of
such models has been limited for the application of all-weather
devices.

Thermal imaging is related to the infrared radiation of pedestrians,
barely affected by changes in ambient light. The technique of
combining Color and Thermal images has been explored in recent
years [8–16]. These methods has been shown to exhibit positive effects
on pedestrian detection performance in complex environments as it
could retrieve more pedestrian information. However, despite
important initial success, there remain two major challenges. First,
as shown in Figure 1, the image of pedestrians tends to blend with the
background for nighttime Color images resulting from insufficient
light [17], and for daytime Thermal images as well due to similar
temperatures between the human body and the ambient environment
[18]. Second, there is an essential difference between Color images and
Thermal images the former displays the color and texture detail
information of pedestrians while the latter shows the temperature
information. Therefore, solutions needed to be taken to augment the
pedestrian features in Color and Thermal modalities in order to
suppress background interference, and enable better integration
and understanding of both Color and Thermal images to improve
the accuracy of pedestrian detection in complex environments.

To address the challenges above, the researches [19,20] designed
illumination-aware networks to obtain illumination-measured
parameters of Color and Thermal images respectively, which were
used as fusion weights for Color and Thermal features in order to
realize a self-adaptively fuse of two modal features. However, the
acquisition of illumination-measured parameters relied heavily on the
classification scores, the accuracy of which was limited by the
performance of the classifier. [21] reported confidence-aware
networks to predict the confidence of detection boxes for each
modal, and then Dempster-Sheffer theory combination rules were
employed to fuse the results of different branches based on

uncertainty. Nevertheless, the accuracy of predicting the detection
boxes’ confidence is also affected by the performance of the
confidence-aware network. A cyclic fusion and refinement scheme
was introduced by [22] for the sake of gradually improving the quality
of Color and Thermal features and automatically adjusting the
complementary and consistent information balance of the two
modalities to effectively utilize the information of both modalities.
However, this method only used a simple feature cascade operation to
fuse Color and Thermal features and failed to fully exploit the
complementary features of these two modalities.

To tackle the problems aforementioned, we propose a
multispectral pedestrian detection algorithm with cascaded
information enhancement and cross-modal attention feature fusion.
The cascaded information enhancement module (CIEM) is designed
to enhance the pedestrian information suppressed by the background
in the Color and Thermal images. CIEM uses a cascaded feature fusion
block to fuse Color and Thermal features to obtain fused features of
both modalities. Since the fused features contain the consistency and
complementary information of Color and Thermal modalities, the
fused features can be used to enhance Color and Thermal features
respectively to reduce the interference of background on pedestrian
information. Inspired by the attention mechanism, the attention
weights of the fused features are sequentially obtained by channel
and spatial attention learning, and the Color and Thermal features are
multiplied with the attention weights element by element, respectively.
In this way, the single-modal features have the combined information
of the two modalities, and the single-modal information is enhanced
from the perspective of the fused features. Although CIEM enriches
single-modal pedestrian features, simple feature fusion of the
enhanced single-modal features is still insufficient for robust
multispectral pedestrian detection. Thus, we design the cross-modal
attention feature fusion module (CAFFM) to efficiently fuse Color and
Thermal features. Cross-modal attention is used in this module to
implement the differentiation of pedestrian features between different
modalities. In order to supplement the pedestrian information of the
other modality to the local modality, the attention of the other

FIGURE 1
Example of color and thermal images of pedestrians in daytime and nighttime scenes.
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modality is adopted to augment the pedestrian features of the local
modality. A global feature is constructed by adding the Color and
Thermal features after performing cross-modal feature enhancement,
and the global feature is used to guide the fusion of the Color and
Thermal features. Overall, the method presented in this paper enables
more comprehensive pedestrian features acquisition through cascaded
information enhancement and cross-modal attention feature fusion,
which effectively enhances the accuracy of multispectral image
pedestrian detection. The main contributions of this paper are
summarized as follows.

(1) A cascaded information enhancement module is proposed. From
the perspective of fused features, it reduces the interference from
the background of Color and Thermal modalities on pedestrian
detection and augments the pedestrian features of Color and
Thermal modalities separately through an attention mechanism.

(2) The designed cross-modal attention feature fusion module first
mines the features of both Color and Thermal modalities
separately through a cross-modal attention network and adds
them to the other modality for cross-modal feature enhancement.
Meanwhile, the cross-modal enhanced Color and Thermal
features are used to construct global features to guide the
feature fusion of the two modalities.

(3) Numerous experiments are conducted on the public dataset
KAIST to demonstrate the effectiveness and superiority of the
proposed method. In addition, the ablation experiments also
demonstrate the effectiveness of the proposed modules.

2 Related works

2.1 Multispectral pedestrian detection

Multispectral sensors can obtain paired Color-Thermal images
to provide complementary information about pedestrian targets. A
large multispectral pedestrian detection (KAIST) dataset was
constructed by [8]. Meanwhile, by combining the traditional
aggregated channel feature (ACF) pedestrian detector [23] with
the HOG algorithm [24], an extended ACF (ACF + T + THOG)
method was proposed to fuse Color and Thermal features. In 2016,
[9] proposed four fusion modalities of low-layer feature, middle-
layer feature, high-layer feature, and confidence fraction fusion
with VGG16 as the backbone network, and the middle-layer feature
fusion was proved to offer the maximum integration capability of
Color and Thermal features. Inspired by this, [25] developed a
multispectral region candidate network with Faster RCNN (Region
with CNN features, RCNN) [26] as the architecture and replaced
the original classifier in Faster RCNN with an enhanced decision
tree classifier to reduce the missed and false detection of
pedestrians. Recently,[27] deployed the EfficientDet as the
backbone network and proposed an EfficientDet-based fusion
framework for multispectral pedestrian detection to improve the
detection accuracy of pedestrians in Color and Thermal images by
adding and cascading the Color and Thermal features. Although
the studies [8,9,25,27] fused Color and Thermal features for
pedestrian detection, they mainly focused on exploring the
impact of different stages of fusion on pedestrian detection, and
only adopted simple feature fusion and not focusing on the case of
pedestrian and background confusion.

In 2019, [28] observed a weak alignment problem of pedestrian
position between Color and Thermal images, for which the KAIST
dataset was re-annotated and Aligned Region CNN (AR-CNN) was
proposed to handle weakly aligned multispectral pedestrian detection
data in an end-to-end manner. But the deployment of this algorithm
requires pairs of annotations, and the annotation of the dataset is a
time-consuming and labor-intensive task, which makes the algorithm
difficult to be applied in realistic scenes. [29] proposed a new single-
stage multispectral pedestrian detection framework. This framework
used multi-label learning to learn input state-aware features based on
the state of the input image pair by assigning an individual label (if the
pedestrian is visible in only one image of the image pair, the label
vector is assigned as y1 ∈ [0, 1] or y2 ∈ [1, 0]; if the pedestrian is visible
in both images of the image pair, the label vector is assigned as y3 ∈ [1,
1]) to solve the problem of weak alignment of pedestrian locations
between Color and Thermal images, but the model still requires pairs
of annotations during training. [19] designed illumination-aware
networks to obtain illumination-measured parameters for Color
and Thermal images separately and used them as the fusion
weights for Color and Thermal features. [20] designed a differential
modality perception fusion module to guide the features of the two
modalities to become similar, and then used the illumination
perception network to assign fusion weights to the Color and
Thermal features. [30] reported an uncertainty-aware cross-modal
guidance (UCG) module to guide the distribution of modal features
with high prediction uncertainty to align with the distribution of
modal features with low prediction uncertainty. The researches [19,20]
noticed that the pedestrians in Color and Thermal images are easily
confused with the background and used illumination-aware networks
to assign fusion weights to Color and Thermal features. However, the
acquisition of illumination-measured parameters relied heavily on the
classification scores, whose accuracy was limited by the performance
of the classifier. In contrast, the method proposed in this paper not
only considers the confusion of pedestrians and background in Color
and Thermal images but also effectively fuses the two modal features.

2.2 Attention mechanisms

Attention mechanisms [31] utilized in computer vision are aimed
to perform the processing of visual information. Currently, attention
mechanisms have been widely used in semantic segmentation [32],
image captioning [33], image fusion [34,35], image dehazing [36],
saliency target detection [37], person re-identification [38–40], etc.
[41] introduced the idea of a squeeze and excitation network (SENet)
to simulate the interdependence between feature channels in order to
generate channel attention to recalibrate the feature mapping of
channel directions. [42] employed the use of a selective kernel unit
(SKNet) to adaptively fuse branches with different kernel sizes based
on input information. A work inspired by this was from [43]. They
designed a multi-scale channel attention feature fusion network that
used channel attention mechanisms to replace simple fusion
operations such as feature cascades or summations in feature
fusion to produce richer feature representations. However, this
recent progress in multispectral pedestrian detection has also been
limited to two main challenges the interference caused by background
and the difference of fundamental characteristics in Color and
Thermal images. Therefore, we propose a multispectral pedestrian
detection algorithm with cascaded information enhancement and
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cross-modal attention feature fusion based on the attention
mechanism.

3 Methods

The overall network framework of the proposed algorithm is
shown in Figure 2. The network consists of an encoder, a cascaded
information enhancement module (CIEM), a cross-modal
attentional feature fusion module (CAFFM) and a detection
head. Specifically, ResNet-101 [44] is used as the backbone
network of the encoder to encode the features of the input
Color images Xc and Thermal images Xt to obtain the
corresponding feature maps Fc ∈ RW×H×C and Ft ∈ RW×H×C (W,
H, C represent the width, height and the number of channels of the
feature maps, respectively). CIEM enhances single-modal
information from the perspective of fused features by cascading
feature fusion blocks to fuse Fc and Ft, and attention weighting the
fused features to enrich pedestrian features. CAFFM complements
the features of different modalities by mining the complementary
features between the two modalities and constructs global features
to guide the effective fusion of the two modal features. The
detection head is employed for pedestrian recognition and
localization of the final fused features.

3.1 Cascaded information enhancement
module

Considering the confusion of pedestrians with the
backgrounds in Color and Thermal images, we design a
cascaded information enhancement module (CIEM) to augment

the pedestrian features of both modalities to mitigate the effect of
background interference on pedestrian detection. Specifically, a
cascaded feature fusion block is used to fuse the Color features Fc
and Thermal features Ft. The cascaded feature fusion block
consists of feature cascade, 1 × 1 convolution, 3 × 3
convolution, BN layer, and ReLu activation function. The
feature cascade operation splice Fc and Ft along the direction of
channels. 1 × 1 convolution is conducive to cross-channel feature
interaction in the channel dimension and reducing the number of
channels in the splice feature map, while 3 × 3 convolution
expands the field of perception and makes a more
comprehensive fusion of features for generating fusion features Fct:

Fct � ReLu BN Conv3 Conv1 Fc, Ft[ ]( )( )( ) (1)
where BN denotes batch normalization, Convn(·) denotes a
convolution kernel with kernel size n × n, [·, ·] denotes the cascade
of features along the channel direction, ReLu(·) represents ReLu
activation function. Fusion feature Fct is used to enhance the
single-modal information because Fct combines the consistency and
complementarity of the Color features Fc and Thermal features Ft. The
use of Fct for enhancing the single-modal feature can reduce the
interference of the noise in the single-modal features (for example, it is
difficult to distinguish between the pedestrian information and the
background noise).

In order to effectively enhance pedestrian features, the fusion
feature Fct is sent into the channel attention module (CAM) and
spatial attention module (PAM) [45] to make the network pay
attention to pedestrian features. The network structure of CAM
and PAM is shown in Figure 3. Fct first learns the channel
attention weight wca ∈ R1×1×C by CAM, then uses wca to weight Fct,
and the spatial attention weight wpa ∈ RW×H×1 is obtained from the
weighted features by PAM.

FIGURE 2
Overall framework of the proposed algorithm.
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The single-modal Color features Fc and Thermal features Ft are
multiplied element by element with the attention weights wca and wpa

to enhance the single-modal features from the perspective of fused
features. The whole process can be described as follows:

Ft′ � Ft ⊗ wca( ) ⊗ wpa (2)
Fc′ � Fc ⊗ wca( ) ⊗ wpa (3)

where Ft′ and Fc′ denote the Color features and Thermal features
obtained by the cascaded information enhancement module,
respectively. ⊗ represents the element by element multiplication.

3.2 Cross-modal attention feature fusion
module

There is an essential difference between Color and Thermal
images, Color images reflect the color and texture detail
information of pedestrians while Thermal images contain the
temperature information of pedestrians, however, they also have
some complementary information. In order to explore the
complementary features of different image modalities and fuse
them effectively, we design a cross-modal attention feature fusion
module.

Specifically, the Color features Fc′ and Thermal features Ft′
enhanced by CIEM are first mapped into feature vectors vc ∈
R1×1×C and vt ∈ R1×1×C, respectively, by using global average
pooling operation. The cross-modal attention network consists
of a set of symmetric 1 × 1 convolutions, ReLu activation
functions, and Sigmoid activation functions. In order to obtain
the complementary features of the two modalities, more
pedestrian features need to be mined from the single-modal.
The feature vectors vt and vc are learned to the respective
modal attention weights wt ∈ R1×1×C and wc ∈ R1×1×C by a

cross-modal attention network, and then the Color features Fc′
are multiplied element by element with the attention weights wt of
the Thermal modality, and the Thermal features Ft′ are multiplied
element by element with the attention weights wc of the Color
modality to complement the features of the other modality into
the present modality. The specific process can be expressed as
follows.

wt � Sigmoid ReLu Conv1 GAP Ft′( )( )( )( ) (4)
Fct′ � wt ⊗ GAP Fc′( ) (5)

wc � Sigmoid ReLu Conv1 GAP Fc′( )( )( )( ) (6)
Ftc′ � wc ⊗ GAP Ft′( ) (7)

where Fct′ denotes Color features after supplementation with Thermal
features, Ftc′ denotes Thermal features after supplementation with
Color features, GAP(·) denotes global average pooling operation,
Conv1(·) denotes convolution with convolution kernel size 1 × 1,
ReLu(·) denotes ReLu activation operation, and Sigmoid (·) denotes
Sigmoid activation operation.

In order to efficiently fuse the two modal features, the features Fct′
and Ftc′ are subjected to an element by element addition operation to
obtain a global feature vector containing Color and Thermal features.
Then, the features Ft′ and Fc′ are added element by element and
multiplied with the attention weight wct of the global feature vector
element by element to guide the fusion of Color and Thermal features
from the perspective of global features to obtain the final fused feature
F. The fused feature F is input to the detection head to obtain the
pedestrian detection results. The feature fusion process can be
expressed as follows:

wct � Sigmoid ReLu Conv1 Fct′ ⊕ Ftc′( )( )( ) (8)
F � wct ⊗ Ft′ ⊕ Fc′( ) (9)

where ⊕ denotes element by element addition.

FIGURE 3
Network structure of channel attention and spatial attention.
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3.3 Loss function

The loss function in this paper is consistent with the literature [26]
and uses the Region Proposal Network (RPN) loss function LRPN and
Fast RCNN [46] loss function LFR to jointly optimize the network:

L � LRPN + LFR (10)
Both LRPN and LFR consist of classification loss Lcls and bounding

box regression loss Lreg:

L pi{ }, ti{ }( ) � 1
Ncls

∑
i

Lcls pi, p
p
i( ) + λ

1
Nreg

∑
i

pp
i Lreg ti, t

p
i( ) (11)

Where, Ncls is the number of anchors, Nreg is the sum of positive and
negative sample number, pi is the probability that the i-th anchor is
predicted to be the target, pp

i is 1 when the anchor is a positive sample,
otherwise it is 0, ti denotes the bounding box regression parameter
predicting the i-th anchor, and tpi denotes the GT bounding box
parameter of the i-th anchor, λ = 1.

The difference between the classification loss of RPN network and
Fast RCNN network is that the RPN network focuses only on the
foreground and background when classifying, so its loss is a binary
cross-entropy loss, while the Fast RCNN classification is focused to the
target category and is a multi-category cross-entropy loss:

Lcls pi, p
p
i( ) � −log pp

i pi + 1 − pp
i( ) 1 − pi( )[ ] (12)

The bounding box regression loss of RPN network and Fast
RCNN network uses Smooth L1 loss:

Lreg ti, t
p
i( ) � R ti − tpi( ) (13)

Where, R denotes Smooth L1 function,

Smooth L1 x( ) �
x2

2σ2
if |x|< 1

σ2

|x| − 0.5 otherwise

⎧⎪⎪⎨⎪⎪⎩ (14)

The difference between the bounding box regression loss of RPN
loss and the regression loss of Fast RCNN loss is that the RPN network
is trained when σ = 3 and the Fast RCNN network is trained
when σ = 1.

4 Experimental results and analysis

4.1 Datasets

This paper evaluates the algorithm performance on the KAIST
pedestrian dataset [8], which is composed of 95,328 pairs of Color and
Thermal images captured during daytime and nighttime. It is the most
widely used multispectral pedestrian detection dataset at present. The
dataset is labeled with four categories including person, people,
person?, and cyclist. Considering the application areas of
multispectral pedestrian detection (e.g., automatic driving), all four
categories are treated as positive examples for detection in this paper.
To address the problem of the annotation errors and missing
annotations in the original annotation of the KAIST dataset,
studies [9,28,47] performed data cleaning and re-annotation of the
original data. Given that the annotations used in various studies are
not consistent, we use 7601 pairs of Color and Thermal images from
synthetic annotation (SA) [47] and 8892 pairs of Color and Thermal

images from paired annotation (PA) [28] for model training. The test
set consists of 2252 pairs of Color and Thermal images, of which
1455 pairs are from the daytime and 797 pairs are from the nighttime.
For a fair comparison with other methods, the test experiments were
performed according to the reasonable settings proposed in the
literature [8].

4.2 Evaluation indexes

In this paper, Log-average Miss Rate (MR) proposed by [48] is
employed as an evaluation index and combined with the plotting of
the Miss Rate-FPPI curve to assess the effectiveness of the algorithm.
The horizontal coordinate of the Miss Rate-FPPI curve indicates the
average number of False Positives Per Image (FPPI), and the vertical
coordinate represents the Miss Rate (MR), which is expressed as:

MissRate � FN

TP + FN
(15)

FPPI � FP

Total images( ) (16)

where FN denotes False Negative, TP denotes True Positive, FP
denotes False Positive, the sum of TP and FN is the number of all
positive samples, and Total (images) denotes the total number of
predicted images. It is worth noting that the lower the Miss Rate-FPPI
curve trend, the better the detection performance; the smaller the MR
value, the better the detection performance. In order to calculate MR,
in logarithmic space, nine points are taken from the horizontal
coordinate (limited value range is [10−2, 100]) of Miss Rate-FPPI
curve, and then there are nine corresponding vertical coordinates
m1, m2,. . .m9. By averaging these values, MR can be obtained as
follows:

MR � exp
1
n
∑n
i�1

ln mi( )⎡⎣ ⎤⎦ (17)

where n is 9.

4.3 Implementation details

In this paper, the deep learning framework pytorch1.7 is adopted.
The experimental platform is the ubuntu18.04 operating system and a
single NVIDIA GeForce RTX 2080Ti GPU. Stochastic Gradient
Descent (SGD) algorithm is used to optimize the network during
model training, with momentum value of 0.9, weight attenuation value
5 × 10–4, and initial learning rate is 1 × 10–3. The model is iterated for
five epochs with the batch size of 4, and the learning rate decay to 1 ×
10–4 after the 3rd epoch.

4.4 Experimental results and analysis

4.4.1 Construction of the baseline
This work constructs a baseline algorithm architecture based on

ResNet-101 backbone network and Faster RCNN detection head.
Simple characteristic fusion (feature cascade, element by element
addition and element by element multiplication) of the Color and
Thermal features output by the backbone network is carried out in
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three sets of experiments. The fused feature is used as the input of the
detection head. In order to ensure the high efficiency of the build
baseline algorithm, synthesis annotation is employed to train and test
the baseline. The test results are shown in Table 1. The MR values
using feature cascade, element by element addition and element by
element multiplication in the all-weather scene are 14.62%, 13.84%
and 14.26%, respectively. By comparing these three results, it can be
seen that the feature element by element addition demonstrates the
best performance. Therefore, we adopt the method of adding features
element by element as the baseline integration method.

4.4.2 Performance comparison of different methods
The performance of this method is compared with several other

state-of-the-art methods. The compared methods include hand-
represented methods, e.g., ACT + T + THOG [8] and deep
learning-based methods, e.g., Halfway Fusion [9], CMT_CNN[49],
CIAN[50], IAF R-CNN[51], IATDNN + IAMSS[19], CS-RCNN [52],
IT-MN [53], and DCRD [54]. Here, the model is trained using
7601 pairs of Color and Thermal images from SA and 8892 pairs
of Color and Thermal images from PA, respectively. Besides,
2252 pairs of Color and Thermal images from the test set are used
for model testing. Table 2 lists the experimental results.

Table 2 shows that when themodel is trained with SA, theMRs of the
method proposed in this paper are 10.71%, 13.09% and 8.45% for all-
weather, daytime and nighttime scenes, respectively, which are
0.72%, −1.23% and 0.37% lower than the compared method CS-
RCNN with the best performance, respectively. The PA (Color) and
PA (Thermal) in Table 2 represent the Color annotation and Thermal

annotation in the pairwise annotation PA, respectively, for the purpose of
training themodel. It can be seen from two that theMRs of themethod in
this paper are 11.11% and 10.98% when using Color annotation and
Thermal annotation in the all-weather scene, which are 2.53% and 3.70%,
respectively, lower than those of compared method with the best
performance. In addition, by analyzing the experimental results of two
improved versions of annotations, it can be found that pedestrian
detection results are different when using different annotations,
indicating the importance of annotations.

4.4.3 Analysis of ablation experiments
4.4.3.1 Complementarity and importance of color and
thermal features

This section compares the effect of different input sources on
pedestrian detection performance. In order to eliminate the impact of
the proposedmodule on detection performance, three sets of experiments
are conducted on baseline: 1) the combination of Color and Thermal
images as the input source (the input of the two branches of the backbone
network are respectively Color and Thermal images); 2) dual-stream
Color image as the input source (use Color images to replace Thermal
images, that is, the backbone network input source is Color images); 3)
dual-stream Thermal images as the input source (use Thermal images to
replace Color images, that is, the backbone network input source is
Thermal images).The training set of the model here is 7061 pairs of
images of SA, and the test set is 2252 pairs of Color and Thermal images.
Table 3 shows the MRs of these three input sources for the all-weather,
daytime, and nighttime scenes. It can be seen from Table 3 that the MRs
obtained using Color and Thermal images as input to the network are

TABLE 1 Experimental results of baseline under different fusion modes.

Fusion modes All-weather

feature cascade 14.62

element by element multiplication 14.26

element by element addition 13.84

The bold values in highlight the optimal results for this column.

TABLE 2 MRs of different methods on KAIST datasets.

Methods SA PA(Color) PA(Thermal)

All-weather Day Night All-weather Day Night All-weather Day Night

ACF + T + THOG 41.65 39.18 48.29 41.74 39.30 49.52 41.36 38.74 48.30

Halfway Fusion 25.75 24.88 26.59 25.10 24.29 26.12 25.51 25.20 24.90

CMT_CNN 36.83 34.56 41.82 36.25 34.12 41.21 – – –

IAF R-CNN 15.73 14.55 18.26 15.65 14.95 18.11 16.00 15.22 17.56

IATDNN + IAMSS 14.95 14.67 15.72 15.14 14.82 15.87 15.08 15.02 15.20

CIAN 14.12 14.77 11.13 14.64 15.13 12.43 14.68 16.21 9.88

CS-RCNN 11.43 11.86 8.82 – – – – – –

IT-MN 14.19 14.30 13.98 – – – – – –

DCRD 12.58 13.12 11.65 13.64 13.15 13.98 – – –

Ours 10.71 13.09 8.45 11.11 12.85 8.77 10.98 13.07 8.53

TABLE 3 MRs of different modal inputs.

Input All-weather Day Night

dual-stream Color images 25.37 19.31 31.18

dual-stream Thermal images 17.55 22.81 12.61

Color images + Thermal images 13.84 15.35 12.48

The bold values in highlight the optimal results for this column.
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13.84%, 15.35% and 12.48% for the all-weather, daytime and nighttime
scenes, respectively, which are 11.53%, 3.96%, 18.70% and 3.71%, 7.46%,
0.13% lower than using Color images and Thermal images as input alone.
The experimental results prove that the detection network combining
Color and Thermal features delivers better performance, indicating that
Color and Thermal features are important for pedestrian detection.

Figure 4 shows the Miss Rate-FPPI curves of the detection results for
these three input sources in the all-weather, daytime, and nighttime scenes
(blue, red and green curves indicate dual-stream Thermal images, dual-
stream Color images, and Color and Thermal images, respectively). By
analyzing the Miss Rate-FPPI curve trend and combining with the
experimental data in Table 3, it can be seen that the detection effect
of Color images as the input source is better than that of Thermal images
in the daytime scene while the result is the opposite for the night scene,
and the detection effect of Color and Thermal images combined as the
input source is better than that of single-modal input in both daytime and
nighttime. It shows that there are complementary features between Color
and Thermal modalities, and the fusion of the two modal features can
improve the pedestrian detection performance.

4.4.3.2 Ablation experiments
In this section, ablation experiments are conducted to demonstrate the

effectiveness of the proposed cascaded information enhancement module
(CIEM) and cross-modal attentional feature fusion module (CAFFM).
Here, 7061 pairs of SA images are used to train themodel, and 2252 pairs of
Color and Thermal images in the test set are used to test the model.

Effectiveness of CIEM: CIEM is used to enhance the pedestrian
features in Color and Thermal images to reduce the interference from

the background. The experimental results are shown in Table 4. The
MRs of baseline on SA are 13.84%, 15.35% and 12.48% for all-weather,
daytime and nighttime scenes, respectively. When CIEM is
additionally employed, the MRs are 11.21%, 13.15% and 9.07% for
all-weather, daytime and nighttime scenes, respectively, which are
reduced by 2.63%, 2.20% and 3.41% compared to the baseline,
respectively. It is shown that the proposed CIEM effectively
enhances the pedestrian features in both modalities, reduces the
interference of background, and improves the pedestrian detection
performance.

Validity of CAFFM: CAFFM is used to effectively fuse Color and
Thermal features. The experimental results are shown in Table 4. On
the SA, when the baseline is used with CAFFM, the MRs are 11.68%,
13.81% and 9.50% in all-weather, daytime and nighttime scenes,
respectively, which are reduced by 2.16%, 1.54% and 2.98%
compared baseline, respectively. It shows that the proposed
CAFFM effectively fuses the two modal features to achieve robust
multispectral pedestrian detection.

Overall effectiveness: The proposed CIEM and CAFFM are
additionally used on the basis of baseline. Experimental results
show a reduction of 3.13%, 2.26% and 4.03% in MRs for all-
weather, daytime and nighttime scenes, respectively, compared to
the baseline, indicating the overall effectiveness of the proposed
method. A closer look reveals that with additional employment of
CIEM and CAFFM alone, MRs are decreased by 2.63% and 2.16%,
respectively, in the all-weather scene, but the MR of the overall model
is reduced by 3.13%. It demonstrates that there is some orthogonal
complementarity in the role of the proposed two modules.

Figure 5 shows the Miss Rate-FPPI curves for CIEM and CAFFM
ablation studies in all-weather, daytime and nighttime scenes (blue,
red, orange and green curves represent baseline, baseline + CIEM,
baseline + CAFFM and overall model, respectively). It is clear that the
curve trends of each module and the overall model are both lower than
that of the baseline, which further proves the effectiveness of the
method presented in this work.

Furthermore, in order to qualitatively analyze the effectiveness of
the proposed CIEM and CAFFM, four pairs of Color and Thermal
images (two pairs of images are taken from daytime and two pairs of
images are taken from nighttime) are selected from the test set for
testing. The pedestrian detection results of the baseline and each
proposed module are shown in Figure 6. The first row is the

FIGURE 4
The Miss Rate-FPPI curves of the detection results of the three groups of input sources in the All-weather, Daytime and Nighttime scenes (From left to
right, All-weather, Daytime and Nighttime Miss Rate-FPPI curves are shown in the figure).

TABLE 4 MRs for ablation studies of the proposed method on SA.

Methods All-weather Day Night

Baseline 13.84 15.35 12.48

baseline + CIEM 11.21 13.15 9.07

baseline + CAFFM 11.68 13.81 9.50

Overall model 10.71 13.09 8.45

The bold values in highlight the optimal results for this column.
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visualization results of labeled boxes for Color and Thermal images,
and the second to the fifth rows are the visualization results of the
labeled and prediction boxes for baseline, baseline + CIEM, baseline +
CAFFM, and the overall model pedestrian detection with the green
and red boxes representing the labeled and prediction boxes,
respectively. It can be seen that the proposed method successfully
addresses the problem of pedestrian missing detection in complex
environments and achieves more accurate detection boxes. For
example, the second row, pedestrian detection missing happens in
the first, third, and fourth pairs of images in the baseline detection
result, however, the pedestrian miss detection problem is properly
solved with CIEM and CAFFM added to the baseline and the overall
model produces more accurate pedestrian detection boxes.

5 Conclusion

In this paper, we propose a multispectral pedestrian detection
algorithm including cascaded information enhancement module and
cross-modal attention feature fusion module. The proposed method
improves the accuracy of pedestrian detection in multispectral images
(Color and Thermal images) by effectively fusing the features from the
two modules and augmenting the pedestrian features. Specifically, on
the one hand, a cascaded information enhancement module (CIEM) is
designed to enhance single-modal features to enrich the pedestrian
features and suppress interference from the background noise. On the
other hand, unlike previous methods that simply splice Color and
Thermal features directly, a cross-modal attention feature fusion

FIGURE 5
The Miss Rate-FPPI curves of CIEM and CAFFM ablation studies in All-weather, Daytime and Nighttime scenes (From left to right, All-weather, Daytime
and Nighttime Miss Rate-FPPI curves are shown in the figure).

FIGURE 6
In this paper, each module and baseline pedestrian detection results (The first row is the visualization results of labeled boxes for Color and Thermal
images, and the second to the fifth rows are the visualization results of the labeled and prediction boxes for baseline, baseline + CIEM, baseline + CAFFM and
the overall model pedestrian detection with the green and red boxes representing the labeled and prediction boxes, respectively).

Frontiers in Physics frontiersin.org09

Yang et al. 10.3389/fphy.2023.1121311

55

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1121311


module (CAFFM) is introduced to mine the features of both Color and
Thermal modalities and to complement each other, then
complementary enhanced modal features are used to construct
global features. Extensive experiments have been conducted on two
improved annotations of the public dataset KAIST. The experimental
results show that the proposed method is conducive to obtain more
comprehensive pedestrian features and improve the accuracy of
multispectral image pedestrian detection.
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Early smoke detection using Digital Image Processing technology is an important
research field, which has great applications in reducing fire hazards and
protecting the ecological environment. Due to the complex changes of color,
shape and size of smoke with time, it is challenging to accurately recognize
smoke from a given image. In addition, limited by domain shift, the trained
detector is difficult to adapt to the smoke in real scenes, resulting in a sharp
drop in detection performance. In order to solve this problem, an unsupervised
domain adaptive smoke detection algorithm rely on Multilevel feature
Cooperative Alignment and Fusion (MCAF) was proposed in this paper. Firstly,
the cooperative domain alignment is performed on the features of different
scales obtained by the feature extraction network to reduce the domain
difference and enhance the generalization ability of the model. Secondly,
multilevel feature fusion modules were embedded at different depths of the
network to enhance the representation ability of small targets. The proposed
method is evaluated on multiple datasets, and the results show the effectiveness
of the method.

KEYWORDS

smoke detection, unsupervised domain adaptive object detection, domain alignment, small
object detection, feature fusion

1 Introduction

Natural disasters have always been the main cause of power grid failures. Among them,
forest fires are easy to cause serious failures of multiple transmission lines due to coupling,
causing irreparable losses to power equipment, posing a great threat to the safe operation of the
power system, and even affecting people’s normal life. The early occurrence of wildfire is often
accompanied by the rise of smoke. Therefore, smoke detection is an important method to
effectively avoid fire hazards.

Thanks to the rapid development of deep learning [1–6] and the wide applications in other
computer vision tasks such as image fusion [7], image dehazing [8] and semantic segmentation
[9], the performances of smoke detection have been remarkably improved in recent year, there
are still many difficulties to detect smoke in real time. Usually, the training of deep learning
models requires a large amount of data, it is extremely difficult to collect thousands of smoke
images and manually label in actual scenes. Some researchers have proposed synthetic smoke
datasets [10] to make up for this defect. However, due to the domain gap between the synthetic
smoke and the real scene smoke, the performance of the detection model is limited. Figure 1
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shows the synthetic smoke and real smoke, there is a large difference
between them. In the real scene, due to the unknown weather
conditions, it is easy to cause the color, shape and transparency of
smoke to change, so that the smoke obtained by the acquisition
equipment has differences in resolution, view and brightness,
which further increases the difficulty of real-time detection of
smoke and fire. It is necessary to study an algorithm that can
transfer the knowledge learned from a labeled dataset (source
domain) to another unlabeled dataset (target domain).

One approach to solve this problem is Unsupervised Domain
Adaptive Object Detection (UDAOD) [11], which aims to adapt the
detector using labeled source data and unlabeled target data to alleviate
the performance degradation by learning a feature representation that
is not affected by domain gap. Existing UDAOD methods can be
classified into: style transfer based methods [12–14], self-training
based methods [15,16], and domain alignment based methods
[17–19].

The method based on style transfer usually uses GAN [20] to
transfer the style of the target domain image to the source domain
image, and then uses the transformed image to supervise training the
detection network, to reduce the domain shift caused by the style
difference. However, the smoke image obtained in the real scene has
complex background, the image generated by style transfer is different
from the real image to some extent, and GAN increases the calculation
amount of the model, the final detection performance is highly
dependent on the quality of the generated image. Therefore, such
methods cannot be well applied to the smoke detection task in the
actual scene.

The method based on self-training generally trains the detection
model with the source data, then inputs the target data to predict
pseudo-label, and finally fine-tunes the model with the pseudo-labels.
However, the shape, color and background of smoke in the real scene
are not fixed, which is easy to make the predicted pseudo-labels have
noise. Fine-tuning the model with noisy pseudo-labels will reduce the
detection performance of the model.

Domain alignment based methods achieve feature alignment by
adversarial learning. Although such methods have achieved
considerable improvement, they align the boundary distribution of
the two domains without considering the category information, which
may lead to incorrect alignment of samples from different categories of
the source domain and the target domain, thus failing to train the best

model. The detection category of this work is only smoke, so the above
problem does not exist. Existing methods consider the alignment of
global features, while this paper aligns features of different scales.

The existing smoke detection work [21,22] pays little attention to
cross-domain detection. In order to solve the problems faced by smoke
detection in real scenes, this paper proposes a domain adaptive smoke
detection algorithm based on multi-level feature fusion and alignment.
Specifically, considering the problem of small and fuzzy smoke caused by
long shooting distance, the algorithm proposes a multi-level and multi-
scale feature fusion strategy to enhance the feature representation ability
of the model for small targets. In addition, in order to reduce the domain
difference, the algorithm proposes amulti-level feature alignment strategy
to reduce the distribution difference between the source domain and the
target domain on different levels of features. Comparedwith the two-stage
object detection method, the proposed method is based on YOLOv5 [23],
which does not require candidate box prediction and screening, and
improves the detection speed.

The main contributions of this paper contain:

• A Multilevel Feature Cooperative domain Alignment method is
proposed to reduce the data distribution difference between the
source domain and the target domain at the multi-scale feature
level.

• A Multilevel Feature Fusion method is proposed to enhance the
feature representation ability of small target smoke by fusing
features of different scales at different levels of the network.

• The proposed method can perform end-to-end training and
detection without additional candidate box calculation and
screening, which ensures the training and detection efficiency
of the model.

2 Related work

2.1 Object detection

Object detection is a task to classify and locate objects for a
given image, which is one of the important research contents in
Computer Vision. Recently, deep learning based methods can be
divided into two-stage object detection and single-stage object
detection.

FIGURE 1
(A) Real smoke and (B) synthetic smoke. Real smoke has variable color and shape, while synthetic smoke [10] has relatively fixed shape and color.
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The two-stage object detection algorithm include two steps: the
first step generates the candidate regions, and the second step classifies
the candidate regions and regress their positions. The basic idea is to
generate regions with high recall such that all objects on the image
belong to at least one candidate region. In the second step, the
candidate regions generated in the first step are classified by a deep
model. Typical two-stage object detection algorithms include R-CNN
[24], SPP-net [25], Fast R-CNN [26], Faster R-CNN [27], etc. Due to
the large number of candidate regions generated by these algorithms,
there are more repeated information and more invalid regions, which
leads to large amount of calculation and slow detection speed.

Because the two-stage method needs to process a large number of
candidate regions in turn, the detection speed is generally slow. To solve
this problem, the one-stage object detection algorithm came into being.
Compared with the two-stage object detection algorithm, the one-stage
object detection algorithm does not need to generate candidate regions,
and directly returns the object category and location on the input image,
so the detection speed is faster, but the accuracy is slightly worse. Typical
one-stage object detection algorithms include YOLO [28], SSD [29], etc.

2.2 Domain adaptation for object detection

Domain adaptation has been widely studied in Computer Vision.
The object detection method based on deep learning is affected by the
domain shift, and the network trained on one dataset often performs
poorly on other datasets, which is often encountered in real scenarios.
Unsupervised Domain Adaptive Object Detection (UDAOD) [30]
aims to reduce the domain gap between training data and test data and
improve detection performance. Existing UDAOD methods can be
divided into: style transfer based methods, self-training based
methods, and domain alignment based methods.

Object detection based on style transfer is a popularmethod in the past
few years, and the representative literatures of this kind of method are
[12–14].Hsu et al. [12] proposed a progressive domain adaptationmethod,
which decomposed the problem into two subtasks. Firstly, based on Cycle-
GAN [31], synthesized an intermediate domain located in the distribution
of the source domain and the target domain, and then adopted a
progressive adaptation strategy to gradually narrow the domain gap
through the intermediate domain. Inoue et al. [13] believe that the

FIGURE 2
The pipeline of our proposed method. See the experiment section for more network details.
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differences between the source and target domains mainly lie in their
underlying features, such as color and texture. By generating similar images
with the target domain images based on Cycle-GAN to capture these
differences, and then fine-tuning the fully supervised trained detector use
the generated images to make the detector robustly to these differences.
Kim et al. [14] proposed a two-stage method of Domain Diversification
and Multi-domain Invariant Representation Learning to alleviate pixel-
level and feature-level domain differences at the same time. In the Domain
Diversification stage, samples with different domain differences are
generated from labeled source domain data to improve the adaptability
of the model. Suchmethods alleviate the impact of domain differences to a
certain extent, but the introduced GAN network increases the amount of
computation, and the accuracy of the detector highly depends on the
quality of the generated image, which is not suitable for real scenes.

Self-training based object detection [15,16] generally predicts pseudo-
labels in the predicted target domain, and then uses the predicted pseudo-
labels to fine-tune themodel. However, the noise contained in the pseudo-
labels will have a negative impact on the performance of the model. Kim
et al. [15] proposed a weak self-training method to reduce the adverse
effects of inaccurate pseudo-labels and stabilize the learning process.
RoyChowdhury et al. [16] proposed an improved knowledge distillation
loss by using existing high-confidence detectors to directly obtain the
pseudo-labels of the target domain, and studied several methods to assign
soft labels to the training samples of the target domain.

Object detection based on domain alignment [17–19] is one of
the more commonly used methods. Wu et al. [17] proposed a
disentangled representation method based on vector
decomposition, attempting to disentangle the representation of
domain-invariant features and domain-specific features, to realize
domain alignment. Saito et al. [18] proposed a weakly alignment
model, which uses adversarial learning to focus the adversarial
alignment loss on globally similar images and pays less attention to
globally dissimilar images. Zhu et al. [19] believe that the
traditional domain adaptive method to align the whole image,
while the object detection essentially focuses on the region of
interest (local region), and propose to only focus on the relevant
region and perform domain alignment.

2.3 Smoke detection

In recent years, researchers have proposed many smoke detection
algorithms based on deep learning. Yin et al. [32] proposed a
convolutional neural network with depth normalization to

automatically extract smoke features and classify them, which
reduced the influence of smoke shape and color to a certain extent.
In order to further solve the problem of smoke shape and color
changes, Gu et al. [33] proposed a dual-channel neural network by
successively connecting multiple convolutional layers and Max
pooling layers. A batch normalization layer is then selectively
attached to each convolutional layer to prevent overfitting and
speed up training. zhao et al. [34] proposed that the depth-wise
separable method with fixed convolution kernel instead of training
iteration was used for smoke detection, which could improve the speed
of the algorithm and meet the requirements of real-time fire
propagation for speed detection [21]. proposed a Convolutional
Neural Network (CNN) -based smoke detection and segmentation
framework for clear and hazy environments, employing EfficientNet
for better smoke detection [35]. proposed a smoke detection method
in normal and foggy weather that combines attention mechanism with
feature-level and decision-level fusion modules. An attention
mechanism module combining spatial attention and channel
attention was proposed to solve the problem of small smoke
detection. Secondly, a lightweight feature-level and decision-level
fusion module is proposed, which can not only improve the
recognition ability of similar objects such as smoke and fog, but
also ensure the real-time performance of the model. Zhan et al.
[36] proposed a recursive pyramid network with deconvolution
and dilated convolution to solve the problem of low detection
accuracy caused by high smoke transparency and unclear edges.

Most of the existing smoke detection methods are trained and
tested on the same dataset, combined with practical application, this
paper focuses on smoke detection in real scenes, and proposes a
domain adaptive smoke detection algorithm based on Multilevel
feature Cooperative Alignment and Fusion.

3 Proposed method

The structure of Multilevel feature Cooperative Alignment and
Fusion (MCAF) algorithm is shown in Figure 2. The algorithm takes
YOLOv5 [23] object detection network as the baseline, and is
composed of Multilevel Feature Cooperative Alignment module
(MFCA) and Multilevel Feature Fusion module (MFF). Specifically,
for the given smoke image in the source domain and the target
domain, Backbone (denoted as E) is used to extract smoke-related
features, and then domain alignment is achieved through the
cooperation between multi-scale classifiers W0, W1, W2 in MFCA

FIGURE 3
Training process. (A) Update Wo, (B) Fixed Wo and update E.
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to reduce the domain differences between the source and target
domain features, where, W0, W1, W2 has the same structure, which
are consists of a global average pooling, fully connected layer. The
difference is that their input feature sizes are not the same. Finally, in
the Neck of the detector network (The object detectors developed in
recent years often insert some layers between the backbone and the
detector, people usually call this part the Neck of the detector) embed
feature fusion module at different positions to make the obtained
features better adapt to targets of different sizes. Through the end-to-
end training of MCAF algorithm, a better detection effect is obtained.

3.1 Model pretrain

In order to make the smoke detection network adapt to real
scenarios, pre-training is carried out first. The smoke data in the
source and target domains are defined as Xs � {xsi }N

s

i�1 and X
t � {xti }N

t

i�1,
where xsi and xti denote the ith sample of the training set in the source
and target domains, respectively, Ns and Nt denote the number of
training samples in the source and target domains, respectively.
During training, the object detection network is optimized by
minimizing the following loss function,

LYOLOv5 � Lclass + Lobj + Lloc (1)
where LYOLOv5 denote the total loss function of YOLOv5 [23]. Lclass,
Lobj, Lloc denote the classification loss, confidence loss and localization
loss, respectively.

In addition, in order to make W0, W1, W2 have the ability to
distinguish features from the source domain or the target domain, the
following loss function is minimized to optimize,

Lid Wo( ) � ∑2
o�0

CE Wo Eo xsi( )( ), y0( ) + CE Wo Eo xti( )( ), y1( ) (2)

where CE (·) denotes the cross-entropy loss, Eo (o = 0, 1, 2) denote the
features output by different network depths of E (the details can be
seen in Figure 2), y0 = 0 and y1 = 1 denote the domain labels of the
source and target domains, respectively.

Throughmodel pre-training, the object detection network has a basic
detection ability andW0,W1,W2 can distinguish the source domain and
target domain samples. However, when testing on unseen smoke datasets,
the detection performance will drop sharply due to the domain shift
between different datasets. In order to reduce the data distribution
difference between the source domain and the target domain, this
paper proposes Multilevel Feature Cooperative Alignment module.

3.2 Multilevel feature cooperative alignment
(MFCA)

In order to mitigate the impact of inter-domain differences, this
paper proposes a Multilevel Feature Aooperative domain Alignment
module. The gap between the source and target domains is narrowed
by adversarial learning between E and W0, W1, W2. In theory, if the
extracted features from source and target domain do not have

FIGURE 4
The structure of Fusion model.
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differences, W0, W1, W2 should not be able to distinguish the source
domain and the target domain. By minimizing the following loss
function to realize,

Ladv E( ) � ∑2
o�0

CE Wo Eo xsi( )( ), y1( ) + CE Wo Eo xti( )( ), y0( ) (3)

At this time, the parameters of E (where E include E0, E1, E2) are
updated by fixing the parameters of W0, W1, W2, and the source
domain and target domain features are cross-constrained by domain
labels. In this way, the extracted features are trained to adapt to the
source domain and target domain, and the effect of domain alignment
is achieved. The training process is shown in Figure 3. It is worth
noting that, this paper not only uses the above way to mitigate the
domain differences in the final features of Backbone, but also
constrains the intermediate features of Backbone at the same time,
and finally alleviates the impact of domain differences through the
cooperative alignment of multi-level features.

3.3 Multilevel feature fusion (MFF)

In real scenes, smoke changes with time in different colors and
shapes, which increases the difficulty of feature extraction. In order
to improve the robustness of smoke features, this paper proposes to
embed a Multilevel Feature Fusion module (MFF) in the Neck part
of the detection network, the design of this module is shown in
Figure 4.

Specifically, for the feature map F output by C3_1 module in Neck,
it is divided into two branches. Follow CBAM [37], the first branch is
enhanced by Channel Attention Module (CAM) and Spatial attention
module (SAM), and the second branch is enhanced by
1×1 convolutional layer (Conv1×1) to adjust the feature
dimensions and increase the non-linear mapping ability of the
network. The deep features are further extracted, and then the
correlation matrix A is calculated for the features of the two branches,

A � Sigmoid Conv SAM CAM F( )( );Conv F( )[ ]( ) (4)
where, Sigmoid (·) represents the sigmoid activation function, F
represents the output of C3_1 module in Neck, [a; b] denotes
concatenation of a and b, Conv denotes 1×1 convolution, SAM
and CAM denote spatial attention module and channel attention
module, respectively. The relation matrix A reflects the relationship
between the corresponding positions of the feature maps obtained by
the two branches, and the larger the value is, the more important it is.
Finally, the feature maps of the two branches are fused by the following
operations, and the fused features FFusion are used as the input of the
later network layer.

FFusion � Conv A ⊗ FSAM; 1 − A( )Conv F( )[ ]( ) ⊕ F (5)
where, FSAM = SAM(CAM(F)) denotes the output of the spatial
attention module, ⊗ denotes element-wise multiplication, and ⊕
denotes element-wise addition. It can be seen that the proposed
fusion module adaptively adjusts the contribution of the two
branches at the corresponding positions of A and 1-A, so as to

FIGURE 5
The details of the C3 module, SPPF module and other module in Figure 2.
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achieve a better fusion effect, and finally improve the robustness of
smoke features and enhance the representation ability of small target
smoke.

3.4 Optimization

By considering all the loss functions jointly, the objective function
in this paper is as follows,

Ltotal E,Wo( ) � LYOLOv5 + Lid Wo( ) + Ladv E( ) (6)
Firstly, the detection network and classifier are trained to have the
basic smoke detection ability and the ability to distinguish the source
domain and the target domain by LYOLOv5 and Lid (Wo), respectively.
Then, the adversarial learning strategy is used to alleviate the
differences between the source domain and the target domain
through Ladv(E).

4 Experiments

In order to prove the effectiveness of the proposed method
(MCAF), this chapter carries out a large number of experiments.
Firstly, the data set used in the experiment is introduced, and then the
performance of the proposed method is compared with that of
classical object detection algorithms. Finally, the effectiveness and
superiority of the proposed method are demonstrated by ablation
experiments.

4.1 Datasets and evaluation protocol

The real scene dataset True_smoke (TS) used in this
experiment contains a total of 4,128 images. Among them,
1,275 images were taken from real transmission lines,
2,853 images were taken from google search engine and State

Key Laboratory of Fire Science of University of Science and
Technology of China. The training set and test set were divided
according to a ratio of 7:3, and LabelImg was used for annotation,
and the annotation format was the same as that of the popular
dataset PAS-CAL VOC [38], the annotation information was
stored in the. xml file. In addition, the synthetic datasets
RFdataset (RF) [10] and SFdataset (SF) [10] are also used for
experiments. RFdataset (RF) is synthesized from real smoke and
forest background and contains 12,620 images, where,
3,155 images are used for training and 6,310 images are used
for testing. The SFdataset (SF) is synthesized from simulated
smoke and forest background and contains 12,620 images,
where, 3,155 images are used for training and 6,310 images are
used for testing.

In this paper, Precision, Recall and mean average precision (mAP)
are used as performance evaluation indicators. It is calculated as
follows,

Precision � TP

TP + FP
(7)

Recall � TP

TP + FN
(8)

mAP � 1
N

∑N
i�1

APi (9)

where, TP is the number of samples correctly predicted as smoke, FP is
the number of samples correctly predicted as smoke, FN is the number
of samples correctly predicted as smoke, N is the total number of
classes, and APi is the Average Precision of class i.

4.2 Implementation details

Considering that the actual application needs to deploy the
algorithm to mobile devices, the YOLOv5s object detection
network is used as the basic framework, and the detailed structure
of each module is shown in Figure 5. In the training phase, the

TABLE 1 Comparison with other methods on RF → TS, RF → SF, SF → TS, and SF → RF. P and R denote Precision and Recall (%),respectively.

Methods RF → TS RF → SF SF → TS SF → RF

P R mAP P R mAP P R mAP P R mAP

YOLOv3 1.79 17.4 12.7 3.69 71.3 78.2 1.33 15.9 8.72 2.85 85.7 59.0

YOLOv5s 21.4 18.6 14.3 84.4 74.6 80.3 16.9 9.77 9.20 64.5 64.8 58.4

Faster-RCNN — — 8.72 — — 65.95 — — 6.23 — — 44.54

MCAF 33.6 23.9 21.6 86.9 82.8 88.5 30.6 17.6 14.3 67.4 66.7 66.0

TABLE 2 The running time of Faster-RCNN and MCAF in several setting.

Methods RF → TS SF → TS

Training time (/h) Testing time (/s) Training time (/h) Testing time (/s)

Faster-RCNN ≈ 14.3 102.6 ≈ 13.5 103.4

MCAF ≈ 1.5 7.2 ≈ 1.3 7.1
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TABLE 3 Ablation study. P and R denote Precision and Recall (%),respectively. MCAF represents the proposed method.

Methods RF → TS SF → TS

P R mAP P R mAP

Baseline 21.4 18.6 14.3 16.9 9.77 9.2

Baseline+MFCA 33.1 20.2 17.2 18.1 16.8 11.2

Baseline+MFF 33.8 20.4 18.6 26.6 14.0 12.3

Baseline+MFCA+MFF (MCAF) 34.6 23.9 21.6 30.6 17.6 14.3
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maximum of epochs is set to 100, in which the first 20 epochs are fore
pretrain. Being similarly to YOLOv5, Mosaic, random cropping,
horizontal flipping, etc., are used for data augmentation. the size of
the input image is uniformly resized to 640 × 640×3 (for length, width
and channel), and the feature maps output by the layer concatenated
with Neck in backbone are used as the input of MFCA module
(specifically, the outputs of the 4th, 6th and 9th layers of backbone
are used as the input of MFCA module). The feature map sizes of the
input three domain classifiers are 80 × 80×128, 40 × 40×256, and 20 ×
20×512, respectively. The three classification networks have the same
structure, consisting of global average pooling and fully connected
layers. In addition, the MFF module is embedded behind the C3_
1 module in Neck. For the training of Backbone, the SGD optimizer
was used with the learning rate set to 0.01 and momentum to 0.3, and
for the training of the three classification networks, the SGD optimizer

was used with the learning rate set to 0.1 and momentum to 0.9. The
batchsize for training and testing both set to 16. This experiment was
performed on pytorch 1.13 [39], and all experiments were done on a
Linux server for NVIDIA GEForce RTX3090Ti.

4.3 Comparison to other methods

At present, there is no public dataset for cross-domain smoke
detection. In addition, existing works are trained under supervised
conditions and cannot be directly compared. The comparison method
in this paper uses more mature object detection methods. These
methods include YOLOv3 [40], YOLOv5s [23], Faster-RCNN [27].
The comparative experimental Settings are RF→ TS, SF→ TS, RF→
SF, SF → RF, (a → b represents a as the source domain and b as the

FIGURE 6
Detection result display. The left is the result of the proposed method, and the right is the result of baseline.
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target domain cross-domain task), and the target domain category and
location labels is unknown during training.

The experimental results are shown in Table 1. It can be seen that
the mAP of the proposed method is much higher than that of classical
object detection methods such as YOLOv3 and faster-RCNN. Such
methods do not consider the inter-domain differences and thus
perform poorly. Compared with YOLOv5s in the four experimental
Settings, the mAP of the method in this paper is increased by 7.3%,
8.2%, 5.1%, 7.6% respectively, indicating that the method in this paper
indeed enhances the ability of the model to extract smoke robust
features.

Table 2 shows the comparison of training and testing time between
the proposed method and Faster-RCNN. It can be seen that
comparing with Faster-RCNN, the proposed method is more
suitable for real-time smoke detection and more efficient.

4.4 Ablation study

This section discusses the ablation study. Firstly, the LYOLOv5-
guided optimized network is considered as Baseline. On the basis of
Baseline, the Multilevel Feature Cooperative Alignment module and
the Multilevel Feature Fusion module are gradually added, which
proves that they are helpful to improve the performance, the results
can be seen in Table 3. Ablation experiments were performed at RF→
TS and SF → TS.

4.4.1 The effectiveness of multilevel feature
cooperative alignment module (MFCA)

In order to alleviate the domain gap existing in the source
domain and the target domain, a multilevel feature cooperative
alignment module is proposed. By following the adversarial
strategy of E and the domain classifier, removing the gap
between the source and target domain. As shown in Table 3,
Baseline on RF → TS, SF → TS Precision/Recall/mAP
respectively is 21.4%/18.6%/14.3% and 16.9%/9.77%/9.2, When
the Multilevel Feature Cooperative Alignment module is added,
the performance is significantly improved, which proves the
effectiveness of this module.

4.4.2 The effectiveness of multilevel feature fusion
module (MFF)

In order to improve the feature representation ability of small
target smoke, a multilevel feature fusion module is proposed. The
feature fusion module is embedded in different depths of Neck in the
detection network to enhance the features of different scales. As can be
seen from Table 3, after adding the Multilevel Feature Fusion module
on the basis of baseline, the Precision/Recall/mAP on RF→ TS and SF
→ TS Raised to 33.8%/20.4%/18.6% and 26.6% 14.0%/12.3%. The
validity of the module is proved.

As shown in Table 3, when the Multilevel Feature Cooperative
Alignment module and the Multilevel Feature Fusion module are
added to baseline at the same time, the overall performance is
improved, indicating that the proposed method is effective.

In addition, Figure 6 shows the visualization of the detection
results. Clearly, with the embedding of the proposed technique, the
models become more powerful in terms of detection, confirming their
significance.

5 Conclusion

Fire prevention is of great significance to the protection of human
property safety, natural environment and industrial equipment.
Smoke detection is helpful in the early warning of fire, and many
researchers continue to improve the detection algorithm to meet the
needs of this field. In order to adapt to smoke detection in real scenes,
this paper proposes an unsupervised domain adaptive smoke
detection algorithm based on multi-level feature fusion and
cooperative alignment. On the one hand, the difference between
the source domain and the target domain data is reduced by the
cooperative alignment of features at different scales. On the other
hand, by embedding fusion modules at different depths of Neck, the
representation ability of features is enhanced. In this paper, the
module structure, training method, loss function and network
parameter setting of the proposed method are introduced in detail.
The effectiveness of each module is proved by ablation experiments.
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Procedural outcome following and
Hemodynamic imaging analysis for
anterior communicating artery
wide-necked aneurysms by four
different stents assisted coil
embolization

Yulong Qiu†, Li Jiang†, Shixin Peng, Ji Zhu, Xiaodong Zhang* and
Rui Xu*

Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing,
China

Background: Anterior communicating artery (AcomA) aneurysm is the most
common intracranial aneurysm (IA) and has the highest rupture rate.
Previously, the preferred surgical treatment for intracranial aneurysms was
microsurgery clipping (MC). With the gradual maturation of endovascular
treatment (EVT), an increasing number of patients are inclined to treat IA with
EVT. In recent years, an increasing number of scholars have suggested that the
preferred treatment for wide-necked aneurysms is stent-assisted coiling (SAC).
Currently, there are few studies on comparative analyses of the procedural results
of SAC in AcomA aneurysms.

Methods: We retrospectively reviewed all consecutively treated patients who
received SAC for AcomA aneurysms between 12 February 2013, and 20 January
2021. The primary procedural outcome was the occlusion rate evaluated with the
Raymond–Roy occlusion classification (RROC) assessed on DSA at follow-up. Safety
assessment included 1) ischemic complications (asymptomatic ischemia; intrastent
thrombosis; coils falling off plug; arterial dissection); 2) bleeding complications (SAH;
ICH); and 3) death. Univariate and multivariate logistic regression analyses were
performed to determine patient baseline and aneurysm characteristics associated
with total aneurysm occlusion at follow-up. Hemodynamic analysis was performed
in one representative case each of the four stents, and six hemodynamic parameters
were chosen, including wall shear stress (WSS), cavity blood flow velocity (CBFV),
residual blood in the aneurysm (RBA), neck blood flow velocity (NBFV), blood flow
inflow (BFI); and inflow concentration index (ICI).

Results: A total of 154 patients who underwent EVT via SAC were enrolled for
comparative analysis of procedural outcomes. The median age was 55 years, and
56.49% (87) were female. At the first (6–10 months), second (12–15 months) and last
(24–48months) follow-up, complete aneurysm occlusion was observed in 94.8%,
94.8%and 94.2% of patients, respectively. There were no differences regarding the
occlusion rates stratified by stent. Each stent showed a variable decrease in all
hemodynamic parameters.

Conclusion: Hemodynamic parameters all decreased significantly after SAC with all
four different stents, and the effect of laser-cut stents on the hemodynamic decline
of aneurysms appeared to be more significant than that of woven stents. No
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significant difference was observed in the follow-up RROC grade among the four
stents.

KEYWORDS

AcomA aneurysms, wide-necked aneurysms, SAC, hemodynamic, imaging analysis

1 Introduction

Intracranial aneurysm (IA) is a common cerebrovascular disease,
and the anterior communicating artery (AcomA) is the most common
site [1], accounting for the highest mortality rate of ruptured
aneurysms [2].

AcomA aneurysms are usually clipped, but an increasing number
of studies have shown that endovascular treatment (EVT) is effective
[3]. Stent-assisted coiling (SAC) is commonly used to treat wide-
necked aneurysms, which are defined as aneurysms with neck ≥4 mm
or dome-to-neck ratio (DNR) < 2 [4]. Previous researches believe that
SAC has a similar complication rate and lower recurrence rate than
coiling alone [5]. In our therapeutic centre, we used a total of four
stents for SAC, which were Solitaire AB stents, Enterprise stents,
LVIS(JR) stents and LEO + (baby) stents. In general, the treatment
effect was acceptable, and the complication rate and recurrence rate
were low.

The creation and rupture of aneurysms are associated with
hemodynamic factors [6, 7]. Currently, there are relatively few
studies that simultaneously investigate the effects of these four
different stents on hemodynamics. In addition, no study on the
simultaneous effect of these four stents on the occlusion rate has
been reported.

In this study, we deeply investigated the effect of multiple factors,
including patient baseline characteristics, anatomical aneurysm
details, and hemodynamic changes before and after stent placement
on aneurysm recurrence to guide the use of the stents in the
subsequent treatments.

2 Materials and methods

2.1 Patient selection

We retrospectively analyzed the data of all consecutive patients
with AcomA wide-necked aneurysms who were diagnosed and treated
at the Neurosurgery of the First Affiliated Hospital of Chongqing
Medical University between 12 February 2013, and 20 January 2021.
All patients receiving SAC treatment with the four stents (Solitaire™,
Enterprise™, LVIS(JR)™, LEO(Baby)™) were selected and analyzed.

The main inclusion criteria for all cases were 1) the diagnosis of an
AcomA wide-necked aneurysm, regardless of rupture or not, 2) SAC
in an elective setting, and 3) Solitaire™, Enterprise™, LVIS(JR)™ or
LEO (baby)™ stents, regardless of previous treatments (EVT or MC).
The main exclusion criterion was that the image display was unclear.

For all selected patients, baseline and procedural characteristics
were collected from medical records and imaging studies. We selected
only specific and measurable measures, for patient baseline, such as
age, gender, etc., whereas height, weight, etc., were not recorded
because of failure to measure precisely or variations in data. In
terms of previous history, we selected arterial hypertension or not,
history of previous treatment of aneurysms, other factors such as

medical history which may cause difficulty in recording details due to
patient forgetting or deliberate concealment, etc. so were not included
as parameters.

2.2 Antiplatelet and anticoagulation therapy

Many reports suggest that irregular administration of clopidogrel
and aspirin may result in high thromboembolic event rates [8];
therefore, we followed regular and scientific antiplatelet therapy
before treatment. All patients without previous antiplatelet therapy
received loading dose dual antiplatelet therapy primarily with aspirin
(300 mg st) and clopidogrel (300 mg st) before SAC. If the standard
dual antiplatelet dose (aspirin 100 mg qd and clopidogrel 75 mg qd)
had been taken for ≥3 days, the same standard dual antiplatelet dose
was given once before treatment. At the beginning of the intervention,
weight-adaptive heparin was administered intra-arterially, 2/3 mg/kg
for the first time. If the procedure was still not finished after 1 h, half of
the first dose was injected as a bolus, and the dose was tapered
sequentially. After surgery, some patients received intravenous
micropumps of tirofiban for several hours, overlapping with dual
antiplatelet therapy for 4 h before deactivation. For the remaining
patients, coagulation profiles were reviewed at 4 h postoperatively, and
low molecular weight heparin (LMWH) was administered
subcutaneously if no significant abnormalities were observed,
bridging dual antiplatelet therapy until the second postoperative
day. All patients after SAC took aspirin for at least 3 months and
clopidogrel for at least 6 weeks every day. The dosage was adjusted
according to the thromboelastography (TEG) and clopidogrel
genotype (CYP2C19 enzyme). Genetic polymorphisms of the
CYP2C19 enzyme result in different efficacy of clopidogrel, which
is usually divided into four phenotypes clinically according to the
different ability to metabolize clopidogrel: ultra fast metabolism (UM),
fast metabolism (FM), medium metabolism (MM) and slow
metabolism (SM). When a patient’s clopidogrel genotype was
expressed as UM or FM, we gave clopidogrel 75 mg qd. When
clopidogrel genotype was expressed as MM, we gave clopidogrel
100 mg qd. When clopidogrel genotype was expressed as SM, we
replaced clopidogrel with ticagrelor at an oral dose of 90 mg qd.

2.3 SAC treatment

EVT is an effective treatment modality for AcomA aneurysms [9],
and previous studies have shown that SAC may improve the results of
embolization by allowing more complete initial coiling. The success
rate of SAC is higher than that of coiling alone, especially in the
treatment of wide-necked aneurysms [1, 10]. In our cases, all
operations were performed under general anesthesia using a
SIEMENS™ biplane angiography system. Cerebral vessel access was
usually established using a 6F Chaperon Guiding Catheter System.
Subsequently, a 3-D rotational angiography was performed to plan the
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operation. In all cases, we used the jailing technique, which could
reduce navigation time and result in a lower incidence of
thromboembolic events [8]: 1) a microcatheter was used to
navigate to the aneurysm and fill in coils; 2) another microcatheter
was used to navigate to the far end of the parent artery; and 3) the stent
was partially released while coiling the IA was continued; and 4) the
stent was completely released when the IA was completely coiled.

2.4 Stent characteristics

The use of each stent depends on the diameter of the parent artery,
the condition of vascular tortuosity and the specific parameters of the
IA, such as the location and DNR. Each stent has its specific diameter-
length ratio, and the choice of stent diameter is determined according
to the diameter of the parent artery, the length of the stent is
determined according to the width of the aneurysm neck, both
ends of the aneurysm neck need to be covered with a sufficiently
long stent, and at the same time the stent cannot be too long to block
branch arteries.

Solitaire™ is a self-expanding nitinol laser-cut stent with a closed-
cell design and fully open structure on one side, combining the
advantages of open-cell and closed-cell designs. It can be
completely recovered twice, and the stent hole is adjustable. The
advantages of this stent are mainly a higher success rate for SAC
of small-size aneurysms and a lower risk of postoperative
thrombosis [11].

Enterprise™ is also a self-expanding nitinol laser-cut stent with a
closed-cell design. The conveying system provides excellent navigation
and positioning, making it easier to transport and deploy, with only a
1.3% inaccurate deployment rate. Stents are deployed on the parent
artery 5 mm above both sides of the aneurysm neck, with more
intensive filling of the aneurysm sac and neck [8]. Our case
contained a large number of ruptured aneurysms, and previous
studies have shown that the Enterprise stent is safe and effective in
SAC of ruptured wide-necked aneurysms [8].

LVIS™ is a self-expanding nitinol woven stent system with a
closed-cell design. It has higher metal coverage, which may cause a
greater reduction in velocity at the neck plane, and higher packing
density, which may cause a greater reduction in velocity and WSS at
the aneurysm. The greater hemodynamic alterations may cause lower
recanalization in medium-sized aneurysms [12].

LEO™ is a self-expanding nitinol woven stent system with a
closed-cell design. With two radio opaque standards along its full
length, delivery systems that allow easier navigation and precise
placement and potential for stent repositioning make it very useful
for the treatment of complex cerebral aneurysms [13], in addition to
lower perioperative morbidity [14]. Some scholars even believe that
SAC with LEO stents may be considered the first-line treatment for
wide-necked aneurysms [15].

A comparison of the technical parameters of the individual stents
is detailed in Table 1.

2.5 Hemodynamic parameters

Hemodynamics are as important as morphology in the
development of aneurysms [7]. Previous studies have confirmed
that 53% of patients with AcomA aneurysms have variant anatomy
of the vessels surrounding the AcomA [2], and the presence of a
hypoplastic A1 segment is the only parameter independently
associated with the presence of AcomA aneurysms in addition to
aneurysm size [16]. Research has shown that the growth of aneurysms
may be associated with high wall shear stress (WSS) [17], and IAs with
large maximumwidths and small neck diameters, which have a greater
range of low WSS areas, may be prone to rupture [18]. As aneurysms
are studied more intensively, the influence of hemodynamics should
not be ignored.

In this study, four patients with four different stents were
randomly selected, focusing on the following six parameters: 1)
wall shear stress (WSS); 2) cavity blood flow velocity (CBFV); 3)
residual blood in the aneurysm (RBA); 4) neck blood flow velocity

TABLE 1 Comparison of seven technical parameters among four stents.

Technical
parameter

Solitaire AB stent Enterprise stent LVIS(JR) stent LEO+(Baby) stent

Structure design Nitinol laser-cut stent with a closed-cell design
and fully open structure on one side

Nitinol laser-cut stent with a
closed-cell design

Nitinol woven stent with a
closed-cell design

Nitinol woven stent with a
closed-cell design

Supporting method self-expanding self-expanding self-expanding self-expanding

Stent diameter
-length,mm

3.0*−20/30 4.5–14/22/28/37 2.5–13/17/23/34 2.5–12/18/25

4.0*−15/20/30/40 3.5–17/18/22/2328/33 3.5–18/25/30/35/50

5.0*−20/30 4.0–12/17/22/28/31 4.5–15/20/25/30/40/50/75

6.0*−20/30 4.5–18/23/32 5.5–50/60/75

5.5–30/33

Diameter of the parent
artery,mm

1.5–6.5 2.0–4.0 2.0–5.5 1.0–6.5

Stent hole size,mm 2–3* 1.5 1.0 0.9

Metal coverage,% 5–7* 3.7–6.1 16–19 16–19

Recyclable 100% release 90% release 80% release 90% release

Legend: * Solitaire AB, stent is superimposable since its fully open structure on one side, which in turn leads to its adjustable diameter, hole size and metal coverage.
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(NBFV); 5) blood flow inflow (BFI); and 6) inflow concentration
index (ICI).

2.6 Procedural outcomes

Aneurysm details were analyzed, including the size of the
aneurysms, the DNR, ruptured or not, the number of coils filled
and the diameters of the parent arteries. The angiographic results were
evaluated after intervention and angiography by DSA using the
Raymond–Roy Occlusion Classification (RROC) [19], which
defined Class I as complete obliteration, Class II as residual neck,
and Class III as residual aneurysm. RROC I was defined as the primary
angiographic outcome endpoint, and all occlusion rates were
compared by the stent used.

The above factors in all follow-up patients were analyzed for
significant associations with complete aneurysm occlusion. We
recommend that the patients be reviewed for the first time
6 months after surgery. If negative (Class I), patients should be
reviewed again 1 year later. If still negative, they should be
reviewed 2–3 years later. SAC was performed whenever the review
was positive (Class II or Class III). The reason for this is that after
aneurysm clipping, 25% of Raymond II patients will have gradually
increasing aneurysms; if Raymond III, 75% of aneurysms will increase
[20]. Although no relevant reports have been found after SAC, overall,
more than 20% of aneurysms recurred after EVT [21].

Perioperative complications that need attention mostly include 1)
ischemic complications (asymptomatic ischemia; intrastent
thrombosis; coils falling off plug; arterial dissection); 2) bleeding
complications (SAH; ICH); and 3) death.

2.7 Statistical analysis

All data were analyzed using statistical methods, standard
descriptive statistics were used for all data endpoints, the mean and
median were used to represent the degree of centralization, and the
standard deviation (SD) was used to represent the distribution.
Categorical variables were compared using the chi-square test or
Fisher’s exact test. Continuous variables were assessed with the
Mann‒Whitney U test (non-normally distributed data). Univariate
and multivariate logistic regression analyses were used to identify
variables associated with total aneurysm occlusion. The odds ratio
(OR) and adjusted OR (AOR) had a 95% confidence interval. p <
0.05 was considered statistically significant. Regarding the
hemodynamics section, we provided the original data mentioned
above and technical support provided by ArteryFLOW Science and
Technology Co., Ltd.

3 Results

3.1 Study population

A total of 154 patients were selected; 82.47% (127) of patients were
found due to subarachnoid hemorrhage, and 17.53% (27) of patients
were found accidentally due to health checkup or radiological
examinations owing to symptoms such as dizziness or headache.
The median age was 55 years, and 56.46% (87) were female. The

most common risk factor associated with IA was arterial hypertension,
with 51.95% (80) detected. The mean dome diameter, the mean neck
diameter and the mean DNR was 5.4 mm, 3.6 mm, and 1.5,
respectively. As the AcomA is the most difficult to observe by
angiography among the arteries of the circle of Willis, the mean
diameter of the parent artery can only be estimated roughly, which was
approximately 1.62 mm. Themedian number of implanted coils was 3.
Table 2 shows an overview of patient characteristics and anatomical
aneurysm details stratified by stent models.

3.2 Complications

Perioperative ischemic complications (11.69%, 18) were more
common than hemorrhagic complications (5.19%, 8). There were
no deaths in our cases during hospitalization and follow-up.In total,
6.49% (10) developed asymptomatic ischemia; the incidence was
9.09% 4) for the Solitaire stent, 2.86% 1) for the Enterprise stents,
5.88% 2) for the LVIS stents, and 7.32% 3) for the LEO stents (Table 3).

3.3 Procedural outcome

According to the Raymond-Roy Classification, 94.81% (146) of
patients had total occlusion (RROC Ⅰ) at the first follow-up. The
incidence of RROC I was 86.36% (38) after Solitaire stenting, 97.14%
(34) after Enterprise, 100% (34) after LVIS, and 97.56% (40) after LEO.
At the second follow-up, 94.81% (146) of patients had total occlusion
(RROC Ⅰ). The incidence of RROC I was 97.73% (43) after Solitaire
stenting, 94.29% (33) after Enterprise, 94.12% (32) after LVIS, and
92.68% (38) after LEO. At the third follow-up, 94.16% (145) of patients
observed total occlusion (RROC Ⅰ). The incidence of RROC I was
93.18% (41) after Solitaire stenting, 97.14% (34) after Enterprise
stenting, 94.12% (32) after LVIS stenting, and 92.68% (38) after
LEO stenting (Figure 1).

3.4 Logistic regression analyses

As shown in Table 4, most data for patients using different stents
did not show significant differences. Univariate logistic regression was
then used to analyze the influence of different factors on the occlusion
rate at three follow-up reviews. The results showed that the influence
of stents on the occlusion rate was not statistically significant; however,
increasing dome size and increasing DNR were factors related to
aneurysm occlusion at all three follow-ups; for details, see Table 5.
Multivariable logistic analysis confirmed increasing DNR (adjusted
odds ratio (aOR), 0.020; 95% CI, 0.001–0.583; p = 0.023) as an
independent factor associated with complete aneurysm occlusion at
the third follow-up.

3.5 Hemodynamic alterations

As no significant difference in aneurysm complete occlusion rates
by different stents has been demonstrated above, we focused on
hemodynamic aspects. Figure 2 demonstrates an angiogram before
and after placement of four stents and a schematic representation of
stents within blood vessels. In Picture A of Figure 3, we can see that at
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the bifurcations and corners of the arteries, flow streamlines and WSS
were elevated. High flow velocity territory (V > 0.1 m/s) was observed
throughout the arterial vessel, including the aneurysmal body. In
particular, from the section view, the flow velocity in the region of the
dome was significantly lower than that elsewhere in the aneurysm
before SAC, which may be because it was difficult for blood flow to
reach the top due to the large dome diameter. After the aneurysm was
coiled with a stent, it could be seen from the velocity magnitude
contour at the cutting plane and isovagine surface (V > 0.1 m/s) that
the blood flow in the aneurysm cavity was almost stagnant; at the same
time, WSS was also significantly reduced. From the streamlines with
color-coded velocity magnitude, we could see that there was no
obvious change in the blood flow at stent placement; that is, it did
not affect the blood flow in normal blood vessels. All stent models
showed similar properties in Figure 3; in particular, Pictures A and D
show slower flow velocities at the aneurysm dome site before SAC as a
result of a larger DNR, whereas Picture C shows a non-significant
decrease in aneurysm WSS after SAC.

As shown in Table 6, all indices had different decreasing trends
in each stent. The decrease rate in LVIS was minimal for almost all
parameters, and the Solitaire stent was optimal in four of all six
indices. The decline rate of WSS was 43.74% compared with 83.27%

for the LEO stent, 79.88% for the Enterprise stent and 79.76% for
the Solitaire stent. The decline rate of the BFI was 79.07% compared
with 92.65% for the Solitaire stent, 83.79% for the Enterprise stent
and 82.39% for the LEO stent. The decline rate of the RBA was
93.10% compared with 95.36% for the Enterprise stent and 94.62%
for the Solitaire stent. The decline rate of the CBFV was 68.93%
compared with 86.96% for the Solitaire stent, 80.19% for the
Enterprise stent and 79.17% for the LEO stent. The decline rate
of the NBFV was 68.42% compared with 88.13% for the Solitaire
stent, 75.93% for the Enterprise stent and 74.07% for the LEO stent.
The decline rate of the ICI was 74.48% compared with 93.48% for
the Solitaire stent, 84.41% for the Enterprise stent and 82.59% for
the LEO stent.

3.6 Advantages of laser-cut stents in
hemodynamics

The data of the present study suggest that the effect of laser-cut
stents on the hemodynamic decline of aneurysms appears to be more
significant than that of woven stents. The mean decline rate of WSS
was 79.82% for laser-cut stents compared with 63.51% for woven

TABLE 2 Patient baseline characteristics and anatomical aneurysm details.

Baseline characteristics All patients Solitaire™ Enterprise™ LVISTM LEOTM

Sum total 154 44 35 34 41

Age, median, years 55 56 56 55 56

Female 56.49% (87) 45.45% (20) 54.29% (19) 76.47% (26) 53.66% (22)

Arterial hypertension 51.95% (80) 43.18% (19) 42.86% (15) 52.94% (18) 68.29% (28)

Previous Treatment 4

Coiled 2 1 1 - -

Clipped 2 1 - 1 -

Aneurysm Signs

Ruptured 82.47% (127) 77.27% (34) 77.14% (27) 91.18% (31) 85.37% (35)

Dome, mean, mm (±SD) 5.4 (2.21) 5.7 (2.52) 5.8 (2.64) 4.9 (1.53) 5.0 (1.83)

Neck, mean, mm (±SD) 3.6 (1.26) 3.6 (1.26) 3.9 (1.68) 3.5 (1.01) 3.4 (1.02)

DNR, mean (±SD) 1.5 (0.33) 1.6 (0.36) 1.5 (0.39) 1.4 (0.26) 1.4 (0.26)

Vessel diameter, Mean, mm (±SD) 1.62 (0.28) 1.64 (0.24) 1.62 (0.28) 1.64 (0.28) 1.57 (0.33)

SD: standard deviation.

TABLE 3 Perioperative complications.

Perioperative complications All patients (n = 154) Solitaire™ (n = 44) Enterprise™ (n = 35) LVIS™ (n = 34) LEO™ (n = 41)

Ischemic complications

Asymptomatic ischemia 10 4 1 2 3

Intrastent thrombosis 5 2 1 0 2

Coils falling off plug 2 0 1 0 1

Arterial dissection 1 1 0 0 0

Bleeding complications

SAH 5 1 1 1 2

ICH 3 1 0 1 1

Death 0 0 0 0 0

SAH: subarachnoid hemorrhage; ICH: intracerebral hemorrhage.
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stents, of BFI was 88.22% compared with 80.73% for woven stents, of
RBA was 94.99% compared with 87.66% for woven stents, of CBFV
was 83.58% compared with 74.05% for woven stents, of NBFV was
82.03% compared with 71.25% for woven stents, and of ICI was
88.95% compared with 78.54% for woven stents.

4 Discussion

This study revealed several findings: 1) no significant difference
was observed in follow-up RROC grade among the four stents; 2)
ischemic complications were more frequent than hemorrhagic

FIGURE 1
Comparison of occlusion rates at 3 follow-up visits in patients using four stents.Legend: Time of first follow-up: 6–10 months after SAC. Time of second
follow-up: 12–15 months after SAC. Time of third follow-up: 24–48 months after SAC.

TABLE 4 Variability in patient data using each stent.

P1 (Solitaire vs.
Enterprise)

P2 (Solitaire vs.
LVIS)

P3 (Solitaire
vs. LEO)

P4 (Enterprise vs.
LVIS)

P5 (Enterprise
vs. LEO)

P6 (LVIS
vs. LEO)

Age, years 0.929 0.263 0.644 0.317 0.587 0.078

Sex, female 0.442 0.005* 0.456 0.054 0.957 0.041*

Arterial
hypertension

0.982 0.518 0.034* 0.555 0.048* 0.179

Dome size 0.851 0.093 0.139 0.075 0.113 0.770

Neck size 0.434 0.740 0.476 0.302 0.166 0.700

DNR 0.555 0.026* 0.057 0.150 0.276 0.572

Vessel diameter 0.681 0.940 0.246 0.775 0.494 0.348

Legend: * Indicating significance.
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complications during our treatment; 3) hemodynamic parameters all
decreased significantly after SAC with four different stents, and the
effect of laser-cut stents on the hemodynamic decline of aneurysms
appeared to be more significant than that of woven stents; and 4)
increasing DNR was perhaps an independent factor associated with
complete aneurysm occlusion.

It was previously thought that aneurysms first arise in highWSS areas,
and subsequently, the growing areas change to areas of low WSS and
eventually rupture there [17]. The latter is probably because low WSS
(<1 Pa) is not sufficient for the self-healing process of the arterial wall, and
the normal remodeling process of the arterial wall slows down, thereby
leading to faster aneurysm growth and eventual rupture [22]. TheWSS of
the LEO stent decreased the most, which may be related to its
characteristics as a woven stent with higher metal coverage or higher
filling density. However, the LVIS stent, also as a woven stent, was slightly
less effective in reducing WSS, suggesting that the fabrication process of

the woven stent was perhaps not related to its function in reducing WSS;
validation awaits further studies. Currently, the impact of WSS on
aneurysm generation, growth, and rupture is recognized in two
different ways by the academic community. These two schools of
thought differ in the mechanisms leading to wall weakening. One view
is that highWSS causes endothelial damage, which initiates chamber wall
remodeling and potentially degeneration, leading to an imbalance
between blood pressure and inner wall stress and resulting in local
dilatation of the arterial wall. The resulting abnormal blood WSS fields
lead to further aneurysm geometry development. An alternative view is
that the arrest of flow locally against the wall within the dome at lowWSS
leads to endothelial dysfunction, with the aggregation and adhesion of
platelets and leukocytes along the intimal surface, thereby causing intimal
injury, inflammation, and subsequent degeneration of the canal wall. The
aneurysmal wall will gradually become thinner, whichmay eventually lead
to tearing of the tissue [23].

TABLE 5 Univariate logistic regression analyses.

First follow-up Second follow-up Third follow-up

OR 95% CI p value OR 95% CI p value OR 95% CI p value

Age 0.955 0.884–1.032 0.248 0.978 0.904–1.058 0.584 1.011 0.937–1.091 0.780

Sex, female 0.769 0.177–3.338 0.726 0.769 0.177–3.338 0.726 0.077 0.018–1.227 0.077

Arterial hypertension 1.965 0.453–8.529 0.367 0.362 0.071–1.853 0.222 4.308 0.865–21.447 0.075

Dome size (increasing) 0.588 0.432–0.800 <0.001* 0.559 0.407–0.768 <0.001* 0.739 0.562–0.971 0.030*

Neck size (increasing) 0.699 0.432–1.131 0.144 0.708 0.437–1.147 0.160 0.915 0.548–1.526 0.732

DNR (increasing) 0.037 0.005–0.254 <0.001* 0.019 0.002–0.167 <0.001* 0.053 0.009–0.321 0.001*

Vessel diameter (increasing) 1.271 0.099–16.348 0.854 3.758 0.257–55.023 0.334 1.140 0.103–12.668 0.915

Solitaire (yes) 0.117 0.023–0.606 0.011* 2.922 0.349–24.476 0.323 0.788 0.188–3.302 0.745

Enterprise (yes) 2.125 0.252–17.884 0.488 0.876 0.169–4.546 0.875 2.450 0.296–20.294 0.406

LVIS (yes) - - - 0.842 0.162–4.374 0.838 0.991 0.196–5.007 0.991

Leo (yes) 2.642 0.315–22.153 0.371 0.586 0.134–2.572 0.479 0.710 0.169–2.981 0.640

Legend: * Indicating significance. OR: odds ratio; CI: confidence interval.

FIGURE 2
Angiogram before and after placement of four stents and schematic representation of stents within blood vessels. Picture (A) represents Solitaire stent;
Picture (B) represents Enterprise stent; Picture (C) represents LVIS stent;Picture (D) represents LEO stent.
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Stents were initially used in EVT to prevent the coils from slipping
out but were found in clinical trials to straighten the parent artery and
cause a corresponding change in the aneurysm sac, thereby altering
aneurysm hemodynamics [24]. In sidewall aneurysms, the use of
stents has previously been shown to block the inflow of flow and
thereby reduce the corresponding hemodynamics [25], but in
bifurcation aneurysms, it has been argued that stents may produce
a greater inertial force resulting from narrowed inflow jet, which
enhances flow into the aneurysms [26]. AcomA aneurysms are
bifurcation aneurysms; however, in our study, the BFI (blood flow
inflow) of each case was decreased, and the RBA (residual blood in the
aneurysm) was decreased as well. Previous research suggests that

aneurysm recurrence at >1 year after coiling is associated with higher
intra-aneurysmal flow before and after coiling [27], which perhaps
indicates the role of the four stents in improving the occlusion rate,
and the performance of the Solitaire stent in reducing blood flow was
especially excellent among the four stents. The most significant decline
in RBA was in the case of LEO stents, perhaps related to the size of the
stent hole and the density of coil embolization; thus far, no relevant
studies have been reported.

Previous studies suggest that stents with lower porosity will cause a
greater decrease in blood flow velocity [25], which was proven in our
study in that the Solitaire™ stent had the largest decline rate in CBFV
(cavity blood flow velocity) and NBFV (neck blood flow velocity)

FIGURE 3
Hemodynamic patterns of four stents. Picture (A) represents Solitaire stent; Picture (B) represents Enterprise stent; Picture (C) represents LVIS stent;
Picture (D) represents LEO stent.

TABLE 6 Changes of six hemodynamic indexes of the four stents before and after SAC.

WSS (pa) BFI (mL/s) RBA (mm3) CBFV (m/s) NBFV (m/s) ICI

Solitaire

Preoperative 1.981 1.130 52.0 0.161 0.160 1.534

Postoperative 0.401 0.083 2.8 0.021 0.019 0.100

Decline rate, % 79.76 92.65 94.62 86.96 88.13 93.48

Enterprise

Preoperative 1.471 1.32 90.6 0.106 0.108 2.175

Postoperative 0.296 0.214 4.2 0.021 0.026 0.339

Decline rate, % 79.88 83.79 95.36 80.19 75.93 84.41

LVIS

Preoperative 2.499 0.399 6.033 0.131 0.156 0.623

Postoperative 1.406 0.084 0.416 0.041 0.049 0.159

Decline rate, % 43.74 79.07 93.10 68.93 68.42 74.48

LEO

Preoperative 0.538 0.477 13.5 0.048 0.054 1.407

Postoperative 0.090 0.084 2.4 0.010 0.014 0.245

Decline rate, % 83.27 82.39 82.22 79.17 74.07 82.59

WSS: wall shear stress; CBFV: cavity blood flow velocity; RBA: residual blood in the aneurysm; NBFV: neck blood flow velocity; BFI: blood flow inflow; ICI: inflow concentration index.
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among the four stents (Solitaire™ possessed the largest pore size and
the lowest porosity of the four stents), and the decrease in blood flow
velocity is crucial to prevent recanalization after EVT [25], which
proved to be one of the advantages of this kind of stent.

ICI (inflow concentration index) refers to the degree of
concentration of blood flow into the aneurysm. It is defined as the
percentage of the flow rate of the parent artery which enters the
aneurysm divided by the percentage of the aneurysm ostium area
corresponding to positive inflow velocity [23]. Studies have found that
ruptured aneurysms are more likely to have a concentrated inflow jet
than unruptured aneurysms [23, 28]. All four stents were effective in
reducing ICI and may be effective in reducing the incidence of
aneurysm rupture during and after SAC. The ability of the Solitaire
stent to reduce ICI is best, perhaps because of its greater stiffness as a
laser-cut stent that is less pliable.

This paper is the first to study four types of stents (Solitaire™,
Enterprise™, LVIS(JR)™, LEO+(Baby)™) simultaneously. Previous
studies on the effects of Atlas ™, Enterprise ™, and LEO ™ stents on
angiographic outcomes after SAC of wide-neck aneurysms showed a
high incidence of total occlusion at long-term follow-up [29]. No
significant difference was similarly observed among different stents,
and the results of this research coincided with this finding. The four
stents all showed varying degrees of reduction in terms of
hemodynamics. In general, the reduction in hemodynamic factors
by LVIS appeared to be minimal with all four stents; however, the final
complete occlusion rate was not significantly different. The effect of
laser-cut stents on the hemodynamic decline of aneurysms appears to
be more significant than that of woven stents, which is probably
caused by the different radial strengths of the stents due to the different
fabrication processes. The present study demonstrated that increasing
DNR (dome-neck ratio) is perhaps an independent factor associated
with complete aneurysm occlusion. Other parameters related to
aneurysm size and morphology, such as LWR (length-width ratio),
size ratio (height-diameter of parent artery ratio), and HNR (height-
neck ratio), and whether they correlate with aneurysm occlusion rates,
require further study.

It was previously believed that it was unnecessary to treat small
aneurysms found incidentally [30]. However, in this study, 45% (57) of
the ruptured aneurysm domes were less than 5 mm. Advances in
neuroradiological techniques have significantly improved the
detection rate of small unruptured aneurysms, but whether to treat
microaneurysms remains to be discussed.

Low-dose aspirin alone has previously been shown to reduce the
risk of aneurysm rupture and is not associated with a risk of ICH
compared with no therapy, but clopidogrel does have an increased risk
of SAH and ICH [31]. Vigilance is necessary when administering dual
antiplatelet therapy preoperatively and postoperatively, and TEG
assays may be performed if necessary. In addition, previous studies
suggested that antiplatelet drugs might change blood viscosity [32],
which may affect the study of hemodynamics, which is not discussed
in this study. Further studies are available later.

4.1 Limitations

The number of cases collected by different stents is different.
Individual data values cannot be very accurate due to blurred
images or personal capabilities [33]. Due to measurement
factors, there may be some errors between aneurysm size and

vessel diameter and the real situation. The stents are all closed-
cell designs, with no involvement of open-cell stents. There were
too few cases for hemodynamic studies, and the OSI (oscillatory
shear index) was not studied.

5 Conclusions

Hemodynamic parameters all decreased significantly after SAC
with four different stents, and the effect of laser-cut stents on the
hemodynamic decline of aneurysms appeared to be more significant
than that of woven stents. Although the reduction in hemodynamic
factors by LVIS appeared to be minimal with all four stents, no
significant difference was observed in follow-up RROC grade
among the four stents. Ischemic complications were more frequent
than hemorrhagic complications during our treatment, perhaps
related to the operator’s maneuvers and antiplatelet and
anticoagulation therapy. Increasing DNR is perhaps an
independent factor associated with complete aneurysm occlusion.

6 Future perspectives

Most recurrences occur within the first year after treatment;
however, there is no universally agreed-upon timetable for imaging
and clinical follow-up of treated aneurysms. Some scholars believe that
longer follow-up should be considered for some types of high-risk
aneurysms [34]. We sincerely hope that more multicenter studies on
more stents with more long-term follow-up will be performed in the
future.
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Fault diagnosis of sensor pulse
signals based on improved energy
fluctuation index and VMD

Yuhu Liu, Xiaolong Chen, Yongfang Mao*, Yi Chai and Yutao Jiang
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Variational mode decomposition (VMD) has been widely applied in sensors.
However, the mode number and balance parameter seriously limit VMD
application. To solve this problem, this study proposes a novel method, which
combines an improved energy fluctuation index (IEFI) and modified VMD (MVMD).
In the proposed method, IEFI provided better performance to resist interference
from random impulses by considering the periodicity of fault feature components.
Consequently, it is applied to determine the initial center frequency for MVMD, which
fixed the problem of themode number. Moreover, a novel balance parameter search
strategy, which can adaptively determine the optimal balance parameter, is
combined with MVMD whose stop condition is replaced by kurtosis to extract the
fault feature. Simulation results indicated that the proposed method does well in
detecting the feature of a periodic impulse signal from the signal polluted by some
interference impulses. Moreover, the bearing fault diagnosis results demonstrate that
the proposed method can accurately detect bearing fault features. Furthermore, the
method was validated with bearing fault data. The results showed that the method
can accurately extract the fault characteristics of the impulse signal and achieve fault
diagnosis.

KEYWORDS

fault diagnosis, impulse signal, bearing fault, improved energy fluctuation index,
modified VMD

1 Introduction

Industrial equipment and systems have been increasingly moving toward larger, more
complex, and integrated features, which lead to increased uncertainty in the system operation.
To ensure the safe operation of equipment, extracting fault characteristics from signals collected
by the sensors is necessary to achieve the purpose of fault diagnosis [1]. Sensors collect a large
amount of image [2, 3] and data information [4–8], based on which many functions can be
implemented.

Recent studies show the effectiveness of vibration signals in fault diagnosis [9]. Meanwhile,
the fault response of the bearing and gearbox serves as an impact component in the vibration
signal [10]. Unfortunately, the impulse response from the early fault is often submerged by
noise from other running components and environments because the impulse response is too
weak. Thus, an effective impulse signal detection method is necessary to evaluate the operating
status of the rotation machine. Envelope analysis can effectively detect impulse signals but is
ineffective in low signal-to-noise ratio (SNR) data. WT works well in heavy noisy signals but is
seriously limited by basic functions [11]. EMD and EEMD can adaptively decompose complex
signals into server modals but lack the rigorous mathematical theory. Fortunately, variational
mode decomposition (VMD) can decompose low SNR signals into server modes under the
number of suitable modes and the balance parameter [12]. Meanwhile, Wang et al. [13]
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investigated the filter property of VMD by simulation signals and
found that VMD can be implemented to detect impulse signals.
Additionally, Wang et al. [14] applied VMD to detect impulse
components in the signal from a rotor system. The results indicate
that VMD works better than EMD and EEMC. Li et al. [15] analyzed
the signal from a wind turbine by combining VMD and blind-source
separation to detect the bearing crack fault. Li et al. [16] introduced
VMD to calculate the central frequency and combined it with data-
driven time–frequency analysis to diagnose the gear fault. Diagnosing
faults by VMD provides advantages to identify different health
conditions [17].

Based on the aforementioned description, VMD has been widely
applied in the fault detection field. However, the mode number and
balance parameter are determined based on the experience in the
aforementioned articles. To solve this problem, many researchers
paid attention to determining the mode number and balance
parameter, and some results can be summarized as follows: first,
research combined VMD with some intelligent search algorithms,
such as grasshopper optimization algorithm, salp swarm algorithm,
and particle swarm optimization [18–21]. By using intelligent search
algorithms, themode number and balance parameter can be determined
adaptively and effectively. However, accepting the computational
efficiency is difficult. Second, research studies put forward some
other methods whose mode number is based on the fast Fourier
transformation (FFT) spectrum of the decomposition result, such as
independence-oriented VMD, adaptive VMD, and detrended
fluctuation analysis VMD (DFA-VMD) [22–24]. These methods can
adaptively select systemparameters.However, some parametersmust be
determined artificially, and the over-decomposition phenomenon
frequently occurs in these methods. Meanwhile, some researchers
used iteration methods to search system parameters for VMD. Such
methods include coarse-to-fine VMD and tentative VMD, which are
often designed in two stages, to determine the target sub-mode and
refine the sub-mode to enhance the impulse component. Finally, the
initial center frequency-guided VMD (ICF-VMD) method is proposed
in Refs. 25–Refs. 28. Compared with other adaptive VMD methods,
ICF-VMD works well to extract bearing fault features and has better
computational efficiency [29]. ICF-VMD is also designed in two stages:
to determine the center frequency by the energy fluctuation variance
and to refine the balance parameter to enhance the fault feature.
However, the energy fluctuation variance is sensitive to the random
impulse, and the balance parameter search process is limited in a narrow
range. Two drawbacks may explain the failure of extracting the bearing
fault feature.

To solve the aforementioned problems and improve the
computational efficiency, this study proposes a novel method
which combines an improved energy fluctuation index (IEFI) and
modified VMD (MVMD). IEFI, a method based on the original energy
fluctuation index and the subscript’s variance of the energy whose
value is greater than the mean, is used to determine the center
frequency for MVMD. Consequently, the mode number can be
fixed as one, and the balance parameter is the only parameter that
needs to be determined. In this research study, a novel balance
parameter search strategy from MVMD was used to extract the
bearing fault feature. The initial balance parameter is determined
based on the center frequency from the IEFI, which enhances the
adaptability of the search strategy. The MVMD, whose stop condition
is replaced by kurtosis, has good computational efficiency. In
summary, IEFI ensures that the proposed method works well to

process the signal, which includes some random impulses. The
novel search strategy and MVMD ensure the computational
efficiency of the proposed method. The effectiveness of the
proposed method is examined by the simulation and experiment
signals. The advantages of the proposed method are highlighted by
comparing it with some existing methods.

The rest of the paper is organized as follows. Section 2 describes
the proposed method. Section 3 organizes the results of the numerical
experiment, case study, and comparison. Section 4 presents a concise
summary.

2 The proposed method

This section introduces the basic theory about the IEFI and the
MVMD to help in understanding the proposed method.

2.1 Modified VMD

VMD decomposes signals into a series of sub-modes through
some Wiener filter banks. Its model is described as follows:

min

uk{ }, ωk{ } ∑K
k�1

zt δ t( ) + j

πt
( )*uk t( )[ ]e−jωk

t
�������

�������
2

2

⎧⎨⎩ ⎫⎬⎭

s.t.∑K
k�1

uk t( ) � f

, (1)

where uk and ωk denote the sub-mode and its center frequency,
respectively. By introducing Lagrangian multipliers and penalty
technology, Eq. 1 can be written as follows:

L uk{ }, ωk{ }, λ( ) � α∑K
k�1

zt δ t( ) + j

πt
( )*uk t( )[ ]e−jωk

t
�������

�������
2

2
+

f t( ) −∑K
k�1

uk t( )
���������

���������
2

2

+ 〈λ t( ), f t( ) −∑K
k�1

uk t( )〉
, (2)

where α is the balance parameter, and λ(t) means the Lagrangian
multiplier parameter. Equation 2 can be solved through an alternate
direction method of multiplier (ADMM) technology, and its process is
described in.

Algorithm 1: ADMM for VMD
Initialize: uk,ωk , λ, n ← 1

Update uk: û
n+1
k ω( ) ← f̂ ω( ) − ∑i≠kû

n+1
k ω( ) + λ̂

n
ω( )
2

1 + 2α ω − ωn
k( )2 , (3)

Updateωk: ω
n+1
k ←

∫∞
0
ω un+1

k ω( )∣∣∣∣ ∣∣∣∣2dω
∫∞
0
un+1
k ω( )∣∣∣∣ ∣∣∣∣2dω , (4)

Update λ: λn+1 ω( ) ← λn ω( ) + τ f ω( ) −∑
k

un+1
k ω( )⎛⎝ ⎞⎠. (5)

Convergence condition: ∑k‖ûn+1k − ûnk‖22/‖un+1k ‖22 < ε

According to, τ denotes the learning rate, which can be fixed as
zero when VMD is applied to denoise the sub-components instead of
recovering them. Understanding the mode number and the balance
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parameter is easy and important in VMD. According to Ref. 12, the
mode number can be fixed as one with the help of the right center
frequency. On the other hand, according to Ref. 30, this method is
applied to detect bearing fault features. Thus, the mode number is set
as one. This study applies envelope analysis to process the signal
filtered by VMD. Consequently, VMD is assumed to be the filter in this
study, and the learning rate τ should be 0 based on 11. Given that the
purpose of VMD in this study is not to recover sub-components, its
convergence condition can be modified to obtain a higher
computational efficiency. Kurtosis is widely applied as index for
diagnosing bearing fault, and it will be applied to construct a new
convergence condition for VMD in this study. The new convergence
condition is defined as follows:

kur un( )/kur un+1( )> η, (6)
in which, kur(·) denotes the kurtosis operator and η is set as 0.99, which
can ensure that the kurtoses of the two adjacent generations have the same
level. VMD, which is based on this convergence condition, is named
MVMD in this study. By modifying the convergence condition as Eq. 6,
MVMD not only has a good performance in extracting bearing fault
features but also has higher computational efficiency, which is friendly
with engineering applications.

2.2 Improved energy fluctuation index

Based on 11, Refs. 28, the number of modes can be set as one with
the help of a correct center frequency. According to Ref. 28, the center
frequency is determined based on the variance of energy fluctuations
whose mathematical formula can be written as:

A fj( ) �
������������������������
∑N
i�1

TF ti, fj( ),−TF ti, fj( )( )2

,

√√
(7)

where TF(t, j) is the time–frequency analysis result. In this research, it
is calculated by the short-time Fourier transform (STFT), which is
shown as follows:

TF t, f( ) � ∫+∞

−∞
x τ( )w t − τ( )e−2jπfτdτ. (8)

However, the variance of energy fluctuation is weak to resist the
interferences from the random impulses and neglects the period
property of the real fault response. To fill these gaps, an IEFI is
proposed to determine the center frequency. The new index is
defined as:

IEF fj( ) � A fj( ) × exp −var SS fj( ) − SF fj( )( ){ }. (9)

SS(fj) corresponds to the subscripts of the elements from the
second to the last, whereas SF(fj) corresponds to the subscripts of
the elements from the first to the last but one. For the periodic
impulses, all of the elements in [SS(fj) − SF(fj)] should be
constant. Thus, their variance should be equal to zero.
Therefore, the exponent term shown in Eq. 9 will be close to
one for periodic impulses. However, for aperiodic impulses and
noise, the distribution of the elements in [SS(fj) − SF(fj)] is
irregular. Thus, their variance is far from zero, which will
weaken the exponent term shown in Eq. 9. Based on the
aforementioned description, implementing IEFI to identify
periodic impulses is more accurate than implementing raw
energy fluctuations.

FIGURE 1
Flowchart of IEFI–MVMD
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2.3 The proposed method

The center frequency can be obtained from the IEFI, and the number
of modes is set as one based on it. To run VMD successfully, the balance
parameter should be determined first. Generally, the intelligent search
algorithm and iterative search process are applied to solve this problem.
However, accepting the computational efficiency of intelligent search
algorithm is difficult. Thus, this study proposes a novel iterative search
strategy to determine the balance parameter. The novel method is named
IEFI–MVMD,which combines the improved energyfluctuation index and
the modified VMD. The main steps of IEFI–MVMD are given as follows:

Step 1: The signal is processed by STFT with a window length of
512 and an overlap of 256.

Step 2: The IEFI is applied to evaluate the periodic impulse for each
frequency. Additionally, the center frequency is the one with the
largest IEFI.

Step 3: The balance parameter is initialized on the basis of

α � φ/min 0.5 − ωk,ωk( )2, (10)

where φ is defined as five based on Eq. 3. From Eq. 3, one can easily
understand that φ � 5 ensures the frequency response factor of the
frequency boundary is not over 1/10.

Step 4: The raw signal is processed by using the MVMD method
whose modes’ number is fixed as one, and the kurtosis of the
decomposition result is marked as K1.

Step 5: The balance parameter is replaced by δ × α, and δ is fixed as
1.5 in this study. The kurtosis of the new result is calculated and
marked as K2. If K1 is less than K2, then, Steps 4 and 5 are repeated
until K1 is larger than K2.

Step 6: The final result (corresponding to K1) is processed through
envelope demodulation technology to obtain the squared envelope
spectrum, which can clearly show the fault feature frequency.

To understand the IEFI–MVMD clearly, Figure 1 displays the
corresponding flowchart.

FIGURE 2
Simulation signal: (A) harmonic component y1, (B) periodic impulse component y2, (C) interface impulse component y3, and (D) composite signal y.

FIGURE 3
SES of the simulation signal.
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FIGURE 4
Results by the IEFI–MVMD of the simulation signal: (A) STFT, (B) IEFI, (C) TDW, and (D) SES.

FIGURE 5
Signals fromMFPT: (A) and (B) correspond to the TDW and SES of the healthy bearing, (C) and (D) correspond to the TDW and SES of the inner race fault
bearing, and (E) and (F) correspond to the TDW and SES of the outer race fault bearing.
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3 Case study

To examine the effectiveness of the proposed method, this section
introduces a simulation signal and two bearing fault signals.
Meanwhile, the superiority of the proposed method is highlighted
by comparing it with some existing methods.

3.1 Simulation

The simulation signal includes the harmonic component (y1), the
periodic impulse (y2), the aperiodic impulse (y3), and the Gaussian
noise (n(t)). The simulation signal can be written as follows:

y t( ) � y1 t( ) + y2 t( ) + y3 t( ) + n t( ), (11)
y1 t( ) � A × sin 2π × 200t( ), (12)

y2 t( ) � 2 × e0.1×2π×2000t sin 2π × 2000t ×
�������
1 − 0.12

√( ), (13)
y3 t( ) � 3 × e0.1×2π×1200t sin 2π × 1200t ×

�������
1 − 0.12

√( ). (14)
In the simulation signal, the frequency of the impulse signal is set

at fi � 40Hz. The sampling frequency is 20 kHz, and the length of the
simulation signal is 10 k points. The density of Gaussian noise is 0.4.
The simulation signal is illustrated in Figure 2. From Figure 2D, the
periodic impulses can be seen as seriously polluted by the noise. Even
in its squared envelope spectrum (SES) shown in Figure 3, observing
the features of the periodic impulses is difficult.

Then, the proposed method is applied to analyze this signal. To
begin with, the signal is analyzed by the IEFI, and Figure 4 shows the
results. As shown in Figure 4A, three interference impulses occur in
the simulation signal, which is consistent with the results shown in
Figure 2C. Figure 4B shows the result above IEFI. Additionally, the
frequency corresponding to the largest IEFI is 1,992 Hz, which is close
to the design frequency in Eq. 13. Then, the balance parameter is
determined by Eq. 9. Figure 4C is the time domain waveform (TDW)
of the results. Compared to the raw TDW shown in Figure 2D, some
periodic impulses are clearly shown in this figure. Importantly, the
fundamental feature frequency and its harmonics are clearly displayed
in its SES, as shown in Figure 4D. Consequently, our method succeeds
in detecting the feature of the periodic impulses from the signal
polluted by some interference impulses.

3.2 Case I

This section describes the implementation of the proposedmethod to
analyze some signals from the bearing fault experiment. The signals used
in this section come from the Society for Machinery Failure Prevention
Technology (MFPT). According to description in MFPT, the tested
bearing’s faults include healthy conditions, outer race fault conditions,
and inner race fault conditions. Figure 5 illustrates the TDW and the
corresponding SES of these signals used in this section. From Figure 4, the
amplitudes of the fault feature frequencies of the healthy bearing can be

FIGURE 6
Results of IEFI for signals fromMFPT: (A) and (B) correspond to the STFT and IEFI of the healthy bearing, (C) and (D) correspond to the STFT and IEFI of the
inner race fault bearing, and (E) and (F) correspond to the STFT and IEFI of the outer race fault bearing.
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FIGURE 7
Final results of the IEFI–MVMD for signals from MFPT: (A) and (B) correspond to the TDW and SES of the healthy bearing, (C) and (D) correspond to the
TDW and SES of the inner race fault bearing, and (E) and (F) correspond to the TDW and SES of the outer race fault bearing.

FIGURE 8
Results from FK for the MFPT signals: (A) and (B) correspond to the kurtogram and the corresponding SES of the inner race fault bearing; (C) and (D)
correspond to the kurtogram and the corresponding SES of the outer race fault bearing.
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described as extremely low. Figures 5C,D show the signal of the inner race
fault bearing. Moreover, some periodic impulses can be easily found in
Figure 5C. Moreover, some information about the inner race fault can be
easily found in its SES as shown in Figure 5D, but some interferences
occur in it. Figures 5E, F show the information about the signal of the
outer race fault. Unfortunately, it is difficult to find the periodic impulses.
Nonetheless, the 1xBPFO and 2x can be clearly observed in it.

Finally, this study calculates the ratio of the amplitudes between
the interference frequency (IF) and fundamental feature frequency to

show the superiority of the proposed method conveniently. A large
value of the ratio means a good result for extracting fault features. We
applied this ratio in the results of the inner race fault signal.

First of all, IEFI–MVMD is applied to process these signals.
Figure 6 shows the results about the IEFI, whereas Figure 6
presents the results of the proposed method. According to
Figure 5, the initial center frequencies for the healthy bearing, the
inner fault bearing, and outer fault bearing should be 6,103, 3,051, and
1,907 Hz, respectively. From Figure 7B, the amplitude for either BPFO

FIGURE 9
Results from ICF-VMD for the MFPT signals: (A) and (B) correspond to the TDW and the corresponding SES of the inner race fault bearing; (C) and (D)
correspond to the TDW and the corresponding SES of the outer race fault bearing.

FIGURE 10
Results from IEFI–VMD for the MFPT signals: (A) and (B) correspond to the TDW and the corresponding SES of the inner race fault bearing; (C) and (D)
correspond to the TDW and the corresponding SES of the outer race fault bearing.
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or BPFI is low, which means the bearing is healthy. The results of the
healthy bearing indicate that our method can accurately deal with
these kinds of signals. Figure 7D shows the SES of the results by
IEFI–MVMD for the inner race fault bearing signal. Carefully
comparing it with Figure 4D, the ratio shown in Figure 7D is 1.14,
which is larger than the ratio shown in Figure 4D. This finding means

that IEFI–MVMD enhances the inner race fault feature. Figure 7F
illustrates the SES of the results by IEFI–MVMD for the outer race
fault bearing signal. Comparing it to Figure 4C, the fault feature is
enhanced by IEFI–MVMD efficiency because the high-order
harmonics (3x, 4x, and 5x) can only be found in Figure 6F. Based
on the aforementioned description, our method can be said to reflect

FIGURE 11
Raw signals from CU-O: (A) TDW and (B) SES.

FIGURE 12
Results from IEFI–MVMD: (A) STFT, B) IEFI, (C) TDW, and (D) SES.

FIGURE 13
Results from FK for signal CU-O: (A) kurtogram and (B) SES.
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the real health status, including the health, inner race fault, and outer
race fault.

The signals of inner and outer race fault bearings are analyzed
by some other methods, including the fast kurtogram (FK), the
ICF-VMD, and a new method that combines the IEFI and the raw
VMD. For convenience, this method is named IEFI–VMD.

Figure 8 shows the results from FK. From Figure 8A, the
optimal demodulation frequency band (ODFB) by FK for MFPT-I
is in level 1 with the center frequency 6,103 Hz. In addition,
Figure 8B shows the SES of the signal based on this ODFB. From
Figure 9B, the fault features including 1 x BPFI, 2x, and 3x are
clearly shown. However, the ratio shown in its upward right
corner is lower than the result shown in Figure 7D, which
means that our method works better than FK to extract the
inner fault features. Moreover, Figure 8C shows that the ODFB
by FK for MFPT-O is located in level 6 with the center frequency
17,929 Hz. In addition, Figure 8D illustrates the SES of the signal
based on this ODFB. By comparing Figure 8D with Figure 5F, the
high-order harmonics (4x and 5x) can only be easily found in
Figure 8F. Thus, FK cannot catch up with the level of our method
in dealing with both the inner and outer race fault signals.

Figure 9 and Figure 10 show the results from ICF-VMD and
IEFI–VMD, respectively. Figure 9A shows the TDW of the results
by ICF-VMD for MFPT-I, and Figure 9B shows its SES. By
comparing Figures 8B, 6D, using the proposed method to
diagnose faults provides better performance than using ICF-
VMD because the amplitude of 1xBPFI is not the highest in SES
and other interferences exist in it. Figure 9B displays the TDW of
the results by ICF-VMD for MFPT-O, and Figure 9D shows the
corresponding SES. By comparing Figures 9D, 7F, determining that
the high-order fault features (3x and 5x) are weaker than the results
is not difficult, as shown in Figure 7D. Figure 10A shows the TDW
of the results by IEFI–VMD for MFPT-I, and Figure 10B shows its
corresponding SES. By comparing Figures 10B, 7D, determining
the differences between them is difficult. The ratio shown in the
upward right corner of Figure 10B tells us that our method has a
slight lead. Figure 10C shows TDW of the result by IEFI–VMD for
MFPT-O, and Figure 10D shows its SES. From Figure 10D, some
interference occurs near the fault feature 3x. Nonetheless, in
Figure 7F, it is shown clearly. This finding means that the
proposed method has a slight lead. More importantly, the
computation efficiencies of IEFI–MVMD and IEFI–VMD are

FIGURE 14
Results from signal CU-O: (A)ICF-VMD TDW, (B) ICF-VMD SES, (C) IEFI–VMD TDW, and (D) IEFI–VMD SES.

TABLE 1 Calculation time for each signal unit: (s).

Signal IEFI–MVMD IEFI–VMD ICF-VMD

MFPT-H 2.17 9.97 36.69

MFPT-O 7.07 40.86 53.57

MFPT-I 1.14 7.38 16.04

CU-O 2.77 6.30 19.88
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highly different, and we will show it toward the end of this paper to
highlight the superiority of our introduced method.

3.2 Case II

This section applies the introduced method to analyze another
fault bearing signal, which includes some interference impulses.
This kind of signal effectively highlights the advantage of our
method.

The signal comes from Curtin University. The type of the test
bearing is MB ER-16K, and a local defect exists in its outer race. For a
convenient description, this signal is marked as CU-O in this research
study. The shaft speed is 1,740 rpm, and the BPFO is 103.6 Hz from
Ref. 31. The sampling frequency is 51.2 kHz, and the length of the
signal applied in this study is 1 s.

Figure 11 shows the TDW and its SES. From Figure 11A, some
certain interference impulses (marked by red point) exist in the
measured signal. In Figure 11B, determining the fault feature
frequency and its harmonics is difficult due to the interference
from noise. Then, our method is applied to analyze this signal, and
Figure 12 shows the results. From Figure 12A, the center frequency
of the interference impulses is near 10 kHz. However, the result of
IEFI shown in Figure 12B tells us that the center frequency of the
periodic impulses should be 3,100 Hz, and the value of the
interference impulses is extremely low. This result means that
IEFI can effectively suppress the interference impulses.
Figure 12C shows the TDW of the result by our method for
CU-O. According to Figure 12C, some periodic impulses are
clearly shown and the interference impulses are suppressed
effectively. Figure 12D shows its SES. The fault features
including 1xBFO, 2x, 3x, and 4x are clearly shown in it.
Consequently, our method can be said to have succeeded in
detecting the bearing fault feature accurately and is strong
enough to resist the interference from the aperiodic impulses.

Signal CU-O is also processed by FK, ICF-VMD, and IEFI–VMD. In
addition, Figure 13 and Figure 14 show their results, respectively. From
Figure 13A, the ODFB FK can be seen at level 4.5 with the center
frequency of 9,066 Hz. Additionally, according to SES from Figure 13B,
only the fundamental fault feature frequency can be observed easily.
Evidently, a large gap exists between Figures 13B, 12D. Figure 14C shows
the TDW by ICD-VMD. According to Figure 14C, some interference
impulses remain included in thefiltered signal.Moreover, based on its SES
shown in Figure 14D, observing the fundamental fault feature frequency
and its harmonics is difficult due to the existence of noise and interference
impulses. Figure 14C shows the TDW by IEFI–VMD for signal CU-O,
and Figure 14D shows its SES. From Figure 14C, determining that the
interference impulses are suppressed effectively is easy. Subsequently,
according to SES from Figure 14D, the fundamental fault feature
frequency and its harmonics can be observed clearly. By comparing it
with the result shown in Figure 13D, we think they have the same level.
However, the computational efficiency of IEFI–VMD is much farther
from IEFI–MVMD.

To obtain the calculation time of IEFI–MVMD, IEFI–VMD,
and ICF-VMD accurately, each method is tested three times in
the same computer whose hardware is Intel(R) Core (TM) i7-
9700 CPU @ 3.00 GHz 3.00 GHz. The mean is applied to
evaluate the computational efficiency. Table 1 shows the
results. From this table, the calculation time of our method

is the lowest for each signal, which means our method has the
highest computational efficiency among the three methods.
Consequently, IEFI–MVMD can detect the bearing fault
feature with great computational efficiency.

4 Conclusion

This study proposes a novel method named IEFI–MVMD to
detect the fault feature of the bearing. IEFI–MVMD has a strong
power to resist interference from aperiodic impulses and has
high computational efficiency. Specifically, the guide-center
frequency is determined by the IEFI calculated based on the
subscript of the elements. If it is greater than the mean, the ability
to resist random impulses could be enhanced. The fault feature is
extracted by the MVMD whose convergence condition is built up
by decomposing kurtosis, which ensures that the proposed
method has high computational efficiency. The proposed
method succeeds in analyzing signals from inner and outer
race fault bearings and healthy bearings. The advancement of
the proposed method is highlighted by comparing it to other
existing methods.

Data availability statement

Publicly available datasets were analyzed in this study. These data
can be found here: https://www.mfpt.org/fault-data-sets/.

Author contributions

Funding acquisition: YL and YM; project administration: YL and
YM; conceptualization: YL and XC; validation: YL and YC; formal
analysis: YL and XC; investigation: YL and XC; data curation: YL and
XC; writing—original draft preparation: YL; and writing—review and
editing: YL. All authors have read and agreed to the published version
of the manuscript.

Funding

This workwas supported by theNational Natural Science Foundation
of China (Grant No. U2034209), the Postdoctoral Science Foundation of
China (Grant No. 2021M700590), and the Fundamental Research Funds
for the Central Universities (Grant No. 2022CDJJMRH-008).

Acknowledgments

The authors would like to thank all the people who participated in
the studies.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Frontiers in Physics frontiersin.org11

Liu et al. 10.3389/fphy.2023.1124485

89

https://www.mfpt.org/fault-data-sets/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1124485


Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

1. He B, Huang Y, Wang D, Yan B, Dong D. A parameter-adaptive stochastic resonance
based on whale optimization algorithm for weak signal detection for rotating machinery.
Measurement (2019) 136:658–67. doi:10.1016/j.measurement.2019.01.017

2. Zhu Z, He X, Qi G, Li Y, Cong B, Liu Y. Brain tumor segmentation based on the fusion
of deep semantics and edge information in multimodal MRI. Inf Fusion (2023) 91:376–87.
doi:10.1016/j.inffus.2022.10.022

3. Wang Y, Qi G, Li S, Chai Y, Li H. Body part-level domain alignment for domain-
adaptive person re-identification with transformer framework. IEEE Trans Inf Forensics
Security (2022) 17:3321–34. doi:10.1109/tifs.2022.3207893

4. Fan L, Chai Y, Chen X. Trend attention fully convolutional network for remaining useful
life estimation. Reliability Eng Syst Saf (2022) 225:108590. doi:10.1016/j.ress.2022.108590

5. Liu B, Chai Y, Liu Y, Huang C, Wang Y, Tang Q. Industrial process fault detection
based on deep highly-sensitive feature capture. J Process Control (2021) 102:54–65. doi:10.
1016/j.jprocont.2021.04.003

6. Liu B, Chai Y, Huang C, Fang X, Tang Q, Wang Y. Industrial process monitoring
based on optimal active relative entropy components. Measurement (2022) 197:111160.
doi:10.1016/j.measurement.2022.111160

7. Liu B, Chai Y, Jiang Y, Wang Y. Industrial Fault detection based on discriminant
enhanced stacking auto-encoder model. Electronics (2022) 11(23):3993. doi:10.3390/
electronics11233993

8. Zhu Z, Lei Y, Qi G, Chai Y, Mazur N, An Y, et al. A review of the application of deep
learning in intelligent fault diagnosis of rotating machinery. Measurement (2022) 206:
112346. doi:10.1016/j.measurement.2022.112346

9. Yu J, Hu T, Liu H. A new morphological filter for fault feature extraction of vibration
signals. IEEE Access (2019) 7:53743–53. doi:10.1109/access.2019.2912898

10. Zhang H, He Q. Tacholess bearing fault detection based on adaptive impulse
extraction in the time domain under fluctuant speed. Meas Sci Tech (2020) 31(7):074004.
doi:10.1088/1361-6501/ab7dec

11. Yan R, Gao RX, Chen X. Wavelets for fault diagnosis of rotary machines: A
review with applications. Signal Processing (2014) 96:1–15. doi:10.1016/j.sigpro.2013.
04.015

12. Dragomiretskiy K, Zosso D. Variational mode decomposition. IEEE Transactions
Signal Processing (2013) 62(3):531–44. doi:10.1109/tsp.2013.2288675

13. Wang Y, Markert R. Filter bank property of variational mode decomposition
and its applications. Signal Process. (2016) 120:509–21. doi:10.1016/j.sigpro.2015.
09.041

14.Wang Y, Markert R, Xiang J, ZhengW. Research on variational mode decomposition
and its application in detecting rub-impact fault of the rotor system. Mech Syst Signal
Process (2015) 60:243–51. doi:10.1016/j.ymssp.2015.02.020

15. Li Z, Jiang Y, Guo Q, Hu C, Peng Z. Multi-dimensional variational mode
decomposition for bearing-crack detection in wind turbines with large driving-speed
variations. Renew Energ (2018) 116:55–73. doi:10.1016/j.renene.2016.12.013

16. Li F, Li R, Tian L, Chen L, Liu J. Data-driven time-frequency analysis method based on
variational mode decomposition and its application to gear fault diagnosis in variable working
conditions. Mech Syst Signal Process (2019) 116:462–79. doi:10.1016/j.ymssp.2018.06.055

17. Li Y, Li G, Wei Y, Liu B, Liang X. Health condition identification of planetary gearboxes
based on variational mode decomposition and generalized composite multi-scale symbolic
dynamic entropy. ISA Trans (2018) 81:329–41. doi:10.1016/j.isatra.2018.06.001

18. Huang Y, Lin J, Liu Z, Wu W. A modified scale-space guiding variational mode
decomposition for high-speed railway bearing fault diagnosis. J Sound Vibration (2019)
444:216–34. doi:10.1016/j.jsv.2018.12.033

19. Xu B, Zhou F, Li H, Yan B, Liu Y. Early fault feature extraction of bearings based on
Teager energy operator and optimal VMD. ISA Trans (2019) 86:249–65. doi:10.1016/j.
isatra.2018.11.010

20. Zhang X, Miao Q, Zhang H, Wang L. A parameter-adaptive VMD method based on
grasshopper optimization algorithm to analyze vibration signals from rotating machinery.
Mech Syst Signal Process (2018) 108:58–72. doi:10.1016/j.ymssp.2017.11.029

21. Miao Y, Zhao M, Lin J. Identification of mechanical compound-fault based on the
improved parameter-adaptive variational mode decomposition. ISA Trans (2019) 84:
82–95. doi:10.1016/j.isatra.2018.10.008

22. Zhao X, Wu P, Yin X. A quadratic penalty item optimal variational mode
decomposition method based on single-objective salp swarm algorithm. Mech Syst
Signal Process (2020) 138:106567. doi:10.1016/j.ymssp.2019.106567

23. Diao X, Jiang J, Shen G, Chi Z, Wang Z, Ni L, et al. An improved variational mode
decomposition method based on particle swarm optimization for leak detection of liquid
pipelines. Mech Syst Signal Process (2020) 143:106787. doi:10.1016/j.ymssp.2020.106787

24. Li Z, Chen J, Zi Y, Pan J. Independence-oriented VMD to identify fault feature for
wheel set bearing fault diagnosis of high speed locomotive.Mech Syst signal Process (2017)
85:512–29. doi:10.1016/j.ymssp.2016.08.042

25. Lian J, Liu Z, Wang H, Dong X. Adaptive variational mode decomposition method
for signal processing based on mode characteristic. Mech Syst Signal Process (2018) 107:
53–77. doi:10.1016/j.ymssp.2018.01.019

26.Wang J, Zhan C, Li S, Zhao Q, Liu J, Xie Z. Adaptive variational mode decomposition
based on Archimedes optimization algorithm and its application to bearing fault diagnosis.
Measurement (2022) 191:110798. doi:10.1016/j.measurement.2022.110798

27. Liu Y, Yang G, Li M, Yin H. Variational mode decomposition denoising combined
the detrended fluctuation analysis. Signal Process. (2016) 125:349–64. doi:10.1016/j.sigpro.
2016.02.011

28. Jiang X, Wang J, Shi J, Shen C, Huang W, Zhu Z. A coarse-to-fine decomposing
strategy of VMD for extraction of weak repetitive transients in fault diagnosis of
rotating machines. Mech Syst Signal Process (2019) 116:668–92. doi:10.1016/j.ymssp.
2018.07.014

29. Gong T, Yuan X, Yuan Y, Lei X, Wang X. Application of tentative variational mode
decomposition in fault feature detection of rolling element bearing. Measurement (2019)
135:481–92. doi:10.1016/j.measurement.2018.11.083

30. Jiang X, Shen C, Shi J, Zhu Z. Initial center frequency-guided VMD for fault
diagnosis of rotating machines. J Sound Vibration (2018) 435:36–55. doi:10.1016/j.jsv.
2018.07.039

31. Qin Y, Jin L, Zhang A, He B. Rolling bearing fault diagnosis with adaptive harmonic
kurtosis and improved bat algorithm. Ieee Trans Instrumentation Meas (2020) 70:1–12.
doi:10.1109/tim.2020.3046913

Frontiers in Physics frontiersin.org12

Liu et al. 10.3389/fphy.2023.1124485

90

https://doi.org/10.1016/j.measurement.2019.01.017
https://doi.org/10.1016/j.inffus.2022.10.022
https://doi.org/10.1109/tifs.2022.3207893
https://doi.org/10.1016/j.ress.2022.108590
https://doi.org/10.1016/j.jprocont.2021.04.003
https://doi.org/10.1016/j.jprocont.2021.04.003
https://doi.org/10.1016/j.measurement.2022.111160
https://doi.org/10.3390/electronics11233993
https://doi.org/10.3390/electronics11233993
https://doi.org/10.1016/j.measurement.2022.112346
https://doi.org/10.1109/access.2019.2912898
https://doi.org/10.1088/1361-6501/ab7dec
https://doi.org/10.1016/j.sigpro.2013.04.015
https://doi.org/10.1016/j.sigpro.2013.04.015
https://doi.org/10.1109/tsp.2013.2288675
https://doi.org/10.1016/j.sigpro.2015.09.041
https://doi.org/10.1016/j.sigpro.2015.09.041
https://doi.org/10.1016/j.ymssp.2015.02.020
https://doi.org/10.1016/j.renene.2016.12.013
https://doi.org/10.1016/j.ymssp.2018.06.055
https://doi.org/10.1016/j.isatra.2018.06.001
https://doi.org/10.1016/j.jsv.2018.12.033
https://doi.org/10.1016/j.isatra.2018.11.010
https://doi.org/10.1016/j.isatra.2018.11.010
https://doi.org/10.1016/j.ymssp.2017.11.029
https://doi.org/10.1016/j.isatra.2018.10.008
https://doi.org/10.1016/j.ymssp.2019.106567
https://doi.org/10.1016/j.ymssp.2020.106787
https://doi.org/10.1016/j.ymssp.2016.08.042
https://doi.org/10.1016/j.ymssp.2018.01.019
https://doi.org/10.1016/j.measurement.2022.110798
https://doi.org/10.1016/j.sigpro.2016.02.011
https://doi.org/10.1016/j.sigpro.2016.02.011
https://doi.org/10.1016/j.ymssp.2018.07.014
https://doi.org/10.1016/j.ymssp.2018.07.014
https://doi.org/10.1016/j.measurement.2018.11.083
https://doi.org/10.1016/j.jsv.2018.07.039
https://doi.org/10.1016/j.jsv.2018.07.039
https://doi.org/10.1109/tim.2020.3046913
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1124485


Development and application of
automatic monitoring equipment
for differential deformation of
element joint in immersed tunnel
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The reliability of the immersed tunnel element joint is the key to determine
whether the immersed tunnel can operate safely. At present, the immersed
tunnel monitoring mostly pays attention to the joint opening and closing
amount and neglects the differential deformation of the joint. Based on the
immersed tunnel of Hong Kong-Zhuhai-Macao Bridge, combined with the
operating environment and structural characteristics of the immersed tunnel,
this paper introduces a close-range photogrammetry method to monitor the
differential deformation of the immersed tunnel element joint. Through
theoretical analysis, software and hardware development, laboratory test and
field test, the paper puts forward puts forward a comprehensive multi-
parameter evaluation and screening algorithm of boundary fitting ellipse
based on fitting rate, ellipticity and area difference and a micro-displacement
correction algorithm for camera based on three-dimensional calibration object,
and develops an automatic monitoring system equipment for differential
deformation of immersed tunnel element joint. Upon tests in tunnels, the
monitoring equipment is proven in automatic monitoring on differential
deformation of immersed tunnel element joints. This
equipment has been successfully applied to the E31~E32 element joint of
Hong Kong-Zhuhai-Macao Bridge immersed tunnel, which verifies the
effectiveness of the equipment from the perspective of practical engineering
application.

KEYWORDS

immersed tunnel, photogrammetry, element joint, differential deformation, automatic
monitoring

1 Introduction

With the continuous development in social and economic level and the continuous
improvement of people’s requirements for quality of life, the overall scale of China’s
transportation engineering construction shows a growing trend. Tunnel, serving as
engineering works of underpass, has demonstrated some incomparable advantages
over other projects. As a form of underwater tunnel, immersed tunnel is increasingly
favored by the engineering circle and becomes the choice of more and more cross-river
and cross-sea channels. The successful construction of Subsea Immersed Tunnel of Hong
Kong-Zhuhai-Macao Bridge is a herald of the maturing of the construction technology of
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the immersed tunnels. However, massive construction will
undoubtedly bring challenges to long-term operation safety
supervision, which makes the high-accuracy and non-contact
automated monitoring technology research and equipment
development increasingly attract people’s attention.

Research results at home and abroad show that the reliability of
immersed tunnel element joints is the key factor that determines the
safe operation of immersed tunnels. According to the analysis on the
investigation of immersed tunnels in service and literature data, the
main diseases of immersed tunnels can be divided into three
categories: main structural diseases, joint diseases and auxiliary
structural diseases. In terms of the causes of disease, the differential
deformation of element joints (see Figure 1) is the main cause of the
element structural cracks and joint water damage [1], so element joints
will be the focus of the operation safety monitoring of immersed
tunnels.

Relatively mature monitoring methods currently for structural
deformation of operating tunnels mainly include manual level
monitoring, automatic static level monitoring, automatic
vibrating string or optical fiber displacement meter monitoring,
and automatic total station monitoring. Thanks to the progress of
monitoring technology, new technologies represented by 3D laser
scanning, ultrasonic sensing technology and distributed optical
fiber have gradually emerged, which is a great impetus to the
technical progress of tunnel structural deformation monitoring.
For example: Yang Hao and Xu Xiangyang [2], et al. proposed a
deformation monitoring algorithm based on laser technology,
which can effectively improve the reliability of structural health
monitoring; Du Liming [3] et al. developed a 3D laser scanning-
based mobile tunnel monitoring system on the basis of in-depth
study of tunnel monitoring methods, with a cross-section
measurement accuracy of 1.1 mm; Xu Dongsheng et al. [4]
developed an automatic and wireless tunnel deformation

monitoring system based on ultrasonic sensing technology;
Hou Gongyu [5] et al. proposed a tunnel section deformation
sensing method based on distributed optical fiber sensing and
neural network. In term of deformation monitoring of immersed
tunnels, the immersed tunnel in Yongjiang, Ningbo, Zhejiang
Province measure the overall settlement of the tunnel with
levels, and then calculates the differential settlement between
elements through the settlement between adjacent measuring
points [6, 7]. Yuan Zheng [8] and others introduced the
trilateration network method into the joint deformation
monitoring of Ningbo Changhong Immersed Tunnel, realizing
the monitoring of joint relative displacement. The automatic total
station method was adopted by Hong Kong’s first cross-sea
immersed highway tunnel [9], realizing the automatic
monitoring of tunnel structural displacement. In the immersed
tunnel of Hong Kong-Zhuhai-Macao Bridge, a structural health
monitoring system was arranged at the beginning of the
construction, which realizes the automatic monitoring of the
opening and closing amount of 32 element joints through fiber
grating displacement meters, while the uneven settlement of the
joints is still made by manual monitoring with level. In summary,
the current displacement monitoring methods for tunnel
structures can be roughly divided into two categories, one is
the point contact measurement represented by static level and
displacement meter, and the other is the optical non-contact
measurement represented by automatic total station (measuring
robot). The former has high measurement accuracy, but one
sensor can only achieve the measurement of one displacement
index of one measuring point, and the monitoring accuracy is
greatly affected by the equipment installation quality. The latter
can achieve simultaneous measurement of multiple measuring
points and multiple displacement indexes, but the measuring
point accuracy is generally at millimeter level, which cannot

FIGURE 1
Schematic diagram of the differential deformation mode between the immersed tunnel model and the element joints.
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meet the requirements for the observation of the small
deformation of tunnel structure. In addition, measuring robots
have problems such as high installation costs and easy off-target in
long-term operation.

With the development of science and technology and the
breakthrough of optical measurement technology, measurement
and detection technology based on machine vision [10–12] has
been widely valued by the industry, thus providing a new idea for
non-contact, high-accuracy automatic monitoring of engineering
structure displacement [13]. In civil engineering, relevant
technical research and equipment development have emerged
in the fields of structural experiment [14, 15], building
structure [16, 17], bridge structure [18–20], hydraulic structure
[21, 22], foundation pit [23, 24], slope engineering [25, 26]
monitoring, etc. The research field mainly covers system
design, equipment selection, image processing algorithm,
engineering environment impact, and equipment R&D and
application [27, 28]. In the field of tunnel and underground
engineering, Cheng Zheng et al. [29] also proposed a new
method in 2012 for long-span underground space structure
monitoring based on digital image processing measurement
technology, but neither corresponding monitoring equipment
has been developed, nor engineering application has been
formed, and few relevant studies have been reported since. So
far, no mature visual measurement equipment suitable for the
deformation monitoring of tunnels and underground engineering
structures has been developed.

In conclusion, the displacement monitoring of tunnel and
underground engineering structure is different from that of
above-ground structures, and the existing monitoring
technology and equipment are faced with many problems, such
as complex installation, low monitoring accuracy and high
application cost, which are difficult to meet the needs for
tunnel deformation monitoring. The research and development
of monitoring equipment based on machine vision and deep
learning can better solve the above contradictions [30], but it
needs to solve the problems such as the difficulty in extracting
structural feature displacement under tunnel environmental
conditions and the long-term stability of monitoring cameras.
There is an urgent need for the development of new monitoring
equipment to meet the monitoring needs of immersed tunnels, so
as to provide data support for the safety assessment of tunnel
structures. Therefore, taking the immersed tunnel of Hong Kong-
Zhuhai-Macao Bridge as the background and combined with the
operating environment and structural characteristics of the
immersed tunnel, this paper introduces an automatic
monitoring equipment for the differential deformation of
immersed tunnel joints developed based on the basic principles
of photogrammetry and image recognition, which realizes non-
contact high-accuracy, high-frequency and all-around
monitoring of multi-measuring points and multi-degree of
freedom deformation immersed tunnel element joints, and
successfully improves the measurement accuracy of traditional
engineering structure displacement measurement based on
optical principle to submillimeter level, further reducing the
monitoring cost. The equipment has been successfully put into
service in actual projects, supplementing the basic data for the
intelligent simulation analysis of the immersed tunnel of Hong
Kong-Zhuhai-Macao Bridge.

2 Measurement principle and system
design

2.1 Measurement principle

For the purposes of obtaining the tunnel structure
displacement, it is planned to use two “back to back” industrial
cameras to obtain the 2D images of the reference point and the
point to be measured respectively, see Figure 2. When the
monitoring camera and the reference point are located in the
stable area of the tunnel, according to the image-forming
principle of cameras, if it is assumed that each image can be
regarded as an array with the size of m × n, then each element of m

FIGURE 2
Imaging effect of circular reflective mark.

FIGURE 3
Comparison of imaging effects before and after slight changes in
camera pose.
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rows and n columns corresponds to each pixel, and an O1-mn
pixel coordinate system with the upper left corner of the image as
the origin of coordinates can be defined on the image, see Figure 3.
To represent the pixel points in the pixel coordinate system by the
method of physical quantities, it is necessary to establish an image
coordinate system O-uv with the center point of the image as the
origin of coordinates, see Figure 3. Through the conversion
relationship between the pixel coordinate system and the
image coordinate system, see Formula 1, the pixel coordinates
of the point to be measured and the reference point in the image
can be converted into image coordinates. In view of the fact that
the images of the front and rear cameras are not in the same field
of view, a reference coordinate system O2-xy (see Figure 3) needs
to be established to convert the images of the reference point and
the image of the monitoring point to be monitored to a unified
reference coordinate system, and then calculate the displacement
change of the point to be monitored relative to the reference point
(δx, δy). However, in an actual engineering environment, the
change of camera installation attitudes caused by factors such as
thermal expansion and contraction and structural fatigue cannot
be guaranteed, but as long as the change of camera attitudes is
very small, and the target to be monitored and the reference target
are still located in the field of view of the cameras, the image
change caused by the change of the camera attitudes will only lead
to overall image displacement, and will not affect the
displacement change of the point to be measured relative to
the reference point, as shown in Figure 3.

m � m0 + u

du

n � n0 + v

dv

⎧⎪⎪⎪⎨⎪⎪⎪⎩ 0
m
n
1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � 1/du s1 m0

0 1/dv n0
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ × u
v
1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (1)

Where, (m, n) represents the column coordinate and row
coordinate of each pixel in the image; s1 represents the non-
vertical factor of the x and y axes of the imaging plane,
generally 0; (m0, n0) represents the projection coordinates of the
camera optical center on the image; du and dv are the pixel sizes of
the camera.

2.2 System design

The whole monitoring system is designed to be composed of three
parts: the artificial cooperation reflective sign fixed in the displacement
area of the tunnel to be monitored, the back to back image measuring
station and the reference manual cooperative standard frame fixed in
the stable area of the tunnel, as shown in Figure 4. The reference
manual cooperative standard frame also provides reference coordinate
system and camera attitude correction. The core equipment of the
system is the back to back image measuring station, which is
composed of multiple high-resolution digital cameras and camera
synchronization controllers connected together. One of the cameras is
equipped with a short-focus lens for imaging of the reference artificial
cooperation sign frame located in the stable area of the tunnel, while
the rest of the cameras are equipped with a long-focus lens for imaging
of the reflective cooperation sign arranged in the deformation
monitoring area of the tunnel structure in the distance. The layout
of the components of the image measuring station is shown in
Figure 5.

3 Structural displacement real-time
monitoring technology

3.1 Sub-pixel threshold segmentation and
contour extraction of monitoring point
images

Since the image of the reflective sticker obtained is large and there is
external environmental interference [31], in order to accurately extract
the coordinates of the center of the reflective sticker, it is necessary to
make ROI selection for the image, see Figure 6, and then conduct sub-
pixel threshold segmentation and edge detection for each ROI region. In
sub-pixel threshold segmentation, the first step is to perform bilinear
interpolation algorithm processing for the gray value edge between two
adjacent pixels on the image of the ROI region in the horizontal
dimension and vertical dimensions (see Figure 7) to transformed the
image of the ROI region at pixel-level accuracy to sub-pixel level

FIGURE 4
Layout and installation diagram of monitoring system.
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accuracy [32]. After bilinear interpolation, the gray value at pi+x,j+y can
be calculated according to Formula 2. The last step is to perform
threshold segmentation according to Formula 3 to obtain the sub-pixel
precision edges of the image of the ROI region for center coordinate
extraction.

gi+x,j+y ≈ 1 − x, x[ ] gi,j gi,j+1
gi+1,j gi+1,j+1

[ ] 1 − y
y

[ ] (2)

Where, i, j represent the coordinate position of the image pixel (the
value is a non-negative integer); x. y is the weight carried by the pixel
value at the vertex during interpolation (this is a floating point number
in the range of [0,1]); gi,j, gi+1,j , gi,j+1 and gi+1,j+1 are the gray values of
four adjacent pixels an arbitrary 2 × 2 area on the image.

S � r, c( ) ∈ R gmin ≤fr,c ≤gmax

∣∣∣∣{ } (3)

Where, fr,c is the gray value at an arbitrary pixel point (r, c) in the ROI
region, gmin is the gray value of the pixel point at the peak on the gray
histogram of the ROI region, gmax is the gray value of the pixel point at
the peak value on the gray histogram of the ROI region, and S is the set
of pixels satisfying Formula 3 on the ROI region.

3.2 Extraction of center coordinates of
monitoring points based on ellipse fitting

Least square fitting [33] is the most common fitting method in
ellipse fitting. However, the fitting degree between the ellipse and the
original boundary is not taken into account when this method is used
for ellipse fitting, and the resulting ellipse is larger than the actual one.
The results of this method are often not satisfactory, which makes it
necessary to evaluate and screen the fitted ellipse. In this paper, a
boundary fitting ellipse multi-parameter comprehensive evaluation
and screening algorithm based on fitting rate, ellipticity and area
difference is proposed. Assuming that the equation of the fitted ellipse
(see Figure 8) is as shown in Formula 4, P (m, n) is an arbitrary
boundary point used for the fitting, and Q (x, y) is the intersection
point of the normal line passing through Point P and the fitted ellipse,
the coordinates of Point Q can be calculated from Equation Set (5).
Traverse each boundary point and calculate the vertical distance d
between the boundary points and the fitted ellipse according to
Formula 6, denote the points whose vertical distance d is less than
a certain threshold Td as matching points, and define the ratio η of the
number of matching points (Pm) to the total number of boundary
points (Pe) involved in the fitting as the elliptic fitting rate, see
Formula 7. In addition, define the ellipticity ρ to evaluate the
fitting degree of the fitted ellipse towards a circle, see Formula 8,
and define the area difference ΔArea to evaluate the proximity of the
fitted ellipse to the ideal ellipse, see Formula 9.

FIGURE 5
Design scheme of back to back measuring station.

FIGURE 6
ROI selection of reflective sticker images.
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Ax2 + Bxy + Cy2 +Dx + Ey + F � 0 (4)
Ax2 + Bxy + Cy2 +Dx + Ey + F � 0

n − y( ) 2Ax + By +D( ) � m − x( ) 2Cy + Bx + E( ){ (5)

d �
����������������
m − x( )2 + n − y( )2√

(6)

η � Pm

Pe
(7)

ρ � b

a
(8)

ΔArea � Area0 − Areaf
∣∣∣∣ ∣∣∣∣ (9)

Where, A—F are the fitting coefficients of the ellipse fitting equation; a
is the major axis of the fitted ellipse; b is the minor axis of the fitted

FIGURE 7
Subdivision process of pixel-level units by bilinear interpolation.

FIGURE 8
Fitting the ellipse boundary.

FIGURE 9
Algorithm flow chart.
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ellipse;Area0 is the area of the ellipse expected to be obtained by fitting
under ideal conditions, andAreaf is the area of the ellipse obtained by
least square fitting under actual conditions.

The detailed realization process of boundary fitting ellipse multi-
parameter comprehensive evaluation and screening algorithm based
on fitting rate, ellipticity and area difference is as follows.

The boundary fitting ellipse multi-parameter comprehensive
evaluation and screening algorithm based on fitting rate, ellipticity
and area difference involves segmentation of image boundary,
extraction of image boundary points, calculation of fitting rate and
ellipticity, and selection of optimal ellipse, etc. The detailed realization
process is as follows, See Figure 9.

After sub-pixel threshold segmentation and contour extraction,
the center coordinates of one of the ROI regions are obtained
according to the above ellipse fitting and screening algorithm. The
processing effect is shown in Figure 10. As can be seen from the figure
that after the ROI region is selected, we can detect the contour of the
reflective sticker very well by setting the threshold, and then obtain a
fitted ellipse. In the figure above, the coordinates of the center of the

ellipse are (251.834991 and 219.546951), which are coordinates at the
sub-pixel accuracy level.

3.3 Algorithm for transformation of
monitoring point displacement in reference
coordinate system

Those obtained by the above algorithm are the pixel coordinates of
the points to be measured, while the structural displacement
monitoring needs to obtain the displacement changes of the points
to be measured relative to the reference point, so it is necessary to solve
the conversion relationship between pixel coordinate system and
reference coordinate system. In this case, it is necessary to
complete the measurement with the aid of a total station. First,
place reflective stickers at the monitoring parts of the tunnel, and
use a total station to obtain the three-dimensional coordinate points Pi
(i = 1, 2, 3,. . .,) of the center of each reflective sticker. Similarly, use a
laser LED light to illuminate the reflective stickers. Then, collect the
image of the reflective stickers, extract the ROI region in the image,
obtain the reflective sticker area image (as shown in Figure 11),
perform ellipse fitting for each ROI, and obtain the center
coordinates (u, v). In the meantime, conduct distortion correction
according to the distortion correction model shown in Formula 10,
and use the corrected pixel coordinates as the initial coordinate values
of the monitoring points.

dx � x k1r + k2r
2 + p1r + p2r

2[ ]
dy � y k1r + k2r

2 + p1r + p2r
2[ ]{ (10)

Where, dx and dy are distortion values, p1 and p2 are tangential
distortion coefficients, and k1 and k2 are radial distortion
coefficients; r � ������

x2 + y2
√

.
Calculate the rotation R and translation t from the reference

coordinate system set by the total station to the monitoring camera
coordinate system through PnP algorithm [34] based on the
corresponding relationship between the 2D coordinate point of the
center of the circle and the 3D coordinate point obtained by the total
station, and on this basis, transform the 3D coordinate point Pi
obtained by the total station to the monitoring camera coordinate
system. The position relationship between the reference coordinate

FIGURE 10
ROI area ellipse detection.

FIGURE 11
Extraction of ROI area of monitoring points.
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systems of the monitoring camera and the total station is shown in
Formula 11:

Pci � R t
0T 1

[ ] · Pi (11)

Assuming that the position attitude relationship between the two
cameras obtained through external parameter calibration is TAB, and
the initial position of the calibration camera relative to the reference
marker (A marker considered to be fixed and immovable) is H, then
the three-dimensional coordinates Pwi of the monitoring point Pci in
the marker coordinate system can be calculated according to
Formula 12:

Pwi � HTABPci (12)

3.4 Correction of measurement deviation
caused by small camera displacement

When there is human interference or when the tunnel where the
camera is installed deviates, the initial position of the measuring point
viewed by the monitoring camera will change [35]. In this case, the
initial position of the monitoring point needs to be corrected with the
calibrated camera parameters. Assuming that the coordinates of the
monitoring point in the reference marker coordinate system are Pwi,
and the positional relationship of the calibration camera relative to the
reference marker is Hnew, when the position information of the
calibration camera changes, the position coordinates of the
monitoring point Pi after correction can be calculated according to
Formula 13:

Pi � TABHnewPwi (13)

4 Hardware selection and structure
design

In order to meet the structural displacement measurement
function in tunnel light environment, the measuring station mainly
consists of industrial camera, lens, light source, IPC, switch and power
supply. The industrial camera and supporting lens are mainly for
image acquisition of the points to be measured, the light source can

provide a stable light environment for image acquisition, the switch is
designed for image data transmission, and the built-in image analysis
algorithm of the IPC is used to extract the monitoring results and
output them externally. In terms of camera selection, since the tunnel
structure displacement monitoring target is basically in a static state,
the requirements for camera acquisition speed are not high, but
considering that the device works outdoors, the power
consumption of the device should be low. In addition, considering
the popularization of the equipment, it is appropriate to select an
industrial camera with CMOS chip as the image acquisition
equipment. Based on the requirements of monitoring accuracy and
environmental applicability, the selected industrial camera has a
resolution of 2,592*2048, a photosensitive element size of
12.4 mm*9.8 mm, and a pixel size of 4.8*4.8 μm. In the aspects of
light source selection, we can compare the test results of laser and LED
light sources, see Figure 12. Laser fill-in light produces speckles that
change with time, and such circular speckles greatly affect the accuracy

FIGURE 12
Comparison of imaging effects of different light sources.

TABLE 1 Test results of the best field of view width for different lenses.

Lens (mm) Maximum width of field of view (m)

50 60 70

25 14 14 14

35 14 14 14

50 10 12 13

100 3 4 6

FIGURE 13
Hardware structure diagram.
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of the later identification point extraction algorithm, thus affecting the
detection accuracy of the algorithm. The infrared fill-in light of LED
produces uniform and stable light without speckle, which is suitable
for image processing algorithms. However, the power of infrared fill-in
lights is weaker than that of laser lights, so multiple infrared fill-in
lights are required for filling the light at the same time. When it comes
to lens selection, the test results of the maximum clear imaging range
of lenses with different focal lengths at different shooting distances are
shown in Table 1. As can be seen from the table, the larger the focal
length of the lens, the closer the shooting distance, the smaller the field
of view, and when the camera pixel is fixed, the higher the accuracy of
the measurement results will be. Considering accuracy, cost and actual
field of view demand, 100 mm lens is selected as the final selection,
when the theoretical measurement accuracy of the tested camera can
reach 0.1 mm, the field of view can cover the monitoring target points
in the area to be measured. The structural design and assembly of the
back to back measuring station are shown in Figures 13, 14.

5 Test and analysis of equipment
measurement accuracy

In order to ensure the engineering applicability of the
developed automatic monitoring equipment for differential
deformation of immersed tunnel joints, the accuracy and
stability tests were carried out on the basis of the 200 m long 1:
1 experimental tunnel of the National Engineering Research Center
for Highway Tunnels.

5.1 Test method

Three measuring points were arranged on the left, middle and
right) at every 10 m interval within the range of 10–70 m from the
camera, the optical mobile platforms with an accuracy of 0.01 mm
were placed on the points to be measured in sequence, see
Figure 15, and the camera field of view was set to 5 m. After
adjusting the brightness and position of the LED, the LED light
was turned on, and a filter was placed on the camera. The reflective
stickers on each point to be measured were moved transversely and
horizontally by 0.2, 0.3, 0.4, and 0.5 mm to simulate the small
deformation of the tunnel structure. In the meantime, the camera
parameters were adjusted to capture clear images, and the image
processing algorithm was used to extract the center displacement of
the reflective sticker images and test the measurement accuracy of
the equipment at different measuring points. To ensure the
accuracy of the tests, three measurements were made for each
measuring point position to get an average value.

5.2 Analysis of test results

The extracted measurement error statistics under different
working conditions are shown in Figure 16. As can be seen from
Figure 16, when the distance between the camera and the target point
was 70 m, and when the structural displacement was between 0.2 and
0.5 mm, the test error of the equipment measurement results was
large, and the test data was abnormal. Therefore, the effective
monitoring range of the monitoring equipment is 60 m in the
longitudinal direction. A camera with a fixed focal length had a
coverage of 20 m (longitudinal) * 5 m (transverse), and a minimum
recognizable displacement of 0.2 mm. The measurement error
gradually increased with the distance from the target point. In the
same cross section, the measurement errors of different measuring
points were fairly close, that is, the left or right deflection of the
cameras had little impact on the measurement errors. Therefore, in
practical projects, full coverage of the entire cross section can be
achieved by installing monitoring equipment on the side walls of
tunnels. Within the above effective measurement range, the measuring
equipment had an average measurement error of 0.1 mm and a
maximum measurement error of 0.19 mm. To sum up, within the
effective measurement range, the equipment can identify
deformations of 0.2 mm, with an average measurement error
of ±0.1 mm, so it can meet the monitoring accuracy requirements
of operating tunnel structures.

6 Engineering application verification

6.1 Selection of monitoring parts and
installation of instruments and equipment

Differential settlement of elements and disharmonic
deformation between elements in immersed tunnels are the main
reasons for various diseases such as concrete structure cracks and
joint leakage. Currently, the immersed tunnel of Hong Kong-
Zhuhai-Macao Bridge has relatively comprehensive monitoring
contents and indicators, but the monitoring frequency,
monitoring methods and measuring point layout of some key

FIGURE 14
Hardware structure assembly.
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indexes cannot meet the requirements for intelligent simulation
analysis of the immersed tunnel. According to the current joint
opening and closing amount and foundation settlement monitoring
data, E31~E32 element joints have the largest structural
displacement, and the safety risk is high. In order to meet the
needs for joint safety assessment, E31~E32 element joints
(Zhuhai-Macao direction) were selected to install element joint
differential deformation monitoring system equipment to
supplement the monitoring of the lateral and vertical differential
deformation of joints. The set sampling frequency was 1 min/time. A
set of reflective signs were arranged on the middle wall (Measuring
Point 1), roof (Measuring Point 2) and side wall (Measuring Point 3)
of the joints. The back to back measuring station was installed on the
element structure above the side wall decorative plate 30 m away
from the joint. The reference point was located on a stable structure
50 m away from the measuring station, and the installation height
was basically consistent with the measuring station. The layout of
measuring points and equipment installation are shown in Figure 4.

6.2 Monitoring results and application effect
analysis

After 7 months (210 days) of testing, the long-term stability and
reliability of the monitoring equipment were verified. Analysis was
made on the differential deformation monitoring results of the
monitored joints, and time-domain analysis (see Figures 17, 18)
and boxline diagram analysis (see Figures 19, 20) were performed
on the raw data extracted from the field monitoring of the last 45 days
(16 April 2022–31 May 2022).

Horizontal differential deformation: As can be seen from
Figure 17, the horizontal differential deformation of
E31~E32 element joints can be divided into two stages. The first
stage is before 20 May 2022, when it was at a relatively stable level, and
the horizontal differential deformation at the measuring point of the
roof showed a slight positive increasing trend. Through the combination

FIGURE 15
Schematic diagram of solid tunnel test.

FIGURE 16
Statistical histogram of absolute value of test error.

FIGURE 17
Scatter diagram of time domain analysis on monitoring results of
horizontal differential deformation of joints at different measuring
points.
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with Figure 19, it can be seen that after removing the outliers, the mean
values of the three measuring points basically coincided with the modes,
the average value of the horizontal differential deformation (X1) at the
measuring point of the middle wall was 0 mm, and the distribution of
the monitoring data was mainly between −0.2 and 0.2 mm; the mean
value of the horizontal differential deformation (X2) at the measuring
point of the roof was 0.5 mm, and the distribution of the monitoring
data was mainly between 0.4 and 0.6 mm; and the mean value of the
horizontal differential deformation (X3) at the measuring point of the
side wall was 0 mm, and the distribution of the monitoring data was
mainly between −0.3 and 0.3 mm. At this stage, except for the 0.5 mm
horizontal differential deformation accumulated at the measuring
points of the roof, the horizontal deformation of the middle wall
and the side wall was relatively small and stable. The fluctuation of
the monitoring data was caused by the measurement error of
instruments and equipment or periodic vibration noise. The second
stage is fromMay 20 to 31 May 2022. During this period, except for the
measuring point of the side wall still maintaining the original stable

deformation level, the horizontal difference deformation at the
measuring points of both the middle wall and the roof suddenly
accelerated. The horizontal differential deformation at the measuring
point of the roof experienced a sudden change, with an increase of about
1mm, and then entered the stable deformation stage again, with the
deformation trend basically consistent with the previous stage, showing
a slight increase trend. However, the horizontal differential deformation
at the measuring point of the middle wall showed a continuous increase
trend, with a deformation rate of about 0.3 mm/day. According to the
comparative analysis of Figures 19, 20, the horizontal differential
deformation at the measuring points of the middle wall and the roof
in the two stages had a significant shift in the distribution position of
boxline diagram, showing a significant positive increase, with the
measuring point of the middle wall increasing by 3 mm and the
measuring point of the roof increasing by 1 mm.

Vertical differential deformation: As can be seen from Figure 18, the
vertical differential deformation of E31~E32 element joints can also be

FIGURE 18
Scatter diagram of time domain analysis of monitoring results of
vertical differential deformation of joints at different measuring points.

FIGURE 19
Analysis of box line analysis of joint difference deformation
monitoring at different measuring points from 16 April 2022 to 20 May
2022.

FIGURE 20
Analysis of box line analysis of joint difference deformation
monitoring at different measuring points from 20 May 2022 to 31 May
2022.

FIGURE 21
Change rule of element joint opening and closing amount at
different measuring points.
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divided into two stages. The first stage is before 20May 2022, when it was
at a relatively stable level, and the vertical differential deformation at the
measuring point of the middle wall showed a slight negative increasing
trend, and the vertical differential deformation at the measuring point of
the roof had a slight positive increasing trend. Through the combination
with Figure 20, it can be seen that after removing the outliers, the mean
values of the three measuring points basically coincided with the modes,
the average value of the vertical differential deformation (Y1) at the
measuring point of the middle wall was −0.3 mm, and the distribution of
the monitoring data was mainly between −0.5 mm and −0.1 mm; the
mean value of the vertical differential deformation (Y2) at the measuring
point of the roof was 0 mm, and the distribution of the monitoring data
was mainly between −0.1 and 0.1 mm; and the mean value of the vertical
differential deformation (Y3) at the measuring point of the side wall
was −0.2 mm, and the distribution of the monitoring data was mainly
between −0.3 and 0.1 mm. The vertical deformation of each measuring
point in this stage was relatively small and stable. The fluctuation of the
monitoring data was caused by themeasurement error of instruments and
equipment or periodic vibration noise. The second stage is fromMay 20 to
31 May 2022. During this period, except for the measuring point of the
roof still maintaining the original stable deformation level, the vertical
difference deformation at the measuring points of both the middle wall
and the side wall suddenly accelerated. The vertical differential
deformation at the measuring point of the side wall formed a
parabolic growth, and the growth rate gradually decreased, with an
increase of about 1 mm. However, the vertical differential deformation
at the measuring point of the middle wall showed a trend of exponential
increase, the growth rate gradually increased, with a deformation rate of
about 0.25 mm/day. According to the comparative analysis of Figures 19,
20, the vertical differential deformation at the measuring points of the
middle wall and the side wall in the two stages had a significant shift in the
distribution position of boxline diagram, showing a significant positive
increase, with the measuring point of the middle wall increasing by
2.5 mm and the measuring point of the roof increasing by 1 mm.

In order to further demonstrate the reliability of joint monitoring
results, other monitoring indexes of element joints were extracted for
comparative analysis. For the moment, two fiber grating displacement
meters are installed at E31~E32 element joints (Zhuhai-Macao direction)
to monitor the opening and closing amount of the joints, which are
respectively located at the measuring point of the middle wall of the
central pipe gallery and the measuring point of the roof of the vehicular
tunnel. See Figure 21 for the variation law of the opening and closing
amount of the joints at the two measuring points on E31~E32 element
joints (Zhuhai-Macao direction) with time from 1 May 2022 to 30 May
2022. It can be seen from Figure 21 that from 20 May 2022, the opening
and closing amount of the element joints also shows a certain increasing
trend, which further demonstrates the reliability of the above monitoring
results.

Based on the analysis of the monitoring results of the two
monitoring indicators of the above two monitoring equipment,
since 20 May 2022, the differential deformation of the joints and
the opening and closing amount of the joints of E31~E32 element
joints increased suddenly, and showed a trend of continuous
increase, lasting for a long time. The preliminary judgment is that
there may be abnormal changes in the environmental conditions of
the element joint (differential settlement of the foundation or change
in the thickness distribution of the overburden), which in turn
caused lateral differential deformation and longitudinal opening
and closing of the element joint. Considering that the differential

deformation of the three parts measured was inconsistent, it is
analyzed that there may be a certain amount of torsional
deformation in the element joints. However, the GINA waterstop
designed at present is controlled based on the amount of
compression. Excessive shear deformation may have a greater
impact on the watertightness of the joint, so there is a big
potential safety hazard. Therefore, it is necessary to strengthen
the monitoring of the element joint. When necessary, special
detection of the foundation and the overburden and special
assessment of joint safety can be carried out. In case of long-term
irreversible shear deformation or sudden change of deformation
value, intervention should be carried out in advance to ensure
operation safety.

7 Conclusion

For the purposes of achieving the automatic monitoring of
differential deformation of immersed tunnel joints,
photogrammetry and image recognition technology are introduced
in this paper. Based on the joint characteristics of immersed tunnels, a
set of automatic monitoring equipment for differential deformation of
immersed tunnel joints has been developed after a lot of efforts from
technical principles to image recognition algorithms, from hardware
structure design to system software development, which has solved
practical engineering problems and achieved good application results.

(1) A boundary fitting ellipse multi-parameter comprehensive
evaluation and screening algorithm based on fitting rate,
ellipticity and area difference is proposed, and the optimal
fitted ellipse boundary and monitoring point center coordinates
of the image of ROI region are extracted, as improves the
measurement accuracy of monitoring equipment.

(2) A camera small displacement correction algorithm based on
stereo calibration object is proposed, which eliminates the
measurement error caused by the change in camera attitude
during the long-term operation of the monitoring equipment
and solves the problem in long-term stability of the monitoring
equipment.

(3) According to the test results in an actual tunnel, the effective
monitoring range of the monitoring equipment is 60 m in the
longitudinal direction, the minimum identifiable structural
displacement is 0.2 mm, and the average measurement error
is ±0.1 mm, which realizes the high-accuracy non-contact
automatic monitoring of the differential deformation of
immersed tunnel element joints.

(4) The test results of the application in the immersed tunnel project
of Hong Kong-Zhuhai-Macao Bridge show that the equipment
has a long-term stability and reliability. The equipment has
successfully captured the abnormal deformation of
E31~E32 element joints in the supporting project, providing
effective data support for the safety assessment of the
engineering structure.

(5) This equipment is still in its engineering prototype stage at
present, requiring a lot of efforts in engineering application
verification and optimization to ensure good engineering
applicability, stability and reliability. With the progress of
technology and the reduction of camera cost, this equipment is
expected to have a broader application prospect.
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Real-world low-light image
enhancement via domain-gap
aware framework and reverse
domain-distance guided strategy
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Low-light image enhancement (LLIE) has high practical value and development
potential in real scenarios. However, the current LLIE methods reveal inferior
generalization competence to real-world low-light (LL) conditions of poor
visibility. We can attribute this phenomenon to the severe domain bias
between the synthetic LL domain and the real-world LL domain. In this article,
we put forward the Domain-Gap Aware Framework, a novel two-stage framework
for real-world LLIE, which is the pioneering work to introduce domain adaptation
into the LLIE. To be more specific, in the first stage, to eliminate the domain bias
lying between the existing synthetic LL domain and the real-world LL domain, this
work leverages the source domain images via adversarial training. By doing so, we
can align the distribution of the synthetic LL domain to the real-world LL domain.
In the second stage, we put forward the Reverse Domain-Distance Guided
(RDDG) strategy, which takes full advantage of the domain-distance map
obtained in the first stage and guides the network to be more attentive to the
regions that are not compliance with the distribution of the real world. This
strategy makes the network robust for input LL images, some areas of which
may have large relative domain distances to the real world. Numerous
experiments have demonstrated the efficacy and generalization capacity of the
proposed method. We sincerely hope this analysis can boost the development of
low-light domain research in different fields.

KEYWORDS

real-world low-light image enhancement, domain-gap aware framework, domain
adaptation, reverse domain-distance guided strategy, adversarial training

1 Introduction

Real-world LLIE aims to reconstruct normal light images from observations acquired
under low-light conditions with low visibility and poor details. Numerous scientific deep-
learning approaches [1–5] with the advantage of the powerful capability to learn features
[6–10] have been extensively proposed. For the efficient LLIE task [11–13], they recover the
visibility and precise details of low-illumination images by learning the relationship between
LL and NL images. As the efficiency of deep learning methods is subordinate to the dataset,
some methods collect bursts of images with multiple exposure levels captured in real
scenarios for real-world LLIE applications [14, 15]. However, since the collections of large-
scale paired datasets are incredibly laborious and expensive [16], the existing paired datasets
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are usually of small scale, which may cause overfitting when training
networks using them. Therefore, some methods have been put
forward to enlarge the scale of datasets by synthesizing low-
illumination images and forming paired datasets with normal
illumination images [17, 18]. However, the synthetic LL images
are usually not compliant with real-world distribution, leading to
poor generalization capability to the real world for the LLIEmethods
trained on these datasets [19]. Specifically, the illumination level
cannot be improved sufficiently to recover details, or the white
balance cannot be maintained correctly. Therefore, it is a worthwhile
but challenging task to generate enhancement results that match
real-world distribution.

Unsupervised methods are of high practical value and
development potential because they do not require paired datasets
captured in the same static scenarios [20, 21]. They implement LLIE
tasks by taking full advantage of unpaired real-world NL images and
LL images. To realize the concept of aligning the distribution of
enhanced NL images to the unpaired NL domain, existing methods
usually adopt adversarial training directly for the enhanced results
against the real-world NL images. Further, to ensure that all regions in
the enhanced images are close to the real ones, EnlightenGAN [22]
crops image patches randomly from the enhanced images and adopts
adversarial training against the real NL image patches. However, these
methods seldom notice that the severe domain gap may impede the
enhancement performance but only focus on the enhancement
procedure, which degrades the generalization performance of the
networks trained on synthetic datasets. Moreover, randomly
comparing image patches does not guarantee that all regions of
the enhanced images match the real-world distribution.

Over recent years, researchers have extensively proposed ways to
address the shortage of data with labels for training. For Domain
adaptation (DA) methods, the labeled data enables adequate
training in the source domain as well as performing new tasks
on the unlabeled target domain with new distribution [23]. It greatly
improves the effectiveness of methods on the target domain, which
is appropriate for real-world LLIE tasks.

In this article, by comprehensively reviewing the potential and
reaping the full benefits of alternative methods, we put forward a
two-stage framework with the merit of both adversarial learning and
domain adaptive methods. Specifically, we propose the Domain-Gap
Aware Framework to implement real-world LLIE tasks, which
addresses the issue that the input LL images deviate from the
real-world distribution.

As shown in Figure 1, the noticeable domain gap between the
real-world and the synthetic LL domain can be observed. Besides,
different areas in a single low-light image may have different relative
domain distances. We find that the domain gap severely degrades
the generalization competency of the network to real-world low-
light conditions. Therefore, unlike existing methods that ignore the
domain bias for synthetic LL images, we propose the Domain-Gap
Aware Framework. Specifically, in the first stage, we impose
adversarial training on the Darkening Network to eliminate the
severe domain gap and generate realistic pseudo-LL images. By
doing so, we obtain pseudo-LL images that are consistent with real-
world distribution, as well as domain-distance maps. In the second
stage, we propose the Reverse Domain-Distance Guided strategy to
capitalize fully on the domain-distance maps and mitigate the
unrealistic areas of pseudo-LL images. In detail, we assign higher

FIGURE 1
(A) The presentation of the existing synthetic LL dataset and (B) the real-world LL images. (A,B) shows the apparent domain gap in terms of
illumination level and white balance lying between the real-world and the existing synthetic LL domain.
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weights to the regions in the generated NL images that are relatively
far from the real-world domain; while assigning smaller weights to
the realistic regions in the training phase, thus mitigating the
uncompetitive enhancement competence to real-world scenarios
due to the unrealistic input LL patches. The proposed two-stage
framework generalizes well to the real world with boosted
illumination level and clearly reconstructed structural details,
which can significantly facilitate subsequent computer vision
tasks and systems [24] focusing on objects at nighttime.

The following are the key contributions to this article:

• We put forward the Domain-Gap Aware Framework to
address the domain-gap issue and generate pseudo-low-
light images consistent with real-world distribution, which
is essential to attain models with high generalization capability
for real-world LLIE.

• A Reverse Domain-Distance Guided strategy is proposed for
real-world applications. The pixel-wise domain distance maps
are taken full advantage of to further promote the robustness
of the Enlightening Network. It is worth pointing out that this
is the pioneering work to introduce DA to LLIE as far as
we know.

The remainder of this paper is structured as follows. In Section 2,
we present a brief review of some related works in the LLIE field.
Section 3 introduces the proposed framework and strategy. Section 4
shows experimental results to demonstrate the effect of our method,
and Section 5 gives a conclusion of the paper.

2 Related work

2.1 CNN-based approaches

CNN-based approaches have become a principal method in the
LLIE field with their high efficiency in image analysis [25, 26]. They
reconstruct the contrast and structural details of LL images by learning
the mapping relationship between LL-NL images. Some methods have
collected paired data in real scenarios [27]. However, it is difficult to
construct large-scale paired datasets due to the required high cost and
heavy workforce. Since the applications of deep learning methods are
usually hampered by shortages of data in pairs for training [28], some
methods have also made attempts to construct simulated datasets [17,
18, 29]. It is widely known that the data for training are essential for the
networks’ performance [30]. However, the synthetic dataset was
generated under the assumption of simple degradation in terms of
illumination level, noise, etc., which leads to the poor generalization of
the trained networks to the real world and the side effect, e.g., color
distortion and insufficiently improved illumination.

Real-world LLIE has attracted significant research due to its high
practical value. Researchers have been extensively designing diverse
architectures to achieve better generalization to the real world. In
EnlightenGAN [22], the design philosophy is to address the domain
gap issue by applying adversarial training using unpaired datasets. In
addition, researchers have also made efforts to zero-shot LLIE. Zero-
DCE [31] regards the LLIE as a task of curve estimation for image-
wise dynamic range adjustment. However, it pays little attention to
the domain gap between the to-be-enhanced LL images and the real-

world ones and only focuses on the enhanced NL images, which
degrades the generalization performance of the networks trained on
synthetic datasets.

2.2 Domain adaptation

Domain adaptation (DA) intends to enhance performance when
confronting a new target domain despite domain bias [32]. It is
beneficial to deal with data shortages for tasks that are difficult to
obtain real data.

In this work, we concentrate on eliminating the domain gap to
synthesize realistic LL images, which is a preparation phase for the
enlightening stage. Inspired by relevant studies in super-resolution
[33], we construct a Domain-Distance Aware framework to perform
the real-world LLIE. We apply DA to improve the performance of
LLIE on real data.

In the next sections, we introduce the proposed Domain-
Distance Aware framework and Reverse Domain-Distance
Guided strategy in detail.

3 Methods

3.1 Network architecture

Given two domains, which can be described as the LL domain
and the NL domain, our goal is to learn an Enlightening Network to
promote the visibility and reconstruct structural details of the
images in the LL domain while generating enhanced NL
estimations belonging to the real-world NL domain. To achieve
this objective, we propose the Domain-Gap Aware Framework. We
did not follow previous work that directly utilizes the existing
synthetic low-illumination datasets to train the Enlightening
Network. Instead, our framework takes the domain bias between
xg and xr into full account. As shown in Figure 2, during the first
phase, we train the Darkening Network using adversarial training,
which generates pseudo-LL images belonging to the real-world LL
domain as well as domain distance maps. Then, in the second stage,
we put forward the Reverse Domain-Distance Guided strategy,
which leverages the pseudo-LL-NL image pairs and domain
distance maps to train the Enlightening Network.

In the next subsection, we first describe how to train the
Darkening Network to generate LL-NL image pairs in line with
real-world distributions. Then, we show the Reverse Domain-
Distance Guided strategy.

3.1.1 Training of darkening network
The general procedure of synthesizing low-light images by

existing methods is manually adjusting the illumination and
adding noise [17, 18]. However, the illumination levels in the real
world are diverse and may also vary spatially in a single image.
Moreover, it is difficult to represent noise with simple and known
distribution. In a word, the degradations assumed by existing
methods are too simple to fully simulate the complex
degradation in the real world, which unfortunately leads to
domain bias lying between the synthesized LL images and the
real-world ones. In contrast, our approach employs a deep
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network (i.e., the Darkening Network) to learn the real-world
degradation process. It works as the generator in the whole
framework and extracts the features of NL images using eight
blocks (each layer is convolved by a 3 × 3 kernel and activated
by a ReLU activation in between).

3.1.1.1 Losses
We employ multiple loss functions to train the Darkening

Network. To ensure that the content of the pseudo-LL images is
preserved consistently with the GT (Ground-Truth) LL images, we
adopt content loss along with the perceptual loss to optimize the
distance between them at the image level and the feature level,
respectively. In detail, the content loss contains reconstruction loss,
which is L1-norm and SSIM (Structural SIMilarity Index) [34] loss,
which aims at measuring structural similarities between two images.
The reason why we adopt L1-norm as our reconstruction loss is that
it treats all errors equally so that the training can keep going even
though the error is tiny. Perceptual loss is also widely used in the
image reconstruction field, which measures the distance between
features extracted via deep neural networks.

LRecons. � Eyr xri − DN yri( )���� ����1
SSIM m, n( ) � 2μmμn + c1( ) 2σmn + c2( )

μ2m + μ2n + c1( ) σ2
m + σ2

n + c2( )
LSSIM � 1 − SSIM xri ,DN yri( )( )

Lcontent � LRecons. + LSSIM

Lpercept � Eyr Φ xri( ) −Φ DN yri( )( )���� ����1
We show the adopted loss functions above, where Φ(·) denotes

the convolutional layers of the conv5_3 of VGG-16 [35], and
SSIM(·,·) means the SSIM score between two input images.

In addition to the above training, to address the domain gap issue
and align the distribution of the pseudo-LL images to the real world,
the pseudo-LL images are trained against the real-world LL images by
adversarial training. Specifically, we adopt a similar strategy as DASR

[33], which uses a patch discriminator with four layers of fully
convolutional layers to determine whether each image block
matches the real-world distribution. This strategy facilitates
pseudo-LL images to fit the real-world distribution.

LG
Adv. � −Eyr logD DN yr( )( )[ ]

LD
Adv. � −Eyr logD xr( )[ ] − Eyr log 1 − D DN yr( )( )( )[ ]

The loss functions are shown above, where D(·) denotes the
patch discriminator.

3.1.2 Reverse domain-distance guided strategy
As shown in Figure 1 previously, each region in the generated LL

image may distant diversely from the domain of the real world,
i.e., some regions lie relatively close to the domain of the real world,
while some regions are relatively far. Since the regions relatively far
from the domain of the real world may degrade the enhancement
competency of the network, we should endow different regions with
diverse attention. We realize this concept by reversing the domain
distance maps first and then applying them to eliminate the
discrepancy between yg

i and xr
i . Thereby, we adaptively adjust

the loss functions by assigning diverse weight parameters to these
regions adaptively. We present the Reverse Domain-Distance
Guided strategy in Figure 3.

3.1.2.1 Losses
We denote the supervised losses as follows, where ωi denotes the

domain distance map for xg
i , which is attained by the patch

Discriminator trained in the first stage.

Lω,content � −Exgi ,y
r
i

1 − ωi( ) ⊙ EN xgi( ) − yri( )���� ����1
Lω,percept � −Exgi ,y

r
i

1 − ωi( ) ⊙ Φ EN xgi( )( ) −Φ yri( )( )���� ����1
The trained patch Discriminator can differentiate between the

pseudo-LL patches and those from the real-world domain. A smaller
value in ωi means a lower probability that the pseudo-LL patches

FIGURE 2
(A) The proposed Domain-Gap Aware Framework contains two stages, i.e., the Darkening stage and Enlightening stage. (B) Adversarial training
during the training of Darkening Network.
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belong to the real-world domain. It also indicates a higher value in
the reverse of ωi, i.e., 1- ωi, and a larger domain distance from the
pseudo-LL to the real-world domain. Therefore, we guide the
network to be attentive to the enhanced outcomes of the input
pseudo-LL patches relatively far from the real-world domain by
endowing distance-related importance to different areas. The
Reverse Domain-Distance Guided strategy makes full use of
domain distance to remedy the unrealistic areas of pseudo-LL
images and further improves the generalization to the real world.

To evaluate the proposed method, we describe experimental
settings and results in detail in the next section.

4 Experiments

Since the similarity with the ground-truth NL images can reflect
the enhanced result to a large extent, we adopt PSNR and SSIM [34]
as reference metrics, two widely adopted quality metrics in the image
restoration field. In addition, as our method adopts a generative-
adversarial network, we also focus on perceptual quality. Therefore,
we also adopt LPIPS (Learned Perceptual Image Patch Similarity
[36] as the quality metric. Diverse ablation studies are carried out by
us to figure out the effect of the proposed strategies in our
framework. Then, to figure out our method’s generalization
competency, the real-world LL dataset is assigned as the testing
set. Finally, we further make comparisons with other competing
LLIE approaches by applying them to real-world LL datasets.

4.1 Training settings

Researchers have constructed MIT-Adobe FiveK dataset [37],
which consists of 5,000 photos retouched by five experts, to adjust
the global tone. It has been widely leveraged in the LLIE field. We
applied GladNet [38] to the normal-light images retouched by MIT-
Adobe FiveK dataset’s Expert E to obtain synthetic LL images. We
separate 4,000 paired NL-LL images from it to prepare for training

and 1,000 paired images to prepare for validation. Then we resize the
images to 600 × 400 resolution. Besides, we adopt the DARK FACE
dataset (4,000 for training, 1,000 for validation) [39], which consists
of 6,000 images obtained under real-world nighttime conditions, as
the real-world low-light references.

Let us now turn our attention to the main framework. The
network is assigned random weights initially. The Adam method
(with momentum and weight decay set to be 0.9 and 0.001,
respectively) is adopted to update the network’s parameters.
Besides, the learning rate is assigned to be 0.0001 initially and
then is halved every ten epochs. During the whole training
procedure, we maintain a batch size of 16. We carry out all the
evaluation experiments on the NVIDIA GeForce GTX3090 and
NVIDIA GeForce GTX1080Ti with PyTorch.

4.2 Ablation studies

Before conducting comparison experiments with recently
competing methods, we carried out a variety of ablation
experiments to delve into diverse loss functions as well as the
proposed framework.

4.2.1 Effect of loss functions
We carry out a variety of trying outs for diverse loss functions

and figure out the quantitative outcomes on the widely adopted
metrics, i.e., PSNR and SSIM, along with LPIPS. During the
computation of LPIPS, we extract features of input images
through AlexNet [40] to calculate the distance between them. A
small LPIPS value means a high similarity. Table 1 displays the
quantitative outcomes.

Firstly, let us analyze the effect of each loss function. We can find
from the 3rd, 4th, 5th row that in comparison to being supervised by
the reconstruction loss and adversarial loss, adding SSIM loss boosts
the performance on PSNR, SSIM, and LPIPS metrics with 3.871dB,
0.0654dB, and 0.1177dB, respectively, and adding perceptual loss
improves the performance on the three metrics with 3.19dB,

FIGURE 3
The proposed Reverse Domain-Distance Guided strategy. It facilitates the Enlightening Network to be more attentive to the less realistic regions of
the input LL images.
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0.0195dB, 0.0338dB, respectively. It indicates the effectiveness of
both SSIM loss and perceptual loss in reconstructing texture and
details of contents.

Secondly, we can find from the 1st and 2nd row that the best
performance is achieved under the settings of using merely content
loss, which includes reconstruction loss and SSIM loss. Note that
content loss aims at reducing the distance between input images.
Therefore, training with them equals supervised learning, which
easily achieves better performance in comparison to adversarial
training. Nevertheless, our method, which contains adversarial
learning for fitting with real-world low-light image distributions,
achieves similar quantitative results with supervised learning. In
specific, our method performs second best on PSNR and SSIM and
obtains rank third on LPIPS with a difference of only 0.028dB,
0.0054dB, and 0.0075 dB with the rank first scores.

As shown qualitatively in Figure 4, our method generates images
with sufficiently low exposure levels and correct white balance.
Therefore, we can conclude that the LL images generated by our
method keep contents consistent with LL images from the existing
dataset but closer to the ones captured under poor light conditions.
We finally chose ωcol � 1, ωssim � 1, ωper � 0.02, and ωadv � 0.02 for
the weight parameters of each loss function.

4.2.2 Effect of the darkening network
4.2.2.1 Comparisons of LL images

We adopt a generative adversarial network to generate pseudo-
LL images so that they are close to LL images from the existing
dataset in terms of contents while in compliance with the
distribution of real-world LL images. Figure 4 presents the
contrast between the MIT-Adobe FiveK dataset [37] and pseudo-
LL images synthesized by our method.We can find in the 2nd row of
the panel (A) and (B) in Figure 4 that the white balance of several
images in the existing low-light dataset is going wrong, where white
areas of the original NL images appear orange in the existing low-
light dataset. This may lead to the color shift in the enhanced images
enhanced, which is further proven in Figure 5. Besides, the 2nd row
of Figure 4B suggests that the illumination level is not low enough to
simulate night lighting conditions. In contrast, the proposed
Darkening Network maintains the correct white balance and
decreases the illumination level sufficiently in LL versions, as
displayed in the 3rd row of the panel (A) and (B) in Figure 4,
which facilitates the lightening network to generalize better to the
real-world low-light condition.

4.2.2.2 Comparisons of enhancement results
Furthermore, the effect of the proposed Darkening Network is

investigated in this subsection. We train the Darkening Network both
using pseudo-LL-NL pairs xg , yr{ } and existing paired dataset xr , yr{ },
and compare the outcomes in terms of quality and quantity. Figure 5
shows qualitative comparisons. As shown in Figure 5A, we can clearly
see that the enhanced outcomes of the existing LL dataset suffer from
the color shift. This is because the input LL images are of imperfect
white balance, as shown in Figure 4 previously. Besides, as shown in
Figure 5C, it easily appears over-exposure, which hinders some regions
(e.g., regions in the dark color such as hair, ribbon, skin, and so on.)
from retaining semantic darkness, unfortunately. This is due to the
insufficient illumination level in existing LL images. Moreover, the
enhanced results of the backlit image (in the 5th row of Figure 5C) suffer
from artifacts severely. In contrast, as shown in Figures 5B, D, the
enhanced results of pseudo-LL images are of correct white balance and
appropriate exposure level with good preservation of semantic
information, as well as much fewer artifacts introduced to backlit
images. Therefore, we confirm that the Enlightening Network can
produce superior enhancement results collaborated with the Darkening
Network, which fully reflects the effect of the Darkening Network.

Next, we display quantitative comparison results in Table 2.
We can clearly find that training with pseudo-LL-NL pairs

xg , yr{ } achieves better scores on PSNR, SSIM, and LPIPS, which
exceeds the GT LL-NL pairs xr , yr{ } to a great extent. More
specifically, training with xg , yr{ } achieves considerably higher
scores on PSNR and SSIM than training with xr , yr{ }, both with
and without the Reverse Domain-Distance Guided strategy. More
specifically, as shown in column2 and 4, training with xg , yr{ }
exceeds training with xr , yr{ } by 16.252 dB (= 35.276–18.751 dB)
on PSNR and by 0.1022 dB (= 0.9696–0.8674 dB) on SSIM. It
demonstrates that the synthesized pseudo-LL-NL pairs are more
suitable for real-world LLIE than GT LL-NL pairs from the existing
dataset. The reason is that the proposed Darkening Network aims to
address the domain gap via adversarial training so that the pseudo-
LL images match the real-world distribution in terms of exposure
level, hue, noise, and so on. However, the existing procedure of
synthesizing low-light images assumes simple degradations fromNL
images, which is far from the complex degradations of the real
world. Therefore, we confirm that by adequately taking advantage of
target domain data during the training process, the proposed
Darkening Network makes a significant contribution to the
improvement of enhancement quality.

TABLE 1 Ablation study of diverse loss functions and corresponding image quality evaluations.

Recons. SSIM Adv Percept PSNR↑ SSIM↑ LPIPS↓

√ × × × 20.107 0.7704 0.1023

√ √ × × 20.028 0.7772 0.0960

√ × √ × 15.761 0.6995 0.2218

√ √ √ × 19.632 0.7649 0.1041

√ × √ √ 18.951 0.7190 0.1880

√ √ √ √ 20.079 0.7718 0.1035

Recons., Adv., and Percept. indicate reconstruction loss function, adversarial loss, and perceptual loss, respectively. Scores marked in bold indicate the highest scores on the corresponding

metric.
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FIGURE 4
The comparison of LL images from the existing dataset and pseudo-LL ones synthesized by ourmethod. (A) The comparison of white balance of LL-
images; (B) The comparison of illumination level. The 1st, 2nd, and 3rd in both (A) and (B) show original normal-light images, LL images from the existing
dataset, and pseudo-LL ones generated by our method, respectively. The images in the 3rd row of each panel are in line with the distribution of the real
world in terms of illumination level and white balance.
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FIGURE 5
Qualitative comparison of the enhancement results of Darkening Network trained with GT LL-NL pairs xr , yr{ } and pseudo-LL-NL pairs xg , yr{ }. (A,C)
shows the enhanced results by GT LL-NL pairs xr , yr{ }, (B,D) shows the enhanced results by pseudo-LL-NL pairs xg , yr{ }. The proposed Darkening
Network performs better by retaining semantically dark regions and correct white balance.
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4.2.3 Effect of reverse domain-distance guided
strategy

To verify the effectiveness of the Reverse Domain-Distance
Guided strategy, we conduct ablation studies with the settings of
training with xg , yr{ }, and xr , yr{ }. Table 2 and Figure 6 show
quantitative and qualitative results, respectively. For convenient
comparison, the quantitative outcomes are displayed in Table 2.
We can easily discover that adopting the Reverse Domain-Distance
Guided strategy improves the PSNR and SSIM with a certain
magnitude of 1.981 dB (=37.257–35.276 dB) on PSNR and
0.0035 dB (= 0.9731–0.9696 dB) on SSIM when training with
xg , yr{ }. The reason is that domain distances between pseudo-LL
images xg and real-world LL images xr are taken full advantage of at
the enhancement stage. Specifically, the Enlightening Network is
driven to emphasize the regions that are not in compliance with the
real world by allocating greater weight to them during the training
process. Therefore, it is easy to understand that the collocation of the
Reverse Domain-Distance Guided strategy and the proposed
Darkening network is beneficial to the reconstruction of texture
and details with the pseudo-LL-NL pairs xg , yr{ }.

Let us investigate the effect of the Reverse Domain-Distance
Guided strategy. We can find from Figure 6 that those semantically
dark regions maintain their semantic darkness during the
improvement of illumination level without under-exposure for
other regions, which facilitates the images to appear more
realistic. Therefore, the proposed Reverse Domain-Distance
Guided strategy is of significance for the generalization of LLIE
to the real world.

4.3 Evaluations of generalization on the real-
world dataset

The Exclusively Dark dataset [41] is proposed to facilitate better
detection under poor visibility conditions for nighttime systems and
applications. It contains a total of 7,363 images of 12 specified object
categories. Some images were sub-sampled from existing large-scale
datasets, includingMicrosoft COCO, PASCALVOC, and ImageNet.
We carry out evaluations for the generalization capacity on the
Exclusively Dark dataset and DARK FACE dataset. Figure 7 shows a

TABLE 2 Ablation studies of Darkening Network and Reverse Domain-Distance Guided strategy with the settings of both pseudo-LL-NL pairs and GT LL-NL pairs
from the existing dataset.

xr , yr{ } xg, yr{ }
Reverse domain-distance guided strategy √ × √ ×

PSNR↑ 18.796 18.751 37.257 35.276

SSIM↑ 0.8618 0.8674 0.9731 0.9696

LPIPS↓ 0.1764 0.1674 0.1587 0.1547

The scores marked in bold indicate the highest scores on the corresponding metric.

FIGURE 6
Qualitative comparison of the enhancement results without and with Reverse Domain-Distance Guided strategy. The texture and details are better
reconstructed with the propsed strategy.
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visual representation of enhancement results. Numerous outcomes
demonstrate that the proposed approach can greatly boost the
visibility of objects under extremely poor or significant
variational illumination conditions. Therefore, we can confirm
that the proposed approach can generalize well to extremely dark
light conditions in the real world. Furthermore, our method can
potentially facilitate subsequent computer vision systems for night
vision surveillance since the performance of object-focused works
usually drops when the given images are degraded [42, 43].

4.4 Comparative experiments with state-of-
the-arts

Let us conduct comparative experiments with recent competing
LLIE approaches on the DARK FACE dataset [39]. Figure 8 displays

the qualitative contrastive results of different competing approaches,
including EnlightenGAN [22], DSLR [44], DRBN [45], TBEFN [46],
RRDNet [47], and MBLLEN [48]. Qualitative results show that all
the methods can effectively enhance the LL images captured under
severely real-world low-light nighttime environments in terms of
illumination level. However, some methods introduce side effects.
Specifically, it can be clearly found that the overall hue of the image
is distorted in EnlightenGAN. Besides, DRBN, TBEFN, and
MBLLEN introduce distinct artifacts to local areas. It can be
concluded that DSLR, RRDNet, and our method attain the top
three best performances. Let us further investigate their differences
in detail. It can be clearly found that DSLR and RRDNet tend to
generate blur artifacts, i.e., structural details cannot be clearly
reconstructed. Besides, RRDNet cannot sufficiently improve the
illumination level. In contrast, our method improves visibility
without introducing blurriness and shows a better reconstruction

FIGURE 7
Evaluation of generalization capability on real-world datasets, i.e., (A) Exclusive Dark dataset and (B)DARK FACE dataset. In both (A,B) panels, the 1st
row indicates input LL images, and the 2nd row shows enhanced results by the proposed framework. Our method has superior generalization capability
to extremely low-illumination real-world conditions.
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FIGURE 8
Vivid qualitative enhancement outcomes of recently competing network structures and our framework on the DARK FACE dataset. We present the
results of SOTA methods on two specified images. We further compare the three most competing methods marked with boxes by zooming in on the
local area of their enhanced results. Our method achieves the more superior enhancement results for real-world LL images than SOTA methods in
respect of structural details and visibility.

Frontiers in Physics frontiersin.org11

Chen et al. 10.3389/fphy.2023.1147031

114

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1147031


of details, as shown in the zoomed-in comparison results. Therefore,
we can confirm that our approach works most effectively relative to
other recently competing LLIE methodologies.

Finally, we give a conclusion in Section 5.

5 Conclusion

This paper introduces domain adaptation to the LLIE field.
Unlike previous methods that directly adopt existing synthetic low-
light datasets, we propose the Domain-Gap Aware Framework,
which addresses the dilemma of domain-gap lying between
pseudo-LL and real-world LL domain. To eliminate the domain
gap, we employ adversarial training to the Darkening Network in the
first stage and obtain domain distance maps. In the second stage, we
put forward a Reverse Domain-Distance Guided (RDDG) strategy,
which further drives the enhancement network to focus on the
regions that are not consistent with real-world distribution. In the
second stage, we put forward a Reverse Domain-Distance Guided
(RDDG) strategy, which further guides the Enlightening network to
be attentive to the regions that are not consistent with real-world
distribution. We objectively validate the effect of our framework on
real-world LL datasets and conduct comparative experiments with
other methods. Prominent experimental outcomes present that our
framework outperforms other competing network structures.

In our future endeavors, we will explore more contributory
approaches for the LLIE field. In addition, we will introduce LLIE
methods to subsequent computer vision tasks and systems for diverse
applications, such as driving assistant systems and nighttime surveillance.
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Traffic safety assessment method
of the immersed tunnel based on
small target visual recognition
image
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1China Merchants Chongqing Communications Technology Research and Design Institute Co, Ltd.,
Chongqing, China, 2National Engineering Research Center for Highway Tunnel, Chongqing, China,
3Guangxi Xinhengtong Expressway Co, Ltd., Guangxi, China

The quality of lighting installation performance has a direct impact on the traffic
safety of immersed tunnels. To effectively investigate and judge the traffic safety of
immersed tunnels having different lighting installations, a traffic safety assessment
method for immersed tunnels based on lighting performance degradation was put
forward in this study by using big data technology. Numerical simulation was used
to simulate the lighting environment in an immersed tunnel under different
conditions of lighting performance degradation, conduct the small target
recognition test in a physical tunnel, and calculate the traffic safety factor;
then, a real-time kinematic assessment model of traffic safety in immersed
tunnels was built in combination with the key index factors influencing lighting
installations in immersed tunnels. The test results showed that the performance
degradation of lighting installations positively correlated with the visual cognition
of drivers and passengers. long short-term memory neural network model can
effectively assess the traffic safety of immersed tunnels, and the root mean square
error (RMSE) and coefficient of determination of the model were separately
1.029 and 0.95, which were superior to the RMSE and coefficient of
determination of random forest and recurrent neural network model, and the
running time was often less than 1min, complying with the rea; -time assessment
requirements; the boundary value of the traffic safety factor of immersed tunnels
was 0.6304, and if a value was less than the boundary value, it indicated that the
performance of lighting installations was not good and might pose a threat to
traffic safety. The research results provided a new perspective for the status
assessment of lighting installations in immersed tunnels and also offered a
theoretical basis for fine maintenance and repairs of lighting installations.

KEYWORDS

immersed tunnel, deep learning, luminaire failure, traffic safety, safety assessment

1 Introduction

In China, immersed tunnels provide convenience for the production and life of travelers
in crossing rivers and deep sea, and the operating safety of immersed tunnels is always the
focus of people [1, 2]. In an immersed tunnel, nearly 80% of traffic information is obtained
through vision. To provide a lighting environment for immersed tunnels, lighting
installations shall uninterruptedly operate 24 h a day, so the quality of their performance
has a direct impact on the traffic safety of immersed tunnels [3, 4]. The lighting installation
performance is correlated with its components and parts as well as the operating
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environment. The ventilation and heat dissipation in an underwater
immersed tunnel are limited and the humidity and salinity in it are
relatively high [5, 6], causing more serious damage to the electrical
parts in a lighting installation.

And meanwhile, pollutants produced by traffic in the tunnel
adhere to the surface of lighting installations [7–9], which will also
result in the performance degradation of lighting installations and
even cause a failure of lighting installations.

The maintenance and repair of immersed tunnels can retard the
performance degradation of lighting installations, but the existing
research into the maintenance and repairs of tunnel lighting
installations and the relevant specifications continue to follow the
standard for highway tunnel assessment; the availability of
equipment is used as the unique indicator of status assessment to
develop the plan of maintenance and repairs [10], and there is a lack
of theoretical research into different maintenance contents of
lighting installations under different performance conditions. In
the immersed tunnel lighting design, the maintenance factor will be
determined, but it is easy to cause redundancy in preliminary
lighting and inadequacy of later lighting and different immersed
tunnels and different types of lighting installations vary greatly
[11–13], and the method of established indicators and empirical
discrimination cannot accurately determine the performance status
of lighting installations and it is difficult to effectively carry out fine
maintenance and repairs, bringing a hidden danger to traffic safety
of immersed tunnels.

The research into the facility performance degradation is mainly
applied to the key fields of science and technology, such as
aerospace, nuclear power and large internal combustion engine
in the early years [14–16], and as the information technology
develops and the data acquisition and mining technology
becomes mature, the facility performance degradation has been
gradually applied to other fields, including wind power [17, 18],
mines, E&M and mechanical engineering [19–22]. XU Zhen et al.
utilized the Internet of Things (IoT) technology to collect tunnel
E&M equipment information, build an operating state judgment
model of tunnel E&M equipment, a monitoring state assessment
model of tunnel E&M equipment and a medium-term prediction
model for the use of key tunnel equipment, and comprehensively
analyze the technical status of tunnel E&M equipment [23]; Zhang
et al. and JIN Yinli et al. analyzed and established the weights of
influencing factors in different layers according to the structural
characteristics and maintenance quality status of the highway E&M
system equipment, and used the analytic hierarchy process (AHP)
and the fuzzy mathematics theory to comprehensively evaluate the
operation of E&M system facilities [24, 25]. Cui et al. analyzed the
law of variations in the performance of E&M equipment with the
operating life, deduced the hierarchy standard system, calculated the
importance of various standards with the Delphi method, and built a
fuzzy synthetic evaluation model (FSEM) [26]; ZHU Liwei put
forward 4 types of real-time recognition models based on the
data transfer path of the highway tunnel E&M system equipment
and the topology of corresponding functions for the operating status
of functions of the highway tunnel E&M system [27]; ZHANG
Jianping et al. put forward a data model for optoelectronic facility
luminance attenuation based on Weibull distribution and simulated
the law of facility performance degradation with the parameter
fitting method [28]. However, the existing monitoring data have not

been effectively used, resulting in a waste of monitoring data. At the
same time, there is relatively little research on the impact of
electromechanical facilities or lighting facilities failure on tunnel
traffic safety, and the impact of lighting facilities performance
degradation on traffic safety is even blank. Therefore, how to tap
the impact of performance degradation of lighting installations on
traffic safety of immersed tunnels without influencing normal traffic
operation according to the existing monitoring data is the key to the
current traffic safety assessment of immersed tunnels.

In this study, the research into the law of variations in the
performance degradation of lighting installations and the lighting
environment of immersed tunnels was conducted according to
numerical simulation and field test data, and based on the results
of small target recognition, the traffic safety factor of immersed
tunnels was established; based on the key indicators influencing the
performance degradation of lighting installations, the LSTM neural
network was utilized to build a traffic safety assessment model of
immersed tunnels to realize the real-time kinematic assessment of
traffic safety of immersed tunnels. The research results can be
directly applied to the fine operation and maintenance of the
lighting facilities in immersed tunnel, which can fully perceive
the advantages and disadvantages of lighting facilities in real
time, accurately determine the driving safety under the action of
lighting facilities, and ensure the safe operation of the tunnel.

2 Impact of the lighting performance
degradation on traffic safety

The performance degradation of lighting installations in an
immersed tunnel will change the lighting environment in the
immersed tunnel, which will affect the visual discrimination of
drivers and passengers. At present, the performance evaluation of
lighting installations in immersed tunnels is mainly carried out
through regular spot check of pavement luminance from local areas,
but due to the influence of harsh environment and exhaust gas
pollution, the performance of lighting installations is subject to
continuous and kinematic degradation, and the traditional
evaluation methods are difficult to effectively judge tunnel
pavement luminance and traffic safety. Consequently, the
methods of numerical simulation and simulation test are used to
simulate the traffic safety of immersed tunnels at different degrees of
performance degradation, establish the traffic safety factor of
immersed tunnels and realize the traffic safety assessment of
immersed tunnels in this paper.

2.1 Simulation of lighting performance
degradation

2.1.1 Simulation model building
The model uses DIALux4.13, which is the software for

professional lighting design, to calculate and analyze the
luminous effect of tunnel pavement under the performance
degradation of lighting installations in immersed tunnels; the
cross section dimensions of the model are the same as the actual
tunnel dimensions, and the tunnel clearance is 7.25 m and the width
is 12.75 m, the lane width is 3.75 m, and a 0.75 m overhaul access is
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reserved on each of left and right sides. For the actual engineering
pavement, the porous asphalt pavement is designed; the pavement
reflection characteristic is set to be R3 (which is predominantly
diffuse reflection, with some mirror reflection), the pavement
reflectivity is 0.22, the glossiness is S1 1.1, the wall reflectivity
below 2.75 m on both side walls is set to be 0.7, and the average
luminance coefficient is Q0 0.07. The schematic diagram of the
tunnel model is shown in Figure 1.

The 60W LED lamps are used for lighting simulation, with the
interval of lamps of 4.5 m, The initial luminous flux of LED lamps is
7,200 lm, the correction factor is 0.98, the mounting height of lamps
is 5.5 m, the normal angle of the luminous surface of lamps is the
same as that of the vertical surface, and the consistent dip angle of
lamps is kept.

For the grid in the lighting installation testing area, the
computational grid of pavement illuminance and luminance
with a longitudinal length of 27 m and a transverse length of
7.5 m is laid, and the grid computation size is 30 × 20. There are
20 transverse calculating points and 30 longitudinal calculating
points in the grid.

2.1.2 Simulation results and verification
In DIALux software, the luminous flux of luminaires is set to

simulate the results of performance degradation of lighting
installations. To verify the accuracy of calculated results of the
simulation model, the grid method was adopted to test the
lighting environment of the pavement of a physical immersed
tunnel in this paper, and the longitudinal length of the testing
area was 10m, the transverse length was 7.5 m, and the measuring
space was 1 m. The pavement illuminance and uniformity were

tested at 100% of luminous flux and the results were compared with
the numerical simulation, as shown in Table 1.

It can be seen from the table that the relative error between the
measured results of the pavement luminance in the middle section of
the immersed tunnel and the average illuminance of simulation results
in DIALux software is 0.08%, the relative error of uniformity of
luminance is 1.93%, and the relative error of longitudinal uniformity
was 2.13%, indicating that there is a small difference between the
measured pavement illuminance of immersed tunnels and the results
of numerical simulation, and the simulation results aremore accurate.

In the simulation model, the results of tunnel pavement
luminance at different luminous fluxes (i.e. 100% (without
performance degradation), 90%, 80% and 70%) were separately
simulated. According to the requirements of LED lighting, the
lighting installations will fail if the luminous flux is less than 70%
[29], so such simulation is not conducted. The immersed tunnel
luminance is divided by colors, and the results of luminance
simulation of lighting installations in an immersed tunnel are
shown in Figure 2.

It can be seen from Figure 2 that the illuminance of tunnel
pavement and overhaul access is significantly decreased with a
reduction in the luminous flux of lighting installations in the
immersed tunnel, and an insignificant change occurs in the
illuminance of tunnel top and side walls, with the relative error
of less than 5%, and the performance degradation of lighting
installations in the immersed tunnel has a great impact on the
tunnel pavement illuminance.

2.2 Small target recognition

The nature of traffic safety is that drivers can drive correctly
according to the tunnel obstacles in front of them [30, 31]. In this
paper, the small target recognition test was carried out for lighting
installations under different performance degradation conditions to
analyze the recognition of small targets by different drivers, which
was the basis for traffic safety evaluation. The length of the LED
lighting fixture installed in the test tunnel is 100m, and its light
distribution curve, layout height, spacing and position are the same
as those in the simulation. As recommended by the International
Commission on Illumination, a small cube with the size of 0.2 m ×
0.2 m × 0.2 m and the surface coefficient of 0.2 was used as the small
target [32]. The testing personnel recognized small targets under the
following conditions: different distances and various tunnel
pavement luminance environments. The visual height of the test
personnel is 1.2 m. The components of recognition are shown in
Table 2.

FIGURE 1
Schematic diagram of tunnel simulation.

TABLE 1 Comparison between measured illuminance results and simulated illuminance results.

Indicator Average illuminance Uniformity ratio of illuminance Longitudinal uniformity

Measured result 208.1 0.52 0.94

Simulation result 226.4 0.53 0.96

Absolute error 18.3 0.01 0.02

Relative error 0.08% 1.93% 2.13%
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In consideration of the speed limits in the immersed tunnel,
the stopping sight distance at different speed limits, including
100 km/h, 80 km/h and 60 km/h was used as the optimal
obstacle avoidance distance, and testing personnel made
observations at 158m, 100 m and 56m; the stepless dimming
method was used to adjust the pavement luminance in a tunnel
and simulate the performance degradation of lighting
installations in an immersed tunnel. A total of 29 testing
personnel aged between 22–25 were involved, with the visual
acuity of above 1.0 and without other vision problems, and the

visual height was 1.2 m. After the completion of small target
recognition by testing personnel, the small target visibility was
identified according to the table of recognition components; the
results are shown in Figure 3.

2.3 Traffic safety factor

The results of small target recognition are acquired through
the qualitative description of drivers, but the qualitative
description is relatively abstract, so it cannot accurately describe
the degree of traffic safety and shall be transformed into the
quantitative expression of results. Therefore, the results of small
target recognition by testing personnel were y � Clear,{
Relatively clear, Fuzzy, Invisible} transformed successively into
�y � 4, 3, 2, 1{ } in this paper. If the recognition result was “clear”,
the membership degree was 1; if the recognition result was
“relatively clear”, the membership degree was 0.8; if the
recognition result was “fuzzy”, the membership degree was 0.01.
The large Cauchy distribution and logarithmic functions were used
as the membership functions with the method of continuous
quantization, to get the expression of traffic safety factor:

f x( ) � 1 + 1.109 x − 0.894( )−2[ ]−1 1≤ x≤ 3
0.695 ln x − 0.036 3≤ x≤ 4

{ (1)

The results of small target recognition by 29 testing personnel in
different conditions were put into the traffic safety expression to get
the traffic safety factors in different conditions; the results are shown
in Table 3.

3 Traffic safety assessment model of
immersed tunnels

At present, the grid method is used to detect the pavement
luminance of the lighting installations in immersed tunnels and
judge the functional status of the lighting installations in immersed
tunnels, but there are problems in such detection, including long
interval time, interference with traffic and small scope of detection,
so it is difficult to effectively judge them in real time. Therefore,
based on the traffic safety factors of immersed tunnels under
different degradation conditions, a traffic safety assessment model
for immersed tunnels was formed in this paper through the analysis
of performance degradation status data of lighting installations in
immersed tunnels under the influence of environment and electrical
factors.

3.1 Indicator extraction

Given that there are many factors influencing the performance
degradation of lighting installations, the multi-sensor technology is
used to collect the changes in various index factors of lighting
installations, and based on the correlation between performance
degradation of lighting installations and various influencing
indicators, the index factors with high correlation are acquired
and used as the key influencing index factors, and the correlation
expression is as follows:

FIGURE 2
Results of luminance simulation of lighting installations in an
immersed tunnel.
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r � cov xa, xb( )��
σ2
a

√ ��
σ2
b

√ �
∑n−1
i�1

xa − �xa( ) xb − �xb( )����������������������
∑n−1
i�1

xa − �xa( )2 ∑n−1
i�1

xb − �xb( )2
√ (2)

Where r is the correlation coefficient between a and b; σa and σb
are the standard deviations of Indicators a and b; �xa and �xb are the
average values of Indicators a and b.

3.2 Traffic safety assessment model

The correlation among the key indicators influencing the lighting
installations in immersed tunnels, the performance degradation of
lighting installations and the traffic safety factor is comprehensively
analyzed, the dataset of key indicators of lighting installations and traffic
safety factors is reconstructed, and the artificial intelligence (AI)
algorithm is used to carry out the traffic safety assessment of
immersed tunnels. Currently, there are many frequently-used status
assessment methods, including grey correlation theory, fuzzy theory,
machine learning and neural network [33–35], and with the strong
learning ability and generalization ability and the flexible model
structure, the neural network is widely used for judgment,
prediction and evaluation. The performance degradation process of
lighting installations is a time-sequence process, so the long short-term
memory (LSTM) neural network in the neural network algorithm was
employed in this paper to build a traffic safety assessment model for
immersed tunnels [36, 37], and the basic steps are shown.

step1: Build the LSTM neural network, and initialize relevant
parameters, such as weight ω and bias (b) of each node in the
network, activation function, computational accuracy (l) and
number of iterations (n);

step2: Input the dataset (D) in the neural network, abandon the
input of information in the forget gate layer, which is unacceptable
for the performance degradation indicator data of E&M equipment
in the hidden layer at the previous moment, control the input of new
indicate data in the input gate layer, determine the data information
to be updated, and calculate the output results of the neural network
in the output gate layer;

step3: Compare the actual traffic safety factor and the status results
of model prediction, and calculate the loss function E;

step4: If the loss function E is less than the setting value, it indicates
the completion of training; otherwise, use the gradient descent to
update the weight and bias in the neural network, and then return to
Step (2) and recalculate it;

step5: After the end of training, obtain the status assessment model
for E&M equipment performance degradation.

TABLE 2 Component of visual cognition.

Level Clarity Detailed description

Level I Clear Be able to clearly and directly discover the details, contour and shape of small targets

Level II Relatively clear Be able to discover small targets and recognize the contour clearly

Level III Fuzzy Not be able to directly discover small targets and recognize the contour fuzzily

Level IV Invisible Fail to detect any small target at all

FIGURE 3
Results of small target recognition.
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The LSTM neural network uses the structure containing input
gate layer, forget gate layer and output gate layer to substitute for the
hidden layer nodes of the traditional neural network, and the
network structure is shown in Figure 4.

The forget gate layer reflects the level of acceptance of the neural
network to the previous hidden layer status ht−1 and the current
input status xt, and its expression is as follows:

lt � σ Wl• ht−1, xt[ ] + bl( ) (3)
Where σ is a sigmoid function; W and b are weight and bias,

respectively.
The input gate layer is composed of two parts: Part 1 is to

determine the data information (pt) to be updated (see Eq. 4), and
Part 2 is to create the alternative status (ct) through the tanh layer
(see Eq. 5).

pt � σ Wp• ht−1, xt[ ] + bp( ) (4)
ct � tanh Wc• ht−1, xt[ ] + bc( ) (5)

Based on the output of forget gate layer and input gate layer as well
as the network status Ct−1, the status expression is updated as follows:

�c � lt•ct−1 + pt•ct (6)
The output gate layer determines the output value according to

the network status, and through the output of tanh layer and
sigmoid layer, ot , as expressed by Eq. 7, determines the output
of the hidden layer, ht , as expressed by Eq. 8.

ot � σ Wo• ht−1, xt[ ] + bo( ) (7)
ht � ot•tanh ct( ) (8)

3.3 Analysis of model results

To realize the evaluation of model results, the root-mean-square
error (RMSE) was introduced in this paper to evaluate the model
results, and the expression is as follows:

TABLE 3 Traffic safety factors in different conditions.

Driving speed (km/h) Lamp degradation (%) Average illuminance (lx) Traffic safety factor

100 100 208.1 0.77

100 90 192.4 0.74

100 80 174.3 0.68

80 90 192.4 0.79

80 80 174.3 0.75

60 70 149.7 0.64

. . . . . . . . . . . .

FIGURE 4
LSTM neural network structure.
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RMSE �
������������
1
n
∑n
i�1

yi − ŷi( )2
√

(9)

Where yi and ŷi are true value and predicted value, respectively.

4 Test verification and discussion

4.1 Data source

Normally, the performance degradation process of lighting
installations is characterized by long duration and varying
environments. In this paper, the accelerated test data were used
to obtain the degradation of lighting installations under different
conditions, and combined with the traffic safety factor and the
degradation of lighting installations, the data results were
reconstructed, with the data size of 1,476 entries.

4.2 Data preprocessing

4.2.1 Data standardization
As one of the frequently-used methods of LSTM to solve the

data fitting problems, data standardization is mainly used to
eliminate the impact caused by the difference in the order of
magnitude between different indicators, with the aim to make
weight configuration more reasonable, accelerate data
convergence and enhance the accuracy of data analysis, so the
z-score method is employed for standardization in this paper,
with the following expression:

y � xi − �x�����������
1
n ∑

n

j�1
xj − �x( )2

√ (10)

4.2.2 Key indicator extraction
Given that different indicators have different impacts on the

traffic safety of immersed tunnels, the analysis of key indicators and
the traffic safety assessment of immersed tunnels are carried out to
effectively increase the accuracy of assessment results. In this paper,
the correlation between various assessment indicators and the traffic
safety factor of tunnels was analyzed and the key indicators
influencing lighting installations were extracted. The correlation
coefficient (r) of various indicators is shown in Figure 5.

It can be seen from Figure 5 that the influencing indicators
strongly correlated with the traffic safety factor (r> 0.7) include
voltage, temperature, humidity and Lamp degradation.
Consequently, voltage, temperature, humidity and Lamp
degradation were used as the assessment indicators in this paper
to realize the traffic safety assessment of immersed tunnels.

4.3 Optimization of model parameters

In the neural network, the mean square error (MSE) or the mean
absolute error (MAE) is often used as the loss function, but MSE is
sensitive to abnormal values and the process of abnormal values
might affect the integrity of actual data, so MAE was used as the loss
function in this paper.

When a performance degradation assessment model for
lighting installations is built, model optimization shall be
carried out. The relevant parameters of LSTM were set,
such as sample size (samples), time step (time_steps) and
batch size (batch_size), the LSTM assessment models with
different times steps and different batch sizes were built,
and MAE was utilized for verification; the results are shown
in Figure 6.

It can be seen from Figure 6 that when the time step remains
unchanged, an increase occurs with the batch sizes, and the MAE
value is gradually increased; when the data batch remains
unchanged, an increase occurs with the time steps, and the MAE
value is increased and then decreased. To acquire a more accurate
data model, the time step of 8 and the batch size of 32 were selected
as the model parameters in this paper.

FIGURE 5
Correlation coefficient of each indicator.

FIGURE 6
MAE value with different steps and batch sizes.
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The number of hidden layers and the number of nodes are the
key parameters of LSTM, so an appropriate selection of the
number of hidden layers can improve the accuracy of data
results. Model optimization was conducted for the neural
network models with different hidden layers (1, 2 and 3) and
different hidden layer nodes (5, 15, 20 and 25), and the number of
iterations was set as 100. The MAE values under different
parameters are shown in Figure 7.

Based on the figure of errors of different LSTM network layers, it
can be seen that the minimum assessment error occurs when the
number of hidden layers is 3 and the number of hidden layer nodes
is 5. If the number of network layers remains unchanged and the
number of nodes is increased, the MAE value will be gradually
increased; if the number of nodes remains unchanged and the
number of hidden layers is increased, the MAE value will be
gradually decreased, but an increase in the number of hidden
layers will lead to an increase in training and evaluation time.
Therefore, in consideration of model accuracy and a reduction in
model running time, the number of hidden layers is finalized to be
2 and the number of hidden layer nodes is finalized to be 5 to build
the assessment model.

To select an appropriate optimizer, Adagrad, Adadelta, RMSprop
and Adam were analyzed and compared in this paper, and the time
step was set as 8. The training results are shown in Figure 8.

It can be seen from the diagram that as the number of iterations
increases, the loss function of the LSTM model in each optimizer is

gradually reduced, and as the model loss function of the optimizer,
Adam and RMSprop decline at the fastest pace, and when the
number of iterations is 50, the loss function of the model with Adam
as the optimizer is 0.0416, which is the minimum value, so Adam is
selected as the model optimizer.

4.4 Analysis of model results

In this paper, the dataset of lighting installation tests was randomly
divided into a training set and a test set. The training set data accounted
for 80% of the dataset, while the test set accounted for 20%. The training
set was put into the traffic safety assessment model for immersed
tunnels, and its error function values and data prediction results were
shown in Figures 9, 10.

It can be seen fromFigure 9 that in the first 26 iterations in the process
of algorithm iteration, the model error value decreases rapidly, and in the
subsequent iteration process, the error value decreases steadily until it is
close to zero, and the model fitting process is gradually convergent; in

FIGURE 7
MAE values under different hidden layer parameters.

FIGURE 8
MAE values by using different optimizers.

FIGURE 9
Error function value.
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Figure 10, the true value and predicted value in the training fitting results
show a consistent trend of variations, with a relatively small error value,
indicating that the model prediction results are better.

To ensure the accuracy of the traffic safety assessment model for
immersed tunnels, the random forest (RF) and recurrent neural
network (RNN) models were separately compared with the LSTM
model in this paper. Test data are separately put into the RF and
RNN models to compare the calculation results of different models
(as shown in Figures 11, 12); the results of RMSE, R square and
running time are shown in Table 4.

It can be seen from Figures 11, 12 and Table 4 that, compared with
the RF and RNNmodels, the LSTMmodel can assess the traffic safety of
immersed tunnels more effectively, and its RMSE is relatively small and
the accuracy is relatively high (up to 95%), indicating that the predicted
values of the LSTMmodel is closer to the actual value in the process of
data prediction; the running time of the LSTMmodel is longer than that
of other models, but the running time does not exceed 1min, so the
model prediction time can completely meet the demand for the routine
traffic safety assessment of tunnels.

4.5 Discussion

The quality of luminous effect of lighting installations in
immersed tunnels has an important impact on the traffic safety
of drivers and passengers. From the perspective of visual needs of
drivers and passengers, the traffic safety assessment factor of
immersed tunnels was established in this paper by simulating the
characteristics of the tunnel lighting environment under different
performance degradation conditions of tunnel lighting installations
and according to the results of small target recognition by drivers
and passengers; combined with the key indicators influencing the
performance of lighting installations, the impact of the changes to
the operating environment of lighting installations in immersed
tunnels on traffic safety was explored in this paper. In the
performance degradation simulation of lighting installations, it is
difficult to simulate the production quality of different lighting
installations, it is believed that the law of performance
degradation of the same batch of lighting installations is
identical, the parameters of lighting installations set in numerical
simulation are identical, and the performance degradation
simulation of luminous flux is identical. As a result, there might
be an unavoidable error between the actual impact of performance
degradation of lighting installations on the pavement lighting
environment and the simulated performance degradation results.
In a field test, the small target recognition test under dynamic traffic
is not carried out for the sake of the safety of drivers and passengers
when they dynamically recognize small targets, and testing
personnel are stationary relative to a small target and recognize
the small target in a physical tunnel, i.e. the surrounding

FIGURE 10
Data prediction results.

FIGURE 11
RF model calculation results.

FIGURE 12
RNN model calculation results.

TABLE 4 Comparison of calculation results of different models.

Model RMSE R Square Running time (s)

RF 7.563 0.89 27.42

RNN 2.581 0.91 33.24

LSTM 1.029 0.95 47.81
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environment is relatively stationary. There is a difference in the
ability of human eyes to dynamically recognize and statically
recognize objects, so the results of this study can offer relevant
support to traffic safety in real tunnels.

Through comprehensively considering the impact of the
operating environment and performance degradation of lighting
installations and the traffic safety, a data-driven traffic safety
assessment method of lighting installations in immersed tunnels
is proposed in this paper, and based on the analysis of the impact of
the performance degradation of lighting installations in immersed
tunnels on the pavement luminance and the recognition of drives
and passengers, the traffic safety factor of immersed tunnels was
put forward in this study to evaluate the safety of lighting
installations; a real-time kinematic traffic safety assessment
model for immersed tunnels was built on the basis of the
performance degradation of lighting installations in different
environments and under different electrical indicators, and the
traffic safety factor of immersed tunnels was dynamically predicted
according to the relevant parameters, such as voltage, temperature,
humidity and Lamp degradation. In this paper, the traffic safety
factor, at which 50% of the testing personnel could clearly
recognize small targets, was used as the boundary value, i.e.
0.6304, and if the traffic safety factor was less than 0.6304, it
indicated that the lighting performance of the immersed tunnel is
poor, and maintenance and repair measures could be taken to
maintain the lighting installations, e.g. regular replacement and
cleaning; if the traffic safety factor was higher than 0.6304, the
luminous flux could be reduced properly to meet the requirements
for traffic safety and lower the costs of lighting.

5 Conclusion

In this study, the traffic safety factor was proposed through the
analysis of the impact of the performance degradation of lighting
installations in immersed tunnels on the recognition status of drivers
and passengers, and a real-time kinematic traffic safety assessment
model was built according to the key index factors influencing the
lighting performance degradation of immersed tunnels, with the aim
to ensure the operating safety of immersed tunnels. The research
conclusions mainly include:

1) The performance degradation of lighting installations is of great
significance to the visual clarity of drivers and passengers and
even to the traffic safety through the simulation of the changes in
the tunnel pavement luminance and the small target recognition
by drivers and passengers under the performance degradation of
lighting installations in immersed tunnels. With the performance
degradation of lighting installations, the small target recognition
of drivers and passengers became weaker and weaker and the
traffic safety factor became small, and even it is difficult to detect
the existence of small targets.

2) Combined with the key indicators influencing the performance
degradation of lighting installations, a real-time kinematic traffic

safety assessment method for tunnels was proposed. The traffic
safety factor was predicted according to the key indicators
influencing the performance degradation, and the R square
and RMSE of this model were superior to those of RF model
and RNNmodel, so it could better predict the traffic safety factor
of tunnels; meanwhile, the speed was predicted to be within
1min, meeting the requirements for the real-time kinematic
assessment of immersed tunnels.

3) In this study, the traffic safety factor could quantitatively evaluate
the performance status of lighting installations in immersed
tunnels, and according to the small target recognition by
testing personnel, the traffic safety boundary condition was
put forward, i.e., the traffic safety factor was 0.6304, providing
a new direction for the maintenance and repairs of the immersed
tunnel management entity.
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Introduction: Intracerebral hemorrhage (ICH) is a devastating disease with high
rates of mortality and disability. The survival rate and postoperative outcome of
ICH can be greatly improved through prompt diagnosis and treatment. CT andMRI
are now the gold standards for the diagnosis of ICH, but they are not practical for
use in pre-hospital emergencies or at the bedside monitoring.

Methods: Based on the earlier research of ICH detectionwith a single parallel plate
electrode sensor, we developed a 16-electrode Electrical Capacitance
Tomography (ECT) system for two-dimensional tomographic imaging of ICH in
this study. A 5-layer spherical numerical model and an ex vivo porcine physical
model of ICH were created for ECT simulation imaging and actual imaging,
respectively, to assess the feasibility of this ECT for ICH imaging.

Results: The bleeding circles were easily seen in the image reconstruction in
numerical imaging. In ex vivo imaging, the existence of bleeding was also more
clearly shown with the ECT system; however, the position of the bleeding
reconstructed in the image was offset by 3 mm from the real site.

Discussion: The study analyzes the causes of this discrepancy and discusses the
steps that may be taken to rectify it. Overall, the simulation and ex vivo experimental
trials validated the potential of ICH imaging with the ECT method; however, further
work is required to increase the performance of the ECT and a more advanced
imaging reconstruction algorithm is urgently needed for ICH imaging.

KEYWORDS

intracerebral hemorrhage, ECT, image reconstruction, tomography, bleeding

1 Introduction

Spontaneous intracerebral hemorrhage is caused by the rupture of blood vessels in the
brain parenchyma. It is considered the most serious type of acute stroke because of its
emergency, dangerous condition, high morbidity, and mortality. ICH accounts for
2.8 million fatalities annually, with the annual incidence rate of 4.1% [1]. The incidence
rate of hemorrhagic stroke in China was 126.34 per 100,000 person-years [2], as reported in
the 2018 China Stroke Prevention and Treatment Report. The survival rate and
postoperative outcome of ICH may be greatly enhanced with early identification and
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treatment [3]. Currently, CT and MRI scans are the most important
methods for detecting ICH; however, a significant amount of time is
lost between transporting the patient to the hospital, performing the
CT examination, and receiving the final result, resulting in a missed
window of opportunity to treat the condition. The second is that an
excessive postoperative bleeding after a hemorrhage often occurs in
clinics [4]. Therefore, a portable, low-cost, and fast technology for
detecting ICH is urgently needed.

Methods such as electrical impedance tomography (EIT) and
magnetic induction tomography (MIT) were developed to detect
ICH by measuring electrical resistivity and conductivity with a
multi-sensor surrounding a head from all directions to reconstruct
the resistivity and conductivity distributions in the brain over the cross
section, as blood has different values for these parameters than the rest
of the brain tissues [5, 6]. EIT and MIT are promising tomography
technologies because of their advantages such as being non-intrusive
and non-invasive. Cerebral stroke imaging with EIT and MIT methods
has been researched more often and has produced some results,
although there are still some issues [7–9]. Due to the relatively high
electrical impedance of the skull, there is a considerable attenuation of
the excitation current in EIT. Second, EIT requires the connection of
electrodes with the scalp, which results in a very large contact
impedance. These problems lead to low sensitivity of EIT to brain
tissue imaging. As for MIT, the induced magnetic field generated in
biological tissues exposed to an excitation field is negligible because of
the poor conductivity of biological tissues (0.1 S/m–2 S/m) [10].
Furthermore, the conductivity of blood is not noticeably different
from those of other brain tissues [11]. Because of these two factors,
MIT has relatively poor sensitivity for visualizing a brain hemorrhage.

Studies of the dielectric properties of brain tissues show that the
permittivity of blood is much higher than that of other tissues. At
1 MHz, the permittivity of blood, gray matter, and cerebrospinal fluid
is 3,000, 990, and 108, respectively [11]. Though the permittivity of all
brain tissues drops with frequency, the permittivity of blood is
uniformly larger. Therefore, in theory, imaging the permittivity
distribution is preferable to imaging the conductivity distribution
of brain tissues for detecting cerebral hemorrhage. We have measured
the change in the permittivity in the process of an ICH with a single-
channel previously. First, we employed a transmitting coil and a
receiving coil, based on the MIT principle, to measure the real part
change in ΔB/B (the induced magnetic field ΔB is relative to the
excitation field B) during ICH in a rabbit’s head, that is, tomeasure the
change in the brain permittivity, as the information of the permittivity
of the measured object is stored in the real part of ΔB/B [12], as
deduced by Griffiths et al [6]. Changes in the real part of ΔB/B were
found to be approximately proportional to the volume of the blood
injected [12]. As the real part ofΔB/B is very small, it is extremely hard
to measure and is constrained by a wide variety of factors. Next, we
used a parallel-plate capacitor to directly measure the capacitance of
the head during hemorrhage, with the resulting changes in
capacitance reflecting the corresponding changes in hemorrhage
volume [13]. The capacitance of the parallel-plate increased with
increasing blood injection volume, as shown in animal experiments
[13]. These two experiments suggest that it is indeed possible to reflect
the amount of hemorrhage by detecting changes in the brain
permittivity. Based on these results, this paper tries to use a multi-
parallel-plate electrode tomeasure the capacitance of the brain in each
projection and attempts to realize two-dimensional tomographic

imaging of cerebral hemorrhage with the capacitance data and a
reconstruction algorithm. This imaging method is known as ECT,
which is based on capacitance measurements from a multi-electrode
sensor surrounding an object (such as a pipeline or a vessel containing
gas, oil, and water in the industry), and has been under development
for more than a decade [14]. ECT has been widely used in multiphase
flow measurements in the oil industry and fluidized bed
measurements in the pharmaceutical industry [15, 16]. Apart from
industrial applications, ECT is used to detect breast cancer and brain
tumors and to image brain activity [17–19]. W.P. Taruno et al. used a
sensor with hemispherical electrode distribution for breast cancer
detection based on the fact that the permittivity of the cancerous
breast cells is higher than that of healthy breast tissue [17]. They
designed an actual phantom in which a paraffin wax (εr = 1) imitates
human breasts and a rubber ball (εr = 80) imitates cancer cells. The
phantom was used for three-dimensional ECT imaging. The results
showed that the malignant cancerous cells were successfully
reconstructed. ECT has also been applied for the detection of
brain tumor where abnormal electrical activity around the tumor
area is detected [18]. Five patients suffering from ependymoma,
oligodendroglioma, craniopharyngioma, germinoma pineal, and
cerebellopontine angle tumors were detected using the three-
dimensional ECT system [19]. The study showed a positive
correlation with MRI and CT results. We measured the change in
capacitance during cerebral hemorrhage in animals using a single
electrode pair and found that the amount of hemorrhage and the
change in capacitance were approximately linearly correlated; this
established a foundation for future studies on 2D ECT imaging of
cerebral hemorrhage. This paper presents the development of a 16-
electrode ECT 2D imaging system. Then, a numerical hemorrhage
model and an isolated porcine brain hemorrhagemodel are developed
to test the performance of the designed ECT system through
simulation imaging and actual measurement imaging and confirm
the feasibility of ECT for ICH imaging.

2 Materials and methods

2.1 Principle of ECT

A typical ECT system comprises three main units: a multi-
electrode sensor, sensing electronics, and a computer for hardware
control and data processing, including image reconstruction. All
electrodes, usually 8 or 12, are mounted around a pipe or vessel, and
the capacitance values between all single electrode combinations are
measured. The sensing electronics are used to switch one electrode
being connected from an excitation signal to a measurement circuit
and convert the capacitance into voltage signals, which are digitized
for data acquisition. The computer controls the system hardware
and implements image reconstruction to show the permittivity
distribution. The ECT procedure involves the forward problem
and the inverse problem [20]. The forward problem is to
calculate or measure the capacitance between all electrode pairs
in the sensor. For a complete measurement process, one of the
electrodes is selected in turn as the excitation electrode and others as
detection electrodes to obtain the capacitance data between all
electrode pairs. With this measurement strategy, the number of
independent capacitance measurements is
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M � K K − 1( )
2

(1)

where K is the number of electrodes. For a 16-electrode sensor,
120 independent capacitance measurements can be measured from
different electrode pairs. Capacitance data are a response to the
presence of permittivity distribution inside the imaging region and is
calculated or measured based on the integration of Poisson’s
equation (20):

C � Q

V
� − 1

V
∫∫

Γ

ε x, y( )∇ϕ x, y( )dΓ (2)

where ε(x, y) is the permittivity distribution in the sensing field, V is
the voltage difference between one electrode pair forming the
capacitance C, ϕ(x, y) is the potential distribution, and Γ is the
electrode surface; ϕ(x, y) also depends on the permittivity
distribution of ε(x, y). Therefore, the capacitance C between one
electrode pair can be considered a function of permittivity
distribution ε; as a result, we get the following equation:

C � ξ ε( ) (3)
Differentiating both sides of Eq. 3, the change in capacitance in

response to a change in permittivity is expressed as follows [21]:

ΔC � dξ

dε
Δε( ) + O Δε( )2 (4)

As the change in permittivity is supposed to be small, Eq. 4 is
often simplified to be a linear system. This relationship can be
represented by

ΔC � sΔε (5)
where S is the sensitivity matrix. Eq 5 has to be discretized to
calculate S and visualize the permittivity distribution. The sensing
area is divided intoN elements or pixels. The discrete form of (5) can
now be expressed as [20]

λ

M × 1
� S

M × N
· g

N × 1
(6)

where λ is the capacitance vector, g is the permittivity vector, that is,
the gray level of pixels, and S is the linearized sensitivity matrix, giving
a sensitivity map for each electrode pair. M indicates the number of
independent capacitance measurements in Eq. 1. The sensitivity map
S is generally computed by finite element simulation. The inverse
problem of ECT is to deduce the permittivity distribution from the
measured capacitance vector C (Eq. 2). In the discrete form, it is to
calculate the unknown g from the known λ using Eq. 6, while S is
treated as a constant precalculated matrix [20]. The solving of the
inverse problem is also the task of image reconstruction. Because the
number of pixels N is usually much larger than the number of
capacitance measurements M, Eq. 6 is underdetermined, and the
solution is not unique, so the reconstruction algorithms are required
to try to find the approximate solution to Eq. 6. In general, the
reconstruction algorithms for ECT can be categorized into two
groups: non-iterative algorithms and iterative algorithms. Linear
back-projection (LBP) is a typical non-iterative algorithm.
Common iterative algorithms include iterative Tikhonov
regularization, Landweber iteration, conjugate gradient method,
and Newton–Raphson method [22].

2.2 ECT sensor and measurement system

Our 16-electrode ECT system (Figure 1A) comprises five main
units: an ECT sensor (1), control electronics (2) and (3), an
impedance analyzer (4), and a computer (5). As shown in
Figure 1B, the ECT sensor consists of 16 square electrodes which
are uniformly spaced on a circular base with a diameter of 60 mm.
One single electrode shown in Figure 1C is made of a square thin
copper film (50 mm * 12 mm) printed on a PCB which includes a
solder pad in the middle for soldering electrode leads. The imaging
area (Figure 1D) is a circle with a diameter of 60mm, centered on the
electrode circle and evenly subdivided into 812-pixel points. The
ECT sensor can provide 16*15/2 = 120 independent capacitance
measurements for the inverse calculation of the permittivity for the
812-pixel points. We employed an impedance analyzer (4294A,
Agilent Technologies) to measure the capacitance of the electrode
pairs. When compared to a conventional capacitance measurement
circuit, an impedance analyzer offers many advantages for
capacitance measurement, including high measurement accuracy,
a shorter development cycle, and the ability to vary themeasurement
frequency at will (thanks to the analyzer’s broad measurement
range, which spans 40 Hz–110 MHz). The main drawback of this
method is that it takes a long time to measure one capacitance when
high precision is needed. One single measurement time of roughly
0.15 s may be achieved when the 4294A impedance analyzer is set to
its greatest measurement precision setting (fifth gear). We
consecutively measured the capacitance of each electrode pair for
three times and then calculated the average values, so the
measurement time of all the electrode pairs was 0.15*3*120 =
54 s. By adding the delay time of electrode switching, the time of
one measurement period was about 1 min. This imaging speed is not
applicable to industrial multi-phase flow measurement but is
acceptable for brain hemorrhage imaging, since the hemorrhage
in the brain is not expected to quickly alter. The computer (5 in
Figure 1A) sends orders to the impedance analyzer through the
USB-GPIB interface to trigger capacitance measurements and data
collection. The control electronics consist of two parts: relay
circuitry and electrode control circuitry (2 and 3 in Figure 1A).
Figure 2 depicts the diagram of the electrical connection of the main
hardware circuit. The three dashed boxes, 1, 2, and 3 shown in
Figure 2, indicate the electrical connections of the three parts, 1, 2,
and 3 shown in Figure 1A, respectively. Sixteen electrodes are
represented by the dashed boxes from E1 to E16 in 1. Each
electrode is wired to the input terminal of two relays connected
in series, as shown in the relay connection diagram in Figure 2. As an
example, E1 may be linked to any of the three nodes (H, L, or GND)
through any of the combinations of logic levels on k1-1 and k1-2
(control terminals of the relay). Omron’s electromagnetic G5V-1
relays are employed in this setup. The H and L nodes are connected
to the excitation signal output and measurement signal input in the
impedance analyzer, respectively. Choosing any one electrode as the
excitation electrode or as the measurement electrode and putting the
other 14 electrodes to the ground is sufficient to manipulate the
control signals of all relays. The H and L nodes are wired to the two
ends of the two-port fixture (16047E, Agilent Technologies), as
illustrated in Figure 1A. The ground of the control electronics is also
wired to the ground of the impedance analyzer. The connection of
electrode-controlled circuitry, shown by the dashed box 3 tbox3 in
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Figure 2, mainly consists of a microcontroller (STM32F103C8T6)
and a programmable logic chip (CPLD). A decoding circuit in CPLD
is used to decode the control signals from MCU and produce the
corresponding control signals of all relays to select the excitation
electrode and the measurement electrode. The MCU communicates
with the PC via a serial interface, receives excitation and
measurement electrode numbers from the PC periodically, and

outputs corresponding control signals to CPLD, which in turn
decodes and produces control signals of all relays to connect the
corresponding electrodes to H and L nodes. A program for data
collection and control was designed based on the LabVIEW
platform in PC. The program first sends the excitation electrode
and measurement electrode numbers to the MCU, then triggers the
impedance analyzer to measure capacitance of the selected electrode

FIGURE 1
Photographs of the ECTmeasurement system and sensor. (A)Measurement system, (B) ECT sensor, (C) electrode, and (D) pixel points of the imaging
area.

FIGURE 2
Schematic diagram of the electrical connection of the measuring system. The dashed box 1: 16 electrodes. The dashed box 2: The electrical
connection of relay circuitry. The dashed box 3: The electrical connection of control circuitry.
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pair, and finally reads the capacitance data from the impedance
analyzer. When a measurement cycle is completed, the program
creates a data file in the Excel format to save the capacitance data of
all electrode pairs. An algorithm inMATLAB calls the measurement
data and the sensitivity matrix data to reconstruct an image.

The use of electromagnetic relays for electrode switching instead
of analog switches is the primary difference between this ECT
measuring system and the standard ECT system. The reason for
this is that it has been found experimentally that the off-capacitance
of the analog switches is very large (several pF–tens of pF) [23], and
for a 16-electrode ECT, at least 16 analog switches are required, and
the total analog switching circuit forms a stray capacitance of
hundreds of pF. When disconnected from the circuit, one
opposite electrode pair of the ECT sensor has a capacitance of
approximately 0.3 pF; however, when connected to the analog
switching circuit, this value would boost to hundreds of pF. The
high stray capacitance greatly reduces the measuring accuracy and
resolution of the capacitance induced by the object under test. When
an electromagnetic relay is in an off condition, the terminals are
disconnected physically, leading to a tiny off-capacitance. The
capacitance of 120 electrode pairs in this ECT system was
measured to be between 8.936 pF and 11.328 pF when the
imaging area is empty. When the impedance analyzer was set to
its greatest accuracy, the ECT system could achieve a precision of
0.0006 pF. The frequency sweep measurement test reveals that the
ECT system has minimal measurement noise between 1 MHz and
10 MHz. The lower the frequency, the greater the noise, and the
higher the frequency, the smaller the noise, but if the frequency is too
high, the more the ECT system is affected by external interference,
considering that the measurement frequency is chosen to be 3 MHz.

2.3 Image reconstruction algorithm

In this paper, we used the traditional conjugate gradient (CG)
method for solving the linear inverse problem. The CG method has
a fast convergence rate but is only applicable to a linear system of
equations with a symmetric positive definite (SPD) coefficient matrix
[24]. However, the sensitivity matrix S for the ECT problem is always
non-symmetric and ill-conditioned. To obtain a stable solution, it is first
necessary to regularize the sensitivity matrix S. Consideringε(x,y) and
S′ � (STS + μI), then Eq. 6 can be expressed as [25]

S′ · g � λ′ (7)
The solution is then solved according to the idea of the CG

method.

3 Experimental arrangements

3.1 Simulation arrangement

To check the imaging performance of the ECT sensor and to
calculate the sensitivity matrix S (provided for the actual imaging later),
simulations were first performed. The simulation was carried out using
COMSOLMultiphysics and MATLAB on a PC equipped with an Intel
Core i7 processor of 3.40 GHz. First, the same sensormodel is created in
COMSOL according to the size of the actual ECT sensor in Figure 1.

The imaging area is set as a circle with a diameter of 60 mm (as shown
in Figure 1D). For the inverse problem, the imaging area is divided into
32 × 32 grids, with the outer part of the circle removed, which results in
812 pixels inside the imaging area. The sensitivity of each of the
812 pixels is then calculated for each electrode pair. The sensitivity
was calculated with the imaging zone under the air domain. The
sensitivity of electrode pairs i–j at pixel point P (x, y) is shown in
Eq. 8, with (Exi, Eyi) being the x-directional electric field component and
the y-directional electric field component at pixel point P when
electrode i is used as the excitation electrode and (Exj, Eyj) are the
x-directional electric field component and the y-directional electric field
component at pixel Pwhen electrode j is used as the excitation electrode.
Each electrode is set in turn as the excitation electrode, andEx and Ey are
calculated for all 812 pixel points. Finally, the sensitivity matrix for all
electrode pairs is calculated according to Eq. 8.

Sij x, y( ) � −Exi × Exj + Eyi × Eyj (8)

This air domain sensitivity matrix is used for both simulation
imaging and later actual imaging. Three simple permittivity
distribution models (Figures 3A–C) and two ICH models
(I1–I2 in Figure 3) are used for numerical simulation. As for
simple models, the background material is air, and the relative
permittivity of test objects is 4. The diameter of all the small circles in
all simple models is 6 mm. The ICH model is based on the actual
brain structure but is simplified by dividing it into five layers from
the outside to the inside, simulating skull (rose red), cerebrospinal
fluid (brown), gray matter (green), white matter (dark blue), and
blood (wine red). The relative permittivity of each part in the ICH
model is calibrated to the measured values of human brain tissue
from the literature (Table 1). The small red circle in the ICHmodel is
used to represent hemorrhage. The coordinate of the center of the
imaging area in I1 or I2 is (0 mm, 0 mm). The small red circle in
I1 and I2 represents hemorrhaging in the left hemisphere and right
hemisphere, respectively. The diameters of the two small red circles
are all 10 mm, and the central coordinates are (−9 mm and 7 mm)
and (9 mm and 7 mm), respectively. To image brain hemorrhage, we
first subtract the calculated capacitance data of I1 or I2 from the
reference data, which are the calculated data with no bleeding
present (with the red circles removed and the remainder retained).

To assess the quality of image reconstruction, the relative image
error and the correlation coefficient between the true model and
reconstructed images are used as criteria. The definition of the
relative image error and correlation coefficient is shown in Eqs 9,
10, respectively [21]. The lower the image error and the higher the
correlation coefficientmean, the better the image reconstruction results.

Image error � ĝ − g
���� ����

g
���� ���� × 100% (9)

where

Correlation coefficient �
∑P
i�1

gi − �g( )(ĝi − ĝ)�������������������
∑P
i�1

gi − �g( )2∑P
i�1

ĝi − ĝ( )2
√ (10)

is the normalized pixel value reconstructed and g is the normalized
permittivity vector of a true distribution in the model. ĝ and ĝ are
the mean values.
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3.2 Actual physical model imaging
experiments

As can be seen in Figure 4, the physical model imaging is divided
into three parts:Ⅰ, Ⅱ, andⅢ. Three models of A1, A2, and A3 in Part Ⅰ
are used to image blood at different locations. In models A1 and A2,
a plastic tube containing anticoagulant fresh sheep blood (inner

diameter 5 mm) is put in the center and 1/2 radius of the imaging
region. In A3, two identical blood-filled plastic tubes are positioned
at a 1/2 radius apart horizontally. B1, B2, and B3 are three models in
Part Ⅱ, in which different solutions are placed in a big cylinder
(56 mm inner diameter) and a miniature tube (with a diameter of
10 mm) which is fixed to the position at 1/2 radius of the big
cylinder. For B1, water is placed in the large cylinder, while vegetable

FIGURE 3
Simulation model and imaging results. The first three rows show the simple simulationmodels (A–C) followed by the corresponding imaging results
and the number of iterations; the last three rows show the two ICH models (I1, I2), the corresponding imaging results, and the number of iterations,
respectively

TABLE 1 Relative permittivity of each part in the ICH model (frequency 1 MHz) [11].

Color Rose red Brown Green Dark blue Wine red

Typical tissues Skull Cerebrospinal fluid (CSF) Gray matter White matter Blood

Relative permittivity 150 108 991 700 3000
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oil is placed in B2 and B3, and blood is placed inside the small tube
for all the three models. First, the big cylinders and small tubes are
measured once when empty; the resultant capacitance is used as a
reference; next, the cylinders and the small tubes are filled with the

appropriate solutions and measured once again; the resulting
capacitance is subtracted from the reference capacitance to create
an image. Thus, for the B1–B3 model imaging, blood is wrapped in
water or vegetable oil. This kind of imaging is a static imaging used

FIGURE 4
Physical experimental models and imaging results.
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mostly to test ECT’s capacity to image targets against complicated
backgrounds. Models in Part Ⅲ are C1 –C3. In these models, a tiny
tube (inner diameter 8 mm, designated by 1, 2, and 3 in sequence) is
positioned within a larger cylinder (inner diameter 56 mm) at 1/
2 radius horizontally and vertically. The big cylinder’s is empty
inside, devoid of any kind of solution. For C1, all three small tubes
are filled with water; for C2, three small tubes 1, 2, and 3 are filled
with vegetable oil, alcohol, and blood, respectively; for C3, three
small tubes 1, 2, and 3 are filled with alcohol, water, and blood,
respectively. With three small tubes filled with air, the subsequent
measurement data are utilized as reference data. Part Ⅲ is designed
to test the ECT’s capacity to image targets with different relative
permittivity. The relative permittivity for all of the solutions
employed in physical experiments is listed in Table 2, with blood
showing the highest value, followed by water, 75% alcohol, and
vegetable oil. Note that the blood used in this work has been diluted
with the anticoagulant sodium heparin and that early studies
showed that the permittivity of this kind of blood is substantially
less than 700 listed in Table 2 but greater than that of water.

For imaging of Part Ⅱ andⅢ, to quantitatively compare the pixel
value levels of the reconstructed image of objects under test, an
average pixel value parameter AVP is defined as follows:

AVP � ∑P
i�1ĝi

P
(11)

For each reconstructed model image, the circular contour of
each part image of the object under test was first manually circled,
and then theAVPwithin that contour was calculated as shown in Eq.
11, with ĝ representing the value of each pixel within the contour
and P representing the number of pixels within the contour. For
B1–B3, the circular contour where the small tube is located is
manually circled on each reconstructed image (the diameter
being the same for B1–B3), and the AVPs of both the small tube
and the remaining part (within the large cylinder) are calculated
separately, expressed as AVPC and AVPR, respectively, and the ratio
of AVPC: AVPR is calculated. For C1–C3, the circular contour (with
the same diameter), where the three small tubes are located on each
reconstructed image, is circled, the AVP of the three small tubes 1, 2,
and 3, denoted byAVP1,AVP2, and AVP3, respectively, is calculated,
and the ratio of AVP1: AVP2: AVP3 is calculated.

3.3 Isolated porcine brain hemorrhage
imaging experiment

To test the feasibility of ECT for imaging actual ICH, we
performed ex vivo imaging experiments before conducting animal
experiments. The market-bought pig brain in vitro, a 3D-printed big
cylinder (56 mm inner diameter) (with a tiny tube of 11 mm inner
diameter printed at its inner 1/2 radius), and a syringe with 10 mL of
sheep blood diluted with sodium heparin were prepared, as depicted
in Figure 5. The pig brain slices were carefully placed into the larger

cylinder, equally piled around the small tube, and firmly yet gently
squeezed until their height matched that of the electrode. First, the
big cylinder containing the pig brain slices was placed in the ECT
sensor co-axially and measured once when the small tube is empty,
and the resultant capacitance was utilized as the reference data.
Then, the blood in the syringe was slowly injected into the small
tube. The new capacitance measurement was taken after the small
tube was filled. The imaging data are the difference between the
reference capacitance and the data with blood injected. The big
cylinder was rotated such that the small tube is located at the left of
and below the imaging area, and the imaging test for the
aforementioned process was carried out at the two positions (as
shown in Figure 5), respectively.

4 Results and discussion

4.1 ECT measurement noise

The measured capacitance data for the 120 individual electrode
pairs with an empty sensor field are shown in Figure 6, with a
capacitance distribution ranging from 8.936 to 11.328 pF. This
empty field capacitance is very small compared to that of the other
ECT system and is entirely due to the use of electromagnetic relays.
Figure 7 shows the measured capacitance of an adjacent electrode pair
over 2min, with 2 min being exactly the imaging time of one frame. The
standard deviation was calculated to be 0.000127 pF.

4.2 Simulation imaging results

Figure 3 displays the simulated imaging results. For simple models
A and B, even though all small red circles in the model are set to the
same relative permittivity, the pixel value level of the small red circle in
the center is substantially lower than that of the small circles positioned
at 1/2 radius; thus, the image of the small circle in the center looks a bit
hazy. The reason is that the center of the imaging zone for ECT has the
lowest sensitivity due to the soft field properties of ECT. Althoughmany
advanced reconstruction algorithms in other papers have been found to
mitigate this effect successfully, the conjugate gradient approach utilized
in this study does not appear to be one of them. The imaging result of
simplemodel C outperformsA and B. Since the radial distance from the
center of each of the three smaller circles to the center of the imaging
zone is the same (1/2 of the larger circle’s radius), the pixel values for
each of the smaller circles are roughly the same. The number of
iterations in the reconstruction of models A, B, and C are 500, 500,
and 50, respectively. For the images ofmodels A and B, the white spot of
noise is considerably more pronounced than in the image of model C
since the sensitivity of the center is the lowest, and a very high number
of iterations are required to show the small circle in the middle. With
model C, a decent reconstructed image can be obtained only after
50 iterations. Table 3 displays the image error (%) and the correlation

TABLE 2 Relative permittivity of the four solutions (frequency 3 MHz).

Solution Blood Water Alcohol (75%) Vegetable oil

Relative permittivity 700 (without anticoagulant) 80 40 2–4
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coefficient of all models’ imaging; the image error (%) of model AB is
higher than that of model C, and the correlation coefficient is lower for
model AB. The imaging of ICH models I1 and I2 is clear, and the
location and size of the hemorrhage aremore accurately reflected due to
the use of time-difference imaging in large part, in which data calculated
with the hemorrhage circle existed is subtracted from data calculated
with the hemorrhage circle removed. Second, the diameter of the small
red circle in the ICH model is larger than that in the simple model. On
the other hand, it shows that ECT can image targets behind multiple
layers of material.

4.3 Physical experimental imaging results

Figure 4 displays the imaging outcomes of the physical experiments.
Models A1–A3 in Part Ⅰ exhibit excellent results. The location of the
blood in the image is spottedwith its location in themodel. Nonetheless,
the unequal distribution of sensitivity in the imaging area contributes to
a much smaller diameter of the blood image in A1 compared to A2 and
A3. The imaging of the same object placed in the center has the lowest
sensitivity; thus, its image appears smaller than that of the same object
placed in other positions. In most cases, ECT can image blood.

FIGURE 5
Isolated porcine brain hemorrhage models and imaging results.

FIGURE 6
Capacitance measurements of 120 independent electrode pairs under an empty field.
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The imaging results of models B1–B3 in Part Ⅱ is significantly poor.
The results of B2 and B3 can still reflect the position and size of blood,
but the backdrop appears as huge plaques, mainly because blood is
surrounded by other high permittivity backgrounds (not air); thus, it
belongs to static imaging rather than differential imaging. The
B1 imaging results do not show the presence of the blood portion at
all. This is mainly because blood is surrounded by water, and the
permittivity of this blood dilutedwith sodium heparin is notmuch larger
than that of water, as already described. The diameter of tubular blood is
only 10 mm, which is only 1/6 of the diameter of water, so the change in
capacitance caused by the blood part is very small and submerged in the
capacitance change caused by water. Thus, it is difficult to show the
presence of blood in the reconstructed image. Images of B2 and B3 show
the presence of the blood component, and their location and size are very
close to the real model. In addition, part of the reason is that the
background of blood wrapped in B2 and B3 is replaced by vegetable oil,
and the relative permittivity of vegetable oil is less than 4 (Table 2), which
is much smaller than that of blood. For this reason, the imaging can
emphasize the existence of the blood portion even though the diameter
of tubular blood is much smaller than that of vegetable oil due to the
substantial difference in relative permittivity. However, for imaging of
models B2 and B3, a large area of plaque appeared in the background
outside of the blood image, with areas of lowpixel values appearing in the
middle near the blood and areas of higher pixel values appearing near the
electrode. On the one hand, this is still caused by uneven sensitivity of the
imaging area, and on the other hand, it is because the soft field
characteristic of ECT will cause the sensitivity distribution of the
imaging area to change with the distribution of materials with
multiple different permittivities. Table 4 gives the ratio of the average
pixel values of the blood area and the remaining background in B2 and
B3 images, which is expressed asAVPC:AVPR. The ratio of B2 and B3 is
closer because in B2 andB3 only the position of blood is different and the
rest of the conditions are identical. The average value of B2 and B3 is

51.93:1, which also indirectly reflects that the permittivity of blood is
much higher than that of vegetable oil; however, it will not be equal to the
actual permittivity ratio of blood to vegetable oil because the imaging will
be affected by the volume and position of the objects besides permittivity.
The average pixel value ratio in the image of B1was not determined since
blood could not be imaged. This experiment demonstrates that it is
exceedingly difficult to conduct static imaging on an object with complex
backgrounds with minor changes in permittivity, a recurring bottleneck
in the field of electrical tomography.

The imaging findings of C1–C3 in Part Ⅲ reveal the presence of
three tubes of solution more clearly, although there are numerous high-
pixel-value patches near the electrodes, which is primarily caused by the
noise being increased as a result of the high number of iterations in
image reconstruction. For C1, the three tubes are all filled with water
and positioned at the same distance from the center, so the images of the
three tubes with solution should theoretically be identical. The image of
C1 shows that the three tubes’ pixel values are roughly comparable. The
average pixel value ratio of the three tubes is given in Table 5 as AVP1:
AVP2: AVP3 = 1:0.91:1.24, which are close to each other, and the subtle
differences may be caused by differences in the placement of the large
cylinders. Due to the manual placement of the big cylinder, the center
axis of the large cylinder does not exactly coincide with the center axis of
the imaging area; therefore, there is a distance discrepancy between the
centers of the three tubes and the center of the imaging area. The
imaging of C2 reveals three circular regions ranging in color intensity
from light to dark from left to right. The solutions in 1, 2, and 3 tubes in
C2 are vegetable oil, alcohol, and blood in the order of increasing
permittivity, which correlates to the color depths of the three tubes’
imaging areas. In Table 5, the ratio of the average pixel values for the
three tubes of solutions of C2 is 1:21.82:158.67. Even though the ratio of
the average pixel values of the three tubes does notmatch the ratio of the
permittivity values of the three solutions as shown in Table 2, the size
pattern is consistent. The discrepancies between the color depths of the

FIGURE 7
Measurement data of one adjacent electrode pair within 2 min.

TABLE 3 Image error (%) and correlation coefficient for simulation results.

A B C I1 I2

Image error (%) 21.34 25.65 5.62 9.38 9.41

Correlation coefficient 0.8863 0.8244 0.9628 0.9217 0.9135

TABLE 4 Average pixel value ratio of blood to the background for imaging
results in Part Ⅱ.

Phantom B1 B2 B3

AVPC: AVPR 53.27:1 50.59:1
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three tube locations in the image of C3 are minute. Table 5 provides the
average pixel value ratio of 1:1.18:1.45 for the three tube regions in
C3 imaging, which grows steadily although the difference is similarly
minimal. Also, 1, 2, and 3 tubes in C3 are filled with alcohol, water, and
blood solutions, respectively. The relative permittivity of alcohol and
water is 40 and 80, respectively, and that of blood is somewhat more
than that of water. The ratio of permittivity of the three solutions climbs
progressively from tiny to large, mirroring the ratio of the three tubes’
average pixel values. Nevertheless, the average pixel value ratio of the
three tubes in C3 is significantly lower than that in C2, as evidenced by
the images’ color tones. Because vegetable oil has a permittivity of 2–4,
the contrast between the permittivity of vegetable oil, alcohol, and blood
in C2 is larger than that of alcohol, water, and blood in C3. The three-
part physical experiment demonstrates that our developed ECT system
is capable of imaging blood, with the pixel values reflecting the varied
permittivity distributions.

4.4 Experimental results of brain
hemorrhage imaging on isolated pigs

Figure 5 depicts the results of isolated porcine brain hemorrhage
imaging tests. The red dashed circles in Figure 5 depict the real blood
position. Although the imaging results can approximate the presence of
blood, they deviate from the actual blood position. No matter whether
blood was at 1/2 of the radius at the left or below in the actual situation,
the imaging results deviated by about 3 mm from the center of the
imaging area. In addition to the blood image area, there are other small
regions with high pixel values in the images, notably around the
electrodes. The most probable explanation for this is that the
permittivity of blood is slightly larger than that of the isolated
porcine brain and hence does not crush it. This effect is primarily
attributable to the frozen porcine brain that was thawed and then doped
with melt water, resulting in the porcine brain’s permittivity being
drastically lowered. Thus, the actual difference of permittivity between
pig brain and blood is minimal. Second, the pig brain belongs to the
non-uniform dielectric distribution, which contains gray matter, white
matter, cerebrospinal fluid, and a small amount of residual blood, so it is
in homogeneousmedium, thus leading to a large difference between the
sensitivity distribution of the imaging area full of pig brain and full of
air, and the sensitivity matrices used for imaging in this paper are all
calculated when the imaging zone is full of air, leading to poor imaging
of blood, which may also be the reason why the imaging results deviate
from the actual location. Nevertheless, the imaging results reveal the
presence of blood more distinctly. Since the permittivity of the plastic
cylinder material is very small and the permittivity of the actual skull is
smaller than that of other brain tissues, the large cylinder wall can be
regarded as the skull, so that the ex vivo experimental model can be
approximately equivalent to the structure of an actual human head;
thus, this ex vivo pig brain hemorrhage imaging experiment
demonstrates the feasibility of the technique.

5 Conclusion

Extremely high morbidity and mortality rates are associated
with ICH, and early detection and treatment are the keys to
reducing mortality and enhancing postoperative results. In
addition, currently, there is no portable and diminutive brain
hemorrhage detection gadget. In this study, we constructed a 16-
electrode ECT system based on an impedance analyzer and
proved its viability for imaging brain hemorrhage by means of
numerical simulation and physical measurements. In the
simulation tests, a five-layer spherical brain hemorrhage
model was created, and the imaging results precisely depicted
the location and size of the hemorrhage. In physical studies, an
isolated pig brain hemorrhage model was created and measured
by the developed ECT system for differential imaging; the
imaging findings similarly demonstrated the existence of brain
hemorrhage, although the location of the hemorrhage in the
image was somewhat altered relative to the actual position. In
conclusion, the results of the simulation and the ex vivo imaging
experiments confirmed the feasibility of ECT for brain
hemorrhage imaging; however, the accuracy and resolution of
the imaging were not high enough to be used for actual brain
hemorrhage imaging. Therefore, improvements are required. The
subsequent stage is to initially enhance the ECT system’s
performance. Second, a more advanced imaging algorithm
should be developed to address the issue of imaging bias in ex
vivo research. Additionally, ICH imaging tests in vivo should be
conducted to examine the efficacy of ECT in actual hemorrhage
imaging.
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TABLE 5 Average pixel value ratio of the three tube solutions for imaging
results in Part Ⅲ.

Phantom C1 C2 C3

AVP1: AVP2: AVP3 1:0.91:1.24 1:21.82:158.67 1:1.18:1.45
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Infrared and visible image fusion
with edge detail implantation

Junyu Liu, Yafei Zhang* and Fan Li

Faculty of Information Engineering and Automation, Kunming University of Science and Technology,
Kunming, China

Infrared and visible image fusion aims to integrate complementary information
from the same scene images captured by different types of sensors into one image
to obtain a fusion image with richer information. Recently, deep learning-based
infrared and visible image fusion methods have been widely used. However, it is
still a difficult problem how to maintain the edge detail information in the source
imagesmore effectively. To address this problem, we propose a novel infrared and
visible image fusion method with edge detail implantation. The proposed method
no longer improves the performance of edge details in the fused image through
making the extracted features contain edge detail information like traditional
methods, but by processing source image information and edge detail information
separately, and supplementing edge details to the main framework. Technically,
we propose a two-branch feature representation framework. One branch is used
to directly extract features from the input source image, while the other is utilized
to extract features of edge map. The edge detail branch mainly provides edge
detail features for the source image input branch, ensuring that the output
features contain rich edge detail information. In the fusion of multi-source
features, we respectively fuse the source image features and the edge detail
features, and use the fusion results of edge details to guide and enhance the fusion
results of source image features so that they contain richer edge detail
information. A large number of experimental results demonstrate the
effectiveness of the proposed method.

KEYWORDS

infrared and visible image fusion, edge detail implantation, information compensation,
dual branch network, end-to-end network

1 Introduction

Due to the different imaging mechanisms, two types of images for the same scene often
carry a large amount of complementary information. If these complementary information
can be integrated into one image, it will help improve the comprehensiveness and accuracy of
the image to describe the scene, which is conducive to the development of subsequent tasks.
To this end, infrared and visible image fusion technology has been proposed and widely
applied to computer vision fields with different tasks, such as object detection [1], face
recognition [2], video surveillance [3] and so on.

In recent years, with the rapid development of deep learning, the research of fusion
methods among diverse modal information has made significant progress [4-8]. As an
important branch in the field of image fusion, infrared and visible image fusion has
attracted the attention of researchers, and a series of effective methods have been
proposed. These methods can be roughly divided into methods based on multi-scale
transformations [9-11], sparse modeling [12-15], and deep learning [16, 17]. Multi-scale
transformation based methods include pyramid transform [9], DWT [18], Contourlet
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transform (CT) [19], non-subsampled contourlet transform
(NSCT) methods[20], etc. This kind of methods cannot
achieve sparse expression of image because they use artificially
constructed basis functions to represent images, limiting the
visual quality improvement of fused images. Methods based
on sparse modeling can solve the above problems by using an
over-complete dictionary to represent images. However, these
methods are difficult to mine the statistical information from
large-scale training samples in an effective way, which limits the
further improvement of their expression ability.

Among deep learning-based fusion methods, CNN-based
methods are most common. At present, there are CNN-based
infrared and visible image fusion as Cross-UNet-based [21],
ResNet-based [22], GAN-based [23], Encoder-Decoder-based
methods [24], etc. In view of the fact that CNNs cannot capture
features over long distances, transformer-based infrared and visible
image fusion method was proposed. However, since Transformer is
designed based on attention mechanism, it has certain limitations in
mining detailed information at the edges of the image. To solve the
above problems, this paper proposes an infrared and visible image
fusion method with edge detail implantation. In terms of feature
extraction, the proposed method consists of two feature extraction
branches: one is the feature extraction branch based on
Transformer, and the other is the edge detail feature extraction
branch based on CNN. The former takes infrared and visible source
images as input, and the latter takes edge details detected from the
source images as input. Information extracted by the latter is fed
back to the former to compensate for the limitations of the
transformer in extracting features.

In the feature implantation from CNN branch to the
Transformer branch, an effective feature implantation method
based on attention mechanism is designed, which not only
considers the role of common information between different
features in two branches, but also the complementary features
extracted by CNN branch, realizing effective transmission of
CNN features to Transformer branch. In terms of feature
fusion, the features extracted from CNN branch and
Transformer branch are fused respectively, and the fusion
features of the CNN branch are used to guide the fusion
features of the Transformer branch, so as to realize the fusion
feature transfer from the CNN branch to the Transformer
branch. It further compensates the shortcomings of the
Transformer in feature extraction. The above method not only
combine the advantages of CNN and Transformer in feature
extraction into the whole framework, but also effectively
enhances the representation ability of edge details, thereby
improving the visual quality of the fusion results. In summary,
the main contributions of this paper are as follows.

1) A method of infrared and visible image fusion with edge detail
information implantation is proposed. This method uses two
different branches based on Transformer and CNN to extract
features from the input source images and the edge maps of the
source images, and implants features extracted by CNN into the
Transformer branch to make up for the shortcomings of
Transformer in extracting edge details.

2) Based on attention mechanism, an information implantation
method is designed, which realizes the injection of CNN branch

information into Transformer, effectively making up for the
shortcomings of Transformer in extracting features. In
addition, the proposed method fuses the features obtained by
CNN and Transformer branches respectively, and uses the fusion
results of CNN branch to guide the fusion results of Transformer,
further maintaining the edge details in fusion results.

3) In order to ensure that the features used to reconstruct fusion
result are rich in edge details, we introduce an edge
reconstruction block, and use edge detail information of the
target image (fusion result) as a constraint to make the
reconstruction result consistent with the target image, so as to
ensure that feature to reconstruct the fusion result contains
relevant information about edge details.

2 Related works

2.1 Infrared-visible image fusion

Infrared and visible image fusion is an important branch of
fusion field. According to the previous introduction, current
infrared and visible image fusion methods can be divided into
fusion methods based on multi-scale transformation [25],
sparse representation [26-29], and deep learning [30-32].
Multi-scale transformation based methods usually perform
multi-scale decomposition of the input source image first, then
fuse the decomposed coefficients, and finally apply the
corresponding multi-scale inverse transformation to the fusion
result to reconstruct the fusion image. These methods are
simple to implement and has good stability. However, due to
the use of fixed bases to represent the image information, their
sparse expression ability is weak, which limits the
improvement of fusion performance. Methods based on sparse
representation were more popular 10 years ago. These methods
can represent source images in a sparser way, obtaining better
fusion performance than the former. However, these methods are
difficult to mine statistical characteristics of features from large-
scale training samples in an effective way, and thus still have
limitations in representing image information.

In recent years, deep learning has been widely used in various
image fusion tasks due to its powerful feature extraction and
representation capabilities [33-38] without manually designing
features and fusion strategies. In particular, Li et al. [31]
proposed the DenseFuse infrared-visible image fusion
framework, which combined the shallow and deep features of
network by using dense blocks in the encoding process to extract
richer source image features. In order to improve the fusion
performance, Ma et al. [39] proposed a dual-confrontation
DDcGAN fusion framework to further improve the
performance of FusionGAN [23] when fusing infrared and
visible images. Additionally, to more effectively maintain the
edge details of the source image, Zhao et al. [40] used different
encoders to extract high-frequency detail information and low-
frequency information from the source images separately. Li et al.
[22] proposed to use the detail preservation loss function and
feature enhancement loss function in the residual structure
network, combining with the two-stage training strategy to
ensure that the fusion results contain rich detail information
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and significant information. Although the above CNN-based
methods have achieved certain performance, they are still
insufficient in maintaining edge detail information. In
addition, CNNs cannot mine the relationship between features
over long distances, which limits the further improvement of
their performance.

2.2 Transformer based image fusion

Thanks to its excellent long-distance modeling capabilities,
Transformers [41] has attracted the attention of researchers in
image fusion. In particular, in order to establish the global
dependence of image features, Ma et al. [42] proposed a residual
fusion framework based on SwinTransformer for infrared and
visible image fusion. This framework abandons traditional
convolution operations and adopts an attention-based network
structure. At the same time, a fusion strategy based on L1 norm
is designed, which further improves the fusion quality. In order to
obtain high-quality pan-sharpened remote sensing images, Bandara
et al. [43] proposed a new hyperTransformer framework. This
method transfers the high-resolution texture information in PAN
images to LR-HSI image features by attention mechanism, avoiding
the image spatial and spectral distortion caused by traditional fusion
methods.

In order to combine the respective advantages of CNN and
Transformer, Vs. et al. [44] proposed a transformer-based

encoding and decoding structure, and used the dual-branch
structure of CNN and Transformer to fuse image features.
Although this method can obtain satisfactory fusion results, it
does not consider the problem of maintaining the edge details of
source images, resulting in the loss of source image detail
information. Li et al. [45] combined the local features of the
convolutional network with the global features of the transformer
by alternately using CNN and Transformer in the network,
overcoming the shortcomings of a single network and
improving the visual quality of the fused image. Based on the
multi-scale feature pyramid theory, Park et al. [46] proposed an
image fusion method for dual-modality transformers. This
method mines the complementary information between source
images by estimating the non-correlated mapping relationship
between features of the source images, so as to improve the
extracted feature quality of the source images. Although the
above methods have achieved a certain degree of performance
improvement, they does not fully consider the problem of
maintaining the edge detail of the source images, which still
remains large improvement space of visual effect. Different from
the above methods, this paper uses two parallel feature extraction
branches, Transformer and CNN, to extract the features of input
source images and edge details, respectively, and implant the
features extracted by CNN into the Transformer branch. This
method can not only effectively integrate the respective
advantages of CNN and Transformer, but also avoid the loss
of edge detail information.

FIGURE 1
Overall framework of the proposed method.
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3 Proposed method

3.1 Overview

The overall framework of the proposed method is shown in
Figure 1. It consists of three parts: two-branch feature extraction
(TBFE), edge detail feature implantation (EDFI), and edge detail
guided feature fusion (EDGFF). TBFE is mainly used to obtain the
features and edge details of the source images. In this process, we use
Transformer-based network to extract source image features, while
utilize CNN network to the extract edge detail features. EDFI is
mainly used to inject edge detail features extracted from the CNN
branch into the Transformer branch to make up for the
Transformer’s shortcomings in extracting edge details. EDGFF
uses the fused features of CNN branch to guide the fusion of
Transformer branch, further highlighting the edge details in the
fusion results.

3.2 Two-branch feature extraction

3.2.1 Transformer feature extraction branch
As shown in Figure 1, we use CNN and Transformer for

TBFE, respectively, and the TBFEs for infrared and visible images
have the same network structure. Since Transformer network has
better feature relationship modeling ability for long-distance and
can better describe the relationship between different features, we
use Transformer branch to extract source image features. This
branch takes the source image Xj (j = ir, vi) as the input, and first
uses initial feature extraction block (IFEB) to obtain a shallow
multi-channel feature map, which is convenient for subsequent
Transformer feature extraction. The extracted features can be
represented as:

F0
j � fifeb Xj( ) (1)

where fifeb denotes the feature extraction operation of IFEB. In this
paper, IFEB consists of three 3 × 3 convolutional layers and a ReLU
activation function. We utilize Transformer to extract the global
features of the obtained feature F0j . For the first transformer layer, its
input feature is F0j , and the output is expressed as:

F1
j � ft1 F0

j( ) (2)

where ft1 represents the first Transformer layer feature extraction
operation, mainly composed of layer normalization (LN), multi-
head self-attention layer (MSA) and multi-layer perceptron (MLP).
Correspondingly, for the ith (i ≥ 2) Transformer layer, its output
is Fij.

3.2.2 CNN feature extraction branch
Compared with Transformer, CNNs are better at describing

underlying visual features such as image structure and texture.
Therefore, this paper uses CNN branch to extract features of
edge details. In order to obtain the edge detail information from
the source images, we perform Gaussian smoothing filtering on the
source image Xj to obtain smooth image, and use the source image
information to differ from the smooth image to obtain the edge
detail information:

Hj � Xj − G Xj( ) (3)

where G is the Gaussian blur operation. Edge details obtained in this
way contain high-frequency information of the source image, which
can effectively depict the edge details. Compared with the gradient
map extracted by gradient operator, Hj contains richer edge detail
and texture information. Similar to the Transformer branch, we use
IFEB to extract the underlying features of the edge detail map in
CNN branch:

�F0
j � fifeb Hj( ) (4)

Besides, detailed features are further extracted by residual dense
block (RDB). For the first RDB, its input is features of the edge detail
map �F0j and the output is �F1j :

�F1
j � frdb1

�F0
j( ) (5)

where frdb1 represents the feature extraction operation of the first
RDB. In this work, RDB is a feature extraction block composed of
three convolutional layers, ReLU activation function and densely
connected between them. Correspondingly, for the ith (i ≥ 2) RDB,
its output is �Fij.

3.3 Edge detail feature implantation

In order to make the extracted features in Transformer branch
rich in edge detail, a two-stage feature compensation block (TFCB)
is proposed, as shown in Figure 2. This module solves the problem
that the Transformer branch is difficult to extract edge detail features
by implanting local texture details of the image extracted by RDB
into the Transformer branch. As for network structure, the module
consists of two stages of feature compensation. The feature
compensation in the first stage realizes the transmission of
information by finding the correlation between �Fij and Fij, and
dynamically aggregating features of �Fij according to the changes of
input features. Specifically, �Fij and F

i
j are first transformed into three

feature spaces Qi
j, �K

i
j, and �Vi

j by 1 × 1 convolution.

Qi
j � Conv1×1 Fi

j( )
�Ki
j � Conv1×1 �Fi

j( )
�Vi
j � Conv1×1 �Fi

j( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (6)

where Conv1×1 denotes 1 × 1 convolution. The first stage feature
compensation process can be formulated as:

~F
i

j � Fi
j + softmax

Qi
j
�Ki
j( )T��

C
√⎛⎜⎝ ⎞⎟⎠�Vi

j (7)

Where C is the dimension of �Ki
j. The above method achieves

information transfer from �Fij to Fij by using �Fij to represent Fij.
However, due to differences between �Fij and Fij, the features re-
aggregated based on similarity may lose some details. In order to
avoid this problem, this paper introduces the second stage of feature
compensation. Specifically, we input the re-aggregated features

Ti
j � softmax

Qi
j
�Ki
j( )T��

C
√⎛⎜⎝ ⎞⎟⎠�Vi

j (8)
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and �Vi
j to a small CNN network, and select the activated features of

the network through attention map, performing the second
information compensation, as shown in Figure 2. To obtain the
spatial attention map, we first concatenate Ti

j and �Vi
j, and apply 1 ×

1 convolution and Sigmoid:

Ai
j � σ Conv1×1 concat Ti

j, �V
i
j( )( )( ) (9)

where σ represents the Sigmoid activation function. Output features
of the ith information compensation module can be represented as:

F̂
i

j � ~F
i

j + Conv1×1 Ai
j ⊙ concat Ti

j, �V
i
j( )( ) (10)

The two-stage feature compensation strategy not only avoids the
shortcomings of Transformer in extracting edge detail features,
but also prevents the loss of edge detail features and improves the
quality of features, which helps to reconstruct high-quality fusion
results.

3.4 Edge details guided feature fusion

In order to effectively use the edge detail features of the
CNN branch to supplement the features in the Transformer
branch in fusion image reconstruction, this paper proposes a
method to synthesize the edge detail fusion results of the CNN
branch and the fusion results of the Transformer branch to
jointly construct the final fusion results. In order to effectively
fuse the multimodal features extracted by TBFE. We design a
multi-scale complementary mask fusion (MCMF) module to
ensure its effectiveness. As shown in Figure 3, MCMF
concatenate the features Fiir and Fivi from the output of the
Transformer branch to obtain Fiir+vi, which is feed into the
convolutional layer to learn the weight map Mi for fusion. In
this process, we apply three dilated convolutions with different
dilation rates to the concatenated features, mining the
importance information in different receptive fields in a

FIGURE 2
Detailed structure of TFCB.

FIGURE 3
Detailed structure of MCMF.
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more flexible way. After concatenating three groups of results,
the feature fusion is performed by 1 × 1 convolution, and the
fusion weight map that reflects the importance of each position
in the source image features is obtained through the Sigmoid
activation function.

Mi � Sigmoid Conv1×1 concat Conv3×3 Fi
ir+vi, r � 1( ),(((

Conv3×3 Fi
ir+vi, r � 2( ),Conv3×3 Fi

ir+vi, r � 3( ))))
(11)

where Conv3×3 denotes 3 × 3 convolution and r is dilation rate.
The fusion feature can be expressed as:

Fi � Fi
ir ⊙ Mi + Fi

vi ⊙ 1 −Mi( ) (12)
where ⊙ denotes hadamard product. Similar to the fusion of
Transformer features, the edge detail features �Fiir and �Fivi
extracted from the CNN branch are also fused in the above
way to obtain the fusion result �F3 of the last RDB output features.
The fused detailed features �F3 are concatenated with the fusion
features of Transformer branch at three scales F1, F2, F3 to obtain
Ff. In order to ensure that both Ff and �F3 contain rich edge detail
features, We reconstruct the edge detail feature maps by a
reconstruction block (RB) for Ff and �F3 respectively, and make
the reconstructed results consistent with the target feature maps.
The RB used for reconstruction in this work consists of two 3 × 3
and one 1 × 1 convolutional layers, and the parameters are not
shared between the different reconstruction block. Besides, this
work uses the gradient detection operator to directly extract the
gradient information of the source images, and fuse them to
obtain high-quality target feature map Vfus. The specific process
is as follows:

Vfus i, j( ) � ∇Xir i, j( ), if|∇Xir i, j( )|≥ ∇Xvi i, j( )∣∣∣∣ ∣∣∣∣
∇Xvi i, j( ), otherwise{ (13)

where Vfus is the edge detail of the target image, ∇ is the Laplace
operator, and (i, j) is the pixel coordinates.

4 Loss function

To ensure high visual quality fusion results, we use
the L1 loss shown in Eq. 14 to optimize the parameters in
the RDB:

ℓf � Ŷ
3 − Vfus

����� �����1 (14)

where Ŷ
3
is the image after �F3 is reconstructed by RB. In the

reconstruction process of the fusion results, the fusion image
and the target feature map are reconstructed respectively with
pixel loss, which is designed to limit the difference in intensity
between real-world data and the reconstructed model result. Yfus

is the final fused image, and the reconstruction loss used in this
work is as follows:

ℓr � ‖Yfus − Xir||1 + ‖Yfus − Xvi||1 + Ŷf − Vfus

���� ����1 (15)

where Ŷf is the reconstructed image of Ff by RB. The total loss of the
network is expressed as:

ℓtotal � ℓf + ℓr (16)

5 Experiments

5.1 Dataset

KAIST1 and FLIR2 are the two most commonly used datasets
in the field of infrared and visible image fusion based on deep
learning. Among them, there are 95,000 infrared and visible
image pairs in the KAIST dataset and 14,452 image pairs in
the FLIR dataset. In order to improve the generalization ability of
the training model, 3,000 image pairs are randomly selected from
the two datasets respectively, and a total of 6,000 image pairs
from the training set of the proposed algorithm in this work. To
verify the effectiveness of the method, 49 pairs of widely used
infrared and visible images are randomly selected from the three
datasets TNO3, VOT2020-RGBT4 and RoadScence5 to construct
the test set in this work. Among them, 39 pairs of images are from
TNO and VOT2020-RGBT datasets and 10 pairs of images are
from the RoadScence dataset. The test samples are shown in
Figure 4.

5.2 Training details

In the training phase, each infrared and visible image pair is
randomly cropped into 140 × 140 image blocks to achieve data
enhancement. In this work, Adam [47] is used as the optimizer of
the network, the training batchsize is set to 4, and a total of
30 epochs are iterated. The initial value of learning rate is set to
1 × 10−4, and decays at the 5-th, 10-th, and 20-th epochs,
respectively, with a decay rate of 0.5. The code of our method
is implemented by using the PyTorch framework with NVIDIA
GTX 3090, and the software environment is UBUNTU20.2,
Python3.8 and PyTorch1.9.

5.3 Evaluation metrics

In order to objectively evaluate the fusion performance, six
commonly used image fusion metrics are used in this work to
assess the quality of fusion results from four perspectives. They are
cross entropy (QCE) [48]; Entropy (QEN) [49]; gradient-based fusion
performance (QAB∕F) [50]; Chen -Blum metric (QCB) [51],; Chen-
Varshney metric (QCV) [52]and Structural similarity index measure
(QSSIM) [53]. Among them, QCE and QEN are metrics based on
information theory (QAB∕F) is a metrics based on image features, QCB

and QCV are metrics based on human perception, and QSSIM is a
metrics based on structural similarity of images. Among these six
metrics, lower values for QCE and QCV indicate better quality of

1 https://soonminhwang.github.io/rgbt-ped-detection/.

2 https://www.flir.ca/oem/adas/adas-dataset-form/.

3 https://figshare.com/articles/dataset/TNO-Image-Fusion-Dataset/
1008029.

4 https://www.votchallenge.net/vot2020/dataset.

5 https://github.com/hanna-xu/RoadScene.
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fusion results, while higher values for the other indicators indicate
better fusion performance.

5.4 Comparison with state-of-the-arts

In order to verify the effectiveness of the proposed
method, we compare our method with six advanced
infrared and visible image fusion methods, including ADF

[54], GTF [55], LatLRR [56], FusionGAN [23], SDNet [57],
and RFN [22].

Figure 5 shows the fusion results of different methods on six
groups of test images. In order to facilitate the fusion quality
evaluation from the perspective of visual effect, we zoom in local
area of the fusion results. It can be seen that the proposed method
can not only preserve the salient information in the infrared image,
but also maintain the edge detail information in the visible image. In
detail, the outline of the infrared salient information is blurred, and

FIGURE 4
Some test images from TNO, VOT2020-RGBT and RoadScence datasets.

TABLE 1 Quantitative evaluation of different fusion methods on 39 pairs of images from TNO and VOT2020-RGBT datasets. The red font indicates the optimal
results and the blue font indicates the sub-optimal results.

Methods QCE ↓ QEN ↑ QAB∕F ↑ QCB ↑ QCV ↓ QSSIM ↑

ADF 1.6913 6.4384 0.4021 0.4812 609.7199 1.4246

GTF 1.0113 6.7083 0.3346 0.4220 1,237.5143 1.4101

LatLRR 2.5355 6.7744 0.3596 0.4767 656.1416 1.1879

FusionGAN 2.2057 6.5336 0.2299 0.4045 1,025.8828 1.3489

SDNet 1.7178 6.6736 0.4527 0.4650 825.2304 1.4324

RFN 1.7270 6.8364 0.3602 0.4723 642.0348 1.4226

Ours 1.5498 6.9070 0.4815 0.5068 564.0687 1.4476

Frontiers in Physics frontiersin.org07

Liu et al. 10.3389/fphy.2023.1180100

146

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1180100


the edge detail is not preserved enough in the fusion results obtained
by FusionGAN, RNF, and ADF. In contrast, other methods
effectively retain significant information, but the loss of spatial
detail is more pronounced, as shown in the zoomed-in area of
GTF fusion results. Similar phenomena can be observed in the
remaining other fusion results. On the whole, the proposed method
can more fully retain the significant edge detail information of the

source images, and show better fusion performance. As for objective
metrics, the proposed method has achieved excellent performance
on QEN, QAB∕F, QCB, QCV and QSSIM, as shown in Table 1, which
further verifies the effectiveness of our method.

To further verify the effectiveness of the proposed method, we
deploy the above comparison methods to the test data selected
from the Roadscene. Figure 6 shows the fusion results of different

FIGURE 5
Fusion results of different methods on six pairs of images from TNO and VOT2020-RGBT datasets.

TABLE 2 Quantitative evaluation of different fusion methods on 10 pairs of images from RoadScence datasets. The red font indicates the optimal results and the
blue font indicates the sub-optimal results.

Methods QCE ↓ QEN ↑ QAB∕F ↑ QCB ↑ QCV ↓ QSSIM ↑

ADF 1.5202 6.7251 0.4084 0.4398 954.7853 1.3249

GTF 0.5876 7.0637 0.3708 0.4211 1964.4652 1.3212

LatLRR 2.0122 5.8881 0.3943 0.4285 880.5359 1.2419

FusionGAN 1.6016 6.9790 0.2939 0.4204 1,546.3186 1.2255

SDNet 1.6867 7.0493 0.4497 0.4604 1,587.5962 1.3285

RFN 1.3567 6.8826 0.3585 0.4390 1,398.5784 1.3139

Ours 1.5661 7.1463 0.4634 0.4839 741.7628 1.3601
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fusion methods on five pairs of test images from Roadscene. Deep
learning-based fusion methods (FusionGAN, SDNet, and RFN)
have better visual performance than traditional fusion methods
(ADF, GTF, and LatLRR). Traditional fusion methods are limited
by hand-designed fusion rules, resulting in problems such as too
bright, too dark, or loss of detail information. FusionGAN adopts
the adversarial learning network structure and lacks constraints
on spatial consistency, causing blurred edge details in the
obtained fusion results, which affects the visual quality
improvement of the fusion images. SDNet, considers the
spatial gradient information in network design, so it has
certain advantages in detail retention, but its ability of

remaining texture information is weak. Similar problem exists
in RFN., in contrast, our fusion results have two advantages. First,
the significant information of the infrared image can be well
retained, so that the fusion results can further highlight the
target, which is conducive to subsequent tasks (such as target
detection, instance segmentation, etc.). Second, more texture
detail information can be retained, ensuring the quality of the
fusion results to a certain extent. In order to evaluate the quality
of the fused images more comprehensively, we use six commonly
used objective evaluation metrics to evaluate the quality of the
fused images. From Table 2, results of the proposed method reach
the optimal on five indicators of QEN, QAB∕F, QCB, QCV, and
QSSIM, which further proves the effectiveness and superiority of
the proposed method.

FIGURE 6
Fusion results of different methods on five pairs of images from RoadScence.

TABLE 3 Analysis of the effectiveness of different functional modules.

Methods QCE ↓ QEN ↑ QAB∕F ↑ QCB ↑ QCV ↓ QSSIM ↑

w/o Hj 1.5721 6.8866 0.4592 0.4857 600.7409 1.4166

w/o TFCB 1.5911 6.9014 0.4762 0.4780 569.5434 1.4244

w/o MCMF 1.5593 6.8715 0.4754 0.4812 588.4187 1.4406

w/o Vfus 1.5557 6.8911 0.4547 0.4828 689.1718 1.4122

Ours 1.5498 6.9070 0.4815 0.5068 564.0687 1.4476

TABLE 4 The effect of different nuber of TFCBs on fusion performance.

Methods QCE ↓ QEN ↑ QAB∕F ↑ QCB ↑ QCV ↓ QSSIM ↑

2 TFCBs 1.5687 6.8988 0.4805 0.4982 565.9757 1.4415

3 TFCBs 1.5498 6.9070 0.4815 0.5086 564.0687 1.4476

4 TFCBs 1.5425 6.8697 0.4805 0.4866 573.2399 1.4488
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5.5 Ablation study

In order to verify the influence of different components on the
fusion performance of the proposed method, we apply ablation
experiments on each module.

In the validation of the input of edge detail information,
we use the source images instead of edge details as the input of
CNN branch to verify the influence of edge details on fusion
results (w/o Hj). In the implantation of edge detail feature, we use
two-stage feature compensation block (TFCB) to compensate
the information of the Transformer branch. In order to verify
the effectiveness of edge detail feature implantation, we add
the features of two branch to replace TFCB module (w/o
TFCB). In edge detail-guided feature fusion, the multi-scale
complementary mask fusion (MCMF) module is the key. To
verify its effectiveness, MCMF is replaced by
conventional feature channel concatenation and 1 × 1
convolution to achieve feature fusion (w/o MCMF). The target
edge detail map Vfus is used to enrich the features of the
reconstructed fusion result with edge detail information. To
demonstrate its validity, we directly removes it from the
model (w/o Vfus). The effectiveness of the above modules is
tested on 39 pairs of images from TNO and VOT2020-RGBT.
The effectiveness of the different components can be seen in
Table 3.

5.6 Hyper-parameter analysis

The number of TFCBs determines the depth of the network,
whose impact on the final performance can be seen in Table 4.When
the number of TFCBsmodules is three, the optimal result is obtained
among the six evaluation indexes overall, so we set the number of
TFCBs to three.

6 Conclusion

In order to effectively maintain the edge detail information of
the source images, we propose a infrared and visible image fusion
method with edge detail implantation, which adopts a two-branch
feature representation framework. One branch is based on
Transformer, which is mainly used to directly extract features
from input source images. The other is CNN feature extraction
branch, which is mainly used to extract image edge details features.
Features extracted by CNN branch are implanted into the
Transformer branch to alleviate the shortcomings of the

Transformer branch in extracting edge detail features. In
addition, so as to further ensure that the edge details of the
source image can be effectively retained in the fusion results, a
feature fusionmethod guided by edge details is proposed, which uses
the fused edge detail features of CNN branch to guide the feature
fusion of Transformer branch. A large number of experimental
results prove the effectiveness of our method.
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Fine-grained similarity semantic
preserving deep hashing for
cross-modal retrieval
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Cross-modal hashing methods have received wide attention in cross-modal
retrieval owing to their advantages in computational efficiency and storage cost.
However, most existing deep cross-modal hashing methods cannot employ both
intra-modal and inter-modal similarities to guide the learning of hash codes and
ignore the quantization loss of hash codes, simultaneously. To solve the above
problems, we propose a fine-grained similarity semantic preserving deep hashing
(FSSPDH) for cross-modal retrieval. Firstly, this proposed method learns different
hash codes for different modalities to preserve the intrinsic property of each
modality. Secondly, the fine-grained similarity matrix is constructed by using
labels and data features, which not only maintains the similarity between and
within modalities. In addition, quantization loss is used to learn hash codes and
thus effectively reduce information loss caused during the quantization procedure.
A large number of experiments on three public datasets demonstrate the advantage
of the proposed FSSPDH method.

KEYWORDS

cross-modal fusion, similarity semantic preserving, quantization loss, deep hashing,
intra-modal similarity, inter-modal similarity, fine-grained similarity

1 Introduction

As electronic technology and the Internet have advanced, the amount of multimedia
data, such as images, texts, audio, and video, has experienced rapid growth. Therefore, how
to effectively implement cross-modal retrieval has become a hot research field. However, due
to the differences in data distribution and feature representation between different
modalities, it is a huge challenge in cross-modal retrieval to narrow the semantic gap
between multimodal data. Generally, the goal of cross-modal retrieval is to map the original
data into a common potential space to maintain the similarity structure of the original
features and find the most similar samples in the new feature space [1]. In addition, hashing
technology can significantly reduce storage space and computational complexity because it
only requires binary operation. Therefore, it becomes an effective way to solve cross-modal
retrieval of massive data [2–4].

Cross-modal hashing is generally divided into two main categories, which are supervised
hashing and unsupervised hashing. The unsupervised hashing [5,6] aims to project data features
into a common feature space to reduce the difference between modalities. The supervised hashing
methods [7,8] use label information to further enhance the semantic correlation between cross-
modal data. The use of label information significantly narrows the gap between modalities and
achieves excellent retrieval performance. Since deep learning has demonstrated its strong
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advantage in various fields, many deep cross-modal hashing methods
have been proposed in recent years [9–11]. Tu et al. [12] proposed an
end-to-end deep cross-modal hashing method, which obtains the
unified hash codes of the training and the query samples through the
joint learning of hash codes and hash functions. Self-supervised
adversarial hashing (SSAH) [13] adopts two adversarial networks
to jointly model semantic features of different modalities and then
utilizes their semantic correlations to generate binary hash codes. At
present, deep hashing methods have achieved excellent performances
in cross-modal retrieve tasks, but there are still some issues to be
solved urgently: 1) Most existing deep cross-modal hashing methods
ignore the intra-modal and inter-modal similarities to guidance the
hash code learning; 2) Existing hashing methods mainly focus on the
hash code generation stage, and thus hash representations with less
semantic information and spatial correlation cannot generate optimal
hash codes; 3) Many methods often fail to consider the quantization
loss of hash codes, resulting in the loss of semantic information during
hash code learning.

To solve the above problems, we propose a fine-grained
similarity semantic preserving deep hashing (FSSPDH) method
for cross-modal retrieval tasks. Figure 1 shows the framework of
our proposed FSSPDHmethod. Themain contributions of this work
are given as follows.

1) The proposed FSSPDH approach unifies data feature extraction and
hash code learning into an end-to-end deep learning framework. It
can learn different hash codes from different modalities and thus
maintains the intrinsic property of each modality. In addition, the
proposed method combines the high-level semantic similarity

constructed with labels and the low-level semantic similarity
constructed with features to construct a fine-grained similarity
matrix. Compared with traditional similarity constraints, the
fine-grained similarity can effectively maintain inter-modal and
intra-modal similarities to explore the semantic relationship
between modalities and instances.

2) Our FSSPDH method considers the quantization loss in hash
code learning, which further reduces the information loss caused
by the hash code quantization. The quantization loss can make
the learned hash codes with more feature information obtain
more discriminative hash codes.

3) Experimental results conducted on three widely usedmultimodal
datasets indicate that our proposed FSSPDH method achieves
higher accuracy in cross-modal retrieval tasks compared with
other hashing methods.

The remaining parts of this paper are organized as follows:
Section 2 reviews the related works of cross-modal hashing retrieval.
In Section 3, we introduce our FSSPDH approach in detail. Section 4
describes the experimental results and their results. Finally, our work
is drawn in Section 5.

2 Related work

At present, cross-modal hashing can be roughly divided into the
unsupervised method and supervised method according to whether
it uses supervised information. This section will give a brief overview
of these two types of methods.

FIGURE 1
The framework of the proposed FSSPDH approach.
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2.1 Unsupervised cross-modal hashing

Since most multimodal data from real life are unlabeled, it is
unrealistic to consume significant labor and time to label these data.
Therefore, unsupervised hashing methods have received extensive
attention in cross-modal retrieval. These methods attempt to learn the
correlation and underlying structure of multimodality data. They can
be further divided into graph-based methods and matrix
factorization-based methods. The former seeks to maintain the
correlation of hash codes by constructing a similarity graph. Linear
cross-modal hashing (LCMH) [14] uses an anchor graph to keep the
similarity within and between models in Hamming space. Hetero-
manifold regularisation (HMR) [15] constructs multiple sub-
manifolds defined by homogeneous data with the help of
supervision information and alleviates the integration complexity
and heterogeneity problems. Fusion similarity hashing (FSH) [16]
constructs an asymmetric graph to model the fusion similarity and
then embeds it into the hash codes. However, matrix factorization-
based methods can explore the correlation in multimodal data
through the potential semantic space, which can avoid the high
training complexity of calculating similarity graphs. Collective
matrix factorization hashing (CMFH) [2] is a typical method
based on matrix factorization, which learns the common
representation from different modality data, and then quantizes it
to obtain their hash codes. Collective reconstructive embedding (CRE)
[17] employs different schema-specific modalities to handle
heterogeneous data, which can dispose of the complex structural
and heterogeneity of multi-modality data.

With the continuous development of deep learning, many deep
hashing approaches have also been for unsupervised cross-modal
retrieval. Liong et al. [18] proposed a three-layer neural network
structure, which seeks multi-level nonlinear transformations to learn
binary codes. Lin et al. [19] put forword to learn discriminative hash
codes by introducing three criterion terms in the last layer of the
network. Do et al. [20] designed a novel deep hashing network to
efficiently learn hash codes by relaxing binary constraints. Similarity
adaptive deep hashing (SADH) [21] alternately trains three modules:
similarity graph updating, deep hashingmodel training and hash code
optimization to obtain high-quality hash codes. Multi-pathway
generative adversarial hashing (MGAH) [22] makes full use of the
representation learning advantages of generative adversarial networks
on unsupervised data to explore the latentmanifold structure of cross-
modal data. Deep graph-neighbor coherence preserving network
(DGCPN) [23] was derived from the graph model to exploit the
consistency of the neighbor graph by integrating the structure
information between the data and its neighbors.

2.2 Supervised cross-modal hashing

Different from the aforementioned unsupervised hashingmethods,
supervised hashing methods try to fully exploit more semantic
correlation from supervised information to improve retrieval
accuracy. Cross-modality metric learning using similarity-sensitive
hashing (CMSSH) [24] employs a binary classification approach to
generate hash codes and employs an enhanced strategy to optimize the
model. Supervised matrix factorization hashing (SMFH) [25] preserves
the similarity by constructing an adjacency matrix and then employs

relaxed discrete constraint to learn binary representation. Fast discrete
cross-modal hashing (FDCH) [26] regresses category information to
learn hash codes and hash functions. Liu et al; [27] proposed a universal
and flexible cross-modal hashing framework, which can handle various
cross-modal retrieval scenarios, including paired or unpaired multi-
modal data retrieval and retrieval scenarios with equal or variable hash
length coding. Different from the linear projection from Hamming
space to label space, subspace relation in semantic labels for cross-
modal hashing (SRLCH) [28] learns the linear transformation from
label space to Hamming space by reverse learning. Its essence is to
regard label information as advanced features and embeds it into hash
codes.

Deep neural networks have also been widely used in supervised
cross-modal retrieval due to their powerful arbitrary nonlinear
representation capabilities. Deep cross-modal hashing (DCMH) [29]
generates hash codes that preserve cross-modal similarity by imposing
a negative log-likelihood loss in an end-to-end deep learning
framework. Adversarial cross-modal retrieval (ACMR) [30] utilizes
an adversarial learning classification approach to distinguish different
modalities and generate binary hash codes. Cross-modal deep
variational hashing (CMDVH) [31] put forward to a two-step
framework to separate hash code learning and hash function
generation. In the first step, CMDVH learns the unified hash codes
of the image-text pairs in the database. Then it uses the learned unified
hash codes to generate hash functions in the second step. Therefore, the
learned hash function in the second stage cannot guide the
optimization of the unified hash codes. Wang et al. [32] proposed a
deep semantic reconstruction hash method with pairwise similarity-
preserving quantitative constraints. This method embeds advanced
semantic affinity in each data pair to learn compact binary codes.

3 Our proposed method

3.1 Notations

This proposedmethod adopts the batch strategy to train the model,
where the variables are represented in a batch-wisemanner. Specifically,
letO � o1, o2, . . . ., ok{ } represent k instances in each batch, where oi �
[Ii,T i] is the i-th image-text pair. XI ∈ Rk×d1 and XT ∈ Rk×d2 denote
the feature matrices of Ii and Ti, respectively. Generally, the image
feature dimension d1 and the text feature dimension d2 should satisfy d1
≠ d2. Besides, let BI ∈ −1,+1{ }k×l and BT ∈ −1,+1{ }k×l represent the
hash codes generated for image and text modality, respectively, where l
is the hash code length. In addition, the label matrix is defined as L ∈
Rk×c, where c represents the total category number.

3.2 Framework of our fine-grained similarity
semantic preserving deep hashingmethod

3.2.1 Deep hashing networks for image and text
modalities

The framework of the FSSPDH method is shown in Figure 1,
which mainly consists of two parts: image hashing network and text
hashing network. This network model can not only extract feature
representations containing more semantic information for the two
modalities of images and text, but also establish semantic
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relationships between the two modalities through a semantic
similarity matrix.

1) Image hashing network (ImgNet). As traditional SIFT features
are not sufficient to capture the intrinsic semantic relationships of
images, the proposed model follows previous work in extracting
deep features fromCNNs (pre-trained on ImageNet) to replace SIFT
features. Thus, 4096-dimensional features are extracted from the
fc7 layer (after ReLU) of AlexNet [33] as the image features for each
input image block. Therefore, we use AlexNet as the backbone of
ImgNet and replace the classifier layer fc8 of AlexNet with a new fc
with l hidden units to generate a continuous representation
HI ∈ Rk×l.

2) Text hashing network (TxtNet). For the text modality, LDA
(Latent Dirichlet Allocation) topic vectors or token features are as
XT. In addition, we use multilayer perceptron (MLP) as the
backbone of TxtNet. Due to the diversity and complexity of raw
text descriptions, we directly use topic vectors or label occurrence
features as the input of the MLP and then have 4096 units in the first
fc layer. Besides, the second fc layer with l units generates a
continuous representation HT ∈ Rk×l and ReLU is used as the
activation function.

3.2.2 Constructing fine-grained similarity matrix
To improve the retrieval performance of cross-modal hashing

methods using supervised information, most methods usually
adopt the labels to construct a high-level semantic similarity
matrix. Specifically, the high-level semantic similarity
SH ∈ −1,+1{ }k×k is computed by SH = LLT. If the i-th and j-th
samples share at least one label, then SHij � 1, otherwise SHij � −1.
For multi-label datasets, samples with multiple labels should be
more similar than these with only one label. However, the
similarity only based on labels cannot effectively model this
relationship, and a lot of useful information is discarded. To
solve this issue, we construct a high-level similarity SH and a
low-level similarity SL using labels and features, respectively.
Therefore, samples with the same high-level similarity can be
further ranked according to their low-level similarity. The
construction of the fine-grained similarity can be expressed as:

S � μSH + θSL, (1)
where μ and θ are used to balance high-level similarity and low-level
similarity. In addition, according to the fine-grained similarity
fusion rules described in Ref. [34], the fine-grained similarity
matrix can be represented as follows:

S � μLLT + θ1XtXI
T + θ2XTXT

T

μ + 1
, (2)

where θ1 and θ2 are the weight parameters of image and text,
respectively.

3.2.3 Hash codes learning
The goal of our FSSPDHmethod is to learn different hash codes

for different modalities and establish relationships between
modalities and instances by similarity matrix. FSSPDH seeks to
map the features of instances to the Hamming space that preserves
semantic similarity. In this space, the hash codes of samples from the
same category should be similar. However, the hash codes of

samples from different categories should also be different.
Therefore, we attempt to preserve the semantic similarity
between the hash codes learned from different modalities and the
hash codes learned from the same instance of the same modality.
Specifically, if Sij = 1 indicates that the hash codes bi and bj are
similar, the Hamming distance between bi and bj should be the
minimum value of 0, which means that bTi bj � c. Otherwise, the
Hamming distance between bi and bj should be the minimum value
of c, which means that bTi bj � 0. In the training stage, to calculate the
gradient in backpropagation, we use the scaled tanh function to
obtain approximate hash codes [35]. Therefore, BI and BT in the
training phase can be calculated by the following formulas:

BI � tanh αHI( ) ∈ −1,+1[ ]k×l, (3)
BT � tanh αHT( ) ∈ −1,+1[ ]k×l, (4)

where α is a smooth parameter and needs to satisfy the following
constraint: lim

α→0
tanh(αx) � sgn(x). sgn (·) is a symbolic function.

1) Fine-grained similarity semantic preserving learning. Our
FDSSPH method considers both the inter-modality similarity
and intra-modality similarity to guide the learning of hash codes.
Therefore, we use Mean Square Error (MSE) to define the hash
loss:

TABLE 1 The MAP values of cross-modal retrieval on WIKI dataset.

Task Methods WIKI

16 32 64 128

T2I CVH - - - -

JIMFH 0.4024 0.4564 0.4630 0.4695

DCH 0.6366 0.6417 0.6518 0.6500

DLFH 0.4268 0.5836 0.6109 0.6478

DCMH 0.5553 0.5742 0.5984 0.5876

SSAH - - - -

DCHUC 0.5224 0.5047 0.5561 0.6392

DJRSH 0.3337 0.3633 0.3782 0.3981

FSSPDH 0.6528 0.6850 0.6614 0.6650

I2T CVH - - - -

JIMFH 0.1430 0.1272 0.1314 0.1353

DCH 0.2115 0.2298 0.2354 0.2443

DLFH 0.1858 0.2090 0.2269 0.2312

DCMH 0.3655 0.3792 0.3842 0.3794

SSAH - - - -

DCHUC 0.2358 0.2490 0.2822 0.3066

DJRSH 0.2756 0.2788 0.3043 0.3148

FSSPDH 0.3753 0.4044 0.3935 0.4054

“−“ denotes an untested value under that specific setting. The bold value mean the best

performance.
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Γs � S − cos BI,BT( )‖ ‖2F+ β1 S − cos BI,BI( )‖ ‖2F + β2 S − cos BT,BT( )‖ ‖2F
s.t. BI,BT ∈ −1,+1[ ]k×l, (5)

where β1 and β2 are the balance parameters of intra-modality
similarity learning items.

2) Quantized loss learning. Hash loss defined by MSE can generate
modal-specific hash representations BI and BT. However, there
are differences between hash codes and hash representations.
Therefore, we add a quantization loss to reduce the information
loss from hash representations to hash codes. The quantization
loss function can be defined as follows:

Γq � λ sgn BI( ) − BI

���� )( ����2
F
+ sgn BT( ) −BT)
���� ����2F)

s. t. BI,BT ∈ −1,+1[ ]k×l, (6)

where λ is a non-negative parameter, and its role is to balance the
weight of the quantization loss term.

3.2.4 Overall objective function
By integrating Eqs 5, 6 into a unified framework, the overall

objective function of the proposed FSSPDH approach is given as follows:
min
BI,BT

Γ�Γs+Γq
� S−cos BI,BT( )‖ ‖2F+β1 S−cos BI,BI( )‖ ‖2F+β2 S−cos BT,BT( )‖ ‖2F
+λ sgn BI( )−BI

���� )( ����2
F
+ sgn BT( )−BT)
���� ����2F)

s.t.BI,BI ∈ −1,+1[ ]k×l.
(7)

Algorithm 1 describes the overall training process of our
proposed FSSPDH approach in detail.

Input: The feature matrices XI and XT, the label matrix L

of the trainingset oi � [Ii,T i]{ }ni�1, the hash code length l

and the parameters ψθ1
, ψθ2

of TxtNetnetwork and ImgNet

network, the size k of training batch.

Output: Hash functions of image and text modalities.

Procedure:

1. Initialize t = 0.

Repeat

2 t � t + 1, α � �
t

√

3 For all training samples enter the model do

4 Randomly select k samples from the training set.

5 Calculate the fine-grained similarity matrix S by Eq. 2.

6 Forward propagation HI � ψθ1
(XI) and HT � ψθ2

(XT).
7 Calculate hash representations BI and BT of image and

text modalities by Eqs 3, 4.

8 Calculate overall objective function Γ by Eq. 7.

9 Update the whole parameters using back-propagating

gradient by chain rule.

10 End for

Until convergence.

Algorithm 1 FSSPDH.

3.3 Out-of-sample problem

Since our proposed method can only obtain the hash codes of
training data, it cannot effectively solve the out-of-samples problem.

Therefore, it is still necessary to generate the hash codes of the query
samples that are absent in the training set. To solve this problem, we
can obtain the hash codes of query sample xq by forward
propagation

bq � sgn tanh ψθ xq( )( )( ). (8)

4 Experiments

4.1 Datasets

The WIKI [36] dataset consists of 2,866 image-text
pairs belonging to 10 different categories. For this experiment,
the entire dataset was used as the retrieval dataset, with 2,173 pairs
used for training and the remaining 693 pairs used for querying.

The MIRFLICKR-25K [37] dataset is a multi-label dataset
obtained from the FLICKR website. In this experiment,
20015 samples were selected as experimental samples, each of
which is tagged with at least one of the 24 categories. In this
experiments, 2,243 samples were randomly selected as query
samples, and the remaining 17772 samples were used as retrieval
samples. From the retrieval samples, 5,000 samples were selected for
training.

The NUSWIDE [38] dataset is a multimodal dataset consisting
of 269648 image-text pairs, each of which corresponds to at least one
or more of the 81 categories. Here, the most common 21 categories
and their corresponding 195749 samples were selected to evaluate
the effectiveness of the proposed FSSPDH approach. From these
experimental data, 2000 samples were randomly selected as query
samples, and the remaining samples were used as retrieval samples.
Besides, 10000 samples were selected from the retrieval samples for
traning model.

4.2 Baselines and implementation details

To demonstrate the superiority of the FDSSPH method, we
compared it with several mainstream hashing methods, such as
cross-view hashing (CVH) [39], joint and individual matrix
factorization hashing (JIMFH) [40], discrete cross-modal hashing
(DCH) [41], discrete latent factor model for cross-modal hashing
(DLFH) [3], DCMH [29], SSAH [13], DCHUC [12], and deep joint-
semantics reconstructing hashing (DJRSH) [42]. Besides, we
evaluated these hashing methods on the WIKI, MIRFLICKR-25K
and NUSWIDE datasets for both image-to-text (I2T) and text-to-
image (T2I) retrieval tasks. The lengths of hash codes were set to 16,
32, 64, and 128 bits, respectively. The hyperparameters in the model
were set to β1 = 0.1, β2 = 0.1 and λ = 0.01 according to our empirical
knowledge.

4.3 Evaluation

In this paper, mean average precision (MAP) and TopN-precision
curves are used to evaluate the performances of the proposed method
and baseline methods. MAP is one of the most metrics in cross-modal
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retrieval tasks. Specially, the average precision of a given query sample
and the returned results can be defined as follows:

AP � 1
n
∑R
r�1

P r( )δ r( ), (9)

where n is the number of true samples returned. P(r) is the precision
of the last r sample returned. If the returned sample is similar to the
query sample, then δ(r) = 1, otherwise δ(r) = 0. In this experiment, R
was empirically set to 1,000. In other words, the accuracy of the first
1,000 retrieved samples was reported. The MAP value is the average
value of AP for all query samples, which is defined as follows:

MAP � 1
Q

∑Q
q�1

AP xq( ), (10)

where Q is the number of query samples. In addition, TopN-
precision is defined as similar for the first N instances retrieved
from all queries within the Hamming distance. In order to return the
results of a more accurate group, we set N to 1,000.

4.4 Experimental results and discussion

In this section, we conducted different retrieval experiments on
the three datasets to evaluate the proposed FSSPDH method and its

competitors. Table 1, Table 2, Table 3 shows the MAP values of the
proposed method and baseline methods on different multimedia
datasets.

Table 1, Table 2, Table 3 show the mAP values of all methods on
three datasets. Figure 2 shows the Top-N precision curves of the
proposed approach and its competitors. Based on these retrieval
results, we can draw some conclusions as follows.

1) It is clear from Table 1 that our proposed FSSPDH method
outperforms other baseline methods on three multimedia
datasets. Specifically, compared with the results with 128 bits,
our FSSPDH method performs almost 2.2% better than the
second best DLFH method in the T2I task on the WIKI
dataset. On the MIRFLICKR dataset, our FSSPDH method
performs nearly 2.0% better than the second best DLFH
method. On the NUSWIDE dataset, the FSSPDH method has
a performance improvement of almost 1.0% over the second-best
method. Therefore, we can known from the retrieval results that
the proposed FSSPDHmethod has greater advantages over other
hashing methods in cross-modal retrieval tasks.

2) In addition, the experiments on the three different datasets also
show that the FSSPDH approach improves the retrieval accuracy
to some extent in the I2T task. Compared with the three data sets,
we can find that the method on the MRIFLICKR-25K data set is
higher than other two data sets. This is because the data

TABLE 2 The MAP values of cross-modal retrieval on MIRFLICKR-25K dataset.

Task Methods MIRFLICKR-25K

16 32 64 128

T2I CVH 0.6240 0.6323 0.6364 0.6374

JIMFH 0.6659 0.6591 0.6424 0.6900

DCH 0.7246 0.7546 0.7730 0.8028

DLFH 0.7795 0.8059 0.8262 0.8379

DCMH 0.7993 0.8117 0.8218 0.8206

SSAH 0.8286 0.8311 0.8338 0.8251

DCHUC 0.7745 0.7939 0.8202 0.8207

DJRSH 0.6317 0.7213 0.7590 0.7733

FSSPDH 0.8558 0.8509 0.8559 0.8653

I2T CVH 0.6174 0.6154 0.6154 0.6129

JIMFH 0.6506 0.6453 0.3657 0.6862

DCH 0.6647 0.6865 0.7063 0.7268

DLFH 0.6803 0.7002 0.7158 0.7310

DCMH 0.7704 0.7581 0.8073 0.8104

SSAH 0.8236 0.8296 0.8450 0.8662

DCHUC 0.7619 0.7953 0.8162 0.8176

DJRSH 0.7133 0.7605 0.7889 0.7979

FSSPDH 0.8268 0.8496 0.8691 0.8776

The bold value mean the best performance.

TABLE 3 The MAP values of cross-modal retrieval on NUSWIDE dataset.

Task Methods NUSWIDE

16 32 64 128

T2I CVH 0.5820 0.5734 0.5621 0.536

JIMFH 0.6337 0.6704 0.6916 0.7123

DCH 0.7028 0.7205 0.7687 0.7839

DLFH 0.6662 0.7445 0.7569 0.7686

DCMH 0.6845 0.6931 0.7053 0.7067

SSAH 0.6734 0.6621 0.6206 0.6445

DCHUC 0.6491 0.6973 0.7178 0.6982

DJRSH 0.5629 0.7019 0.7027 0.7694

FSSPDH 0.7154 0.7712 0.7816 0.7766

I2T CVH 0.5561 0.5452 0.5383 0.5201

JIMFH 0.6528 0.6719 0.6802 0.6875

DCH 0.6174 0.6752 0.6849 0.6854

DLFH 0.6174 0.6752 0.6849 0.6854

DCMH 0.6740 0.6901 0.7314 0.7611

SSAH 0.6841 0.7054 0.7361 0.7334

DCHUC 0.7469 0.7549 0.7911 0.7637

DJRSH 0.6193 0.7173 0.7178 0.7936

FSSPDH 0.7554 0.7723 0.8059 0.7943

The bold value mean the best performance.
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distribution, division and size of the data set can affect the
retrieval performance of the proposed method.

3) We can see that all methods cannot achieve excellent performances
on the WIKI dataset. This is because this dataset contains fewer
samples and lower data dimensionality for text modality features.
Therefore, most deep hashing approaches cannot fully leverage the
advantages of deep learning and thus lead to poor retrieval
performance in general. However, our proposed FSSPDH
method can still achieve the best performance among all cross-
modal retrieval methods on this dataset.

4) It can be found from the experimental results that the
performances of most methods can improve with the increase
of hash code length. The main reason is that the longer hash
codes usually contains more semantic information. However, the
performance of some methods decreases when the hash code

length ranges from 64 bits to 128 bits. The possible reason is that
the learned hash codes contains more useless information, which
leads to the decline of retrieval performance.

5) It is clear to see from Figure 2 that our FSSPDH method achieves
the best performance among the compared methods from the
perspective of TopN-precision. In addition, we can observe that
the TopN-precision curve results are basically consistent with the
MAP value results, as they are both calculated based on the
Hamming distance. This indicates that our proposed FSSPDH
method also achieves the best results in the Hamming
ranking task.

6) We can find that the TopN-precision curves of all methods on
three datasets show slightly different decreasing rates.
Specifically, the WIKI dataset includes the least amount of
data, and its curve decline rate is obviously higher than these
of the other two datasets. Note that the NUSWIDE dataset
contains the most data, so its TopN-precision curve is
relatively flat. However, our proposed method considers the
semantic similarity between and within modalities by
constructing a fine-grained similarity matrix, thereby
achieving the best results on three different scale datasets.

4.5 Ablation experiment and analysis

To verify the effectiveness of each component in the proposed
FSSPDH approach, we constructed four variants of FSSPDH,
i.e., FSSPDH-II, FSSPDH-TT, FSSPDH-IT, and FSSPDH-Q.

FIGURE 2
The TopN-precision curves of FSSPDH and its competitors on three datasets.

TABLE 4 Ablation results of our FSSPDH approach on the MIRFlickr dataset.

Methods I2T T2I

FSSPDH-II 0.8706 0.8736

FSSPDH-TT 0.8711 0.8690

FSSPDH-IT 0.5052 0.5649

FSSPDH-Q 0.8717 0.8705

FSSPDH 0.8726 0.8746

The bold value mean the best performance.
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FSSPDH-II was constructed by removing the intra-modal similarity
learning for the image modality. FSSPDH-TT discarded the intra-
modal similarity learning for the text modality. FSSPDH-IT removed
the inter-modal similarity learning for both image and text modalities,
while FSSPDH-Q discarded the hashing quantization loss term. These
ablation experiments were conducted on the MIRFlickr dataset to
validate the impact of each component on retrieval performance.
Here, the hash code length was set to 128 bits in this experiments.
Table 4 shows the retrieval performances of FSSPDH and its variants
on two retrieval tasks.

It can be seen from Table 4 that FSSPDH-IT cannot outperform
other variants on different retrieval tasks, which indicates that inter-
modal similarity learning is crucial for retrieval performance in our
method. In addition, the performances of the FSSPDH-II, FSSPDH-
TT, and FSSPDH-Q variants are also lower than that of FSSPDH in
different retrieval tasks. It shows that both intra-modal similarity
learning and hashing quantization loss can be beneficial in enhancing
retrieval performance.

4.6 Parameter sensitivity analysis

Our FSSPDH method mainly includes three hyperparameters: β1,
β2 and λ. This subsection discusses the impact of different
hyperparameter values in our proposed model. In this experiment,
the length of the hash codes was designated as 128 bits. Specifically, we
change the values of only one hyperparameter by fixing the values of the
other two hyperparameters. Figure 3 plots the results of the proposed
FSSPDH approach with different parameter settings on three datasets.
We can see from Figure 3 that the performances of FSSPDH on the
WIKI dataset and MIRFLICKR-25K dataset are relatively stable within
a large range of hyperparameter values. Besides, our FSSPDH approach
has fluctuated to a certain extent on the NUSWIDE dataset with
different hyperparameter values. Fortunately, we can see that the
FSSPDH approach can also obtain relatively stable performances
within a certain range. Therefore, it can be found that our FSSPDH
approach is insensitive to the hyperparameters from the parameter
experiments.

FIGURE 3
The retrieval performances of the FSSPDH method with different parameter settings.
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5 Conclusion

In this paper, we introduce a novel approach called fine-
grained similarity semantic preserving deep hashing (FSSPDH)
for cross-modal retrieval. Firstly, the FSSPDH approach
attempts to learn a set of binary hash codes for each
modality and thus effectively preserves the characteristics of
each modality. In addition, our FSSPDH approach constructs a
fine-grained semantic similarity matrix by using labels and
features, which not only preserves the inter-modal similarity
but also maintains the intra-modal similarity. Therefore, the
fine-grained similarity preserving strategy is used to embed
more semantic information into hash codes. Compared with
other hashing methods, it can preserve the inter-modality
similarity and maintain the semantic relationships between
instances by the intra-modality similarity, simultaneously,
thus narrowing the heterogeneous gap between different
modalities. Additionally, to reduce the information loss from
the continuous hash representation to discrete hash codes, our
FSSPDH approach incorporates hash quantization loss to
further improve the retrieval performance. A series of
experimental results have demonstrated that the proposed
FSSPDH method achieves superior performances in cross-
modal retrieval tasks on different multimedia datasets.
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MSFNet: modality smoothing
fusion network for multimodal
aspect-based sentiment analysis
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1Faculty of Information Engineering and Automation, Kunming University of Science and Technology,
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Multimodal aspect-based sentiment classification (MABSC) aims to determine the
sentiment polarity of a given aspect in a sentence by combining text and image
information. Although the text and the corresponding image in a sample are
associated with aspect information, their features are represented in distinct
semantic spaces, creating a substantial semantic gap. Previous research
focused primarily on identifying and fusing aspect-level sentiment expressions
of differentmodalities while ignoring their semantic gap. To this end, we propose a
novel aspect-based sentiment analysis model named modality smoothing fusion
network (MSFNet). In this model, we process the unimodal aspect-aware features
via the feature smoothing strategy to partially bridge modality gap. Then we fuse
the smoothed features deeply using the multi-channel attention mechanism, to
obtain aspect-level sentiment representation with comprehensive representing
capability, thereby improving the performance of sentiment classification.
Experiments on two benchmark datasets, Twitter2015 and Twitter2017,
demonstrate that our model outperforms the second-best model by 1.96%
and 0.19% in terms of Macro-F1, respectively. Additionally, ablation studies
provide evidence supporting the efficacy of each of our proposed modules.
We release the code at: https://github.com/YunjiaCai/MSFNet.

KEYWORDS

multimodal sentiment analysis, aspect-based sentiment analysis, multimodal fusion,
feature smoothing, semantic gap

1 Introduction

In recent years, there has been a significant increase in the amount of multimodal data
from various social, shopping, and news platforms. These data consist primarily of a piece of
text and an associated image, and are often accompanied by a personal sentiment tendency.
Analyzing the sentiment towards specific aspects in this type of data can provide valuable
insights into people’s personalized preferences or predict public opinion trends. Therefore,
multimodal aspect-based sentiment classification (MABSC) has received extensive attention.
The objective of this task is to combine a piece of text, its associated image and a given aspect
from the text to determine the sentiment polarity of the given aspect. As shown in Figure 1,
the sentiment polarity of the aspect {Rocky} could be determined as {Neutral}, according to
the text alone. However, by combining image information, it can be determined that the
aspect term has a {Positive} sentiment polarity. Therefore, the key to this task lies in
effectively extracting and combining the sentiment features from both images and texts.

From the feature learning perspective, images and texts are commonly represented in distinct
feature spaces, which creating a semantic gap between the two modalities and posing substantial
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challenges for subsequent inter-modal interactions [1, 2]. As a result, the
major difficulty of MABSC is to bridge the gap between modalities and
model the deep interactions of them. Early MABSC research primarily
relied on directly modeling the interaction between modalities to
achieve multimodal fusion. Xu et al. [3]proposed a memory-based
model which extracted text and image features using pre-trained Bert
and ResNet models respectively, and stacked interactive attention
mechanism with several memory hops to learn the deep abstraction
of multimodal data. Similarly, Zhang et al. [4] sent features of two
different modalities into a fusion discriminant matrix to learn the
interaction of different modalities and a similarity matrix is used to
capture modal invariant features, based on which the consistency and
redundancy of different modalities can be identified. However, the
deficiency of these methods was that they did not consider the semantic
gaps on subsequent interactions. Khan et al. [1] recognized the influence
of semantic gaps on multimodal fusion and used a cross-modal
Transformer to map image content to the text space. They then
utilized a pre-trained Bert structure to model the interactions
between image, text, and aspect. However, the performance is
limited due to the lack of in-depth exploration of inter-modal
interactions.

To tackle the problem of insufficient fusion, we propose a novel
MABSC model called “modality smoothing fusion network
(MSFNet)”. The main contribution can be summarized as follows.

• Unlike existing works ofMABSC thatmainly study extracting and
fusing aspect-level sentiment expressions, we focus on the problem
that modality discrepancy influnce their subsequent fusions.

• The proposed MSFNet adopts the feature smoothing strategy
and the multi-channel attention to effectively bridge the
semantic gap and achieve better fusion of text-image
modalities.

• Experimental results on two benchmark datasets verify that
MSFNet achieve effective interaction of multimodalities and
obtains state-of-the-art performance in MABSC.

2 Related work

Aspect-based sentiment classification (ABSC) was first proposed
on text datasets. With the increase of multimodal data, multimodal

sentiment analysis (MSA) gained great attention, and MABSC is the
research combining ABSC and MSA.

2.1 Aspect-based sentiment classification
(ABSC)

Aspect-Based Sentiment Classification (ABSC) is a task that
involved predicting the sentiment polarity of a target entity within a
given sentence. Traditional methods for ABSC relied on manually
annotated features, such as language rules [5] and feature
engineering [6]. In recent years, neural networks have shown
great promise in this area and have led to significant
performance improvements. Early neural network approaches
typically used Long Short-Term Memory to model the
interaction between the aspect and its context [7]. More recent
works have incorporated attention mechanisms to select aspect-
related sentiment features [8], with some studies introducing more
complex interactive attention methods to learn aspect-specific
representations [9, 10]. These methods demonstrate the
significance of contextual information in the task of aspect
sentiment analysis. Pre-trained language models, such as BERT
[11], have also been utilized to improve the ABSC performance [12].

2.2 Multimodal sentiment Analysis (MSA)

MSA aims to combine multimodal information such as text,
visual, and audio to understand human emotions [13]. Previous
researchers have primarily focused on unimodal representation
learning and multimodal fusion.

Unimodal representation learning: Wang et al. [14] constructed
a recurrent variational embedding network that projects text
representations into a common space by calculating offset vectors
between linguistic and non-linguistic information. Hazarika et al.
[15] proposed modality-invariant and modality-specific
representations to learn complementary information between
modalities, reducing redundancy and merging a set of diverse
information. Yu et al. [16] designed a label generation module
based on a self-supervised learning strategy to capture
consistency and differences between three modalities by jointly

FIGURE 1
Example of MABSC tasks.
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learning unimodal and multimodal tasks. Effective unimodal
representations can mitigate the impact of the semantic gap.

Multimodal fusion: For multimodal fusion, Zadeh et al. [17]
proposed a tensor fusion network that obtains multimodal fusion
representation by calculating outer products between all unimodal
representations. Liu et al. [18] proposed an improved low-rank
multimodal fusion network based on tensor fusion network, which
uses low-rank tensors to reduce the computational complexity of
tensor-based methods and achieve better performance. Zadeh et al.
[19] proposed a memory fusion network that first models unimodal
representations using LSTM, and then models intermodal
interactions using Delta-memory Attention Network and Multi-
view Gated Memory. Transformer structures are widely used to
model interactions between modalities due to the success of
Transformer-based models. Tsai et al. [20] used Directional
Cross-Modal Attention modules to extend the standard
Transformer network [21] for modeling unaligned multimodal
language sequences. Wang et al. [22] used forward and backward
translation from one modality to another and back to better fuse
multimodal features. Modeling efficient interactions between
different modalities can fully utilize information between
modalities for multimodal emotional expression.

2.3 Multimodal aspect-based sentiment
Classification (MABSC)

MABSC is the research combining ABSC and MSA. Similar to
text aspect-based sentiment classification, different parts of the
sentence and image play different roles in specific aspects, and

attention mechanisms are widely used to obtain aspect-specific
representations. Xu et al. [3] first used interactive attention to
obtain aspect-specific unimodal representations, and then
stacked several interactive attention mechanisms and memory
hops to learn deep abstractions for multimodal data. Zhang et al.
[4] used an aspect-sensitive memory network to capture intra-
modal features, then designed a fusion discriminative matrix to
learn interactions between different modalities. Inspired by the
success of BERT-based models, Yu et al. [23] proposed a target-
oriented multimodal BERT (TomBERT), which constructs a
BERT-based structure to match the target text and target
image and capture dynamics within and between modalities.
Khan et al. [1] used a pre-trained transformer-based image
captioning model to convert images into textual image
captions, then fused information from both modalities by
constructing sentence pairs and inputting the image caption,
aspect, and original sentence into a BERT language model. Yu
et al. [2] modeled pairwise interactions between inputs using an
interactive transformer, and bridged the semantic gap between
the two modalities by calculating the loss between the
representations of the two modalities and the original context.
Additionally, Huang et al. [24] constructed sequential cross-
modal semantic graphs to fully extract the information
contained in the image, and used an encoder-decoder model
with a target prompt template to achieve MABSC task.

The importance of integrating image information into text
information has been repeatedly proved in the research of
MABSC. However, this integration invariably encounters the
issue of semantic gaps between two modalities. Therefore, we
focus on easing the semantic gap before integration.

FIGURE 2
Overall framework.
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3 Methodology

In this section, we first give the definition of multimodal aspect-
based sentiment analysis task, and introduce the overall framework
of the proposed model. Then, we present the details of each module
of the proposed model.

3.1 Task definition

Given a set of multimodal dataset D, each sample d ∈ D includes
a context sentence t, an associated image i, a given aspect a, and a
golden label y. Specifically, the sentence t = (w1, w2, w3, . . ., wm),
where m is the length of the sentence. The given aspect is a sub-
sequence of sentence t and is represented as a = (wx, wx+1, . . ., wx+n),
where n is the length of the given aspect. As shown in Figure 2, this
task is to take t, i and a as inputs to determine the sentiment polarity
y ∈ {Positive, Neutral, Negative} associated with the given aspect a.

3.2 Overview of the proposed model

The overall architecture of the model is shown in Figure 2, which
consists of a feature extraction layer, an aspect-aware representation
layer, a multimodal fusion layer with feature smoothing, and an
output layer. We extract separate representations of the image, text
and aspect in the feature extraction layer. In the aspect-aware
representation layer, we mine the aspect-related representations
of each modality with the guidance of the aspect. In the
multimodal fusion layer, we use feature smoothing strategy and
multi-channel attention to model the deep interaction between the
two modalities. Finally, we obtain the sentiment polarities in the
output layer.

3.3 Feature extraction layer

We utilize two different unimodal feature encoders to extract
original representations of the text and image inputs.

3.3.1 Text encoder
The pre-training language model BERT [11] can capture

advanced text representations. To distinguish sentence and aspect
representations, we fine-tune two different pre-trained BERTs to
encode sentence and aspect respectively. Specifically, for the input
sentence, we add a special token [CLS] in front of the original
sentence and a special token [SEP] in the back to form new tokens
Is ∈ Rl, and then input Is to a pre-trained BERT to obtain the
encoded sentence representation hs, as follows:

hs � BERT Is( ) (1)
where hs ∈ Rl*dt is the obtained sentence representation, dt is the
hidden dimension.

Similarly, for a given aspect, we add the special tokens [CLS] and
[SEP] to form tokens Ia ∈ Rk, and then input Ia into another pre-
trained BERT to obtain the encoded aspect representation ha, as follows:

ha � BERT Ia( ) (2)

where ha ∈ Rk*dt is the obtained aspect representation.
After obtaining the sentence and aspect representation, we use

the linear layer to map their hidden dimension to the same
dimension dh for the subsequent interaction:

Hs � W1hs + b1 (3)
Ha � W2ha + b2 (4)

where Hs ∈ Rl*dh and Ha ∈ Rk*dh .

3.3.2 Image encoder
Different from coarse grained sentiment analysis tasks, MABSC

should focus on aspect-related information to determine the
sentiment polarity. We use the object detection model Faster
R-CNN [25] to extract aspect-level features of images.
Specifically, we input the image i into a pre-trained Faster
R-CNN model to obtain the candidate regions in the image, and
retain the features with the highest confidence as image features:

hi � FasterR − CNN i( ) (5)
where hi ∈ Rc*dv is the obtained image representation, c denotes the
number of image regions retained, and dv is the hidden dimension of
Faster R-CNN.

Then we use a linear layer to map the hidden dimension of
image representation to dh:

Hi � W3hi + b3 (6)
where Hi ∈ Rc*dh .

We obtain the final image representation by a multi-head self
attention (MHSA) [21] to pay more attention to the important
image regions:

Hv � MHSA Hi( ) (7)
where Hv ∈ Rc*dh .

3.4 Aspect-aware representation layer

After obtaining the initial sentence representation and image
representation, we need to further interact them with the aspect
representation to focus on aspect-related information. We adopt an
interactive attention mechanism to enable interaction between the
aspect representation and unimodal representation, and retain more
aspect representations through residual connections. Specifically, we use
the aspect representation as the query, and the sentence representation
as the key-value in the multi-head cross attention (MHCA) [21], to
generate the aspect-sentence representation, as follows:

Rs � MHCA Ha,Hs( ) (8)
where Rs ∈ Rk*dh .

Then we add the aspect-sentence representation and the aspect
representation, and perform one layer normalization (LN) to obtain
the one-layer aspect-aware text representation:

As � LN Rs + Ha( ) (9)
where As ∈ Rk*dh .

Finally, we stack l layers of the aspect-aware layer to learn the
deep interaction of aspect and text, as follows:
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As l( ) � LN MHCA Ha,As l−1( )( ) + Ha( ) (10)
where As(l) ∈ Rk*dh is the final aspect-aware text representation, and
l is the number of stacked layers.

For the image representation, we input it together with the
aspect representation into the similar aspect-aware layer to obtain
the aspect-aware image representation, as follows:

Av l( ) � LN MHCA Ha,Av l−1( )( ) + Ha( ) (11)
where Av(l) ∈ Rk*dh .

3.5 Multimodal fusion layer with feature
smoothing

After obtaining the aspect-aware representations of two
modalities, we propose a multimodal fusion layer with feature
smoothing to combine information from different modalities.
Firstly, to relieve the semantic gap between the two modalities, a
feature smoothing strategy is used to smooth the aspect-aware
representations of the two modalities. Then we use a multi-
channel attention interaction network to achieve deep interaction
between the two modal representations.

3.5.1 Feature smoothing
We integrate the partial representation of one modality into the

representation of another modality via a feature-level mixing
approach, and obtain two smoothed unimodal representations, as
follows:

Ms � Wmix*As l( ) + 1 −Wmix( )*Av l( ) (12)
Mv � Wmix*Av l( ) + 1 −Wmix( )*As l( ) (13)

where Wmix is a hyperparameter. The obtained Ms and Mv are the
smoothed text and image representations, respectively. We will use
these smoothed representations for further interaction.

In addition, we use the average representation of the two
modalities as an anchor, to bridge the semantic gap between the
two modalities via the constraint of the mean square error Tri-loss:

Al � MEAN As l( ),Av l( )( ) (14)

Ltri � α1*MSE As l( ), Al( ) + α2*MSE Av l( ),Al( )
+ α3*MSE As l( ), Av l( )( ) (15)

where the MEAN operator refers to averaging values of each
dimension in the two tensors. MSE is mean square error loss,
and (α1, α2, α3) are hyperparameters. The above loss will be
added to the main loss to guide the training of the model parameters.

3.5.2 Multi-channel attention-based interaction
In order to effectively utilize the complementary information

between modalities to enhance the expression of sentiment, we
propose a multi-channel attention interaction network (MCA)
including four channels, named text self-attention, text-led
multimodal attention, image self-attention and image-led
multimodal attention channels respectively.

In the text self-attention channel, we use a multi-head self
attention to process the smoothed text representation acquired in
the preceding stage and obtain the text inner-interaction
representation, denoted as CSs ∈ Rk*dh :

CSs � MHSA Ms( ) (16)
In the text-led multimodal attention channel, we take the

smoothed text representation as the query and the smoothed
image representation as the key-value, and sent them to a multi-
head interactive attention network, to obtain the text-led inter-
interaction representation, denoted as CCs ∈ Rk*dh :

CCs � MHCA Ms,Mv( ) (17)
Final, we add up the representations of the two channels and

normalize it to obtain the text-led multimodal
representation Fs ∈ Rk*dh :

Fs � LN CSs + CCs( ) (18)
Similarly, following the same procedure as the two text channels

above, we feed the smoothed image representation into the two
image channels to obtain the image inner-interaction representation
and the image-led inter-interaction representation.We then add and
normalize them to obtain the image-led multimodal representation
Fv ∈ Rk*dh .

TABLE 1 Dataset statistics.

Twitter2015 Twitter2017

Train Dev Test Train Dev Test

Positive 928 303 317 1508 515 493

Neutral 1883 670 607 1638 417 573

Negative 368 149 113 416 144 168

Total Samples 3179 1122 1037 3562 1176 1234

Avg Aspect 1.348 1.336 1.354 1.410 1.439 1.450

Avg Length 16.72 16.74 17.05 16.21 16.37 16.38

Max Length 35 40 36 39 31 38

Total Sentence 2101 727 674 1746 577 587

TABLE 2 The hyperparameter Setting.

Twitter2015 Twitter2017

Learning rate 2e-5 4e-5

Warm up step 37 35

l 2 1

Wmix 0.85 0.85

(α1, α2, α3) (1,1,0.5) (1,1,0.5)

λ 4e-3 4e-3

Batch size 32 32

Attension heads 8 8

Attention dimension 512 512
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After obtaining the two representations Fs and Fv, we concatenate
them and send it to a transformer and a average pooling, to get the final
multimodal sentiment representation Hm ∈ Rdh :

Fm � Fs: Fv[ ] (19)
Hm � averagepooling Transformer Fm( )( ) (20)

3.6 Output layer

We send the multimodal sentiment representation Hm to a fully
connected layer and a softmax layer to obtain the classification result:

p y|Hm( ) � softmax WcHm + bc( ) (21)
whereWc ∈ Rr*dh and bc ∈ Rr are learnable parameters, y ∈ Rr is the
probability distribution of sentiment polarity, r is number of classes.

The loss function of the model is as follows:

L � − 1
N

∑N
i

∑r
j

gij logp yij|Hm( ) − λLtri
i

⎛⎝ ⎞⎠ (22)

where gij is the golden label, λ is a hyperparameter.

4 Experimental

In this section, we conducted comprehensive experiments on the
proposed overall model and its individual modules.

4.1 Experiment setting

Datasets: We adopt two standard datasets Twitter15 and
Twitter17 to evaluate the performance of our model.
Twitter15 and Twitter17 datasets contain multimodal tweets

published on Twitter between 2014–2015 and
2016–2017 respectively. These datasets were originally annotated
the given aspect by Zhang et al. [26] for the Multimodal Named
Entity Recognition (MNER) task, and then Yu et al. [23] annotated
the sentiment polarity of each given aspect for the MABSA task. The
datasets provide tweet text, tweet image, aspect and the sentiment
polarity of the given aspect. The specific data statistics are shown in
Table 1.

Evaluation Metrics: To measure the performance of different
approaches, we use Macro-F1 as evaluation metrics, as follows:

Macro − F1 � 1
r
∑r
i�1

F1i (23)

F1i � 2*Pi*Ri

Pi + Ri
(24)

where F1i is the f1-score of class i, Pi and Ri are the precision and
recall of class i, and r is the number of classes.

Implement Details: For text input, we leverage the pre-trained
BERT [11] model to encode the text. For image input, we utilized the
Faster R-CNN structure proposed by Anderson et al. [25] and used a
pre-trained Faster R-CNN model to extract region features of the
image. We fix all the hyper-parameters after tuning them on the
development set. The specific hyperparameter settings are shown in
Table 2. We implemented all models in the PyTorch framework and
ran experiments on RTX3090 GPU.

4.2 Baseline

In this section, we use the following methods as baselines to
compare with our model.

TABLE 3 Comparison of our method and baseline Macro-F1.

Modality Method Twitter2015 Twitter2017

Visual Res-Aspect 46.58 54.01

FasterRCNN-Aspect 37.71 54.71

Text IAN [9] 63.32 63.32

MGAN [10] 64.21 61.46

BERT [11] 70.01 66.15

Text + Visual Res-BERT 71.46 66.89

Faster R-CNN-BERT 70.85 66.21

TomBERT (ResNet) [23] 71.75 68.04

TomBERT (FasterR-
CNN) [2]

72.95 68.49

ModalNet [4] 72.50 69.19

IFNRA [27] 71.79 69.48

MSFNet (Ours) 74.46 69.67

TABLE 4 Ablation study of feature-level mixing (Macro-F1).

Method Twitter2015 Twitter2017

MSFNet (Ours) 74.46 69.67

w/o feature mixing 72.83 68.23

w/o Text mixing 73.88 68.91

w/o Image mixing 73.86 68.92

FIGURE 3
Performance of different weight parameter Wmix.
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• Res-Aspect: ResNet and BERT are used to extract image and
aspect features respectively, and an attention layer is used to
obtain multimodal representation.

• Faster R-CNN-Aspect: Another baseline is similar to Res-
Aspect, but image features are extracted by Faster R-CNN.

• IAN [9]: Capturing the interaction between aspect and context
with bidirectional interactive attention.

• MGAN [10]: Based on IAN, a fine-grained attention is further
proposed for interaction.

• BERT [11]: Sentence pairs constructed by context and aspect
are fed into pre-trained BERT for sentiment classification.

• Res-BERT: The context and aspect are input as sentence pairs
into a pre-trained BERT model to obtain text features. The
image features are extracted by ResNet. And then modeling
multimodal interaction using attention.

• FasterR-CNN-BERT: Another baseline is similar to Res-
BERT, but image features are extracted by Faster R-CNN.

• TomBERT (ResNet) [23]: A target-oriented multimodal BERT
architecture that utilizes ResNet for image representation, and
leverages multiple BERT structures for text feature extraction,
image aspect interaction, and multimodal interaction.

• TomBERT (Faster R-CNN) [2]: Same structure as TomBERT
(ResNet), but the image representation is obtained by Faster
R-CNN.

• ModalNet [4]: Use aspect-sensitive memory network to
perform aspect-sensitive fusion of two modalities, and
construct a fusion discriminant matrix to obtain
multimodal sentiment representation.

• IFNRA [27]: Use GRU to achieve image denoising and
multimodal fusion. And a decoder with recurrent attention
is designed to gradually learn aspect-specific sentiment
features.

4.3 Main result

Table 3 shows the performance of different methods on the
twitter2015 and twitter2017 datasets. The following observations
can be drawn: (1) Our model has achieved the best performance on

the two datasets, which are respectively improved by 1.96% and
0.19% compared with the second best model. This illustrates that our
proposed multimodal fusion method is effective and has obvious
advantages. (2) Sufficient multimodal fusion can effectively improve
classification performance. For example, both TomBERT (Faster
R-CNN) and Faster R-CNN-BERT use Faster R-CNN to extract
regional features, but the latter performs much worse than the
former because it only performs simple multimodal fusion.
Similarly, for the models that use ResNet to extract image
features, TomBERT (ResNet) shows better performance than
Res-BERT, but it is still not as good as ModalNet. Our proposed
method has signifificant advantages when compared to ModalNet.
The latter focuses on multimodal fusion without considering the
semantic gap of multimodal features. Our proposed model performs
feature smoothing before multimodal fusion, which enables deeper
interactions and achieves better performance. (3) Using the regional
features extracted by FasterR-CNN can help the model focus on the
object-level information in images. However, if the model cannot
obtain information enabling to expressing sentiments from the
image representation via a good image-text interaction method,
using FasterR-CNN may result in performance degradation. This
conclusion can be drawn from comparing Res-BERT and Faster
R-CNN-BERT, as well as Res-Aspect and Faster R-CNN-Aspect. (4)
The performance of image-based methods is much lower than that
of text-based methods among the unimodal-based methods. This is
mainly because the given aspect is a subsequence in the initial
sentence. If image information is considered alone, it may introduce
some noises that have nothing to do with the given aspect, resulting
in wrong classification.

4.4 Ablation study ofmultimodal fusion layer

In this section, we conduct ablation studies to verify the
effectiveness of multimodal fusion layer with feature smoothing.

4.4.1 Feature-level mixing
To test the effect of feature-level mixing, we feed the

unprocessed aspect-aware representations into the multi-
channel attention interaction network instead of smoothed
representations. The results are shown in Table 4.

TABLE 5 Ablation study of Tri-loss (Macro-F1).

Method Twitter2015 Twitter2017

MSFNet (Ours) 74.46 69.67

Rep anchor of Tri-loss 73.71 69.02

w/o Tri-loss 73.08 68.36

TABLE 6 Ablation study of MCA (Macro-F1).

Method Twitter2015 Twitter2017

MSFNet (Ours) 74.46 69.67

w/o MCA 71.21 67.47

Rep MCA to CMT 70.73 67.24

FIGURE 4
Performance of different weight parameter λ.
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It can be seen that if the unprocessed aspect-aware features of
one modality are used to interact with the smooth features of
another modality, the Macro-F1 of the twitter15 and
twitter17 datasets drop by about 0.5% and 0.7%, respectively,
compared to the full model. If all four interaction channels use
unmixed features, the Macro-F1 drops by more than 1.44%
on the two datasets. The above results further shows that feature
smoothing before image-text interaction can better achieve
multimodal fusion and improve classification performance.

In feature-level mixing, we set a hyperparameter to control the
smoothing weight. Figure 3 shows the impact of different weight on
the model performance of the twitter15 dataset. Setting the
hyperparameter to 1 means that the two modalities do not
perform feature smoothing, while setting to 0.8–0.95 means that
we take one modality as the dominant information and incorporate
a little information from another modality. It can be seen that when
the hyperparameter is set to 0.8–0.95, the model can obtain better
results than 1 or less than 0.75. This may be because, when feature
smoothing is not performed, the semantic gap between modalities
will make subsequent interactions insufficient. In addition, if we
incorporate too much information from another modality, the
dominant modal will lose its own representational ability. The
best performance is achieved when the dominant modal feature
introduces around 15% of the other modal feature.

4.4.2 Tri-loss
In Table 5 we report the ablation study of the Tri-loss. It can be

seen that the performance drops sharply after the removal of Tri-
loss, which illustrates the effectiveness of reducing the semantic

distance between the two modalities via the constraint of Tri-loss.
What’s more, if we use the initial aspect representation instead of the
average representation of the two modals as the anchor in the Tri-
loss, the performance decreases too. The reason may be that the
model would learn from the lower-level aspect representation if
using the initial aspect representation as the anchor after aspect-
aware fusion, which is ineffective.

We adjusted the weight parameter λ of Tri-loss in the total loss to
observe its effection. It can be seen from Figure 4 that themodel achieves
the best performance when λ is 4e-3, while assigning too large or small
weight leads to a decrease in the final performance. This illustrates that
using appropriate constraints of Tri-loss can benefit the model.

4.4.3 Multi-channel attention
We verified the effectiveness of the multi-channel attention-

based interaction (MCA) by deleting it or replacing it with the
Cross-Modal Transformer (CMT) [20]. As can be seen in Table 6,
the performance decreases by 3.25% and 2.23% on the two datasets
respectively after removing the module, which illustrates the
necessity of performing deep image-text fusion. Furthermore, the
performance decreases by 3.73% and 2.43% on the two datasets after
replacing MCAwith CMT, which fully illustrates the effectiveness of
our proposed MCA module.

4.5 Case study

In this section, we choose two representative samples to
compare the prediction results of our model with the two

TABLE 7 Comparison between predicted results and golden labels for several representative samples on Bert, Faster R-CNN-BERT and MSFNet (Ours), respectively.

Image

Text (a) Charlie is decidedly not excited about @ ussoccer_ynt at 4 am.
#U20WC

(b) The final chapter of the fairytale—Leicester gear up for historic Premier
League title

Golden Label (Charlie, Negative) (Leicester, Positive)

(ussoccer_ynt, Neutral) (Premier League, Neutral)

Bert (Charlie, Neutral) 7 (Leicester, Neutral) 7

(ussoccer_ynt, Neutral) ✓ (Premier League, Neutral) ✓

FasterR-CNN-
BERT

(Charlie, Negative) ✓ (Leicester, Neutral) 7

(ussoccer_ynt, Neutral) ✓ (Premier League, Neutral) ✓

MSFNet (Ours) (Charlie, Negative) ✓ (Leicester, Positive) ✓

(ussoccer_ynt, Neutral) ✓ (Premier League, Neutral) ✓
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baselines. Firstly, in Table 7, BERT predicted the sentiment polarity
of the aspect {Charlie} incorrectly, which could be due to BERT only
predicts based on text content and cannot recognize the negative
sentiment expressed by the corresponding aspect in the image. In
addition, the model Faster R-CNN-BERT, which also uses Faster
R-CNN to capture image object-level features, made wrong
predictions for the aspect Leicester in Table 7, while our model
made correct predictions. It may be due to our excellent fusion
network that enables our model to accurately capture the positive
emotions expressed by waving flag in the image.

5 Conclusion

In this paper, we propose a MABSC model based on a multimodal
feature smoothing fusion network. We extracts aspect-aware
representations of text and image modals at first. Then, we introduce
a feature smoothing strategy to get smoothed representations, which are
sent to the proposed multi-channel attention-based network for image-
text information interaction. By this process, the comprehensive aspect-
level sentiment representation is obtained for better classification.
Experiments demonstrate that the model achieves better performance
than the other baselines on the two datasets. The ablation experiments
further demonstrate the effectiveness of the various modules of the
model. In the future work, we will further consider how to align aspect-
related information in image and text content, given that MABSC task
requires to focus on fine-grained information in image and text.
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The goal of person text-imagematching is to retrieve images of specific pedestrians
using natural language. Although a lot of research results have been achieved in
persona text-image matching, existing methods still face two challenges.
First,due to the ambiguous semantic information in the features, aligning the
textual features with their corresponding image features is always tricky. Second,
the absence of semantic information in each local feature of pedestrians poses
a significant challenge to the network in extracting robust features that
match both modalities. To address these issues, we propose a model for explicit
semantic feature extraction and effective information supplement. On the one
hand, by attaching the textual and image featureswith consistent and clear semantic
information, the course-grained alignment between the textual and corresponding
image features is achieved. On the other hand, an information supplement network
is proposed, which captures the relationships between local features of each
modality and supplements them to obtain more complete local features with
semantic information. In the end, the local features are then concatenated to a
comprehensive global feature, which capable of precise alignment of the textual
and described image features. We did extensive experiments on CUHK-
PEDES dataset and RSTPReid dataset, the experimental results show that our
method has better performance. Additionally, the ablation experiment also
proved the effectiveness of each module designed in this paper.

KEYWORDS

cross-modal retrieval, neural network, Text-based person search, deep learning, Text-
based image retrieval

1 Introduction

Person text-image matching method has been proposed in order to deal with special
cases. For example, if a child is missing in an amusement park, parents can quickly find the
area where the child is located in the surveillance equipment by describing the child’s
appearance. This technique uses the textual description of the pedestrian’s appearance
provided to retrieve the target pedestrian image. Compared with person re-identificationLi
et al. [1]; Zhang et al. [2]; Wang et al. [3]; Zhang et al. [4]; Li et al. [5], it is not limited to the
need of pedestrian images as a query condition, so it compensates for the disadvantages of
using pedestrian re-identification techniques in the presence of surveillance blind spotsZhu
et al. [6]; Li et al. [7]; Lingli et al. [8]; Li et al. [9]. Therefore the technique has practical value.

In this task, ensuring the consistency of text semantic information and image semantic
information is one of the factors that affect the retrieval performance. In recent years, many
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effectivemethods of feature semantic consistency have been proposed.
These methods can be roughly divided into methods based on local
relationship correspondence Ding et al. [10]; Zhang et al. [11]; Liu
et al. [12]; Zheng et al. [13]; Chen et al. [14], etc.), methods based on
external knowledge Jing et al. [15]; Wang et al. [16]; Aggarwal et al.
[17]; Wang et al. [18], methods based on similarity measurement Niu
et al. [19]; Gao et al. [20], and methods based on multi-head attention
mechanismWang et al. [21]; Li et al. [22]. The method based on local
relation correspondence often achieves local alignment of text features
and image features through specific functional relations. In the
method based on external knowledge, human body semantics
Wang et al. [16], pedestrian posture Jing et al. [15] and pedestrian
attributes Li et al. [23]; Wang et al. [18] are often used as auxiliary
information for text and visual feature alignment. The method based
on similarity measure measures the similarity between noun phrases
and local patches in the image, and determines the relationship
between them according to the predicted weight. Compared with
the attention mechanism used in the method based on local
relationship correspondence, the method based on multi-head
attention mechanism usually assigns different semantics to each
head to align the heads with the same semantics.

Although many effective methods have been proposed, there are
still some problems that have not been effectively solved. On the one
hand, features alignment based on local relationships always faces the
problem of vague semantic information in local features. This is
because different images of the same person may include spatial
discrepancy and different sentences describing the same person may
have differences in the order of expression and logic. On the other
hand, some special semantic information in the text, such as “Coat,”
corresponds tomultiple body parts, such as the upper and lower body,
in the image. Therefore, those various semantics are not entirely
independent, and there should be correlations between multiple
different semantics. Previous methods for extracting local features
have not put these correlations in their consideration, resulting in the
loss of some semantic information in the local features and presents a
challenge in building up local correspondences between text and
images. Although attention-based methods Zheng et al. [13]; Liu et al.
[12]; Gao et al. [20] can effectively alleviate this problem, they require
high computational cost and loss of efficiency.

This paper proposes a method for explicit semantic feature
extraction and an information supplement network to address the
challenge of aligning textual and image features of pedestrians. The
relationships between key information in the sentence have been fully
considered. On the one hand, we starts with a class token obtained
from the transformer, and predicts the features that correspond to the
local regions of the pedestrian image from the global features with
relationship embedding, thus obtaining local features that are roughly
aligned and have clear semantics. On the other hand, the information
supplement network is proposed to adaptively probe the relationships
between local features, and such relationships are used to fuse out
semantically well-informed local features. In the end, the local features
with improved semantic information are precisely aligned and
concatenated in a certain order on the channel to form globally
aligned features with comprehensive semantics.

Our research contributions are as follows

• In this paper, we propose a explicit semantic feature extraction
method. We use local features of pedestrian image with clear

semantics to guide text feature extraction with fuzzy
semantics, and achieve a rough alignment between local
features of text and local features of images.

• To address the challenge of semantics loss in local features,
this paper proposes an effective information supplement
network to complement the missing information.

2 Related works

2.1 Text-based image retrieval

Text-based image retrieval Liu et al. [24] is a technique that uses
natural language to retrieve specific images. It differs from the single-
modal task Tang et al. [25,26]; Zha et al. [27]; Li et al. [28] in that it
requires overcoming greater modal differences. Depending on the
testing process, we can divide these methods into modal interaction
methods Gao et al. [20] and modal non-interaction methods Chen
et al. [14]; Liu et al. [24]. The modal interaction methods often
requires each text feature with all image features to derive results
through a complex cross-modal attention mechanism, which
undoubtedly increases the time cost and it’s hard to deploy in a
real world scenario. The modal non-interaction methods can extract
image features or text features separately and does not require two
modality features for cross-learning, saving time overhead. Therefore,
it can be used for large-scale text image retrieval tasks. However, these
methods do not take into account the impact of semantic clarity and
missing feature information on cross-modality matching.

2.2 Person Text-image matching

Person text-image matching faces different problems than Text-
based Image Retrieval. In a Text-based Image Retrieval task, an
image usually contains multiple objects, and the model design often
needs to consider the association between objects. In the person text-
image matching task, there is usually only one pedestrian object, so
the model design needs to consider extracting fine-grained features.
Therefore, by comparison, person text-image matching is more
challenging. Li et al.Li et al. [29] first proposed the person text-
image matching task and successfully completed the task using
recurrent neural network with gated neural attention mechanism.
Meanwhile, a large-scale person description dataset named the
CUHK person description dataset was constructed. Because there
are too many defects in the first proposed method. Subsequently, Li
et al. Li et al. [30] proposed an identity aware two-stage network. The
network extracts robustness features through two steps.

In recent years researchers have proposed a variety of methods,
which can be broadly classified into the following three categories:
similarity relation metrics based methods Niu et al. [19]; Gao et al.
[20]; Li et al. [30], external knowledge assistance based methods
Wang et al. [16]; Jing et al. [15]; Aggarwal et al. [17];Wang et al. [18],
and multi-granularity relational correspondence based feature
alignment methods Ding et al. [10]; Zhang et al. [11]; Liu et al.
[12]; Zheng et al. [13]; Chen et al. [14]; Wang et al. [21]. Similarity
relation metrics based methods use the similarity between text
features and image features as the relationship between them to
obtain robust features. Then, during testing, it also requires each text
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to do the same operation with all images, which greatly reduces the
testing efficiency. External knowledge assistance based methods
need to construct external knowledge in advance to assist the
model in extracting features. However, the model performance is
highly dependent on the external knowledge, and the performance
also depends on how well the external knowledge is constructed.
Multi-granularity relational correspondence based feature
alignment methods usually align the features of each granularity
directly, which reduces the model performance without explicit
semantic. This reduces the performance of the model without
explicit semantics. In contrast to the above methods. To
accomplish semantic alignment between textual and pedestrian
image features, this study proposes obtaining distinct local
features by projecting the global features of text onto the local
feature space of the corresponding pedestrian image through a
nonlinear mapping mechanism. Subsequently, the information
supplementation network complements local feature information
to achieve refined alignment of local features with comprehensive
information. Utilizing these aligned local features, global features
with coherent semantic information are then constructed.

3 Proposed method

3.1 Overview

The technical framework of this paper consists of two main
parts: Explicit Semantic Feature Extraction (ESFE) and Information
Supplementation Network (ISN), as shown in Figure 1. ESFE guides
the image features with clear semantics to align with the vague
semantic text features, thereby achieving semantic alignment and
laying a solid foundation for downstream tasks. ISN is responsible
for establishing the relationships between various local features and

fusing them based on these relationships to eliminate the
incompleteness of the features and obtain more robust features.

3.2 Feature extraction

In the extraction of person image features, ResNet50 is used as
the backbone and is denoted as Ev. As shown in Figure 1, the output
image features is denoted as Fv ∈H×W×C, and split Fv horizontally into
N patches. WhereH,W and C denote the length, width, and number
of channels in the feature map, respectively. The feature maps of the
l-th patch of the i-th Pedestrian image in a batch are represented as
Xl

v,i ∈ RH/N×W×C, where N denotes the total number of patches. We
performed maximum pooling on each patch to obtain the feature
vector hlv,i.

In the extraction of text features, the pre-trained Bidirectional
Encoder Representation from Transformers (BERT) model Kingma
and Ba (2014) is used as the backbone. The output text features are
Yj = (tj,0, tj,1. . .tj,M) ∈ R(M+1)×D, where tj,1, . . . , tj,M represents the
features of M words. and tj,0 represents the global features of Yj.

3.3 Explicit semantic feature extraction

Since the text describing the same pedestrian may have multiple
sentences and inconsistent features after encoding, this unclear
semantics leading to ineffective alignment. To address this
problem, this paper proposes the Explicit Semantic Feature
Extraction (ESFE) module. In general, this module bases on the
fact that each divided region of the pedestrian image has clearer
semantic information, which we can use to guide the learning of the
text features. By aligning the semantic information between text and
image features, the proposed module endows text features with clear

FIGURE 1
Overall framework of the proposed method.

Frontiers in Physics frontiersin.org03

Zhou et al. 10.3389/fphy.2023.1192412

173

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1192412


semantic information. Specifically, the Semantic Alignment
Network (SAN) is employed in the ESFE module to map
classification token to features with local semantics that are
consistent with pedestrian image features.

The structure of the semantic alignment network is shown in
Figure 2, in order to generate the same amount as the N local
features of the image. The Explicit Semantic Feature Extraction
(ESFE) module also contains N of Semantic Alignment Network
(SAN). Each SAN has its own set of parameters and is used to map
the global feature of text to different semantic spaces that correspond
to different local features of the pedestrian. Assume that j-th text
feature of the pedestrian encoded by the Bert network is tj,0, the
resulting feature we get from SAN is represent as Pl

t,j.
It is necessary to ensure that the feature channels of both

modalities are the same, and we use 1 × 1convolution to expand
the number of channels of Pl

t,j to obtain hlt,j. We also use Cross-
Modal Projection Matching (CMPM) loss Zhang and Lu [31]. hlv,i
and hlt,j are matching probabilities which can be calculated by the
following equation:

Slv2t,i,j �
exp hlv,i( )T�hlt,j( )

∑n
j�1 exp hlv,i( )T�hlt,j( ), (1)

where �h
l
t,i � hlt,i

‖hlt,i‖2
, and the matching loss from image to text in a

mini-batch is computed by:

Lv2t Ev( ) � 1
n
∑N
l�1

∑n
i�1

∑n
j�1

Slv2t,i,j log
Slv2t,i,j
zli,j + ε

⎛⎝ ⎞⎠, (2)

where ε = 10–8, n is the batchsize,zli,j � yl
i,j/∑

N

j�1
yl
i,j, and yl

i,j � 1

indicates that both belong to the same ID. The loss in the v2t
direction adds the loss in the t2v direction to obtain the CMPM loss.
The formula is shown as follows:

L1
cmpm Ev( ) � Lv2t Ev( ) + Lt2v Ev( ), (3)

3.4 Information supplementation network
learning

To address the issue of information incompleteness in the
individual local features, which hinders a comprehensive

representation of the features, we propose the Information
Supplementation Network (ISN) to enrich the semantic
information of the local features and thus enhance the feature
representation. For the image modality, the local features hlv,i
with missing semantic information are supplemented using ISN
(as shown in Figure 3) to obtain locally complete featuresfl

v,i which
will later be concatenated in a specific channel order to form robust
global features fg

v,i. We illustrate this process using the k-th visual
local feature as an example. First, we compute the similarity between
hkv,i and hpv,i(p ≠ k) embedded in a common space:

Sk,p �
Wk hkv,i( )TWp hpv,i( )

‖Wk hkv,i( )‖‖Wp hpv,i( )‖, (4)

where, Wk, Wpare two parameter matrices that can be updated
during training. Then, the association strength between the k-th
image local feature and the other local features can be expressed as
follows:

αk,p �
exp Sk,p( )

∑N
p�1,p≠k exp Sk,p( ), (5)

After extracting the missing information of local feature hkv,i
among N-1 local features using αk,p, we can obtain the missing
information of the k-th visual local feature fk

v , with the following
equation.

FIGURE 2
Semantic alignment network.

FIGURE 3
Information supplementation network.
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f kv � Wa ∑N

p�1,p≠kαk,pWP hkv,i( )( ), (6)

Finally, the semantic information is refined by fusing the
missing information with the original information, and the
formula can be expressed as follows.

f kv,i � Wf fk
v + hkv,i( ), (7)

where Wf, Wa are two learnable matrices. Similar to the visual
features, we also process the text local features by the same steps as
mentioned above to obtain semantically perfect text local features
fl
t,j. To ensure the consistency of local features, the following loss

function is used to optimize the training.

L2
cmpm Ev, Ec,Wl,Wp,Wf,Wa( ) � Lv2t Ev, Ec,Wl,Wp,Wf,Wa( )

+ Lt2v Ev, Ec,Wl,Wp,Wf,Wa( ),
(8)

Lv2t Ev, Ec,Wl,Wp,Wf,Wa( ) � 1
n
∑N
l�1

∑n
i�1

∑n
j�1

pl
i,j log

pl
i,j

qli,j + ε
( ), (9)

Lt2v Ev, Ec,Wl,Wp,Wf,Wa( ) � 1
n
∑N
l�1

∑n
j�1

∑n
i�1

pl
i,j log

pl
i,j

qli,j + ε
( ),

(10)

pli,j �
exp fl

v,i( )Tfl
t,j( )

∑n
j�1 exp fl

v,i( )Tfl
t,j( ), (11)

To make the semantics on the global feature channel
consistent as well, we concatenate together different local
features on the channel in a specific order to form
semantically comprehensive global featuresfg

v,i andfg
t,j, and

use the following loss function to optimize the network
parameters.

Lg
cmpm Ev, Ec,Wl,Wp,Wf,Wa( ) � Lg

v2t Ev, Ec,Wl,Wp,Wf,Wa( )
+Lg

t2v Ev, Ec,Wl,Wp,Wf,Wa( ),
(12)

where Lgv2t and Lgt2v can be similarly obtained from Eq. 10
Throughout the training process, the final loss function of the
model can be expressed as:

L Ev, Ec,Wl,Wp,Wf,Wa( ) � Lg
cmpm Ev, Ec,Wl,Wp,Wf,Wa( )

+λ2L2
cmpm Ev, Ec,Wl,Wp,Wf,Wa( )

+ λ1L
1
cmpm Ev( ), (13)

where, λ1 and λ2 are used as parameters to balance the importance of
different modules.

4 Experiments

4.1 Datasets and evaluation protocols

To verify the effectiveness of our proposed algorithm, we
demonstrate its performance on two challenging datasets CUHK-
PEDES Li et al. (2017a) and RSTPReid Zhu et al. [32].

CUHK-PEDES: This dataset is the first publicly available dataset
for this task.We adopted the same data partitioning strategy as Chen
et al. [33], where the dataset was divided into training, validation,
and testing sets. The training set contains 11,003 individuals with a
total of 34,054 images and 68,126 textual descriptions. Some sample
images and text descriptions are shown in Figure 3, Figure 4. The
validation set contains 1,000 individuals with 3,078 images and
6,158 textual descriptions, while the testing set contains
1,000 individuals with 3,074 images and 6,156 textual descriptions.

RSTPReid: This dataset is the latest public dataset. This dataset
contains 4101 pedestrians with different identities, each with five
different images, resulting in a total of 20,505 person images, with
two textual descriptions per image. Following the data partitioning
strategy in Zhu et al. [32], we divided this dataset into training,
validation, and testing sets, where the training set contains
18,505 images from 3,701 individuals, the validation set contains
1,000 images from 200 individuals, and the testing set contains
1,000 images from 200 individuals. Similar to existing methods, we
employ the Cumulative Match Characteristic metric to evaluate the
performance of our model.

4.2 Implementation details

Our network is mainly composed of image feature extractor and
text feature extractor. As with the other methods, we use ResNet-50
trained on imageNet Russakovsky et al. [34] and Bert as the
backbone. The network was trained for 100 generations.
Optimize network parameters using the Adam optimizer.
Kingma and Ba [35]. The initial learning rate is set to 1 × 10−3,
and the warm-up strategy in Luo et al. [36] is used to adjust the
learning rate for the first 10 epochs. At the 41st epoch, the learning
rate is decayed to 10% of its current value. All images are resized to
384 × 128 × 3, and data augmentation is performed using random
horizontal flipping. The batch size is set to 64, with each batch
containing 64 image-text pairs. The text length is uniformly set to 64.
During testing, cosine distance is used to measure the similarity
between image-text pairs. The proposed model is implemented
based on the PyTorch. All experiments are conducted on a single
NVIDIA GeForce RTX3090 GPU device.

4.3 Comparison with state-of-the-art
methods

4.3.1 Results on the CUHK-PEDES dataset
To illustrate the advantages of our method, we perform our

method on the CUHK-PEDES dataset, and compare its performance
with some state-of-the-art methods. The methods involved in the
comparison include GNA-RNN Li et al. [29], GLA Chen et al. [33],
CMPM + CMPC Zhang and Lu [31], MCCL Wang et al. [37],
A-GANet Liu et al. [12], Dual-path Zheng et al. [38], MIA Niu et al.
[19], PMA Jing et al. [39], TIMAM Sarafianos et al. [40], ViTAA
Wang et al. [16], NAFS Gao et al. [20], DSSL Zhu et al. [32], MGEL
Wang et al. [21], SSAN Ding et al. [10], TBPS(ResNet-50) Han et al.
[41], and SUM Wang et al; [42]. The experimental results of
different methods are shown in Table 1. It can be observed that
the proposed method achieves a Rank-1 accuracy of 61.97 (%) and a
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Rank-5 accuracy of 81.01 (%), outperforming all the compared
methods on the CUHK-PEDES dataset. In addition, it was found
that the latest methods NAFS, SSAN and MGEL are far superior to
other methods due to the use of attention mechanisms that allow the
network to extract robust features adaptively. However, they do not
consider the impact of the ambiguous semantic relationship between
the textual and imaging descriptions of pedestrians on the matching
performance, thus their performance is limited to some extent.
Compared with the best-performing method TBPS in the
compared methods, the proposed method achieves 0.32 (%)
improvement in Rank-1 accuracy, which demonstrates the
effectiveness and superiority of the proposed method over the
compared methods.

4.3.2 Results on the RSTPReid dataset
In order to further verify the effectiveness of our method, we also

conducted a comparative test on the RSTPReid dataset. Our
proposed method is compared with five latest methods, namely,
IMG-Net Wang et al. [44], AMEN Wang et al. [43], DSSl Zhu et al.
[32], SSAN Ding et al. [10], and SUMWang et al.(2022c). As shown
in Table 2, the latest method SSAN achieves the best performance
with 43.50(%), 67.80(%) and 77.15 (%) accuracy for rank-1, rank-5
and rank-10, respectively. In contrast, the proposedmethod achieves
significantly higher performance with 43.88(%), 76.60(%), and 80.20
(%) accuracy for rank-1, rank-5, and rank-10, respectively,
exceeding the performance of SSAN. These experiments further
validate the effectiveness of our method.

4.4 Ablation study

The proposed method in this paper mainly consists of two parts:
Explicit Semantic Feature Extraction (ESFE), and Information
Supplementation Network (ISN). In this paper, we use the model
obtained by pre-training ResNet50 and Bert under the constraint of
loss function as Baseline, and in order to verify the effectiveness of
each module, different modules are added to Baseline gradually to
observe the change of matching performance. In this process, the

model obtained by adding ESFE to Baseline is named “Baseline +
ESFE”; the model obtained by adding ISN to Baseline is named
“Baseline + ISN″ Themodel after adding ISN to “Baseline + ESFE” is
“Baseline + ESFE + ISN”. All experiments were conducted on the
CUHK-PEDES dataset, and the experimental results are shown in
Table 3.

4.4.1 The effectiveness of ESFE
In this paper, ESFE is mainly used to address the problem of

semantic mismatch between textual features and their
corresponding visual objects. As shown in Table 3, without using
ESFE, the performance of the Baseline model on rank-1 accuracy is
only 55.14 (%). When ESFE is added to the Baseline model, the
performance of Baseline + ESFE is improved from 55.14 (%) to 58.42
(%), with an increase of 3.28 (%). This is mainly because ESFE can
effectively address the issue of misalignment between features.

4.4.2 The effectiveness of ISN
To supplement local features, the ISNmethod is proposed in this

paper. In this process, various local features are fused by self-
attention mechanism to obtain comprehensive features. As
shown in Table 3, without using ISN, the performance of the
Baseline model on rank-1 accuracy is only 55.14 (%). When ISN
is added to the Baseline model, the performance of Baseline + ISN is
improved from 55.14 (%) to 59.20 (%), with an increase of 4.06 (%).
This is mainly because ISN can effectively supplement missing
information in features and improve the comprehensiveness of
features.

4.4.3 The effectiveness of ESFE + ISN
Table 3 shows the effectiveness of adding ISN to Baseline + ESFE

after rough alignment of local features. It can be seen that
supplementing information between roughly aligned local
features is more effective than directly supplementing
information on the baseline. Rank-1 is improved from 59.20 (%)
to 61.97 (%), with an increase of 2.77 (%). This indicates that
supplementing information on relatively good features can result
in more robust features.

FIGURE 4
Sample CUHK-PEDES dataset display.
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4.4.4 Ablation experiments Visualization
Figure 5 presents the effectiveness of each module. It can be

observed from Figure 6 that the matching accuracy is
improved when ESFE and ISN are added separately to the
“Baseline”, which demonstrates the effectiveness of the

proposed ESFE and ISN. However, the best performance is
not achieved, indicating that the current model cannot
distinguish finer-grained features. When ISN is added to
“Baseline + ESFE”, it can be seen that information
supplementation on the roughly aligned features can better
explore finer-grained features. As shown in Figure 6, the
model can not only distinguish large-scale features such as “A
short-sleeved red top” and “Short skirt” but also better
distinguish finer-grained features such as “Thick heel” and
“White logo”. This proves the effectiveness of the proposed
“Baseline + ESFE + ISN”. The above conclusions are
consistent with those obtained from Table 3.

4.4.5 Analysis of the loss function
Table 4 shows the effectiveness of the loss function. We find

that the Rank-1 of L1cmpm+L
2
cmpm reaches 60.33 (%) and that of

L1cmpm+L
g
cmpm reaches 60.12 (%). However, the Rank-1 of L1cmpm

is only 58.42 (%), which we believe is because L2cmpm and Lgcmpm

can train the ISN network better and make the feature
information more complete. The Rank-1 of
L1cmpm+L

2
cmpm+L

g
cmpm reaches 61.97 (%) and the Rank-1 of

L1cmpm+L
2
cmpm reaches 60.33 (%), which is 1.64 (%) higher,

because Lgcmpm constrains the global features and ensures the
two modalities consistency of the global features between the
two modalities. The Rank-1 of L1cmpm + Lgcmpm is 60.12 (%),
which is lower than the best result. This is because L2cmpm

TABLE 1 Comparative experiments on CUHK-PEDES dataset. Where the
optimal results are shown in bold.

Methods References Rank-
1

Rank-
5

Rank-
10

GNA-RNN CVPR’17 19.05 — 53.64

Li et al. [29]

GLA ECCV’18 43.58 66.93 76.26

Chen et al. [33]

CMPM + CMPC ECCV’18 49.27 — 79.27

Zhang and Lu [31]

MCCL ICASSP’19 50.58 — 79.06

Wang et al. [37]

A-GANet ACM MM’19 53.14 74.03 81.95

Liu et al. [12]

Dual-path TOMM’20 44.4 66.26 75.07

Zheng et al. [38]

MIA TIP’20 53.10 75.00 82.9

Niu et al. [19]

PMA AAAI’20 53.81 73.54 81.23

Jing et al. [39]

TIMAM ICCV’20 54.51 77.56 84.78

Sarafianos et al. [40]

ViTAA ECCV’20 55.97 75.84 83.52

Wang et al. [16]

NAFS arXiv’21 59.94 79.86 86.7

Gao et al. [20]

DSSL ACMMM’21 59.98 80.41 87.56

Zhu et al. [32]

MGEL IJCAI’21 60.27 80.01 86.74

Wang et al. [21]

SSAN arXiv’21 61.37 80.15 86.73

Ding et al. [10]

TBPS(ResNet-50) arXiv’21 61.65 80.98 86.78

Han et al. [41]

SUM KBS’22 59.22 80.35 87.51

Wang et al. [42]

Our(Proposed) This paper 61.97 81.01 87.82

TABLE 2 Comparative experiments on RSTPReid dataset, and the best result is
shown in bold.

Methods References Rank-1 Rank-5 Rank-10

IMG-Net JEI’20 37.60 61.15 73.55

Wang et al. [44]

AMEN PRCV’21 38.45 62.40 73.80

Wang et al. [43]

DSSL ACMMM’21 39.05 62.60 73.95

Zhu et al. [32]

SSAN arXiv’21 43.50 67.80 77.15

Ding et al. [10]

SUM KBS’22 41.38 67.48 76.48

Wang et al. [42]

Our(Proposed) This paper 43.88 76.60 80.20

TABLE 3 Ablation experiment.

Methods Rank-1 Rank-5 Rank-10

Baseline 55.14 76.64 84.48

Baseline + ESFE 58.42 79.76 85.78

Baseline + ISN 59.20 79.29 85.63

Baseline + ESFE + ISN 61.97 81.01 87.82
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constrains each local feature to ensure that each local feature
has different semantics within the modality and consistent
semantic information between the modalities. Thus
L1cmpm+L

2
cmpm+L

g
cmpm not only ensure that the local features

are discriminative, but also ensure that the global features
are consistent. This also shows that it is reasonable for us to
use L1cmpm+L

2
cmpm+L

g
cmpm to train the network.

4.5 Parameter selection and analysis

The three main hyperparameters involved in our approach are
λ1, λ2 and N. In the parametric analysis, we fix two parameters to
analyze the effect of another parameter on the results. All our
experiments for the parameter analysis were performed on the
CUHK-PEDES dataset.

FIGURE 5
Visualize the retrieval results of baseline and our method. The image on the red edge indicates that the query is wrong, and the blue edge indicates
that the query is correct.

FIGURE 6
Effect analysis on hyperparameters.
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The influence of λ1. In Eq. 13, the hyperparameter λ1 mainly
regulates the role played by L1cmpm. This loss term is used to ensure
the initial alignment of each local feature semantics. Figure 6A
shows the effect on Rank-1 for different values of λ1 in the CUHK-
PEDES task. From this, we can find that there is an overall
improvement in the Rank-1 recognition accuracy of our
algorithm on the CUHK-PEDES task when λ1 ∈ [0.01, 1], the
Rank-1 on CUHK-PEDES task decreases when λ1 ∈ [1, 2]
Therefore, λ1 = 1 is the optimal choice

The influence of In Eq. 13, the hyperparameter λ2 mainly
regulates the role played by L2cmpm. This loss term is used to
ensure that the ISN can adaptively extract the relationship to
each local feature and fuse the features in this way. We fix the
hyperparameter λ1 = 1, and λ2 takes values in the range [0,2]. On
CUHK-PEDES, the variation of Rank-1 for different values of λ2 is
shown in Figure 6B. It can be seen that when λ2 is 1, the method in
this paper can obtain the optimal performance on CUHK-PEDES,
so it is reasonable to set λ2 to 1.

The influence of N. In ESFE, for the image modality, we divide
the image features into N local features with different semantics by
PCB, and for the text modality, we generate N local features
with different semantics by SA network. To verify the effect of
different values of N on the model performance, we manually set N
to 2, 3, 4, 6, 8, and12. From which we select the optimal N value
for the model performance. This experiment was conducted on
the CUHK-PEDES dataset. Table] 5 shows the experimental
results of the effect of taking different values on the
performance of the model. It can be seen that N of 6 achieves
the best results.

5 Conclusion

This paper proposes a text-based framework for pedestrian
image retrieval. Firstly, the ESFE method is utilized to provide
clear semantic information for the text and achieve rough
alignment between text and image features. In order to further
enhance the representation of features, the ISN method is proposed
to model the relationships among local features, fuse the features
according to the underlying relationships. Finally global features are
concatenated by refined local features. This improves the
comprehensiveness of the features and effectively alleviates the
matching difficulties caused by incomplete features. Compared
with existing methods, the proposed model achieves good results
on the CUHK-PEDES and RSTPReid datasets. Through ablation
study, the contribution of different modules is investigated. The
results show that this model is suitable for text-based pedestrian

image retrieval. It is worth noting that in our study, sample diversity
has a great impact on this task. For future work, we will study how to
solve the problem of sample diversity.
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TABLE 4 Analysis of the loss function.

Methods Rank-1 Rank-5 Rank-10

L1cmpm 58.42 79.76 85.78

L1cmpm+L
2
cmpm 60.33 80.82 86.82

L1cmpm+L
g
cmpm 60.12 80.30 86.43

L1cmpm+L
2
cmpm+L

g
cmpm 61.97 81.01 87.82

TABLE 5 The influence of N.

N Rank-1 Rank-5 Rank-10

2 59.14 78.44 86.78

3 60.04 78.89 86.91

4 60.33 79.75 87.44

6 61.97 81.01 87.82

8 61.53 80.93 87.32

10 61.11 79.61 87.14

12 60.47 78.01 86.92
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Multi-level semantic information
guided image generation for
few-shot steel surface defect
classification

Liang Hao1, Pei Shen2, Zhiwei Pan2 and Yong Xu1*
1School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China, 2HBIS
Digital Technology Co., Ltd., Shijiazhuang, China

Surface defect classification is one of key points in the field of steel manufacturing.
It remains challenging primarily due to the rare occurrence of defect samples and
the similarity between different defects. In this paper, a multi-level semantic
method based on residual adversarial learning with Wasserstein divergence is
proposed to realize sample augmentation and automatic classification of various
defects simultaneously. Firstly, the residual module is introduced into model
structure of adversarial learning to optimize the network structure and
effectively improve the quality of samples generated by model. By substituting
original classification layer with multiple convolution layers in the network
framework, the feature extraction capability of model is further strengthened,
enhancing the classification performance of model. Secondly, in order to better
capture different semantic information, we design amulti-level semantic extractor
to extract rich and diverse semantic features from real-world images to efficiently
guide sample generation. In addition, the Wasserstein divergence is introduced
into the loss function to effectively solve the problem of unstable network training.
Finally, high-quality defect samples can be generated through adversarial learning,
effectively expanding the limited training samples for defect classification. The
experimental results substantiate that our proposed method can not only
generate high-quality defect samples, but also accurately achieve the
classification of defect detection samples.

KEYWORDS

few-shot steel surface defect classification, adversarial learning, residual module, multi-
level semantic feature extractor, Wasserstein divergence

1 Introduction

Steel is an essential material for industrial production, with a broad range of uses in areas
such as automobile, aerospace and machinery. As the demand for material fitness in various
industries increases, the surface quality of steel has become increasingly important. However,
during the steel manufacturing process, due to the influence of various unstable factors such
as raw materials and production conditions, various types of defects may appear on the
surface of steel, which affect the quality of steel to varying degrees and easily lead to serious
production accidents, resulting in immeasurable losses to producer and users [1, 2]. Thus, it
is of great importance to classify the defects on the surface of steel efficiently for further
quality enhancement.

Generally, steel surface defects belonging to the same category meet a large intra-class
difference, while those of different categories are highly similar [3], making the classification
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of steel surface defects more complicated. To address this problem,
various approaches have been studies. For instance, Zaghdoudi et al.
[4] proposed a steel surface defect classification method based on the
binary Gabor pattern (BGP) algorithm and support vector machine
(SVM). Hu et al. [5] extracted various visual features such as
geometry, texture, and shape of the defect image and fed them to
SVM for classification. Despite the fact that these methods do
classify different defects, these hand-crafted features are not
optimal, making a constraint on the further performance
improvement. Fortunately, thanks to the development of deep
learning, deep learning based methods have attracted much
attention in the field of steel surface defect classification due to it
powerful capability in feature extraction. Specifically, Duan et al. [6]
used RGB images and gradient images as inputs to a dual-flow
convolutional neural network, and fused multi-source information
to recognize aluminum surface defects. Liu et al. [7] proposed an
improved dual CNN model fusion framework, which uses pre-
trained VGG16 and AlexNet to extract different features from
the input source to classify and identify aluminum surface defects.

Although deep learning based methods enjoy superiority
compared with conventional methods, they also meet the
limitation on the large scale of training data. However, the
number of non-defective samples in actual industrial production
environments is far greater than that of defective samples. Moreover,
it is difficult to identify and collect defective samples, further leading
to an insufficient number of samples [8, 9, 10]. To address this issue
of insufficient samples, many researchers have begun to focus on the
unsupervised data enhancement algorithm: Generative Adversarial
Networks (GANs). Currently, many improved GANs and
adversarial learning strategies have been derived, such as
Wasserstein GAN (WGAN) [11], Deep Convolutional GAN
(DCGAN) [12], and ACGAN [13]. These generative models
augment the original data by generating synthetic samples,
thereby mitigating the effect of few-shot on the classification
performance and improving the accuracy. Dosovitskiy et al. [14]
showed that even with low-fidelity images, the performance can be
significantly improved. If the generated images enjoy the high-
quality, the over-fitting problem can further be solved [15].
However, despite the wide application of GANs and its related
improved models, there are still some tough difficulties, such as
insufficient model feature capture capability, gradient
disappearance, and model collapse, etc.

Furthermore, generating high-quality data similar to the original
data distribution can solve the over-fitting problem, and enhance the
detection accuracy and generalization ability of the model [15]. Lu
and Su [16] proposed a novel method to eliminate mura patterns
from defect images by using conditional generation adversarial
networks; Li et al. [17] studied a cross-domain fault diagnosis
method based on deep neural networks, which has a good
industrial application prospect; Liu et al. [18] introduced an
attention mechanism into feature extraction, proposed a
structural defect detection framework based on GAN-CNN, and
achieved satisfactory results. Despite the wide application of GANs
and its related improved models, there are still some tough
difficulties, such as insufficient model feature capture capability,
gradient disappearance, and model collapse, etc.

Aimed at above problems, we propose a steel surface defect
classification method based on residual adversarial learning with

Wasserstein divergence. First, the residual module is introduced into
the network framework of adversarial learning, to enhance the
feature extraction ability of the model and improve the quality of
generated samples. Subsequently, to extract semantic information
from defect samples at different levels, we design a multi-level
semantic feature extractor (MSFE), which guides sample
generation by extracting the most relevant semantic features
from images. Then Wasserstein divergence is used to alleviate
gradient disappearance, gradient explosion and mode collapse
during model training. Finally, high-quality samples are
generated, and few-shot steel surface defect classification is
realized by adversarial learning. The experimental results show
that the proposed method improves the accuracy of steel surface
defect classification, which are superior to many state-of-the-arts.

The main contributions of this paper are as follows:

• The residual module is introduced into the network structure
of adversarial learning to contribute to the feature extraction.
Moreover, multiple convolutional layers are employed in the
model architecture to replace the original classification layer,
further boosting the classification performance of the model.

• A multi-level semantic feature extractor (MSFE) which
effectively extracts features at different levels is designed,
fully capturing diverse semantic information of images to
guide the generator in sample generation and improve the
quality of generated samples.

• The proposed method can generate high-quality samples to
compensate for the deficiencies under few-shot conditions,
further improving the classification performance.

2 Related works and preliminary
knowledge

2.1 Steel surface defect classification

Steel surface defect classification based on deep learning has
gained considerable attention in recent years and achieved
remarkable results. Chenon et al. [19] proposed a defect
classification approach based on a single convolutional neural
network, which can extract effective features for defect
classification without the prior of hand-crafted features.
Nakazawa et al. [20] proposed a method for surface defect
classification and image retrieval using convolutional neural
networks. The model was trained, validated, and tested using
generated data samples, and it was demonstrated that the model
trained by synthetic data can be classified efficiently. Zhu et al. [21]
studied an intelligent identification algorithm based on
convolutional neural networks and random forest algorithms,
which enabled the intelligent identification of weld surface
defects. However, obtaining effective defect samples is very
challenging in the actual industrial environment, and there is the
problem of insufficient samples, which leads to a low performance of
the surface defect classification model based on deep learning.
Therefore, data augmentation and transfer learning have been
proposed by many researchers to address the few-shot problem
in this field. Wan et al. [22] studied an improved VGG19 neural
network based on small samples and unbalanced datasets for strip
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steel defect detection. Through fast image preprocessing algorithms
and transfer learning theory, excellent results have been achieved on
multiple datasets. Han et al. [23] proposed a new framework for
intelligent fault diagnosis, namely, Deep Transfer Network (DTN),
which generalized deep learning models to domain self-adaptation
scenarios. By using the discriminative structure associated with the
labeled data in the source domain to adapt to the unlabeled data,
more accurate distribution matching is ensured. Furthermore, Liu
et al. [24] designed ImDeep, a deep learning model for unbalanced
multi-label surface defect classification, which combines three key
technologies to improve the classification performance of the model:
imbalanced sampler, Fussy-FusionNet, and transfer learning.

Apart from the domain adaptation, some scholars also utilize
GAN as a data augmentation technique to address few-shot
issue. Goodfellow et al. [15] first proposed the unsupervised deep
learning model GAN in 2014, which was inspired by the two-
player zero-sum game in game theory and consists of two
components: the generator and the discriminator. The
generator is mainly responsible for generating data that is as
similar as possible to the original data samples, while the
discriminator is tasked with distinguishing between real and
fake images. Currently, GAN has been widely applied in various
fields, such as image generation, data augmentation, image
restoration, and image coloring. Specifically, Jain et al. [25]
trained three GAN architectures to generate synthetic images
for data augmentation, which significantly improved the
performance of surface defect classification. He et al. [26]
proposed a semi-supervised learning for defect classification
based on GAN and ResNet to expand the training samples
and exploit the unlabeled images. Zhao et al. [27] designed a
reconstruction network to reconstruct the potential defect areas
in the sample image, and determine the final defect area
according to the difference between the reconstructed sample
and the original sample. Lian et al. [28] proposed a novel
machine vision method for automatic identification of tiny
defects in a single image. To effectively achieve pixel-level
defect detection on textured surfaces without manual
annotation, Tsai et al. [29] introduced a two-stage deep
learning scheme. Particularly, the first stage used CycleGAN
to automatically synthesize and annotate the pixels of defect in
images. The second stage used the synthesized defect images and
their corresponding annotation results as input-output pairs for
training the U-Net semantic network.

2.2 Preliminary knowledge

GAN consists of a generator and a discriminator [15], as shown
in Figure 1A. The input of the generator is a random noise vector z,
and the output is the fake sample generated by it. The discriminator
uses the fake sample generated by the generator and the real data x as
the input, and the output is the discrimination score of the
discriminator on the fake sample. GAN’s overall objective
function is:

min
G

max
D

L G,D( ) � Ex~Pd
logD x( )[ ] + Ez~Pz log 1 −D G z( )( )( )[ ]

(1)
where Pd is the probability density distribution of the real data x; z is
the noise vector randomly sampled from the prior distribution Pz;G
represents the generator, D represents the discriminator, and E(·)
represents the calculated expected value; D(X) is a probability
distribution, that is, the probability of classifying data X as a real
sample, and X is derived from a real sample x or a generated
sample G(z).

Formula 1 shows that the optimization problem of GAN is same
as the max-min optimization problem, which includes the
optimization goals of the generator and the discriminator. The
main function of the discriminator is to perform binary
classification on the input data to determine whether the input
data comes from the distribution of the real data or the generated
pseudo data. Thus, its objective function is:

max
D

L G,D( ) � Ex~Pd
logD x( )[ ] + Ez~Pz log 1 −D G z( )( )( )[ ] (2)

It can be seen from Formula 2 that the goal of the discriminator
is to maximize the discrimination accuracy for the data. In other
words, we aim to maximize the discriminant resultD(x) for the real
data x, and minimize the result D(G(z)) of the generated sample
G(z) (maximize 1 −D(G(z))).

The purpose of the generator is to generate samples that the
discriminator cannot distinguish as false, and its objective
function is:

min
G

L G,D( ) � Ez~Pz log 1 −D G z( )( )( )[ ] (3)

The generator is optimized by Eq. 3. Specifically, the probability
scoreD(G(z)) of the discriminator for the generated sampleG(z) is
maximized (1 −D(G(z)) is minimized). During training, the

FIGURE 1
The model framework of GAN and ACGAN. (A) GAN. (B) ACGAN.
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alternate optimization methods are used: fix one side and update the
parameters of the other network. In other words, the model updates
the discriminator’s parameters firstly through the fixed generator so
that the discriminator maximizes the discriminant result. Then we
fix discriminator’s parameters for updating the generator, which
minimize the result that discriminator works. Finally, when the
probability distribution Pg of the samples generated by the generator
G is infinitely close to the probability distribution Pd of the real
samples (that is, Pg � Pd), the global optimal solution can be
reached.

ACGAN is a variant of GAN [13], and its structure is illustrated
in Figure 1B. By incorporating auxiliary label information c into the
generator, the generated samples can be constrained to possess
certain characteristics, thus allowing for more precise expression
of the samples and the generation of specific samples according to it.
Moreover, in order to ensure accurate classification, ACGAN adds a
softmax layer to the discriminator network, thus enabling the
improved model to not only judge the authenticity of the data,
but also classify the input samples.

The loss function of ACGAN consists of two parts: the
discriminative loss Ls and the classification loss Lc. The role of
discriminative loss is to judge the authenticity of the generated
samples, thereby improving the quality of the samples generated by
the generator. The role of the classification loss is to measure the
accuracy of the classification of the sample category. And, the
specific calculation of Lc is:

Lc � Ex~Pd
R x|cx( )[ ] + Ez~Pz, c~Pc R G z, c( )|c( )[ ] (4)

where R is the cross-entropy loss function, cx represents the category
label of the real data x, c is the category label of the generated data
G(z, c), and Pc is the category label distribution of the sample.

Since a classifier is added to the discriminator D, the network
can not only distinguish the authenticity of the data, but also classify
the data, so its loss function needs to calculate two parts:
discriminant loss Ls(D) and classification loss Lc. The specific
calculation is as follows.

Ls D( ) � Ex~Pd
logD x( )[ ] + Ez~Pz, c~Pc log 1 −D G z, c( )( )( )[ ] (5)

L D( ) � Lc + Ls D( ) (6)
Similarly, the loss function of the generator G also needs to

consider the classification loss:

Ls G( ) � Ez~Pz, c~Pc log 1 −D G z, c( )( )( )[ ] (7)
L G( ) � Lc − Ls G( ) (8)

Formulas 6, 8 ultimately constitute the entire loss function of the
ACGAN model. During the training process, the model is
continually optimized to enhance the quality of the samples
generated by the model and augment the classification accuracy
of the model.

3 Methods

Although Generative Adversarial Networks (GANs) and
Auxiliary Classifier GANs (ACGANs) can effectively alleviate the
few-shot classification problem by generating samples, they still
meet the limitation on inadequate information extraction

capabilities, gradient vanishing, and pattern collapse. To address
these issues, we propose a novel network structure. Specifically, a
residual adversarial learning model with Wasserstein divergence
based on ACGAN under multi-level semantic guidance is proposed,
as shown in Figure 2.

First, the random noise vector z and sample label c are input into
the generator. The generator generates synthetic samples Ig,
expanding the scale of the training data. By utilizing a multi-level
semantic feature extractor to process original samples, semantic and
contextual information can effectively be captured and used for
guiding sample generation of generator. Then, the discriminator
takes the generated sample Ig and real sample I as the inputs, and
outputs the discriminant result R/F? (True or Fake) and the
classification result c′ of the generated sample. During the
adversarial training of model, the Wasserstein divergence
(W div) is used as the distance measurement between the
distributions of the initial data and the distributions of the
generated data.

3.1 The modification of network

Despite the fact that ACGAN achieved significantly
satisfactory results in image generation [13], it still faces the
problem of insufficient feature extraction ability when it is
applied to tasks within the few-shot environment, resulting in
inadequate acquisition of image information and a consequent
decrease in model performance. To address this issue, the overall
network structure of ACGAN is optimized, as illustrated in
Figure 3. The specific improvements of the network structure
are detailed below.

(1) As shown in Figure 3, the residual module (Residual) is
introduced into the network structure of the generator and
the discriminator to optimize the feature learning ability of the
model, so that the model can extract more valuable features.
Meanwhile, it can ensure the quality of the samples generated by
the model while optimizing the model’s ability to discriminate
and classify images. The specific network structure of the
introduced residual module is shown in Figure 4.

(2) When the kernel size of the deconvolution layer cannot be
divisible by stride in the actual calculation, uneven overlapping
problems will occur. Also, the generated sample images would
have some checkerboard-like artifacts [30]. Therefore, in order
to avoid such problems, as shown in Figure 3A, the up-sampling
layer (US) and the convolutional layer (Conv) are used to
generate sample images in the generator network structure.
As shown in Figure 3B, in the discriminator network structure,
two convolutional layers are added before the sigmoid and
softmax classification layers, which makes the classifier in the
discriminator learn more image information and improve the
classification performance.

(3) The generator network mainly consists of several residual modules
and convolutional layers as well as operating up-sampling layers.
The input of the model is the randomly generated 128-dimensional
vector z and the sample label c, which undergoes a fully connected
layer (FC) and the reshape (reshape) operation. Before the
convolution calculation, the first two convolution layers have
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both performed the up-sampling operation using the nearest
neighbor interpolation, which increases the feature map by two
times. At the same time, Batch Normalization (BN) is used to
optimize the network throughput the training. There are three
residual modules between each two convolution layers to improve
the feature learning ability of the model, and the Leaky-ReLU

activation function is used between each layer. The discriminator
network also includes 6 convolutional layers and 3 residualmodules.
And the 3 residual modules follow the first convolutional layer. At
the same time, a Dropout layer (Dropout) is further introduced to
prevent overfitting problems. Furthermore, the Leaky-ReLU
activation function is used between each layer.

FIGURE 2
Overview of our framework. Given an image I as input, our framework first extracts rich semantic information through multi-level semantic feature
extractor to guide generator. After that, we deliver the noise z and label c to generator for generating sample Ig. Finally, we can obtain the classification
result c′ and the discriminate result R/F? (True or Fake?) of generated sample Ig by discriminator. Lc , Ls , andW div indicates respectively the classification
loss, the discriminant loss, Wasserstein divergence during training.

FIGURE 3
Improved generator and discriminator network structure. (A) The structure of the improved generator network. (B) The structure of the improved
discriminator network.
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3.2 Multi-level semantic feature extractor

Recently, ACGAN has achieved remarkable progress in the field
of image generation. Given a category label, ACGAN can map
random noise into high-resolution images with abundant texture
features and comprehensive shape details. However, satisfactory
results depend on training ACGAN with sufficient quantity of
samples. When there is an inadequate number of samples, the
effectiveness of ACGAN in generating samples close to reality is
compromised due to its inability to obtain enough semantic
information, which motivates us to design a multi-level semantic
feature extractor to facilitate sample generation tasks, as shown in
Figure 2. As illustrated above, the role of the multi-level semantic
feature extractor is to extract the semantic and contextual
information of defects at different levels in the image. Therefore,
the original samples are input into the multi-level semantic feature
extractor to obtain the learned hierarchical features, such as texture
and shape, which are then incorporated into the generator to serve as
guidance for sample generation. Specifically, the sample image I
corresponding to the true sample label c is processed by the multi-
level semantic feature extractor to obtain rich semantic information,
which is then aligned with the different convolutional layers in the
generator, facilitating better integration of multi-level semantic
features into the process of sample generation. The core of
alignment operation mainly relies on a convolutional layer,
which adjusts semantic features extracted by MSFE to the size
corresponding to different layers of the generator, and adds the
adjusted features to the original ones to obtain new features under
semantic guidance. The aligned features are added to the
convolutional layers of the generator, leveraging diverse levels of
semantic features to facilitate the generation of specific defective
samples, as depicted in Figure 3A. We use VGG19 pretrained on the
ImageNet dataset as a multi-level semantic feature extractor, and use
the features extracted from layers 7 to 23 in it to guide the generator.

3.3 Objective function

The Kullback-Leibler (KL) divergence [15] is prone to gradient
instability in the Generative Adversarial Networks (GANs) training
phase, and can also lead to mode collapse. To address these issues,
the Wasserstein GAN (WGAN) uses the Wasserstein distance to
ensure that the gradient of the model is continuous during the
training process [11]. However, WGAN utilizes weight clipping to
restrict the weights within a fixed range strictly, which greatly limits
the expressiveness of the network. Consequently, WGAN-GP [31]
adopts gradient penalty to enhance the stability of the network
training. According to the research conducted by [32], in
experiments, WGAN-GP typically employs the technique of
interpolating between real and fake data to simulate a uniform
distribution across the whole space. This approach is somewhat
mechanistic and empirical, which makes it challenging to simulate
the full spatial distribution using limited sampling.

In order to solve this problem, Wu et al. [32] proposed
Wasserstein divergence to reduce the distance loss function
properly between two distributions, as shown in Formula 9. It
removes the K-Lipschitz conditional restriction, and changes the
penalty term added to the loss function.

Wk,p Pd, Pz( ) � max
D

Ex~Pd
D x( )[ ] − Ez~Pz D z( )[ ]

−kEu~Pu ∇D u( )‖ ‖p[ ] (9)

where k and p are selected empirically. Generally, k = 2, p = 6. ∇
represents the gradient. x comes from the distribution Pd of the real
data; similarly, z comes from the generated sample distribution Pz.
Pu is a distribution derived from the real data distribution Pd and the
generated data distribution Pz. D represents the discriminator, and
E(·) represents the calculated expected value. Experiments in [32]
prove that all different distributions have improved performance.

Based on the loss function of ACGAN [13], we use Wasserstein
divergence to address the potential gradient explosion issue in the
training process. Hence, the loss function of our method consists of
two parts: the loss function L(D) of discriminator and the loss
function L(G) of generator, with each loss function consisting of two
components: the adversarial loss function Ls and the conditional loss
function Lc.

The purpose of L(D) is to ensure that the discriminator can
distinguish between real and generated samples and accurately
classify them based on their respective conditions, as shown below:

Ls D( ) � Ex~Pd
D x( )[ ] − Ez~Pz D z( )[ ] − kEu~Pu ∇D u( )‖ ‖p[ ] (10)

Lc � Ex~Pd
R x|cx( )[ ] + Ez~Pz, c~Pc R G z, c( )|c( )[ ] (11)
L D( ) � Lc + Ls D( ) (12)

where Ls(D) represents the adversarial loss function that is modified
withWasserstein divergence; Lc is the conditional loss function; R(·)
denotes the cross-entropy loss function; cx indicates the category
label of real data sample x, and c denotes the category label of
generated data G(z, c). Pc represents the distribution of sample class
labels. During the training process of discriminator, our objective is
to maximize its loss function L(D).

Likewise, the purpose of L(G) is to generate high-quality data
samples such that the discriminator cannot distinguish whether the
sample is real or fake, as illustrated below:

FIGURE 4
The specific network structure diagram of the residual block.
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Ls G( ) � Ez~Pz D z( )[ ] (13)
Lc � Ex~Pd

R x|cx( )[ ] + Ez~Pz, c~Pc R G z, c( )|c( )[ ] (14)
L G( ) � Lc − Ls G( ) (15)

where Ls(G) represents the adversarial loss function for the
generator. Similarly, we aim to maximize its loss function L(G)
in the training process.

3.4 Network training

During the training process of the model, the discriminator
continuously enhances its capability to distinguish between real samples
and generated samples, while the generator continuously improves its
ability to generate realistic samples. The discriminator updates its weights
by utilizing both real and generated samples, and the generator updates its
weights through the error feedback from the discriminator. The training
process of the model is a maximization and minimization process. In the
adversarial training of the discriminator and the generator, the
discriminator minimizes the probability of misclassification, and the
generator maximizes the error probability of the discriminator. The
iterative training method of the generator and the discriminator is
employed to prevent the over-fitting of the generator network. The
specific training steps of the model are illustrated in Algorithm 1.

Data: image dataset

Output: trained Discriminator and Generator, Training

Accuracy

1 for epoch=0 to n do

2 randomly sample from real samples and get

(real_images, labels), and randomly sample

from a uniform distribution to obtain noise z

3 input (z, labels) into Generator to generate

sample fake_images

4 generated sample fake_images and real sample

real_images are fed into discriminator

5 calculate the gradient of the real sample

space, calculate the gradient of the

generated sample space, and calculate the

Wasserstein divergence according to Formula 9

6 for D_epoch=0 to m do

7 calculate Discriminator’s loss by Formulas

10, 11, 12

8 update Discriminator parameters

9 end for

10 calculate Generator’s loss according to

Formulas 13, 14, 15

11 update Generator parameters

12 end for

Algorithm 1. Residual Adversarial Learning Model with
Wasserstein Divergence.

4 Experiments

In order to verify the effectiveness of the proposed method,
experiments are conducted on the NEU-CLS dataset using a

Windows 10 system with 16 GB of memory, an AMD Ryzen
7 4800HS processor, and an NVIDIA GTX 1660 Ti graphics
card. The model is constructed using the PyTorch platform.

4.1 Dataset

This paper performs experiments on the NEU-CLS hot-rolled
steel surface defect dataset from Northeastern University [34]. The
dataset consists of 6 types of defects, and each category contains
300 grayscale images (200 × 200 pixels). These six types of defects
are: crazing (Cr), inclusion (In), patches (Pa), pitted surface (PS),
rolled-in scale (RS) and scratches (Sc), as illustrated in Figure 5.

In the experiment, the NEU-CLS dataset is divided according to
a 2:1 ratio, with 1,200 images used as the training set and 600 images
used as the test set. It takes 10,000 epochs to train our network with
Adam optimizer and a batch of 64 images. The parameter settings of
the model are as follows: learning rate of α = 0.0002, random noise
vector dimension of z = 128, and Adam optimization parameters of
β1 = 0.5 and β2 = 0.999. In addition, we use VGG19 pretrained on
the ImageNet dataset as a multi-level semantic feature extractor, and
use the features extracted from layers 7 to 23 in it to guide the
generator.

4.2 Few-shot classification of steel surface
defects

Considering the restricted size of the dataset, we conduct
experiments with six different training sample sets (200, 150,
100, 50, 30, 10) to evaluate the few-shot classification
performance enhancement of the proposed method after training,
and to comparatively analyze the impact of the data size on the
model. The numbers of test sets are kept constant. The results of the
comparison between ACGAN and the method proposed in this
paper under different training sample sizes are presented in Table 1.

According to Table 1, it can be observed that the classification
performance of ACGAN and the proposed model decreases as the
training sample size decreases. It is evident that insufficient samples
reduce the generalization capability of the model, resulting in a
poorer performance on the test set. Furthermore, the decline of our
model is more gradual than that of ACGAN, indicating that the
method proposed in this paper is more stable and robust when
dealing with few-shot issues. As illustrated in Figure 6, the trend of
classification results of ACGAN and our model under different
training sample sizes can be observed.

Observing Figures 5, 6, it can be seen that the accuracy of our
model has a distinct advantage over ACGAN under different
training sample sizes. When the sample size is 200, the average
accuracy of our model reaches 98.67%. At the same time, when
the training sample size is 10, the average accuracy of the model
in this paper is 89.67%, while the accuracy of ACGAN drops to
66.5%. This indicates that ACGAN is more reliant on data.
Furthermore, as the training sample size decreases, the
classification accuracy gap between ACGAN and the model
proposed in this paper increases. When the sample size is 10,
the accuracy of ACGAN is 23.17% lower than that of the method
proposed in this paper, making it evident that ACGAN is far less
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effective than the model in this paper when dealing with few-
shot problems.

To illustrate the classification ability of the proposed model for
each type of defect, Figure 7 shows the confusion matrix of our
model under different sample sizes, where the numbers 0–5 in the
abscissa and ordinate represent defect types, respectively: Cr, In, Pa,
PS, RS, and Sc. It is evident that our method can train an ideal model
under different training sample sizes and can accurately classify
most of the defects. Moreover, when the sample size is 200, the
model can accurately classify all Pa defects. Under different training
sample sizes, the cases of classifying Cr as RS and RS as Cr occupy a
large proportion in the wrong classification cases. The high
similarity between Cr and RS defects and the lack of distinct
inter-class features lead to misjudgment of the model. The overall
results demonstrate that the method proposed in this paper only
misjudges a few fault types under different sample sizes, and the
overall accuracy remains high as the sample size decreases.

FIGURE 5
Six types of steel surface defects.

TABLE 1 Average classification accuracy of different sample sizes.

Sample size for each category (total sample size) Average accuracy (%) Increase (%)

ACGAN Ours

200 (1,200) 94.83 98.67 4.04

150 (900) 93.67 98.33 4.66

100 (600) 90.00 95.50 5.5

50 (300) 83.83 94.67 10.84

30 (180) 77.83 94.00 16.17

10 (60) 66.50 89.67 23.17

Bold values mean the best results.

FIGURE 6
Trend chart of classification results under different sample sizes.
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In order to further validate the classification performance of our
model, we compare it with the classic ResNet18 and
ResNet50 classification methods. To ensure the efficient
classification performance of the classic classification models, the
ResNet18 and ResNet50 models are pre-trained using the ImageNet
dataset. Additionally, we also compared with the latest few-shot
deep learning classification models, including: the model proposed
by Lian et al. [28], which combine generative adversarial networks

and convolutional neural networks to generate exaggerated defect
image samples to ensure the accuracy of micro-surface defect
detection; and the model proposed by Li et al. [35], which
replace the fully connected classification layer with an orthogonal
SoftMax layer, significantly reducing the complexity of the model
andmaking it suitable for few-shot classification. Moreover, in order
to fully demonstrate the impact of MSFE on the final classification
results, MSFE is deliberately excluded in the original framework and
a corresponding experiment is conducted. The experimental results
are presented in Table 2, and it can be seen that, in the case of
different sample sizes, the methods proposed in this paper have
achieved the best results and achieved the highest classification
accuracy.

In order to further verify the importance of introducing various
parts in our model, we compare the classification performance of the
model after introducing the residual module, Wasserstein distance
and penalty weight GP [30], Wasserstein divergence, and MSFE into
the ACGAN model respectively. At the same time, in order to verify
the important role played by the residual module in the
discriminator network, we replace the residual module in the
discriminator of our model with the CBAM attention mechanism
module proposed by [35], and introduce the SENet module to
conduct comparative experiments. The training sample size is
200, and the experimental results are shown in Table 3. It can be
found that after adding the residual module to the original model,
the classification accuracy of ACGAN increases by 1.34%, the

FIGURE 7
Confusion matrix of our model under different training sample sizes. (A) 200, (B) 150, (C) 100, (D) 50, (E) 30, and (F) 10.

TABLE 2 Results of steel surface defects under different methods and sample
sizes.

Methods Average accuracy (%)

200 150 100 50 30 10

ResNet18 92.33 90.67 85.00 83.33 76.33 59.5

ResNet50 93.00 92.33 85.33 83.00 77.00 63.17

Res-ACGAN 96.17 95.00 91.00 84.67 79.00 70.50

[28] 96.50 95.50 91.00 89.50 87.50 76.33

[35] 96.67 94.67 90.50 85.33 84.83 71.33

Ours (lack MSFE) 97.00 96.00 94.33 93.67 91.33 86.00

Ours 98.67 98.33 95.50 94.67 94.00 89.67

Bold values mean the best results.
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classification accuracy of ACGAN + Wasserstein + GP increases by
1.17%, and the classification accuracy of ACGAN + SENet +
Wasserstein + GP increases by 0.84%. After adding Wasserstein
divergence to the original model, the classification accuracy of
ACGAN increases by 1%, and the classification accuracy of
ACGAN + Res increases by 0.83%, which is higher than that of
using Wasserstein distance and penalty weight, showing that

introducing the residual module and Wasserstein divergence into
the model can improve the feature extraction ability of the model
and further improve the model’s ability to discriminate and classify
sample images. In addition, the introduction of attention
mechanism modules SENet and CBAM in the discriminator
network can improve the classification ability of the model, but
the discriminator network structure proposed in this paper has
achieved the best results in experiments. The incorporation of MSFE
in the original framework results in a 1.67% increase in classification
accuracy. This implies that employing semantic features at varying
levels to guide the generator can enhance its efficiency, thereby
advancing the classification abilities of the discriminator.

4.3 Quality assessment of generated
samples

Figure 8 presents a comparison of steel surface defect samples
generated by different models, including ACGAN, the model
augmented with SENet module, the model augmented with
CBAM module [35], the proposed method while lacking MSFE,
and our model. The training process utilizes 200 samples of each
type of defect, with 10,000 iterations and other parameters hold
constant.

It can be observed that, compared to the original sample in
Figure 5, the samples generated by the method proposed in this

TABLE 3 Classification accuracy of introducing different modules.

Method Accuracy (%)

ACGAN 94.83

ACGAN + Res 96.17

ACGAN + Wasserstein + GP 95.33

ACGAN + Wasserstein-div 95.83

ACGAN + Res + Wasserstein + GP 96.50

ACGAN + SENet + Wasserstein + GP 95.83

ACGAN + Res + SENet + Wasserstein + GP 96.67

ACGAN + Res + CBAM + Wasserstein + GP 96.83

ACGAN + Res + Wasserstein-div 97.00

ACGAN + Res + Wasserstein-div + MSFM (Ours) 98.67

Bold values mean the best results.

FIGURE 8
Sample images generated by different methods. (A) ACGAN. (B) introduce SENet module. (C) introduce CBAMmodule [34]. (D)Ours (lack MSFE). (E)
Ours.
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paper are more distinct and the quality of the samples are also
much better. For instance, for the defect of scratch, such as the
third one in the fifth row and the second one in the sixth row in
Figure 8E generated by the method proposed in this paper, when
compared to the last one in the second row in (a), the last one in
the first row in (b), the third one in the fourth row in (c), and the
last one in the last row in (d), its defect features are more
discernible, the defect is sharper, and it is also more similar to
the original sample image. Although the version of lacking MSFE
can also generate high-quality sample images, it is evident that its
feature extraction ability is inadequate, leading to blurred images
and unclear semantic information, as demonstrated in Figure 8D,
specifically in the fifth one of the second row and the second item
of the fourth row.

In order to assess the quality of samples generated by
different models, the MSE (Mean Square Error) and SSIM
(Structural Similarity) metrics are employed to evaluate the
sample quality. MSE is a metric that reflects the degree of
discrepancy between the estimator and the estimated quantity;
SSIM is used to measure the similarity between two images. The
results of different models are presented in Table 4. The smaller
the value of MSE, or the larger the value of SSIM, the larger the
similarity between original image and generated image. It can be
seen from Table 4 that the MSE and SSIM of our model are more
proximate to the original images than other methods, which
demonstrates that the sample data distribution generated by our
model is more similar to the original sample distribution, and
also shows that MSFE and Wasserstein divergence can improve
the quality of samples generated by the model.

5 Conclusion

Aiming at the difficulties of steel surface defect few-shot
classification, this paper introduces multi-level semantic feature
extractor under the residual adversarial learning network
framework to generate high-quality samples and achieves
promising steel surface defect classification. First, we modify the
network structure of the adversarial learning model by the residual
module, so that the model can obtain more information during
training and generate synthetic data to the original sample. To
overcome the challenge of inadequate feature extraction in generator
networks which may lead to suboptimal sample quality in small-
sample environments, we design a multi-level semantic feature
extractor for obtaining diverse semantic information at various

levels. By leveraging this comprehensive semantic information,
we directed sample generation. At the same time, the
Wasserstein divergence is introduced into the loss function to
solve the problem of unstable model training and to improve the
generation efficiency and classification performance of the model.
Experiments are conducted on the steel surface defect dataset
NEU-CLS from Northeastern University. The results
demonstrate that, under the condition of the restricted number
of training samples, the method proposed in this paper achieves
the highest classification accuracy. Moreover, when the number of
training data is reduced, our method exhibits better stability and
robustness than classical classification models and state-of-the-art
of deep learning models. Additionally, in terms of the quality of
generated samples, the MSE value and SSIM value of the samples
generated by the model proposed in this paper are the closest to the
original samples, further showing the effectiveness of our proposed
method. With the popularization of sensors and lightweight
devices, the demand for model compression and lightweight
models is becoming increasingly important. Improving the real-
time performance of defect detection systems is the main trend for
deploying online detection systems in actual industrial production
in the future.
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A dual-weighted polarization
image fusion method based on
quality assessment and attention
mechanisms

Jin Duan*, Hao Zhang, Ju Liu, Meiling Gao, Cai Cheng and
Guangqiu Chen

College of Electronic Information Engineering, Changchun University of Science and Technology,
Changchun, China

This paper proposes a dual-weighted polarization image fusion method based on
quality assessment and attention mechanisms to fuse the intensity image (S0) and
the degree of linear polarization (DoLP). S0 has high contrast and clear details, and
DoLP has an outstanding ability to characterize polarization properties, so the
fusion can achieve an effective complementation of superior information. We
decompose S0 and DoLP into base layers and detail layers. In the base layers, we
build a quality assessment unit combining information entropy, no-reference
image quality assessment, and local energy to ensure the fused image has high
contrast and clear and natural visual perception; in the detail layer, we first extract
depth features using the pre-trained VGG19, then construct an attention
enhancement unit combining space and channels, and finally effectively
improve the preservation of detail information and edge contours in the fused
image. The proposed method is able to perceive and retain polarization image
features sufficiently to obtain desirable fusion results. Comparing nine typical
fusion methods on two publicly available and own polarization datasets,
experimental results show that the proposed method outperforms other
comparative algorithms in both qualitative comparison and quantitative analysis.

KEYWORDS

image fusion, polarization image, double weighting, quality assessment, attention
mechanisms

1 Introduction

Image fusion techniques aim to synthesize images by fusing complementary information
from multiple source images captured by different sensors [1]. In recent years, many fusion
methods have been proposed. According to [2], the classical fusion methods mainly include
multi-scale transform-based methods [3, 4], sparse representation-based methods [5, 6], and
neural network-based methods [7, 8]. Most of these methods mainly involve three key
operations, such as image transformation, activity level measurement, and fusion strategy
design. However, since these operations are mainly designed in a manual way, they may not
be suitable for different situations, thus limiting the accuracy of the fusion results.

Fusion methods for deep learning [9, 10] have been widely studied and applied, with
better fusion effects than traditional methods by virtue of their powerful feature extraction
capabilities. Some scholars have shown that the combination of CNN with various
traditional fusion methods not only has outstanding effects but can also effectively
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reduce the workload and save computational resources by taking
advantage of the migratory nature of CNN-encoded information.
For example, Li et al. [11] proposed a fusion algorithm using
ResNet50 and ZCA with a weighted average strategy to
reconstruct the fused images, which significantly improved the
fusion effect of the images. However, since they designed a
simple fusion strategy, it may lead to the problem of insufficient
information combination during the fusion process. Li et al. [12]
used a densely connected network combined with an attention
mechanism at the same time to enable the network to better
capture the structural information of the source image. However,
this method does not take into account the information differences
at different scales, so the fused image may suffer from the loss of
detailed information. Meanwhile, both methods are for the fusion
task of infrared images, and the fusion effect is not satisfactory when
applied directly to polarized images. At present, there are relatively
few studies on polarization image fusion. Wang et al. [13] combined
NSCT and CNN to propose a polarization image fusion network.
Although it has some enhancement effect, conventional strategies
such as weighted average and local energy are still used in the fusion
process, and there is no analysis of polarization images or a more
reasonable strategy design.

To solve the problems of the above methods, we propose a dual-
weighted polarization image fusion method based on quality
assessment and attention mechanisms. The S0 and DoLP images
are decomposed into base layers and detail layers, and different
strategies are constructed for fusion, respectively. Among them,
S0 can reflect the spectral information of the object and is mainly
used to describe the reflectance and transmittance; DoLP can reflect
the difference in polarization characteristics between different
material substances and provide information such as surface
shape, shadow, and roughness. The fusion of S0 and DoLP can
make up for the disadvantage that S0 cannot provide sufficient
information in certain scenes and thus improve the target
recognition ability in complex backgrounds. The implementation
process of our method mainly includes: in the base layer, a quality
assessment unit is constructed to achieve a balanced and reasonable
fusion effect. Through comprehensive assessment and calculation
of image quality, the best fusion relationship between the base
layers can be obtained, and then a clear and natural fusion base
layer can be obtained; in the detail layers, the depth features are
first extracted using the pre-trained VGG19, and then an
attention enhancement unit is constructed to enhance the
polarization image detail layers from different dimensions,
which can effectively combine global contextual information
and improve the structural features of the fused detail layer.
Using the fused base layer and the detail layer for reconstruction,
the obtained fused images have rich texture details with high
enough contrast and natural visual perception. The main
contributions to this paper are as follows.

1. Dual-weighted fusion method. We propose a dual-weighted
polarization image fusion method with strong perception and
retention of features of polarization images, which is more
suitable for the fusion task of polarization images.

2. Quality assessment-based fusion strategy. We construct a
quality assessment unit consisting of information entropy,
no-reference image quality assessment, and local energy. The

optimal fusion weight is obtained by assessing the information
quality of the base layers, which is used to ensure the high
contrast and natural visual perception of the fused image.

3. Attention enhancement-based fusion strategy. We construct
an attention enhancement unit consisting of space and
channels to enhance the global features of the detail layers
in two dimensions, which can effectively improve the detail
information and texture contours to obtain a fused image that
fully combines intensity information and polarization
characteristics.

The rest of this paper is organized as follows. Section 2 briefly
reviews the research related to image fusion methods based on
multiscale transforms and attention mechanisms. In Section 3, the
details of our proposed method are described. Section 4 conducts
experiments on the public dataset and our polarization dataset, and
the experimental results are analyzed. The paper is summarized in
Section 5.

2 Related work

2.1 Multiscale transform for image fusion

The fusion method based on multiscale transformation has the
advantages of simplicity, efficiency, and outstanding effect
compared with other methods, so it is most widely studied and
applied. The main implementation process is to first decompose the
source image into several different scales, then fuse the images of
different scales according to specific fusion rules, then perform the
corresponding multi-scale inverse transform, and finally obtain the
fused image. Usually, many methods divide the image into high-
frequency and low-frequency parts, or basis and detail parts. Among
them, the low-frequency part and the basis part represent the energy
distribution of the image, and the commonly used fusion rules
include average value, local energy maximum, etc.; the high-
frequency part and the detail part represent the edge and
detailing features of the image, and the fusion rules include
absolute value maximum, adaptive weighting, etc. Since the
fusion strategy has a great influence on the fusion effect, it is
important and one of the most challenging studies to design a
more reasonable strategy to improve the fusion effect.

Fusion methods based on multiscale transformations have been
widely studied in recent years. Wang et al. [13] proposed a fusion
algorithm for polarized images. Noise removal and pre-fusion
processing are performed first, and then the polarization and
intensity images obtained by pre-fusion are decomposed by
NSCT, and then the fusion strategies for high and low
frequencies are developed separately, and finally the target fusion
image is obtained by inverse transformation. Zhu et al. [14]
proposed a fusion method based on image cartoon-texture
decomposition and sparse representation. After decomposing the
source image into cartoon and texture parts, the proposed spatial
morphological structure preservation method and the sparse
representation-based method are used for fusion, respectively.
Zhu et al. [15] proposed a multimodal medical image fusion
method. The high-pass and low-pass subbands were fused using
phase congruency-based and local Laplace energy-based rules,
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respectively, and the effectiveness of the proposed method was
verified experimentally. Li et al. [16] proposed a fusion
framework that decomposes the source image into a base part
and a detail part. Among them, the base part uses a weighted
average fusion strategy, and the detail part uses a maximum
selection strategy to fuse the extracted multilayer depth features.
Finally, the fused base and detail parts are combined to obtain a clear
and natural fused image; Liu et al. [17] proposed an infrared
polarization image fusion method. A multi-decomposition latent
low-rank representation is used to decompose the source image into
low-rank and significant parts, and different strategies are used to
process the weight map, and finally the fused image is reconstructed.
Hu et al. [18] proposed an improved hybrid multiscale fusion
algorithm. The image is first decomposed into low-frequency and
high-frequency parts using the support value transform, and then
the prominent edges are further extracted from these support value
images using the shearlet transform of NSST. Zou et al. [19]
proposed a visible and near-infrared image fusion method based
on a multiscale gradient guided edge-smoothing model and local
gradient weighting, which has obvious advantages in maintaining
edge details and color naturalness.

It can be found that the fusion rule of existing methods rarely
analyzes the images, and most of them still use manually designed
rules that do not consider the differences between images. To solve
these problems, we assess the image quality and combine the
attention mechanism to design two novel fusion strategies and
apply them to different layers of polarization images. Among
them, the quality assessment unit is applied to the base layers,
which can obtain the best fusion weight based on the image quality,
and the attention enhancement unit is applied to the detail layers,
which can enhance the detail features by combining global
contextual information.

2.2 Attention mechanism for image fusion

The attention mechanism is consistent with the human visual
system and has been widely studied because it can better perceive
and extract image features [20, 21]. The purpose of fusion is to
combine the superior information from different images, and
more weight needs to be given to salient parts during the fusion
process, such as features like detailed textures and edge contours.
The ability to maintain the integrity of the salient target regions
using attention mechanisms can effectively improve the quality
of fused images.

In recent years, many attention-based or saliency-based
fusion methods have been proposed. Wang et al. [22]
proposed a two-branch network based on an attention
mechanism in the fusion block while using an attention model
with large perceptual fields in the decoder to effectively improve
the quality of fused images. Li et al. [23] proposed a generative
adversarial based on multiscale feature migration and a deep
attention mechanism for the fusion of infrared and visible images
and achieved excellent fusion results. Liu et al. [24] designed a
two-stage enhancement framework based on attention
mechanisms and a feature-linking model with the advantage
of being able to suppress noise effectively. Zhang et al. [25]
proposed an iterative visual saliency map to retain more details of

the infrared image and calculate the weight map based on the
designed multiscale bootstrap filter and saliency map, which in
turn guides the texture fusion. Cao et al. [26] proposed a fusion
network based on multi-scale and attention mechanisms, and the
advantages of the proposed method were verified by experiments
on two datasets. Wang et al. [27] proposed a multimodal image
fusion framework that was designed mainly using multiscale
gradient residual blocks and a pyramid split attention module.

At present, there is no polarization image fusion method that
extracts features using pre-trained CNNs in a multi-scale layer
while combining an attention mechanism. Specifically, we
combine a deep learning framework with an attention
mechanism. A pre-trained VGG19 is used to extract the depth
features of the detail layers, while an attention enhancement unit
consisting of space and channels is constructed to enhance the
global features of the detail layers in two dimensions, which is used
to improve the detail information and texture contours of the fused
images.

3 Proposed method

Our method consists of three parts, and the framework is shown
in Figure 1.

(1) Decomposition: the method of literature [16] is used to
decompose S0 and DoLP into base layers and detail layers.

(2) Fusion: for the base layers, the fused base layer is obtained by
weighting calculation using the quality assessment unit; for the
detail layers, the fused detail layer is obtained by using the
attention enhancement unit.

(3) Reconstruction: the fusion polarization images are
reconstructed using the fused base layers and the detail
layers, which can be formulated as in Eq. 1.

F x, y( ) � Fb x, y( ) + Fd x, y( ) (1)
where Fb(x, y) and Fd(x, y) denote the fused base layer and the
detail layer, respectively; and F(x, y) denotes the fused image.

3.1 QAU for base layer fusion

In the fusion process of the base layers, it is necessary to consider
how to reasonably retain the advantageous information of different
source images. Therefore, we designed a quality assessment unit
(QAU) consisting of information entropy (EN) [28], no-reference
image quality assessment (NR-IQA) [29], and local energy (LE) [30].
The QAU is shown in Figure 2.

Among them, EN [31] can both reflect the amount of information
in the image and serve as an evaluation index of the fused image, as
shown in Eq. 2. In general, the more information the image contains,
the larger the EN value. Since DoLP has more noise compared to S0,
the EN value of DoLP will be higher. Therefore, it is not accurate
enough if only EN is used to evaluate the image quality. Image quality
assessment (IQA) can evaluate the quality of the information contained
in the source image, but since high-quality original images are more
difficult to obtain, we use the no-reference model (NR) instead of the
full-reference model. Image quality is judged by the NR-IQA

Frontiers in Physics frontiersin.org03

Duan et al. 10.3389/fphy.2023.1214206

195

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1214206


simulation of the visual system, which measures the degree of
distortion caused by block effects, noise, compression, etc., in each
semantic region of the base layers. Since S0 consists of specular and
diffuse reflections, which represent the sum of the intensities of two
orthogonal polarization directions, NR-IQA will calculate a higher
value. Also, because DoLP has a larger microscopic surface difference,
NR-IQAwill judge it as a low-quality image. If only NR-IQA is used to
assess image quality, the balance of information relationships cannot be
accurately calculated. Therefore, we combine NR-IQA with EN to be
able to estimate the weight relationship of the source image substrate
more reasonably and retain more information. In addition, since LE
can reflect the degree of uniformity of image gray distribution, it is used
as an adjustment factor to ensure that the fused base layer has a natural
visual perception. The formulas are described as Eq. 3, Eq. 4,
respectively.

EN � −∑L−1
l�0

Pllog2Pl (2)

Ek x, y( ) � ∑M−1( )/2

m�− M−1( )/2
∑N−1( )/2

n�− N−1( )/2
w m, n( ) × Dk x +m, y + n( )[ ]2 (3)

Hk x, y( ) � Ek x, y( )
∑n

k�1Ek x, y( ) (4)

where L is the number of gray levels, which is set to 256, and Pl

denotes the probability of each level. n � 2, denotes S0 and DoLP,
respectively; M × N and w(m, n) are the window area and
coefficients, respectively; (x, y) denotes the pixel centroid; and
Dk(x, y) denotes the coefficient value of the source image at that
point.

Therefore, by combining the above three quality assessment
methods, the optimal weight map can be obtained, which is defined
asMk(x, y). Where EN(·) represents the calculation of information
entropy, NR-IQA(·) is the image quality assessment without
reference, and Hk(·) is the adjustment factor obtained from LE.
The formula is as follows.

FIGURE 1
The framework of the proposed method. IbS0(x, y) and IbDoLP(x, y) denote the S0 and DoLP base layers, respectively, while IdS0(x, y) and IdDoLP(x, y)
denote the detail layers. Adapted from Linear polarization demosaicking for monochrome and colour polarization focal plane arrays by Qiu S et al.,
licensed under CC BY-NC 4.0 [33].

FIGURE 2
The procedure of the fusion strategy for base layers. Adapted from Linear polarization demosaicking for monochrome and colour polarization focal
plane arrays by Qiu S et al., licensed under CC BY-NC 4.0 [33].
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Mk x, y( ) � Hk Ibk x, y( )( ) · EN Ibk x, y( )( ) +NR-IQA Ibk x, y( )( )( ) (5)

The base layers of S0 and DoLP are input to QAU to obtain the
corresponding weight maps, and the weighting is calculated to
obtain the fused base layer with the following equation.

Fb x, y( ) � ∑n

k�1Mk x, y( ) · Ibk x, y( ) (6)

3.2 AEU for detail layer fusion

As shown in Figure 3, the detail layer fusion process consists
of three main parts: feature extraction, weight calculation, and
reconstruction. First, we extract the detail layer depth features
of S0 and DoLP using the pre-trained VGG19. Second, the
weight map is obtained using the attention enhancement
unit. And then, the weight map is scaled to the source image
size. Among them, the reasons for using the pre-trained
VGG19 are analysed in Section 4.3.2. The weight map is
obtained from the activation level map by calculating the
soft-max operator, defined as Eq. 7.

Wi
k x, y( ) � Ci

k x, y( )
∑n

k�1C
i
k x, y( ) (7)

Finally, the weighting calculation is performed to obtain the
fused detail layer, which can be formulated as in Eq. 8.

Fd x, y( ) � ∑n

k�1W
i
k x, y( ) · Idk x, y( ) (8)

where i ∈ 1, 2, 3, 4{ }, represent relu−1−1, relu−2−1, relu−3−1 and
relu−4−1, respectively.

As shown in Figure 4, the attention enhancement unit (AEU)
consists of spatial attention (SA) and channel attention (CA), which
aim to enhance the semantic targets and texture contours in the detail
layers of the source image. The AEU can extract the feature
distributions in the source image that complement each other and
can generate different weights for spatial and channel features, while

the global information of the source image can be enhanced, which in
turn improves the feature representation of the fused image. Among
them, the SA focuses more on information such as high-frequency
regions, which can enhance the details of the fused image, while the
CA focuses on different channel features with completely different
weighting information.

The SA consists of L1-norm and soft-max, and the formula is
formulated as follows.

αik x, y( ) � Fi
k x, y( )



 



1∑n

k�1 Fi
k x, y( )



 



 (9)

ϕi
k x, y( ) � αi

k x, y( ) × Fi
k x, y( ) (10)

where Fi
k(x, y) denotes the feature vector and ‖ · ‖1 denotes the

L1 parametric calculation.
The CA consists of a global average pooling operator (P(·)) and

soft-max, and the formula is as follows.

ηik x, y( ) � P Fi
k x, y( )( ) (11)

βik x, y( ) � ηik x, y( )
∑n

k�1η
i
k x, y( ) (12)

ψi
k x, y( ) � βik x, y( ) × Fi

k x, y( ) (13)
The detail layer depth features of S0 and DoLP are fed into SA

and CA, and the corresponding weight maps are obtained and then
summed, as defined in the following equation.

Ci
k x, y( ) � SA Fi

k x, y( )( ) + CA Fi
k x, y( )( ) (14)

4 Results and analysis

4.1 Experiment settings

We compare nine algorithms on two publicly available [32, 33]
datasets and our own. Among them, the public datasets are from the
University of Tokyo and King Abdullah University of Science and
Technology, respectively, and both contain 40 sets of polarization

FIGURE 3
The procedure of the fusion strategy for detail layers.
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images. The experimental device is an Intel (R) Core (TM) i7-6700
CPUwith 16 GB of RAM. The comparison algorithms include Dual-
tree Complex Wavelet (DTCWT) [34], Curvelet Transform (CVT)
[35], Wavelet [36], Laplacian Pyramid (LP) [37], Ration of Low-Pass
Pyramid (RP) [38], Gradient Transfer Fusion (GTF) [39], WLS [40],
ResFuse [11], and VGG-ML [16].

The evaluation metrics include information entropy (EN),
spatial frequency (SF), standard deviation (SD), average gradient
(AG), sum of difference correlation (SCD), and mutual
information (MI). Among them, EN can reflect the
information content of the fused image, SF reflects the rate of
change of image grayscale, and both have a role in measuring

FIGURE 4
The framework of the AEU. αik and βik are obtained from SA and CA, respectively, while ϕik and ψi

k denote the enhanced features, k � S0,DoLP.

FIGURE 5
Qualitative fusion result of scene 1 on the public dataset. (A) S0; (B) DoLP; (C) DTCWT; (D) CVT; (E) WAVELET; (F) LP; (G) RP; (H) GTF; (I) WLS; (J)
ResFuse; (K) VGG-ML; (L) Proposed. Adapted from Linear polarization demosaicking for monochrome and colour polarization focal plane arrays by Qiu S
et al., licensed under CC BY-NC 4.0 [33].
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image quality with SD; AG can reflect the sharpness of the image;
SCD can measure the information correlation between the fused
image and the source image; and MI indicates the degree of
correlation between images. Therefore, we use these metrics to
comprehensively evaluate the fused image quality of different
algorithms, and then verify the advantages of the proposed
method.

4.2 Experimental results of the fusion
algorithm

4.2.1 Results on the public dataset
The fusion results are shown in Figures 5, 6, where the key areas

are marked using red boxes and enlarged. DTCWT and CVT are
enhanced, but the texture details are less clear. Wavelet retains more
balanced information, but the characterization effect for details is
not sufficient. LP can retain the information from the source image,
but the details are not clear enough. The fusion effect of RP is more
outstanding, but there is a serious distortion problem, and the
overall quality of the fused image is not ideal. The contrast of
GTF is improved, but the focus is on retaining the information of S0,
and the fused image is distorted and blurred. WLS has a fusion effect

closer to the feature distribution of DoLP but retains little
information from S0, and the overall contrast of the fused image
is low. The fusion effect of both ResFuse and VGG-ML is relatively
clear and natural, but the effect of these two algorithms on texture
detail and overall contrast enhancement is still lacking. The
comparison shows that our method can better balance the
information of the source image, i.e., while retaining the high
contrast and clear details of S0, it can also fully combine the
polarization characteristics of DoLP.

The average calculation of the dataset images using the six
metrics mentioned above and the experimental results are shown
in Table 1. Our method achieves the best values in five metrics, EN,
SF, SD, AG, and SCD, and the index values of SF and AG are
improved by 12.963% and 40.152%, respectively, compared to the
maximum values in the comparison algorithm. The best values of
EN indicate that the fusion results of our method can obtain more
information; the best values of SF and SD indicate that the fused
images have higher quality; the metric values of AG are improved
substantially, which represents a clearer, more detailed texture; and
the best value of SCD can indicate the better fusion performance of
the proposed network. In addition, the maximum value of MI in the
metrics is obtained by VGG-ML. Although the MI value of our
method is not optimal, the target fused image needs to have both

FIGURE 6
Qualitative fusion result of scene 2 on the public dataset. (A) S0; (B) DoLP; (C) DTCWT; (D) CVT; (E) WAVELET; (F) LP; (G) RP; (H) GTF; (I) WLS; (J)
ResFuse; (K) VGG-ML; (L) Proposed. Adapted from Linear polarization demosaicking for monochrome and colour polarization focal plane arrays by Qiu S
et al., licensed under CC BY-NC 4.0 [33].
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high contrast and texture, while other algorithms do not have these
features at the same time. In a comprehensive comparison, our
method can highlight the edge contours of the target more effectively
and is more advantageous in enhancing the image contrast and
details.

4.2.2 Results on our dataset
We use a focal plane polarization camera with a Sony

IMX250MZR CMOS to photograph the campus scene and
construct our dataset. Partial images and fusion results are
shown in Figure 7. Our dataset mainly includes buildings,
trees, etc. In outdoor scenes, which is quite different from the
public dataset.

Two scenes in our polarization dataset are selected and
compared with the above nine algorithms. As shown in Figures
8, 9, our method has a more obvious enhancement effect for both
man-made and natural objects. The green and red boxes in Figure 8
show the fusion effect on the near and far views of the building, and
our method has sharper details and higher contrast than the other
methods. The green and red boxes in Figure 9 show the fusion effect
on natural plants, and our method also has a more natural and visual
perception.

As shown in Figure 10 fused images were selected in our dataset,
and line graphs were drawn using the metrics mentioned above. The
abscissa of Figures 10A–F represents the image sequence, and the
ordinate represents the specific value of each metric. It can be found

TABLE 1 Quantitative comparisons of the six metrics, i.e., EN, SF, SD, AG, SCD, and MI, on the public dataset. The best results are highlighted in bold.

Methods EN SF SD AG SCD MI

DTCWT 5.93668 4.05239 9.67117 2.50937 1.05129 3.32856

CVT 6.03409 4.05189 9.69706 2.56217 1.05134 3.00594

WAVELET 5.60282 2.48074 9.50487 1.49367 1.05394 4.25609

LP 5.96029 3.13571 8.73245 2.05446 0.74964 2.98191

RP 6.19134 6.65251 8.74362 2.78993 0.68997 2.42422

GTF 5.75619 2.85640 10.76809 1.75516 0.80165 4.06385

WLS 5.74227 4.24776 8.63091 2.68236 0.85460 3.56277

ResFuse 6.01416 2.59245 9.59885 1.57764 1.04945 3.70814

VGG-ML 5.64989 2.64256 9.53368 1.61344 1.06090 4.29472

Proposed 6.55868 7.51489 11.06179 3.91015 1.17152 3.84981

FIGURE 7
Our polarization dataset and fusion results. Row 1 contains five S0 images, Row 2 contains five DoLP images, and Row 3 contains five fused images
obtained by the proposed method.
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that our method achieves the best values for EN, SF, SD, and AG,
thus verifying the outstanding advantages of our proposed method
over other algorithms.

4.3 Ablation experiments

4.3.1 Ablation experiment of the QAU
Different fusion strategies are applied to the base layers without

the use of an attention enhancement unit. First, the two commonly
used strategies are compared; then, the fusion effect of the local
energy weighting strategy is verified; and finally, EN and NR-IQA
are added for experiments. Specifically, it includes: E1: average
weighting strategy; E2: absolute maximum selection strategy; E3:
local energy weighting strategy; and E4: QAU.

Qualitative comparisons are shown in Figure 11, where the
focus areas are marked and enlarged using green and red boxes.
The fusion effect of the average weighting strategy is more
balanced, but the retention effect of details is not sufficient.
The fused image obtained by using the absolute maximum
selection strategy can retain the features of S0 better, but the
information retention effect of DoLP is not ideal and does not
balance the source image information reasonably. The fused
images obtained by the local energy weighting strategy have
more details, but the effect is still not outstanding. The fused

images obtained by using the QAU can more fully reflect the
different advantageous features of S0 and DoLP, while the overall
effect is more natural.

As shown in Table 2, the maximum value of EN is obtained by
the local energy weighting strategy, and the optimal value of SCD
is obtained by the average weighting strategy. Although our
method does not achieve optimal values for these two metrics,
it achieves maximum values for SF, SD, AG, and MI. These
metrics can objectively reflect the polarization image fusion effect
and then verify the advantages of QAU compared with other
fusion rules.

4.3.2 Ablation experiment of the VGG19
Experiments were conducted using ResNet50, ResNet101,

ResNet152, VGG16, and VGG19 pre-trained on the MSCOCO
dataset [41], respectively, while keeping other conditions
constant, and quantitative metrics were calculated.

The experimental results are shown in Table 3. The VGG series
networks have better fusion results than the residual series networks
in our method, and VGG19 has higher metric values than VGG16 in
all metrics. Among them, VGG19 achieves the highest metric values
in EN, SF, SD, and AG, while SCD and MI have the best metric
values in ResNet50. Therefore, after comparing the metric values, we
selected VGG19 as the feature extraction network for the detail
layers.

FIGURE 8
Qualitative fusion result of scene 1 on our dataset. (A) S0; (B) DoLP; (C) DTCWT; (D) CVT; (E)WAVELET; (F) LP; (G) RP; (H) GTF; (I)WLS; (J) ResFuse;
(K) VGG-ML; (L) Proposed.
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FIGURE 9
Qualitative fusion result of scene 2 on our dataset. (A) S0; (B) DoLP; (C) DTCWT; (D) CVT; (E)WAVELET; (F) LP; (G) RP; (H) GTF; (I)WLS; (J) ResFuse;
(K) VGG-ML; (L) Proposed.

FIGURE 10
Quantitative comparison of six metrics in our dataset. (A) EN; (B) SF; (C) SD; (D) AG; (E) SCD; (F) MI.
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4.3.3 Ablation experiment of the AEU
To verify the effectiveness of the AEU, the following

experiments were conducted separately. First, without AEU; then,
CA is added; finally, both CA and SA are used, i.e., the proposed
method. Qualitative comparisons are shown in Figure 12, and some

areas are marked and enlarged using green and red boxes for better
observation of the experimental effect.

When without AEU, the detail information of the fused
image is not prominent; when only CA is used, the texture
detail and overall contrast are somewhat improved, indicating

FIGURE 11
Qualitative fusion result of the QAU ablation experiment. (A) S0; (B) DoLP; (C) E1; (D) E2; (E) E3; (F) E4. Adapted from Linear polarization
demosaicking for monochrome and colour polarization focal plane arrays by Qiu S et al., licensed under CC BY-NC 4.0 [33].

TABLE 2 Quantitative comparison of the QAU ablation experiment. The best results are highlighted in bold.

Methods EN SF SD AG SCD MI

E1 5.63052 2.50456 9.51918 1.54976 1.05928 4.27311

E2 5.69372 2.86766 10.71943 1.76710 0.85805 4.28513

E3 5.83124 2.69043 9.63691 1.64626 0.94455 4.21881

E4 5.82460 2.89027 10.90021 1.78798 1.03466 4.29613

TABLE 3 Quantitative comparison of fusion results from different CNNs. The best results are highlighted in bold.

Methods EN SF SD AG SCD MI

ResNet50 6.15019 6.30726 11.05501 3.81852 1.20510 3.57606

ResNet101 6.14998 6.31661 11.05548 3.82214 1.20248 3.57515

ResNet152 6.15012 6.31411 11.05543 3.82139 1.20322 3.57527

VGG16 6.15518 6.49264 11.06048 3.89827 1.17482 3.55340

VGG19 6.15587 6.51489 11.06179 3.91016 1.17752 3.55981

FIGURE 12
Qualitative fusion result of the AEU ablation experiment. (A) S0; (B)DoLP; (C)without the AEU; (D)without the CA; (E) Proposed. Adapted from Linear
polarization demosaicking for monochrome and colour polarization focal plane arrays by Qiu S et al., licensed under CC BY-NC 4.0 [33].
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that the network can combine more information from
S0 and DoLP at this time; and for the fusion result of using
both CA and SA, it has a clearer texture and a more natural
visual effect.

The quantitative comparison is shown in Figure 13.
Compared with the fused images without AEU and with SA
removed, our method has significant improvements in multiple
metrics, which shows that AEU is beneficial to obtain higher-
quality fused images.

5 Conclusion

This paper presents a dual-weighted polarization image
fusion method that fuses S0 and DoLP to obtain a fused
image of the target with high contrast and clear details at the
same time. The source images are decomposed into base layers
and detail layers, and the corresponding fusion strategies are
designed based on quality assessment and attention
mechanisms, respectively. A quality assessment unit is
constructed for the fusion process of the base layers to ensure
the high contrast of the fused image; a pre-trained VGG19 is
used to extract the depth features of the detail layers, and a
combined spatial and channel attention enhancement unit is
constructed to achieve fuller preservation of scene information
and texture contours to ensure the clear details and global
information of the fused image. Experimental results on both
public and our datasets show that the proposed method has
more obvious enhancement effects in terms of contrast and
detail texture for both small scene targets and complex outdoor
environments, with better subjective visual perception and
higher objective evaluation metrics compared to other
algorithms. In future research work, we will explore how to
reduce the complexity of the model while maintaining high

fusion performance and combine the angle of polarization
(AoP) to achieve better fusion results.
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