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Editorial on the Research Topic

Applications of machine learning in volcanology
s

Machine learning (ML) techniques, capable of learning and adapting through automated
or semi-automated algorithms and statistical models, allow us to classify signals and
infer insights from patterns “hidden” in data, hence offering deeper understanding when
analyzing and correlating large datasets. In recent decades, geosciences have seen a growth
of the data available to the scientific community, as denser monitoring networks surround
fault structures, volcanoes, geothermal fields and other regions of geological interest.

ML techniques are applied to volcanology to improve the understanding of
volcano dynamics and forecasting volcanic activity (Carniel and Guzmán, 2021).
Recent reviews (Karpatne et al., 2019) highlight how ML’s adaptability addresses key
challenges in geosciences, from noisy data to real-time decision-making under uncertainty.
These techniques can be applied to early warning systems, significantly enhancing risk
assessment and public safety.

This Research Topic aims to be a compendium of the latest advancements in
the use of ML techniques within geosciences. It has attracted 8 contributions, whose
introductions follow.

Titos et al. explored advanced techniques for monitoring volcano-tectonic (VT)
earthquakes, by leveraging transfer learning, a procedure capable of adapting ML models
to specific regions despite limited data available. As traditional methods often struggle with
accurately classifying seismic signals in these settings, by using pre-trainedmodels that have
already learned to detect earthquake patterns better identifications and categorizations of
VT-events have been found by the authors. The proposed approach represents a significant
advance for volcano monitoring systems, allowing researchers to identify early warning
signs of eruptions more effectively.

Convolutional neural network (CNN) models have been designed to classify first-
motion polarities of seismic records in volcanic and tectonic regions, as described
in the manuscript by Messuti et al., where the development of the CFM algorithm
is reported; this uses CNNs for automated, real-time classification, processing
local and regional seismic waveforms and distinguishing between compressional
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and dilatational first motions. The network was trained on labeled
datasets of seismic events: testing results demonstrate how CFM
achieves an accuracy >90%, and adaptability across regions with
different noise levels and tectonic structures, highlighting its
potential to standardize and streamline polarity classification in
seismic studies.

Noguchi and Shoji explored the use of supervised ML to
automate the extraction of stratigraphic features from visible images.
Traditional methods for analyzing geological stratigraphy are often
labor-intensive and subject to human error, making automated
techniques highly valuable. Their approach involves training a
CNN on a labeled dataset of stratigraphic images, allowing the
model to learn to identify various geological formations with high
accuracy. Such a CNN model outperformed conventional methods,
effectively classifying stratigraphic features across diverse geological
environments.

Volcanic eruption forecasting represents an effort valuable
for scientists. Rey-Devesa et al. explored this Research Topic by
introducing a universal ML approach which uses seismic features.
By analyzing seismic data from diverse volcanic settings, the
study demonstrates how four different seismic features passed to
algorithms like neural networks can effectively predict eruption
patterns. Results show the approach’s robustness across different
volcanoes, highlighting its potential for real-time monitoring and
early warning systems, providing a tool for probabilistic short-
term volcanic eruption forecasting, easily usable on different
volcanic systems.

Mitchinson et al., by using two concurrent unsupervised ML
clustering algorithms, found anomalous earthquake swarms at
Mt. Ruapehu, New Zealand: the article highlights the challenges
of distinguishing swarms from background seismicity, using the
chosen algorithms to classify patterns in seismic data. By leveraging
historical records and real-time monitoring, the study enhances
understanding of swarm characteristics and their links to volcanic
processes.The findings support more accurate swarm identification,
contributing to improved volcanic hazard assessment andmitigation
efforts, and correlating their characteristics to seismic swarms
related to fluid migration, more likely to happen near fault systems.

Volcanic thermal emissions could be indicators of impending or
ongoing eruptions. Saunders-Shultz et al. describe a specific CNN,
theHotLINK system, for automatic identification and quantification
of volcanic hotspots in Alaska: the study automates the detection of
thermal anomalies from satellite imagery, improving themonitoring
of active volcanic regions. The methodology integrates thermal data
andpredictivemodeling to achieve precise identification of hotspots,
offering a scalable solution for volcanic hazard management.
The results demonstrate its effectiveness in enhancing real-time
surveillance and contribute to advancing geoscientific applications.

Giannoulis et al. investigate the drivers of surface temperature
changes above geothermal systems by using the deep learning
engine DAITAN applied to data recorded at Vulcano Island, Italy.
By analyzing a combination of surface and subsurface factors, the
study identifies patterns and relationships affecting temperature
variations. The approach leverages thermal data and environmental
parameters to enhance the understanding of geothermal activity
and its external influences. The findings provide valuable insights
for monitoring and improving geothermal systems, and predicting
potential hazards.

Di Benedetto et al. introduced a grid-search methodology
for optimizing Short-Term Average over Long-Term Average
(STA/LTA) parameters in seismological applications, focusing
on Stromboli’s explosion quakes. By testing different parameter
combinations by using a quality parameter, the approach improves
signal detection and characterization of volcanic seismicity. The
study demonstrates how this method refines STA/LTA settings for
greater sensitivity to eruption-related seismic signals. The results
highlight the methodology’s potential not only for enhancing
seismic monitoring in active volcanic regions, contributing to more
accurate early warning systems, but also for applying it to a wider
typology of signals.

Collectively, the contributions proposed in this Research Topic
explore how ML techniques can enhance insights into volcanic
activities, achieving results that overwhelm classical methods. ML
will assume a transformative role in volcanology–from automating
labor-intensive tasks to uncovering hidden patterns in complex
datasets. As emphasized by Rouet-Leduc et al. (2017), as the field
moves toward operational monitoring, future works must balance
innovation with interpretability. With increasing availability of
data and the growing of population living near active volcanoes,
integrating ML techniques into volcanic studies holds the promise
of transforming how researchers will forecast eruptions and respond
to volcanic hazards, representing a significant step forward in the
future of volcanic research, having the potential to redefine volcanic
risk mitigation in the decade ahead.
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First-motion polarity determination is essential for deriving volcanic and tectonic
earthquakes’ focal mechanisms, which provide crucial information about fault
structures and stress fields. Manual procedures for polarity determination are
time-consuming and prone to human error, leading to inaccurate results.
Automated algorithms can overcome these limitations, but accurately
identifying first-motion polarity is challenging. In this study, we present the
Convolutional First Motion (CFM) neural network, a label-noise robust strategy
based on a Convolutional Neural Network, to automatically identify first-motion
polarities of seismic records. CFM is trained on a large dataset of more than
140,000 waveforms and achieves a high accuracy of 97.4% and 96.3% on two
independent test sets. We also demonstrate CFM’s ability to correct mislabeled
waveforms in 92%of cases, evenwhen they belong to the training set. Our findings
highlight the effectiveness of deep learning approaches for first-motion polarity
determination and suggest the potential for combining CFM with other deep
learning techniques in volcano seismology.

KEYWORDS

deep convolutional neural networks, automatic classification, machine learning, self-
organizing maps, volcanic and tectonic earthquakes, first-motion polarity

1 Introduction

In the field of Earth sciences, the study of seismic waves generated by earthquakes
occupies an important role since it allows us to retrieve the main features of both the
propagation medium and the seismic source. As for the seismic source, the attention is
mainly devoted to estimating the geometric and kinematic parameters, including the
location, magnitude, fault dimension and focal mechanisms. Focal mechanisms are
crucial to characterize the seismogenic fault structures and the stress field of a region,
from local to nationwide scale, in tectonic (Vavryčuk, 2014; Napolitano et al., 2021a; Uchide
et al., 2022), and volcanic areas (Roman et al., 2006; Judson et al., 2018; La Rocca and
Galluzzo, 2019; Aoki, 2022; Zhan et al., 2022).

The focal mechanisms can be computed using P-wave first-motion polarity (e.g., FPFIT;
Reasenberg, 1985; Snoke et al., 2003; Hardebeck and Shearer, 2002), the waveform
information (e.g., Zhao and Helmberger, 1994) or both (Weber, 2018). P-wave polarity
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is also used as an additional constraint in the moment-tensor
inversion (e.g., in volcanic settings, Dahm and Brandsdottir,
1997; Miller et al., 1998; Pesicek et al., 2012; Alvizuri and Tape,
2016) and full waveform inversion (e.g., for explosion Chiang et al.,
2014; Ford et al., 2009). Determining first-motion polarities by
manual procedures, mostly done for larger events, is time-
consuming, susceptible to human error and can result in
different outcomes depending on the expert analyst. In addition,
a proper identification of the first-motion polarity can be difficult
when dealing with small magnitude earthquakes. This may be due to
the unfavorable signal-to-noise ratio. An enhanced method of
identifying first-motion polarities will allow us to resolve the
focal mechanism of smaller magnitude events, thereby improving
our ability to characterize and interpret seismogenic areas.
Automated procedures (e.g., Chen and Holland, 2016; Pugh
et al., 2016) can avoid drawbacks, such as time consumption and
ensure reproducibility. Despite this, identifying first-motion polarity
is not a straightforward classification task that can be easily
expressed using mathematical procedures. Consequently, the
effectiveness of the automated algorithms (not based on machine
learning) relies on a limited number of parameters, which require
intensive human involvement to fine-tune, and may result in worse
performance compared to human analysis (Ross et al., 2018).

Deep learning offers a notable advantage in that prior knowledge
of the observed phenomena is not a prerequisite for model
development. This is attributed to the capability of Deep Neural
Networks (DNNs) to autonomously extract significant features from
raw data, eliminating the need for a mathematical representation of
the problem. Moreover, when confronted with extensive datasets,
deep learning has proved to be a suitable and highly effective
methodology to be employed. Hence, the vast amount of
seismological data represents an excellent opportunity for the
application of DNNs, making deep learning an ideal choice for
our purposes. Recent studies demonstrated the possibility of
developing effective and competitive applications of DNNs in the
study of seismic waves generated by earthquakes, volcanic eruptions,
explosions, along with other sources (Mousavi and Beroza, 2022).
DNNs have been used for events detection and location (Perol et al.,
2018), arrival times picking (Ross et al., 2018; Zhu and Beroza,
2019), data denoising (Richardson and Feller, 2019), classification of
volcano-seismic events (López-Pérez et al., 2020), construction of
suitable ontologies (Falanga et al., 2022), discrimination of explosive
and tectonic sources (Linville et al., 2019; Kong et al., 2022),
waveform recognition both focusing on transients and
continuous background acquisition (Rincon-Yanez et al., 2022)
and for ground motion prediction equations (Prezioso et al., 2022).

Several studies have demonstrated the significant applicability of
Convolutional Neural Networks (LeCun et al., 2015) in determining
the first-motion polarity. CNNs use convolutional layers to extract
spatial patterns from a multi-dimensional input array or matrix-like
data. By applying multiple filters with adjustable weights through a
process known as convolution, these filters extract relevant features
through their scanning process. Stacking multiple convolutional
layers allows the network to automatically learn and identify
relevant abstract features useful for the task. The ability of CNNs
to capture complex spatial relationships has made them particularly
effective in a wide range of image and signal processing tasks,
including the determination of first-motion polarity. One of the

earliest studies in this field, conducted by Ross et al. (2018), involved
training a simple CNN on 18.2 million seismograms from the
Southern California Seismic Network (SCSN) catalog, achieving a
precision in determining polarities of 95%. Hara et al. (2019)
established a lower limit on the number of waveforms required
for a satisfactory level of performance during training. The same
authors explored the possibility of using a CNN to predict
waveforms deriving from events located in regions different from
those where data used for the training set have been collected.
Uchide (2020) derived focal mechanisms and important
information about the stress field in Japan exploiting the first-
motion polarities determined by using a CNN-based technique.
Li et al. (2023) utilized the CNN by Zhao et al. (2023) to develop an
automatic workflow for focal mechanism inversion.

In this work, we present the Convolutional First Motion (CFM)
neural network, a label-noise robust strategy based on a CNN to
automatically identify first-motion polarities of seismic waves. We
take advantage of the regularization effects of dropout layers and the
implicit regularization properties of Stochastic Gradient Descent
(SGD), when used in combination with early stopping, to handle a
percentage of mislabelling (often known as noisy labels). CFM is
trained on more than 140,000 waveforms derived from INSTANCE
dataset (Michelini et al., 2021), and tested both on 8,983 waveforms
belonging to different events of the same dataset and on
4,072 waveforms collected from Napolitano et al. (2021b). We
found that when CFM is applied to mislabeled waveforms, which
we identified through a data visualization procedure, it corrects
them in 92% of the cases, even when they belong to the training set.
CFM showed high accuracy levels (i.e., 97.4% and 96.3%) when
tested on two independent test sets, high reliability and great
generalization ability. The approach shown in our study reveals
that an appropriate augmentation procedure can make the network
able to deal with uncertainty in arrival times, which increases the
potential for using CFM in combination with automatic deep
learning techniques for phase picking. Such methodology is
expected to have a strong impact on any problem related to the
source modeling of tectonic and volcanic quakes, whose
construction is founded on the best picking and phase recognition.

2 Data

We collected the seismic waveforms included in the INSTANCE
dataset (Michelini et al., 2021) and used them to train the neural
network and to evaluate its performance. The dataset, specifically
compiled to apply machine learning techniques, comprises
1,159,249 waveforms originating from different sources (natural
and anthropogenic earthquakes, volcanic eruptions, landslides along
with other sources). The waveforms were registered by both
velocimeters (HH, EH channels) and accelerometers (HN
channel) seismometers belonging to 19 seismic networks
operated and managed by several Italian institutions. The dataset
includes 54,000 earthquakes that occurred between January
2005 and January 2020 in Italy and surrounding regions, with
magnitude ranging from 0.0 to 6.5 (see Michelini et al., 2021 for
further details). Each datum consists of a 120 s time window. Each
waveform is associated with upward, downward, or undefined
polarity. We excluded all those events with undefined polarity. In
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addition, selecting only the vertical component of velocimeters data,
we achieved 161,198 seismic traces of which 103,530 showed upward
polarity and 57,668 downward polarity. We will refer to these
waveforms as dataset A (Figure 1A). We split this dataset into
three subsets, respectively used as.

• Training set: 141,972 waveforms (88.0% of the total data)
corresponding to 23,878 events shown as red circles in
Figure 1A;

• Validation set: 10,243 waveforms (6.4% of the total data)
corresponding to 2,275 events shown as orange circles in
Figure 1A;

• Testing set: 8,983 waveforms (5.6% of the total data)
corresponding to 2,398 events shown as blue circles in Figure 1A.

The spatial selection was made to avoid correlations between
waveforms in the different sets, following the approach proposed by
Uchide (2020). It is noteworthy that the validation set comprises
earthquakes from the Etna volcano region (orange box in
Figure 1A).

Then, we collected the 870 earthquakes (ML 1.8–5.0), recorded
during the 2010–2014 Pollino (Southern Italy) seismic sequence
(Figure 1B) by three seismic networks (Istituto Nazionale di
Geofisica e Vulcanologia (INGV), Università della Calabria
(UniCal) and Deutsche GeoForschungsZentrum (GFZ)) (Passarelli
et al., 2012; Margheriti et al., 2013) and located in the new 3D
velocity model by Napolitano et al. (2021b). From these events, we
selected the vertical components of the waveforms sampled at
100 Hz, registered by velocimeters and with clear P-wave
polarity. We refer to this dataset as dataset B. It comprises
4,072 manually picked waveforms derived from 824 out of the
original 870 events collected. We used dataset B as a second test

set to evaluate the performance of the neural network on data from a
specific Italian tectonic setting. To avoid any possible overlapping
between dataset A and dataset B, we removed the 821 common
waveforms in the former dataset.

In addition, we used seismic traces from the Southern California
Seismic Network (Ross et al., 2018) and western Japan region (Hara
et al., 2019) to evaluate the network’s generalization ability on
waveforms from completely different regions. For this purpose,
we selected the 863,151 waveforms belonging to the
273,882 earthquakes registered at 682 stations from the SCSN
dataset. This constitutes the part of the test set with definite
polarity used in Ross et al. (2018), whose magnitudes lie in the
range [−1.0,7.2]. Similarly, we used 3,930 waveforms (ML -1.3–6.2)
constituting a part of the test set sampled at 100 Hz provided to us by
Hara et al. (2019). The waveforms from the western Japan region
were registered by stations operated by the National Research
Institute for Earth Science and Disaster Prevention (NIED), the
National Institute of Advanced Industrial Science and Technology
(AIST), the Japan Meteorological Agency (JMA), and Kyoto
University (Hara et al., 2019).

3 Methods

3.1 Data visualization with SOM and label
noise

Before training the network on part of dataset A, the
preliminary step of our analysis has been the implementation
of a data visualization technique to investigate the waveforms. To
this end, we applied the Self Organizing Maps (SOM, Kohonen,
T., 2013). This unsupervised machine learning technique is

FIGURE 1
Localization of seismic events, shown with circles along the Italian peninsula. (A) The 28,551 events considered in dataset A (derived from the
INSTANCE dataset). Waveforms belonging to events displayed by red circles are used as training data. The orange and blue boxes respectively contain
events used to derive validation and test waveforms data. (B) The 842 events present in dataset B (derived from Napolitano et al., 2021b), located in
Southern Italy, whose waveforms are used as a second test set.
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highly efficient in reducing the dimensionality of large datasets,
by leveraging the similarities between the data, to cluster and
visualize them in a low-dimensional grid, while preserving their
topological structure. In order to focus the SOM on the features
of our interest, the map was given a representation of the data in
feature space. We normalized the traces to unit variance and we
focused our attention on time windows of 0.26 s (26 samples),
which include the 0.20 s preceding the P-arrivals and the 0.05 s
after. We used 5 samples after the arrival, as they were enough to
capture the entire first oscillation of the seismic wave in the case
of higher frequency earthquakes, and enough to point out the
trend of the oscillation in the case of lower frequency
earthquakes. A lower value was not sufficient to capture the
trend of oscillations in low-frequency events, whereas with
higher values we observed that the analysis also focused on
the second oscillations. We employed 20 samples before the
arrival as they constituted the minimum number required to
capture the essential characteristics of the noise trend in each
scenario. Features provided to the SOM were extracted either by
the Principal Component Analysis (Bishop and Nasrabadi, 2006),
to which the normalized 0.26-seconds-long time windows were
provided, and by evaluating averages of 0.16-seconds-long
moving temporal windows. The first average was calculated
over the time window starting from 0.19 s before the P-arrival,
and the subsequent 9 averages were calculated on shifted
windows, moving forward by 0.01 s each (1 sample), with the
last time window covering the last 0.16 s (from 0.10 s before the
arrival to 0.05 s after). In total, we gave the SOM 16 features,
namely, the first 6 principal components and 10 moving averages.
We chose to consider the principal components up to the sixth
because it was a fair trade-off between the number of dimensions
taken into account and the explained variance. By using six
components, we were able to achieve a 95% explained variance.

In our analysis, the map nodes were organized in a two-
dimensional hexagonal 8 × 8 grid (Supplementary Figure S1B
gives a representation of the grid). After the SOM training stage,
we displayed the waveforms’ clusters on the map of nodes. Each
single node represents a cluster that contains all those data whose
distance in input space is smaller than the distance to all other
nodes. Supplementary Figure S1A,S2A,S3A show the mean value
of the waveforms contained in each node and one-fifth of the
waveforms falling in each of them, respectively using the total,
upward, and downward first-motion polarity. The number of
waveforms in each cluster is represented by the size of the
hexagons in Supplementary Figure S1B,S2B,S3B. We observe
that the map places most of the waveform with downward
polarity on the left side of the grid (Supplementary Figure
S3B), especially in the upper part, while the waveforms with
upward polarities are mostly placed on the right side of the grid
(Supplementary Figure S2B), with the more populated nodes
situated in the lower part. The net separation between the two
parts provides a strong indication that, generally, the polarities
are resolved in an unambiguous way. Nevertheless, a problem
often encountered is that the polarities can be mistakenly labeled.
To overcome such difficulty, we investigated the SOM results in
more detail.

Figure 2 shows in each cell the weighted percentage of traces
with upward polarities contained in it. Since the number of

downward polarities is smaller than the upward one in dataset A,
a weighted percentage is required for a robust analysis. Specifically,
the value cij, showed in the cell relative to the node located in the i-th
row and j-th column of the grid, is:

cij � Uij

Uij + wDij
, (1.1)

where Uij and Dij are respectively the number of upward and
downward waveforms assigned to the node ij, and
w � ∑

ij

Uij/∑
ij

Dij. We notice the presence of some cells whose

percentages of upward polarities are less than 1% or more than 99%.
Considering the possibility of labeling errors in the dataset, we
hypothesize that the high (low)-populated-upward cells represent
nodes where all or most of the waveforms share the same polarity.
Consequently, we suppose that the 458 outliers traces falling in those
nodes (namely, the waveforms with an assigned polarity different
from the majority) are likely to be mislabeled examples.

In fact, we manually checked that at least 100 of the 123 down-
labeled traces, which fell in nodes with a weighted percentage of up-
labeled data above 99%, had indeed an upward polarity. Analogously,
at least 237 of the 336 up-labeled traces, located in nodes with more
than 99% down-populated data, were clear waveforms with negative
polarity. The remaining traces were mostly unclear waveforms, where
extracting polarity information was a challenging task also for a
human analyst. We do not exclude the presence of other
mislabeled data (respect to the 337 found by the SOM
visualization). A visual inspection of 1,000 randomly selected
waveforms highlighted that approximately 8% of waveforms are
affected by some problems, such as noisy arrival times or not
reliable polarity information.

This level of noise is very common in real-world datasets,
especially in the case of such large ones, where the ratio of

FIGURE 2
Heatmap relative to SOM nodes, showing the weighted
percentages cij of upward waveforms laying in each node. We infer
that the waveforms with assigned polarity different from the majority
falling in dark blue and dark red cells (percentages less than 1% or
more than 99%) are mislabeled data.
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corrupted labels can cover, in some cases, up to 40% of the entire
dataset (Song et al., 2022). Although it may appear to have drastic
consequences to use problematic data to train a classifier, numerous
studies have demonstrated that, with appropriate precautions and
depending on the nature of the encountered noise, deep learning can
exhibit remarkable robustness (Rolnick et al., 2017; Drory et al.,
2018). Furthermore, other works highlight that noise can also be
useful to better generalize (Damian et al., 2021).

Subsequent investigations revealed that attempting to clean our
dataset yielded no significant benefits. Specifically, a second SOM
visualization technique, similar to the one previously described, has
been applied. This analysis aimed to analyze upward and downward
polarity waveforms separately and enabled us to remove from
dataset A approximately 10,000 waveforms. We excluded all the
waveforms that fell within SOM nodes where we determined the
majority of the data to be ambiguous or where extracting polarity
information was very challenging. These waveforms comprised
elements from the training, validation, and test sets.
Supplementary Figure S4 shows some of the excluded nodes. In
Supplementary Table S1, we compare the performance of the
network trained on the original training set with the network
trained on the cleaned training set, presenting the performance
on both the cleaned test set and the original test set. Notably, we
observed no significant differences in the performance of the two
networks, when tested on the same test-set. Therefore, despite the
presence of mislabelling in our dataset, we have chosen not to
exclude any waveform, but rather, we aimed to design a network that
can effectively handle and mitigate the effects of label noise, without
the need for a preliminary selection of data points, which can result
in information loss.

3.2 CFM architecture and preprocessing
stage

The CFM network exclusively utilizes the vertical component of
waveforms that have been sampled at a frequency of 100 Hz whose
polarity information is available. To ensure consistency of the input
data, all waveforms are subjected to a standardized preprocessing
stage. Specifically, we subtracted to each waveform themean value of
the noise, from 200 samples (2.0 s) before the corresponding P
arrival time to 5 samples before (in order to not include in the value
of the mean some unbalanced oscillations due to the seismic phase).
Subsequently, the initial wave portion is emphasized by setting a
clipping threshold, in order not to neglect any of the smaller
oscillations resulting from the signal (Uchide T., 2020). In this
work, the threshold is different for each data point. To decide its
value, the amplitude of the highest peak among those preceding the
arrival time by at least 5 points was considered for each waveform.
The threshold is equal to 20 times the value of this amplitude. Each
seismogram is normalized to its respective threshold value. The
portion of the signal exceeding this threshold is cut off. Previous
studies did not highlight a specific filtering standard. Uchide (2020)
used a high-pass filter at 1 Hz, while Ross et al. (2018) applied a filter
between 1 and 20 Hz. On the other hand, Hara et al. (2019) and
Chakraborty et al. (2022) avoided using any filter. CNN (and other
deep networks) are known to work well on raw data (Goodfellow
et al., 2016), since they learn features during training, in a

hierarchical way, where initial layers acquire local features from
data and the final layers extract global features representing high-
level information. Considering these factors, we decided not to apply
any frequency filters to our data.

We chose as our training set the part of dataset A outside the two
boxes depicted in Figure 1A. Waveforms were presented in time
windows of 160 samples (1.60s, 0.79 preceding the P-arrival and
0.80 after), with the 80th sample corresponding to the declared
P-arrival times. During the training stage, we presented to the
network both waveforms and their corresponding labels.
Specifically, we assigned to a generic waveform x the label yx � 1
if its label in the dataset was “upward” polarity; else yx � 0. As
previously stated, dataset A contains 103,530 upward and
57,668 downward polarity waveforms, resulting in an upward/
downward ratio of 1.8. Similar level of unbalance is present in
the selected data constituting our training set (on 141,972 total
waveforms 91,563 showed upward polarity, while 50,409 showed
downward polarity). A class imbalance may lead the network to
prioritize the majority class, resulting in overlooking the
characteristics of the minority class (Wang et al., 2016). For this
reason, we balanced the training data applying a data augmentation
technique (Uchide T., 2020; Chakraborty et al., 2022; Falanga et al.,
2022) that allowed us to use a single data twice: the original trace and
the corresponding flipped one, obtained by multiplying −1 and
assigning it the opposite polarity. As a result, our augmented
training set doubled in size, comprising 283,944 waveforms, with
half exhibiting upward polarity and the remaining half exhibiting
downward polarity. We did not augment test or validation data.

Figure 3 represents the Convolutional Neural Network
architecture used in the present study. The network architecture
is divided into two stages, the first of which is represented by the
Convolutional layers. They provide a very efficient way to extract
relevant features from grid-like data (Goodfellow et al., 2016), such
as in the case of 1D time series (Kiranyaz et al., 2021) or 2D grids of
pixel, i.e., images (Krizhevsky et al., 2017). The ReLU activation
function is employed after each convolutional layer, owing to its
well-known benefits in facilitating the training process (Krizhevsky
et al., 2017). After three of the five Convolutional layers, a
MaxPooling layer is added, which reduces the dimension of the
input, preserving the most important features, and helps the
network to gain translational invariance (Goodfellow et al., 2016).
We also added Dropout layers, which are known to improve
performance in case of training with noisy labels (Rusiecki,
2020), and prevent overfitting. In the second part of the network,
the classification task is performed. The final layer’s sigmoid, or
logistic, activation function produces an output in the range [0, 1].
This choice allows the network output to be interpreted as the
probability of an input vector to belong to one of the two
investigated classes. We have used a threshold value of 0.5, above
which we interpret data as having upward polarity and below which
we interpret data as having downward polarity.

We set the binary cross-entropy as the loss function to be
minimized. To train the network, we used the Stochastic
Gradient Descent (Robbins and Monro, 1951). SGD is one of the
most simple and effective optimization methods widely used, and it
can lead to better generalization performance compared to other
more sophisticated methods. SGD is considered to play a central role
in the observed generalization abilities of deep learning, since its
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stochasticity, resulting from the mini-batch sampling procedure, can
provide a crucial implicit regularization effect (Ali et al., 2020).
Moreover, the implicit regularization properties of SGD (Damian

et al., 2021) are particularly useful when dealing with noisy data. We
exploited the Stochastic Gradient Descend with the addition of
Momentum. The default learning rate of 0.01 shows good

FIGURE 3
Architecture of the CFM, the deep Convolutional neural network for First Motion polarity classification used in this study. Numbers under each layer
indicate its shape (i.e., number of channels x number of samples). ConvPool and ConvDrop indicate convolution with maxpooling and convolution with
dropout, respectively. The values of K under each convolutional layer indicate the corresponding kernel size. The Flatten procedure (light blue arrow) only
reshapes the previous layer in a one-dimensional array, without affecting any value.

FIGURE 4
Confusionmatrices for dataset A (A) and dataset B (B) test sets. The x-axis shows network prediction, while the y-axis reports the labels present in the
dataset. The accuracies for dataset A and dataset B are approximately 97.4% and 96.3%, respectively.
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performances (multiple training with learning rate in the range
[0.007, 0.015] did not highlight substantial differences). We fixed
the momentum parameter to be equal to 0.8 and the batch size value
equal to 512.

We set the maximum number of epochs to 100 and, to prevent
overfitting, we implemented an early stopping technique that
interrupts the training if there is no improvement in the
validation loss for 7 consecutive epochs. Early stopping is also an
effective implicit regularization technique, which has been observed
to be surprisingly effective in preventing overfitting to mislabeled
data, especially when used in combination with first-order
optimization algorithms, such as SGD (Li et al., 2020).

4 Results

CFM was trained on waveforms outside blue and orange boxes
in Figure 1A. The early stopping technique stopped the training at
epoch number 20.We then evaluated the performance on the test set
derived from dataset A (Figure 1A, blue box) and on the dataset B
(Figure 1B), expressing it through confusion matrices (Figures 4A,B,
respectively), showing the number of samples labeled consistently
with the dataset (top-left and bottom-right) or oppositely (top-right
and bottom-left). From them, we computed the accuracies, defined
as the number of correct predictions divided by the total ones. The
network reached accuracies of 97.4% and 96.3%, respectively.

To provide a measure of the network’s reliability, we
evaluated its behavior as the output varies on dataset A test
set. A classifier is said to be ‘well-calibrated’ when its output
probability can be directly interpreted as a confidence level
(Dawid, 1982). For instance, a well-calibrated classifier should
classify the samples such that among the samples to which it gave

a predicted probability close to 0.8, approximately 80% actually
belong to the positive class, which in our case is represented by
upward polarity. Figure 5 represents a reliability diagram of our
network (Niculescu-Mizil and Caruana, 2005), which indicates
how often data points assigned a certain forecast output
probability interval actually exhibit upward polarity (assigned
in the dataset). Mathematically, the value of the height of the
rectangle belonging to the bin Ik corresponds to the empirical
probability:

P yx � 1
∣∣∣∣ ĈFM x( ) ∈ Ik( ) � x: yx � 1, ĈFM x( ) ∈ Ik{ }

∣∣∣∣∣
∣∣∣∣∣

x: ĈFM x( ) ∈ Ik{ }
∣∣∣∣∣

∣∣∣∣∣
, (1.2)

where x is a generic data point, yx is its label, ĈFM(x) the network
out probability and | · | represents the cardinality of the ensemble.
Although reliability diagrams can be helpful for visualizing
calibration, having a scalar summary statistic of calibration is
more practical. To this end, we calculated the Expected
Calibration Error (Guo et al., 2017):

ECE � ∑
M

m�1

nm
n

acc Bm( ) − conf Bm( )∣∣∣∣
∣∣∣∣, (1.3)

wherem is the number of predictions in bin m, n is the total number
of data points, and acc (m) and conf (m) are the accuracy and
confidence of bin m, respectively. The ECE values range in the
interval [0, 1], and the lower they are, the better the calibration of a
model. We obtained an ECE value of 3.7% for our network. In
general, ECE values depend on the specific task and dataset involved.
For a general comparison, refer to Guo et al., 2017.

4.1 CFM robustness to false annotations

We remember the SOM analysis of Section 3.1 revealed the
presence of 337 waveforms with false labels (located within the
nodes highlighted in Figure 2). Since the training set covers the
majority of dataset A, the majority of these outlier waveforms
(specifically 311) also belong to it. Despite the fact that the
training algorithm forces the network output to match the
assigned label, we found that 310 out of the 337 misclassified
waveforms are assigned to the correct class by CFM. Figure 6
shows some examples of such waveforms we identified in Section
3.1 and for which the network predicts correct polarities. Given that
the network successfully corrected 92% of the false labels, we
consider this as evidence of its ability to be robust to overfitting
erroneous labels.

4.2 Dealing with uncertain arrival times

In this section, to check the robustness of the network to
uncertainty in arrival times, we evaluated the performance of
the network including artificial time shifts in arrival times. To
this end, we shifted each time-window of dataset A test set by a
constant value of T samples, with values of T in the range
[-20,20]. A value of T = 5, for example, indicates that the time
window center is located 5 samples (0.05 s) past the declared

FIGURE 5
Reliability diagram of the network. Predictions made by the
model are grouped into bins based on their predicted probabilities.
The heights of the bars are the proportion of true positive cases within
each bin. Green edges represent the average predicted
probability of the bin, i.e., the optimal calibration. Numbers on each
bar indicate the upward (red) and downward (blue) polarity waveforms
laying in each bin.
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P-arrival. Red line in Figure 7 shows the behavior of the network
(trained on centered time-windows) varying T as test sample-
shift. We notice that, as expected, accuracy is highest when there
is no shift. Accuracy rapidly declines, dropping to 50% when
there is a shift of +10 samples, indicating a significant
degradation in performance.

Anyway, uncertainty in fixing the onset of P-wave is a trouble
that often affects experimental data becoming much more difficult
to manage for different reasons: poor signal-to-noise ratio,
magnitude of the events decreases (small-energy/magnitude
earthquake), recording stations installed in densely populated
areas, complex medium properties, volcanic environment.

For this reason, we explored the possibility of giving the network the

ability to dealwith uncertainty inP-arrival times. Specifically, we developed

an aimed augmentation strategy and performed a second training strategy,

including a time-shift in the training set too. We used a time-shift

augmentation procedure perturbing the centering of time windows

contained in the training set, leaving the validation set unperturbed.
In particular, we selected 50% of the training waveforms and

applied two independent uniform random time-shifts to each. The
first time-shift was selected from the range [-N, −1], and the second
from [1, N]. The original waveform and the two shifted versions
were then included in the training set. We conducted two training
sessions, on two augmented training sets, with N values of 5 and 10,
respectively. Evaluating performance on unperturbed dataset A test
set (T=0), we observe accuracy levels of 97.2% (in the case of N=10)
and of 97.3% (in the case of N=5), which are slightly lower than the

FIGURE 6
Some seismic traces erroneously labeled by the analyst that we identified with the SOM data visualization in Section 3.1. On the top of each subplot,
we annotate the magnitude of the event (M) and the signal-to-noise ratio (SNR). Passigned and Ppredicted refer to the polarity assigned in the dataset and the
prediction of the network (with the corresponding probability to belong to the predicted class in square brackets).

FIGURE 7
The performances of the CFM network on the test set after the
two different training strategies. The blue and green lines refer to the
trainings with a time-shift in the training set, with a maximum value N
of 5 and 10 samples respectively. The red line shows the training
without random time-shifts in the training set. Performance is shown
as a function of the different shifts T in the test set. Dashed black lines
refer to accuracy levels of 0.5 and 0.75.
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correspondent obtained by the model trained on unperturbed
waveforms. However, as shown by the blue and green lines in
Figure 7, adding time-shifts to the training set can lead to an
improvement in performance in the presence of uncertain arrival
times. In particular, we observed a broader plateau where the
accuracy remains above 92.4%, even when dealing with shifts of
10 samples, in the case of N=10 (green line), and it takes
17 translation test samples to reduce the accuracy below 75%.

4.3 Model generalization ability

To evaluate the generalization ability of the CFM network, we
checked the capability to generate accurate predictions on new
datasets coming from completely different geographic regions
(Southern California and western Japan regions), using
recordings obtained by different seismic networks, and far from
the region (Italy) on which the net was trained on.

We first utilized the SCSN test dataset provided by Ross et al.
(2018). We excluded waveforms without assigned polarity, resulting
in 863,151 traces suitable for our purposes. The network achieves an
accuracy of 98.4% for waveforms with SNR greater than or equal to
10, while the accuracy is 96.3% for waveforms with a SNR less than
10. The overall accuracy is 97.5%, comparable to the model trained
by Ross et al. (2018) on the SCSN dataset (i.e. 95%). Figure 8A shows
the confusion matrix related to the network prevision on the SCSN
dataset.

We furthermore tested the performance on the test set provided
by Hara et al. (2019), using only the 3,930 waveforms sampled at
100 Hz. We recall that CFM inputs are 160-sample waveforms,
whereas the dataset we received contains 150-sample waveforms.
Therefore, we have decided to conduct an additional training while
keeping all the settings presented in the previous sections
unchanged, except for the input shape, which we have adjusted

to 150 samples to ensure compatibility. This additional training
resulted in similar performances on both the dataset A and dataset B
test sets when compared to the performance achieved with the 160-
sample training. The predictions on the Hara et al. (2019) test set are
presented in Figure 8B, from which one can compute an accuracy
value of about 91.5%, slightly lower than the 95.4% obtained by the
model of Hara et al. (2019).

5 Discussion

First-motion polarity determination can be a challenging task
even for expert analysts, mainly when dealing with small-magnitude
events, in both tectonic and volcanic environments. Deep learning
neural networks have been widely applied in geophysics. Among
many other applications, they have been used to detect first-motion
polarities (Ross et al., 2018; Hara et al., 2019; Uchide, 2020;
Chakraborty et al., 2022).

In this work, we developed the CFM network, a straightforward
Convolutional Neural Network that can accurately identify the first-
motion waveform polarity. Our results showed that CFM achieved a
testing accuracy of 97.4% when applied to previously unseen traces.
CFM also shows well generalization abilities, resulting in high
accuracies on waveforms recorded from seismic networks located
in completely different regions than those utilized to derive the
training set (i.e., waveforms derived from the SCSN and western
Japan test sets). For the SCSN test set, as noted in the previous works
by Ross et al. (2018); Chakraborty et al. (2022), performance is better
when dealing with waveforms that have a SNR greater than 10. Even
if this is confirmed in our results, our network shows a gap in
performance on different SNR of 2.1% when tested on SCSN test set,
which is significantly lower than the 7.9% reported by Chakraborty
et al. (2022). For the western Japan region, the accuracy achieved by
CFM on the Hara et al. (2019) test set, at 91.5%, is slightly lower than

FIGURE 8
Confusionmatrices for SCSN (A) and western Japan (B) test sets. The accuracies are approximately 97.5% and 91.5%, respectively. We recall that the
performance on the western Japan test set refers to the different training using 150 as input waveforms.
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the accuracies obtained on the other test sets and the one reported by
Hara et al. (2019) themselves. However, a manual analysis of all
333 misclassified waveforms revealed that the polarity assigned in
the test set was correct only in 29 cases, while for 59 waveforms the
polarity identified by the model was correct. Other waveforms either
presented ambiguous or unextractable polarity (119 waveforms) or
had a considerable error in arrival time, up to 35 samples
(126 waveforms). Supplementary Figure S5 provides a
representation of the various cases. These findings confirm that
the instances where the network does not perform well are
remarkably limited, and its inferior performance cannot be
attributed to shortcomings.

We observed that the employed implicit regularization strategies
prevented the network from overfitting mislabeled data, resulting in
the network’s ability to correct false labeling, even when the
mislabeled waveforms are present in the training set. In line with
previous studies (Uchide, 2020; Chakraborty et al., 2022), we
demonstrated that implementing a time-shift augmentation
procedure can lead to a decrease in performance when applied to
unperturbed waveforms. However, unlike previous works, our
additional training stages uncovered that an accurate
augmentation procedure enables the handling of uncertainties in
arrival times with only a minimal loss in performance on the
unaltered data.

We also observe CFM exhibiting good calibration properties,
which is critical for ensuring a high level of reliability in the model’s
outputs, although we did not carry out any explicit calibration
processes (Guo et al., 2017). In addition, we observe (Figure 5)
that when the network works on waveforms with defined polarity, as
in our case, the vast majority of outputs lie in the ranges [0, 0.1] for
downward polarity and [0.9, 1] for upward polarity, resulting in high
reliability. Due to its well-calibration properties, CFM is able to
produce accurate probability estimates, enabling us to make
informed decisions based on the output probability values. For
example, a threshold can be introduced to determine when to
accept or reject a prediction.

In conclusion, our study introduces the robust and highly
adaptable CFM network that holds significant potential for
determining the P-wave polarities. The generalization ability
of the algorithm in producing accurate prediction on
waveforms registered in regions different from those used to
derive training data and its ability to rectify previously
misclassified polarities are noteworthy contributions of this
research. CFM key selling point lies in its capability to
efficiently revise or validate large volumes of analyst-derived
first-motion polarities in historic catalogs using a consistent
method. It is important to note that the algorithm relies on
phase arrival times and therefore cannot handle catalogs without
this information. Although the application was presented on
manually obtained picks, our findings suggest that the CFM
network can easily be adapted downstream of the application
of an automatic P-phase detection and labeling network, which is
currently being worked on as a future development. This
integration would enhance its adaptability and streamline the
resolution of poorly-determined focal mechanisms in catalogs by
quickly and robustly rectifying mislabeled first-motion polarities
in databases. Overall, our research lays the foundation for further
advancements in accurately characterizing tectonic and volcanic

seismic events and improving our understanding of focal
mechanisms.
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Introduction: Developing reliable seismic catalogs for volcanoes is essential for
investigating underlying volcanic structures. However, owing to the complexity
and heterogeneity of volcanic environments, seismic signals are strongly affected
by seismic attenuation, which modifies the seismic waveforms and their spectral
content observed at different seismic stations. As a consequence, the ability
to properly discriminate incoming information is compromised. To address this
issue, multi-station operational frameworks that allow unequivocal real-time
management of large volumes of volcano seismic data are needed.

Methods: In this study, we developed a multi-station volcano tectonic
earthquake monitoring approach based on transfer learning techniques. We
applied two machine learning systems—a recurrent neural network based on
long short-term memory cells (RNN–LSTM) and a temporal convolutional
network (TCN)—both trained with a master dataset and catalogue belonging to
Deception Island volcano (Antarctica), as blind-recognizers to a new volcanic
environment (Mount Bezymianny, Kamchatka; 6 months of data collected from
June to December 2017, including periods of quiescence and eruption).

Results and discussion: When the systems were re-trained under a multi
correlation-based approach (i.e., only seismic traces detected at the same time
at different seismic stations were selected), the performances of the systems
improved substantially. We found that the RNN-based system offered the most
reliable recognition by excluding low confidence detections for seismic traces
(i.e., those that were only partially similar to those of the baseline). In contrast,
the TCN-based network was capable of detecting a greater number of events;
however, many of those events were only partially similar to the master events
of the baseline. Together, these two approaches offer complementary tools
for volcano monitoring. Moreover, we found that our approach had a number
of advantages over the classical short time average over long time-average
(STA/LTA) algorithm. In particular, the systems automatically detect VTs in a
seismic trace without searching for optimal parameter settings, which makes
it a portable, scalable, and economical tool with relatively low computational
cost. Moreover, besides obtaining a preliminary seismic catalog, it offers
information on the confidence of the detected events. Finally, our approach
provides a useful tentative label for subsequent analysis carried out by a human
operator. Ultimately, this study contributes a new framework for rapid and easy
volcano monitoring based on temporal changes in monitored seismic signals.
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1 Introduction

Active volcanoes are often monitored by different ground
and space-based instruments, which provide essential data for
understanding the volcanic system, quantifying impacts, mitigating
risk, and contributing to the preparedness of governments and
society as a whole (Barsotti et al., 2020; Barsotti et al., 2023).
However, identifying transitions in volcanic state is complex and
involves the study of various physics processes. Given the large
volumes of data now available from permanent monitoring seismic
networks, volcanic seismology plays a critical role in volcano
monitoring.

Volcanic dynamics generate an exchange of energy with the
surrounding medium that propagates in the form of elastic or
seismic waves. Owing to the complexity of volcanic processes,
these seismic waves can have varying characteristics in both the
time and frequency domains (Ibáñez et al., 2000). Identifying and
characterizing these signals with the aim of associating them with
internal dynamic processes is a key scientific challenge. Accurate
recognition (identification and classification) is the basis for
developing eruption forecasting based on precursors (Sparks et al.,
2012; McNutt et al., 2015; Machacca et al., 2023), and is critical for
improving knowledge of volcanic dynamics. Signals are generally
classified based on the source model built to explain them. Low
frequency signals (LF), such as so-called long period (LP) events
and some types of volcanic tremor (TR), are associated with fluid
dynamics. However, the most common type of seismic signal
recorded in many volcanic environments is volcano tectonic (VT)
earthquakes (Chouet, 2003). VT earthquakes are the consequence
of stress-induced fluid dynamics inside the volcano (Roman and
Cashman, 2006). In general, the source mechanisms of VT events
can be described using classical approaches in seismology (Aki and
Richards, 2002). However, as indicated by (Chouet and Matoza,
2013), owing to the involvement of fluids, this task is very complex
in many volcanic environments. VTs are commonly considered
to be potential precursors (McNutt and Roman, 2015), and so
new methodologies and advances, including the use of artificial
intelligence (AI), are increasingly being used to improve their
recognition.

A key aspect of VT seismicity is that it contains much more
information than that presented in each waveform. Recent studies
have performed source modeling analysis (Sigmundsson et al.,
2018; Sigmundsson et al., 2022; Cubuk-Sabuncu et al., 2021), focal
mechanisms analysis, and 4D tomography showing the temporal
evolution of volcanic structures in (Abacha et al., 2023). (Díaz-
Moreno et al., 2015) used spatial and temporal analyses of VT foci
evolution; for example, in their study, VTs generated during magma
injection were assumed to reflect the effect of hydraulic fracturing,
highlighting areas of the crust where stress was propagating as
a consequence of magma migration. Seismic tomography allows
us to reconstruct the internal structure of a volcano and infer
the physical and dynamic characteristics of the volcanic system

by studying the travel times of the first arrivals of VT waves
(i.e., tomography of velocity (D’Auria et al., 2022), or by studying
their loss of energy (i.e., attenuation tomography (Prudencio et al.,
2013; Castro-Melgar et al., 2021) showed that volcanic structures
are highly attenuating, which causes the waveform of the recorded
signals to undergo strong changes, including loss of a large part
of their spectral component, especially in the high frequency
range. Similarly, (Titos et al., 2018), showed that VT earthquakes
can be confused as LP-type events at a certain distance, which
has consequences for the interpretation of internal dynamics of
the volcanic system. However, these approaches all require data
from large numbers of reliable earthquakes. Therefore, developing
effective approaches that allow real-time management of large
volumes of seismic data has become an important challenge.

Recent advances inmachine learning (ML) have encouraged the
development of advanced automatic data processing and analysis
pipelines. Typically, new automatic approaches are built by learning
from large seismic catalogues. These data-driven systems have
proven to be very efficient tools in an ever-changing and streaming
data environment; however, they have remarkably poor learning and
adaptability outcomes owing to the incompleteness of many seismic
catalogues. Nonetheless, building complete and reliable catalogues
is technically challenging owing to the high cost of data-labelling.
This issue has grown in importance in light of recent work, since
catalogue-based learning can introduce bias when constructing
predictive monitoring tools.

In this study, we developed a new automatic multi-station
system for exclusively recognizing and labelling VT earthquakes.
As discussed, owing to attenuation, many LP events annotated
in seismic catalogues could actually be highly attenuated VT
earthquakes. Therefore, we employed a multi-station process to
improve the identification of VTs. To control for bias derived

TABLE 1 Classification accuracy (acc. %), number of parameters tuned, and
training times for optimal configurations of the recurrent neural network
based on long short-termmemory cells (RNN–LSTM) and temporal
convolutional network (TCN) architectures using themaster catalogue
(Deception Island volcano, Antarctica).

RNN-LSTM TCN

Test 1 acc. (%) 86.61 82.82

Test 2 acc. (%) 80.13 80.10

Test 3 acc. (%) 82.05 84.99

Test 4 acc. (%) 89.09 78.74

Avg. acc. (%) 84.47 81.66

No. of parameters 219,455 63,105

Training time (s) 16,834 2,073

Notes: A cross-validation procedure with four dataset partitions was used. Classification
accuracy corresponds to frames or windows properly classified. Training times are reported
in seconds and correspond with those of one partition. Bold values represents best
architecture in terms of accuracy and parameters.
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FIGURE 1
Transfer learning methodology used to develop the new volcano seismic monitoring system.

from seismic catalogue incompleteness, we employed transfer
learning techniques (Weiss et al., 2016), which are helpful in
domain-adaption problems, where the objective is to develop
a monitoring system focused on available domain-specific data
(Anantrasirichai et al., 2018; Titos et al., 2018; Bueno et al., 2019;
Titos et al., 2019; Lapins et al., 2021; Jozinović et al., 2022). In
contrast, our newmonitoring systemdoes not require prior domain-
specific knowledge. Assuming a scenario in which there is no
previous information related to the seismic dynamics of the volcano,
instead of building a system from scratch (which would require
an expensive data-labelling process), we used a recurrent neural

network based on long short-term memory cells (RNN–LSTM)
and a temporal convolutional network (TCN) (Titos et al., 2018;
Titos et al., 2022) trained with a master catalogue belonging to
Deception Island volcano (Antarctica) as a baseline. These models
were then used as blind-recognizers for a different volcanic
environment, that of Mount Bezymianny (Kamchatka). When these
systems were re-trained under a multi correlation-based approach,
where only reliable seismic traces identified at the same time at
different seismic stations were selected and manually labeled, the
performance of the systems improved substantially, resulting in a
remarkable capability of confidently recognizing seismic traces. In
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FIGURE 2
(A) Geological framework of Bezymianny volcano and (B) seismic
station locations used in this study. Figure obtained and modifies from
Google Earth resources.

summary, our approach provides a rapid and easy-to-use framework
for real-time monitoring of temporal changes in seismic signals at
any volcano.

2 Experimental framework and
methodology

2.1 Methodology and experimental settings

In this study, we developed a new real-timemulti-station seismic
monitoring system for volcanoes without any prior knowledge
within a transfer learning framework. Although some classical ML
techniques such as Markov models have been used in sequence
modeling tasks, neural networks (NN), including both RNN
and TCN architectures (LeCun et al., 2015; Lea et al., 2016), have
optimal temporal modeling capabilities. By generating a spatio-
temporal sequence of hierarchical features, both architectures
have been applied in complex and emerging geosciences research
fields, including seismo-volcanic monitoring (Titos et al., 2018;
Bueno et al., 2021), climate change (Yan et al., 2020), remote sensing
(Račič et al., 2020), and human activities recognition (Nair et al.,

2018). Accordingly, in this work, an RNN based on long short-
term memory cells (RNN–LSTM) and a TCN (Titos et al., 2018;
Titos et al., 2022) trained with a master catalogue belonging to
Deception Island volcano (Antarctica) were proposed as a baseline.
These were then used as a blind-recognizer for the data from a
different volcanic environment, Mount Bezymianny (Kamchatka).
The master database belonging to Deception Island volcano is
unbalanced; however, it has been thoroughly reviewed by experts
on the volcano. According to (Titos et al., 2018), the Deception
Island dataset is composed of five seismic categories: background
noise (BGN), tremor (TR), hybrid (HYB), VTs, and LPs; Table 1
summarizes the performances of the two approaches (RNN–LSTM
and TCN) using the master catalog, based on the percentage of
events correctly recognized.

Then, assuming a scenario in which the monitoring agency does
not have any previous information related to the seismic dynamics
of a volcano, a new monitoring tool was obtained as follow (see
Figure 1):

1. Data parameterization: Raw streaming data belonging to
each seismic station within the new volcanic environment
were parameterized following the parameterization scheme of
(Titos et al., 2018) to obtain the baseline systems.

2. Preliminary seismic catalog: By utilizing parameterized
streaming traces as inputs, the pre-trained system generates
a preliminary seismic catalog that consists of identified events
along with their respective timing and probabilities assigned
to each event class. It is important to note that when applying
transfer learning without any domain-adaptation process, the
seismic categories detected in a new volcanic environment
will correspond to the seismic categories used in the master
catalogue.Therefore, since the parameterization scheme adopted
here was based on the spectral content of the seismic traces,
events completely different from those described in the master
catalog were categorized into these classes, based on their
spectral similarity.

3. Probabilistic event detection: Using the preliminary seismic
catalog, a probabilistic event selection process was used to obtain
a new dataset from which to re-train or adapt the pre-trained
system (RNN-LSTMorTCN) for the new volcanic environment.
This process involved five steps:

• The seismic station detecting the largest number of events
was selected as the reference station (RS).

• For each detected event at the RS, the confidence of
the detection was analysed using a probabilistic event
detection matrix with per-class probabilities output by the
softmax layer (this layer is useful in multiclass classification
problems as it converts the output values of the neural
network into probabilities to each possible class). We
assumed that low per-class probabilities reflect a change in
the description of the analysed information. Therefore, only
reliable events (those whose per-class probabilities were
greater than a given threshold) were selected.

• For each previously selected event, a multi correlation-
based approach was applied to identify if they could be
detected at the same time at different seismic stations. If
the same event was reliably detected (per-class probabilities
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FIGURE 3
Total number of volcano tectonic (VT) earthquakes detected by (A) a recurrent neural network based on long short-term memory cells (RNN–LSTM)
and (B) a temporal convolutional network (TCN) before and after the re-training process.

FIGURE 4
Monthly per-station cumulative distribution function (CDF) for the recurrent neural network based on long short-term memory cells (RNN–LSTM)
before re-training. The x-axis represents the probabilities assigned by the models to those events detected as volcano tectonic (VT) earthquakes; the
y-axis represents the normalized cumulative sum of events predicted within that class. (A) August 2017. (B) October 2017. (C) December 2017.

greater than a given threshold) at the same time at least two
seismic stations, it was included as a training instance.

• Once the new training set was created, all instances were
manually analyzed and newly labeled by experts in order to
refine the bounding of the events.

• Finally, the pre-trained systems were re-trained using the
new dataset and labels.

4. The final stage comprised further iterations of the probabilistic
event detection (see point 3 above) in order to reach an optimal
level of performance.

Thepipeline used for this study is suitable for application to other
baseline systems and parameterization schemes.

2.2 Geological framework: Bezymianny
volcano

Bezymianny volcano (55.6°N, 160.3°E) is an explosive
basaltic–andesitic stratovolcano belonging to the Klyuchevskaya
(KVG) volcanic group on the Kamchatka Peninsula, Russia. It
is located in the central depression of Kamchatka (CKD), which
covers > 4,000 km2 between the Sredinny and Eastern ridges. This
region marks the northeastern corner of the Pacific subduction
plate, which is formed by the Kuril–Kamchatka and Aleutian
trenches (Figure 2A). According to its eruptive history, the volcano
was considered inactive for more than 1,000 years (Braitseva and
Kiryanov, 1982), until the lateral eruption in 1956. Bezymianny has
experienced an active period since 2000, with more than 15 eruptive

Frontiers in Earth Science 05 frontiersin.org23

https://doi.org/10.3389/feart.2023.1204832
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Titos et al. 10.3389/feart.2023.1204832

FIGURE 5
Monthly per-station cumulative distribution function (CDF) for the recurrent neural network based on long short-term memory cells (RNN–LSTM) after
re-training. The x-axis represents the probabilities assigned by the models to those events detected as volcano tectonic (VT) earthquakes; the y-axis
represents the normalized cumulative sum of events predicted within that class. (A) August 2017. (B) October 2017. (C) December 2017.

FIGURE 6
Monthly per-station cumulative distribution function (CDF) for the temporal convolutional network (TCN) before re-training. The x-axis represents the
probabilities assigned by the models to those events detected as volcano tectonic (VT) earthquakes; the y-axis represents the normalized cumulative
sum of events predicted within that class. (A) August 2017. (B) October 2017. (C) December 2017.

episodes (Van Manen et al., 2010). Among its recent eruptive
episodes, that of 20 December 2017 (Girina et al., 2018) produced
an eruption column that exceeded 15 km in height, representing
a potential hazard to air traffic (Neal et al., 2009; McGimsey et al.,
2014). The seismic database associated with this eruption is reliable
and complete; therefore, it was selected for testing the approach
developed in this study.

The seismic data used in this study were collected by a
temporary network composed of 10 seismic stations, installed
during the 2017–2018 period (Koulakov et al., 2021). However,
only data corresponding to four stations (Figure 2B) were selected.
Criteria for selecting the seismic stations were motivated by
both the availability and quality (signal-to-noise ratio) of the
data. In addition, to further determine the reliability of the

monitoring system proposed, two additional eruptive phases (a
pre-eruptive stage characterized by little activity and a syn-
eruptive stage with tens of thousands of events) containing 6
months of seismic data from June to December 2017 were also
selected.

3 Results

In this study, we analyzed results for four seismic stations over
a 6 month period. However, to facilitate discussion of the results,
here, we focus on VTs detected during 3 months of data, —August,
October, and December 2017—which correspond to quiescent, pre-
eruptive, and syn-eruptive phases, respectively.
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FIGURE 7
Monthly per-station cumulative distribution function (CDF) for the temporal convolutional network (TCN) after pre-training. The x-axis represents the
probabilities assigned by the models to those events detected as volcano tectonic (VT) earthquakes; the y-axis represents the normalized cumulative
sum of events predicted within that class. (A) August 2017. (B) October 2017. (C) December 2017.

FIGURE 8
Overview of short time average over long time-average (STA/LTA) triggering thresholds in this work.

3.1 RNN-LSTM outcomes

Figure 3A summarizes the VTs detected by the pre-trained
RNN–LSTM system before and after re-training using the new
(Bezymianny volcano) dataset. Contrary to expectations, the
number of VTs detected at some stations using the RNN–LSTM
remained constant or decreased after being re-trained. Figures 4,
5 show comparisons of the monthly per-station cumulative
distribution function (CDF) before and after the re-training process,
representing the probabilities and normalized cumulative sums of
events predicted as VTs. Before re-training, while a high number
of events were detected, the confidence of such detections was
low. More specifically, in August 2017 (Figure 4A), almost 70% of

the events detected had probabilities of between 35% and 55%; in
October and December 2017 (Figures 4B, C), except at station BZ06
(where 50% of the events detected had probabilities of < 55%),
no recognized event exceeded 55%. After re-training, there was a
clear change in the trend, with fewer recognized VT earthquakes
depending on the station (Figure 3) but much higher confidences
of the detections (Figure 5).

3.2 TCN outcomes

Figure 3B summarizes the VTs detected by the pre-trained TCN
system before and after re-training using the new (Bezymianny
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FIGURE 9
Number of volcano tectonic (VT) earthquakes detected hourly on 14
August 2017 using the short time average over long time-average
(STA/LTA) trigger algorithm and the re-trained recurrent neural
network based on long short-term memory cells (RNN–LSTM). Results
obtained by both architectures have been compared with human
operator criteria

volcano) dataset. Figures 6, 7 show comparisons of the monthly
per-station CDF before and after the re-training process. In
contrast to the RNN–LSTM, the TCN architecture saw an increase
in the total number of earthquakes detected after being re-
trained but a significant decrease in the confidence of the
recognitions. Before re-training, 90% of events were detected
with probabilities of > 80%; after re-training, depending on the
station, only 40%–60% of recognized events had probabilities of
> 80%.

3.3 STA/LTA comparison

To determine the robustness of our system, we compared our
results before and after re-training to those of a classical approach,
the short time average over long time-average (STA/LTA) trigger
algorithm (Trnkoczy, 2009). We selected a single day on which
several hundred earthquakes occurred and analyzed the results on
an hourly timescale. Given that the TCN always detected a greater
number of events than the RNN–LSTM, we assumed that the VTs
detected by the RNN–LSTM were a subset of those detected by the
TCN and selected only those events for analysis. On the chosen

FIGURE 10
Recognition analysis before and after re-training of the recurrent neural network based on long short-term memory cells (RNN–LSTM). Before
re-training, the system labeled seismic traces partially matching with volcano tectonic (VT) earthquakes as VTs with low probability. After re-training,
only high confidence VTs were detected and labeled; low probability events were categorized as undefined events. (A) Example of a low probability
(52%) VT earthquake detected before re-training. (B) Example of a low probability VT earthquake (60%) labeled as ‘undefined’ after re-training. With the
purpose of enhancing visualization, the raw seismic signals were subjected to a filtering process, limiting the frequency range between 1 and 20 Hz.
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FIGURE 11
Spectrograms and power spectral densities (PSD) of different events belonging to Bezymianny volcano and Deception Island. (A) Volcano tectonic (VT)
earthquake from Deception Island. (B) Volcanic tremor (TR) event from Deception Island. (C) VT from Bezymianny volcano.

day, the RNN–LSTM did not recognize any VTs before it was re-
trained; after re-training, all of the VTs recognized had previously
been categorized as TR events.

Figure 8 presents an overview of the STA/LTA triggering
thresholds. For proper operation of the STA/LTA algorithm, four
parameters should be tuned: the short window length (STA), long
window length (LTA), activation threshold level, and deactivation
threshold level. The STA/LTA trigger parameter settings are always
a tradeoff among sensitivity and specificity. While sensitivity may
also include a tolerable number of false triggers, specificity correctly

detects only particular instances, therefore decreasing the number
of detections. Considering that the algorithm computes the average
absolute amplitude of a seismic signal in two consecutive moving-
time windows, only events exceeding pre-set values describing the
triggering thresholds of both STA and LTA were identified. Figure 9
compares the number of VTs detected hourly during 14 August
2017, by the STA/LTA trigger algorithm and re-trained RNN-
LSTM architecture; overall, the results show that the RNN–LSTM
recognized a higher number of VTs than the STA/LTA algorithm
(782 vs. 648).
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FIGURE 12
Recognition analysis before and after re-training of the temporal convolutional network (TCN). Before re-training, the system labeled seismic traces
partially matching with volcano tectonic (VT) earthquakes as VTs with high probability; low probability events were marked as ‘undefined’. After
re-training, all seismic traces having high frequencies and variable length were detected as VTs; however, only clear VT earthquakes were detected with
high probability. (A) Example of a high probability VT earthquake (99%) detected before retraining, in which several earthquakes occurring closely
together in a short timeframe have been classified as a single event following the volcanic dynamics to the master catalog. Since the system does not
detect background noise windows between the two earthquakes due to the multi-resolution dilated skip connections between layers, it labels the two
earthquakes as one. (B) Example of a low probability (70%) VT earthquake detected after re-training. With the purpose of enhancing visualization, the
raw seismic signals were subjected to a filtering process, limiting the frequency range between 1 and 20 Hz.

4 Discussion

4.1 RNN-LSTM considerations

The noticeable difference in the performance of the system
after re-training can be explained from a geophysical perspective.
First, owing to the noisy content registered in the new volcanic
environment, it is possible that many of the events detected before
the re-training were low probability VTs (or mis-recognized VT)
corresponding to seismic traces characterized by high frequencies
and variable length. Since the system fitting approach is a
density estimation problem and such seismic traces partially match
observed VT features in the master catalog (Deception Island), the
estimated probability density function and its parameters cannot
explain the underlying distribution of the new input data; as such,
it assigns a low probability. Figure 10A provides a clear overview
of this issue, in which a seismic trace partially matches with source
earthquakes with a low probability (52%).

Second, many of the VTs detected after re-training were
originally recognized as TR, which can be explained by the
differences between the learned representation at source and target
underlying distributions. Figure 11 shows the spectrograms and
power spectral densities (PSD) of VTs from Bezymianny volcano

and Deception Island, and a TR from Deception Island. The figure
shows very similar spectral energy distributions. The beginning of
the Deception Island TR (Figure 11B) has a short and overlapped
package of high frequency waves (up to 20 Hz). These high
frequency signals are associated with the explosive step of pressure
in the source region when LP events are generated near the seismic
station (no visible exponential decay in frequency is observed)
and with small earthquakes. At Bezymianny volcano, many VTs
have a higher energy component at low frequencies (Figure 11C);
therefore, as our parameterization scheme performs energy analysis
by frequency bands that are more sensitive in lower frequencies,
the pre-trained system failed to recognizing these energetic low
frequency VT events. After re-training, the global number of
recognized VTs was similar, but confidence of the detections was
much higher.

In summary, the system (i.e., the probability distribution and
associated parameters) is fixed to maximize a likelihood function
that best explains the joint probability distribution of the new
volcanic dynamics (in this case, Bezymianny volcano). As a result,
following re-training, only confident VTs were detected and labeled.
Those previously mis-recognized as TR were now confidently
detected, while those events with low probabilities (< 65%) were
labeled as undefined events (e.g., Figure 10B). Such events require
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FIGURE 13
Potential false triggers corresponding to short duration energy changes recognized by the short time average over long time-average (STA/LTA) model.
(A) Spectrogram of the seismic signal selected. (B) High pass filtered seismogram. (C) short time average over long time-average (STA/LTA) triggering
results. Owing to lack of prior knowledge, the recurrent neural network based on long short-term memory cells (RNN–LSTM) model discounted these
events as volcano tectonic (VT) earthquakes, since the duration was shorter than the average duration of VT earthquakes in the Deception Island
catalog. With the purpose of enhancing visualization, the raw seismic signals were subjected to a filtering process, limiting the frequency range
between 1 and 20 Hz.

careful review by experts. As conclusion, before re-training, only
VTswith probabilities of> 80% could be included in the new catalog;
after re-training, all VTs detected with probabilities of > 65% could
be easily identified.

4.2 TCN considerations

The noticeable difference in the performance of the system
after re-training can be explained by the greater specialization
ability of TCN compared with RNN–LSTM owing to the multi-
resolution dilated skip connections between layers and deeper
hierarchical features. The new Bezymianny volcanic dynamics often
exhibit consecutive seismic events that bear partial resemblance to
earthquakes occurring closely together in a short timeframe. Before
retraining, the system could avoid recognizing such new volcanic
dynamics based on high frequencies and short length as isolated
events. Therefore, when such concatenated events were detected,
focusing only on those volcanic dynamics that were similar to the
master catalog, the system considered them all as a whole, not as
isolated events (Figure 12A).

In summary, before re-training, the system labeled seismic
traces partially matching with earthquakes as high probability VTs,

while low probability events were labeled as ‘undefined’. After
re-training, all seismic traces with high frequencies and variable
length were detected as VTs, decreasing the number of undefined
events. However, only clear VTs were detected with high probability.
Figure 12B shows an example of a detected low probability (70%)
VT. Before re-training, this seismic trace was labeled as ‘undefined’
with a high probability of assignment to VT (> 90%). After re-
training, the system decreased the probability of assignment to VT.
In this way, before re-training, many VTs were mis-recognized; after
re-training, all VTs detected with probabilities higher than of > 85%
could be included in the new catalog.

4.3 STA/LTA considerations

However, in some time slots, STA/LTA detected a greater
number of events.These resultsmay be explained by the nature of the
STA/LTA algorithm, its trigger parameter settings, and the grammar
imposed on the proposed models, which was responsible for
improving the interpretability of the models based on geophysical
knowledge of the volcano (Titos et al., 2018).

Since there was no previous information related to the seismic
catalog, the STA/LTA triggering thresholds were fixed so that the
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FIGURE 14
Potential masked events, for which the short time average over long time-average (STA/LTA) algorithm computed the average absolute amplitude of a
seismic signal from two consecutive moving-time windows containing a low energy event immediately following a very high energy event. The
average energy masks the occurrence of the low energy event, decreasing the number of recognized events. (A) Spectrogram of the seismic signal
selected. (B) High pass filtered seismogram. (C) short time average over long time-average (STA/LTA) triggering results. With the purpose of enhancing
visualization, the raw seismic signals were subjected to a filtering process, limiting the frequency range between 1 and 20 Hz.

system was more sensitive than specific. The goal was to obtain as
much information as possible, and all energy changes, even small
ones, were detected. This scenario resulted in a tolerable number
of false triggers. In contrast, the RNN–LSTM (and TCN) system
imposed the use of grammar (a set of rules) based on geophysical
knowledge of Deception Island volcano to improve interpretability.
The average duration of seismic events belonging to the master
dataset (Deception Island) in combination with the per-class
probabilities output by the models in the new volcanic environment
allowed us to check that the predictions were consistent with the
expected lengths of events. Since no information was provided on
the average duration of the seismic-volcanic events of the new
volcanic environment, the grammar only recognized those events
that, on average, had durations that were greater than or similar
to those described in the master dataset. Events whose durations
were less than the average duration of events in the master database,
even if recognized with high per-class probabilities, were labeled as
background noise or unknown events.

For the time slots in which STA/LTA detected a greater number
of VT events compared with RNN–LSTM, many of the events
recognized by the STA/LTA model corresponded to short duration
energy changes (Figure 13). In contrast, the RNN–LSTM model
discarded these events (i.e., labeled them as background noise when
the output VT per-class probabilities were low and as unknown

events when the output per-class probabilities were high) since the
durations were shorter than the average duration of VT earthquakes
at Deception Island.

For the time slots in which STA/LTA detected a lower number
of VT events compared with the re-trained RNN–LSTM, a possible
explanation is the behavior of the STA/LTA algorithm in a seismic
swarm state. Seismic swarms, which are a common volcanic
phenomenon, involve a sequence of seismic events that occur within
a relatively short period of time within a very local area. Given that
the STA/LTA algorithm computes an average absolute amplitude of
the seismic signal in two consecutive moving-time windows, when
a low energy event occurs immediately after a high energy event, the
averaging process masks the occurrence of the least energetic one,
decreasing the number of recognized events (Figure 14). In contrast,
as the RNN–LSTM analyzes signals based on spectral features, it has
the ability to analyze a concatenated occurrence of events, such as
that observed during a seismic swarm.

Based on our results, once it has been re-trained and the
average duration of the seismic-volcanic events has been fixed,
our RNN–LSTM has a number of advantages over STA/LTA. In
particular, the system will automatically detect VTs present in the
seismic trace without searching for optimal parameter settings,
which makes it a portable, scalable, and economical tool with
relatively low computational cost. Another important advantage is
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FIGURE 15
Robustness of the obtained seismic catalogs based on per-class probabilities output by the models. (A) Example of an earthquake recognized as a
volcano tectonic (VT) earthquake with relatively high probability from at least two different seismic stations. (B) Example of an attenuated earthquake
recognized as a VT, noise, or undefined event depending on the seismic station. With the purpose of enhancing visualization, the raw seismic signals
were subjected to a filtering process, limiting the frequency range between 1 and 20 Hz.

that, besides obtaining a preliminary seismic catalog (composed
of several types of events), it offers information on the confidence
of the recognition. Importantly, for multi-station seismic networks,
these probabilities will serve to obtainmore reliable seismic catalogs.
The recognition of an event characterized by high frequencies
at one station provides an indisputable condition to obtain a
reliable label at another station where the event has been attenuated
or is virtually unrecognizable. An example of this scenario is
shown in Figure 15, in which one earthquake is included in the
new seismic catalog by both techniques (STA/LTA and RNN-
LSTM), while an attenuated one, in addition to presenting difficulty
during detection using classical techniques owing to threshold
adjustment, could only be considered as an earthquake using our
multi-station analysis. Finally, our approach provides a very useful
tentative label for subsequent analysis carried out by a human
operator.

5 Conclusion

This study provides a comprehensive analysis of how to
build a multi-station seismo-volcanic monitoring system based on
transfer learning techniques. We evaluated the ability of several
operational systems trained using a master seismic catalogue (from
Deception Island volcano) to adapt to a new volcanic environment
(Bezymianny volcano), without prior domain-specific knowledge.

Our results are significant in at least two major respects. First,
transfer learning is shown to offer a robust, effective, and rapid
alternative when developing volcano-seismic event monitoring
systems in volcanic environments without any previous knowledge
or seismic catalogue. Second, depending on the architecture used
as a baseline, the final behavior of the system (and consequently
the results obtained) can be different. We found that RNN-
based systems offer the most reliable recognition by excluding
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low confidence detections for seismic traces that are only partially
similar to those of the baseline. In contrast, TCN-based networks
are capable of detecting a greater number of events; however, many
of those events are only partially similar to the master events of
the baseline (i.e., the confidence of detections is low). Considering
these findings and drawing upon our experience as a guiding factor,
we can firmly conclude that among the overall count of events
identified as earthquakes, those exhibiting amembership probability
surpassing 80% after retraining, can be considered accurately
classified. Together, these two approaches offer complementary
tools for volcano monitoring, and volcanological observatories
should choose the approach that best meets their needs; that is,
RNN–LSTM for fine-grained seismic catalogs and TCN for coarse-
grained seismic catalogs.

Finally, our study provides a basis for more sophisticated weakly
supervised models that could be useful in developing universal
monitoring tools able to work accurately across different volcanic
systems, even when faced with scenarios without prior domain-
specific knowledge.
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Extraction of stratigraphic
exposures on visible images using
a supervised machine learning
technique
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As volcanic stratigraphy provides important information about volcanic activities,
such as the eruption style, duration, magnitude, and their time sequences, its
observation and description are fundamental tasks for volcanologists. Since
outcrops are often obscured in nature, the first task would be identifying
stratigraphic exposures in many cases. This identification/selection process has
depended on humans and has difficulties in terms of time and effort consumption
and in biases resulting from expertise levels. To address this issue, we present an
approach that utilizes supervised machine learning with fine-tuning and forms the
backbone to automatically extract the areas of stratigraphic exposures in visible
images of volcanic outcrops. This study aimed to develop an automated method
for identifying exposed stratigraphy. This method will aid in planning subsequent
field investigations and quickly outputting results. We used U-Net and LinkNet,
convolutional neural network architectures developed for image segmentation.
Our dataset comprised 75 terrestrial outcrop images and their corresponding
images with manually masked stratigraphic exposure areas. Aiming to recognize
stratigraphic exposures in various situations, the original images include
unnecessary objects such as sky and vegetation. Then, we compared
27 models with varying network architectures, hyperparameters, and training
techniques. The highest validation accuracy was obtained by the model trained
using the U-Net, fine-tuning, and ResNet50 backbone. Some of our trained U-Net
and LinkNet models successfully excluded the sky and had difficulties in excluding
vegetation, artifacts, and talus. Further surveys of reasonable training settings and
network structures for obtaining higher prediction fidelities in lower time and
effort costs are necessary. In this study, we demonstrated the usability of image
segmentation algorithms in the observation and description of geological
outcrops, which are often challenging for non-experts. Such approaches can
contribute to passing accumulated knowledge on to future generations. The
autonomous detection of stratigraphic exposures could enhance the output from
the vast collection of remote sensing images obtained not only on Earth but also
on other planetary bodies, such as Mars.
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Introduction

Volcanic stratigraphy provides important information about
volcanic activities. For example, from the thickness of the tephra, we
can obtain information about the duration and magnitude of the
eruption. Its spatial distribution/variation has been used to estimate
thewind direction at the time of eruption and the erupted volume, and to
evaluate the eruption magnitude (e.g., Bonadonna et al., 2016 and
references therein). The analyses of the grain size contributed to
evaluating explosivity during an eruption (e.g., Kueppers et al.,
2006a). Applying fractal theory, we can quantify and compare
explosivity among several eruptions (e.g., Kueppers et al., 2006b;
Perugini et al., 2011). The grain shape and texture analyses of tephra
contributed to inferring with the eruption style such as external water
participation (e.g., Wohletz and Heiken, 1992; Miwa et al., 2015; Dürig
et al., 2021). Statistical analysis andmachine learning techniques provide
new insights into the characterizations and classifications of the eruption
(Leibrandt and Le Pennec, 2015; Liu et al., 2015; Shoji et al., 2018). Thus,
the observation and description of volcanic stratigraphy are fundamental
tasks for volcanologists to obtain details and histories of eruptions. Such
approaches are common to other geological surveys on different targets,
fields, and other solid bodies.

Depending on each research subject, the essential requirement in
selecting which areas/parts of the outcrop are worth examining and
describing is the clear appearance of the layering structure. Since talus
and vegetation often obscure outcrops in nature, identifying the areas/
parts of stratigraphic exposures is the first task in the field survey.
Modifications of outcrops to expose clear stratigraphy are performed
occasionally, although those contributions are limited and prohibited in
protected areas. Therefore, we often must find naturally clear
stratigraphic exposures on outcrops without any modifications. The
identification process of stratigraphic exposures has traditionally been
dependent on visual observation by humans. Human observation
contains difficulties in terms of time and effort consumption, as well
as biases resulting from the expertise levels of each person. In the field,
time is often limited due to weather, imminent danger, and accessibility.
Huge outcrops and large research areasmake this problemmore serious.

As a solution, recently the unmanned aerial vehicle (UAV) has
been actively used for geological surveys. The programmed flights of
UAVs can search vast and challenging areas compared with
humans’ survey (Smith and Maxwell, 2021). Combining the
technologies of image analysis, UAVs also show potential to
select appropriate locations automatically. On the other hand,
UAVs have several difficulties compared with humans. One of
these difficulties is to identify stratigraphic exposures. The
identification and discrimination of stratigraphic exposures can
be challenging for non-experts. Automating the identification of
stratigraphic exposures on outcrops significantly contributes to
solving issues related to time, effort, and expertise levels.

Difficulties setting the threshold for unparameterizable issues in
landforms have been solved by applying machine learning
techniques and could also be applied for scouting exposed
stratigraphies. One of the typical target landforms for the
application of machine learning is impact craters on terrestrial
bodies. Using the Mars Orbiter Laser Altimeter digital elevation
model, Stepinski et al. (2009) presented the automated cataloging of
impact craters and found a regional decrease in the crater depth/
diameter ratio, which may relate to subsurface ice. For finding new

impact craters which previously depended on manual detection
strongly biased by thermal inertia, Wagstaff et al. (2022) trained and
evaluated the classifier with visible images obtained using the
Context Camera onboard the Mars Reconnaissance Orbiter.
Another application example is the detection of volcanic rootless
cones (Palafox et al., 2017). Compared with support vector machine
approaches, Shozaki et al. (2022) demonstrated the recognition and
classification of Martian chaotic terrains using convolutional neural
network models. Their models showed over 90% accuracy for the
classification and contributed to revealing the global distribution of
chaos features on Mars. Thus, automation using machine learning
techniques can contribute to identification and discrimination of
landforms, which depends on geological expertise so far and could
be suitable for finding stratigraphic exposures.

In this study, we present an approach that utilizes supervised
machine learning to automatically extract areas of stratigraphic
exposures in any type (e.g., ground view, from UAVs) of visible
images of volcanic outcrops. Semantic segmentation, a deep learning
algorithm, used for the extraction of obstacles and anomalies is
adapted for the extraction of stratigraphic exposures among outcrop
images in a short time. For example, Silburt et al., 2019 built a
convolutional neural network (CNN) architecture to extract lunar
impact craters from the Moon digital elevation model. Their trained
CNN showed a high precision for crater detection as human-
generated. Inspired by Silburt et al., 2019, Latorre et al., 2023
implemented several transfer learning approaches including fine-
tuning and presented its capability for the autonomous detection of
impact craters across the Moon and Ceres, which have different
geological features. Thus, semantic segmentation shows potential to
extract specific geological features autonomously. Furthermore,
implementing transfer learning approaches for CNN contributes
to wider use across target bodies. Here, we demonstrate semantic
segmentation for the autonomous extraction of stratigraphic
exposures from outcrop images, implementing fine-tuning and
pre-trained weights. The main purpose of this study is to provide
an automatic identification method of exposed stratigraphy which
will be helpful in the planning/preparation of subsequent
investigations and in the prompt outputting of investigated results.

Methods

In this work, we demonstrated the automated identification of
stratigraphic exposure on outcrop images using a machine learning
algorithm. The procedure of this study involves the 1) preparation of
original images, 2) generation of masked images, 3) augmentation of
original and masked images, and 4) training and evaluation of the
U-Net and LinkNet networks to detect stratigraphic exposures
(Figure 1).

Preparation of outcrop images

We prepared outcrop images that contained stratigraphic
exposures, sky, vegetation, artifacts, and talus to train the network
(Figure 1). The total number of prepared images (hereafter, original
images) is 75, of which 30 images were our holdings and 45 images were
obtained using google-image-download, a Python script published on

Frontiers in Earth Science frontiersin.org02

Noguchi and Shoji 10.3389/feart.2023.1264701

35

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1264701


GitHub (https://github.com/Joeclinton1/google-images-download/tree/
patch-1, Copyright © 2015–2019 Hardik Vasa). This script was
developed for searching Google Images on keywords/key phrases
and downloading images to locals. Using this script, we obtained
outcrop images with “geologic layer,” “tephra layer,” “volcanic
tephra layer,” and “volcano geologic layer” as keywords/key phrases.
Therefore, our dataset includes both volcanic and non-volcanic
stratigraphies. This is acceptable because we focus on the extraction
of stratigraphic structures itself in this study. The whole images we
obtained by google-image-download were labeled as non-commercial
reuse with modification. The original images were taken from various
distances (meters to kilometers), which correspond to a scale ranging
from in situ observations to aerial surveys. Aiming to recognize
stratigraphic exposures in various situations, the original images
include talus, gullies, vegetation, snowy regions, artifacts, and other
unnecessary objects (Figure 1). A total of 60, 10, and 5 of those images
were used as training, validation, and testing images, respectively
(i.e., 80%, 13.3%, and 6.6% splitting). The original images are
available in a public repository at https://doi.org/10.5281/zenodo.
8396332.

Hand-masked image generation

The masking of stratigraphic exposure areas was carefully
performed manually, and unnecessary objects were excluded
(Figure 1). Images that are masked at the stratigraphic
exposure’s region for each original image were generated using
labelme (https://github.com/wkentaro/labelme, Copyright ©

2016–2018 Kentaro Wada), a tool that allows graphical
annotation on images. We annotated the region of
stratigraphic exposures as polygons and then saved it as a
binarized image (hereafter, hand-masked images). Those
hand-masked images are available in a public repository at
https://doi.org/10.5281/zenodo.8396332.

Image augmentation

To increase the generalization ability of the network, we
augmented the original and the hand-masked training/validation
images by rotation, horizontal and vertical shifts, and horizontal flip,
and converted them into 256 x 256 grayscale images (Figure 1). Data
augmentation is a common technique in the training of neural
networks to overcome the small amount of data. Before
augmentation, we cropped each image as a square because the
original images were not square and its aspect ratio will be
modified by resizing in augmentation. To augment both original
and hand-masked images, Keras ImageDataGenerator (Chollet,
2015) was used. The rotation range was 45°. The maximum
width and height shifts were 20% against the width and height.
In the ImageDataGenerator, we did not use zoom and shear
functions during augmentation because the unfixable aspect ratio
could generate pseudo-layering structures in zoom and shear. The
fill mode was “constant” because the default “nearest” generates
pseudo-layering structures. The angle and width of the rotation and
shift were randomly determined within the range, and horizontal
flipping occurred randomly. The size of augmented images was
adjusted to 256 x 256 pixels to input the following algorithm. Due to
the limitation to our computing system, we augmented images to be
less than 10,000 in total. As a result, we obtained 7,586 and
1,414 pairs of augmented original/hand-masked images for
training and validation datasets, respectively.

Training

To extract certain areas from images by our system, we applied
image segmentation algorithms. In this study, we compared two
architectures: U-Net (Ronneberger et al., 2015) and LinkNet
(Chaurasia and Culurciello, 2017). U-Net is a fully convolutional
network originally developed for biomedical image segmentation. It

FIGURE 1
Procedure of dataset preparation, training, and evaluation in this study.
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is designed to work with a small number of training images and
produce precise segmentation results. This network classifies each
pixel and then outputs segmentation maps, and has been applied to
segmentation in terrestrial and planetary remote sensing images
(e.g., Silburt et al., 2019;Wieland et al., 2019; Zhu et al., 2021; Latorre
et al., 2023). LinkNet is a fully convolutional neural network for fast
image semantic segmentation and has been developed to recover the
spatial information on images more efficiently through the decoder
which was diminished during the encoding procedure [employs
ResNet18 (He et al., 2016) as a backbone in the original].

Training, validation, and testing were performed using the Keras
package (https://keras.io), which is free and written in Python (Chollet,
2015). We used the original U-Net architecture (Ronneberger et al.,

2015) as “simple U-Net” using the unet script (https://github.com/
zhixuhao/unet, Copyright © 2019 xhizuhao), which does not implement
fine-tuning. The segmentation model package (Iakubovskii, 2019), a
Python library with neural networks for image segmentation based on
Keras and TensorFlow (Abadi et al., 2016), was used for U-Net and
LinkNet model buildings with backbones and with/without encoder
weights. The path of U-Net comprises unpadded 2 x 2 convolutions
[followed by rectified linear units (ReLUs)], 2 x 2 max pooling
operations with stride 2 for downsampling, and 2 x
2 upconvolutions. The lowest resolution of images in training in our
network is 16 x 16 pixels. The total number of convolutional layers in
this network is 23. The LinkNet used comprises three decoder blocks
that use the UpSampling Keras layer. Supplementary Figure S1,S2

TABLE 1 Loss, dice, and binary accuracy at the end of training in each model.

ID Model Fine-
tuning

Backbone Step Training
stopped
epoch

Training Validation Duration (min)

Loss Dice
loss

Accuracy Loss Dice
loss

Accuracy Total Per
epoch

U-1 U-Net No No 50 58 0.582 0.422 0.785 0.573 0.569 0.646 512 8.83

U-2 100 52 0.568 0.416 0.802 0.582 0.573 0.638 298 5.73

U-3 150 48 0.563 0.411 0.810 0.577 0.573 0.663 282 5.88

U-4 No Yes
(ResNet18)

50 74 0.468 0.290 0.785 0.632 0.509 0.648 90 1.22

U-5 100 62 0.446 0.263 0.791 0.631 0.484 0.659 70 1.13

U-6 150 62 0.428 0.255 0.799 0.644 0.485 0.670 76 1.23

U-7 No Yes
(ResNet50)

50 73 0.450 0.289 0.800 0.591 0.506 0.672 121 1.66

U-8 100 49 0.451 0.273 0.790 0.616 0.493 0.665 78 1.59

U-9 150 44 0.465 0.300 0.781 0.587 0.506 0.671 76 1.73

U-10 Yes Yes
(ResNet18)

50 63 0.322 0.214 0.882 0.584 0.505 0.686 76 1.21

U-11 100 55 0.315 0.220 0.911 0.567 0.496 0.697 61 1.11

U-12 150 43 0.258 0.158 0.906 0.643 0.469 0.693 53 1.23

U-13 Yes Yes
(ResNet50)

50 138 0.254 0.195 0.954 0.507 0.471 0.733 229 1.66

U-14 100 62 0.206 0.139 0.938 0.567 0.442 0.728 99 1.60

U-15 150 63 0.187 0.128 0.947 0.529 0.428 0.748 108 1.71

L-1 LinkNet No Yes
(ResNet18)

50 28 0.731 0.455 0.531 0.738 0.607 0.509 17 0.61

L-2 100 21 0.772 0.510 0.467 0.680 0.629 0.599 14 0.67

L-3 150 20 0.852 0.567 0.443 0.692 0.667 0.620 15 0.75

L-4 No Yes
(ResNet50)

50 20 0.666 0.412 0.586 0.712 0.583 0.493 30 1.50

L-5 100 108 0.519 0.321 0.742 0.615 0.506 0.646 146 1.35

L-6 150 134 0.508 0.293 0.751 0.645 0.486 0.647 190 1.42

L-7 Yes Yes
(ResNet18)

50 23 0.777 0.351 0.582 1.090 0.535 0.421 14 0.61

L-8 100 20 0.677 0.417 0.593 0.723 0.572 0.514 13 0.65

L-9 150 138 0.393 0.230 0.824 0.587 0.478 0.705 99 0.72

L-10 Yes Yes
(ResNet50)

50 88 0.328 0.206 0.873 0.586 0.483 0.689 126 1.43

L-11 100 104 0.314 0.219 0.898 0.562 0.494 0.697 141 1.36

L-12 150 88 0.303 0.183 0.896 0.678 0.465 0.706 128 1.45
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shows the model architectures trained in this study. The training was
executed in Mac Studio, Apple M1 Max, 64 GB memory. In Keras, an
epoch is an arbitrary cutoff, generally defined as “one pass over the
entire dataset,” used to separate training into distinct phases, which is
useful for logging and periodic evaluation, and “steps per epoch” is a
total number of steps (batches of samples) before declaring one epoch
finished and starting the next epoch (Chollet, 2015). In our training, the
“steps per epoch” ranged from 50 to 150. Epochs for training were fixed
to 300, considering an accuracy/time-cost trade. To avoid overfit and
further efficient training, we adopt an early stopping callback, which
stops training when a monitoring metric has stopped improving
(Chollet, 2015). In this study, the monitored metric was validation
loss during training. Training was stopped when it had not been
improved within the last 20 epochs and the weight from the best
epoch was restored. We used the Adam optimization algorithm
(Kingma and Ba, 2014) for the training of our network with the
learning rate of 1e–6.

We evaluated two training techniques: fine-tuning and the use of
a backbone network in the encoder (Table 1). Fine-tuning is an
approach that trains with a pre-trained model’s weights on new data
(Hinton and Salakhutdinov, 2006). The backbone is the recognized
architecture or network used for feature extraction (Elharrouss et al.,
2022). Both techniques have been used to obtain higher classification
accuracy. In this study, we verified two backbones: ResNet18 and
ResNet50 (He et al., 2016). As a result, we compared 27 models with
varying training steps, model architectures, and training techniques
(Table 1).

The performance of the trained network was evaluated by the
loss function and two metric functions: the dice loss (Milletari et al.,
2016) and binary accuracy. The loss function is a function that

calculates gaps between facts and predictions. In this study, we use
binary cross entropy in the Keras library for the loss function. This
loss function was used in training. The dice loss is a common metric
that optimizes networks based on the dice overlap coefficient
between the predicted segmentation result (i.e., predicted regions)
and the ground truth annotation (i.e., hand-masked), which can
solve the data imbalance problem (Milletari et al., 2016). The binary
accuracy is the fraction of correctly classified pixels in the image.

The quantitative and qualitative evaluation of our models was
performed using the validation data and five test images. The
validation data were used to evaluate the network after each
epoch of the training. Test images were our holdings which were
not included in the image dataset used for training (i.e., not used for
training and validation datasets). The evaluation of test image
predictions was made from the four points of view: exclusions of
sky, vegetation, artifacts, and talus.

Result

Summary of the training

The loss function, dice loss, and accuracy of the epoch in our
training are shown in Figures 2–7. The steps, the training stopped
epoch, losses, dice losses, and accuracies of training and validation at
the end of the training, as well as the duration, are shown in Table 1.
We trained networks several times and confirmed that the
corresponding changes in binary accuracy were negligible. In all
training processes, the early stopping function interrupted the
training before the 300th epoch due to a lack of improvement for

FIGURE 2
Loss, dice loss, and accuracy plots and curves during training for U-Net models with a setting of 50 steps per epoch.
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the validation loss within the last 20 epochs. Training of some
LinkNet models (IDs: L-1, L-2, L-3, L-4, L-7, and L-8) failed to
minimize the validation loss and stopped before the 30th epoch.
These indicate training failures. The largest epoch was 138 in the 50-
step U-Net training with fine-tuning and a ResNet50 backbone (ID:
U-13) and in the 150-step LinkNet training with fine-tuning and a
ResNet18 backbone (ID: L-9).

In our computer system, the duration per epoch in the case of
the simple U-Net training took ~6 times longer than that of U-Net
and LinkNet training with fine-tuning and/or backbones (8.83 min
per epoch, Table 1).

The three best validation accuracies were obtained in U-Net
training with fine-tuning and a ResNet50 backbone (0.748, 0.733,
and 0.728 for model ID U-15, U-13, and U-14, respectively,
Table 1). Training failed models (IDs: L-1, L-2, L-3, L-4, L-7, and L-
8) showed low validation accuracies (<0.62). For the successfully trained
models, the validation accuracy has a 10%–20% gap to the training
validation. In many cases, the models with higher “steps per epoch”
show higher validation accuracies. Models ResNet50 backbone
implemented have higher validation accuracies relative to those
ResNet18 backbone implemented. Fine-tuned models show higher
validation accuracies than those of non-fine-tuned models.

Predicted stratigraphic exposure regions by
trained networks

We verified the fidelity of prediction (masking regions of
stratigraphic exposures) using test images that were not used in
both training and validation (Figures 8, 9). Training-failed models

(IDs: L-1, L-2, L-3, L-4, L-7, and L-8) showed poor predictions. The
models U-Net trained show higher fidelities of prediction, especially
the exclusion of the sky than those that are LinkNet-trained. This
fidelity is higher in models trained with higher steps. For vegetation,
artifacts, and talus, those exclusions by our model were incomplete;
predicted regions as stratigraphic exposures include them. For
vegetation, incomplete extraction often occurred in denser
regions. It is common to both U-Net- and LinkNet-trained
models than models trained with fine-tuning, and a
ResNet50 backbone showed better fidelities of the prediction.

Discussion

Increment of the prediction fidelity

Since our trained network extracts stratigraphic exposures
incompletely, the training procedure should be reconsidered.
Considering the stability of validation accuracy and the fidelity of
predicted images, approximately 100-step training is appropriate for
the dataset and the training networks used in this study. The higher
fidelities of exclusions of the sky relative to vegetation, artifacts, and
talus are probably due to their significantly different textures. Our
success implies that color is not necessary for those exclusions
because the training dataset was prepared as grayscale images.
However, to increase the exclusion fidelity of vegetation, artifacts,
and talus, the training procedure should be reconsidered and
improved.

The distinguishing of vegetation from stratigraphic exposures
is not a difficult task for humans. In general, humans identify

FIGURE 3
Loss, dice loss, and accuracy plots and curves during training for U-Net models with a setting of 100 steps per epoch.
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FIGURE 4
Loss, dice loss, and accuracy plots and curves during training for U-Net models with a setting of 150 steps per epoch.

FIGURE 5
Loss, dice loss, and accuracy plots and curves during training for LinkNet models with a setting of 50 steps per epoch.
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FIGURE 6
Loss, dice loss, and accuracy plots and curves during training for LinkNet models with a setting of 100 steps per epoch.

FIGURE 7
Loss, dice loss, and accuracy plots and curves during training for LinkNet models with a setting of 150 steps per epoch.
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vegetation as the accumulation of elongated/oval greenish/
brownish objects like leaves, stems, branches, trunks, and
roots. Our training dataset was prepared as grayscale images,
and the network should learn the exclusion of vegetation by the
difference of texture, not by the color difference. The 256 x
256 pixels of augmented images were considered to have a poor
resolution for this texture-only-guided distinguishment,
although satisfying in the exclusion of the sky. Training with
higher resolution and color images will contribute to identifying

vegetation that has several types of texture and color (Sodjinou
et al., 2022), although time and computing costs are concerned.
Since denser vegetation has higher exclusion difficulty (Figures 8,
9), another idea to increase the prediction fidelity is to include
images with dense vegetation in the training.

The distinguishing of talus regions with stratigraphic exposures
is often difficult for non-experts. This is because its constituent
materials are supplied from upper stratigraphies and are
indistinguishable from stratigraphic exposure at the same height/

FIGURE 8
Predicted results for test images using U-Net trained models.
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elevation occasionally. It means color/texture analyses will have less
contribution to those discriminations, and our strategies for talus
exclusion using U-Net and LinkNet architectures, identifying
materials as a region, could be reasonable. To increase the talus
exclusion fidelity, training with higher-resolution augmented images
in which stratigraphic layering can be identified could help
contribute toward fidelity.

A stricter masking of stratigraphic exposures will contribute to
increasing prediction fidelity, although its time and effort
consumptions also increase. Further investigation and verification
of reasonable training settings and network structures for obtaining
higher prediction fidelities in lower time and effort costs are
required.

Strategies for subsequent processes

After the suggestion of stratigraphic exposure regions, the further
contribution of computing will be the identification/discrimination of
each layer. The interface of each layer is a drastic change in constituent
materials. Those changes appear as differences in texture and color in
visible images. Since color contains unexpected changes such as wetness
and shadow, layer discrimination should also use texture information.
Evidently, deep convolutional neural networks are one of the most
powerful solutions, as displayed in control and trajectory planning for
automated vehicles (e.g., Notle et al., 2018; Dewangan and Sahu,
2021). As a non-deep learning approach, the gray-level co-occurrence
matrix (Haralick et al., 1973) and other methods/combinations

FIGURE 9
Predicted results for test images using LinkNet trained models.
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(e.g., Armi and Fekri-Ershad, 2019) will contribute to texture-based
layer discrimination. Using layer-discriminated (i.e., boundary-drawn)
images, we can calculate the thickness of each layer, although the actual
scale input (and strictly, strike and dip) is necessary. Furthermore, this
kind of texture analysis will provide brief information for constituent
material (e.g., lava or pyroclast, lapilli, or ash).

The autonomous measurement of each layer thickness greatly
contributes toward decreasing time and effort costs. Although strike
and dip should be considered especially on deformed outcrops, the
shortest distance between two layer boundaries on scaled front-side
images corresponds to layer thickness. The autonomous calculation
of those distances can be used for the automatic drawing of
stratigraphic columns generally produced in geological surveys.
Since the measurement of each layer by hand takes time and has
difficulty in unreachable heights, automation helps the researcher in
both saving time and effort.

Application to satellite/aerial terrestrial/
extraterrestrial images

The automatic identification of stratigraphic exposures
would have proven its worth in satellite and aerial images
since they often comprise huge datasets. Combination with
geological information system tools will contribute to
suggesting the locations of outcrops with coordinate values.
However, the network of stratigraphic exposure identification
should be trained with images that have the same scaling
(resolution) as that of target datasets. In this study, our
network was trained by outcrop images taken from the ground
view; its use may not work for satellite images and aerial
photographs. For the use of satellite/aerial images, the training
dataset should also have consisted of those images.

The difficulty of the autonomous identification of stratigraphic
exposure on extraterrestrial outcrops will be lower than that on
terrestrial outcrops because of the lack of vegetation on those bodies.
Similar to the terrestrial case, tuned training using images taken on
each target body is necessary. Since the data volume obtained on
extraterrestrials reaches challenging amounts for remote sensing
analysis as mentioned for Mars by Palafox et al. (2017), our
improved scheme will be a powerful tool for geological surveys
on other bodies.

Conclusion

The automatic extraction of stratigraphic exposure in visible images
using a trained network will play an important role in the lower time/
effort costs during geological surveys. In this work, we trained U-Net
and LinkNet, with fine-tuning and backbones, and demonstrated the
successful exclusion of the sky and clouds and the difficulties for those of
vegetation, artifacts, and talus. Considering the stability of validation
accuracy, the fidelity of predicted images, and time/computing costs,
approximately 100-step training is appropriate for the dataset and
architectures used in this study. Further surveys of reasonable
training settings, network architectures, and techniques for obtaining
higher prediction fidelities in lower time and effort costs are necessary.
In this study, we presented the usability of image segmentation

algorithms in the observation and description of geological outcrops.
Such approaches could contribute to passing accumulated knowledge
on to further generations. Our improvedmodel will enhance the output
from the vast collection of remote sensing images obtained not only on
Earth but also on other planetary bodies, such as Mars.
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In the published article, there was an error in the legend for Figure 2 as published. The
symbols were attributed to the incorrect IDs. The blue triangle—U-Net fn ResNet18—was
described as U-7 but should have been U-4. The green star—U-Net fn ResNet50
- was described as U-13 but should have been U-7. The blue square—U-Net fy
ResNet18 was described as U-4 but should have been U-10. The green diamond—U-
Net fy ResNet50—was described as U-10 but should have been U-13. The order
has been rearranged into the numerical order of the IDs. The correct figure and
legend appears below.

In the published article, there was an error in the legend for Figure 3 as published. The
symbols were attributed to the incorrect IDs. The blue triangle—U-Net fn ResNet18—was
described as U-8 but should have been U-5. The green star—U-Net fn ResNet50
- was described as U-14 but should have been U-8. The blue square—U-Net fy
ResNet18 was described as U-5 but should have been U-11. The green diamond—U-
Net fy ResNet50—was described as U-11 but should have been U-14. The order
has been rearranged into the numerical order of the IDs. The correct figure and
legend appears below.

In the published article, there was an error in the legend for Figure 4 as
published. The symbols were attributed to the incorrect IDs. The blue triangle—U-
Net fn ResNet18—was described as U-9 but should have been U-6. The green
star—U-Net fn ResNet50—was described as U-15 but should have been U-
9. The blue square—U-Net fy ResNet18 was described as U-6 but should
have been U-12. The green diamond—U-Net fy ResNet50—was described as
U-12 but should have been U-15. The order has been rearranged into the
numerical order of the IDs. The correct figure and legend appears below.
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FIGURE 2
Loss, dice loss, and accuracy plots and curves during training for U-Net models with a setting of 50 steps per epoch.

FIGURE 3
Loss, dice loss, and accuracy plots and curves during training for U-Net models with a setting of 100 steps per epoch.

In the published article, there was an error in the legend for
Figure 5 as published. The symbols were attributed to the incorrect
IDs. The blue triangle–LinkNet fn ResNet18 - was described
as L-4 but should have been L-1. The green star—LinkNet fn
ResNet50—was described as L-10 but should have been L-4. The

blue square—LinkNet fy ResNet18 was described as L-1 but should
have been L-7. The green diamond—LinkNet fy ResNet50—was
described as L-7 but should have been L-10. The order has been
rearranged into the numerical order of the IDs. The correct figure
and legend appears below.
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FIGURE 4
Loss, dice loss, and accuracy plots and curves during training for U-Net models with a setting of 150 steps per epoch.

FIGURE 5
Loss, dice loss, and accuracy plots and curves during training for LinkNet models with a setting of 50 steps per epoch.
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FIGURE 6
Loss, dice loss, and accuracy plots and curves during training for LinkNet models with a setting of 100 steps per epoch.

FIGURE 7
Loss, dice loss, and accuracy plots and curves during training for LinkNet models with a setting of 150 steps per epoch.

Frontiers in Earth Science 04 frontiersin.org49

https://doi.org/10.3389/feart.2023.1339426
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Noguchi and Shoji 10.3389/feart.2023.1339426

TABLE 1 The loss, dice, and binary accuracy at the end of training in each model.

ID Model Fine-
tuning

Backbone Step Training
stopped
epoch

Training Validation Duration (min)

Loss Dice
loss

Accuracy Loss Dice
loss

Accuracy Total Per
epoch

U-1

U-Net

No No

50 58 0.582 0.422 0.785 0.573 0.569 0.646 512 8.83

U-2 100 52 0.568 0.416 0.802 0.582 0.573 0.638 298 5.73

U-3 150 48 0.563 0.411 0.810 0.577 0.573 0.663 282 5.88

U-4

No
Yes

(ResNet18)

50 74 0.468 0.290 0.785 0.632 0.509 0.648 90 1.22

U-5 100 62 0.446 0.263 0.791 0.631 0.484 0.659 70 1.13

U-6 150 62 0.428 0.255 0.799 0.644 0.485 0.670 76 1.23

U-7

No
Yes

(ResNet50)

50 73 0.450 0.289 0.800 0.591 0.506 0.672 121 1.66

U-8 100 49 0.451 0.273 0.790 0.616 0.493 0.665 78 1.59

U-9 150 44 0.465 0.300 0.781 0.587 0.506 0.671 76 1.73

U-10

Yes
Yes

(ResNet18)

50 63 0.322 0.214 0.882 0.584 0.505 0.686 76 1.21

U-11 100 55 0.315 0.220 0.911 0.567 0.496 0.697 61 1.11

U-12 150 43 0.258 0.158 0.906 0.643 0.469 0.693 53 1.23

U-13

Yes
Yes

(ResNet50)

50 138 0.254 0.195 0.954 0.507 0.471 0.733 229 1.66

U-14 100 62 0.206 0.139 0.938 0.567 0.442 0.728 99 1.60

U-15 150 63 0.187 0.128 0.947 0.529 0.428 0.748 108 1.71

L-1

LinkNet

No
Yes

(ResNet18)

50 28 0.731 0.455 0.531 0.738 0.607 0.509 17 0.61

L-2 100 21 0.772 0.510 0.467 0.680 0.629 0.599 14 0.67

L-3 150 20 0.852 0.567 0.443 0.692 0.667 0.620 15 0.75

L-4

No
Yes

(ResNet50)

50 20 0.666 0.412 0.586 0.712 0.583 0.493 30 1.50

L-5 100 108 0.519 0.321 0.742 0.615 0.506 0.646 146 1.35

L-6 150 134 0.508 0.293 0.751 0.645 0.486 0.647 190 1.42

L-7

Yes
Yes

(ResNet18)

50 23 0.777 0.351 0.582 1.090 0.535 0.421 14 0.61

L-8 100 20 0.677 0.417 0.593 0.723 0.572 0.514 13 0.65

L-9 150 138 0.393 0.230 0.824 0.587 0.478 0.705 99 0.72

L-10

Yes
Yes

(ResNet50)

50 88 0.328 0.206 0.873 0.586 0.483 0.689 126 1.43

L-11 100 104 0.314 0.219 0.898 0.562 0.494 0.697 141 1.36

L-12 150 88 0.303 0.183 0.896 0.678 0.465 0.706 128 1.45

In the published article, there was an error in the legend for
Figure 6 as published. The symbols were attributed to the incorrect
IDs. The blue triangle–LinkNet fn ResNet18—was described as L-
5 but should have been L-2. The green star—LinkNet fn ResNet50
- was described as L-11 but should have been L-5. The blue

square—LinkNet fy ResNet18 was described as L-2 but should
have been L-8. The green diamond—LinkNet fy ResNet50—was
described as L-8 but should have been L-11. The order has been
rearranged into the numerical order of the IDs. The correct figure
and legend appears below.
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In the published article, there was an error in the legend for
Figure 7 as published. The symbols were attributed to the incorrect
IDs. The blue triangle—LinkNet fn ResNet18—was described as
L-6 but should have been L-3. The blue square—LinkNet fy
ResNet18 was described as L-3 but should have been L-9. The
green star—LinkNet fnResNet50—was described as L-12 but should
have been L-6. The green diamond—LinkNet fy ResNet50—was
described as L-9 but should have been L-12. The order has been
rearranged into the numerical order of the IDs. The correct figure
and legend appears below.

In the published article, there was an error in Table 1
as published.

Values for the model ID L-1 and L-7 were incorrect. The
corrected Table 1 and its caption appear below.

The authors apologize for these errors and state that this does
not change the scientific conclusions of the article in any way. The
original article has been updated.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.
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Identifying earthquake swarms at
Mt. Ruapehu, New Zealand: a
machine learning approach

Sam Mitchinson1*, Jessica H. Johnson1, Ben Milner2 and
Jason Lines2

1School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom, 2School of
Computing Sciences, University of East Anglia, Norwich, United Kingdom

Mt. Ruapehu is an active andesitic stratovolcano, consisting of several peaks
with the summit plateau at 2,797 m, making it the tallest active volcano in
New Zealand. The extent of the volcano spreads 40 km across with a series of
complex faults encompassing almost the entire base of the volcano. A series
of earthquakes occurring 20 km west of the summit of Mt. Ruapehu, near the
small town of Erua, which preceded the 1995/1996 major volcanic eruption
sequence has been proposed as a medium-term precursor for eruptions at
Mt. Ruapehu. We use unsupervised machine learning clustering algorithms
HDBSCAN and DBSCAN to define anomalous earthquake swarms in the
region and determine whether the Erua swarm was unique by identifying key
characteristics in space, time and magnitude distribution. HDBSCAN found six
spatial cluster zones to the west of Mt. Ruapehu, which have temporal seismic
bursts of activity between 1994 and 2023. DBSCAN identified the seismic swarm
that preceded the 1995/1996 major eruption, along with one other similar
cluster in the same region, which did not coincide with any documented
magmatic unrest, suggesting distal seismic swarms at Mt. Ruapehu may not
serve as a reliable eruption precursor when observed in isolation. We instead
found that earthquake swarms are relatively common at Mt. Ruapehu and the
temporal evolution of the earthquake clusters west of Mt. Ruapehu share similar
characteristics to seismic swarms identified in other settings related to fluid
migration, typical of fault-valve models.

KEYWORDS

HDBSCAN, DBSCAN, Ruapehu volcano, unsupervised learning, machine learning, time
series, earthquake sequence

1 Introduction

The ability to accurately forecast when volcanic eruptions will occur is of great
importance in the field of volcanology. Ground deformation and volcanic seismicity are
some of the most reliable precursory signals for forecasting volcanic eruptions, particularly
after long periods of repose (Kilburn, 2018). Even subtle changes in the stress experienced by
active volcanoes can lead to volcanic earthquakes and, sometimes, eruptions (De La Cruz-
Reyna et al., 2010). In a period between 1994 and 1995, a series of earthquakes occurred
near the small town of Erua some 20 km from the summit of the active stratovolcano Mt.
Ruapehu (Hurst and McGinty, 1999), which forms part of the Tongariro Centre, at the
most southwestern point of the The Taupo Volcanic Zone (TVZ) in New Zealand, North
Island (Figure 1). Months later, the 1995/1996 major volcanic eruption sequence began
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(Bryan and Sherburn, 1999). Petrological studies of the erupted
materials have suggested a magma mixing event, which coincides
temporally with increased seismicity prior to the eruption
(Hurst et al., 2018).The timing and depth of the earthquakes suggest
a process of fresh magma being fed into the magma reservoir from
a deeper source, 5 months prior to the eruption (Kilgour et al.,
2014). It was hypothesised that the influx of magma created a
change in stress loading in the neighbouring rock, resulting in
the observed earthquake swarm (Hurst et al., 2018), meaning the
earthquake swarm may have been a precursor to the volcanic
eruption. This led to the suggestion that earthquake swarms at
distal faults could serve as useful mid-term forecasts at Mt. Ruapehu
(Kilgour et al., 2014; Hurst et al., 2018). Earthquake swarms at distal
faults and their relationship with volcanic eruptions may indeed be
of scientific relevance (White and McCausland, 2016). For example,
in Indonesia, a seismic swarm detected >10 km distance from the
Mt. Agung summit, has been deemed significant regarding the
lateral migration of magma to the central magma reservoir prior
to the eruption (Albino et al., 2019). The swarm occurred 2 months
prior to the 2017 eruption, which began with a phreatomagmatic
phase before a sustained magmatic eruption (Albino et al., 2019),
similar to the 1995 eruption at Mt. Ruapehu (Bryan and Sherburn,
1999). We propose using unsupervised machine learning clustering
to answer the question of whether the Erua earthquake swarm could
have been a reliable forecasting tool for themajormagmatic eruption
of Mt. Ruapehu in 1995. To do this, we will statistically, and without
bias or a priori knowledge, define an anomalous earthquake swarm
in the region and determine whether the Erua swarm was unique
by identifying key characteristics in space, time and magnitude
distribution.

The timely identification of seismic signals have lead to the
formation of many successful eruption forecasts in history (McNutt,
2002). Earthquakes in volcanic settings can be the result of different
processes. As magma moves below the surface it may exert strain on
the brittle surrounding rock causing it to fracture, which is detected
as earthquakes (Hill et al., 2002). Similarly, an injection of magma
into a crack will cause stress on the neighbouring rock and result
in a seismic signal (Chouet and Matoza, 2013). Conversely, tectonic
earthquakes causing stress changes may promote the movement of
fluids towards the surface (Seropian et al., 2021). The frequency of
earthquake occurrences has been shown to increase exponentially
when rock is deformed at a constant strain rate (Kilburn, 2012,
2018). These episodes of sudden increases in the number of
earthquakes in a region are referred to as earthquake swarms and
are often associated with volcanic activity (Chouet and Matoza,
2013; White and McCausland, 2016; Pesicek et al., 2018). “Swarm-
like” earthquake sequences have been described in the literature
as having the following characteristics: 1) earthquakes occur in
close proximal space to each other, compared to the more uniform
background seismicity, 2) earthquake events occur relatively close
together in time at a more frequent rate than the background
seismicity, and 3) the largest and second-largest earthquakes usually
have a similar magnitude with a maximum difference of around
ΔM 0.5, and tend to not follow a typical mainshock-aftershock
sequence (Gudmundsson, 2020). Swarm-like sequences also tend to
have the largest event occurring during the middle of the sequence
(Vidale and Shearer, 2006). This somewhat subjective description
of how earthquake swarms are defined can be detrimental for how

they can be used for forecasting eruptions. For example, studies
have shown that the duration of swarms that result in volcanic
activity can vary significantly (McNutt, 2005), making eruption
forecasting difficult. Moreover, in many cases, a sudden increase in
earthquake activity, even for highly active volcanoes, has not resulted
in a volcanic eruption (Ramis et al., 2018; Gudmundsson, 2020).
To enhance the precision and consistency of earthquake swarms in
volcanic eruption forecasts, it would be advantageous to develop a
more objective and statistically-driven methodology for identifying
various types of earthquake sequences. Utilising unsupervised
clustering algorithms enables the impartial identification of spatio-
temporal anomalies in the earthquake catalogue, and their relevance
to documented historical eruptions, ultimately allowing us to
confirm whether the Eura swarm (e.g., Hurst and McGinty, 1999;
Hurst et al., 2018) represents a unique and distinguishable signal.

2 Mount Ruapehu

Mt. Ruapehu is an active andestic stratovolcano, consisting of
several peaks with the summit plateau at 2,797 m, making it the
tallest active volcano in New Zealand. The extent of the volcano
spreads 40 km across from the Raurimo fault to the west and the
Rangipo fault to the east (Conway et al., 2016) (Figure 2). The oldest
dated eruptive material dates to c.200 ka, although there are parts
of the lava formation and clasts which may date back even further
(Gamble et al., 2003). Historical eruptive composition is mainly
made up of andesites stored from depths of 5–10 km (Leonard et al.,
2021), though there is evidence of composition ranging frombasaltic
andesite to dacite (53–66 wt.% silica) throughout the eruptive
history of Mt. Ruapehu (Gamble et al., 2003). The active magma
reservoir is coupled with a hydrothermal system (Christenson and
Wood, 1993), which feeds radiation and volatile-rich gases into
a crater lake at the summit containing c.9x106 m3 of acid-rich
water (Manville et al., 2007). The hydrothermal system frequently
produces phreatic eruptions, which often lack any precursory
warning (Houghton et al., 1987), and can cause the water in the
lake to burst its banks causing lahars (e.g., Manville et al., 2007;
Schaefer et al., 2018). Other frequently erupted material includes
tephra, with sizes ranging from ashfall to clasts and blocks, and block
lava flows that have historically flowed from the summit and three
flank vents (Houghton et al., 1987).

2.1 Eruption history

The current period of volcanic activity has been ongoing for
the last 2 ka., described as periodic low-volume (<0.05 km3)
phreatomagmatic eruptions which occur every 25–30 years
(Kilgour et al., 2013; Conway et al., 2016). Since the first historically
recorded eruption in 1830, there have been 35 eruptions with a
recorded Volcanic Explosivity Index (VEI) >1 (Hurst et al., 2018).
Major eruptions have a repose period of around 50 years with the
last three occurring in 1895, 1945 and finally 1995/1996. Notably,
the 1945 major eruption resulted in the creation of a new lava dome
and debris barrier confining the crater lake (Johnston et al., 2000).
Crater lake breakouts at Mt. Ruapehu are relatively common and
have occurred repeatedly throughout the 20th and 21st century
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FIGURE 1
Map of New Zealand, North Island with active volcanoes and active fault lines (Langridge et al., 2016). The TVZ runs through the middle of the North
Island with Mt. Ruapehu the southwest limit and Whakaari (White Island) the northeast limit. The study area is outlined in the region west of
Mt. Ruapehu.

(Houghton et al., 1987; Schaefer et al., 2018). In 1953, the sudden
collapse of the crater debris wall created a crater lake breakout
and the formation of a lahar which destroyed the Tangiwai railway
bridge causing the death of 151 people (Houghton et al., 1987;
Johnston et al., 2000). The 1995/1996 eruption sequence was the

largest in the 50 years prior (Sherburn et al., 1999). The sequence
began with a localised phreatomagmatic eruption on 17 September
1995 (Hurst et al., 2018) and developed into a major eruption
undergoing 10 eruptive phases, before ending in December 1996
(Bryan and Sherburn, 1999). The most recent recorded eruptions
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FIGURE 2
Map of the Ruapehu seismic region, including the study region outlined in a red box, showing the distribution of earthquake locations and magnitude
between 1990 and 2023 at Mt. Ruapehu, with non-operator and operator assigned earthquakes. It is argued that the distribution of earthquakes are
similar for both data sets, and that the removal of operator assigned earthquakes does not reduce the information of the catalogue. The boundary of
the study area was selected to contain the seismically active region to the northwest of the summit, which has been analysed in previous studies at Mt.
Ruapehu and associated with the 1995/1996 eruption sequence (e.g., Hurst and McGinty, 1999; Sherburn et al., 1999; Hurst et al., 2018).

were two steam-driven eruptions occurring on 4 October 2006 and
25 September 2007 (Jolly et al., 2010; Keats et al., 2011; Carniel et al.,
2013). The sub-aqueous 4 October 2006 eruption may not have
produced an eruption column, but did significantly raise the crater
lake water level (Jolly et al., 2010), which has been linked to the 18
March 2007 tephra dam collapse and subsequent lahar on 17 March
2007 (Carrivick et al., 2008). Another, larger phreatic eruption
occurred on 25 September 2007 (Jolly et al., 2010). Although
there were insufficient precursory data suggesting an eruption was
imminent at the time, minor volcano-tectonic earthquakes and
tremor were found in the seismic data to have preceded the eruption

by around 10 min (Jolly et al., 2010). The main eruption lasted no
longer than 1 minute and produced an eruption column which
ejected ballistics 2.5 km to the north, with lahars entering two local
catchments and disrupting the Whakapapa Ski field (Kilgour et al.,
2010).

2.2 Regional seismic activity

Mt. Ruapehu hosts its own tectonic setting, with faults
circumscribing almost the entire base of the volcano some
20 km from the summit (Leonard et al., 2021). Shallow seismicity
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(<20 km depth) over the last 30 years occurs in distinctive high-
density clusters at depths along the Raurimu Fault, which runs
north to south along the west flank of Mt. Ruapehu (Figure 2).
Analysis of earthquake epicentre distributions from the GeoNet
earthquake catalogue, suggests there are two distinctive regions,
to the northwest and southeast of the Mt. Ruapehu summit,
where earthquakes tend to occur more frequently than others
in characteristic clusters (Figure 2). Seismicity originating from
deeper sources reflects the slip geometry of the Pacific Plate
subducting beneath the Australian Plate (e.g., Yarce et al., 2019)
from the southwest at depths 50–100 km, to the northeast at depths
>150 km.

To the southeast, approximately 20 km from the summit, is
a band of near-constant seismicity along the Rangipo (Desert
Road) Fault, near the town of Waiouru (Hayes, 2004) (Figure 2).
Average b-values have been calculated at 1.06 at mid-crust depths
ranging from 11 to 21 km implying a tectonic origin (Hayes,
2004). The b-value describes the relationship between large and
small earthquakes in a catalogue, commonly used to describe the
nature of the seismic activity of a region (Gudmundsson, 2020).
Increased seismic activity was detected prior to the 1995 major
eruption and once again in 2000/2001, with b-values sustaining
high levels through the 1995/1996 eruption sequence reaching 1.71
in 2000 (Hayes, 2004). Although the earthquake cluster seems
connected to volcanic episodes at Mt. Ruapehu, it is unlikely
to be of volcanic origin itself and instead may be associated
with regional stress changes following the 1995 major eruption
(Hayes, 2004).

The seismicity to thewest ofMt. Ruapehu ismainly concentrated
northwest of the summit at the north extent of the Raurimu
fault near National Park. There is also another distinct band of
seismicity, which can be observed near Erua (Figure 2). Earthquake
locations then become more uniformly distributed to the west and
southwest towards Horopito and the Tohunga Junction. The cluster
of earthquakes near Erua has been defined as precursory signal
to the 1995/1996 major eruption sequence (Hurst and McGinty,
1999; Hurst et al., 2018). Studies by White and McCausland (2016)
and Meyer et al. (2021) have developed methods, originating from
McGarr (1976), for estimating the intrusive volume of magma
intrusions from tectonic earthquake sequences at distal faults
to suggest they might be suitable mid-term eruption forecasts.
Hurst et al. (2018) argues the petrological timescale of erupted
materials coincides with the seismicity near Erua, before the 1995
eruptions, suggesting that the seismic signal was an indicator
of magma movement. Other studies have also suggested that
the 1995 Erua swarm was not of tectonic origin, but a signal
of stress changes associated with fluid movement within the
volcanic system (e.g., Hayes, 2004). This may not be limited
temporally to the 1995/1996 eruption, and may instead be an
ongoing signal typical of pore-fluid pressure triggered by fluid
movement in the mid-crust (e.g., Keats et al., 2011). However,
a lack of observed seismic rate increase prior to the 2006 and
2007 eruptions makes eruption forecasts using this seismic signal
uncertain. For the swarm near Erua to be considered a reliable
forecasting signal (e.g., Hurst et al., 2018), it must be unique to the
months preceding volcanic eruptions at Mt. Ruapehu, and should
be absent during periods of volcanic inactivity (e.g., Ardid et al.,
2022).

3 Data and methods

In this research, we classified spatio-temporal earthquake
sequences in the GeoNet earthquake catalogue using a combination
of density-based clustering algorithms. The magnitude distributions
were analysed to see if the earthquake sequences exhibit typical
mainshock-aftershock (MS-AS) or swarm-like characteristics. MS-
AS sequences typically have a dominant initial event, called the
mainshock, followed by a subsequent Omori-type (Omori, 1895)
aftershock decay (Petersen and Pankow, 2023). It has been shown
that analysis of the temporal evolution of earthquake sequences
coupled with their associated cumulative seismic moment can be
useful for differentiating between different types of seismic activity
(Vidale et al., 2006; Lanza et al., 2022).

3.1 Earthquake catalogue

The earthquake catalogue for the Mt. Ruapehu region was
downloaded for a period from 1990 to 2023, containing 28,522
earthquakes at shallow depths (<20 km) containing information
on earthquake event type, time, location, depth and magnitude
(Figure 2). Information including hypocentre location error is
included in the Supplementary Material. Event types not relating
to naturally occurring seismic events (e.g., quarry blasts and
explosions) were removed, as were earthquakes located at the Mt.
Ngauruhoe and Tongariro summits, which neighboursMt. Ruapehu
to the northeast, along with the near-persistent earthquake hot spot
the southeast near Waiouru (e.g., Hayes, 2004) (Figure 2). The final
study area was refined to a rectangular area to the west of Ruapehu
[−39.09, 175.27, −39.43, 175.58] spanning approximately 1,800 km2

to the west of the summit, to focus on activity exclusively to the west
of Mt. Ruapehu, where the precursory signals at distal faults were
identified by Hurst et al. (2018) (Figure 2).

Approximately half of the earthquakes in the catalogue (14,587)
were assigned depths of 0, 5, or 12 km by an internal operator.
These approximations for the hypocentre of the earthquake may
be necessary when there are fewer seismic stations available to
make a measurement, or when there is uncertainty in the velocity
model used. Keeping earthquakes with locations biased to the
assigned depth would be detrimental to the unsupervised machine
learning approach we adopt and were therefore removed from the
catalogue. Although this is a large proportion of the earthquakes
in the catalogue, we argue that these earthquakes generally fit the
underlying geographical trend of the seismicity of the region, and
do not add any significant information to the overall catalogue
(Figure 2). Therefore, the operator assigned events were removed
from the catalogue for the purpose of this research.

The final data processing step was to assess the magnitude
of completeness (Mc) of the catalogue with operator assigned
earthquakes removed. This was done by estimating the point
of maximum curvature for the cumulative and non-cumulative
frequency magnitude distribution (FMD) (Pavlenko and Zavyalov,
2022). Using the Maximum Curvature (MAXC) method (Wiemer,
2000), bin sizes of ΔML 0.1 were evaluated to find the best fit
Mc value, which was calculated as 1.6 with a b-value of 1.04 ±
0.02. Finally, the earthquake catalogue was filtered to contain only
earthquake events ≥Mc, totalling 2,795 individual events.
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3.2 Detecting spatial anomalies

Density-based clustering algorithms are effective at analysing
noisy data sets and can handle irregular cluster shapes, making
them a good method for analysing the clustering and zoning
of earthquakes (Scitovski, 2018). Clustering algorithms, such
as DBSCAN (density-based clustering algorithms with noise)
(Ester et al., 1996) have been effectively used to identify and classify
seismic swarms in earthquake catalogues (e.g., Petersen andPankow,
2023). Where the methodology described in Petersen and Pankow
(2023) begins with identifying temporal clusters in the catalogue
before spatial analysis, this study aims to identify spatial clusters
prior to the temporal cluster analysis using density-based clustering
algorithms. The seismic activity in the months prior to the 1995
eruption was confined to a distinctive cluster Hurst and McGinty
(1999), therefore we attempt to observe whether this kind of seismic
signal is unique in specific regions (e.g., Hurst et al., 2018) prior to
volcanic eruptions or whether it repeats during periods of volcanic
quiescence.

Hierarchical density-based clustering algorithms with noise
(HDBSCAN) (Campello et al., 2013) is an unsupervised machine
learning clustering algorithm that is particularly useful at identifying
clusters of varying shape and densities within a noisy data set.
HDBSCAN begins by computing the density of data points based on
their proximity to neighbouring points using a similar methodology
as the popular density-based algorithmDBSCAN(Ester et al., 1996).
DBSCAN begins by selecting a random point in the data set (x) and,
using Euclidean distance, calculates whether there are enough points
in its neighbourhood to begin building a cluster, this is labelled a core
point. Once a core point has been satisfied, the cluster is expanded
to detect all core points which are directly-reachable in the latitude,
longitude and depth dimensions. Once all of the core points for a
cluster have been assigned, the algorithm adds the non-core border
points to the cluster. The border points cannot be used to connect
any other points to extend the cluster, even if another non-core point
is within the distance threshold of the border point. Data points
which fall outside the threshold defined by the input parameters are
labelled as outliers and given the value −1. These steps are processed
sequentially, meaning a non-core point which is within the distance
threshold (ɛ) of two or more separate clusters will be assigned to the
cluster which was calculated first (Figure 3).

HDBSCANbuilds upon theDBSCANalgorithmby allowing the
computation of clusters with varying ɛ distance, which is effective
for grouping clusters with a range of densities. This is achieved by
using the concept of mutual reachability distance (MRD), where the
influence of multiple points are considered in relation to their local
neighbourhood density, defined as:

dmreach−k (a,b) =max{corek (a) ,corek (b) ,d (a,b)}

Where d(a, b) is the original distance metric between points a
and b. HDBSCAN then constructs a minimum spanning tree
(MST) from the MRD values, which is designed to highlight the
strongest connections between points. The hierarchical part of the
algorithm begins by using a single-linkage approach to repeatedly
merge clusters close in density, ensuring that the merged cluster is
associated with the cluster having the highest minimum density of

the two. As more clusters are merged, the algorithm constructs a
condensed tree that captures the hierarchy of cluster merges based
on density. Each level of the tree represents a different level of
minimum density required for a cluster to exist. This allows for a
range of cluster sizes and shapes to be detected. The stability of a
cluster is measured by how often it appears across different density
levels in the condensed tree. Clusters that are more stable (i.e.,
they persist across multiple levels) are considered more significant.
The final clustering result is obtained by selecting the clusters
with the highest stability, while noise points and outliers are also
accounted for. This allows HDBSCAN to automatically determine
the total optimal number of clusters and handle clusters of varying
densities.

Where HDBSCAN inherently selects the optimal number of
clusters and corresponding distance between points, the algorithm
requires a domain knowledge for the minimum number of samples
per cluster, i.e., the minimum number of earthquake events
for a cluster, (min_cluster_size). The min_cluster_size parameter
determines the size of clusters calculated in the data set and impacts
the total number of noise values (Starczewski et al., 2020) and has
a default value of 5 data points per cluster. Although there are no
constraints as to the number of earthquake events that make up a
swarm, we can assume the earthquake signals we are attempting to
identify contain greater than 5 events per cluster. In order to select
the optimal number of points per cluster, one can run a range of
min_cluster_size values through the clustering algorithm and test
each result against a fitness function in a method known as
Tournament Selection (TS) (e.g., Karami and Johansson, 2014). The
best-fit min_cluster_size candidate based on the score of the fitness
function is then selected for the clustering algorithm. Although
there is no silver bullet fitness function for evaluating clustering
algorithms, the Silhouette Coefficient θ (Rousseeuw, 1987) is a
simple analytical method that can be used to find the optimal
number of clusters for a variety of different clustering algorithms
(e.g., Wang et al., 2017; Angmo et al., 2021) and does not require
any prior training to produce results (Shutaywi andKachouie, 2021).
The Silhouette Coefficient θ is available in Scikit-learn and begins by
comparing the distances of each sample to its own cluster and the
neighbouring cluster, with scores ranging from −1 to 1:

θ (i) = b− a
max (a,b)

Where a is the average distance of sample point i within a to
other point within cluster a and b is the distance of sample point
i to its nearest cluster. The function then calculates the mean
Silhouette Coefficient over all cluster to return a single score for
all clusters:

θ = 1
n

n

∑
i=1

θ (i)

where n is the number of samples and θ(i) is the Silhouette
Coefficient for the i-th sample. A score of 1 would be achieved for
two perfectly distinguished clusters at infinite distance from each
other. A score of zero means that clusters are insignificant and the
distance between them is not significant. The Silhouette Coefficient
evaluated the goodness of fit for min_cluster_size 5–40 where the

Frontiers in Earth Science 06 frontiersin.org57

https://doi.org/10.3389/feart.2024.1343874
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Mitchinson et al. 10.3389/feart.2024.1343874

FIGURE 3
Illustration of a density-based clustering algorithm. Point x is a randomly selected starting point within the data set. The minimum number of points
which define a cluster is 10, within a distance ɛ. Point y is directly density-reachable and is also a core point. Point z is density connected to point y,
however is not reachable for any other points. Therefore, z becomes a border point and signifies the end of the cluster. Data point n is unreachable
from any other data point and is therefore not part of the cluster and labelled as an outlier or noise.

optimal number of samples in a cluster was 31 with a score of 0.19.
We found that the cluster size did not change much formin_cluster_
size 30–40. However, the signal near Erua was most prominent for
min_cluster_size 30–32 and the Silhouette Coefficient reduces as
sample size >33. Therefore, we selected a min_cluster_size of 31
for the HDBSCAN algorithm. We noticed an increase in volatility
for the total number of clusters, given a sample size <30 samples
per cluster, where clusters tend be more unstable and form smaller
groups. A summary of HDBSCAN results with min_cluster_size
5–40 can be seen in the Supplementary Material.

3.3 Detecting temporal anomalies

DBSCAN was used to identify temporal clusters in the time
series for each of the regions classified using HDBSCAN. Temporal
anomalies represent periods when the number of events within
the HDBSCAN cluster region is unusually high, which is a proxy
for earthquake sequences such as mainshock-aftershock (MS-AS),
foreshock-mainshock aftershock (FS-MS-AS) or swarm sequences.
The date and time of each event was converted to numeric
using matplotlib’s date2num() with the epoch set to “1990-01-
01T00:00:00,” where “1990-01-02T00:00:00” = 1. The DBSCAN
method requires two input parameters, the minimum distance
between points (ɛ), and the minimum number of points (MinPts)
accepted to assign a cluster. The distance metric ɛ selected is then
based on the number of days, converted to numeric time. To
identify temporal anomalies, we employ a rolling average window

for a 30 days time period and calculate the number of events in
each window, which is stepped forward in daily increments. The
z-score is then calculated for each rolling average and the inverse
cumulative distribution function (PPF) of the standard normal
distribution is calculated to define the anomaly threshold. This
threshold corresponds to a 99% confidence interval and can be
interpreted as the number of events above which rolling averages
are considered anomalous, or the earthquake rate above usual
background levels, which is considered anomalous. We found
that the number of events considered anomalous within a 30-day
windowwas 25 events. Using a 30-day window allows for a sufficient
number of data points within each window, whilst facilitating the
identification of longer-term patterns, which represents the nature
of earthquake swarms. 25 events within a 30-day window also
generally corresponds to the earthquake counts to the west of
Mt. Ruapehu preceding the 1995/1996 eruption sequence (Hurst
and McGinty, 1999; Sherburn et al., 1999; Hurst et al., 2018). The
selected DBSCAN parameters are then applied to each of the
geospatial clusters identified using HDBSCAN.

Using an unsupervised machine learning clustering approach,
such as DBSCAN, is advantageous as it has the ability to identify
moments in the time series where there may be anomalously
high numbers of earthquakes over a period of time, without prior
domain knowledge of earthquake sequences, and it also removes
the need to set absolute boundaries on the length of time for
each sequence. Meaning one can automatically capture earthquake
sequences over a range of time-frames without bias, providing the
minimum threshold set by the z-score is achieved.
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FIGURE 4
A map of Ruapehu volcano and Tonagariro National Park to the northeast, with the study region earthquake epicenter events. Six clusters were
detected using HDBSCAN clustering and the noise data points achieving no cluster are labelled as the background seismicity. More information on the
earthquake characteristics for each cluster can be seen in Table 1.

3.4 Cumulative moment

Evaluating the seismic energy associated with geospatial and
temporal anomalies is an effective method for gaining a deeper
understanding of the underlying characteristics and mechanisms at
play. It is noteworthy that the seismic energy release is intrinsically
linked to the magnitude of the earthquake event (McGarr, 1976).
Methods for determining the earthquake local magnitude ML
can vary depending on the geology of the region and seismic
network administration (Bormann and Di Giacomo, 2011). When
performing seismic hazard assessments, it is convenient to convert
local magnitude estimates to be consistent with moment magnitude

Mw calculations (Rhoades et al., 2021), which is widely considered
the best estimation tool for calculating earthquake magnitude
(Ristau, 2009). In New Zealand, the relationship between ML and
Mw for shallow earthquakes (i.e., <33 km depth) (Ristau, 2009), can
be described as:

ML = (0.88± 0.03)Mw+ (0.73± 0.20)

Seismic moment M0 gives information regarding the total
energy release of an earthquake and is proportional to the moment
magnitude Mw defined as:

Mw =
3
2
log10 (M0) − 9.0
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Where M0 is in N m (Nm) and 9.0 is an empirical calculation
of the shear stress of the crust. The cumulative seismic moment
of earthquake sequences has been identified as a tool for
volcanic eruption forecasting (e.g., Thelen et al., 2010; White and
McCausland, 2016; Meyer et al., 2021). These kinds of approaches
represent a significant step towards statistically quantifying key
volcanic processes, including swarm-like earthquake sequences,
departing from conventional descriptive measures and providing a
more data-driven foundation for volcanic eruption forecasting.

4 Results

We can observe that the region to the west of Mt. Ruapehu
has maintained seismic activity through the 33 years catalogue with
low magnitude earthquakes typically in the range of 1.58–4.21
ML. Using density-based clustering algorithms for the spatial and
temporal analysis of the earthquake catalogue, we were able to
identify six earthquake regions (clusters) where a number of
earthquakes all occur in close proximity to each other, from 1990
to 2023. DBSCAN discovered seven earthquake sequences within
the HDBSCAN clusters, where there were periods of seismicity
which exceeded the threshold of 25 events for a 30-day rolling
window. Two of the clusters have repeating periods of increased
earthquake rate discovered using DBSCAN. Some cluster regions
have clear temporal “bursts” of activity lasting from a few days to
many weeks, yet remain relatively inactive for themajority of the 33-
year period, and other regions have almost constant seismic activity
with occasional small bursts. This section begins by presenting the
geospatial anomalies detected using HDBSCAN, followed by the
temporal and cumulative magnitude time series results.

4.1 Geospatial anomalies - HDBSCAN

The HDBSCAN algorithm took 0.05 s to run for the earthquake
catalogue containing 2,795 events, identifying six distinct
earthquake regions (clusters), for a cluster size minimum of
32 samples per cluster, amounting 63% of earthquakes in the
catalogue. The clusters [C0, C1, C2, C3, C4, C5] exhibited various
characteristics, including geographical distribution, density, and
shape (Figure 4).The algorithmperformedwell at grouping a variety
of cluster densities and shapes, and was also effective at discerning
between boundaries of high levels of seismic activity, particularly
between C5 and C1 (Figure 4). The location of earthquakes is
spread non-uniformly across the study area west of Mt. Ruapehu,
with occasional regions of geospatial density, particularly >5 km
northwest of the summit. Earthquake activity decreases north of
the summit towards Tongariro National Park. There is no clear
correlation between earthquake activity and the active fault lines,
with many earthquakes occurring away from documented fault
lines, particularly in the region on the west flank of Mt. Ruapehu
within 10 km of the summit, although, it is possible that not all
active fault lines are documented. There are also few earthquakes
located in close proximity to the summit.

Cluster C0 (blue) in Figure 4 is a comparatively low-density
cluster, located 5–10 km south of the summit on the eastern limit
of the Ohakune Fault, which runs west towards the Tohunga

TABLE 1 Clusters identified in the earthquake catalogue using HDBSCAN
(minimum samples=31).

Cluster Events Max ML ML >3 Avg. Depth (km)

C0 113 3.1 3 14.9

C1 369 3.4 4 16.3

C2 188 3.8 12 12.7

C3 666 4.2 16 12.8

C4 154 3.4 1 13.3

C5 283 3.8 13 13.0

Junction. It contained the fewest number of earthquakes (113
events), with typical magnitudes ranging from 1.75 to 2.16, at depths
typically ranging from 14 to 17 km. C1 (green) and C5 (pink) sit
in a trajectory orientated approximately 40° northeast, with C1
earthquakes occurring away from the Raurimu Fault at a greater
depth, on average between 14.7 and 18.1 km, compared to C5, which
typically occur within the range of 11.2–14.6 km below the surface.
There is a distinct difference in the magnitude of earthquakes, with
significantly more ML ≥3 occurring in C5 (Table 1). There is a
subtle difference in the distribution density of events between C1
and C5, with C5 having a higher density of events. The cluster
density tends to decrease as earthquakes are detected away from
the Raurimu Fault to the west. C2 (purple), situated > 20 km from
the Mt. Ruapehu summit, is in proximity to the Mangamaire Fault.
Given the cluster has relatively few events, event magnitudes are
characterised by some relatively large, ML ≥3, events, coinciding
with a range of smaller 1.73–2.28 ML events. Although some of
the larger events occur along the fault line, there is evidence of
a group of events spreading northeast of the fault. C3 (orange) is
mainly situated on the junction between the north extent of the
Raurimu Fault and the southwest limit of the National Park Fault,
but also extents northwest, away from the Raurimu Fault. C3 has the
most number of events of all clusters, with 666 earthquakes at an
average depth of 12.8 km and 16 events with a ML >3.0. C4 (cyan)
is located 12 km northwest of Mt. Ruapehu at the eroded extinct
volcano Hauhungatahi (Cameron et al., 2010) (Figure 4).

4.2 Temporal anomalies - DBSCAN

DBSCAN took <10 s to iterate over the seven clusters identified
by HDBSCAN (Figure 5), including the noise cluster containing
background seismicity (Figure 6). Using the z-score threshold
outlined in the methodology, and a 99% confidence interval, the
number of events per cluster above the threshold was calculated as
25 events. This means, for all core points within a 30 day period,
DBSCAN checks for any other events within 30 days. These are
border events and are added to the cluster, but not considered
density reachable for any other events. If there are at least 25 core and
border events in total, a cluster is formed representing a period of
earthquakes above the background level. For an ɛ distance of 30 days
and a minimum number of 25 events per cluster, the DBSCAN
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FIGURE 5
Time series scatter plot of earthquake epicenter events with depths shown on the y-axis and magnitudes with data point size for each HBDSCAN
cluster. Eight clusters detected using DBSCAN, were determined by ε distance of 30 days for a minimum of 25 events, and represent moments in time
where the earthquake rate is abnormally high. Activity in C0 (A) increased above the threshold in 2006, C1 (B) in 2008, C2 (C) in 2015, C3 (D) had a
burst in 2003 and 2009, C4 (E) in 2005, and finally two sequences occurred in 1995 and 2001 C5 (F). Magmatic eruptions are labelled as vertical red
lines. Two small (VEI∼1) eruptions were recorded in 1991 and 1992 before the major 1995/1996 eruption sequence (VEI∼3), along with another small
eruption in 1997. Two phreatic eruptions in 2006 and 2007 are labelled with a dotted red line. The cumulative moment magnitude represented by the
blue line is an estimation for the amount of energy released in the study region through time.

algorithm identified eight temporal clusters within the time series
derived from the HDBSCAN earthquake regions. The clusters
identified by HDBSCAN are labelled by adding the year of when
the sequence began to the original cluster name. The occurrence
of earthquake sequences identified by DBSCAN are unique to
each HDBSCAN cluster. Each cluster “lights up” with activity at
different times throughout the 33 years and do not seem to have
any correlation with any other earthquake sequence. Some clusters
have near constant background activity with occasional bursts
in earthquake rate (e.g., C3-2003 and C3-2009), whereas others
have a single moment of activity before returning to quiescence
(e.g., C0-2006). Earthquake sequences detected above the anomaly
threshold vary in duration, but tend to last no longer than 100 days.
The temporal clusters shown in the time series graphs (Figure 5),
including the background seismicity (Figure 6), were plotted to show
the geographical extent of each earthquake sequence (Figure 7).

C0-2006 is situated in a typically inactive region and had a
significant increase in earthquake rate in 2006, where 71 events
occurred. Activity peaked between 23 August–2 September 2006,
with 40 events. On 28August, a total of 16 events occurred in a single
day. The earthquake rate in this period is correlated with a sudden
increase in cumulative seismic moment. DBSCAN automatically
highlighted a period between 23 August–8 October 2006 as an

anomalous earthquake sequence, containing a total of 45 events,
with an average magnitude of 2.04 ML and two events ML >3.
Overall, DBSCAN attributed 39.8% of earthquakes within C0 to a
single earthquake sequence over the 33 year period, with an average
earthquake rate of 1.1 events per day.

The time series for the C1 region shows near constant
earthquake activity, with an increase of activity between 2004 and
2012, also corresponding to an increase in cumulative seismic
moment during the same time frame, before flattening out again.
Within the period 2004–2012, when the cumulative seismic rate
increases, DBSCAN identified one period (C1-2008) where the
earthquake rate surpassed the background seismicity threshold. The
sequence consisted of 27 smallmagnitude earthquakes ranging from
1.59 to 2.53 ML, lasting 48 days from 6 April 2008–24 May 2008 at a
rate of 0.56 earthquakes per day.

There was no seismicity recorded in the C2 region before 2004,
perhaps due to a limitation of seismic apparatus available. Since
2014, the seismicity has increased in the region significantly, with
92.6% of total events in the cluster region occurring after July 2014
with a relatively deep source and getting shallower through time.
C2-2015 had an average earthquake rate of 0.44 per day, which
was deemed higher than the threshold by DBSCAN from 2 July
2015–8 October 2015. During this period, three earthquakes ML >3
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FIGURE 6
Time series scatter plot of background seismicity of the full study area excluding the HDBSCAN clusters, with the cumulative earthquake moment of
the region. Earthquake epicenter events with depths shown on the y-axis and magnitudes shown as the size of the data point. Documented eruption
periods are labelled using vertical red lines.

were recorded including a 3.54 ML, which is reflected in the sudden
increase in cumulative seismic moment.

The C3 time series is characterised as near-constant earthquake
activity at relatively shallow depths of <16 km, with occasional
temporal bursts in activity. There are two occasions where DBSCAN
detected an increase in seismic rate greater than the background
threshold.The first sequence (C3-2003) consists of 34 events at a rate
of 0.4 earthquakes per day, located laterally across the north extent of
the Raurimu fault, with the largest event occurring long the fault line
and smaller events moving east and west. The second sequence (C3-
2009) was made up of 60 events, mainly located in the region west of
the fault with an approximate 20° orientation. This sequence had a
higher earthquake rate than the previous sequence at approximately
0.7 events per day.

The small, dense cluster located in proximity to Hauhungatahi
(C4), had three time periods where there was a sequence of
earthquakes and small increases in cumulative seismic moment.
The first sequence occurred in 2002 at shallow depths from 8 to
12 km and was not identified by DBSCAN. The second sequence
(C4-2005), which was identified by DBSCAN due to an increase
in earthquake rate of 0.45 events per day over 76 days, began in
January 2005 and consisted of 34 relatively small events at depths of
13 km on average. There was a third sequence, similar to the events
in 2002, originating from deeper sources (15–19 km), which began
with a 3.42 ML earthquake before following a typical mainshock-
aftershock pattern.

C5 is contained to the Raurimu fault in close proximity
to the town of Erua. Although earthquake activity can be
observed throughout the time series, the majority of events
have occurred before 2004 within C5-1995 and C5-2001, with
epicentres located in a narrow band between 10 and 15 km
depth. The two earthquake sequences highlighted by DBSCAN
had anomalous earthquake rates, consistent with sudden increases
in cumulative seismic moment. C5-1995 and C5-2001 are similar
in geographical orientation, average depths, earthquake rate, and

maximum magnitude. However, there were more events ML >3 in
C5-1995 and a slightly lower average rate of 0.4 earthquakes per
day. C5-1995 sequence occurred in close temporal proximity to the
onset of the 1995 major eruption. Whereas the C5-2001 earthquake
sequence began on 30 December 2000, lasting 88 days with an
average daily rate of 0.45 events, and has no temporal proximity to
any volcanic activity at Mt. Ruapehu. The number of earthquakes
during the peak of seismic activity was different for C5-1995 andC5-
2001, with the peak of the C5-1995 sequence totalling 16 events over
15 days, and 26 events over 25 days in total for C5-2001. However,
although the largest event in each sequence had a similar magnitude
(3.4ML), themeanmagnitude for C5-1995 was higher (2.6ML) than
C5-2001 (2.2 ML).

The slow increase of cumulative seismic moment across the
entire region is coupled with occasional rapid increases (Figure 6),
particularly leading up to the 1995 eruption. We have labelled this
earthquake activity as background seismicity, due to the fact that
earthquakes occurred in regions with no geospatial relationship.The
largest increase in cumulative seismicmoment began in 1995, driven
by the first earthquake sequence C5-1995, before the onset of the
1995 major eruption and waned during the main eruption sequence
before increasing again before and during the small eruption in
1997. There were also smaller increases in 2003/2004, which occur
due to C3-2003, and slightly larger increase in 2015/2016 which
coincides C2-2015.

5 Discussion

Using the temporal anomaly results obtained using DBSCAN,
and the seismic moments of the earthquake sequences, we have
assessed the statistical similarities between sequences and their
implications for the 1995 Erua swarm (Hurst and McGinty, 1999;
Hurst et al., 2018). An unsupervised algorithm with no a priori
domain knowledge of the system has identified six regions to
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FIGURE 7
Geospatial representation of eight earthquake sequences, with background seismicity, identified at Mt. Ruapehu the 1990–2023 GeoNet earthquake
catalogue using DBSCAN (Figures 5, 6).

the west of Mt. Ruapehu where earthquake activity tends to be
concentrated more than in other areas. Earthquake sequences
occurring in distinct clusters are regularly observed at volcanoes
and are often indicative of where stress changes are concentrated
during the natural dynamics of the volcanic system (McNutt and
Roman, 2015). Seismic activity to the west of Mt. Ruapehu rapidly
increased in the year prior to the 1995major eruption, yet during the
eruption we observe no elevated seismic activity, which is consistent
with Hurst et al. (2018). There was a return to high levels of seismic
activity during a short period in 1997, immediately following the end
of the 1995/1996 eruption sequence, which may indicate a response
in stress changes following the eruption, due to magma movement,
or pressure changes at the summit (Hayes, 2004). After 2001, the
region west of Mt. Ruapehu maintained a near constant rate of

seismicity, which is consistent with the absence of major volcanic
activity during this time. Occasional small spikes in seismicmoment
have no correlation to the small eruptions which occurred in 2006
and 2007. A larger increase in regional seismic activity occurred
during 2015/2016, which correlates with C2-2015 (Figure 5C).

The timing of earthquake sequences detected using DBSCAN
are unique to each region, and do not last longer than 100
days. Notably, 75% of the earthquake sequences detected by
DBSCAN showed no clear correlation with recorded volcanic
events. However, the earthquake sequences within C0-2006 and
C5-1995, demonstrated temporal proximity to the 2006 phreatic
eruption and the 1995 major eruption (Figure 5F). We deem
temporal proximity to be within 6 months, given the history of
earthquake swarms relating to eruptions at Mt. Ruapehu (e.g.,
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FIGURE 8
Total cumulative M0 of earthquake events in C0-2006 for the temporal cluster detected by DBSCAN (A) and a zoom into the sequence (B), showing the
small swarm, highlighted yellow, before the MS-AS event preceding the main swarm, which is highlighted in red. The first event in (A) is not part of the
DBSCAN sequence and is only included to assist with the visual. The events after the main swarm were detected by DBSCAN.

Hurst et al., 2018). Indeed, C5-1995 (Figure 5F), is the same signal
interpreted to be a precursor for the 1995 major eruption by Hurst
and McGinty (1999); Hurst et al. (2018).

Cumulative seismic moment with time show similarities
between clusters. Broadly, we can group sequence types into the
following categorical descriptions, 1) swarm-like sequences yielding
a relatively small cumulative seismic moments through time,
e.g., C3-2003 and C3-2009, 2) swarms with longer run-up time,
maintaining a high seismic rate and a larger cumulative seismic
moment, e.g., C2-2015 and C5-1995, 3) Complex sequences with
MS-AS events followed immediately by a swarm-like sequence, e.g.,
C0-2006 and C5-1995, 4) a narrow band of magnitudes typically
≤ Δ0.5 ML with no significant energy release, e.g., C1-2008 and
C4-2005.

B-values were estimated for each temporal cluster, with values
ranging from 0.88 to 2.97. An estimation of the b-value in
volcanic regions can be a useful indicator for monitoring periods
of unrest (e.g., Farías et al., 2023) as they can provide additional
information about whether seismicity is of tectonic or volcanic
origin (Lanza et al., 2022). In regions with high b-values, there are
proportionally more smaller earthquakes than large earthquakes
(Gudmundsson, 2020). Naturally, therefore one tends to see higher
b-values in volcanic regions than tectonic. However, although it is
common to observe high b-values in volcanic areas, b-values have be
found to be skewed to larger values particularly for small catalogues
(Geffers et al., 2022).Thismight be the case for the temporal clusters
at Mt. Ruapehu, where we can see in general, those sequences
with fewer events, tend to have high b-values (1.51–2.97) with the

Frontiers in Earth Science 13 frontiersin.org64

https://doi.org/10.3389/feart.2024.1343874
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Mitchinson et al. 10.3389/feart.2024.1343874

TABLE 2 High density earthquake sequences identified in the time series using DBSCAN for each HDBSCAN cluster (DBSCAN ɛ: number of days=30,
minimum events=25). The DBSCAN cluster is denoted as a temporal sequence, labelled consecutively in the time series.

Sequence Events Max ML ML > 3 b-value Avg. Depth (km) Start date No days

C0-2006 45 3.1 2 1.13 ± 0.18 15.2 2006-08-23 42

C1-2008 27 2.5 0 2.97 ± 1.02 16.9 2008-04-06 48

C2-2015 44 3.5 3 0.99 ± 0.16 14.5 2015-07-02 99

C3-2003 34 2.9 0 1.51 ± 0.29 12.8 2003-09-25 86

C3-2009 60 2.7 0 2.05 ± 0.39 14.7 2009-10-30 87

C4-2005 34 2.1 0 2.25 ± 0.27 13.0 2005-01-18 76

C5-1995 39 3.4 5 0.88 ± 0.16 12.2 1995-02-24 97

C5-2001 40 3.4 1 1.67 ± 0.37 11.8 2000-12-30 88

exception of C5-1995, which had proportionally more earthquakes
>3 ML (Table 2). These b-values seem reasonable for Mt. Ruapehu
and are similar for b-values estimated in other volcanic regions
derived from earthquake catalogues, which can range from 1.4 to 3.5
(Roberts et al., 2015). We acknowledge that there is uncertainty in
estimating the b-value given the small sample size and are therefore
used to only to aid the interpretation of the temporal clusters.

5.1 The C0 cluster

The earthquake events occurring within C0-2006, situated along
the eastern boundary of the Ohakune Fault on the southernmost
region of the research domain, coincided closely in time with the
phreatic eruption of October 2006. This synchronicity may hold
significance due to the surprising nature of the eruption, which
seemingly erupted without any warning signs of imminent volcanic
activity (Jolly et al., 2010). A cursory examination of the earthquake
catalog through visual analysis might not yield any apparent
indicators of abnormal seismic activity in this area. Hence, the
identification of the earthquake sequence from HDBSCAN and the
temporal sequence from DBSCAN, was as an unforeseen revelation.
C0-2006 was indicative of a complex sequence, exhibiting both MS-
AS and swarm behaviour in a short period of time (Figure 8). The
largest event (3.1 ML) on 26 August 2006 was followed by two
successively smaller events following a typicalmainshock-aftershock
sequence. On 28 August 2006, 16 individual events were recorded
with the largest and second largest magnitude of 3.03 ML and 2.9
ML. The characteristics of the differences in magnitude and the
cumulative seismic moment over a short period of time coupled
with a b-value of 1.13, suggests this earthquake sequence is of swarm
origin and may be the result of an intrusion of fluids into a dike at
shallow depths, which interacted with the hydrothermal system and
the crater lake. The sudden intrusion of magma into a crack near
the surface may have triggered a rapid expansion and steam driven
eruption without necessarily raising the crater temperature.

5.2 The C1 cluster

This cluster of earthquakes is the only set which occurs entirely
away from a mapped fault source. C1-2008 is situated >1 km west of
the Raurimu fault and is clearly a separate signal to the neighbouring
C5-1995 and C5-2001. A near-constant seismic sequence began
around the year 2000 at depths >12 km and has continued until
2023, with the most active phase from 2005 to 2012. The earthquake
depth ismost likely linked to the angle of the subducting plate, which
is probably why the earthquakes in C5 occur at a shallower depth
on average (e.g., Keats et al., 2011). The b-value for C1-2008 was the
highest in the region, but also had the largest uncertainty (Table 2),
which is probably driven by the small sample size.

5.3 The C2 cluster

C2-2015, on the northwest extent of the study area, may be an
artifact of the timing of the station deployment. The earthquake rate
increases to the threshold defined in DBSCAN, to a peak activity
from 24 August 2015, where there was an increase in magnitude
to the 3.31 ML event on 26 August. The C2-2015 distribution
of events is located away from the fault with a b-value of 0.99
(Figure 7). The temporal evolution of C2-2015 develops from a
series of earthquakes with a narrow magnitude band, to a gradual
increase in magnitude and rate, with the largest event occurring
in the middle of the sequence (Figure 9). Extrapolating from the
C2-2015 sequence, there is clear evidence of average earthquake
source depths from deep to shallow (Figure 5C), which could be
evidence of fluid migration through the mid-crust (Yoshida and
Hasegawa, 2018; Yoshida et al., 2023).

5.4 The C3 cluster

The C3 cluster is the most seismically active region in the study
area. The near-constant rates with occasional bursts is similar to the
seismicity described by Hayes (2004) to the southeast at Waiouru,
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FIGURE 9
Total cumulative M0 of earthquake events in Cluster 2 for the temporal cluster detected by DBSCAN. The distribution of events is suggestive of a
swarm-like sequence.

which is outside of our study area. The first and second temporal
bursts in C3-2003 and C3-2009 occur on different trajectories
across the National Park fault, yet are similar in geographical
extent (Figure 7). C3-2003 and C3-2009 exhibit similar swarm-
like behavior (Figure 10), with high b-values of 1.51 and 2.05
respectively. We observe multiple temporal bursts in seismicity,
which did not reach the threshold set for DBSCAN, and a lower
threshold would certainly yield more swarm events. The temporal
evolution of the C3 cluster has similar characteristics to swarm
bursts discussed by Petersen and Pankow (2023). Here the variable
inter-event bursts are related to variability in fluid migration in
a fault-valve model (Sibson, 1992). For C3, changes in pressure
from fluids below the surface, coupled with precipitation from
the hydrothermal system at Mt. Ruapehu (Christenson and Wood,
1993), can cause the fault to open and close, leading to unpredictable
variation in inter-event times (Petersen and Pankow, 2023). The
fluid-driven source is supported by relatively high b-values for the
region. Further sensitivity analysis into the time series for C3 might
offer more insight into the processes we see in this region; however
that is beyond the scope of this paper.

5.5 The C4 cluster

C4-2005 was detected in close proximity to the extinct volcano,
Hauhungatahi (Cameron et al., 2010), which is made up of >170 ka
old eruptive material. The small earthquake sequence detected at
the end of 2004 is most dissimilar from the other signals, exhibiting
earthquakes with a narrow band of magnitudes typically ≤ Δ0.5 ML
with no significant energy release (Figure 11). C4-2005 has the high
estimated b-value of 2.25, which is perhaps driven by a small sample

size (e.g., Geffers et al., 2022) coupledwith a narrowmagnitude band
and the majority of earthquakes <3 ML.

5.6 The C5 cluster

C5, situated along the northern extent of the Raurimu fault, close
to the small town of Erua, is a region with earthquake activity which
is often referred to in the literature as a precursor to the major 1995
eruption (Hurst and Vandemeulebrouck, 1996; Hurst and McGinty,
1999; Hurst et al., 2018). Although, the cluster is in the orientation,
and in close proximity to the Raurimu fault, seismicity is thought
to have not originated from the fault (Keats et al., 2011). The first
earthquake sequence, C5-1995, began in January 1995 and ended
at the end of July 1995. There were two bursts of activity, a small
MS-AS sequence occurred mid-March, before the main burst of
activity which began early April. The April burst had 16 individual
earthquake events with 2 ML >3 and coincided with a warming of
the crater lake alongwith an increase inMg2+ ions (Nakagawa et al.,
1999), which may be an indication of fresh magma interacting with
the hydrothermal system (Hurst and Vandemeulebrouck, 1996).
The earthquake rate then waned until the beginning of the major
eruption sequence on 17 September 1995 (Figure 12A). Conversely,
the b-value of theDBSCAN sequence is 0.88, which is comparatively
low for earthquake swarms in the region and is consistent withHurst
and McGinty (1999), and the tectonic mechanisms occurring to the
southeast during the same time-frame (Hayes, 2004).

The second burst of activity (C5-2001), which began in January
2001, had a similar orientation, geographical extent and total
number of events as the 1995 sequence, however did not precede any
kind of volcanic activity. C5-2001 had a different temporal evolution
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FIGURE 10
Total cumulative M0 of earthquake events for C3-2003 (A) and C3-2009 (B) for the temporal cluster detected by DBSCAN. The swarm bursts in
C3-2009 last between 3 and 4 days and are separated by 53 days.

to the 1995 sequence, with a buildup of seismic activity preceding
the largest event on 3 March 2001, and smaller events following
(Figure 12B). The largest event occurring around the middle phase
of the temporal evolution is a key characteristic of swarm-like
behaviour associated with volcano-tectonic events (Jones, 2005;
Pesicek et al., 2018). The difference between the largest two events,
3.45 ± 0.23 and 2.85 ± 0.23, is 0.60 ± 0.46, and perhaps is on the
boundary of swarm-like magnitude differences. The b-value of the
swarm is calculated as 1.67 which is typical for swarm behaviour
driven by volcano-tectonic processes (Gudmundsson, 2020).

5.7 Should C5-2001 have preceded an
eruption?

The cumulative seismic moment of an earthquake sequence is a
proxy for the total amount of energy released and provides insights
into the mechanisms driving the seismicity in the region. If there
is a lack of pressure or insufficient volume, magma may not have
enough energy to overcome stress barriers and can become arrested
(Caricchi et al., 2021), whichmay provide a reason forwhy therewas
not an eruption following the earthquake swarm in 2001.
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FIGURE 11
Total cumulative M0 of earthquake events in C4-2005 for the temporal cluster detected by DBSCAN.

5.7.1 Intrusion volume estimates
Earthquake swarms occurring in proximity to a volcano may

be a proxy for magma movement or a change in reservoir
pressurisation (Ebmeier et al., 2016). The ability to make real-time
forecasts based volcano-tectonic earthquake swarms remains a
key challenge in volcano monitoring (Roman and Power, 2011;
White and McCausland, 2016). Experimental evidence from water
injections in deep wells, showed that total seismic moment (ΣM0) is
proportional to a cumulative change in intrusive volume (McGarr,
1976). White and McCausland (2016) translated these properties
to infer that the volume (V m3) of a magmatic intrusion should
be proportional to the ΣM0 (Nm) equivalent of a volcano-tectonic
earthquake swarm:

log10V = 0.77× log10∑M0 − 5.32

Using this equation, we calculated the intruded volume of
magma for the C5-1995 sequence as 0.0012 km3 for a log10
cumulativemoment of 7.02Nm. C5-2001 had an estimated intruded
volume of 0.00085 km3 for a log10 cumulative moment of 6.81
Nm. A study by Meyer et al. (2021) approximated that seismic
moment release should be proportionally larger for swarms that
eventually lead to an eruption, which is not the case for C5-1995
and C5-2001. However, the study also stated that uncertainties in
the measurements would be too large to make meaningful forecasts.
Furthermore, when applied to known magmatic intrusions, it was
found that the main controlling factor on the seismic energy release
was the background seismicity values for that region, rather than the
extent of the dike (Pedersen et al., 2007).

To summarise, a vertically and laterally interconnected system
with periodic feeding from a deeper source and magma mixing
during migration from intrusion to the chamber is a process

suggested in other volcanic arc settings and has been linked to
distal earthquake swarms in the months preceding eruptions (e.g.,
Albino et al., 2019). Studies concerning the plumbing systemmodels
at Mt. Ruapehu support the hypothesis described by Hurst et al.
(2018), that laterally interconnected intrusions could be feeding
a small, shallow reservoir (Kilgour et al., 2013). This may exert
pressure on the surrounding rocks causing earthquake swarms
at considerable distances from the summit. This implies that an
earthquake swarm in the Erua region in April 1995 could indeed
be interpreted as a precursory warning sign for the 1995 eruption.
In the pursuit of identifying viable volcanic eruption precursors
for eruption forecasting using machine learning, Ardid et al. (2022)
suggested precursory signals should correlate across multiple
eruptions and be absent from non-eruptive repose periods.
However, the Erua sequence which preceded the 1995 major
eruption is either absent, or not documented, prior to the other
magmatic eruptions and the 2006 and 2007 phreatic eruptions,
which is consistent with Keats et al. (2011). We can also say with
confidence that swarm-like activity has occurred in the same region
suggested to be an eruption precursor (Hurst et al., 2018) on more
than one occasion, during period of non-eruptive activity, with
the later 2001 (C5-2001) swarm not preceding an eruption. As for
the uniqueness of the 1995 Erua swarm, C5-1995 and C5-2001
share similarities in number of events, magnitudes and geometry
of the sequence with the Raurimu fault. However, it could be
argued the temporal evolution of the C5-2001 sequence perhaps
exhibits more swarm-like behaviour. We have seen evidence of
other seismic sequences that have reoccurred in the seismically
active west region of Mt. Ruapehu, which have no correlation to
documented volcanic activity. Therefore, it is impractical to rely
on such earthquake sequences for meaningful eruption forecasts at
Mt. Ruapehu.
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FIGURE 12
Total cumulative M0 of earthquake events in C5-1995 (A) occurred in April 1995 with a maximum magnitude event ML 3.4 and C5-2001 (B) occurred
February/March 2001 with a maximum event also ML 3.4.

6 Summary

This study has successfully employed simple unsupervised
machine learning clustering algorithms to detect earthquake
sequences atMt. Ruapehu, without a priori knowledge of the system.
One of the key motivations for this research was to understand
whether the swarm near Erua, which preceded the 1995 major
eruption, is a unique signal and one which can be used for mid-
term forecasting at Mt. Ruapehu. For this to be true, it should satisfy
forecasting constraints, where a signal must be present before an
event, but not during periods of no volcanic activity (e.g., Kilburn,
2018; Ardid et al., 2022). Given the evidence in Cluster 5 of a second
swarm that did not precede an volcanic activity in 2001, we cannot
conclude, based on earthquake swarm characteristics alone, that the
Erua swarm is a viable forecasting method at Mt. Ruapehu. We have

also discovered evidence for other earthquake sequences, which look
similar to the signal detected prior to the 1995 major eruption at
Erua during periods of inactivity. We also believe that widening
the study area would yield even more earthquake sequences and
that these signals are fairly common in the region. Therefore, we
have shown that the earthquake swarm near the town of Erua (e.g.,
Hurst and McGinty, 1999; Hurst et al., 2018) is not a unique signal
at Mt. Ruapehu.

6.1 Thoughts going forward

The results of this study have significant implications for
understanding the seismic behavior the west of Mt. Ruapehu. By
employing density-based clustering algorithms, we have gained
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a more comprehensive perspective on the spatial and temporal
patterns of earthquake activity. Spatial and temporal clustering has
shown promise as a quick and effective way of detecting earthquake
swarms, particularly within noisy data sets. Retrospective analysis
of earthquake catalogues containing many thousands of events can
be filtered into high-density regions using a couple of lines of
code to call the HDBSCAN algorithm without the necessity of
prior domain knowledge. These regions can then be analysed for
temporal bursts in seismic activity by using DBSCAN, using the
ɛ distance function to calculate distance as time. This is useful
for detecting swarms; however it requires the statistical calculation
of minimum events for a given time window, which can vary
for different systems. Furthermore, the parameter selection for
the HDBSCAN can be very sensitive, producing very different
results for different minimum cluster size parameters. However,
the ability to automatically identify spikes in earthquake rate
over different periods of time revealed interesting results, which
were less sensitive to the initial parameters, and correlated well
with the cumulative seismic rate. Further research could explore
includingmagnitude to the temporal analysis to distinguish between
swarm-like and MS-AS sequences. This may help focus on further
refining our understanding of the relationships between seismic
clusters, volcanic processes, and eruption precursors. Additionally,
the application of advanced machine learning may provide deeper
insights into the complex interplay between seismicity and volcanic
activity in the Mt. Ruapehu region.
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An increase in volcanic thermal emissions can indicate subsurface and surface
processes that precede, or coincide with, volcanic eruptions. Space-borne
infrared sensors can detect hotspots—defined here as localized volcanic
thermal emissions—in near-real-time. However, automatic hotspot detection
systems are needed to efficiently analyze the large quantities of data produced.
While hotspots have been automatically detected for over 20 years with
simple thresholding algorithms, new computer vision technologies, such
as convolutional neural networks (CNNs), can enable improved detection
capabilities. Herewe introduceHotLINK: the Hotspot Learning and Identification
Network, a CNN trained to detect hotspots with a dataset of −3,800 satellite-
based, Visible Infrared Imaging Radiometer Suite (VIIRS) images from Mount
Veniaminof and Mount Cleveland volcanoes, Alaska. We find that our model
achieves an accuracy of 96% (F1-score 0.92) when evaluated on −1,700 unseen
images from the same volcanoes, and 95% (F1-score 0.67) when evaluated
on −3,000 images from six additional Alaska volcanoes (Augustine Volcano,
Bogoslof Island, Okmok Caldera, Pavlof Volcano, Redoubt Volcano, Shishaldin
Volcano). In comparison with an existing threshold-based hotspot detection
algorithm, MIROVA (Coppola et al., Geological Society, London, Special
Publications, 2016, 426, 181–205), our model detects 22% more hotspots and
produces 12% fewer false positives. Additional testing on −700 labeled Moderate
Resolution Imaging Spectroradiometer (MODIS) images fromMount Veniaminof
demonstrates that our model is applicable to this sensor’s data as well, achieving
an accuracy of 98% (F1-score 0.95). We apply HotLINK to 10 years of VIIRS data
and 22 years of MODIS data for the eight aforementioned Alaska volcanoes and
calculate the radiative power of detected hotspots. From these time series we
find that HotLINK accurately characterizes background and eruptive periods,
similar to MIROVA, but also detects more subtle warming signals, potentially
related to volcanic unrest. We identify three advantages to our model over
its predecessors: 1) the ability to detect more subtle volcanic hotspots and
produce fewer false positives, especially in daytime images; 2) probabilistic
predictions provide a measure of detection confidence; and 3) its transferability,
i.e., the successful application to multiple sensors and multiple volcanoes
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without the need for threshold tuning, suggesting the potential for global
application.

KEYWORDS

thermal remote sensing, global volcano monitoring, machine learning, neural network,
eruption forecasting, VIIRS, MODIS, MIROVA

1 Introduction

Volcanic eruptions pose hazards to human life and society
(Loughlin et al., 2015). To mitigate these hazards, volcano
monitoring agencies aim to detect signs of unrest and eruption
as early as possible. Local monitoring stations and remote satellite
observations are commonly used to monitor volcanic unrest (e.g.,
Dehn et al., 2000; Cameron et al., 2018; Girona et al., 2021). Here
we will focus on one satellite-based approach to monitor thermal
unrest: detecting localized volcanic heat emissions, also referred
to as volcanic hotspots. In a single satellite image, hotspots may
be identified as a few pixels of elevated infrared radiance caused
by relatively high temperature volcanic features. Hotspots may
be produced by various types of volcanic activity, including lava
flows (Dehn et al., 2000; Hirn et al., 2009; Blackett, 2013; Harris,
2013; Wright, 2016), explosive and strombolian activity (Harris
and Stevenson, 1997; Coppola et al., 2012; Coppola et al., 2014),
dome growth (Carter et al., 2007; Ramsey et al., 2012; Coppola et al.,
2022), degassing of a hot vent or fumarole field (Oppenhemier et al.,
1993;Harris and Stevenson, 1997; Blackett, 2013; Laiolo et al., 2017),
or increased surface meltwater in the case of glaciated volcanoes
(Pieri and Abrams, 2005; Blackett, 2013; Bleick et al., 2013;
Reath et al., 2016).Therefore,monitoring changes in hotspot activity
can provide key insights into a volcano’s behavior by indicating the
presence of thermal volcanic features and characterizing them over
time. Due to the utility of these observations, thermal satellite data
are used by volcano observatories as part of their daily monitoring
operations (Dehn et al., 2000; Dehn et al., 2002; Harris et al., 2016;
Harris et al., 2017; Cameron et al., 2018; Coombs et al., 2018;
Coppola et al., 2020; Pritchard et al., 2022; Chevrel et al., 2023).
Automating the detection and quantification of volcanic hotspots
can provide near-real time information to volcano observatory
scientists to inform decision-making and provide a mechanism to
generate long time series of thermal activity for volcanoes around the
world. Time series observations are useful for determining baseline
activity, identifying periods of volcanic unrest, characterizing
the thermal evolution of ongoing eruptions, and retrospectively
studying eruptive histories and processes (Dehn et al., 2002;Wright,
2016; Girona et al., 2021; Chevrel et al., 2023; Coppola et al., 2023).

Surface hotspots will result in increased spectral radiance
(Wm-2 sr−1 μm−1) in both Mid-Infrared (MIR, 3–5 μm) and
Thermal-Infrared (TIR, 5–20 μm) wavelengths (Harris, 2013). This
behavior is characterized by Planck’s Law, which states that as the
temperature of a blackbody increases, the spectrum of energy it
emits will increase in radiance, and the peak radiance will shift to
shorter wavelengths (Planck, 1914). Therefore, a volcanic hotspot
can be identified by an elevated TIR radiance above background
and an even greater signal above background in MIR radiance
(e.g., Blackett, 2013; Blackett, 2017). For especially hot surfaces
(>950 K), the peak radiance emission is in the shortwave infrared

(SWIR, 1.4–3 µm) part of the spectrum. The distinct features
produced by hotspots in MIR and TIR bands have been exploited
to automate their detection by different algorithms (Higgins and
Harris, 1997; Pergola et al., 2004; Wright et al., 2004; Ganci et al.,
2011; Coppola et al., 2016; Gouhier et al., 2016; Lombardo, 2016;
Valade et al., 2019; Castaño et al., 2020; Genzano et al., 2020;
Layana et al., 2020; Massimetti et al., 2020; Corradino et al., 2023;
Ramsey et al., 2023).

One of the first algorithms to automate volcanic hotspot
detection, MODVOLC (Wright et al., 2004), applies a threshold to
the Normalized Thermal Index (NTI), constructed from radiance
values of MIR and TIR bands:

NTI = MIR−TIR
MIR+TIR

(1)

MODVOLC flags nighttime pixels with NTI greater than −0.8,
and daytime pixels with NTI greater than −0.55 as hotspots, because
of the large impact of solar reflections andheating ondaytime images
(Wright et al., 2004; Wright, 2016). These thresholds were found by
manual analysis of histograms of NTI at 100 locations to minimize
false positive detections (Wright et al., 2004). Another popular
approach, the MIROVA algorithm, incorporates a new spectral
index in addition to NTI, and spatially filters both spectral indices
to improve hotspot detections (Coppola et al., 2016, further details
on the MIROVA algorithm and its application in this study can
be found in Section 2.4). While these and other algorithms define
their own band indices, ratios, spatial filters, and corrections in
order to accentuate the differences between hotspot and background
pixels, each of these approaches use thresholding to automate the
flagging of hotspot pixels.The ability of each algorithm todistinguish
hotspots from background pixels depends on how successful their
index is in separating the two classes and the accuracy and precision
of the threshold set for that index. MODVOLC and MIROVA
have successfully generated decades long time series of hotspots at
volcanoes across the globe, which has allowed for detection and
monitoring of eruptions in near-real time and the study of thermal
output from different eruptions and volcanic systems (Wright, 2016;
Coppola et al., 2023). Still, both datasets contain false detections
and missed hotspots, due to the fact that there will inevitably be
non-volcanic thermal signals exceeding the set thresholds, and real
volcanic signals lower than the detection thresholds.

In this paper, we aim to enhance the automatic detection
of volcanic hotspots in infrared satellite data by applying a
convolutional neural network (CNN). CNNs are amachine learning
technique commonly employed for image analysis (LeCun et al.,
2010). They have been applied to numerous problems in the field
of computer vision, including to identify cancer cells in MRIs
(El Adoui et al., 2019), facial unlock in cellphones (Apple, 2023),
and reverse image search algorithms (Wan et al., 2014). In our
approach the use of CNNs can be conceptualized as identifying
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hotspots based on what they look like, rather than by thresholding a
particular thermal index. While previous methods employ human
created indices to highlight hotspot pixels, this approach is data-
driven—deriving the spectral and spatial characteristics that define
hotspots from a large labeled dataset of the hotspots themselves.
In this way, the CNN mimics the pattern recognition of a
human analyst.

The type of CNN used here is a U-net (Ronneberger et al.,
2015). U-nets are a popular architecture for image segmentation,
or tasks in which a prediction is made for each pixel in order to
both detect and locate features of interest. A U-net was successfully
applied to volcanic hotspot detection in data from the Advanced
SpaceborneThermal Emission andReflectionRadiometer (ASTER),
achieving a high accuracy (Corradino et al., 2023). In this study,
we apply a similar method to data from the Visible Infrared
Imaging Radiometer Suite (VIIRS) and Moderate Resolution
Imaging Spectroradiometer (MODIS) satellite sensors. Although
ASTER has a finer spatial resolution (90 m in TIR bands, used in
Corradino et al., 2023) than VIIRS (375 m) and MODIS (1,000 m),
we chose to apply this methodology to VIIRS and MODIS data
due to their high acquisition rates and MIR and TIR bands. High
acquisition rates result in more frequent opportunities to detect
and track changes in volcanic unrest. At the time of this writing,
VIIRS sensors provide coverage of each Alaska volcano 8–15 times
per day, while MODIS sensors provide coverage 1–6 times per day.
Volcanoes at higher latitudes are imaged more frequently than those
at lower latitudes by the polar-orbiting satellites used here. Detection
frequency will increase in the future with the planned launch
of additional VIIRS instruments. Although MODIS has a coarser
spatial resolution than VIIRS, it has a longer operational history
(satellites Terra and Aqua launched in 1999 and 2002, respectively),
so it is useful for studying eruptions prior to the launch of VIIRS
(Suomi-National Polar-Orbiting Partnership, SNPP, launched in
2011, and National Oceanic and Atmospheric Administration 20,
NOAA-20, launched in 2017).

We incorporate data from eight Alaska volcanoes with a
wide range of volcanic thermal signals to develop and test
our model for broad applicability to many volcanic settings
(Table 1). Alaska volcanoes have frequent eruptions, but are very
remote, necessitating remote sensing as a primary method for
eruption monitoring, forecasting, and response. We use images of
Mount Veniaminof (Alaska) acquired between 2018–2019 covering
an effusive-explosive eruption, and images of Mount Cleveland
(Alaska) between 2017–2018 with coverage of lava dome growth
in order to train our model. The Mount Veniaminof eruption
captures high temperature basaltic lava flows into a large, ice-filled
caldera (Loewen et al., 2021). Mount Cleveland activity consists of
explosions, dome growth, and degassing within the summit crater
of a stratovolcano (Werner et al., 2017). These volcanoes are quite
different in terms of morphology, eruption style, and governing
subsurface processes. They also differ in the source of hotspot
detections, namely lava surrounded by ice at Mount Veniaminof,
versus hot rock surrounded by cold rock at Mount Cleveland. These
source differences result in hotspots that may differ slightly in
intensity and appearance, leading to a more robust model than it
would be if trained on just one of these volcanoes alone.

The other six volcanoes in this study are used for model
testing, and were chosen to comprise a wide range of edifice

morphologies, magma compositions, eruption frequencies, and
eruption styles. These include the frequently erupting and typically
mafic volcanoes Okmok Caldera, Shishaldin Volcano and Pavlof
Volcano, and the less frequently erupting and typically more
silicic volcanoes Augustine Volcano, Bogoslof Island, and Redoubt
Volcano. Importantly, all have erupted since the launch of the
MODIS sensors. Although our development is focused in Alaska,
the volcanoes compiled here range widely in terms of the thermal
signatures we expect to identify and the meaning of those signatures
in terms of eruptive potential. This dataset can help to evaluate the
effectiveness of themodel across volcanic systems, and inform future
application of the model.

We call the final version of our trained U-net model HotLINK:
the Hotspot Learning and Identification Network. After testing
and training, HotLINK is applied to VIIRS data from 2012–2022
and MODIS data from 2000–2022 for the eight target volcanoes.
The result of these analyses are 22 years of hotspot detections
for these volcanoes, 10 years of which have both VIIRS and
MODIS observations. We also implement an optimized version of
the MIROVA algorithm for our target volcanoes to compare the
performance of the machine learning and thresholding approaches.
We choose to compare our results with MIROVA because it is one
of the most widely used algorithms for global volcanic hotspot
monitoring, and was already familiar to the authors. Through this
work we hope to improve the accuracy of hotspot detections in
infrared satellite data and share our methodology so that it can be
applied elsewhere. We aim to address the questions: 1) is a CNN
approach able to detect volcanic hotspots in infrared data better
than a thresholding approach? 2) Can a computer vision model
trained on VIIRS data be reasonably applied to MODIS data with
a different resolution? 3) What are the limitations of HotLINK in
terms of generalizability to other volcanoes, and detection limits
for VIIRS and MODIS, night and daytime images? For each
detectionwe calculate radiative power to quantify the heat emissions
over the 22-year study period for the target volcanoes. We then
discuss the capabilities and limitations of this approach for volcano
monitoring.

2 Methodology

Our model takes as input a VIIRS or MODIS image with MIR
and TIR bands, and outputs the probability that each pixel in a
central region of the scene contains a volcanic hotspot. Once a
hotspot is detected we calculate the total volcanic radiative power
(RP in Watts) and area (m2) of the hotspot. The methodology
applied here involves the use of four separate VIIRS datasets to: 1)
train the network, 2) validate hyperparameter selection (i.e., tuning
parameters that configure the model and training, as opposed to
parameters that are used within the model to make predictions),
3) test the model’s accuracy when applied to new volcanoes, and
4) analyze detections and calculate RP for each volcano over an
extended time period. Each of these four datasets (with names
italicized above) is assembled for the VIIRS sensor, and additional
test and analysis datasets are assembled for the MODIS sensor to
produce six datasets in total (Table 2).

HotLINK is trained to detect hotspots in VIIRS infrared images
on a manually labeled dataset (VIIRS training) of 3,783 images
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TABLE 1 Volcanoes used in this study, in order from west to east. Eruption dates and eruption styles are composited from information available on the
Alaska Volcano Observatory website (www.avo.alaska.edu/).

Volcano Eruptive styles Eruptions within study period (2000–2022)

Mount Cleveland Explosive, dome-building 2001, 2005, 2006, 2007, 2009, 2010, 2011, 2013, 2014, 2016, 2017, 2019, 2020

Okmok Caldera Explosive, phreato-magmatic 2008

Bogoslof Island Phreato-magmatic, explosive, dome-building 2016–2017

Shishaldin Volcano Effusive, explosive 2004, 2014–2015, 2019–2020

Pavlof Volcano Explosive, effusive 2007, 2013, 2014, 2016, 2021

Mount Veniaminof Effusive, explosive 2002, 2004, 2005, 2006, 2008, 2009, 2013, 2018, 2021

Augustine Volcano Explosive, dome-building 2006

Redoubt Volcano Explosive, dome-building 2009

TABLE 2 Datasets used in this study.

Dataset Labeled Volcanoes (dates) Number of images

VIIRS Training By pixel Mount Veniaminof (2018), Mount
Cleveland (2018–2019)

3,783

VIIRS Validation By pixel Mount Veniaminof (2018), Mount
Cleveland (2018–2019)

1,275

VIIRS Test By image Okmok Caldera, Shishaldin Volcano,
Augustine Volcano, Redoubt Volcano,
Pavlof Volcano, Bogoslof Island (Mar,
Jun, Sep, and December 2017)

3,280 (includes 66 ambiguous images
moved from the VIIRS validation
dataset)

VIIRS Analysis None Mount Veniaminof, Mount Cleveland,
Okmok Caldera, Shishaldin Volcano,
Augustine Volcano, Redoubt Volcano,
Pavlof Volcano, Bogoslof Island
(2012–2022)

160,497

MODIS Test (Aqua) By image Mount Veniaminof (2018) 634

MODIS Analysis (Aqua and Terra) None Mount Veniaminof, Mount Cleveland,
Okmok Caldera, Shishaldin Volcano,
Augustine Volcano, Redoubt Volcano,
Pavlof Volcano, Bogoslof Island
(2000–2022)

385,426

of Mount Veniaminof and Mount Cleveland volcanoes. We opt
for a manual labeling approach because our goal is to create an
automated system that simulates the manual hotspot identification
which is done on a daily basis by duty satellite scientists at the Alaska
Volcano Observatory (AVO). The same training dataset is used to
optimize the thresholds of the MIROVA algorithm (Coppola et al.,
2016), and results from both the optimized implementation of
the MIROVA algorithm and HotLINK are compared using the
same validation dataset, which consists of 1,275 images from the
same volcanoes. After training and validation, the accuracy of
the model is estimated by applying it to the VIIRS test dataset,
which is also manually labeled and consists of images from the
six other Alaska volcanoes (Figure 1): Okmok Caldera, Shishaldin

Volcano, Augustine Volcano, Redoubt Volcano, Pavlof Volcano, and
Bogoslof Island.

Although HotLINK is only trained on VIIRS data, we test
its applicability to MODIS data simply by inputting the MODIS
test dataset into the VIIRS-trained HotLINK model. Data pre-
processing for MODIS follows all of the same steps as for VIIRS
data (see Section 2.1). Finally, HotLINK is used to detect volcanic
hotspots in 10 years of VIIRS data (VIIRS analysis dataset) and
22 years of MODIS data (MODIS analysis dataset) from all eight of
the previously mentioned Alaska volcanoes. A subset of the MODIS
analysis dataset (MODIS test data, manually labeled for Mount
Veniaminof) is reviewed and used to estimate the accuracy of the
model when applied to MODIS.
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FIGURE 1
Volcanoes used in this study. The map in the center shows all volcano locations in Alaska. Numbered images shows high-resolution satellite data of the
volcanoes at various zoom levels, from west to east 1) Mount Cleveland, 2) Okmok Caldera. 3) Bogoslof Island, 4) Shishaldin Volcano, 5) Pavlof
Volcano, 6) Mount Veniaminof, 7) Augustine Volcano, and 8) Redoubt Volcano. Satellite data are from Sentinel-2 and composited by CalTopo to
provide cloud-free viewing.

2.1 Dataset pre-processing

The pre-processing for all VIIRS and MODIS datasets is
the same. First, files containing any of the 8 target volcanoes
are downloaded using the Atmosphere Science Investigator-
led Processing System API (sips.ssec.wisc.edu) or NASA
Earthdata portal (search.earthdata.nasa.gov). Next, terrain and
atmospherically corrected radiance data (level 1b) are resampled
onto a uniform grid of 64 x 64 pixels centered on the volcano
using the nearest neighbor resampling method and the nadir pixel
resolution. For VIIRS this corresponds to an area of roughly 24
× 24 km2 and for MODIS this is an area of 64 × 64 km2. We use
VIIRS image bands I4 (3.55–3.93 μm, MIR) and I5 (10.5–12.4 μm,
TIR), and MODIS bands 21 (3.929–3.989 μm, MIR) and 32
(11.77–12.27 μm, TIR). Spectral radiance values have the pixel area
(m2), spectral bandwidth (m), and angular aperture (steradians)
factored out of the raw radiative power measurement (W), which
allows for direct comparison between data from the two sensors,
and normalization using the same factors.

Spectral radiance values (L) are normalized to the
minimum (Lmin) and maximum (Lmax) possible radiance
values for the VIIRS sensor, as determined by scale and offset
factors (available in the VIIRS level-1b product user guide;
NASA Goddard Space FlightCenter, 2018). Physically,Lmin andLmax
represent the limits of the sensor, and possible retrieval values are
always within this range. Although the true radiance may be outside
this range, the sensor will always return at least Lmin andwill saturate
at values greater than Lmax (NASA Goddard Space Flight Centere,

2018). The equation used to normalize the spectral radiance data is
as follows:

Lnorm =
L− Lmin

Lmax − Lmin
(2)

Normalization is important to prevent issues with vanishing or
exploding gradients which would make it difficult for the CNN
model to converge on a solution (Sola and Sevilla, 1997). We use
the same Lmin and Lmax for both VIIRS and MODIS data despite the
sensors having different minimum and maximum possible spectral
radiance values. This is because once the model has been trained
on spectral radiance data normalized to a certain range, it must
be applied to data normalized in the same way. Lastly, since VIIRS
data saturates at a lower spectral radiance than MODIS data, some
exceedingly rare MODIS pixels have values higher than one after
normalization (<0.002% of pixels in the MODIS test dataset). To
remedy this, values are capped at a maximum value of one.

The VIIRS training and validation datasets are assembled by
collecting all (day and night) VIIRS data from the SNPP and
NOAA-20 satellites with coverage of Mount Veniaminof for the
year of 2018 and NOAA-20 VIIRS data (only) with coverage of
Mount Cleveland for both 2017 and 2018. These volcanoes and
time frames were selected to encompass background non-eruptive
behavior, increasing unrest, and eruption. From this dataset, 75%
of images are grouped into the VIIRS training dataset, and the
remaining 25% are put into the VIIRS validation dataset. The
validation dataset is smaller because it is only used to ensure the
model is not overfitting, and a representative population is sufficient.

Frontiers in Earth Science 05 frontiersin.org77

https://doi.org/10.3389/feart.2024.1345104
http://sips.ssec.wisc.edu
http://search.earthdata.nasa.gov
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Saunders-Shultz et al. 10.3389/feart.2024.1345104

FIGURE 2
Classified example images. (A) Sentinel-2 visible RGB image (enhanced natural color visualization) of the ice-filled summit caldera and central cone.
The classes of MIR VIIRS images used while training our model shown are (B) inactive–not containing a volcanic hotspot as identified by a human
analyst, (C) active–containing a volcanic hotspot, and (D) ambiguous, which could not be confidently categorized into either class. All examples are
nighttime images, showing the same cropped region of Mount Veniaminof (24 by 24 km). Note that images C and D have the same color mapping, but
image B is scaled differently. Color bars show the range of radiance values in each image.

Whereas the training dataset is larger because data in this group
is used to actually train the model, and more data results in better
model performance. The grouping between these two datasets is
done randomly, with the exception that each image is grouped
together with its closest temporal neighbor, since overpasses of
SNPP and NOAA-20 satellites can be within −45 min of each other.
This prevents having one image in the training dataset and a nearly
identical image in the validation dataset.

Images aremanually classified into three groups: “active” defined
as images containing a volcanic hotspot, “inactive” or imageswith no
volcanic hotspot, and “ambiguous,” where we cannot conclusively
identify whether or not the image contains a volcanic hotspot
(Figure 2). Next, all hotspot pixels within the active-labeled images
are identified to construct pixel-wise masks. The ambiguous images
are not used for training or validation since we only want images we
can characterize with confidence in those datasets. All ambiguous
images from the VIIRS validation and training datasets are moved
into the VIIRS test dataset, which can have images of any class (66
ambiguous images in total are moved). The final training dataset
contains 3,783 images and the final validation dataset contains 1,275
images. In both the VIIRS training and validation datasets, 45% of

images are of Mount Veniaminof, 55% are of Mount Cleveland, and
32% of the total are classified as active.

To evaluate how well the model generalizes to other volcanoes
not used in training, a test dataset is assembled consisting of
4 months (March, June, September, and December 2017) of VIIRS
data for the six additional Alaska volcanoes (Augustine Volcano,
Bogoslof Island, Okmok Caldera, Pavlof Volcano, Redoubt Volcano,
and Shishaldin Volcano).Thesemonths are chosen from throughout
the year to capture the full extent of Alaska’s seasonal variations.
Of our target volcanoes, only Bogoslof Island had an eruption
during 2017, so few volcanic hotspots are expected in the VIIRS
test dataset. Although choosing data from different volcanoes or
times could have yielded more hotspot detections, the volcanoes
were chosen with the aim of facilitating future interdisciplinary
analysis, and the time period was chosen to ensure standardization
across all volcanoes. The resulting dataset is a good indicator of the
model’s performance when applied to new volcanoes during typical
conditions. Images in the test dataset are also manually classified
as active, inactive, or ambiguous, but not further classified on a
pixel-wise basis. Therefore, the VIIRS test dataset is only used to
test the ability of the model to detect images containing hotspots,
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not whether it accurately retrieves all of the pixels associated with
the hotspot.

TheVIIRS analysis dataset consists of the remaining (unlabeled)
data, which are analyzed by the trained model and used to generate
a hotspot detection time series from 2012–2022 for each of the eight
volcanoes in this study. It is the largest VIIRS dataset of our study,
consisting of 160,497 individual images of the volcanoes. Note that
the VIIRS analysis dataset encompasses data that is already a part of
the VIIRS training, validation, and test datasets.

We generate additional MODIS test and analysis datasets in
order to test the applicability of our model to MODIS data, compare
time series results for VIIRS and MODIS, and extend the time
series of detections back to the year 2000. The MODIS test dataset
consists of all 2018 MODIS data from the Aqua satellite of Mount
Veniaminof classified by image. This volcano and time period were
chosen for the MODIS test dataset to encompass a known eruption
at Mount Veniaminof that was included in the VIIRS training data.
The MODIS analysis dataset consists of all MODIS data from both
Aqua and Terra satellites from 2000 to 2022 with coverage of the
eight target volcanoes.

2.2 U-net architecture and training

CNNs utilize 3 × 3 (or other sized) matrices, known as
convolution kernels, to search for specific patterns within an image
(LeCun et al., 2010). The kernel is moved across the image and
multiplied with each 3 × 3 subsection to create a new filtered image
that shows the degree of correlation between the features of the
kernel and the image. This allows the network to identify and locate
specific spatial patterns within the image. By stackingmultiple layers
of convolutions, the network is able to detect increasingly larger and
more complex features. At first the network’s kernels are populated
randomly, but through an iterative training process the kernels are
adapted to identify spatial patterns optimized for the task at hand.

Training a CNN involves inputting batches of labeled images
into the model. As each image is passed into the model the
probabilistic prediction (initially computed by the randomly
initialized kernels) is compared to the truth value (the class of
each pixel), which is known by prior manual analysis. Then a
value, the “loss,” is calculated to quantify how well the model
prediction compares to the truth value. This is calculated by the
“loss function,” which, in simple terms, is a quantitative measure
of how poorly the model performs—so, a lower loss score indicates
better performance. Importantly, the loss function is differentiable
with respect to the model—meaning that the gradient of the loss
function can be calculated for the entire model. The gradient is
very high dimensional, with a value for each trainable parameter
of the entire model. By taking a small step in the direction of the
gradient, each parameter of the model is adjusted slightly in the
optimal direction to decrease the loss, which thereby increases the
performance. With each pass over the training dataset, or epoch,
each parameter is adjusted slightly, the loss decreases, and the
performance of the model improves. This iterative training process
is called gradient descent, since the model is descending step-by-
step down the gradient of the loss function with the goal of reaching
a local minimum. For a more comprehensive explanation of the

training, underlying mathematics, and applications of CNNs, see
LeCun et al. (2010).

We chose a U-net CNN architecture, because it allows for
predictions to be made in the same resolution as the input (Figure 3;
Ronneberger et al., 2015). This allows individual pixels to be flagged
as hotspots or not. The input for our model is normalized radiance
data from the MIR and TIR bands of the VIIRS or MODIS sensor,
resampled to uniform resolution and cropped to 64 × 64 pixels
centered on the main vent of the volcano of interest (64 × 64 pixels
and 2 channels). The output is the probability that each pixel in a
central area of the input belongs to one of three classes: background,
hotspot, or hotspot-adjacent (24 × 24 pixels and 3 classes). The third
class of pixels, hotspot-adjacent, helps the model to train faster;
these pixels are considered background pixels during validation and
testing. The output region is smaller than the input, due to the
fact that convolutions of border pixels are undefined, resulting in
a smaller image after each convolution. We consider that a 24 × 24
area of pixels is sufficient for detecting most hotspots (9 × 9 km2 for
VIIRS, and 24 × 24 km2 for MODIS), but acknowledge that it may
miss distal regions of large lava flows, or eruptions which occur far
from the main vent.

Many additional parameters can be adjusted in order to alter
the architecture, training, or functionality of the model—these
are referred to as hyperparameters. We experimented with many
of these, selecting the hyperparameters which result in the best
performance (as measured by the validation dataset). Parameters
that we tested include the random seed and distribution used to
initialize the kernels (Glorot and Bengio, 2010), the number of
convolutional filters used in each layer (i.e. the width of each
rectangle in Figure 3), the gradient descent algorithm (Kingma and
Ba, 2014), and the number of training epochs. We also tried many
techniques to address the class imbalance in our training dataset.
In the VIIRS training dataset approximately 25% of images contain
a hotspot, while the remaining 75% do not. We explored several
methods to mitigate the effects of the class imbalance, including:
oversampling images with hotspots, undersampling the background
images, using class weights, and using simple image augmentations
to generate more training samples (details in the appendix). Out of
all these methods explored, only the image augmentation resulted
in an increase in model performance. The rest of this paper
only describes the final model, referred to as HotLINK, which
uses the best hyperparameters found through dozens of training
iterations.

HotLINK is trained on theVIIRS training dataset for 250 epochs,
which is the point when the loss ceases to decrease for the validation
dataset. During training, input images are augmented using 90°
rotations and flips applied randomly after each epoch using the
Albumentations library (Buslaev et al., 2020). This produces eight
unique orientations for each original input image, which helps the
model to learn only the most relevant features for prediction. The
model is trained using the Adam optimizer (Kingma and Ba, 2014)
with a sparse categorical cross entropy loss function, both of which
are a part of the TensorFlow Python library (Abadi et al., 2015).
Our U-net took −2 h to train on a 6-core Intel i7 processor, and
after training makes predictions at an average rate of −5 images
per second. Further details on the specific hyperparameters used
in the training of the HotLINK model can be found in the code
itself, available in the appendix and on GitHub (Saunders-Shultz,
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FIGURE 3
Steps of HotLINK processing: pre-processing, prediction with the U-net, and post-processing of a hotspot detection. Blue and tan rectangles of the
U-net diagram represent data, the dimensions of which are labeled and denoted by the shape of the rectangles. For example, the input is [64 x 64 x 2]
pixels and the output is [24 x 24 x 3] pixels. Note that at each convolution step the height and width of the data are decreased by two, since
convolutions on the perimeter pixels are undefined. This progressive loss of perimeter pixels results in a prediction area significantly smaller than the
input area. For further description of the motivation and function of the U-net architecture, see Ronneberger et al. (2015).

2023). Although we found these hyperparameters to work best
for our problem, they may require modification for other hotspot
detection applications.

2.3 Validation and testing

During the training process, we use the validation dataset
to try out many different versions of the model in order to

test which architectures, model hyperparameters, etc., result in
the best hotspot predictions. This process also helps to ensure
that the model is learning patterns that are applicable to unseen
data and not overfitting. Validation data are also used to tune
threshold parameters applied to the output probability maps,
and to compare HotLINK and our optimized application of
the existing threshold-based algorithm, MIROVA (Coppola et al.,
2016). To assess how the trained and validated model performs
on new data, we use the test dataset, which is composed
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entirely of images from volcanoes the model has not seen
during training.

We use two main metrics during validation and testing to
evaluate HotLINK and MIROVA’s performance: accuracy and F1-
score. Accuracy is simply the percentage of images correctly
identified by the model. It is defined as:

Accuracy = TP+TN
TP+TN+ FP+ FN

(3)

where TP, TN, FP, and FN refer to the number of true positives (true
hotspot detections), true negatives (true background detections),
false positives (erroneous hotspot detections), and false negatives
(missed volcanic hotspot detections), respectively, generated by the
model. However, accuracy may not be the most appropriate metric
for imbalanced datasets, which have higher proportions of some
classes than others. For example, in this study a high percentage of
images do not contain a volcanic hotspot.Therefore, a high accuracy
could be achieved simply by predicting no hotspots in any image.
A better metric for evaluating model performance in cases with
imbalanced datasets is the F1-score (Ferri et al., 2009), defined as:

F1 =
TP

TP+ 1
2
(FN+ FP)

(4)

The F1-score rewards true positive results and equally punishes
false positives and false negatives, while true negatives have no
impact on the score. Although our model predicts whether or
not each pixel comprises a hotspot, accuracy and F1-scores are
calculated on an image-wise basis. Image-wise metrics are used to
evaluate the model’s ability to detect a hotspot, because image-wise
labelling is faster allowing us to create largervtest datasets (Table 2).
The training dataset is labeled for each pixel, since theU-net requires
every pixel to be labeled in order to train.

Another way to compareHotLINK and our optimizedMIROVA
algorithm is by using receiver operating characteristic (ROC) curves,
which provide a graphical means to characterize the effectiveness
of binary classification models (Figure 4). For a given index or
predicted probability, an ROC curve plots the true positive rate
against the false positive rate achieved by thresholding at different
values. In this way it shows the tradeoff between false positives and
true positives. For example, setting a low threshold will achieve
a high true positive rate at the expense of more false positives,
and setting a high threshold will achieve a low true positive rate
while providing fewer false positives. ROC curves plot a model’s
performance at all possible thresholds, thereby showing a particular
model’s ability to identify hotspots with low FP and FN rates.
The ROC curve comparison of HotLINK and MIROVA is further
discussed in Section 3.3.

2.4 MIROVA optimization on the VIIRS
training dataset

In order to test the performance of HotLINK, we compare our
results to the MIROVA algorithm, which was originally developed
for use with MODIS data (Coppola et al., 2016). The MIROVA
algorithm has already been applied to VIIRS data (Campus et al.,
2022, using moderate resolution bands; Aveni et al., 2023, using
the same image bands used here). However, these studies use the

FIGURE 4
Receiver Operating Characteristic (ROC) curve applied to HotLINK and
the adapted MIROVA algorithm. HotLINK probabilities are shown in
blue, MIROVA prediction is red, and the different indices used in
MIROVA are the thinner dashed lines. Preferred classifiers have a high
true positive rate (TPR) and low false positive rate (FPR). Note that
MIROVA consists of two straight lines because it produces just a
binary output.

original thresholds of theMIROVAalgorithm that were designed for
usewithMODISdata. SinceVIIRS andMODIShave different spatial
resolutions and slightly different spectral bands, it is possible that the
original thresholds could be improved for use with VIIRS data. To
make a fair comparison between MIROVA’s threshold methodology
and our model, we optimize the thresholds of the MIROVA
algorithm using a grid search over the same VIIRS training dataset
that is used to train HotLINK. By using the same training dataset
to tune each model and the same validation dataset to evaluate
them, we ensure a fair and consistent benchmark between the
two approaches. This allows for an unbiased comparison, ensuring
that any observed performance differences can be attributed to the
inherent capabilities of eachmodel rather than variations in the data
they are applied to.

MIROVA employs three thresholds (C1, C2, and K) on multiple
indices calculated from the MIR and TIR spectral bands. These
indices are the Normalized Thermal Index (NTI), Enhanced
Thermal Index (ETI), spatially filtered versions of the first two
indices called dNTI and dETI, and the Z-scores of dNTI and
dETI. These indices are designed to increase the contrast between
hotspot and background pixels, by combining spectral information
at each pixel (indices NTI and ETI) with spatial information from
surrounding pixels (indices dNTI and dETI) and the scene as a
whole (ZdNTI and ZdETI). A full description of the algorithm and
definitions of indices are presented in Coppola et al. (2016). In brief,
pixels are flagged as active if the index NTI is greater than the
threshold K, or if the indices dNTI, dETI, and the Z-scores of both,
surpass the C1 and C2 thresholds, respectively:

(NTI > K) or

((dNTI > C1) or (ZdNTI > C2)) and ((dETI > C1) or (ZdETI > C2))
(5)

In order to optimize MIROVA for use with VIIRS data, we
conduct separate grid-searches for nighttime and daytime data to
define new threshold values forC1 andC2,whichminimize the error
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rate on images within the VIIRS training dataset. The daytime grid
search is conducted between C1 values of 0.0–0.29 with a stepsize
of 0.01, and C2 values of 2.0–11.75 with a stepsize of 0.25. The
nighttime samples are more sensitive to the C1 threshold so we use
a finer stepsize of 0.005 and smaller range of 0.0–0.095. The C2
range and stepsize remain the same for the nighttime grid search.
At each step the accuracy of MIROVA using specific thresholds is
calculated. The K threshold was not optimized because it was found
to have little effect on the pixel selections made by the algorithm,
so it was left as the default value of −0.8 for nighttime images and
−0.6 for daytime images. Default MIROVA values for daytime data
are C1=0.02 and C2=15, and for nighttime data are C1=0.003 and
C2=5. With our grid search we found the highest accuracy using
values of C1=0.11 and C2=6.25 for daytime data, and C1=0.075 and
C2=5.25 for nighttime data (see Supplementary Figures A.3 and A.4
in the appendix for visualization of both grid searches). The grid
searches demonstrate that slight changes to threshold values can
result in slight increases in the performance of MIROVA, at least
when applied to our particular dataset.

2.5 Hysteresis thresholding and radiative
power calculation

Some final considerations for implementing the model are
choosing how to threshold pixels in the output probability map
(Figure 3), and then calculating useful metrics for each detection
to better track changes in volcanic thermal emissions over time.
Although each pixel is predicted with an individual probability, we
recognize that a pixel ismore likely to be a hotspot if it is adjacent to a
hotspot pixel. For that reason,we implement hysteresis thresholding,
in which a high threshold is used to initialize hotspot detections and
a lower threshold is used to continue them. Here, all pixels with a
probability greater than 0.5 are classified as hotspots, and pixels with
a probability greater than 0.4 are classified as hotspot pixels if they
are adjacent to other hotspot pixels. The high threshold is set by
optimizing the validation dataset for image F1-score, and then the
low threshold is set by optimizing for pixel-wise F1-score. To clarify,
thesemetrics are chosen because only the high threshold determines
which images are active, while the low threshold determines which
pixels within the image are active.

Once active images are detected and all hotspot pixels within
those images are identified, radiative power (RP) is calculated
following the method of Wooster, (2003), using the following
formula:

RP = C×Apix ×
n

∑Lpix − LBG (6)

where RP is the radiative power measured in Watts, C is a constant
of proportionality that is specific to the sensor (sr−1µm−1, 18.9
for MODIS and 17.34 for VIIRS), Apix is the area of the pixel in
kilometers squared (1 km2 for MODIS, 0.14 km2 for VIIRS), n is
the number of pixels in the hotspot, Lpix is the radiance of each
hotspot pixel (Wm−2sr−1µm−1), and LBG is the mean radiance of
pixels directly surrounding the hotspot detection (Wm−2sr−1µm−1,
following the established methods of Wooster, 2003). RP is a
measure of how much energy is released over the entire hotspot,
and includes corrections for pixel size, central wavelength, and

background radiance. Since pixel size and central wavelengths are
different for VIIRS and MODIS, using RP allows us to make direct
comparisons between the two sensors.

3 Results

3.1 Validation and test results

Results on the VIIRS validation dataset (Table 3) show that the
final model works well when applied to data that has not been seen
during training but comes from the same volcanoes. Specifically,
both Mount Veniaminof and Mount Cleveland validation data yield
model accuracies >95% and F1-scores >0.9.

On the VIIRS test dataset, which includes data from the six
volcanoes that themodel has not seen previously, HotLINK achieves
a relatively low F1-score of 0.667 (Table 3). This seemingly poor
performance is best explained by the lack of true hotspots in the
dataset used; out of the six volcanoes, only Bogoslof Island erupted
during the sampling period of the test dataset (Table 2). Since F1-
score is mainly a function of true positive detections we achieve
a poor score on most of the volcanoes since there were not many
true hotspots to detect. False negative and false positive rates on all
datasets do not exceed 4%, except for the Augustine Volcano false
negative rate, which is 7.9%.

3.2 HotLINK results on MODIS test data

The MODIS test dataset consists of all Mount Veniaminof data
from the Aqua satellite in 2018, including 634 images in total.
HotLINK achieves an accuracy of 98% on the MODIS test dataset,
and an F1-score of 0.95 (Table 3). Unexpectedly, this performance
is better than the model performs on VIIRS data. In section 4.3 we
discuss a possible explanation for this.

3.3 HotLINK and adapted MIROVA
algorithm results on the VIIRS validation
dataset

The VIIRS validation dataset is used to compare the results
of HotLINK and the optimized MIROVA algorithm after both
models are trained/optimized with the VIIRS training dataset. On
the validation dataset, we find that HotLINK outperforms our
implementation of the MIROVA algorithm in all metrics (Table 4).
Specifically, HotLINK produces more true positives (fewer missed
detections), and more true negatives (fewer false detections) than
the MIROVA approach. Both methods score higher on nighttime
data than daytime data. The conditions under which each model
performs best is further discussed in Section 4.4.

The ROC curve (Figure 4) further demonstrates that HotLINK
(blue line) outperforms the MIROVA algorithm implementation
(red line) with respect to true and false positives. In this plot,
preferred classifiers have a high true positive rate (TPR) and low
false positive rate (FPR). So better classifiers are those which plot
further into the top left corner. These results show that HotLINK
performs better than the overall optimized MIROVA algorithm,
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TABLE 3 HotLINK results on training, validation, and test datasets. Metrics shown are: accuracy, F1-scores, ratio of True Negatives, True Positives, False
Negatives, and False Positive detections, and the total count of images used to calculate the metrics. Each row shows the average of all volcanoes first,
and then specific values for each volcano in the dataset. Note that ambiguous images (195 total) are removed prior to this analysis.

Dataset Accuracy F1-score TN TP FN FP Count

VIIRS Training 0.952 0.914 0.698 0.254 0.031 0.017 3,781

 Mount Cleveland 0.962 0.898 0.795 0.167 0.017 0.021 1,551

 Mount Veniaminof 0.945 0.920 0.631 0.314 0.041 0.014 2,230

VIIRS Validation 0.962 0.923 0.731 0.231 0.022 0.016 1,275

 Mount Cleveland 0.977 0.933 0.820 0.157 0.011 0.011 527

 Mount Veniaminof 0.951 0.919 0.668 0.282 0.029 0.020 748

VIIRS Test 0.947 0.667 0.908 0.049 0.024 0.019 2,956

 Augustine Volcano 0.914 0.172 0.901 0.009 0.079 0.011 547

 Bogoslof Island 0.955 0.892 0.765 0.189 0.024 0.022 460

 Okmok Caldera 0.956 0.512 0.927 0.024 0.024 0.026 468

 Pavlof Volcano 0.974 0.723 0.936 0.037 0.008 0.019 483

 Redoubt Volcano 0.919 0.608 0.940 0.040 0.002 0.019 530

 Shishaldin Volcano 0.979 0.444 0.970 0.009 0.002 0.019 468

MODIS Test (Mount
Veniaminof)

0.981 0.954 0.786 0.195 0.019 0.0 646

TABLE 4 Comparison of HotLINK and the adapted MIROVA algorithm on the VIIRS validation dataset. Metrics shown are: accuracy, day/night/combined
F1-scores, and ratio of True Negatives, True Positives, False Negatives, and False Positive detections.

Model Accuracy F1-score Night
F1-score

Day
F1-score

TN TP FN FP

HotLINK 0.962 0.923 0.929 0.916 0.731 0.231 0.022 0.016

Adapted
MIROVA
algorithm

0.921 0.834 0.894 0.765 0.722 0.198 0.054 0.025

as well as all of the individual indices used by the MIROVA
algorithm (thin dashed lines) with respect to TPR and FPR.
This indicates that HotLINK is able to better differentiate hotspot
and background pixels in comparison with individual indices,
regardless of threshold selection. This is due to the CNN’s ability to
extract additional spatial information compared to manually tuned
spatial filters.

3.4 Time series results

After applying HotLINK to the validation and test datasets,
we apply HotLINK to the VIIRS and MODIS analysis datasets.
This provides 10 years of VIIRS and 22 years of MODIS hotspot

detections for the eight target alaska volcanoes. These results can be
found in Figure 5. Despite being unlabeled, these results can help
provide a qualitative check on the effectiveness of the model when
applied to different volcanoes experiencing background, unrest, or
eruptive behavior. All detections found in this dataset are plotted as
time series in Figure 5, with the Alaska Volcano Observatory (AVO)
Aviation Color Code as the background color. In this analysis we
use the AVO Aviation Color Code as a proxy for the state of activity
of the volcano. A color code of “green” is used to indicate that a
volcano is at a background non-eruptive state, “yellow” indicates
increasing unrest with the possibility of an eruption in the future,
“orange” indicates that effusive or low-level explosive eruptions are
occurring or are expected in the immediate future, “red” indicates
a significant explosive eruption is occurring or imminent, and
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“unassigned” (colored as gray in Figures 5, 7) indicates that there
is insufficient ground-based monitoring data to assign a color code
(Guffanti and Miller, 2013). While accuracy metrics are useful, the
time series plots demonstrate the utility of HotLINK in practical
applications. Figure 5 illustrates that HotLINK succeeds at detecting
eruptions, which are accompanied by significant increases in the
frequency and RP of detected hotspots. This figure also shows
patterns of potential false positive detections during non-eruptive
periods at all volcanoes, which are discussed in the following
paragraphs.

Mount Cleveland erupts frequently, as indicated by many
periods of orange color code in the timeline (Figure 5), which
represent lava dome eruptions and other elevated activity (e.g.,
Werner et al., 2017). The Mount Cleveland time series shows
numerous hotspot detections, which aremuchmore frequent during
periods of orange color code compared to when the color code is
unassigned.

Okmok Caldera had only one eruption during our analysis
period, in 2008.OnlyMODIS data is available for this eruption, from
which there was one nighttime and three daytime detections during
the eruptive period all with RP values >5 MW. Steady detections
occur in VIIRS night and daytime data at Okmok Caldera,
which we infer may be due to the presence of lakes within the
caldera.

At Bogoslof Island we see a strong seasonal trend, in which
VIIRS daytime detections and associated RP increase in the summer
and decrease during winter. These seasonal trends are observable
both before and after the 2017 eruption, but are stronger post-
eruption. The 2016–2017 Bogoslof Island eruption is captured well,
with VIIRS nighttime detections producing higher RP values than
at any other time.

At Shishaldin Volcano, extended eruption periods from
2014–2016 and 2019–2020 are tracked well by HotLINK
detections. The onset of these eruptions are accompanied
by significant increases in the rate and RP of detections,
and the end of eruptions are accompanied by a return to
background values.

Pavlof Volcano eruptions are detected well by the HotLINK
system, with RP values during eruptive episodes significantly higher
than during non-eruptive periods. The 2007 eruption is captured
well in MODIS data, and subsequent eruptions are captured well in
both VIIRS and MODIS data.

At Mount Veniaminof there have been multiple eruptions that
are detected by HotLINK, but there is also a high rate of background
detections, which could either be indicative of background heat
output or potentially the emissivity and thermal inertia differences
between the active cone and surrounding glacier. In Section 4.4 we
further discuss the nature of these signals.

Augustine Volcano had one observed eruption in 2006.
Augustine Volcano has infrequent VIIRS nighttime detections,
but does show a seasonal signal with increased VIIRS daytime
detections during winter and increased MODIS daytime detections
during summer.

Redoubt Volcano also had only one eruption during our analysis
period, in 2009, which was detected well inMODIS data. Since then,
no anomalous thermal activity has been detected but there have been
frequent hotspot detections in VIIRS nighttime and daytime data,

which may be attributed to localized persistent degassing and snow
melt on the 2009 lava dome.

4 Discussion

In this section we discuss the time series results at all
volcanoes to investigate the strengths and weaknesses of our
model. We also discuss the probabilistic output of HotLINK,
and our finding that probabilities are well calibrated. Next,
we compare VIIRS and MODIS applications of HotLINK, and
estimate detection limits for each sensor. Finally, we advance
our comparison of HotLINK and the threshold-based MIROVA
algorithm by looking at a case study of the Mount Veniaminof
time series.

4.1 Analysis of time series results from all
volcanoes

Based on the time series of detections at all volcanoes (Figure 5),
we find that 1) the HotLINK model, as currently trained, works
well for many, but not all volcano morphologies/settings, 2) the
VIIRS sensor has a lower detection limit than MODIS due to a finer
spatial resolution, which also results in a slightly higher false positive
rate for VIIRS, and 3) the RP and relative frequency of daytime
and nighttime detections reveals distinct periods in the eruptive
chronologies at many volcanoes, which can be used to further
discern true and false detections. We discuss how we can discern
true and false hotspot detections during non-eruptive periods at
volcanoes, why false positive detections appear more often in some
volcanoes during certain times of the day and year than others,
and how results can be further filtered to remove many of the false
detections.

AlthoughHotLINKhas a lower false positive rate thanMIROVA
in the validation dataset (Table 4), in the analysis dataset we still see
nearly continuous hotspot detections at all volcanoes even between
eruptive periods (Figure 5). Even though HotLINK makes many
detections when volcanoes are at “green,” or a background state (e.g.
Okmok Caldera 2012–2022), that does not mean that all of those
detections are false positives as it is common for many volcanoes to
be persistently degassing and producing heat at the surface even in
absence of an eruption. In this case, increases in the rate and RP of
detections, rather than the detection of a single hotspot,may indicate
volcanic unrest or eruption. However, as testing shows (Table 3),
we expect HotLINK to have a false positive rate −2%, such that
some of the detections during background periods are likely not true
volcanic hotspots.

In our analysis of Figure 5, we expect true volcanic hotspot
detections to be those which are spaced closely together in
time and at higher RP than other detections observed during
periods with no eruptive activity. At all volcanoes, likely false
positives seem to occur in VIIRS daytime images with RP in
the range of ∼1–10 MW, and in VIIRS nighttime images with RP
∼0–0.5 MW. We determine that most detections with RP above
these thresholds are true positives, but that does not preclude the
possibility of true (but weak) volcanic hotspot detections within
those ranges.
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FIGURE 5
Time series results of HotLINK detections and calculated radiative powers for all eight target volcanoes: Mount Cleveland, Okmok Caldera, Bogoslof
Island, Shishaldin Volcano, Pavlof Volcano, Mount Veniaminof, Augustine Volcano, Redoubt Volcano. The AVO color code at each volcano is shown as
the background color of each figure for general context on the state of activity at the volcano (see Section 3.3 for description of color codes), with gray
indicating a period with insufficient monitoring data for AVO to assign a color code (“Unassigned; ” Guffanti and Miller, 2013). The RP of individual
hotspot detections are shown as points (MODIS = black, VIIRS = red), with solid and open points representing night and daytime acquisitions,
respectively. Next to the name of each volcano is the number of total detections at each volcano, and the number of total images for each volcano in
both the VIIRS and MODIS analysis datasets. Note that for all plots the y-axis scale is linear between 0 and 1 MW, and logarithmic >1 MW. The top axis
shows the start of data acquisition from satellites used.

At some volcanoes (Bogoslof Island and Augustine Volcano)
there are notable seasonal variations in the number of detections
and the RP of those detections. At these volcanoes we believe
the source of these detections is primarily from diurnal effects
on land/water boundaries. For example, both Bogoslof Island

and Augustine Volcano are island volcanoes, which means that
during the day the land surface regularly heats up more than
the surrounding ocean, creating a temperature difference that is
visible in infrared images, centered on the volcano, and thus to
our model looks like a volcanic hotspot. Since Bogoslof Island is
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−1.5 km in diameter while Augustine Island is −12 km in diameter,
Bogoslof Island tends to appear more like a hotspot in daytime
VIIRS data while Augustine Volcano Island regularly is identified
as a hotspot in daytime, summer, MODIS data (Figure 5). Similarly,
clouds frequently develop during the daytime on land, creating
localized solar reflections.

A similar effect occurs at volcanoes that have crater
lakes/lagoons (e.g., Okmok Caldera and Bogoslof Island). Since
water has a higher thermal inertia than land, it preserves solar heat
longer into the night than land and is commonly warmer than land
at night, particularly when the land is snow-covered. Volcanic lakes
are commonly connected to hydrothermal systems and increasing
lake temperature can be linked to volcanic activity (Hurst et al.,
1991; Rouwet et al., 2014). However, increasing lake temperatures
due to volcanic thermal input are difficult to distinguish from
increasing temperatures due to diurnal patterns. With that in
mind, a hotspot detection of a lake is not necessarily indicative
of increased volcanic or hydrothermal activity. By looking at
trends in detections and RP over time, however, HotLINK may
have the capability to characterize background lake temperatures
and thus detect deviations above background. In our data we
did find clear examples of diurnal and seasonal cycles in hotspot
detections at Okmok Caldera and Bogoslof Island. However, in
neither case did we observe clear deviations in the background
radiative power that might have been caused by increased volcanic
activity. Example images of false detections at Okmok Caldera
and Bogoslof Island and comparison with high resolution true
color imagery are available in the Supplementary Material. Other
common effects producing non-volcanic hotspot detections are
snow melting off rocky areas that then become solar-heated
(Mount Veniaminof), and clouds or volcanic plumes reflecting
solar radiation.

While these non-volcanic sources of apparent hotspots are
considered in our study to be false-positives, they highlight the
capability of HotLINK to detect subtle warming signals that could
be successfully applied to other research problems. Fundamentally
there will always be a tradeoff between the sensitivity of the
method to detect real volcanic hotspots, and the number of
false positives produced. With this in mind, there are simple
ways to minimize the occurrence of the false positives in the
dataset through filtering. One easy approach is to only use the
nighttime data, which is much less susceptible to false positives,
especially those occurring on exposed rocks surrounded by snow
and ice fields and solar reflection off clouds or plumes. Another
way is to set a specific probabilistic threshold. In Figure 5, we
calculated radiative power for all images containing any pixels
whose probability exceeds 0.5. However, this probability could be
adjusted for different contexts. For example, if conducting a long-
term historical analysis, it may be better to set a high confidence
threshold and remove asmany false positives as possible. Conversely,
for near-real-time monitoring it may be important to incorporate
as many detections as possible, even if a greater percentage of them
might be false.

To illustrate the effects of further filtering the data, we look at
time series fromBogoslof Island,OkmokCaldera, RedoubtVolcano,
and Augustine Volcanoes, each of which only had one eruption
during the time period of study. At all four of these volcanoes
combined there are 6,725 total detections made out of 291,283

total images analyzed (Figure 5). These statistics yield a combined
detection rate of 2.3% (>97% of images are non-detections).
However, if we use only night time data and set a probabilistic
threshold of 0.75 at the same volcanoes, HotLINK detects 2,661
hotspots out of 168,400 total images, which is a detection rate
of 1.6%. So, with a higher threshold and only using nighttime
images HotLINK removes >98% of images as non-detections. These
statistics also help us estimate an upper bound on the false positive
rate ofHotLINKat around 2%,which is similar towhatwe calculated
earlier with the VIIRS test dataset. For comparison to detection rates
during eruptions see Section 4.3 in which detection rates of VIIRS
and MODIS sensors at Mount Veniaminof during eruptive periods
are discussed.

4.2 Analysis of HotLINK probability
estimates

In order to use probabilistic predictions from HotLINK
for filtering hotspot detections, or for future incorporation
into forecasting methods, we must verify that the probabilistic
predictions of the model are meaningful. This is especially relevant
since modern neural networks have shown a tendency to be
overconfident (Guo et al., 2017). Although the model outputs a
probability prediction for each pixel in the image, we are most
interested in whether the image contains a hotspot at all. Therefore,
for the purposes of this analysis we refer to “image probability” as
the highest probability of all pixels in the image, since it only takes
one hotspot pixel for an image to be classified as active. We evaluate
our probability outputs using a reliability diagram, adapted from
Hamill, 1997; Figure 6A.

For image probabilities to be well calibrated, we want the
accuracy of a thresholded prediction to scale with its probability
(Hamill, 1997). For example, if a well-calibrated model predicts five
images to contain hotspots at a probability of 80%, four of the images
would contain hotspots while one would not. While this may seem
counterintuitive, we want some images with high probabilities to be
wrong in order to confirm that probabilistic predictions are reliable.
We find a strong correlation between the probabilities of HotLINK
predictions and whether images contain a hotspot, since they align
with the ideal distribution (black line) shown in the reliability
diagram below (Figure 6A). This demonstrates that the probabilistic
output of HotLINK can be considered a well-calibrated estimate.

While the reliability diagram (Figure 6A) demonstrates that
probabilities are well calibrated, we can expand our probabilistic
analysis by including the ambiguous images identified by human
visual inspection. The ambiguous images contained in the VIIRS
validation and test datasets present a great opportunity to
compare HotLINK’s probability predictions to images we could
not confidently classify as volcanic or not. Figure 6B shows that
ambiguous images are skewed toward low probabilities, with −50%
of ambiguous images predicted at a probability <0.1. However,
ambiguous images are proportionally more represented than each
other class in all bins from 0.1–0.8. In other words, ambiguous
images are much more likely to be predicted at intermediate
probabilities than images labeled as inactive or active. This
finding supports the idea that CNNs mimic the visual learning
of human experts. It also provides more confidence in the quality
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FIGURE 6
Reliability diagram and histogram of VIIRS validation and test datasets. (A) Reliability diagram of the HotLINK model applied to the VIIRS training and
validation dataset (unambiguous images only). Blue bars represent the proportion of images manually identified as active in 5 percentile bins. The black
line represents the ideal probability distribution, indicating that probability predictions are accurate to the true classification. Bars below the black line
are overconfident (probability prediction of hotspots is higher than the true probability), and bars above are under-confident (probability prediction of
hotspots is lower than true probability). The inset figure shows the number of samples per bin on a logarithmic scale. (B) Histogram of the VIIRS
validation and VIIRS test datasets, showing the percentage of each class - inactive (green), active (orange), and ambiguous (yellow) - in 10 percentile
bins. Ambiguous images are the most represented class at intermediate probabilities (0.1–0.8).

of probabilistic predictions, since images that appear ambiguous to
analysts are likely to be predicted at intermediate probabilities by
the network.

4.3 Comparison and detection limits of
MODIS and VIIRS data

We speculate that the higher accuracy of HotLINK on the
MODIS test dataset relative to the VIIRS test and validation datasets
is due to the larger pixel size of MODIS preventing small hotspots
from being identified by either HotLINK or manual analysis,
resulting in an increased number of true negatives for MODIS
compared to VIIRS. Similarly, the larger pixel size blurs out smaller
scale background variance that is visible in VIIRS data, such that
MODIS has a lower false positive rate than VIIRS and a higher F1-
score.The larger pixel size ofMODIS data results in fewer detections
overall than VIIRS.

HotLINK shows a slightly better accuracy on MODIS data than
on VIIRS because the MODIS data contains a greater proportion of
true negatives and a smaller proportion of false positives. Despite
this, the VIIRS data has a higher true positive rate and is able to see
smaller and weaker hotspots. To further support this conclusion we
compare VIIRS and MODIS detections during three eruptive events
at Mount Veniaminof from the analyzed data. From these eruptions
we also attempt to quantify a night and daytime detection limit for
HotLINK when applied to VIIRS and MODIS data.

Mount Veniaminof had three eruptions between 2012–2022, the
time period when both VIIRS and MODIS data are available. These
eruptions were effusive-explosive in nature, characterized by lava
effusion into and within the intra-caldera glacier, and sporadic ash
emissions (Loewen et al., 2021;Waythomas, 2021;Waythomas et al.,
2023). Start and end dates for these eruptions are taken from
Loewen et al. (2021). During these eruptive periods, bothVIIRS and
MODIS agree well on RP estimates in our analysis. For the 2013

eruption (June 13—October 17), both MODIS and VIIRS retrieved
an average RP of 27.8 MW. During the 2018 eruption (September
4—December 27) MODIS retrieved an average of 27.6 MW and
VIIRS 30.2 MW, and for the 2021 eruption (February 28—April
21) MODIS retrieved an average of 6.0 MW and VIIRS 5.0 MW
(Figure 7).

Although the average RP retrieved by both sensors is
comparable, the VIIRS sensor had a much higher rate of detections
during the same eruptive periods. Across all three eruptions,
VIIRS had 1,553 detections out of 2,874 total images, for an active
percentage of 54%. Meanwhile MODIS had 536 detections out of
1,902 total images, for an active percentage of 28%. We hypothesize
VIIRS had a greater active percentage because it was able to capture
significantly weaker signals, due to its finer spatial resolution
(0.137 km2 compared to 1 km2 pixel area at nadir). In future work,
this hypothesis could be tested through a more robust analysis of
the relative detection rate of VIIRS and MODIS images that are
captured at nearly the same time.

To approximate detection limits for both sensors using
HotLINK, we use the 5th percentile radiative power of all hotspots
detected during the 2013, 2018, and 2021 eruptions at Mount
Veniaminof. It is important to acknowledge the possibility of false
positives in these data, constituting approximately 2% of samples
according to the labeled VIIRS validation and test datasets (Table 3).
To mitigate the impact of false positives on the detection limit
estimate, we opt for a conservative approach by using the 5th
percentile, which is more than twice the estimate for the percentage
of false positives in the dataset. This ensures that potential low RP
false positives do not artificially lower the detection limit estimate.
Still, our estimate for detection limit is not the threshold at which
signals are missed, but approximates this by indicating the weakest
signals retrieved by HotLINK. This estimate allows us to compare
the relative detection limits between sensors. For VIIRS data,
we find the 5th percentile of daytime detections to be 0.69 MW,
and nighttime detections to be 0.26 MW. For MODIS data, we
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FIGURE 7
Multidisciplinary observations at Mount Veniaminof. Subplots show: (A) AVO Color Code timeseries, with color code levels indicated by their respective
colors, and gray indicating periods with insufficient monitoring data for AVO to designate a color code (Guffanti and Miller, 2013). (B) Monthly
earthquake counts within 20 km of Mount Veniaminof, assembled from the USGS ComCat earthquake database (https://earthquake.usgs.
gov/earthquakes/search/). (C) Analyst flags from the AVO remote sensing database, showing analyst identified thermal signals in VIIRS images,
characterized as being “saturated,” “moderately elevated,” and “barely elevated.” (D) Mount Veniaminof hotspot detections in VIIRS images from 2017 to
2022 using HotLINK and (E) hotspot detections from the adapted MIROVA algorithm.

find the 5th percentile of daytime detections to be 1.4 MW, and
nighttime detections to be 0.79 MW. These results demonstrate that
HotLINK is 1.8–3 times more sensitive to nighttime observations
than daytime observations, and thatHotLINK is 2–3xmore sensitive
when applied to VIIRS data compared to MODIS. To compare with
literature values, the MIROVA algorithm applied to MODIS data
cites a detection limit of −1 MW irrespective of the time of day
(Coppola et al., 2020). This is the first time the authors are aware of
a comparison of the detection limits between MODIS and VIIRS
I-bands, although the radiative power between MODIS and VIIRS
M-bands (750 m at nadir) have been previously compared, finding
that the VIIRS M-bands are more sensitive than MODIS bands to
thermal signals (Li et al., 2018; Campus et al., 2022). We caution
that these detection limits are only approximations, since we are
only using one volcano for this analysis and are not looking at the
radiative power of missed detections. Detection limits could be
more rigorously ascertained by comparing the radiative power of
true positive and false negative detections across many volcanoes.
Here we only calculated the radiative power for images that were
detected as hotspots by HotLINK and statistical analysis of the RP
of false negative detections was not done.

4.4 Analysis of HotLINK and adapted
MIROVA on the Mount veniaminof time
series

Table 4 shows a higher true positive rate of HotLINK relative to
our implementation of the MIROVA algorithm, indicating a greater
sensitivity to smaller and lower temperature hotspots. Similarly,
the high true negative rate of HotLINK relative to this adapted
MIROVA indicates that HotLINK is less susceptible to false positive
detections. We can expand on this analysis by examining the Mount

Veniaminof time series from 2017–2021 to further compare results
during eruptive and inter-eruptive periods (Figure 7). During this
time period there were two eruptions, one in 2018 and one in 2021.
Themain difference betweenHotLINK and the optimizedMIROVA
detections during this period is thatHotLINKdetectsmore hotspots.
Froman eruption tracking perspective, theMIROVAalgorithmdoes
well as it has a similar detection rate as HotLINK during eruptions.
In contrast, during non-eruptive periods HotLINK makes a greater
number of detections than MIROVA, which may represent volcanic
thermal output associated with volcanic unrest, as well as false
positives. Therefore, while both models perform well for eruption
detection and tracking,HotLINK is able to detect weaker signals that
may be relevant for monitoring unrest at Mount Veniaminof.

Figure 7 shows an increase in HotLINK detected RP prior to the
2018 eruption, and more peaks in 2019 and 2020 that are not seen
in MIROVA data. These HotLINK detections are consistent with
AVO analyst checks of VIIRS MIR images, where analysts observed
weakly to moderately elevated surface temperatures qualitatively
prior to eruption at Mount Veniaminof, and again during discrete
time periods in the summers of 2019 and 2020 (Figures 7C,D;
Cameron et al., 2018; Orr et al., 2023). We therefore find that the
HotLINK detections are real, capturing weaker, but notable above-
background thermal signals as seen in both the rate and radiative
power of detections. These HotLINK results also have the advantage
of providing quantitative information in comparison to the
qualitative AVO remote sensing database classifications of “barely
elevated,” “moderately elevated,” and “saturated/incandescent.”

Inspection of these signals through complementary high
resolution optical satellite imagery (e.g. Sentinel-2, Maxar) suggests
that they comprise a combination of subtle surface heating,
potentially due to increased vent degassing behavior at the volcano,
as well as a seasonal signature due to the still-warm 2018 lavas
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FIGURE 8
Example images from the VIIRS validation dataset. All images show MIR spectral radiance (Wm−2 sr−1 μm−1) at Mount Veniaminof. (A) a true hotspot
detection made by both HotLINK and the adapted MIROVA algorithm (nighttime image), (B) a false positive detection of a bright cloud made by the
adapted MIROVA algorithm (daytime image), and (C) a true positive detection of a more subtle hotspot made by HotLINK, which is missed by the
adapted MIROVA algorithm (night image). All images are 64 x 64 pixels, or roughly 24 x 24 km. Note that each image has its own colorbar scale in order
to show the maximum contrast within each image.

readily melting the overlying snow cover in spring. The 2018 pre-
eruptive hotspot signals suggest increased thermal output, perhaps
via increased degassing or ground surface temperatures of the active
cone (Orr et al., 2023).The 2019 and 2020 peaks in RP coincide with
seasonal snow melting that exposed the large and relatively-warm
lava flow field, but these signals also coincide with seismic unrest
noted by AVO that prompted AVO to raise the color code from
green to yellow on 1 August 2019 for 24 days and on 18 June 2020
for 64 days (Cameron et al., 2018; Orr et al., 2023). Further analysis
of the detected radiative power in comparison with complementary
multiparameter datasets and higher resolution infrared images (e.g.,
Figure 1) could help tease out the origins and processes associated
with these detections.

Our analysis shows that while both HotLINK and MIROVA are
able to detect large and high temperature hotspots (e.g. Figure 8A),
more subtle hotspots (Figure 8C) are only detected byHotLINK.The
MIROVA system struggles to disregard bright and dispersed signals,
such as solar reflections off of clouds, which exceed thresholds
defined in the algorithm, but are visibly not hotspots in context
(Figure 8B). HotLINK is able to detect more subtle hotspots that
may be weak but still match the spatial patterns of a discrete thermal
signal. The detection capabilities of HotLINK are similar to what an
analyst can detect by eye.

5 Conclusion

This study confirms the capability of machine learning,
specifically convolutional neural networks, to automate remote
sensing tasks usually designated to human experts (Corradino et al.,
2023). This technology provides three main improvements relative
to threshold-based algorithms: 1) the model is more sensitive to

subtle signals and can detect a larger number of hotspots while also
detecting fewer false positive hotspots, 2) the probabilistic nature
of the detections makes the model useful for different monitoring
contexts, and 3) the samemodel performswell on data fromdifferent
sensors (MODIS and VIIRS) and different Alaska volcanoes (with
some caveats for volcanoes that are islands or have crater lakes).

The ability to detect more and weaker hotspots opens up
the possibility of detecting precursory as well as eruptive hotspot
signals. Specifically, our network detects subtle increases in volcanic
surface temperature from Mount Veniaminof that correspond with
both increased number of analyst detections of thermal signals
and elevated seismicity. The capability to detect subtle signals
associated with volcanic unrest, as well as eruptions, may aid in
eruption forecasting efforts. Another advantage of our network is
the probabilistic output. This expands the amount of information
available to human analysts and will facilitate incorporation into
statistical eruption forecasting models.

We found that HotLINK was able to detect hotspots in MODIS
data with an even higher accuracy than for VIIRS data. Our model
is therefore directly applicable to both VIIRS and MODIS data and
is shown to work well on multiple volcanoes, only producing large
errors in cases with crater lakes or small island volcanoes, which are
especially susceptible to seasonal false detections.These errors could
be minimized in the future using a detection threshold that exceeds
the seasonal background signals at relevant volcanoes and/or by
filtering out daytime images.

In conclusion, with a labeled training dataset of less than 4,000
VIIRS images from two volcanoes we were able to train a model to
detect hotspots in both VIIRS and MODIS data that is applicable
to many volcanoes. The time series for the eight volcanoes analyzed
here captures volcanic unrest and eruption and thus can provide
critical input into data-driven volcano monitoring and forecasting
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studies, as well as valuable insight into the magmatic and eruptive
processes occurring in active volcanic systems across Alaska. The
model itself is also readily applicable for near-real-time or historical
hotspot detection efforts by volcano observatories.

6 Plain language summary

Volcanoes release heat on their surface, and by monitoring
this heat, we can determine if a volcano is erupting or might
erupt soon. Heated areas, called hotspots, can be detected by
satellite sensors, which generate images from space in infrared
wavelengths. Traditionally, volcanologists or simple computer
programs would identify the hotspots in infrared images. Now,
advanced computer algorithms based on artificial intelligence
can accurately identify complex features in images. We used
these algorithms to improve the way we detect volcanic hotspots.
Our approach detects more subtle heat signals than other
algorithms, which is useful for detecting different types of volcanic
activity, and may contribute to better forecasting of volcanic
eruptions.
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Introduction: The surface expression of enhanced geothermal heat fluxes above
an active hydrothermal system causes a surface thermal anomaly (ΔT). The
thermal anomaly is expressed by the difference between the temperature within
the heated zone (Th) and the temperature of non-heated surfaces (T0). Given
that the resulting thermal anomaly at the surface is of extremely low magnitude
(1°C–5°C at Vulcano, Italy), it is extremely sensitive to overprinting by external
factors, namely, meteorological influences on surface temperature variation,
such as solar heating, wind and rain.

Methods: To test the sensitivity of the surface to external drivers, we installed two
surface temperature measurement stations within the Vulcano’s Fossa crater,
one inside the thermal anomaly and one outside (separation = 50 m), with a
weather station co-located with the T0 station. Time series of Th and T0 were
collected for 2020, when the Vulcano Fossa hydrothermal system was at a low
and stable level of activity so that external drivers would have been the main
influences on Th and T0, and hence alsoΔT. To test for divergence fromnormality
in terms of diurnal and seasonal variations in Th and T0, and the role of external
factors in causing abnormality, we used the deep learning engine DITAN: a
domain-agnostic framework to detect and interpret anomalies in time-series
data.

Results: During the year, DITAN found 16 cases of two types of meteorological
events: intense low-pressure systems and high-intensity rainstorms
(cloudbursts). Passage of 13 abnormal low-pressure systems were detected
(10 between February and May, and three in December), with three abnormal
rainstorm events (all in December); all three being coincident with the abnormal
low pressure events. We find just two abnormalities in the time series for of Th

and T0, both of which coincide with passage of abnormal low-pressure systems,
and neither of which coincide with abnormal rain events. We conclude that
diurnal and annual heating and cooling cycles, subject to normalmeteorological
inputs and at a surface above a geothermal-heated source, are immune to
anomalous behaviour to the external (meteorological) variations.

KEYWORDS

deep learning, geothermal system, anomaly detection, external factor, temperature
change
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1 Introduction

A “geothermal system” is defined by Hochstein and Browne
(2000) as a cascading system through which “natural heat transfer
within a confined volume of the Earth’s crust where heat is
transported from a heat source to a heat sink.” Geothermal systems
are located in areas where heat flow is enhanced and where the
structural setting allows for fluid circulation, such as at convergent
plate margins, spreading centers, rift systems and mantle hot spots
(Stimac et al., 2015). Geothermal systems not associated with a
magmatic source have been termed by Nicholson and Nicholson
(1993) “non-volcanic geothermal systems” and can be found in
active tectonic areas where heat can be produced by deep water
circulation in a faulting context. However, if the heat source is
provided by magma, we have a “volcanic geothermal system”
(Nicholson and Nicholson, 1993). In a volcanic geothermal system,
heat and mass are transferred to the surface from a magma
reservoir (Hochstein, 2005), where ascending magmatic fluids
mix with descending fluids from the near-surface groundwater
system to create a “volcanic-hydrothermal system”, hereafter termed
“hydrothermal system”. A hydrothermal system is thus a systemwith
four key components (Figure 1):

• a heat source (the magmatic source),
• an area of recharge (i.e., a “hydrothermal reservoir” of highly

permeable rocks),
• an area of discharge (i.e., the “geothermal field” at the surface),

and
• circulation of hydrothermal fluids contributing to mass and

energy flows.

Diffuse heat fluxes from the hydrothermal system result in
widespread and pervasive ground surface heating to cause a low
amplitude (typically 1°C–10°C) thermal anomaly at the surface (e.g.,
Hochstein and Browne, 2000; Chiodini et al., 2005; Lagios et al.,
2007; Aubert et al., 2008; Harris et al., 2009; Diliberto, 2011). The
difference between the temperature of heated (Th) and unheated
ground (T0) is here termed the thermal anomaly (Figure 1,
ΔT = Th −−T0). Geothermally-heated surfaces are relatively cool
compared to other active volcanic surfaces such as pyroclastic and
lava flows, so that the associated thermal anomalies are just a few
degrees centigrade above the ambient background (Figure 1). The
low amplitude of thermal anomalies associated with hydrothermal
systems make them difficult to detect and handle (Harris and
Stevenson, 1997), and are likely to be extremely sensitive to
external factors, especially meteorological factors such as rain,
wind, humidity and atmospheric pressure. While low amplitude
geothermal thermal anomalies are liable to dampening due to
the cooling effect of rain and wind, radiative heat fluxes will be
controlled by variations in water vapor pressure (e.g., Sekioka and
Yuhara, 1974; Bahrami et al., 2019; Ishibashi et al., 2023), which is
in turn controlled by humidity and atmospheric pressure. At such a
low temperature system, forced or free convection will also be the
dominant heat loss (Keszthelyi et al., 2003), where the convective
heat transfer coefficient will depend on wind and air temperature
(Harris, 2013).

We thus define the magmatic and hydrothermal reservoir
components of the volcanic-hydrothermal system as internal
sources that drive changes in surface temperature (Th), and the
atmospheric system as an external driver (Figure 3). To date,
most studies have focused on the role of the magmatic source
and the permeability of the hydrothermal reservoir in driving

FIGURE 1
Figure 1 from chapter 0 of Harris (2013). Sketch of the main sources of thermal emission at a volcanic hydrothermal system, modified Figure 1
in Bonneville and Gouze (1992) and reproduced by permission of American Geophysical Union. In normal conditions ground (Tground) and air
temperature (Tair) are approximately equal, so that ΔT = Tground −Tair ≈ 0. Over a subsurface heat supply, such as a magmatic intrusion above which
natural convection in a porous, or fractured, medium carries heat to the surface, ΔT becomes positive. Over a high temperature surface heat source,
such as an active lava, ΔT becomes strongly positive. The schematic also shows the main sources of heat loss from an active lava body. These being
radiation (Mrad), convection (Mconv) and conduction (Mcond).Q19
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changes in temperature recorded at the surface (e.g., Dobson et al.,
2003; Chiodini et al., 2005; Aubert et al., 2008; Harris et al., 2012).
However, we are aware of no study that has focused purely on the
potential role of external drivers on variation in Th, T0 and, hence,
ΔT (Figure 1). Thus, to provide data capable of defining the role of
external (meteorological) drivers on surface temperature variation
above a hydrothermal system, we installed two surface-temperature
measurement stations (tomeasureTh andT0), plus a weather station
co-located with the T0 station, inside Vulcano’s (Aeolian Islands,
Italy) Fossa crater (Figure 2). In this regard Vulcano, being the host
of a thermal anomaly associated with an active hydrothermal system
and a well-monitored site (Chiodini et al., 2005; Harris et al., 2009),
is an ideal laboratory to test hypotheses regarding the internal and
external effects on the amplidude of DT.

We installed the sensors in 2020, when levels of heat flux were
particularly low so that the internal element of the system could be
considered minimal and stable, and in a background or baseline state
(Mannini et al., 2019; Pailot-Bonnétat et al., 2023). In such a state,
temperature variations at the surface should be particularly sensitive
to external drivers. However, given the sensitivity of temperature
variation to both external and internal drivers (Figure 3), inter-
relations between Th, T0 and external parameters will be complex,
and any correlationwill be extremely subtle. Such amulti-variate time
series, in which there are unknown interactions between variables, is
ideally suited to amachine learning (e.g.,Malfante et al., 2018; Carniel
and Guzmán, 2020; Watson et al., 2020). In particular, application of
a deep learning-based approach to time series data can greatly aid in
advancingvolcanomonitoring, andprocessingofvolcanicgeophysical
and geochemical signals, especially when searching for patterns and
interrelations in multi-sensor time series (e.g., Manley et al., 2022;
Corradino et al., 2023; Ferreira et al., 2023).

We thus focus on isolating and defining those external drivers
that change the surface thermal state of ground above a hydrothermal
system in an abnormal fashion, our research question being:

Can, and if so how, dometeorological factors impinge on surface
thermal anomalies above geothermal systems?

To do this we apply the deep learning framework DITAN
(Giannoulis et al., 2023) to time series data for surface temperature
and meteorological conditions collected in-situ at the active
hydrothermal system atVulcano (Pailot-Bonnétat andHarris, 2024),
in an experiment designed to answer the stated research question.
We begin by describing the characteristics of the study site (Vulcano)
and the instrumentation installed there, before reviewing DITAN,
its performance and output. In effect, this is the third in a three
part series of papers where we have first set-up, tested and cross-
validated DITAN in Giannoulis et al. (2023), and then (second) set
up the experiment and data collection design in Pailot-Bonnétat and
Harris (2024).

2 Background and data

At Vulcano, the magmatic source has been placed at a depth of
2–3 km by Ferrucci et al. (1991), and the magmatic contribution to
the fumarolic gases has been established from chemical composition
(Nuccio et al., 1999). The gas signature at Vulcano thus results
from mixing of magmatic and hydrothermal fluids (marine and
meteoritic), with the hydrothermal system being described as a

biphase (water–vapor) boiling saline solution with a central vapor-
monophase zone (e.g., Carapezza et al., 1981; Chiodini et al., 1995;
Nuccio et al., 1999). Heat ascends from the mixing zone, which
has its depth ≈1 km below the Fossa Crater (Nuccio et al., 1999;
Alparone et al., 2010) to form a “heat pipe” (White et al., 1971) at the
top of which there is a bottom-heated surface zone (Figure 2C). Heat
loss from the heated surface is partitioned between the conductive
flux through diffuse soil emissions and advection at fumarole vents
(Sekioka and Yuhara, 1974; Chiodini et al., 2005; Harris, 2013). Heat
flux from the zone of soil emission accounts for 93%± 2%of the total
energy budget, is defined by a thermal anomaly (ΔT) of 1°C–5°C
(Harris et al., 2009; Mannini et al., 2019), and is associated with
vertical gradients in the temperature profilewithin 1 m of the surface
50–135 K/m (Aubert et al., 2008).

At Vulcano, heat fluxes during the period 2010 to 2020
were particularly low and stable at around 4–12 MW, as was ΔT
(Mannini et al., 2019). The period 2010–2020 has thus been defined
as a baseline or background level for heat flux, against which change
in the thermal state of the hydrothermal system can be assessed
(Pailot-Bonnétat et al., 2023). We thus chose the year 2020 on which
to target our study so as to determine external drivers on ΔT
with the system in its background state. At Vulcano, the value of
understanding system behaviour during such baseline studies was
highlighted by the unrest that followed our period of interest. This
new phase of unrest began in September 2021 and continued into
2022, and during which heat fluxes increased to peaks of around
120 MW (Pailot-Bonnétat et al., 2023).

Within the Fossa, in the vertical sense, there are thus two
elements to the system that need to be constrained: 1) the immediate
subsurface where enhanced geothermal heat flux (internal driver)
causes elevated surface temperatures and 2) the atmosphere where
meteorological parameters (external drivers) modulate surface
temperature (Figure 3). Horizontally, there are also two zones: one
of which is heated from below, and one of which is not (Figure 2C).
Thus, in our experiment set-up, the surface thermal state of the
heated and non-heated zones are tracked by two sensors that
monitor surface and air temperature, with external meteorological
conditions being measured by a third sensor array (Figure 3).

We installed the sensor network in the Fossa crater in January
2020. The network consists of two temperature stations separated
by 50 m, with one inside the heated zone and one in the non-
heated zone, plus a weather station co-located with the latter station
(Figure 2C). The experimental set-up, sensors and data sets used
here are fully described in Pailot-Bonnétat and Harris (2024), and
are summarized here in Table 1. The two temperature stations
consisted of two thermocouples (Onset HOBO TMC1-HD, signal
to noise ratio = 0.1°C) measuring surface temperature (Ts) and
air temperature (Ta) at a height of 15 cm above the surface. The
thermocouples were linked to an Onset HOBO U12-008 data logger
(storage capacity = 43,000 measurements) with a sampling rate of
one record every five-to-ten minutes. The weather station was an
Onset HOBO H21-USB which measured atmospheric pressure (S-
BPB-CM50), air temperature and relative humidity (S-THC-M002),
wind speed (S-WSB-M003), and rainfall using a tipping bucket rain
gauge (S-RGF-M002). These meteorological sensors were installed
at ground level, and the sampling rate was one record per minute.
The chosen period of analysis is 31 January 2020, 12:00:00, to 31
December 2020, 23:00:00, with data gaps existing due to the logger
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FIGURE 2
(A) Location of Vulcano in the Aeolian Island arc, and (B) of the Fossa on Vulcano, with (C) location of our measurement stations in respect to the
heated zone in the Fossa crater. F0 and FA are the two main fumaroles, gray pin is the temperature station in the heated zone, and red pin is the
co-located weather station and temperature station in the non-heated zone.

capacity being reached before download, which was a problem due
to mobility restrictions during the COVID-19 pandemic period
(Table 2).

3 Methodology

Our sensor network provides amultivariate time series, inwhich
each record is characterized by seven sensors, two sensors from the
surface system and five sensors from the atmospheric (external)

system (Figure 3). To learn the normal thermal behavior of the
surface, and subsequently define externally-driven anomalies, we
developed in Giannoulis et al. (2023) DITAN, a domain-agnostic
deep learning based framework that is effective in detecting and
interpreting temporal-based anomalies. A temporal-based anomaly,
or simply anomaly, occurs when one or more sensor values (e.g.,
pressure and/or wind speed) deviate from their expected “normal”
behavior. When this occurs on the full feature set, the anomaly
is called full-space anomaly, otherwise sub-space anomaly if it
applies to a sub feature set. When an anomaly persists for more
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FIGURE 3
A descriptive illustration of the thermal system at Vulcano and its parameters.

TABLE 1 The sensor network of Vulcano in year 2020.

Station GPS (WGS-84) Sensors name Sensors unit

Red (cold) 38.405367, 14.960742 Ts: surface temperature degrees Celsius (°C)

Grey (hot)
38.405222, 14.960564 Ts: surface temperature degrees Celsius (°C)

Ta: air temperature degrees Celsius (°C)

Weather

38.405367, 14.960742 P: air pressure millibar (mbar)

Ta: air temperature degrees Celsius (°C)

U: wind speed meters per second (m/s)

Rain: rainfall millimeters (mm)

TABLE 2 Data gaps in the 2020 time series.

Station Data gaps (mm/dd/yyyy)

Red (cold)

05/31/2020–06/09/2020

09/04/2020–10/01/2020

10/20/2020–10/24/2020

Grey (hot)

05/31/2020–06/09/2020

09/04/2020–10/01/2020

10/20/2020–10/24/2020

Weather
05/28/2020–06/09/2020

09/01/2020–10/01/2020

than one record (e.g., two time steps) it is called sub-sequence
anomaly. The severity score of an anomaly refers to the intensity of
its contamination. Local anomalies typically receive lower scores due

to their limited impact on the time series as a whole, being primarily
confined to a specific region of the time-series. Global anomalies,
conversely, tend to receive higher scores, indicating their widespread
impact on the time series and significance across multiple data
regions.

DITAN encompasses the integral temporal properties of a time
series, built upon three assumptions: 1) the time series is predictable,
2) normality is identical to regularity, and 3) irregular records are
temporally less predictable than regular records.

The model has been tuned using Bayesian optimization, to
systematically search and exploit the range of values for various
hyperparameters, aiming to determine the optimal configuration.
Throughout this process, a forward chaining cross-validation was
used to ensure that there is no leakage of information between the
training and validation sets during the hyperparameter optimization
phase.

In Giannoulis et al. (2023), the model has been deeply
validated on six multivariate timeseries of varying anomalous
types, using several performance metrics including confusion
matrices, precision, recall and F0.5 score. It has also
been favorably compared to state of the art methods on
anomaly detection.
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DITAN is composed of four modules: 1) pre-processing, 2)
domain-agnostic modeling, 3) application of a dynamic threshold
with built-in pruning, and 4) numerical interpretation. We
briefly describe here these four modules and refer the reader
to Giannoulis et al. (2023) for further details.

3.1 Pre-processing

DITAN applies a series of steps to prepare a predictable
multivariate time series in a favorable format for deep learning
analysis. These steps include an optional decomposition of the
sensor values into residuals or trends to focus on short-term or
long-term regularities, respectively. Additionally, a mandatory min-
max scaling is applied across sensors to maintain a common value
range within [−3, 3]. A prediction-based protocol is used to forecast
a horizon given a context. In this protocol, a horizon includes the
estimation of the records within the context and the prediction of
one ormore subsequent records. Context-horizonmapping can then
be seen as an “IF-THEN” rule, where the “IF” part needs to be
estimated along with the prediction of the “THEN” part.

3.2 Domain-agnostic modeling

DITAN learns regularity across the context-horizon mappings
using an LSTM encoder-decoder with attention mechanisms
(Figure 4). LSTMs (Long Short-Term Memory) (Hochreiter and
Schmidhuber, 1997) are a type of recurrent neural network
(RNN) specially designed to model long-term dependencies in
data sequences. Unlike traditional RNNs, LSTMs incorporate
gating mechanisms, including forgetting, input and output gates,
which enable them to regulate the flow of information through
the network’s cells. These mechanisms enable LSTMs to capture
and store important information over long periods of time,
while mitigating the problems of gradient disappearance or
explosion commonly encountered in conventional RNNs. Attention
mechanisms (Luong et al., 2015) as for them enable the model to
selectively focus on different parts of input data when making
predictions.They allowDITAN to weigh the importance of different
features or elements within the input, enhancing their ability to
capture relevant information for the task at hand. This mechanism
typically involves learning attention weights that dynamically
allocate resources to different parts of the input.

In DITAN, the context is encoded in such a way that the decoder
is responsible for both reconstructing the context and constructing
the subsequent records. Each record is represented by an LSTM cell,
which helps to memorize short-term relations. Additionally, each
LSTM cell in the decoder explicitly attends to the encoder’s LSTM
cells using a cross-attention layer. Moreover, a masked self-attention
layer is employed to assess temporal weights based on the relative
positions of the LSTM cells in the decoder. The structure of this
architecture is optimized using the Bayes optimizer, which explores
and exploits the value range of hyper-parameters with respect
to the application features to select an optimal hyper-parameter
configuration.

In the training phase, both estimation and prediction errors
are utilized. An error ei is computed as the difference between the

forecasted (estimated or predicted) value xi, and the observed value
xi for each sensor d in D. DITAN employs a configurable error
function, which can be defined as either the squared eid = ‖x

i
d − x

i′
d ‖2

or absolute eid = |x
i
d − x

i′
d | error for all d ∈ D. The squared, as opposed

to absolute, errors are non-linear weighted with respect to the error
magnitude, and thus higher errors are magnified. The higher the
error on a sensor value, the more abnormal the value is considered.
A threshold is required to determine the turning point from normal
to abnormal.

Recall that normality is equated to regularity, and irregular
records are considered temporally less predictable than regular
one. Consequently, during the training phase, the objective
function of the model disregards context-horizon patterns that are
contaminated by outliers and deemed irregular. These patterns,
which constitute a small portion of the total number of patterns, are
assigned a low weight and are effectively ignored.

3.3 Dynamic thresholding with built-in
pruning

In the testing phase, only prediction errors are used. To
determine the level of prediction error that records change from
regular (normal) to irregular (abnormal), we use a thresholding
methodology (Figure 5). Prediction errors are first smoothed to
introduce locality. Next, all critical peaks are computed, which are
peak values above the minimum peak height value. To find the
minimumpeak height value, we downhill the errors in the frequency
space until we reach a bin in which variability is introduced. The
corresponding error value of that bin is used as the minimum peak
height. Then, we expand each critical peak into a critical region, as
long as the average error within its expanding region is statistically
above the overall average. The boundaries of each critical region are
trimmed using a high-pass filter that corresponds to the maximum
of error values that are shifting from the clustered errors. Error
values within critical regions are considered abnormal (severity
scores), and the corresponding records anomalous.

3.4 Numerical interpretation

The magnitude of scores across sensors within anomalous
records can be used to provide sufficient information to allow an
understanding and troubleshooting of anomalies. The contribution
of each sensor d to an anomalous record i, namely, root-cause,
is computed using a softmax function across to its corresponding
severity scores s:

es
i
d/∑

j
es

i
j

We estimate the similarity between anomalous records in
the model-space using the unit dimensionality instead of feature
dimensionality. First, we find the internal representations of each
record ri. Then, we apply Gaussian Mixture Modeling (GMM)
using an optimal number of components to classify each anomalous
record to the component with maximum probability p(ri). The
anomalous records under the same component are considered
similar.
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FIGURE 4
A graphical illustration of the DITAN architecture. The model is composed of LSTM layers along with a composite decoder and soft attention
mechanisms to capture short-term and long-term normal (regular) patterns. The number of LSTM cells in the encoder (left) is equal to the context size,
while the decoder (right) has a context sized number of LSTM cells to reconstruct, as well as a horizon sized number of LSTM cells to construct. Such a
composite decoder forces the network to stay attentive to all time steps in the encoder, instead of only the last few steps. A full description of this
model is proposed in Giannoulis et al. (2023).

FIGURE 5
DITAN thresholding methodology.

Upon this already validated architecture, we build and
introduce here a fifth module (knowledge management), involving
physical interpretation of the time series and anomalies. It is a
graphical environment which allows to create, read, update and
delete (CRUD) knowledge held in the Knowledge Base (KB,
see Supplementary Appendix A). The knowledge management
module allows complete control over the KB in the form of IF-
THEN rules that incorporate temporal constraints or rules. The
scope of a rule in our system is to characterize the physical event
responsible for the occurrence of a series of conditions.

3.5 DITAN knowledge management
module

3.5.1 Conditions
A condition (C) applies to a sensor (S) or physical event

(E) that is in an abnormal state. We define five abnormal states:
increasing, decreasing, positive, tare and missing values. Although
an S-condition can indicate any of these abnormal states, an E-
condition can only have a positive abnormal state, meaning that the
event has occurred. Therefore, post-condition is always a physical
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event, while the preconditions consist of one or more S- and/or E-
conditions. A condition occurs when an abnormal state is found to
be valid for a certain duration. In a given sequence the validation of
abnormal states is thus assessed as it follows:

• Increasing: at least three consecutive values exhibit only an
increasing trajectory.
• Decreasing: at least three consecutive values exhibit only a

decreasing trajectory.
• Positive: consecutive values exhibit only positive values.
• Tare: the first order difference at each step in the sequence

results in the same maximum value.
• Missing value: there is at least one missing time-step in the

sequence.

3.5.2 Constraints
Following Giannoulis et al. (2019), the preconditions of a rule

are constrained using both logical and temporal operators. The
conjunction (AND) logical operator is used to combine conditions,
while the negation (NOT) logical operator is used to define the
abnormal state of a condition. The conditions are temporally
constrained such that the start time of the first condition and the
start time of the last condition are at most 60 min, 24 h or 7 days
apart, introducing lag resolutions of minutes, hours or days across
rules. These constraints ensure that all preconditions occur within
a defined time interval. The post-condition of a rule exists from the
start time of the first condition to the end time of the last condition.

3.5.3 Inference engine
Following Giannoulis et al. (2019), the rule preconditions guide

the inference process by incorporating an event-driven protocol,
where DITAN’s inference engine is given in Algorithm 1. It is
handed the executable rules from the knowledge base (KB) and
the anomalous sensor values from critical regions (CR) identified
by DITAN in the time series. The objective is to report all
post-conditions in the events base (EB), by identifying valid
preconditions. This requires support by rule-chains in which the
post-condition of a rule lies in the preconditions of another.Thus, in
an outer-loop, N executable rules with e events in preconditions are
selected from the KB, e being iteratively increased until N becomes
zero. At each iteration, the FetchRules function is responsible for
selecting and ordering rules. Rules referenced the most frequently
are executed first. Given a rule R, RExecute is responsible for
validating the occurrences of its conditions across CR (sensor type)
or EB (event type). The preconditions of a rule are valid when
both temporal and logical constraints are satisfied. The occurrences
of a post-condition can also overlap. In such a case, overlapping
occurrences are merged. Merging is applied at the end of the
algorithm to preserve different event start times which are needed
in the chaining process. The final occurrences of R are stored in EB.

3.5.4 Rule validation
A rule is valid when its logical and temporal constraints are

valid. Validation of the logical constraints (negation, conjunction) is
straightforward, because each constraint is a well-defined operator.
Instead, further analysis is required for handling temporal relations.
Once all valid occurrences of the conditions have been examined, the
next step is thus to analyze their temporal differences. To accomplish

Require: KB,CR ⊳ Knowledge Base (KB), Critical

Regions (CR)

Ensure: EB ⊳ Events Base (EB)

  e← 0 ⊳ Number of events allowed in rule’s

precondition

  while True do

     rules← FetchRules(KB,e) ⊳ Fetch rules ordered

by the number of events

     if len(rules) == 0 then ⊳ Halt if there are no

more rules

         break

     end if

     for R ∈ rules do

         occurences← RExecute(CR,EB,R) ⊳ Find

occurrences in which R is validated

         if occurences ≠ [] then

              EB.update([R:occurences])⊳ Keep only

the executed rules

         end if

     end for

     e+ = 1 ⊳ Increase number of events for the next

iteration

end while

Algorithm 1. Inference Engine.

this, DITAN constructs an upper triangular matrix containing all
possible pairs of occurrences for all conditions. For instance, if there
are four conditions (C1, C2, C3, C4) DITAN will construct six pairs
of categories (C1-C2, C1-C3, C1-C4, C2-C3, C2-C4, C3-C4), and
the upper triangularmatrix allows consideration of each unique pair
of conditions without redundancy. Next, DITAN constructs chains
between the occurrences of different pairs so as to derive the final
temporal relations. A chain is deemed valid if it incorporates all the
different pairs of categories. A pair is added to the chain if it does
not violate the temporal constraint. Therefore, a rule is linked to the
occurrences of its valid chains (if multiple conditions apply) or its
valid condition (if there is only a single condition).

3.5.5 Risk factor
The risk of a (valid) rule is related to the intensity of its

preconditions. This is usually quantified by experts using fuzzy logic
(Leung and Lam, 1988) or certainty factors (Shortliffe, 1976), such
as in Giannoulis et al. (2019). However, DITAN quantifies risk by
using the severity scores. The severity score of an anomaly refers to
the intensity of its contamination. Local anomalies typically receive
lower scores due to their limited impact on the time series as a
whole, being primarily confined to a specific region in data. Global
anomalies, conversely, tend to receive higher scores, indicating
their widespread impact on the time series and significance across
multiple data regions.The risk associatedwith an S condition is equal
to the average of the severity scores within the partition (duration)
j of a critical region: RFS = average(CR

j
scores), and the risk of an

event E condition is equal to the average risk of its preconditions:
RFE = average(RFS1,…,RFEk). As a result, the risk factor RF provides
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TABLE 3 The knowledge defined by Experts in the form of temporal rules.

R1: if decrease on pressure sensor and increase on wind speed sensor started within
hours

then low pressure system (meteorological) event

R2: if positive on rain sensor and low pressure system event started within hours then rainstorm (meteorological) event

R3: if low pressure system event and decrease on red surface temperature and
decrease on grey surface temperature started within hours

then decrease on surface temperatures (surface external driver) event

R4: if rainstorm event and decrease on red surface temperature and decrease on grey
surface temperature started within hours

then decrease on surface temperatures (surface external driver) event

R5: if low pressure system event and decrease on red surface temperature started
within hours

then decrease on red surface temperature (surface external driver) event

R6: if low pressure system event and decrease on grey surface temperature started
within hours

then decrease on grey surface temperature (surface external driver) event

R7: if tare on air temperature then rapid change on air temperature (instrumental) event

a general overview of the predictability offset across conditions
within their validated durations. The maximum risk is selected
when an E condition occurs multiple times within overlapping
durations. Finally, to preserve a relative risk across valid rules, within
a probabilistic-like range, max-normalization is applied.

3.6 DITAN: initialization of the knowledge
management module for Vulcano

DITAN’s “knowledge” is based on rules entered by experts.
An example of rule entry via DITAN’s graphical interface is given
in Supplementary Appendix B.The time scale of “normal” variations
in the time series then needs to be defined, before DITAN is trained
and anomalies detected.

3.6.1 Rules
ForVulcano,knowledge is expressed in the formof seven temporal

rules R as presented in Table 3. The rules were set to describe severe
meteorological (external) events, allowing us to assess storm systems
as causes of anomalous decreases in surface temperatures, followed by
recovery. We define three event types (Table 3):

1. R1 and R2 define a meteorological event, since only external
conditions are linked to each other.

2. R3 to R6 characterize anomalous surface temperature events
resulting from external drivers (Figure 3).

3. R7 considers sensor failure, thus finding an “instrumental
event.”

The post-condition of R1 is in the preconditions of R2, R3,
R4 and R5, and the post-condition of R2 is in precondition of
R4. Instead, R1 and R7 have no events in their preconditions.
Therefore, all of the possible inferences are: (a) R1, (b) R1 → R2,
(c) R1 → R3, (d) R1 → R2 → R4, (e) R1 → R5, (f) R1 → R6,
(g) R7. According to Algorithm 1 executions are divided into three
iterations. In the first iteration, (a, g) are executed. In the second
iteration, (b, c, e, f) are executed. Finally, in the third iteration, (d)
is executed.

3.6.2 Data preparation
There are seven sensors in our Vulcano network (Table 1), for

which the frequency of measurements varies between one record
every 5 min for the hot and cold stations, and one record per minute
for the weather station. Thus, all measurements were sub-sampled
to a frequency of 5 min, and then down-sampled (averaged) to a
common frequency of one record (time-step) per hour. This results
in 6,799 records (for around 283 days), where each record is a vector
of seven sensor values. Thus, the temporal resolution of anomalies
is expected to be of at least 1 h. An overview of range of values
recorded for data set is given in Table 4. There are three main data
set characteristics:

1. All temperature sensors exhibit diurnal and annual cycles
(normality).

2. Sensors do not have similar value ranges, have scales that
differ by six orders of magnitude between rainfall, through
temperature, humidity and wind speed, to pressure.

3. There are three significant data gaps in June, September, and
October.

3.6.3 Pre-processing
Of the 1,253 missing time-steps (hours), only 73 can be linearly

interpolated.The remaining 1,180missing time-stepswere removed,
because they formed gaps that were too long to allow interpolation.
Since normality is learned as the regularity of the context-horizon
mappings, the impact of these data gaps on the frequency of
occurrence of regular context-horizon mappings is negligible due to
their relatively small size.

Although decomposition is an option, we chose to decompose
measurements solely into the residuals component. This decision
was based on the understanding that external phenomena manifest
themselves as short-term interruptions to normality causing
perturbations to the diurnal cycle. In contrast, the internal driver
primarily affects the long-term trend. Therefore, the values of
each sensor are transformed into residuals by estimating its
decomposition type and period. Min-max normalization is then
applied across all sensors to introduce a common scale, without
biasing any correlations or underlying distributions. The resulting
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TABLE 4 Sensor description for Vulcano in the year 2020.

Station Sensor Unit Min Max Mean Standard Deviation

Weather Pressure mbar 967 1,002 986 5.8

Weather Air-temp °C 4.6 48.3 19.8 8.6

Weather Wind-speed m/s 0 4.4 0.3 0.49

Weather Rain mm 0 0.5 0.002 0.019

Grey (hot) tsurf-grey °C 6.7 45.2 23 7.7

Grey (hot) tair-grey °C 6.9 45.2 22.5 7.6

Red (cold) tsurf-red °C 5.9 45.3 20.7 8.4

TABLE 5 Pre-processed sensor description for Vulcano in the year 2020.

sensor Decomposition Period min max Mean std

Pressure Additive 143 −3 3 −0.04 0.6

Air-temp Additive 24 −3 3 −0.4 1.07

Wind-speed Additive 22 −3 3 −0.9 0.44

Rain Additive 78 −3 3 −2.6 0.2

tsurf-grey Additive 24 −3 3 −0.04 0.83

tair-grey Additive 24 −3 3 0.004 0.82

tsurf-red Additive 24 −3 3 −0.3 0.97

value range [−3, 3] allows a good spread in range that is not too
broad. This ensures that the presence of outlier (extreme) values are
not excessively compressed, and maintains outlier relative positions
and magnitudes. The effectiveness of the pre-processing strategy is
closely tied to its ability to preserve the actual correlations between
sensors.The objective is to convert the data into a format suitable for
analysis and input into DITAN, while still preserving the inherent
relationships within the data. A summary of pre-processing output
is given in Table 5.

3.6.4 Forecasting scenario
The selection of the appropriate size for observation

context and forecast horizon needs to be based on the time
scale of expected variations. Surface temperatures will exhibit
diurnal cycles of 24 h, while also following an annual cycle.
In addition, following (Sanders, 1984) major storm systems
will develop over hours so that parameters such as wind speed
and pressure will evolve over timescales of 6–24 h during high
intensity events, such as Medicanes. Thus, following Haque et al.
(2021) the context window is set to 24 h to allow a forecast
horizon of 6 h.

The training phase of DITAN is thus conducted on data with
24 h context size and 6 h horizon size. The aim of learning is to
reduce the differences between forecasted and actual values by

identifying suitable model parameters. To ensure equal importance
in minimizing all differences, we employ mean absolute error
(MAE) as the loss function. By using absolute differences to
compute gradients of the loss function, DITAN can mitigate the
influence of extreme events such as Mediterranean hurricanes,
whichwould otherwise dominate as themain indicator of normality.
Instead, DITAN prioritizes the average understanding of underlying
patterns, with patterns appearing more frequently having a greater
influence on determining normality.

During the Bayes optimization process, a total of 20 different
hyper-parameter configurations were examined. Each configuration
was assessed using four expanding time windows applied to
the pre-processed data set, resulting into an examination of 80
(=4 × 20) models. The first (initial) configuration is described
in Table 6.

We observe that no improvement occurs until the 5th

configuration, with a significant improvement being observed
during the 6th configuration with relatively small variations
occurring up to the 16th configuration. A gradual decrease is
then observed between the 16th and 20th configurations, at which
point the objective function converges (Figure 6). By changing from
the initial to the optimal configuration, the optimization error is
decreased from 0.268 to 0.195, resulting in a 27% improvement on
the objective function.
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TABLE 6 Initial parameter setup.

Parameter Initial value Parameter Initial value

Layers 1 (per network) Learning rate 0.001

Units 80 Learning scheduler constant

Unit decay 1.0 Learning patience 10

Dropout 0.3 Batch size 64

reg. strength 0.0

FIGURE 6
Convergence plot of DITAN across configurations using Bayes
Optimizer.

The hyper-parameters of the optimal (20th) configuration
are reported in Table 7. The resulting model consists of 19.815
parameters. These parameters are updated in batches of 32
consecutive patterns, where each record within these patterns is
encoded using 32 units. In addition, use of a larger learning rate
of 0.01 means that the convergence process becomes capable at
exploring global maxima more effectively throughout all epochs.
To maintain stability during training, a step decay factor is used,
which gradually reduces the learning rate every 4 epochs. This
approach strikes a balance between exploration and stability in the
optimization process. The final parameters are selected at epoch
78, at which point the patience of early stopping is exhausted,
with the internal validation loss not improving by > 0.0003 for 10
consecutive epochs after epoch 68.

3.6.5 Detecting anomalies
In the detection phase the trained model is used to predict

normality across 6,843 (records) hours, resulting in a corresponding
number of errors per sensor, as illustrated in Figure 7. Each error
is computed as the absolute difference between the predicted
and observed value, according to the selected loss function. Each
sequence is then smoothed using a simple moving average (SMA)
of 6-hour. An important consideration when reducing temporal
resolution is to maintain a balanced trade-off between smoothness

and introduced lag. The “goodness” of the proposed window size is
demonstrated in Figure 8, using a subset of errors from a randomly
selected (pressure) sensor. We observe that the smoothed versions
of the errors maintain a responsiveness to the raw errors.

4 Results

Our objective is to examine the intensity, duration
and type of anomalies caused on surface temperature by
meteorological/atmospheric effects at a hydrothermal system.
External drivers on the thermal state of the surface are described by
air pressure, wind speed, rain, humidity and air temperature. To do
this, DITAN detects anomalies across the seven sensors, and then
uses the expert rules to interpret them as physical events. Within
this framework, two or more anomalies are considered to be linked
to each other when their start difference is within a defined time
interval.

4.1 Normality

Figure 9 gives key statistics of the preprocessed sensors.We see 3
features of normality: one typical of the meteorological system, and
two characteristic of the hydrothermal system:

1. The four sensors of the meteorological station recording the
external parameters (pressure, air temperature, wind-speed,
and rain), exhibit the expected correlation during the passage
of a low-pressure system. That is, as pressure falls so too does
air temperature, but wind speed and rainfall increase.

2. The surface temperatures for the hot zone exhibit a higher
median than those of the cold zone. This is because the surface
temperature of the hot zone is buffered by the enhanced
geothermal heat flux associated with the hydrothermal
system. The difference between the medians for the two
surface temperatures (0.3) thus gives the median normalized
magnitude of ΔT for the year 2020.

3. The median air temperature in the hot zone is higher than
that at the weather station, again due to buffering by the
geothermally heated surface 15 cm below the air temperature
sensor, giving a median normalized magnitude for the air
temperature anomaly during 2020 of 0.5.

4.2 Anomalies

From the 6,843 records (hours), 1,737 were detected as
anomalous. This means around 72 days (or 25% of total records)
experience anomalous events. The number of anomalies and critical
regions per sensor are given in Table 8. The most critical regions
occur on the temperature sensors, but the number of critical regions
in the cold zone is slightly higher than in hot zone for air and
surface temperatures.This again highlights the buffering effect of the
geothermal heat flux in the hot zone. Wind-speed, rain and pressure
also exhibit anomalies, indicating that the main source of anomalies
on the temperature sensors at Vulcano during 2020, and thus also on
ΔT, were due to external drivers.
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TABLE 7 The hyper-parameters of the optimal DITAN model.

Hyper-parameters Values Hyper-parameters Values

Layers 1 Learning Rate 0.01

Units 32 Learning Scheduler step decay

Units Decay 0.910362945353 Learning Patience 10

Dropout 0 Batch Size 32

Regularization Strength 0

FIGURE 7
Box plots of the prediction errors of DITAN across the 7 sensors. For each sensor, the boxplot consists of a rectangular box which spans the
interquartile range (IQR) of the data, the line inside representing the median. “Whiskers” extend from the edges of the box to indicate the range of the
data outside the IQR, often with outliers (black points) shown beyond the whiskers. Small median errors were observed for all sensors with small IQRs.
Several outliers were observed for the rain sensor, since rain is a rare event in the observed sequence.

4.3 Rule execution

Thenumber of valid executions per rule are given in Table 9.The
two meteorological events (rules R1 and R2) are executed seven and
three times, respectively. Instead, R4 does not occur, R3 and R6 are
executed only once, and R5 twice. This highlights the influence of
external drivers on the surface temperature on both the hot and cold
zones, but with a higher influence on the cold zone. Rule R7 was
executed nine times. This indicates that data were corrupted on nine
occasions due to the sensor giving a spurious output, such as during
automatic reset, or the presence of recording glitches.

The main anomalous meteorological events occurring at
Vulcano in the year 2020 were thus associated with the passage of
low pressure systems and rainstorms (cloudbursts), as defined by
rules R1 and R2, respectively. To obtain the temporal occurrences
of these anomalous meteorological events we need to analyze the
critical regions of DITAN within the pressure, rain and wind speed
sensors, where the root-causes of the critical regions in these sensors
are given in Figure 10. Recall that root causes are probabilistic
contributions of each sensor to the anomalous character of a time-
step (record), ranging from0 to 1.During normal time-steps, all root
cause values are set to zero. Consequently, the root cause diagrams

provides a detailed analysis, at a time-step resolution, of the temporal
difference (delay) between anomalous events triggered at various
sensors. We observe that most of critical regions for wind speed and
pressure are closely correlated in terms of time, contributing to the
occurrence of R1. The critical regions for rain are concentrated later
in the year, in close proximity to critical regions for wind speed and
pressure, resulting in execution of R2 at this time.

4.4 Abnormal meteorological events

Critical regions for the air pressure sensor demonstrate a
negative correlation with the wind speed sensor. This implies
that when pressure exhibits an abnormal decrease, the anomalous
values of the corresponding critical region for wind speed tends to
increase. The positive correlation with critical regions of the rain
sensor indicate that low pressure systems that were classified as
abnormal were also associated with intense rain fall. We here use
abnormal in the sense that the pressure, wind speed and rainfall
intensity associated with the low pressure system in question was
not normal compared with the trends learnt by DITAN for “regular”
system behavior.
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FIGURE 8
A sub-part of the raw and smoothed error sequences on pressure sensor.

FIGURE 9
Box-plot of the pre-processed data for Vulcano in 2020. Despite the fact that decomposing to only residuals results in more values outside of the
interquartile ranges, the sensors are able to preserve their correlations.

Of all the 19 critical regions identified for 2020, nine are
for pressure, seven are for wind speed, and two are for rain.
Abnormalities in the time series for pressure, wind speed and
rainfall, related to passage of a low pressure system (Rule R1),
occurred during the first 4 months of 2020, and then again in
December. R1 was executed (Figure 11):

• once in early-February (event duration = 2 days);
• once in late-March (event duration = 2 days);
• once in mid-April (event duration = 1 day);
• once in early-May (event duration = 5 days);
• three times during December (combined duration =

4 days).

Summer and autumn lacked abnormal meteorological events,
with all sensors maintaining relatively low (normal) levels
(Figure 11). Rainfall remained at relatively low (normal) levels
during the spring, summer and autumn months of 2020, but in

December the rainstorm rule (R2) was executed three times. These
abnormal rainstorm events lasted a total of 5 days, and coincided
with the three occurrences of abnormalities due to low pressure
systems.

4.5 Abnormalities in surface temperatures

The values of the surface temperatures in both the cold and
hot zones are positively correlated (Figure 12). However, a partial
correlation is observed between their anomalous values within
critical regions, since the surface temperature of the hot zone is
buffered to the external conditions by the internal driver (i.e., the
geothermal heat source). Two critical regions were identified for
surface temperature in both the hot zone and cold zone (Figure 13).
Anomalies are confined to the winter and spring months, while
summer and autumn are free of critical regions. An abnormal
decrease in surface temperature in the cold zone (R5)was detected in
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TABLE 8 DITAN’s detection results per sensor.

Sensor name Critical regions Anomalous values

Pressure 11 462

Air-temp 11 99

Wind-speed 11 678

Rain 6 537

tsurf-grey 13 298

tair-grey 10 363

tsurf-red 16 562

TABLE 9 Rules executed using the inference engine.

Rule ID Event type Valid executions

R1 Meteorological 7

R2 Meteorological 3

R3 Surface external driver 1

R4 Surface external driver 0

R5 Surface external driver 2

R6 Surface external driver 1

R7 Instrumental 9

early-February and lasted 2 days, although this did not affect the hot
zone. An abnormal decrease in surface temperaturewas recorded for
both zones in mid-May, and lasted 6 days. During this period, the
surface temperature at the hot zone began to decrease a few hours
before the cold zone.

The two-day-long February abnormality in surface temperature
began on 3 February, and was characterized by a dampening of
the diurnal cycle, but only for the cold zone whose amplitude
decreased by 4°C (Supplementary Appendix C). Abnormality began
around midnight of 2–3 February, and was coincident with an
abnormal decrease in pressure from 996 mbar to 976 mbar until
midnight on 4–5 February. The pressure drop at 0.4 mb h−1 was
matched by an increase in wind speed from 7 km/h to 36 km/h, with
no rainfall being recorded (Supplementary Appendix C). DITAN
therefore characterized this meteorological event as a low-pressure
system, but not a rain storm.

The six-day-long May surface temperature abnormality
began on 9 May, continued until 15 May, and affected both
the cold and the hot zones. The abnormality was due to a
dampening of the diurnal cycles in surface temperature by
2°C–3°C (Supplementary Appendix C). For the 6 days prior to the
abnormality diurnal ranges were 10°C (32°C–22°C) in the cold zone
and 16°C (36°C–20°C) in the hot zone, whereas for the 6 days of
abnormality ranges were 8°C (32°C–26°C) and 13°C (31°C–18°C).

The surface temperature abnormality was associated with an
abnormality in pressure which fell from 990 mbar to 976 mbar over
48 h beginning at midnight 8–9 May (Supplementary Appendix C).
Pressure recovered on 15–16 May, also synchronous with the end
of abnormality in surface temperature. The greatest decrease in
pressure was at a rate of 1 mbar per hour during 10 May, which
classes the event as a “meteorological bomb.” Such events are
defined as “extra-tropical surface cyclones whose central pressure
fall averages at least 1 mbar h−1 for 24 h” being a “maritime, cold-
season event, with hurricane-like features” (Sanders and Gyakum,
1980). Meteorological bombs are not necessarily associated with
rain, but are associated with sustained high winds which increase
as the pressure decreases, making them “wind storms” (Sanders
and Gyakum, 1980). Indeed, the 6 days of abnormality were
characterized by no rain, but winds peaked at 30 km/h which was
twice the speed recorded in the 6 days prior to passage of the bomb
(Supplementary Appendix C) and, given the sheltered location
of the anemometer inside the crater, high. DITAN therefore also
characterized this event as an anomalous low-pressure system, but
not a rain storm.

Surface temperature abnormalities are thus due to suppressed
ranges of the diurnal cycle.This is triggered by decreases in pressure,
which would have increased radiative cooling of the surface through
its influence on vapor pressure. In addition, forced convectionwould
have been greatly enhanced by the high winds. The combined effect
is to dampen the diurnal cycle of surface temperature, making the
cycles abnormal.

4.6 Prediction errors

Figure 7 presents the prediction errors across sensors, and
based on these errors, the risk associated with the occurrence
of abnormal meteorological events is also depicted in Figure 11.
The risk of an abnormal low-pressure system varies from 0.33
to 0.43, whereas the risk of an abnormal rainstorm varies from
0.62 to the maximum risk of 1.0. That is because, especially
during the early days of December, the prediction offset in rain
activity was higher than the prediction offset of wind speed and
pressure activities.

The risk of abnormal decrease in cold surface temperature
(R5) is 0.31, while the risk of abnormal decrease of hot surface
temperature (R6) is higher at 0.43 (Figure 13). This suggests that
abnormal surface temperature changes in the hot zone have a higher
level of risk of occurrence than in the cold zone. In addition, the
risk of abnormal surface temperature decreases at both cold and
hot zones (R3) is 0.27, which is lower because it considers all
conditions fromR5 and R6.This observation suggests that abnormal
temperature changes across the entire surface carry slightly less risk
of occurrence compared to changes in either the cold zone or hot
zone temperatures.

5 Discussion

The critical regions for surface temperatures in the cold and
hot zones, as well as wind speed and pressure, are given as a root-
causes diagram in Figure 12.The detected physical events associated
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FIGURE 10
The root-causes diagram for pressure, rain and wind speed sensors.

FIGURE 11
Timeline of detected meteorological events (R1, R2).

with anomalies in these critical regions have been checked as true
positives (Table 10). This analysis shows that critical regions for
surface temperature, wind speed and pressure are closely associated,
showing partial or complete overlap. The passage of abnormally
intense low pressure systems (meteorological event R1) always
caused surface temperature anomalies involving abnormal decreases
in temperature. Meteorological event R1 drove decreases in surface
temperature for both hot and cold zones. However, the cooling
experienced by the hot zone was modulated by the effect of the
hydrothermal system heat source. Thus, critical regions were more
associated with passage of a low pressure system for the cold zone
than the hot zone.

This has implications for the effect of external drivers on the
surface thermal anomaly (ΔT). In early-February 2020, a low-
pressure system passed over Vulcano, persisting for 2 days. During
this period, the cold zone experienced an abnormal decrease in

surface temperature. However, no abnormality was recorded in
the hot zone. This, thus, drove the thermal anomaly upwards,
but increasing ΔT was the result of an external rather than an
internal driver. However, the effect was limited to just 2 days. A
second low pressure system passed over Vulcano in late-March
and lasted 2 days. This was followed a one day-long period of low
pressure system conditions in mid-April. In both of these cases,
there were no abnormalities in the surface temperatures at either
the cold or hot zones, meaning that the thermal anomaly was
unaffected. However, in early-May, a low-pressure system persisted
for approximately 5 days. Its influence decreased the surface
temperature in the hot zone and the cold zone, disrupting normality
across the entire surface. Abnormal rainstorm events were detected
throughout December, and were associated with abnormalities in
wind speed and pressure. However, surface temperatures retained
their normality in both the cold and hot zones.
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FIGURE 12
The root-causes diagram for pressure, wind speed and (red, grey) surface temperature sensors.

FIGURE 13
The timeline of the detected surface external driver events (R3, R5, R6).

This means that, even when at low, baseline levels, external
drivers have a minimal role in causing abnormalities in surface
temperature in the hot and cold zones, and hence also the
surface thermal anomaly. Passage of intense low pressure
systems with high winds was the main external driver for
abnormal variations in surface temperature. However, even

the most intense, cloudburst events did not force abnormality
on the surface temperature time series, meaning that when
the system is at baseline levels, surface temperature normality
is immune to rain. However, this conclusion applies only to
surface temperatures (Pailot-Bonnétat et al., 2023; Pailot-Bonnétat
and Harris, 2024).
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TABLE 10 The detected meteorological and surface external driver events.

Rule ID Physical event Average risk Verified

R1 Low pressure system 0.38 ✓

R2 Rainstorm 0.75 ✓

R3 Decrease on surface temperatures 0.27 ✓

R5 Decrease on cold zone surface temperature 0.31 ✓

R6 Decrease on hot zone surface temperature 0.43 ✓

5.1 Physical link between intensity of
meteorological abnormality and surface
cooling

At Vulcano, heat produced by condensation of ascending
hydrothermal fluids has been shown to heat the surface
(Chiodini et al., 2005) buffering the surface temperature so that
surfaces are warmer than in an ambient scenario. Both heated and
non-heated surfaces undergo diurnal and annual variation. Thus,
because the heated surface is just a few degrees greater than ambient
it is subject to the same external factors, such as solar heating,
wind and rain, that drive surface heating and cooling. However,
temperature cycles for the heated zone are at a higher level, thus
creating the thermal anomaly (ΔT). For 2020 at Vulcano we found
that the only external factor that could drive an abnormal behavior
in the diurnal cycles was particularly low atmospheric pressures and
wind speeds, rain not playing a role.

5.2 Abnormality in the thermal anomaly
due to external drivers

Only particularly intense and long lasting low-pressure systems
associated with meteorological bombs can dampen the diurnal
cycles at both heated and non-heated surfaces. In such a case,
because both Th and T0 behave in the same way, there is no
abnormality in ΔT. However, passage of less intense systems of
shorter duration only dampen the cycles in T0, thereby causing
abnormality in ΔT. The buffering provided by the internal heat
source is sufficient to protect the hot surface from abnormal
cooling. Thus, we consider passage of moderate intensity systems
the only external driver on ΔT, where the effect of abnormal
decrease in T0, but not Th, will increase ΔT for the period of
the event.

6 Conclusion

Deep learning is beginning to be applied to understand
abnormalities in diurnal cycles of surface temperature in non-
volcanic environments, such as at urban heat islands (Qi et al.,
2023), but not yet at low temperature thermal anomalies associated
with hydrothermal systems. At bottom-heated surfaces above

hydrothermal systems, due to the low amplitude of the anomaly
we expect the form and amplitude of diurnal cycles in surface
temperature to have both external drivers (the meteorological
system) and internal drivers (the magmatic and hydrothermal
systems). However, the role of the meteorological system in driving
abnormality in surface temperatures at both geothermally heated
and non-heated ground, in a vegetation-free crater, is poorly
constrained. Most studies focus instead on the role of rainfall in
influencing meteoric inflow into the hydrothermal mixing zone
(Carapezza et al., 1981; Chiodini et al., 1995; Nuccio et al., 1999).
We have thus applied DITAN to a year of meteorological data for the
geothermally-heated zone in the Vulcano Fossa crater to understand
the role of external (meteorological) factors in heating and cooling
the surface.

We intentionally chose the year 2020, as heat fluxes were
particularly low and stable allowing us to assess the background
state of the system. Defining baselines is fundamental in volcano
surveillance (McGuire et al., 1995). In the baseline state, the system
appears to be remarkably robust and relatively immune to external
drivers. Divergence from normality in surface temperature only
occurred twice, and was associated with the passage of particularly
intense low-pressure systems with durations of 2–5 days. Abnormal
rainfall events did not cause divergence from normality in surface
temperature cycles. Thus, during low levels of heat flux, external
factors play a minimal role in driving the system away from
normality in terms of diurnal and seasonal cycles of surface heating
and cooling.

When applied to meteorological and surface temperature time
series for surfaces above an active hydrothermal system, and
configured with rules to define physical events, DITAN allows
anomalies driven by external factors to be detected and classified. It
could thus be applied to any geothermal system where appropriate
data are available. If, as here, applied during a period when external
drivers are variable, but internal drivers are stable and at background
levels, all anomalies will be characteristic of a “stable” system whose
surface temperature abnormalities are only driven bymeteorological
events. Once this is defined, such externally-driven abnormalities
can be identified, cleaned and removed from periods when the
internal drivers become variable and, hence, the hydrothermal
system becomes unstable.

We consider this work as test and starting point for a
model that cleans data set of externally driven thermal anomalies,
isolating abnormalities in thermal anomalies due to internal
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drivers, such as recharge of the magmatic system or changes
in system permeability. During our period of study, no such
events occurred. However, recharge of the magmatic system
or changes in system permeability can be the prelude to
eruption, or enhanced CO2 soil degassing, so that isolating such
internal changes is fundamental. That the thermal anomaly is
so subtle, and that influences on it are multivariate, makes this
task challenging, and hence requiring of a machine-learning
based approach. Thus, defining the key internal drivers for,
and their association and temporal interplay with, surface
temperature abnormalities as the system moves into unrest will be
our next step.
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Introduction: Volcano seismology has successfully predicted several eruptions
and includes many reliable methods that have been adopted extensively
by volcanic observatories; however, there are several problems that still
lack solutions. Meanwhile, the overwhelming success of data-driven models
to solve predictive complex real-world problems positions them as an
effective addition to the monitoring systems deployed in volcanological
observatories.

Methods: By applying signal processing techniques on seismic records, we
extracted four different seismic features, which usually change their trend
when the system is approaching an eruptive episode. We built a temporal
matrix with these parameters then defined a label for each temporal moment
according to the real state of the volcanic activity (Unrest, Pre-Eruptive, Eruptive).
To solve the remaining problem developing early warning systems that are
transferable between volcanoes, we applied our methodology to databases
associated with different volcanic systems, including data from both explosive
and effusive episodes, recorded at several volcanic scenarios with open and
closed conduits: Mt. Etna, Bezymianny, Volcán de Colima, Mount St. Helens
and Augustine.

Results and Discussion: This work proposes the use of Neural Networks
to classify the volcanic state of alert based on the behaviour of these
features, providing a probability of having an eruption. This approach offers a
Machine Learning tool for probabilistic short-term volcanic eruption forecasting,
transferable to different volcanic systems. This innovative method classifies the
state of volcanic hazard in near real-time and estimates a probability of the
occurrence of an eruption, resulting in a period from at least hours to several
days to forecast an eruption.

KEYWORDS

volcano seismology, forecasting, deep learning, neural networks, geophysics, signal
processing

Frontiers in Earth Science 01 frontiersin.org112

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2024.1342468
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2024.1342468&domain=pdf&date_stamp=2024-06-25
mailto:pablord@ugr.es
mailto:pablord@ugr.es
https://doi.org/10.3389/feart.2024.1342468
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feart.2024.1342468/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1342468/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1342468/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1342468/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Rey-Devesa et al. 10.3389/feart.2024.1342468

Introduction

Volcanic eruptions are powerful and complex natural phenomena
that can cause significant impact to the environment, human
lives and infrastructure. Being able to forecast and understand
these events is crucial to enable the instigation of preventive
measures and to mitigate the associated risks. For decades, the
scientific community has been developing reliable volcanic eruption
monitoring methods and early warning tools. Volcanoes are
dynamic systems with multiple correlated geophysical variables,
like seismicity, temperature anomalies, ground deformation or gas
emission (Fee et al., 2020; Girona et al., 2021; Angarita et al., 2022;
Grapenthin et al., 2022; Torrisi et al., 2022; Shreve et al., 2023). The
analysis and interpretationof these time-series remains a difficult task,
requiring an interdisciplinary approach.

Between these disciplines, some of themost used tools inwarning
systems come from volcano seismology. Volcanic processes generate
seismic activity that can be recorded as time series and studied
to understand how the volcanic system is evolving. Through the
extraction of different parameters of this signal, like the energy and
the frequency content, several tools have been developed capable
of finding possible precursory indicators whenever an eruption is
approaching. Some of these methods are based on the study of the
temporal evolution of these seismic parameters (Boué et al., 2015;
Boué et al., 2016;Caudron et al., 2021;Ardid et al., 2022),while others
are based on the classification of different types of seismic signals, that
seismologists have been associating to different eruptive processes
occurring in the volcano (Chouet and Matoza, 2013; McNutt and
Roman, 2015; Girona et al., 2019).

Recently, machine learning (ML) emerged as an interesting
and promising tool for pattern recognition and volcanic
eruption forecasting (Curilem et al., 2009; Malfante et al., 2018a;
Malfante et al., 2018b; Manley et al., 2020). Due to its capability
of fast processing, the problem of large databases is being solved,
and ML is providing itself to be a robust real-time monitoring tool,
allowing continuous surveillance of volcanic processes and a rapid
identification of significant changes in volcano-seismic patterns, not
evident with traditional methods (Titos et al., 2018a; Manley et al.,
2021), as well as improved classification of volcano seismic events
associated with different volcanic processes (Titos et al., 2018b;
Titos et al., 2019; Tan et al., 2023).

However, ML solutions still have unsolved challenges and
limitations (Carniel and Guzmán, 2020; Whitehead and Bebbington,
2021). Performance of ML models depends on both the quality and
the size of the available dataset. If the conditions of the volcanic
system change abruptly within the training data, or if new volcanic
phenomenaappear, the classificationcapabilityof themodelmightnot
be very precise. Another limitation of ML models is that they fail to
generate evidence to enable the formulation of an underlying physical
model supported by geophysical and geochemical data to explain the
results they are obtaining. Thus, human supervision and experts are
still needed for interpreting the results obtained at observatories.

Besides these limitations, signal processing techniques
have enabled the development of volcanic early warning tools,
demonstrating its capability to detect significant changes in volcanic
and seismic activity (Rey-Devesa et al., 2023b; Ardid et al., 2022;
Caudron et al., 2020; Dempsey et al., 2020). This allows better
hazard evaluation policy and protection for the population living in

TABLE 1 Seismic Features and formula used to calculate them.

Seismic feature Formula

Energy
n
∑
(i=1)

S[i]2

Frequency Index log10(
Ehighfreq
Elowfreq
)

Kurtosis 1
n

n
∑
(i=1)
( S[i]−S

σS
)

4

Shannon Entropy −
n
∑
(i=1)

P(S[i]) log2 (P(S[i]))

hazardous regions.These techniques take data frommultiparametric
forecasting systems and can provide a better understanding of the
underlying volcanic processes. They have great potential to detect
different type of changes in the system, their performance being
independent of the type of seismicity recorded (Rey-Devesa et al.,
2023a; Steinke et al., 2023).

In this work we show the forecasting potential of a machine
learning volcano-independent classification tool based on the
temporal evolution of 12 different seismic features, before and after
volcanic eruptions. We defined a label associated to the eruptive stage
as a function of the volcanic activity recorded on a set of different
volcanoes (unrest period, pre-eruptive activity and eruptive volcano).
Then we applied signal analysis techniques to the seismic records
of these volcanoes in order to extract underlying seismic features.
A moving window of 10 minutes was used with an overlap of 50%,
generating a vector of features for each window, considering these
as temporal units. After this, we associated the volcanic stage label
with each temporal unit of the volcanoes studied, each of them with
their corresponding values of the seismic features calculated.We used
different volcanic systems to test the transferability and universality
of the method. The studied volcanoes are associated with different
explosivemechanisms,pre-eruptiveactivitiesandsourceprocesses;we
worked with data from Augustine (United States), Mount St. Helens,
(United States), Volcán de Colima (Mexico), Mt. Etna (Italy), and
two different eruptive periods of Bezymianny (Russia), recorded in
2007 and 2017 respectively. This selection was dependent upon data
availability. To make the values obtained for the different volcanoes
comparable we normalized them using a z-score normalization.Then
we implemented a Neural Network classification model and tested
its performance for determining the volcanic stage of the system,
based on the values of the seismic features. This model classifies
the volcanic state of activity, generating a risk label in near real-
time. In addition, it estimates the probability of being in each of
the possible states. In this work we have seen that this probabilistic
numeric value of having an imminent eruption increases whenever
the volcanic eruption is approaching, independently of the volcanic
system studied. This allows the surveillance team to consider the
temporal evolution of a probabilistic numeric value as a reliable
forecasting tool. This machine learning model is straightforward and
allows its implementation in small and less powerful devices; the
algorithm focusses onTinyMachine Learning applications, to achieve
the minimum of computation power and time required for analysing
the data (Immonen and Hämäläinen, 2022).

The results obtained in this work evidence the reliability of
this method as an automatic tool capable of forecasting volcanic
eruptions with great potential, and it is shown to be transferable to

Frontiers in Earth Science 02 frontiersin.org113

https://doi.org/10.3389/feart.2024.1342468
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Rey-Devesa et al. 10.3389/feart.2024.1342468

FIGURE 1
Correlation Matrix showing the relation between the temporal evolution of the 12 different features extracted from the seismic signal and used as the
input for the neural network.

different volcanic systems around the world. The method could be
implemented in volcanic observatories with a consideration of not
only seismic datasets. We are able to define a volcanic risk alert state
in near real-time based on the experience of previous case studies.

Method and materials

Characterizing seismic signals is possible by using a small set of
underlying features. Based on the work of Rey-Devesa et al. (2023a),
and by using four seismic features (Energy, softened Shannon
Entropy, Kurtosis and Frequency Index) most properties of an
evolving volcanic system can be understood (Table 1). Traditionally,
the energy of the seismicity and the source process of the seismic
activity, defined through the waveform and spectrum of the seismic
records, were used to understand the behaviour of the volcanic
system and characterize its activity (McNutt and Roman, 2015). The
study of parameters like Kurtosis and Frequency Index reflects the
type of activity present in the volcano; kurtosis characterizes the
presence of spectral peaks in temporal series, so impulsive high
frequency signals like volcanic tectonic events will induce changes
in the Kurtosis values (Cortés et al., 2015); on the other hand,
the frequency index indicates changes in the spectral tendency of
the signal, so energetic tremor or a swarm of long period events,
which are both low frequency signals, will produce a displacement
of the Energy content to the lower frequency bands, reflected
in the trend of the Frequency Index (Bueno et al., 2019; Rey-
Devesa et al., 2023a). In addition, Shannon Entropy is a measure
of the uncertainty, or the amount of information, of a dataset,

which provides a quantitative value of the predictability of the
system; Shannon Entropy decreases whenever the volcanic seismic
signals are homogeneous; thus, the changes of a volcano self-
organizing prior to an eruption are reflected in a decreasing trend
of the temporal evolution of the Shannon Entropy to minimum
values (Shannon, 1948; Delgado-Bonal and Marshak, 2019; Rey-
Devesa et al., 2023b). With these seismic features, we built a
temporal matrix that involves data from several volcanoes; the data
correspond to both eruptive and non-eruptive phases, involving
seismicity associated to the noise prior of the eruption, the pre-
eruptive activity, and the explosions. We want to highlight that we
are working with databases from different volcanoes, each one of
them with its own type of explosive activity, magma characteristics,
source processes, pre-eruptive seismicity and conduit opening
(Acocella et al., 2024).

In Table 1 we can see the formulas used to estimate the values of
our features in each window of analysis. Notice that S[i] is the value
of the filtered seismic signal at i. In the estimation of the Frequency
Index, we have used the energy measured in the frequency band
between 1 and 5.5 Hz for the low frequencies, and for the high
frequency band the energy between 6 and 16 Hz, following the
results of previous works (Rey-Devesa et al., 2023a). In the formula
of Shannon Entropy, the P stands for probability density function.

Several authors have used these set of features among others
with the idea of classifying different volcanic-seismic signals
(Malfante et al., 2018a; Malfante et al., 2018b; Titos et al., 2018a;
Titos et al., 2018b). In this work we use this experience to take a step
forward and automatically classify the volcanic alert level, defining
three labels of volcanic activity (unrest, pre-eruptive and eruptive)
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FIGURE 2
Flowchart of the methodology designed for this analysis. In first place we apply signal processing techniques over the seismic records of each volcanic
dataset, creating a matrix with the temporal evolution of the seismic features. We use a z-score normalization for each matrix and create a unique
matrix involving all the datasets, which now are comparable. We label this matrix in function of the volcanic state of the system (unrest, pre-eruptive
and eruptive). We do the analysis independently for each dataset, so we leave one dataset out every time we run the model. Finally, we create a neural
network model with a hidden dense layer of 32 units and a ReLU activation function and a second layer with a softmax function for classification. We
use a k-fold cross validation model for the training; each of the 5 iterations use 80% of the data for training and 20% for validation. The model obtained
is run over the excluded volcanic dataset.

and associating them to the values of these features. We consider
as unrest a deviation of the typical background noise, that might
or might not prelude an eruption (Phillipson et al., 2013). When
the recorded seismic activity increases significatively, reflecting an
imminent eruption, we define the pre-eruptive state (or impending
eruption). This defines a database useful to compare with new
datasets and, based upon that comparison, establish a real-time
definition of the volcanic state.

Building the matrix

First, we analysed the vertical component of the seismic records
associated with each volcanic system separately. We started by
preprocessing the signal with a Butterworth bandpass filter to
eliminate low frequencies below 1 Hz and high frequencies over
16 Hz. This is done to remove anthropogenic noise, weather
condition noise and tidal noise (Almendros et al., 2000). Then we
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TABLE 2 Number of data associated with the volcanoes and the eruptive stages.

Unrest Pre-eruptive Eruptive Total

Augustine 212 188 102 502

Bezymianny 07 2000 2,756 245 5,001

Bezymianny 17 260 182 19 461

Colima 2,640 1,259 882 4,781

Mt. Etna 2,222 913 705 3,840

Saint Helens 282 231 292 805

Total 7,616 (49.5%) 5,529 (35.9%) 2,245 (14.6%) 15390

FIGURE 3
Results of the model for Volcán de Colima dataset. Left: we can see the temporal evolution of the probability of being on each state (green for unrest,
yellow for pre-eruptive and red for eruptive); the vertical dashed line represents the onset of the eruption of 11 July 2015. Top right: the confusion
matrix of the classification system. Bottom right: the training and validation convergence curves for loss and accuracy, showing that the model is not
overfitting.

defined a moving window for the analysis, which is displaced along
the filtered seismic record. The length of this window was 10 min,
since we were working with very large databases, and has an overlap
of 50%. We analyse the record of that 10 minutes window and

estimate the corresponding value of the four features of interest,
then move to the next window and repeat the process. This way,
we build a temporal vector for every feature, creating a matrix
associated with the temporal evolution of each volcanic system, in
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FIGURE 4
Results of the model for Mount St. Helens volcano dataset. Left: we can see the temporal evolution of the probability of being on each state (green for
unrest, yellow for pre-eruptive and red for eruptive); the vertical dashed line represents the onset of the eruption of 01 October 2004. Top right: the
confusion matrix of the classification system. Bottom right: the training and validation convergence curves for loss and accuracy, showing that the
model is not overfitting.

which the rows represent the temporal unit and the columns the
feature. We want to capture temporal fluctuations and trends in the
behaviour of our seismic features; this way, the neural network can
learn from the present information, and also from how the signal
is changing according to the previous window. This would make
our matrix more sensitive to changes that indicate an evolution of
the volcanic activity. To make our matrix consistent over time, we
also added the first and the second derivates of every feature, so we
have 12 parameters in ourmatrix.The correlationmatrix of the used
features (Figure 1) shows that there is no redundant information
from our four original input variables, which could negatively affect
the performance of our model.

Based on the catalogues and the activity during the studied
periods, we associated a volcanic stage label to each temporal unit
(references in the Databases section). We defined three different
labels: unrest, pre-eruptive and eruptive periods.

In order to make this system universal and transferable to every
volcano, we built a unique large database involving the temporal
matrix of each studied volcano. To ensure comparability among
the matrices of different volcanoes, we normalized the temporal
evolution values of each feature within its relative volcanic matrix
using z-score normalization. This standardization offers several

advantages in the context of machine learning analysis. It eliminates
scale differences between features, prevents certain features from
dominating the analysis, facilitates comparison, and reduces the
risk of numerical problems, like convergence difficulties. To test the
comparability of the different databases we generated the correlation
matrix of the features for each studied volcano and found that all
of them exhibit high similarity, both among themselves and to the
reference Figure 1 (Supplementary Figure S1). After normalizing
the temporal evolution of the features, we assembled the sixmatrices
into a single matrix. We labelled this matrix with the corresponding
label for each temporal unit.The full process is described in Figure 2.

Neural network

Volcano seismology advances during last decades have been
driven by the improvement of deep learning and machine learning
techniques (Benítez et al., 2006; Cortés et al., 2021; Titos et al.,
2022), particularly neural networks (Falsaperla et al., 1996;
Scarpetta et al., 2005; Titos et al., 2018a; Titos et al., 2018b). Neural
Networks are a computational model inspired by the structure
of the human brain. These powerful tools have demonstrated

Frontiers in Earth Science 06 frontiersin.org117

https://doi.org/10.3389/feart.2024.1342468
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Rey-Devesa et al. 10.3389/feart.2024.1342468

FIGURE 5
Results of the model for the Bezymianny 2007 dataset. Left: we can see the temporal evolution of the probability of being on each state (green for
unrest, yellow for pre-eruptive and red for eruptive); the vertical dashed line represents the onset of the eruption of 14 October 2007. Top right: the
confusion matrix of the classification system. Bottom right: the training and validation convergence curves for loss and accuracy, showing that the
model is not overfitting.

exceptional efficacy in identifying underlying patterns and non-
linear relationships in complex seismic datasets (Simpson, 1992;
Bengio et al., 2007; Deng and Dong, 2014; LeCun et al., 2015),
transforming monitoring and forecasting approaches of volcanic
eruptions. The integration of higher sampling frequency data
and extensive time series has led to more robust predictive
models, capable of anticipating changes in volcanic activity with
an unprecedented level of detail. These models can analyse raw
seismic data in near real-time, identifying anomalous patterns that
may indicate imminent eruptive activity. In addition, deep learning
techniques have enabled the integration of data from multiple
sources, including satellite imagery and volcanic gas measurements,
for a holistic assessment of volcanic threat (Shoji et al., 2018;
Martínez et al., 2021; Amato et al., 2023).

Our neural network approach is designed with a dense layer
of 32 units, followed by a Rectified Linear Unit (ReLU) activation
function, used to pass positive values unchanged and convert
negative values to zero; this makes the extraction of crucial features
easier (Boob et al., 2022). Then, a second dense layer with a softmax
function; this function transforms a vector of real values into
a vector of probabilities, enabling the classification of the three
different volcanic states (Wang et al., 2018). The model compilation
uses the categorical cross-entropy loss function to measure the

difference between the predicted probability distribution and the
actual distributions of the labels, making the training of the model
more accurate; we used the Adam optimizer for updating the
network weights during training, fine-tuning the model for multi-
class classification challenge (Mehta et al., 2019; Mao et al., 2023).
We implemented a K-Fold cross-validation model to improve
the training and validation method of our analysis (Bengio and
Grandvalet, 2003). We selected a specific volcano dataset of our
matrix, leaving it out of the training set, and used it after the model
was built for evaluating its performance. This process is repeated
for each volcano. We used the remaining volcanoes for creating the
models. 80% of this remaining dataset was used for training and the
20% for validation, permuting in each one of our 5 K-Fold iterations,
ensuring that each part is used for both training and validation.

Databases

Wehave selected data from six eruptive periods associated to five
different volcanoes. For each eruptive period we used one seismic
station, chosen due to the completeness of the dataset and the
distance to the volcanic crater; it has been observed that depending
on the magnitude of the eruption, the location of the seismic
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FIGURE 6
Results of the model for the Bezymianny 2017 dataset. Left: we can see the temporal evolution of the probability of being on each state (green for
unrest, yellow for pre-eruptive and red for eruptive); the vertical dashed line represents the onset of the eruption of 20 December 2017. Top right: the
confusion matrix of the classification system. Bottom right: the training and validation convergence curves for loss and accuracy, showing that the
model is not overfitting.

station is relevant (Rey-Devesa et al., 2023a); we suggest distances
below 5 km. Each dataset corresponds to the seismic signal recorded
during several days or weeks prior to the eruptive episodes studied.
These eruptive periods are: Augustine 2006 (AUH station, managed
by Alaska Volcano Observatory); Bezymianny 2007 and 2017
(BELO and BZ01 stations respectively, by Kamchatkan Branch of
Geophysical Survey); Volcán de Colima, involving a pyroclastic flow
in July 2015 (SOMA station, by Centro Universitario de Estudios
Vulcanológicos, University of Colima); Mt. Etna eruptive period
in November 2013 (EBEM, by Instituto Nazionale di Geofisica e
Vulcanologia); Mount St. Helens 2004 (SHW, by Pacific Northwest
Seismic Network, University of Washington). The exact location of
the seismic stations can be seen in Rey-Devesa et al., 2023a; Rey-
Devesa et al., 2023b. Table 2 shows the classification of the total
dataset according to the volcanic stage label and the eruptive period.

These volcanoes are representative of different types of volcanic
region and eruptions, with and without relevant hydrothermal
systems. The case studies are representative of open conduit,
like Mt. Etna and Volcán de Colima (Chaussard et al., 2013;

Zuccarello et al., 2022), semi-open conduit, like Bezymianny
2007 (West, 2013) and closed conduit systems like Augustine,
Bezymianny 2017 and Mount St. Helens (De Angelis et al., 2013;
Mania et al., 2019; Schlieder et al., 2022) respectively. Here we
describe some differences between the type of eruptive activity, the
seismicity generated by the eruptions and the composition of the
lavas emitted.

The cases of study involve: a phreatic eruption at Mount St.
Helens (De Siena et al., 2014; Gabrielli et al., 2020), pyroclastic
flows and VT swarms at Volcán de Colima (Arámbula-
Mendoza et al., 2019; Dávila et al., 2019), four episodes of lava
fountaining and Strombolian activity at Mt. Etna (Bonaccorso et al.,
2014), dome growth activity at Bezimianny (Thelen et al., 2010;
Girina et al., 2013; Koulakov et al., 2021) and a Vulcanian
eruption at Augustine (Manley et al., 2021; Zhan et al., 2022).
In addition, there are variations on the characteristics of
the seismicity representing pre-eruptive activity: tremor at
Mt. Etna, VT swarms at Bezimianny, and mixed activity at
Mount St. Helens (Spampinato et al., 2019; Rey-Devesa et al.,
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FIGURE 7
Results of the model for Mt. Etna. Left: we can see the temporal evolution of the probability of being on each state (green for unrest, yellow for
pre-eruptive and red for eruptive); every vertical dashed line represents the onset of the eruptive paroxysms of November 2013. Top right: the
confusion matrix of the classification system. Bottom right: the training and validation convergence curves for loss and accuracy, showing that the
model is not overfitting.

2023a). Moreover, the volcanoes studied are representative of
different lava types: basaltic lavas at Mt. Etna (Polacci et al.,
2019; Zuccarello et al., 2022), andesitic at Bezymianny
(Davydova et al., 2022) and dacitic-rhyolitic at Augustine
(Wasser et al., 2021).

Results

In Figures 3–8 we show the temporal evolution of the unrest,
pre-eruptive and eruptive state probabilities over time for the
six different volcanic databases. Confusion matrices provide a
detailed view of the model performance for each volcanic database.
In this case, an excellent correspondence is observed between
the model predictions and the actual states. The loss and
accuracy curves offer crucial insights into the model performance
during training. The curves indicate that there is no evidence
of overfitting. The loss consistently decreases during training,
while accuracy increases, suggesting that the model generalizes
well to unseen data. These results are very promising and
suggest that the model has effectively captured the characteristic
patterns associated with the different eruptive phases of these
case studies.

Discussion

These results show the temporal evolution of the probability of
being in each volcanic state (unrest, pre-eruptive and eruptive) for
each of the six databases studied. One key observation is that the
unrest state is the easiest to determine for the neural network, being
almost never confused with other eruptive states. The probability of
being in the unrest state remains almost 100% for every case of study
when the volcanic systems are in an unrest period. To complement
this observation, we applied the model trained with all databases to
1 month of seismic data recorded at Bezymianny during an unrest
period in September 2017. These data were not included in our
training dataset. The performance was >95% of data interpreted as
unrest and the remaining <5% as a pre-eruptive state, which might
be due toVT swarms recorded during that period (Titos et al., 2023).
We can affirm that our model hardly ever displays false alarms when
it comes to determine that the system is in unrest, displaying great
robustness.

The results for determining the probability of being in
pre-eruptive and eruptive states are also outstanding. However,
confusion between states increases slightly when it comes to
determine the difference between pre-eruptive or eruptive state
scenarios. One case study that stands out is Augustine volcano. This
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FIGURE 8
Results of the model for Augustine. Left: we can see the temporal evolution of the probability of being on each state (green for unrest, yellow for
pre-eruptive and red for eruptive); the vertical dashed line represents the onset of the eruption of 11 January 2006. Top right: the confusion matrix of
the classification system. Bottom right: the training and validation convergence curves for loss and accuracy, showing that the model is not overfitting.

can be explained by considering that a volcanic eruption can evolve,
or even be temporarily interrupted, implying that the eruptive
state is an unstable scenario. The Augustine eruption combined
eruptive paroxysms with intervals of low seismicity and quiescence
(Global Volcanism Program, 2006).

We want to highlight an observed characteristic pattern, which
is relevant to the development of early warning systems for volcanic
eruption forecasting. We observe that the pre-eruptive probability
starts to increase days before the eruption, dominating the other
categories. This is sufficient to establish in real-time that a certain
process is ongoing in the volcanic system. Furthermore, it is
particularly interesting to note that before entering the period in
which the eruptive state dominates, the probability of that state
shows a gradual increase. Notice that our model might confuse the
beginning of the pre-eruptive state with the unrest, but not with the
eruptive, which hast a probability around 0%; however, when the
pre-eruptive state is about to finish, the model might confuse it with
the eruptive state, and the unrest state probability decays until 0%.

Upon observing our case studies, we notice that the model
determines the beginning of the pre-eruptive state between at least
10–15 h before the beginning of the eruption in the worst case,
which is the lava fountains at Mt. Etna, and several days in the
best case, like Volcán de Colima or Mount St. Helens; these time

intervals calculated for the lava fountains at Mt. Etna complement
the results of previous seismicity and infrasound forecasting
studies (Ripepe et al., 2018; Rey-Devesa et al., 2023a). Moreover, the
methodology determines the eruptive state of the volcanic system in
near real-time. Identifying the increasing probability of being in an
eruptive state is highlighting the possibility of an imminent eruption;
this is a reliable numeric value for affirming the probability of a
volcanic eruption to happen in the short-term and would improve
the surveillance of a volcanic system and the capability of forecasting
an eruption. The probability of being in the eruptive state usually
goes up to 80% whenever a volcanic eruption is about to start,
demonstrating that the methodology has potential as a universal
surveillance tool. This method could allow the team responsible
of making choices to take preventive measures, thus reducing the
volcanic risk and the impact to the surrounding communities.

The relationship between the duration of the pre-eruptive stage
and features like the degree of conduit opening (open, closed, semi-
open), or the explosivity of the eruption, is crucial for understanding
volcanic eruption dynamics and its forecasting. In closed conduit
and semi-open conduit systems, a longer pre-eruptive stage results
in significant magma accumulation and pressure buildup, leading
to explosive eruptions, as seen with Mount St. Helens in 2004,
Augustine in 2006 and Bezymianny in 2007 and 2017. Open
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conduits typically have shorter pre-eruptive stages, allowing magma
to ascendmore freely and resulting in effusive eruptions, as observed
at Etna in 2013. However, in some cases like Colima in 2014, a
prolonged pre-eruptive stage can still be associated with an open
conduit situation; this might be induced by the presence of a dome
covering the crater of the volcano (Reyes-Dávila et al., 2016). This
correlation highlights the results of Acocella et al. (2024), noticing
that longer pre-eruptive durations are generally associated with
closed conduits and more explosive activity, while shorter durations
usually correspond to open conduits and predominantly effusive
eruptions.

Conclusion

Efforts to enhance the predictive capabilities of volcanic
eruptions have led to the development of sophisticated machine
learning applications in volcano seismology. Despite its successes,
there remain challenges that require innovative solutions. In this
context, data-driven models have emerged as an effective alternative
to complement monitoring systems in volcanic observatories. This
study introduces a tool designed to establish eruption risk alerts
and estimate associated probabilities using a neural network. Signal
analysis techniques were applied to seismic records, enabling
the extraction of 12 distinct seismic features. These features,
typically stable during periods of inactivity, revealed significant
trends in the lead-up to eruptive episodes (Rey-Devesa et al.,
2023a; b). Through a temporal matrix of parameters linked
to the volcanic system and labels corresponding to real states
(Unrest, Pre-Eruptive, Eruptive), a robust analytical foundation
was established. However, for testing the exportability of the
model we needed several databases corresponding to various
volcanic systems, including both explosive and effusive eruptive
episodes. In this regard, a meticulous analysis of seismic data was
conducted in diverse volcanic scenarios: Mount Etna, Bezymianny
(2007 and 2017 paroxysms), Volcán de Colima, Mount St. Helens,
and Augustine.

We showed the results of the applications of Machine Learning
to classify the volcanic alert state based on the behaviour of
these features and provide an estimation of the probability of
future eruptions. Evaluation was carried out through a neural
network approach on the selected volcanoes, using the previously
constructed feature databases, demonstrating its transferability
by building a model that incorporates data from various case
studies. These scenarios represent a diverse set of eruptive activities
(explosive and effusive) as well as different seismic precursory
patterns (volcano-tectonic events, tremor, mixed activity, etc.) and
different conduit systems.

We propose a preliminary tool that can be easily implemented
in near real-time at volcanic observatories for complementing the
decision-making systems used nowadays for establishing volcanic
alerts. The methodology is simple since the features used for
training the network have been chosen in a precise way due to the
relevant information that they offer about the temporal evolution
of the volcanic activity. The extraction of features like Kurtosis and
Frequency Index from the continuous seismic signal evaluates the
variation of the number of highly impulsive events, like earthquakes,
or changes in the frequency band in which the more energetic

seismic activity is being recorded, respectively; on the other hand,
previous studies on Differential Shannon Entropy give an insight on
the role of this statistical parameter as an indicator of the uncertainty
of the volcanic state (Rey-Devesa et al., 2023a; b). Thus, this system
searches non-linear combinations of these features that allow the
classification of three possible states of the volcanic system: Unrest,
indicating a deviation from the background noise; Pre-Eruptive,
indicating significant changes of the trend of the seismic features
calculated that preludes eruptive activity; and the Eruptive state, in
which different types of eruptive activity might be ongoing. This
approach could be improved including more seismic features in the
input matrix.

Our study has been developed in different volcanic scenarios
with widely studied eruptive processes. Our neural network
approach is not complex; the architecture is provided with 2 dense
layers. As the convergence curves show, themodel is not overtrained.
In the Databases section and Table 2, the number of events and
volcanic processes required for the training and for used these
experiments are described.During the experimentswe have used the
80% of the data for training and the 20% for validation, repeating the
procedure 5 times, permuting the data used for each process during
the iterations; in every experiment, the database used for evaluation
was left out before the training.

The aimof ourwork is determining the probability of a transition
from an apparently quiescence or unrest state of the volcanic system
to another state, rather than determining the internal processes of
the volcano. Our approximation using statistical features might be
not enough for the development of the physical model explaining
the underlying processes of the volcanic system. In order to improve
the method reliability and performance, the incorporation of real-
time datasets of other monitored parameters, like geodesy, gas
emissions or temperature measurements would have enormous
potential; due to the feasibility of working with the time interval of
the windows of analysis, their variety in the sampling frequency is
not a problem. Moreover, we have been working with datasets from
only one seismic station for every case of study, but to make the
methodology more applicable for volcanic observatories it would
be interesting to consider training the neural network with data
recorded in the largest possible number of available seismic stations
at each volcano.

These results represent a step further in the development of
effective non-biased volcanic forecasting tools. In addition to
this we can offer a quantification of the increasing probability
of an eruption as the activity is approaching. The early
identification of the pre-eruptive activity offers sufficient time
for the decision making before the situation escalates, allowing
the application of the appropriate measures in case of a
volcanic crisis.

Despite the promising results achieved, we want to acknowledge
that the model reliability is associated to the quality and
availability of seismic datasets. Thus, human supervision and
interpretation of the evolution of the probability is still a
crucial step.

In summary, the results of this machine learning approach
suggest that the methodology shows great promise as an effective
and quantitative method for volcanic eruption forecasting across a
variety of volcanic systems.
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The collection of a significant catalogue of seismo-volcanic data involves the
selection of relevant parts of raw signals, which can be automatised by using
the short-term over long-term average (STA/LTA) method. The STA/LTA method
employs the “Characteristic Function” to describe a section of a seismic record
in terms of trace amplitude and first-time difference. This function is calculated
in a short-term and long-term window; the ratio between the two windows
defines a quantity that is controlled through threshold values, i.e., trigger on
and trigger off. These threshold values indicate whether there is an increase
in the energy in the seismic signal compared to the background noise. The
common approach to the selection of the STA/LTA values is the adoption of
literature-suggested ones. This could be a limitation as there may be cases
in which a choice adapted to a specific raw signal may significantly help in
the extraction of the relevant parts. To overcome the possible drawbacks of a
non-adaptive choice imposed by such standard literature values, in this study,
we propose a methodology for the automatic selection of STA/LTA values
that can optimise the extraction of explosion quakes (EQs) from a seismo-
volcanic raw signal. The values are obtained through a grid search over an
index named quality–numerosity index (QNI) that measures the accordance in
the automatic cuts and the consequent number of triggered seismo-volcanic
events with the ones suggested by a human expert. The method was applied
in the volcano domain for the specific application of the explosion quake
signal extraction at Stromboli volcano. The experiments were conducted by
selecting a subset of the dataset as training where to search for the best
values, which were subsequently adopted in a test set. The results prove
that the values suggested by our approach significantly improve the quality
of the relevant part compared to the one extracted by adopting the values
indicated in the literature. The methodology presented in this study can
be applied to a wider typology of signals of volcanic, seismic, and other
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origin, potentially becoming a widely used approach in parameter optimisation
processes.

KEYWORDS

short-term over long-term average method, machine learning, parametrization tuning,
grid search, seismo-volcanic signals, explosion quakes, Stromboli volcano

1 Introduction

The issue of detecting seismo-volcanic events and their
waveform extraction from raw seismic signals is a key problem
of volcanic seismology (Sosa et al., 2024; Journeau et al., 2020;
Soubestre et al., 2018). With the continuous growth of available
data over time, due to the expansion of seismic networks, meeting
this request with the help of a human operator can be laborious
and time-consuming. Thus, computational methods need to be
adopted, such as machine learning methods, for near real-time
event detection and waveform extraction, especially for rapid risk
assessment related to potential destructive events (Makus et al.,
2024; Konstantinou, 2023; Lara et al., 2020). Machine learning
methodologies also emerge in managing post-event intervention
(Cannioto et al., 2017). The scientific community is focused on
identifying and analysing the seismic signals generated by volcanic
activity, for characterising potential precursors that may serve
as early indicators of eruptions. This is especially crucial for
the Stromboli volcano, where paroxysms—sudden and intense
eruptions—pose the greatest danger to populations living in the
surrounding areas (Andronico et al., 2021; Metrich et al., 2021;
Giudicepietro et al., 2020). The Stromboli volcano (926 m) is part
of the Aeolian archipelago in the Tyrrhenian Sea (Italy) and
is renowned for its persistent explosive activity, often referred
to as “Strombolian eruptions” (Giudicepietro et al., 2020). This
volcanic behaviour is characterised by rhythmic bursts of gas and
pyroclasts, driven by the degassing of magma (Chouet, 1996). The
study of Stromboli’s volcanic signals, including seismic activity,
ground deformation, and gas emissions, provides crucial insights
into the underlying magmatic processes and potential eruption
forecasts. Seismic activity signals, such as volcanic tremors and
explosions, are particularly significant as they reflect the movement
ofmagma and gaswithin the volcanic conduit. Ground deformation,
monitored through techniques such as GPS and InSAR, offers
valuable data on the magma’s movement beneath the surface
(Schaefer et al., 2019). Gas emissions, especially the flux of sulphur
dioxide (SO2), serve as key indicators of volcanic activity andmagma
ascent (Aiuppa et al., 2010). Together, these indicators constitute
a comprehensive framework for understanding the Stromboli
volcano’s dynamic nature and assessing the associated risks.
Stromboli is an open-conduit volcano, with three summit craters
(Figure 1), with persistent Strombolian activity. The explosions
occur every 15–20 min. Generally, its volcanic activity is classified as
follows: normal activity (specifically “explosion”), major explosion,
and paroxysm (Chouet, 1996; Wassermann, 2012; Ripepe et al.,
2021b). To distinguish them, the variation of frequency and
energy of activity must be calculated (Calvari et al., 2021). The
permanent seismic network of Istituto Nazionale di Geofisica e
Vulcanologia (INGV) records seismic signals of volcanic nature,
which are as follows: very long period (VLP), landslides, tornillos,

FIGURE 1
Permanent seismic network of Istituto Nazionale di Geofisica e
Vulcanologia (INGV) on Stromboli. Map created using
QGIS Development Team (2024).

explosion quakes (EQs), andmany others (Wassermann, 2012). EQs
along a seismic signal are generally clearly visible to the human
eye. Their features are based on the variation in amplitude and
frequency content, whose range is approximately 10–25 Hz.Another
characteristic is that the EQs are preceded by VLPs, which are
important for identifying the earthquakes themselves (Legrand and
Perton, 2021; Giudicepietro et al., 2019). This feature allows for the
description of the phenomena that occur in the plumbing system.
Specifically, the mechanism that activates the VLP and subsequently
EQs is a progressive degassing magma on the conduit. When the
intensity increases, the conduit goes into resonance with the wall
and produces seismic waves. After the magma starts migrating
from the vent to the crater, it begins to produce resonant events
such as VLPs (Konstantinou, 2023; Ripepe et al., 2021a; Liang et al.,
2020; Ripepe et al., 2017; Ripepe and Harris, 2008; Chouet et al.,
2003). As soon as it reaches the crater, Strombolian activity
begins. Seismic stations record the EQs and produce raw signals
that can be analysed. Stromboli’s volcanic system is characterised
by two magma reservoirs: a shallow reservoir located 3–4 km
below the surface and a deeper reservoir located approximately
11 km below the surface (Petrone et al., 2022; Mattia et al., 2008;
Harris and Ripepe, 2007).

The analysis of seismological data is crucial for understanding
and monitoring the volcanic activity, and the short-term
average/long-term average (STA/LTA) method is one of the
most widely used techniques for detecting seismic events within
continuous waveform data. STA/LTA is a ratio-based approach that
compares the average signal amplitude over a short time window
with the one over a longer time window. When a seismic event
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occurs, the short-term window will capture the strong amplitudes
associated with the event, causing a significant increase in the
STA/LTA ratio. This increase serves as a detection threshold,
and when the ratio exceeds this threshold, it triggers an event
detection. This method is particularly effective in identifying the
onset of seismic events, such as volcanic tremors, explosions,
and microseismicity, by highlighting abrupt changes in the
amplitude, which indicate the start of an event (Allen, 1978). In
volcanic environments, where seismic signals are often complex
and embedded within noisy data, STA/LTA provides a robust
mechanism for real-time event detection. The sensitivity of the
STA/LTA algorithm can be adjusted by tuning the window lengths,
making it adaptable to different types of seismic signals and
noise levels (Withers et al., 1999). This adaptability is crucial for
monitoring diverse volcanic phenomena, where the nature of
seismic signals can vary significantly depending on the type of
volcanic activity. Selecting STA/LTA window lengths can be an
iterative process and ought to be based on real data analysis.
This optimisation process may be time-consuming for human
operators. The application of STA/LTA in the context of volcanic
seismology has proven invaluable for the early detection of eruptive
activity, allowing for timely alerts and the implementation of
mitigation strategies. Furthermore, the integration of STA/LTA
with other signal processing techniques enhances the overall
reliability of volcanic monitoring systems (Hagerty et al., 2000).
Automatic picking and cutting techniques for seismograms are
essential tools in seismic data analysis, particularly in monitoring
volcanic activity. These methods involve the automatic detection
of seismic phases, such as P-waves and S-waves, and the precise
segmentation of relevant seismic events from continuous waveform
data. The automation of these processes is crucial in volcanology,
where the rapid analysis of large datasets is necessary for timely
eruption forecasts and hazard assessments (Beyreuther et al., 2010).
Advanced algorithms, such as those based on machine learning
and neural networks, have significantly improved the accuracy and
efficiency of phase picking, even in the presence of noise, which is
common in volcanic environments (Ross et al., 2018). Additionally,
the development of techniques for automatic cutting or windowing
of seismograms enables researchers to isolate specific seismic events,
such as volcanic tremors or explosions, facilitating a detailed analysis
of their characteristics (Hammer et al., 2012). These automated
processes not only enhance the speed and reliability of seismic
monitoring but also reduce the potential for human error in
interpreting complex seismic signals, thereby improving the overall
understanding of volcanic processes and aiding in the mitigation of
volcanic risks.

In this work, we have implemented a system to perform the
automatic detection and waveform extraction of a seismo-volcanic
event from raw seismic signals such as EQs, using the STA/LTA
method. The data were provided by the Osservatorio Vesuviano
(OV)-INGV. The time range selected for the analysis is from 01
June 2019 to 14 June 2019, before the occurrence of the double
paroxysm of the Stromboli volcano (Andronico et al., 2021). We
have chosen the first days of the dataset as the learning set on which
to perform the training of our method, owing to the large number
of EQs detected.

This study is divided into four main sections:

• Methodology for parameter selection: it provides a description
of the method and the measures designed to evaluate the
extraction of the EQs.
• Experiments and results: it shows the training phase to search

for the optimum parameter’s combination of STA/LTA and the
testing phase where the results of the training were applied on
a test set.
• Discussion: it shows the interpretation of results.
• Conclusions and future improvements.

2 Methodology for parameter
selection

STA/LTA is based on the analysis of the ratio between short-term
and long-term averages of the seismic signal amplitude.Thismethod
provides an efficient way to discriminate between seismic events and
background noise in seismogram data. With the STA/LTA method,
short-term window and long-term window lengths are defined to
compute the average amplitudes of seismic signals. The short-term
window typically spans a few seconds, capturing the immediate
variations in the signal caused by seismic waves. The long-term
window, on the other hand, is usually several times longer, capturing
the overall background noise level. The STA/LTA ratio is calculated
by dividing the average amplitude of the short-term window by the
average amplitude of the long-term window. Thus, the STA/LTA is
a parametric approach where two basic parameters are STA and
LTA window lengths. The ratio between the two windows defines a
quantity that is controlled through two other parameters, i.e., trigger
on and trigger off. Selection of these parameters can be an iterative
process based on real data analysis, where one must remember
to continuously monitor the performance of our detection system
and make the necessary updates to adapt it to the evolution of the
observed phenomenon. We conducted an exploratory research to
find the combination of parameters of the STA/LTA method that
automatically cut at best EQs, compared to the cuts made by the
expert operator. We used our tool developed for our active learning
approach (D’Alessandro et al., 2022, see Section 2) to manually cut
the EQs. As an example of events present in the dataset, Figure 2A
shows the case of two EQs in raw signals, with a zoom on the last
one (Figure 2B). To extract the spectrogram, a short-time Fourier
transform was calculated using 0.5-s sliding time windows with
90% time overlapping. Figure 3 shows the STA/LTA ratio (bottom)
calculated on the zoomed EQ of Figure 2 and the triggers on the
signal (top): the red bar consists of trigger on threshold and the
blue bar consists of trigger off threshold. When the slope of the
curve exceeds the value of the trigger threshold, both for trigger
on and trigger off, the red and blue bars are applied on the plot,
respectively.

The concept underlying our approach is based on the start
and end of the time interval when the event occurs. The start and
end times suggested by our approach can be compared with the
selections performed by an expert operator by defining a specific
measure. In particular, we have proposed two measures: the quality
index and the numerosity index. The product of these two is used to
define an overall measure called quality–numerosity index (QNI).
As a first approach, the characteristic function (CF) Ek [classic one
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FIGURE 2
This figure presents a representative case of explosion quakes observed in raw seismo-volcanic signals. Each subfigure consists of two components:
the raw signal displayed at the top and the corresponding spectrogram at the bottom. The raw signal is plotted with time on the x-axis, while the
spectrogram illustrates the representation of this raw signal in the frequency–time domain. The side colour bar indicates frequency values in decibels.
In subfigure (A), multiple explosion quakes from the Stromboli volcano’s signal are marked with red circles. In subfigure (B), a detailed view of the
second explosion quake is provided.

from Allen (1978)] is used for STA/LTA and is defined as follows:

Ek = x
2
k + (x
′
k)

2 +Ck, (1)

where xk is the seismic trace, x′k its derivative, and
Ck (Equation 2) is an empirical weighting constant described as
follows:

Ck =
∑k

j=1
|xj|

∑k
j=1
|xj − xj−1|

, (2)

to underline the importance of the amplitude and derivative.

For each raw signal considered, the STA/LTA method outputs
a list of triggered events, characterised by start time and end time.
Those values are compared individually with the ones chosen by the
operator. For this comparison, the absolute deviation in terms of
the temporal distance is computed. If this value does not exceed a
certain residual value k, both for the start time and the end time of
the event, then the cut is deemed correct. This comparison enables
the assessment of the quality of the cut and the numerosity of
the triggered events (see Section 2.1 for details on the quality and
numerosity indices). The combination of the two indices is used to
obtain an overall index of the triggered events. A list of triggered
events can be generated by varying the combination of the following
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FIGURE 3
STA/LTA performed on the zoomed EQ of Figure 2. Red bar is trigger on and blue bar is trigger off. The figure above illustrates the raw seismo-volcanic
signal, while the figure below represents time along the x-axis and trigger threshold values along the y-axis. In this example case, the chosen values of
the parameters for this example were STA 1 s, LTA 10 s, trigger on 2.5, and trigger off 1.

four parameters: STAwindow size (in seconds), LTAwindow size (in
seconds), trigger on threshold, and trigger off threshold. From now
on, the four parameters will be indicated with the term “quadruple.”
A grid search is performed on a quadruple set, by considering the
overall index computed on the related triggered events.

2.1 Evaluation measures

The quality index of a cut is designated as qi andnumerosity index
of a cut as ni. These measures were designed to analyse different
phenomena represented by time series; in this case, they are used
for EQs. The qi measures the degree of greater temporally precise
cut performed by the STA/LTA compared to one performed by the
human operator. Let m be the mean of all the temporal deviations
computed between the STA/LTA cuts and the operator cuts and k be
the residual value as threshold in seconds.Theqi is defined as follows:

qi = 1− (m/k) . (3)

k is an arbitrarily defined constant, dependent on the reference
dataset. In this case, a constant has been empirically set with a value
of 10 (preset value. Reported on the repository published onGitHub,
see Section 5), based on the average duration of the events (in this
case, EQs). This constant falls within the definition of a finite space
of values, which in this case are the local events. Therefore, it can
also be included if the reference dataset is composed of local seismic
events. If, however, regional, teleseismic, anthropic, and landslide (or
other types of) events are also included in the dataset, the parameter
changes as the finite space in which these events fall varies. Every
time STA/LTA outputs a list of triggers, a check is performed to see

whether the start time (also indicated as ton, trigger on) and end
time (also indicated as toff, trigger off) of every trigger are temporally
close to the start and end times of the EQs extracted by the expert.
When a match is found (correct cut), the absolute value of the
temporal distance is calculated either with the two start times and
end times being within k or that trigger is not considered, but it is
simply taken into account when counting the triggers for the ni. If
nomatch is found, the trigger is not considered but is still accounted
for when counting triggers for ni. Figure 4 shows a representation of
this process.

All the computed deviations are stored in a list, and the mean
deviation m is computed and then normalised by k. The qi is finally
computed as the complement of the ratiom/k so that it is defined in
a range between 0 and 1, where 1 means perfect agreement among
the automatic cuts and the expert cuts.

The ni measures the agreement between the number of events
triggered by the automatic approach and the number of cuts selected
by the human operator.

Let enq be the Experimental EQs, namely, the cardinality of the
set of event trigger list produced by the STA/LTA method, and tnq
be theTheoretical EQs, i.e., the number of the cuts performed by the
human operator. The ni is thus defined:

ni =

{{{{{
{{{{{
{

enq/tnq, ifenq < tnq
tnq−mod (enq, tnq)

tnq
, if tnq ≤ enq < 2∗tnq

0, otherwise

(4)

The ni takes into account the discrepancy between enq and
tnq. If enq is lower than tnq, or enq is between tnq and twice tnq,
then the ni will result in a number in the range [0, 1]. Otherwise,
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FIGURE 4
Selection of the trigger’s start time and end time temporally close to the times of the EQs.

it is set to 0. This latter case occurs when enq exceeds tnq by
at least twice its value, resulting in an enq’s value being out of
range. The choice of twice the value is justified by limiting the
number of false events triggered by STA/LTA with the quadruple
considered.

Finally, the combination of the number of events and their
temporal precision selected by the automatic process, compared to
human experts, makes the QNI the overall measure. This overall
measure determines the effectiveness of the cut made by STA/LTA
and is defined as follows (Equation 5):

qni = qi ∗ ni. (5)

The qni ranges between 0 and 1 and can be converted into
percentages. These measures are mainly dependent on the results
of the STA/LTA method (based on its few parameters) and the
expertise of the operator because of the manual cut. The range of
window values from STA and LTA and the threshold values for
trigger on and trigger off can be determined based on the type of
event one wants to detect and, therefore, cut. For instance, if one
wants to detect teleseismic events compared to local ones, a wide
range of STA and LTA window values must be set to ensure the
expansion of the grid and improve the search for the optimum. In
the beginning of Section 3.2, an in-depth analysis was conducted
in this regard. On the other hand, Jones and Baan (2015) used an
STA/LTA adaptivemethod based on the hiddenMarkovmodel.This
method is independent from data, meaning that it requires only
minimal configuration by the user. The goal of this methodology is
to determine the probability that a term y(t) is an outlier compared
to the noise population. The term y(t) corresponds to the CF of

a data point from the seismogram x. STA and LTA windows are
composed with these probability levels. Thus, by using this model,
the objective of this work is to detect and select a seismic event. Even
though this method is adaptive, it is necessary to determine values
for STA and LTA window length and threshold adjustment in the
initial state.

2.2 Grid-search technique

Grid search is a widely used technique in machine learning
and algorithm parameter optimisation. It is used to search for the
optimal combination of parameters for a model or algorithm while
varying multiple parameters simultaneously. In the present case,
a grid search enables an exhaustive search of the quadruples that
correspond to the optimum QNI values. Figure 5 shows an example
of a representative scheme of the search.

The grid is composed of STA window sizes represented in
rows and LTA window sizes represented in columns. Every cell
is also a grid, where in abscissa the ton and in ordinate the
toff are shown. QNI values are expressed as a percentage and
represented as coloured circles: the darker the colour, the higher
the value. We started from a basic grid (grid on the left) with a
few quadruples (STA window size (in seconds), LTA window size
(in seconds), ton, and toff) and gradually expanded to a grid (grid
on the right) still containing the previous grid. The cardinality of
the grid is determined by the variation of the quadruples by one
unit based on their order of magnitude. As an increase in the
value of QNI is measured, the grid is expanded until the optimum
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FIGURE 5
Grid-search technique for QNI values.

is found. The process is repeated until the QNI values do not
improve further and reach a maximum value. To formalise this
concept, a recursive exploratory grid-search algorithm is proposed
(Algorithm 1). Choosing to use a recursive algorithm is based on
experimenting with all the possible combinations of the quadruples
(STA, LTA, ton, and toff) until the best result of QNI is found.
As input, the algorithm requires the range of values to construct
all possible quadruples (get_combinations function), including a
step value for each parameter (only one is needed for both trigger
thresholds). The step determines the numerical distance between
one value and its next value. After all possible combinations of
quadruples have been calculated, the value of the QNI is determined
for each of them through the compute function; if this value is
greater than the previously calculated QNI, then it is classified
as the best_qni value (the quadruple associated with best_qni is
also stored). The algorithm ends when the best_qni found in lines
5–16 exceeds the threshold value; in this case, the best_quintuple
list is returned. Otherwise, the algorithm is called recursively by
subtracting and adding the step_parameter (step_sta, for instance)
associated with the individual parameter quantities. A series of
checks are performed for each parameter to verify that the lower
bound of each one is respected. The lower bound is determined by
the minimum size of the windows used for the detection, which
are usually approximately 1 s for STA and 5 s for LTA. The upper
bound for STA and LTA is determined for the search for local and
regional events. This limit can, however, be varied based on one’s
needs (types of events sought) (Küperkoch et al., 2010; Gentili and
Michelini, 2006; Earle and Shearer, 1994). If no QNI value exceeds
the threshold value, the programme returns the best value of the
QNI. In our experiments, 20 iterations were set as thresholds by
trial and error.

3 Experiments and results

Starting from 14 days of raw data, our recently developed tool
was used (D’Alessandro et al., 2022) to extract the EQ dataset thanks
to the expertise of our operator.The entire dataset extracted contains
1,506 EQs. The most significant number of EQs are in the first
4 days of July, i.e., 743 EQs. This set was used as a training set.
The subdivision of the training and test datasets is described in
Table 1.

3.1 Training phase

A large grid was explored to better view the distribution of the
QNI values.We found the densest grid in the training phase with the
highest QNI values by combining a range of window values of STA
and LTA, respectively, from 2 s to 16 s and 20 s to 220 s, in steps of 2 s
for STA and 20 s for LTA. The same representation of the parameter
values as in Figure 5 was used. For each combination of windows,
ton and toff threshold values were combined, respectively, from 1 to
7, in steps of 0.5 for both. Every cell is a 12x12 matrix. Figure 6
shows a screenshot of the terminal grid (8 × 11) or the result of this
experiment. At the beginning, the grid was 5 × 5 and step values for
STA and LTA were 2 s and 20 s, respectively. After six iterations, an
8 × 11 grid was obtained, according to the STA, LTA, and lower and
upper bounds defined in Algorithm 1.

In the lower-left region (highlighted by a red circle), where STA
is between 12 s and 16 s and LTA is between 20 s and 60 s, most of
the QNI are 0 (no visible circles), and only a few QNI values are
approximately 20, which means that this parameter’s combination is
not suitable for detecting the EQs efficiently. A dashed red line was
outlined to show a direction where the QNI values are increasing.
The highest values of QNI are found in the central region from left
to right, where STA is between 6 s and 10 s, LTA between 60 s and
220 s, ton between 5 and 7, and toff between 2 and 5. Neither QNI, in
the first and last rows of the grid, shows an improvement, while the
continuous shift toward the right region shows a saturation of the
values. This means that increasing the LTA values does not improve
the search for local events.

From the training phase, we extracted the list of the QNI values
in descending order and generated a plot, shown in Figure 7. An
index identifying the value of the QNI is indicated on the abscissa,
while the value of the QNI is indicated on the ordinate. The QNI
decreases with a moderate slope up to the value 30 and then
rapidly decreases to 0. As a consequence, we decided to extract the
quadruple associated with the highest QNI value to carry out the test
phase, i.e., the one with value 0.78 resulting from the quadruple: 6,
80, 7, and 2. As can be seen, the quadruple is positioned exactly in the
distribution indicated by the dashed red line in Figure 6.The selected
ton and toff define a good balance between the quality index and
numerosity index (see Equations 3, 4) of the detected EQs. This is
because a lower ton than 7 can increase the number of false positives,
and higher toff can worsen the time’s precision of the extraction.
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1: procedure GRID_SEARCH(min_sta, max_sta, step_sta,

min_lta, max_lta, step_lta,min_trig_on,

max_trig_on, step_trig_on, min_trig_off,

max_trig_off, step_trig_off, num_iterations)

2:  quadruples← get_combinations,

(min_sta,max_sta,step_sta,

min_lta,max_lta,step_lta,

min_trig_on,max_trig_on,

min_trig_off,max_trig_off, step_trig)

3:  max← 0

4:  best_quintuple← []

5:  for all quadruple ∈ quadruples do

6:   qni← compute(quadruple)      ⊳ QNI

calculation value

7:   if qni > max then

8:      max← qni

9:      best_sta← sta

10:     best_lta← lta

11:     best_trig_on← trig_on

12:     best_trig_off← trig_off

13:     best_qni← qni

14:     best_quintuple←, best_sta,best_lta,

best_trig_on,best_trig_off,best_qni

15:   end if

16:  end for

17:  if best_qni > threshold or num_iterations > 20

then      ⊳ For instance: threshold=80

18:   return best_quintuple

19:  else

20:   min_sta← min_sta−step_sta

21:   if min_sta < 1 then

22:    min_sta← 1

23:   end if

24:   max_sta← max_sta+step_sta

25:   if max_sta > 16 then

26:    max_sta← 16

27:   end if

28:   min_lta← min_lta−step_lta

29:   if min_lta < 5 then

30:    min_lta← 5

31:   end if

32:   max_lta← max_lta+step_lta

33:   if max_lta > 220 then

34:    max_lta← 220

35:   end if

36:   min_trig_on← min_trig_on−step_trig

37:   if min_trig_on < 0.5 then

38:    min_trig_on← 0.5

39:   end if

40:   min_trig_off← min_trig_off −step_trig

41:   if min_trig_off < 1 then

42:    min_trig_off← 1

43:   end if

44:   return GRID_SEARCH(min_sta, max_sta+step_sta,

step_sta, min_lta, max_lta+step_lta,

step_lta,

min_trig_on, max_trig_on+step_trig,

min_trig_off, max_trig_off +step_trig,

step_trig,

num_iterations+1)

45:  end if

46: end procedure

Algorithm 1 Pseudocode for recursive exploratory grid-search algorithm.

TABLE 1 Dataset subdivision for training and test.

Num. of EQs extracted Phase

First 4 days 743 Training

Days 5–14 763 Test

Total 1,506

3.2 Testing phase

The common approach to the selection of the STA/LTA values is
the adoption of literature-suggested ones. Specifically, these values
are STA 1 s and LTA 10 s. Regarding the ton and toff values, they
were set at 7 and 2, respectively, such as the ones found through the
training phase. The QNI computed is indicated using these values
as the literature quadruple. The test results are shown in Table 2.
In particular, every row corresponds to a range of days in which
a certain number of EQs have occurred. This number is indicated
in the “Num. EQs extracted” column; in the other columns, the
QNI values are reported after an experiment with the associated
days was performed with the corresponding quadruples: training
quadruple (third column, our quadruple) and literature quadruple
(fourth column, quadruple extracted from the literature). Anoverlap
of the days for testing purposes was carried out. In the first row, the
testing result is shown using the same dataset used in the training
phase. This first comparison was made to show our result compared
to the use of the literature quadruple.

4 Discussion

The literature has shown that there is no one single strategy to
search the STA and LTA moving windows to select events based on
triggers (Earle and Shearer, 1994). The lengths for the STA and LTA
windows depend on the frequency content of the seismogram. Long-
period records require larger averaging windows than short-period
records, which require shorter averaging windows. Among different
approaches, we have chosen the work by Küperkoch et al. (2010) as
the base case comparison owing to the completeness of this work,
focussing on P-phase arrival time, where several CFs for STA/LTA
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FIGURE 6
Grid-search exploration for STA windows (rows) and LTA windows (columns), represented by the red rows. Both STA and LTA windows are expressed in
seconds. Trigger on/off thresholds, respectively, in abscissa and ordinate, are shown in every cell of the matrix. The red circle shows a region where
most of the QNI values are 0. The red dashed line indicates a direction where the QNI values are increasing.

FIGURE 7
QNI value distribution.

were used to compare their method. They have implemented an
algorithm based on higher-order statistics (HOS) for automatic P-
phase arrival time determination for local and regional seismic
events. The algorithm was applied to a large dataset with very
heterogeneous qualities of P-onsets. They calculated several CFs by
evaluating higher-order statistical moments, like skewness, kurtosis,
mean, and variance. In our case, we decided to use the CF reported
in Equation 1, which is the base case determined by Allen (1978).
When choosing a “literature quadruple,” there is no clear standard
choice for the types of events analysed, yet Küperkoch et al. (2010)

values can provide a useful comparison. The results presented in the
previous paragraph indicate that, as we move further away from the
training set, the QNI appears to vary over time. This is due to the
rapid evolution of the volcanological phenomenon, and therefore
the EQs generated by it. As is well known (Andronico et al., 2021),
the duration, amplitude, and frequency content of the EQs can vary
rapidly as the volcanic process evolves. The results show that on
average, our training quadruple produced a QNI 0.24 higher than
the literature quadruple. Another strength of our approach is the
tuning of the evaluation measures: for instance, qi is one of the
measures that can be adapted based on the data and objectives one
wants to obtain; in this case (where we look for EQs in the raw data),
we use the mean of the deviations to evaluate the quality of the cut,
but one can consider using different evaluations such as median,
mode, or kurtosis.This possibility can lead to extending the research
to the general volcano domain and also in the seismic domain in
tectonic areas.

Certainly, the main limitation of our study is the low cardinality
of the dataset. Based on the time-consuming process of extracting
the seismo-volcanic events from real raw data, future improvements
will mainly concern the variability of the dataset; extending not only
to other types of seismo-volcanic events, such as the following: VLP,
landslides, volcanic tremors, and others (Wassermann, 2012), but
also to local, regional, and teleseismic events. To achieve this, we
aim to replace the human operator by automating the validation
process through the use of multiple seismic stations recording the
same signal within the same area. This approach replicates the
currentmethod used by operators but will be enhanced by deploying
seismic stations positioned at approximately equal distances around
the crater (Fenner et al., 2022), ensuringmore uniform coverage and
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TABLE 2 Testing results.

Num. of EQs extracted (QNI) training quadruple
6 s 80 s 7 2

(QNI) literature quadruple
1 s 10 s 7 2

First 4 days (train data) 743 0.78 0.59

Days 5–8 395 0.65 0.36

Days 6–9 425 0.64 0.38

Days 7–10 373 0.56 0.33

Days 8–11 397 0.54 0.26

Days 9–12 291 0.48 0.21

Days 10–13 271 0.51 0.3

Last 4 days (11–14) 170 0.5 0.3

reducing potential sources of error. Another limitation is specific
to the grid-search technique. In general, grid search is a powerful
technique for optimising algorithm parameters, but it ought to
be used judiciously as it may be time-consuming when there are
many parameter combinations to evaluate. Other techniques such
as random search or Bayesian optimisation may be more efficient
alternatives in some cases. The choice depends on the specific
problem domain and available resources. Stromboli remains a case
study, but the method is applicable to any type of seismo-volcanic
signal and can therefore be used on other volcanoes as well. For
instance, it is also suitable for earthquakes in non-volcanic areas.

5 Conclusion and future
improvements

In this scientific study, we have explored the potential of using
a grid-search method to study the STA/LTA parameters to select
seismo-volcanic events, starting from raw signals, with a particular
focus on the volcanic activity of Stromboli.Through this application,
we have proved the ability to efficiently detect local events, such
as explosion quakes. The results showed a more accurate choice
of parameters, compared to what was proposed in the literature
(Küperkoch et al., 2010), for searching local events, such as EQs.
As a first example for the approach, we exploited the constant
presence of EQs before the occurrence of the double paroxysms of
Stromboli volcano (Andronico et al., 2021).

With this method, one can collect seismo-volcanic events
that can be used from the machine learning perspective, such as
classification or regression problems, where a certain amount of
data is needed for the dataset (Zhu and Beroza, 2018; Mousavi et al.,
2020). We decided to use, among possible characteristic functions
for STA/LTA, the classic one by Allen (1978) as the first approach.
It is also possible to test other CFs as Küperkoch et al. (2010)
did for their method. To compare our quadruple, we referred to
the work by Küperkoch et al. (2010) to find the baseline quadruple
in the literature for the detection of local events (classifying the
explosion quakes as local events).

In summary, the integration of our approach is a compelling
way to simplify the acquisition of labelled data in seismic–volcanic

and more generally of seismic research. By synergising
active learning (D’Alessandro et al., 2022) with robust deep learning
algorithms and a large dataset, a path towards greater accuracy,
effectiveness, and a comprehensive analysis of seismic–volcanic
phenomena can be achieved.
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