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Editorial on the Research Topic
Multisystem inflammatory syndrome observed post-COVID-19: the role
of natural products, medicinal plants and nutrients and the use of
prediction tools supporting traditional forms of diagnosis

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has had devastating global
impacts since its emergence in late 2019. However, it also prompted an unprecedented
scientific response (Cauchemez et al., 2024). While the acute phase of the pandemic has
largely subsided due to quarantining, vaccination efforts and improved treatments, a new
challenge has emerged in the form of post-COVID inflammatory syndromes. A hallmark of
severe COVID-19 was excessive inflammation involving multiple organ systems,
characterized by cytokine storms, coagulation dysfunction, and tissue damage. Even
after recovery from acute infection, many patients continue to experience persistent
inflammatory symptoms affecting various body systems, a condition now known as
“long COVID” or “post-acute sequelae of SARS-CoV-2 infection” (PASC) (Barber
et al., 2021; Davis et al., 2023; Liu et al., 2023; Porter et al., 2023).

The complex nature of post-COVID syndromes presents a significant challenge to
healthcare systems worldwide. Symptoms can vary widely between patients and may affect
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multiple organ systems, including the respiratory, cardiovascular,
neurological, and gastrointestinal systems. Common complaints
include fatigue, cognitive dysfunction (“brain fog”), shortness of
breath, anxiety, depression, and sleep disturbances. The underlying
mechanisms of these persistent symptoms are not fully understood
but are thought to involve ongoing inflammation, autonomic
dysfunction, and potential autoimmune processes triggered by
the initial SARS-CoV-2 infection.

Conventional medical approaches to treating post-COVID
syndromes have shown limited success, highlighting the need for
novel and integrative strategies. Natural products and plant-based
medicines have a long history of use in treating inflammatory
conditions and modulating immune function. Many of these
compounds have well-documented anti-inflammatory,
antioxidant, and immunomodulatory properties that could
potentially address the multifaceted nature of post-
COVID syndromes.

The global impact of long COVID cannot be overstated. With
millions of people worldwide experiencing persistent symptoms
following SARS-CoV-2 infection, the social, economic, and
healthcare burdens are immense. The development of effective
treatments for post-COVID syndromes is therefore of paramount
importance. As we continue to navigate the long-term consequences
of the COVID-19 pandemic, interdisciplinary collaboration between
conventional and complementary medicine will be crucial. By
combining the strengths of various therapeutic approaches and
diagnostic methods, we may be better equipped to tackle the
complex challenges posed by post-COVID syndromes. The
studies in this Research Topic demonstrate the potential of such
integrative approaches and pave the way for future research in this
critical area.

This Research Topic explored innovative approaches to address
post-COVID inflammatory syndromes using natural products,
medicinal plants, nutrients, and integrative diagnostic methods.
The articles in this collection investigate a range of natural
compounds and plant-based medicines for their anti-
inflammatory and immunomodulatory properties that may help
alleviate lingering post-COVID symptoms. Additionally, the
potential of nutritional interventions and traditional diagnostic
techniques to support patients with post-COVID syndromes
is examined.

The research presented in this collection explores several
promising avenues for natural interventions. These include the
use of specific vitamins and nutrients to support immune
function and reduce inflammation, herbal extracts with known
anti-inflammatory properties, and comprehensive lifestyle
interventions addressing diet and physical activity. By targeting
multiple aspects of post-COVID syndromes simultaneously, these
integrative approaches may offer advantages over single-target
pharmaceutical interventions.

Moreover, this Research Topic delves into the potential of
traditional diagnostic methods to complement conventional
techniques in assessing and monitoring patients with post-
COVID syndromes. These approaches may provide valuable
insights into the complex interplay of symptoms and underlying
physiological imbalances, allowing for more personalized and
holistic treatment strategies. As our understanding of post-
COVID syndromes continues to evolve, this research provides

valuable insights into natural therapeutic options that may work
in concert with conventional treatments to improve outcomes for
affected patients.

1. Deng et al. examined the relationship between fat-soluble
vitamin status and antibody responses to COVID-19
vaccination in a cohort of 141 healthy adults. They found
that higher plasma vitamin D levels were associated with lower
anti-SARS-CoV-2 antibody titers, both for wild-type and
Omicron variants. This unexpected finding suggests that
vitamin D may play a complex role in modulating vaccine-
induced immunity, highlighting the need for further research
on optimal vitamin D levels for vaccine efficacy.

2. Pourfarzi et al. conducted a randomized controlled trial testing
a web-based lifestyle intervention focused on nutrition and
physical activity for preventing COVID-19. The study involved
303 women aged 30–60 who had not previously contracted
COVID-19. The intervention group received online
educational sessions on healthy diet and physical activity.
After 4 weeks, the intervention group showed significant
improvements in weight, BMI, nutritional status, and
physical activity levels compared to controls. Importantly,
the intervention group also had a lower incidence of
COVID-19 infection during the follow-up period, suggesting
that lifestyle modifications may help reduce COVID-19 risk.

3. Gaylis et al. evaluated a nutraceutical supplement containing
multiple compounds, including β-caryophyllene,
pregnenolone, and various herbs and vitamins, for treating
long COVID symptoms. In an open-label trial with
51 participants, the supplement significantly improved
various persistent symptoms including fatigue, weakness,
cognitive issues, and shortness of breath over 4 weeks of
treatment. The study demonstrated the potential of this
multi-component natural approach in addressing the
complex symptomatology of long COVID.

4. Joung et al. investigated the effects of a herbal extract
(Myelophil) on fatigue symptoms in long COVID patients.
The study was a non-randomized, open-label observational
study, without a control group.Myelophil was administered for
4 weeks to the 49 participants (18 males, 31 females) in this
study. After 4 weeks of Myelophil administration, participants
showed significant improvements in fatigue scores, physical
weakness, and quality of life measures. This study provides
evidence for the potential efficacy of traditional herbal
medicine in managing long COVID symptoms.

5. Bioinformatics and systems biology approaches were
employed by Qian et al. for the identification of hub genes,
shared pathways, molecular biomarkers, and candidate
therapeutics for the management of sepsis and sepsis-
induced ARDS in the context of COVID-19 infection.
189 differentially expressed genes (DEGs) shared among
COVID-19 and sepsis datasets were identified. Construction
of protein-protein interaction networks revealed that six hub
genes (CD247, CD2, CD40LG, KLRB1, LCN2, RETN)
exhibited significant alterations across COVID-19, sepsis,
and geriatric sepsis-induced ARDS. Functional analysis
underscored the interconnection between sepsis/sepsis-
ARDS and COVID-19, enabling the identification of
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potential therapeutic targets, transcription factor-gene
interactions, DEG-microRNA co-regulatory networks, and
prospective drug and chemical compound interactions
involving hub genes.

6. Qian and Zeng investigated the effects of Jinhua Qinggan
Granules (JHQG), a Traditional Chinese Medicine
formulation, on COVID-19 using mass spectrometry,
network pharmacology, and single-cell RNA sequencing
analysis. The researchers identified 73 chemical components
in JHQG and constructed a network showing interactions
between these compounds, target proteins, and immune
cells. Results suggest JHQG may mitigate inflammation in
COVID-19 by inhibiting the activity of activated
neutrophils, monocytes, plasmoblasts, and effector T cells in
peripheral blood. The findings provide insights into JHQG’s
mechanism of action and support its potential as a safe and
effective treatment for viral infections like COVID-19.

7. Ahmad et al. published the first survey reviewing the application
of AI methodologies on Long COVID. Twenty research papers
that met the inclusion criteria (innovative AI approach with
clear results published after 2020) employing AI techniques such
as ML and NLP on Long COVID data are discussed. Thirteen
papers were focused on usingML techniques and the other seven
were on applying text mining to Long COVID data. The data, AI
techniques implemented, accuracy, and precision of each of the
20 papers are reviewed in detail. The use of AI techniques to
analyze temporal data such as a symptom or to physiologically
monitor data over time, can assist in detecting early signs of
worsening of Long COVID, facilitating both timely medical
interventions and personalized adaptation of treatment
protocols hence improving patient outcome.

This Research Topic has made significant strides in exploring
natural and integrative approaches to address the complex challenge
of post-COVID inflammatory syndromes. The collected studies
investigated a diverse range of interventions, from specific
nutrients and herbal formulations to comprehensive lifestyle
modifications. Collectively, these studies offer valuable insights
into natural therapeutic options that may complement
conventional treatments, potentially improving outcomes for
those affected by post-COVID syndromes. The research
underscores the importance of integrative approaches in
addressing the multifaceted nature of long COVID and opens
new avenues for future investigations in this critical area of
public health.

It is important to note that while the results presented in these
studies are encouraging, further research is needed to fully establish
the efficacy and safety of these natural interventions for post-

COVID syndromes. Large-scale, randomized controlled trials will
be crucial in validating these findings and determining optimal
treatment protocols. Additionally, the potential interactions
between natural products and conventional medications must be
carefully considered to ensure patient safety.
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Long-COVID is a syndrome characterized by debilitating symptoms that

persist over 3 months after infection with the SARS-CoV-2 virus. It affects 15 to

33% of COVID-19 recovered patients and has no dedicated treatment. First, we

found that β-caryophyllene and pregnenolone have a significant synergistic

effect in the resolution of LPS-induced sepsis and inflammation in mice.

Then we combined these two compounds with seven others and designed a

unique dietary supplement formulation to alleviate long COVID inflammatory

and neurological disorders. We performed a one-arm open-labeled study

at a single site with 51 eligible patients from 18 states. Each participant

recorded the severity level of 12 symptoms (including fatigue, weakness,

cardiac and neurological symptoms, shortness of breath, gastrointestinal

disorders, ageusia or anosmia, anxiety, joint pain, rash, cough, and insomnia)

at baseline, 2- and 4-week time points. On average, all the symptoms were

significantly milder after 2 weeks, with further improvement after 4 weeks.

Importantly, each symptom was significantly attenuated in 72 to 84% of the

participants. There were no significant adverse effects. Our data indicate that

the use of this nutraceutical product is a safe and significantly efficient option

to reduce multiple symptoms of long COVID.

KEYWORDS

dietary (food) supplements, long-COVID-19, immunology and inflammation,
cannabinoids, CB2 agonists

Introduction

Long-haul COVID is characterized by chronic and often debilitating symptoms
following acute Coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2
virus. Long COVID is very challenging to diagnose, treat and categorize as it combines
multiple and different symptomatic presentations in sufferers.
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The Center for Disease Control (CDC) in June 2022
published a report that 40% of adults in the US reported having
COVID-19 in the past, of which nearly 1 in 5 are still having
symptoms of long COVID. The CDC defines Long COVID as
symptoms that last three or more months after first contracting
the virus and did not exist before the COVID-19 infection.
Symptoms may last well over 1 year (1). Other studies reported
a prevalence ranging from 1 in 8 to 1 in 3 (2, 3), significantly
higher than after influenza (2). There appeared to be differences
in the prevalence of long COVID between states (2).

Differences in the reported prevalence of long-COVID likely
results from the disparity of symptoms and the lack of a unified
definition for this condition. Importantly, this condition cannot
be ignored as it presents a set of symptoms that often severely
impact the quality of life and ability to carry out daily activities.
For example, in one survey, 44% percent of patients with Long
COVID reported not being able to work at all, compared
to their pre-COVID-19 work capacity, and 51% had reduced
their working hours (4). Overall, the economic burden may
approximate $50 billion annually in lost salary only (4).

An international cohort of 3,762 participants from 56
countries identified 203 symptoms in 10 organ systems
that persisted at least 4 weeks after a confirmed diagnosis
of COVID-19 (5). The CDC listed the most common
symptoms of COVID-19 in a survey they initiated in April
2022.1 These included tiredness or fatigue, difficulty thinking,
concentrating, forgetfulness, or memory problems (sometimes
referred to as "brain fog"), difficulty breathing or shortness
of breath, joint or muscle pain, fast-beating or pounding
heart (also known as heart palpitations), chest pain, dizziness
on standing, menstrual changes, changes to taste/smell, or
inability to exercise.

The exact underlying cause of long-COVID remains
uncertain, but most reports agree that this condition is
associated with a persistent viral infection and long-lasting
inflammation (6, 7). Specific neurological symptoms (fatigue,
brain fog, anosmia, and ageusia/dysgeusia) in long COVID
resemble "sickness behavior," a response of the autonomic
nervous system to pro-inflammatory cytokines (8). The long-
standing dysautonomia has been proposed to result from
sympathetic/parasympathetic imbalance (7, 9).

To the best of our knowledge, no medicine is currently
dedicated to treating long-haulers (patients suffering from
long-COVID). In the absence of established protocols, each
symptom is treated separately with different drugs for different
symptoms, even though they all have a common cause. Even
when combining the current therapeutic approaches with
rehabilitation (10–14), success is minimal, and the treatments
are associated with multiple adverse effects.

1 cdc.gov

We thus designed a formula to address the underlying
chronic inflammatory status and autonomic imbalance that
characterize many long-haulers. The first challenge was to
help restore the function of various organ systems; the second
challenge was to use only US-recognized dietary supplements to
be able to address the unmet need in a very short time.

Tel Aviv University, in collaboration with Arthritis &
Rheumatic Disease Specialties (AARDS) based in Miami,
FL, USA, formulated a unique oral nutraceutical supplement
containing only approved dietary supplements and ingredients
"generally recognized as safe" (GRAS) by the United States
Food and Drug Administration (FDA). This combination
would, by design, be natural, free of any known side effects,
and with limited drug interactions. The final formulation
relied on new experimental data (presented here), clinical
experience in treating long-hauler patients at AARDS with
multiple clinical symptoms over 2 years, and scientific
literature (Table 1). We selected the ingredients for their
unique immuno-modulation properties and activities,
reduction in pain, anxiety and depression, potential effect
on dysautonomia, anticoagulation activity, as well as the
ability to inhibit viral replication. We report here the results
of a clinical study aimed at testing this nutraceutical formula
as a standalone treatment in a population of COVID long
haulers.

We and others have reported that selective CB2 agonists are
potent immunomodulators of the innate immune system, both
in vivo and in vitro (15, 16). We showed that CB2 agonists inhibit
cytokine expression in LPS-exposed macrophages in cultures
and decrease ear edema in a skin inflammation model in mice
(16). Following these results, we tested the hypothesis that β-
caryophyllene (βCP), a dietary terpene that is also a selective
CB2 agonist (17, 18), reduces the exaggerated inflammatory
response induced by pathogens.

Another approach to attenuate inflammation and
associated tissue damage is using steroids. In contrast to
glucocorticosteroids such as dexamethasone, pregnenolone is
a steroid hormone precursor with known anti-inflammatory
properties in myeloid cells (19), does not induce lymphocyte
apoptosis (20) and may even promote thymocyte survival
and differentiation (21). Pregnenolone (Preg) and its
metabolites suppress the secretion of tumor necrosis
factor α and interleukin-6 mediated through TLR2 and
TLR4 signaling in macrophages (22). Also relevant to long-
haulers, Preg can help with cognitive and neurological issues,
partly via binding to TRPM3, without causing bone loss
(23–26).

In addition to βCP and Preg, we included
Dehydroepiandrosterone (DHEA), Bromelain, St. John’s
Wort extract, Boswellia Serrata gum/resin extract (AKBA),
Quercetin, zinc compound, and vitamin D. The rationale for
including each compound is summarized in Table 1.
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TABLE 1 List of compounds included in our nutraceutical combination and their relevance for COVID long haulers.

Active ingredient Properties and activities References

β-caryophyllene (βCP) Antioxidant, anti-inflammatory, analgesic (18, 27–29)

Pregnenolone Modulator of inflammation, regulator of neuroinflammation (22, 30–32)

Dehydroepiandrosterone (DHEA) Anti-inflammatory, improves dysfunction of the hypothalamic-pituitary-adrenal
(HPA) axis, immune modulator

(33–35)

Bromelain Anti-inflammatory, antiviral (Anti-SARS-CoV-2), fibrinolytic (36–39)

St. John’s Wort extract SRI* for treating autonomic dysfunction and impaired balance between the
sympathetic and parasympathetic nervous systems

(40, 41)

Boswellia Serrata gum/resin extract (AKBA) Anti-inflammatory, COVID-19 therapeutic agent, respiratory support (42–44)

Quercetin Anti-inflammatory, antiviral, immune modulator, antioxidant (45–47)

Zinc compound Essential to preserve natural tissue barriers such as the respiratory epithelium,
balanced function of the immune system and the redox system, antiviral

(48, 49)

Vitamin D Reducing inflammation induced by SARS-CoV-2 infection (50, 51)

*SRI, serotonin reuptake inhibitor.

Materials and methods

Mouse study

Male wild type 8–10 weeks old mice of inbred strain
C57BL/6J-RCC were obtained from Envigo Ltd (Jerusalem,
Israel). All experiments were in accordance and with the
approval of the institutional animal care and use committee
of Tel-Aviv University for these experiments (permit
number 01-20-022). The mice were divided into treatment
groups 24 h before LPS administration. All treatments were
administered intraperitoneally (IP). β-Caryophyllene (βCP) and
pregnenolone were injected every 12 h starting 24 h before the
LPS injection. A single IP injection of LPS was administered at
25 µg/gr dose. This study had two control groups as indicated
in the experiments below. One that received PBS instead of the
LPS injection (“PBS”), and one that received PBS instead of the
treatments (CB2 agonist or steroid) before the LPS injection
(“LPS”). For humane reasons murine sepsis score (MSS) was

TABLE 2 Amount of each compound included in the nutraceutical
formulation per serving. The participants were required to take one
serving twice a day with food.

Active ingredient Amount per serving

β-caryophyllene (βCP) 40 mg

Pregnenolone 40 mg

Dehydroepiandrosterone (DHEA) 30 mg

Bromelain (2400 GDU*/g) 416 mg

St. John’s Wort extract 150 mg

Boswellia Serrata gum/resin extract (AKBA) 100 mg

Quercetin (Sophora Japonica) 40 mg

Zinc (as Zinc Picolinate) 12 mg

Vitamin D 25 µg (1000 IU)

*GDU, gelatin digesting unit.

used as a surrogate for survival (52). A low MSS score (0–2)
served as a surrogate for survival while mice that reached the
score 3 were defined as critically ill and were euthanized.

Statistical analyses for the animal study

For survival experiments in mice, Gehan–Breslow–
Wilcoxon test was used for multiple groups comparison. For
disease progression we used Dunnett’s multiple comparisons
test. Differences between groups were considered significant
when p < 0.05.

Clinical study performed at arthritis
and rheumatic disease specialties

The new combination of nutraceuticals including the
compounds listed in Table 1 was tested in a one-arm,
open-label clinical trial. The amount of each compound
in the formulation and the total amount per serving are
detailed in Table 2. Participation was voluntary, recruitment
was from local patient population as well as social media
advertising. All subjects had to have documented evidence of
prior COVID infection (PCR or Rapid test) and were having
ongoing symptoms (1 or more) for a minimum of 3 months
from the time of infection. The existence of any of these
symptoms prior to contracting COVID was considered an
exclusion. All subjects were required to complete a survey
listing and rating their symptoms and all participants were
interviewed by the research staff at baseline to verify inclusion
criteria.

Following qualification, subjects were provided with the
nutraceutical supplement for a 2-week period with dosing
instructions (1 serving twice a day with food) after which they
were required to repeat the process of documenting any change
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in symptoms relative to baseline and their voluntary decision
to continue with treatment for a further 2-week period. At the
end of 4 weeks, their change in symptoms from baseline was
documented as well as an overall global response.

The total number of patients completing the 4-week
evaluation was 51, the age range was 21–73 years of age,
female to male ratio was approximately 2 to 1 and the patients
originated from 18 US states.

Statistical analysis of the clinical study

We compared the score of each symptom at 2 and 4 weeks
to the baseline for each participant using multiple paired t-tests.
Individual variance was assumed for each symptom and a
Benjamini–Krieger–Yekutiel False Rate Discovery Rate (FDR)
was used to account for the multiple comparisons. For all
comparisons, differences between time points were considered
significant when p < 0.01.

Results

Animal study

Testing of anti-inflammatory compounds in
mice

Here we tested the therapeutic potential of β-caryophyllene
and that of pregnenolone in a mouse model of LPS-induced
sepsis. βCP (25 mg/kg) and Preg (10 mg/kg) were administered
24 and 12 h before LPS injection (25 mg/kg), and then every
12 h. All the injections were given i.p. A Murine Septic Score
(MSS) was recorded every 12 h and survival was defined as
MSS < 3. Over the 4-day follow-up, we found a slight beneficial
effect of βCP in improving disease progression (improved "well-
being"), while Preg alone had no significant effect (Figure 1).
When measuring survival, both compounds induced a slight
decrease in mortality, but none had a statistically significant
effect (Figure 1). Next, we asked whether the combined
treatment with both compounds can improve the outcome of
the mice to LPS injection. Our results show that combining
βCP and Preg had a significant positive effect on both disease
progression and survival (p = 0.026, Figure 2). Indeed, the
combined treatment with βCP and pregnenolone significantly
improved the wellbeing by >twofold and the survival from
a non-significant effect to a >90% increase (Figure 2). These
data demonstrate that βCP and Preg have a synergistic effect in
alleviating inflammation as well as disease severity and mortality
from sepsis in vivo.

Following the demonstration of a synergistic effect of βCP
and Preg in the resolution of inflammation, we combined
these two compounds with seven additional supplements. We
designed the resulting formulation to address the symptoms of

long-COVID, related to persistent viral infection, long-lasting
inflammation and neurological disorders.

Clinical trial

Clinical study on COVID long hauler patients
At baseline, 2- and 4-week time points, participants

recorded the level of severity for each of the 12 symptoms
in addition to their subjective assessment of wellbeing
("global reported"). The symptoms in the survey included
fatigue, physical weakness, cardiac (e.g., palpitations) and
neurological symptoms (e.g., “brain fog”), shortness of breath,
gastrointestinal disorders, loss of smell or taste, anxiety, joint
pain, rash or hives, cough and insomnia. All the participants
took the recommended daily dose of the nutraceutical for
4 weeks. The surveys and scoring by the participants revealed
that the severity score for all the symptoms improved
already after 2 weeks and this beneficial effect tended to be
even more pronounced after 4 weeks (Figure 3). Notably,
the decrease in the severity level of all the symptoms
was statistically significant at both the 2- and 4-week
time points.

Next, we evaluated the number of symptoms that improved
for each participant. The vast majority of the participants (46 out
of 51) reported more symptoms that improved than symptoms
that worsened. Among the remaining five participants, only
one reported feeling a worsening in general wellbeing. We
also calculated the percentage of participants who reported
an improvement, worsening, or no change for each symptom
over the 4-week treatment. For each symptom, we omitted any
participants who reported a null severity score ("zero") for this
symptom at all time points as these do not denote a lack of effect.
Notably, 72 to 84% of the participants reported an improvement
for each of the 12 symptoms (Figure 4). When asked about their
general wellbeing ("global reported"), 59% reported a noticeable
improvement. However, when we calculated the average score
of all the symptoms for each participant ("global calculated"),
we found that the general profile improved for 88% of the
participants.

Safety data
Overall safety data was very good, and no major adverse

events were noted. Minor adverse events included three patients
with vertigo, one patient with increased anxiety, one patient with
a gout attack, one patient with increased joint pain and one
patient was reinfected with COVID.

Discussion

The results suggest this unique nutraceutical dietary
supplement combination may afford significant symptomatic
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FIGURE 1

All groups were injected with LPS 25 µg/g. Mice were pre-treated with β-caryophyllene (BCP, 25 mg/kg) or Pregnenolone (Preg, 10 mg/kg) 24
and 12 h before LPS injection and then every 12 h. N = 7. ****p < 0.0001, 2-way ANOVA between βCP and Controls.

12hr 24hr 36hr 48hr
0

1

2

3

4

Progression combination vs. Control

Time post LPS injection

M
SS

Control

Preg+βCP

****

0 20 40
0

50

100

Time post LPS injection

Pr
ob

ab
ili

ty
 o

f S
ur

vi
va

l

 Survival combination vs. Control

Preg+βCP
Control

*

FIGURE 2

All groups were injected with LPS 25 µg/g. Mice were pre-treated with β-caryophyllene (BCP, 25 mg/kg) and Pregnenolone (Preg, 10 mg/kg) 24
and 12 h before LPS injection and then every 12 h. N = 7. ****p < 0.0001, 2-way ANOVA for disease progression; *p = 0.0152, Log-rank
(Mantel-Cox) test for survival.

benefit to long COVID sufferers. The adverse events were minor
and overall safety of the nutraceutical product was confirmed.

As the clinical study results indicate, there were statistically
significant improvements in this study population in their
overall symptoms after 2 and 4 weeks of treatment. It should
be noted that different symptoms improved or worsened
in different patients. There were some symptoms such as
fatigue and brain fog that appeared to respond more than
others, however, no baseline presentations were able to predict
individual symptomatic responses.

It is unknown at this time if the duration of benefit will
be complete, short term, or long term. Because the follow-up
period ended after 4 weeks and treatment was taken until the
last day, this study was specifically designed to demonstrate
a beneficial effect on the long-COVID symptoms. Further
studies are warranted to determine the optimal duration of the
treatment and whether symptoms would recur upon cessation
of the treatment.

We observed a discrepancy between the sum of
improvements for each symptom and the reported global
wellbeing. Indeed, calculating the average improvement

of all the symptoms for each individual, 88% of the
participants benefited from the treatment; however, only
59% of the participants reported an overall improvement
of their wellbeing (Figure 4). A similar discrepancy has
been reported by others in post-stroke patients where
general wellbeing was poorly associated with changes in
executive function and comorbidities (53). In our study,
we may speculate that not all participants perceived
all symptoms at the same level. For example, a person
experiencing an improvement in 4 out of 5 symptoms may
still consider no improvement in overall wellbeing if the
one unchanged symptom has a severe impact on his or her
quality of life.

Our in vivo experiment describes for the first time the
synergistic effect of two different compounds in the attenuation
of systemic inflammation. We could find no report on a
putative interaction between βCP and Preg. However, a study
showing that Preg may act as an allosteric modulator of
CB1 (54), a receptor that shares a 44% homology with
CB2 (55), may provide circumstantial evidence to a similar
interaction between CB2 activation and Preg. In addition to
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FIGURE 3

Survey-based scoring by participants at the intake to the trial (baseline), 2 and 4 weeks while taking the supplement. N = 51. Dunnett’s multiple
comparisons test, p < 0.0001 in 2 and 4 weeks for the effect of the supplement on all the symptoms (vs. baseline). ∗∗∗∗p < 0.006 paired t-test,
at 2 weeks vs. baseline and 4 weeks vs. baseline for each symptom.

FIGURE 4

Percentage of participants reporting an improvement, no change or worsening for each symptom at week 4 relative to baseline. “Global
reported” is the score given by each participant on general feeling. “Global calculated” is the average of all the scores for each symptom.

βCP and Preg that have potent anti-inflammatory role, we
selected nutraceutical compounds that have been tested and
proven effective as anti-viral and/or immunomodulatory agents

(DHEA, Bromelain, AKBA, Quercetin, Zinc, and Vitamin
D) or in managing neurological dysfunctions (DHEA, St
John Wort, and Zinc, see Table 1). Further studies may be
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warranted to elucidate the relative contribution of each of the
nine compounds included in this nutraceutical to the various
symptoms of Long-COVID.

This product is formulated for adults excluding pregnant
and breastfeeding women. It is also contra-indicated
in combination with serotonin-related antidepressants
medications due to the St. John’s Wort extract. When
indicated, this new nutraceutical is a safe product to be
used in combination with other standard of care therapies
prescribed for long COVID. We emphasize that the product is
not meant to replace standard recommendations of treatment,
vaccinations or other suggested methods of prevention or
treatment of COVID-19.

In this study, we compared the treatment outcome after 2
and 4 weeks to the same participant’s baseline. While there was
no placebo in this clinical study, every patient had tried and
failed numerous nutraceutical and pharmaceutical products that
were available to them along 3–20 months before the trial with
no success. In addition, eligibility included persistence of the
symptoms for at least 3 months, which reduces the likelihood
that the positive effects are coincidental.

The use of nutraceuticals for specific long-COVID
symptoms has been previously suggested (56). Here, we
developed a nutraceutical for the treatment of a large array
of long-COVID symptoms and we demonstrated statistically
significant improvement in all tested endpoints in a relatively
short time. Within the limitations of this study, our data
indicate that the use of this nutraceutical product is a
safe and significantly efficient option to reduce multiple
symptoms of long COVID. To the best of our knowledge, our
population study represents the largest group of patients to have
shown statistically significant symptomatic improvement to a
nutraceutical formulation.
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Jinan University, Zhuhai, China, 3Party Committee of the Communist Party of China, Zhuhai Health

Bureau, Zhuhai, China

Background: Fat-soluble vitamins (A, D, and E) are essential for the proper

functioning of the immune system and are of central importance for infection

risk in humans. Vitamins A, D, and E have been reported to be associated with the

immune response following vaccination; however, their e�ects on the immune

response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

vaccination remain unknown.

Methods: We measured the neutralizing antibody titers against wild type and

omicron within 98 days after the third homologous boosting shot of inactivated

SARS-CoV-2 vaccine (BBIBP-CorV or CoronaVac) in 141 healthy adults in a

prospective, open-label study. High-performance liquid chromatography-tandem

mass spectroscopy was used to determine the concentrations of plasma vitamins

A, D, and E.

Results: We found that the anti-wide-type virus and anti-omicron variant antibody

levels significantly increased compared with baseline antibody levels (P < 0.001)

after the third vaccination. 25(OH)D3 was significantly negatively associated with

the baseline anti-wide-type virus antibody concentrations [beta (95% CI)=−0.331

(−0.659 ∼ −0.003)] after adjusting for covariates. A potentially similar association

was also observed on day 98 after the third vaccination [beta (95% CI) = −0.317

(−0.641 ∼ 0.007)]. After adjusting for covariates, we also found that 25(OH)D3

was significantly negatively associated with the seropositivity of the anti-omicron

variant antibody at day 98 after the third vaccination [OR (95% CI) = 0.940

(0.883 ∼ 0.996)]. The association between plasma 25(OH)D3 with anti-wild-

type virus antibody levels and seropositivity of anti-omicron variant antibodies

were persistent in subgroup analyses. We observed no association between

retinol/α-tocopherol and anti-wide-type virus antibody levels or anti-omicron

variant antibody seropositive in our study.

Conclusion: The third inactivated SARS-CoV-2 vaccination significantly improved

the ability of anti-SARS-CoV-2 infection in the human body. Higher vitamin D

concentrations could significantly decrease the anti-wide-type virus-neutralizing

antibody titers and anti-omicron variant antibody seropositive rate after the

Frontiers inNutrition 01 frontiersin.org16

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2023.1167920
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2023.1167920&domain=pdf&date_stamp=2023-05-16
mailto:d201578100@alumni.hust.edu.cn
mailto:ljw700616@126.com
https://doi.org/10.3389/fnut.2023.1167920
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnut.2023.1167920/full
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Deng et al. 10.3389/fnut.2023.1167920

inactivated SARS-CoV-2 vaccination in people with adequate levels of vitamin D,

better immune status, and stronger immune response; further studies comprising

large cohorts of patients with di�erent nutritional status are warranted to verify

our results.

KEYWORDS

SARS-CoV-2, Omicron, vaccine, neutralizing antibody, fat-soluble vitamins, cohort study

1. Introduction

Vaccination against the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) is undoubtedly an effective means of

mitigating the coronavirus disease 2019 (COVID-19) pandemic.

Different people obtain varying levels of protection from vaccines;

therefore, the identification of sensitivity factors that affect vaccine

protection is essential. The current research has focused on

the association of unhealthy lifestyles and disease status with

the immunogenicity of SARS-CoV-2 vaccines (1, 2). However,

studies on the association between nutritional status and the

immunogenicity of SARS-CoV-2 vaccines are relatively scarce and

have yielded inconsistent results.

The optimal status of specific micronutrients is crucial

for maintaining immune components within normal activity

and improving host defenses against infections. The fat-soluble

vitamins A, D, and E are essential for the proper functioning

of the immune system (3) and play key roles at every stage

of the innate and adaptive immune responses. Recent studies

suggest that vitamin A may positively or negatively affect vaccine

antibody response. Previous animal experiments have revealed

that an adequate level of vitamin A is necessary to mount an

efficient antibody response to many antigens (4); however, it has

also been found that vitamin A-deficient animals can produce a

strong antibody response to some antigens (4, 5). Furthermore,

some studies have reported that vitamin A supplementation can

stimulate an antibody response to vaccination, even in animals with

normal vitamin A levels (6, 7). A human clinical trial also showed

that vitamin A supplementation could improve immune responses

to influenza virus vaccines in vitamin A-insufficient children at the

baseline (8).

The effect of vitamin D on the antibody response to different

vaccines is inconsistent. Vitamin D enhances the vaccine antibody

response to tetanus and hepatitis B (9, 10); however, it is negatively

correlated with the antibody response to the human papillomavirus

(HPV) vaccine (11). Some studies have suggested that vitamin D

does not influence the antibody response to the influenza vaccine

(12–14). Similarly, animal studies have observed that vitamin

E supplementation increases the antibody response in poultry

(15, 16). However, randomized clinical trials have revealed that

vitamin E supplementation has no effect on the antibody response

to tetanus toxoid and pneumococcal polysaccharide vaccines in

humans (17, 18), and a population study also showed no association

between serum vitamin E levels and influenza vaccine response

(19). The nutritional status of vitamins has different effects on

antibody responses to different antigens or vaccines. However, it is

unknownwhether vitamins A, D, and E affect the immune response

to SARS-CoV-2 vaccines.

An ecological study demonstrated that the intake levels of

relevant micronutrients, especially vitamin D, were inversely

associated with COVID-19 incidence andmortality (20). Moreover,

a nutrigenetic study has shown that micronutrients, including

vitamins A and D, and relevant genetic factors can help strengthen

the immune system of individuals and prepare populations

to fight against COVID-19 (20). A recent study showed that

serum-neutralizing antibody levels gradually decreased after the

second dose of inactivated vaccines within half a year; therefore,

a third booster dose is necessary to maintain the effectiveness

of inactivated vaccines (21). With the repeated outbreaks of

the COVID-19 epidemic, a third booster SARS-CoV-2 vaccine

shot has been administered in many Chinese cities. This study

aimed to explore the association of vitamins A, D, and E with

dynamic changes in neutralizing antibody titers (wild-type and

omicron) after the third booster shot in a prospective cohort and

provided evidence and clues for nutrition education during the

COVID-19 pandemic.

2. Materials and methods

2.1. Study population

We conducted a prospective, open-label study (chictr.org.cn

identifier: ChiCTR2200059259) at Zhuhai People’s Hospital in

Zhuhai, China, to explore the relationship of vitamins A, D, and

E with dynamic changes of neutralizing antibody titers within 98

days after the third homologous boosting shot of inactivated SARS-

CoV-2 vaccine (CoronaVac; Sinovac or BBIBP-CorV; Sinopharm)

in healthy adults aged 18–59 years from December 2021 to

April 2022. The subjects entered the study according to the

inclusion criteria: no past or current SARS-CoV-2 infection had

received two doses of inactivated whole-virion vaccines more

than 6 months, and women were not pregnant or puerperal.

A total of 183 subjects met the inclusion criteria and were

invited to participate in the study, and 42 subjects were

excluded according to established criteria: receipt of COVID-

19 vaccine other than CoronaVac or BBIBP-CorV; allergy to

any ingredient of vaccines; acute diseases attack or chronic

diseases with/without acute exacerbation (including uncontrolled

hypertension, diabetes complications, malignant tumor, renal

diseases, and known autoimmune disease); the appearance of 10

symptoms of COVID-19 such as fever, cough, runny nose, and

sore throat within 7 days before the third boost with the vaccine;

using immunosuppressive medications and vitamin supplements

for 15 days before and after the vaccine; a shot of other vaccines

14 days before the third vaccine or other vaccines planned within
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FIGURE 1

Flowchart of the participants’ enrollment process.

28 days; having participated in other clinical studies; missing

experimental data at any time point; and any condition that

could interfere with the primary objectives. Written informed

consent had been obtained from all participants before the

enrolment (Figure 1). The study’s informed consent and protocol

were reviewed and approved by the Ethics Committee of Zhuhai

People’s Hospital.

2.2. Vaccination procedure and blood
collection

All subjects received the third booster shot inactivated

SARS-CoV-2 vaccines (CoronaVac or BBIBP-CorV, according to

the previous vaccination program) more than 6 months after the

second shot. All subjects underwent three blood draws that were

handled according to the standards of practice before the third

inoculation, 14 days, and 98 days after inoculation, respectively.

The procedure is shown in Figure 2. Next, plasma was separated

from blood cells immediately, and then aliquots (20 µL) were

pipetted onto the imprinted circles of the dried plasma spots (DPS)

card for vitamin analysis. The spots were dried for 2 h in the dark

and then stored at −20◦C with desiccant in resealable aluminum

foil bags until analysis. The remaining plasma was stored at−80◦C

for further analysis.

2.3. Detection of vitamins A, D, and E

Plasma vitamin concentrations were measured using high-

performance liquid chromatography-tandem mass spectroscopy

(LC-MS/MS, Nexera UHPLC LC-30A, and SCIEX Triple QuadTM

6500+), online coupled with fully automated dried blood spot

extraction (CAMAG DBS-MS 500). DPS cards were moved by

a robotic arm from the racks toward the different workstations,

including an optical recognition system (locating the position

of the spots on the cards), an IS module (spraying of an IS

solution onto the cards before extraction), and an extraction

module containing a 4mm clamp head for clamping of a DPS

card. A total of 10 µL internal standard composed of retinol-

d5, 25(OH)D3-13C5, and α-tocopherol-d6 in acetonitrile was

sprayed onto the cards. Subsequently, 70% methanol aqueous

solution as the extraction solvent is horizontally guided through

the clamped area of the DPS, and the resulting extract is

then sent into a sample loop. The autosampler is equipped

with a wash station to avoid cross-contamination between

subsequent samples.

For LC-MS/MS analysis, the optimized mass transition

ion pairs (m/z) for quantitation were 269.2/93 for retinol,

274.2/93 for retinol-d5, 383.3/257 for 25(OH)D3, 388.5/262.3 for

25(OH)D3-13C5, 431.3/165 for α-tocopherol, and 437.3/171 for

α-tocopherol-d6. The chromatographic separation was achieved

on a Phenomenex Kinetex PFP (4.6mm × 100mm, 2.6µm)

column with a flow rate of 0.6 mL/min, using gradient elution

with acetonitrile and 0.1% formic acid 0.05% heptafluorobutyric

acid in water as the mobile phase. For quality check, each

batch contained 48 samples with four quality control samples

inserted, and intra- and inter-batch coefficients of all vitamins

were below 15%. All participants had plasma vitamins above the

quantitation limit (4.0 ng/L for retinol, 1.0 ng/L for 25(OH)D3, and

10.0 µg/L α-tocopherol).

2.4. Detection of the anti-SARS-CoV-2
receptor-binding domain neutralizing
antibody

At the same time, we evaluated the anti-RBD responses

in fasting blood samples at three-time points above by the

serum surrogate virus neutralization test (sVNT) to assess the

dynamic changes of the neutralizing antibody. Circulating NAb

against SARS-CoV-2 was detected which blocked the interaction

between the RBD of the viral spike glycoprotein with the

angiotensin-converting enzyme 2 cell surface receptor in the

experiment. Recombinant S-RBD from the wild type (Wuhan-

Hu-1) and omicron (B.1.1.529) strains were used in this study.

All experimental operations and the use of the SARS-CoV-

2 sVNT kit (GenScript) were performed according to the

manufacturer’s instructions. Tests were performed on Varioskan

Lux (ThermoFisher).

For all assays, the limit of quantitation (LOQ) was 9.38 U/mL,

and levels < LOQ were substituted with LOQ/Sqr(2).

2.5. Statistical analysis

Demographic characteristics of the study are summarized as

mean ± standard deviation (SD) or median and interquartile

range (IQR) for continuous variables, as no. (%) for categorical

variables. Neutralizing antibody titers are presented as geometric

mean titers (GMTs) with 95% confidence intervals (CIs). The
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FIGURE 2

Procedures of the third homologous boosting shot of inactivated SARS-CoV-2 vaccination and sample collection in the cohort study.

seropositivity rate was defined as the serum anti-SARS-CoV-2

antibody concentrations exceeding 4 × LOQ. The Kolmogorov–

Smirnov test was used to assess the normality of variables

and those not normally distributed were log-transformed. The

Mann–Whitney U-test was used to compare the difference

in anti-SARS-CoV-2 neutralizing antibody growth and decay

between subgroups. The Spearman correlation test was used to

assess the association of antibody growth and decay with the

target vitamin concentrations. We performed multivariate linear

regression (anti-wide-type antibody as the dependent variable)

and logistic regression (anti-omicron antibody seropositivity or

not as the dependent variable) analyses to assess the relationships

between antibody levels and the concentrations of plasma retinol,

25(OH)D3, and α-tocopherol. Statistical analyses were performed

using R software (version 4.1.3), with the two-sided significant level

at 0.05.

3. Results

3.1. Study participants characteristics

The distribution of the participants’ characteristics is presented

in Table 1. After excluding participants with missing experimental

data, 141 were included in the study. The mean age of patients was

30.16 years, and the mean body mass index (BMI) was 22.01 kg/m2;

54.61% of patients had regular physical activity, and 71.63% were

injected with the BBIBP-CorV vaccine. Over 90% of participants

were of Han ethnicity, did not smoke or drink, and had a college

education or higher.

3.2. Distribution of anti-wild-type virus and
anti-omicron variant antibody titers at the
baseline and 14 and 98 days after the third
booster dose

We detected anti-wild-type virus and anti-omicron variant

antibodies at the baseline and on days 14 and 98 after the

third vaccination (Table 2). We found that the third vaccination

induced a significantly higher degree of humoral immunogenicity

for either the wild-type or omicron variant (days 14 and 98 after

the third vaccination vs. baseline, P < 0.001, respectively). The

third vaccination induced not only a significantly high humoral

immunogenicity of the wild-type virus but also of the omicron

variant. The seropositivity rates were 98.58%, 100.00%, and

100% for the anti-wild-type virus antibodies and 11.34%, 50.35%,

and 35.46% for the seropositivity rates of anti-omicron variant

antibodies at the baseline and on days 14 and 98, respectively (P

< 0.001, compared with the baseline).

3.3. Associations of retinol, 25(OH)D3, and
α-tocopherol with anti-wild-type virus and
the anti-omicron variant neutralizing
antibodies

We performed multivariate regression analyses to assess the

effect of the target vitamin levels at the baseline on anti-wild-

type virus-neutralizing antibodies before and after the third booster

dose. The results are presented in Figure 3. After adjusting for
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TABLE 1 Characteristics of the study participants by sex group.

Variable Total (N = 141) Male (N = 49) Female (N = 92)

Age, years, mean± SD 30.16± 7.84 29.35± 7.24 30.59± 8.14

Race, Han, no. (%) 136 (96.45) 48 (34.04) 88 (62.41)

BMI, kg/m2 , mean± SD 22.01± 4.15 23.73± 3.12 21.10± 4.34

Smoking no. (%)

Never 133 (94.33) 42 (29.79) 91 (64.54)

Former 1 (0.71) 1 (0.71) 0

Current 7 (4.96) 6 (4.26) 1 (0.71)

Drinking no. (%)

Never 136 (96.45) 46 (32.62) 90 (63.83)

Former 1 (0.71) 1 (0.71) 0

Current 4 (2.84) 2 (1.42) 2 (1.42)

Education levels no. (%)

Middle school 3 (2.13) 0 3 (2.13)

High school 4 (2.84) 1 (0.71) 3 (2.13)

College or above 134 (95.04) 48 (34.04) 86 (61.00)

Physical activity, yes, No. (%) 77 (54.61) 34 (24.11) 43 (30.50)

First-to-second dose interval, days, median

(IQR)

31.00 (22.00–41.00) 29.00 (18.00–41.00) 31.00 (23.00, 40.25)

Second-to-third dose interval, days, median

(IQR)

252.00 (200.00–293.00) 257.00 (207.00–296.00) 245.50 (197.00–291.25)

Manufacturer of vaccine no. (%)

BBIBP-CorV 101 (71.63) 37 (26.24) 64 (45.39)

CoronaVac 40 (28.37) 12 (8.51) 28 (19.86)

SD, standard deviation; IQR, interquartile range.

age, sex, BMI, physical activity status, the intervals between the

first and second vaccination and between the second and third

vaccination, and the manufacturer of the vaccine, we found that

25(OH)D3 was significantly negatively associated with baseline

anti-wild-type virus antibody concentrations (beta [95% CI] =

−0.331 [−0.659–−0.003]). After adjusting for covariates, there

was a potentially negative association between 25(OH)D3 and

anti-wild-type virus antibody concentrations on day 98 after the

third vaccination (beta [95% CI] = −0.317 [−0.641–0.007]). No

statistically significant associations were observed between retinol

and anti-wild-type virus antibody concentrations after adjusting for

covariates (all P > 0.050).

Logistic regression analyses were used to assess the effect of

target vitamin levels at the baseline on the seropositivity of anti-

omicron variant neutralizing antibodies before and after the third

booster dose (Figure 4). After adjusting for covariates, we also

found that 25(OH)D3 was significantly negatively associated with

the seropositivity of the anti-omicron variant antibody upon day 98

after the third vaccination (OR [95% CI] = 0.940 [0.883–0.996]).

Similarly, no statistically significant associations were observed

between the retinol and α-tocopherol and the seropositivity of the

anti-omicron variant antibodies after adjusting for covariates (all,

P >0.050).

Subgroup analyses showed an association between 25(OH)D3

and the baseline anti-wild-type virus antibody concentrations,

which seemed to be more pronounced among subjects with the

female, with the intervals between the first and second vaccination

≤30 days (Supplementary Figure 1A). The association between

25(OH)D3 and the anti-wild-type virus antibody concentrations at

day 98 after the third vaccination seemed to be more pronounced

among subjects with the intervals between the first and second

vaccination being >30 days (Supplementary Figure 1B). We also

found the association of 25(OH)D3 with the seropositivity of

anti-omicron variant antibody at day 98 which after the third

vaccination seemed to be more pronounced among subjects

with male, CoronaVac-vaccinated, with the intervals between

the first and second vaccination being >30 days and the

intervals between 2nd and 3rd vaccination being >240 days

(Supplementary Figure 1D).

To further explore the relationship between target vitamins

and changes in anti-wild-type virus-neutralizing antibodies on

days 14 and 98 after the third vaccination, we assessed the
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TABLE 2 Distribution of antibody titers against wild-type and Omicron at three-points time.

Baseline 14 days after
3rd vaccination

98 days after
3rd vaccination

Prototype, U/mL

GMT (95% CI) 142.43 (127.74–159.17) 831.34 (742.48–925.19) 436.27 (391.51–482.99)

Seropositivity rate 98.58% 100.00% 100.00%

textitPa value < 0.001 < 0.001

Omicron, U/mL

GMT (95% CI) 11.93 (10.18–14.01) 31.03 (25.03–38.47) 20.19 (16.78–24.29)

Seropositivity rate 11.34% 50.35% 35.46%

Pa value < 0.001 < 0.001

GMT, geometric mean titer; IQR, interquartile range; LOQ, limit of quantitation.

The seropositivity rate was defined as at least a 4-fold higher than the limit of quantitation of the assays.
aThe P-value of the t-test.

FIGURE 3

Multivariable linear regression results among vitamins A, D, and E for

anti-wild-type virus-neutralizing antibody titers at the baseline, 14

days after the third vaccination, and 98 days after the third

vaccination.

correlations between target vitamins, fold increases in antibody

titers (comparison between the baseline and 14 days after the third

vaccination), and fold decreases in antibody titers (comparison

between 14 days after the third vaccination and 98 days after the

FIGURE 4

Multivariable logistic regression results among vitamins A, D, and E

for anti-omicron variant neutralizing antibody seropositive at the

baseline, 14 days after the third vaccination, and 98 days after the

third vaccination.

third vaccination). However, we observed no correlation between

the target vitamins and fold increase/decrease in antibody titers (all

P > 0.050; Supplementary Table 2).
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4. Discussion

In this study, we used a prospective, open-label design to assess

the relationships between vitamins A, D, and E nutritional status

and neutralizing antibodies (anti-wild-type and anti-omicron)

before and after the third inactivated SARS-CoV-2 vaccination.

The third vaccination induced a significantly high degree of

humoral immunogenicity for both the wild-type virus and the

omicron variant. We found that plasma vitamin D levels were

significantly negatively associated with the baseline anti-wild-

type virus antibody levels, potentially negatively associated with

anti-wild-type virus antibody concentrations on day 98 after the

third vaccination, and significantly negatively associated with

the seropositivity of the anti-omicron variant antibody on day

98 after the third vaccination. The inverse associations between

plasma vitamin D and anti-wild-type virus antibody levels and

seropositivity of the anti-omicron variant antibodies persisted in

the subgroup analyses. We observed no significant association

between vitamin A/E and anti-wild-type virus antibody levels or

seropositivity of the anti-omicron variant antibodies.

The inactivated SARS-CoV-2 vaccine is widely used to prevent

infection and severe COVID-19, and neutralizing antibody levels

are vital predictors of vaccine efficiency (22). Similar to the

results of Ai et al., the third homologous booster vaccination

enhanced participants’ immune responses against SARS-CoV-2

(23). However, the neutralizing capacity against the omicron

variant was significantly lower than that against the wild-type virus,

confirming the results of another study (24).

Numerous previous studies have found that low vitamin D

levels were associated with significantly higher antibody titers after

antiviral vaccination in people with a relatively high vitamin D

nutritional status, which is consistent with our study. Linder et al.

found significantly higher mean geometric rubella antibody titers

in winter-inoculated children than in summer-inoculated children;

vitamin D was stimulated by ultraviolet radiation (25). A study

on HPV vaccines in college-aged men suggested that antibody

titers for all HPV strains were significantly higher in individuals

with lower vitamin D levels than in those with higher vitamin D

levels (11). A cross-sectional study found that low serum vitamin

D levels were associated with higher antibody titers against partial

influenza virus vaccines in children (26). Another cross-sectional

analysis of the National Health and Nutrition Examination Survey

(NHANES) highlighted a negative association between serum

25(OH)D levels and measles antibody titers (27). Many studies

have demonstrated the expression of the vitamin D receptor (VDR)

in almost all immune cells (28). Therefore, vitamin D has potent

direct effects on active B lymphocytes (i.e., VDR expression is

upregulated) (29). Vitamin D inhibits immunoglobulin production

through various mechanisms, including the inhibition of cytokine-

mediated B-cell activation by acting on T-helper cells, suppressing

the differentiation of mature B cells into plasma cells and class-

switched memory B-cells, and inducing apoptosis of both activated

B- and plasma cells (30).

However, the effect of vitamin D on the immunogenicity

of vaccines is complex, and the association between vitamin D

and antibody response to COVID-19 vaccines is inconsistent

in the current research. Several studies have reported no clear

correlation between vitamin D levels and antibody responses

to anti-SARS-CoV-2 mRNA vaccination (31, 32). A sub-study

nested within the CORONAVIT randomized controlled trial also

reported that vitamin D supplementation did not influence the

protective efficacy or immunogenicity of SARS-CoV-2 mRNA or

adenovirus vaccinations in old adults (33). Moreover, a few studies

reported results contrary to ours, suggesting that adequate levels

of vitamin D may improve the antibody response to SARS-CoV-2

mRNA vaccines (34, 35). A differential immune response has been

observed for different SARS-CoV-2 vaccine types (36); therefore,

vitamin D potentially has different effects on different vaccine

types. Rubella, HPV, influenza, and measles vaccines, as well as

the anti-SARS-CoV-2 vaccine used in our study, are all inactivated

antiviral vaccines. Vitamin D deficiency can cause dysregulation

of the immune response (37), and correcting this deficiency can

effectively improve the immune response. Positive associations

between vitamin D and antibody response to the SARS-CoV-

2 vaccine were obtained by comparing the adequate status of

vitamin D and insufficient/deficiency status (34, 35). However,

positive associations were not observed in another study of older

adults (33), which might have been caused by different population

backgrounds; the former included middle-aged people with better

immune status and stronger immune responses. In our study,

the subjects were mainly middle-aged people with better immune

status and stronger immune response and had a relatively high

vitamin D nutritional status; <30% of patients had vitamin D

insufficiency [i.e., a 25(OH)D level of 20–30 ng/mL], and none

had vitamin D deficiency [i.e., a 25(OH)D level <20 ng/mL] (38).

Additionally, the genetic and ethnic backgrounds of different

populations should be considered (39, 40).

No significant associations were observed between vitamins A

and E and the antibody response of both wild-type and omicron

variant disease following inactive anti-SARS-CoV-2 vaccination

in our study; this result was consistent with the results of

previous studies. Gardner et al. found that vitamins A and

E were not associated with antibody responses to influenza

vaccines in healthy elderly individuals (41). An observational

prospective cohort study reported that vitamins A and E levels

were not related to the odds of seroprotection or seroconversion

to the influenza vaccine in older adults (19). A prospective

randomized controlled clinical trial suggested that vitamins A and

E supplementation did not affect the IgG response to tetanus toxoid

in healthy children (17). However, a clinical trial suggested that

weekly maternal vitamin A supplementation during pregnancy

and postpartum could enhance prenatal H1N1-vaccine responses

in mothers with low vitamin A status (42). In our study, only

approximately 2% of subjects had vitamin A deficiency [retinol

level <200 ng/mL as vitamin A deficiency (43)], approximately

95% of subjects had vitamin E deficiency [α-tocopherol level

<5µg/mL as vitamin E deficiency (44)], and none had vitamin

A or E supplementation. Therefore, the association of vitamins

A and E with the antibody response to inactive anti-SARS-CoV-

2 vaccination needs to be verified in individuals with different

vitamin A and E statuses.

Our study has several advantages. Our study is a prospective

cohort study to estimate the anti-wild-type virus and anti-omicron

variant antibody response in the medium-to-long-term following
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the third inactive anti-SARS-CoV-2 vaccination. It is also, to

the best of our knowledge, the first to explore the associations

between vitamins A, D, and E with anti-wild-type virus/anti-

omicron variant antibody response to inactive anti-SARS-CoV-2

vaccination. This study reveals the relationship between vitamin

D and antibody response, which provides new clues for precise

nutrition during the COVID-19 pandemic, especially for the

present omicron pandemic. However, this study had several

limitations. First, most subjects had a relatively high vitamin D

and vitamin A nutritional status, and most subjects had a relatively

poor vitamin E nutritional status; therefore, we were unable to

assess the effects of different vitamin A, D, and E nutritional

statuses on the antibody response. Second, the study did not

include people who used vitamin supplements to further explore

the effects of vitamin supplementation on the antibody response.

Third, our subjects weremainly aged 24–42 years, whichmeant that

they had a better immune status and stronger immune response;

therefore, younger and older people were ignored. Finally, different

vaccine types and populations with different genetic backgrounds

should be considered because of the complex effects of vitamins

on immune responses. In the future, the relationship between

vitamins A, D, and E and antibody response to inactive anti-

SARS-CoV-2 vaccination should be comprehensively described in

different populations.

5. Conclusion

Our study suggested that the third homologous boosting

vaccination enhanced subjects’ immunity response against

SARS-CoV-2, and low vitamin D levels were associated with

significantly higher antibody titers for the anti-wild-type virus and

higher antibody seropositivity for the anti-omicron variant after

the third inactive anti-SARS-CoV-2 vaccination in people with

adequate levels of vitamin D, better immune status, and stronger

immune response; further studies comprising large cohorts of

patients with different nutritional status are warranted to verify

our results.
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A hub gene signature as a
therapeutic target and biomarker
for sepsis and geriatric sepsis-
induced ARDS concomitant with
COVID-19 infection

Guojun Qian1,2*†, Hongwei Fang1†, Anning Chen2†, Zhun Sun2,
Meiying Huang2, Mengyuan Luo3, Erdeng Cheng3,
Shengyi Zhang4*, Xiaokai Wang5* and Hao Fang1,3,6,7*

1Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China, 2Affiliated
Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China, 3Department of
Anesthesiology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China,
4Department of Thoracic Surgery, Songjiang Hospital Affiliated to Shanghai Jiaotong University
School of Medicine, Shanghai, China, 5Department of Interventional and Vascular Surgery, Xuzhou
First People's Hospital, Xuzhou, China, 6Fudan Zhangjiang Institute, Shanghai, China, 7Department of
Anesthesiology, Shanghai Geriatric Medical Center, Shanghai, China
Background: COVID-19 and sepsis represent formidable public health

challenges, characterized by incompletely elucidated molecular mechanisms.

Elucidating the interplay between COVID-19 and sepsis, particularly in geriatric

patients suffering from sepsis-induced acute respiratory distress syndrome

(ARDS), is of paramount importance for identifying potential therapeutic

interventions to mitigate hospitalization and mortality risks.

Methods: We employed bioinformatics and systems biology approaches to

identify hub genes, shared pathways, molecular biomarkers, and candidate

therapeutics for managing sepsis and sepsis-induced ARDS in the context of

COVID-19 infection, as well as co-existing or sequentially occurring infections.

We corroborated these hub genes utilizing murine sepsis-ARDS models and

blood samples derived from geriatric patients afflicted by sepsis-induced ARDS.

Results:Our investigation revealed 189 differentially expressed genes (DEGs) shared

among COVID-19 and sepsis datasets. We constructed a protein-protein interaction

network, unearthing pivotal hub genes and modules. Notably, nine hub genes

displayed significant alterations and correlations with critical inflammatory

mediators of pulmonary injury in murine septic lungs. Simultaneously, 12 displayed

significant changes and correlations with a neutrophil-recruiting chemokine in

geriatric patients with sepsis-induced ARDS. Of these, six hub genes (CD247, CD2,

CD40LG, KLRB1, LCN2, RETN) showed significant alterations across COVID-19,

sepsis, and geriatric sepsis-induced ARDS. Our single-cell RNA sequencing analysis

of hub genes across diverse immune cell types furnished insights into disease

pathogenesis. Functional analysis underscored the interconnection between

sepsis/sepsis-ARDS and COVID-19, enabling us to pinpoint potential therapeutic

targets, transcription factor-gene interactions, DEG-microRNA co-regulatory
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networks, and prospective drug and chemical compound interactions involving

hub genes.

Conclusion: Our investigation offers potential therapeutic targets/biomarkers,

sheds light on the immune response in geriatric patients with sepsis-induced

ARDS, emphasizes the association between sepsis/sepsis-ARDS and COVID-19,

and proposes prospective alternative pathways for targeted therapeutic

interventions.
KEYWORDS

COVID-19, sepsis, sepsis-ARDS, hub gene, disease biomarker, bioinformatics
Introduction

Sepsis, a life-threatening condition resulting from an

uncontrolled immune response to infection, can be instigated by

various pathogens, including SARS-CoV-2, the virus responsible for

COVID-19 (1, 2). With respiratory and gastrointestinal bacterial

and viral infections being the most prevalent, sepsis accounts for

nearly 20% of global deaths (3). Furthermore, severe COVID-19

presents similarities to sepsis-induced acute respiratory distress

syndrome (ARDS), such as pulmonary inflammation, dense

mucus secretion, microthrombosis, and systemic proinflammatory

cytokine elevation (4, 5). Given the immense global impact of both

conditions, it is imperative to understand the pathophysiology of

sepsis/sepsis-ARDS in the context of COVID-19 and refine

intensive care therapies for critically ill patients.

Geriatric patients with sepsis-induced ARDS are at a higher risk

of poor outcomes when infected with COVID-19 (5–7). The

interplay between COVID-19 and sepsis makes this vulnerable

group particularly susceptible to respiratory failure and mortality

(7, 8). Therefore, early identification of key diagnostic targets is

crucial for potentially mitigating COVID-19 and sepsis-induced

ARDS effects. Moreover, despite the severity of this issue, the

cellular and molecular events that contribute to the effects of

COVID-19 on geriatric sepsis-induced ARDS have not been

clearly defined.

In this study, we employ bioinformatics and systems biology

approaches to examine the effects of COVID-19 on sepsis and

geriatric sepsis-induced ARDS. Our investigation aims to uncover

shared cellular signaling pathways, gene networks, potential

biomarkers, and therapeutic targets. Furthermore, we explore

candidate drugs and their underlying molecular mechanisms for

the treatment of sepsis and geriatric sepsis-ARDS patients co-

infected with COVID-19. To corroborate our findings, we

validate hub genes in murine sepsis-ARDS models and geriatric

patients with sepsis-induced ARDS, utilizing single-cell RNA

sequencing (scRNA-seq) to assess their expression patterns across

various immune cell populations. This comprehensive analysis

furnishes therapeutic targets/biomarkers and imparts invaluable

insights into the pathogenesis of these intricate conditions.
0226
Materials and methods

Study population

In this study, patient samples were collected from critically ill

individuals aged 60 years or older who were undergoing treatment

in the emergency intensive care units (ICUs) at Zhongshan Hospital

and Minhang Hospital, both affiliated with Fudan University,

China. We prospectively enrolled 17 patients diagnosed with

sepsis-induced ARDS, following the diagnostic criteria established

in the 2016 international Sepsis 3.0 consensus proposed by sepsis

experts and the Berlin definition and diagnostic criteria for ARDS

(9, 10). These patients did not have SARS-CoV-2 infection. Table S1

presents an overview of the demographic and clinical features of the

study population. For three of these patients, blood samples were

collected on Day 1 and Day 7 and subsequently subjected to

scRNA-seq. Based on their clinical manifestations, Day 1 and Day

7 were designated as the onset and recovery phases, respectively. For

additional information, please refer to Table S2.
Gene expression datasets

To investigate the shared genetic correlations between COVID-19

and sepsis, we utilized RNA-seq andmicroarray datasets from the Gene

Expression Omnibus (GEO) database. Specifically, we analyzed the

GSE171110 dataset, which comprises whole-blood RNA-seq profiles

from COVID-19 patients and healthy donors, and the GSE137342

dataset, which includes whole blood cells from sepsis patients and

healthy volunteers and was sequenced using microarrays (11). Further

information regarding the datasets is outlined in Table S3.
Identification of differentially
expressed genes

DEGs were determined from expression values utilizing the

“limma” package in R software (version 4.2.0), applying Benjamini-

Hochberg correction to regulate the false discovery rate. The DEGs
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were considered significant if they met the cutoff criteria (adjusted

P-value < 0.05 and |logFC| ≥ 1.0). The common DEGs between

COVID-19 and sepsis were identified using an online VENN

analysis tool called Jvenn (12).
Gene ontology and pathway
enrichment analysis

Utilizing the “clusterProfiler” package in R, potential functions and

pathways associated with DEGs were identified. GO and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analyses were

performed, and a standardized metric (P-value < 0.05, Q-value < 0.25)

was used to prioritize the top functional items and pathways.
Protein-protein interaction
network analysis

The PPI network was generated based on the proteins encoded

by the common DEGs between COVID-19 and sepsis, as

determined through the STRING database (13). The PPI network

was further processed and analyzed using Cytoscape software, and

gene clusters were identified using the Markov cluster method. The

prominent nodes in the PPI network modules were predicted using

the CytoHubba plugin to identify hub genes.
Gene regulatory networks analysis

Hub gene-microRNA (Hub-miRNA) interaction networks and

hub gene-transcription factor (Hub-TF) interaction networks were

analyzed using the NetworkAnalyst tool (14). TarBase (15) and

miRTarBase (16) databases were used to identify Hub-miRNA

interactions, while the JASPAR database (17) was used to analyze

Hub-TF interactions. The hub genes common to COVID-19 and

sepsis were used in the gene regulatory networks analysis to identify

the transcriptional elements and miRNA that regulate hub genes at

the post-transcriptional level.
Immune infiltration analysis

The composition of immune cells in blood samples was

analyzed utilizing the CIBERSORT (18), a deconvolution

algorithm designed to quantify the representation of 22 distinct

subpopulations of infiltrating lymphocytes. GraphPad Prism 8.0.2

software was utilized to contrast immune cell proportions between

the COVID-19 and healthy control samples, as well as between the

sepsis and healthy control samples.
Evaluation of applicant drugs

The Enrichr web server (19) and the DSigDB database (20) were

used to identify pharmacological compounds connected to the
Frontiers in Immunology 0327
common hub genes of COVID-19 and sepsis, based on a

statistical threshold of adjusted P-value < 0.05.
Gene-disease association analysis

The DisGeNET database (21) was utilized to investigate gene-

disease associations and identify diseases and chronic issues linked

to the common hub genes of COVID-19 and sepsis. The

NetworkAnalyst tool (22) was also used in this analysis.
Blood sample collection, processing,
and analysis

Peripheral blood samples were collected from each patient in a 5

mL EDTA tube on the day of enrollment and processed within two

hours to isolate all peripheral blood mononuclear cells (PBMCs).

The PBMCs were either subjected to scRNA-seq or cryopreserved

and stored at -80°C for subsequent analysis.
scRNA-seq

Blood-derived PBMCs were subjected to single-cell gel bead-in-

emulsion generation using the Chromium Controller Instrument

(10×Genomics) and the Single Cell 3’ Library and Gel Bead Kit V3.1

(10×Genomics) according to the manufacturer’s recommended

protocol. The resulting GEM libraries were then sequenced on an

Illumina Novaseq 6000 using a custom paired-end sequencing mode of

150 bp for the first read and 150 bp for the second read. The raw data

was processed using the Cell Ranger Single-Cell Software Suite (v5.0.0)

with default parameters and aligned to the genomic reference. To

maintain data quality, cells were discarded if they had gene counts

below 200 or over 5000, or mitochondrial gene expression greater than

15%. The most variable genes among the single cells were identified,

and their log-transformed gene-barcode matrices were subjected to

principal component analysis to reduce their dimensionality. The

resulting data was visualized in a t-SNE plot constructed with Seurat

(v3.1.1) to differentiate among the PBMC cell types.
Mouse models of sepsis-induced ARDS

To induce sepsis-induced ARDS in mice, we used the cecal

ligation and puncture (CLP) method (23, 24). In brief, mice

underwent an 8-hour fast and 4-hour water deprivation before

surgery. Under 2% isoflurane anesthesia, a sterile abdominal

incision provided access to the cecum. The cecum was ligated 1

cm from its end, punctured twice with a 22-gauge needle,

repositioned, and the incision closed in two layers. Control mice

experienced a similar procedure without CLP. At 24 hours post-

CLP, lungs were collected, and RNA was isolated from the tissue

using a Tiangen kit. RNA was reverse transcribed with the Tiangen

kit, and relative gene expression was determined via the DDCt
method, using actin as an internal control.
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Statistical analysis

Data are displayed as mean ± standard error of the mean (SEM).

Statistical analyses were executed using GraphPad Prism and R

software. For normally distributed data, a two-tailed, unpaired

Student’s t-test was applied to assess differences between groups.

Non-normally distributed data were evaluated using the Mann-

Whitney test. Correlation analyses were performed employing the

Pearson method. Statistical significance was established for P-values

below 0.05 (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).
Results

Investigation of the genetic overlap
between COVID-19 and sepsis

To reveal shared genetic pathways between COVID-19 and sepsis,

we comprehensively analyzed human transcriptomic data from the

GEO database (Figure S1). Our results showed that COVID-19 and

sepsis patients had 4082 and 551 DEGs, respectively, compared to

healthy controls (Table S3). The DEGs of the highest significance for

COVID-19 and sepsis are depicted in heatmaps and volcano plots in

Figures 1A–D. We then utilized Jvenn to uncover 189 DEGs that were

shared between the sepsis and COVID-19 datasets (Figure 1E). The

complete list of these 189 DEGs can be found in Table S4.
Functional enrichment analysis of GO
terms and significant signaling pathways

To understand the functional significance of the shared DEGs

between COVID-19 and sepsis, we conducted a functional enrichment

analysis using the “clusterProfiler” package. The analysis consisted of

GO enrichment, linking genes to GO terms, and KEGG pathway

enrichment, which revealed gene-pathway associations. The GO

analysis was categorized into biological process, cellular component,

and molecular function (25). Our results showed that the DEGs were

significantly enriched in defense against fungus in the biological

process category, specific granule lumen in the cellular component

category, and MHC class II receptor activity in the molecular function

category (Figures 2A, B). The KEGG pathway analysis revealed the top

10 pathways, including asthma, inflammatory bowel disease,

hematopoietic cell lineage, intestinal immune network for IgA

production, legionellosis, staphylococcus aureus infection,

leishmaniasis, Th1 and Th2 cell differentiation, systemic lupus

erythematosus, and cytokine-cytokine receptor interaction

(Figures 2C, D).
Functional networks and hub genes
identified by PPI analysis

The shared DEGs between COVID-19 and sepsis were

subjected to a PPI analysis using the STRING database, aiming to
Frontiers in Immunology 0428
reveal functional networks and associated pathways. The PPI

network is illustrated in Figure 3A, where highly interconnected

nodes represent hub genes. The maximal clique centrality method

of cytoHubba in Cytoscape was employed to identify the top 15

most influential DEGs, which include CD4, CD3E, IL7R, CD5,

CD247, CD2, CCR7, CD40LG, ITK, KLRB1, MPO, MMP9, TLR2,

LCN2, and RETN. These hub DEGs hold potential as biomarkers

and therapeutic targets for COVID-19 and sepsis, presenting novel

opportunities for therapeutic intervention. A submodule network

was constructed to facilitate a better understanding of the

relationships and positions of these genes, as shown in Figure 3B.
Validation of the identified hub genes

To assess the potential of hub genes as biomarkers for

predicting COVID-19 and sepsis-induced ARDS, we employed a

murine model of sepsis-induced ARDS as a proxy for both COVID-

19 and sepsis-related lung injuries. This choice was guided by the

shared pathophysiological characteristics of ARDS in COVID-19

and sepsis, and their substantial mechanistic overlap. The use of the

murine model was also influenced by the absence of a biosafety level

3 facility in our laboratory, which precluded the development of a

specific SARS-CoV-2 infection model. Our results showed that

genes such as IFN-g, TNF-a, IL-6, MIP-2, IL-10, KC (CXCL1),

CCL-2, MPO, MMP9, TLR2, and LCN2 were significantly

upregulated in the lungs of sepsis-induced ARDS mice compared

to control mice. In contrast, genes such as CD247, CD2, CD40LG,

KLRB1, and RETN were significantly downregulated

(Figures 4A, B).

TNF-a, IFN-g, and IL-6 represent vital inflammatory mediators

in the progression of lung injury in both sepsis and COVID-19

scenarios (1, 26). Positive correlations were observed betweenMPO,

TLR2, LCN2 and TNF-a, and betweenMPO, MMP9, LCN2 and IL-

6. Conversely, negative correlations were observed between CD2

and IFN-g, and between CD40LG and IL-6 (Figures 4C, D, S2A–C).

KC and CCL-2 serve as significant chemokines that attract

neutrophils and monocytes to infection sites, thereby playing a

pivotal role in the pathophysiology of COVID-19 and sepsis-

induced lung injury (1, 27, 28). The results showed that MMP9

and LCN2 were positively correlated with KC, while CD40LG and

KLRB1 were negatively correlated with KC. Furthermore, MPO,

MMP9, and LCN2 were positively correlated with CCL-2, while

CD40LG was negatively correlated with CCL-2 (Figures 4E, F,

S2D, E).

Finally, we assessed the potential of the discovered hub genes as

targeted biomarkers in elderly sepsis-induced ARDS. We

investigated the expression levels of these hub genes in PBMCs

collected from elderly patients with sepsis-induced ARDS. Our

findings revealed significant decreases in CD4, CD3e, IL-7R, CD5,

CD247, CD2, CD40LG, ITK, and KLRB1, and significant elevations

in MMP9, LCN2, and RETN in sepsis-induced ARDS compared to

controls (Figure 5A). Similar results were also observed in COVID-

19 and sepsis (Figure S3). Moreover, we found that CD3, CD247,

CD2, and CD40LG were negatively correlated with KC, whereas
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MMP-9, LCN2, and RETN were positively correlated with KC

(Figure 5B), suggesting that these candidate hub genes may regulate

geriatric sepsis-induced ARDS by modulating the recruitment of

neutrophils to the lung.
scRNA-seq of PBMCs from elderly patients
with sepsis-induced ARDS

In order to provide additional support for the involvement of hub

genes in the development of sepsis-induced ARDS among elderly

individuals, we executed scRNA-seq on PBMCs procured from

geriatric patients diagnosed with sepsis-induced ARDS. Drawing upon
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the insights gleaned from our murine sepsis-induced ARDSmodel and

human subjects afflictedwith sepsis-inducedARDS,we selectedCD247,

CD2, CD40LG, KLRB1, LCN2, and RETN as the foci of our subsequent

investigation.Our findings revealed that CD247, CD2, andKLRB1were

predominantly expressed in natural killer (NK) cells, CD4+ T cells, and

CD8+ T cells, respectively; CD40LG was chiefly expressed in CD4+ T

cells; LCN2 was primarily expressed in monocytes; and RETN was

principally expressed in monocytes and DCs (Figures 6A, S4).

Additionally, we detected elevated expression of CD247 in NK cells,

CD4+ T cells, and CD8+ T cells on Day 7 (recovery phase) in

comparison to Day 1 (onset phase). CD2 expression was heightened

in CD8+ T cells on Day 7 relative to Day 1. CD40LG expression

demonstrated a decline in CD8+ T cells on Day 7 compared to Day 1.
B

C D

E

A

FIGURE 1

The heatmaps exhibit differentially expressed genes (DGEs) for (A) COVID-19 (GSE171110) and (B) sepsis (GSE137342) cases. Volcano diagrams
represent the DGEs for (C) COVID-19 and (D) sepsis. The DEGs were considered significant if they met the cutoff criteria (adjusted P-value < 0.05
and |logFC| ≥ 1.0). (E) A Venn chart highlights the overlapping DGEs in both COVID-19 and sepsis situations.
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KLRB1 expression exhibited an increase in NK cells and CD8+ T cells

and a decrease in CD4+ T cells on Day 7 relative to Day 1. LCN2

expression witnessed an augmentation in monocytes on Day 7 in

comparison to Day 1. Lastly, RETN expression manifested a reduction

inmonocytes andDCs onDay 7 as opposed toDay 1 (Figure 6B). These

findings indicate that the six identifiedhub genes could be closely related

to the development of sepsis-induced ARDS in older individuals, with

their expression patterns and alterations potentially having a crucial

impact on disease progression and recovery.
Immune infiltration analysis

To delve deeper into the potential roles of the discovered hub genes

in developing COVID-19 and sepsis, we examined the proportions of

immune cells and their associations with these hub genes in patients

affected by COVID-19 and sepsis. Our results revealed that memory B

cells, CD8+ T cells, and CD4+ memory resting T cells were reduced in

COVID-19, while plasma cells, CD4+ memory activated T cells, and

neutrophils were increased when compared to healthy controls

(Figures 7A, B). Similarly, memory B cells, CD8+ T cells, CD4+

memory resting T cells, and resting NK cells were decreased in

sepsis, while gamma delta T cells, monocytes, M0 macrophages,

activated DCs, and resting mast cells were increased when compared
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to healthy controls (Figures 7C, D). Neutrophil levels were also elevated

in sepsis, although not to a statistically significant extent. Furthermore,

our analysis showed strong associations between multiple immune cell

types, including memory B cells, CD8+ T cells, CD4+ memory resting

T cells, and neutrophils, in both COVID-19 and sepsis (Figures 7E, F).

Specifically, in COVID-19, memory B cells, CD8+ T cells, and CD4+

memory resting T cells were negatively correlated with neutrophils

(Figure 7E). In sepsis, CD8+ T cells and gamma delta T cells were

negatively correlated with neutrophils (Figure 7F).

Subsequently, we employed the Pearson correlation coefficient

to assess the association between immune cell abundance and hub

gene expression in both COVID-19 and sepsis cases. Results

revealed a negative correlation between neutrophils and CD247,

CD2, and KLRB1, and a positive correlation with RETN in both

COVID-19 and sepsis (Figures 8A, B). LCN2 was positively

correlated with neutrophils in COVID-19 but not in sepsis cases

(Figures 8A, B). In sepsis, monocytes were negatively correlated

with CD247, CD2, and CD40LG, while positively correlated with

LCN2 and RETN (Figure 8B). This correlation was weaker in

COVID-19. CD247, CD2, CD40LG, and KLRB1 displayed a

positive correlation with CD8+ T cells and CD4+ T cells in both

COVID-19 and sepsis cases, while LCN2 and RETN showed a

negative correlation (Figures 8A, B). These results demonstrate the

key relationships between immune cells and hub gene expressions,
B

C D

A

FIGURE 2

GO (A, B) and KEGG analysis (C, D) for shared differentially expressed genes in COVID-19 and sepsis. GO and KEGG pathway analyses were
conducted, prioritizing significant functional items and pathways based on a standardized metric (P < 0.05, Q < 0.25).
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highlighting differences and similarities in immune responses

across COVID-19 and sepsis-induced ARDS cases.
Network-based analysis of transcriptional
and post-transcriptional regulators

To elucidate the regulatorymolecules controlling the identified hub

genes (including CD4, CD3E, IL7R, CD5, CD247, CD2, CCR7,

CD40LG, ITK, KLRB1, MPO, MMP9, TLR2, LCN2, and RETN) at

the transcriptional level, we utilized a network-based approach to

identify the key TFs and miRNAs involved. The interaction between

TF regulators and hub genes is depicted in Figure 9, while Figure 10

shows the interactions of miRNA regulators with the hub genes. Our
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analysis revealed a total of 62 TFs and 125 miRNAs that are potentially

involved in regulating the hug genes, indicating a significant interplay

between them. For more detailed information, Tables S5, S6 provide

the regulatory network of target TF-genes and target miRNA-genes, as

well as the topology table.
Identification of potential therapeutic
drug molecules

Protein-drug interaction analysis is critical for understanding the

structural features of receptor sensitivity, which can aid in discovering

new drugs (29). To identify potential therapeutic drugs for COVID-19,

sepsis, and geriatric sepsis-ARDS, we focused on the hub genes
B

A

FIGURE 3

Protein-protein interaction network (A) and hub genes (B) of shared differentially expressed genes in both COVID-19 and sepsis cases. This network underwent
processing and analysis in Cytoscape. Prominent nodes within the network modules were predicted using the CytoHubba plugin to identify hub genes.
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common to these diseases. By utilizing the Enrichr tool and analyzing

transcriptional characteristics from the DSigDB database, we identified

ten candidate compounds. These drugs were selected based on their P-

values and are listed in Table 1. Our findings suggest that these

compounds may have promising therapeutic effects and could serve

as the basis for developing new treatment options for these diseases.
Identification of disease association

The relationship between diseases can be established based on

shared genetic factors, which is a crucial step toward developing

effective treatments for various disorders (30). Using NetworkAnalyst,

we thoroughly examined the associations between our identified hub
Frontiers in Immunology 0832
genes and various disease states. Our analysis revealed that autosomal

recessive predisposition, rheumatoid arthritis, ulcerative colitis, severe

combined immunodeficiency, hepatomegaly, eosinophilia, COVID-19,

and sepsis have the strongest connections with our reported hub genes.

Figure 11 illustrates the gene-disease relationships, highlighting the

potential correlations between these diseases. This emphasizes the

potential impact of these diseases on each other and provides valuable

insight into their complex relationships.
Discussion

The COVID-19 pandemic and sepsis represent significant

public health challenges. The close association between COVID-
B

C

D

E

A

F

FIGURE 4

Validation of hub genes through a mouse model of sepsis-induced ARDS. mRNA expression levels of cytokines, chemokines (A), and hub genes
(B) were assessed in lung tissue homogenates. (C–F) Relevant scatterplots were created to study the relationships between mRNA expression
levels of hub genes and TNF-a, IFN-g, IL-6, KC, and CCL2 in the lungs using Spearman’s rank correlation. (A–F) Data from two experiments were
combined, with a total of n = 10 mice. (A, B) Student’s t-test.
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19 and sepsis is well-established, despite a limited understanding of

the underlying molecular pathways (5, 27). Studies indicate that the

severity of both COVID-19 and sepsis are mutually influenced,

underscoring the need to understand the association between these

conditions (2, 27, 31). Both diseases can cause severe symptoms,

including ARDS, organ damage, immune system dysregulation, and

long-term complications. Recent research indicates a genetic

correlation between COVID-19 and sepsis, supporting that they

share a common underlying biological mechanism (31, 32). Older

adults are particularly vulnerable to COVID-19 and sepsis,

experiencing higher rates of complications and case fatality (3, 6).

Therefore, understanding the association between these conditions

is crucial for improving treatment strategies, especially for geriatric

patients with sepsis-induced ARDS.

Identifying common genetic pathways between COVID-19 and

sepsis provides valuable insights into the underlying mechanisms of

both illnesses. Our study identified 189 common DEGs in COVID-

19 and sepsis, significantly enriched in defense response to fungus,

specific granule lumen, MHC class II receptor activity, and various

signaling pathways. Fungal infections are a risk factor for sepsis and

COVID-19, and gene expression differences in sepsis are involved

in the defense response to fungus (33). The lumen of specific

granules, predominantly present in mature neutrophils, may hold

considerable importance in modulating COVID-19 and sepsis (32),

while MHC class II receptors instigate the immune response and

serve as a vaccine target (34). Manipulation of MHC class II

expression or signaling presents a potential therapeutic strategy

for ameliorating outcomes in COVID-19 and sepsis. Further

inquiry is merited to explicate the direct association between

specific granule lumen/MHC class II receptor activity and these
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afflictions, as well as to corroborate the prospective therapeutic

approaches intimated by our findings.

KEGG pathway analysis revealed several shared pathways

between sepsis and COVID-19, including asthma, inflammatory

bowel disease (IBD), hematopoietic cell lineage, intestinal immune

network for IgA production, legionellosis, staphylococcus aureus

infection, leishmaniasis, Th1 and Th2 cell differentiation, systemic

lupus erythematosus, and cytokine-cytokine receptor interactions.

We and others have shown a strong relationship between COVID-

19 and asthma, and further connections have been established

between COVID-19, asthma, and legionellosis (35, 36). IBD,

COVID-19, and sepsis share a link to the gut microbiota, which

is a critical factor in regulating the host’s susceptibility to SARS-

CoV-2 infection and clearance (37, 38). The gut microbiota

also impacts the host’s response and tolerance to treatment

drugs for IBD and sepsis (38, 39). Identifying and understanding

these common pathways can provide valuable insights into

potential therapeutic targets and strategies for COVID-19 and

sepsis management.

We have identified top hub genes (CD4, CD3E, IL7R, CD5,

CD247, CD2, CCR7, CD40LG, ITK, KLRB1, MPO, MMP9, TLR2,

LCN2, and RETN) associated with both sepsis and COVID-19.

These hub genes may serve as important therapeutic targets or

biomarkers for both diseases. In particular, the upregulation of

MPO, MMP9, TLR2, and LCN2 in the lungs of sepsis-induced

ARDS mice suggests their crucial role in developing lung injury in

COVID-19 and sepsis. Positive correlations between MPO, TLR2,

LCN2, TNF-a, and IL-6 also suggest their potential as targets for

reducing inflammation and lung injury in these diseases. TLR2 has

been shown to sense the SARS-CoV-2 envelope protein, leading to
B

A

FIGURE 5

Validation of hub genes in elderly sepsis-induced ARDS. (A) mRNA expression levels of the identified hub genes and chemokine (KC) were evaluated
in PBMCs. n = 15–17. Student’s t-test and Mann-Whitney test. (B) Appropriate scatterplots were generated to investigate the association between
mRNA expression levels of hub genes and KC in PBMCs utilizing Spearman’s rank correlation coefficient (R).
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the production of inflammatory cytokines (40). In addition, MPO

and LCN2 have been identified as critical genes in sepsis and sepsis-

related ARDS, with LCN2 showing diagnostic value in sepsis-

related ARDS (41).

In contrast, negative correlations observed between CD2 and

IFN-g, and between CD40LG and IL-6, as well as the downregulation

of CD247, CD2, CD40LG, KLRB1, and RETN in the lungs of sepsis-

induced ARDS mice, suggest their potential role in modulating the

immune response and reducing inflammation in COVID-19 and

sepsis. Bioinformatics and meta-analysis have identified CD247 as a

critical gene for septic shock, making it a promising candidate for

becoming a new biomarker for this condition (42).
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Moreover, in elderly sepsis-induced ARDS patients compared to

controls, we observed a significant decrease in CD4, CD3e, IL-7R,

CD5, CD247, CD2, CD40LG, ITK, and KLRB1 gene expression levels,

and a substantial elevation of MMP9, LCN2, and RETN, indicating

their potential as targeted biomarkers for predicting COVID-19 and

sepsis-induced ARDS in elderly patients. The negative correlations

between CD3, CD247, CD2, CD40LG, and the positive correlations

between MMP-9 and LCN2, and RETN with KC suggest their

potential role in regulating neutrophil recruitment to the lung and

modulating lung injury in these diseases. LCN2 and RETN are

proteins produced by neutrophils and stored in their secondary

granules, which are released upon neutrophil activation (43).
B

A

FIGURE 6

Identification of key PBMC populations expressing hub genes in aged sepsis-induced ARDS. (A) Detection of the primary PBMC cell population
expressing hub genes in patients with elderly ARDS using scRNA-seq. (B) Differential expression of selected hub genes in various PBMC cell
populations throughout disease progression. (A, B) Student’s t-test and Mann-Whitney test.
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In the multifaceted pathogenesis of COVID-19 and sepsis-

induced ARDS, the uncontrolled activation and subsequent

degranulation of neutrophils are central (44, 45). These key cells

in the innate immune response can, when dysregulated, release

excessive granules containing proteolytic enzymes and reactive

oxygen species, leading to substantial cytotoxicity (45, 46). This

process damages the lung’s alveolar epithelial cells and disrupts the

extracellular matrix, contributing to endothelial barrier dysfunction

(46). Simultaneously, the release of inflammatory mediators like

cytokines and chemokines can amplify the inflammatory response

into a “cytokine storm,” potentially causing systemic inflammation

that affects multiple organs (28, 44, 45, 47). Hence, our findings

offer new insights into the molecular mechanisms underlying

COVID-19 and sepsis-induced ARDS and suggest CD3, CD247,

CD2, CD40LG MMP-9, LCN2, and RETN as the potential targets

for neutrophils in developing novel therapies and diagnostic tools

for these diseases.
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By conducting scRNA-seq of PBMCs from elderly patients

with sepsis-induced ARDS, we obtained further evidence for the

role of hub genes in the pathogenesis of these conditions. The

expression patterns and changes of these genes may play a crucial

role in the disease’s progression and recovery. Moreover, the

analysis of immune infiltration indicated changes in immune cell

proportions in COVID-19 and sepsis compared to healthy controls,

with strong associations found between multiple immune cell

types and hub genes. These findings provide valuable insights

into the relationships between immune cells and hub gene

expressions, highlighting similarities and differences in immune

responses across COVID-19 and sepsis-induced ARDS cases.

However, further research is necessary to validate the potential

of these identified hub genes as targeted biomarkers for

these conditions.

At the molecular level, we observed significant connections

between COVID-19 and sepsis, particularly in the context of TFs
B

C D

E F

A

FIGURE 7

Analysis of the immune infiltration levels in the COVID-19 and sepsis. The ratio of immune cells in COVID-19 (A, B) and sepsis (C, D) were analyzed
using CIBERSORT. The relationship between each immune cell for COVID-19 (E) and Sepsis (F). (B, D) Student’s t-test. (E, F) Spearman.
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and miRNAs. Both TFs and miRNAs play crucial roles in regulating

gene expression, with TFs modulating mRNA expression and

miRNAs acting post-transcriptionally via RNA silencing (30, 35).

The identified TFs, including GATA3, STAT1, IRF2, NFKB1,

RELA, and FOXC1, and miRNAs, such as hsa-mir-335-5p, hsa-

mir-4505, hsa-mir-143-3p, hsa-miR-26b-5p, and hsa-miR-146a-5p,

are associated with a range of respiratory diseases, including

asthma, ARDS, and pulmonary fibrosis, as well as the

pathogenesis and exacerbation of sepsis and COVID-19 (32, 35,

48–50). Intriguingly, many of these miRNAs have also been

implicated in various types of cancer, including lung and gastric

cancer (32, 35, 51).

Our gene-disease analysis further revealed relationships

between identified hub genes and various disorders, including
Frontiers in Immunology 1236
COVID-19 and sepsis. A notable finding is the identification of

several genes related to severe combined immunodeficiency (SCID).

Patients with SCID may be more susceptible to COVID-19,

highlighting the need for additional preventive and therapeutic

measures for this vulnerable population (52). Due to limited data,

the safety and efficacy of COVID-19 vaccines for SCID patients

remain uncertain. Moreover, our results suggest that individuals

with COVID-19 and sepsis may also be affected by other disorders

such as autosomal recessive predisposition, rheumatoid arthritis,

ulcerative colitis, hepatomegaly, and eosinophilia.

We have also identified potential drug molecules with

therapeutic value for COVID-19, sepsis, and geriatric sepsis-

induced ARDS. Among them are several compounds with

immunomodulatory effects, such as Etynodiol, Glycoprotein, and
B

A

FIGURE 8

The connection between immune cells and hub genes in COVID-19 (A) and sepsis (B). The association between the two factors was assessed
employing Spearman’s rank correlation coefficient.
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Vitamin D3, which may represent promising treatment options by

modulating the immune response in affected patients.

Diphenylpyraline, an antihistamine drug, may offer a therapeutic

effect on COVID-19 and sepsis by affecting cytokine transport and

release. Corticosteroids, including Alclometasone, Isoflupredone,

and Fludroxycortide, commonly used for skin inflammation (53),

can potentially suppress an overactive immune system in COVID-
Frontiers in Immunology 1337
19 or sepsis, thereby reducing inflammation and mortality risk. It is

important to note, however, that not all corticosteroids are suitable

for these patients, and the World Health Organization currently

recommends dexamethasone or hydrocortisone for severe or

critical patients with COVID-19. While Alclometasone,

Isoflupredone, and Fludroxycortide may hold promise as

treatments for COVID-19 and sepsis, there is insufficient
FIGURE 9

The Network Analyst produced a regulatory interaction network linking DEGs and Transcription Factors (TFs). In this network, purple nodes represent
TFs, while green nodes illustrate the connections between gene symbols and TFs.
FIGURE 10

The displayed regulatory interaction network emphasizes the interconnectivity of DEGs and microRNAs. Within this network, blue circular nodes
symbolize genes that interact with microRNAs.
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TABLE 1 The recommended medications.

Name P-value Chemical Formula Structure

Etynodiol 3.70E-10

C20H28O2

Diphenylpyraline 6.99E-08

C19H23NO

Trimethoprim 2.83E-07

C14H18N4O3

Tetradioxin 6.23E-07

C12H4Cl4O2

Alclometasone 7.09E-7

C22H29ClO5

Isoflupredone 1.41E-6

C21H27FO5

Glycoprotein 1.91E-06

C28H47N5O18

Vitamin D3 3.81E-06

C27H44O

Fludroxycortide 5.88E-06

C24H33FO6
F
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evidence to support their efficacy in these conditions. Further

research is necessary to determine their effectiveness and safety in

treating these diseases.

While revealing preliminary insights, this study has key

limitations. Our bioinformatic findings require rigorous validation

through conditional knockout and pharmacological testing to move

from correlation to causation and assess clinical viability. The

speculative therapeutic targets need extensive experimental

characterization for safety and efficacy before consideration for

treatments. Additionally, our focus on expression overlooks

determinants like post-translational modifications, necessitating a

comprehensive systems perspective. Critically, we lacked access to

facilities for SARS-CoV-2 animal models and clinical samples

collection, preventing experimental validation and highlighting

the need for expanded biosafety infrastructure to enable

COVID-19 research. Overall, these results should be interpreted

as early findings that point to future research directions rather than

definitive conclusions. Our study elucidates pathways and

biomarkers but requires meticulous in vitro and in vivo follow-up

to transition these leads into viable diagnostic and therapeutic

approaches for managing sepsis and ARDS amidst the

COVID-19 pandemic.
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Conclusion

In conclusion, this investigation provides preliminary insights into

the possible genetic links between COVID-19, sepsis, and geriatric

sepsis-induced ARDS, suggesting potential biomarkers and therapeutic

targets for these complex conditions. While the study offers a

foundation for exploring innovative immunomodulatory therapies

and pharmaceutical compounds, it is important to recognize that

these findings are initial and require extensive further research. The

targeting of the identified biomarkers and the utilization of suggested

drug candidates could represent a promising direction in the efforts to

improve patient outcomes for COVID-19 and sepsis/sepsis-ARDS,

particularly in the elderly population. However, this must be

approached with caution, as further exploration and rigorous

validation are necessary to confirm the safety and efficacy of these

potential therapeutic interventions. Ultimately, this study contributes

to our evolving understanding of the intricate interplay between the

immune system, genetics, and the pathogenesis of COVID-19 and

sepsis/sepsis-ARDS. It is a stepping stone rather than a definitive

solution, and it highlights the need for continued, comprehensive

research to pave the way for more effective and validated treatment

strategies in the future.
FIGURE 11

Gene-disease connection network. Square nodes symbolize diseases, and circular nodes indicate gene symbols interacting with the associated disease.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1257834
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qian et al. 10.3389/fimmu.2023.1257834
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found below: GSE242127 (GEO- https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE242127).
Ethics statement

The studies involvinghumanswere approved byEthicsCommittees

of ZhongshanHospital. The studies were conducted in accordance with

the local legislation and institutional requirements. The participants

provided their written informed consent to participate in this study. The

animal study was approved by Committee of Animal Experiments at

GuangzhouMedicalUniversity.The studywas conducted inaccordance

with the local legislation and institutional requirements.
Author contributions

GQ: Conceptualization, Data curation, Formal Analysis,

Investigation, Methodology, Validation, Visualization,

Writing – original draft. HWF: Data curation, Formal Analysis,

Investigation, Methodology, Validation, Writing – original

draft. AC: Data curation, Formal Analysis, Investigation,

Methodology, Writing – original draft. ZS: Data curation,

Investigation, Methodology, Writing – original draft. MH:

Investigation, Methodology, Writing – original draft .

ML: Investigation, Methodology, Writing – original draft.

EC: Investigation, Methodology, Writing – original draft. SZ:

Conceptualization, Funding acquisition, Supervision, Writing –

review & editing. XW: Conceptualization, Supervision, Writing –

original draft, Writing – review & editing. HF: Conceptualization,

Funding acquisition, Supervision, Writing – review & editing.
Funding

The authors declare financial support was received for the

research, authorship, and/or publication of this article. This
Frontiers in Immunology 1640
research was funded by contributions from the Guangzhou

Science and Technology Plan Projects, China (grant number

2023A04J0595 for GQ), the National Natural Science Foundation

of China (grant numbers 81971863 and 82272230 for HF), the

Natural Science Foundation of Shanghai, China (grant number

22ZR1444700 for HF), and the Science and Technology Research

Project of Song jiang District, China (2017sjkjgg24 for SZ).
Acknowledgments

We would like to express our sincere appreciation to the

individuals who generously donated their samples for this study

and to the GEO database for providing access to its platform. We

thank Dr. Jinyuan Zhang and Dr. Kui Chen for providing valuable

advice and suggestions for this study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1257834/

full#supplementary-material
References
1. van der Poll T, Shankar-Hari M, Wiersinga WJ. The immunology of sepsis.
Immunity (2021) 54:2450–64. doi: 10.1016/j.immuni.2021.10.012

2. Karakike E, Giamarellos-Bourboulis EJ, Kyprianou M, Fleischmann-Struzek C,
Pletz MW, Netea MG, et al. Coronavirus disease 2019 as cause of viral sepsis: A
systematic review and meta-analysis. Crit Care Med (2021) 49:2042–57. doi: 10.1097/
CCM.0000000000005195

3. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global,
regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global
Burden of Disease Study. Lancet (2020) 395:200–11. doi: 10.1016/S0140-6736(19)32989-7

4. Olwal CO, Nganyewo NN, Tapela K, Djomkam Zune AL, Owoicho O, Bediako Y,
et al. Parallels in sepsis and COVID-19 conditions: implications for managing severe
COVID-19. Front Immunol (2021) 12:602848. doi: 10.3389/fimmu.2021.602848
5. Beltran-Garcia J, Osca-Verdegal R, Pallardo FV, Ferreres J, Rodriguez M, Mulet S,
et al. Sepsis and coronavirus disease 2019: common features and anti-inflammatory
therapeutic approaches. Crit Care Med (2020) 48:1841–4. doi: 10.1097/
CCM.0000000000004625

6. Chen Y, Klein SL, Garibaldi BT, Li H, Wu C, Osevala NM, et al. Aging in COVID-
19: Vulnerability, immunity and intervention. Ageing Res Rev (2021) 65:101205.
doi: 10.1016/j.arr.2020.101205

7. Liu Y, Mao B, Liang S, Yang JW, Lu HW, Chai YH, et al. Association between age
and clinical characteristics and outcomes of COVID-19. Eur Respir J (2020) 55
(5):2001112. doi: 10.1183/13993003.01112-2020

8. Kingren MS, Starr ME, Saito H. Divergent sepsis pathophysiology in older adults.
Antioxid Redox Signal (2021) 35:1358–75. doi: 10.1089/ars.2021.0056
frontiersin.org

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE242127
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE242127
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1257834/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1257834/full#supplementary-material
https://doi.org/10.1016/j.immuni.2021.10.012
https://doi.org/10.1097/CCM.0000000000005195
https://doi.org/10.1097/CCM.0000000000005195
https://doi.org/10.1016/S0140-6736(19)32989-7
https://doi.org/10.3389/fimmu.2021.602848
https://doi.org/10.1097/CCM.0000000000004625
https://doi.org/10.1097/CCM.0000000000004625
https://doi.org/10.1016/j.arr.2020.101205
https://doi.org/10.1183/13993003.01112-2020
https://doi.org/10.1089/ars.2021.0056
https://doi.org/10.3389/fimmu.2023.1257834
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qian et al. 10.3389/fimmu.2023.1257834
9. Ferguson ND, Fan E, Camporota L, Antonelli M, Anzueto A, Beale R, et al. The
Berlin definition of ARDS: an expanded rationale, justification, and supplementary
material. Intensive Care Med (2012) 38:1573–82. doi: 10.1007/s00134-012-2682-1

10. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M,
et al. The third international consensus definitions for sepsis and septic shock (Sepsis-
3). JAMA (2016) 315:801–10. doi: 10.1001/jama.2016.0287

11. Levy Y, Wiedemann A, Hejblum BP, Durand M, Lefebvre C, Surenaud M, et al.
CD177, a specific marker of neutrophil activation, is associated with coronavirus
disease 2019 severity and death. iScience (2021) 24:102711. doi: 10.1016/
j.isci.2021.102711

12. Bardou P, Mariette J, Escudie F, Djemiel C, Klopp C. jvenn: an interactive Venn
diagram viewer. BMC Bioinf (2014) 15:293. doi: 10.1186/1471-2105-15-293

13. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al.
STRING v11: protein-protein association networks with increased coverage,
supporting functional discovery in genome-wide experimental datasets. Nucleic Acids
Res (2019) 47:D607–13. doi: 10.1093/nar/gky1131

14. Xia J, Gill EE, Hancock RE. NetworkAnalyst for statistical, visual and network-
based meta-analysis of gene expression data. Nat Protoc (2015) 10:823–44.
doi: 10.1038/nprot.2015.052

15. Sethupathy P, Corda B, Hatzigeorgiou AG. TarBase: A comprehensive database
of experimentally supported animal microRNA targets. RNA (2006) 12:192–7.
doi: 10.1261/rna.2239606

16. Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, et al. miRTarBase: a
database curates experimentally validated microRNA-target interactions. Nucleic Acids
Res (2011) 39:D163–169. doi: 10.1093/nar/gkq1107

17. Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee
R, et al. JASPAR 2018: update of the open-access database of transcription factor
binding profiles and its web framework. Nucleic Acids Res (2018) 46:D260–6.
doi: 10.1093/nar/gkx1126

18. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods (2015)
12:453–7. doi: 10.1038/nmeth.3337

19. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al.
Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic
Acids Res (2016) 44:W90–97. doi: 10.1093/nar/gkw377

20. Yoo M, Shin J, Kim J, Ryall KA, Lee K, Lee S, et al. DSigDB: drug signatures
database for gene set analysis. Bioinformatics (2015) 31:3069–71. doi: 10.1093/
bioinformatics/btv313

21. Pinero J, Ramirez-Anguita JM, Sauch-Pitarch J, Ronzano F, Centeno E, Sanz F,
et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic
Acids Res (2020) 48:D845–55. doi: 10.1093/nar/gkz1021

22. Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J. NetworkAnalyst 3.0: a
visual analytics platform for comprehensive gene expression profiling and meta-
analysis. Nucleic Acids Res (2019) 47:W234–41. doi: 10.1093/nar/gkz240

23. Aeffner F, Bolon B, Davis IC. Mouse models of acute respiratory distress
syndrome: A review of analytical approaches, pathologic features, and common
measurements. Toxicol Pathol (2015) 43:1074–92. doi: 10.1177/0192623315598399

24. Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA. Immunodesign of
experimental sepsis by cecal ligation and puncture. Nat Protoc (2009) 4:31–6.
doi: 10.1038/nprot.2008.214

25. Thomas PD, Hill DP, Mi H, Osumi-Sutherland D, Van Auken K, Carbon S, et al.
Gene Ontology Causal Activity Modeling (GO-CAM) moves beyond GO annotations
to structured descriptions of biological functions and systems. Nat Genet (2019)
51:1429–33. doi: 10.1038/s41588-019-0500-1

26. Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, et al.
Synergism of TNF-alpha and IFN-gamma triggers inflammatory cell death, tissue
damage, and mortality in SARS-coV-2 infection and cytokine shock syndromes. Cell
(2021) 184:149–68 e117. doi: 10.1016/j.cell.2020.11.025

27. Wilson JG, Simpson LJ, Ferreira AM, Rustagi A, Roque J, Asuni A, et al.
Cytokine profile in plasma of severe COVID-19 does not differ from ARDS and sepsis.
JCI Insight (2020) 5(17):e140289. doi: 10.1172/jci.insight.140289

28. Schultze JL, Aschenbrenner AC. COVID-19 and the human innate immune
system. Cell (2021) 184:1671–92. doi: 10.1016/j.cell.2021.02.029

29. Mahmud SMH, ChenW,Meng H, Jahan H, Liu Y, Hasan SMM. Prediction of drug-
target interaction based on protein features using undersampling and feature selection
techniques with boosting. Anal Biochem (2020) 589:113507. doi: 10.1016/j.ab.2019.113507

30. Nashiry A, Sarmin Sumi S, Islam S, Quinn JMW, Moni MA. Bioinformatics and
system biology approach to identify the influences of COVID-19 on cardiovascular and
hypertensive comorbidities. Brief Bioinform (2021) 22:1387–401. doi: 10.1093/bib/bbaa426
Frontiers in Immunology 1741
31. Liu N, Jiang C, Cai P, Shen Z, Sun W, Xu H, et al. Single-cell analysis of COVID-
19, sepsis, and HIV infection reveals hyperinflammatory and immunosuppressive
signatures in monocytes. Cell Rep (2021) 37:109793. doi: 10.1016/j.celrep.2021.109793

32. Lu L, Liu LP, Gui R, Dong H, Su YR, Zhou XH, et al. Discovering common
pathogenetic processes between COVID-19 and sepsis by bioinformatics and system
biology approach. Front Immunol (2022) 13:975848. doi: 10.3389/fimmu.2022.975848

33. Hoenigl M, Seidel D, Sprute R, Cunha C, Oliverio M, Goldman GH, et al.
COVID-19-associated fungal infections. Nat Microbiol (2022) 7:1127–40. doi: 10.1038/
s41564-022-01172-2

34. Esposito I, Cicconi P, D’Alise AM, Brown A, Esposito M, Swadling L, et al. MHC
class II invariant chain-adjuvanted viral vectored vaccines enhances T cell responses in
humans. Sci Transl Med (2020) 12(548):eaaz7715. doi: 10.1126/scitranslmed.aaz7715

35. Fang H, Sun Z, Chen Z, Chen A, Sun D, Kong Y, et al. Bioinformatics and
systems-biology analysis to determine the effects of Coronavirus disease 2019 on
patients with allergic asthma. Front Immunol (2022) 13:988479. doi: 10.3389/
fimmu.2022.988479

36. Adir Y, Saliba W, Beurnier A, Humbert M. Asthma and COVID-19: an update.
Eur Respir Rev (2021) 30(162):210152. doi: 10.1183/16000617.0152-2021

37. Yeoh YK, Zuo T, Lui GC, Zhang F, Liu Q, Li AY, et al. Gut microbiota
composition reflects disease severity and dysfunctional immune responses in patients
with COVID-19. Gut (2021) 70:698–706. doi: 10.1136/gutjnl-2020-323020

38. Ni J, Wu GD, Albenberg L, Tomov VT. Gut microbiota and IBD: causation or
correlation? Nat Rev Gastroenterol Hepatol (2017) 14:573–84. doi: 10.1038/
nrgastro.2017.88

39. Haak BW, Wiersinga WJ. The role of the gut microbiota in sepsis. Lancet
Gastroenterol Hepatol (2017) 2:135–43. doi: 10.1016/S2468-1253(16)30119-4

40. Zheng M, Karki R, Williams EP, Yang D, Fitzpatrick E, Vogel P, et al. TLR2
senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat
Immunol (2021) 22:829–38. doi: 10.1038/s41590-021-00937-x

41. Gong F, Li R, Zheng X, Chen W, Zheng Y, Yang Z, et al. OLFM4 regulates lung
epithelial cell function in sepsis-associated ARDS/ALI via LDHA-mediated NF-kappaB
signaling. J Inflammation Res (2021) 14:7035–51. doi: 10.2147/JIR.S335915

42. Jiang Y, Miao Q, Hu L, Zhou T, Hu Y, Tian Y. FYN and CD247: key genes for
septic shock based on bioinformatics and meta-analysis. Comb Chem High Throughput
Screen (2022) 25:1722–30. doi: 10.2174/1386207324666210816123508

43. Meizlish ML, Pine AB, Bishai JD, Goshua G, Nadelmann ER, Simonov M, et al.
A neutrophil activation signature predicts critical illness and mortality in COVID-19.
Blood Adv (2021) 5:1164–77. doi: 10.1182/bloodadvances.2020003568

44. Li J, Zhang K, Zhang Y, Gu Z, Huang C. Neutrophils in COVID-19: recent
insights and advances. Virol J (2023) 20:169. doi: 10.1186/s12985-023-02116-w

45. Kwok AJ, Allcock A, Ferreira RC, Cano-Gamez E, Smee M, Burnham KL, et al.
Neutrophils and emergency granulopoiesis drive immune suppression and an extreme
response endotype during sepsis. Nat Immunol (2023) 24:767–79. doi: 10.1038/s41590-
023-01490-5

46. McKenna E, Wubben R, Isaza-Correa JM, Melo AM, Mhaonaigh AU, Conlon N,
et al. Neutrophils in COVID-19: not innocent bystanders. Front Immunol (2022)
13:864387. doi: 10.3389/fimmu.2022.864387

47. LaSalle TJ, Gonye ALK, Freeman SS, Kaplonek P, Gushterova I, Kays KR, et al.
Longitudinal characterization of circulating neutrophils uncovers phenotypes
associated with severity in hospitalized COVID-19 patients. Cell Rep Med (2022)
3:100779. doi: 10.1016/j.xcrm.2022.100779

48. Wang Y, Li H, Shi Y, Wang S, Xu Y, Li H, et al. miR-143-3p impacts on
pulmonary inflammatory factors and cell apoptosis in mice with mycoplasmal
pneumonia by regulating TLR4/MyD88/NF-kappaB pathway. Biosci Rep (2020) 40
(7):BSR20193419. doi: 10.1042/BSR20193419

49. Zhang Z, Chen L, Xu P, Xing L, Hong Y, Chen P. Gene correlation network
analysis to identify regulatory factors in sepsis. J Transl Med (2020) 18:381.
doi: 10.1186/s12967-020-02561-z

50. Zhang X, Chen Y, Wang L, Kang Q, Yu G, Wan X, et al. MiR-4505 aggravates
lipopolysaccharide-induced vascular endothelial injury by targeting heat shock protein
A12B. Mol Med Rep (2018) 17:1389–95. doi: 10.3892/mmr.2017.7936

51. Liu W, Ying N, Rao X, Chen X. MiR-942-3p as a potential prognostic marker of
gastric cancer associated with AR and MAPK/ERK signaling pathway. Curr Issues Mol
Biol (2022) 44:3835–48. doi: 10.3390/cimb44090263

52. Slatter MA, Gennery AR. Advances in the treatment of severe combined
immunodeficiency. Clin Immunol (2022) 242:109084. doi: 10.1016/j.clim.2022.109084

53. Stacey SK, McEleney M. Topical corticosteroids: choice and application. Am
Fam Physician (2021) 103:337–43.
frontiersin.org

https://doi.org/10.1007/s00134-012-2682-1
https://doi.org/10.1001/jama.2016.0287
https://doi.org/10.1016/j.isci.2021.102711
https://doi.org/10.1016/j.isci.2021.102711
https://doi.org/10.1186/1471-2105-15-293
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1038/nprot.2015.052
https://doi.org/10.1261/rna.2239606
https://doi.org/10.1093/nar/gkq1107
https://doi.org/10.1093/nar/gkx1126
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1093/nar/gkw377
https://doi.org/10.1093/bioinformatics/btv313
https://doi.org/10.1093/bioinformatics/btv313
https://doi.org/10.1093/nar/gkz1021
https://doi.org/10.1093/nar/gkz240
https://doi.org/10.1177/0192623315598399
https://doi.org/10.1038/nprot.2008.214
https://doi.org/10.1038/s41588-019-0500-1
https://doi.org/10.1016/j.cell.2020.11.025
https://doi.org/10.1172/jci.insight.140289
https://doi.org/10.1016/j.cell.2021.02.029
https://doi.org/10.1016/j.ab.2019.113507
https://doi.org/10.1093/bib/bbaa426
https://doi.org/10.1016/j.celrep.2021.109793
https://doi.org/10.3389/fimmu.2022.975848
https://doi.org/10.1038/s41564-022-01172-2
https://doi.org/10.1038/s41564-022-01172-2
https://doi.org/10.1126/scitranslmed.aaz7715
https://doi.org/10.3389/fimmu.2022.988479
https://doi.org/10.3389/fimmu.2022.988479
https://doi.org/10.1183/16000617.0152-2021
https://doi.org/10.1136/gutjnl-2020-323020
https://doi.org/10.1038/nrgastro.2017.88
https://doi.org/10.1038/nrgastro.2017.88
https://doi.org/10.1016/S2468-1253(16)30119-4
https://doi.org/10.1038/s41590-021-00937-x
https://doi.org/10.2147/JIR.S335915
https://doi.org/10.2174/1386207324666210816123508
https://doi.org/10.1182/bloodadvances.2020003568
https://doi.org/10.1186/s12985-023-02116-w
https://doi.org/10.1038/s41590-023-01490-5
https://doi.org/10.1038/s41590-023-01490-5
https://doi.org/10.3389/fimmu.2022.864387
https://doi.org/10.1016/j.xcrm.2022.100779
https://doi.org/10.1042/BSR20193419
https://doi.org/10.1186/s12967-020-02561-z
https://doi.org/10.3892/mmr.2017.7936
https://doi.org/10.3390/cimb44090263
https://doi.org/10.1016/j.clim.2022.109084
https://doi.org/10.3389/fimmu.2023.1257834
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TYPE Review

PUBLISHED 11 January 2024

DOI 10.3389/frai.2023.1292466

OPEN ACCESS

EDITED BY

Kezhi Li,

University College London, United Kingdom

REVIEWED BY

Robert Leaman,

National Library of Medicine (NIH),

United States

Pietro Pinoli,

Polytechnic University of Milan, Italy

*CORRESPONDENCE

Alessia Amelio

alessia.amelio@unich.it

RECEIVED 11 September 2023

ACCEPTED 26 December 2023

PUBLISHED 11 January 2024

CITATION

Ahmad I, Amelio A, Merla A and Scozzari F

(2024) A survey on the role of artificial

intelligence in managing Long COVID.

Front. Artif. Intell. 6:1292466.

doi: 10.3389/frai.2023.1292466

COPYRIGHT

© 2024 Ahmad, Amelio, Merla and Scozzari.

This is an open-access article distributed under

the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

A survey on the role of artificial
intelligence in managing Long
COVID

Ijaz Ahmad1, Alessia Amelio2*, Arcangelo Merla2 and

Francesca Scozzari3

1Department of Human, Legal and Economic Sciences, Telematic University “Leonardo da Vinci”, Chieti,

Italy, 2Department of Engineering and Geology, University “G. d’Annunzio” Chieti-Pescara, Pescara, Italy,
3Laboratory of Computational Logic and Artificial Intelligence, Department of Economic Studies,

University “G. d’Annunzio” Chieti-Pescara, Pescara, Italy

In the last years, several techniques of artificial intelligence have been applied

to data from COVID-19. In addition to the symptoms related to COVID-19,

many individuals with SARS-CoV-2 infection have described various long-lasting

symptoms, now termed Long COVID. In this context, artificial intelligence

techniques have been utilized to analyze data from Long COVID patients

in order to assist doctors and alleviate the considerable strain on care and

rehabilitation facilities. In this paper, we explore the impact of themachine learning

methodologies that have been applied to analyze themany aspects of LongCOVID

syndrome, from clinical presentation through diagnosis. We also include the text

mining techniques used to extract insights and trends from large amounts of text

data related to Long COVID. Finally, we critically compare the various approaches

and outline the work that has to be done to create a robust artificial intelligence

approach for e�cient diagnosis and treatment of Long COVID.

KEYWORDS

artificial intelligence, deep learning, machine learning, Long COVID, post-acute sequelae

of SARS CoV-2 infection, PASC

1 Introduction

Patients that have been infected with the SARS-CoV-2 virus can experience persistent

and long-term effects known as Long COVID (Callard and Perego, 2021; Cau et al., 2022).

Long COVID is known by several terms, such as post-COVID conditions, long-haul COVID,

post-acute COVID-19, and the prolonged effects of COVID (Fernández-de Las-Peñas et al.,

2021). Moreover, post-acute sequelae of SARS CoV-2 infection (PASC) (Pfaff et al., 2022) is

also adopted as an alternative term for Long COVID.

Patients experiencing Long COVID reported multiple post-COVID symptoms affecting

different organs/systems (Davis et al., 2023). Figure 1 illustrates the multiple organs on

which the Long COVID has effects. The virus can also have adverse effects causing sections of

the immune system to become overactive and causing damaging inflammation throughout

the body (Marshall, 2020).

The variety of potential symptoms and problems encountered by patients with Long

COVID highlights the need for a deeper knowledge of the condition’s clinical course.

The most frequently reported symptoms of Long COVID that affect different organs are

described in Table 1.

The study of the prevalence, duration, and clinical outcomes of Long COVID is

still under investigation (Walia et al., 2021). The scope and complexity of healthcare

data require advanced analytics to derive meaningful insights from longitudinal data
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FIGURE 1

Mindmap illustrating the di�erent organ systems on which the Long COVID has e�ects (Davis et al., 2023).

TABLE 1 Overview of Long COVID’s e�ects and diverse pathologies across multiple organs (Davis et al., 2023).

Organ/system Associated symptoms and pathologies

Lungs Cough, dyspnoea, abnormal gas exchange

Heart Chest pain, palpitations, cardiac impairment, myocardial inflammation, POTS

Kidneys, spleen, liver, pancreas Organ injury

Immune system Autoimmunity, MCAS

Gastrointestinal tract Abdominal pain, nausea, gut dysbiosis, viral persistence and viral reservoir

Neurological system Cognitive impairment, fatigue, disordered sleep, memory loss, tinnitus, dysautonomia, ME/CFS, neuroinflammation, reduced

cerebral blood flow, small fiber neuropathy

Blood vessels Fatigue, coagulopathy, deep vein thrombosis, endothelial dysfunction, microangiopathy, microclots, pulmonary embolism, stroke

Reproductive system Erectile dysfunction, more severe and frequent premenstrual symptoms, irregular menstruation, reduced sperm count

encompassing symptoms, laboratory results, imaging, functional

assessments, genomic information, data from wearable sensors,

mobile health applications, clinicians’ notes, and electronic

health records (EHR). Artificial intelligence (AI) and machine

learning (ML) techniques increasingly show the potential to bring

insight into patient-level data from massive amounts of data to

comprehend the effect of SARS-CoV-2 on patients. Techniques of

AI have been largely exploited for analyzing COVID-19 data [see
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for instance (Nayak et al., 2021)] but only a few works explore the

trend patterns for Long COVID.

There is also an immediate need for enhanced care techniques

that are more integrated to improve patient’s clinical outcomes.

These approaches would support and treat patients who have

Long COVID establishing resilient healthcare systems to deliver

efficient and effective responses to upcoming health challenges

(Aiyegbusi et al., 2021). The deployment of AI can significantly

improve everyday clinical practice (Recht et al., 2020) by answering

physician inquiries concerning risk classification and the clinical

outcome of COVID-19 patients. In fact, clinicians are faced with

limited options as the existing diagnostic tools and therapeutics

for Long COVID are still in the experimental stage, while early

diagnosis and treatment would be crucial for improving patient

outcomes. In this context, AI approaches would be helpful to

automatize complex tasks that could hardly be produced manually.

In this survey, we consider data coming from symptoms,

laboratory data and data from EHR on Long COVID. We

specifically collect and analyze papers using AI techniques applied

to Long COVID.

In the first part of the survey, we analyze ML techniques,

such as Extreme Gradient Boosting (XGBoost), random forest,

and Convolutional Neural Network (CNN), for predicting the

prevalence of Long COVID and identifying the associated risk

factors. Most of the papers in the literature perform a binary

classification, and only a few works deal with predicting risk

factors using regression methods, identifying blood proteins

for Long COVID detection, and deriving Long COVID

subphenotypes. The datasets employed comprise COVID-19

datasets, such as the National COVID Cohort Collaborative’s

(N3C) repository (Haendel et al., 2021), collections of surveys

and health administrative data, laboratory data and patients’

demographics comorbidities.

In the second part of the survey, we analyze natural language

processing (NLP) approaches on textual data discussing Long

COVID. In most cases, data are collected from Twitter, blogs, and

clinical notes. Adopted approaches are mainly based on BERT

models, topic modeling techniques, and association rule mining.

The aim in these cases is to identify Long COVID symptoms and

their co-occurrences.

In both cases, we focus only on papers that utilized AI

techniques, including ML and NLP, to elaborate on the Long

COVID data, discharging the considerable amount of work where

basic statistics or other different models are exploited.

From the task point of view, we report and analyze different

systems with the aim to: (i) identify and predict Long COVID

from patients diagnosed as COVID-19 positive, (ii) predict the risk

of developing different pathologies for patients who manifested

COVID-19, and the potential long-term consequences of the

emergence of the coronavirus, (iii) determine the associations

between risk factors and Long COVID, (iv) distinguish between

short and long COVID-19, (v) explore the characteristics, patterns

and behavior of Long COVID symptoms, (vi) study the Long

COVID course of the disease and evolution over time, and

(vii) identify Long COVID symptom co-occurrences, topics of

discussion about Long COVID, patient profiles and the challenges

faced during treatment.

We gathered a total of 20 papers from the literature, with 13

of them focusing on ML techniques and the remaining seven on

text mining applied to data related to Long COVID. We describe

the individual contribution of each paper, the data and techniques

adopted, and the results obtained, mainly in terms of accuracy,

precision, recall, F1-score and AUC (Area Under the ROC Curve).

We critically analyze the different approaches and the results

obtained, both in the ML and NLP categories, and also compare

the two categories in terms of used datasets, methodologies, and

obtained results.We show the current limitations of the approaches

in the literature and outline future work directions in terms of AI

methodologies and Long COVID target.

To the extent of our understanding, this is the first survey

reviewing AI methodologies applied to Long COVID data.

2 The complexity of the Long COVID
condition

Managing Long COVID is a complex issue, and the lack of

effective pharmacological therapies and data to advise healthcare

practitioners reflects this task’s difficulty.

Long COVID has many different complications concerning

manifestations, duration, and treatment. Diagnosing Long COVID

can be difficult because of its wide variety of symptoms and

its comorbidity with other illnesses. The development of precise

diagnostic criteria is still ongoing. Establishing a worldwide

standard for defining post-COVID-19 conditions is poised to

enhance advocacy and research efforts significantly. However, this

definitionwill likely undergomodifications in response to emerging

evidence and the evolution of our comprehension of COVID-

19’s long-term effects. The Long COVID clinical definition was

painstakingly crafted utilizing the exhaustive Delphi consensus

approach. This approach relied on selecting relevant domains

and variables for inclusion, as reflected in the WHO’s ICD-

10 diagnosis code U09. The process ensured the involvement

and input of diverse stakeholders to ensure a well-rounded and

inclusive understanding (Soriano et al., 2022). Long COVID

solidified through patient-led surveys, self-appellation, case studies,

and hashtag circulation. After patients, several new players and

some typical scientific actors appear (Callard and Perego, 2021).

BetweenDecember 2019 andMay 2020, Davis et al. (2021) surveyed

patients via an online questionnaire about their experiences

with Long COVID symptoms, focusing on recovery and return

to baseline from neurological and neuropsychiatric symptoms,

including work impact.

Long COVID complexity and ongoing efforts to gather and

prepare data make it an essential ground for multimodal ML

techniques. Combining clinical and EHR data in Long COVID

such as the National Institutes of Health (NIH) research initiative,

MIDRC-N3C interoperability, pathology, wearable sensor data,

imaging, and ML can help understand underlying physiology,

explain heterogeneity, and identify therapeutic targets (Chen

et al., 2023). The multimodal ML approaches’ clinical usefulness

depends on targeting the right clinical question, particularly Long

COVID development, shared pathways, and response to treatment

approaches.
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3 Literature review

To discover relevant publications, we collected studies and data

from different sources (PubMed, Scopus, WoS, MedRxiv, ArXiv).

Identifying relevant papers was not a trivial task (Lever andAltman,

2021; Langnickel et al., 2022; Leaman et al., 2023).

In particular, we have considered, besides the basic term “Long

COVID”, also multiple synonyms: “Post-COVID conditions”,

“long-haul COVID”, “post-acute COVID”, “long-term effects of

COVID”, “chronic COVID”, and also “post-acute sequelae of

SARS CoV-2 infection” and “PASC” which refer to a subset of

Long COVID cases. These terms have been used in combination

with “artificial intelligence”, “machine learning”, “deep learning”,

“natural language processing”, “NLP”, and “text mining”.

The search yielded substantial literature (121 papers selected

from PubMed, Scopus, WoS, including only two papers from

MedRxiv), including research articles, review articles, case studies,

and reports. Among these articles, we selected all the contents

pertaining to the application of AI methods to Long COVID data,

and ended up with the 20 papers. The criteria used to select the

papers were:

• relevance of the topic: we selected only papers with an

innovative approach in the realm of AI. Accordingly, we

discharged papers with basic statistic analysis;

• completeness and significance of the results: we selected the

papers where AI is used to achieve some important result,

removing those papers where AI was only discussed and not

a clear result was obtained;

• publication date: we discharged all the papers published before

2020.

Figure 2 illustrates the process of selection of the relevant

papers.

In the rest of the paper, we first analyze in Section 3.1

the literature where machine learning and deep learning models

are developed, and then in Section 3.2 the studies where NLP

techniques are applied. It is worth noting that medical images,

electronic health records and other laboratory data can be the input

to ML models for predicting a possible diagnosis of Long COVID,

while clinical notes and tweets can be the input to NLP models to

perform a risk factor or symptom co-occurrence analysis.

3.1 Machine learning and deep learning
approaches to Long COVID data

This section presents recent research studies utilizing

traditional and novel AI methods to detect Long COVID. We start

with the authors applying ensemble learning techniques and then

explore other approaches.

3.1.1 Ensemble learning
In the ensemble learning context, a strategy known as

Optimized XGBoost was suggested by Jha et al. (2023). This

supervised learning strategy used an ensemble approach based

on the gradient boosting method, and its customized hyper-

parameters were used to increase the performance of Long

COVID prediction. The researchers looked at COVID-19 patients

who had lung fibrosis 90 days after being discharged from the

hospital. Analyses were conducted on a dataset of 1175 EHRs

and associated High-Resolution Computed Tomography (HRCT)

chest images from COVID-19 patients. The dataset included 725

cases of pulmonary fibrosis and 450 cases of standard lung.

The dataset was divided into distinct groups for training and

testing purposes, with 881 samples allocated for training and 294

for testing. The findings of the experiments had an accuracy

of 99.37% on the EHR dataset and 98.48% on the HRCT

scan dataset, respectively. In order to reduce the dependence of

the performance results on the size of the considered dataset,

the authors divided the dataset into distinct sets of train-test

data from which they derived the performance metrics. The

suggested ML model optimized XGBoost, compared to other

ML approaches, such as decision tree, Support Vector Machine

(SVM), random forest, logistic regression, Naive Bayes, and the

traditional XGBoost approach. The suggested system’s precision,

recall, and accuracy were higher than those of other approaches in

the literature.

XGBoost machine learning models were also exploited by

Pfaff et al. (2022) to identify patients affected by Long COVID

using the N3C EHR database (Haendel et al., 2021). The dataset

comprises information from more than 8 million patients with

diverse demographics and geographic locations, obtained from

their EHRs. The population (n=1,793,604) was selected among a

set of alive adult patients over the age of 18 who had either an

International Classification of Diseases-10 Clinical Modification

or a positive SARS-CoV-2 PCR or antigen test or a COVID-19

diagnostic code (U07.1) from an inpatient or emergency visit,

whose COVID-19 index date has passed at least 90 days. The

authors investigated 97,995 persons diagnosed with COVID-19

regarding their demographics, healthcare usage, diagnosis, and

medicines. In the study, researchers collected 924 features from

597 patients diagnosed with Long COVID. These features were

used to train three ML models to determine the possible cases of

Long COVID among COVID-19-diagnosed patients, COVID-19-

hospitalized patients, and COVID-19-positive patients who were

not hospitalized. Essential characteristics include the healthcare

usage, the patient’s age, dyspnea, and other information on

diagnoses and medications that are available inside the EHR.

The dataset was split into different sets for training (80% of

hospitalized and 75% of not hospitalized patients) and testing

(20% of hospitalized and 25% of not hospitalized patients).

After additional validation of the models using data from a

fourth location, the authors achieved an AUC value of 0.92

for all patients, 0.90 for hospitalized patients, and 0.85 for

outpatients.

A different approach was presented by Gupta et al. (2022) for

the early diagnosis of cardiac problems in COVID-19 survivors to

predict Long COVID. In this work, an ensemble was performed

using a stacked approach. The proposed model was trained on

heart-related data acquired from 180 COVID-19 patients with a

questionnaire. The data of the 180 patients were first bootstrapped
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FIGURE 2

The literature selection process.

to 4700 records, using a tenfold cross-validation approach. Data

were divided into a training set (70%), a validation set (20%)

and a test set (10%). The performance of the suggested model

was compared to that of standard ML techniques. Performance

measurements included accuracy, specificity, precision, and recall

with two other statistical measures: Mean Absolute Error (MAE),

and Root Mean Square Error (RMSE). Accuracy in predicting

heart disease using the stacking ensemble method was 93.23%. The

suggested method outperforms conventional learning algorithms,

including decision trees, random forests, SVM, and artificial neural

networks. Theminimal RMSE (0.32) andMAE (0.23) values further

support the suggested model’s robustness.

A recent study by Jiang et al. (2022) focused on the relationship

between vital signs (oxygen levels, heartbeat, systolic/diastolic

blood pressure) and Long COVID. Since no vital measurement data

are available for all the patients in the N3C cohort, two subcohorts

with abundant vital measurement data for the first week after

hospitalization were selected. Various features (139) were designed

from vital measurement readings, including daily averages and

daily variability features. Using data from the first subcohort, an

XGBoost model predicted a Long COVID outcome, while CNN

and LSTM were used to process a multidimensional time series of

vital measures in the second subcohort. The authors evaluated the

performance of the models using the standard AUC metric with

5-fold cross-validation.

A retrospective case-control research was designed by Hill

et al. (2022) to determine risk factors linked to PASC and Long

COVID from thirty-one health systems in the United States (N3C).

COVID-19 risk factors included patient age, gender, comorbidities,

medications, and acute symptoms. 8,325 persons were diagnosed

with PASC compared to 41,625 healthy individuals from the

same health system. Using multivariate logistic regression, random

forest, and XGBoost, the correlations between potential risks and

PASC were examined. This study identified a number of significant

risk variables for PASC, including middle age, severe COVID-19

illness, and particular comorbidities. Results from the XGBoost and

logistic regression models were comparable, with an AUC of 0.73.

The random forest model, which has an AUC of 0.69, comes next.

A supervised ML algorithm based on random forest with

five folds and ten iterations of stratified repeated cross-validation

techniques was developed by Sudre et al. (2021) to determine

who is susceptible to Long COVID and organize therapy and

rehabilitation. This study used data from mobile health apps,

allowing users to self-report their symptoms, with a sample size of

2,149. A simple model to differentiate short (duration of symptoms

less than ten days) and Long COVID at seven days has an AUC of

75.9%.

Patel et al. (2023) also used a random forest classifier to

classify the most pertinent blood proteins for the identification of

Long COVID cases. The study compared the expression of 2,925

different blood proteins in Long COVID outpatients to COVID-

19 inpatients and healthy individuals. The data were stratified by

subject group and divided using a dimensionality reduction with

70% designated for training and 30% reserved for testing. The

Boruta method was used for the feature reduction dataset to select

the most important characteristics. A 3-fold cross-validation with a

random forest of 10 trees and a maximum depth of 3 was adopted

to limit the overfitting. Experts explicitly obtained unstructured

text on mRNA or protein expression at the cell or tissue level,

which NLP then processed to produce protein expression tissue

specificity. The results revealed 119 essential proteins for classifying

Long COVID outpatients, with classification accuracy of 100%,

AUC 100% and F1-score 100%. Also, NLP expression analysis

confirmedwidespread organ system involvement and identified key

cell types as crucial elements related to Long COVID.

Finally, Patterson et al. (2021) used the random forest for

the classification of healthy, mild-moderate, severe, and Long

COVID patients from their immunological profile. Data from 224
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individuals were compiled, including 29 healthy individuals, 26

with mild to moderate COVID-19, 48 with severe COVID-19,

and 121 with Long COVID. The dataset comprised 16 columns,

with 14 dedicated to cytokine/chemokine levels, one for patient

IDs, and one for classification (healthy, mild-moderate, severe,

or Long COVID). Training, validation, and testing used 60%,

20%, and 20% of the data. The Synthetic Minority Oversampling

Technique (SMOTE) was employed to balance class representation.

Three random forest classifiers were then developed: a multi-class

predictor, a binary classifier for severe COVID-19, and another

binary classifier for Long COVID. These models were evaluated

to identify critical cytokines significant in disease assessment. The

multi-class model achieved an 80% accuracy and a 63% F1-score,

while the Long COVID model reached a 96% accuracy with a 95%

F1-score, and lastly, the severe model secured a 95% accuracy and a

94% F1-score.

3.1.2 Deep learning
Using deep learning BiLSTM with a 1D CNN model, Sengupta

et al. (2022) analyzed historical diagnosis code data from the

N3C repository to identify possible risk factors of Long COVID.

The study assessed patients for Long COVID infection using a

chronological list of diagnosis codes up to 45 days following the

initial positive test. The authors used Gradient-weighted Class

Activation Mapping (Grad-CAM) to rate each input diagnosis.

The diagnostic with the highest score was regarded as the most

significant for making the proper diagnosis for a patient. The

article proposed a method for collecting these leading diagnoses for

each patient in the dataset and analysing their temporal trends to

identify which codes are connected with a Long COVID positive

diagnosis. Data were divided into training (75%), validation (15%),

and testing (10%) sets. The study offered the mean AUC value of 3-

fold stratified cross-validation for all models, achieving an accuracy

of 70.48% despite the unbalanced dataset. Differently from the

previous work where an LSTMwas used, Subramanian et al. (2022)

carried out diagnostic work for classification utilizing two CNN

models, specifically VGG16 (Liu and Deng, 2015) and ResNet-50

(He et al., 2016), trained on 925 HRCT images, each with two

different learning rates. The dataset was split into training (585

images), validation (65 images) and testing (275 images) sets. The

best model produces an accuracy of 97.132%. An additional model

was developed using a revised loss function that combines dice

loss and binary cross-entropy, achieving an accuracy of 98.2%.

The authors finally proposed a diagnostic model using the U-Net,

which segmented and predicted the precise lung area infected with

COVID-19 with an accuracy of 99.40%.

3.1.3 Regression models
Binka et al. (2022) proposed a machine learning technique

which uses the elastic net regression model to identify Long

COVID cases in a population-based cohort of COVID-19 that

have been reported in British Columbia, Canada. The suggested

model was trained using the known Long COVID cohort patients’

characteristics, including their demographics, existing medical

problems, and other unique symptoms and complaints from health

administrative data recorded after the index date for COVID-

19 with 10-fold cross-validation. The optimal model exhibited a

high sensitivity and specificity rate of 86% and AUC of 93%,

classifying 25,220 individuals out of 141,381 COVID-19 patients as

Long COVID cases.

By contrast, Moreno-Pérez et al. (2021) used a traditional

multiple logistic regression model to assess the acute infection

phase risk variables linked to Long COVID. Data were collected

from electronic medical records, and a follow-up assessment was

conducted 10-14 weeks after either recovery from COVID-19

in an ambulatory setting or hospital discharge. This assessment

comprised a clinical examination, blood tests, chest X-ray,

pulmonary function tests, and a quality of life questionnaire.

The study results showed that Long COVID was detected in

half of COVID-19 survivors. Mild radiological and spirometric

alterations were detected in less than 25% of the patients.

Independent predictors were not found among the baseline clinical

characteristics for the Long COVID development. The predictors of

the outcome were examined using multiple logistic regression with

a 95% cumulative incidence value.

Table 2 summarizes all the approaches presented in the

previous sections. Note that several papers use the same datasets,

looking at different features and using different techniques.

Moreover, given the class imbalance of many of the datasets related

to Long COVID, it is important to note that the accuracy measure

can provide an inaccurate impression of the quality of a model and

in general, of the overall analysis results.

3.1.4 Other approaches
Zhang et al. (2023) proposed a machine learning-based

approach on topic modeling to derive Long COVID subcategories

based on newly acquired medical conditions during the post-

acute phase of a COVID-19 infection. The study focused on

30-180 days after confirmed COVID-19 infection. Development

and validation cohorts were formed using EHRs from two large

cohorts, INSIGHT and OneFlorida+, part of the National Patient-

Centered Clinical Research Network, including 20,881 and 13,724

patients infected by COVID-19. The ML method analyzed more

than 137 symptoms and conditions in the cohort of patients

with newly incident conditions within 30-180 days after COVID-

19 infection. After computing a 137-dimensional binary vector

encoding of each patient with Long COVID diagnoses, it learned

Long COVID topics from these vectors. Specifically, Long COVID

subjects are sets of circumstances that occur together according

to their respective event probabilities. Next, a topic modeling

technique is used to infer patient representations in the low-

dimensional Long COVID topic space. Based on how extensively

each topic was covered in the patients’ post-acute phase data, these

themes are used to further characterize the patients. Finally, a

clustering method was employed from the patient representations

to detect the subphenotypes. The analysis detected four Long

COVID subphenotypes: (i) cardiac and renal sequelae affected

33.75% of patients in the development cohort and 25.43% in the

validation cohort; (ii) respiratory, sleep, and anxiety issues were

observed in 32.75% and 38.48% of these cohorts, respectively; (iii)

musculoskeletal and nervous system complications occurred in
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TABLE 2 ML techniques for Long COVID diagnosis.

Study Input data AI method Task Output (%)

Jha et al. (2023) 1,175 EHR & HRCT Optimized

XGBoost

Binary classification

of pulmonary fibrosis

Accuracy 99.37

precision 99.54

Pfaff et al. (2022) N3C repository XGBoost Binary classification

of Long COVID

AUC

all patients 92

hospitalized 90

non-hospitalized 85

Jiang et al. (2022) N3C repository XGBoost

CNN

LSTM

Binary classification

of Long COVID

AUC

XGBoost 82.2

CNN 61.64

LSTM 59.94

Hill et al. (2022) N3C repository XGBoost

Random forest

Risk factors associated

with Long COVID

AUC

XGBoost 73

Random forest 69

Gupta et al. (2022) 180 questionnaires Stacking ensemble technique Binary classification

of heart diseases

Accuracy 93.23

precision 95.248

Sudre et al. (2021) 2,149 self-reported

health status

and symptoms

Random forest Binary classification of

short and Long COVID

AUC 75.9

Patel et al. (2023) Expression of 2,925

unique blood

proteins

Random forest

NLP

Identification of

blood proteins for

Long COVID detection

AUC 100

accuracy 100

F1-score 100

Patterson et al. (2021) Immunologic profiles

from 224 individuals

Random forest Classification of healthy,

mild-moderate, severe

and Long COVID patients

Multi-class:

accuracy 80

F1-score 63

Long COVID:

accuracy 96

F1-score 95

Severe:

accuracy 95

F1-score 94

Sengupta et al. (2022) N3C repository BiLSTM with

1D CNNmodel

Binary classification

of Long COVID

Accuracy 70.48

Subramanian et al. (2022) 925 HRCT VGG-16

ResNet-50

U-Net

Binary classification

of Long COVID

Accuracy from

97.132 to 99.4

Binka et al. (2022) 26,730 health

administrative data

Elastic Net

regression

Binary classification

of Long COVID

AUC 93

sensitivity 86

specificity 86

Moreno-Pérez et al. (2021) 277 patients’

demographics

and comorbidities

Multiple logistic

regression

Risk factors associated

with Long COVID

Cumulative

Incidence Value 95

Zhang et al. (2023) 34,605 EHR Topic modeling

clustering

Derive Long COVID

subphenotypes

Four Long COVID

subphenotypes

The first part of the table (6 rows) refers to ensemble learning, the second part (2 rows) to deep learning, and the last parts (2 rows and 1 row) refer to regression models and other approaches,

respectively (all reported measures have the same number of decimal digits as the original paper).

23.37% and 23.35%; and (iv) digestive and respiratory system issues

were seen in 10.14% and 12.74% of patients, each linked to specific

patient demographics.

3.2 Text mining’s role in Long COVID
diagnosis and therapy

The latest developments in NLP offer the possibility of

improving healthcare and public health. Massive amounts of

unstructured data are continuously generated from various sources,

including EHRs, social media, and recent literature. One of the

goals of this investigation is to look ahead to potential uses of NLP-

based technologies which can help enhance pandemic response

preparedness, extracting textual patterns which can represent

Long COVID symptoms and relationships between symptoms,

and the discussion topics about COVID-19. Pandemic response

preparedness means not just handling immediate issues but also

planning for long-term effects, like Long COVID.

The aim is to improve public awareness of Long COVID,

provide important insights to public health authorities, and learn

more about the health effects of Long COVID.
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In the following, we distinguish among the approaches based

on BERT (Devlin et al., 2018) and other techniques.

3.2.1 BERT approaches
Miao et al. (2022) analyzed 30,327 user-generated conversations

on Twitter about Long COVID symptoms. NLP was utilized

to investigate how Twitter users described the nature of Long

COVID symptoms in terms of demographic features such as

patient’s gender, age, and geographical location, as well as temporal

parameters such as symptom severity and duration. Moreover, to

address the Long COVID evolution over time, the study compared

the results of datasets collected in different periods. The authors

constructed two sets of tweets related to Long COVID; the first

set spanned from 1st May to 31st December 2020, and the second

was fromOctober 2021. They randomly divided the annotated data

into 80% for training and 20% for testing purposes. To ensure

the accuracy of the automated labeling, they manually checked a

subset of the labeled samples. On the demographic categories, the

BERT classifier reached an accuracy of 89%, while on the symptom

categories, it reached an accuracy of 95%.

BERT was also used by Zhu et al. (2022) on free-text clinical

notes to identify patients with persistent symptoms following acute

COVID-19 infection. Data from clinical notes of 719 patients seen

by physicians were analyzed to look for patient similarities. The

authors employed 5-fold cross-validation and divided the training,

validation, and testing data by a ratio of 60%:20%:20%. The study

applied three different pre-trained BERT models to automatically

identify patients with Long COVID effects. The ClinicalBERT

model achieved a sensitivity score of 0.88 for note-level prediction.

The study identified potential phenotypes from the classification

results.

To gain insight into the Italian perspective of the COVID-

19 pandemic, Scarpino et al. (2022) discussed and compared

two topic modeling techniques: Latent Dirichlet Allocation (LDA)

and a BERT transformer (BERTopic). The authors analyzed texts

written by patients with Long COVID, healthcare professionals,

and citizens (without Long COVID), with the aim of characterizing

patients affected by Long COVID based on the textual narration.

BERTopic is a topic modeling technique that adopts transformers

and c-TF-IDF to create clusters to represent topics and identify

important words in the topic descriptions. The BERTopic-

based method surpassed the LDA-based method, with 97.26% of

documents correctly clustered and an overall accuracy of 91.97%.

3.2.2 Other approaches
Differently from the previous approaches where classification

is adopted, Matharaarachchi et al. (2022) explored the trends and

characteristics associated with Long COVID using the Apriori

algorithm-based Association Rule Mining Technique. The focus of

the study was to examine the common symptoms of patients with

Long COVID and determine any correlations between them, using

Twitter social media conversations as a reference. The authors set

a minimum support threshold value of 0.001, a lift greater than

1, and a confidence level of 10% for positively correlated rules.

According to the results, the three indications and symptoms that

occurred most frequently were brain fog, fatigue, and breathing or

lung issues.

Using EHR data, a comprehensive Long COVID symptom

lexicon was developed byWang et al. (2022). The authors evaluated

PASCLex, a lexicon-based NLP approach that uses data-driven

approaches based on medical ontologies to extract Long COVID

symptoms from clinical notes. The primary dataset consisted of

23,505 patients, accounting for 90%, with 299,140 related clinical

notes. In contrast, the validation subset comprised 2,612 patients,

which is 10% of the total, and included 29,739 respective clinical

notes. The developed method took advantage of the Unified

Medical Language System (UMLS) and achieved precision and

recall values of 94% and 84%, respectively.

Investigating the progression of the disease in its post-acute

phase by analyzing 296,154 tweets, Banda et al. (2021) employed

a blend of machine learning and NLP techniques, supplemented

by clinician evaluations, to construct comprehensive symptom

and condition timelines spanning 150 days. This process involved

expert annotation of tweets, machine learning for filtering relevant

content, and NLP for standardizing the data. The primary outcome

of this approach was the evaluation of temporal symptoms, timeline

visualization, and cluster identification.

Similarly, Déguilhem et al. (2022) collected and analyzed data

from France on Long COVID most frequently reported symptoms,

symptom combinations, challenges, and patient profiles. Data were

gathered from the social media Twitter and the health-related

online forum Doctissimo (https://www.doctissimo.fr). Symptoms

were indexed using the MedDRA dictionary, ranked according to

the times they were mentioned in posts, and summarized on a

per-user basis. The study proposed to compute co-occurrences of

terms in users’ posts. The posted content was analyzed to identify

common terms, and users were then grouped using hierarchical

clustering based on these terms. The study looked at 289 users

who used at least two distinct symptom phrases in their messages.

A heat map was produced to illustrate the major co-occurrences.

NLP-based text mining approach Biterm Topic Modeling (BTM)

was used to analyze the conversations, and difficulties and

unfilled needs were discovered through in-depth interviews. The

analyses identified three major symptom clusters: asthenia-dyspnea

(102/289, 35.3%), asthenia-anxiety (65/289, 22.5%), and asthenia-

headaches (50/289, 17.3%).

Table 3 summarizes the aforementioned NLP approaches.

Figure 3 shows the expected outcomes of applying NLP-based

text mining algorithms like BERT, BTM and LDA on data from

clinical settings and social media data with the expected outcome

of classification and clustering.

3.3 Task description

In this section, we recall the main tasks of the different papers.

For the technical description of the input data and obtained results,

the reader can refer to Tables 2, 3.

• Jha et al. (2023) identify the development risk of pulmonary

fibrosis after 90 days of hospital discharge from clinical
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TABLE 3 Long COVID diagnosis: recently applied data mining and NLP techniques.

Study Input data AI method Task Output (%)

Miao et al. (2022)

Tweets NLP Analysis of reported Long COVID symptoms

in terms of demographics, geographical and

temporal parameters

Accuracy

demographic categories 89

symptom categories 95

Zhu et al. (2022)

Clinical notes Pretrained BERT Identification of Long COVID and potential

computational phenotypes

Sensitivity score 88.1

Scarpino et al. (2022)

Blogs LDA and BERT Extract discussion topics in the Italian

narration of COVID-19 pandemic

Accuracy of BERT 91.97

Matharaarachchi et al.

(2022)

Tweets Association rule mining Relationships between symptoms Confidence 77 for

lung/breathing problems and

loss of taste vs. loss of smell

Wang et al. (2022)

Clinical notes PASCLex (NLP) model Identification of symptoms Precision 94

recall 84

Banda et al. (2021)

Tweets NLP and SVM Identification of symptoms Accuracy 75 on a 20%

random held-out test set

Déguilhem et al. (2022)

Tweets Biterm Topic Modeling Identification and co-occurrence of

symptoms

Three major symptom

co-occurrences:

asthenia-dyspnea 35.3,

asthenia-anxiety 22.5,

asthenia-headaches 17.3

The division is between BERT (the first 3 rows) and other approaches (all reported measures have the same number of decimal digits as the original paper).

FIGURE 3

A conceptual framework for the generation and assessment of PASC

symptoms using NLP-based text mining methods.

features retrieved at the time of follow-ups of COVID-19

patients.

• Pfaff et al. (2022) detect patients with Long COVID using EHR

with diagnosis and medication characteristics from patients

and for whom at least 90 days have passed since COVID-19

index date.

• Jiang et al. (2022) detect Long COVID from the features of

vital measurements of patients with a diagnosis of COVID-19

and hospitalized. Measurements derived from the first seven

days since the hospitalization started.

• Hill et al. (2022)’s objective was to identify links between risk

factors such as demographics, comorbidities, and treatment,

as well as acute characteristics associated with COVID-19,

and Long COVID. Patients with Long COVID were included

based on a prior diagnosis of SARS-CoV-2 infection or a

positive polymerase chain reaction (PCR) or antigen (AG)

lab test for SARS-CoV-2, with the initial acute infection date

ranging fromMarch 1, 2020, to December 1, 2020.

• Gupta et al. (2022) detect the risk of heart disease, as well

as the long-term negative consequences of the coronavirus

outbreak on recovered patients from data of patients who

were diagnosed with COVID-19, in particular personal

details, severity of disease, recovery days, hospital admission,

symptoms during disease and Long COVID symptoms.

• Sudre et al. (2021) differentiate between short and long

COVID-19 at seven days from fatigue, headache, dyspnea and

anosmia symptoms. A connection was shown between more

than five symptoms during the first week of sickness and the

presence of Long COVID.

• Patel et al. (2023) find novel blood biomarkers for Long

COVID by comparing protein expression in COVID-19

inpatients, healthy control individuals, and Long COVID

outpatients. The discovered proteins represented a wide

variety of cell types and organs.

• Patterson et al. (2021) identify and characterize the

immunologic steps of COVID-19 (healthy, mild-moderate,

severe and Long COVID) from the immunological profile in

order to detect and monitor effective treatment plans. After

the first symptoms appeared, the duration of Long COVID

continued for more than 12 weeks.

• Sengupta et al. (2022) determine whether a patient is impacted

by Long COVID by analysing a chronologically ordered set

of diagnostic codes up to 45 days after the initial positive test

or diagnosis. Looking at the overall temporal evolution for all
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patients allows to identify which codes lead to a Long COVID

positive diagnosis.

• Subramanian et al. (2022) make a binary classification of

COVID-19 images, detect lungs region on HRCT images and

identify COVID-19 region on HRCT images from patients

with various recovery periods from COVID-19 infection.

• Binka et al. (2022) detect Long COVID cases from health

administrative data, including demographic features, pre-

existing conditions, COVID-19-related data and all symptoms

recorded 28 days after the COVID-19 symptom index date and

lasted up to 183 days afterwards.

• Moreno-Pérez et al. (2021) study the incidence of Long

COVID and its features and assess the risk factors connected

to the acute infection step from data of adult patients who had

recovered from COVID-19 (from 27th February to 29th April

2020), with a systematic evaluation 10-14 weeks after disease

occurrence.

• Zhang et al. (2023) find Long COVID subphenotypes

based on newly incident conditions in the post-

acute COVID-19 infection period, defined as 30-180

days after the confirmed infection, of patients with

COVID-19.

• Miao et al. (2022) analyze the features of Long COVID

symptoms included in Long COVID-related tweets from May

to December 2020 in terms of the patient’s gender, age,

location and duration of symptoms, and also analyze the Long

COVID evolution over time, making a comparison of the

results between May-December 2020 and October 2021.

• Zhu et al. (2022) detect Long COVID from clinical notes of

outpatient encounters of patients with constant symptoms

after their positive COVID-19 tests between 30 days after the

positive COVID-19 diagnosis and 365 days after diagnosis and

characterize potential phenotypes.

• Scarpino et al. (2022) characterize textual narration of Long

COVID patients by discussed topics from textual testimonies

written about COVID-19 illness, which are parts of texts

written by subjects affected by Long COVID, and texts of

healthcare professional and general reflections by citizens.

• Matharaarachchi et al. (2022) analyze the patterns and

behavior of Long COVID symptoms reported by patients from

Twitter data retrieved from May 2020 to December 2021.

Obtained results proved that patients with lung/breathing

problems and loss of taste are likely to lose smell with 77%

confidence.

• Wang et al. (2022) generate a comprehensive Long COVID

symptom lexicon (PASCLex) from clinical notes (day 51–110

from first positive COVID-19 test) to assist the identification

of symptoms. Among the symptoms with the highest

frequency, there are pain, anxiety, depression, fatigue, joint

pain, shortness of breath, headache, nausea and/or vomiting,

myalgia, and gastroesophageal reflux.

• Banda et al. (2021) employ social media data derived from

Twitter to define the Long COVID course of the disease,

generating detailed timelines of symptoms and conditions and

studying their symptomatology for a period of over 150 days.

They rebuild a timeline for each Twitter user with the main

phases (testing, symptoms, therapy, etc.).

• Déguilhem et al. (2022) detect and study Long COVID

symptoms, symptom co-occurrences, topics of discussion,

difficulties encountered, and patient profiles. Data were

extracted based on a collection of pertinent keywords

from public sites (e.g., Twitter) and health-related forums

(e.g., Doctissimo) between January 2020 and August 2021.

The analyses found three major symptom co-occurrences:

asthenia-dyspnea, asthenia-anxiety, and asthenia-headaches.

4 Discussion

It is worth noting that all the papers reported in Table 2

discuss ML systems, and all the papers reported in Table 3 discuss

NLP systems.

The Input data column in Table 2 summarizes the different

datasets used in the papers. The variety of the datasets allowed

us to understand Long COVID from various perspectives. The

N3C dataset (Haendel et al., 2021) has been the most used

one. It is a large-scale collection of EHRs collected with a

collaborative effort from different healthcare systems and research

institutions in the USA. The network consists of a collaborative

partnership involving over 600 individuals and 100 organizations.

This coalition focuses on national collaboration and governance,

formulating regulatory strategies, defining COVID-19 cohorts

through community-developed phenotypes, and standardizing

data. The N3C facilitates community-led, replicable, and clear

analysis of COVID-19 data, promoting the swift sharing of findings

and precise attribution. EHR data derived from 14,026,265 patients

who: (i) have tested positive for COVID-19 infection (5,409,269

patients), (ii) have symptoms that are compliant with a COVID-19

diagnosis, or (iii) have tested negative for COVID-19 infection (and

have never tested positive) to support comparative analysis. EHR

data have many features, including demographics, geographical

locations of patients, healthcare visits, medical conditions, vital

measurements of patients, and prescriptions. The N3C repository

also includes specific COVID-19 diagnoses and service utilization

dates. Additionally, it contains records of patients identified with

the newly implemented ICD-103 U09.9 code, which is used tomark

patients diagnosed with Long COVID. We believe that the strength

of this dataset is its large sample size, which comprises millions

of patients. When used in machine learning and deep learning

approaches, this allows for a more robust analysis across diverse

patient populations, even from different geographic regions. The

number of works exploiting this dataset confirms that it is one of

the most valuable resources for researchers studying Long COVID.

Table 2 shows that most papers use ensemble techniques,

which are able to produce more accurate results, compared to

the approaches using CNN. We believe that the reason could be

the robustness of this approach, which can better handle noise

and outliers in the data. In fact, note that the datasets include

collections from surveys and self-reported status data (using an

app), where these phenomena may easily happen. Another reason

could be that Long COVID is a complex andmultifaceted condition

with different manifestations and risk factors. Ensemble techniques

can handle this complexity by combining models, each of which
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specializes in different aspects of the data so that the overall

result enables a more comprehensive analysis and enhances the

model’s ability to capture the data complexities. In fact, the

approach with the best performance is the random forest by Patel

et al. (2023) followed by the Optimized XGBoost by Jha et al.

(2023).

Table 2 also shows that most approaches focus on simple

targets, such as binary classifications, whose primary goal is to

diagnose and identify cases of Long COVID versus non-cases.

This also includes the approach of Binka et al. (2022), which

adopts an Elastic Net regression model but then produces a binary

classification. Only Hill et al. (2022) (with XGBoost and random

forest) and Moreno-Pérez et al. (2021) (with multiple logistic

regression) examine the relationship between risk variables and

the development of Long COVID. Finally, Patterson et al. (2021),

Patel et al. (2023), and Zhang et al. (2023) adopted multiclass

classification of Long COVID data.

Table 3 shows that the BERT model is the most used approach

for pattern extraction from text data discussing Long COVID.

In particular, it is adopted in Miao et al. (2022) on Twitter

data for characterizing the nature of Long COVID symptoms

in terms of demographic features, in Zhu et al. (2022) on free-

text clinical notes to identify patients with persistent symptoms

following acute COVID-19 infection, and in Scarpino et al. (2022)

for characterizing patients affected by Long COVID based on the

textual narration. Also, we can observe that BERT models are

adopted for most of the different types of textual data, i.e., tweets

(Miao et al., 2022), clinical notes (Zhu et al., 2022) and blogs

(Scarpino et al., 2022). In terms of topic modeling, the approach

introduced by Scarpino et al. (2022) using LDA and BERT models,

and the approach introduced by Déguilhem et al. (2022) using

Biterm Topic Modeling, adopted textual data based on patients’

opinions, i.e., blogs and tweets.

Regarding the approaches using models different from BERT,

they are mostly employed for identifying Long COVID symptoms

[see Matharaarachchi et al. (2022) using Association Rule Mining,

Wang et al. (2022) using PASCLex (NLP) model, and Banda et al.

(2021) using NLP and SVM model] and for capturing symptom

co-occurrences [see Déguilhem et al. (2022) using Biterm Topic

Modeling].

In terms of data, it is worth noting that most of the

techniques are employed on textual data from Twitter. Among

these techniques, three out of four which are based on association

rule mining (Matharaarachchi et al., 2022), NLP and SVM (Banda

et al., 2021), and Biterm Topic Modeling (Déguilhem et al.,

2022), are adopted for Long COVID symptom identification

and co-occurrence, while one of them (Miao et al., 2022) aims

to describe the nature of Long COVID symptoms in terms of

demographic features.

From a comparison of Tables 2, 3, we can observe that most of

the approaches in Table 2 are related to a binary classification of

Long COVID, i.e., if the patient is affected or not by Long COVID.

Also, only two papers in Table 2 (Moreno-Pérez et al., 2021; Hill

et al., 2022) aim to predict the risk factors associated with Long

COVID. Finally, Patterson et al. (2021), Patel et al. (2023), and

Zhang et al. (2023) adopted multiclass classification of laboratory

data for Long COVID identification. By contrast, the approaches

based on NLP in Table 3 are mostly related to Long COVID

symptoms identification [see Banda et al. (2021), Déguilhem et al.

(2022),Matharaarachchi et al. (2022),Miao et al. (2022),Wang et al.

(2022), and Zhu et al. (2022)].

Regarding the complexities of Long COVID, we can observe

that Jiang et al. (2022), Gupta et al. (2022), and Miao et al. (2022)

used input data characterized by a temporal duration of COVID-

19, in particular measurements of patients from the first 7 days

since the hospitalization start day, recovery days and symptom

duration. It is worth noting that both Gupta et al. (2022) and Jiang

et al. (2022) adopted ensemble learning (i.e. XGBoost and stacking

ensemble technique), which is a more robust and reliable approach

than traditional classifiers. Jiang et al. (2022) also used CNN and

LSTM, which are deep learning methods specifically adopted for

prediction tasks on temporal data. Still, Sengupta et al. (2022)

used temporally ordered input data and looked at the temporal

trends for all the patients, and Miao et al. (2022) studied the

Long COVID evolution over time. For capturing the complexity

of the task, Sengupta et al. (2022) used BiLSTM with a 1D CNN

model, which is a powerful network for managing temporal data.

Finally, Banda et al. (2021) analyzed the symptomatology of Long

COVID conditions and symptoms over a period of more than 150

days using detailed timelines. From this analysis, we can observe

that, although the length of symptoms is very important for Long

COVID, many ML and NLP methods do not address this aspect.

Only Miao et al. (2022) takes into account the symptom duration.

5 Recommendation and future work

In this survey, we have presented the applications of artificial

intelligence in the Long COVID diagnostics, classification, risk

factor prediction, and symptom occurrences. The ML approaches

include (Optimized) XGboost, CNN, LSTM, random forest,

stacking ensemble technique, Elastic Net regression, SVM, multiple

logistic regression, topic modeling and clustering, BERT, and LDA.

Moreover, NLP approaches such as LDA and topic modeling

based on the BERT transformer and Biterm Topic Modeling

play a vibrant role in investigating how data from Twitter users

and inpatients describe the nature of Long COVID symptoms in

terms of demographic features (such as patient’s gender, age, and

geographical location), as well as temporal parameters such as

symptom severity and duration. This will help to address the Long

COVID evolution over time.

ML algorithms require massive datasets and high-quality

information to construct effective models or discover meaningful

patterns. The types of data used in the papers in Tables 2, 3

are EHR, health administrative data, patients’ demographics and

comorbidities, HRCT, other laboratory data, surveys, (free-text)

clinical notes, tweets and blogs. These papers mainly focused on the

following tasks: (i) identification and prediction of Long COVID

from patients diagnosed as COVID-19 positive, (ii) prediction

of the risk to develop different pathologies for patients who

manifested COVID-19, along with the prolonged adverse impacts

of the coronavirus pandemic, (iii) determining the associations

between risk factors and Long COVID, (iv) distinction between

short and long COVID-19, (v) exploring the characteristics,
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patterns and behavior of Long COVID symptoms, (vi) study of

the Long COVID course of the disease and evolution over time,

and (vii) identification of Long COVID symptom co-occurrences,

topics of discussion about Long COVID, difficulties encountered,

and patient profiles.

However, the methods described in this survey have some

limitations from the point of view of input data and adopted AI

models. The first problem is that data on Long COVID are still

relatively scarce, and existing datasets may be biased or incomplete

(Pfaff et al., 2022). For instance, the N3C repository data is limited

and may include healthcare access limitations. As a result, it may

be challenging to construct accurate and generalized models over

a wide range of patient data. Also, identifying the many factors,

among age, sex, or infection severity, predicting the likelihood of

developing Long COVID symptoms and their co-occurrence is

still an open problem. Another source of data that, to the best

of our knowledge, has not been explored comes from wearable

devices that can remotely acquire data and share it with medical

teams. Advances in digital technology have made it easier to

collect electronic patient-reported data like temperature, oxygen

saturation, and blood pressure. We believe that utilizing such data

with machine learning and artificial intelligence (Lassau et al.,

2021) could improve identifying and monitoring individuals at risk

to enable early clinical intervention and rehabilitation. Moreover,

considering the current availability of data on the phenomenon,

most approaches in Table 2 focus on binary classification to detect

cases of Long COVID. We believe that multiclass approaches

or regression analyses are also possible and could bring more

insightful results.

In conclusion, the approaches in Table 3, aiming to detect

symptoms from textual data describing Long COVID, are quite

different from the approaches in Table 2, aiming to identify the

presence of Long COVID from symptoms, laboratory data and

demographic features. In some sense, the former could be used

for feeding the latter. More specifically, symptoms detected from

textual data by an NLP approach can be inputted into a model for

identifying the presence of Long COVID from the given symptoms.

Also, note that most of the works in Table 2 deal with the diagnosis

of Long COVID, namely with identifying and confirming that

an individual is experiencing persistent symptoms following a

COVID-19 infection. We believe that a prediction of prognosis in

Long COVID could be interesting for the expected course of the

condition, for instance, the duration of the persistent symptoms

and the likelihood of symptom resolution. For example, using

temporal data such as a symptom or physiological monitoring

data over time, deep learning analyses could detect early signs

of worsening of Long COVID, allowing for timely interventions

and enabling personalized adaptations of therapies to improve

patient outcomes.
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Background: Healthy dietary intake and physical activity a�ect the immune

systems. The present study aimed to investigate the e�ects of a web-based

lifestyle intervention on nutritional status, physical activity, and prevention

of COVID-19.

Methods: Three hundred-three women (30–60 years old), who did not have

COVID-19 in the City of Ardabil, participated in this study. Participants were

randomized into an intervention (n = 152) or control group (n = 151). The

intervention group received eight online educational sessions focusing on a

healthy diet and physical activity via the website. There was no educational

session for the control group during the intervention, but they were placed

on the waiting list to receive the intervention and given access to the website

and educational content after the follow-up. Outcomes were nutritional status,

physical activity, immunoglobulin G (IgG), and immunoglobulinM (IgM) antibody

titers against the virus. They were evaluated at the baseline, after 4 and 12 weeks.

Results: Significant improvements in weight (P < 0.001), BMI (P < 0.001),

total energy (P = 0.006), carbohydrate (P = 0.001), protein (P = 0.001), and

fat (P < 0.001) were found for the intervention group compared to the control

group during the study. MET-min/week for moderate physical activity increased

during the time for the intervention and control groups (P < 0.001 and P

= 0.007, respectively). MET-min/week for walking activity rose in the post-

intervention and follow-up compared to that in the baseline in the groups

(P < 0.001 for both groups). Total physical activity was increased during

the study (P < 0.001) for both groups. The mean of serum IgG and IgM

titers against the virus were increased during the study in both groups in

time e�ect (P < 0.001). There was a significant time x group interaction

for carbohydrate and fat intakes (P = 0.005 and P = 0.004, respectively).
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Conclusion: Theweb-based lifestyle interventionmay improve nutritional status

and physical activity, and have the potential to reduce the risk of contracting a

COVID-19 infection.

KEYWORDS

lifestyle, healthy diet, physical activity, COVID-19, web-based

Introduction

Coronavirus 2019 disease (COVID-19) was diagnosed as a

pandemic by the World Health Organization (WHO) in March

2020, which has led to economic, public health, and social crisis

(1). At the time of writing this article, there are more than 676

million coronavirus cases and the total deaths are more than six

million worldwide. There have been more than 7 million COVID-

19 cases and more than 144,000 deaths in Iran.1 The clinical

symptoms vary from fever, headache, sore throat, dry cough, and

fatigue to progressed symptoms, including pneumonia and death

(2). The progress of COVID-19 disease is associated with a rise in

inflammatory cytokines and IgG and IgM. Therefore, detecting IgG

and IgM antibodies has been more consistent than the nucleic acid

detection assay. This method is cheap and simple. This methodmay

play an important role in the diagnosis and epidemic control (3, 4).

COVID-19 can be transmitted from person to person. It threatens

human health, especially in vulnerable populations, such as women,

children, and the elderly; moreover, vulnerable people are at a

higher risk of infection (5, 6). Women include the majority of

health-related roles. The development of gender-equitable disaster

response and reconstruction results from the empowerment of

women. Thus, gender remains a basic consideration in infectious

disease and during pandemic planning and response. A group

at risk during natural disasters and social crises are women. In

the majority of societies, women play an important role as health

liaisons in changing behaviors and controlling pandemics (7).

Governments have put into practice certain strategies to prevent the

spread of COVID-19 (8). Unfortunately, the COVID-19 lockdown

and social distancing have affected people’s lifestyles, especially

nutrition patterns, and physical activity in the whole world (9). A

sedentary lifestyle and poor eating behavior have increased, which

is associated with numerous disorders (10). In accordance with

individuals’ lifestyles, women are the least active and spend more

time watching TV than men (6, 7).

Physical activity training was proven to be one of the most

effective lifestyle interventions capable of preventing metabolic

disturbances and improving the inflammatory state (11). Physical

activity affects the immune system, so its moderate practice boosts

the body’s immune response, reducing the incidence and severity of

infectious processes, especially respiratory diseases (12). COVID-

19 lockdown has caused a reduction in physical activity by 36.4% in

adults. House confinement increases the consumption of unhealthy

food (13). Studies have indicated that the diet during the lockdown

includes further energy intake compared to that before COVID-19

1 https://www.worldometers.info/coronavirus

(9, 14, 15). Healthy dietary intake affects the immune system and

health outcomes during the COVID-19 pandemic (16). A balanced

diet strengthens the immune system in response to infection

and reduces the severity and complication of COVID-19 disease

(17). Nowadays, unhealthy dietary habits have increased in most

countries, and poor eating behavior is associated with a higher

risk of diseases. There is an urgent need to improve the quality

and eating behavior of humans (18). An active lifestyle with an

increased level of physical activity affects the immune system (19).

Meanwhile, physical activity enhances immune surveillance (20).

Based on guidelines, adults are recommended to do 150 min/week

of moderate to vigorous physical activity to prevent diseases (21).

Therefore, lifestyle interventions increasing physical activity and

improving nutritional status are of great necessity during the

period of social distancing caused by the disease’s pandemic; these

strategies are effective in the management of chronic diseases (22).

In addition, it seems that due to the widespread complications

and high mortality rate of COVID-19 disease, nutrition and

physical activity education is essential in strengthening immunity.

Nowadays, the number of internet and smartphone users has

increased, as a result of which electronic, virtual, and mobile health

intervention programs are growing worldwide (23). Under this

circumstance, for the prevention of COVID-19 spread, web-based

lifestyle intervention would be beneficial and cost-effective. There is

a lack of evidence of the effects of a web-based lifestyle intervention

to prevent COVID-19.

Thus, we hypothesized that the women who receive lifestyle

intervention strategy web training strategies will be more likely

to develop a healthy diet and physical activity, and will be less

increasing IgM or IgG more than 1.1, will be less likely to

develop COVID-19 than the control group. Herein, we conducted

a web-based lifestyle intervention strategy in order to evaluate the

effectiveness of women’s empowerment in terms of a healthy diet

and physical activity to prevent COVID-19.

Methods

Study protocol

This study was designed as a parallel randomized controlled

trial and single-blind and was conducted over 6 months. The

last participants were recruited on 20 January 2021. This study

had a 3-month follow-up until 21 May 2021. This research

was conducted according to the guidelines laid down in the

Declaration of Helsinki, and received the approval of the research

ethics committee of Ardabil University of Medical Sciences and
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FIGURE 1

CONSORT flow diagram of lifestyle intervention during COVID-19 pandemic.

the clinical trial, IR.ARUMS.REC.1399.284, Approval code Irct.ir:

IRCT20221228056969N.

Participants who completed and signed a written informed

consent form participated in this study.

Study population

Admission began among the healthcare centers in Ardabil,

Iran. Ardabil province is located in the northwest of Iran, with

a population of over 1 million and 300 thousand people who

speak Azeri, and it is divided into five regions. Ardabil, the capital

of Ardabil province, was chosen for this study (24). Participants

were contacted via a telephone call and screened for the inclusion

criteria. Finally, the eligible interested individuals were invited

to a free assessment performed by the staff of the Digestive

Disease Research Center (DDRC). The women were screened in

the baseline by an examination test. Randomization was performed

after the baseline with Random Allocation Software (RAS). The

population that had inclusion criteria was 500 participants, 197 of

whom had IgM or IgG ≥1.1. According to the kit manufacturer

guidelines, the cut-off index was calculated, where IgG titers and

Ig M titers ≤1.1 were negative and IgG titers and Ig M titers ≥1.1

were positive. Therefore, 303 participants were randomized into

two groups, the intervention group (n = 152) and the control

group (n= 151), by a researcher. Figure 1 shows the study process.

Because of the nature of this study, only the analysts were masked

in group allocation.

The eligible participants were women (30–60 years of age);

literate; having IgM or IgG ≤1.1 at baseline of the study; having

access to the Internet, a computer, or smartphone; having the

necessary skills to work with the Internet; and having consented to

participate in this investigation. The exclusion criteria were having

a history of chronic disease, being pregnant or breastfeeding, having
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IgM or IgG ≥1.1 (which indicates that the person had COVID-19)

prior to the intervention, and being vaccinated individuals.

Interventions

All participants, the intervention and control groups, received

information about how to work Big Blue Button and a website

designed by a researcher.

The intervention group was given access to a WhatsApp

mobile group and website by code access. The mobile app was

created to coordinate virtual classes. It allows the users to review

their weekly class plans. Web developers and graphic designers

created a professional, attractive, and user-friendly website with

the address https://edusarscov.com. The website includes a home

page, instructions, online and offline classes, and contacts us. Before

the beginning of the intervention, the researcher explained the

intervention objectives and sessions in the mobile app group.

Four sessions of training courses on healthy diet were held once

a week. Physical activity sessions were held for four sessions,

once a week. This intervention program was conducted via virtual

courses through Big Blue Button in the online class section on

the website for the intervention group. The details of the class of

the session on a healthy diet and physical activity are provided

in Supplementary material (23, 25, 26). A number of researchers

specializing in healthy diet and physical activity held online classes.

All the educational content of the course was uploaded in the offline

class section on the website. At the end of the intervention, an

online test was conducted to evaluate the participants.

The participants in the control group had a meeting

with DDRC employees in the baseline assessments. After the

assessments in the baseline, 4 weeks (post-intervention), and

12 weeks (follow-up), the control subjects were offered the

intervention and given access to the website and educational

content. Actually, there was no educational session for the control

group during the intervention, but they were placed on the waiting

list to receive the intervention.

Measures and outcomes

Socio-demographic
The General Information Questionnaire was administered at

the baseline to collect the following information: age (year),

monthly income (million Iranian Rials, IRR), family history of

COVID-19, and having a particular diet.

Outcome measures
Blood pressure (BP) was measured with a digital

sphygmomanometer after the subjects were seated at rest

for 15min. The height and body weight of the participants

were measured without shoes, and they were dressed in light

clothing with a stadiometer (RASA, Manufactured in Iran) to

the nearest of 0.1. The body mass index (BMI) was calculated

using the body weight in kilograms divided by the square

of height in meters (BMI, in kg/m2). Blood samples were

collected via venepuncture (Ayrik, Iran) 10ml. Immunoglobulin

G (IgG) and immunoglobulin M (Ig M) antibody titers for

COVID-19 were detected via enzyme-linked immunosorbent

assay, using kits (ELISA; Pishtaz, Iran) according to the

manufacturer instructions.

Physical activity

Physical activity was measured with the short form of the

International Physical Activity Questionnaire (IPAQ): a seven-item

TABLE 1 Demographic characteristics of participants’ intervention and control groups.

Study group P-value

Intervention Control

Frequency (%) Frequency (%)

Age—y 30≤ 51 (33.6) 48 (32%) 0.163a

40–50 63 (41.4) 59 (39.3%)

≥50 38 (25.0) 44 (29.1%)

Monthly Income—million Iranian Rials—IRR 10–20 62 (41.3) 78 (52.3) 0.019a

20–30 42 (28.0) 39 (26.2)

30–40 10 (6.7) 14 (9.4)

40–50 15 (10.0) 9 (6.0)

≥50 21 (14.0) 9 (6)

Family history of COVID-19 infection Yes 52 (34.2) 35 (23.2) 0.034b

No 100 (65.8) 116 (76.8)

Having a special diet Yes 2 (1.3) 1 (0.7) 0.623b

No 151 (99.3) 149 (98.7)

Data are n (%). Analyses are aMann–Whitney, and bFisher’s exact test. There is no significant difference between the study groups in demographic characteristics, except monthly income and

family history of COVID-19 infection (p < 0.05).
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questionnaire validated in Iran. Finally, the Metabolic Equivalent

of Task (MET) was calculated for minutes in the week for each

physical activity level (PAL). PAL is classified into three categories,

namely the low category (the lowest level of physical activity with

MET<600), moderate category (five or more days of moderate-

intensity activity and/or walking of at least 30min per day with

600 < MET < 1,500), and high category (1,500 MET-min per

week of vigorous-intensity physical activity spread over at least

3 days per week, or 3,000 MET-min per week of moderate to

vigorous-intensity physical activity spread over the seven days of

the week) (27).

A physical activity behavior questionnaire was also utilized.

This questionnaire consists of five items answered as never,

sometimes, usually, and always, where responses range from “1”=

never to “4” =always. Based on the Likert scale, the minimum

score is 5 and the maximum is 20. A score of 5–10 is considered

a low score, 10–15 is moderate, and 15–20 is a good score. This

questionnaire reliability was established and the Cronbach’s alpha

of this instrument was 0.821.

Nutritional status

To assess nutritional status, a 24-h dietary recall was used

(28). The subjects were answered to complete a 24-h dietary recall

about the food items that they consumed during the 24 h preceding

the interview. Household handy measures were taken to aid the

subjects in the estimation of the portion size of their food intake

and beverage and the portions were converted into grams. Data

on a 24-h dietary recall as grams were entered in Nutrition 4

(N4), a computer program, and the levels of total energy (kcal),

carbohydrate, protein, and total fat intake were calculated.

A 14-item healthy eating behavior questionnaire was developed

by the authors to assess healthy eating. The Cronbach’s alpha of this

tool was.617, which shows it is a reliable tool.

The subjects were asked to rate their responses on a four-point

scale as never, sometimes, usually, and always, with scores ranging

from “1”= never to “4” =always. The scores on Likert scoring

ranged from 14 to 56 points. A score of 14–28 was low, 28–42 was

moderate, and 42–56 was good eating behavior.

TABLE 2 Changes in outcome variables from baseline to follow-up.

Group Time p-value

Baseline Post-
intervention

Follow up Timee�ect Group
e�ect

Interaction
e�ect

Mean (SD) Mean (SD) Mean (SD)

Blood pressure—mm Hg

Systolic Intervention 121 (17) 121 (17) 122 (18) 0.310 0.292 0.310

Control 118 (13) 119 (13) 119 (13)

Diastolic Intervention 85 (21) 85 (20) 85 (20) 0.310 <0.001 0.310

Control 76 (11) 76 (12) 77 (11)

Weight—kg Intervention 76.10 (12.77) 75.67 (12.81) 75.46 (12.98) <0.001 0.893 <0.001

Control 74.40 (11.19) 75.93 (11.00) 76.20 (10.89)

BMI—kg/m2 Intervention 28.96 (4.80) 28.84 (4.87) 28.80 (4.80) <0.001 0.838 <0.001

Control 28.51 (4.12) 29.09 (4.09) 29.20 (4.08)

Nutrition intake

Total energy-Kcal/day Intervention 1,995.38

(735.80)

1,779.73 (480.78) 1,938.61

(531.86)

0.006 0.395 0.081

Control 1,904.54

(727.10)

1,890.38 (623.36) 2,040.40

(716.72)

Carbohydrate-g/day Intervention 249.62

(173.01)

188.35 (76.62) 199.77 (80.16) 0.001 0.211 0.005

Control 233.54

(137.80)

221.81 (107.37) 233.57 (91.80)

Protein-g/day Intervention 72.67 (25.63) 71.30 (21.37) 79.76 (23.25) 0.001 0.393 0.190

Control 74.97 (30.53) 67.85 (19.16) 75.31 (24.59)

Fat-g/day Intervention 77.49 (97.86) 48.21 (17.71) 47.20 (23.17) <0.001 0.929 0.004

Control 61.70 (34.99) 55.77 (26.87) 57.82 (29.88)

Healthy dietary behavior Intervention 43.8 (5.4) 43.8 (5.3) 44.3 (5.7) 0.316 0.205 0.942

Control 42.9 (5.2) 43.2 (5.3) 43.8 (5.1)

Data are means± SD. Analysis is repeated measure ANOVA. BMI, body mass index is the weight in kilograms divided by the square of the height in meters.
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FIGURE 2

Changes in mean of weight and body mass index (BMI) during study changes in mean of body weight (kg) and changes mean of BMI (kg/m2) from

baseline through follow up are shown in the control and intervention group. Repeated measures ANOVA indicated that there is a statically significant

di�erence among the three data collection between both of group.

Statistical analysis

The sample size was set considering a type 1 error of 0.05, type

2 error of 0.20, and success rate of p1 = 0.25 and p2 = 0.40; the

minimum required sample size was 101 in each group. Considering

the sample loss rate of about 50%, the minimum final sample

volume in each group will be about 151 people in each group (29).

All the statistical analyses were performed using SPSS

software version 25.0 (IBM, Chicago, Illinois, USA). The obtained

data are shown as (mean standard deviation) and frequency

(percentage) for quantitative and qualitative variables, respectively.

The normality of data distribution was assessed using the

Kolmogorov–Smirnov test. The Chi-square test (or Fisher exact

test) was employed to compare qualitative factors between

the two groups. An independent sample t-test was used to

compare quantitative variables among the groups. Cochran’s

Q test was utilized to determine if there are differences

concerning the dichotomous dependent variables between the

groups across time. Through the use of the repeated measures

ANOVA and Friedman test, continuous data in groups were

evaluated. Mann-Whitney test compared the mean outcome

quantities between the two groups in each time studied. To

eliminate the effects of the confounding factors, a general

linear model (GLM) with generalized estimating equations

(GEE) approach was performed to assess the response variables

changes by adjusting the confounding variables including age,
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TABLE 3 Physical activity level and physical activity behavior among participants within three data collection times.

Group Time p-value†

Baseline Post-intervention Follow up

Mean (SD) Median
(IQR)

Mean (SD) Median
(IQR)

Mean (SD) Median
(IQR)

Physical activity level MET-min/week

Vigorous Intervention 23.7 (209.9) 0 (0, 0) 26.7 (22.7) 0 (0, 0) 13.4 (97.8) 0 (0, 0) 0.368

Control 22.5 (145.9) 0 (0, 0) 23.2 (152.5) 0 (0, 0) 46.9 (219.4) 0 (0, 0) 0.819

p-value‡ 0.312 0.487 0.082

Moderate Intervention 644.3 (933.2)ab 240 (120, 720) 989.5

(1,179.9)b
480 (240,

1,440)

972.9

(1,114.8)a
480 (240,

1,440)

<0.001

Control 574.9 (873.4) 240 (120, 720) 681.7 (922.8) 390 (160, 960) 661.8 (930.1) 240 (160,720) 0.007

p-value‡ 0.427 0.024 0.019

Walking Intervention 149.1 (246.9)ab 33 (0, 198) 215.38 (365.3)a 99 (0, 297) 310.2 (493.8)b 132 (33, 396) <0.001

Control 159.6 (295.4)a 33 (0, 198) 238.40 (534.4) 82.5 (0, 198) 299.8 (555.5)a 132 (16.5, 396) <0.001

p-value‡ 0.785 0.635 0.642

Total physical

activity level

Intervention 817.1

(1,020.5)ab
537

(201.2, 939)

1231.5

(1,296.1)a
753 (278,

1,836)

1,296.6

(1,282.5)b
876 (339,

1,986)

<0.001

Control 757.1 (949.0)a 480 (198, 852) 943.3 (1,099.7) 568.5

(249.5, 1,212)

1,008.6

(1,086.9)a
678 (273,

1,356)

<0.001

p-value‡ 0.614 0.058 0.105

Physical

activity

behavior

Intervention 8.8 (3.2) 10.0 (6.0, 10.0) 8.8 (3.2) 10.0 (6.0, 10.0) 8.8 (3.1) 10.0 (6.0, 10.0) 0.834

Control 8.4 (2.5) 8.0 (6.0, 10.0) 8.4 (2.5) 8.0 (6.0, 10.0) 8.5 (2.6) 8.0 (6.0, 10.0) 0.459

p-value‡ 0.568 0.429 0.746

Data are means± SD and median± IQR.
†Analyses are Freidman test.
‡Mann–Whitney test.
a,bSimilar letters show statistically significant P < 0.05.

MET, denotes metabolic equivalents task; IQR, interquartile range.

salary, and family history. A P < 0.05 was considered to be

statistically significant.

Results

Baseline data

Most women in both groups were between the ages of 40–50

years. In the intervention group, 41.3% of the subjects, and in the

control group, 52.3% of them had amonthly income range of 10–20

million Iranian Rials (IRR). COVID-19 infection was observed in

the family history of 52% (34.2%) and 35(23.2%) of the participants

in the intervention and control groups, respectively. The majority

of them in both groups did not follow a special diet. The monthly

income and family history of COVID-19were significantly different

between the two groups (P = 0.019 and P = 0.034, respectively)

(Table 1).

Outcomes

Table 2 depicts the changes in outcome variables from

the baseline to follow-up. However, there were no significant

differences concerning systolic blood pressure between the two

groups. However, the diastolic blood pressure was statistically

significant between them (P< 0.001). Significant within-group and

interaction differences were found regarding weight (P < 0.001)

and BMI (P < 0.001). As shown in the plots, the weight and BMI

in the control group were lower at the start of the experiment,

but higher in this group in the follow-up compared to those in

the intervention (Figure 2). Repeated measure ANOVA showed a

significant difference during the time in terms of dietary intake:

total energy (P = 0.006), carbohydrate (P = 0.001), protein (P =

0.001), and fat (P < 0.001). A significant time x group interaction

effect was observed for carbohydrate and fat intakes (P= 0.005 and

P = 0.004, respectively). Therefore, the effect of the treatment on

carbohydrates and fat would depend on time (Table 2). We did not

find any significant differences in healthy dietary behavior between

the intervention and control groups and also during the time.

There are no significant differences among the three data

collection times relating to vigorous physical activity in both

groups. In the intervention group, MET-min/week for moderate

physical activity increased during the time (P < 0.001). In the

control group, MET for moderate activity rose among the three

data collection times (P = 0.007). In MET-min/week for moderate

physical activity, there were significant differences between the
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TABLE 4 Characteristics of plasma antibodies in participants within three data collection times.

Group Time p-

value†

Baseline Post-
intervention

Follow up

Frequency (%) Frequency (%) Frequency (%)

Intervention IgG (Binned) <1.1 152 (100%)a 135 (100%)b 119 (95.2%)ab 0.002

≥1.1 0 (0%) 0 (0%) 6 (4.8%)

Control IgG (Binned) <1.1 151 (100%)ab 136 (98.6%)b 116 (91.3%)a <0.001

≥1.1 0 (0%) 2 (1.4%) 11 (8.7%)

p-value‡ – 0.498 0.222

Intervention IgM (Binned) <1.1 148 (97.4%) 134 (99.3%) 118 (94.4%) 0.078

≥1.1 4 (2.6%) 1 (0.7%) 7 (5.6%)

Control IgM (Binned) <1.1 149 (98.7%)a 136 (98.6%)b 118 (92.9%)ab 0.023

≥1.1 2 (1.3%) 2 (1.4%) 9 (7.1%)

p-value‡ 0.684 1.00 0.797

Data are n (%). Analyses are †Cochran’s Q-test and ‡chi-square (or Fisher’s exact test).
a,bSimilar letters show statistically significant P < 0.05.

IgG, immunoglobulin G; IgM, immunoglobulin M, ELISA, enzyme-linked immune sorbent assay antibodies to SARS-CoV-2, determined by ELISA of plasma samples obtained from subjects.

intervention and control groups in the post-intervention (P =

0.024) and follow-up (P = 0.019). The level of walking activity

rose in the post-intervention and follow-up compared to that in the

baseline in the groups (P < 0.001 for both groups). There were no

significant differences between the intervention and control groups

in terms of walking activity at each time. Total PAL in minutes

per week indicated an increasingly significant difference between

the three data collections during the study in both groups (P <

0.001 for both groups). In total PAL, we detected no significant

differences between the intervention and control groups at each of

the three data collection times. Finally, the result of the Friedman

test andMann–Whitney test in the intervention and control groups

did not indicate any significant differences during the study, neither

in the groups nor between them, in terms of physical activity

behavior (Table 3).

There was no significant difference between the intervention

and control groups in terms of characteristics of plasma antibodies

and the means of plasma antibody titers against COVID-19. The

result of the Cochran’s Q test revealed a statistically significant

difference in the intervention group concerning IgG against the

virus (P = 0.002). Moreover, it indicated a statistically significant

difference in the control group in terms of Ig G and Ig M against

the virus (P < 0.001 and P= 0.023, respectively) (Table 4).

The result of repeated measures ANOVA demonstrated an

increased mean of serum Ig G and Ig M titers against the virus

among the three data collection times in both groups in time effect

(P< 0.001). However, according to the group and interaction effect,

no significant trend was observed in either of the groups in terms

of Ig G and Ig M titers against the virus (Figure 3).

Table 5 shows weight, BMI, physical activity behavior, total

energy, carbohydrate, protein, fat, and healthy dietary behavior,

along with Ig G and Ig M titers changes in the groups by

adjusting the effect of confounding variables. After adjusting the

confounding variables, age, salary, and family history, there were

no significant group differences in terms of weight, BMI, physical

activity behavior, total energy, carbohydrates, protein, fat, healthy

dietary behavior, and IgG and Ig M titers.

Discussion

The study results revealed a significant difference in terms

of diastolic blood pressure between the two groups during the

study. The result indicated that the intervention group had a

decreasing body weight in the post-intervention (0.271 kg) and

the follow-up (0.661 kg) compared with the control group. This

study indicated that a lifestyle intervention program could lead to

decreased total energy in the post-intervention and the follow-up

in the intervention group in comparison with the control group.

In the former, carbohydrates decreased in the post-intervention

and the follow-up compared to the baseline. Total fat consumption

decreased in the post-intervention and the follow-up in the

intervention group. Daily protein intake rose during the follow-up

in the intervention group. In both groups from baseline through

follow-up, the healthy dietary behavior score increased. However,

healthy dietary behavior did not indicate significant differences

during the study. From the beginning study, in the intervention

group, a healthy dietary behavior score was a good score; however,

in the control group, the healthy dietary behavior score changed

from medium to good scores. The healthy dietary behavior score

did not indicate significant differences. Physical activity education

did not vary according to the baseline concerning vigorous level.

Although the analyses indicated a significant improvement in the

post-intervention and follow-up in the majority of physical activity

levels in both groups, web-based intervention showed greater

improvements (moderate, walking, and total physical activity) in

the intervention group than in the control group. The obtained

findings did not show a significant modification in the mean score

of physical activity behavior. In both groups, the mean score for
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FIGURE 3

Changes in mean of immunoglobulin G (IgG) and immunoglobulin M (IgM) titers during study (A), changes mean of IgG titers and (B), changes mean

of IgM titer from baseline through follow-up are shown in the intervention and control group. Repeated measures ANOVA indicated that there is a

statically significant di�erence among the three data collection between both of group.

physical activity behavior was low. In the present study, we found

that lifestyle intervention programs in women without COVID-

19 infection resulted in a lower risk of getting infected in the

intervention group, and the mean of Ig M and IgG against the

coronavirus titers increased in the follow-up in both groups.

A previous paper indicated that a web-based intervention

on nutritional status, physical activity, and health-related quality

significantly decreased systolic and diastolic blood pressure within

groups in a patient with metabolic syndrome (22). Our results

in terms of blood pressure were contrary to these findings. In

2021, a systematic literature review and meta-analysis yielded a

significant decrease in body weight and BMI (30). Our findings

are consistent with a recent systematic literature review and

meta-analysis. The meta-analysis showed that web-based digital
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TABLE 5 Evaluation of main outcome changes using a general linear model (GLM) with generalized estimating equations (GEE) approach.

Group e�ecta Time e�ect Interaction (group) ∗ (Time)

B (CI) p-value Post-interventionb Follow upb (Group = intervention) ∗ (time =
post-intervention)

(Group = intervention)
∗ (time = follow up)

B (CI) p-value B (CI) p-value B (CI) p-value B (CI) p-value

Weight—kg 1.1 (−1.5 to 3.7) 0.392 1.2 (1.02 to 1.4) <0.001 0.9 (0.6

to 1.3)

<0.001 −1.4 (−1.7 to 1.2) <0.001 −1.8 (−2.3

to−1.2)

<0.001

BMI—kg/m2 0.42 (−0.56

to 1.4)

0.402 0.45 (0.40

to 0.57)

<0.001 0.36 (0.22

to 0.50)

<0.001 −0.54 (−0.67 to−0.41) <0.001 −0.69 (−0.90

to−0.48)

<0.001

Physical activity behavior 0.24 (−0.38

to 0.85)

0.442 0.01 (−0.008

to 0.02)

0.286 0.04 (−0.10

to 0.2)

0.615 – – – –

Total energy-Kcal/day 91.8 (−68.9

to 252.6)

0.263 −11.3 (−130.1

to 107.4)

0.852 127.7 (−33.9

to 289.4)

0.122 −206.5 (−377 to−35.9) 0.018 −183.6 (−395.7

to 28.5)

0.090

Carbohydrate-g/day 12 (−23.2

to 47.3)

0.50 −10.8 (−38.9

to 17.3)

0.452 1.1 (−24.3

to 26.6)

0.930 −50.7 (−91.9 to−9.4) 0.016 −51.3 (−90.2

to−12.4)

0.010

Protein-g/day 1.6 (−2.2 to 5.4) 0.409 −4.3 (−8.1

to−0.49)

0.027 3.60 (−0.40

to 7.6)

0.078 – – – –

Fat-g/day 16.1 (−1.4

to 33.6)

0.071 −6.1 (−12.7

to 0.44)

0.068 −4 (−11.2

to 3)

0.260 −23.2 (−40.1 to−6.3) 0.007 −26.2 (−43.1

to−9.3)

0.002

Healthy dietary behavior 0.58 (−0.32

to 1.5)

0.205 0.13 (−0.75

to 1)

0.771 0.66 (−0.23

to 1.5)

0.147 – – – –

IgG Titers −0.14 (−0.39

to 0.10)

0.248 0.01 (−0.16

to 0.18)

0.913 0.57 (0.24

to 0.90)

0.001 – – – –

IgM Titers 0.01 (−0.03

to 0.06)

0.483 0.09 (0.06

to 0.11)

<0.001 0.38 (0.32

to 0.44)

<0.001 – – – –

OR, odds ratio; CI, confidence interval.
aIntervention group is compared with the control group (reference).
bPost-intervention and follow-up time are compared with baseline.

Analyses are based on general linear model (GLM) with generalized estimating equation (GEE).
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intervention led to greater weight loss in the short term (31).

A lifestyle intervention showed that the mean bodyweight of

the subjects in the intervention group decreased compared with

that in the control group (32). Sevilla et al. conducted lifestyle

exercise and nutrition intervention, and body weight did not

change after the intervention. Our results in terms of body weight

were different from the findings reported by Sevilla et al. (33).

We observed a reduction in body weight and BMI. Our findings

are consistent with a recent systematic literature review and

meta-analysis, showing that multi-component worksite wellness

programs improve diet and body weight (30). The present analysis

supported previous research implying that web-based intervention,

decreased total calorie, fat, and carbohydrate could be of benefit

(22). Nevertheless, the dietary behavior included in this study

indicated an increased mean score that was not statistically

significant. In line with the current study, Sevilla et al. reported that

nutrition and adherence to the Mediterranean diet were effective

(33). In a cross-sectional study conducted on undergraduate

nursing and medical students, a 10-index scale increment of digital

healthy diet literacy was associated with increased healthy eating

behavior in students (34). However, social distancing during the

COVID-19 pandemic has had an impact on individuals’ behaviors,

reducing the level of physical activity and worsening dietary

habits (35); therefore, lifestyle intervention is necessary during the

pandemic. A systematic review and meta-analysis concluded that

the intervention increased the physical activity of the participants

in vigorous and moderate physical activities (36). According to a

systematic review, when moderate- to vigorous-intensity physical

activity is >150 min/week, it could prevent weight gain (37).

Poppe’s study reported an increase in moderate and moderate to

vigorous intensity levels of physical activity (38). A randomized

controlled trial indicated that an educational intervention increased

physical activity during the COVID-19 pandemic (33). The results

herein are in accordance with those of previous investigations.

Several possible explanations could be considered for the

decreased weight and BMI in the intervention group. The main

reason is the decrease in carbohydrate and total fat consumption in

this group in comparison with the control group. Further increase

in physical activity level in the intervention group compared

to that in the control group is another reason behind weight

loss and BMI. The growth in the level of physical activity and

reduction in certain macronutrients in the intervention group

compared to those in the control group was using proper

educational curriculums in the intervention group. Despite social

distancing and mobility restrictions, intensive physical activity

had an increasingly significant effect on both groups and the

intervention group had a MET-min/week closer to 1,500 MET-

min; this score is categorized as a moderate level of physical

activity (27). Greater improvement in the total physical activity

in the intervention group may be owing to the effectiveness

of the web-based intervention. Of course, vaccination started

worldwide at the time of the follow-up of this study, and the

decrease in home quarantine caused all levels of physical activity

to increase in the control group in the follow-up compared to

the baseline.

The total energy intake restriction, increased protein intake,

and physical activity might play a role in the changes in adipose

cells’ size and affect anti-inflammatory (11). Obesity affects

immunity and there is a relationship between obesity and various

infectious diseases. Obesity causes mild chronic inflammation

violating innate immunity and adaptation (39). Physical activity

affects the immune system and its anti-viral defenses. Several

mechanisms interfere with the effect of exercise on cytokines,

the increase in physical activity is related to the reduction in

fat mass and subsequently a decrease in adipokine secretion

and induction of an anti-inflammatory effect through releasing

cytokines from contracting skeletal muscle (40). There is the

concept of the inverted J theory, where moderate exercise, such

as walking, reduces susceptibility to infection, and prolonged,

high-intensity exercise increases it (41). In our study, moderate

physical activity and walking indicated a further increase in

the intervention group than in the control group. In general,

the level of physical activity was moderate in the present

study, which contributed to boosting the immune response (42).

Owing to the importance of the spread of worldwide pandemics,

especially COVID-19, lifestyle interventions must be effective and

available to vulnerable populations. The Internet, smartphone,

and technology programs prepare opportunities for implementing

lifestyle interventions (22).

In the current study, we used modern technologies, such as

web-based lifestyle intervention strategies for women who are

among the high-risk populations. The participants had similar

social and cultural (socio-cultural) characteristics because they

lived in a province with the same socio-cultural characteristics.

Herein, we observed favorable results. These findings indicated

that web-based lifestyle intervention could effectively improve body

weight, BMI, total energy and carbohydrate intakes, total fat, and

protein consumption (total and moderate physical activity, and

walking) levels, and healthy dietary behavior scores strengthen the

immune response led to a lower prevalence of COVID-19 in the

intervention group.

The strengths of the present study include a randomized

control trial, large sample size, three months of follow-up, the use

of educational approaches, such as PowerPoint, and the use of web-

based lifestyle intervention. However, this investigation has certain

limitations. Using 24-hour recall dietary in data collection, the

error measurement was unavoidable. Accordingly, the intervention

programs were relatively short so that they would not overlap with

the vaccination process.

Conclusion

Our results give support to the effectiveness of interactive

web-based lifestyle programs in improving weight, BMI,

nutritional status, and physical activity which can be effective

in boosting immunity and could help prevention of COVID-

19. The integration of interactive web-based programs into

primary health care practices such as prevention of the

pandemics, especially COVID-19, offers possibilities for

on-time interaction in a high-risk population with several

advantages for administrators of the preventive strategies.

Furthermore, the findings of the current study show that web-

based lifestyle interventions could be considered beneficial for
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decreasing the risk of chronic diseases, particularly in vulnerable

populations. However, further research is required to corroborate

these findings and apply newer technology in the prevention

of pandemics.

Data availability statement

The datasets presented in this article are not readily available

because restrictions apply to the availability of some or all data

generated or analyzed during this study to preserve patient

confidentiality or because they were used under license. The

corresponding author will on request detail the restrictions

and any conditions under which access to some data may be

provided. Requests to access the datasets should be directed to

MZ, zaremaryam119@gmail.com.

Ethics statement

The studies involving humans were approved

by AIR.ARUMS.REC.1399.284, Approval code Irct.ir:

IRCT20221228056969N. The studies were conducted in

accordance with the local legislation and institutional

requirements. Written informed consent for participation in

this study was provided by the participants’ legal guardians/next

of kin.

Author contributions

MZ designed the study, secured the funding, designed the

curriculum training strategy of trial and site education coordinated

the study, analyzed data, and drafted the manuscript. AK designed

the study, designed the training strategy content of the trial

and held training for the class, and drafted the manuscript. FP

coordinated the study and drafted the manuscript. JM contributed

to the design of the trial and drafted the manuscript. All the authors

have made an essential contribution to the article.

Funding

This study was funded by the World Health Organization

(WHO) Regional Office for The Eastern Mediterranean Regional

Office (EMRO) Special Grant for Research in Priority Areas

of Public Health, 2020-2021 (COVID-19 research section) (No.

RPPH20-62). The funder reviewed and approved the study and so

reviewed reports. The funders of the study had no role in the design,

data collection, data analysis, data interpretation, or writing of

the report.

Acknowledgments

The authors are incredibly grateful to the doctors and

nurses who risked their lives to protect people’s health during

the COVID-19 era. The authors acknowledge the funding

support provided by the WHO Eastern Mediterranean

Regional Office—Special Grant for Research in Priority

Areas of Public Health 2020–2021 (COVID-19 research

section), under grant no. RPPH 20-62. They also acknowledge

contributions by the study participants, the Ethics Committee

of Ardabil University of Medical Sciences, personnel of Ardabil

Health Center, staff of Digestive Disease Research Center

(DDRC), and Prof Ahmed Mohamed Amin Mandil and

his team.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fnut.2023.

1172014/full#supplementary-material

References

1. Paslakis G, Dimitropoulos G, Katzman DK, A. call to action to address COVID-
19–induced global food insecurity to prevent hunger, malnutrition, and eating
pathology. Nutr Rev. (2021) 79:114–6. doi: 10.1093/nutrit/nuaa069

2. Zhao Q, Meng M, Kumar R, Wu Y, Huang J, Deng Y, et al.
Lymphopenia is associated with severe coronavirus disease 2019 (COVID-
19) infections: a systemic review and meta-analysis. Int J Infect Dis. (2020)
96:131–5. doi: 10.1016/j.ijid.2020.04.086

3. Cai X-f, Chen J, li Hu J-, Long Q-x, Deng H-j, Liu P, et al. A peptide-
based magnetic chemiluminescence enzyme immunoassay for serological diagnosis of
coronavirus disease 2019. J Infect Dis. (2020) 222:189–93. doi: 10.1093/infdis/jiaa243

4. Jin Y-H, Cai L, Cheng Z-S, Cheng H, Deng T, Fan Y-P, et al. A rapid
advice guideline for the diagnosis and treatment of 2019 novel coronavirus
(2019-nCoV) infected pneumonia (standard version). Military Med Res. (2020) 7:1–
23. doi: 10.1186/s40779-020-0233-6

Frontiers inNutrition 12 frontiersin.org66

https://doi.org/10.3389/fnut.2023.1172014
mailto:zaremaryam119@gmail.com
https://www.frontiersin.org/articles/10.3389/fnut.2023.1172014/full#supplementary-material
https://doi.org/10.1093/nutrit/nuaa069
https://doi.org/10.1016/j.ijid.2020.04.086
https://doi.org/10.1093/infdis/jiaa243
https://doi.org/10.1186/s40779-020-0233-6
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Pourfarzi et al. 10.3389/fnut.2023.1172014

5. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis
of coronavirus disease (COVID-19) outbreak. J Autoimmun. (2020)
109:102433. doi: 10.1016/j.jaut.2020.102433

6. Walsh SM, Meyer MRU, Stamatis A, Morgan GB. Why
women sit: determinants of leisure sitting time for working women.
Women’s Health Issues. (2015) 25:673–9. doi: 10.1016/j.whi.2015.
06.012

7. O’Sullivan TL, Phillips KP. From SARS to pandemic influenza:
the framing of high-risk populations. Natural Hazards. (2019) 98:103–
17. doi: 10.1007/s11069-019-03584-6

8. Okely AD, Kariippanon KE, Guan H, Taylor EK, Suesse T, Cross PL, et al. Global
effect of COVID-19 pandemic on physical activity, sedentary behaviour and sleep
among 3-to 5-year-old children: a longitudinal study of 14 countries. BMC Public
Health. (2021) 21:1–15. doi: 10.1186/s12889-021-10852-3

9. Batlle-Bayer L, Aldaco R, Bala A, Puig R, Laso J, Margallo M, et al. Environmental
and nutritional impacts of dietary changes in Spain during the COVID-19 lockdown.
Sci Total Environm. (2020) 748:141410. doi: 10.1016/j.scitotenv.2020.141410

10. Grey EB, Thompson D, Gillison FB. Effects of a web-based, evolutionary
mismatch-framed intervention targeting physical activity and diet: a randomised
controlled trial. Int J Behav Med. (2019) 26:645–57. doi: 10.1007/s12529-019-09821-3
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Evaluating myelophil, a 30%
ethanol extract of Astragalus
membranaceus and Salvia
miltiorrhiza, for alleviating fatigue
in long COVID: a real-world
observational study

Jin-Yong Joung1,2, Jin-Seok Lee2, Yujin Choi2, Yoon Jung Kim2,
Hyeon-Muk Oh2,3, Hyun-Sik Seo2,3 and Chang-Gue Son2,3*
1Department of Internal Medicine, DaejeonGood-morning KoreanMedicine Hospital, Daejeon, Republic
of Korea, 2Institute of Bioscience and Integrative Medicine, Daejeon University, Daejeon, Republic of
Korea, 3Department of Internal Medicine, Daejeon Korean Medicine Hospital of Daejeon University,
Daejeon, Republic of Korea

Background: Persistent post-infectious symptoms, predominantly fatigue,
characterize Long COVID. This study investigated the efficacy of Myelophil
(MYP), which contains metabolites extracted from Astragalus membranaceus
and Salvia miltiorrhiza using 30% ethanol, in alleviating fatigue among subjects
with Long COVID.

Methods: In this prospective observational study, we enrolled subjects with
significant fatigue related to Long COVID, using criteria of scores of 60 or
higher on the modified Korean Chalder Fatigue scale (mKCFQ11), or five or
higher on the Visual Analog Scale (VAS) for brain fog. Utilizing a single-arm
design, participants were orally administered MYP (2,000mg daily) for 4 weeks.
Changes in fatigue severity were assessed using mKCFQ11, Multidimensional
Fatigue Inventory (MFI-20), and VAS for fatigue and brain fog. In addition, changes
in quality of life using the short form 12 (SF-12) were also assessed along with
plasma cortisol levels.

Results: A total of 50 participants (18 males, 32 females) were enrolled; 49 were
included in the intention-to-treat analysis with scores of 66.9 ± 11.7 on
mKCFQ11 and 6.3 ± 1.5 on the brain fog VAS. After 4 weeks of MYP
administration, there were statistically significant improvements in fatigue
levels: mKCFQ11 was measured at 34.8 ± 17.1 and brain fog VAS at 3.0 ± 1.9.
Additionally, MFI-20 decreased from 64.8 ± 9.8 to 49.3 ± 10.8, fatigue VAS
dropped from 7.4 ± 1.0 to 3.4 ± 1.7, SF-12 scores rose from 53.3 ± 14.9 to 78.6 ±
14.3, and plasma cortisol levels also elevated from 138.8 ± 50.1 to 176.9 ± 62.0 /
mL. No safety concerns emerged during the trial.

Conclusion: Current findings underline MYP’s potential in managing Long
COVID-induced fatigue. However, comprehensive studies remain imperative.

Clinical Trial Registration: https://cris.nih.go.kr, identifier KCT0008948.
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1 Introduction

Long COVID, often referred to as post-acute sequelae of
COVID-19, is a multifaceted condition marked by persistent and
frequently severe symptoms that emerge 2–3 months after an
infection with the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2). Common manifestations include fatigue, body
pain, mood disturbances, cognitive issues, and respiratory
complications (Chuang et al., 2023). Fatigue, often accompanied
by cognitive complaints like “brain fog”, is one of the most
challenging symptoms of Long COVID (Chasco et al., 2022). The
prevalence of post-COVID-19 fatigue ranges from 9% to 58%,
influenced by follow-up duration, study population
characteristics, recruitment methods, and evaluation depth
(Verveen et al., 2022). Given the profound medical and socio-
economic implications of Long COVID’s fatigue, particularly its
effects on work productivity and quality of life (Lunt et al., 2022), it’s
imperative that affected individuals receive specialized care
and support.

While treatments for Long COVID fatigue are still emerging,
behavioral interventions have shown potential efficacy in addressing
post-infection fatigue conditions (Kuut et al., 2023). Currently,
there’s no established drug treatment targeting Long COVID
fatigue. However, strategies initially designed for Myalgic
Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), a
condition that shares pathophysiological similarities with Long
COVID, are under investigation (Qanneta, 2022). Recent studies
have particularly highlighted their shared hallmarks in immune
dysregulation, energy metabolism, and the pivotal role of the
hypothalamic-pituitary-adrenal (HPA) axis (Komaroff and
Lipkin, 2023).

One such potential therapeutic agent is Myelophil (MYP), a 1:
1 mixture of the 30% ethanol extracts of Astragalus membranaceus
and Salvia miltiorrhiza. Traditionally used to treat chronic fatigue-
related disorders, MYP exhibited moderate benefits in a recent phase
2 RCT with 98 ME/CFS patients, showing pronounced effectiveness
for those with severe symptoms (Joung et al., 2019a). Its potential
benefits for ME/CFS highlight the need to investigate its
effectiveness specifically against Long COVID-related fatigue,
which may involve unique pathophysiological pathways
influenced by SARS-CoV-2.

In this prospective observational study, our objective is to
evaluate the effectiveness of MYP in alleviating fatigue symptoms
in Long COVID patients. We aim to observe and analyze real-world
data from patients who have opted to include MYP in their
treatment regime, providing valuable insights into its utility in a
practical healthcare setting.

2 Materials and methods

2.1 Participants

This study aims to analyze the outcomes --in individuals who
had recovered fromCOVID-19 and were experiencing severe fatigue
or brain fog symptoms and have opted to use MYP as part of their
treatment. The data collection is conducted at Daejeon Korean
Medicine Hospital of Daejeon University.

Eligible participants were those aged between 13 and 70 who,
following a 4-week recovery period, reported these persistent
symptoms. The diagnosis of COVID-19 for these participants
was verified using the South Korean government’s public health
system, which provided online access to medical records of
individuals diagnosed with COVID-19 until 30 May 2023.
Polymerase Chain Reaction (PCR) testing to monitor viral loads
was not employed as the study focused on individuals beyond the
acute phase of infection, confirmed using rapid antigen tests to verify
recovery status and align with the study’s aim of assessing MYP’s
effects on Long COVID symptoms.

Eligibility for data inclusion requires a score of 60 or higher on
the Modified Korean version of the Chalder Fatigue Scale
(mKCFQ11), or a score of five or higher on the Visual Analog
Scale (VAS) for brain fog. We exclude data from individuals with
potential alternative causes for fatigue such as chronic hepatic,
cardiovascular, neurological diseases, hypothyroidism, or
clinically significant anemia, and those taking other supplements
for fatigue/brain fog, with major physical or mental health issues, or
recently involved in other clinical trials. For detailed inclusion and
exclusion criteria, refer to Supplementary Table S1.

All participants provided informed consent prior to
participation. The study was based on the principles of the
Declaration of Helsinki and has received ethical clearance from
the Institutional Review Board (IRB) of Daejeon University’s Korean
Medicine Hospital, with the reference number DJDSKH-21-BM-19.
Additionally, the study was registered in the Clinical Research
Information Service of the Republic of Korea (KCT0008948).

2.2 Study design and treatment

In this prospective observational study, we reference prior
clinical trials in ME/CFS where MYP was administered for
4 weeks, providing a basis for our focus on a similar treatment
duration for Long COVID symptoms (Joung et al., 2019a). We
observed the effects of MYP over this 4-week period in individuals
recovering from COVID-19 who report experiencing fatigue and
brain fog. During this time, participants are typically advised to
consume two MYP capsules orally, twice daily, leading to a total
daily dosage of 2,000 mg. According to the Consensus statement on
the Phytochemical Characterisation of Medicinal Plant extracts
(ConPhyMP) guidlines (Heinrich et al., 2022), MYP, not listed in
any country’s pharmacopoeia, is classified as a Type B extract due to
its commercial utilization.

The MYP capsules were manufactured by Hankook BioPharm
Pharmacy, adhering to Korean Good Manufacturing Practice
guidelines. Each capsule contained 500 mg of a dried extract
prepared with 30% ethanol. This extract was derived in equal
proportions from two botanical sources: 1.389 g each of A.
membranaceus Fisch. ex Bunge (Fabaceae; A. membranaceus
radix et rhizoma) and S. miltiorrhiza Bunge (Lamiaceae; Salviae
miltiorrhizae radix et rhizoma). The A. membranaceus was sourced
from Jecheon, South Korea (Batch No. 20191104-JC-HG), and the S.
miltiorrhiza came from Hebei, China (Batch No. 20200228-CHN-
DS), both purchased from Jeong-Seong Drugstore in Daejeon,
Korea. The extraction of MYP involved a 20-h process at 80°C
with 30% ethanol, yielding a final product concentration of 20.52%
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(w/w), which was then stored for subsequent use. The extraction of
MYP was performed over a 20-h period at 80°C using 30% ethanol.
This process resulted in a final product concentration of 20.52% (w/
w), corresponding to a drug-extract ratio of 4.87:1, indicating that
approximately 4.87 g of raw material were used to obtain 1 g of
extract. Subsequently, the extract was stored for future use.
The detailed specifications of MYP are shown in
Supplementary Table S2.

To ensure the consistency of MYP’s components, we
performed fingerprint analysis as previously outlined (Kim
et al., 2014), using four reference compounds: astragaloside IV
and formononetin from A. membranaceus, and salvianolic acid B
and rosmarinic acid from S. miltiorrhiza. For this analysis, 20 mg
of MYP and 10 µg of each reference compound were dissolved in
1 mL of 90% methanol and filtered through a 0.45 µm filter. The
samples were analyzed with ultra-high-performance liquid
chromatography-mass spectrometry (UHPLC-MS) and liquid
chromatography-mass spectrometry (LC-MS) using an LTQ
Orbitrap XL system equipped with an electrospray ionization
source. Chromatographic separation was carried out on an
Acquity BEH C18 column using 0.1% formic acid in water
(mobile phase A) and 0.1% formic acid in acetonitrile (mobile
phase B) at a flow rate of 0.3 mL/min. The elution gradient was
programmed to maintain 10% B isocratically for 0–1 min, linearly
increase from 10% to 90% B over 1–10 min, and hold at 100% B
from 10–12 min, ensuring thorough and consistent analysis of the
metabolites. The representative sample chromatogram and the
corresponding quantitative analysis are presented in Figures 1A, B.
The capsule image is shown in Figure 1C.

2.3 Assessment of fatigue and safety

The primary outcome was the change in mKCFQ11 scores
after 4 weeks of MYP administration, a tool specifically
designed to assess fatigue severity with established reliability
and validity (Ahn et al., 2020). The mKCFQ11 comprises
11 questions: seven on physical fatigue (up to 63 points) and
four on mental fatigue (up to 36 points), with a combined
maximum of 99 points. For secondary measures, the study
employed the Multidimensional Fatigue Inventory (MFI-20),
the VAS for general fatigue, a specific VAS for brain fog, and the
Quality of Life (SF-12) scale to gauge the participants’
overall wellbeing.

To explore MYP’s pharmacological effects, we measured
plasma cortisol with an R&D Systems assay kit (cat. No.
KGE008B, Minneapolis, United States) and recorded
absorbance at 450 and 570 nm using a Molecular Devices
spectrophotometer (Sunnyvale, CA, United States) during
fasting hours pre- and post-treatment. Furthermore, a
complete blood count (CBC), chemistry profile, and urinalysis
were performed to ensure the safety of MYP.

2.4 Estimation of sample size

Using G*Power software (version 3.1.9.7) (Faul et al., 2007),
we estimated the necessary sample size for our study. Given
that our study design involves a single-arm pre-post
comparison, we used the standardized mean difference

FIGURE 1
(A) UHPLC-MS chromatogram of MYP. (B) Quantitative LC-MS analysis of MYP with four reference compounds. (C) Image of MYP capsules.
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(SMD) as our effect size measure. We set the significance level
at 0.05, effect size at 0.5, and statistical power at 0.90. An SMD
of 0.5, indicating a medium effect size, was chosen based on
clinical experience and a recent phase 2 RCT involving MYP,
which demonstrated benefits in reducing fatigue among
patients with chronic fatigue syndrome (Joung et al., 2019a).
This resulted in a minimum required sample size of
44 participants. Anticipating a dropout rate of
approximately 10%, we decided to enroll 50 participants to
ensure the robustness of our findings. Detailed calculations are
provided in the Supplementary Table S3.

2.5 Statistical analysis

Analyses were conducted on the intention-to-treat (ITT)
population using the baseline observation carried forward
(BOCF) method, which included all participants who
completed the baseline assessment and received at least one
dose of MYP. A safety analysis encompassed all participants
who received at least one dose of the trial medication. Continuous
measures, including primary and secondary outcomes from
mKCFQ11, MFI-20, VAS, SF-12, and cortisol levels, were
compared pre- and post-intervention. The normality of the
data was assessed using the Shapiro-Wilk test. For data
following a Gaussian distribution, paired t-tests were
employed. For non-Gaussian data, the Wilcoxon Signed-Rank
Test was utilized. Additionally, correlation analyses were

performed for these indices. A p-value of less than 0.05 was
considered statistically significant.

3 Results

3.1 Study population

From December 2021 to April 2023, a total of 50 participants
(18 males and 32 females) were enrolled. However, one female
participant withdrew due to personal circumstances before the drug
administration began. Of the remaining 49 participants (18 males and
31 females)who successfullyfinished the 4-week treatment andmaintained
an adherence rate above 75%, all were considered for the ITT analysis.

The mean age of the 49 participants was 42.0 ± 12.2 years (males:
43.3 ± 11.8; females: 41.9 ± 12.2), with a mean BMI of 23.6 ± 3.4 (males:
24.9 ± 2.6; females: 22.9 ± 3.6). On average, participants commenced the
trial 139.3 ± 81.4 days after their COVID-19 diagnosis. At baseline,
participants displayed pronounced fatigue, with an average
mKCFQ11 score of 66.9 ± 11.9 (physical fatigue: 45.1 ± 6.6 and
mental fatigue: 21.9 ±6.6). Their average brain fogVAS scorewas 6.3 ± 1.5.

3.2 Changes in primary assessment:
mKCFQ11 score

After 4 weeks of treatment, the mKCFQ11, our primary
assessment, exhibited a significant shift from 66.9 ± 11.7 to

FIGURE 2
Changes before and after treatment in: (A)mKCFQ11 and MFI-20 scores, (B) Fatigue VAS and Brain fog VAS scores, (C) SF-12 scores, and (D) Plasma
cortisol levels (ng/mL). The figure also demonstrates the correlations of improved changes between (E)mKCFQ11 and MFI-20, (F)mKCFQ11 and SF-12,
and (G) Fatigue VAS and Brain fog VAS. Note: ‘r’ represents the correlation coefficient. Error bars represent standard deviations. Significant reductions
were observed inmKCFQ11, MFI-20, Fatigue VAS, Brain Fog VAS, and SF-12 (all p < 0.001, data followed Gaussian distribution). Plasma cortisol levels
increased significantly post-treatment (p = 0.034, non-Gaussian distribution).
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34.8 ± 17.1 (p < 0.001). Both components, physical fatigue (from
45.1 ± 6.6 to 23.8 ± 11.3) and mental fatigue (from 21.9 ± 6.6 to
11.1 ± 7.1), showed marked reductions (p < 0.001 for both)
(Figure 2A). The changes in mKCFQ11 scores were tested for
normality using the Shapiro-Wilk test, and the results indicated
that the data followed a Gaussian distribution (Shapiro-Wilk
statistic = 0.969, p = 0.218).

3.3 Changes in secondary assessment

Secondary assessments showed statistically significant
improvements with p-values less than 0.001. MFI-20 shifted from
64.8 ± 9.8 to 49.3 ± 10.8, Fatigue VAS changed from 7.4 ± 1.0 to 3.4 ±
1.9, Brain Fog VAS decreased from 6.3 ± 1.5 to 3.0 ± 1.9, and SF-12
increased from 53.3 ± 14.9 to 78.6 ± 14.3 (Figures 2A–C).

The normality of these changes was also tested using the
Shapiro-Wilk test. The results indicated that MFI-20 (Shapiro-
Wilk statistic = 0.967, p = 0.192), Fatigue VAS (Shapiro-Wilk
statistic = 0.981, p = 0.592), Brain Fog VAS (Shapiro-Wilk
statistic = 0.959, p = 0.089), and SF-12 (Shapiro-Wilk statistic =
0.969, p = 0.216) followed a Gaussian distribution.

In the correlation analysis, the mKCFQ11 showed strong
positive correlations with MFI-20 (correlation coefficient r =
0.65), Fatigue VAS (r = 0.70), and Brain Fog VAS (r = 0.54),
while demonstrating a strong negative correlation with SF-12
(r = −0.59). (Figures 2E–G).

Additionally, there was a marked rise in cortisol levels post-
treatment. The cortisol levels increased from 138.8 ± 50.1 ng/mL
pre-treatment to 176.9 ± 62.0 ng/mL post-treatment (p < 0.001).
(Figure 2D). The changes in cortisol levels did not follow a Gaussian
distribution (Shapiro-Wilk statistic = 0.952, p = 0.046), so the
Wilcoxon Signed-Rank Test was used to analyze these changes.
This elevation in cortisol showed no significant correlation with
mKCFQ11, with r being 0.15.

3.3.1 Safety
One participant (2.04%) experienced mild indigestion but

recovered without any specific treatment. No other adverse
reactions, including liver and kidney function in blood tests, were
observed (data not shown).

4 Discussion

In traditional Korean and Chinese medicine, A. membranaceus
and S. miltiorrhiza are respectively regarded as fundamental
botanical drugs for enhancing two essential components of the
human body, Qi and blood, respectively. Qi, understood as the
vital energy, sustains bodily operations, including metabolism and
growth, whereas blood serves as the crucial nourishing agent.
Deficiencies in Qi or blood are linked to symptoms of physical
and mental exhaustion (Kim et al., 2016). MYP, as a mixture of these
two botanicals, has shown potential in treating ME/CFS.

Preclinical studies have demonstrated that MYP not only
protects central neurons from stress-induced damage but also
relieves fatigue and cognitive impairment by modulating the
HPA axis, inhibiting neuroinflammation, and regulating

cholinergic activity (Lee et al., 2015; Song et al., 2021). The
optimal dosage for MYP, informed by these studies and further
animal toxicity investigations, achieved peak effectiveness in mice at
dosages exceeding 200 mg/kg/day (Kim et al., 2014). Additionally,
the safe dosage for humans, or the no-observed-adverse-effect level
(NOAEL), was established at 694 mg/kg, following toxicity
evaluations with both rodents and non-rodents (beagle dog)
(Joung et al., 2019b). A phase 2 clinical trial highlighted MYP’s
potential, showing notable benefits in treating ME/CFS, especially
for individuals with severe symptoms (Joung et al., 2019a).

Recent research into Long COVID has revealed significant
disruptions such as T-cell dysregulation, systemic inflammation,
and a disjointed immune response to SARS-CoV-2 (Yin et al., 2024).
This condition is marked by increased migration of CD4+ T-cell to
inflamed tissues, exhaustion of SARS-CoV-2-specific CD8+ T-cell,
and heightened antibody levels, creating a mismatch between
cellular and humoral responses. MYP might counteract these
issues through its actions on both the central nervous system and
systemic inflammation. It modulates neurotransmitter pathways,
notably serotonin and dopamine, which are known to alleviate
neuroinflammatory processes and neurotransmitter imbalances,
issues prevalent in Long COVID (Song et al., 2021; Reiss et al.,
2023). Additionally, MYP’s regulation of key mediators like
transforming growth factor β (TGF-β) and its influence on the
HPA axis provide anti-inflammatory benefits across multiple organ
systems, potentially reducing the widespread inflammation
characteristic of Long COVID (Kim et al., 2013; Lee et al., 2019).
Given these properties, we initiated this real-world observational
study to investigate the potential of MYP in alleviating symptoms of
Long COVID fatigue.

The radical reduction of fatigue symptoms post-MYP
treatment, as reflected in the mKCFQ11 scores (approximately
50% of baseline severity), offers a promising insight into potential
interventions for Long COVID-induced fatigue. Additionally,
this anti-fatigue efficacy of MYP is strongly supported by
other measurements using fatigue-related tools: 24% in MFI-
20, 54% in fatigue VAS, and 52% in brain fog VAS (Figures 2A,
B). As expected, the QOL level also improved notably, showing a
47% increase from the baseline score of SF-12 (Figure 2C).
Furthermore, there are strong and consistent correlations
among the changed scores of these measurements (Figures
2E–G). Such a transition underscores a significant overall
improvement in fatigue in Long COVID patients following
MYP administration. Based on our prior research, the
mKCF11 scale scores can be interpreted as follows:
0–25 points suggest no/mild fatigue; 25–40 indicate general
fatigue; 40–60 represent idiopathic chronic fatigue levels; and
scores exceeding 60 are indicative of ME/CFS levels (Lim and
Son, 2022). At the baseline, 40 participants exhibited intense
fatigue comparable to ME/CFS levels. However, after 4 weeks of
MYP treatment, only four participants still had scores above 60.
Remarkably, post-treatment, 35 participants had scores of 40 or
below, of which 14 achieved scores of 25 or less (data not shown).

In our real-world observational study, we documented
significant effects of MYP on Long COVID-related fatigue,
highlighting the importance of patient-centered, value-based
outcomes in contemporary medical practice. While our study’s
design, a non-randomized, open-label observational study

Frontiers in Pharmacology frontiersin.org05

Joung et al. 10.3389/fphar.2024.1394810

72

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1394810


without a control group, calls for a careful interpretation of these
results, the observed improvements are nonetheless compelling.
When compared to placebo effects reported in prior RCTs, our
findings suggest a potentially greater efficacy of MYP. For example,
previous RCTs on Long COVID fatigue using the Chalder Fatigue
Questionnaire (CFQ-11, with a maximum possible score of 33) or
the Visual Analog Fatigue Scale (VAFS, with a maximum possible
score of 10) demonstrated varying placebo responses: one exhibited
a 5.7% decrease over 4 weeks, reducing from 28.1 to 26.5 on the
CFQ-11 (Finnigan et al., 2023), while another reported a 22.5%
decline in just 14 days, moving from 25.7 to 20.0 on the CFQ-11
(Rathi et al., 2021), and a further study noted an 18.7% reduction in
VAFS scores over 2 weeks, from 7.34 to 5.97 (Harandi et al., 2024,
p. 19). In their respective treatments, the metabolic modulator group
experienced a 19.9% decrease in CFQ-11 (from 26.2 to 21.0),
whereas the enzyme complex and probiotic group achieved a
67.1% improvement in CFQ-11 (from 25.8 to 8.5). Similarly, the
Amantadine group demonstrated a 57.3% reduction in VAFS (from
7.90 to 3.37). These comparisons suggest that MYP may offer
benefits beyond those attributable to placebo, highlighting the
need for further controlled research to validate these
promising results.

Given that 55.9% of patients with Long COVID-attributed
fatigue reported enduring symptoms for six to 12 months and
17.6% for over a year (Oliveira et al., 2023), there’s a clear
persistence of these fatigue symptoms. Strikingly, this
enduring fatigue closely resembles the core symptoms of ME/
CFS, especially evident in shared manifestations like Brain Fog
such as memory and concentration decline (Komaroff and
Lipkin, 2023). Such parallels have rekindled interest in the
traditional hypothesis associating viral infections with the
etiology of ME/CFS (Wong and Weitzer, 2021). The 52%
reduction in brain fog VAS in our study suggests that the
alleviation of fatigue may be intricately linked to the
pharmaceutical activities of MYP on brain pathology. In our
previous animal studies, MYP demonstrated notable brain
focused effects by modulating neurotransmitter pathways,
regulating TGF-β expression, and protecting against chronic
cold-stress-induced brain damage in mice (Kim et al., 2013;
Song et al., 2021). Based on these findings, we cautiously
suggest that improvements related to MYP could offer a
potential therapeutic advantage, though not conclusively
establishing its dominance.

A noteworthy aspect of our findings was the marked elevation
in cortisol levels post-treatment. Cortisol, often termed the
“stress hormone”, plays intricate roles in metabolism, immune
responses, and the maintenance of circadian rhythms (Russell
and Lightman, 2019). Its post-treatment rise, in tandem with the
observed reduction in fatigue symptoms, raises an intriguing
hypothesis. This pattern could suggest a potential recalibration of
the HPA axis, which is frequently dysregulated in chronic fatigue
conditions (Tomas et al., 2013). However, the correlation
between cortisol levels and fatigue scores was not statistically
significant, necessitating cautious interpretation of these initial
results. To further understand this relationship and explore
MYP’s therapeutic potential for Long COVID fatigue, larger-
scale research using double-blind, placebo-controlled studies
is essential.

This study has several limitations that are important to consider.
Firstly, the absence of a control group in this observational study
significantly limits our ability to definitively attribute observed effects to
the intervention alone, without potential placebo influences. Secondly,
the open-label nature of the study could introduce bias, as participants’
awareness of the treatment might affect their symptom reporting.
Thirdly, with a limited participant pool, our results might not be
universally applicable, as the demographic may not reflect the
diverse spectrum of Long COVID patients. Fourthly, the 4-week
timeframe may not sufficiently capture the long-term efficacy or
potential side effects of MYP.

Additionally, our study did not control for variables such as
participants’ diets or exercise routines, which could influence the
effects observed and introduce bias. Nutritional supplements and
a balanced diet, recommended for alleviating symptoms of post-
COVID-19 fatigue syndrome, may include essential fatty acids,
antioxidants, and nutrients like vitamin C, B vitamins, sodium,
magnesium, and zinc, which are known to mitigate symptom
severity (Barrea et al., 2022). Additionally, physical activity is
considered a potential method to alleviate Long-COVID fatigue,
although definitive data supporting its effectiveness is currently
insufficient (Coscia et al., 2023). Lastly, the absence of
assessments for oxygen saturation and detailed pulmonary
evaluations is a notable limitation. Pulmonary impairments,
often identified through tests like pulmonary function tests, 6-
min walk tests, and quality of life assessments, are frequently
reported in Long COVID cases (Christopher et al., 2024). Such
declines in pulmonary function are crucial contributors to the
fatigue, malaise, and decreased quality of life experienced by
patients with Long COVID.

Given the prevalent challenges of Long COVID-induced fatigue
and the absence of effective treatments, our findings hint at the
potential therapeutic role of MYP. However, rigorous and extensive
studies are needed to validate its efficacy and mechanism in treating
Long COVID fatigue.
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Introduction: The outbreak of SARS-CoV-2, leading to COVID-19, poses a major

global health threat. While specific treatments and vaccines are under

development, Traditional Chinese Medicine (TCM) has historically been

effective against pandemics, including viral pneumonias. Our study explores

the efficacy and mechanisms of Jinhua Qinggan Granules (JHQG) in treating

COVID-19.

Methods: We analyzed JHQG’s components using UHPLC-Q-Exactive-

Orbitrap-MS, identifying 73 compounds. Network pharmacology and single-

cell RNA sequencing (scRNA-seq) were used to assess JHQG’s effects on

immune cells from peripheral blood mononuclear cells (PBMCs). Literature

review supported the antiviral and anti-inflammatory effects of JHQG.

Results: JHQG targets were found to interact with immune cells, including

neutrophils, monocytes, plasmablasts, and effector T cells, reducing their

overactivation in severe COVID-19. JHQG’s modulation of these cells’ activity

likely contributes to reduced inflammation and improved clinical outcomes.

Discussion: Our findings provide insights into JHQG's mechanism of action,

highlighting its potential in controlling the inflammatory response in COVID-19

patients. The study supports the use of JHQG as a safe and effective treatment for

COVID-19 and similar viral infections, leveraging its ability to modulate immune

cell activity and reduce inflammation.
KEYWORDS

Jinhua Qinggan granules, traditional Chinese medicine, COVID-19, single-cell RNA
sequencing, cellular inflammation
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Main

The COVID-19 pandemic, caused by severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), was declared official in

2020. Four years on, the global crisis remains unabated (1–3).

Infection with SARS-CoV-2 triggers a myriad of immune

reactions in the peripheral blood, including heightened pro-

inflammatory cytokine levels (4–6), the emergence of

inflammatory monocyte subsets (7), lymphopenia (8, 9), T-cell

exhaustion (10, 11), and plasma-cell overreactivity (12). Such

amplified immune responses can precipitate a cytokine storm,

which worsens patient prognoses (13).

After a thorough evaluation, the World Health Organization

(WHO) has endorsed Traditional Chinese Medicine (TCM) as a

valuable complementary approach for treating mild to moderate

cases of COVID-19. TCM has demonstrated efficacy in accelerating

viral clearance, alleviating clinical symptoms, and reducing

hospitalization durations (14). Similarly, China’s health authorities

have sanctioned various TCM treatments for COVID-19 (15). One

such therapy, Jinhua Qinggan Granules (JHQG), is advocated for

fatigue and fever symptoms in affected individuals (16).

Studies confirm that JHQG not only addresses viral infections

but also modulates immune responses, thereby slowing the disease

progression (17). In this context, recent clinical investigations have

provided evidence supporting JHQG’s properties in reducing

cellular inflammation. For instance, a clinical study observed a

significant decrease in C-reactive protein (CRP) - a marker of

inflammation - following the administration of JHQG in COVID-

19 patients, indicating a substantial anti-inflammatory response

(P<0.05) (17). Another pivotal aspect of JHQG’s mechanism of

action involves the mitigation of the cytokine storm, a severe

hyperinflammatory condition associated with COVID-19. A

honeysuckle extract component of JHQG was found to

significantly reduce cytokine levels (18). Moreover, IL-6, a

cytokine critically involved in immune dysregulation leading to

cytokine storm, was observed to be significantly reduced in

COVID-19 patients treated with JHQG (19). These findings are

incrementally establishing JHQG’s role not just in treating viral

infection, but importantly, in regulating the immune system

response that is critical to patient recovery.

Nevertheless, JHQG’s intricate makeup, comprising 12 distinct

medicinal components, including Lonicera japonica Thunb.

(Jinyinhua, 金銀花), Gypsum Fibrosum (Shigao, 石膏), Ephedra

sinica Stapf (Mahuang, 麻黃), Prunus armeniaca L. (Kuxingren, 苦

杏仁), Scutellaria baicalensis Georgi (Huangqin, 黃芩), Forsythia

suspensa (Thunb.) Vahl (Lianqiao,連翹), Fritillaria thunbergii Miq.

(Zhebeimu, 浙貝母), Anemarrhena asphodeloides Bunge (Zhimu,

知母), Arctium lappa L. (Niubangzi, 牛蒡子), Artemisia annua L.

(Qinghao, 青蒿), Mentha canadensis L. (Bohe, 薄荷), and

Glycyrrhiza inflate Batalin (Gancao, 甘草) (20). Although

Traditional Network Pharmacology attempts to extract

compounds from HERB databases (21), discrepancies between

these databases and JHQG’s actual constituents complicate the

identification of its anti-inflammatory ingredients.
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Addressing this complexity, our investigation involved the

analysis of 73 authentic compound components identified in

JHQG via the HPLC-Q-Exactive-Orbitrap-MS technique (20). We

pinpointed the target proteins associated with these compounds

within a comprehensive Network Pharmacological database (21).

By leveraging single-cell sequencing data from a COVID-19 patient

cohort and healthy individuals (22), we constructed an innovative

interaction network connecting herbal compounds, target proteins,

and peripheral blood cells. This enabled us to identify monocytes,

plasma cells, granulocytes, and effector T cells as pivotal in JHQG’s

mitigation of inflammation.
Results

Mass spectrometry-based target protein
network of the active ingredients in Jinhua
Qinggan Granules against COVID-19

Mass spectrometry has revealed the complex network of target

proteins interacting with the active constituents in Jinhua Qinggan

Granules (JHQG), offering insights into their therapeutic effects

against COVID-19. Recent study identified 73 components within

JHQG through mass spectrometry analysis (Supplementary

Table 1) (20). We standardized the names and classification

details of these ingredients using the HERB database.

Predominantly, flavonoid analogs represented 41% of these

components. Notably, caffeoylquinic acid, phenolic acid, and

alkaloids also comprised significant proportions, exceeding 5%,

9%, 7%, and 6%, respectively (Figure 1A). We determined the

distribution of these compounds across various herbs; for instance,

Lianqiao contributed 17%, Huangqin 14%, Jinyinhua 13%,

Mahuang 14%, and Niubangzi 8% of the constituents (Figure 1B).

To establish a compound-target protein interaction network

that could influence serum inflammation in COVID-19 patients, we

first analyzed peripheral blood mononuclear cells (PBMCs) from

seven hospitalized COVID-19 patients, including four with acute

respiratory distress syndrome, and compared them to six healthy

controls. We identified 145 up-regulated and 475 down-regulated

differentially expressed genes (DEGs) (Figure 1C) and linked these

to the 73 target proteins associated with the JHQG compounds

from the HERB database (Supplementary Table 2). The analysis

revealed significant DEG representation in proteins associated with

herbs such as Zhimu, Zhebeimu, and Qinghao, each exceeding 5%

(Figure 1D). The top ten compounds implicated in the network—

peimisine, sophoricoside, scutellarin, irigenin, rosmarinic acid,

pectolinarigenin, diosmin, daidzein, liquiritin, and diosgenin—

were also identified based on the percentage of DEGs (Figure 1E).

Intriguingly, the compounds with the most considerable DEG

correspondence—daidzein and pectolinarigenin—were not those

with the highest percentage representation alone (Figure 1F). a

Leveraging the connections between these compounds, target

proteins, and DEGs in COVID-19 patients, we constructed a

detailed interaction network for JHQG, visualized using plotpy,
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with an extended view accessible on GitHub (https://

starlitnightly.github.io/Analysis_JHQG_COVID/) (Figure 1G).
An Atlas illustrating the impact of Jinhua
Qinggan granules on peripheral blood
mononuclear cells in COVID-19 patients

To investigate the immunomodulatory effects of JHQG on

peripheral blood mononuclear cells (PBMCs) in COVID-19, we

conducted an analysis of scRNA-seq data obtained from eight
Frontiers in Immunology 0378
peripheral blood samples collected from seven hospitalized patients

and six healthy individuals, as sampled byWilk et al’s study (22). The

seven patients profiled were male, aged 20 to >80 years, healthy

controls were asymptomatic, four male and two female, and aged 30–

50 years (Supplementary Table 3). Following quality control, a total of

44,721 cells were categorized, including activated granulocytes, B

cells, various T cell subsets (CD4 naïve, CD4+, CD4 memory, CD8

effector, CD8 memory), monocytes (CD14+ and CD16+), class-

switched B cells, dendritic cells (DCs), plasma cells (IgA+ and IgG

+), natural killer (NK) cells, neutrophils, platelets, red blood cells

(RBCs), stem cells and eosinophils, and gamma delta (gd) T cells. Of
B

C D E F

G

A

FIGURE 1

Ingredient Composition and Compound-Target Protein Network of Jinhua Qinggan Granules. (A) Percentage of compounds classification in the
Chinese herbs of Jinhua Qinggan Granules. (B) Percentage of compounds resource in the Jinhua Qinggan Granules. (C) Differentially expressed
genes (DEGs) in PBMC from COVID-19 patients. Horizontal coordinates represent fold changes of differential expression and vertical coordinates
represent two-tailed ttest significance test pvalue. (D) Proportion of COVID-19 DEGs in the target proteins of different Chinese herbs in Jinhua
Qinggan Granules. (E) Proportion of top 10 COVID-19 DEGs in the target proteins of compounds in Jinhua Qinggan Granules. (F) Number of top 10
COVID-19 DEGs in the target proteins of compound in Jinhua Qinggan Granules. (G) Compound-target protein interactions network of Jinhua
Qinggan Granules, where green represents compounds, red represents target proteins differentially expressed at COVID-19, and grey represents
other target proteins.
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these, 28,094 cells were derived from COVID-19 patients, while

16,627 cells were from healthy controls (Figures 2A, B). To

enhance the precision and robustness of our analysis, we applied

SEACells to calculate 447 metacells from the PBMC data (Figure 2C),

resulting in metacells with high purity (over 0.9), low separation

(below 0.25), and compactness close to zero, indicating successful

metacell extraction (Figures 2D, E).
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Analysis of metacells derived from PBMCs of COVID-19

patients showed that the target proteins associated with JHQG

were primarily expressed in monocytes, dendritic cells, and plasma

cells (Figures 2F, G). Interestingly, upon examining the 45 proteins

differentially expressed in COVID-19 against the granules’ target

proteins, it became apparent that nearly all cell types were affected

by Jinhua Qinggan Granules (Figures 2H, I).
B C

D E

F G

H I

A

FIGURE 2

Atlas of peripheral mononuclear cells of COVID-19 by the action of Jinhua Qinggan granules. UMAP plot visualizes scRNA-seq from PBMCs in
COVID-19 patients and healthy individuals, colored by cell types (A) and COVID status (B). (C) Metacellular model iteration loss curves with
horizontal coordinates representing the number of iterations and vertical coordinates representing the standard deviation. (D) Metacellular quality
assessment indicators: metacell separation (distance between nearest metacell neighbor in diffusion space; Methods). Greater separation indicates
better performance. metacell compactness (average diffusion component standard deviation; Methods). A lower score indicates more compact
metacells. (E) UMAPs highlighting metacells of the PBMC in COVID-19 patients and healthy individuals. (F) UMAPs plot showing the AUCells score of
Jinhua Qinggan Granules’ Target proteins. (G) The AUCells score of JHQG’ Target proteins in different cells. (H) UMAPs plot showing the AUCells
score of JHQG’ Target proteins in COVID-19 DEGs. (I) The AUCells score of JHQG’ Target proteins in COVID-19 DEGs in different cells.
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Jinhua Qinggan granules alleviate cellular
immune inflammatory networks

In our investigation into the immunomodulatory potential of

Jinhua Qinggan Granules in reducing inflammation within

peripheral blood, we analyzed the top 20 highly variable genes for

each cell type. These findings were cross-referenced with the

differentially expressed genes observed in COVID-19 patients and

the target genes affected by JHQG. Notably, S100A8, a surface

antigen on activated granulocytes, is regulated by rutin, while the

proliferation marker MKI67 in CD8+ effector T cells is targeted by

daidzein. Additional key genes, such as GZMH in CD8+ memory T

cells, CTSD in CD14+ monocytes, RXRA and CFD in CD16+

monocytes, IGHG1 and HSPA5 in class-switched B cells, and
Frontiers in Immunology 0580
CD247 in NK cells, are regulated by various compounds

including wogonin, L-tryptophan, quercetin, tanshinone IIA*,

formononetin, irigenin, emodin, pectolinarigenin, and calycosin

(Figures 3A, B).

Increased levels of S100A8, MKI67, HSPA5, LYZ, CTSD, and

IGHG1 were observed in COVID-19 patients. However, the

interaction with Jinhua Qinggan Granules components led to a

downregulation of these genes. Reducing the expression levels of

S100A8, LYZ, and CTSD can mitigate the hyperactive immune

response from monocytes, diminishing inflammation. Moreover,

lower expression of MKI67 can curtail the overactivity of CD8

effector T cells, while reduced HSPA5 and IGHG1 can decrease the

inflammatory antibody release from plasma cells (Figures 3C, D).

Collectively, we constructed a network depicting the interactions
B

C D

A

FIGURE 3

Herb-Target-Cell Network of Jinhua Qinggan Granules. (A) Dotplot showing the target marker genes’ mean expression and fraction of cells in group
(%). (B) Network of Jinhua Qinggan Granule Herb-Target (COVID-19 DEGs)-Cell (PBMC). Grey represent the Herb Target protein in COVID-19 DEGs,
Green represent the compound of Jinhua Qinggan Granule, Red represent the target PBMC. (C) Violin plot showing the expression of S100A8,
MKI67, HSPA5, LYZ, CTSD and IGHG1 in different states of PBMC. (D) Network of Herb-Target (COVID-19 Upregulated DEGs)-Cell (PBMC).
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among the components of Jinhua Qinggan Granules, COVID-19-

specific target proteins, and cellular responses, aiming to reduce

excessive inflammatory and immune reactions.

Additionally, molecular docking simulations were performed to

validate the interactions within the network. Among these, the binding

affinity of CTSD with quercetin was notable at -5.588 kcal/mol, as

was the affinity between HSPA5 and quercetin at -7.975 kcal/mol.

Similarly, the binding energies for IGHG1 with different compounds

such as emodin, irigenin, pectolinarigenin, and rosmarinic acid showed

promising values (-6.64, -7.819, -7.453, and -6.561 kcal/mol,

respectively), as did the interaction of LYZ with caffeic acid

(-5.688 kcal/mol), MKI67 with daidzein (-5.688 kcal/mol), and

S100A8 with rutin (-6.313 kcal/mol) (Figure 4).
Discussion

Traditional Chinese Medicine (TCM) offers a gentler

therapeutic approach for COVID-19 patients with varying disease

severity, mitigating clinical deterioration (23). This study suggests

that early administration of JHQG alleviates viral infection

symptoms. Individuals who survived Omicron infection have

subjectively reported alleviation of symptoms associated with

upper respiratory tract infections, including cough and sore
Frontiers in Immunology 0681
throat, following treatment with JHQG (24). Furthermore, cohort

studies demonstrated that the time until viral nucleic acid clearance

(test negative) and recovery from pneumonia were significantly

shorter in the JHQG group compared to the control group,

averaging 10 ± 4 days versus 10 ± 5 days, and 8 ± 4 days versus

10 ± 5 days, respectively (P = 0.010 and 0.021). Moreover, the JHQG

group exhibited a significantly higher 7-day viral clearance rate of

56.82% compared to 27.78% in the control group (P = 0.009), with

no reported adverse effects of the treatment (25). Overall, these

results collectively demonstrate the effectiveness of JHQG in

treating COVID-19.

Beyond promoting viral clearance, JHQG also appears to

mitigate immune inflammation and reduce the duration of such

inflammation in patients (26). However, the mechanisms

underlying JHQG’s anti-inflammatory effects and its role in

reducing the duration of inflammation remain to be fully

elucidated (17). Our study introduces a novel network

pharmacological framework that leverages mass spectrometry

data on authentic JHQG components, a compound-target

database, and single-cell patient data to pinpoint the immune

cells that JHQG modulates in peripheral blood. Specifically, we

discovered that rutin inhibits activated granulocytes, cells

frequently associated with severe COVID-19 progression (27),

while monocytes and plasmablasts—which can elicit a strong
B C

D E F

G H I

A

FIGURE 4

A schematic 3D representation of the molecular docking model. Active sites, binding distances, and ray tracing of compound and target proteins
were predicted. (A) Quercetin in the protein CTSD (PDB ID: 4OBZ). (B) Quercetin in the protein HSPA5 (PDB ID: 3IUC). (C–F) Emodin, Irigenin,
Pectolinarigenin and Rosmarinic acid in protein IGHG1 (PDB ID: 6HYG). (G) Caffeic acid in protein LYZ (PDB ID: 1XJU). (H) Daidzein in protein MKI67
(PDB ID: 2AFF). (I) Rutin in protein S100A8 (PDB ID: 5HLV).
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peripheral humoral response—are also dampened following JHQG

administration (27, 28).

Nonetheless, certain limitations in our research warrant

mention. The study did not incorporate scRNA-seq from

COVID-19 patients treated with authentic JHQG formulations.

Instead, potential effector cells were inferred through target

protein analysis. As such, we could only deduce cells affected by

inhibitory actions of JHQG, not those possibly stimulated by the

treatment. Moreover, while the study drew on known compound-

protein interactions from the database and utilized Autodock-vina

for docking simulations to confirm these relationships, considering

protein isoforms and complex cellular contexts, the authenticity of

JHQG target proteins demands further experimental validation.

These analyses greatly narrowed the scope and cost required for

subsequent experimental verification.

In summary, the innovative network we devised, integrating

herbs, compounds, target proteins, and cells, offers insights into the

network pharmacology of TCM and its therapeutic implications.

Notably, our findings demonstrate that JHQG suppresses the

activity of activated granulocytes, monocytes, plasmablasts, and

effector T cells in COVID-19 peripheral blood, potentially

limiting disease progression and diminishing humoral responses

and inflammation duration.
Materials and methods

Component detection of Jinhua Qinggan
granules

The UHPLC-Q-extractive-Orbitrap-MS provided all

compound of Jinhua Qinggan Granule (20). Astragalin

(kaempferol 3-O-glucoside, Cas. 480–10-4, C21H20O11, 448.38,

97%), oroxin A (baicalein 7-O-glucoside, Cas. 57396–78-8,

C21H20O10, 432.38, 97%), mangiferin (Cas. 4773–96-0,

C19H18O11, 422.34, 97%), luteolin 7-O-glucuronide (29741–10-

4, C21H18O12, 462.36, 97%), ethyl caffeate (Cas. 102–37-4,

C11H12O4, 208.12, 97%), scutellarin (Cas. 27740–01-8,

C21H18O12, 462.37, 97%), 6-gingerol (Cas. 23513–14-6,

C17H26O3, 293.39, 97%), methyl benzoate (Cas. 93–58-3,

C8H8O2, 136.148, 97%), rutin (Cas. 153–18-4, C27H30O16,

M.W. 610.518, 98%), baicalein (Cas. 491–67-8, C15H10O5,

270.24, 97%), wogonin (Cas. 632–85-9, C16H12O5, 284.26, 97%),

chlorogenic acid (Cas. 327–97-9, C16H18O9, M.W. 354.31, 98%),

isoquercitrin (Cas. 482–35-9, C21H20O12, M.W. 464.38, 98%),

isochlorogenic acid C (4,5-O-dicaffeoylquinic acid, Cas. 57378–

72-0, C25H24O12, M.W. 516.45, 98%), vanillic acid (Cas. 121–

34-6, C8H8O4, M.W. 168.15, 98%), luteoloside (Cas. 5373–11-5,

C21H20O11, M.W. 448.38, 98%), and salidroside (Cas. 10338–51-9,

C14H20O7, 300.304, 97%) were obtained from Chengdu Alfa

Biotechnology Co., Ltd (Chengdu, China).

18b-Glycyrrhetinic acid (Cas. 471–53-4, C30H46O4, M.W.

4470.7, 98%), cosmosiin (apigenin 7-O-glucoside, Cas. 578–74-5,

C21H20O10, 432.4, 98%), licoricesaponin H2 (Cas. 135815–61-1,

C42H62O16, 822.9, 98%), liquiritin (Cas. 551–15-5, C21H22O9,

418.4, 98%), quinic acid (Cas. 77–95-2, C7H12O6, M.W. 192.2,
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98%), rhein (Cas . 478–43-3, C15H8O6, 284.2, 98%),

cryptotanshinone (35825–57-1, C19H20O3, 296.4, 98%),

scoparone (Cas. 120–08-1, C11H10O4, 206.2, 98%), and

tanshinone IIA (Cas. 568–72-9, C19H18O3, 294.4, 98%) were

from Shaanxi Herbest Co. Ltd. (Boji, China).

Acteoside (verbascoside, Cas. 61276–17-3, C29H36O15,

M.W. 624.59, 98%), isoviolanthin (Cas. 40788–84-9, C27H30O14,

M.W. 578.519, 98%), isoliquiritigenin (Cas. 961–29-5,

C15H12O4, M.W. 256.253, 98%), formononetin (Cas. 485–72-3,

C16H12O4, M.W. 268.264, 98%), 1,3-O-dicaffeoylquinic acid (Cas.

19870–46-3, C25H24O12, 516.455, 97%), 3,4-dicaffeoylquinic acid

(3,4-O-dicaffeoylquinic acid, Cas. 14534–61-3, C25H24O12,

516.455, 97%), pectolinarigenin (Cas. 520–12-7, C17H14O6,

314.29, 97%), neomangiferin (Cas. 64809–67-2, C25H28O16,

584.48, 97%), diosmin (Cas. 520–27-4, C28H32O15, 608.54,

97%), peimisine (ebeiensine, Cas. 19773–24-1, C27H41NO3,

427.629, 98%), solancarpidine (Cas. 126–17-0, C27H43NO2,

413.62, 98%), sophocarpine (13,14-Didehydromatridin-15- one,

Cas. 145572–44-7, C15H22N2O, 246.35, 98%), daidzein (Cas.

486–66-8, C15H10O4, 254.24, 97%); calycosin (Cas. 20575–57-9,

C16H12O5, 284.27, 97%), scutellarein (Cas. 529–53-3, C15H10O6,

286.24, 97%), 5-O-caffeoylquinic acid (neochlorogenic acid, Cas.

906–33-2, C16H18O9, 354.311, 97%), 4-O-caffeoylquinic acid

(cryptochlorogenic acid, Cas. 905–99-7, C16H18O9, 354.311,

97%), and irigenin (548–76-5, C18H16O8, 360.31, 97%) were

obtained from Chengdu Biopurify Phytochemicals Ltd.

(Chengdu, China).

Chrysin (Cas. 480–40-0, C15H10O4, M.W. 254.24, 98%),

viscidulin I (Cas. 92519–95-4, C15H10O7, M.W. 302.24, 98%),

2′,6′-dihydroxypinobanksin (Cas. 80366–15-0, C15H12O7, 304.24,

98%), sophoricoside (Cas. 152–95-4, C21H20O10, 432.38, 98%),

isorhamnetin-3-O-b-D-glucoside (Cas. 5041–82-7, C22H22O12,

478.4, 98%), 6-prenylapigenin (Cas. 68097–13-2, C20H18O5,

338.36, 98%), forsythoside B (Cas. 81525–13-5, C34H44O19,

756.7, 98%), dalbergioidin (Cas. 30368–42-4, C15H12O6, 288.65,

98%), (−)-epipinoresinol (Cas. 10061–38-8, C20H22O6, 358.39,

96%), and (+)-epipinoresinol (Cas. 24404–50-0, C20H22O6,

358.39, 96%) were purchased from BioBioPha Co., Ltd.

(Kunming, China).

Esculetin (Cas. 305–01-1, C9H6O4, M.W. 178. 41, 98%),

scopoletin (Cas. 92–61-5, C10H8O4, M.W. 192.17, 98%), vitexin

(Cas. 3681–93-4, C21H20O10, M.W. 432.10, 98%), and

isoschaftoside (apigenin-6-arabinoside-8-glucoside, Cas. 52012–

29-0, C26H28O14, M.W. 564.49, 98%), quercetin (Cas. 117–39-5,

C15H10O7, M.W. 302.23, 98%), S-naringenin (Cas. 480–41-1,

C15H12O5, M.W. 272.25, 98%), vicenin-2 (Cas. 23666–13-9,

C27H30O15, M.W. 594.518, 98%), and schaftoside (apigenin-6-

glucoside-8-arabinoside, Cas. 51938–32-0, C26H28O14, M.W.

564.49, 98%) were purchased from Sichuan Weikeqi Biological

Technology Co., Ltd. (Chengdu, China).

Chloesteryl acetate (Cas. 604–35-3, C29H48O2, 428.69, 97%)

and protocatechuic acid (Cas. 99–50-3, C7H6O4, 154.12, 97%) were

form Sigma–Aldrich (Shanghai, China); Caffeic acid (Cas. 331–39-

5, C9H8O4, 97%) and emodin (Cas. 518–82-1, C15H10O5, M.W.

270.24, 97%) were obtained from the National Institute for the

Control of Pharmaceutical and Biological Products (Beijing, China).
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D-Gluconic acid (Cas. 526–95-4, C6H11O7, M.W. 195.15, 98%)

was from TCI Chemical Co. (Shanghai, China). R-rosmarinic acid

(Cas. 20283–92-5, C18H16O8, M.W. 360.3, 98%) and ferulic acid

(Cas. 1135–24-6, C10H10O4, M.W. 194.19, 98%) were purchased

from Aladdin Chemistry Co. (Shanghai, China). L-Tryptophan

(Cas. 73–22-3, C11H12N2O2, M.W. 204.23, 98%) was from J&K

Scientific Co., Ltd. (Beijing, China). Danshensu (Cas. 76822–21-4,

C9H10O5, M.W. 198.17, 97%) was from Shanghai Acmec

Biochemical Co., Ltd (Shanghai, China). Caffeine (Cas. 58–08-2,

C8H10N4O2, M.W. 194.191, 98%) was prepared using sublimation

method from Green tea [9]. Methanol and water were of mass

spectra purity grade.
Intregient-target protein network
construction of Jinhua Qinggan
Granules’s compound

We retrieved target proteins from the HERB database (21)

(http://herb.ac.cn/) based on the Ingredient Name of the

compounds in 73, and a list of database-supported as well as

literature-supported target proteins is included.

We then used the plot_network function in omicverse (29) to

visualize the 73 components and for that matter the target proteins.
Analysis of differentially expressed genes in
peripheral blood of patients with
COVID-19

We first selected annotated single-cell sequencing data from the

public database COVID-19 Cell Atlas (https://www.covid19

cellatlas.org/#wilk20) for eight peripheral blood samples from

seven COVID-19 hospitalized patients and six peripheral blood

samples from six healthy individuals. The cohort encompassed

seven male patients ranging in age from 20 to over 80 years.

Samples were obtained between 2 and 16 days post symptom

onset. In contrast, healthy controls, comprising four males and

two females, were asymptomatic individuals aged between 30 and

50 years. Half of the eight COVID-19 specimens came from

mechanically ventilated patients diagnosed with acute respiratory

distress syndrome (ARDS). Distinctively, patient C1 provided two

samples: the first at nine days after exhibiting symptoms, at which

time he required supplemental oxygen, and a subsequent sample

was taken two days later post-intubation. Remdesivir treatment in

the hospital setting was given to five patients, with four receiving it

before their samples were collected (Supplementary Table 3).

Raw sequencing data are available at NCBI Gene Expression

Omnibus (accession number GSE150728). Cells with less than

1,000 UMI or more than 15,000 UMI, as well as cells containing

more than 20% of reads for mitochondrial genes or rRNA genes

(RNA18S5 or RNA28S5), were considered low quality and excluded

from further analysis. To remove putative multiplex states (where

there may be multiple cells loaded into a given well on the array),

cells expressing more than 75 genes per 100 UMI were also filtered
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out. Genes expressed in fewer than 10 cells were removed from the

final count matrix. There were 44,721 cells after quality control.

We then extracted 447 high-quality metacells using the

SEACells (30) module in omicverse and performed compaction

and segregation assessments. Given that metacells represent distinct

cell states of the biological system under consideration, inferred

metacells should (1) be compact, meaning that they exhibit low

variability among aggregated cells and that most of this variability is

a result of measurement noise, and (2) be well separated from

neighboring metacells.

We then used the pyDEG module in omicverse to analyse the

differential expression of two different status metacells, Contrl and

COVID-19, and the significance was calculated using the ttest

model. We finally selected differential genes with a differential

expression multiplicity of 0.5 in the threshold and an ADJUST

p-value of less than 0.05.
Intregient-target-cell network construction
of Jinhua Qinggan Granules’s compound

To construct the Intregient-Target-Cell network, we first used

omicverse’s get_celltype_marker function to obtain the marker

genes for each cell type for scRNA-seq of COVID-19 peripheral

blood samples. Then we took the intersection of COVID-19

differentially expressed genes, cell-specific marker genes and

target proteins of JHQG to obtain the cell-specific target genes of

COVID-19 differences of JHQG. Subsequently still the plot network

function of omicverse was used to draw the Intregient-Target-Cell

network for visualization.
Molecular docking

2D structures of HE obtained from the PubChem database were

downloaded as SDF files and then imported into chem3D software

to generate their respective free energy-minimized 3D

conformations. Additionally, crystal structures of hub genes’

proteins were retrieved from the RCSB Protein Data Bank

(https://www.rcsb.org/). The ADFR Suite was utilized to eliminate

water molecules and ligands from protein structures, followed by

addition of non-polar hydrogens and conversion to PDBQT format

(31). Additionally, small molecule ligands (HE) were converted to

PDBQT format for docking using the Meeko python package

(https://github.com/forlilab/Meeko.git). The protein receptor

structure was displayed in secondary structure representation

without lines. The active pocket location was determined using

AutoGrid4 (32). Subsequently, protein-ligand docking was

conducted using Autodock Vina 4.0 software, with lower binding

energy indicating greater stability. Ligand-receptor interactions,

such as p stacking (parallel and perpendicular), p-cation
interactions, hydrogen bonding, water bridges, and salt bridges,

were visualized using the Protein-Ligand Interaction Profiler (PLIP)

website (https://plip-tool.biotec.tu-dresden.de/plip-web/plip/

index) (33).
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