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Editorial on the Research Topic
Ferroptosis in cancer and Beyond—volume II

Introduction

It has been 11 years since Brent Stockwell identified and named ferroptosis (Dixon et al.,
2012). Ferroptosis results from iron-dependent lipoxidation at various cellular membrane
structures. Searching the PubMed database by using the keyword “ferroptosis” results in
more than 8,000 papers. Why has ferroptosis received such intensive attention? There are at
least three fundamental reasons. First, ferroptosis has a unique mechanism distinct from
other known regulated cell death types. Ferroptosis is tightly associated with cell metabolism,
such as amino acid, iron, and ROS metabolism. There are three key elements for ferroptosis:
substrate of lipid peroxidation, executor of lipid peroxidation, and anti-ferroptosis system
(Liu and Gu, 2022a). The balance between the three elements dictates the sensitivity of a cell
to ferroptosis. Second, there are multiple ways to induce ferroptosis meaning it has a complex
regulatory network. Many pathways are involved in ferroptosis mediation. Key factors
regulating ferroptosis, including GPX4, p53, FSP1, and ALOXs have been identified (Dixon
and Stockwell, 2019; Liu et al., 2019; Liu and Gu, 2022a; Liu and Gu, 2022b). However, new
pathways and regulators are still emerging. Third, ferroptosis participates in the regulation of
numerous physiological or pathological processes, such as normal development,
degenerative diseases, ischemic injuries, immune system activities, and particularly
cancer. This means that ferroptosis has amazing potential as a therapeutic target in
many diseases (Stockwell et al., 2020).

To examine progress in the ferroptosis field and advances in basic research and clinical
applications focusing on ferroptosis, we launched a Research Topic named Ferroptosis in
Cancer and Beyond in early 2022, which was a great success. Given the rapid progression in
this field, we opened a second call for this same Research Topic in late 2022, which has now
been successfully closed. This second volume brings together 13 papers, including 6 research
articles and 7 reviews. These articles outline recent information about ferroptosis from both
basic research and clinical translation angles. The papers are briefly introduced below.

To comprehensively understand the contribution of iron regulatory proteins (IRPs) to
ferroptosis, McKale Montgomery and Cameron Cardona reviewed the regulatory processes
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regarding iron homeostasis, from absorption, metabolism to its
participation in ferroptosis, and discussed the essential roles of
various IRPs in ferroptosis and their potentials to be
therapeutically maneuvered in cancer treatment. To explore how
ferroptosis is regulated at the post-translational level, Zhang et al.
introduce emerging evidence for the O-GlcNAc modification
(O-GlcNAcylation) in ferroptosis in a review article and discuss
the crosstalk between O-GlcNAcylation and ROS and related
antioxidant defense systems. The authors elucidate the role of
O-GlcNAcylation in proteins involved in iron metabolism and
the regulation of lipid metabolism and peroxidation during
ferroptosis. Furthermore, the underlying mechanisms including
mitochondria dysfunction and endoplasmic reticulum alteration
brought by O-GlcNAcylation are discussed. In their original
research study, Nikulin et al. identified ELOVL5 and IGFBP6
may modulate the sensitivity of breast cancer cells to ferroptosis,
possibly via enhancing the activity of GPX4, an antioxidant enzyme
that plays a critical role in ferroptosis. Through analysis of the
transcriptomic database and validation with HPLC-MS, the
knockdown of either ELOVL5 or IGFBP6 was shown to cause
remarkable changes in the production of long and very long fatty
acids. In addition, the knockdown of ELOVL5 or IGFBP6 in MDA-
MB-231 cells promotes cell death induced by PUFAs, and the
potential benefit of PUFAs addition for improving
chemotherapeutic effects was proposed in the condition of low
IGFBP6 (and maybe ELOVL5) gene expression.

Glutathione S-transferase P1 (GSTP1) was proposed to be a
potential target to tackle radioresistance in cancer therapy by Tan
et al. GSTP1 is fundamental to maintaining cellular oxidative
homeostasis and is involved in ferroptosis. Based on increasing
evidence showing that iron metabolism, lipid peroxidation, and
GSH level are modulated by radiotherapy, the authors elaborated on
the potential to control GSTP1 levels to enhance the efficacy of
radiotherapy in cancer treatment. More pathways in ferroptosis
induced by radiotherapy and their implications for radiotherapy
were reviewed by Giovanni Luca Beretta and Nadia Zaffaroni, and
other strategies were proposed to improve the efficacy of
radiotherapy, including enhancing ionizing radiation by other
reagents or selectively inducing ferroptosis with metal-based
nanoparticles. Lu et al. introduced all kinds of therapies for
glioblastoma, including immunotherapy, radiotherapy, and
chemotherapy, and discussed how ferroptosis participates and
affects the efficacy of different therapeutic treatments. In an
original research article, Shi et al. found that dihydroartemisinin
(DHA), an adjuvant drug-enhancing chemotherapy, induced
cervical cancer death via initiating ferroptosis and explored the
involvement of ferritinophagy induced by DHA. Furthermore, DHA
was also shown to have a synergistic role with doxorubicin (DOX) in
promoting cervical cancer cell death.

Growing evidence has revealed the impact of T cell infiltration in
the development of various types of cancer. Jiang et al. analyzed the
differential gene expression in CD8+ T cells from CD8+ highly or low
infiltrated samples in acute myeloid leukemia (AML) and conducted
extensive bioinformatics analysis, and six ferroptosis-related genes
(FRGs) were identified to generate a prognostic prediction model,
which was validated to be helpful to risk stratification and prognostic
prediction of AML patients. Han et al. identified several ferroptosis-

related genes (FRGs) which correlate well with the immune
microenvironment and establish a model to predict the prognosis
of cervical cancer patients. Further mechanisms underlying iron
homeostasis, ROS and lipid peroxidation, GPX4-GSH, and other
regulator systems in cervical cancer were discussed in a review by
Xiangyu Chang and Jinwei Miao. In another review, Lai et al.
specifically elaborated on the influence of steroid hormone
signaling on ferroptosis and discuss the involvement of
ferroptosis in gynecologic cancers and potential therapies
targeting ferroptosis for the treatment of gynecologic cancers.

With data from FerrDb and TCGA database, Li et al. established
a prognostic prediction model for colorectal cancer (CRC) patients
with 8 FRGs among which NOS2 is one of the most significantly
affected examples and was validated with the CRCmouse model and
the involvement of NF-κB pathway was elucidated. To investigate
whether ferroptosis is associated with colon adenocarcinoma
(COAD), Baldi et al. identified a 4-gene signature that
distinguishes high-risk and low-risk patients, and those FRGs
were further shown to be implicated in many pathological related
pathways and a variety of miRNAs and transcription factors were
found to be involved. These researches consolidated the idea that
disease-associated cell death has a specific gene expression profile
relevant to the prognosis of the patient (Liu et al., 2022; Ye et al.,
2022; Liu et al., 2023).

Taken together, this second volume of the Research Topic
Ferroptosis in Cancer and Beyond adds new knowledge to this
field, furthering research and the clinical translation of ferroptosis.
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Background and Objective:One of the most recent forms of programmed cell

death, ferroptosis, is crucial in tumorigenesis. Ferroptosis is characterized by

iron-dependent oxidative destruction of cellular membranes following the

antioxidant system’s failure. However, it is unknown whether ferroptosis-

related genes (FRGs) are associated with colon adenocarcinoma (COAD)

metastasis, immune cell infiltration, and oxidative stress in COAD. The

current study concentrated on FRGs expression in colon cancer metastasis,

their relationship to immune cell infiltration (ICI), and potential pathological

pathways in COAD.

Methods and Results: Clinical information and mRNA expression patterns for

patients with COAD metastasis were obtained from the public TCGA database.

Patients with low mRNA levels showed good overall survival than patients with

high mRNA levels. The genomic-clinicopathologic nomogram was

subsequently created by combining risk score and clinicopathological

features. Absolute Shrinkage and Selection Operator have shown a 4 gene

signature that can stratify cancer patients into high-risk versus low-risk. These

four FRGs were found to be significantly linked to the overall survival of COAD

patients and predicted high risk score. Next, age, stage, and PTNM were

combined in univariate and multivariate cox regression models to perform a

filtering procedure. The receiver operating characteristic (ROC) and calibration

curves indicated that constructed signature model exhibited high prediction

accuracy and clinical relevance in COAD. ARID3A showed a strong negative

correlation with a wide range of immune tumour-infiltrating cells in COAD

microenvironment. According to the single sample gene set enrichment
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analysis (ssGSEA) results, FRGs are involved in variety of pathological pathways

including PI3K-AKT-mTOR pathway, reactive oxygen species (ROS) pathway,

response to hypoxia pathway, and other inflammation related pathways.

Moreover, dysregulation of FRGs in COAD patients showed a significance

correlation with wide range of miRNAs and transcription factors (TFs).

Conclusion: We identified new diagnostic biomarkers and established

prognostic models for ferroptosis related programmed cell death in COAD

metastasis. FRGs may improve tumor cell survival by activating the TGFB

pathway, which can stimulate ROS production, accelerates ECM breakdown,

and promote tumor progression and invasion. Genes implicated in ferroptosis,

as revealed by the Kaplan Meier and a genomic-clinicopathologic nomogram,

are potential therapeutic targets and prognosis indications formetastasis COAD

patients.

KEYWORDS

COAD microenvironment, metastasis, ferroptosis, immune cell infiltration, TCGA

1 Introduction

1.1 Colon cancer

Colon cancer is the thirdmost frequently diagnosed cancer in

males and females worldwide, with 80, 690 (8%), 70,340 (8%)

new cases and 28,400 (9%), 24,180 (8%) deaths in male and

female, respectively (Siegel et al., 2022). The high incidence rate

or mortality is because of the lack of early detection and the fact

that it is often diagnosed in its later stages (Zhou et al., 2019). The

5-year overall survival (OS) rate for COAD patients is still low,

despite the availability of various targeted medicines and

immunotherapies in recent years. Therefore, studying the

molecular mechanism of the occurrence and development of

colorectal cancer is an important subject of clinical research.

Preventive measures, such as screening and finding new

therapeutic targets, are also critical to improve patients’

survival and prognosis of colon cancer.

1.2 Iron death

Various human diseases can be prevented by targeting regulated

cell death, which includes necroptosis, pyroptosis, ferroptosis,

entotic cell death, lysosome-dependent cell death, and autophagy-

dependent cell death. Ferroptosis is iron-dependent programmed

cell death, first postulated byDixon in 2012; it differs from apoptosis,

pyrolysis, and autophagy at levels of cell morphology, biochemical

features, and regulation and occurs through Fe(II)-dependent lipid

peroxidation to insufficient cellular reducing capacity (Dixon et al.,

2012; Jiang et al., 2020). Several studies have connected ferroptosis to

cancer development and progression (Xia et al., 2019; Jiang et al.,

2020). Since tumor cells can maintain or acquire ferroptosis

sensitivity while surviving cell death, ferroptosis therapy for

cancer is gaining attention. Wei et al. found that small molecule

drugs that activated p53 had potent inhibitory action against

HCT116 cells by inducing ferroptosis (Wei et al., 2018).

Combinatorial therapy with ferroptosis medicine and tumor

necrosis factor-related apoptosis-inducing ligands led to

synergistic apoptosis and growth regression of CRC (Lee et al.,

2019). Thereby, ferroptosis-related genes (FRGs) are very significant

in cancer patients (Jiang et al., 2015; Ou et al., 2016; Bersuker et al.,

2019; Doll et al., 2019; Li et al., 2020) and could be promising

therapeutic targets and prognostic indicators in colon

adenocarcinoma (COAD).

1.3 Working hypothesis

Our working hypothesis was that FRGs promotes colon

cancer metastasis and play a role in oxidative stress.

1.4 Study design

Based on above mentioned hypothesis we developed

prognostic model, validated, and explored the mechanism by

which FRGs promotes COAD progression and invasion. Our

results showed that there are solid predictive genes and offered a

novel, personalized approach to treating COAD.

2 Materials and methods

2.1 Data acquisition and identification of
differentially expressed genes (DEGs)

Ferroptosis-related genes were derived from Ze-Xian Liu et al.

RNA-sequencing expression (level 3) profiles and corresponding

clinical information for COAD were downloaded from the TCGA
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dataset (https://portal.gdc.com). R package, version 4.0.3 was used to

implement the analysis. Genes with a p-value of less than 0.05 and

log FC > 1 were chosen for further investigation. Only patients who

had M1 metastases and higher were considered for participation in

the trial according to the inclusion criteria for patient selection.

2.2 Nomogram construction

The Cox regression analysis was conducted to determine if

risk scores and relevant clinical indicators could be identified

as prospective predictors of OS for COAD patients. Based on

the Cox regression analysis results, a prognostic nomogram

was built using the stepwise Cox regression model to predict

the 1, 3, and 5-year OS of COAD patients included in the

TCGA dataset. This was done to determine the probability of

survival. The area under the curve was used to evaluate the

nomogram’s ability to discriminate between categories

(AUC). Using the calibration curve, a graph comparing the

expected OS of the nomogram to the observed survival rates

was constructed.

2.3 Correlation between genes and
pathways in COAD

The genes found in the associated pathways were gathered

and examined using the R software’s GSVA package, with the

parameter method set to the ssGSEA algorithm’ as the final

step. Finally, Spearman correlation was used to examine the

correlation between the genes and the pathway score. The

analysis methods and R packages were implemented by R

version 4.0.3. p-value < 0.05 was considered statistically

significant.

2.4 Regulatory network of FRGs

We predicted the potential ironoptosis-associated non-coding

RNAs by performing co-expression analysis with identified iron-

related genes in COAD. We predicted miRNAs that target FGRs

using the GSCA-hosted TCGA database (GSCA - Gene Set Cancer

Analysis (hust.edu.cn). We then utilized the knockTF database to

identify FRGs-specific transcription factors (TFs) that significantly

FIGURE 1
The expression distribution of ferroptosis-related mRNA in tumor tissues and normal tissues. (A) histogram shows the dysregulation of iron
death in metastasis G1, non-metastases G2, and Normal samples, respectively. (B)histogram shows the number of significantly differentially
expressed genes in metastasis G1, non-metastases G2, respectively. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 2
Constructing the TCGA cohort’s genes. (A) Themulti-factor cox regression analysis showed six prognosis related genes in colon cancer (B) The
forest analysis showed four prognosis related genes in colon cancer using 10x cross-validation (p < 0.05) The top scatters represent TCGA cohort’s
risk score distribution from low to high. Kaplan-Meier survival analysis of the risk model from dataset, comparison among different groups was made
by log-rank test. HR (High exp) represents the hazard ratio of the low-expression sample relatives to the high-expression sample. HR >
1 indicates the genes are a risk factor, and HR < 1 indicates the genes are a protective factor. HR (95%Cl). Heatmap is the gene expression from the
signature. Prognostic performance was evaluated using the AUC of the time-dependent ROC curve analysis for OS in the TCGA cohort.

Frontiers in Molecular Biosciences frontiersin.org04

Baldi et al. 10.3389/fmolb.2022.1102735

11

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1102735


influence FGRs based on expression and ChIP-seq/motif evidence

(KnockTF-Search (licpathway.net)).

3 Results

3.1 Identification of DEGs related to
ferroptosis in the TCGA cohort

In total, 426 sample, 52 metastases, 333 non-metastases

COAD patients and 41 normal samples from TCGA cohorts

were considered for inclusion in the study (Supplementary Table

S1). We investigated RNA-seq data from the TCGA dataset to

determine the expression differences of ferroptosis-related genes

between tumor tissues and neighboring normal tissues. Among

the 25 ferroptosis-related genes that were investigated, tumor

tissues and adjacent normal tissues displayed significant

differences in 21 genes. CDKN1A, HSPA5, EMC2, SLC7A11,

MT1G, GPX4, FANCD2, CISD1, FDFT1, SLC1A5, SAT1, TFRC,

RPL8, NCOA4, LPCAT3, GLS2, CARS1, ATP5MC3, ALOX15,

ACSL4, and ATL1 (Figure 1A). To be more specific the

differential expressed gene in metastases and non-metastases

tissues were identified. Among the above-mentioned genes, the

following genes were identified FDFT1, SLC1A5, RPL8, CARS1,

and ALOX15 in addition to HSPB1.

3.2 Prognostic genes identified in the
TCGA COAD cohort

To reduce dimensionality and construct prognostic models

based on Cox and lasso regression methods, iron death-related

FIGURE 3
four-genes prognostic value and predictive nomogram. (A,B) Multivariate and univariate Cox regression analysis of the four genes is both
available, (C)Nomogram development based on independent prognostic value for the 4-genes, (D) Predicting 1–5-year survival using a nomogram.
pT,pN, pM are pathological stages where T is the stage (generally related to the size and depth of the tumor), N is lymph node metastasis, and M is
distant metastasis. pTNM stands for Pathological tumor-node-metastasis (pTNM) staging.
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TABLE 1 Pathways correlated to FGRs genes in COAD.

Symbol Pathway Cor p_value

FDFT1 Tumor_Inflammation_Signature −0.05 0.321

FDFT1 Cellular_response_to_hypoxia 0.23 7.39e−07

FDFT1 Tumor_proliferation_signature 0.31 1.22e−11

FDFT1 EMT_markers −0.06 0.177

FDFT1 ECM−relatted_genes −0.08 0.091

FDFT1 Apoptosis 0.08 0.102

FDFT1 Angiogenesis −0.04 0.376

FDFT1 DNA_repair 0.12 0.011

FDFT1 G2M_checkpoint 0.020275 8.36e−08

FDFT1 Inflammatory_response 0.06 0.174

FDFT1 PI3K_AKT_mTOR_pathway 0.05 0.283

FDFT1 P53_pathway 0.19 3.26e−05

FDFT1 MYC_targets 0.20 1.24e−05

FDFT1 TGFB −0.08 0.106

FDFT1 IL−10_Anti−inflammatory_Signaling_Pathway 0.11 0.022

FDFT1 Genes_up−regulated_by_reactive_oxigen_species_(ROS) 0.09 0.063

FDFT1 DNA_replication 0.19 3.36e−05

FDFT1 Collagen_formation −0.09 0.063

FDFT1 Degradation_of_ECM −0.03 0.533

FDFT1 Ferroptosi 0.07 0.123

CARS1 Tumor_Inflammation_Signature −0.05 0.321

CARS1 Cellular_response_to_hypoxia 0.18 1.48e−04

CARS1 Tumor_proliferation_signature 0.24 1.74e−07

CARS1 EMT_marker 0.09 0.066

CARS1 ECM−relatted_genes 0.05 0.254

CARS1 Angiogenesis 0.09 0.046

CARS1 Apoptosis 0.08 0.089

CARS1 DNA_repair 0.26 1.59e−08

CARS1 G2M_checkpoint 0.34 5.04e−14

CARS1 Inflammatory_response 0 0.958

CARS1 PI3K_AKT_mTOR_pathway 0.23 7.03e−07

CARS1 P53_pathway 0.03 0.57

CARS1 MYC_targets 0.33 2.85e−13

CARS1 TGFB 0.04 0.381

CARS1 IL−10_Anti−inflammatory_Signaling_Pathway −0.01 0.896

CARS1 Genes_up−regulated_by_reactive_oxigen_species_(ROS) −0.04 0.432

(Continued on following page)
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TABLE 1 (Continued) Pathways correlated to FGRs genes in COAD.

Symbol Pathway Cor p_value

CARS1 DNA_replication 0.3 3.21e−11

CARS1 Collagen_formation 0.09 0.06

CARS1 Degradation_of_ECM 0.08 0.082

CARS1 Ferroptosi 0.19 6.32e−05

HSPB1 Tumor_Inflammation_Signature −0.06 0.237

HSPB1 Cellular_response_to_hypoxia 0.02 0.716

HSPB1 umor_proliferation_signature −0.25 5.2e−08

HSPB1 EMT_markers 0.28 1.4e−09

HSPB1 ECM−relatted_genes 0.13 0.005

HSPB1 Angiogenesis 0.19 4.91e−05

HSPB1 Apoptosis 0.09 0.063

HSPB1 DNA_repair −0.03 0.491

HSPB1 G2M_checkpoint −0.26 1.87e−08

HSPB1 Inflammatory_response 0.03 0.526

HSPB1 PI3K_AKT_mTOR_pathway 0 0.991

HSPB1 P53_pathway 0.28 1.08e−09

HSPB1 MYC_targets −0.24 2.89e−07

HSPB1 TGFB 0.14 0.003

HSPB1 L−10_Anti−inflammatory_Signaling_Pathway 0.05 0.327

HSPB1 Genes_up−regulated_by_reactive_oxigen_species_(ROS) 0.25 4.3e−08

HSPB1 DNA_replication −0.16 0.001

HSPB1 Collagen_formation 0.24 3.05e−07

HSPB1 Degradation_of_ECM 0.21 4.03e−06

HSPB1 Ferroptosis 0.17 1.95e−04

SLC1A5 Tumor_Inflammation_Signature −0.21 9.87e−06

SLC1A5 Cellular_response_to_hypoxia −0.03 0.542

SLC1A5 Tumor_proliferation_signature 0.01 0.767

SLC1A5 EMT_markers 0.533 0.533

SLC1A5 ECM−relatted_genes −0.08 0.11

SLC1A5 Angiogenesis −0.03 0.542

SLC1A5 Apoptosis −0.18 1.52e−04

SLC1A5 DNA_repair 0.18 1.39e−04

SLC1A5 G2M_checkpoint 0.1 0.043

SLC1A5 Inflammatory_response −0.18 9.07e−05

SLC1A5 PI3K_AKT_mTOR_pathway 0.03 0.559

SLC1A5 P53_pathway −0.01 0.906

(Continued on following page)
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gene difference analysis results were utilized to evaluate the

prognosis of these genes on CAOD tumor patients. Based on

the median cut-off value, high- and low-risk patients were

separated into two groups. The following formula was used to

determine the risk score of the outcome = ∑n

i�1(coef i × Expri).
The prognostic model constructed using multi-factor cox

regression analysis is represented in Figure 2A. AIC =

793.6083 Riskscore= (-0.3887)*FDFT1+(-0.2156)*SLC1A5+(-

0.0725)*RPL8+(0.6781)*CARS1+(-0.0524)*ALOX15+(0.253)

*HSPB1. LASSO regression identified (FDFT1, HSPB1, SLC1A5,

and CARS1 a signature model gene. lambda. min = 0.0151,

(Riskscore= (-0.2482) *FDFT1+(-0.03) *SLC1A5+(0.4137)

*CARS1+(0.1543) *HSPB1 (Figure 2B).

3.3 Independent prognostic value of the
FRGs gene in COAD

The TCGA dataset was used to do univariate and

multivariate Cox regression analysis on the identified 4 genes

signature to determine whether the ability of the prognostic

significant in predicting OS was independent. The effect of the

4 genes and clinical factors on prognosis was investigated with

the help of the Cox regression analysis. These factors included

age, pT, pM, pN, and Pathological tumor-node-metastasis

(pTNM) staging. The variable was significant in the univariate

Cox regression analysis and was thought to be related to

prognosis (Figure 3A). Multivariate Cox regression analysis

found these variables to be non-significant, except for age and

pT stage and of the four discovered genes, CARS1 and

HSPB1 had a hazard ratio greater than 1 (Figure 3B). Based

on the independent prognostic factors for the OS of multi-factor

Cox regression analysis, we developed a nomogram for

predicting 1, 2, 3, and 5-year survival rates (Figures 3C, D). In

the TCGA dataset, the calibration curve for the probability of 1, 2,

3, and 5-year OS exhibited the best agreement between

observation and prediction. After bias adjustment, the C-index

was found to be 0.703, p < 0.001 indicating a strong level of

clinical diagnosis performance for the model signature genes. As

a result, the identified ferroptosis-related gene impacts the

prognosis of COAD and may serve as a possible diagnostic

factor for COAD patients.

3.4 Characterization of ferroptosis-
associated molecules in COAD
microenvironment

The enrichment fraction of each sample on each pathway was

calculated in turn using the ssGSEA algorithm to obtain the

connection between the sample and the pathway, and we then

obtained the relationship between the gene and the pathway by

calculating the correlation between gene expression and pathway

score using spearman analysis. The tumor cell proliferation

signature score was found to be positively correlated with

CARS1 and FDFT1, indicating that the signature model has a

high proliferation rate. Furthermore, we found a statistically

significant activation of the cellular response to hypoxia signature

and the G2M checkpoint in SLC1A5, CARS1, and FDFT1 (Table1).

3.5 FRGs correlate with immune cell
infiltration in COAD

An increasing number of studies have suggested an

interaction between immune response and pathophysiological

processes. GSCA was performed to evaluate the correlation

between FRGs and the available immune cells in COAD. FRFs

correlated negatively with the infiltration of immune cells,

including B cells, CD4-T, CD8-T, central memory, NKT, Tfh,

Th17, Th2, and other immune cells presented in Table 2. These

results indicated that dysregulation of FRGs expression is

associated with worse immune cell infiltration in the COAD

microenvironment.

TABLE 1 (Continued) Pathways correlated to FGRs genes in COAD.

Symbol Pathway Cor p_value

SLC1A5 MYC_targets 0.11 0.021

SLC1A5 TGFB −0.04 0.372

SLC1A5 IL−10_Anti−inflammatory_Signaling_Pathway −0.20 1.6e−05

SLC1A5 Genes_up−regulated_by_reactive_oxigen_species_(ROS) 0.05 0.259

SLC1A5 DNA_replication 0.2 1.57e−05

SLC1A5 Collagen_formation 0.04 0.427

SLC1A5 Degradation_of_ECM −0.03, 0.16 0.163

SLC1A5 Ferroptosis 0.657 −0.02

Note: cor, correlation.
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TABLE 2 FRGs and immune cell infiltration.

Cancer type Gene symbol Cell_type Corrrelation p_value Fdr

COAD CARS1 Bcell −0.21337 0.000096037 0.000327

COAD CARS1 CD4_T −0.19581 0.000353103 0.000764

COAD CARS1 CD4_naive 0.029763 0.59063182 0.904695

COAD CARS1 CD8_T −0.12105 0.028142976 0.06217

COAD CARS1 CD8_naive 0.045845 0.407207002 0.511177

COAD CARS1 Central_memory −0.15803 0.004057678 0.019381

COAD CARS1 Cytotoxic 0.002643 0.961910357 0.973297

COAD CARS1 DC 0.117239 0.033522256 0.074959

COAD CARS1 Effector_memory 0.028785 0.602898028 0.727797

COAD CARS1 Exhausted 0.189201 0.000560693 0.00198

COAD CARS1 Gamma_delta 0.17752 0.001223319 0.004746

COAD CARS1 InfiltrationScore −0.06767 0.22090454 0.287603

COAD CARS1 MAIT −0.20101 0.000242966 0.000602

COAD CARS1 Macrophage 0.01099 0.842588283 0.891323

COAD CARS1 Monocyte 0.209679 0.0001274 0.00041

COAD CARS1 NK −0.0985 0.074396025 0.105847

COAD CARS1 NKT −0.12172 0.027277463 0.05036

COAD CARS1 Neutrophil 0.092057 0.09552524 0.154205

COAD CARS1 Tfh −0.19943 0.000272399 0.000714

COAD CARS1 Th1 0.172121 0.001727179 0.007843

COAD CARS1 Th17 −0.21842 0.000064685 0.000325

COAD CARS1 Th2 −0.19984 0.000264373 0.000571

COAD CARS1 Tr1 −0.12894 0.019301647 0.042031

COAD CARS1 iTreg 0.019994 0.717866105 0.79491

COAD CARS1 nTreg 0.195468 0.000361876 0.000824

COAD FDFT1 Bcell −0.11041 0.045370724 0.077487

COAD FDFT1 CD4_T −0.09759 0.07711229 0.110747

COAD FDFT1 CD4_naive 0.005977 0.913988751 0.975471

COAD FDFT1 CD8_T 0.067299 0.223438049 0.331996

COAD FDFT1 CD8_naive −0.11569 0.035950323 0.068571

COAD FDFT1 Central_memory 0.122809 0.02591327 0.08246

COAD FDFT1 Cytotoxic 0.031068 0.574448762 0.658329

COAD FDFT1 DC −0.03072 0.578734951 0.694377

COAD FDFT1 Effector_memory 0.135348 0.014011419 0.040757

COAD FDFT1 Exhausted 0.079108 0.15223709 0.238354

COAD FDFT1 Gamma_delta −0.09062 0.100848862 0.185006

(Continued on following page)

Frontiers in Molecular Biosciences frontiersin.org09

Baldi et al. 10.3389/fmolb.2022.1102735

16

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1102735


TABLE 2 (Continued) FRGs and immune cell infiltration.

Cancer type Gene symbol Cell_type Corrrelation p_value Fdr

COAD FDFT1 InfiltrationScore −0.12446 0.02396175 0.039701

COAD FDFT1 MAIT 0.065499 0.236098889 0.305429

COAD FDFT1 Macrophage −0.09246 0.094058982 0.163471

COAD FDFT1 Monocyte −0.1559 0.004590939 0.01021

COAD FDFT1 NK 0.039389 0.476457385 0.547267

COAD FDFT1 NKT −0.04362 0.430394011 0.526828

COAD FDFT1 Neutrophil −0.08117 0.141813904 0.21543

COAD FDFT1 Tfh 0.046057 0.405031918 0.489801

COAD FDFT1 Th1 0.151289 0.005967945 0.021079

COAD FDFT1 Th17 0.105758 0.055320302 0.106168

COAD FDFT1 Th2 −0.03301 0.550702397 0.616684

COAD FDFT1 Tr1 −0.10243 0.063502854 0.11671

COAD FDFT1 iTreg −0.0131 0.81287067 0.867349

COAD FDFT1 nTreg 0.201106 0.000241193 0.000564

COAD HSPB1 Bcell 0.016112 0.770935023 0.823707

COAD HSPB1 CD4_T 0.11569 0.035950057 0.055578

COAD HSPB1 CD4_naive 0.033855 0.540600482 0.887885

COAD HSPB1 CD8_T 0.009588 0.862452846 0.90608

COAD HSPB1 CD8_naive 0.089716 0.104293081 0.16892

COAD HSPB1 Central_memory −0.10655 0.053513211 0.142356

COAD HSPB1 Cytotoxic 0.050055 0.365454017 0.457639

COAD HSPB1 DC 0.038725 0.48393356 0.611192

COAD HSPB1 Effector_memory 3.41E-05 0.99950775 0.999508

COAD HSPB1 Exhausted −0.09535 0.084202724 0.146841

COAD HSPB1 Gamma_delta −0.00273 0.960653853 0.975942

COAD HSPB1 InfiltrationScore 0.107573 0.051244212 0.078929

COAD HSPB1 MAIT 0.115156 0.036820715 0.059061

COAD HSPB1 Macrophage 0.066933 0.225973178 0.330497

COAD HSPB1 Monocyte −0.05647 0.307179661 0.39625

COAD HSPB1 NK 0.102513 0.063276701 0.091338

COAD HSPB1 NKT 0.117307 0.033419966 0.060221

COAD HSPB1 Neutrophil −0.07423 0.179239336 0.26232

COAD HSPB1 Tfh −0.01071 0.846477576 0.88167

COAD HSPB1 Th1 −0.19059 0.000509289 0.002927

COAD HSPB1 Th17 0.036326 0.511433304 0.622967

COAD HSPB1 Th2 0.167214 0.002343114 0.004378

(Continued on following page)
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3.5 Prediction of FRGs’ regulation network

MiRNAs have been linked to the regulation of tumor-

associated genes in a variety of cancer types, although their

role in the deregulation of FGRs remains uncertain. We

initially identified the FGRs miRNAs network in COAD using

the GSCALite tool. Figure 4 depicts evidence that miRNAs target

FGRs identified by the GSCALite program. Using ChIP-seq

datasets, we also discovered transcription factors that may

posttranscriptionally modulate FGRs expression (Table 3). Hsa

miR- 37–3p has experimentally verified to target ironoptosis-

related SLC1A5 in melanoma (doi: 10.1038/s41418-017-0053-8).

These consistent results suggest that anticipated miRNAs may

have a role in COAD as well.

4 Discussion

Colon cancer is the most prevalent primary malignant tumor

that is characterized by rapid growth and treatment resistance,

TABLE 2 (Continued) FRGs and immune cell infiltration.

Cancer type Gene symbol Cell_type Corrrelation p_value Fdr

COAD HSPB1 Tr1 −0.02527 0.647847324 0.737746

COAD HSPB1 iTreg −0.11985 0.02974044 0.062032

COAD HSPB1 nTreg −0.17044 0.001918694 0.003871

COAD SLC1A5 Bcell −0.24097 9.89224E-06 4.42E-05

COAD SLC1A5 CD4_T −0.31704 4.07515E-09 1.65E-08

COAD SLC1A5 CD4_naive 0.055306 0.317257076 0.806027

COAD SLC1A5 CD8_T −0.20955 0.000128657 0.000662

COAD SLC1A5 CD8_naive 0.13924 0.011461408 0.025583

COAD SLC1A5 Central_memory −0.11411 0.038573732 0.110974

COAD SLC1A5 Cytotoxic −0.15461 0.0049438 0.01088

COAD SLC1A5 DC 0.022538 0.683790646 0.778397

COAD SLC1A5 Effector_memory −0.05282 0.339523746 0.48725

COAD SLC1A5 Exhausted 0.160205 0.003572487 0.009971

COAD SLC1A5 Gamma_delta 0.142781 0.009507343 0.026696

COAD SLC1A5 InfiltrationScore −0.25754 2.20581E-06 7.13E-06

COAD SLC1A5 MAIT −0.30951 9.81186E-09 5.85E-08

COAD SLC1A5 Macrophage −0.11209 0.04217849 0.083998

COAD SLC1A5 Monocyte 0.267512 8.48819E-07 4.74E-06

COAD SLC1A5 NK −0.33351 5.47551E-10 2.67E-09

COAD SLC1A5 NKT −0.21394 0.000091869 0.000321

COAD SLC1A5 Neutrophil 0.258419 2.03021E-06 9.46E-06

COAD SLC1A5 Tfh −0.33927 2.63682E-10 2.36E-09

COAD SLC1A5 Th1 0.042495 0.442362903 0.583992

COAD SLC1A5 Th17 −0.22282 0.000045489 0.00024

COAD SLC1A5 Th2 −0.33281 5.97566E-10 2.8E-09

COAD SLC1A5 Tr1 −0.15019 0.006347942 0.015927

COAD SLC1A5 iTreg 0.094444 0.087197264 0.152343

COAD SLC1A5 nTreg 0.326751 1.26625E-09 6.72E-09

Note: cor, correlation.
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resulting in significant mortality and morbidity. Iron death is a

pattern of cell death caused by the accumulation of active oxygen

species (ROS) of iron and lipids within cells and plays a vital role

in tumorigenesis and development. (Dixon, 2017; Jiang et al.,

2021). A number of studies have shown that ferroptosis can be

used to treat cells that have developed resistance to drugs, which

emphasized the importance of ferroptosis in the treatment of

CRC patients (Friedmann Angeli et al., 2019; Wang et al., 2021).

However, the underlying mechanisms and biomarkers of iron

death in cancer remain to be studied. In the current study, we

used bioinformatics and statistical methods to screen TCGA for

information relevant to ferroptosis in COADmetastasis. We also

created a risk for ferroptosis, which we believe could serve as a

possible diagnostic biomarker. Using the TCGA data collection,

we initially evaluated DEGs ferroptosis genes in primary and next

in metastasis COAD patients. According to the findings of the

Kaplan Meier survival analysis four genes having a significant

correlation with OS. The prognostic accuracy of these

ferroptosis-related genes in COAD patients was examined

using univariate and multivariate Cox regression. Patients

with COAD who were classified as high risk had a lower

overall survival time than those who were classified as low

risk. Studies have shown that fatal lipid peroxidation [20] is a

cause of ferroptotic cell death (Gao et al., 2015). The

accumulation of intracellular iron resulting from the

depletion of ferritin or iron transporters and the

subsequent peroxidation causes the formation of lipid

peroxides and iron hypertrophy (Stockwell and Jiang,

2019). Four ferroptosis-related genes (FDFT1, HSPB1,

SLC1A5, and CARS1 were identified in this investigation.

Two genes involved in ferroptosis and lipid metabolism,

FDFT1 and HSPB1, have been related to a poor prognosis

in colorectal cancer, which is congruent with our own findings

in COAD metastases (Liu et al., 2021; Yang et al., 2021). In

addition to being increased in CRC, HSPB1 was also revealed

to be related to worse survival in the present study (Wang

et al., 2012; Konda et al., 2017). However, neither CARS1 nor

SLC1A5 have previously been documented in CRC, therefore

our results suggest that this area requires additional

investigation. One of the most important regulators of cell

survival is the PI3K/Akt/mTOR pathway. ROS can activate

this pathway either by oxidizing kinases directly or by

oxidizing the negative phosphatase regulators of this

system, including phosphatase and tensin homolog (PTEN),

protein-tyrosine phosphatase 1B (PTP1B), and protein

phosphatase 2 (PP2) (PP2A). The effects of above

mentioned FRGs on ROS can cause an increase in activity

of the PI3K/Akt/mTOR signaling cascade. Furthermore,

FIGURE 4
MiRNAs target FGRs in colon cancer. FGRs can be controlled by miRNAs in COAD.
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TABLE 3 Regulation of FGRs expression by transcription factors identified using Chip-Seq data.

Promoter Promoter Promoter TF Motif_ID Motif Motif Motif Score P.Value

_Chr _Start _End _Start _End _Strand

chr11 3076681 3080681 TFAP4 Transfac.V$AP4_01 3077993 3078010 + 18.3577 5.74E-07

chr11 3076681 3080681 SP1 Transfac.V$SP1_Q6 3078348 3078360 − 16.4079 9.18E-07

chr11 3076681 3080681 SP1 Transfac.V$SP1_Q6_01 3078349 3078358 − 15.9857 6.78E-07

chr11 3076681 3080681 TFAP2C Transfac.V$TFAP2C_01 3076752 3076763 + 15.7424 0.00000035

chr11 3076681 3080681 TFAP2C Transfac.V$TFAP2C_01 3076752 3076763 − 16.7576 3.11E-08

chr11 3076681 3080681 TFAP2C JASPAR2014.MA0524.1 3076752 3076766 − 17.5306 0.00000024

chr11 3076681 3080681 TFAP2C Jolma2013.TFAP2C_DBD 3076752 3076763 + 16.6972 2.08E-07

chr11 3076681 3080681 TFAP2C Jolma2013.TFAP2C_DBD 3076752 3076763 − 17.3853 3.11E-08

chr11 3076681 3080681 TFAP2C Jolma2013.TFAP2C_full 3076752 3076763 + 15.6869 3.19E-07

chr11 3076681 3080681 TFAP2C Jolma2013.TFAP2C_full 3076752 3076763 − 16.6869 3.11E-08

chr8 11658189 11662189 MYC JASPAR2014.MA0147.2 11661289 11661298 + 15.5455 9.09E-07

chr19 47289842 47293842 NFYA Transfac.V$NFYA_Q5 47291924 47291937 − 18.3026 6.79E-08

chr19 47289842 47293842 TFAP2C Transfac.V$TFAP2C_03 47292525 47292535 + 15.1774 8.11E-07

chr19 47289842 47293842 TFAP2C Jolma2013.TFAP2C_DBD_2 47292525 47292535 + 16.2755 6.13E-07

chr19 47289842 47293842 TFAP2C Jolma2013.TFAP2C_full_3 47292525 47292535 + 15.1327 8.11E-07

chr7 75929874 75933874 TFAP4 Transfac.V$AP4_Q6_02 75932064 75932076 − 15.102 7.72E-07

chr7 75929874 75933874 TFAP4 Transfac.V$AP4_Q6_02 75932169 75932181 − 15.8265 2.75E-07

chr7 75929874 75933874 FOXP1 Transfac.V$FOXP1_01 75930287 75930306 + 17.5952 3.63E-08

chr7 75929874 75933874 FOXP1 Transfac.V$FOXP1_01 75931150 75931169 + 7.60714 0.00000053

chr7 75929874 75933874 HSF1 Transfac.V$HSF1_Q6 75932933 75932949 − 20.5688 7.59E-08

chr7 75929874 75933874 HSF1 Transfac.V$HSF1_Q6 75932940 75932956 + 17.9817 7.28E-07

chr7 75929874 75933874 SP1 Transfac.V$SP1_02 75932674 75932684 − 19 7.65E-08

chr7 75929874 75933874 SP1 Transfac.V$SP1_03 75933079 75933088 + 17.0674 7.52E-07

chr7 75929874 75933874 SP1 Transfac.V$SP1_05 75931838 75931848 + 16.5385 4.69E-07

chr7 75929874 75933874 SP1 Transfac.V$SP1_Q2_01 75932676 75932685 + 16.0921 6.78E-07

chr7 75929874 75933874 SP1 Transfac.V$SP1_Q4_01 75931837 75931849 − 16.9737 2.79E-07

chr7 75929874 75933874 SP1 Transfac.V$SP1_Q6 75931837 75931849 − 17.0132 0.0000005

chr7 75929874 75933874 SP1 Transfac.V$SP1_Q6_01 75932675 75932684 − 15.9857 6.78E-07

chr7 75929874 75933874 SP1 Transfac.V$SP1_Q6_02 75932195 75932211 + 15.2816 5.48E-07

chr7 75929874 75933874 SP1 Transfac.V$SP1_Q6_02 75932196 75932212 + 14.9029 8.55E-07

chr7 75929874 75933874 SP1 Transfac.V$SP1_Q6_02 75932198 75932214 + 16.3592 1.41E-07

chr7 75929874 75933874 SP1 Transfac.V$SP1_Q6_02 75932668 75932684 + 16.4806 0.00000012

chr7 75929874 75933874 SP1 Transfac.V$SP1_Q6_02 75932669 75932685 + 18.3883 7.35E-09

chr7 75929874 75933874 SP1 Transfac.V$SP1_Q6_02 75932671 75932687 + 14.9563 8.04E-07

chr7 75929874 75933874 SP1 Transfac.V$SP1_Q6_02 75932672 75932688 + 14.8786 0.00000088

chr7 75929874 75933874 SP1 Transfac.V$SP1_Q6_02 75932673 75932689 + 15.9466 2.41E-07

chr7 75929874 75933874 SP1 Transfac.V$SP1_Q6_02 75932674 75932690 + 17.8058 1.81E-08

chr7 75929874 75933874 HSF1 JASPAR2014.MA0486.1 75932935 75932949 − 18.9286 2.34E-07

chr7 75929874 75933874 HSF1 JASPAR2014.MA0486.1 75932940 75932954 + 18.7429 2.78E-07

chr7 75929874 75933874 TP63 JASPAR2014.MA0525.1 75931308 75931327 + 17.0577 0.00000077

chr7 75929874 75933874 SP1 Jolma2013.SP1_DBD 75931838 75931848 + 16.5 4.69E-07

Note: chr11 indicates CARS1 location, chr8 indicates FDFT1 location, chr19 represents SLC1A5 location, chr 7 represents HSPB1 location.
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Curcumin’s anti-cancer effects in colon cancer cells are

modulated by HSPB1’s ability to induce reactive oxygen

species (ROS) generation and autophagy (Liang et al.,

2018). The above results appeared to support the existing

results that FRGs contributed to colon cancer progression and

invasion via oxidative phosphorylation. FGRs may act as

ROS-inducing agents and can activate TGFB, which is

known to promote tumorigenesis, angiogenesis, and

metastasis. Additionally, TGFB regulates the genes

responsible for inflammation, cell proliferation,

differentiation, and survival. Hypoxia is known to stimulate

the production of mitochondrial reactive oxygen species

(mROS), which in turn increases and stabilizes hypoxia-

inducible factor-1 (HIF1a), which contributes to the

survival and progression of tumors by upregulating the

genes that regulate tumor angiogenesis and metastasis. On

the other hand, several distinct DNA repair systems

collaborate to decrease the risk that this damage may lead

to dangerous mutations. There is a link between FRGs and

genes involved in DNA repair pathways, allowing cells to be

more resistant to DNA damage. FGRs showed positive

correlation with a checkpoint control pathway and

enhanced the activity of genes involved in DNA replication

pathway that would normally prohibit cells from initiating

DNA replication when breaks are present. Previous research

reported that increasing SLC7A11 and GPX4 expression in

HCT116 inhibited iron-induced lipid peroxidation and

protected cells from ferroptosis (Yuan et al., 2021).

The infiltration of different types of immune cells is a

principal determining factor for the immune response at

primary and secondary tumor sites in the tumor

microenvironment. We further analyzed the influence of

CARS1 level on immune cell infiltration. The levels of FRGs

significantly affects the infiltration level of B cells, CD4-T, CD8-

T, central memory, NKT, Tfh, Th17, Th2, and Tr1cells. These

results indicated that FRGs had a key regulatory effect on the

immune cells in COAD patients. This is a preliminary

exploration, but we intend to follow it up with experimental

confirmation and biogenesis research.

Study limitation: All the findings in this manuscript were of

speculation based on the transcriptional analyses using

bioinformatics analysis. In vitro and in vivo investigations should

be conducted to confirm the functional involvement in COAD. In

conclusion, based on bioinformatics and statistical analysis, this

study revealed associations between ferroptosis-related genes

(FRGs) and colon adenocarcinoma (COAD). Prognostic models

for ferroptosis-related programmed cell death in COAD metastasis

were developed by identifying 4 signature genes, constructing a

nomogram based on univariate and multivariate Cox regression

model, and analyzing related pathways, immune cell infiltration, and

regulatory networks.
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Targeting GSTP1-dependent
ferroptosis in lung cancer
radiotherapy: Existing evidence
and future directions
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Radiotherapy is applied in about 70% patients with tumors, yet radioresistance

of tumor cells remains a challenge that limits the efficacy of radiotherapy.

Ferroptosis, an iron-dependent lipid peroxidation regulated cell death, is

involved in the development of a variety of tumors. Interestingly, there is

evidence that ferroptosis inducers in tumor treatment can significantly

improve radiotherapy sensitivity. In addition, related studies show that

Glutathione S-transferase P1 (GSTP1) is closely related to the development

of ferroptosis. The potential mechanism of targeting GSTP1 to inhibit tumor

cells from evading ferroptosis leading to radioresistance has been proposed in

this review, which implies that GSTP1 may play a key role in radiosensitization of

lung cancer via ferroptosis pathway.

KEYWORDS

ferroptosis, radiotherapy, lung cancer, GSTP1, mechanism

1 Background

Lung cancer is a malignancy with the highest mortality rate, with no treatment

method that could effectively prolong the long-term survival rate of lung cancer patients

(Sung et al., 2021). Therefore, finding ways to improve the survival rate of lung cancer

patients has become the current focus in clinical research. Radiotherapy is a common

treatment method for lung cancer and plays an increasingly important role. With the

development of precision radiotherapy technology, the efficacy of radiotherapy and its

status in tumor treatment have significantly increased (Santivasi and Xia, 2014). Although

radiotherapy is the main method of tumor treatment, it produces unsatisfactory

therapeutic results. These poor outcomes are diverse in pattern and associated with

DNA repair, cell energetics, gene mutations, complex tumor microenvironment and

immune response meditated by radiotherapy. All of the above factors ultimately

contribute to tumor resistance to radiotherapy (Raghav et al., 2012; Buckley et al.,

2020; Chandra et al., 2021; Busato et al., 2022). Currently, radioresistance has become one

of the leading causes of treatment failure in lung cancer patients. Ferroptosis is an iron-

dependent form of cell death marked by excessive accumulation of lipid peroxides, which
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is significantly different from apoptosis, necroptosis and

autophagy in morphology, genetic and biochemical

characteristics fields (Dixon et al., 2012). The discovery of

ferroptosis has led to new insights into tumor therapy, in

which it has been found that ferroptosis might be involved in

radiotherapy-induced cell death (Lang et al., 2019; Lei et al.,

2020a; Ye et al., 2020). Glutathione S-transferase P1 (GSTP1) is a

member of the glutathione-S-transferase (GST) family, which is

capable of detoxifying cells from endogenous and exogenous

toxic compounds by using glutathione (GSH) or by acting as a

ligand (Mian et al., 2016). Studies have shown that GSTP1 plays a

crucial role in maintaining cellular oxidative homeostasis and

regulating cell proliferation and apoptosis (Holley et al., 2007). In

addition, it has been surprisingly found that GSTP1 is involved in

tumor development through ferroptosis pathway (Tew et al.,

2011). Therefore, exploring the interaction of GSTP1 and

ferroptosis in tumor radioresistance may provide us with a

new approach to tumor radiosensitization. In this review, we

discuss recent research advances on the role of ferroptosis and

GSTP1 in lung cancer radiotherapy.

2 The potential role and its
mechanisms of ferroptosis in
radiotherapy

The mechanism of ferroptosis involves a confrontation

between the intracellular ferroptosis execution system and the

ferroptosis defense system. When the cellular activity promoting

ferroptosis significantly exceeds the antioxidant buffering

capacity provided by the ferroptosis defense system, there is

an excessive accumulation of lipid peroxides on the cell

membrane and subsequent membrane rupture, leading to

cellular ferroptosis (Stockwell et al., 2020; Zheng and Conrad,

2020). The damage to the cellular structure by radiotherapy is

mainly divided into two ways: direct way and indirect way. The

direct way is mainly the direct action of high energy X-rays on the

DNA double strand of the cell, causing it to break and inducing

cell cycle arrest, senescence and cell death (Baskar et al., 2012). In

addition to direct damage to DNA, ionizing radiation can also act

on organisms through indirect effects. For example, after

absorption of ionizing radiation by living cells, ionizing

radiation can cause cellular damage by generating chemicals

such as reactive oxygen species (ROS) (Azzam et al., 2012;

Santivasi and Xia, 2014; Pouget et al., 2018). However,

multiple tumors have evolved strategies to avoid cell death,

such as loss of TP53 tumor suppressor function, increased

expression of antiapoptotic regulators (Bcl-2, Bcl-xL) or

survival signals (Igf1/2), thus exhibiting radioresistance to

radiotherapy, which undoubtedly one of the main factors

affecting patient outcome as well as prognosis (Hanahan and

Weinberg, 2011). The concept of ferroptosis, first proposed by

Prof. Stockwell’s team in 2012, is a regulated cell death process

caused by excessive accumulation of iron ions and reactive

oxygen species-induced dysregulated accumulation of cellular

lipid peroxidation metabolism (Dixon et al., 2012; Stockwell

et al., 2017). It is morphologically characterized by

mitochondrial wrinkling and a decrease in the number of

mitochondrial cristae, an increase in membrane density and

thickness, insignificant morphological changes in the nucleus

(Stockwell et al., 2017). It is characterized by excessive

accumulation of lipid peroxides and is closely associated with

intracellular iron overload, free radical production, fatty acid

supply and lipid peroxidation (Li et al., 2020; Stockwell, 2022).

Radiotherapy can induce ferroptosis in the specified cancers

through several pathways as following.

2.1 Radiotherapy might affect ferroptosis
through iron metabolism

Iron overload is associated with the development of lung

cancer, and there is a significant positive correlation between

high iron intake and lung cancer risk. Datas from a clinical trial

show that serum iron, ferritin and total iron binding are

significantly higher in lung cancer patients than in healthy

controls (Sukiennicki et al., 2019). The higher the serum iron

concentration, the greater the risk of developing lung cancer

(Sukiennicki et al., 2019; Ward et al., 2019). Under normal

conditions, extracellular iron bounding to transferrin to form

a complex is mediated by transferrin receptor 1 (TfR1) on the cell

membrane into the intracellular compartment, where it is

converted to ferrous ions by ferric reductase and subsequently

stored in the intracellular unstable iron pool via the divalent

metal transporter protein divalent metal transporter 1 (DMT1),

and the excess iron ions are stored as inert iron in ferritin in the

cell, maintaining intracellular iron homeostasis (Masaldan et al.,

2018; Lei et al., 2020a). When iron ions are overloaded, the iron

ions entering the cell react with reactive oxygen species in the

Fenton reaction, peroxidizing polyunsaturated fatty acids on the

cell membrane and generating lipid peroxides, leading to damage

of the cell membrane structure and eventually triggering cell

death (Conrad and Proneth, 2019). Under ionizing radiation and

oxidative stress or certain other pathological conditions, iron

homeostasis can be severely altered. This alteration can manifest

itself in several ways, one of which is an increase in intracellular

levels of potentially harmful unstable iron pools leading to

oxidative membrane damage and cell death of cells (Aroun

et al., 2012). Therefore, radiotherapy may also affect the

occurrence of ferroptosis by modulating iron metabolism.

Ivanov et al. significantly improved the efficiency of

radiotherapy in glioma-bearing mice by adding mineralized

iron water to the tumor-bearing animals, which reduced

monocytes and tumor volume in glioma-bearing mice under

radiotherapy. Further addition of iron chelators weakened the

tumor suppressive effect of radiotherapy because of blocking
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radiation-induced ferroptosis (Ivanov et al., 2013; Ivanov et al.,

2015). Qin et al. found all-lactoferrin Holo-Lf was able to increase

the expression of transferrin receptor, ferritin and ferroregulin,

indicating increased iron uptake, storage and output, combined

with radiotherapy could promote ROS production and increase

lipid peroxidation end product malondialdehyde (MDA),

thereby enhancing ferroptosis in MDA-MB-231 cells (Zhang

et al., 2021a). Sato et al. shown that mitochondrial

dysfunction increased intracellular H2O2, Fe2+ levels and

might lead to increased production of -OH, resulting in lipid

peroxidation and ferroptosis (Takashi et al., 2020). Zheng et al.

found that the deubiquitinating enzyme USP35 regulated

ferroptosis in lung cancer by targeting FPN (Tang et al.,

2021a). Jun et al. disclosured that in ischemia-reperfusion-

treated rat hearts, ubiquitin-specific protease seven could

increase iron uptake and thus promoted ferroptosis by

activating p53 leading to upregulation of TfR1 (Tang et al.,

2021b). Tomita K et al. unfolded that miR⁃7⁃5p could impede

Fe2+ transport into mitochondria by inhibiting mitoglobin under

radiation, leading to the onset of intracellular hydroxyl radical

levels and Fenton reaction-induced cytoplasmic membrane

oxidation, ultimately causing radiation-induced ferroptosis

(Tomita et al., 2019). In addition, Jaewang Lee et al. found

that PCBP1, as a ferric ion chaperone protein, could inhibit

iron-mediated ferritin phagocytosis and lipid peroxidation and

was an important regulator of ferroptosis. Further experiments

demonstrated that downregulation of PCBP1 increased the

sensitivity of head and neck cancer to ferroptosis (Lee et al.,

2022). In addition, many other researchers found that

radiotherapy might affect ferroptosis by mediating the

expression of iron metabolism-related proteins such as iron

ion-related carriers like ferritin, FPN, regulatory iron

regulators, membrane iron transport auxiliary protein

(Hephaestin) and copper cyanobacteria by mediating hypoxia-

inducible factor 1α (HIF-1α) or HIF-2α (Shah et al., 2009; Singhal
et al., 2021; Yang et al., 2022). Therefore, we consider that the

regulation of intracellular iron ion content by radiation to cause

iron overload to enhance ferroptosis sensitivity in tumor cells is

expected to be an effective way to enhance radiosensitivity.

2.2 Radiotherapy induces ferroptosis by
promoting lipid peroxidation

Hyperoxidation of phospholipids containing

polyunsaturated fatty acids (PUFA-PL) catalyzed by iron is

the core feature of ferroptosis. Lipid peroxidation of PUFA

generates a variety of oxidation products. Among them, lipid

hydroperoxides (LOOHs) are the initial products of

peroxidation. The secondary products are aldehydes, of which

MDA and 4-hydroxynonenal (4-HNE) are the most abundant

(Feng and Stockwell, 2018). Yang et al. finds that ferroptosis can

be driven by peroxidation of polyunsaturated fatty acids (PUFA)

at the diallyl site, which is pretreated with PUFA containing the

heavy hydrogen isotope deuterium (D-) at the peroxidation site.

Pretreatment of cells with PUFA containing the heavy hydrogen

isotope deuterium (D-PUFA) at the peroxidation site prevents

PUFA peroxidation and ferroptosis (Yang et al., 2016).

Therefore, the content of intracellular PUFAs determines the

degree of lipid peroxidation and the susceptibility of cells to

ferroptosis (Lei et al., 2021a). Driven by the highly reactive OH •
radicals generated by the Fenton reaction and the presence of a

large amount of the bis-allylic, PUFA are the most susceptible to

damage by exposure to high doses of radiation. In contrast,

monounsaturated fatty acids (MUFA) are less susceptible to

peroxidation due to the absence of the bis-allylic, which could

inhibit lipid peroxidation and ferroptosis by replacing

polyunsaturated fatty acids in the cell membrane (Feng and

Stockwell, 2018). Therefore, cancer cells can be sensitized to

ferroptosis by modulating the activities of enzymes involved in

MUFA-PL synthesis, such as SCD1 and ACSL3. Polyunsaturated

fatty acids containing diallyl provide substrates that are

peroxidized to drive ferroptosis (Tesfay et al., 2019; Zou et al.,

2020). Acyl coenzyme A synthase long chain family member 4

(ACSL4) esterifies CoA to free fatty acids, especially

polyunsaturated fatty acids, and radiotherapy can collectively

promote lipid peroxidation and ultimately ferroptosis by

generating large amounts of ROS and upregulating the

expression of the key enzyme ACSL4. In addition, knockdown

of the ACSL4 gene in tumor cells leads to significant

radioresistance (Doll et al., 2017; Lei et al., 2020a).

Meanwhile, radiation is able to significantly increase the

staining of C11-BODIPY, lipid peroxidation markers MDA

and 4-HNE in cancer cells and tumor samples, indicating that

radiation induces lipid peroxidation (Lei et al., 2020a; Zhang

et al., 2021a; Zhou et al., 2022). Similarly, irradiated cells exhibit

increased expression of the ferroptosis marker gene

prostaglandin endoperoxide synthase 2 (PTGS2) (Busato et al.,

2022; Yang et al., 2022). Furthermore, Seiji Torii et al. shows that

knockdown of Arachidonate 15-Lipoxygenase (ALOX15)

decreases erastin-induced and RSL3-induced cellular

ferroptosis, on the contrary exogenous overexpression of

ALOX15 enhances the effects of these compounds. This

suggests that LOX-catalyzed lipid hydroperoxide production

in the cell membrane promotes tumor ferroptosis (Shintoku

et al., 2017). In contrast, treatment with baicalin

(ALOX15 inhibitor) after irradiation restores normal levels of

systemic irradiation-induced inflammatory cytokines and

improves survival in mice (Thermozier et al., 2020). Dixon

and Angeli et al. finds that the free radical scavenger statin

Ferrostatin and the lipid peroxidase inhibitor/fat-soluble

antioxidant vitamin E, among other lipophilic antioxidants

and iron chelator drugs can modulate the occurrence of

cellular ferroptosis by inhibiting the process of lipid

peroxidation (Dixon et al., 2012; Angeli et al., 2017).

Therefore, it is reasonable to assume that radiotherapy can
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influence the onset of ferroptosis bymediating the biosynthesis of

polyunsaturated fatty acids in cell membranes to promote the

accumulation of lipid peroxides.

2.3 Radiotherapy induces ferroptosis by
depleting GSH and inhibiting the synthesis
of GPX4

Glutathione which is synthesized from glycine, glutamate

and cysteine is an important non-enzymatic antioxidant for

intracellular scavenging of ROS, and its metabolic balance is

closely related to the regulation of ferroptosis. Glutathione

peroxidase 4 (GPX4) as a selenoperoxidase is a key upstream

regulator of ferroptosis which plays two simultaneous roles, one

in converting reduced GSH to glutathione disulfide (GSSG) and

the other is to inhibit ferroptosis by reducing phospholipid

hydroperoxides (PLOOHs) to the corresponding alcohols

(PLOHs), thereby preventing the accumulation of lipid

peroxides (Jiang et al., 2021). The cysteine-glutamate reverse

transporter (System-Xc) is a dimer composed of the transporter-

active transmembrane protein solute carrier family seven

member 11(SLC7A11) and the transmembrane regulatory

protein solute carrier family three member 2 (SLC3A2), in

which cysteine is the rate-limiting precursor for GSH

synthesis. Inhibition of SystemXc-function can lead to GSH

depletion and indirectly affect the ability of GPX4 to catalyze

lipid peroxide reduction reactions, resulting in ROS

accumulation and triggering ferroptosis (Yang et al., 2016).

Zou et al. finds that Interferon (IFNγ) secreted by CD8+

T cells and ATM activated by radiotherapy can synergistically

inhibit SLC7A11 expression to limit cystine uptake by tumor

cells, leading to reduced GSH synthesis and thus promoting lipid

peroxidation and ferroptosis (Lang et al., 2019). Wang et al. finds

that RBMS1 inhibits SLC7A11 translation, reduces SLC7A11-

mediated cystine uptake and promotes ferroptosis in lung cancer

cells (Zhang et al., 2021b). Cobler et al. finds that inhibition of

SLC7A11 after Erastin treatment increases radiosensitivity in

SLC7A11+ breast cancer cells in vitro and in vivo, while it has no

effect on SLC7A11- cancer cells, this process accompanied by a

decrease in intracellular GSH synthesis that promotes cell death

(Cobler et al., 2018). Li finds that nuclear factor erythroid 2-

related factor 2 (NRF2) can inhibit radiation-induced ferroptosis

by regulating SLC7A11 in esophageal squamous cell carcinoma

(ESCC), promoting radioresistance in ESCC (Feng et al., 2021).

Ye LF finds that ferroptosis is a mechanism of radiation-induced

cancer cell death. When tumors have evolved specific resistance

mechanisms such as a resistant state susceptible to

GPX4 inhibition and ferroptotic cell death, the combination

of ferroptosis inducers and radiotherapy has potential

applications in cancers, especially those who have undergone

EMT (Ye et al., 2020). In addition, Yu et al. finds that knockdown

of GPX4 can reduce radiotherapy resistance in NSCLC cells by

inducing ferroptosis (Pan et al., 2019). Gao et al. confirms that

knockdown Ribonucleotide reductase subunit M1 (RRM1)

promotes the occurrence of radiation-induced lipid

peroxidation, decreases GSH levels, increases GSSH levels and

elevates MDA levels. It is believed that targeting RRM1 can

disrupt the antioxidant resistance system of tumor cells to

mediate the onset of ferroptosis and thus radiosensitize tumor

cells (Gao et al., 2022). Thus we have the same expectations for

GSTP1. Shibata et al. also demonstrates the radiosensitizing

effect of erastin on lung adenocarcinoma cells NCI-H1975

and tumor xenograft models accompanied by lower levels of

glutathione (Shibata et al., 2019). Therefore, inhibition of the

GSH/GPX4 pathway by SLC7A11 in combination with

radiotherapy induces ferroptosis in tumor cells has strong

application. When such ferroptosis inducers act as a

radiosensitizer, in addition to the DNA double-strand damage

effect, more ROS can be generated in tumor cells through other

additional pathways, thus aggravating lipid peroxidation and cell

death. In addition, there may be other regulatory mechanisms for

themaintenance of intracellular GSH/GPX4 homeostasis, further

studies targeting other influences on this pathway to induce

ferroptosis and enhance radiosensitivity provide a broad scope

for exploration.

3 GSTP1 as a potential regulator in
radiotherapy of cancer

Radiotherapy exerts its anti-tumor effects mainly by

generating oxidative stress (Mukha et al., 2021), thus oxidative

stress-related enzymes may affect the effect of radiotherapy in

cancer patients. Enzymes involved in the ROS neutralization

pathway include glutathione-S-transferase (GST), manganese

superoxide dismutase (MnSOD) and catalase (CAT) (Hayes

and Pulford, 1995). Enzymes such as MPO and endothelial

nitric oxide synthase (eNOS) are involved in the generation

pathway of ROS (Rehman et al., 2020). MPO catalyzes a

reaction between H2O2 and chloride to generate hypochlorous

acid, a potent oxidizing agent (Peng et al., 2022). A Re et al. shows

that a combinatorial complex between estrogen receptor (ER)-β
and endothelial nitric oxide synthase (eNOS) could repress

transcription of prognostic genes that are down-regulated in

prostate tumors, such as the glutathione transferase gene GSTP1

(Re et al., 2011). Kecheng Lei et al. shows that inactivation of both

NQO1 and GSTP1 result in imbalanced redox homeostasis,

leading to apoptosis and mitigate cancer proliferation in

glioblastoma (Lei et al., 2020b). Claudia Bănescu et al.

illuminats that CAT, GPX, MnSOD, and glutathione

S-transferase M1 (GSTM1) and glutathione S-transferase T1

(GSTT1) gene polymorphisms are not associated with the risk

of chronic myeloid leukemia (CML) except GSTP1 depending on

its strong restoring ability (Bănescu et al., 2014). Therefore, in

this review we focus on GSTP1, which could be a potential
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effective regulator in radiotherapy of cancer in GST family.

Glutathione S-transferases (GST), a group of isoenzymes, were

discovered in rat liver in 1960 and have gained attention for their

detoxification function in catalyzing the reaction of GSH with

electrophile substances (Booth et al., 1961). GSTs are found in

cells mainly in the cytoplasm, mitochondria and microsomes,

mainly divide into α (GSTA), π (GSTP), μ (GSTM), σ (GSTS), θ
(GSTT), ζ (GSTZ), and ω (GSTO) seven isoforms. Among them,

GSTP1 is the most widely studied member of the GST family

(Chatterjee and Gupta, 2018; Kogawa et al., 2021). The gene

encoding GSTP1 is localized on chromosome 11q13 and is

approximately 3.2 kb long, which contains 9 exons and

6 introns. It has high G + C and CpG content near its 5′ end,
typical of HTF (HpaII microfragment islands) (Cowell et al.,

1988). GSTP1 is a phase II metabolizing enzyme that is widely

found in mammalian liver, lung, kidney and other tissues. Its

main function is to catalyze the binding of glutathione to various

electrophilic hydrophobic substances to form water-soluble

compounds for excretion from the body (Awasthi et al.,

2017). Structurally, it is a dimeric protein containing

210 amino acids per subunit and two binding sites. G site

specifically binds GSH and H site catalyzes the reaction of

GSH with electrophile substances (FeiFei et al., 2019).

GSTP1 is involved in the metabolism of various

chemotherapeutic drugs and protects normal cells from

carcinogens and electrophile compounds. With the continuous

research on GSTP1, it has been found that besides its catalytic

detoxification function, it also has various functions such as anti-

apoptosis, regulation of inflammatory response, regulation of cell

signaling pathways, and it is closely related to the development of

tumors (van de Wetering et al., 2021). GSTP1 exists widely in the

body, and its catalytic detoxification activity is believed to protect

the body from carcinogenic factors. Many studies have confirmed

that the expression level of GSTP1 is associated with an increased

risk of various cancers. Ritchie et al. treated GSTP1 knockout

mice and wild-type mice with benzopyrene, 3-

methylcholanthrene, and urethane, respectively, and found

that GSTP1 gene deletion increased the incidence of lung

adenocarcinoma in mice exposed to these three compounds,

respectively 8.3 times, 4.3 times and 8.7 times (Ritchie et al.,

2007). GSTP1 may exert its protective effect on the organism by

protecting normal organ tissues from carcinogenic factors due to

its functions such as detoxification and regulation of

inflammation. However, a large number of studies have found

that the expression level of GSTP1 in most tumor cells is

significantly higher than that in normal tissues, and high

expression of GSTP1 is associated with poorer prognosis of

tumors. Ali-Osman et al. analyzed the expression level and

subcellular localization of GSTP1 in 61 primary gliomas, and

analyzed the correlation between the results and tumor stage,

patient age and patient survival rate. The relative risk of death in

tumor patients was 3.2 times that of patients with low

GSTP1 expression, and the relative risk of death in patients

with GSTP1 expression in glioma nuclei was 3.9 times that in

patients without GSTP1 expression in the nucleus (Ali-Osman

et al., 1997). This shows that overexpression of GSTP1 protein in

tumor cells and its nuclear localization are closely associated with

more advanced tumor staging and worse prognosis. Pljesa-

Ercegovac, M. et al. collected tumor and adjacent tissues from

84 patients with bladder transitional cell carcinoma. Through

immunohistochemical analysis, they found that the apoptosis

inhibitory protein Bcl-2 was highly expressed in most tumors

with high GSTP1 expression, while the expression of GSTP1 was

high. The level was significantly negatively correlated with the

activator of apoptosis-enforcing protein caspase-3, indicating

that the high expression of GSTP1 inhibited the apoptosis

signaling pathway, thereby inhibiting tumor apoptosis (Pljesa-

Ercegovac et al., 2011). The role of GSTP1 was explained by Savic

et al.’s study on the antioxidant capacity of bladder transitional

cell carcinoma. The researchers detected the activity of

antioxidant enzymes in tumors and adjacent tissues of

30 patients with bladder transitional cell carcinoma, and

found that γ-glutamyl cysteine synthase (γ-GCS) and

glutathione in tumor tissue. The activity of peptide reductase

(GR) was 4-fold and 2-fold higher than that of the paracancerous

tissue, respectively, and the expression level of GSTP1 was

significantly positively correlated with the activity of γ-GCS
and GR. GSTP1 may participate in the regulation of cellular

redox state by catalyzing the reaction of glutathione with

intracellular reactive oxygen species and other electrophiles,

thereby improving the antioxidant capacity of tumor cells and

helping tumor cells to resist external killing factors (Savic-

Radojevic et al., 2007). Our lab colleagues previously did a

study on the response of GSTP1 to radiation. We found that

both GSTP1 expression and its glutathione catalase activity were

decreased after radiation (Lei et al., 2021b). Previous scholars

have found that GSTP1 could be directly activated by NRF2

(Ikeda et al., 2002; Fang et al., 2020). At the same time, under

some stress conditions (such as ionizing radiation and oxidative

stress), the stress-responsive transcription factor NRF2 can

induce the regulation of the SLC7A11 subunit with transport

activity on System-Xc, increasing the uptake of cystine to

promote further Synthesis and utilization of prototypical GSH

to protect cells from ferroptosis under stressful conditions, the

specific underlying mechanisms will be further explained in the

outlook (Dong et al., 2021; Feng et al., 2021; Liu et al., 2022).

Till now, a specific radiosensitizer that sensitizes tumors

without affecting normal tissues has not been found all over

the world. Ferroptosis is a recently discovered form of cell death

driven by iron-dependent lipid peroxidation which is

mechanistically different from other forms of cell death.

Previous studies have found that the expression of GSTP1 in

tumor tissues is higher than that in normal tissues, which

provides a good research entry point for us to study the

potential role of GSTP1 in tumor radiotherapy through

ferroptosis.
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TABLE 1 The potential role of GSTP1 in ferroptosis pathway for tumor treatment.

Study Year Sample Summary Potential
target

Possibly associated
with radiotherapy

Biomimetic photosensitizer
nanocrystals trigger enhanced
ferroptosis for improving cancer
treatment (Wu et al., 2022)

2022 Mice and HSC-3 cells AE could induce ferroptosis by
inhibiting the activity of GSTP1

LPO/GSTP1 Possible

Glutathione peroxidase 4-
dependent glutathione high-
consumption drives acquired
platinum chemoresistance in lung
cancer-derived brain (Liu et al.,
2021)

2021 Immunodeficient mice and
PC9-BrM3 cells

GPX4 regulated the level of
GSTM1 by protein stabilization,
which is an isoenzyme with GSTP1

GSTM1 Mostly possible

Activation of mouse Pi-class
glutathione S-transferase gene by
Nrf2(NF-E2-related factor 2) and
androgen (Ikeda et al., 2002)

2002 Mice bearing HSC-3 tumors
and HepG2 cells

Nrf2 and the androgen receptor
directly bind to and activate the
mouse GSTP1 gene

Nrf2 Mostly possible

A targetable CoQ-FSP1 axis drives
ferroptosis- and radiation-resistance
in KEAP1 inactive lung cancers
(Koppula et al., 2022)

2022 H1299, H23, H460,
H2126 and A549

The CoQ-FSP1 axis as a key
downstream effector of the
KEAP1-NRF2 pathway to mediate
ferroptosis -and radiation-
resistance in KEAP1 deficient lung
cancers

Keap1-Nrf2/FSP1-
CoQ/GSTP1

Mostly possible

Activation of anti-oxidant Keap1/
Nrf2 pathway modulates efficacy of
dihydroartemisinin-based
monotherapy and combinatory
therapy with ionizing radiation
(Bader et al., 2021)

2021 HCT116 cells l and
NCI–H460 cells

In Keap1-wildtype cells,
radiotherapy and DHA more
efficiently eradicated clonogenic
cells than either therapy alone

Keap1-Nrf2/
GSTP1

Mostly possible

Enhanced GSTP1 expression in
transitional cell carcinoma of
urinary bladder is associated with
altered apoptotic pathways
(Pljesa-Ercegovac et al., 2011)

2011 Patients with transitional
cell carcinoma

The GSTP1 expression in
transitional cell carcinoma of
urinary bladder is associated with
altered apoptotic pathways

GSTP1 Slightly possible

Role of KEAP1/NRF2 and
TP53 Mutations in Lung Squamous
Cell Carcinoma Development and
Radiation Resistance (Jeong et al.,
2017)

2017 mice KEAP1/NRF2 mutation status
predicted risk of local recurrence
after RT in non-small lung cancer
patients

KEAP1/NRF2/
GSTP1

Mostly possible

STK11/LKB1 Mutations in NSCLC
Are Associated with KEAP1/NRF2-
Dependent Radiotherapy Resistance
Targetable by Glutaminase
Inhibition (Sitthideatphaiboon
et al., 2021)

2021 Stage III patients with
NSCLC

Targeting the KEAP1/
NRF2 pathway or GLS inhibition
are potential approaches to
radiosensitize LKB1-deficient
tumors

KEAP1/NRF2/
GSTP1

Mostly possible

Glutathione S-transferase-
P1 expression correlates with
increased antioxidant capacity in
transitional cell carcinoma of the
urinary bladder (Savic-Radojevic
et al., 2007)

2007 Patients with transitional
cell carcinoma

GSTP1 expression in tumor tissues
correlated positively not only with
GSH levels γ-GCS and GR activity,
but also with GPX and SOD
activity in TCC.

GPX/GSTP1 Mostly possible

Expression of glutathione
S-transferase P1-1 in leukemic cells
is regulated by inducible AP-1
binding (Duvoix et al., 2004)

2004 K562 cells High GSTP1 gene expression could
be exploited to leukaemia through
binding activity to AP-1 in
leukemia cells

GSTP1/AP-1 Possible

Glutathione transferases P1/
P2 regulate the timing of signaling
pathway activations and cell cycle
progression during mouse liver
regeneration (Pajaud et al., 2015)

2015 Gstp1/2 knockout mice in
C57BL6/J

The invalidation of Gstp1/
p2 affects multiple key events of the
hepatocyte cell cycle

GSTP1 Slightly possible

(Continued on following page)

Frontiers in Molecular Biosciences frontiersin.org06

Tan et al. 10.3389/fmolb.2022.1102158

28

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1102158


4 Perspective

Cells exposed to ionizing radiation may generate a large amount

of reactive oxygen species and free radicals, which can lead to

protein, lipid membrane and DNA damage, resulting in apoptosis,

necrosis, teratogenicity or carcinogenesis (Smith et al., 2017). As a

protein isoform in the glutathione S-transferase family, GSTP1 plays

an important role in maintaining cellular oxidative balance,

regulating cell proliferation and apoptosis. In tumor-related

studies, it has been found that the high expression of

GSTP1 promotes the chemoresistance of various tumors. In

addition, the expression level of GSTP1 in most tumor cells is

significantly higher than that in normal tissues, and high expression

of GSTP1 is associated with poor prognosis of tumors (Simic et al.,

2009; Fujikawa et al., 2018). Glutathione peroxidase 4 (GPX4), a

potent antioxidant, utilizes glutathione as a cofactor to scavenge ROS

and reduce oxidized lipid species to inhibit ferroptosis. It has been

reported that glutathione metabolism in brain metastases from

NSCLC is regulated by glutathione peroxidase and glutathione

S-transferase; among them, GPX4 and GSTM1 are overexpressed

in BM subsets, and cause massive consumption of GSH in brain

metastases of lung cancer (Liu et al., 2021). Further studies find that

GPX4 regulates the expression level of GSTM1 by enhancing protein

stability, and the overexpression of GPX4 and its regulatory target

protein GSTM1 acquires chemoresistance by inhibiting ferroptosis

(Liu et al., 2021). Inhibition of GPX4 expression and its activity

in vitro and in vivo enhances the anticancer effect of platinum drugs

in brain metastatic cells (Liu et al., 2021). In human lung tissue,

GSTP1 is the most abundant protein isoform in the GST protein

family. Therefore, we speculate that GSTP1, which is a

GSTM1 isoenzyme, may also be closely associated with the

regulation of ferroptosis. Related studies have been listed in Table 1.

Ferroptosis is an iron-dependent lipid peroxidation-

mediated cell death. Researchers find that autophagy

inhibitors can protect HepG2 cells from alcohol-induced

ferroptosis by activating the p62-Keap1-Nrf2 pathway (Zhao

et al., 2021). It has also been found that Keap1/Nrf2 mutation

status predicts the risk of local recurrence after radiotherapy in

NSCLC patients, and Keap1/Nrf2 mutant lung cancers may be

radiotherapy resistant to radaition due to enhanced expression of

ROS clearance and detoxification pathways (Jeong et al., 2017).

Keap1 is a negative regulator of Nrf2, and Nrf2 is a major effector

of the ARE system. Activation of the ARE system through

negative regulation of Keap1 protein induces the expression of

a range of antioxidant genes, including Nrf2 and GSTP 1 (Fang

et al., 2020; Umamaheswari et al., 2021). The function of

GSTP1 is to catalyze the binding of GSH to various

electrophilic hydrophobic substances to form water-soluble

compounds for excretion from the body (Ikeda et al., 2002;

Cui et al., 2020). Lei et al. further demonstrats that

Keap1 deficiency in lung cancer cells promotes radioresistance

in lung squamous cell carcinoma in part through

SLC7A11 inhibition of ferroptosis (Lei et al., 2020a).

Interestingly, it is found that GSTP1 expression is regulated

by the Keap1-Nrf2-ARE pathway and GSTP1 catalyzes the

S-glutathionylation of cysteine residues of Keap1 protein,

while S-glutathionylation of Keap1 leads to Nrf2 activation

and increases the expression of GSTP1 (Carvalho et al., 2016).

It has also been found that the promoter of the mouse

GSTP1 gene contains at least three Nrf2 binding sites,

demonstrating that Nrf2 directly activates the gene and that

GSTP1 gene expression directly affects the Nrf2-dependent

response to the hormone diselenide (Ikeda et al., 2002;

Bartolini et al., 2015).

Therefore, we speculate that lung cancer cells might form a

GSTP1-Keap1-Nrf2 positive feedback loop under ionizing

radiation or oxidative stress, and play an anti-oxidative

damage effect. At the same time, SLC7A11 is up-regulated by

the transcription of Nrf2, thereby increasing the resistance to

ionizing radiation. GSTP1 catalyzes the reaction of glutathione

with electrophiles, including intracellular reactive oxygen species,

hydroxyl radicals, and inhibits its oxidation of polyunsaturated

TABLE 1 (Continued) The potential role of GSTP1 in ferroptosis pathway for tumor treatment.

Study Year Sample Summary Potential
target

Possibly associated
with radiotherapy

Regulation of glutathione
S-transferase P1-1 gene expression
by NF-kappaB in tumor necrosis
factor alpha-treated K562 leukemia
cells (Morceau et al., 2004)

2004 K562 cell The regulation of the GSTP1-1
gene expression in the K562 cell
line by NF-kappaB and TNFα

GSTP1 Slightly possible

GSTP1 Loss results in accumulation
of oxidative DNA base damage and
promotes prostate cancer cell
survival following exposure to
protracted oxidative stress (Mian
et al., 2016)

2016 LNCaP cells Silencing of GSTP1 in prostate
cancer results in enhanced survival
and accumulation of potentially
promutagenic DNA adducts
following exposure of cells to
protracted oxidative injury

GSTP1 Mostly possible

AE, aloe-emodin; LPO, lipid peroxidation; FSP1, ferroptosis suppressor protein 1; CoQ, coenzyme Q(10); GSTM1, Glutathione S-transferase M1; Keap1, kelch-like ECH associated protein

1; Nrf2, nuclear factor erythroid 2-related factor 2; RT, radiation therapy; GSTP1, Glutathione S-transferase P1; GSH, glutathione; GPX4, glutathione peroxidase 4; LKB1, live kinase B1; γ-
GCS, γ-glutamyl cysteine synthase; SOD, superoxide dismutase; TCC, transitional cell carcinoma; TNFα, tumor necrosis factor alpha.
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fatty acids on the cell membrane to fight ferroptosis. In addition,

GSTP1 may also interact with GPX4 to play a synergistic role in

inhibiting the occurrence of ferroptosis, thereby enhancing the

radioresistance of tumors. The potential mechanism is shown as

following (Figure 1). Moreover, GSTP1 is involved in ferroptosis

regulatory mechanisms possibly similar to GPX4 as part of the

ferroptosis pathway. Targeting downregulation of

GSTP1 expression under tumor radiotherapy would increase

radiosensitivity of lung tumors and thus promoting radiation-

induced ferroptosis. On the one hand, it may act from promoting

lipid metabolism through the ferroptosis execution system, on

the other hand, it may weaken the ferroptosis defense system by

reduce the ability of cells to use GSH to counteract ROS. In

addition, radiation may make the interaction between

GSTP1 and GPX4 decreased, which further promotes the

occurrence of ferroptosis. However, the exact mechanism still

need to be confirmed by further experiments.

Although no experimental studies have shown that

GSTP1 plays a key role in the radiosensitization of

ferroptosis in lung cancer, previous studies by our group

showed that the levels of MDA, the lipid peroxide

breakdown product, were significantly increased in cells with

knockdown of GSTP1 after radiation treatment. In addition,

multiple studies have shown that higher serum iron

concentrations and ferritin levels are positively associated

with lung cancer morbidity and mortality. It also laid a

theoretical foundation for our subsequent exploration of the

mechanism by which GSTP1 may protect lung cancer cells and

inhibit ferroptosis after tumor radiation therapy.

5 Conclusion

In conclusion, GSTP1 may be a novel negative regulator of

ferroptosis other than GPX4, may play an important role in lung

cancer radiotherapy by inhibiting ferroptosis. The reasons are as

follows. Firstly, as a potent antioxidant, GPX4 utilizes glutathione

as a cofactor to scavenge ROS and reduces oxidized lipid species

to inhibit ferroptosis (Friedmann Angeli et al., 2014; Stockwell

et al., 2020). It has been reported that glutathione metabolism in

brain metastases from NSCLC is regulated by glutathione

peroxidase and glutathione S-transferase; among them,

GPX4 and GSTM1 are overexpressed in BM subsets, and

cause massive consumption of GSH in brain metastases of

lung cancer (Liu et al., 2021). Further studies find that

GPX4 regulates the expression level of GSTM1 by enhancing

protein stability, and the overexpression of GPX4 and its

regulatory target protein GSTM1 acquires chemoresistance by

inhibiting ferroptosis. Inhibition of GPX4 expression and its

activity in vitro and in vivo enhances the anticancer effect of

FIGURE 1
The potential role of GSTP1 and its mechanisms of ferroptosis in radiotherapy. Keap1-Nrf2-GSTP1 positive feedback loop interacts with
GPX4 and SLC7A11 which are the core proteins in ferroptosis pathway under radiation. Their interactions affect lipid peroxidation, thus inhibiting the
occurrence of ferroptosis (Liu et al., 2021; Wu et al., 2022). (IR: ionizing radiation; Keap1: kelch-like ECH associated protein 1; Nrf2: nuclear factor
erythroid 2-related factor 2; GSTP1: Glutathione S-transferase P1; GSH: glutathione; GPX4: glutathione peroxidase 4).
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platinum drugs in brain metastatic cells (Liu et al., 2021).

Secondly, as a member of GSTs, GSTP1 could participate in

the metabolism of lipids and DNA products derived from

oxidative stress. The core of ferroptosis is the excessive

accumulation of intracellular lipid peroxides, which is caused

by the imbalance of lipid metabolism from various causes (Luo

et al., 2022). Besides, Zhao et al. find that GSTP1 is a key protein

for ferroptosis. And the photosensitizer aloe-emodin (AE) could

induce cellular ferroptosis based on its specific inhibiting activity

to GSTP1 (Wu et al., 2022). The underlying mechanism of

GSTP1 in the induction of ferroptosis in lung cancer

radiotherapy has been proposed in a hypothetical pathway

map (Figure 1). In addition, although relevant studies have

shown that GSTP1 is closely related to the occurrence and

development of tumors, there is no specific experimental

study to prove the role and mechanism of GSTP1 in

ferroptosis radiotherapy. This provides us with a research

entry point to develop better personalized treatment strategies

for the clinic. So far, there are multiple evidences that

targeting GSTP1 can have a synergistic effect with

chemotherapeutic drugs, but there is no correlation

between GSTP1 and radiation-induced ferroptosis. If the

changes of GSTP1 protein expression or activity can be

controlled, thereby increasing the ferroptosis effect of

radiotherapy on lung tissue tumors, while reducing

radiation damage to normal lung tissue, it has extremely

important medical significance for the treatment and

prognosis of thoracic tumor patients. This is the core

purpose of this review.
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ELOVL5 and IGFBP6 genes
modulate sensitivity of breast
cancer cells to ferroptosis
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Introduction: Relapse of breast cancer is one of the key obstacles to successful
treatment. Previously we have shown that low expression of ELOVL5 and IGFBP6
genes in breast cancer tissue corresponded to poor prognosis. ELOVL5 participates
directly in the elongation of polyunsaturated fatty acids (PUFAs) that are considered
to play an important role in cancer cell metabolism. Thus, in this work we studied the
changes in lipid metabolism in breast cancer cells with reduced expression of either
ELOVL5 or IGFBP6 gene.

Methods: MDA-MB-231 cells with a stable knockdown of either ELOVL5 or IGFBP6
gene were used in this study. Transcriptomic and proteomic analysis as well as RT-
PCR were utilized to assess gene expression. Content of individual fatty acids in the
cells was measured with HPLC-MS. HPLC was used for analysis of the kinetics of
PUFAs uptake. Cell viability was measured with MTS assay. Flow cytometry was used
to measure activation of apoptosis. Fluorescent microscopy was utilized to assess
accumulation of ROS and formation of lipid droplets. Glutathione peroxidase activity
was measured with a colorimetric assay.

Results: We found that the knockdown of IGFBP6 gene led to significant changes in
the profile of fatty acids in the cells and in the expression of many genes associated
with lipid metabolism. As some PUFAs are known to inhibit proliferation and cause
death of cancer cells, we also tested the response of the cells to single PUFAs and to
combinations of docosahexaenoic acid (DHA, a n-3 PUFA) with standard
chemotherapeutic drugs. Our data suggest that external PUFAs cause cell death by
activation of ferroptosis, an iron-dependent mechanism of cell death with excessive
lipid peroxidation. Moreover, both knockdowns increased cells’ sensitivity to
ferroptosis, probably due to a significant decrease in the activity of the antioxidant
enzyme GPX4. Addition of DHA to commonly used chemotherapeutic drugs
enhanced their effect significantly, especially for the cells with low expression of
IGFBP6 gene.

Discussion: The results of this study suggest that addition of PUFAs to the treatment
regimen for the patients with low expression of IGFBP6 and ELOVL5 genes can be
potentially beneficial and is worth testing in a clinically relevant setting.
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1 Introduction

Breast cancer (BC) continues to remain the leading cause of
morbidity and mortality of women from malignant neoplasms in
the world (Sung et al., 2021). Recurrence of BC happens in around
40% of the patients (Gerber et al., 2010; Lafourcade et al., 2018). One of
the promising treatment strategies relies on identifying patients with
high risk of recurrence with the help of gene-expression signatures in
the early stages of the disease and intensifying treatment regimen for
them (Kwa et al., 2017). Previously, our group reported a new method
for predicting outcomes based on prognostic markers, in which the
expression levels of two genes: Insulin Like Growth Factor Binding
Protein 6 (IGFBP6) and Elongation Of Very Long chain fatty acids
protein 5 (ELOVL5) made it possible to predict breast cancer
recurrence in the first 5 years of follow-up with high sensitivity
(81.8%) and specificity (62.5%), while high expression of ELOVL5
and IGFBP6 corresponded to a favorable prognosis (Galatenko et al.,
2015).

ELOVL5 is a human elongase of long-chain polyunsaturated fatty
acids (LC-PUFAs) located in the endoplasmic reticulum membrane
(Leonard et al., 2000; Wang et al., 2008; Moon et al., 2009). It is known
that n-3 and n-6 polyunsaturated fatty acids can affect the
development of breast cancer, and in some cases they can cause
death of breast cancer cells (Liput et al., 2021). Moreover,
polyunsaturated fatty acids alter breast cancer cell adhesion and
metastasis in n-6 and n-3 PUFA-treated nude mice and affect
mRNA expression in breast cancer cells that encode metastasis-
associated metalloproteinases (Johanning and Lin, 1995).

On the other hand, IGFBP6 is a secreted protein that binds to
insulin-like growth factors (IGFs), preventing their action on cells (Bach
et al., 2013). Particular attention was paid to the study of the role of
IGFBP6 in tumor metastasis. For example, it was shown that the
expression level of IGFBP6 in colon cancer cells with a high
metastatic potential is lower than in the cells with a low metastatic
potential, and the expression of IGFBP6 in secondary squamous cell
carcinomas of the head and neck is lower than in primary ones, which
indirectly indicates that that IGFBP6 reduces the metastatic potential of
tumor cells (Bach, 2015). Acting as a transcription factor, IGFBP6 is able
to enter the nucleus through the NLS sequence and importin-α (Bach,
2016). In the nucleus, IGFBP6 binds to the EGR-1 gene promoter and
stimulates its expression. Expression of EGR1 leads to inhibition of
migration and invasion, as well as inhibition of proliferation and
triggering of apoptosis.

IGFBP6 can also reduce cell viability through other IGF-
independent mechanisms. In particular, it is known that
IGFBP6 locks the Ku80 protein in the cytosol, preventing it from
entering the nucleus, where it is involved in the repair of DNA double-
strand breaks (Bach, 2016). In turn, the accumulation of DNA defects
promotes apoptosis. Finally, a recent study identified a relationship
between the GPR81 lactate receptor and the IGFBP6 protein, which is
able to modulate lactate metabolism and oxidative stress in human
MDA-MB-231 cells, thus influencing breast cancer growth
(Longhitano et al., 2022).

Recently we have found that knockdown of either ELOVL5 or
IGFBP6 in breast cancer cell line MDA-MB-231 led to a strong
increase in the expression of the matrix metalloproteinase (MMP)
MMP1, as well as to a change in the expression of a group of genes
involved in the formation of intercellular contacts (Nikulin et al.,
2021). Analysis of spheroid formation confirmed that intercellular

adhesion decreased as a result of both ELOVL5 and IGFBP6
knockdowns, thus suggesting that malignant breast tumors with
reduced expression of ELOVL5 or IGFBP6 gene may metastasize
more actively due to more efficient tumor cell invasion (Nikulin
et al., 2021).

In addition to the changes in cell adhesion, we also noted changes
in the fatty acid metabolism pathway for both knockdown lines
(Nikulin et al., 2021). ELOVL5 is directly involved in LC-PUFAs’
metabolism and changes in fatty acids composition were expected for
cells with ELOVL5 knockdown. However, to our surprise, the decrease
in IGFBP6 expression also altered PUFAs’ profile (Nikulin et al., 2021).

It is well known that PUFAs can affect the behavior of cancer cells.
In particular, n-3 and n-6 LC-PUFAs change gene expression profile
in tumor cells in different ways (Hammamieh et al., 2007). A number
of studies have also shown that introduction of n-3 LC-PUFAs into the
culture medium inhibits proliferation, migration, and invasion of
tumor cells (Chamras et al., 2002; Ding et al., 2013; Huang et al.,
2017). Data on the effects of n-6 LC-PUFAs on cancer cells are
contradictory. Different studies reported that inhibitory effects of
n-6 LC-PUFAs on tumor cells are less pronounced than those of
n-3 LC-PUFAs, absent altogether, and even found stimulating effects
of n-6 LC-PUFAs on tumor cells (Connolly and Rose, 1993; Schley
et al., 2005; Gonzalez-Reyes et al., 2017).

One of the effects of LC-PUFAs on cancer cells that can potentially
be utilized for therapy is induction of ferroptotic cell death (Chen et al.,
2021a; Dierge et al., 2021). Ferroptosis is an iron-dependent, non-
apoptotic mode of cell death characterized by the accumulation of
lipid-reactive oxygen species (ROS). Ferroptosis does not have the
morphological features of typical necrosis, such as swelling of the
cytoplasm and organelles, and rupture of the cell membrane, nor does
it have the characteristics of traditional cellular apoptosis, such as cell
shrinkage, chromatin condensation, formation of apoptotic bodies,
and disintegration of the cytoskeleton. And unlike in autophagy, the
formation of classical closed bilayer membrane structures (autophagic
vacuoles) does not occur during ferroptosis (Li et al., 2020).
Morphologically, ferroptosis is mainly manifested in the apparent
contraction of mitochondria with increased membrane density and
reduction or disappearance of mitochondrial cristae, which differs
from other modes of cell death (Dixon et al., 2012).

PUFAs peroxidation in cell membrane leads to disruption of cell
integrity. Long-term excessive accumulation of fatty acids from the
environment medium triggers ferroptosis (Chen et al., 2021a; Dierge
et al., 2021). Ferroptosis can also be induced by inhibition of
antioxidants (GPx4) that normally prevent lipid peroxidation (Seibt
et al., 2019). During lipid peroxidation free radicals predominantly
attack PUFAs. This fact is explained by the greatest susceptibility of
multiple double bonds to peroxidation. (Dierge et al., 2021).

In this study, we focused on the role of ELOVL5 and IGFBP6 genes
in the metabolism of LC-PUFAs in breast cancer cells. We also
assessed the influence of ELOVL5 and IGFBP6 gene knockdowns
on ferroptosis induction and on cell response to excess of various LC-
PUFAs. For this study we chose 2 shorter PUFAs (n-6 linoleic acid and
n-3 α-linolenic acid) and 2 longer ones (n-6 arachidonic acid and n-3
docosahexaenoic acid) as their impact on breast cancer has been
extensively studied previously in different setups (Banni, 1999; Bocca
et al., 2008; Yee et al., 2010; Zhou et al., 2016; Geng et al., 2017; Huang
et al., 2022). And finally, we tested how the knockdowns of ELOVL5
and IGFBP6 affect the cell response to standard of care (SOC)
chemotherapeutics when they are combined with ferroptosis inducers.
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2 Materials and methods

2.1 Cell culture

Stable knockdowns of ELOVL5 and IGFBP6 genes were performed
using RNA interference (Schwankhaus et al., 2014; Nikulin et al., 2018;
2021; Maltseva et al., 2020). DNA oligonucleotides selected for the target
sequences in the ELOVL5 and IGFBP6 genes were ligated into the pLVX
shRNA1 lentiviral vector (Clontech Laboratories) according to the
manufacturer’s protocol. To obtain the control MDA-MB-231 cells, we
used the same lentiviral vector pLVX shRNA1 containing shRNA to the
Photinus pyralis firefly luciferase gene. Viral particles were obtained in the
form of cell-free supernatants using transient transfection of HEK-293T
cell line according to the previously described method (Weber et al., 2010;
2012). Supernatants were collected 24 h after transfection, filtered using
.45 µm syringe filters and stored at −80°C. Then, 5·104MDA-MB-231 cells
were cultured in the wells of a 24-well culture plate in 0.5 mL of cell culture
medium. After 24 h, 10 μL of the supernatant containing viral particles was
added to the wells, and the plate was placed in a cell culture incubator for
24 h. Then the cell culture medium was changed and the cells were
incubated for another 24 h. After that, the selection with 1 μg/mL
puromycin (Gibco) was carried out for 2 weeks.

Cells were cultured in a complete culture medium consisting of
DMEM 4.5 g/L glucose (Gibco) supplemented with 10% vol. fetal
bovine serum (Gibco) and 1% vol. antibiotic-antimycotic solution
(Gibco). The cells were incubated in a cell culture incubator at 37°C,
5% CO2 (Sanyo). Subcultivation was performed every 2–3 days using
trypsin-EDTA solution (PanEco). Cells were counted after trypan blue
(Gibco) staining using Countess automated cell counter (Invitrogen)
according to the manufacturer’s protocol.

2.2 Analysis of transcriptomic and proteomic
data

We analyzed further the transcriptomic data that we have previously
published (Nikulin et al., 2021) and deposited it as GSE165854 dataset.
GSE165854 contains Human Transcriptome Array 2.0 microarray
(Affymetrix) data for MDA-MB-231 cells with shRNA mediated
knockdown of either ELOVL5 or IGFBP6 genes and for control MDA-
MB-231(LUC) cells. ANOVA with Benjamin-Hochberg correction for
multiple comparisons were used to access statistical significance of the
differences observed between these cell lines.

The following datasets (Supplementary Table S1) from GEO (Gene
Expression Omnibus) were used for correlation analysis: GSE102484
(Cheng et al., 2017), GSE22220 (Camps et al., 2008), GSE3494 (Miller
et al., 2005), GSE58644 (Miller et al., 2005), GSE6532 (Loi et al., 2008). We
also used data obtained by the METABRIC consortium (Cerami et al.,
2012; Curtis et al., 2012) and The Cancer Genome Atlas (TCGA) program
(Weinstein et al., 2013).

TAC 4.0 software (Thermo Fisher Scientific) was applied to preprocess
raw data from Affymetrix microarrays. To carry out correlation analysis
and statistical data processing, we employed the R 4.1 programming
language with the RStudio 1.4 integrated development environment. The
values of the Pearson correlation coefficient R and the p-values (the
significance of the difference of R from zero) were calculated using the
“cor.test” function. Correction for multiple comparisons was performed
with the Benjamini-Hochberg method. The correlation coefficients with
p-values less than .05 were considered significant.

Proteomic data from PXD023892 dataset was analyzed as well.
NanoHPLC-MS/MS system coupled with a Q Exactive Orbitrap mass
spectrometer (ThermoFisher Scientific)was utilized tomeasure expression
of proteins in the cells. Student’s t-test with Benjamin-Hochberg correction
for multiple comparisons were used to access statistical significance of the
observed changes. Detailed procedure was described earlier (Nikulin et al.,
2021).

2.3 RT-PCR

Real-time PCR was used to confirm the changes in the expression
of individual genes. RNA isolation was performed using miRNeasy
Micro Kit (Qiagen) according to the manufacturer’s protocol. RNA
concentration was measured with NanoDrop ND-1000
spectrophotometer (Thermo Fisher Scientific). Reverse transcription
of RNA was performed using the MMLV RT kit (Evrogen) according
to the manufacturer’s protocol. The obtained cDNA samples were
stored at −20°C. qPCRmix-HS SYBR (Evrogen) was used for RT-PCR
performed with DTprime detecting amplifier (DNA Technology).

The oligonucleotide primers used for RT-PCR were designed based
on the mRNA sequences of the studied genes from the UCSC Genome
Browser database (Kent et al., 2002). Primer selection was performed
using Primer-BLAST software (Ye et al., 2012). The possibility of the
formation of secondary structures (hairpins), homo- and heterodimers
by the primers was assessed using OligoAnalyzer 3.1 software
(Owczarzy et al., 2008). EEF1A1 and ACTB were selected as
reference genes (Maltseva et al., 2013). The sequences of the primers
are presented in Supplementary Table S2. The evaluation of the
differences in the expression of the selected genes was carried out
using the software REST 2009 v.2.0.13 (Pfaffl et al., 2002; Vandesompele
et al., 2002). For each group 3 independently obtained samples of RNA
were used to assess expression levels of the selected genes.

2.4 Gene Ontology enrichment analysis

Analysis of the enriched biological processes among the genes with
increased and decreased expression was carried out using Gene
Ontology (GO) database (Ashburner et al., 2000; Gene and
Consortium, 2019) and “topGO” package for R programming
language. The results were obtained using “weight01″ algorithm,
p-values were calculated using Fisher’s exact test.

2.5 Analysis of cellular fatty acids composition

To analyze the composition of intracellular fatty acids, the cells
were cultured in culture flasks with surface area of 25 cm2 in 5 mL of
complete nutrient medium for 48 h. Samples containing pellets of
1.5 × 106 million cells were prepared for HPLC-MS analysis following
a protocol based on a previously published method (Valianpour et al.,
2003). The experiment was carried out in two biological replicates.

2.6 Analysis of the kinetics of PUFAs uptake

To study the kinetics of absorption of LS-PUFAs by the cells from
the nutrient medium, 2 × 105 cells were seeded into the wells of 24-well
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culture plates in 500 µL of complete cell culture medium. The plates
were then incubated in a cell culture incubator at 37°C, 5% CO2

(Sanyo) for 24 h. After that, the nutrient medium was replaced with a
medium containing 50 μM of one of the studied LC-PUFAs (linoleic
acid: LA, α-linolenic acid: ALA, arachidonic acid: AA, and
docosahexaenoic acid: DHA) and the plates were incubated in the
cell culture incubator until the end of the experiment. Sampling of the
nutrient medium for analysis of the concentration of LC-PUFAs was
carried out after 2, 4, 9, 22 and 27 h The experiment was carried out in
two biological replicates.

To analyze the content of free fatty acids in the selected samples,
each of them was combined 1:1 with methanol, thoroughly mixed by
vortexing, and incubated at room temperature for 5 min. Next, the
samples were centrifuged at 13,000 g for 5 min and the supernatant
was transferred into chromatographic vials for analysis.

The composition of fatty acids in the samples was analyzed by
HPLC using an Infinity 1200 chromatograph (Agilent Technologies)
with a UV detector. Separation of fatty acids was carried out on a
ZORBAX Eclipse XDB-C18 reverse-phase chromatographic column
(length 150 mm, inner diameter 4.6 mm, sorbent particle diameter
5 µm) (Agilent Technologies), in the gradient elution mode
(Supplementary Table S3). Phase A was deionized water with 0.1%
vol. formic acid and phase B was acetonitrile with 0.1% vol. formic
acid. The flow rate of the mobile phase was constant and equal to
1.5 mL/min. Fatty acid chromatograms were recorded with the UV
detector at 194 nm. Concentrations of the analyzed PUFAs in the
samples were determined based on the external calibration curves
(Supplememtary Figure S1).

2.7 GPx4 activity assay

GPx4 activity analysis was performed with the Colorimetric
Glutathione Peroxidase Assay Kit (Abcam) according to the
standard protocol. Cell suspensions of 2 × 106 were used for each
test. GPx4 activity was assessed by measurement of the decrease in
NADPH absorbance at 340 nm with X-mark plate reader (BioRad).
One unit is defined as the amount of enzyme that will cause the
oxidation of 1.0 µmol of NADPH to NADP+ under the assay kit
condition per minute at 25°C.

2.8 ROS accumulation assay

The cells were seeded into 96-well plates (20,000 cells/well) and
incubated overnight. After 24 h, PUFAs in different concentrations
were added into the wells and the plates were incubated for 4 h. Next,
the culture mediumwas removed from the wells, the cells were washed
with DPBS, and solution of the dye-indicator of reactive oxygen
species H2DCFDA (cell-permeant 2′,7′-dichlorodihydrofluorescein
diacetate, final concentration 10 µM) was added, and the plates
were incubated for 30 min. After 30 min, the dye was removed, the
wells were washed with DPBS and fresh DPBS was added into each
well. Then integral fluorescence signal (excitation at 485 nm, emission
at 535 nm) was measured on the SpectraMax i3 Plate Reader
(Molecular Devices). Photomicrographs of cells were obtained
using an inverted fluorescent microscope Axio Observer Z1 (Carl
Zeiss).

2.9 Lipid droplets formation assay

MDA-MB-231 cells were seeded in a 96-well plate (15·103 cells per
well), grown overnight and then cultured with 50 μM of various LC-
PUFAs for 24 h.

For lipid droplets staining by Oil Red O, cells were washed twice
with PBS, fixed with 10% formalin for 45 min, and then rinsed twice in
water for 1 min, followed by 5 min in 60% isopropanol. The cells were
stained with Oil Red O (1.8 mg/mL in 60% isopropanol) for 15 min
and rinsed 5 times with ddH2O to remove excess stain. Oil Red O
stained cells were directly visualized and imaged using an inverted
fluorescent microscope Axio Observer Z1 (Carl Zeiss). Quantification
of lipid accumulation was achieved by Oil Red O extraction with 100%
isopropanol and gentle agitation for 5 min at room temperature. Then
the extracts were transferred to a new 96-well plate and absorbance
was measured at 492 nm using X-mark plate reader (BioRad).

For lipid droplet staining with BODIPY, cells were washed twice
with DPBS, fixed with 10% formalin for 45 min and then washed twice
with DPBS for 1 min. Cells were incubated with 2 μM BOBIPY
(Lumiprobe) in the dark at 37°C for 60 min and then washed
3 times with DPBS to remove excess dye. Cells stained with
BOBIPY were visualized directly with an inverted fluorescent
microscope Axio Observer Z1 (Carl Zeiss).

2.10 Cell viability assay

The viability of tumor cells in all cases was determined using the
CellTiter 96® AQueous One Solution (Promega) according to the
manufacturer’s recommendations. Optical density was measured at
490 nm with X-mark plate reader (BioRad). All analyzed LC-PUFAs
were dissolved in ethanol and all other small molecules were dissolved
in DMSO.

For the experiments with 2D cultures, 1 × 104 MDA-MB-231 cells
per well were seeded into 96-well plates and incubated (37°C, 5% CO2)
for 24 h with a tested compound or a combination of compounds.
Then the viability was measured. Working concentrations of Erastin
and Ferrostatin-1 were choosen based on previously published data
(2–80 μM for Erastin and 0.1–2 μM for Ferrostatin-1) (Dixon et al.,
2014; Yu et al., 2019; Anthonymuthu et al., 2021; Li et al., 2021; Chen
et al., 2022; Wang et al., 2022).

To generate spheroids, MDA-MB-231 cells were cultured in
Matrigel Growth Factor Reduced (GFR) Basement Membrane
Matrix (Corning) in 24-well plates for 48 h. Then the spheroids
were diluted in Matrigel Growth Factor Reduced (GFR) Basement
Membrane Matrix (Corning) and seeded into 96-well plate. After
solidification of the gel, complete cell culture medium was added into
each well.

After 24 h, the cell culture medium was replaced with the control
medium or the medium containing single standard of care (SOC)
drugs. Clinically relevant concentrations were used in the assay:
371.7 μM for 5-FU, 5.47 μM for Docetaxel, 6.73 μM for
Doxorubicin, 89.3 μM for Gemcitabine, 1.75 μM for Methotrexate,
and 811 nM for Vinorelbine (Liston and Davis, 2017). Then the cells
were incubated for 3 h in cell culture incubator (37°C, 5% CO2), and
the medium was replaced with fresh complete cell culture medium or
the medium containing Erastin (1 μM) or DHA (100 μM). Then plates
were incubated in cell culture incubator (37°C, 5% CO2) for 72 h, and
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relative number of viable cells was measured. Growth rate of cancer
cells was calculated as described previously (Hafner et al., 2016).

ANOVAwith Tukey post hoc test has been used to assess statistical
significance of the changes in viability or growth rate. The differences
were considered statistically significant if p-values were less than 0.05.

2.11 Apoptosis assay

To study the activation of apoptosis Dead Cell Apoptosis Kit with
Annexin V Alexa Fluor ™ 488 & Propidium Iodide (PI) (Thermo
Fisher Scientific) was used according to the manufacturer’s
instructions. Cells were treated with different PUFAs then detached
and analyzed as described earlier (Nikulin et al., 2021). Analysis of raw
data was carried out using FlowJo 10.6.1 software. Chi-squared test
with Bonferroni correction for multiple comparisons were used to
access statistical significance of the changes in different populations.

3 Results

3.1 Knockdown of IGFBP6 gene leads to
multiple changes in lipid metabolism

As one gene from our prognostic pair, ELOVL5, is directly
involved in the elongation of fatty acids, we reanalyzed our

previously published transcriptomic (GSE165854) and proteomic
(PXD023892) data for a more detailed view of the changes in the
molecular pathways related to lipidmetabolism Surprisingly, we found
a number of biological processes associated with lipid metabolism that
were significantly changed not only after knockdown of ELOVL5, but
of IGFBP6 as well (Table 1; Table 2). In addition, a lot of the genes
involved in these processes changed their expression by at least
1.5 times (FDR p < 0.05) after the knockdown of IGFBP6 gene
(Supplementary Figures S2–S16).

Fatty acid biosynthesis was one of the altered biological processes.
Elongation is the key step of this pathway (Figure 1A). In the first
stage, the condensation reaction of acyl-CoA with malonyl-CoA
catalyzed by ELOVL1-7 enzymes occurs, followed by three
consecutive reactions catalyzed by enzymes 3-ketoacyl-CoA
reductase (HSD17B12 gene), 3-hydroxyacyl-CoA dehydratase
(HACD1-4 genes), and trans-2,3-enoyl-CoA reductase (TECR gene)
(Moon and Horton, 2003; Leonard et al., 2004; Ikeda et al., 2008).
Malonyl-CoA, necessary for the elongation of long fatty acids, is
synthesized by enzyme acetyl-CoA carboxylase (ACACA and
ACACB genes).

According to the transcriptomic analysis (Figure 1B),
expression of several genes from the fatty acids elongation
pathway decreased as a result of the knockdown of IGFBP6
gene in MDA-MB-231 cells; namely: ACACB (2.1 times, FDR
p = 6.3·10–9), HACD2 (2.1 times, FDR p = 1.6·10–8), and TECR
(2.0 times, FDR p = 5.8·10–6). At the same time, the expression of

TABLE 1 Significantly changed (p < 0.05) Gene Ontology biological processes after knockdown of IGFBP6 gene according to the transcriptomic analysis.

Up-regulated genes Down-regulated genes

GO ID Description GO ID Description

GO:0046949 fatty-acyl-CoA biosynthetic process GO:0046320 regulation of fatty acid oxidation

GO:0008654 phospholipid biosynthetic process GO:0019216 regulation of lipid metabolic process

GO:0046479 glycosphingolipid catabolic process GO:0046474 glycerophospholipid biosynthetic process

GO:0010888 negative regulation of lipid storage

GO:0045332 phospholipid translocation

GO:0046839 phospholipid dephosphorylation

TABLE 2 Significantly changed (p < 0.05) Gene Ontology biological processes after knockdown of IGFBP6 gene according to the proteomic analysis.

Up-regulated genes Down-regulated genes

GO ID Description GO ID Description

GO:0008654 phospholipid biosynthetic process GO:0006633 fatty acid biosynthetic process

GO:0019217 regulation of fatty acid metabolic process

GO:0071398 cellular response to fatty acid

GO:0032365 intracellular lipid transport

GO:0045017 glycerolipid biosynthetic process

GO:0046890 regulation of lipid biosynthetic process

GO:0019915 lipid storage
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the HACD1 gene slightly increased (1.6 times, FDR p = 2.8·10–3). A
decrease in the content of the TECR protein in MDA-MB-231 cells
with the knockdown of IGFBP6 gene was also confirmed by
proteomic analysis (1.9 times, FDR p = 2.0·10–2).

Interestingly, according to the transcriptomic analysis the
expression of one of the fatty acids elongases, ELOVL7,
substantially dropped as a result of the knockdown of IGFBP6 gene
(4.2 times, FDR p = 2,4·10–10), and it was confirmed by RT-PCR
(10.4 times, p = 2,6·10–2). Moreover, similar but less prominent effect
was observed after knockdown of ELOVL5 gene. In this case
expression of ELOVL7 decreased 1.8 times (FDR p = 6,0·10–4).
ELOVL7 catalyzes elongation of very long chain saturated as well
as unsaturated fatty acids, including n-3 and n-6 PUFAs (Naganuma
et al., 2011).

Expression of several enzymes from the pathway of elongation of
n-3 and n-6 polyunsaturated fatty acids, which include ELOVL5,
changed after the knockdown of IGFBP6 gene (Leonard et al.,
2000; Wang et al., 2008; Moon et al., 2009). A slight but
statistically significant increase in the expression of ELOVL5,
FADS1, and FADS2 genes after the knockdown of IGFBP6 has

been noted (ELOVL5 1.4 times, FDR p = 2.0·10–2; FADS1
1.3 times, FDR p = 2.0·10–2 and FADS2 1.5 times, FDR p =
3.0·10–4). The increase in FADS1 and FADS2 mRNAs was
confirmed by RT-PCR (FADS1 2.7 times, p = 3.5·10–2 and FADS2
2.0 times, p = 3.3·10–2), and the increase in FADS2 protein level in
MDA-MB-231 with knockdown of IGFBP6 gene was also confirmed
by proteomic analysis (3.4 times, FDR p = 4.2·10–3).

All described changes suggest that IGFBP6 can be involved in the
regulation of lipid metabolism in breast cancer cells. To our
knowledge, there are no previously published data on the role of
IGFBP6 in the lipid metabolism; therefore, we performed additional
experiments to test this relation.

We found that knockdowns of both ELOVL5 and IGFBP6 genes
led to a significant change in the content of individual long and very
long fatty acids in MDA-MB-231 cells (Figure 1C; Supplementary
Table S4). In particular, when the ELOVL5 gene is knocked down, the
content of fatty acids C22:4n-6, C20:2 (peak “a", n-6 or n-9) decreased.
Also, when either of the genes was knocked down, there was a
significant decrease in the content of very long saturated fatty acid
C24:0 in the cells. This result is in good agreement with the results of

FIGURE 1
(A) Schematic drawing of fatty acid elongation. R represents a fatty acid with a varying length. (B) Heatmap of gene expression for selected genes from
fatty acids elongation pathway. (C) Volcano plots showing fold changes and p-values of fatty acids content (kd ELOVL5 vs. Control and kd IGFBP6 vs. Control).
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transcriptomic analysis, which demonstrated a decrease in the
expression of the ELOVL7 gene in both stable cell lines.
Interestingly, after the knockdown of the IGFBP6 gene, a

significant decrease in the content of n-3 eicosapentaenoic (EPA,
C20:5n-3) and docosahexaenoic (DHA, C22:6n-3) acids in cells was
also noted.

FIGURE 2
(A) Kinetics of changes in the concentration of various PUFAs (LA, AA, ALA and DHA) in cell culture medium in the presence of control MDA-MB-231 cells
and the cells with knockdown of ELOVL5 and IGPBP6 genes. Error bars represent standard deviation (SD, n = 2). (B) Calculated uptake rates (per one cell) of
various PUFAs (LA, AA, ALA and DHA) for control MDA-MB-231 cells and for the cells with knockdown of ELOVL5 and IGPBP6 genes. Error bars represent 95%
confidence intervals. *—statistically significant difference versus control cells.
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In this work we also measured uptake rates of four different PUFAs
(LA, AA, ALA and DHA) by the control MDA-MB-231 cells and by the
cells with knockdowns of ELOVL5 and IGFBP6 genes. Inmost cases, the
kinetics of changes of PUFAs’ concentrations in cell culture medium
could be accurately approximated by the linear model with constant
uptake rate over the whole time range (Figure 2A; Supplementary Table
S5). At the same time, an exponential model was a better alternative in
several cases. Indicating a more efficient uptake, the cases following
exponential kinetics evidently benefit from transport molecules and/or
specific enzymes utilizing the fatty acid not becoming rate-limiting as
the fatty acid concentration decreases. In particular, the kinetics of AA’s
uptake quantitatively and qualitatively changed as a result of the
knockdown of ELOVL5 and IGFBP6 genes. In both cases the cells
with knockdowns demonstrated more efficient consumption.

To compare uptake rates of different PUFAs by different cells in
cases of both linear and exponential kinetics, we approximated the
initial parts of the exponential curves by straight lines and so obtained
maximum initial uptake rates for those cases. We detected significant
differences in the PUFAs’ uptake rates after the knockdowns of ELOVL5
and IGFBP6 genes (Figure 2B). For example, we found that uptake rate
of AA increased 3.3 times as a result of the decrease in expression of

ELOVL5 gene. Similar, but less prominent change (2.2 times) was
observed for IGFBP6 gene. In addition, the consumption of ALA
was 1.8 and 2.2 times faster after the knockdown of ELOVL5 and
IGFBP6 genes respectively. And finally, uptake rate of DHA was
significantly higher (2.2 times) for the cells with the knockdown of
IGFBP6 gene in comparison to the control cells. All other changes were
statistically insignificant.

Interestingly, the expression of genes involved in the transport of
fatty acids into the cell (Liu et al., 2015; Zhang et al., 2018) did not
change significantly (FDR p > .05) after the knockdown of ELOVL5 or
IGFBP6 gene (CD36, SLC27A1-6, FABP1-9 and FABP12 genes were
analyzed). The observed changes in uptake rates are thus probably due
to the changes in metabolism of LC-PUFAs.

3.2 Knockdowns of both ELOVL5 and IGFBP6
genes change the response of breast cancer
cells to external fatty acids

As both ELOVL5 and IGFBP6 genes affect lipid metabolism, we
examined the changes in the response of MDA-MB-231 cells to

FIGURE 3
Effect of various LC-PUFA on the viability of control MDA-MB-231 cells and the cells with knockdown of ELOVL5 and IGFBP6 genes. Error bars represent
standard error of mean (SEM, n = 3). *—p < 0.05 kd IGPBP6 versus control cells. #—p < 0.05 kd ELOVL5 versus control cells.

Frontiers in Molecular Biosciences frontiersin.org08

Nikulin et al. 10.3389/fmolb.2023.1075704

41

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1075704


external LC-PUFAs in the culture medium. Overall, we observed that
all LC-PUFAs studied can decrease viability of breast cancer cells
in vitro (Figure 3). The viability of the cells with the knockdown of
IGFBP6 gene was significantly lower in comparison to the control
cells for ALA in the range of 25–300 μM (p < 0.05), for DHA in
the range of 50–100 μM (p < .05), and for AA in the range of
25–400 μM (p < .05). For the cells with reduced expression of
ELOVL5 gene, similar but less prominent effects were seen. The
viability of these cells was lower than that of the control cells only
at 200 μM for ALA (p < .05), at 400 μM for AA (p < 0.05), and in the

range of 25–100 μM (p < .05) for DHA. The effect of LA was not
significantly changed by either knockdown (p > .05). While n-3 ALA
and n-6 AA turned out to be the least cytotoxic towards both control
and knockdown ELOVL5 cells, n-6 AA and n-3 DHA were highly
cytotoxic to the knockdown IGFBP6 cells, in line with the significantly
greater sensitivity of the latter to all LC-PUFAs, and in good
agreement with previous research (Schley et al., 2005). In all, our
data demonstrate that reduction in the expression of ELOVL5 or
IGFBP6 genes can lead to an increase in the sensitivity of breast cancer
cells to various PUFAs.

FIGURE 4
Effect of various LC-PUFAs on the activation of apoptosis in MDA-MB-231 cells. Two-dimensional plots of the integral fluorescence intensity of the
annexin V conjugate with Alexa Fluor 488 dye (horizontal axis), and the integral fluorescence intensity of propidium iodide (vertical axis) in the cells with the
knockdown of ELOVL5 or IGFBP6 genes, as well as in controls cells.
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Interestingly, we also found that some LC-PUFAs have a
stimulating effect on the growth of MDA-MB-231 cells. For
example, an increase in the viability of the control cells was
observed in the range 25–200 μM for ALA, 25–100 μM for DHA
and at 25 μM for LA. At the same time, the stimulating effect of these
fatty acids on MDA-MB-231 cells with either ELOVL5 or IGFBP6
knockdown was less pronounced or completely absent.

3.3 Cytotoxic effect of PUFAs cannot be
explained by apoptosis

As all tested LC-PUFAs could decrease viability of the MDA-MB-
231 breast cancer cells, we studied the effect of these LC-PUFAs on the
activation of apoptosis in the cells. The analysis was carried out at
3 and 20 h after the addition of one of the LC-PUFAs (Figure 4;
Supplementary Table S6). For the control MDA-MB-231 cells, 3 h
after the addition of LA and ALA, a significant increase in the
proportion of dead (AV + PI+) cells (from about 5% to 10%) was
observed, accompanied by a decrease in the proportion of viable cells.
When these fatty acids were added, the proportion of cells at the early
stage of apoptosis also slightly increased from about 1.5% to 2.9%–
4.1%. At 20 h after the addition of any LC-PUFA, there was a
significant increase in the proportion of the control cells in the
AV-PI+ region. Moreover, a pronounced peak with increased cell
density was visualized in the two-dimensional density maps.

Objects in this area correspond to nuclear fragments without a
cell membrane, which can result from necrosis (Sawai and Domae,
2011). Interestingly, during necrosis, cells can also first move into
the AV + PI- region, mimicking the behavior of cells at an early
stage of apoptosis, and only then move into the area of dead cells
(AV + PI-) and into the area of nuclear fragments without a cell
membrane. (AV-PI+) (Sawai and Domae, 2011). However, a
significant increase in the proportion of cells in the AV-PI+
region is not characteristic of apoptosis, which makes it
possible to distinguish between these two mechanisms of cell
death (Wlodkowic et al., 2009; Sawai and Domae, 2011;
Brauchle et al., 2015). An increase in the proportion of cells in
the AV-PI+ is also characteristic of ferroptosis (Chen et al., 2017;
Sun et al., 2018). At the same time the proportions of cells in the
regions AV + PI+ and AV + PI- can also rise during ferroptosis
(Chen et al., 2017; Sun et al., 2018).

The proportion of the control cells in the region corresponding to
early apoptosis (AV + PI-) slightly increased 20 h after the addition of
LA, ALA, and AA (from about 2% to 4%). The increase was more
significant for the DHA (from about 2% to 9%). The proportion of
dead cells also increased from 6% to 10%–13% for LA and AA, while
the proportion of dead cells did not change for ALA. In case of DHA,
most of the cells were in the AV + PI+ area of dead cells (about 45%),
and not in the area corresponding to viable cells, as it was observed for
other fatty acids.

For the knockdown ELOVL5 cells, a significant increase in the
proportion of dead cells and a decrease in the proportion of viable cells
was observed 3 h after the addition of ALA, AA, and DHA. This effect
was less pronounced for LA. After 20 h, the pattern for the knockdown
ELOVL5 cells was largely similar to the results observed in the control
cells. One can notice a slightly increased sensitivity of the cells with the
knockdown of ELOVL5 gene to ALA and AA, which is in good
agreement with the data of the MTS test.

Three hours after the addition of LA, the knockdown IGFBP6 cells
started to concentrate in the AV-PI+ region. Also, the number of dead
knockdown IGFBP6 cells became more pronounced when DHA was
added, compared to the control cells. Other changes after 3 h were
similar to the control cells. After 20 h, for shorter LA and ALA, clusters
of the knockdown IGFBP6 cells were observed in the AV-PI+ area.
The proportions were similar to the control cells. For longer AA and
DHA, much fewer events were observed and a significant increase of
the proportion of the cells in the region of dead cells (AV + PI+) was
also noticed. On the other hand, the increase of cell counts in the AV-
PI+ area was less prominent.

Overall, the patterns of death observed here for all tested LC-
PUFAs and the cell lines correspond more closely to necrosis or
ferroptosis rather than apoptosis.

3.4 Knockdown of either ELOVL5 or IGFBP6
gene increases sensitivity to ferroptosis

To assess how the sensitivity of MDA-MB-231 cells to ferroptosis
changes upon the knockdown of ELOVL5 or IGFBP6 genes, we treated
the cells with ferroptosis inducer Erastin. A ferroptosis inhibitor
Ferrostatin-1 was used to prevent the action of Erastin. Our data
showed (Figure 5A) that the knockdown of both genes leads to a
significant increase in sensitivity to ferroptosis of MDA-MB-231 cells
(p < 0.05). Moreover, the effect of Erastin was significantly reduced
when Ferrostatin-1 was added to both knockdown cells (p < 0.05),
while the increase of viability was insignificant for the control cells (p >
0.05). Thus, the reduction in the expression of ELOVL5 or IGFBP6
genes leads to increased sensitivity to the induction of ferroptosis in
breast cancer cells and at the same time makes them more responsive
to its inhibition.

Next, we treated MDA-MB-231 cells with combinations of various
LC-PUFAs and Ferrostatin-1. Ferrostatin concentrations were the
same as in the previous experiment. The choice of working
concentrations of fatty acids (300 μM for LA, AA, and ALA, and
200 μM for DHA) was made on the basis of the data obtained on the
cellular response to external LC-PUFAs to ensure the cells showed a
measurable decrease in viability.

We confirmed that increasing the content of LC-PUFAs in the
nutrient medium decreases the viability of MDA-MB-231 cells
(Figure 5B). This effect was significantly reduced by Ferrostatin-1
in the knockdown IGFBP6 cells for all LC-PUFAs (p < 0.05) and in the
knockdown ELOVL5 for DHA (p < 0.05). Again, the action of
Ferrostatin-1 was insignificant for the control cells (p > 0.05).
Overall, these data suggest that the mechanisms of cell death
induced by Erastin and LC-PUFAs are similar.

GPx4 peroxidase is one of the key enzymes involved in the
glutathione pathway of ferroptosis inhibition. It oxidizes
glutathione to form glutathione disulfide (GSSG) and reduces the
cytotoxic lipid peroxides L-OOH to alcohols simultaneously.
Disruption of GPx4 activity leads to a decrease in antioxidant
capacity and, consequently, to ferroptosis. Our transcriptomic
analysis revealed a significantly reduced level of GPx4 expression in
knockdown IGFBP6 cells compared to the control cells.

Therefore, the next important task was to check the activity of this
enzyme in all three cell lines. In this assay, GSSG formed by GPx4 is
reduced back to 2GSH by glutathione disulfide reductase (GR) using
NADPH as a source of electrons and cumene hydroperoxide as a
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substrate. The rate of oxidation of NADPH is directly reflects the
activity of GPx4. This rate was determined by following the change in
absorbance of NADPH at 340 nm with a spectrophotometer in kinetic
mode and all reactants kept in excess so as to make the action of
GPx4 rate limiting in the oxidation of NADPH.

The results obtained (Figure 5C) demonstrated a significant
decrease in GPx4 activity in knockdown IGFBP6 cells compared to
the control (p < 0.05). These data are in good agreement with the
transcriptomic analysis. It should also be noted that the activity of this
enzyme also slightly changed after the knockdown of ELOVL5 gene
(p < 0.05). Thus, the decrease in GPx4 activity is likely to be the key to

lowering antioxidant capacity and increasing cells’ sensitivity to
ferroptosis with the knockdowns.

Next, we tested whether the expression of GPX4 gene can also
decrease simultaneously with the expression of IGFBP6 gene in breast
cancer tissue. The analysis of the publicly available databases of
transcriptomes of breast cancer samples showed that GPX4 gene
expression positively correlates with IGFBP6 gene expression (i.e.
decreases with a decrease in IGFBP6 gene expression) in tumor
samples from patients with ER+ breast cancer in 4 analyzed data
sets (in total 10 datasets of ER+ breast cancer were analyzed) and in
5 datasets of ER-breast cancer patients (in total 7 datasets of ER-breast

FIGURE 5
(A) Evaluation of the sensitivity of MDA-MB-231 cells to ferroptosis during their treatment with standard agents Erastin and Ferrostatin-1 in various
combinations for 24 h. Error bars represent standard error ofmean (SEM, n= 3). *—p < 0.05 versus pure Erastin. #—p < 0.05 versus control cells. (B) Evaluation
of the sensitivity of MDA-MB-231 cells to ferroptosis during their treatment with LC-PUFA and Ferrostatin-1 for 24 h. The concentration for LA, AA, and ALA
was 300 μM and for DHA 200 μM. Error bars represent standard error of mean (SEM, n = 3). *—p < 0.05 versus pure PUFA. (C) Glutathione Peroxidase
Activity measured in cell lysates per one million cells after 10 min of incubation. Error bars represent standard error of mean (SEM, n = 3). *—p < 0.05 versus
control cells.
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cancer were analyzed). Negative correlations have not been observed
in this study.

To check whether the knockdown of either ELOVL5 or IGFBP6
gene leads greater accumulation of reactive oxygen species (ROS)
in the cells upon addition of external PUFAs, we used ROS
indicator 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA,
also known as H2DCFDA, DCFH-DA, and DCFH). DCFDA is
a cell-permeable chemically reduced form of fluorescein. After
cleavage of the acetate groups by intracellular esterases and
oxidation, the non-fluorescent form of DCFDA is converted to
highly fluorescent DCF.

The results showed (Figure 6A) that for all tested PUFAs
fluorescence intensity of DCF normalized to the control culture
medium without external PUFAs was higher for the cells with
reduced expression of ELOVL5 (ANOVA p < 0.05) and IGFBP6
gene (ANOVA p < 0.05), indicating greater accumulation of ROS
in the knockdowns. In addition, knockdown IGFBP6 cells with almost
all fatty acids, and especially DHA, demonstrated the highest increase
in fluorescence intensity. These data have been confirmed by

microscopic observations (Figure 6B). Overall, the greater
accumulation of ROS in the knockdowns is in good agreement
with lower activity of GPx4 and higher sensitivity of these cells to
PUFAs.

One possible way to prevent oxidation of PUFAs is to store them
in lipid droplets (Wang et al., 2017; Dierge et al., 2021). We compared
the accumulation of lipid droplets in the cells with knockdowns to the
control cells with the help of lipid dye Oil Red O. The results
(Figure 6C) showed an increase in the accumulation of lipids in
MDA-MB-231 cells after addition of external PUFAs to the
nutrient medium. Oil Red O extraction was carried out for
quantification of lipid accumulation (Figure 6D). We found that
knockdown of IGFBP6 gene significantly reduces the formation of
lipid droplets under the control conditions (p <0.05) and after
treatment with LA (p < 0.05) and AA (p < 0.05). These data were
confirmed by staining the cells with another lipid dye BODIPY
(Figure S17).

These results are in good agreement with the transcriptomic
analysis, which demonstrated significantly reduced expression levels

FIGURE 6
(A) Assessment of oxidative stress in MDA-MB-231 cells under the influence of various LC-PUFA by detection of reactive oxygen species (ROS) with
H2DCFDA. Error bars represent standard error of mean (SEM, n = 3). (B) Photo of MDA-MB -231 cells in the cell culture medium without external LC-PUFAs
andwith addition of 300 μMLA or 200 μMDHA (staining withH2DCFDA). Scale bars indicate 50 μm. (C) Lipid droplets staining inMDA-MB-231 cells in control
medium and in the medium containing 50 μM of LA, AA, ALA and DHA. Scale bars indicate 50 μm. Nuclei (blue) were stained with 4′,6-diamidino-2-
phenylindole (DAPI), lipid droplets (red) were stained with Oil Red O. (D)Quantification of lipid droplets in MDA-MB-231 cells after treatment with various LC-
PUFAs. The diagram represents absorbance of extracted Oil Red O. Error bars represent standard error of mean (SEM, n = 3).
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of the AGPAT3, GPAT2, GPAT3, and DGAT1 enzyme genes in the
knockdown IGFBP6 cells compared to the control cells
(Supplementary Table S7). These enzymes play important roles in
the regulation of triacylglycerol (TAG) biosynthesis: AGPAT3 and
GPAT2 translocate TAG molecules from the endoplasmic reticulum
(ER) into lipid droplets (LD) during membrane fusion; GPAT3
catalyzes the conversion of glycerol-3-phosphate to
lysophosphatidic acid during the synthesis of triacylglycerol; and
DGAT1 catalyzes the conversion of diacylglycerol and fatty acid
esters of coenzyme A to triacylglycerols (Wilfling et al., 2014;
Wang et al., 2017; Quiroga et al., 2021). Thus, disruption of TAG
biosynthesis and lipid droplet formation in the knockdown IGFBP6
cells appear to be one of the reasons for their increased sensitivity to
external LC-PUFAs.

3.5 Combination of SOC drugs with inducers
of ferroptosis

To find out whether induction of ferroptosis by a PUFA or Erastin
can significantly improve cytotoxic effects of standard of care (SOC)
chemotherapeutic drugs, we tested different combinations on 3D cell
models from control MDA-MB-231 cells, as well as from the cells with
the knockdowns. The cells were grown in Matrigel and formed
spheroids. This method allows one to create more physiologically
relevant environment and provides amore gradual access for the drugs
to the cells, reflecting better the conditions in vivo.

Overall, almost all tested drugs at clinically relevant
concentrations were able to significantly reduce growth rate or
even cause cell death (Figure 7). The only exception was
methotrexate which was inactive on all the three cell types (p >
0.05). As expected, breast cancer cells after the knockdown of
either ELOVL5 or IGFBP6 gene were more sensitive to DHA (p <
0.05). Interestingly, after the knockdown of IGFBP6 gene cells
also became more sensitive to docetaxel, doxorubicin, vinorelbine
and pure erastin (p < 0.05). On the other hand, decrease in the
expression of IGFBP6 gene led to higher resistance to gemcitabine
(p < 0.05).

Analysis of the results of the combined treatment showed that
combination of 5-FU with DHA resulted in better growth inhibition
than pure 5-FU (p < 0.05) and pure DHA (p < 0.05) for control cells.
The effect of this combination was still better than pure 5-FU for the
cells with knockdown of ELOVL5 (p < 0.05) or IGFBP6 (p < 0.05) gene,
however it was indistinguishable from pure DHA (p > 0.05), as DHA
itself was much more potent for these cells. The effect of the
combination of 5-FU with erastin on the control cells was almost
the same as the effects of pure 5-FU (p > 0.05) and pure erastin (p >
0.05). However, erastin significantly improved the effect of 5-FU after
the knockdown of ELOVL5 (p < 0.05) or IGFBP6 (p < 0.05) gene. But
again, the result of the combination was indistinguishable from pure
erastin (p > 0.05).

The inhibitory effect on growth of docetaxel in combination with
either DHA or erasin was the same as the effect of pure docetaxel for all
three cell types (p > .05). The same results were obtained for doxorubicin
(p > 0.05). Very similar to these two drugs was vinorelbine with the
exception for the cells with reduced expression of ELOVL5 gene where the
combination of vinorelbine with DHA resulted in slightly better growth
inhibition than pure vinorelbine (p < .05) and pure DHA (p < 0.05). The
effect of methotrexate in combination with DHA or erastin was in all cases
better (p < .05) than the effect of pure methotrexate as it was not active as
single drug. However, almost in all cases (with one exception for
combination with erastin on the control cells) the effect did not differ
from pure DHA (p > 0.05) or pure erastin (p > 0.05).

The results of the test for gemcitabine in combination with either
DHA or erasin did not differ from pure gemcitabine on the control
cells (p > 0.05). On the other hand, the combined treatment of
gemcitabine with DHA outperformed pure gemcitabine after the
knockdown of either ELOVL5 (p < 0.05) or IGFBP6 (p < 0.05)
gene. However, as DHA was much more effective on these cells,
the growth inhibitory effect of the combination was indistinguishable
from pure DHA (p > .05). Addition of erastin to gemcitabine increased
the effect of the later only on the cells with reduced expression of
IGFBP6 gene (p < 0.05).

Overall, these results clearly show that both DHA and erastin have
the potential to inhibit growth of breast cancer cells. Moreover, in

FIGURE 7
Results of the drug test for the tested SOC drugs and their
combination with DHA and Erastin on the spheroids in Matrigel from
MDA-MB-231 cells. Error bars represent standard error of mean (SEM,
n = 3). *—p < 0.05 versus corresponding pure SOC treatment
(without DHA or Erastin). #—p < 0.05 versus corresponding condition
without SOC drugs (no SOC drugs).
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some cases they can enhance the effect of the SOC drugs, especially if
the cells have a decreased expression of IGFBP6 gene.

4 Discussion

In our previous work, we identified new transcriptomic prognostic
markers of breast cancer relapse (Galatenko et al., 2015). According to
those results, low expression of ELOVL5 and IGFBP6 genes
corresponded to poor prognosis, however, their role in metastasis
was unknown. Next, we examined properties of breast cancer cells
related to metastatic propensity after the knockdown of either ELOVL5
or IGFBP6 gene (Nikulin et al., 2021). We found sharp increase in the
expression of metalloproteinases and a decrease in cell adhesion, both of
which are likely to promote invasion of cancer cells. We also carried out
a pathway analysis and found that the knockdown of IGFBP6 gene led to
downregulation of biosynthesis of some fatty acids in which ELOVL5
participates directly.

ELOVL5 elongates n-3 and n-6 polyunsaturated fatty acids. It is
known that its expression in breast cancer cells is elevated and that it
directly affects the lipid composition in serum (Tomida et al., 2021).
Moreover, the complete knockout of ELOVL5 in the mouse breast
carcinoma model led to a delay in tumor development and a decrease
in tumor growth (Kieu et al., 2021). At the same time, the data on the
impact of the IGFBP6 gene on the lipid metabolism are limited. In this
work we focused on the changes in lipidmetabolism in breast cancer cells
after both knockdowns, paying special attention to IGFBP6. Reanalysis of
transcriptomic and proteomic data showed that the knockdown of
IGFBP6 gene significantly disrupted lipid metabolism at the mRNA
and protein levels. Moreover, we detected significant changes in the
composition of fatty acids in the cells after the knockdown of IGFBP6
gene. Thus, our results suggest that IGFBP6 can play an important role in
the regulation of lipid metabolism in breast cancer cells.

Since blood plasma normally contains significant amount of fatty
acids (Abdelmagid et al., 2015) and tumor cells often increase their
consumption of fatty acids from the external environment as a result of
metabolic reprogramming (Munir et al., 2019), we examined the rates of
consumption of external LC-PUFAs and viability ofMDA-MB-231 breast
cancer cells in the presence of LC-PUFAs. We found significant increase
in the uptake rates of several LC-PUFAs after the knockdown of either
ELOVL5 or IGFBP6 gene. We also found that the effect of the LC-PUFAs
is concentration dependent. At low concentration both n-3 and n-6 LC-
PUFAs can stimulate growth of MDA-MB-231 breast cancer cells, but as
the concentration rises, they become toxic for them. Interestingly, the
toxicity was higher for the knockdown cells.

Overall, our results are in good agreement with previous data. n-3
LS-PUFAs have been previously shown to inhibit the proliferation,
migration, and invasion of tumor cells in vitro (Chamras et al., 2002;
Huang et al., 2017; Davison et al., 2018). On the other hand, n-6 LC-
PUFAs can also induce cell death by increasing the content of reactive
oxygen species (Zhang et al., 2015), but their inhibitory effects on tumor
cells are either less pronounced compared to n-3 LC-PUFAs, or absent,
or, on the contrary, stimulating effects are observed (Connolly and Rose,
1993; Gonzalez-Reyes et al., 2017). To date, there are also studies in the
literature showing that subjects with a higher dietary n-3/n-6 ratio of
LC-PUFAs have a significantly lower risk of breast cancer among the
study populations (Zheng et al., 2013; Yang et al., 2014). However a
recentmeta-analysis found no effect of elevated n-3 LC-PUFAs levels on
the risk of being diagnosed with any cancer (high-quality evidence) and

likely on the risk of dying from cancer (Hanson et al., 2020). The key to
this discrepancy can be the fact that the effect of LC-PUFAs is
concentration dependent and the sensitivity of cancer cells to the
action of LC-PUFAs depends on the transcriptional programs, in
particular on the expression of the gene pair studied in this work.

To identify the cause of cell death caused by LC-PUFAs, we studied
activation of apoptosis in the cells by flow cytometry. Overall, we
observed very limited transition through the region of early apoptosis
and a lot of cells in the region characteristic for other types of cell death.
These results were notable as they indicated a non-apoptotic mode of cell
death after exposure to external LC-PUFAs. Based on the previously
published data, we considered that LC-PUFAs cause ferroptosis in breast
cancer cells (Chen et al., 2021a; Dierge et al., 2021).

Ferroptosis is one of the mechanisms of programmed cell death,
which is based on disturbance of the redox balance (Stockwell et al.,
2017). Ferroptosis is fundamentally different from other programmed
cell death mechanisms such as apoptosis, pyroptosis, and necroptosis.
The term “ferroptosis” was introduced in 2012 to identify an iron-
dependent mechanism of cell death with excessive lipid peroxidation
followed by destruction of cell membrane. Since ferroptosis was
discovered relatively recently, a number of aspects of its
mechanism remain unknown to date. In particular, the effectors of
this process have not yet been identified, although many of the
signaling and metabolic cascades associated with ferroptosis are
already known.

The molecular mechanism of ferroptosis is based on the regulation
of the balance between oxidative damage and antioxidant protection
(Chen et al., 2021b). The key stage in ferroptosis is elevated
peroxidation of polyunsaturated fatty acids in phospholipids. There
are several ways by which this process can be activated. Firstly,
increased activity of the enzymes involved in the synthesis of
polyunsaturated fatty acid esters, in particular ACSL4 and
LPCAT3, can lead to an increase in peroxidation, since this
increases the amount of available substrate for the reaction.
Secondly, the activation of the enzymes that directly catalyze the
oxidation reaction, for example, various lipoxygenases, can lead to the
induction of ferroptosis. And finally, an increase in the concentration
of reactive oxygen species due to the activation of proteins involved in
their production, or by increasing the concentration of iron, also
enhances peroxidation of polyunsaturated fatty acids. In addition,
various antioxidant systems are involved in cell defense, in particular,
the cascade of synthesis and utilization of glutathione (one of the key
enzymes is glutathione peroxidase GPX4), as well as coenzyme Q. A
decrease in the activity of these systems can also trigger ferroptosis.

Our data suggest that LC-PUFAs can trigger ferroptosis in breast
cancer cells. Firstly, the results of the flow cytometry experiments were
similar to the data published previously in the study of ferroptosis by
this method (Chen et al., 2017; Sun et al., 2018). Secondly, our
hypothesis was also supported by the experiments on the inhibition
of the cell death caused by LC-PUFAs with canonical inhibitor of
ferroptosis Ferrostatin-1, which can significantly increase cell viability
in some cases. Moreover, we have found that the knockdown of either
ELOVL5 or IGFBP6 gene significantly increases sensitivity of MDA-
MB-231 cells to canonical inducer of ferroptosis Erastin, and again the
cells can be rescued by Ferrostatin-1. Interestingly, previously it has
been demonstrated that expression of ELOVL5 gene can affect
sensitivity to ferroptosis in gastric cancer (Lee et al., 2020).

The reason why the breast cancer cells with reduced expression of
either ELOVL5 or IGFBP6 gene are more sensitive to ferroptosis is
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complex. First of all, we found that the cells with the knockdowns
accumulate more reactive oxygen species in response to external LC-
PUFAs. Partly this can be explained by higher uptake of these LC-
PUFAs from external medium. However, we also found that a
significant decrease in the activity of one of the main antioxidant
enzymes, GPX4, resulted from the knockdowns. Moreover, our data
suggest that the cells with knockdown of IGFBP6 gene are less efficient
in storage of fatty acids in lipid droplets, and thus more substrate for
peroxidation can be available in these cells. In addition, there is
evidence in the literature that an increase in IGFBP6 may improve
mitochondrial fitness and redox status based on a decrease in
mitochondrial ROS production (Longhitano et al., 2022).

At present, it is known that tumor cells are often resistant to
classical mechanisms of programmed cell death, such as apoptosis. At
the same time, ferroptosis is considered as a promising alternative
means to destroy the tumor (Wu et al., 2020; Chen et al., 2021b). The
accumulated information indicates that therapy-resistant tumor cells
(in particular, the cells that have undergone epithelial to mesenchymal
transformation or tumor stem cells) are sensitive to the induction of
ferroptosis (Viswanathan et al., 2017; Cosialls et al., 2021). The
influence of the expression of the genes associated with ferroptosis
on the prognosis of some tumors (in particular, prostate cancer and
colorectal cancer) has also been established (Wang Y. et al., 2021; Lv
et al., 2021). Based on these data, ferroptosis inducers are considered to
be a promising new class of anticancer drugs (Wang H. et al., 2021).
Moreover, it has been proven that some of the approved drugs also
trigger ferroptosis in tumor cells (Su et al., 2020).

Despite the fact that the effect of n-3 LC-PUFAs on non-
tumorogenic cells is not fully understood, some studies showed
that at concentrations which inhibit the growth of tumor cells, n-3
LC-PUFAs have little or no cytotoxic effect on normal breast cells
(Grammatikos et al., 1994; Bernard-Gallon et al., 2002). Thus, as
induction of ferroptosis is considered to be a promising means to kill
cancer cells and potential harm of LC-PUFAs to normal cells is low, we
studied combinations of the standard of care (SOC) chemotherapeutic
drugs with DHA (an n-3 LC-PUFA). Our results showed that in some
cases induction of ferroptosis can enhance the effect of the SOC drugs,
especially if the cells have decreased expression of IGFBP6 gene. Thus,
it would be worthwhile to test LC-PUFAs in combination with anti-
cancer drugs in more clinically relevant settings.

5 Conclusion

In this work we showed that, to our surprise, the knockdown of
IGFBP6 gene, a member of the IGF-binding protein family, led to
significant changes in lipid metabolism in MDA-MB-231 cells. It was
also found that a decrease in the expression of either IGFBP6 or
ELOVL5 gene increases sensitivity of MDA-MB-231 breast cancer
cells to LC-PUFAs and our data suggest that they cause cell death by
activation of ferroptosis. We suspect a significant drop in the activity
of the main antioxidant enzyme GPX4 in the cells after the
knockdowns is the key reason for this phenomenon. Moreover,
observed changes in the lipid metabolism after the knockdown of
IGFBP6 gene and increased uptake of some PUFAs can also contribute
to it. Use of standard chemotherapeutics in combination with
ferroptosis inducers showed that in some cases the latter can
significantly enhance the effect of the drugs, especially for the cells
with low expression of IGFBP6 gene. Thus, for the breast cancer

patients with low expression of IGFBP6 and ELOVL5 genes in cancer
tissue the addition of PUFAs to the chemotherapy regimen can be
potentially beneficial and should be tested in more clinically relevant
settings.
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Ferroptosis is an emerging form of cell death characterized by the over-

accumulation of iron-dependent lipid peroxidation. Ferroptosis directly or

indirectly disturbs glutathione peroxidases cycle through diverse pathways,

impacting the cellular antioxidant capacities, aggravating accumulation of

reactive oxygen species in lipid, and it finally causes oxidative overload and

cell death. Ferroptosis plays a significant role in the pathophysiological

processes of many diseases. Glioblastoma is one of the most common

primary malignant brain tumors in the central nervous system in adults.

Although there are many treatment plans for it, such as surgical resection,

radiotherapy, and chemotherapy, they are currently ineffective and the

recurrent rate is almost up to 100%. The therapies abovementioned have a

strong relationship with ferroptosis at the cellular andmolecular level according

to the results reported by numerous researchers. The regulation of ferroptosis

can significantly determine the outcome of the cells of glioblastoma. Thus

ferroptosis, as a regulated form of programed cell death, has the possibility for

treating glioblastoma.

KEYWORDS

ferroptosis, glioblastoma, iron metabolism, chemotherapy, radiotherapy,
immunotherapy

Introduction

Ferroptosis is an emerging form of regulatable programed cell death compared with

apoptosis, necroptosis, and pyroptosis [(Zhang et al., 2021a); (Shi et al., 2022a); (Zhou

et al., 2019); (Bertheloot et al., 2021); (Li and Huang, 2022)]. In 2012, Dixon et al. named

this regulatable cell death mode which could be inhibited by iron chelating agent as iron

death on the basis of summarizing previous studies on cell deaths (Dixon et al., 2012). It is

a metabolic process (Xu et al., 2021), not an active one that requires transcription

induction or post-translational modification by specific death effectors in response to

lethal stimuli. On the contrary, it is considered to be part of cell destruction or cell

clearance.
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Different from the previously described cell death modes,

ferroptosis showed necrosis-like morphology: shrunk

mitochondria, increased membrane density and narrowed

crista, and ruptured cell membrane, whereas morphological

changes were not evident in the nucleus; this kind of

programmed cell death is initiated by abnormal metabolism of

iron ions in cells, which causes the breakdown of the steady state

of oxidoreduction reaction. The inhibition of the synthesis of

reduced glutathione (GSH) and the intensification of oxidation

reaction are the main causes of ferroptosis. A series of reactions

that cause ferroptosis are iron dependent, triggered by

intracellular changes in iron metabolism, leading to lipid

peroxidation and finally cell death. (Lu et al., 2017; Mou

et al., 2020; Aguilera et al., 2022). This mechanism is involved

in pathophysiological conditions (Tang et al., 2018), including

inflammation, tissue injuries, and cancerous transformation

(Zhang et al., 2021a), among which glioblastoma (GBM) is one.

GBM, known for its devastating progression and dismal

prognosis (Martínez-Garcia et al., 2018), is the most common

primary malignant brain tumor in adults and accounts for over

50% of all high-grade gliomas (Martínez-Garcia et al., 2018). Its

main characteristics are high malignancy, aggressive invasion,

frequent brain or spinal cord metastasis and inevitable

recurrence (Gu et al., 2016). According to the WHO grading

system, GBM is classified as a Grade IV astrocytoma consisting of

mostly low differentiated neoplastic astrocytes mixed with cells

having different extent of differentiation (Ou-Yang et al., 2018)

This is mainly due to the coexistence of multiple tumor cell

populations with different degrees of differentiation, especially

tumor cells that showing stem cell-like characteristics (Wang et al.,

2019). Glioma stem cells have pretty strong renewal ability

(Adamo et al., 2017), low differentiation, and high resistance to

radiation and chemotherapy [(Broadley et al., 2011); (Sesé et al.,

2022); (Liu et al., 2017)]. At present, there is no effective drug to

treat it efficaciously, and surgery can only resect part of the tumor

if it locates at functional or cranial base areas. Even if it can be

removed completely with a negative intraoperative pathological

edge, it virtually recurs through the mechanism we have not

known yet. Therefore, the treatment scheme for recurrence can

only remove the tumor to the maximum extent, and then carry out

subsequent adjuvant chemotherapy and radiotherapy to destroy

the tumor cells and inhibit the growth of tumor cells as much as

possible (Berardinelli et al., 2019). However, the residual tumor

cells are very easy to generate tolerance to radiotherapy and

chemotherapy, and thus the recurrence rate of the tumor is as

high as 100% [(Chanez et al., 2022); (Dissaux et al., 2021)]. After a

series of changes in the internal structure of recurrent tumor cells,

clonal evolution trees showed higher heterogeneity (Yang et al.,

2020), and their malignancy is higher than the first time; that may

be the reason why now no clinically available methods can

effectively treat it. The average survival time of GBM patients

after diagnosis is 12–15 months (Shi et al., 2015). It is urgent to

develop molecular targeted drugs that are capable of effectively

controlling the growth of GBM tumor cells based on their

metabolic pathways.

Although few studies on the relationship between ferroptosis

and GBM have been reported, especially using ferroptosis as a

treatment or/and diagnostic method and the exploration of the

relevant mechanism on cell death, recurrence and drug resistance

between the two. We believe it is valuable to discuss this issue and

it is what we attempted to deliver through this review.

Iron metabolism affects the
ferroptosis

Iron is a vital element for the survival of organisms. It is

indispensable for the metabolism of many substances in the body

[(Dutt et al., 2022); (Stallhofer et al., 2022)]. Iron in the digestive

tract is mainly absorbed in the duodenum and upper jejunum in

the form of Fe2+ (Karaskova et al., 2021). Then, in the epithelial

cells of small intestinal mucosa, Fe2+ is oxidized to Fe3+, and part of

Fe3+ in the blood is further bound to the transported by transferrin

(TF) and receptor (TFR) on the cell membrane and transported

into the cell [(Piskin et al., 2022); (Zhao et al., 2022)], which reacts

with the metal reductase Six-transmembrane epithelial antigen of

prostate 3 (STEAP3) in the endoplasmic reticulum to form Fe2+;

Fe2+ is transported to cells through transferrin receptor protein 1

(TFR1). The body regulates the storage of iron ions through the

expression of ferritin and its related genes according to its own

needs, such as ferritin heavy chain 1 (FTH1), ferritin light chain

(FTL) and heat shock protein B1 (HSPB1) (Yang et al., 2022a);

HSPB1 inhibits the expression of TFR1, thereby reducing the

intracellular iron concentration. Therefore, overexpression of

HSPB1 will inhibit ferroptosis [(Yuan et al., 2022); (Liu et al.,

2021)]. In addition, the expression of FTL and FTH1 is regulated

by iron responsive element binding protein 2 (IREBP2), and the

overexpression of IREBP2 will inhibit iron death induced by

erastin as well. The biological toxicity of iron ions is mediated

by Fenton reaction, which transforms Fe2+ into Fe3+ and generates

hydroxyl radicals, oxidative proteins et cetera (Zhang et al., 2022a;

Gong et al., 2022). Knockout of Tf gene or down-regulation of TF

can inhibit iron overload and cell apoptosis. Autophagy can

regulate the amount of transferrin and lipid in cells to regulate

iron metabolism, and ultimately affect iron death sensitivity, while

ferritin selective autophagy can also regulate fine ferroptosis

sensitivity. Other proteins may as well affect iron sensitivity in

iron metabolism (Zhu and Fan, 2021) (Figure 1).

Lipidmetabolism and reactive oxygen
species accumulation regulate
ferroptosis

Under normal circumstances, the substance in the organism

is in a dynamic change process. When the body is disturbed by
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external or internal irresistible stimulus, the balance of

homeostasis will be impaired (Badr et al., 2020). For example,

oxidoreduction reaction disbalance and production of reactive

oxygen species (ROS) in GBM (Reichert et al., 2020), the normal

physiological conditions are disturbed, and the antioxidant

capacity of cells will be relatively reduced (Burić et al., 2019;

McNamee et al., 2021). A series of chain reactions of

peroxidation will lead to the accumulation of lipid

peroxidation in cells. Lipid peroxidation is a key step in

ferroptosis (Lee and Roh, 2022), which can be divided into

the synthesis of phospholipids with polyunsaturated fatty

acids (PUFAs) as the substrate and the two peroxidation

reactions. PUFAs are the key substances in lipid peroxidation

(Yang et al., 2016). Firstly, PUFA.coenzyme A (PUFA.CoA) was

synthesized with PUFAs under the action of acetyl CoA

synthetase long-chain family member 4 (ACSL4) and then

PUFA-phospholipids (PUFA-PL) was generated under the

action of lysophospholipidacyltransferase 3 (LPCAT3) and

incorporated into the cell components. PUFA-PL will

participate in the next series of chain reactions as the

substrate of peroxidation. Next, it can be divided into two

ways to generate free radicals with strong oxidation capacity.

Fenton reaction and lipoxygenase pathway will generate a large

number of hydroxyl radicals and oxygen radicals (Xing et al.,

2021). These free radicals will attack PUFA-PL, forming a cycle of

peroxidation. Because cells are in a state of imbalance, this

reaction will be terminated only when the substrate is

exhausted. As one of the components of cells, its large

consumption will inevitably lead to the damage of cell

structure. In the lipoxygenase pathway (Tomita et al., 2019),

15-lipoxygenase (15-LOX) first combines with

phosphatidylethanolamine binding protein 1 (PEBP1), and

then oxidizes PUFA on the cell membrane to

PUFA.phosphatidylethanolamines-OOH (PUFA.PE-OOH),

thus causing ferroptosis (Kagan et al., 2020; Anthonymuthu

et al., 2021; Mikulska-Ruminska et al., 2021). In addition to

the end-products that will destroy the normal structure of cells

and generate lipid peroxidation (Chng et al., 2021), the above

peroxidation reactions will also produce some cytotoxic active

aldehydes, which will attack phospholipids, proteins and even

nucleic acids in cells (Gao et al., 2018; Liu et al., 2020; Zhao et al.,

2020). NF-E2-relatedfactor2 (NRF2) plays an important role in

regulating the homeostasis of cells and a key factor in

oxidoreduction reaction (Zhang et al., 2016; Fan et al., 2017).

Relevant studies have shown that when NRF2 is up-regulated in

tumors, it is closely related to the poor prognosis of primary

malignant brain tumors (Chew et al., 2021); the NRF2-Keap1

system regulates the expression of human antioxidant proteins,

which is a typical antioxidant reaction pathway. Fe2+ is regulated

by NRF2. Normally, it is inactive. When the intracellular

peroxide increases, it will stimulate NRF2 to activate the

downstream antioxidant enzymes to inhibit the oxidation

reaction. Glutathione peroxidase 4 (GPX4) is also a key factor

in the antioxidant system, which converts the lipid peroxide into

non-toxic aliphatic alcohol and reduces H2O2 (Shin et al., 2018;

Wu et al., 2022).

Lipid peroxidation in ferroptosis is regulated by several

regulatory axes. Among them, GPX4 is recognized as the key

FIGURE 1
Classic signaling pathways of ferroptosis in cells.
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regulatory target (Hayashima and Katoh, 2022). GSH and

GPX4 in the signal axis of cystine/glutathione/glutathione

peroxidase 4 can associate with each other to reduce PUFA-

PL-OOH to PUFA-PL-OH, resultantly preventing the

continuation of ferroptosis (Li et al., 2022a). Cystine is one of

the components of glutathione, which requires the reverse

transporter system Xc- to transport from outside the cell.

Therefore, this transporter is also an important site for

regulating ferroptosis. The signal axis of ferroptosis suppressor

protein 1 (FSP1) and coenzyme Q10 (CoQ10) is also one of the

regulatory sites of ferroptosis. When the GPX4 system is lacking

(Doll et al., 2019), the increased expression of FSP1 can up-

regulate the NADH dependent CoQ10 reduction reaction, so that

the oxygen free radicals in the peroxidation cycle reaction caused

by it are reduced to prevent ferroptosis (Santoro, 2020; Yang

et al., 2022b). GTP cyclohydrolase 1 (GCH1)/

tetrahydrobiopterin (BH4)/dihydrofolate reductase (DHFR)

signal axis, in which the overexpression of GCH1 can

selectively protect membrane phospholipids with two PUFA

tails from peroxidation, preventing ferroptosis from occurring

as well (Hu et al., 2022; Jiang et al., 2022) (Figure 1).

Immunotherapy for glioblastoma

Iron is pivotal for cell survival. Cancer cells are more prone to

undergo ferroptosis than normal cells, and oxidized membrane

lipids on ferroptotic cells can mediate the phagocytosis of

macrophages to keep immune response. In addition, immune

detection point inhibitor treatment may make cancer cells

sensitive to ferroptosis (Shi et al., 2022b), it is expected to

overcome chemical resistance and strengthen the death of

immunogenicity cells. Enhanced ferroptosis was shown to

induce activation and infiltration of immune cells, but to

weaken the cytotoxicity of anti-tumor cells. It was found that

tumor-associated macrophages were involved in ferroptosis-

mediated immunosuppression (Liu et al., 2022a), which

provides a new vision for immunotherapy for GBM (Yu et al.,

2022).

Inhibition of asparagine-linked glycosylation 3 (ALG3)

stimulates cancer cell immunogenic ferroptosis to potentiate

immunotherapy. ALG3 is an a-1, 3-mannosyltransferase

involved in protein glycosylation in the endoplasmic reticulum.

Liu et al. reported that inhibition of ALG3 would induce defects in

post-translational N-linked glycosylation modification and lead to

excessive lipid accumulation through sterol regulatory element

binding proteins (SREBPs)-dependent adipogenesis in cancer cells.

Lipid peroxidation mediated by N-linked glycosylation deficiency

induces the immunogenic ferroptosis of cancer cells and promotes

the pro-inflammatory microenvironment, thus enhancing the

anti-tumor immune response (Liu et al., 2022b).

Ir(III) complex containing a ferrocene-modified diphosphine

ligand that localizes in lysosomes. Under the acidic environments

of lysosomes, Ir(III) can effectively catalyze a Fenton-like

reaction, produce hydroxyl radicals, induce lipid peroxidation,

down-regulate GPX4, resulting in ferroptosis, and thus inhibit

tumor cell growth (Wang et al., 2022).

In recent years, immunotherapy has raised fervent

attention. One strategy is to activate lymphocytes that can

recognize the tumor cells specifically and induce the cancer

cells’ death by releasing perforin and granzyme. Accordingly,

relevant studies pointed out that active CD8+ T cells release

IFNγ that down-regulate the expression of Solute carrier (SLC)

family 7 member 11 (SLC7A11) and SLC family 3 member 2

(SLC3A2), thereby inhibiting the absorption of cystine and

enhancing lipid peroxidation and ferroptosis of tumor cells

(Figure 2).

Radiotherapy for glioblastoma

Ionizing radiation can produce a lot of free radicals in

irradiated cells. These free radicals are the factors that cause

side effects when ionizing radiation is used to treat diseases.

Among them, lipid peroxidation is an important influence of

ionizing radiation on cell membranes, which is one of the key

targets of radiation. On the other hand, lipid peroxidation is an

important metabolic pathway for ferroptosis. Therefore, the

effect of ionizing radiation on tumor cells should be related to

the ferroptotic process to a large extent (Agrawal and Kale, 2001).

It was found that after radiotherapy, the tumor cells showed

typical morphological changes of ferroptosis such as changed

density of mitochondria, shrunk cell membranes, and decreased

mitochondrial cristae. It indicates that radiotherapy can increase

the expression of key enzymes by generating a large number of

ROS, thus promoting lipid peroxidation, and ultimately leading

to ferroptosis (Zhang et al., 2022b). CuS@mSiO2@MnO2

nanocomposite, as a radiosensitizer that can effectively

exhaust GSH was used in vitro; it uses up GSH and induces

ferroptosis and apoptosis. The experiment performed in vivo also

showed that tumor cells were damaged. Therefore, it is

speculated that radiotherapy may induce ferroptosis after the

depletion of GSH to play its role in the treatment of tumors (Li

et al., 2021) (Figure 2).

Chemotherapy for glioblastoma

Temozolomide (TMZ) is the first-line drug for clinical

chemotherapy for GBM in recent decades. Although it is the

most effective drug for GBM for now, resistance to it especially in

recurrent GBM can be noted very common. Drug resistance is

one of the most significant factors which bring about a poor

prognosis. NRF2 is an important transcription factor involved in

chemotherapy resistance, and it can play a key role in inducing

ferroptosis through GSH regulation. According to the
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experimental data, high-level of NRF2 leads to the resistance to

TMZ therapy for GBM through the up-regulation of ATP-

binding cassette subfamily C member 1 (ABCC1) which is the

target of NRF2 and able to antagonize ferroptosis. For this

rationale, ferroptosis induction may be an important

treatment strategy to reverse the drug resistance of GBM with

high NRF2 and ABCC1 expression (de Souza et al., 2022). Most

chemotherapy medicines exert efficacy on tumor cells through

signaling transduction which are bound up with oxygen-free

radicals and ROS; under the circumstance, ferroptosis will play

important role in the therapy of malignant tumors. Nowadays,

TMZ is a new medicine for GBM and considered the most

effective one, and thus widely used for patients in clinical practice

(Zhou and Ma, 2022). There have been in vitro studies using

TG905 cells showing that the divalent metal transporter 1

(DMT1) and ROS in GBM increases when treated with TMZ,

whereas GPX4 is decreased (Su et al., 2022), in the meantime it

observes an iron-independent cells death. Thus, we have good

reason to believe that TMZ can induce the ferroptosis by

targeting the expression of DMT1 in GBM cells and inhibiting

tumor cells growth (Song et al., 2021).

It is reported that heat shock protein 27 (HSP27) is the new

regulator of ferroptosis in tumor cells (Liu et al., 2021); GBM cells

are protected by overexpression of HSP27 to escape from

ferroptosis that is induced by erastin (Yuan et al., 2022).

Therefore, HSP27 can be a regulatory spot of ferroptosis and

used as a potential therapy target for GBM.

Clinical studies have shown that programmed cell death one

(PD-1)/programmed cell death ligand one (PD-L1) have low

efficacy on GBM due to low immunogenicity. In the experiment,

Fe3O4-siPD-L1@M-BV2 increases the siPD-L1 and Fe2+ of the

drug-resistant GBM in mice tissue. Fe3O4-siPD-L1@M-BV2 is

associated with ferroptosis and immune activation, inhibiting the

growth of drug-resistant GBM (Liu et al., 2022c).

Chen et al. reported that IONP@PTX can inhibit cell

migration and invasion after incubating with cells. They made

the conclusion that the level of iron ions, ROS and lipid

peroxidation in cells is increased, suggesting that IONP@PTX

might affect GBM through ferroptosis. More importantly, the

influence of IONP@PTX on GBM can be regulated by other

external factors such as 3-methyladenine (3-MA) and rapamycin.

Another advantage is that IONP@PTX has no obvious toxic

effect on GBM xenotransplantation mice, which may make

IONP@PTX a potential treatment for GBM with high safety

based on ferroptosis (Chen and Wen, 2022).

Some scholars reported that NF-κB activation protein

(NKAP) knockout will increase the level of lipid peroxidation

in naive T cells and induce cell death in colon cancer cells.

Another experiment showed the consistent results that knockout

of NKAP induces the death of GBM; silencing NKAP increases

the sensitivity of cells to iron death inducers, and exogenous

overexpression of NAKP can positively regulate an iron death

defense protein, SLC7A11 to reduce the sensitivity of cells to iron

death inducers. RNA and protein immunoprecipitation can

FIGURE 2
Schematic of mechanisms of ferroptosis and glioblastoma under the treatment of immunotherapy, radiotherapy and chemotherapy.

Frontiers in Molecular Biosciences frontiersin.org05

Lu et al. 10.3389/fmolb.2022.1068437

55

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1068437


prove that NKAP and N6-methyladenosine (m6A) interact on

SLC7A11 transcription. Thus, inhibiting NKAP expression or

knocking out its gene will increase the level of ferroptosis in cells,

and may become a potential therapeutic direction to the

treatment of GBM (Sun et al., 2022).

Ferroptosis is mainly caused by an imbalance of ROS and

lipid peroxidation. One of the processes of lipid peroxidation can

be inhibited by GPX4. In consequence, blocking the expression of

GPX4 or reducing its production will greatly increase the degree

of ferroptosis. γ-glutamine transferase 1 (GGT1) can inhibit the

formation of the substrate in the process of synthesizing GPX4.

Given this, GGT inhibitor is a potential treatment scheme for

GBM, and it will be more effective if it is supplemented with iron

death inducers (Hayashima and Katoh, 2022).

Based on the analysis of existing data, the overexpression of

coatomer protein complex subunit zeta 1 (COPZ1) is related to

the increase in tumor grade and poor prognosis of GBM patients.

Via immunohistochemistry and western blot analysis, it is noted

that the expression of COPZ1 protein in GBM was significantly

higher than that in normal tissues. Knockout of Copz1 gene using

iRNA could inhibit the growth of GBM in vitro, but also lead to a

series of intracellular metabolic disorders, including the

imbalance of iron metabolism. Therefore, COPZ1 can be a

key regulatory point of ferroptosis, and become a potential

therapeutic target for GBM (Zhang et al., 2021b).

Dihydroartemisinin (DHA) has the advantages of selective

cytotoxicity and low drug resistance. These characteristics make

DHA one of the new research directions of anti-tumor therapy.

Through the effect of DHA on normal cells and GBM, it is found

that GPX4 in tumor cells is significantly reduced, ROS and

peroxidative lipids are increased, and these effects can be

reversed by using ferroptosis inhibitors, which demonstrates

DHA can inhibit tumor growth by changing the intracellular

GPX4 to cause ferroptosis. DHA is one of the potential drugs for

GBM (Yi et al., 2020) (Figure 2).

Ferroptosis in glioblastoma

The main component of brain tissue is lipid. At present, there

is no effective treatment for GBM, and the recurrence rate and

mortality rate are nearly 100% (Mitre et al., 2022). Currently,

ferroptosis as the research field remains many unrevealed areas,

which may become a potentially effective treatment scheme. The

brain is more vulnerable to oxidative stress than other tissues,

because the activity of antioxidant enzymes is low and the

content of PUFAs is high, which makes it prone to lipid

peroxidation (Rao et al., 2000). The disorder of lipid

metabolism is the key link of ferroptosis. It was found that

expression of tripartite motif protein 7 (TRIM7) is more in

GBM cells than in normal cells. When the TRIM7 is silent,

the growth and development of the body is inhibited, but the level

of ferroptosis is increased; while the TRIM7 is overexpressed, it

can promote the growth and development of the body and inhibit

the death of GBM cells. It can be concluded that when the

ferroptosis level is inhibited, the death of GBM cells is also

reduced, and there is a positive correlation between them. This

experiment also indicates that when TRIM7 is missing, GBM is

sensitive to the treatment of TMZ. As a potential treatment

scheme for GBM, it is uncertain whether the sensitivity of

TRIM7 to ferroptosis will make the treatment of TMZ more

effective (Li et al., 2022b). Some experiments also found that the

use of iron inducers can increase the sensitivity of TMZ. TMZ is a

first-line drug for GBM (Song et al., 2021), and it is clear that its

mechanism is to cause base pair mismatch, leading to cell

apoptosis. However, several reports suggest that, it can

activate nuclear factor NRF2 and transcription factor 4

(ATF4) at the same time to inhibit iron death. To sum up,

ferroptosis participated not only in the sensitivity of TMZ in the

treatment of GBM, but also in the formation of drug resistance

(Chen et al., 2017; Hu et al., 2020; Li et al., 2022b; de Souza et al.,

2022). Iron overload is another key link of ferroptosis. The high

degree of malignancy of tumors is characterized by rapid growth

and proliferation and strong invasiveness. Genes and proteins

related to growth and development are overexpressed, such as

poly(C)-binding protein 2 (PCBP2), DMT1, STEAP3, FTH and

FTL, which can change iron storage capacity (Cheng et al., 2018);

the expression of TF and TFR also increased significantly. A large

amount of free iron would be transported and absorbed into the

cells through selective endocytosis, and excessive iron would

increase lipid peroxidation accordingly. In GBM cells with

overloaded iron and rich PUFAs, plenty of peroxides can

rapidly accumulate and lead to ferroptosis (Park et al., 2019).

STEAP3 can promote TFR1 expression and increase cell iron

content by activating STAT3-forkhead box proteinM1 (FOXM1)

axis (Sendamarai et al., 2008; Isobe et al., 2011), thus inducing

epithelial mesenchymal transformation (EMT) in GBM, which is

a route for GBM invasion and metastasis (Chang et al., 2017;

Terry et al., 2017).

Expectation

Ferroptosis is a newly discovered iron dependent

programmed cell death in recent years, which is different

from apoptosis, necrosis and necroptosis. It has a unique

mechanism of occurrence and effectiveness. It will be a

potential therapeutic scheme in tumor treatment, and more

and more targeted ferroptosis therapies are under study.

Relevant pharmaceutical industries are also actively

exploring the specific mechanism of iron death, trying to

link it with cancer treatment to find a breakthrough. So far,

although ferroptosis has made some theoretical achievements

and curative effect in animal experiments, it has not made

virtual progress. As aforementioned, some scholars proposed

even contradictory conclusions. Some pointed out that TMZ

Frontiers in Molecular Biosciences frontiersin.org06

Lu et al. 10.3389/fmolb.2022.1068437

56

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1068437


treatment could strengthen ferroptosis and might be one of

the mechanisms of tumor cell killing, whereas other

researchers opposed this kind of conclusion and observed

the opposite that TMZ might inhibit ferroptosis to result in

drug resistance. This is an interesting phenomenon, and we

speculate that TMZ treatment indeed up-regulates ferroptosis

and causes the death of tumor cells. However, at the late stage

of the course, the GBM cells may induce numerous ferroptotic

inhibitors and the ferroptosis is significantly suppressed. This

is worthy of being studied in the future. GBM, as one of the

most common primary malignant tumors in adults, has not

only a high recurrence rate but also an approximately

mortality rate of 100%. Increasing evidence indicates that

ferroptosis plays a certain role in immunotherapy,

radiotherapy and chemotherapy for GBM. However, the

research on its regulation and the mechanism of ferroptosis

treatment has not made significant progress. It is still

necessary to take persistent efforts to clarify the mechanism

of the relationship between ferroptosis and GBM, to provide

new ideas for the treatment, and in the meantime to bring up

prevention or early diagnosis methods.
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Ferroptosis: Mechanism and
potential applications in cervical
cancer

Xiangyu Chang and Jinwei Miao*

Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical
University, Beijing, China

Ferroptosis is a distinct form of cell deathmechanism different from the traditional
ones. Ferroptosis is characterized biochemically by lipid peroxidation, iron
accumulation, and glutathione deficiency. It has already demonstrated
significant promise in antitumor therapy. Cervical cancer (CC) progression is
closely linked to iron regulation and oxidative stress. Existing research has
investigated the role of ferroptosis in CC. Ferroptosis could open up a new
avenue of research for treating CC. This review will describe the factors and
pathways and the research basis of ferroptosis, which is closely related to CC.
Furthermore, the review may provide potential future directions for CC research,
and we believe that more studies concerning the therapeutic implications of
ferroptosis in CC will come to notice.
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Introduction

Cervical cancer (CC) is one of the most common gynecological tumors worldwide, and
311,000 women died of cervical cancer in 2018 (Bray et al., 2018). Based on the clinical stage
and pathological risk factors, surgery or a combination of chemotherapy and radiation
therapy is commonly used to treat CC (Koh et al., 2019). Patients with advanced-stage CC
have a poor prognosis with a low 5-year mortality rate of only 17% (Pfaendler and Tewari,
2016). However, cisplatin-based first-line chemotherapy has shown little or no response
(Monk et al., 2009). Significant adverse effects and narrow therapeutic windows limit the use
of systemic chemotherapy. The FDA has approved atezolizumab, pembrolizumab,
bleomycin sulfate, and topotecan hydrochloric acid for patients with metastatic or
recurrent CC. The standard first-line therapy for CC is platinum-based chemotherapy
with bevacizumab (Rallis et al., 2021); non-etheless, the failure of this treatment indicates a
high likelihood of subsequent treatment failure. Therefore, it is necessary to develop novel
therapeutics for the treatment of CC.

High-risk human papillomavirus (hrHPV) infection, age, smoking, and childbirth are
important risk factors for CC (Gaffney et al., 2018). Among all these risk factors, persistent
hrHPV infection appears to be the main risk factor responsible for the carcinogenesis and
progression of CC (Crosbie et al., 2013). HPV16 is the most common HPV subtype found in
CC, causing more than 50% of all cervical cancer cases (Jiang et al., 2018). hrHPV can cause
cancer by expressing multiple oncoproteins, including E6 and E7 proteins, which induce
carcinogenesis and malignant transformation of cervical epithelial cells (Taghizadeh et al.,
2019). HrHPV infiltrates the cervical epithelium and integrates into the host genome,
inactivating tumor suppressor genes and activating oncogenes. HPV oncoproteins E6 and
E7 regulate the function of several tumor-related proteins, including EGFR family members,
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p53, and retinoblastoma protein (pRb). HPV oncoproteins also
affect the function of various cellular organelles, including
mitochondria (Cruz-Gregorio et al., 2019; Cruz-Gregorio et al.,
2020). A study has found that HPV infection can induce chronic
oxidative stress by promoting the production of reactive oxygen
species (ROS) in the tissue microenvironment in patients with CC
(Banerjee et al., 2019), which regulates different cellular signaling
pathways (Yeo-Teh et al., 2018; Cruz-Gregorio and Aranda-Rivera,
2021) and cellular processes, such as autophagy (Aranda-Rivera
et al., 2021) and apoptosis (Jiang and Yue, 2014). The concept of
ferroptosis has been recently introduced as an iron-dependent form
of oxidative cell death, and ferroptosis is distinct from other known
forms of cell deathmodalities. Ferroptosis primarily occurs in cancer
cells and neurons and contributes to the progression of many
diseases (Dixon et al., 2012). Ferroptosis was observed in
hrHPV-infected squamous intraepithelial lesions, indicating that
it is likely to be associated with the development of CC. Cancer cells
are more iron-dependent for growth and more sensitive to the iron
deficiency than non-cancer cells. Ferroptosis is first reported in
ovarian cancer (Wang et al., 2021a), which is another well-known
gynecologic malignancy. Ferroptosis has also been reported in liver
cancer (Yang et al., 2020), glioma (Zhuo et al., 2020), osteosarcoma
(Liu and Wang, 2019), and renal cell carcinoma (Markowitsch et al.,
2020); however, the pathogenic mechanism of ferroptosis in the
progression of CC is poorly understood and needs further
exploration.

Potential mechanism of iron death and
iron homeostasis in cervical cancer

Iron metabolism plays a vital role in the development of CC. A
meta-analysis showed that Chinese patients with CC exhibited lower
serum iron levels suggesting that higher serum iron levels may play a
protective role in CC (Chen et al., 2020). The study by Braun et al.,
on the other hand, demonstrated that iron deficiency has profound
antiviral and antiproliferative effects on HPV-positive cancer cells.
The internal reason may be that tumor cells typically reprogram
various cellular processes that ultimately lead to enhanced iron
influx and reduced iron efflux, and iron ions enter the cells and the
serum concentration of iron ions in the extracellular fluid decreases.
They proposed that iron chelators, such as CPX, function as HPV
inhibitors, pro-senescence agents, and pro-apoptotic agents in both
normoxia and hypoxia environments. The study also demonstrated
the therapeutic potential of iron chelators in cancer therapy (Braun
et al., 2020). Iron is essential in many physiological processes and an
essential component of hemoglobin; therefore, iron is required for
oxygen transport in the body (Paul et al., 2017). Transferrin receptor
1 (TfR1) and transferrin (TF) are well-known cellular regulators of
iron transport, and they control intracellular iron levels by
transporting Fe3+ into the cell (Qian et al., 2002). Nan et al. first
reported that TfR1 regulates the expression of many genes at the
transcriptional and post-transcriptional levels. The results suggest
that TfR1 is involved in the progression of CC by affecting the
expression and alternative splicing (AS) of several genes involved
in cancer-related pathways (Huang et al., 2022), but whether
these pathways are related to ferroptosis has not been elucidated
so far.

Although most of the intracellular iron is stored in ferritin, there
is still a small cytosolic pool of weakly bound iron available for a
variety of interactions with other molecules in the cell; the catalytic
activity of weakly bound iron (Fe2+) is almost unlimited since Fe2+

can capture electrons to form peroxides (Dev and Babitt, 2017). These
ferrous ions (Fe2+) are called labile iron pool (LIP) (Espósito et al., 2002;
Petrat et al., 2002). Fe2+ is a metal ion with a high redox potential. It is
the most important catalyst in the lipid peroxidation chain reaction, but
it can also generate free radicals from hydrogen peroxide via the Fenton
reaction in cells that produce a lot of ROS (Kajarabille and Latunde-
Dada, 2019). Reactive oxygen species (ROS) are a group of molecules
that contain partially reduced oxygen, including peroxide, superoxide,
singlet oxygen, hydroxyl radicals, and free radicals. The dramatic
increase of ROS in cells renders cells more prone to ferroptosis (Lin
et al., 2018; Liang et al., 2019). High iron level in the cytoplasm
significantly promotes ferroptosis susceptibility (Hassannia et al.,
2019). Moreover, ferroptosis also participates in the regulation of
iron homeostasis in the cell.

Genes involved in iron homeostasis (input, output, and storage of
iron ions) have also been shown to modulate the sensitivity to
ferroptosis. Preliminary research has been conducted on the
ferroptosis regulatory factors that are involved in the release of
ferric ions. The overexpression of TF and TfR1 increases iron
uptake, making cells susceptible to ferroptosis; conversely, silencing
TfR1 inhibited erastin-induced ferroptosis. A recent study found that
heat shock protein beta-1 (HSPB1) significantly inhibits ferroptosis by
inhibiting TfR1 expression and thus lowering intracellular iron levels
(Li et al., 2020). Additionally, nitrogen fixation inhibitor 1 (NFS1), a
cysteine desulfurase that mobilizes sulfur from cysteine to synthesize
iron-sulfur clusters, is activated by simultaneously increasing
TfR1 levels and decreasing ferritin levels, causing the iron
starvation response, thereby sensitizing cells to ferroptosis (Alvarez
et al., 2017). In addition, iron is mainly exported through ferroportin 1
(FPN1); accordingly, inhibition of FPN1 resulted in enhanced
ferroptosis (Geng et al., 2018). Furthermore, the major route of
iron release from ferritin is mediated by the incorporation of
ferritin into the lysosomes through nuclear receptor coactivator 4
(NCOA4), and knockdown of NCOA4 decreases the ferritinophagy
leading to the restricted use of free intracellular iron. NCOA4-
mediated ferritin deposition is linked to neurodegeneration, as
shown by Quiles et al. (Brown et al., 2019; Quiles Del Rey and
Mancias, 2019). Ferritin degradation occurs through NCOA4-
mediated ferritinophagy, which induces ferroptosis by releasing
free iron from ferritin (Hou et al., 2016). Hemin was used as an
intracellular iron source to promote ferroptosis in platelets via ROS-
regulated proteasome activity (Naveen Kumar et al., 2019). According
to one study on lung cancer, hemin causes ferroptosis in lung cancer
cells while protecting normal lung cells after exposure to fractionated
doses of ionizing radiation (Chen et al., 2020). Nrf2 is a transcription
factor, and the activation of Nrf2 regulates ironmetabolism; it reduces
cellular iron uptake and limits the production of reactive oxygen
species. Thus, Nrf2 inhibits ferroptosis and promotes the progression
of cancer. In liver cancer cell lines, p62 can bind to Keap1 and disrupts
the interaction of Keap1 with Nrf2 when exposed to compounds
inducing iron toxicity. The disruption of Keap1-Nrf2 interaction by
ferroptosis-inducing compounds leads to the accumulation of Nrf2,
ultimately reducing cancer cell susceptibility to ferroptosis (Sun et al.,
2016). In a study by Xiong et al., hypoxia upregulated KDM4A via
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H3K9me3t, which enhanced HIF1 transcription, activated HRE
sequences (5′-ACGTG-3′) in TfR1, activated DMT1 promoter, and
induced ferroptosis resistance in CC cells (Xiong et al., 2022)
(Figure 1).

ROS and lipid peroxidation in cervical
cancer

The activation of protooncogenes in tumor cells results in the
production of ROS. Furthermore, tumor cells require a large amount
of nutrients and energy to maintain rapid proliferation, and tumor
cells undergo metabolic reprogramming and abnormal
mitochondrial function, all of which contribute to the production
of more ROS. ROS have been shown to transmit proliferative signals
and promote tumor development (Wang et al., 2019). Non-etheless,
high levels of ROS can cause cell death, and tumor cells must
increase their antioxidant activity to maintain cellular redox balance.
One of the most noticeable features of ferroptosis is lipid
peroxidation. Ferroptosis is a regulated cell death mechanism
that results in glutathione (GSH) depletion. Ferroptosis reduces
glutathione peroxidase (GPX4) activity and cellular antioxidant
capacity, resulting in increased lipid peroxidation (Dixon et al.,

2012; Yang et al., 2014). Sanguinarine treatment increased the
generation of reactive oxygen species (ROS), and blocking ROS
production inhibited the induction of both apoptosis and
ferroptosis. PUFA (polyunsaturated fatty acid)-containing
membrane phospholipids are vulnerable to peroxidation under
intracellular environment rich in iron and reactive oxygen
species. This accumulation of lipid peroxides in the cell
membranes eventually destroys membrane integrity leading to
ferroptosis (Stockwell et al., 2017). Ferroptosis induces specific
morphological changes in mitochondria, including mitochondrial
shrinkage, increased membrane density, outer membrane rupture,
cristae shrinkage or disappearance, membrane potential drop, etc.
Erastin-mediated inhibition of intracellular cystine causes the
depletion of intracellular glutathione (GSH), eventually leading to
the inactivation of GPX4 and accumulation of lipid peroxidation,
inducing cell death. RSL3, a well-known inhibitor of GPX4, can also
directly promote these effects, and the regulatory mechanisms of
RSL3 include GSH/GPX4 axis, system Xc-, ACSL4, FSP1, etc.
(Bridges et al., 2012; Yuan et al., 2016; Doll et al., 2019).

Glutathione reductase (GR), also known as Glutathione-
disulfide reductase (GSR), is a key enzyme that catalyzes the
reduction of GSH by glutathione disulfide (GSSG), and the
inhibition of GSR results in increased ROS activity. In a previous

FIGURE 1
Iron metabolism and ferroptosis. Fe2+ storage in LIP (labile iron pool) participates in the Fenton reaction producing ROS and causing ferroptosis.
TfR1, TF, and FPN1 are the major regulators of cellular iron balance on the cell membrane. TF transports Fe3+ into cells by TfR1-mediated endocytosis.
HSP1 inhibits this process by inhibiting TfR1, while NSF1 can increase TfR1 levels. Fe3+ is converted to Fe2+ by STEAP3 and released into the cytoplasm via
DMT1. FPN1 exports and decreases intracellular iron levels. Ferritin stores iron and limits the iron-catalyzed Fenton reaction. NCOA4 binds ferritin
mediating its autophagic degradation in a process called ferritinophagy.
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study of ROS in the development of CC, Xia Y et al. demonstrated
that the expression of GSR level was increased in human CC
tissues, inhibiting the enzymatic activity of GSR and inducing
cell death in CC through a ROS-dependent mechanism.
Furthermore, this study demonstrates the potential of ROS as
an effective antitumor modality for the treatment of CC (Fan
et al., 2020). HPV oncoproteins induce oxidative stress (OS),
which in turn promotes lipid peroxidation and cellular damage
resulting in various types of cell death, including ferroptosis (Di
Domenico et al., 2018). It has been demonstrated that the
pathogenesis of HPV-mediated CC progression is linked to
ferroptosis. Ferroptosis was found in low-grade cervical
squamous intraepithelial lesions (SIL) with hrHPV infection in
a study on the relationship between ferroptosis and HPV-
induced cervical disease. Persistent ferroptosis aided in
developing squamous intraepithelial lesions (SIL), which
resulted in anti-ferroptotic effects. Many other studies have
identified the critical role of lipid peroxidation in the
progression of CC, providing us with new ideas for treating
CC by targeting ferroptosis (Wang et al., 2022).

Role of GPX4-GSH pathway in
ferroptosis of cervical cancer

GPX4 plays a critical role in regulating ferroptosis, and the
inhibition of GPX4 induces ferroptosis. GSH is a substrate of GPX4,
and the deletion of GPX4 induces ferroptosis. Erastin inhibits
ferroptosis by reducing intracellular GSH levels. RSL3 can also
directly bind to GPX4 and inhibits its activity, leading to the
accumulation of intracellular reactive oxygen species and
ferroptosis induction (Yang and Stockwell, 2008). P53, a well-
known tumor suppressor gene, can inhibit the induction of
system Xc-through the classical pathway and enhances
ferroptosis by inhibiting dipeptidyl-peptidase 4 through the non-
canonical pathway (Jiang et al., 2015a). hrHPV protein E6 induces
p53 degradation by activating hTERT (human telomerase reverse
transcriptase), avoiding apoptosis and cell immortalization (Vande
Pol and Klingelhutz, 2013). However, the involvement of ferroptosis
in this process needs to be further verified. In cervical and bladder
cancers, SFRS9 (Serine and arginine-rich splicing factor 9) has been
identified as a protooncogene. SFRC9 can inhibit ferroptosis in

FIGURE 2
Three major regulatory mechanisms of ferroptosis in cervical cancer. ①GPX4 pathway: the SLC7A11-GSH-GPX4 (solute carrier family 7 members
11-glutathione-GPX4) signaling axis accounts for the predominant ferroptosis defense system. Cysteine serves as the rate-limiting precursor for the
biosynthesis of GSH, a critical cofactor for GPX4 to detoxify lipid peroxides, ② SystemXc-: SLC7A11 is a core component of the cystine-glutamate
antiporter system (system Xc-) and mediates the antiport activity of system xc− by importing extracellular cystine and exporting out intracellular
glutamate,③ ACSL4: PUFAs derived from lipid bilayers are metabolized by ACSL4 leading to the production of ROS. Recent research on ferroptosis in CC
has primarily focused on these three protein complexes. The main treatments for ferroptosis-related CC are cisplatin and radiotherapy.
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colorectal cancer (CRC) by binding to GPX4 mRNA, and another
study suggests that inhibiting SFRC9 in CRC may have therapeutic
implications (Wang et al., 2021b). MiR-193a-5p targets
GPX4 mRNA and reduces GPX4 expression in cervical cancer
cells. Circular RNA circACAP2 increases GPX4 expression by
targeting miR-193a-5p, thereby repressing ferroptosis in cervical
cancer during malignant progression by miR-193a-5p/GPX4.
Indeed, limited studies have been conducted to identify the role
of GPX4 in inducing ferroptosis in cervical cancer cells. Further
studies are required to understand the precise role of GPX4 in CC
progression (Figure 2).

Role of system Xc- in ferroptosis of
cervical cancer

System Xc- is an amino acid transporter widely distributed on
the cell membrane and mainly consists of SLC7A11 and SLC3A2.
System Xc- transports cystine into the cytosol in exchange for the
same amount of glutamate being transported out of the cell.
Inhibiting the activity of system Xc- can reduce cystine
absorption and decrease glutathione synthesis, eventually leading
to oxidative damage and ferroptosis (Bridges et al., 2012). ATF4
(activating transcription factor 4) and NRF2 (nuclear factor
erythroid 2-related factor 2) represent two major transcription
factors mediating stress-induced transcription of SLC7A11, and it
has been shown that SLC7A11 drives ferroptosis resistance (Ye et al.,
2014). Erastin and sorafenib induce ferroptosis by inhibiting System
Xc-. Multiple studies suggest that p53 downregulates the expression
of SLC7A11 as demonstrated in polymorphic mutants of p53, and
the mechanism of p53-mediated tumor suppression is governed by
the inhibition of SLC7A11 function, conferring resistance to
ferroptosis (Jiang et al., 2015b; Jennis et al., 2016; Wang et al., 2016).

A recent study of CC found that the circEPSTI1-miR-375/
409–3P/515–5p/SLC7A11 axis influenced CC proliferation via the
competing endogenous RNAs (ceRNA) mechanism and was
involved in ferroptosis. Wu et al. provided experimental
evidence, which revealed that circEPSTI1 might act as a new and

useful prognostic and predictive biomarker for CC (Wu et al., 2021)
(Figure 2).

Role of ACSL4 in ferroptosis of cervical
cancer

ACSL4 (Long-chain acyl-CoA synthetase 4) belongs to the acyl-
CoA synthetase protein family, which catalyzes the covalent
addition of a CoA moiety to fatty acid groups in an ATP-
dependent manner. Mouse embryonic fibroblasts from
ACSL4 knock-out mice undergo ferroptosis in response to RSL3
(RAS-selective lethal 3). Thus, ACSL4 plays a crucial role in iron-
dependent oxidative stress (Yuan et al., 2016). Cortical neurons
(Seiler et al., 2008), fibroblasts (Wortmann et al., 2013), vascular cells
(Wortmann et al., 2013), T cells, and erythroid cells (Canli et al.,
2016) did not survive in the absence of GPX4. ACSL4 and
GPX4 double KO cells, on the other hand, survived and
proliferated normally in cell culture for an extended period of
time, highlighting the critical functional interaction between
GPX4 and ACSL4.

In CC, CircLMO1, a newly identified circRNA, induced
ferroptosis in CC cells by upregulating ACSL4 expression.
Overexpression of miR-4291 or knockdown of ACSL4 reversed
the effect of circLMO1 in facilitating ferroptosis, repressing
proliferation, and decreasing tumor invasion of CC cells (Wu
et al., 2021). Oleanolic acid (OA) promotes ACSL4-dependent
ferroptosis in HeLa cells (Xiaofei et al., 2021) (Figure 2).

Potential applications of ferroptosis in
cervical cancer

Besides surgery, the first-line chemotherapy drugs for CC
currently include cisplatin, paclitaxel, carboplatin, etc. The
second-line chemotherapy drugs include gemcitabine, epirubicin,
etc. Among various anticancer drugs, cisplatin is one of the most
widely used and effective anticancer agent in the treatment of

TABLE 1 Overview of ferroptosis-associated chemotherapeutic agents in CC.

Chemotherapeutic
agents

In vitro In vivo Inhibitors and
inducers of
ferroptosis

Effect

Oxaliplatin Chen et al. (2016) Oxaliplatin-resistant human cervical cancer cell
line, S3

SiHa and S3 tumor xenograft
mouse models Chen et al.
(2016)

Deferoxamine/DFO The synergistic killing
effect

Cisplatin Roh et al. (2016); Guo
et al. (2018)

Human ovarian cancer cell line (A2780 and its
CDDP-resistant variant A2780DDP), HNC cell
lines (AMC-HN3R, -HN4R, and -HN9R), A549,
HCT116 cells

HN9-cisR mouse models
Roh et al. (2016)

Erastin The synergistic killing
effect, enhancing the
anticancer activity

Paclitaxel/PTX Ye et al. (2019) mtp53 HPSCC None RSL3 Enhance the anticancer
activity

Gemcitabine Zhu et al. (2017) PANC1, CFPAC1, MiaPaCa2, Panc2.03, and
Panc02 cells

PANC1 nude mouse model Erastin Enhance sensitivity

Cytarabine, Doxorubicin Zhu
et al. (2017)

HL-60 cells None Erastin Enhance the anticancer
activity
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different types of solid tumors, but unfortunately, repeated platinum
therapy after tumor recurrence is often ineffective. Cisplatin
resistance may develop through the following molecular
mechanisms: increased DNA repair capacity, altered cellular
aggregation of the drug, and cytoplasmic inactivation of the
drugs (Richon et al., 1987; Ferry et al., 2000; Amable, 2016).
These cell death mechanisms are involved in apoptosis, but
whether ferroptosis occurs through similar mechanisms is
unclear. Ferroptosis is a novel cell death mechanism that differs
greatly from traditional apoptosis; thus, targeting ferroptosis may be
an effective therapeutic strategy for overcoming tumor resistance to
cisplatin. Given that elastin induces ferroptosis, combining elastin
(GSH inhibitor) with cisplatin (genotoxic agent) may have a synergistic
effect on cancer therapy (Figure 2). Cisplatin combined with elastin
showed a significant additive effect on antitumor activity in human
ovarian cancer, head, and neck cancer (HNC), lung carcinoma (A549),
and colon carcinoma (HCT116) cell lines, according to Guo et al. and
Roh et al. (Roh et al., 2016; Guo et al., 2018). In oxaliplatin-resistant
human cervical cancer cell lines, a combination treatment of iron
chelator desferal (DFO) and oxaliplatin can overcome oxaliplatin
resistance (Chen et al., 2016); a combination of low-concentration of
PTX and RSL3 synergistically inhibits tumor cell growth by inducing
ferroptosis (Ye et al., 2019); both in vivo and in vitro experiments
confirmed that a combination of gemcitabine and erastin can inhibit the
HSPA5-GPX4 signaling pathway and displays a synergistic antitumor
effect on pancreatic cancer cells. A low concentration of elastin
enhances the sensitivity of HL-60 cells to cytarabine and
doxorubicin (Zhu et al., 2017) (Table 1).

Radiation therapy is another effective modality for the treatment
of CC, but some patients develop resistance to radiation therapy.
Various ferroptosis inducers, such as sorafenib and sulfasalazine,
can act as radiosensitizers by inhibiting SLC7A11 and GPX4 activity.
Lei et al. (Lei et al., 2020) found that radiotherapy can induce tumor
cells to produce a large amount of lipid ROS and ACSL4 leading to
the increased accumulation of lipid peroxides and increased
occurrence of ferroptosis (Figure 2). The study further reported
the activity of SLC7A11 and GPX4 in combination with ferroptosis
inducers to cervical cancer in vitro and in vivo experiments, and
found that tumor cells were considerably more sensitive to
radiotherapy. The study also suggested that suitable ferroptosis
inducers can serve as effective radiosensitizers to improve the
efficacy of radiotherapy on tumor cells.

Conclusion

In other studies investigating the role of ferroptosis in cervical
cancer, Wang et al. show that Cdc25A (cell division cycle 25)
upregulates ErbB2 (epidermal growth factor receptor) level
through dephosphorylation of PKM2, thereby inhibiting
autophagy-dependent ferroptosis in CC cells (Wang et al.,
2021c). Zhao et al. demonstrate that propofol and paclitaxel exert
synergistic anticancer effects on cervical cancer cells (Zhao et al.,
2022). Qi et al. established a four-gene (TFRC. ACACA, SQLE, and
PHKG2) prognostic signature based on ferroptosis related genes
(FRGs), providing new targets for CC involving ferroptosis (Qi et al.,
2021). Xing et al. discovered eight ferroptosis- and immune-related
differentially expressed genes (FI-DEGs) and developed a risk

assessment model to predict outcomes in CESC patients
(Cervical squamous cell carcinoma). Therefore, these eight genes
have the potential to be prognostic and predictive biomarkers for
cancer. Indeed, more research is needed to confirm the findings in
the field of CC (Xing et al., 2021). Jiang et al. established a new predictive
model that integrated 7 lncRNAs related to ferroptosis through analysis,
which improve the predictive value and guided personalized treatment
in patients with CC (Jiang et al., 2022). In the study by Zou et al., the
ferroptosis-related gene PTGS2 turned out to be a key prognostic gene
for an early-stage CC model associated with the immune
microenvironment (Zou et al., 2022). Li et al. established a
ferroptosis score (FerroScore) that was used to predict the sensitivity
to chemotherapy and responses to immunotherapy in patients with CC.
All these methods have a potential application for ferroptosis in CC.

Cancer incidence has been rising in recent years. According to
current research, the ability of cells to avoid apoptosis is the primary
cause of tumor resistance to treatment. Because ferroptosis differs
from apoptosis, it provides a novel therapeutic option for cancer
treatment. Due to the important roles of iron in cellular metabolism
and increased oxidative stress in cervical cancer, it is worth exploring
whether ferroptosis plays an important role in the pathogenesis of
cervical cancer. In addition to the above-mentioned proteins and
non-coding RNAs, several other compounds and proteins also play
important roles in the occurrence of ferroptosis, regulating the
biological characteristics of CC cells. HPV infection is closely
related to the early diagnosis of CC, and HPV infection is also
associated with oxidative stress, which is a key process promoting
cell death by ferroptosis. Therefore, understanding the underlying
mechanism of ferroptosis in the progression of CC may have
implications for early diagnosis of CC.

In addition, the present study demonstrates that ferroptosis
significantly affects the sensitization of tumor cells to
chemoradiotherapy. Depending on the clinical status of CC, many
patients with CC are resistant to traditional treatments. Therefore, as a
newly discovered cell death mechanism, ferroptosis has excellent
research value in antitumor therapy. However, antitumor therapy
for ferroptosis faces numerous challenges. Several studies on the
mechanism of ferroptosis in CC are currently being conducted, but
the clinical application of the ferroptotic pathway in cancer therapy is
very limited. Ferroptosis research in CC is currently ongoing, and the
future application prospects of ferroptosis are limitless.
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The clinical therapeutics of cervical cancer is limited due to the drug resistance
and metastasis of tumor. As a novel target for antitumor therapy, ferroptosis is
deemed to bemore susceptible for those cancer cells with resistance to apoptosis
and chemotherapy. Dihydroartemisinin (DHA), the primary active metabolites of
artemisinin and its derivatives, has exhibited a variety of anticancer properties with
low toxicity. However, the role of DHA and ferroptosis in cervical cancer remained
unclear. Here, we showed that DHA could time-dependently and dose-
dependently inhibit the proliferation of cervical cancer cells, which could be
alleviated by the inhibitors of ferroptosis rather than apoptosis. Further
investigation confirmed that DHA treatment initiated ferroptosis, as evidenced
by the accumulation of reactive oxygen species (ROS), malondialdehyde (MDA)
and liquid peroxidation (LPO) levels and simultaneously depletion of glutathione
peroxidase 4 (GPX4) and glutathione (GSH). Moreover, nuclear receptor
coactivator 4 (NCOA4)-mediated ferritinophagy was also induced by DHA
leading to subsequent increases of intracellular labile iron pool (LIP),
exacerbated the Fenton reaction resulting in excessive ROS production, and
enhanced cervical cancer ferroptosis. Among them, we unexpectedly found
that heme oxygenase-1 (HO-1) played an antioxidant role in DHA-induced cell
death. In addition, the results of synergy analysis showed that the combination of
DHA and doxorubicin (DOX) emerged a highly synergistic lethal effect for cervical
cancer cells, which was related also to ferroptosis. Overall, our data revealed the
molecular mechanisms that DHA triggered ferritinophagy-dependent ferroptosis
and sensitized to DOX in cervical cancer, which may provide novel avenues for
future therapy development.
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cervical cancer, dihydroartemisinin, ferroptosis, ferritinophagy, heme oxygenase-1,
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GRAPHICAL ABSTRACT

1 Introduction

Cervical cancer is one of the most common and lethal
gynecological malignancy, affecting millions of women worldwide
(Arbyn et al., 2020). Despite the vigorous promotion of HPV
vaccine and the continuous improvement of screening technology, it
is still the leading cause of death in women in underdeveloped countries
or areas (Sung et al., 2021). And because of China’s large population,
women’s death from cervical cancer accounts for 12% of women’s death
worldwide. Even more alarming, its incidence rate is rising, and the
incidence age is getting younger (Zhou et al., 2016; Xia et al., 2018). At
present, the combined chemotherapy with targeted therapy is a
standard treatment for cervical cancer, which significantly improves
the survival of patients comparedwith chemotherapy alone (Hill, 2020).
So far, the clinical outcomes of cervical cancer patients in early stages
have significantly improved by standard treatments. However, due to
the drug resistance and metastasis of tumor, those patients at an
advanced stage or recurrent cervical cancer have a poor prognosis
with limited treatment options and the therapy remains far from
satisfactory (Abu-Rustum et al., 2020; Zhang et al., 2021). As a
result, nowadays, the demand for new therapies with more secure,
effective and feasible is becoming more and more urgent.

Ferroptosis is a new form of programmed cell death that
characterized by an iron-dependent accumulation of lethal lipid
peroxidation (LPO) (Dixon et al., 2012; Stockwell, 2022). And it is
different from apoptosis, necrosis, and autophagy at morphological,
biochemical, and genetical levels. From the perspective of
antioxidant, ferroptosis is caused by a redox imbalance between
the production of oxidants and antioxidants, which is driven by the
abnormal expression and activity of multiple redox-active enzymes
that produce or detoxify free radicals and lipid oxidation products
(Tang et al., 2021a; Liu and Gu, 2022). Emerging evidences have
shown that cancer cells are sensitive to ferroptosis and targeting
ferroptosis has great potential to be an effective strategy and

approach for cancer therapy (Hassannia et al., 2019; Chen et al.,
2022). It has been reported that ferroptosis inducer RAS-selective
lethal small molecule 3 (RSL3) could enhance the antitumor effect of
cisplatin via the inhibition of glutathione peroxidase 4 (GPX4)
(Zhang et al., 2020a). Noteworthy, activation of certain
autophagy pathways can promote ferroptosis, which is called
autophagy-dependent ferroptotic cell death, such as nuclear
receptor coactivator 4 (NCOA4)-facilitated ferritinophagy, beclin
1 (BECN1)-mediated glutamate antiporter (system Xc−) inhibition
(Zhou et al., 2020). In cervical cancer cells, the anti-cancer drug
sorafenib has been shown to induce autophagy-dependent
ferroptosis through the Cdc25A/PKM2/ErbB2 axis (Wang et al.,
2021a). It has also been found that non-coding RNAs can affect the
occurrence of ferroptosis in cervical cancer cells (Wu et al., 2021; Liu
et al., 2022). And the bioinformatics analysis about ferroptosis-
related genes suggests that targeting ferroptosis may represent a
promising approach for the treatment in cervical cancer (Qi et al.,
2021). Although the roles of ferroptosis in cervical cancer are remain
rarely explored and unclear, it may be a potential therapeutic
direction.

Dihydroartemisinin (DHA), first-generation derivative of
artemisinin and also the primary active metabolites of
artemisinin and its derivatives, is an effective antimalarial drug
with low toxicity (Yu et al., 2021). Beyond the widely
acknowledged anti-malarial effect, DHA has shown a variety of
anticancer properties including apoptosis, autophagy and
ferroptosis in different cancers, as well as enhances the efficacy of
chemotherapy and targeted therapy (Dai et al., 2021; Li et al., 2021).
Previous studies have confirmed that DHA has a potent lethal effect
in cervical cancer cells (Lu et al., 2020), and can sensitize HeLa cells
to doxorubicin (DOX) -induced apoptosis (Tai et al., 2016).
Meanwhile, a clinical study also found that Artenimol-R (the
succinate ester of DHA) treatment in patients with advanced
cervical cancer showed an improvement of the clinical symptoms
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and a good tolerability (Jansen et al., 2011). Nevertheless, there is
little literature to confirm the existence and importance of
ferroptosis in the DHA-induced cervical cancer cell death. Thus,
in the present study, we investigated the effect and mechanism of
DHA on the proliferation and ferroptosis of cervical cancer cells, as
well as the sensitization effect on DOX.

2 Materials and methods

2.1 Reagent and antibodies

Dihydroartemisinin (DHA, D140839, purity: ≥98%), hemin
(H140872) and chloroquine (CQ, C193834) were purchased from
Aladdin (China). Dimethyl sulfoxide (DMSO, A503039) and ferric
ammonium citrate (FAC, A500061) were got from Sangon Biotech
(China). Deferoxamine (DFO, D9533) and protoporphyrin IX zinc(II)
(ZnPPIX, 282820) were purchased from Sigma-Aldrich (United States).
Z-VAD-FMK (HY-16658B), ferrostatin-1 (Fer-1, HY-100579) and
doxorubicin hydrochloride (DOX, HY-15142) were purchased from
MedChemExpress (United States). And the antibody to ACSL4
(ab155282), GPX4 (ab125066), xCT (ab175186), HO-1 (ab82585),
TfR1 (ab84036), FTH1 (ab65080) and NCOA4 (ab86707) were all
purchased from Abcam (United Kingdom). Anti-β-actin and goat anti-
rabbit IgG H&L were purchased from Bioker (China).

2.2 Cell culture and drug configuration

Human cervical cancer cells HeLa (adenocarcinoma) and SiHa
(squamous cell carcinoma) were purchased from National
Infrastructure of Cell Line Resource (NICR, China) and then
were maintained in RPMI-1640 and MEM medium (Gibco,
United States), respectively, supplemented with 10% FBS (Gibco,
United States) and 100 IU/mL penicillin and 100 mug/mL
streptomycin (Sangon, China) at a 37°C incubator with 5% CO2.
DHA was prepared as a DMSO stocking solution with a
concentration of 200 mM. After sub packaging, it was frozen
at −20°C.

2.3 Cell viability assay

DHA cytotoxicity was detected by the Cell Counting Kit-8
(CCK-8; BBI, China). 5 × 103 cells were seeded into each well of
the 96-well plate. Then various concentrations of DHA (0, 5, 10, 20,
40 and 80 μM) were added to the plates and followed by another 24,
or 48-h incubation in a 37°C, 5% CO2 incubator. Then 10 μL CCK-8
solution was added to each well and further 1 h’s incubation was
carried out. The optical density (OD) was measured at 450 nm, and
then the cell viability was calculated.

2.4 Determination of intracellular reactive
oxygen species (ROS)

The fluorescent probe DCFH-DA (Sigma-Aldrich,
United States) was used to evaluate the intracellular ROS levels.

The methods used are according to the manufacturer’s instructions.
Cells were inoculated into 6-well plates at 2 × 105 cells/well and
grown overnight, then incubated with different concentration of
DHA for 24 h. Thereafter, the cells were stained with DCFH-DA
probe at 37°C for 30 min in the dark. After washing with serum-free
medium for three times, the fluorescence of cells was photographed
under fluorescence inverted microscope Axio Observer D1 (ZEISS,
Germany) and detected by the flow cytometer BD FACS Canto II
(BD Biosciences, United States).

2.5 Detection of intracellular
malondialdehyde (MDA)

Intracellular MDA levels in the cells were measured using micro
MDA assay kit (Solarbio, China) following the instruction by the
manufacturer. Briefly, the cells of each group were collected and
disrupted by an ultrasonic cell pulverize. The cell suspension was
centrifuged and then 100 μL sample was added for the
measurement, followed by the addition of 400 μL of the MDA
test solution. After mixing and reacting in a 100°C-water bath for
30 min, the mixture was cooled to room temperature and
centrifuged. Next the supernatant was taken out and measured
absorbance at 450, 532, and 600 nm wavelength with a full-
wavelength microplate reader (Thermo, United States).

2.6 Redox status determination

2 × 105 cells were seeded into each well of the 6-well plate and
intervened with 0, 40 and 80 μMDHA for 24 h. To assess the status
of antioxidant, the collected cells were measured using the
commercial assay kits of superoxide dismutase (SOD; Sangon
Biotech, China), catalase (CAT; Sangon Biotech, China), reduced
glutathione (GSH; Jiancheng, China) and glutathione peroxidase
(GPx; Beyotime, China) strictly following the manufacturer’s
instructions.

2.7 Lipid peroxidation (LPO) assay

LPO was investigated by BODIPY™ 581/591 C11 dye (Thermo,
United States), which shifts fluorescence properties from red signals
to green signals upon oxidation (Yi et al., 2022). Briefly, cells were
seeded in 6-well plates at 2 × 105 cells/well and grown overnight.
After treatments, cells were loaded with 2.5 μM BODIPY™ 581/
591 C11 at 37°C for 30 min in the dark. After washing with serum-
free medium for three times, the fluorescence of cells was
photographed under fluorescence inverted microscope Axio
Observer D1 (ZEISS, Germany) and detected by the flow
cytometer BD FACS Canto II (BD Biosciences, United States).

2.8 RNA extraction and quantitative PCR
(qPCR)

RNA was extracted and quantified according to the previous
operation methods of our research group (Du et al., 2022). Total
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RNA was extracted from cells using TRIzol reagent (Takara, Japan)
according to the manufacturer’s introduction and then converted to
cDNA using a PrimeScript™ RT reagent kit (Takara, Japan; 37°C for
15 min, 85°C for 5 s). The qPCR assay was performed with TB
Green® Premix Ex Taq™ II (Takara, Japan; 95°C for 30 s, 1 cycle; 95°C
for 5 s, 60°C for 34 s, 40 cycles) on the 7,500 Real-Time PCR system
(Applied Biosystems, United States), and β-actin was used as an
internal control. The primer sequences were listed in Table 1 and the
relative expression levels were determined using the 2−ΔΔCt method.

2.9 Western blotting analysis

The cells were harvested and whole cell lysates were extracted
with RIPA buffer (Solarbio, China) supplemented with protease
inhibitor. Protein concentrations were determined using the
BCA protein assay (Sangon, China). After quantification,
equal amounts of proteins were subjected to SDS-
polyacrylamide gel electrophoresis and transferred to the
nitrocellulose membrane. Blocking with 5% non-fat dry milk
at room temperature for 1 h, then the membrane was incubated
with primary (4°C overnight) and secondary antibodies (37°C for
1 h). Then protein blots were incubated with ECL luminescence
reagent (Sangon, China) and visualized using Tanon 5,200 multi
System (Tannon, China).

2.10 Measurement of intracellular labile iron
pool (LIP)

Intracellular LIP was measured by BioTracker 575 Red Fe2+ Dye
(Sigma-Aldrich, United States; also named FeRhoNox™-1), an
activatable fluorescent probe that specifically detects labile ferrous
ion in living cells (Niwa et al., 2014). In brief, firstly, the cells were
exposed to 5 μM FeRhoNox™-1 for 37°C, 5% CO2 for 30 min after
twice PBS washing. Then rinsed the cells with PBS three times and
observed cells by fluorescence inverted microscope Axio Observer
D1 (ZEISS, Germany). The stained cells were quantified by the flow
cytometer BD FACSCanto II (BD Biosciences, United States).

2.11 Drug combination test and synergy
analysis

HeLa and SiHa cells were treated with different concentrations
of DOX (0, 0.1, 0.2, 0.5, 1 and 2 μM) with or without DHA (0, 5, 10,
20 and 40 μM). After 48 h of treatment, the cell viability of HeLa and
SiHa cells was measured. The online SynergyFinder software
(https://synergyfinder.fimm.fi) was used to calculate drug synergy
scoring by four separate reference models (Zero Interaction Potency
(ZIP) model, Bliss Independence model, Loewe Additivity model,
and Highest Single Agent (HSA) model) (Ianevski et al., 2022).
Based on these reference models, if 3 or more models agreed, the
combination was synergistic. And the synergy score value > 10 is
considered synergistic, between −10 and +10 is considered additive,
and a synergy score <−10 is considered antagonistic (Neal et al.,
2021).

2.12 Statistical analysis

Data analysis was performed using SPSS 24.0. All experimental
data were represented as mean ± standard deviation, and the
differences between which were analyzed for significance using
independent sample t-test or one-way analysis of variance
(ANOVA) for multivariate analysis. Differences with p <
0.05 were deemed statistically significant.

3 Results

3.1 DHA inhibits the proliferation of cervical
cancer cells by inducing ROS

DHA is an endoperoxide sesquiterpene lactone and can
generate cytotoxic radical species via cleavage of the
endoperoxide bond (Figure 1A). To investigate the effect of
DHA on the proliferation of cervical cancer cells and to select
the appropriate intervening time and concentration, cytotoxicity
assays were performed with CCK-8 kit. As shown in Figure 1B, the

TABLE 1 The primer sequences.

Target gene Primer sequence (5′to 3′) Size (bp)

Name Id Forward Reverse

ACSL4 2,182 ATACCTGGACTGGGACCGAA TGCTGGACTGGTCAGAGAGT 145

TfR1 7,037 TGGAGACTTTGGATCGGTTGGTG CAGTGGCTGGCAGAAACCTTG 138

NCOA4 8031 GGGCAACCTCAGCCAGTTAT CAAACTGCAGGGAGGCCATA 139

FTH1 2,495 CCAGAACTACCACCAGGACTC CAAAGCCACATCATCGCGG 118

GPX4 2,879 CAGTGAGGCAAGACCGAAGT CCGAACTGGTTACACGGGAA 104

xCT 23657 CATCTCTCCTAAGGGCGTGC TAGTGACAGGACCCCACACA 85

H O -1 3162 CCGCATGAACTCCCTGGAGATG CTGGATGTTGAGCAGGAACGCAG 85

β-actin 60 CCTGGCACCCAGCACAAT GGGCCGGACTCGTCATAC 114

ACSL4: acyl-CoA, synthetase long-chain family member 4;NCOA4: nuclear receptor coactivator 4; FTH1: ferritin heavy chain 1;GPX4: glutathione peroxidase 4;HO -1: heme oxygenase 1; xCT:

cystine-glutamate antiporter; TfR1: transferrin receptor 1.
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cell viability of HeLa and SiHa cells were significantly inhibited by
DHA treatment, which showed a concentration-dependent and
time-dependent manner. At concentration of 80 μM DHA, HeLa
cells were almost completely killed (inhibition reached 95.36%),
while SiHa cells survived less than 40% after 48 h of DHA
intervention. To further evaluate the effect of DHA on cell
death, cell morphology was observed. The results suggested
DHA greatly increased the number of dead cells, and its
inhibitory effect on HeLa cells was much greater than that of
SiHa cells (Figure 1C). Based on these data, we carried out the
subsequent experiments with the concentration of 40 and 80 μM to
further elaborate the detailed mechanism of DHA. Besides, DCHF-
DA staining showed dramatical increase in fluorescence intensity
along with the concentration of DHA (Figures 1D,E) in both
cervical cancer cells, reflecting intracellular ROS excessive
accumulation. These results indicated that the inhibitory effect

of DHA on cervical cancer cell proliferation was related to the
induction and accumulation of ROS.

3.2 DHA enhances oxidative stress in cervical
cancer cells

Higher levels of ROS have been found to promote anticancer
signaling by initiating oxidative stress-induced cancer cell death
(Arfin et al., 2021). To determine the effect of DHA on oxidative
stress in cervical cancer cells, the indexes of oxidative stress
including MDA, SOD, CAT and LPO were examined. First, after
24 h of DHA intervention, MDA, one of the most important
products of membrane lipid peroxidation, was also prominently
increased in both cervical cancer cells (Figure 2A). On the contrary,
SOD and CAT activities, two kinds of most important antioxidants,

FIGURE 1
DHA inhibits the proliferation of cervical cancer cells by inducing ROS. (A)DHA structure. (B) Effects of various concentrations of DHA for 24 or 48 h
on the cell viability of HeLa and SiHa cells. (C)Morphological changes of HeLa and SiHa cells after 24 h DHA treatment (100×; Scale bar: 200 µm). (D) The
images and (E) fluorescence intensity of intracellular ROS stained by DCFH-DA (100×; Scale bar: 200 µm). DHA: dihydroartemisinin; Rel. relative; ROS:
reactive oxygen species. (*, p < 0.05; **, p < 0.01; ***, p < 0.001 compared with control group; ns: no significance.).
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were significantly decreased in DHA groups of HeLa and SiHa cells
and the ratios of decrease were positively proportional to the
concentration (Figures 2B,C). Next, the changes of LPO after
DHA intervention were detected with the specific fluorescent
probe BODIPY™ 581/591 C11. C11-BODIPY staining showed
that the levels of oxC11-BODIPY (oxidized) rose significantly in
DHA groups compared with control group in HeLa and SiHa cells
(Figures 2D,E), representing DHA exacerbated LPO levels. These
assays suggested that DHA enhanced oxidative stress in cervical
cancer cells.

3.3 DHA triggers cervical cancer cells
ferroptosis

Excessive accumulation of LPO is one of the characteristic
features of ferroptosis (Dixon et al., 2012). To further determine

whether ferroptosis contributed to the cell death induced by DHA,
apoptosis inhibitor Z-VAD-FMK (50 μM), ferroptosis inhibitors
Fer-1 (5 μM) or iron chelator DFO (50 μM) was co-treated with
80 μM DHA for 24 h. From Figure 3A, it was obvious that the
inhibition effect induced by DHA was alleviated by the addition of
Fer-1, and even completely reversed in adding DFO group, while
Z-VAD-FMK could not reverse DHA-induced cell death in HeLa
and SiHa cells. Correspondingly, ferroptosis inhibitors also
significantly reduced the high level of MDA induced by DHA,
but apoptosis inhibitor had no effect (Figure 3B). These results
indicated that ferroptosis may as the central method that
contributed to DHA-caused cell death.

To further verify the occurrence of ferroptosis, next we detected
the expression of ferroptosis related genes. The detection revealed
that, compared with control group, the mRNA and protein
expression of gene GPX4 were both downregulated in a
concentration-dependent manner after 24 h of DHA treatment in

FIGURE 2
DHA enhances oxidative stress in cervical cancer cells. Levels of (A)MDA, (B) SOD and (C) CAT in HeLa and SiHa cells treated with 0, 40 and 80 μM
DHA for 24 h. (D) The images and (E) fluorescence intensity of intracellular LPO stained by BODIPY™ 581/591 C11 (100×; Scale bar: 200 µm). C11-BODIPY
represents the level of staining with the probe (unoxidized), while oxC11-BODIPY (oxidized) represents the level of LPO. DHA: dihydroartemisinin; Rel.
relative; MDA: malondialdehyde; SOD: superoxide dismutase; CAT: catalase; LPO: liquid peroxidation. (*, p < 0.05; **, p < 0.01; ***, p <
0.001 compared with control group; ns: no significance.).
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both cell lines (Figures 3C,D), while the expression of geneAcyl-CoA
synthetase long-chain family member 4 (ACSL4) were opposite
(Figures 3C,D). In SiHa cells, the transcriptional and protein
levels of cystine-glutamate antiporter (xCT) gene were both
significantly elevated after DHA intervention, even the highest
upregulated in mRNA level more than 20 times (Figures 3C,D).
Although xCT was also highly expressed at mRNA level in HeLa
cells (Figure 3C), the protein change was inconspicuous (Figure 3D).
In the meantime, GSH and GPx, which exert anti-ferroptosis effects,
also decreased after DHA treatment in a concentration-dependent
manner in both cell lines (Figures 3E,F). Altogether, these results
confirmed that DHA triggered cervical cancer cells ferroptosis,
which was related to GPX4 depletion.

3.4 DHA induces ferritinophagy-dependent
ferroptosis in cervical cancer cells

Since iron is an important part of ferroptosis (Stockwell, 2022),
and combined with previous results that the iron chelator DFO was

more efficient than Fer-1 in inhibiting DHA-induced cell death, we
speculated that iron may play a momentous role in DHA-induced
ferroptosis. So, the impact of DHA treatment on intracellular LIP
was evaluated. As shown in Figures 4A,B, the fluorescence intensities
of DHA groups reinforced remarkably compared with control group
in cervical cancer cells, suggesting that DHA significantly increased
the levels of LIP, which could promote cell ferroptosis (Lu et al.,
2021).

Then, we further examined the effect of DHA on iron
metabolism. The data from qPCR showed that DHA
intervention elevated the mRNA expression of transferrin
receptor 1 (TFR1), NCOA4 and ferritin heavy chain 1 (FTH1) in
both cell lines (Figure 4C). And at the protein level, the trend of
TfR1 was consistent with mRNA (Figure 4D). However, the
protein expression of FTH1 and NCOA4 displayed the opposite
trend with mRNA (Figure 4D). It is noteworthy that
FTH1 degradation exhibited a synergistic effect with
NCOA4 depletion according to Western blotting results
(Figure 4D), which may be caused by the delivery of ferritin by
NCOA4 to lysosomes and subsequent the ferritinophagy occurred.

FIGURE 3
DHA triggers cervical cancer cells ferroptosis. Effects on (A) cell viability and (B)MDA level of HeLa and SiHa cells after 24 h of DHA treatment with or
without Z-VAD-FMK, Fer-1 or DFO. (C) The transcriptional levels of ACSL4, GPX4 and xCT after DHA treatment. (D) The protein expressions of ACSL4,
GPX4 and xCT after DHA treatment, compared with β-actin. Levels of (E) GSH and (F) GPx in HeLa and SiHa cells treated with 0, 40 and 80 μM DHA for
24 h. Rel. relative; DHA: dihydroartemisinin; MDA: malondialdehyde; Fer-1: ferrostatin-1; DFO: deferoxamine; ACSL4: acyl-CoA synthetase long-
chain family member 4; GPX4: glutathione peroxidase 4; xCT: cystine-glutamate antiporter; GSH: glutathione; GPx: glutathione peroxidase. (*, p < 0.05;
**, p < 0.01; ***, p < 0.001 compared with control group; #, p < 0.05; ##, p < 0.01; ###, p < 0.001 compared with DHA group; ns: no significance.).

Frontiers in Molecular Biosciences frontiersin.org07

Shi et al. 10.3389/fmolb.2023.1156062

74

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1156062


Since the ferritin degradation was via autophagy, autophagy
inhibitor CQ (25 μM) was co-cultured with 80 μM DHA for
24 h to verify whether autophagy contributes to DHA-induced
FTH1 degradation and ferroptosis. As expected, CQ addition
could significantly inhibit the degradation of FTH1 and the
depletion of NCOA4 (Figure 4F), and reduce LIP levels
(Figure 4E). At the same time, the inhibitory effect of DHA on
HeLa and SiHa cells also alleviated by CQ (Figure 4G),
accompanied by a decrease in GSH consumption (Figure 4H).

All these data indicated that ferritinophagy-dependent ferroptosis
contribute to DHA-induced cell death.

3.5 HO-1 against DHA-induced ferroptosis in
cervical cancer cells

In addition, the extremely high expression of heme
oxygenase-1 (HO-1) after DHA treatment, especially in

FIGURE 4
DHA induces ferritinophagy-dependent ferroptosis in cervical cancer cells. (A) The images and (B) fluorescence intensity of intracellular ferrous ion
stained by FeRhoNox™-1 (100×; Scale bar: 200 µm). (C) The transcriptional levels of TfR1, NCOA4 and FTH1 after DHA treatment. (D) The protein
expressions of TfR1, NCOA4 and FTH1 after DHA treatment, compared with β-actin. Effects on (E) intracellular ferrous ion level, (F) FTH1 and
NCOA4 protein expressions, (G) cell viability and (H) GSH level of HeLa and SiHa cells after 24 h of DHA treatment with or without CQ. DHA:
dihydroartemisinin; Rel. relative; TfR1: transferrin receptor 1; NCOA4: nuclear receptor coactivator 4; FTH1: ferritin heavy chain 1; CQ: chloroquine; GSH:
glutathione. (*, p < 0.05; **, p < 0.01; ***, p < 0.001 comparedwith control group; #, p < 0.05; ##, p < 0.01; ###, p < 0.001 comparedwith DHA group; ns:
no significance.).
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80 μM DHA group (Figures 5A,B), attracted our attention.
Considering the dual function of HO-1 (Ryter, 2021), its
inhibitor ZnPPIX and agonists hemin were used to investigate
its role in DHA-induced ferroptosis. Confusingly, incubation of
DHA with either ZnPPIX (10 μM) or hemin (25 μM) both
significantly increased the cell growth inhibition rates in
cervical cancer cells (Figure 5C), along with higher levels of
LPO and MDA (Figures 5D,F). And the protein level of
GPX4 were further suppressed in both combination groups
(Figure 5E). Given the critical role of iron in ferroptosis, we
surmised that the boosting anticancer action of ZnPPIX with
DHA should be through inhibition of HO-1, while the
unexpected performance of hemin may not be related to HO-
1 but mediated by iron. To address this question, FAC, a
commonly used mono-iron compound, was chosen as a
control to explore the effect of iron on DHA. At the same

concentrations, we compared the consequences of incubating
DHA with hemin or FAC. As Figure 5G shown, the cell viability
showed no significant difference between DHA + hemin group
and DHA + FAC group in both cell lines, hinting that iron rather
than HO-1 was the dominant factor for hemin to increase DHA
inhibitory effect on cervical cancer cells. Thus, these results
suggested that HO-1 may play a role in resisting ferroptosis in
DHA-induced cervical cancer cell death.

3.6 DHA sensitizes cervical cancer to DOX-
induced cell death

SynergyFinder is a web-application for interactive analysis and
visualization of multi-drug combination response data (Ianevski
et al., 2022). In HeLa cells, synergy scoring of treatment with DHA

FIGURE 5
HO-1 against DHA-induced ferroptosis in cervical cancer cells. (A) The transcriptional level and (B) protein expression of HO-1 of HeLa and SiHa cells
after 24 h of treatment with DHA. Effects on (C) cell viability, (D) LPO level, (E)GPX4 protein expression and (F)MDA level of HeLa and SiHa cells after 24 h
of DHA treatment with or without ZnPPIX or hemin. (G) The cell viability of HeLa and SiHa cells treated with DHA supplemented Hemin or FAC. Rel.
relative; DHA: dihydroartemisinin; HO-1: heme oxygenase-1; ZnPPIX: protoporphyrin IX zinc(II); LPO: liquid peroxidation; GPX4: glutathione
peroxidase 4; MDA: malondialdehyde. (*, p < 0.05; **, p < 0.01; ***, p < 0.001 compared with control group; #, p < 0.05; ##, p < 0.01; ###, p <
0.001 compared with DHA group; ns: no significance.).
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and DOX calculated by four separate reference models were all >10,
which was considered strongly synergistic between DHA and DOX.
And except Loewe Additivity model, the other three reference
models all revealed highly synergistic effect between DHA and
DOX in inhibiting SiHa cell proliferation (synergy scores >10).
Under the previous rule, we also expected this to be synergistic. As
shown in Figures 6A,B, the white rectangle indicates the
concentrations encompassing the region of the maximum
synergistic area. The data indicated that 10 μM for DHA and
0.2 μM for DOX were the lowest concentrations encompassing
the region of highest synergy, which were selected as the best-
combined concentration for DHA and DOX. Therefore, this
synergistic combination of DHA and DOX was used in our
following experiments. After 24 h of treatment, it could be seen
that, compared with DOX group, the level of MDA in DHA + DOX
group of HeLa and SiHa cells were increased obviously, while the
level of GSHwere significantly lower (Figures 6C,D). In addition, the
inhibition effect induced by DHA + DOX could also be alleviated by
Fer-1 (Figure 6E). The results indicated that the synergistic lethal
effect of DHA with DOX in cervical cancer was also related to
ferroptosis.

4 Discussion

Cervical cancer is still one of the most common and lethal
gynecological malignancy and the clinical therapeutics is limited due
to the drug resistance and metastasis of tumor, seriously threating
women health (Arbyn et al., 2020; Sung et al., 2021). Therefore, it is
imperative and prevalent to explore more efficient and safer therapeutic
targets and therapies. As mentioned previously, cancer cells are more
susceptible to ferroptosis (Chen et al., 2022). The most likely reason to
explain this phenomenon is that the rapid growth and metabolism lead
to the intense iron demand (Torti and Torti, 2013) and high levels of
intracellular ROS (Dixon and Stockwell, 2014) in cancer cells.
Furthermore, encouragingly, researchers have found that the cancer
cells with resistance to apoptosis and chemotherapy are also exquisitely
susceptible to ferroptosis (Hangauer et al., 2017; Tsoi et al., 2018), which
further emphasize the prospect of ferroptosis as a novel target for
antitumor therapy. In addition, NCOA4-mediated ferritinophagy can
enhance ferroptosis by inducing the degradation of ferritin and
increasing LIP (Zhou et al., 2020; Yu et al., 2022). In recent years,
the role of ferroptosis in cervical carcinogenesis, progression and
immunity has been gradually concerned (Qi et al., 2021; Yang et al.,

FIGURE 6
DHA sensitizes cervical cancer to DOX-induced cell death. (A, B) Heatmaps of drug combination responses. Synergy score >10 is considered
synergistic, between −10 and +10 is considered additive, <−10 is considered antagonistic. The gradation of the red regions indicates the intensity of
synergism. The white rectangle indicates the concentrations encompassing the region of highest synergy. Effects on the levels of (C)MDA and (D)GSH in
HeLa and SiHa cells after 24 h of treatmentwith DOXwith orwithout DHA. (E) Effects of Fer-1 on cell viability of HeLa and SiHa cells treatedwith DOX
and DHA. Rel. relative; DHA: dihydroartemisinin; DOX: doxorubicin; MDA: malondialdehyde; GSH: glutathione; Fer-1: ferrostatin-1. (*, p < 0.05; **, p <
0.01; ***, p < 0.001 compared with control group; #, p < 0.05; ##, p < 0.01; ###, p < 0.001 compared with DOX group).
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2022). Except sorafenib, natural product oleanolic acid inhibited
cervical cancer Hela cell proliferation through modulation of the
ACSL4 ferroptosis signaling pathway (Xiaofei et al., 2021). As a
natural ferroptosis inducer, DHA could react with ferrous ions to
produce cytotoxic ROS and played an important role in inducing
ferroptosis (Lin et al., 2016; Shen et al., 2020). And in the present study,
we reveal the molecular mechanisms that DHA triggered
ferritinophagy-dependent ferroptosis in cervical cancer and
sensitized to DOX, which may provide novel avenues for future
therapy development.

Since structural diversity and biological prevalidation, natural
products are indispensable sources of clinical drug research and
development (Hong et al., 2020; Kim et al., 2021). In the field of
cancer therapy, natural products also show potential anticancer
effects, and its use has facilitated the development of effective and
safer anti-cancer drugs. Currently, a large number of studies have
been reported on natural products to treat cancer and overcome
tumor drug resistance (Zhang et al., 2020b; Dahmardeh Ghalehno
et al., 2022). DHA, a natural anticancer drug, has exhibited a variety
of anticancer properties such as inducing apoptosis or autophagy
and even can reverse drug resistance of certain cancer cell lines and
greatly enhance the anticancer effect in combination with a variety
of chemotherapeutic drugs (Dai et al., 2021). Moreover, no obvious
toxicity in normal cells has been found after DHA treatment,
indicating that DHA is a potential ideal anti-cancer drug (Li
et al., 2021). With the deepening of research, its role in inducing
ferroptosis was gradually discovered (Hong et al., 2020; Kim et al.,
2021). For cervical cancer cells, it is confirmed that DHA has a
potent lethal effect and synergistic effect with chemotherapeutic

drugs (Tai et al., 2016; Tang et al., 2021b), while the self-assembled
DHA nanoparticles are a highly promising delivery system for
targeted cancer treatment (Lu et al., 2020). However, it remains
rarely explored and unclear in cervical cancer about the roles of
DHA for ferroptosis.

At the cellular level, the pathways of iron, amino acids and lipid
metabolism are involved in the initiation and execution of ferroptosis
(Du et al., 2022). As Figure 7 shown, iron, transported into cells by
TfR1, is either stored in ferritin or exported by FPN1. The excess
cellular iron, particularly ferrous iron, can react directly with cellular
oxidants to produce cytotoxic hydroxyl radicals via the Fenton
reaction, which in turn promotes ferroptosis (Dixon and Stockwell,
2014). And the key enzyme of lipid peroxidation ACSL4 plays a role in
responsible for the esterification of coenzyme A to polyunsaturated
fatty acids (Killion et al., 2018). It is considered to be an essential
component for ferroptosis execution, as its renders the cell more
susceptible to ferroptosis (Doll et al., 2017). GPX4 is the only known
GPX that can catalyze toxic lipid hydroperoxides into non-toxic lipid
alcohols under normal physiological conditions, with its substrate
GSH (Ingold et al., 2018). With the System Xc−, GPX4 constitutes the
main cellular pathway to protect cells from undergoing ferroptosis.

Oxidative stress is caused by an imbalance between cellular
oxidants and antioxidants (Arfin et al., 2021). When ferroptosis
occurs, cellular oxidative stress is intensified. So, the oxidative stress
levels were assessed firstly to understand the cellular state. In cervical
cancer cells, DHA treatment aggravated the levels of oxidative stress,
which was manifested by the accumulation of ROS, LPO and MDA,
and the upregulation of ACSL4. And the cell death of cervical cancer
cells caused by DHA, accompanied with depletion of GPX4 and GSH,

FIGURE 7
Schematic depicting DHA-induced ferroptosis in cervical cancer cells. DHA: dihydroartemisinin; GPX4: glutathione peroxidase 4; GSH: glutathione;
GSSG: oxidized glutathione; CoA: coenzyme A; PUFA: polyunsaturated fatty acids; ACSL4: acyl-CoA synthetase long-chain family member 4; PLO: liquid
peroxidation; Fe3+, ferric iron; Fe2+, ferrous iron; TfR1: transferrin receptor 1; Steap3: six transmembrane epithelial antigen of the prostate 3; FT: ferritin;
NCOA4: nuclear receptor coactivator 4; LIP: labile iron pool; FPN1: Ferroportin1; HO-1: heme oxygenase-1.
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could be attenuated by ferroptosis inhibitors. In accordance with these
data, we concluded that DHA triggered ferroptosis, which was related
to GPX4 depletion. Likewise, in glioblastoma and lung cancer cells,
DHA induced ferroptosis by inhibiting xCT/GPX4 axis in different
ways (Yi et al., 2020; Yuan et al., 2020), indicating that the mechanisms
of DHA-induced ferroptosis in various cells were different.
Simultaneously, in HeLa and SiHa cells, the synergistic lethal effect
between DHA and DOX, used as a first-line drug to treat cervical
cancer (Wang et al., 2022), was related to ferroptosis. This suggested
that DHA may have potential as an adjunct to chemotherapy.

Besides, Fenton reaction, caused by the interaction between
excessive ferrous iron and peroxide leading to the production of
highly active hydroxyl radicals (Dixon and Stockwell, 2014), was also a
predisposing factor of ferroptosis. Notably, many cellular processes
change the sensitivity of cells to ferroptosis by altering cellular LIP
levels (Xiao et al., 2020; Lu et al., 2021). Among them, ferritinophagy
mediated by selective cargo receptor NCOA4 is a major pathway to
regulate intracellular LIP levels, which delivers ferritin to lysosomes
via macroautophagy to release stored iron for cellular utilization
(Mancias et al., 2014). On one hand, due to the siderophilic
properties of cancer, NCOA4-mediated ferritinophagy may
promote the progression of some tumors (Santana-Codina et al.,
2022). On the other hand, excessive LIP accumulation by
ferritinophagy could initiate ferritinophagy-dependent ferroptosis
and played an anticancer role (Wang et al., 2021b; Li et al., 2022b;
Stockwell, 2022). As mentioned previously, the degradation of ferritin
induced by DHA was an important consideration leading to
ferroptosis (Du et al., 2019; Chen et al., 2020). Indeed, the
significant degradation of FTH1 and subsequent increases of
intracellular ferrous iron were observed in our study, which may
be due to the increased efficiency of NCOA4-mediated ferritinophagy
caused by DHA. Thus, DHA-induced ferritinophagy may be one of
the causes of initiating and enhancing ferroptosis in cervical cancer
cells. However, the specific mechanism remains to be further studied.

As we known, HO-1 is an oxidative stress inducing enzyme that
catalyzes the degradation of heme into biliverdin, carbon monoxide
and ferrous iron. Given the dual role of HO-1 in regulating iron and
ROS homeostasis, its contradictory role in ferroptosis may depend on
the degree of ROS production and the following oxidative damage
(Ryter, 2021). Gloria et al. found that Siramesine and Lapatinib
induced a synergistic ferroptosis through reduced HO-1 Levels
(Villalpando-Rodriguez et al., 2019). However, luteolin, a natural
compound monomer, triggered ferroptosis in clear cell renal cell
carcinoma by excessively up-regulating HO-1 expression and
activating LIP (Han et al., 2022). Currently, pharmacological and
genetic tools have proposed cancer therapy strategies of targeting
HO-1 (Chiang et al., 2018). The extremely high expression of HO-
1 induced by DHAwas seen in HeLa and SiHa cells, which was similar
to the result in glioblastoma and was worthy of further research (Yi
et al., 2020). After using specific HO-1 inhibitor ZnPPIX, the degree of
DHA-induced ferroptosis was aggravated. So, another important
conclusion of our work is the fact that HO-1 exerted antioxidant
effects against DHA-induced ferroptosis. On the other hand, it had
been reported that DOX could downregulate Nrf2 to inhibit HO-1 and
GPX4 levels (Li et al., 2022a), which may be one of the important
reasons for its synergism with DHA to induce ferroptosis. The
combination of DHA and HO-1 inhibitors may have a potential
application in cancer therapy bymediating the induction of ferroptosis.

However, there are several limitations to our work. Due to
limited resources, our research was conducted only in cell lines
without animal experiments. The mechanisms of ferroptosis are
delicate and complicated. In addition to the metabolism of iron,
amino acids and lipid, mitochondria also act a critical role in
regulating ferroptosis (Takashi et al., 2020), which are not
included in this study. Hence, further evaluations of the specific
molecular mechanism underlying DHA-mediated regulation of
ferroptosis and its effect on upstream pathway-related proteins is
needed. In the next step, future studies will focus on these
deficiencies and carry out more in-depth research.

5 Conclusion

Taken together, our study demonstrated evidence that the
inhibitory effect of DHA on the proliferation of cervical cancer is
related to ferroptosis, mediated by the GPX4 inhibition and
ferritinophagy, whereas HO-1 expression is anti-ferroptosis.
Furthermore, the synergistic lethal effect of DHA with
chemotherapeutic agents makes it possible to be a potential
adjuvant drug for chemotherapy. All these findings paved the
way for further research and provided the theoretical basis for its
clinical application.
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Ge Jiang1, Peng Jin1, Xiao Xiao2, Jie Shen1, Ran Li1,
Yunxiang Zhang1, Xiaoyang Li1*, Kai Xue1* and Junmin Li1*

1State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research
Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong
University School of Medicine, Shanghai, China, 2Department of Orthopedic, Shanghai Tenth People’s
Hospital, Tongji University School of Medicine, Shanghai, China
Acute myeloid leukemia (AML) is a highly aggressive cancer with great

heterogeneity and variability in prognosis. Though European Leukemia Net

(ELN) 2017 risk classification has been widely used, nearly half of patients were

stratified to “intermediate” risk and requires more accurate classification via

excavating biological features. As new evidence showed that CD8+ T cell can

kill cancer cells through ferroptosis pathway. We firstly use CIBERSORT algorithm

to divide AMLs into CD8+ high and CD8+ low T cell groups, then 2789 differentially

expressed genes (DEGs) between groups were identified, of which 46

ferroptosis-related genes associated with CD8+ T cell were sorted out. GO,

KEGG analysis and PPI network were conducted based on these 46 DEGs. By

jointly using LASSO algorithm and Cox univariate regression, we generated a 6-

gene prognostic signature comprising VEGFA, KLHL24, ATG3, EIF2AK4, IDH1 and

HSPB1. Low-risk group shows a longer overall survival. We then validated the

prognostic value of this 6-gene signature using two independent external

datasets and patient sample collection dataset. We also proved that

incorporation of the 6-gene signature obviously enhanced the accuracy of

ELN risk classification. Finally, gene mutation analysis, drug sensitive prediction,

GSEA and GSVA analysis were conducted between high-risk and low-risk AML

patients. Collectively, our findings suggested that the prognostic signature based

on CD8+ T cell-related ferroptosis genes can optimize the risk stratification and

prognostic prediction of AML patients.

KEYWORDS

CD8+ T cell, acute myeloid leukemia (AML), prognosis, ferroptosis, European Leukemia
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Introduction
Acute myeloid leukemia (AML), which is highly heterogeneous in

adults, represents the most common hematologic malignancy

worldwide (1–3). The American Cancer Society has reported a

diagnoses rate of more than 20000 new cases of AML in 2021 in the

United States alone, while the 5-year overall survival rate is lower than

30% (4). A recent, advanced risk stratificationmodel for AML based on

risk classification by the European Leukemia Net (ELN) 2017

categorizes AML patients into three groups for prediction of

treatment responses and prognosis (5, 6). Despite its extensive use,

the increasing availability of multi-omics data presents an opportunity

for improvements to the ELN2017 model through the incorporation of

molecular expression data (7–9), which could facilitate higher accuracy

patient stratification and therapeutic decision-making. In particular,

the use of transcriptomic data that contain the underlying molecular

basis responsible for AML pathophysiology could further improve

prognosis and enable the identification of novel therapeutic targets.

The strategies for treating AML have remained relatively

unchanged over the past three decades. While the “7+3”

combined chemotherapy regimen reportedly leads to complete

remission in 60-80% in patients younger than 60-years-old and

40%-60% in patients older than 60 years of age (10), in addition to

the durable complete remission in the limited group of patients

eligible for allogeneic hematopoietic stem cell transplantation

(HSCT), both HSCT and chemotherapy treatments have long

been associated with high relapse rates (11). Emerging tumor

immunotherapy approaches that rely on T cell activation

(including CAR-T, TCR-T, or cancer vaccines, etc.) have also

shown promise for improved treatment response and clinical

outcomes in AML patients (12). These immunotherapeutic

approaches rely on the potent effects of CD8+ T cell activation to

combat hematopoietic malignancies, since these cells perform

essential functions in mediating tumor adaptive immunity (13,

14). Generally, CD8+ T cells exert their killing effects through

two main pathways for inducing apoptosis in tumor cells:

granzyme-perforin and Fas-FasL (15).

In addition to the canonical apoptotic routes, ferroptosis is an

iron-dependent program for regulated cell death (RCD) induced by

oxidative disruption of the intracellular microenvironment, which

has been implicated as a determining factor in pathogenic

progression and treatment response in AML (16, 17). Ferroptosis-

related genes can therefore enhance predictive accuracy in AML

prognosis over that of apoptosis-related genes since cancer cells

exhibit marked sensitivity to ferroptosis due to the necessity of

related factors such as iron accumulation and fatty acid synthesis,

among others, for tumor growth (16, 18, 19).

Interestingly, correlation between CD8+ T cell and ferroptosis has

been unveiled recently. For example, Wang et al. provided direct

evidence that CD8+ T cells can mediate resistance to cancer cells via

the ferroptosis pathway (20). Another research conducted by Liao et al.

further proved that polyunsaturated fatty acids (PUFAs) and CD8+ T

cell-derived interferon (IFN) g work together as a natural ferroptosis

inducer (FIN) to cause tumor ferroptosis and boost anti-tumor

immunity (21).
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Inspired by the correlation, our work innovatively investigated

CD8+ T cell-related ferroptosis prognostic model in AML, which

has a potential to optimize ELN 2017 classification and enable the

identification of new and effective therapeutic strategies.
Materials and methods

Patient sample collection and
RNA-sequencing

A total of 157 bone marrow (BM) aspirates were collected from

157 de novo AML patients diagnosed between June 2019 and

September 2020 at Ruijin Hospital affiliated to Shanghai Jiao

Tong University School of Medicine. Following the Declaration of

Helsinki, the Institutional Review Board of Ruijin Hospital

approved the collection of the specimens, and all patients

provided written informed consent for specimen collection and

research. Total RNA was extracted and RNA-seq libraries were

constructed using the TruSeq RNA Sample Preparation Kit v2

(Illumina, San Diego, CA, USA). Paired-end sequencing (150-bp)

was performed on the NovaSeq 6000 platform (Illumina). Adapter

sequences were trimmed from raw sequencing reads using Trim-

galore and then aligned with STAR aligner. Cleaned reads were

quantified with HT-Seq count through mapping to the GRCh38

human reference genome assembly. Gene expression estimates were

normalized to Transcripts Per Kilobase of exon model per Million

mapped reads (TPM) using a customed script. The cohort was

named ‘RJAML’ below.
Data collection

Gene expression and mutation data from the TCGA-LAML

cohort (N=151) were obtained from the GDC data portal.

Similarly, the gene expression profiles of the GSE12417 (GPL570,

N=78) and GSE71014 (N=104) datasets were downloaded from the

GEO database. Subsequently, we obtained 259 ferroptosis-related

genes from FerrDb DATABASE (http://www.zhounan.org/

ferrdb/index.html).
Estimation of immune cell infiltration

CIBERSORT algorithm (22) was used to examine the relative

proportions of the 22 immune infiltrating cell types including CD8+

T cell. Correlation between gene expression and immune cell

population data were analyzed using the Spearman correlation

method, with p < 0.05 regarded statistically significant.
Pathway enrichment analysis of CD8+ T
cell-related ferroptosis genes

To explore the potential biological functions and pathways

related to CD8+ T cell-related ferroptosis genes, DEG analysis
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was performed using the edgeRR package between CD8+ high and

CD8+ low T cell groups. A cutoff of |logFC| > 1, and p< 0.05 was used

to define DEGs, of which 46 DEGs were related to ferroptosis. Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) were used to make a comprehensive investigation for the

CD8+ T cell-related ferroptosis genes based on “Cluster Profiler”

(R3.6). GO and KEGG enrichment pathways with both p- and q-

value< 0.05 were considered as significant.
Construction and validation of a
prognostic ferroptosis-related
gene signature

Univariate cox analysis of overall survival (OS) was performed

to screen for ferroptosis-related genes with potential prognostic

value. To construct a prognostic model that minimized the risk of

overfitting, we used LASSO-penalized Cox regression analysis based

on partial likelihood deviance and lambda values, with the value of

lambda corresponding to the lowest partial likelihood deviance.

After normalizing the expression values of each specific gene, a risk

score formula was generated for each patient as follows,

Risk Score  = VEGFA* ( − 0:136)  + KLHL24* ( − 0:034) 

+ ATG3* 0:031  + EIF2AK4* 0:146  + IDH1* 0:186 

+ HSPB1* 0:297

and scores were weighted with the regression coefficient

estimated by the lasso regression analysis. Based on the above risk

score formula, patients were assigned to high-risk or low-risk

groups, and the median risk score was used as the cut-off value.

The difference in overall survival (OS) between the two groups was

assessed by Kaplan-Meier and compared using log-rank statistics.

The role of risk scores in predicting patient prognosis was examined

using lasso regression analysis and stratified analysis. The accuracy

of model predictions was examined using ROC curves.
Improving the European Leukemia Net
2017 risk stratification system

According to the ELN2017 classification system and the 6-gene

signature, we refined ELN2017 risk classification by reclassifying

patients with favorable ELN and low 6-gene scores as a favorable

group; those with favorable ELN and high 6-gene scores or

intermediate ELN and low 6-gene scores were included in the

intermediate group, while the other three subgroups were

included in the adverse group.
Drug sensitivity analysis

We used the R package ‘pRRophetic’ to predict the

chemosensitivity of each tumor sample via the largest
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pharmacogenomic database (Genomics Database for Cancer Drug

Sensitivity, GDSC). The IC50 estimations for each individual

chemotherapeutic drug treatment were calculated using the

regression method, and ten cross-validations with the GDSC

training set were carried out to test the accuracy of the regression

and prediction. All parameters, including a ‘combat’ to eliminate

batch effects and an average of duplicate gene expression, were set to

their default values.
Gene set enrichment analysis

Gene sets were filtered using a minimum and maximum gene

set size of 20 and 500 genes, respectively. After performing 1,000

alignments, enriched gene sets were obtained based on a p< 0.05

and a false discovery rate (FDR) value of 0.25. At last, significantly

enriched GO terms and KEGG pathways were demonstrated.
Statistical analysis

Survival curves were generated by the Kaplan-Meier method

and significance was determined by log-rank tests. Multivariate

analysis was carried out using the Cox proportional-hazards model.

All statistical analyses were performed using the R software package

(version 3.6). All statistical tests were two-sided with p< 0.05

considered statistically significant.
Results

Identification of CD8+ T cell-related
ferroptosis genes in AML

The flowchart of the entire study is shown in Figure 1. Firstly, we

quantified the proportion of immune infiltrating cells for each patient

using the CIBERSORT algorithm and divided the samples (TCGA-

LAML cohort, N=151) into CD8+ high and CD8+ low T cell groups

based on the median percentage of infiltrating CD8+ T cells. Patients

with high infiltration of CD8+ T cells had significantly higher cytolytic

scores, which reflected cytolytic cell abundance, as previous reported

(Figure 2A) (23). Figure 1S demonstrates the accordance of flow

cytometry enumeration with CIBERSORT deconvolution for 6 AML

samples (The experimental method is described in the Supplementary

Data Sheet 1). We then performed differential expression analysis

between high and low CD8+ T cell infiltration groups, which revealed a

total of 2,798 differentially expressed genes (DEGs, |logFC| > 1, and p<

0.05), including 1,415 up-regulated and 1,383 down-regulated genes

(Figure 2B). Notably, 46 of the DEGs were associated with ferroptosis

(Figure 2C). Supplementally, the expression of these 46 CD8+ T cell-

related ferroptosis genes in the CD8+ high and CD8+ low T cell groups is

presented in the Supplementary Data Sheet 2.
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Molecular functions and pathways
enriched by CD8+ T cell-related
ferroptosis genes via GO and KEGG
Analysis; construction of protein-protein
interaction (PPI) network analysis based on
CD8+ T cell-related ferroptosis genes

We further investigated the differences in biological processes

and pathways in 46 ferroptosis-related differentially expressed genes

(DEGs) between CD8+ high and CD8+ low T cell groups (Figure 3A).
Frontiers in Immunology 0485
Pathways related to ‘response to oxidative stress’, ‘cellular response

to oxidative stress’, ‘protein kinase complex’, and ‘secondary

lysosome’ etc. were enriched by GO analysis. In the process of

KEGG analysis, pathways related to ‘acute myeloid leukemia’, ‘PD-

L1 expression’ and ‘PD-1 checkpoint pathway in cancer’ etc. were

enriched (Figure 3B). As shown in Figure 3C, we constructed a

protein-protein interaction (PPI) network using Cytoscape based

on the 46 CD8+ T cell-related ferroptosis genes.
Defining a prognostic ferroptosis-related
gene signature for CD8+ T cells in AML

To establish a ferroptosis-related gene expression signature, we

integrated clinical information from TCGA-LAML cohort and

randomly divided these patients into training and validation sets
using a 4:1 ratio. By jointly using univariate Cox regression and

LASSO regression analysis (Figures 4A, B), we generated an optimal

six-gene prognostic signature (Gene6): Risk Score = VEGFA x

(-0.136195304538939) + KLHL24 x (-0.0344312172907215) +

ATG3 x 0.0306216446230082 + EIF2AK4 x 0.146417351223169 +

IDH1 x 0.186205021011148 + HSPB1 x 0.296526705974414

(Figure 4C). The distribution of risk score was then analyzed

(Figures 4D, E), which demonstrates that prognostic model has

the ability to distinguish high- and low-risk groups of AML

patients. Based on the median risk score, patients were classified
B

C

A

FIGURE 2

Identifying CD8+ T cell-related ferroptosis genes in AML. (A) Cytolytic scores (Olli et al., 2020) of patients from CD8+ T cell high and low groups
divided by CIBERSORT. (B) Volcano plot of DEGs. Plots represents differentially expressed genes between CD8+ T cell high and low groups. (C)
DEGs associated with ferroptosis.
FIGURE 1

Flowchart of study design.
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into high-risk and low-risk groups, and Kaplan-Meier curves were

utilized to analyze the data. In both the validation and training sets,

OS was considerably lower in the high-risk group (Figures 4F, G).

Additionally, the AUC values at 1, 2, and 3 years were greater than

0.7 in both the testing and training datasets, as shown by the ROC

curves, suggesting that the model had robust predictive power

(Figures 4H, I).
Independent validation of the prognostic
six-gene signature

To further evaluate the association of the six-gene signature

with patient survival, we obtained the gene expression and clinical

data from the GSE12417 (GPL570) (24) and GSE71014 (25)

independent patient cohorts. Compared with low-risk scores,

patients with high-risk scores had significantly poorer OS than

those, according to Kaplan-Meier analysis (Figures 5A, B). ROC

analysis also showed that the six-gene model had high accuracy in

predicting patient prognoses (AUC values > 0.6 at 1, 2, and 3 years

in the GSE12417 dataset; AUC values > 0.7 at 1, 2, and 3 years in the

GSE71014 dataset) (Figures 5C, D). Similarly, differences in survival

between the high- and low-risk groups remained significant in

RJAML cohort, indicated by shorter OS and event-free survival

(EFS), in high-risk patients (Figures 5E, F). Collectively, these

results demonstrated the prognostic power of the six-gene

signature. Incorporation of the six-gene signature into the

ELN2017 scheme resulted in generating three new risk groups, as

follows: patients with Gene6low-risk/ELN-favorable were re-classified

into the favorable-risk group, whereas Gene6high-risk/ELN-

favorable, Gene6low-risk/ELN-intermediate and Gene6low-risk/ELN-
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adverse patients were re-classified as the intermediate-risk group,

and Gene6high-risk/ELN-intermediate patients were re-assigned to

the adverse-risk group (Figure 5G). Based on the median OS value,

these resulting ELN2017 plus Gene6 scores contributed to

improved risk segregation and substantially refined ELN2017

classification in TCGA-LAML cohort, evidenced by the more

significant p-value (Figure 5H). Similar results were obtained

when these analyses were performed independently in the RJAML

cohort, regardless of OS or EFS (Figures 5I, J). Taken together, these

results demonstrated that the Gene6 signature could improve the

prognostic efficacy of ELN2017 classification. In addition, we

analyzed the association of 6 signature genes expression with the

infiltration of 22 major immune cell types and the response to

immunotherapy in AML (Figures 2S, 3S).
Gene mutation, drug sensitivity, GSEA, and
GSVA analysis between high-risk group
and low-risk group classified by CD8+ T
cell-related ferroptosis prognostic
signature in AML

General information on AML-related gene mutations in high-

versus low-risk groups is shown in Figure 6A. DNMT3A (14%),

NPM1 (14%), TP53 (11%), RUNX1 (8%) and PTPN11 (8%) rank

top five on gene mutation frequencies in high-risk group. The top

five genes in the low-risk group with the highest mutation

frequencies were IDH2 (11%), TET2 (8%), NPM1 (8%),

DNMT3A (8%) and FLT3 (5%). We contrasted the estimated

IC50 levels of drugs in AMLs from two groups. Figure 6B shows

four representative drugs. Epothilone.B and Cytarabine were
A B

C

FIGURE 3

Biological functional and pathway enrichment analysis of CD8+ T cell-related ferroptosis genes. (A, B) GO and KEGG analysis on CD8+ T cell-
related ferroptosis genes. (C) Network of co-expressed CD8+ T cell-related ferroptosis genes visualized by Cytoscape.
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identified to be potential treatment options for patients in high-risk

group. Conversely, OSI.906, CCT007093 turn out not ideal drugs

for AMLs stratified to high-risk group by Gene6. We then

characterized the biological phenotypes associated with each

Gene6 risk score through gene set enrichment analysis (GSEA).

Indicated by GSEA, upregulated genes were enriched in pathways

related to ‘cellular response to exogenous dsRNA’ and ‘valine,

leucine, and isoleucine degradation’, while down-regulated genes

were involved in pathways related to ‘intermediate filament

organization’, ‘glycosaminoglycan biosynthesis - heparan sulfate’

in the high-risk patient group (Figures 7A, B). Further gene set

variation analysis (GSVA) showed that altered pathways in the
Frontiers in Immunology 0687
high-risk patient group were mainly involved in ‘adipogenesis’,

‘PI3K/AKT/MTOR signaling’, ‘IL2/STAT5 signaling’, ‘mTORC1

signaling’ and others (Figure 7C).
Discussion

In the current work, we first quantified the fraction of various

immune infiltrating cells in each patient sample with CIBERSORT

(22) to divide the samples into CD8+ high and CD8+ low T cell

groups by the median percentage of infiltrating CD8+ T cells. We

then identified ferroptosis-related genes that were differentially
A B

D E

F G

IH

C

FIGURE 4

Construction of 6-gene prognostic signature. (A) Determination of the minimum lambda value with ten-fold cross validation of tuning parameter
selection in the LASSO model. (B) Distribution of LASSO coefficients for prognosis-related genes and the gene combinations at the minimum
lambda value. (C) Coefficients of Lasso genes. (D, E) The distribution of the risk scores in the training and testing datasets. (F, G) Survival curves of
TCGA training dataset and testing dataset. (H, I) ROC curves of TCGA training dataset and testing dataset (AUC values at 1, 2 and 3 years in both the
training and testing datasets were greater than 0.7).
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A B

FIGURE 6

Gene mutation analysis and drug sensitive prediction in AML patients. (A) Oncoplots showing AML-related gene mutation frequencies among high-
risk group and low-risk group in AML patients. (B) Violinplots showing the mean differences in estimated IC50 values of 4 representative drugs
(OSI.906, CCT007093, Epothilone.B, Cytarabine) between the two risk groups.
B C

D E F

G H
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A

FIGURE 5

Validation of 6-gene prognostic signature. (A, B) Kaplan-Meier curves for OS of high- and low-risk groups in validation datasets (GSE12417 dataset,
geo1; GSE71014 dataset, geo2). (C, D) ROC curves of the risk score in geo1 and geo2 validation gene set (AUC values > 0.6 at 1, 2, and 3 years in the
geo1 validation dataset; AUC values > 0.7 at 1, 2, and 3 years in the geo2 validation dataset). (E, F) OS and EFS of high- and low-risk groups in RJAML
cohort. (G) Improvement of the ELN2017 classification incorporating with Gene6 signature. (H) Comparison of OS segregation between different risk
classifications in ELN2017 vs ELN2017 plus Gene6 at TCGA-LAML cohort. (I, J) Comparison of OS and EFS segregation between different risk
classifications in ELN2017 vs ELN2017 plus Gene6 at RJAML cohort.
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expressed in CD8+ high and CD8+ low T cell groups. We then

collected clinical information from each AML patient, identified

AML-related signature genes, and used LASSO regression to obtain

a panel of genes that provided optimal risk scores for subsequent

analysis. To validate the accuracy of the model, we conducted ROC

analysis using two external datasets downloaded from GEO

database and RNA-seq data from 157 bone marrow (BM)

samples aspirated from 157 de novo AML patients diagnosed at

Ruijin Hospital. It is noteworthy that combining our Gene6 model

can improve the accuracy of ELN2017 in classifying the prognosis

of AML patients (26).

The prognostic model proposed in this study consists of

6 CD8+ T cell infiltration-related ferroptosis genes (HSPB1,

IDH1, EIF2AK4, ATG3, KLHL24, VEGFA). Consistent with the

strong connection between this prognostic model and CD8+ T cell

immunity, several previous reports revealed that HSPB1 plays a part

in the control of CD8+ T cell (27–29). On the other hand, HSPB1

phosphorylation protects tumor cells from ferroptosis by reducing

lipid ROS production mediated by iron (30). Glutathione oxidase 4

(GPX4) is a key enzyme in the removing lipid reactive oxygen

species (ROS) and ferroptosis. In fact, prior to the recent
Frontiers in Immunology 0889
publication of direct evidence that CD8 can function in cancer

via ferroptosis (20), numerous previous works unveiled that

ferroptosis enhances anti-cancer immunity by boosting cancer

immunosurveillance and deciding the fate of CD8+ T cells via

glutathione oxidase 4 (GPX4), which is a key enzyme in the

removing lipid reactive oxygen species (ROS) and ferroptosis

(31, 32). IDH1 mutation affects the prognosis of AMLs (33)

through regulating the protein level of GPX4 and so has a

connection with CD8+ T cell either (34). EIF2AK4 (or GCN2)

has been found to affect the survival of tumor patients by

suppressing cancer immunology (35, 36). In addition, EIF2AK4

mediates anergy induction and proliferative arrest in T cell through

detecting and responding to the immunoregulatory signal generated

by Indoleamine 2,3 dioxygenase (IDO) (37). This may support the

finding that GCN2 is positively associated with risk of AMLs in our

prognostic model based on CD8+ T cell-associated ferroptosis gene.

Besides, demonstrated by PPI network of CD8+ T cell-associated

ferroptosis genes in Figure 3C, both IDH1 and EIF2AK4 are co-

expressed with Solute Carrier Family 7 Member 5 (SLC7A5), a type

of system L transporter. Previous research revealed that T cells

require SLC7A5 for methionine uptake even though methionine
A B

C

FIGURE 7

Biological phenotypes associated with Gene6 risk score. (A, B) GSEA results of Gene6 risk score in GO and KEGG. (C) GSVA result of Gene6
risk score.
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can also be produced de novo in mammalian cells as well (38, 39).

Hence in combination with the previous research, the co-expression

result not only reflects the fact that the two genes in Gene6 (IDH1

and EIF2AK4) are associated with CD8+ T cell but also indicates

that this association may be mediated by SLC7A5. Jia et al.

demonstrated that survival of naïve CD8+ T cell is defective in

ATG3-deficient T lymphocytes, which indicated ATG3 is associated

with CD8+ T cell (40). Meanwhile, ferroptosis also has been known

as a type of cell death depending on autophagy in which ATG3 is a

key player (41, 42). In a study conducted by Altman et al, ATG3

deficiency prevented BCR-abl-dependent leukemia by blocking the

autophagic pathway (43). KLHL24 found in acute myeloid leukemia

as an autophagy-related gene to inform prognostic assessment

(38, 44). Despite the lack of previous evidence showed that

KLHL24 directly correlated with CD8+ T cell, we speculate

KLHL24 indirectly associated with CD8+ T cell via autophagy, as

autophagy act a pivotal part in the cellular and metabolic

reprogramming progresses of CD8+ T cell (45). VEGFA, has

been widely recognized as a pro-angiogenic factor in vertebrates

and a promoter of tumor progression for decades (46). However, in

a research of Palazon et al., they found deletion of VEGFA in CD8+

T cell enhanced tumor growth, which was explained by the VEGF-

deficient CTLs’ intrinsic defect in acquisition of effector phenotypes

(47). Furthermore, in one of the latest studies, researchers found

that the absence of CDS2 enhanced the level of VEGFA secreted by

the tumor, thereby trapping the tumor in a condition of VEGFA-

induced vascular regression, leading to inhibition of tumor growth,

which may result in activation of ferroptosis-related pathways (48).

Consistent with above mentioned reports, these 6 genes in our

model are all directly or indirectly associated with both CD8+ T cell

and ferroptosis in cancer and jointly affect the prognosis of AMLs.

As shown by the analysis of AML-related gene mutation

between high and low-risk groups (Figure 6A), the adverse-risk

gene mutations such as TP53, SMC3 and PTPN11 mutations

(26, 49, 50) have obviously higher frequency in high-risk group.

This study also excavated altered biological phenotypes

including ‘cellular response to exogenous dsRNA’, ‘PI3K/

AKT/MTOR signaling’ and so on in high- versus low-risk

patient group by GSEA and GSVA. Consistently, exogenous

dsRNA participates in driving Type I IFN induction via

targeting RNA-sensing PRR pathways, including RIG-I/

MDA5-IPS-1, TLR7-MyD88 and TLR3-TICAM-1 in dendritic

cell subset, so as to evoke and amplify CD8+ T cell anti-tumor

immunity (51). In contrast to subcutaneously grown leukemic

tumors, diffused leukemia is known for its failure to produce

type I IFN, which prevents it from generating cellular antitumor

immunity (52, 53). FLT3-ITD was previously reported to

synergistically activate the mTORC1/S6K/4EBP1 pathway

through the PI3K/AKT and STAT5/PIM pathways to enhance

eIF4F complex formation and promote the proliferation and

survival of tumor cells, while FLT3-ITD is the most common

tyrosine kinase mutation associated with poor prognosis in

AML (54). The association of other pathways with prognosis

was also illustrated in previous reports (55–57). These findings

suggested that perturbation of these signaling pathways may
Frontiers in Immunology 0990
underpin the survival differences between the high-risk and

low-risk patient groups.

In general, this study was the first to establish a prognostic

model of AML based on CD8+ T cell-associated ferroptosis genes

that exhibited certain guiding effects in predicting OS and EFS in

patients with AML and further optimize the classification of

ELN2017 scheme, which is proved by multiple data sets,

especially our patient sample data. In order to reduce the

limitations of the study, we hope that the utility of the model

constructed will also be validated in the future with larger scale of

clinical samples and studies. Additionally, the complex mechanisms

underlying the prognostic function of 6 CD8+ T cell-related

ferroptosis genes in AML need being further investigated in the

following work.
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Background: Ferroptosis has been identified as a potent predictor of cancer
prognosis. Currently, cervical cancer ranks among the most prevalent malignant
tumors in women. Enhancing the prognosis for patients experiencing metastasis
or recurrence is of critical importance. Consequently, investigating the potential of
ferroptosis-related genes (FRGs) as prognostic biomarkers for cervical cancer
patients is essential.

Methods: In this study, 52 FRGs were obtained from the GSE9750, GSE7410,
GSE63514, and FerrDb databases. Six genes possessing prognostic characteristics
were identified: JUN, TSC22D3, SLC11A2, DDIT4, DUOX1, and HELLS. The
multivariate Cox regression analysis was employed to establish and validate the
prognostic model, while simultaneously performing a correlation analysis of the
immune microenvironment.

Results: The prediction model was validated using TCGA-CESC and
GSE44001 datasets. Furthermore, the prognostic model was validated in
endometrial cancer and ovarian serous cystadenocarcinoma cases. KM curves
revealed significant differences inOS between high-risk and low-risk groups. ROC
curves demonstrated the stability and accuracy of the prognostic model
established in this study. Concurrently, the research identified a higher
proportion of immune cells in patients within the low-risk group. Additionally,
the expression of immune checkpoints (TIGIT, CTLA4, BTLA, CD27, and CD28)
was elevated in the low-risk group. Ultimately, 4 FRGs in cervical cancer were
corroborated through qRT-PCR.

Conclusion: The FRGs prognostic model for cervical cancer not only exhibits
robust stability and accuracy in predicting the prognosis of cervical cancer patients
but also demonstrates considerable prognostic value in other gynecological
tumors.
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Introduction

Cervical cancer (CC) ranks as the fourth most common
cancer among women worldwide (Sung et al., 2021). In 2020,
approximately 600,000 new cases of this disease were reported,
with around 340,000 deaths occurring globally (Sung et al., 2021).
Persistent infection with human papillomavirus (HPV) can lead
to precancerous cervical lesions, which may eventually progress
to cancer (CrosbieEinsteinFranceschi and Kitchener, 2013).
While the availability of HPV vaccines and cervical cancer
screening has dramatically altered mortality and morbidity
rates in high-income countries, coverage rates for these
policies remain low in many low- and middle-income regions
(only 10%) (Brüggmann et al., 2022; Bruni et al., 2022). The
primary treatment for cervical cancer involves surgery or
postoperative concurrent chemoradiotherapy. Metastasis or
recurrence of the cancer substantially decreases the overall
survival (OS) rate, which plummets to 5% at 4 years (Small
et al., 2017). CC is considered one of the most lethal and
threatening types of cancer among women globally,
necessitating the development of novel tumor markers for
accurate prognosis assessment.

Ferroptosis is an iron-dependent programmed cell death
triggered by the accumulation of lipid-based reactive oxygen
species (Dixon, 2017). Research has shown that the induction of
ferroptosis can play various roles in signal transduction and
bioregulation pathways, leading to tumor growth (Stockwell
et al., 2017; Shen et al., 2018). Jiang et al. Xiaofei et al. (2021)
discovered that the reduction in tumor size and decreased activity of
Hela cells could be attributed to ACSL4-induced ferroptosis.
Furthermore, FBXW7 (Zhang et al., 2020), G6PD (Dixon et al.,
2012), and TP53 (Jiang et al., 2015a) promote ferroptosis in tumor
cells, while CSD2 (Kim et al., 2018), GPX4 (Friedmann Angeli et al.,
2014), and SLC7A11 (Jiang et al., 2015b) function as inhibitory
factors to prevent ferroptosis. Wang et al. (2019) demonstrated that
CD8+ T cells’ ability to enhance lipid peroxidation specific to
ferroptosis could be harnessed for effective immunotherapies.
The relationship between ferroptosis and immune cell infiltration
holds potential for providing new insights into immunotherapeutic
effectiveness.

Most current studies focus on bioinformatically analyzing the
expression of ferroptosis-related genes or associated long non-
coding RNAs (lncRNAs) in different cancer types to predict
prognosis. Although ferroptosis-related genes (FRGs) have
been identified as potential prognostic biomarkers for various
cancer types, their evaluation in cervical cancer has not been
conducted. The clinical information and expression data of
patients were analyzed using the TCGA and GEO databases,
with data from the FerrDb database also employed in the study.
The aim of this study was to develop a prognostic model capable
of evaluating the prognosis of women with cervical cancer and to
test the model’s applicability to other gynecological tumors.
Furthermore, the correlation between the prognostic model of
FRGs and the immune microenvironment was analyzed, with
FRGs validated by quantitative real-time PCR (qRT-PCR). This
study’s objective was to establish a new strategy that could assist
clinicians in predicting the prognosis of patients with cervical
cancer.

Materials and methods

Sample and data collection

The research plan is illustrated in Figure 1A. RNA
transcriptome data and clinical information were acquired
from the GEO and TCGA databases (http://www.ncbi.nlm.nih.
gov/projects/geo/, https://portal.gdc.cancer.gov/). All data were
transformed using log2 to ensure normalization. Four databases,
FerrDb (http://www.zhounan.org/ferrdb/), NCBI-gene (https://
www.ncbi.nlm.nih.gov/gene), MSigDB (http://www.gsea-msigdb.
org/gsea/msigdb/), and Genecard (https://www.genecards.org/),
provided a total of 416 ferroptosis genes (Supplementary Tables
S1, S2).

Differential expression and functional
enrichment analysis

For the TCGA-CESC and GEO data, the R package edgeR
conducted differential analysis on normal and cancer samples.
The threshold was set at |Log (FC)|>1, p adj<0.05, and the
intersection of differentially expressed genes and ferroptosis genes
was determined (The criteria for selecting overlapping genes
required their presence in at least two datasets, with one dataset
being a ferroptosis gene set). The R package clusterProfiler (version
3.14.3) performed GO/KEGG enrichment analysis of differentially
expressed FRGs.

Prognostic model Establishment and
prognostic analysis

The R package (glmnet version 4.1.1) executed LASSO
regression on the differentially expressed FRGs to filter out
redundant factors. Subsequently, univariate/multivariate Cox
regression analysis determined the prognostic genes and
constructed a Risk score prognostic model (The majority of
literature calculates Risk score based on the weighting of the
product of gene expression and its coefficients. This study
employed multivariate Cox regression to develop a model in
which Risk score was determined as the weighting of the
product of gene expression and its coefficients.). High-risk
groups (n = 153) and low-risk groups (n = 153) were
categorized according to the median of the Risk score. The R
packages survival ROC (version 1.0.3) and rms (version 6.2.0)
analyzed 1-year, 3-year, 5-year survival prognoses and prognostic
risk performance.

riskscore � ∑
n

i�1
βi × Exp i( )

Clinicopathological features and immune
infiltration analysis

The correlation between the Risk score, constructed by FRGs,
and clinicopathological characteristics was assessed. Immune
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infiltration analysis was performed by ssGSEA algorithm to
obtain enrichment scores for each class of immune cells in
each sample of TCGA-CESC and GSE44001. The Risk score
was then divided into high and low risk groups based on the
median of the Risk score among all samples. Differences in
the enrichment scores of 24 immune cells (Gabriela et al.,
2013) in high and low risk groups were assessed to infer the
composition of immune cells in patients with cervical cancer
under Risk score.

qRT-PCR detection

A total of 25 cervical cancer tissue samples were collected from
surgical patients at the Tumor hospital affiliated with Xinjiang
Medical University between 2015 and 2020, with signed informed
consent forms. The study was approved by the Ethics Committee of
the Tumor hospital affiliated with Xinjiang Medical University and
conformed to the Helsinki Declaration and Clinical Practice
Guidelines. Total RNA extraction from tissues was performed

FIGURE 1
Research plan and Overview of FRGs signatures. (A) Research plan. (B) Venn diagram of differential genes and ferroptosis genes. (C)GO enrichment
analysis of ferroptosis-related genes in BP, CC, and MF. (D) KEGG pathway enrichment analysis of ferroptosis-related genes.
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using TRIzol reagent (Invitrogen, United States), and cDNA
synthesis occurred by reverse transcription using the PrimeScript
real-time kit (Takara, Japan). qRT-PCRs were conducted using an
ABI 7500 PRISM 7500 Platform (Applied Biosystems,
United States). GAPDH served as a reference, and relative
expression levels of target genes were calculated employing the
2−ΔΔCt method. Primers for correlation analysis can be found in
Supplementary Tables S3.

Statistical analysis

Differential analysis of normal and cancer samples was
conducted using the R package edgeR, with a threshold of |Log
(FC)|>1 and p adj<0.05. The R package implemented LASSO
regression and univariate/multivariate Cox regression analysis on
differentially expressed FRGs. The R packages survminer (version
0.4.9) and survival ROC (version 1.0.3) performed KM(Cox
regression was used for analysis) and ROC curve analysis to
predict the survival prognosis of patients with cervical cancer.
Correlation analysis of survival Risk scores constructed from
FRGs and clinicopathological characteristics utilized univariate
and multivariate Cox regression analysis. Differences in genes
were analyzed by independent samples t-test and visualized using
GraphPad Prism 8. The test level was α = 0.05, and a difference was
considered statistically significant with p < 0.05.

Results

Screening and functional analysis of FRGs

Differential gene analysis yielded 1,969, 2,142, and
1,209 differential genes for GSE9750, GSE7410, and GSE63514,
respectively (Supplementary Figure S1; Supplementary Table S2).
In three distinct datasets, the DEGs were combined with ferroptosis
genes to generate differentially expressed FRGs. A total of 52 FRGs
were obtained (Figure 1B; Supplementary Tables S4). Ultimately,
52 FRGs underwent GO/KEGG enrichment analysis
(Supplementary Tables S5). Enrichment analysis in biological

process (BP), cellular component (CC), and molecular function
(MF) domains indicated that the gene set was involved in various
activities, including the apical part of the cell, iron ion binding, and
response to oxidative stress (Figure 1C). KEGG pathway enrichment
analysis revealed significant enrichment of the gene set in both
ferroptosis and cancer-related pathways (Figure 1D).

Establishment and prognostic analysis of
FRGs prognostic model in cervical cancer

TCGA-CESC data served as the training set. Initially, 15 FRGs
were derived from LASSO analysis of the 52 FRGs (Supplementary
Figure S2). Subsequently, Cox regression analysis results
demonstrated that among eight FRGs, six exhibited independent
effects on predicted outcomes, including JUN, TSC22D3, SLC11A2,
DDIT4, DUOX1, and HELLS (Table 1). A prognostic model was
developed based on these six genes and classified into two groups
according to Risk score. Scatter plots of survival outcomes and
survival time indicated that the high-risk group had more fatalities
than the low-risk group (Figure 2A). The training set’s KM curve
showed that the OS of the low-risk group was longer than that of the
high-risk group (p < 0.001, Figure 2B). ROC curves were employed
to analyze the OS at 1, 3, and 5 years, with AUC values of 0.763,
0.782, and 0.827, respectively (Figure 2C). In conclusion, the model
provided a stable and accurate prediction of patients’ prognosis.

Prognostic analysis of clinicopathological
features by FRGs prognostic model in
cervical cancer

Clinicopathological features of the study were examined using
univariate/multivariate Cox regression analyses. According to
univariate analysis, clinical stage, TNM stage, and Risk score
were significant factors predicting patient prognosis. In contrast,
multivariate analysis revealed that Risk score was the sole
independent factor predicting patient prognosis (Table 2). To
ensure accurate patient prognosis, a nomogram incorporating
various clinicopathologic parameters was generated (Figure 2D).

TABLE 1 Univariate/multivariate Cox regression analysis of FRGs.

Characteristics Total(N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

JUN 306 1.873 (1.167–3.005) 0.009 1.879 (1.154–3.059) 0.011

DNAJB6 306 1.710 (1.070–2.735) 0.025 1.581 (0.973–2.569) 0.064

TSC22D3 306 0.605 (0.380–0.965) 0.035 0.457 (0.277–0.754) 0.002

SLC11A2 306 1.611 (1.004–2.585) 0.048 1.855 (1.129–3.048) 0.015

DDIT4 306 2.097 (1.294–3.398) 0.003 2.416 (1.413–4.130) 0.001

DUOX1 306 0.439 (0.270–0.712) <0.001 0.454 (0.274–0.754) 0.002

CA9 306 1.644 (1.029–2.628) 0.038 1.128 (0.685–1.856) 0.635

HELLS 306 0.529 (0.329–0.851) 0.009 0.488 (0.288–0.828) 0.008
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Additionally, DCA and calibration curves (Figures 2E, F)
demonstrated the model’s role in assessing patient outcomes. In
summary, the model could be employed as a novel and powerful tool
for predicting patient prognosis.

Validation and prognostic efficacy analysis
of prognostic model of FRGs in cervical
cancer

To validate the model’s applicability, the GSE44001 dataset was
used as the validation set. A prognostic model was developed based
on the six aforementioned genes, which were divided into high and
low groups according to median Risk score. Scatter plots of survival

outcomes and survival time indicated that the high-risk group had
more fatalities than the low-risk group (Figure 3A). The validation
set’s KM curve showed that the OS of the low-risk group was longer
than that of the high-risk group (p < 0.001, Figure 3B). ROC curves
were employed to analyze the OS at 1, 3, and 5 years, with AUC
values of 0.667, 0.713, and 0.741, respectively (Figure 3C). The study
results also indicated that the model was stable and accurate in the
validation set. Univariate/multivariate Cox regression analyses were
then employed with the dataset to further validate the model’s
clinicopathologic characteristics. According to univariate analysis
results, Risk score and IB2 were the primary prognostic factors. In
multivariate regression analysis, Risk score was considered an
independent predictor of the study’s outcome (Table 3). A
nomogram was also used to evaluate the model’s value in

FIGURE 2
Establishment and prognostic analysis of FRGs prognostic model in cervical cancer. (A) Curve scatter plot of training set survival model efficacy
assessment and cumulative scatter plot of survival mortality event risk. (B) KM curves show a significant difference in OS between high-risk and low-risk
groups in the training set. (C) Time-dependent ROC curves were used to predict 1, 3 and 5 years survival. (D) 1, 3, and 5 years nomograms for predicting
OS in cervical cancer. (E)Calibration curves showing the agreement between predicted and observed 3 and 5 years OS. (F)Decision curve analysis of
the prognostic model in the training set at 3 and 5 years.
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assessing patient prognosis in the GSE44001 dataset (Figure 3D).
DCA and calibration curves (Figures 3E, F) also demonstrated that
the model had a consistent effect on patient prognosis assessment. In
conclusion, the model’s practicality and suitability for various
datasets render it an ideal choice for determining cervical cancer
patients’ prognosis.

Validation and prognostic efficacy analysis
of FRGs prognostic model for cervical
cancer in other gynecological tumors

To confirm the model’s universal applicability across different
gynecological tumors, TCGA-UCEC and TCGA-OV datasets were
employed as validation sets. Scatter plots of survival outcomes and
survival time indicated that the high-risk group had more fatalities
than the low-risk group (Figure 4A). The validation set’s KM curve
revealed that the OS of the low-risk group was longer than that of
the high-risk group in TCGA-UCEC (p < 0.001, Figure 4B). ROC
curves were utilized to analyze the OS at 1, 3, and 5 years, with
AUC values of 0.758, 0.776, and 0.788, respectively (Figure 4C).
The results demonstrated that the model exhibited excellent
stability and accuracy in TCGA-UCEC. Clinicopathological
features of the model were further verified using univariate/
multivariate Cox regression analysis on the TCGA-UCEC
dataset. Univariate/multivariate regression analysis revealed that
Age, Clinical stage, Histologic grade, and risk score were
prognostic factors for TCGA-UCEC (Table 4). Ultimately, a
nomogram was established to predict the OS of cervical cancer
patients in the TCGA-UCEC dataset at 1, 3, and 5 years
(Figure 4D). The DCA diagram and calibration curve (Figures
4E, F) also confirmed that the nomogram combined with clinical
features held significant clinical application value. Additionally,
the same analysis was performed on the TCGA-OV dataset, which
indicated that the cervical cancer prognostic model of iron death-
related genes also possessed robust prognostic value in ovarian
serous cystadenocarcinoma (Supplementary Figure S2;
Supplementary Table S6). In conclusion, the cervical cancer
prognostic model of iron death-related genes exhibits strong
applicability and can serve as biomarkers to predict patient
prognosis across different gynecological tumor datasets.

Correlation analysis between prognostic
model of FRGs and immune
microenvironment

We found that the low-risk group had significantly higher
enrichment scores for B cells, DC, iDC, pDC, T cells, and TReg
than the high-risk group (p < 0.001, Figure 5A). The enrichment
scores in Cytotoxic cells, Mast cells, and T helper cells were slightly
higher than the high-risk group (p < 0.01, Figure 5A). The
enrichment scores for aDC, CD8+T cells, Neutrophils, and TFH
were not significantly higher than the high-risk group (p < 0.05,
Figure 5A). It can be seen that the immune microenvironment of
cervical cancer patients under Risk score consists of immune cells
such as B cells, T cells, DC and mast cells. Lastly, the correlations
between 24 immune cells were assessed, and the correlations
between different tumor-infiltrating immune cell subsets ranged
from weak to moderate correlations (Figure 5B). The same analysis
was conducted for GSE44001, with statistically significant
enrichment scores for Macrophages, Mast cells, and Neutrophils,
which also resembled the TCGA cohort (Supplementary Figure S4).
The expression of various immune checkpoint inhibitors, such as
CTLA4, BTLA, CD27, CD28, and CD40, in high and low-risk
groups was also analyzed. The results demonstrated that the
expression of TIGIT, CTLA4, BTLA, CD27, and CD28 were
higher in the low-risk group than in the high-risk group,
indicating improved immune efficacy for patients in the low-risk
group. The level of expression of other checkpoint inhibitors was not
significantly different between the two groups (Figure 5C). In
conclusion, the model correlates with the prognosis of patients
with cervical cancer from an immune infiltration perspective.
Simultaneously, the high expression of immune checkpoint
inhibitors in the low-risk group enhances the effectiveness of
immunotherapy in patients.

Validation of FRGs expression levels

The expression levels of the model’s six genes were validated
using the TCGA database. The expression levels of DDIT4 and
SLC11A2 were not significantly different when comparing
noncancerous and cancerous tissues (Supplementary Figure S5).

TABLE 2 Univariate/multivariate Cox regression analysis of clinicopathological characteristics of TCGA-CESC.

Characteristics Total (N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

Age(>50 vs. ≤ 50) 306 1.289 (0.810–2.050) 0.284 0.577 (0.157–2.122) 0.408

T stage (T3&T4 vs. T1&T2) 243 3.863 (2.072–7.201) <0.001 2.148 (0.325–14.219) 0.428

N stage(N1 vs. N0) 195 2.844 (1.446–5.593) 0.002 1.223 (0.352–4.248) 0.751

M stage(M1 vs. M0) 127 3.555 (1.187–10.641) 0.023 0.000 (0.000-Inf) 0.998

Clinical stage (Stage III&Stage IV vs. Stage I&Stage II) 299 2.369 (1.457–3.854) <0.001 1.282 (0.133–12.361) 0.830

Histologic grade (G3&G4 vs. G1&G2) 274 0.866 (0.514–1.459) 0.589 2.396 (0.663–8.654) 0.182

RiskScore (High vs. Low) 294 8.191 (1.081–62.076) 0.042 14.075 (1.147–172.783) 0.039
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FIGURE 3
Validation of a prognostic model of FRGs in cervical cancer. (A) Curve scatter plot of validation set survival model efficacy assessment and
cumulative scatter plot of survival mortality event risk. (B) KM curve shows that there is a significant difference in OS between high-risk and low-risk
groups in GSE44001. (C) Time-dependent ROC curves were used to predict 1, 3, and 5 years survival. (D) 1, 3, and 5 years nomograms for predicting OS in
cervical cancer. (E) Calibration curves showing the agreement between predicted and observed 3 and 5 years OS. (F) Decision curve analysis of the
prognostic model in the validation set at 3 and 5 years.

TABLE 3 Univariate/multivariate Cox regression analysis of clinicopathological characteristics of GSE44001.

Characteristics Total(N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

Stage 300

IB1 217 Reference

IA2 13 0.000 (0.000-Inf) 0.996 0.000 (0.000-Inf) 0.996

IB2 28 3.953 (1.807–8.651) <0.001 3.038 (1.334–6.920) 0.008

IIA 42 2.106 (0.932–4.758) 0.073 1.920 (0.844–4.369) 0.120

RiskScore (High vs. Low) 300 2.718 (1.810–4.081) <0.001 2.270 (1.539–3.349) <0.001
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qRT-PCR analysis was performed to assess the levels of the
remaining genes in both cervical and non-cancerous tissues.
Consequently, the expression levels of JUN and TSC22D3 in
cervical cancer tissues displayed an overall downward trend
compared with non-tumor tissues (Figures 6A, B). DUOX1 and

HELLS exhibited an overall upward trend (Figures 6C, D).
Furthermore, the relationship between four genes and B cells,
CD8 T cells, DC, NK cells, and T cells was examined, revealing
that TSC22D3 was positively correlated with the aforementioned
cells; aside from NK cells, HELLS was negatively correlated with the

FIGURE 4
Cervical cancer FRGs prognosis model validation in the TCGA-UCEC. (A) Curve scatter plot of validation set survival model efficacy assessment and
cumulative scatter plot of survival mortality event risk. (B) KM curve shows that there is a significant difference in OS between high-risk and low-risk
groups in TCGA-UCEC. (C) Time-dependent ROC curves were used to predict 1, 3, and 5 years survival. (D) 1, 3 and 5 years nomograms for predicting OS
in TCGA-UCEC. (E) Calibration curves showing the agreement between predicted and observed 3 and 5 years OS. (F) Decision curve analysis of the
prognostic model in the validation set at 3 and 5 years.
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other 4 cells; DUOX1 was negatively correlated with CD8+T cells
and NK cells but positively correlated with DC; JUN was negatively
correlated with B cells and showed no correlation with other cells
(Supplementary Figure S6). In summary, the four genes exhibit
specific expression in cervical cancer tissue, and there is a discernible
correlation with immune infiltration.

Discussion

Despite the progress made in the prevention, screening, and
treatment of cervical cancer, the outcomes of the disease have not
significantly improved (Zeng et al., 2018). For cervical cancer
patients with metastasis or recurrence, the 5-year OS is only 17%
(Ouyang et al., 2020). Currently, the main research focus in
ferroptosis is on the occurrence, development, and treatment of
tumors. Several studies have demonstrated that ferroptosis-related
biomarkers are strong predictors of cancer prognosis and treatment
efficacy (Shi et al., 2019; Liang et al., 2020; Tang et al., 2020). Based
on these findings, it is essential to systematically and
comprehensively evaluate the prognostic role of FRGs in cervical
cancer.

In this study, the impact of FRGs prognostic models on
prognosis was investigated, while also examining the relationship
between FRGs prognostic models and the immune
microenvironment to determine if this model could be a
potential biomarker for prognosis. Initially, the DEGs of the
GSE9750, GSE7410, and GSE63514 datasets were analyzed. The
intersection of the ferroptosis gene sets was obtained from the
FerrDb, NCBI-gene, MSigDB, and Genecard databases. Notably,
as the intersection of the four datasets yielded fewer genes, the
intersection of each dataset was analyzed, resulting in a total of
52 FRGs. Then, functional analysis of these 52 FRGs showed that
they were related to ferroptosis and oxidative stress processes.
Univariate/multivariate Cox regression analysis was employed to
identify FRGs with prognostic features and to establish a prognostic
model for FRGs. Subsequently, the ssGSEA was used to study the
differences between various immune cells. Statistically significant
differences were found for B cells, DC, iDC, pDC, T cells, and TReg.

Ferroptosis is currently recognized as an immunogenic cell
death characterized by the release of damage-associated

molecular patterns (DAMPs) from deceased tumor cells (Tang
et al., 2019; Wen et al., 2019; Wan et al., 2020). The analysis
discovered that B cells, DC, T cells, and TReg exhibited higher
abundances in the low-risk group compared to the high-risk group,
which displayed a higher immune score. These correlation results
demonstrate, to some extent, the relevance of FRGs prognostic
models to the immune infiltration of cervical cancer. This can be
combined with the finding by Wang et al. (2019) that the antitumor
efficacy of immunotherapy can be achieved through enhanced
ferroptosis-specific lipid peroxidation by CD8+ T cells.
Additionally, the analysis of immune checkpoint inhibitors
revealed higher expression of TIGIT, CTLA4, BTLA, CD27, and
CD28 in the low-risk group, suggesting that the efficacy of
immunotherapy is better in the low-risk group than in the high-
risk group. TIGIT, an emerging immune checkpoint, is widely
expressed on lymphocytes (Harjunpää and Guillerey, 2020). It is
capable of inhibiting every step of the cancer immune cycle (Manieri
et al., 2017). TIGIT may prevent NK cells from releasing tumor
antigens, impair DC-primed T cell priming, or inhibit CD8+T cell-
mediated cancer cell killing (Harjunpää and Guillerey, 2020).
Combined with the results of this study, it is plausible that
TIGIT kills cancer cells in the low-risk group by reducing DC-
triggered T-cell initiation, leading to immunotherapeutic benefits
for patients in the low-risk group. However, further research is
needed to elucidate the specific mechanism.

In this study, four FRGs, including JUN, TSC22D3, DUOX1,
and HELLS, were experimentally validated and analyzed for
correlation with immune cells. TSC22D3 is a transcriptional
regulator that mediates immunosuppressive effects through NF-
κB, RAS, and other pathway proteins, as well as heterodimerization
ability (Ronchetti et al., 2015). It has been shown that elevated
glucocorticoids due to stress induce the expression of TSC22D3,
which blocks type I interferon (IFN) responses and IFN-γ+ T cell
activation in dendritic cells (DCs), thereby disrupting immune
surveillance (Yang et al., 2019a). Based on previous findings, and
considering the positive correlation of TSC22D3 with immune cells
in this study, it is reasonable to suspect that in cervical cancer,
TSC22D3 expression may enhance the immunity of patients by
stimulating the activation of immune cells, thereby prolonging their
prognosis. DUOX1 is expressed at low levels in HCC and can be
used as an important indicator for evaluating the therapeutic effect

TABLE 4 Univariate and multivariate Cox regression analysis of clinicopathological characteristics of TCGA-UCEC.

Characteristics Total (N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

Age(>60 vs. <=60) 549 0.541 (0.340–0.862) 0.010 0.484 (0.293–0.799) 0.005

Weight(>80 vs. <=80) 527 0.944 (0.622–1.431) 0.784 0.519 (0.228–1.185) 0.119

Height(>160 vs. <=160) 522 0.868 (0.571–1.319) 0.507 0.907 (0.567–1.450) 0.682

BMI(>30 vs. <=30) 518 1.034 (0.680–1.572) 0.876 1.479 (0.674–3.243) 0.329

Clinical stage (Stage III&Stage IV vs. Stage I&Stage II) 551 0.282 (0.188–0.425) <0.001 0.269 (0.171–0.424) <0.001

Histologic grade (G3 vs. G1&G2) 540 0.305 (0.177–0.524) <0.001 0.409 (0.232–0.719) 0.002

RiskScore (High vs. Low) 506 2.718 (2.124–3.479) <0.001 2.060 (1.196–3.548) 0.009
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of HCC after surgery (Lu et al., 2011). However, DUOX1 is
overexpressed in patients with cervical cancers (Cho et al., 2019).
DUOX1 was strongly correlated with the ratios of CD8+ T cells, DCs,
and NK cells, indicating that its expression was highly associated
with the innate immune cell response in cervical cancer.
Furthermore, DUOX1 expression in innate lymphocytes suggests
that DUOX1 has a broad host defense function (Habibovic et al.,
2016; Cho et al., 2019), resulting in prolonged survival prognosis for
patients with cervical cancer. HELLS is overexpressed in colorectal,
HCC, nasopharyngeal, and lung cancers, leading to poorer
prognosis, and therefore, HELLS can be useful as a prognostic
marker in various cancers (He et al., 2016; Yang et al., 2019b;
Law et al., 2019; Liu et al., 2019; Zhu et al., 2020; Xing et al., 2021).
Zocchi et al. (2020) found that low expression of HELLS in

retinoblastoma inhibited ectopic division of differentiated cells in
the retina, leading to tumor development inhibition and,
consequently, prolonging OS in patients (Zocchi et al., 2020;
Xing et al., 2021). In conjunction with previous studies, HELLS
displayed a negative correlation with B cells, CD8 T cells, DC, and
T cells in this investigation, with high HELLS expression signifying
reduced expression of immune cells and promotion of tumor
progression. As a critical prognostic gene in this study, it is
valuable to delve deeper into how patients’ prognosis can be
enhanced through the mechanism of HELLS.

In addition to this study, it is noteworthy that Du et al. (2022),
Qin et al. (2022), Qi et al. (2021), and Xing et al. (2021) all
investigated FRGs in cervical cancer. Du et al. (2022) constructed
a prognostic model with excellent predictive performance based on

FIGURE 5
Analysis of the immune microenvironment. (A) Differences of 24 immune cells in different expression levels of Risk score. (B) Correlation between
24 immune cells. (C) Differences of immune checkpoint inhibitors in different expression levels of Risk score. Note: ns: no significant difference, *: p <
0.05, **: p < 0.01, ***: p < 0.001.

Frontiers in Molecular Biosciences frontiersin.org10

Han et al. 10.3389/fmolb.2023.1188027

102

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1188027


FRGs. CA9/ULBP2 was also identified as a potential regulator of
cervical carcinogenesis and progression. Qin et al. (2022)
constructed a prognostic model with four iron death-associated
genes and examined the immunemicroenvironment. Qi et al. (2021)
developed a novel prognostic model with FRGs and validated the
genes within the model. Xing et al. (2021) constructed a model with
immune-associated genes and iron death genes related to OS in
CESC patients, effectively predicting the outcome.

It is worth mentioning that most of the above studies selected
1-2 datasets for analysis and model construction. In this study,
FRGs were obtained from multiple datasets, and a model was
built. The model demonstrates good stability and accuracy in
TCGA-CESC and GSE44001 datasets. Furthermore, it has
significant predictive value and general applicability in other
gynecological tumors. In addition, the expression of four
genes, including JUN, TSC22D3, DUOX1, and HELLS, in
cervical cancer tissues was verified by qRT-PCR. However,
considering the limitations of previous related research,
further study is necessary to explore the immune molecular
mechanism between ferroptosis and cervical cancer and how
this mechanism affects the prognosis of patients with cervical
cancer.

Of course, this study had two limitations. First, one of the
cohorts included relatively few indicators in clinical information,
leading to insufficient validation of some results. Second, the study
used retrospective data from public databases to construct and

validate a prognostic model for FRGs. It would be more
convincing to use prospective data to assess its clinical utility.
Based on these two points, combined with the current lack of
understanding of the mechanism of genes in cervical cancer, it is
essential to further explore and study the biological functions of
genes in cervical cancer in future research.

In conclusion, this study fills the gap in the FRGs prognostic
model for cervical cancer prognosis. The constructed prognostic
model possesses a strong ability to predict the survival outcome of
patients with cervical cancer and has certain applicability to other
gynecological tumors. Ultimately, the model demonstrates a
correlation with the prognosis of cervical cancer patients in
terms of immune infiltration, and the high expression of
immune checkpoint inhibitors in the low-risk group is more
conducive to immunotherapy efficacy. It is hoped that these
findings will provide new insights for future research and
clinical practice.

Conclusion

In this research, FRGs were derived from multiple datasets, and
a cervical cancer prognostic model was developed. This model was
validated not only in external cervical cancer datasets but also in
datasets of other gynecological tumors. Simultaneously, 4 FRGs were
confirmed using qRT-PCR. The association between immune

FIGURE 6
Expression levels of FRGs. Expression levels of 4 ferroptosis-related genes in 25 non-tumor tissues and 25 cervical cancer tissues.
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infiltration and patient prognosis, as well as the differences in the
expression of immune checkpoint inhibitors under varying risk
scores, were also determined in this study.
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In 2012, researchers proposed a non-apoptotic, iron-dependent form of cell
death caused by lipid peroxidation called ferroptosis. During the past decade, a
comprehensive understanding of ferroptosis has emerged. Ferroptosis is closely
associated with the tumor microenvironment, cancer, immunity, aging, and tissue
damage. Its mechanism is precisely regulated at the epigenetic, transcriptional,
and post-translational levels.O-GlcNAc modification (O-GlcNAcylation) is one of
the post-translational modifications of proteins. Cells canmodulate cell survival in
response to stress stimuli, including apoptosis, necrosis, and autophagy, through
adaptive regulation by O-GlcNAcylation. However, the function and mechanism
of these modifications in regulating ferroptosis are only beginning to be
understood. Here, we review the relevant literature within the last 5 years and
present the current understanding of the regulatory function of O-GlcNAcylation
in ferroptosis and the potential mechanisms that may be involved, including
antioxidant defense system-controlled reactive oxygen species biology, iron
metabolism, and membrane lipid peroxidation metabolism. In addition to these
three areas of ferroptosis research, we examine how changes in the morphology
and function of subcellular organelles (e.g., mitochondria and endoplasmic
reticulum) involved in O-GlcNAcylation may trigger and amplify ferroptosis. We
have dissected the role ofO-GlcNAcylation in regulating ferroptosis and hope that
our introduction will provide a general framework for those interested in this field.

KEYWORDS

ferroptosis, O-GlcNAcylation, ROS biology, iron metabolism, lipid peroxidation,
subcellular organelle

1 Introduction

Cell death is an inevitable and important part of life, involving a series of biological
processes. Historically, cell death has been divided into three types based on morphological
changes: 1) type I cell death (apoptosis) is characterized by cytoplasmic shrinkage, plasma
membrane blebbing, chromatin condensation; formation of apoptotic bodies; phagocytosis
of apoptotic bodies by neighboring cells or macrophages (Galluzzi et al., 2018; Santagostino
et al., 2021); 2) type II cell death (autophagy) exhibits extensive cytoplasmic vacuolization
and accumulation of autophagic vacuoles (autophagosomes); no chromatin condensation;
the fusion of autophagosomes with lysosomes (Lin et al., 2021); 3) type III cell death
(necrosis), characterized by cell swelling, loss of membrane integrity, and “spillage” of
intracellular contents (Moujalled et al., 2021). In a departure from traditional thinking, the
Stockwell laboratory proposed the concept of a unique form of regulated cell death driven by
iron-dependent lipid peroxidation, named ferroptosis (Dixon et al., 2012). As a new cell
death modality, ferroptosis studies have increased in recent years; however, our
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understanding of the regulatory mechanisms for ferroptosis is still
incomplete. Recently, there has been increasing evidence that
pathways closely related to epigenetic regulation and post-
translational modification mechanisms influence the propensity
of cells to undergo ferroptosis (Wei et al., 2020; Chen D. et al.,
2021; Tang et al., 2021).

As one of the prevalent post-translational modifications, the
O-linked β-N-acetylglucosamine (O-GlcNAc) modification consists
of the addition of a single N-acetylglucosamine (GlcNAc) to serine
or threonine residues of a protein. Unlike conventional N-/
O-glycosylation, O-GlcNAcylation is not restricted to the
extracellular structural domains of the endoplasmic reticulum
(ER), Golgi apparatus, or secretory proteins (Hart, 2019). It also
occurs in the cytoplasm, nuclear proteins, and mitochondria. Unlike
kinases and phosphatases involved in phosphorylation, the
regulation of O-GlcNAcylation has so far been the responsibility
of only two enzymes, O-GlcNAc transferase (OGT) and
O-GlcNAcase (OGA). OGT catalyzes the addition of the
precursor uridine diphosphate-GlcNAc (UDP-GlcNAc) to
proteins, and OGA removes GlcNAc by hydrolysis (Vocadlo,
2012). As a branch of glucose metabolism, UDP-GlcNAc is the
end product of the hexosamine biosynthetic pathway (HBP), which
links glucose, fatty acid, nucleic acid, and amino acid metabolic
pathways. Therefore, O-GlcNAcylation is involved in various life
processes as a nutrient sensor and signaling integrator. Our previous
work showed that O-GlcNAcylation could redirect glucose
metabolism and provide compensation for glycolysis via glycerol
(Zhang H. et al., 2022). Our previous review also detailed the
important role of O-GlcNAc modification on physiological and
pathological processes such as glucose metabolism, lipid
metabolism, and homeostasis maintenance (Zhang H. et al.,
2021). In addition, O-GlcNAc modifications are highly sensitive
to various stimuli, including physiological, chemical, and oxidative
stress, heat shock, hypoxia, and ischemia (Zachara and Hart, 2004).
Protein molecules respond to stress stimuli by transient and
reversible regulation of O-GlcNAcylation, thereby improving the
survival adaptability of cells and preventing cell death (Xue et al.,
2022).

Although ferroptosis has been detected in various biological
systems since 2012, understanding the role and mechanism of
O-GlcNAcylation in regulating ferroptosis is just beginning; the
first regulation study was reported in 2019 (Chen et al., 2019). We
reviewed the relevant literature within the last 5 years. Here, we
present the role of O-GlcNAcylation in regulating ferroptosis from
the perspectives of antioxidant defense system-controlled ROS
biology, iron metabolism, lipid metabolism and peroxidation, and
the morphology and function of subcellular organelles
(mitochondria, ER). We also describe the potential mechanisms
that may be involved. We hope our review provides a general
framework for those interested in this field.

2 Overview of ferroptosis

Ferroptosis is morphologically, functionally, and biochemically
distinct from other forms of cell death, such as apoptosis, necrosis,
and autophagy (Dixon et al., 2012; Xie et al., 2016). Morphologically,
ferroptosis is mainly characterized by abnormalities in

mitochondria, including a marked shrinkage of mitochondrial
volume, increased bilayer density, reduction or disappearance of
mitochondrial cristae, and rupture of the outer membrane (Li et al.,
2020). In some cases, ferroptosis is accompanied by an increase in
intracellular autophagosomes and cell detachment and aggregation
(Yagoda et al., 2007; Friedmann Angeli et al., 2014). Moreover,
ferroptosis occurring in one cell can rapidly spread to neighboring
cells (Katikaneni et al., 2020; Riegman et al., 2020). Genetically,
mutations or polymorphisms in some genes (e.g., P53 and RAS) are
involved in the biological regulation of ferroptosis (Jiang et al.,
2015). Biochemically, there are three main areas of research
regarding the regulation of ferroptosis, including antioxidant
defense system-controlled ROS biology (Figure 1), iron
metabolism (Figure 2), and membrane lipid peroxidation
metabolism (Figures 3, 4). The accumulation of reactive oxygen
species (ROS) due to the inactivation of the antioxidant defense
system seems to play a key role in ferroptosis; however, not all
sources of ROS contribute equally to ferroptosis. Iron-dependent
ROS production appears to be themain driver of ferroptosis induced
by lipid peroxidation. The antioxidant defense system of ferroptosis
consists of the classical System Xc/GSH/GPX4 pathway. Cystine
(Cys2) and glutamate (Glu) enter and exit cells via System Xc in a 1:
1 reverse transport, and the absorbed Cys2 can be oxidized to
cysteine (Cys) for the synthesis of glutathione (GSH).
Glutathione peroxidase 4 (GPX4) uses glutathione as a cofactor
to reduce lipid peroxides to lipid alcohols. Inhibition of System Xc or
reduced GPX4 activity leads to lipid ROS accumulation, promoting
ferroptosis (Friedmann Angeli et al., 2014; Chen et al., 2021b).
Several other GPX4-independent ferroptosis suppressor systems
have been identified in recent years [e.g., the ferroptosis
suppressor protein 1 (FSP1)/CoQ10H2 system, GTP
cyclohydrolase 1 (GCH1)/tetrahydrobiopterin (BH4) system, and
dihydroorotate dehydrogenase (DHODH) system] (Figure 1). The
FSP1 (also known as apoptosis-inducing factor mitochondria-
associated 2, AIFM2) oxidoreductase of the FSP1/CoQ10H2

system reduces ubiquinone (CoQ, common CoQ10) to ubiquinol
(CoQ10H2) using NADPH (Bersuker et al., 2019; Doll et al., 2019).
CoQ10H2 can capture peroxyl radicals to scavenge lipid peroxidation
intermediates (Bersuker et al., 2019). Furthermore, FSP1 participates
in the repair of plasma membrane damage by activating the
endosomal sorting complex required for transport III(ESCRT III)
(Dai et al., 2020). In the GCH1/BH4 system, GCH1 produces the
lipophilic antioxidant BH4, which functions similarly to CoQ10H2 to
prevent lipid peroxidation and inhibit ferroptosis. GCH1 also causes
remodeling of the lipid membrane environment to increase
CoQ10H2 levels and deplete polyunsaturated fatty acid-
phospholipids (PUFA-PLs), reducing ferroptosis sensitivity (Kraft
et al., 2020; Soula et al., 2020). DHODH was identified in 2021 as a
local mitochondrial defense system. When GPX4 is acutely
inhibited, DHODH increases the flux of CoQ10 reduction to
CoQ10H2, acting as an iron death inhibitor (Mao et al., 2021).
Recent studies suggest that there may be other defense systems.
In 2021, Zeitler et al. found that the metabolite indole-3-pyruvate
(In3Py) could inhibit iron death by scavenging free radicals and
attenuating ferroptosis-related gene expression (Zeitler et al., 2021).

Some iron regulatory-related proteins, including transferrin
(TF), transferrin receptor (TFRC), and ferritin components
(FTH1 and FTL), affect intracellular Fe2+ levels by regulating iron
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metabolism. Fe2+ oxidizes lipids in a Fenton-like manner, generating
large amounts of ROS and promoting ferroptosis (Chen et al.,
2021c). Free polyunsaturated fatty acids (PUFAs) generated by
lipid anabolism and catabolism are sensitive to lipid peroxidation
(Yang and Stockwell, 2016). Long-chain fatty acid-CoA synthetase 4
(ACSL4) promotes the activation of PUFAs (especially arachidonic
acid and adrenergic acids) into PUFAs-CoA,
lysophosphatidylcholine acyltransferase 3 (LPCAT3) promotes
the binding of PUFAs-CoA to phospholipids to form membrane
phospholipids and thus transmit ferroptosis signaling.
Downregulation of ACSL4 and LPCAT3 reduces the
accumulation of membrane phospholipid peroxide substrates,
which inhibits ferroptosis (Kagan et al., 2017). These are the
main biochemical features of ferroptosis.

3 O-GlcNAcylation regulates cell death

Numerous studies have demonstrated that O-GlcNAc
modifications are involved in regulating cell death. For example,
decreased O-GlcNAcylation caused by OGT inhibitor OSMI-1
enhances doxorubicin-induced apoptosis in hepatocellular
carcinoma (HCC) cells (Lee and Kwon, 2020). Glucosamine
enhances O-GlcNAc signaling and attenuates apoptosis in
iohexanol-induced renal injury (Hu et al., 2017). Melatonin
inhibits bladder cancer cell proliferation and promotes apoptosis
by inhibiting O-GlcNAcylation (Wu et al., 2021). OGT deletion-
mediated downregulation of O-GlcNAc modification levels causes
excessive hepatocyte necrosis (Zhang et al., 2019). Sevoflurane
postconditioning-induced enhancement of O-GlcNAcylation of

FIGURE 1
The antioxidant defense systems in ferroptosis. Cells have evolved at least four ferroptosis antioxidant defense systems mainly including the System
Xc/GSH/GPX4 system, the FSP1/CoQ10H2 system, the GCH1/BH4 system and the DHODH/CoQH2 system. When the detoxification capacity provided
by the cellular ROS defense system is insufficient, membrane lipid peroxidation leads to subsequent ferroptosis. Abbreviations: BH4, tetrahydrobiopterin;
CoQ10, coenzyme Q10; CoQ10H2, ubiquinol; DHODH, dihydroorotate dehydrogenase; ESCRTⅢ, endosomal sorting complex required for
transport III; FSP1, ferroptosis suppressor protein 1; GCH1, GTP cyclohydrolase 1; GPX4, Glutathione peroxidase 4; GSH, glutathione; SLC3A2, solute
carrier family 3 member 2; SLC7A11, solute carrier family 7 member 11.
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RIPK3 (necrosis regulatory protein) inhibits myocardial ischemia-
reperfusion injury-mediated necrosis through inhibition of RIPK3/
MLKL (a key mediator of necrosis) complex formation (Zhang et al.,
2020). In addition, multiple mechanisms are likely involved in
regulating cellular autophagy through O-GlcNAc signaling (Fahie
and Zachara, 2016). For instance, O-GlcNAcylation can regulate
autophagy by modifying CopII, a protein associated with autophagic
vesicles (Dudognon et al., 2004). In HPV-infected head and neck
squamous cell carcinomas, O-GlcNAc signaling elevates autophagy
levels by regulating the autophagy-initiating enzyme ULK1 (Shi
et al., 2022). DecreasedO-GlcNAcylation levels in SNAP-29 induced
by OGT downregulation promote the formation of autophagosomes
and increase cisplatin resistance in ovarian cancer cells (Zhou et al.,
2018). Although the mechanisms by which O-GlcNAcylation
regulates cell death are slowly being revealed, the roles these
modifications play under similar stimulation conditions may not
be identical due to the effect of the spatiotemporal specificity of
O-GlcNAc-modified proteins on the interactions between proteins

and the regulatory complexity of site-specificity on altered protein
function.

4 O-GlcNAcylation regulates
antioxidant defense system-controlled
ROS biology during ferroptosis

4.1 O-GlcNAcylation and ROS biology

Cells often encounter ROS-mediated stress. ROS act as signaling
molecules and disrupt proteins, nucleic acids, and lipids, triggering
cellular stress responses (Panieri and Santoro, 2016; Chen et al.,
2018). Reports suggest a link between O-GlcNAcylation and ROS
biology (Yang et al., 2010; Chen et al., 2018). For example, hydrogen
peroxide enhances O-GlcNAcylation in mouse embryonic
fibroblasts, which may be a strategy to promote cell survival in
response to oxidative stress stimuli (Lee et al., 2016). Interestingly,

FIGURE 2
Iron metabolism and ferroptosis. Iron import is mainly mediated by the TF-TFRC, NTBI and heme pathways, intracellular iron is utilized from LIP,
excess iron is stored back in ferritin, and iron is exported extracellularly via the FNP1 or exosome pathway. Changes in iron homeostasis regulate cell
sensitivity to ferroptosis. Abbreviations: ALOXs, arachidonate lipoxygenase; CYBRD1, cytochrome B reductase 1; FLVCR2, feline leukemia virus subgroup
C cellular receptor 2; FPN1, ferroportin 1; HB, hemoglobin; HMOX1, heme oxygenase 1; HP, haptoglobin; HPX, hemopexin; LIP, labile iron pool;
LRP1, LDL receptor-related protein 1 receptor; NCOA4, nuclear receptor coactivator 4; ROS, reactive oxygen species; SLC11A2, solute carrier family
11member 2; SLC39A8, solute carrier family 39member 8; SLC48A1, solute carrier family 48member 1; STEAP3, six-transmembrane epithelial antigen of
the prostate 3; TF, transferrin; TFRC, transferrin receptor.
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modulation of O-GlcNAcylation can also affect the level of
intracellular ROS. Decreased O-GlcNAc modifications inhibit
high glucose-stimulated ROS production in rat mesangial cells
(Goldberg et al., 2011). In addition, O-GlcNAcylation of
phosphofructokinase 1 (PFK1, a key glycolytic enzyme) shifts
glucose flux from glycolysis to the pentose phosphate pathway
(PPP), leading to increased levels of NADPH and GSH and
reduced accumulation of ROS in cancer cells (Yi et al., 2012).
Similarly, glucose-6-phosphate dehydrogenase (G6PD, a rate-
limiting enzyme of the PPP) activity and oligomerization are
regulated by O-GlcNAcylation, and increased O-GlcNAcylation
leads to dimeric G6PD accumulation, leading to increased PPP
flux and NADPH and GSH levels and decreased ROS levels (Rao
et al., 2015). This evidence demonstrates that the crosstalk between

O-GlcNAcylation and ROS signaling is complex and reciprocal.
Since ROS accumulation (especially inactivation of the System Xc/
GSH/GPX4-dependent antioxidant defense system) is one of the
essential conditions for ferroptosis, the crosstalk between abnormal
ROS signaling and O-GlcNAc modifications may be related to
ferroptosis.

4.2 O-GlcNAcylation and antioxidant
defense systems

In 2019, Chen et al. (Chen et al., 2019) reported the first study
on O-GlcNAcylation and the regulation of ferroptosis. They
found that overall O-GlcNAc modification levels were

FIGURE 3
Lipid metabolism and ferroptosis. Both lipid anabolism and catabolism affect the content of lipid substrates for ferroptosis. PUFAs are activated by
ACSL4, LPCAT3 promotes the synthesis of PUFAs-PL, and membrane PUFAs-PL are subsequently oxidized by oxygenases, such as ALOX and POR, to
promote ferroptosis. Abbreviations: AA, arachidonic acid; ACAC, acetyl-CoA carboxylase; ACSLs, Long-chain fatty acid-CoA synthases; ACSMs,medium-
chain acyl-CoA synthases; AdA, adrenic acid; ALOXs, arachidonate lipoxygenase; CPT1, carnitine palmitoyltransferase 1; LA, linoleic acid; LD, lipid
droplet; LNA, α-linolenic acid; ELOVL5, elongation of very long-chain fatty acid protein 5; FADS1/2, fatty acid desaturases 1/2; FASN, fatty acid synthetase;
LPCAT3, lysophosphatidylcholine acyltransferase 3; POR, Cytochrome P450 reductase.
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inhibited in hepatoma cells after erastin treatment. Erastin
inhibited the binding of c-Jun to OGT. Moreover,
O-GlcNAcylated c-Jun inhibited ferroptosis by directly
binding to the promoters of key enzymes in the GSH
synthesis pathway [i.e., phosphoserine aminotransferase 1
(PSAT1) and cystathionine β synthase (CBS)], activating their
transcription, stimulating GSH synthesis, and decreasing ROS
accumulation (Chen et al., 2019). This study opened the door to
understanding the role of O-GlcNAc modifications in iron-
dependent death (i.e., ferroptosis). However, for the classical
ferroptosis antioxidant system (System Xc/GSH/GPX4 axis),
System Xc and GPX4 may also be potential targets for
regulation by O-GlcNAcylation. System Xc is an amino acid
reverse transporter protein in the membrane phospholipid
bilayer, consisting of two subunits, solute carrier family
7 member 11 (SLC7A11) and solute carrier family 3 member

2 (SLC3A2). The expression and activity of SLC7A11 affect
cystine uptake by System Xc. They are positively regulated by
the oxidative stress regulator nuclear factor erythroid 2-related
factor 2 (NRF2) (Chen et al., 2017) and negatively regulated by
tumor suppressor genes, such as P53 (Jiang et al., 2015), BAP1
(Zhang et al., 2018), and BECN1(Song et al., 2018). However, one
study found that the OGA inhibitor Thiamet G (TMG) decreased
NRF2 protein and transcript levels but increased the
O-GlcNAcylation of NRF2(Tan et al., 2017). P53 activity is
strictly regulated, and post-translational modifications are an
important dimension of this regulation. P53 is modified by
O-GlcNAc; O-GlcNAcylation of Ser149 stabilizes P53 by
blocking ubiquitin-dependent protein degradation (Yang et al.,
2006). Elevated O-GlcNAc modifications induced by TMG
promote the activation and nuclear localization of P53 (de
Queiroz et al., 2016). Furthermore, BAP1 and BECN1 can also

FIGURE 4
The core features of ferroptosis include the antioxidant defense system, iron metabolism, lipid metabolism and peroxidation. Abbreviations: ALOXs,
arachidonate lipoxygenase; BH4, tetrahydrobiopterin; CoQ10, coenzyme Q10; CoQ10H2, ubiquinol; DHODH, dihydroorotate dehydrogenase; FSP1,
ferroptosis suppressor protein 1; GCH1, GTP cyclohydrolase 1; GPX4, Glutathione peroxidase 4; GSH, glutathione; LD, lipid droplet; LIP, labile iron pool;
PUFAs, Free polyunsaturated fatty acids; PUFAs-PL, PUFA-phospholipids; PUFAs-PE, PUFA-phosphatidylethanolamine; ROS, reactive oxygen
species; SLC3A2, solute carrier family 3 member 2; SLC7A11, solute carrier family 7 member 11.
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be modified by O-GlcNAc(Wang and Hanover, 2013; Moon et al.,
2017). These examples suggest that O-GlcNAcylation indirectly
regulate System Xc and may play a regulatory role in ferroptosis.

GPX4 directly reduces cytotoxic lipid peroxides (L-OOH) to
non-toxic lipid alcohols (L-OH) in the membrane. Of the three
GPX4 isoforms (mitochondrial, nuclear, and cytoplasmic isoforms),
only the cytoplasmic isoform is required for ferroptosis, and its
expression is regulated by transcription factors (i.e., stimulating
protein 1, nuclear factor Y, and AP2) (Ursini and Maiorino, 2020;
Zheng and Conrad, 2020), integrin α6β4 (Brown et al., 2017), and
heat shock protein 90 (Wu et al., 2019). It is not clear whether these
molecules undergo O-GlcNAcylation and regulate GPX4.
O-GlcNAcylation is mainly in the cytoplasm and nucleus, while
GPX4 is localized in the cytoplasm, mitochondria, and
mitochondrial OGT has also been identified in recent years
(Hanover et al., 2003). In addition, we used the O-GlcNAc
modification site prediction website (https://services.healthtech.
dtu.dk/service.php?YinOYang-1.2) for GPX4 and showed the
highest potential at 67 threonine (NetPhos threshold>0.5), which
implies that GPX4 may directly modified by O-GlcNAc. The above
evidence implies that O-GlcNAc signaling homeostasis may affect
ferroptosis sensitivity by regulating antioxidant defense system-
controlled ROS biology through related molecules or direct
modifications by transcription-dependent and -independent
mechanisms.

When System Xc transfers Cys2 into cells, it also carries
endogenous glutamate out of the cells. Therefore, inhibition of
System Xc reduces Cys2 uptake while increasing endogenous
glutamate accumulation, suggesting that intracellular glutamate
metabolism may also be involved in regulating ferroptosis. In
2021, Zhang et al. investigated the mechanism that determines
the sensitivity of lung adenocarcinoma cells to ferroptosis (Zhang
X. et al., 2021) and found that the greater the inhibition of ferroptosis
by erastin, the lower the Yes-associated protein (YAP) levels. Erastin
induces polyubiquitination-mediated degradation of YAP by
recruiting the ubiquitin E3 ligase βtrCP. However, RSL3, a
ferroptosis stimulator targeting GPX4, failed to reduce YAP
levels, suggesting that the reduction of YAP was caused by the
inhibition of Systemic Xc. It was further found that cystine
deficiency caused by System Xc inhibition is critical for triggering
ferroptosis. Moreover, glutamate accumulation is required to
determine ferroptosis sensitivity after System Xc inhibition, and
the decrease in YAP is caused by endogenous glutamate
accumulation. Phosphorylation of YAP S127 (the major
phosphorylation site of the Hippo pathway) is increased by
erastin in a glutamate-dependent manner, whereas the
O-GlcNAcylation on T241 of YAP and total YAP are
significantly decreased by this treatment (Zhang H. et al., 2021).
In addition, there is evidence that the O-GlcNAcylation at
T241 stabilizes YAP by antagonizing Hippo-dependent
phosphorylation (Zhang et al., 2017). Decreased
O-GlcNAcylation is a prerequisite for endogenous glutamate-
induced reduction of YAP levels, and O-GlcNAcylation at
T241 is critical for ferroptosis sensitivity (Zhang X. et al., 2021).
However, there are no reports on O-GlcNAcylation and the three
other antioxidant defense systems of ferroptosis independent of the
System Xc/GSH/GPX4 axis. There may be synergistic or
complementary effects among these antioxidant defense systems,

and whether O-GlcNAcylation is involved in the direct or indirect
regulation of these pathways or affect ferroptosis needs further
investigation.

5 O-GlcNAcylation regulates iron
metabolism during ferroptosis

5.1 O-GlcNAcylation and iron uptake

As an indispensable trace element in the human body, iron is
essential in physiological concentrations for metabolic processes,
such as oxygen transport and electron transfer. Iron promotes lipid
peroxidation during ferroptosis by at least two mechanisms. Iron
can produce ROS through the Fenton-like reaction and can also act
as a cofactor to activate iron-containing enzymes [e.g., arachidonate
lipoxygenase (ALOX) (Yang et al., 2016), Cytochrome
P450 reductase (POR) (Koppula et al., 2021)] involved in lipid
peroxidation. Thus, the regulation of iron metabolism (iron uptake,
utilization, storage, efflux) (Figure 2) affects ferroptosis sensitivity
(Chen P. H. et al., 2020).

Iron uptake into cells occurs by multiple mechanisms. The main
mechanism of iron uptake is through the TF-bound iron uptake
pathway (Ruff and Whittlesey, 1993; Wang J. et al., 2020; Chen D.
et al., 2021). TF can bind two Fe3+ and subsequently bind to the
TFRC, which causes membrane invagination to form specialized
endosomes. The pH drop in the endosomes leads to the release of
Fe3+ from TF. The metalloreductase six-transmembrane epithelial
antigen of the prostate 3 (STEAP3) can reduce the released Fe3+ to
Fe2+, which then crosses the endosomal membrane via solute carrier
family 11 member 2 (SLC11A2) into the cytoplasm. TF/TFRC then
returns to the cell surface (Chen et al., 2021b). It is now generally
accepted that TF has a limited transport capacity and that excess
iron may enter the cytosol by other routes. One such route is the
non-TF-bound iron (NTBI) uptake pathway. Iron reductase or the
release of cellular reductants (e.g., cytochrome B reductase
1 [CYBRD1], ascorbate) (Lane et al., 2015) present on the cell
surface can reduce iron to the ferrous form and translocate it into the
cell via transmembrane transport proteins, such as SLC11A2,
SLC39A8 or SLC39A14 (Knutson, 2019). The Heme and
hemoglobin (HB) iron uptake pathway is another mechanism of
iron transport into cells. Plasma-free heme and HB are captured by
hemopexin (HPX) and haptoglobin (HP) and transferred into cells
by binding to the LDL receptor-related protein 1 receptor (LRP1)
and macrophage scavenger receptor CD163, respectively (Gozzelino
and Soares, 2014). Finally, extracellular albumin-bound heme or
non-protein-bound heme enters cells via multiple transporters
[feline leukemia virus subgroup C cellular receptor 2 (FLVCR2),
SLC48A1, and SLC46A1] and subsequently releases Fe2+ through the
action of heme oxygenase 1 (HMOX1) (Knutson, 2019). Iron
uptake-mediated iron metabolism is essential for ferroptosis, and
there is evidence that TFRC knockdown prevents ferroptosis caused
by erastin or Cys2 deprivation (Yang and Stockwell, 2008; Gao et al.,
2015). Therefore, does O-GlcNAcylation regulate ferroptosis
through iron uptake? Zhu et al. (2021) showed that
O-GlcNAcylation increased RSL3-induced ferroptosis in HCC
cells via YAP, and the OGA inhibitor PUGNAc-induced
O-GlcNAcylation promoted YAP expression and nuclear
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localization (Zhu et al., 2021). YAP can directly bind to the TFRC
promoter region and increase TFRC expression, promoting cellular
iron uptake (Torii et al., 2016). These findings suggest that
O-GlcNAcylation can affect ferroptosis by modulating TFRC and
enhancing cellular iron uptake.

5.2 O-GlcNAcylation and iron storage

Fe2+ released into the cytoplasm enters the metabolically active
“labile iron pool” (LIP), which regulates the Fe2+ ion concentration
in the cytoplasm and determines the exchange and utilization of
Fe2+. Excess iron is mainly stored in cytoplasmic ferritin, a complex
composed of two isoforms, ferritin heavy chain (FTH1) and ferritin
light chain (FTL). FTH1 is responsible for the oxidation of Fe2+ to
Fe3+, and FTL promotes iron nucleation and mineralization. Iron
entering the inner cavity of ferritin is deposited as ferrihydrite (Chen
et al., 2021c). Iron can be excreted through pores on the surface of
ferritin; however, it is mainly bound to nuclear receptor coactivator
4 (NCOA4) and delivered to the lysosome for degradation
(ferritinophagy), releasing stored iron (Mancias et al., 2014). Iron
can also be released through ferritin degradation by the ubiquitin-
proteasome system (De Domenico et al., 2006). Reduced
FTH1 expression increases free Fe2+ in the LIP, promoting
cellular ferroptosis (Chen X. et al., 2020). Increased iron storage
by inhibiting NCOA4-mediated ferritinophagy limits ferroptosis in
cancer cells (Hou et al., 2016). There is indirect evidence that
O-GlcNAcylation regulates iron storage. First, reduced
O-GlcNAcylation of YAP induced by endogenous glutamine
accumulation in erastin-treated lung adenocarcinoma cells caused
YAP degradation, and inhibition of YAP could not increase
FTH1 expression via the transcription factor TFCP2, leading to
elevated labile iron (Zhang H. et al., 2021). Second, Yu et al. (2022)
showed that RSL3 caused biphasic changes in protein
O-GlcNAcylation, which regulates ferroptosis by coordinating
ferritinophagy and mitophagy (Yu et al., 2022). Specifically,
O-GlcNAcylation increased sharply after RSL3 treatment and
then gradually decreased during ferroptosis. Decreased
O-GlcNAcylation strongly promoted RSL3-induced TFRC
membrane transfer and increased ferroptosis sensitivity.
Decreased O-GlcNAcylation also promoted FTH1 degradation
and ferritinophagy, leading to increased labile iron levels.
NCOA4 knockdown blocked ferritin co-localization with
lysosomes. In contrast, de-O-GlcNAcylation of FTH1 at
S179 increased its interaction with NCOA4 and promoted the
transport of FTH1 to lysosomes, leading to ferritinophagy (Yu
et al., 2022). This recent study demonstrated that O-GlcNAc
modifications could affect ferroptosis by regulating iron storage.

5.3 O-GlcNAcylation and iron export

Iron export is mediated by the plasma membrane protein
ferroportin 1 (FPN1, also known as solute carrier family
40 member 1, SLC40A1) and the ferro-oxidases (e.g.,
ceruloplasmin and hephaestin). FPN1 transports Fe2+ to the
extracellular space, where it is oxidized by the ferro-oxidases to
Fe3+ for export. In addition, ferritin and its stored iron can be

released from the cell via the prominin-2-mediated exosome
pathway (Brown et al., 2019), suggesting that intracellular iron
export is also regulated by this secretory pathway. There is
evidence that blocking the iron release pathway by inhibiting
FPN1 on the cell membrane increases ferroptosis sensitivity
(Brown et al., 2019; Shang et al., 2020). Moreover, NH4Cl can
increase O-GlcNAcylation and FPN1 expression (Görg et al.,
2019), suggesting a potential link between O-GlcNAcylation and
iron export. However, the specific mechanism is still unclear.

6 O-GlcNAcylation regulates lipid
metabolism and peroxidation during
ferroptosis

Ferroptosis is ultimately caused by the peroxidation of membrane
lipids and involves complex lipid metabolic processes (Figure 3).
Because the bis-allylic group (-CH = CH-CH2-CH = CH-) is more
susceptible to oxidation, PUFAs are one of the main lipid targets for
peroxidation. Fatty acids are important precursors of membrane
lipids. For their de novo synthesis, acetyl-CoA carboxylase (ACAC)
catalyzes the synthesis of malonyl-CoA from acetyl CoA, and then
fatty acid synthetase (FASN) catalyzes the condensation of malonyl-
CoA and acetyl CoA to form saturated fatty acids (e.g., palmitic acid).
The saturated fatty acids are desaturated by desaturases (e.g., stearoyl-
CoA desaturase-1, SCD1) to form monounsaturated fatty acids (e.g.,
palmitoleic acid). Essential PUFAs [α-linolenic acid (LNA) and
linoleic acid (LA)] obtained from food are further processed by
elongation reactions (e.g., elongation of very long-chain fatty acid
protein 5, ELOVL5) and desaturation (e.g., fatty acid desaturases 1/2,
FADS1/2) to other long-chain PUFAs (e.g., arachidonic acid).
Inhibition of ACAC can inhibit ferroptosis caused by various
stimuli (Lee H. et al., 2020). SCD1 knockdown sensitizes cells to
ferroptosis (Tesfay et al., 2019). FADS1/2 and ELOVL5 can promote
ferroptosis (Lee J. Y. et al., 2020), suggesting that PUFA synthesis also
regulates ferroptosis. O-GlcNAc modifications have been associated
with fatty acid synthesis. For example, Sodi et al. (2018) found that
OGT downregulation inhibited fatty acid biosynthesis and led to
cancer cell death by decreasing FASN expression (Sodi et al., 2018).
However, there is still a lack of reports on whether O-GlcNAcylation
affects ferroptosis by regulating fatty acid synthesis. Recently, Wang
et al. (2022) found enhanced O-GlCNAcylation at Ser555 of
transcription factor ZEB1 in mesenchymal pancreatic cancer cells,
which promoted FASN and FADS2 transcriptional activity and lipid
peroxidation-dependent ferroptosis in cancer cells (Wang et al., 2022).
This study may be the only direct evidence so far that elevated
O-GlcNAcylation regulates ferroptosis through lipid metabolism.
Interestingly, FASN is modified by O-GlcNAc (Baldini et al.,
2016). Whether elevated O-GlcNAcylation plays a role in
regulating ferroptosis through FASN remains to be proven.

Excess lipids can be stored in lipid droplets composed of
glycerol and cholesterol lipids. Lipid droplet formation increases
fatty acid storage, and separating PUFA from membrane
phospholipids limits ferroptosis precursor utilization (Bai
et al., 2019). Enhanced selective autophagic degradation of
lipid droplets increases the production of free fatty acids,
promoting lipid peroxidation and increasing the ferroptosis
sensitivity of HCC cells (Bai et al., 2019). Both anabolism and
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β-oxidative catabolism first require fatty acid activation. Fatty
acids are converted to medium/long-chain acyl coenzyme A via
medium/long-chain acyl-CoA synthetases (ACSMs, ACSLs) and
subsequently enter the mitochondria for oxidative catabolism by
carnitine palmitoyltransferase 1 (CPT1). Unsaturated fatty acids
are saturated before being oxidatively catabolized, and 2,4-
dienoyl-CoA reductase 1 (DECR1) catalyzes the reduction of
PUFAs in mitochondria. Inhibition of CPT1 promotes
ferroptosis induced by RLS3 (Kagan et al., 2017), and
knockdown of DECR1 promotes ferroptosis in prostate cancer
cells (Blomme et al., 2020). These examples suggest that PUFA
depletion by β-oxidation may reduce ferroptosis oxidation
precursors and inhibit ferroptosis. The importance of
O-GlcNAcylation for lipid synthesis in cancer cells is self-
evident. However, there is a lack of direct evidence on
whether O-GlcNAcylation regulates lipolysis in relation to
ferroptosis.

Initially, free PUFAs were thought to be ferroptosis drivers.
However, further studies have revealed that PUFAs must
undergo esterification and be incorporated into the membrane
lipid environment and oxidized by oxygenases (e.g.,
lipoxygenases, ALOXs) to transmit ferroptosis signals. PUFAs
(i.e., arachidonic acid or adrenergic acids) are catalyzed by
ACSL4 into fatty acyl-CoA. LPCAT3 then promotes the
esterification of fatty acyl-CoA bound to membrane
phospholipids (e.g., phosphatidylethanolamine,
phosphatidylcholine) into PUFA-phospholipids (e.g., PUFA-
phosphatidylethanolamine, PUFA-PE; PUFA-
phosphatidylcholine, PUFA-PC). The inactivation of
ACSL4 and LPCAT3 renders cells resistant to ferroptosis

(Dixon et al., 2015; Doll et al., 2017). Zhang H. et al. (2022)
showed that phosphorylation of ACSL4 on Thr328 promotes its
activation, drives PUFA incorporation into phospholipids, and
promotes ferroptosis (Zhang H. L. et al., 2022). For other
members of the ACSLs, ACSL1 generates conjugated linoleates
(e.g., α-eleostearic acid) capable of triggering ferroptosis (Beatty
et al., 2021). ACSL3-activated exogenous monounsaturated fatty
acids promote cellular resistance to ferroptosis by reducing the
sensitivity of membrane lipids to oxidation (Magtanong et al.,
2019), suggesting that ACSLs may play different roles in
ferroptosis regulation in a substrate-dependent manner.
Furthermore, ACSL4 can be O-GlcNAcylated in HCC cells,
and its silencing can eliminate the promoting effect of
O-GlcNAcylation on apoptosis (Wang Y. et al., 2020).
However, there is a competitive relationship between
phosphorylation and O-GlcNAcylation. Therefore, researchers
should explore whether O-GlcNAcylation and phosphorylation
crosstalk affects the sensitivity of ACSL4 to ferroptosis.

Finally, oxygenases, such as the ALOXs, trigger ferroptosis by
oxidizing membrane phospholipids (Kagan et al., 2017). In addition,
cytochrome P450 oxidoreductase (POR) contributes to lipid
peroxidation during ferroptosis (Zou et al., 2020). Recent studies
have found that the calcium-independent phospholipase, iPLA2β,
releases oxidized PUFAs from the membrane phospholipids to
inhibit P53-driven ferroptosis under ROS-induced stress (Chen
D. et al., 2021), indirectly showing that oxidized PUFA tails do
not promote ferroptosis after separation from membrane
phospholipids. The 2022 review by Stockwell concluded that
ferroptosis should not be considered a general type of oxidative
stress but rather a lethal accumulation of membrane-localized lipid

TABLE 1 Effect of key O-GlcNAcylated proteins on ferroptosis.

Proteins O-GlcNAcylation
sites

Effect on its function Mechanisms Effect on ferroptosis Sample types Ref

c-Jun Ser73 O-GlcNAcylation promotes
protein expression,
transcriptional activity and
nuclear accumulation of c-Jun

O-GlcNAcylation of c-Jun
stimulates GSH synthesis
and reduces ROS
accumulation

O-GlcNAcylation of c-Jun
inhibits ferroptosis

Liver cancer Chen
et al.
(2019)

YAP Thr241 O-GlcNAcylation antagonizes
Ser127 phosphorylation to
inhibit the degradation of YAP

Reduced O-GlcNAcylation
inhibit the transcription of
FTH1 by YAP, resulting in
elevated LIP

Decreased
O-GlcNAcylation of YAP
increased ferroptosis
sensitivity

Lung
adenocarcinoma

Zhang
et al.
(2021a)

YAP Thr241 O-GlcNAcylation enhances and
stabilizes the expression of YAP

O-GlcNAcylation of YAP
increases TFRC
transcription and leads to
elevated Fe2+ concentration

Elevated YAP
O-GlcNAcylation
increases ferroptosis
sensitivity

hepatocellular
carcinoma

Zhu et al.
(2021)

ZEB1 Ser555 O-GlcNAcylation enhances the
stability and nuclear
translocation of ZEB1

O-GlcNAcylation of
ZEB1 promotes the
transcriptional activity of
adipogenesis-related genes
FASN and FADS2, leading
to increased synthesis of
PUFAs

O-GlcNAcylation of
ZEB1 promotes ferroptosis
in mesenchymal pancreatic
cancer cells

Mesenchymal
pancreatic cancer
cells

Wang
et al.
(2022)

FTH Ser179 De-O-GlcNAcylation of FTH
promoted the degradation
of FTH

De-O-GlcNAcylation of
FTH increases the
interaction with
NCOA4 and promotes
ferritinophagy, leading to
elevated LIP

Inhibition of
O-GlcNAcylation of FTH
activates ferroptosis

U2OS cells, HUVEC
and HT1080 cells

Yu et al.
(2022)
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peroxides (Stockwell, 2022). In lipid metabolism, the production of
PUFAs increases ferroptosis sensitivity. Most fatty acids are
consumed by β-oxidation, which reduces the rate of lipid
peroxidation. Lipid droplet formation protects the PUFAs from
lipid oxidation during ferroptosis (Chen et al., 2021b). These data
suggest that PUFA-mediated lipid synthesis and catabolism play
important roles in regulating ferroptosis. The regulation of lipid
metabolism by O-GlcNAcylation has been widely studied; however,
the role of O-GlcNAcylation in lipid metabolism-mediated
ferroptosis is still unclear. Thus, a better understanding of the
effect of O-GlcNAcylation on lipid peroxidation will help
researchers clarify the complex regulatory processes for ferroptosis.

7 Effects of O-GlcNAcylation on the
morphology and function of subcellular
organelles during ferroptosis

7.1 O-GlcNAcylation and mitochondria

For subcellular organelles, changes in the morphology or
function of subcellular organelles may either facilitate or
accompany ferroptosis. In recent years, the roles of different
subcellular organelles in ferroptosis have been identified.
Morphologically, mitochondria shrink in size, cristae are reduced,
and the outer membranes are ruptured during ferroptosis (Dixon

FIGURE 5
Modulation of ferroptosis signaling pathway by O-GlcNAcmodification. HBP provides UDP-GlcNAc through glucose and glutamine, and regulation
of O-GlcNAc modification homeostasis by OGT/OGA affects cellular sensitivity to ferroptosis through ROS production, iron metabolism, and fatty acid
synthesis, respectively. Details of the molecular mechanism are provided in the main text. The star symbol represents O-GlcNAc modification, and the
yellow orbs represent lipid droplets. Abbreviations: ACSL4, Long-chain fatty acid-CoA synthetase 4; CBS, cystathionine β synthase; FADS2, fatty acid
desaturases 2; FASN, fatty acid synthetase; FPN1, ferroportin 1; Fruc-6-P, fructose-6-phosphate; FTH1, ferritin heavy chain 1; G6PD, glucose-6-
phosphate dehydrogenase; GFAT, Glutamine-fructose-6-phosphate transaminase; Glc-6-P, Glucose-6-phosphate; GLUT1, Glucose transporter 1; GSH,
glutathione; HBP, hexosamine biosynthetic pathway; LIP, labile iron pool; NRF2, Nuclear factor erythroid 2-related factor 2; OGA, O-GlcNAcase; OGT,
O-GlcNAc transferase; PFK1, phosphofructokinase 1; PPP, pentose phosphate pathway; PSAT1, phosphoserine aminotransferase 1; SLC1A5, solute carrier
family 1 member 5; TF, transferrin; TFRC, transferrin receptor; YAP, Yes-associated protein; ZEB1, zinc-finger E homeobox-binding 1.
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et al., 2012). Functionally, depletion of mitochondria or inhibition of
the electron transport chain causes resistance to cystine starvation or
erastin-induced ferroptosis (Gao et al., 2019). Voltage-dependent
Anion channel 2 (VDAC2, responsible for the transport of ions and
metabolites) of the outer mitochondrial membrane is a direct target
of erastin, which causes mitochondrial dysfunction and massive
oxide release via VDAC2 (Yagoda et al., 2007). In addition,
mitochondria play an important role in iron metabolism. Iron in
the LIP can be imported into mitochondria through channels in the
outer mitochondrial membrane (e.g., SLC25A37 and SLC25A28) to
synthesize heme and Fe-S clusters (Paradkar et al., 2009). Iron
overload in the mitochondria can lead to mitochondrial autophagy
(Li et al., 2018). Inhibition of the mitochondrial outer membrane
protein CDGSH iron-containing domain-containing protein 1
(CISD1) increases mitochondrial iron accumulation and
mitochondrial lipid peroxidation, promoting erastin-induced
ferroptosis (Yuan et al., 2016). Ferroptosis may be initiated and
amplified by damage to the mitochondrial morphology and
function.

With the discovery of mitochondrial OGT (mOGT), the effect of
O-GlcNAcylation on mitochondria has attracted widespread
attention. Numerous publications have shown that
O-GlcNAcylation is associated with mitochondrial dysfunction
(Zhang X. et al., 2021; Xue et al., 2022). For example, Dontaine
et al. (2022) found that acute elevation in mitochondrial O-GlcNAc

modifications enhanced electron transport chain flux and complex I
activity and decreased ROS release (Dontaine et al., 2022).
Furthermore, many mitochondrial proteins involved in
mitochondrial respiration, fatty acid metabolism, apoptosis, and
other biological processes are substrates for mOGT (Jóźwiak et al.,
2021). As mentioned above, Yu et al. found that inhibition of
O-GlcNAcylation increased cellular ferritinophagy, and iron
released from ferritinophagy was transported to the
mitochondria. The investigators subsequently found that
inhibition of O-GlcNAcylation increased mitochondrial
fragmentation and autophagy, adding an additional source of
iron for ferroptosis and making cells more sensitive to this
mechanism of cell death (Yu et al., 2022). This study provides a
different perspective on our understanding of ferroptosis in terms of
the regulation of mitochondrial iron homeostasis by
O-GlcNAcylation. It is unknown whether O-GlcNAcylation
affects ferroptosis by regulating mitochondrial ROS.

7.2 O-GlcNAcylation and endoplasmic
reticulum

Of the other subcellular organelles, the ER is worth
mentioning. The efficacy of ferrostatin-1 (ferroptosis
inhibitor) is derived from its ability to anchor to lipid

FIGURE 6
O-GlcNAcylation affects cellular sensitivity to ferroptosis through ROS biology, iron metabolism, lipid peroxidation and subcellular organelles.
Abbreviations: ROS, reactive oxygen species; LIP, labile iron pool.
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membranes, thereby capturing free radical intermediates during
lipid peroxidation and reducing lipid hydroperoxides. Gaschler
et al. (2018) observed Ferrostatin-1 aggregates in lysosomes,
mitochondria, and the ER using stimulated Raman scattering
microscopy. Ferrostatin-1 accumulation in the ER may be critical
for inhibiting ferroptosis (Gaschler et al., 2018). Consistent with
this hypothesis, the fluorescent lipid peroxidation probe
LiperFluo was mainly localized in the ER (Kagan et al., 2017).
Because the ER contains more than half of the lipid bilayers of a
cell and is the source of most membrane lipids in other
organelles, it is not surprising that the ER may be an
important site of lipid peroxidation. Another study showed
that erastin could induce ALOX5 translocation to the nuclear
membrane, suggesting that lipid peroxidation also occurs in that
membrane (Yang et al., 2016). Thus, membrane damage may
involve multiple subcellular organelles, and cells exhibiting loss
of plasma membrane integrity may be in a late stage of ferroptosis
(Stockwell, 2022). The ESCRT III may repair the final stage of
plasma membrane damage but may also simply slow the rate of
iron death (Pedrera et al., 2021). The epidermal growth factor
(EGF) domain-specific O-GlcNAc transferase (EOGT) in the ER
catalyzes proteins in the lumen of the ER, implying the presence
of extracellular O-GlcNAc modifications (Sakaidani et al., 2011;
Ogawa et al., 2015). Abnormal O-GlcNAcylation in the ER
tubular lumen is associated with the development of some
diseases (e.g., Adams-Oliver syndrome and Walker-Warburg
syndrome) (Manzini et al., 2012; Shaheen et al., 2013; Cohen
et al., 2014). Recent studies have found that the OGT inhibitor
OSMI-1 can activate apoptosis by inducing ER stress (Lee et al.,
2021). O-GlcNAcylation promotes the formation of Coat Protein
Complex II (COPII) vesicles and accelerates the cis-transport of
vesicles in the ER-Golgi network (Cho and Mook-Jung, 2018).
These reports suggest that O-GlcNAcylation is associated with
stress response and vesicle transport in the ER. However, it is
unclear what types of proteins are modified by O-GlcNAc in the
ER lumen or what the effect of O-GlcNAcylation is on ER
function, especially whether O-GlcNAcylation regulates ER
lipid metabolism.

8 Prospects

The biological processes and sensitivity of ferroptosis are
highly dependent on the ROS defense system, iron metabolism
and membrane lipid peroxidation metabolism (Figure 4). Studies
of these three processes have identified many direct and indirect
regulatory factors regulated by transcription, translation,
epigenetics, and post-translational modifications (e.g.,
phosphorylation, methylation, and acetylation) that also play
an indispensable role in ferroptosis (Wei et al., 2020).
O-GlcNAcylation also regulates ferroptosis, adding to our
understanding of ferroptosis from another perspective.
However, the role of O-GlcNAcylation in ferroptosis is only
beginning to be elucidated, so there are still many unknowns
and questions. For example, physiological and pathological states
of O-GlcNAc modifications have different regulatory effects on
ferroptosis, and O-GlcNAc modifications in different cell types
under the same or similar conditions may play different roles,

indicating the complexity and refinement of O-GlcNAcylation in
regulating ferroptosis.

Although ferroptosis is not equivalent to general ROS
accumulation, the accumulation of ROS is necessary for
ferroptosis. There is a crosstalk between ROS and
O-GlcNAcylation in the antioxidant defense system. It is unclear
whether O-GlcNAcylation plays a role in regulating ferroptosis
through other defense systems in addition to the System Xc/
GSH/GPX4 axis. It is worth mentioning that CoQ10H2 functions
in the plasma membrane. Does the ER, the main site of lipids, also
have other defense systems? Whether O-GlcNAcylation in the ER is
involved in the ROS defense system is a question well worth
exploring.

The significance of iron uptake, utilization, storage, and efflux in
ferroptosis is self-evident. Recent findings only suggest that
O-GlcNAcylation regulates ferroptosis sensitivity through iron
metabolism; however, whether O-GlcNAcylation is a direct driver
of iron metabolism under physiological or pathological conditions is
unclear.

Whether O-GlcNAcylation occurs in key enzymes in the
membrane lipid peroxidative metabolism pathway during the
synthesis of PUFAs needs to be further characterized. Lipid
droplet synthesis and catabolism and fatty acid β-oxidation
appear to regulate PUFA content; however, free PUFAs may not
be inherently ferroptosis-toxic. Therefore, PUFA oxidation
(especially membrane PUFAs) should be the focus of attention.
In contrast, the regulation of lipid substrate production and
oxidative processes by O-GlcNAcylation currently lacks relevant
evidence. It is worth noting that not all unsaturated fatty acids
induce ferroptosis, and it is also worth considering whether
O-GlcNAcylation regulates the production of different fatty acids
(e.g., monounsaturated fatty acids).

Finally, whether other subcellular organelles (e.g., the Golgi)
regulate ferroptosis needs to be explored.O-GlcNAcylation has been
observed in the Golgi (Ogawa et al., 2015). In addition, neighboring
cells might transmit ferroptosis signals. Does this signaling involve
exosomes even though OGT is present within the exosome (Yuan
et al., 2021)?

9 Conclusion

In summary, adaptive regulation by O-GlcNAcylation in
response to stress perturbations plays an important role in
regulating ferroptosis sensitivity via the antioxidant defense
system-controlled ROS biology, iron metabolism, and membrane
lipid peroxidation metabolism (Table 1). These three processes
synergistically interact with each other. In lipid metabolism,
O-GlcNAcylation is involved in regulating the process of lipid
substrate production; in iron metabolism, O-GlcNAcylation
affects the efficiency of Fe2+ utilization; the crosstalk with ROS
biology reflects the role of O-GlcNAcylation in the defense process
of lipid peroxidation damage (Figure 5). In addition, changes in the
morphology and function of subcellular organelles regulated by
O-GlcNAc modification may trigger and amplify ferroptosis
(Figure 6). These current studies on the roles of
O-GlcNAcylation in ferroptosis are only the prologue, and since
one key cannot open all locks, we are not limited to starting with the
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above questions in the future. Exploring the environment-specific
regulatory effects of O-GlcNAcylation is important for
understanding the physiological and pathological mechanisms of
ferroptosis.
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Background: Ferroptosis is involved in many malignant tumors and has been

implicated in important mechanisms of colorectal cancer (CRC) suppression.

However, the prognostic and predictive values of the ferroptosis activation

pattern in CRC patients have not been noted. Here, we aimed to construct

and validate a prediction model based on ferroptosis-related genes (FRGs) for

CRC patients and investigated the expression pattern and biological function of

the most significantly altered gene.

Methods: A total of 112 FRGs were obtained from the FerrDb website, and the

clinical characteristics of 545 CRC patients and their global gene expression

profiles were downloaded from The Cancer Genome Atlas (TCGA) database.

Survival-related FRGs were identified by Cox proportional hazards regression

analysis. Finally, the expression pattern and biological function of NOS2, themost

implicated gene was explored in vitro and in vivo.

Results: The prediction model was established based on 8 FRGs. Patients in the

high- or low-risk group were stratified based on the median risk value calculated

by our model, and patients in the high-risk group experienced poor overall

survival (p<0.01). Further validation demonstrated that the FRGmodel acted as an

independent prognostic indicator for CRC patients (HR=1.428, 95% CI, 1.341-

1.627; p<0.001). The area under the receiver operating characteristic (ROC) curve

(AUC) for 5-year survival was 0.741. NOS2 was one of the most significantly

affected FRGs and was highly expressed inmalignant tissue, but it inhibited tumor

growth and induced tumor cell death in vitro and in vivo, possibly by repressing

the NF-kB pathway.
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Conclusion: Our study revealed that FRGs have potential prognostic value in

CRC patients and that NOS2 suppresses tumor progression, providing a novel

therapeutic target for CRC treatment based on ferroptosis.
KEYWORDS

colorectal cancer, ferroptosis, prognostic model, gene, NOS2
Introduction

CRC is the third most frequently diagnosed malignant tumor

worldwide, accounting for approximately 10% of all cancers and

leading to almost 9×105 deaths annually (1, 2). The incidence of

CRC has been increasing over recent decades, and it is foreseeable

that new cases will reach 2.5 million in 2035, and the treatment and

management of CRC have become more difficult due to the increase

in drug resistance (3–5). However, guiding prognostication and

treatment decision-making with biomarkers would provide

promising therapeutic targets for CRC (6).

Ferroptosis is an important and recently identified form of

nonapoptotic cell death driven by iron-dependent lipid

peroxidation that was first proposed in 2012 (7). Emerging

evidence has gradually indicated the tumor-suppressive

consequence of ferroptosis through cysteine deprivation and

reactive oxygen species (ROS) production by p53 (8, 9). To date,

ferroptosis has been shown to affect the immune microenvironment,

metabolism, and cell proliferation in CRC and acts downstream of

chemotherapy and targeted therapy in KRAS-mutated CRC cells

(10–12). However, the diagnostic and prognostic values and

underlying biological mechanisms involved in ferroptosis remain

unclear in CRC.

As shown in previous studies, NOS2 (Enzyme Nitric Oxide

Synthase 2) might act in the process of ferroptosis and have

implications for patient stratification for prognosis (13, 14). NOS2

is a calcium-independent and inducible enzyme that contributes to

the production of NO in cells; therefore, it is related to immune

response facilitation, the vascular relaxation function, and

inflammation (15, 16). In many types of cancer, the mechanisms

by which NOS2 is involved are complex and poorly defined, with

both promoting and inhibiting functions having been described (15,

17, 18). Several studies have addressed the mechanisms by which

NOS2 promotes tumor progression by p53 and TNFa interactions

within the tumor microenvironment (19, 20). However, NOS2 is

essential for T cell immunotherapies to destroy tumors (21).

Our study analyzed the correlation between the expression

pattern of FRGs and the survival of 545 CRC patients from the

TCGA database, and a prognostic model based on the risk score

of 8 FRGs identified by multivariate Cox regression analysis
sis-related genes; ROS,

thase 2; MTT, 3-(4, 5-

e.

02122
was established. Furthermore, we explored the expression

pattern and the tumor suppressive role and mechanism of

NOS2, which was one of the most significantly affected gene

in our model.
Materials and methods

Data sources

A total of 112 FRGs, including ferroptosis drivers, suppressors and

markers, were obtained from the FerrDB website (http://

www.zhounan.org/ferrdb/). We downloaded the mRNA expression

data and clinical characteristics of 545 patients diagnosed with CRC

from The Cancer Genome Atlas (TCGA) database (https://

www.cancer.gov/).
Identification of differentially expressed
FRGs and enrichment analysis

We ran the edgeR package to identify differentially expressed

FRGs (fold change >2, adjusted p-value< 0.05) between CRC and

normal tissues. Then, we used a parallel box diagram to visualize

these eligible FRGs and conducted Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analyses for gene

functional enrichment analyses. “GO plot” and “KEGG plot” were

used to visualize the results.
Establishment of the individualized
prognostic model based on FRGs

We performed univariate Cox regression analysis to select the

significant survival-related FRGs and avoid false positives and

overfitting of the model by LASSO regression analysis. Next, we

used multivariate Cox regression analysis to further identify FRGs

that could independently predict survival. Finally, the prognostic

model was established according to the relative expression levels of

the screened FRGs and weighted according to regression coefficients

(b) with a multivariate Cox regression model. The equation was as

follows:
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Calculating survival and the risk score

According to the median risk score, CRC patients were divided

into the high- or low-risk group. Kaplan-Meier curves were

generated to analyze the overall survival (OS) times between the

two groups, and a time-dependent receiver operating characteristic

(ROC) curve was used to evaluate the accuracy of the prediction

model. Then, we drew a nomogram to demonstrate the predictive

probability and observation rate of five-year OS in CRC patients.
Western blot analysis and quantitative
real-time PCR

We used RIPA buffer (Amresco, America) to lyse cells and

tissues, separated total proteins by 10% SDS-PAGE (Amresco,

America) and transferred them to PVDF membranes. All

membranes were incubated overnight with primary antibodies at

4°C and with the HRP-conjugated secondary antibody at room

temperature for 1 h. All western blot results were quantified by

software Image J (v1.8.0).

For qRT-PCR, total mRNA was extracted from tumor cells or

tumor tissues using TRIzol reagent and reverse transcribed into

cDNA with a PrimeScript RT-PCR Kit. cDNA was amplified using

SYBR™ Premix Ex Taq™ (TaKaRa, Japan) on a LightCycler 96

Detection System (Roche). GAPDH CT values were used

for normalization.
MTT proliferation and clonogenic assays

For the MTT (3-(4, 5-dimethyl-thiahiazo-2-yl)-2, 5-di-

phenytetrazolium bromide) proliferation assay, transfected cells

(1×103 cells per well) were seeded onto 96-well plates. After 24 h,

we performed an MTT assay at fixed time points every day. For the

clonogenic assay, 500 cells were cultivated per well into 6-well plates

and maintained in RPMI 1640 medium with 10% fetal bovine

serum at 37°C for 7 days.
In vivo subcutaneous xenograft models

All nude mice were purchased from Guangdong Medical

Laboratory Animal Center. NOS2-overexpressing and control cell

lines were transplanted subcutaneously into the bilateral flanks, and

appropriate care was given to these animals. Tumor volume

[(length × width2)/2] was measured every 3 days, and all mice

were sacrificed 21 days after injection.
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Statistical analysis

All statistical analyses were performed using GraphPad Prism

8.0 and R 3.6.2. The R package edgeR was used for differential

expression analysis, and then univariate LASSO and multivariate

Cox regression analyses were performed to identify FRGs associated

with prognosis and further introduced into the prognostic model.

Differences in OS between CRC patients in the high-risk group and

low-risk group were generated with the Kaplan-Meier method. The

R package “survivalROC” was run to generate the ROC curve and

the corresponding area under the ROC curve (AUC) for model

evaluation. Relevant R packages used for statistical analysis

referenced the method in (22).

Data are shown as the mean ± SD, and all tests were considered

statistically significant only when p< 0.05 was achieved.
Results

Differentially expressed FRGs in CRC
and functional enrichment

First, we downloaded RNA-seq and clinical data from 646 CRC

tissue samples and 68 normal colorectal mucosa specimens (Paired

colon samples were from partial colon resection for carcinoma)

from the TCGA database. Altogether, 545 CRC patients with

follow-up data were eligible (Table 1). A total of 112 FRGs were

accessed from the FerrDB website (Figure 1), and 61 genes (40

upregulated and 21 downregulated) were obtained under the

criteria FDR<0.05 and log2 (fold change) > 1 (Figures 2A, B). Box

plot graph showing these differential genes expression between

normal and tumor tissues (Figure 2C). These differentially

expressed FRGs were then subjected to functional enrichment

analysis, and the top 28 GO terms and 8 KEGG pathways are

visualized in Figures 2D, E. The top ranked pathways according to

enrichment score were “Ferroptosis” and “Response to

toxic substance”.
Identification of prognostic FRGs and
construction of a predictive model

We selected the above 61 FRGs for further exploration and

performed univariate Cox regression analysis. The results revealed

that 14 differentially expressed FRGs were significantly correlated

with OS (Table 2). Then, we conducted LASSO regression analysis

to narrow the scope and avoid false positives and ultimately

identified 8 FRGs independently associated with survival in CRC

patients by multivariate Cox regression to construct a predictive

model (Supplementary Table 1). A heatmap of the expression

profiles of 8 FRGs is shown in Figure 3A.

According to the model, 545 patients were classified into the

high- or low-risk group based on the median risk scores [Risk score =

-0.144 ×NOS2 expression + 0.723 × DRD4 expression + (-0.561) ×

STAT3 expression + 1.208 × LINC0036 expression + 0.431 ×
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SLC2A3 expression + 0.707 × JDP2 expression + 0.770 × DUOX1

expression+ 0.996 × ISCU expression]. Subsequently, uni- and

multivariate Cox regression analyses demonstrated that the risk

score acted as an independent risk factor and an independent

prognostic factor for the survival of CRC patients (Figures 3B, C).

A K-M survival curve indicated that the survival rate of CRC patients

in the high-risk group was significantly lower than that of CRC

patients in the low-risk group (Figure 3D). The survival statuses of

CRC patients in the two groups were presented in Figure 3E. The

ROC curve for 5-year survival prediction and AUC for the risk score

model showed good accuracy, and the area under the ROC curve was

0.741, which was higher than that of the ROC curve for age (0.637),

sex (0.438), disease stage (0.709), T stage (0.676), N stage (0.654) and

M stage (0.650) (Figure 3F).
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Evaluation of the accuracy of the
predictive model

To assess the prognostic efficacy of our model, we performed

disease stage-based ROC curve analysis. The stage I/II and III/IV

AUC values of the predictive model were 0.737 and 0.771,

respectively, reflecting the superior performance of the FRG

model for CRC prognostication (Figures 4A, B). Moreover, the K-

M survival curve showed that the survival rates of CRC patients

with stage I/II and III/IV disease in the high-risk group were

distinctly lower than those in the low-risk group (Figures 4C, D).

Finally, we constructed a nomogram to predict 1-year, 2-year and 3-

year survival according to age, sex, clinical stage and our predictive

model (Figure 4E).
NOS2 might act as a protective factor

Considering that NOS2 was one of the most significantly

affected FRGs in our model (Supplementary Table 1) and the

most obvious expression differences between patients in high risk

and low risk groups (Figure 3A), we further investigated the role of

NOS2 in ferroptosis-related tumor progression. The expression of

NOS2 in 545 CRC patients with early or advanced TNM stages was

detected. Overall, the expression of NOS2 gradually decreased as the

TNM stage advanced (Figure 5A). Furthermore, the survival rates of

CRC patients with high NOS2 expression were significantly higher

than those of patients with low NOS2 expression (Figure 5B). Taken

together, these data suggest that NOS2 might have a tumor

suppressive function in CRC.
FIGURE 1

112 FRGs were obtained from the FerrDB website, and the
interaction network was constructed by cyberscope software.
TABLE 1 Specific baseline clinical characteristic of 545 colorectal cancer
patients.

Characteristic

Gender

Male 291

Female 254

Age

<60 153

≧60 392

Stage

I/II 305

III/IV 225

unknow 15

Pathologic T stage

T1-2 111

T3-4 433

Unknow 1

Pathologic N stage

N0 322

N1-2 222

unknow 1

Pathologic M stage

M0 406

M1 76

unknow 63

Survival time

0-3 years 441

3-5 years 67

>5 years 37
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B

C

D
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A

FIGURE 2

Differentially FRGs expressed in CRC and functional enrichment. Volcano plot (A), heatmap (B) and expression bar chart (C) showing the 61
differentially expressed FRGs in CRC tissues compared with normal tissue. The red dots represented significantly up-regulated FRGs, green dots
standed for FRGs with significantly downregulated and black dots standed for no significant differences FRGs. The GO analysis (D) and KGEE analysis
(E) for molecular functions and potential pathways for differentially expressed FRGs involved in.
TABLE 2 Fourteen prognosis-related genes obtained based on univariate COX regression analysis.

Gene symbol Hazard ratio 95%CI p-Value

HSPB1 1.228 1.002−1.504 0.048

DDIT3 1.314 1.022−1.690 0.033

NOS2 0.852 v0.747−0.973 0.018

DRD4 1.719 1.162−2.542 0.007

STAT3 0.616 0.390−0.975 0.039

LINC00336 4.285 1.352−13.578 0.013

(Continued)
F
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NOS2 suppresses tumor proliferation
in vitro

To further explore the biological functions of NOS2 in CRC, we

first detected endogenous NOS2 expression in 11 CRC cell lines
Frontiers in Oncology 06126
through qRT-PCR and western blot (Figures 6A, B). According to

the results, NOS2 was relatively highly expressed in HCT116 and

SW480 cells and weakly expressed in SW620 and CACO2 cells.

Thus, we generated HCT116 and SW480 cell lines stably

overexpressing NOS2 and SW620 and CACO2 cell lines with
TABLE 2 Continued

Gene symbol Hazard ratio 95%CI p-Value

NOX4 1.612 1.015−2.561 0.043

ATP6V1G2 6.506 1.986−21.315 0.002

SLC2A3 1.348 1.102−1.649 0.004

JDP2 2.214 1.386−3.539 <0.001

DUOX1 1.800 1.177−2.752 0.007

SLC2A6 1.459 1.061−2.006 0.020

ISCU 1.865 1.043−3.334 0.036

ALOX12 2.561 1.196−5.482 0.015
fron
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FIGURE 3

Identification of prognostic FRGs and construction of predictive model. (A) The heatmap of 8 included FGRs expression profile. A forest plot of
univariate (B) and multivariate (C) Cox regression analysis for CRC patients. The K-M survival curve (D), distribution of prognostic index and survival
status (E) of 545 CRC patients in low- and high-risk groups. (F) The ROC curves validated the prognostic significance of risk score based on FRGs
and other clinical indicators.
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NOS2 knockdown. The lentiviral transfection efficiency of

overexpression and knockdown was determined by qRT-PCR and

western blot (Figure 6C).

Then, several experiments were performed to determine

whether NOS2 affects the biological functions of CRC cells. The

results of the MTT assay indicated that elevated NOS2 reduced cell

proliferation, while the growth rate of cell lines increased when

NOS2 was knocked down (Figure 6D).

To assess the function of NOS2 with respect to tumorigenic

inhibition in vivo, SW620 NOS2 overexpression and control cell

lines were used in subcutaneous tumorigenesis assays. The result

demonstrated that elevated NOS2 expression decreased
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tumorigenicity in nude mice (Figure 6E). Together, these results

suggest that NOS2 mainly functions as a tumor suppressor in CRC.
NOS2 inhibits the NF-kB signaling pathway

To further demonstrate the downstream molecular mechanism

of NOS2, we used GSEA software to explore the related signaling

pathways in microarray data from the TCGA, GSE17538 and

GSE40967. The “NF-kappa B signaling pathway”, “IL6-STAT3

signaling pathway”, “c-MYC signaling pathway” and “oxidative
B

C D

E

A

FIGURE 4

Evaluated the accuracy of the predictive model. Tumor stage-dependent ROC curve analysis (A).I/II; (B) III/IV) for survival prediction based on the
model. K-M survival curves for CRC patients with different tumor stage (C).I/II; (D) III/IV) in low- and high- risk groups. (E) Nomogram predicts the
probability of 3 years overall survival (OS) in CRC patients.
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phosphorylation” were highly enriched and associated with NOS2

knockdown (Figure 7A).

We initially detected the relationship between NOS2 and

STAT3, c-MYC pathways. Overall, NOS2 expression does not

affect p-STAT3 and c-MYC changes (Supplementary Figure 1).

Therefore we explored the association of NOS2 with NF-

kB pathway.

Moreover, the western blot results suggested that NOS2

knockdown in SW480 and HCT116 cells increased the expression

of p-P50 and p-P65, whereas NOS2 overexpression in SW620 and

CACO2 cells reduced the expression of p-P50 and p-P65

(Figures 7B, C). Finally, to verify the regulatory relationship

between NOS2 and ferroptosis, we conduct western blot and the

outcome showed a higher level of GPX4 when NOS2 was

knockdown, whereas NOS2 overexpression in CACO2 cells

decreased the expression of GPX4 (Figures 7D, E).

In conclusion, NOS2 might inhibit CRC carcinogenicity via

suppression of the NF-kB signaling pathway.
Discussion

Ferroptosis is a recently discovered type of nonapoptotic

mechanism involved in excessive lipid peroxidation and iron-

dependent damage to membrane lipids (23, 24). Numerous

studies have shown that the peroxidation of phospholipids (PLs),

especially arachidonic acid, is mainly responsible for ferroptosis

induction, while cumulative GPX4 and the inactivation of ACSL4

can attenuate ferroptosis by reducing lipid alcohol conversion and

PL biosynthesis, respectively (24–26). At the organoid level,

significant changes in mitochondrial morphology usually lead to

increased membrane density, condensation or swelling and rupture

of the outer membrane (27, 28).
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Accumulating studies have suggested that ferroptosis

participates in human diseases through a variety of mechanisms,

the most likely of which is tumor suppression (23). The underlying

mechanism of tumor suppression through ferroptosis in CRC

remains to be investigated. In KRAS-mutant CRC cells,

combination treatment with b-elemene and cetuximab enhanced

the cytotoxic effect against cancer cells by inducing ferroptosis and

inhibiting EMT (29). Moreover, it has been reported that the

compound IMCA can upregulate SLC7A11, resulting in ROS

accumulation and promoting ferroptosis (30). GPX4 is the core

marker of ferroptosis, which protects cells from oxidative stress, and

degradation of GPX4 contributes to ferroptosis (31). In our

research, GPX4 expression was negatively correlated with the

survival of CRC patients, which demonstrated the tumor

inhibition effect of ferroptosis in CRC (Supplementary Figure 2).

Thus, ferroptosis-inducing agents might be a potential therapeutic

option for CRC treatment (32).

The exploration of ferroptosis and FRGs aimed to develop

effective biomarkers for CRC prognosis prediction and therapy

monitoring. In this study, we identified 8 candidates FRGs from 214

FRGs according to the FerrDb website and TCGA database and

constructed a CRC predictive model. Further calculations revealed a

high correlation between the survival outcomes of CRC patients and

the risk score, as confirmed by uni- and multivariate Cox regression

analyses. The survival rate of CRC patients in the high-risk group

was significantly lower than that of CRC patients in the low-risk

group, and the ROC curve for 5-year survival prediction and AUC

for the risk score model showed good accuracy. These results

revealed that our prognostic model, which was retrospectively

validated in CRC patients at risk for mortality, had a good fit and

predictive ability.

According to previous studies, the 8 FRGs selected for model

construction play an important role by functionally inhibiting or

promoting tumor progression in different tumor types. According to
BA

FIGURE 5

NOS2 might act as a protective factor. NOS2 expression among different tumor stage (A) in CRC. (B) CRC patients with low NOS2 expression had a
shorter overall survival. **, p<0.01.
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our data, NOS2 was one of the most significantly affected FRGs, and

the most obvious expression differences between high risk and low risk

groups patients, therefore we began to explore the biological functions

and the molecular mechanism of NOS2 in CRC. NOS2 is an inducible

isoform of NOS enzymes and functions as a key inflammatory enzyme

responsible for nitric oxide biosynthesis (33). Recent studies connected

NOS2 and ferroptosis were almost based on bioinformatic analysis, and

NOS2 had been identified as the marker of ferroptosis functions in the
Frontiers in Oncology 09129
process of HIF-1 signaling pathway, NOD-like receptor signaling

pathway, central carbon metabolism and macrophage polarization

(13, 34, 35). The dysregulation of NOS2 expression can be observed

under pathological conditions, including cytokine exposure,

inflammation and tumors (33, 36). A large number of studies have

considered NOS2 to be a promoter and a prognostic indicator for

malignancy progression. In hepatocellular carcinomas, NOS2 is a Wnt

b-catenin/Tcf-4 target gene that promotes tumorigenesis (37).
B

C

D

E

A

FIGURE 6

NOS2 suppresses tumor proliferation in vitro and vivo. (A) q-PCR and (B) western blot determined the endogenous expression of NOS2 in 11 CRC
cell lines. (C) q-PCR and western blot results of NOS2 expression upon knockdown and overexpression of NOS2 in different cell lines. (D) MTT assay
(Left) and clonogenic assay (Right) on cell proliferation ability. (E) Subcutaneous xenograft tumor model and growth rates of tumor xenografts
inoculated subcutaneously. p>0.05; *, p<0.05; **, p<0.01; ***, p<0.001.
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However, NOS2 has also been proven to have both antitumoricidal

functions and tumor suppressive properties in various tumors.

It was shown that a high level of NO induced the

phosphorylation and stabilization of p53 (38). In patients with

ulcerative colitis or Crohn’s disease, NOS2 and p-p53 are

colocalized in tissues (36). Moreover, in several trials, selective or
Frontiers in Oncology 10130
nonselective NOS2 inhibitors did not have a therapeutic benefit in

some diseases (39–41). Thus, the underlying molecular mechanisms

by which NOS2 promotes the progression of CRC have remained

complex and need to be further explored. In our model, considering

that NOS2 was the most prominent gene and that decreased NOS2

expression was clearly linked to a poor prognosis, we performed
B

C

D E

A

FIGURE 7

NOS2 inhibited NF-kB signaling pathway. (A) The wayne figures of overlapping and different enrichment pathways between different NOS2
expression samples in 3 databases. The NF-kB signaling pathway was the most significantly enriched pathway. (B) NF-kB activation in different cell
lines with NOS2 knockdown and overexpression was monitored by western blot analysis. (C) Relative expression of NOS2 and NF-kB signaling
proteins. The data were expressed as the ratio of specific protein level (gray value) to Tubulin protein level (gray value). (D) Western blot results of
GPX4 expression upon knockdown and overexpression of NOS2 in CRC cells. (E) Relative expression of NOS2 and GPX4.
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biological function experiments in vitro and in vivo. The results

suggested that elevated NOS2 significantly inhibited CRC cell

proliferation and promoted apoptosis.

Though NOS2 had been reported involving in the development

of tumors in our research, the underlying molecular mechanism is

still unclearly elucidated. Our further exploration of the molecular

mechanism preliminarily revealed that the inhibition of NF-kB
signaling might be an important contributor to CRC when NOS2 is

upregulated. In breast cancer, the co-expression of NOS2 and

COX2 is involved in the regulation of oncogenic pathways such

as ERK, PI3K and NF-kB results in a poor prognosis (42, 43).

Among the inflammatory diseases, NOS2 might inhibit the

phosphorylation of NF-kB (44). Our results showed that the

expression level of NOS2 could induce the opposite expression of

GPX4, which might demonstrate that NOS2 can participate in

GPX4 synthesis or breakdown, repress NF-kB pathway by

inhibiting the phosphorylation of the p50 and p65, and thus

regulated the ferroptosis in CRC cells.

Nevertheless, this study was subject to several limitations. First,

it was a retrospective study, and selection bias cannot be ruled out.

Second, although effective external verification was performed,

internal data validation is still lacking. In addition, the molecular

mechanisms underlying the 8 identified FRGs need to be

further explored.

In summary, our research demonstrated, for the first time to our

knowledge, the potential prognostic value of FRGs in CRC patients.

The construction of a predictive model based on FRGs may be

helpful for decision-making in clinical practice. In addition, our

results suggest that NOS2 might inhibit CRC cell growth and induce

apoptosis by inhibiting NF-kB signaling pathways in vitro and

in vivo.
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Radiotherapy-induced ferroptosis
for cancer treatment

Giovanni L. Beretta and Nadia Zaffaroni*

Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto
Nazionale dei Tumori di Milano, Milan, Italy

Ferroptosis is a regulated cell deathmechanism controlled by iron, amino acid and
reactive oxygen species metabolisms, which is very relevant for cancer therapy.
Radiotherapy-induced ferroptosis is critical for tumor suppression and several
preclinical studies have demonstrated that the combination of ionizing radiation
with small molecules or nano-systems is effective in combating cancer growth
and overcoming drug or ionizing radiation resistance. Here, we briefly overview
the mechanisms of ferroptosis and the cross-talk existing between the cellular
pathways activated by ferroptosis and those induced by radiotherapy. Lastly, we
discuss the recently reported combinational studies involving radiotherapy, small
molecules as well as nano-systems and report the recent findings achieved in this
field for the treatment of tumors.

KEYWORDS

ferroptosis, radiotherapy, reactive oxygen species, nanomedicine, drug combinations,
gene signatures

1 Introduction

The accidental cell death (ACD) and the regulated cell death (RCD) govern the cell fate
(Tang et al., 2019). Necrosis is the best representative of ACD, which is a passive mechanism
allowing plasma membrane rupture, cytoplasm release and inducing inflammation reaction.
Conversely, RCD is an active and regulated cell suicide, which can involve or not
inflammation reaction, playing crucial functions in tissue homeostasis and in the
pathogenesis of several diseases (Galluzzi et al., 2018; Tang et al., 2019). So far, two
RCD categories are reported: apoptotic and non-apoptotic. Necroptosis, pyroptosis,
autophagy and ferroptosis belong to the non-apoptotic RCD and are classified according
to different molecular, morphological, biochemical and functional features (Galluzzi et al.,
2018). RCD pathways are implicated in physiologic processes regulating the development of
multicellular organisms and represent defense mechanisms against cancer transformation/
development as well as against pathogen infections (Galluzzi et al., 2018; Tang et al., 2019).
As suggested by its name, ferroptosis is stimulated by the lipid peroxidation provoked by the
iron accumulated into the cells. Critical for ferroptosis is the content of polyunsaturated-
fatty-acids (PUFA) composing the cellular membrane. PUFA represent a toxic reservoir that
in iron- and reactive oxygen species (ROS)-rich conditions are susceptible to peroxidation,
leading to membrane damage and cell death (Stockwell et al., 2017).

The induction of ferroptosis is a new interesting strategy for fighting cancer (Lei et al.,
2022). This strategy is based on the condition known as iron addiction, which is typical of
cancer cells that need higher levels of iron in comparison with healthy cells (Friedmann
Angeli et al., 2019). Iron addiction renders cancer cells more sensitive to iron and to iron-
induced ROS production (Fenton reaction) than normal cells (Torti and Torti, 2019).
Though ferroptosis induction proved efficacy in overcoming resistance to apoptosis
developed by tumors exposed to anticancer therapy, tumor cells challenged by
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ferroptosis inducers can evolve defense mechanisms that counteract
ferroptosis and in turn preserving cell vitality (Stockwell et al., 2017;
Hassannia et al., 2019; Zheng and Conrad, 2020). This implies that
drugs hitting cellular pathways involved in resistance to ferroptosis
potentiate pharmacological interventions (Liang et al., 2019).

Besides chemotherapy, tumors are treated by radiotherapy as
well. The exposure to ionizing radiation (IR) induces DNA damage
leading to cell death (Delaney et al., 2005; Jaffray, 2012). Besides
direct DNA damage, IR hits water molecules contained into the cells
favoring their radiolysis and, together with the activation of specific
enzymes, stimulate ROS production. ROS, including peroxides
(H2O2, ROOH), free radicals (HO•, HO2•, R•, RO•, NO• and
NO2•), singlet oxygen (1O2) and superoxide (O2−•), attack DNA,
lipids, and proteins (Azzam et al., 2012; Reisz et al., 2014). DNA
damages include nucleotide base damage, single strand breaks
(SSBs), and double strand breaks (DSBs) (Baidoo et al., 2013).
The cellular response to damaged DNA allows cell-cycle arrest,
cellular senescence, and RCD. Although apoptosis is the most
studied RCD induced by radiotherapy, other types of RCD are
reported in radiotherapy-treated cells, including ferroptosis (Lang
et al., 2019; Adjemian et al., 2020; Lei et al., 2020; Ye et al., 2020).

Since for the treatment of tumors radiotherapy is administered in
combination with chemotherapy, it is conceivable to study the
radiotherapy and ferroptosis pathways as well as their cross-talk
to set up combination strategies maximizing tumor response.

In this review we briefly overview the cellular pathways
implicated in ferroptosis induced by radiotherapy and discuss the
potential combination strategies with small molecules and nano-
systems for enhancing radiotherapy antitumor activity.

2 General overview on ferroptosis

Compared to apoptosis, autophagy and necrosis, ferroptosis
shows peculiar properties. Morphological alterations of
mitochondria, including reduction in volume, increased density
of the mitochondrial membranes as well as reduced
mitochondrial cristae, characterize ferroptotic cells. Cells
undergoing ferroptosis are rounded and floating with intact
nuclei and uncondensed chromatin (Dixon et al., 2012; Stockwell
et al., 2017). Conversely, the typical features of apoptosis (e.g.,
chromatin condensation and the production of apoptotic bodies)

FIGURE 1
Cellular mechanisms of ferroptosis. The cellular pathways involving iron, amino acids and ROSmetabolisms are reported. CIP, cellular iron pool; FR,
ferritin; CER, ceruloplasmin; TF, transferrin; TFR, transferrin receptor; FPN, ferroportin; ACSL4, acyl-CoA synthetase long-chain family member 4;
LPCAT3, lysophosphatidylcholine acyltransferase 3; ALOXs, arachidonate lipoxygenase; GPX4, glutathione peroxidase 4; ASC, alanine–serine–cysteine
system; SLC7A11, solute carrier family 7member 11; SLC3A2, solute carrier family 3member 2; GLS, glutaminases; GSS, glutathione synthetase; GCL,
glutamate-cysteine ligase; PUFAs, polyunsaturated fatty acids; FSP1, ferroptosis suppressor protein 1; TXN, thioredoxin. AA, arachidonoyl; AdA, adrenic
acid; PE, phosphatidylethanolamines; RKIPI, Raf1 kinase inhibitory protein GSH, glutathione; GSSG, glutathione disulfide. The figure is prepared using
tools from Servier Medical Art (http://www.servier.fr/servier-medical-art, accessed on March 2023).
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as well as that of autophagy (e.g., the formation of autophagosomes)
are not reported in ferroptotic cells. Agents that inhibit apoptosis,
autophagy and necroptosis are ineffective on ferroptosis induction.
Therefore, the sensitivity to drugs that induce ferroptosis is
maintained by cells deficient in apoptotic-related factors (e.g.,
BAX, BAK, MLKL, and RIPK1/3). On the contrary, antioxidants
and iron chelators inhibit ferroptosis (Vanden Berghe et al., 2010;
Lei et al., 2019).

Ferroptosis is governed by three main cellular mechanisms,
including i) iron metabolism, ii) amino acid metabolism and iii)
ROS metabolism (Figure 1) (Liang et al., 2019).

2.1 Iron metabolism

Iron transport systems regulate iron accumulation and in turn
ferroptosis induction. These transporters, including ceruloplasmin
(CER), transferrin (TF), transferrin receptor (TFR), ferritin (FR) and
ferroportin (FPN), impact on intracellular levels of iron. Adsorbed
Fe2+ is oxidized to Fe3+ by CER and in this form is captured by TF.
The interaction of TF with TFR favors the cellular uptake of iron.
Upon reduction to Fe2+ by the sixtransmembrane epithelial antigen
of the prostate 3 (STEAP3), iron is bound to FR or stored into the
cellular iron pool (CIP). When cells are saturated by iron, exceeding
amounts of Fe2+ are oxidized to Fe3+ and pumped out of the cells by
FPN (Trujillo-Alonso et al., 2019). CIP is controlled by other two
factors: the nuclear receptor coactivator 4 (NCOA4), which is a
specific receptor favoring FR accumulation into the autophagosome,
and the iron-responsive element binding protein 2 (IREB2), which is
a transcription factor controlling the iron metabolism by regulating
the level of FR (Dixon et al., 2012; Mancias et al., 2014; Tang et al.,
2018). Interferences with the iron balance regulated by these
mechanisms (e.g., increased uptake or reduced export) stimulate
iron-mediated lipid peroxidation and ferroptosis (Yang and
Stockwell, 2008; Stockwell et al., 2017).

2.2 Amino acid metabolism

The exchange of cystine/cystathionine across the plasma
membranes depends on the red-ox state of the extracellular
compartment. Under reducing conditions, the intracellular
accumulation of cysteine is controlled by the
alanine–serine–cysteine (ASC) system. Conversely, oxidative
extracellular conditions stimulate the exchange of cystine/
cystathionine with glutamate mediated by Xc–transporter system
(Doll and Conrad, 2017). Two subunits linked via a disulfide bridge
compose the Xc–, including the catalytic subunit solute carrier
family 7 member 11 (SLC7A11) and the regulatory subunit
solute carrier family 3 member 2 (SLC3A2). Intracellular
glutamate levels, which are under the control of the enzymatic
activity degrading glutamine (glutaminolysis) mediated by
glutaminases (GLS) 1 and 2, impact on Xc–activity. Diminished
cellular content of cysteine, which is stimulated by enhanced GLS
activity or reduced SLC7A11 levels as well as reduced activation of
spermidine/spermine N1 acetyltransferase 1 (SAT1), favors lipid
peroxidation and ferroptosis induction (Jiang et al., 2015; Jennis
et al., 2016; Ou et al., 2016; Zhang et al., 2018). Alterations in GLS,

SLC7A11 or SAT1 activities, which result in reduced intracellular
availability of cysteine, negatively impact on glutathione (GSH)
levels triggering ferroptosis (Shah et al., 2017). The synthesis of
GSH needs glutamate, cysteine, and glycine and is catalyzed by
glutamate-cysteine ligase (GCL) and glutathione synthase (GSS).
The erastin-mediated inhibition of Xc–, which reduces cystine
uptake, or the inhibition of GSH biosynthesis via buthionine
sulfoximine, deplete intracellular GSH levels leading to ferroptosis.

2.3 ROS metabolism

Besides DNA damage, ROS stimulate ferroptosis by
provoking alterations in lipid metabolism (D’Herde and
Krysko et al., 2017; Lin et al., 2018). The lipid peroxidation
occurring in PUFA is among the most important type of
cellular damage for ferroptosis induction, and cells with
high levels of PUFA are very sensitive to ferroptosis (Yang
et al., 2016; Yuan et al., 2016). The catalytic activity of two
enzymes, acyl-CoA synthetase long-chain family member 4
(ACSL4) and lysophosphatidylcholine acyltransferase 3
(LPCAT3), which allows the esterification and incorporation
of PUFA into membrane phospholipids, is crucial for
sensitizing cells to ferroptosis. The accumulation of lipid
peroxides enhances the formation of additional ROS that
increases biomacromolecule damage leading to cell
membrane destabilization and micelle formation, in turn
enhancing ferroptosis induction (Gaschler and Stockwell,
2017; Feng and Stockwell, 2018). Two proteins are critical
for ferroptosis induction as well, the small scaffolding
protein Raf1 kinase inhibitory protein (RKIP1) and the
seleno enzyme glutathione peroxidase 4 (GPX4) (Wenzel
et al., 2017; Tang et al., 2018; Liang et al., 2019). By
interacting with the iron-containing enzyme arachidonate
lipoxygenase 15 (ALOX15), RKIP1interferes with the
production of phospholipid alcohols regulating ferroptosis.
Similarly, GPX4 is a detoxifying enzyme catalyzing the
transformation of PUFA into non-toxic phospholipid
alcohols. The red-ox reaction involving the oxidation of
GSH into GSSG is required by GPX4 to accomplish its
catalytic activity, and cells showing high levels of GPX4 are
less susceptible to ferroptosis (Seibt et al., 2019). On the
contrary, compounds impairing the activity of GPX4 by
reducing its expression/activity are typical ferroptosis
inducers (Tang et al., 2018; Liang et al., 2019). Since the
activity of GPX4 needs selenocysteine tRNA, whose cellular
amount is controlled by the mevalonate (MVA) pathway, the
inhibition of MVA pathway favors ferroptosis by reducing the
availability of selenocysteine tRNA (Kryukov et al., 2003).
Another protein controlling GPX4 activity is the ferroptosis
suppressor protein 1 (FSP1). FSP1 inhibits GPX4 and its
expression is high in cells resistant to ferroptosis. Elevated
levels of FSP1 protect cells against compounds that induce
ferroptosis by targeting GPX4 (Bersuker et al., 2019; Doll et al.,
2019). Upon myristoylation, the cytoplasmic FSP1 moves to
the plasma membranes and in this peculiar cellular localization
catalyzes the reduction of coenzyme Q10. This behavior, in
presence of GSH as well as active GPX4, attenuates the
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propagation of lipid peroxide production and reduces
phospholipid peroxidation attenuating ferroptosis (Doll
et al., 2019).

3 Cross-talk between radiotherapy and
ferroptosis in cancer

Besides direct damage of biomacromolecules (e.g., DNA,
proteins and lipids), radiotherapy generates ROS, which are the
most important molecules responsible for lipid peroxide
accumulation and ferroptosis. The relationship between
radiotherapy and ferroptosis is corroborated by several
evidence, including the specific staining (e.g., C11-BODIPY) as
well as the increased expression of specific markers (e.g., MDA, 4-
HNE and prostaglandin-endoperoxide synthase 2, PTGS2)
reflecting lipid peroxidation observed in IR-exposed cancer cell
lines and tumor samples. Moreover, irradiated cells show
morphological alterations of mitochondria typical of ferroptosis
(Lang et al., 2019). Of note, these features depend on IR doses
administered. In support of the cross-talk between radiotherapy
and ferroptosis is the observation that treatment of cells with iron
chelators (e.g., deferoxamine) or with ferroptosis inhibitors (e.g.,
ferrostatin-1 and liproxstatin-1) before exposure to IR partially
rescue their survival, and that this finding is more evident in
comparison to what observed combining IR with compounds
that inhibits other RCD (Lei et al., 2021).

Three major pathways regulate IR-mediated ferroptosis
induction (Lang et al., 2019; Lei et al., 2020; Ye et al., 2020)
(Figure 2), including 1) ROS and ACSL4. Increased ROS
produced by IR are responsible for the formation of PUFA
radicals that, following the interaction with oxygen (Fenton
reaction), generate lipid hydroperoxides (PUFA-OOH) (Lei et al.,
2020). This pathway is powered by the IR-induced
ACSL4 expression (Figure 1) that, together with LPCAT3, favors
the synthesis of phospholipid containing PUFA, which are also liable
of peroxidation; 2) GSH and GPX4. IR exposure depletes GSH
leading to reduced activity/expression of GPX4 and in such a way
attenuating the GPX4-mediated detoxification functions leading to
increased toxic effects of lipid peroxides (Ye et al., 2020) and 3)
SLC7A11. Reduced levels of SLC7A11 favor ferroptosis by
downregulating cystine uptake and in turn GSH synthesis and
GPX4 functions (Figure 1). Through the activation of ataxia
telangiectasia mutated serine/threonine kinase (ATM), IR
represses SLC7A11 levels stimulating ferroptosis. Other studies
have underlined that the expression of SLC7A11 is increased
upon IR exposure leading to the interpretation that an adaptive
cellular response to IR rescues the SLC7A11 expression or that the
level of SLC7A11 upon IR exposure depends on a peculiar cellular
context (Xie et al., 2011; Lei et al., 2020).

The activation of the cellular pathways induced by the DNA
damage together with the stimulation of signaling pathways
associated with alterations of lipids contained into the cellular
membranes occurring upon radiotherapy exposure synergize each

FIGURE 2
Cellular pathways implicated in radiotherapy-induced ferroptosis. The figure reports the cross-talk occurring between ionizing radiation and
ferroptosis pathways, including ROS/ACSL4, GSH/GPX4, SLC7A11, ATM/ATR, and AMPK pathways. The figure is prepared using tools from Servier Medical
Art (http://www.servier.fr/servier-medical-art, accessed on March 2023).
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other leading to enhanced tumor growth inhibition (Lei et al., 2020).
IR-induced DNA damage increases the expression of sensor
proteins, including ATM and ataxia telangiectasia and
Rad3 related serine/threonine kinase (ATR) that recognize the
altered DNA and stimulate DNA damage response signaling
cascades (DDR). DDR activate checkpoint kinases 1/2 (chk1/2)
and in turn stimulate the phosphorylation of p53 inducing cell-
cycle arrest. The block of the cell-cycle is required by the cells to test
the severity of the damage and “decide” their fate, 1) survive, upon
the activation of the DNA repair machine in case the damage can be
corrected, or 2) comit suicide, in case the damage is irreparable or
not correctly repaired, triggering RCD, including ferroptosis (Maier
et al., 2016; Huang and Zhou, 2020). Upon p53-mediated cell-cycle
arrest, irradiated cells mostly activate senescence (Bieging et al.,
2014; Maier et al., 2016). P53 mutation, which is a very common
condition in tumors, engage an alternative senescence checkpoint
protein, p16-retinoblastoma (RB) (Sabin and Anderson, 2011).
Senescence can coexists with apoptosis and in case of prolonged
p53 activation, IR preferentially stimulates both intrinsic (e.g.,
PUMA, BAX, NOXA, cytochrome C and caspase-9/3/7) and
extrinsic apoptosis (e.g., FAS/CD95, DR5, FAS ligands and
caspase-8) rather than senescence (Sheikh and Fornace, 2000;
Aubrey et al., 2018; Mijit et al., 2020). Besides the above
mentioned RCD, radiotherapy can induce autophagy and
necroptosis. Since autophagy has both pro-survival and pro-cell
death properties, controversial and not completely elucidated is its
role in IR response (Hu et al., 2016). Similarly, also the role of
necroptosis in radiation response is ambiguous (Adjemian et al.,
2020).

ATM activated by DNA damage increases p53 expression that
reduces the levels of SLC7A11 via a repressing interaction with
SLC7A11 promoter or by stimulating USP7-mediated proteasome
degradation of SLC7A11, in turn leading to ferroptosis (Kang et al.,
2019; Wang et al., 2019). Similarly, p53 induces ferroptosis by
stimulating the expression of SAT1, GLS2 or ferredoxin reductase
(FDXR) (Hu et al., 2010; Ou et al., 2016; Zhang et al., 2017). In
addition, p53 controls the expression of MDM2 that, via regulating
lipid metabolism and FSP1 expression, favors ferroptosis (Venkatesh
et al., 2020). Conversely, ferroptosis is attenuated upon p53-mediated
upregulation of p21. Metabolic stress induced by cystine deprivation
stimulates the p53-p21 axis preserving GSH levels and attenuating
ferroptosis (Tarangelo et al., 2018). Another protein involved in IR-
induced ferroptosis is the AMP-activated protein Kinase (AMPK) (Lei
et al., 2020; Ye et al., 2020). This protein can either stimulate or inhibit
ferroptosis. By stimulating the phosphorylation of beclin 1, which in
turn favors the downregulation of Xc–, activated AMPK induces
ferroptosis (Song et al., 2018). In the other hand, AMPK activates
the biosynthesis of PUFA containing phospholipids inhibiting
ferroptosis (Lee et al., 2020). IR stimulates the expression of heme
oxygenase 1 (HMOX1) and FR, which trigger the release of iron and in
such a way the induction of ferroptosis (Chiang et al., 2018).
Conversely, the exposure to IR upregulates FR heavy chain (FTH1)
and reduces oxidative stress in turn attenuating ferroptosis and
promoting radiation resistance (Choudhary et al., 2020). These
findings indicates an intersection between cellular pathways
implicated in DNA damage response and RCD, which
includes, besides ferroptosis, the immunogenic cell death (ICD)
mechanisms embracing apoptosis, necroptosis and autophagy.

Upon radiotherapy-mediated ICD stimulation, T-cells recruited into
the tumor microenvironment (TME) promote ferroptosis (Lang et al.,
2019).

3.1 Combination strategies for enhancing
ionizing radiation antitumor activity and for
overcoming radiation resistance

Radiation resistance of tumors is an urgent clinical problem
responsible for treatment failure. The understanding of the
molecular mechanisms subtending radiation resistance is critical
for setting up medical strategies, including drug combinations,
aimed at improving rediotherapy response (Table 1).

Radiotherapy is used for the clinical management of patients with
different tumor types including nasopharyngeal carcinoma (NPC) and
the development of radiation resistance is the main cause of treatment
failure in NPC-suffering patients. Huang et al. report that these patients
show increased expression of m6A mRNA demethylase fat mass and
obesity-associated protein (FTO) and that this feature correlates with
radiation resistance and poor prognosis (Huang et al., 2023). In support
of this observation is the finding that increased levels of FTO
characterize NPC cell lines resistant to IR (C666-1R, HONE1R)
compared to the corresponding sensitive counterparts (C666-1,
HONE1). NPC cells exposed to IR show morphological changes
typical of ferroptosis, increased MDA levels and reduced GSH
cellular content. The treatment with FB23-2 (a FTO inhibitor)
counteracts this behavior, which is reversed following FTO
overexpression or upon exposure to ferrostatin-1. Moreover, the IR
response of resistant cells is significantly improved by FB23-2 treatment.
The exposure to IR and FB23-2 increases DNA damage in vitro and this
observation is corroborated in vivo in xenograft HNE1R-bearing mice.
The authors speculate that a link exists between FTO and OTU
deubiquitinase, ubiquitin aldehyde binding 1 (OTUB1). Molecularly,
via its demethylase activity, FTO produces m6A modification of the
OTUB1 transcript stimulating the expression of OTUB1 protein and its
interaction with SLC7A11, in turn activating SLC7A11 and leading to
ferroptosis inhibition and radiation resistance. These interpretations are
supported in vivo in xenograft HONE1R-bearingmice and PDX-mouse
models exposed to the combination erastin/IR. Compared to IR alone,
the combination with the ferroptosis inducer erastin enhances the
radiosensitivity of HONE1R tumors.

Another key protein implicated in radiation resistance by
inhibiting ferroptosis is angiopoietin-like 4 (ANGPTL4) (Zhang
et al., 2022). High levels of ANGPTL4 associate with poor
prognosis of patients suffering from lung adenocarcinoma and
adrenocortical carcinoma. A549 and H1299 lung cancer cell lines
cultured under hypoxic condition show an increased expression of
ANGPTL4 and radiation resistance. Moreover, compared to cells
cultured under physiologic conditions, hypoxic cells show higher
levels of ANGPTL4 accumulated into released exososmes. Upon
silencing of ANGPTL4, A549 cells restore the sensitivity to IR, while
reacquire IR resistance after ANGPTL4 ectopic expression. The
relationship between ANGPTL4 and ferroptosis is demonstrated in
ANGPTL4-overexpressing cells cultured under normoxia, which
show increased expression of GPX4, SLC7A11, FTH1, and FTL (e.g.,
reduced ferroptosis and enhanced radiation resistance). Conversely,
the above ferroptosis-associated proteins are decreased in
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ANGPTL4-silenced cells cultured under hypoxic conditions (e.g.,
increased ferroptosis and radiosensitivity). In vivo experiments in
xenograft A549-bearing mice treated with ANGPTL4 enriched
exosomes and exposed to IR support in vitro data confirming the
relationship between radiation resistance and ferroptosis.

Radiation resistance accounts for the failure of radiotherapy in
hepatocellular carcinoma (HCC) as well and Chen and colleagues
have studied the role played by ferroptosis in radiosensitizing HCC
using a panel of radiosensitive (SK-Hep and HepG2) and
radioresistant (SK-Hep-1R and HepG2-1R) HCC cell lines (Chen
et al., 2023). By comparing the gene expression profiles of SK-Hep
and SK-Hep-1R cells, SOCS2, and SMOX genes were identified as
differentially expressed. The expression of SOCS2 gene was reduced
in SK-Hep-1R, while SMOX was increased. Gene expression data
from GEPIA and HCCDB databases and Kaplan-Meier (K-M)
analysis showed that low expression of SOCS2 and high
expression of SMOX correlate with poor prognosis of HCC
patients. The radiation resistance observed in resistant cells is
overcome upon SOCS2 ectopic expression. Conversely, radiation

resistance is enhanced in SK-Hep and HepG2 cells following
SOCS2 silencing. In vivo experiments confirm the in vitro results.
Moreover, immunohistochemical staining of irradiated explanted
tumors shows an increased expression of SOCS2 paralleled by a
modulation of ferroptosis markers, including a downregulation of
GPX4 and SLC7A11, and an increased expression of 4-HNE. This
observation is confirmed in a set of clinical tissues in which the levels
of ferroptosis markers correlate with radiotherapy response. Co-
immunoprecipitation assays demonstrate a protein interaction
between SOCS2 and SLC7A11. Following the protein interaction,
the E3-ubiquitin ligase activity of SCOS2 allows ubiquitination and
proteasomal degradation of SLC7A11 leading to ferroptosis.

Iron homeostasis is controlled by copper (Cu) and elevated
levels of this micronutrient impact on tumorigenesis, resistance to
treatments and prognosis of HCC suffering patients (Yang et al.,
2022). HepG2 and MHCC-97H cells exposed to IR downregulates
the copper metabolism MURR1 domain 10 (COMMD10)
increasing the cellular accumulation of Cu and leading to
radiation resistance. These results are corroborated by gain and

TABLE 1 Combination strategies for enhancing ferroptosis induced by ionizing radiation.

Tumor type Cell lines Pathway involved In vivo evaluation Combination strategy References

Nasopharyngeal carcinoma C666-1 FTO/OTUB1/SLC7A11 HONE1R IR/FB23-2 Huang et al. (2023)

HONE1

C666-1R

HONE1R

Lung cancer A549 ANGPL4/GPX4/SLC7A11 A549 IR/ANGPTL4 enriched exosomes Zhang et al. (2022)

H1299

Hepatocellular carcinoma SK-Hep SOCS2/SLC7A11 SK-Hep-1 SK-Hep-1R IR/SOCS2-overexpressing plasmid Chen et al. (2023)

HepG2

SK-Hep-1R

HepG2-1R

Hepatocellular carcinoma HepG2 COMMD10/HIF1α/
SLC7A11

HepG2 IR/Cu chelator Yang et al. (2022)

MHCC-97H

Oral squamous cell carcinoma SCC15-S GPX4 SCC15-R IR/Hyperbaric oxygen (HBO) Liu et al. (2022)

SCC15-R

Colorectal cancer MC38 ATF3-SLC7A11-GPX4 MC38 IR/niraparib Shen et al. (2022)

CT26

HT29

Esophageal squamous cell carcinoma KYSE30 SCD1 N.D. IR/MF-438 Luo et al. (2022)

KYSE70

KYSE140

KYSE150

KYSE410

KYSE450

KYSE510

N.D., not defined.
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loss of function experiments performed in a panel of HCC cell lines
showing that increased COMMD10 levels parallel with reduced
cellular accumulation of Cu and radisensitivity. Conversely, reduced
expression of COMMD10 increases Cu accumulation leading to
radiation resistance. The role played by Cu in tumor growth is
confirmed in vivo in HepG2-bearing mice fed with Cu-rich food
upon irradiation. Compared to mice fed under normal conditions,
animals fed with Cu-rich food show increased tumor volume, which
is reduced following the administration of a Cu chelator. Moreover,
immunohistochemistry analysis of HCC clinical samples shows that
the levels of COMMD10 in patients sensitive to radiotherapy are
higher than that measured in samples from radioresistant subjects.
Proteomic analysis performed in HepG2 and COMMD10-depleted
HepG2 cells reveals a differential expression of genes implicated in
cell death. These findings, together with the observation that the
treatment with ferrostatin-1 and liproxstatin-1 increases the growth
of COMMD10 overexperring cells, indicate that ferroptosis is
critical for radiosensitivity. Based on the observation that the
sequence of the promoter of SLC7A11 contains binding sites for
HIF1-α, the authors propose an interplay between COMMD10,
SLC7A11, and HIF1-α as a molecular mechanism supporting the
cellular response. By interacting with HIF1-α, COMMD10 impedes
HIF1-α nuclear translocation and reduces SLC7A11 expression. The
IR-mediated reduced expression of COMMD10 favors the cellular
accumulation of Cu that stabilizes HIF1-α and inhibits its ubiquitin
degradation. Following nuclear translocation, HIF1-α stimulates
CER and SLC7A11 transcription inhibiting ferroptosis.

The effect of the co-exposure of IR and hyperbaric oxygen
(HBO) on oral squamous cell carcinoma (OSCC) cells is studied
by Liu and co-workers (Liu et al., 2022). Compared to the exposure
to IR, the combination IR/HBO increases the cytotoxicity in SCC15-
S cells, which is only in minimal part mediated by apoptosis.
Conversely, the combination enhances the levels of ferroptosis
markers (iron, ROS and MDA). Upon IR exposure, cells increase
the levels of ACSL4 and SLC7A11 (two ferroptosis promoters) as
well as that of GPX4 (a ferroptosis blocker), the latter being the
major factor accounting for radiation resistance. The treatment with
IR/HBO is ineffective on ACSL4 and SLC7A11 levels, while reduces
the expression of GPX4 and in such a way shifts the equilibrium
towards the induction of ferroptosis. These findings are
corroborated by the observation that the transfection of SCC15-S
cells with GPX4-overexpressing plasmid or the treatment with
ferrostatin-1 reverse the effects of the combination. The authors
also show that IR/HBO exposure sensitizes the radio-resistant
SCC15-R cells to IR. Although less sensitive to ferroptosis,
SCC15-R cells exposed to the combination significantly reduce
the expression of GPX4 in turn favoring ferroptosis, and these
results are confirmed in vivo in xenograft SCC15-R-bearing mice.
Compared to mice treated with IR, animals exposed to IR/HBO
show a significant reduction in tumor growth. In support of the
ferroptosis induction as a mechanism of tumor growth delay is the
observation that the treatment with ferrostatin-1 counteracts the
antitumor activity of IR/HBO exposure. A deeper investigation on
clinical samples (tumor and normal tissues as well as serum) from
38 OSCC patients shows that, compared to adjacent normal oral
tissues, the expression of GPX4 is increased in tumors. In addition,
the serum levels of GPX4 in cancer patients are increased in
comparison to healthy donors. Of note, high levels of GPX4 (e.g.,

reduced ferroptosis) are accompanied with poor chemo-
radiotherapy outcome.

Another interesting combination for sensitizing colorectal
cancer (CC) to IR is proposed by Shen and colleagues (Shen
et al., 2022). To protect themselves against DNA damages, cancer
cells stimulate poly (ADP-ribose) polymerase (PARP)-1 and PARP-
2 activities favoring the activation of DNA repair pathways. This
scenario supports the rational of combining radiotherapy with
PARP inhibitors (PARPi) to potentiate IR-mediated DNA
damage and in turn increasing cell death. Compared to CC cell
lines (murine MC38 and CT26 cells as well as human HT29 cells)
exposed to IR, cells exposed to the combination of the PARPi
niraparib with IR show increased levels of DNA DSBs. The
combination significantly increases the cell death in vitro and
enhances antitumor effects in vivo. The exposure to PARPi
induces the cyclic GMP-AMP synthase (cGAS) and stimulator of
interferon genes (STING), allowing the activation of cGAS-STING-
TBK1-IRF3 signaling that stimulates IFNB1 transcription and the
release of IFNβ, CXCL10, CCL5, and MX1. These findings are also
observed in vivo in M38 tumor-bearing mice. The role played by
cGAS is corroborated by the observation that cGAS-silenced
M38 cells are less sensitive to the combination treatment. The
levels of ferroptosis markers (increased MDA and PTGS2 levels,
reduced SLC7A11 and GPX4 expression) reflect the induction of
ferroptosis as a mechanism of cell death. The analysis of the gene
expression of cGAS-silenced M38 cells in comparison to cGAS
normal expressing cells supports a critical role for the activating
transcription factor 3 (ATF3) and underlines the existence of a
ATF3-SLC7A11-GPX4 axis controlling ferroptosis induction upon
exposure to IR and niraparib. In addition, cGAS depletion in
M38 tumor-bearing mice abolishes the IR-induced infiltration of
CD8+T, CD8+GZMB + T-cells leading to reduced antitumor
efficacy, thus corroborating the role of cGAS for the combination
efficacy. The analysis of tumor samples before and after
radiotherapy from 32 patients affected by CC reveals that
increased expression of cGAS, ATF3, and PTGS2 as well as an
high density of CD8+T-cells associate with a high disease-free
survival rate.

The enzyme stearoyl-CoA desaturase (SCD1) catalyzes the
formation of oleic acid and palmitoleic acid and plays a critical
role in IR response. Increased levels of SCD1 are observed in a panel
of esophageal squamous cell carcinoma (ESCC) cell lines and the
targeting of SCD1 by MF-438 is pursued by Luo and colleagues for
increasing IR potency (Luo et al., 2022). Cells treated with MF-438
reduce cell growth and the combined exposure to IR and subtoxic
concentrations of MF-438 results in synergistic antiproliferative
activity. The synergism is attenuated upon silencing of SCD1 as
well as following exposure to the ferroptosis inhibitor RLS3. The
MF-438-mediated inhibition of SCD1 increases lipid peroxidation,
ATP and HMGB1 release into the extracellular compartment, and
this behavior is enhanced upon exposure to the combination IR/MF-
438. Since similar results are observed in cells exposed to the
combination IR/RLS3, it is likely that the induction of ferroptosis
is the key mechanism of antitumor activity. These observations are
corroborated by the finding that cells exposed to exogenous oleic
acid or palmitoleic acid undergo ferroptosis. In vitro data are
confirmed in vivo in ESCC-bearing mice exposed to IR/MF-438.
The authors analyze the expression of SCD1 in ESCC patients from
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GEPIA database and stratify them in high and low expression
groups. Compared to normal epithelium, SCD1 is significantly
increased in tumor tissues and high SCD1 expressing patients
experience a shorter disease-free survival.

3.2 Nano-systems for enhancing ionizing
radiation antitumor activity

Another strategy for potentiating IR-mediated ferroptosis
induction implies the use of metal-based nanoparticles (NPs)
(Table 2). These NPs exploit the enhanced permeability retention
effect to selectively induce ferroptosis in tumors. The tumor
selectivity is also enhanced by the in local IR exposure, and these
features allow reduced treatment toxicity.

3.2.1 Iron-based nanosystems
Lin and coworkers have assembled hemin, PX-12 (a TRX-1

inhibitor) and human serum albumin to built HPNPs (Lin et al.,
2023). These NPs are stable in physiologic solution and in blood and
rapidly release PX-12 under acidic conditions (e.g., pH 5). Acidic
conditions, recapitulating acidic TME, favor the production of OH•
by HPNPs and stimulate Fenton reaction. In vitro experiments
performed in mouse melanoma B16F10 cells and normal mouse
L929 fibroblasts show that HPNPs are better internalized in tumor
compared to normal cells. The combination HPNPs/radiotherapy

improves ROS production leading to increased cytotoxicity with
respect to HPNPs administered alone. Besides the increased ROS
production (mediated by both hemin and radiotherapy), the
combination HPNPs/radiotherapy implements MDA, reduces the
levels of antioxidants (GSH and TRX-1) and attenuates the
GPX4 activity, in turn stimulating ferroptosis. These findings are
corroborated by the observation that the treatment with ferrostatin-1
counteracts this behavior. In vivo experiments in B16F10 tumor-suffering
mice demonstrate that HPNPs are biocompatible. Moreover, compared
to animals treatedwithHPNPs, the tumor growth ofmice exposed to the
combination HPNPs/radiotherapy is significantly reduced. Ex vivo
analysis evidences reduced GSH and GPX4 levels as well as increased
MDA content in tumors exposed to the combination with respect to
those treated with HPNPs alone.

To potentiate radiotherapy efficacy in breast cancer, Hou et al.
propose multifunctional NPs composed by a shell of platinum
decorated with hyaluronic acid (HA) encapsulating a core of
Fe(III)-polydopamine (FPH) (Hou et al. 2023). FPH are stable at
pH 7.4 and show photothermal properties upon 808 nm irradiation.
Conversely, in acidic conditions NPs dissociate and release Fe3+. The
red-ox reaction Fe3+/Fe2+ converts GSH into GSSG allowing GSH
depletion and H2O2 hydrolysis producing O2 and OH• (Fenton
reaction). Since the depletion of GSH is increased at 50°C, it is
conceivable that the photothermal-mediated hyperthermia
improves antitumor potency of FPH. An additional property of
FPH is their ability to produce O2 by catalyzing the hydrolysis of

TABLE 2 Nano-systems for enhancing the antitumor activity of ionizing radiation.

Nano-system Type of metal Cell lines In vivo evaluation References

HPNPs Iron Mouse melanoma B16F10 cells Mouse melanoma B16F10 tumors Lin et al. (2023)

Mouse normal L929 fibroblasts

FPH Iron Mouse mammary carcinoma 4T1 cells Mouse mammary 4T1 tumors Hou et al. (2023)

Mouse RAW264.7 macrophages

Fe2O3@TA-Pt Iron Mouse mammary carcinoma 4T1 cells Mouse mammary 4T1 tumors Jiang et al. (2022)

Normal human HUVEC cells

GOD@FeN4-SAzyme Iron Mouse mammary carcinoma 4T1 cells Mouse mammary 4T1 tumors Zhu et al. (2022)

SPIONC Iron Human lung cancer NCI-H460 cells Human lung cancer NCI-H460 tumors Li et al. (2022)

iCoDMSN Cobalt Mouse mammary carcinoma 4T1 cells Mouse mammary 4T1 tumors Zhao et al. (2023)

Human breast cancer MCF-7 cells

Human lung cancer A549 cells

Human colorectal cancer Caco-2 cells

Human gastric carcinoma SGC-7901 cells

AGulX Gadolinium Human breast cancer MDA-MB-231 cells Human breast cancer MDA-MB-231 tumors Sun et al. (2022)

Human breast cancer MDA-MB-468 cells

3a Gold Human cervical carcinoma HeLa cells Human cervical carcinoma HeLa cells transplanted in
zebrafish

Yang et al. (2022)

Human cervical carcinoma SiHa cells

PBmB-DOX Bismuth Mouse mammary carcinoma 4T1 cells Mouse mammary 4T1 tumors Hou et al. (2022)
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H2O2 by Pt nanoenzyme. In vitro experiments carried out in mouse
4T1 breast cancer cells and in RAW264.7 macrophage cells show a
preferential accumulation of FPH in cancer cells, likely dependent on
the interaction of HA with CD44. In addition, compared to the
treatment with FPH, near infrared radiation (NIR, 808 nm) or IR
alone, the exposure to FPH/NIR and FPH/IR significantly potentiates
cytotoxicity in 4T1 cells. The improved cytotoxicity observed in cells
treated with the combinations correlates with increased depletion of
GSH levels and increased ROS and DNA damages. This behavior is
counteracted by the treatment with ferrostatin-1. In vivo experiments
performed in 4T1 tumor-bearingmice corroborate in vitro results and
demonstrate the biocompatibility of FPH. NIR absorbance, Pt-
mediated X-ray attenuation and enhanced permeability retention-
mediated tumor selectivity render FPH a very useful tool for imaging
as well.

Fe2O3@TA-Pt are NPs containing a core of Fe2O3 covered by
platinum and tannic acid (TA-Pt) (Jiang et al., 2022). Fe2O3@TA-Pt
are stable inmouse serum, while acidic pH (5.5), mimicking TME, favors
the disassembling of the TA-Pt envelop releasing Fe2O3. In presence of
H2O2, which is abundant in TME, Fe3+ is converted in Fe2+ generatingO2

and OH• (Fenton reaction). Fe2O3@TA-Pt better accumulate into
4T1 cells with respect to normal HUVEC cells, and this observation
correlates with the increased cytotoxicity in tumor cells. The analysis of
the DNA damage upon NPs exposure reveals that, besides the ROS-
mediatedDNAdamage, Pt-DNA adducts, which reflect the release of the
Pt byNPs, are observed. Additionally, Fe2O3@TA-Pt treatment enhances
the radiotherapy sensitivity of 4T1 cells and potentiates ferroptosis
induction, as demonstrated by the reduced levels of GSH and
GPX4 observed upon combination exposure. In vivo experiments in
4T1 tumor-bearing mice show the preferential accumulation of NPs in
liver and tumor. Moreover, the tumor volume of mice exposed to
radiotherapy upon treatment with Fe2O3@TA-Pt is significantly
reduced with respect to that of animals singly treated with NPs or
radiotherapy. The combination Fe2O3@TA-Pt/IR is well tolerated with
no signs of toxicity, reduces the tumor recurrence as well as the
pulmonary metastasis and enhances the survival of mice.

Single-atom nanozymes (SAzymes) are enzyme-based drugs
containing a single metal atom in their active sites that are
interesting for anticancer therapy. Critical for the antitumor
properties of these nano-systems is the presence into the TME of
a specific enzymatic activity as well as H2O2. Zhu et al. (2022) have
engineered a SAzyme based on FeN4 and glucose oxidase (GOD)
(GOD@FeN4-SAzyme) for radio-enzymatic therapy. The elevated
glucose level in tumor over the normal cells allows the production of
H2O2 via GOD of the GOD@FeN4-SAzyme and this results in
sustained production of OH• and O2 as well as in GSH
depletion. The enzymatic cascade triggered by GOD is enhanced
by IR, which favor the conversion Fe3+/Fe2+ implementing the
generation of OH• and potentiating apoptosis and ferroptosis.
Cytotoxic experiments performed in 4T1 cells show that the
killing activity of GOD@FeN4-SAzyme is enhanced upon
exposure to IR. Compared to the treatment with GOD@FeN4-
SAzyme or IR separately, the combination GOD@FeN4-SAzyme/
IR significantly increases the DNA damages (increased γ-H2AX
signals) as well as ferroptosis (increased lipid peroxidation and OH•,
reduced GSH and GPX4 levels accompanied by mitochondria
membrane alterations). Besides ferroptosis, treated 4T1 cells show
apoptosis induction (e.g., PARP and caspase 3 activation).

Intravenous and intratumoral injection are used for in vivo
administration of GOD@FeN4-SAzyme in 4T1-tumor bearing
mice. Magnetic resonance imaging (MRI) reveals that GOD@
FeN4-SAzyme accumulate into the tumor. Compared to the
exposure to GOD@FeN4-SAzyme or IR, a significant reduction of
tumor volume is observed in animals treated with the combination
GOD@FeN4-SAzyme/IR. Ex vivo investigation recapitulates in vitro
findings (e.g., increased γ-H2Ax and reduced GSH). GOD@FeN4-
SAzyme are biocompatible and the combination is well tolerated
as well.

The pH-sensitive supramagnetic iron oxide nano-clusters (SPIONC)
are proposed by Li et al. (2022) for enhancing radiation sensitivity in lung
cancer. Under acidic conditions, which recapitulate TME and
intracellular compartment conditions, SPIONC decompose and
generate OH• via Fenton reaction. SPIONC efficiently accumulate in
NCI-H460 cells. Compared to SPIONC or IR individual exposure, the
combination SPIONC/IR is more effective in inhibiting cell proliferation.
Cells exposed to the combination increase iron, lipid peroxides, ROS and
γ-H2AX levels. These features reflect apoptosis (reduced expression of
Bcl2 and increased caspase 3 activation) and ferroptosis induction
(reduced expression of SLC7A11 and GPX4). The involvement of
ferroptosis in SPIONC/IR response of tumor cells is corroborated by
the observation that the pre-treatment with ferrostatin-1 attenuates
cytotoxicity. In vivo experiments in orthotopic mice model of NCI-
H460 cells in which SPIONC are injected by both intravenous and intra-
tracheal delivery show that intra-tracheal delivery is to prefer for MRI
analysis. Moreover, the exposure to the combination SPIONC/IR results
in increased tumor volume inhibition and survival rate with respect to the
administration of SPIONC or IR separately. No important toxic side
effects are reported upon treatment. The analysis of explanted tumors
from euthanized mice confirms the molecular alterations observed in
vitro.

3.2.2 Nano-systems based on cobalt, gadolinium,
gold, and bismuth

Another ferroptosis-stimulating nano-system has been recently
proposed by Zhao and colleagues (Zhao et al., 2023). Starting from
the observation that high level of cobalt (Co) in tumors associates
with a good prognosis, the authors have engineered Co oxide
nanodots by assembling bovine serum albumin and CoCl2. These
nanodots are conjugated with iRGD peptides and encapsulated into
dentritic mesoporus silica nanoparticles (iCoDMSN). Acidic
conditions stimulate the release of Co2+ by iCoDMSN and the
presence of iRGD favors their tumor penetration. iCoDMSN are
cytotoxic on a panel of different tumor cell lines, including murine
4T1 cells and human MCF-7 breast cancer cells, human A549 lung
cancer cells, human Caco-2 colorectal cancer cells and human SGC-
7901gastric carcinoma cells. Therefore, these nanostructures show
interesting photoacoustic imaging ability under 808 nm irradiation
and in vivo experiments in 4T1-tumor bearing mice show that
iCoDMSN are well tolerated (e.g., no important signs of liver and
kidney toxicity), preferentially co-localize with lysosomes and that
iRGD favors tumor accumulation. Proteomic studies performed on
4T1 cells exposed to iCoDMSN underline that ferroptosis pathways
play a critical role for cell response. These findings are supported by
the increased lipid peroxidation, MDA and iron levels observed in
iCoDMSN-treated 4T1 cells, and by the observation that this
behavior is counteracted upon exposure to ferrostatin-1.
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Proteomic analysis also underlines an increased level of HMOX1,
which controls Fe2+ accumulation and ferroptosis induction by
increasing the expression of TFR as well as by reducing solute
carrier family 40 member 1 (SLC40A1). Upon treatment,
accumulated iCoDMSN perturb the KEAP1/NRF2/HMOX1 axis.
This axis is governed by the level of nuclear factor erythroid 2-
related factor 2 (NRF2, Bellezza et al., 2018), which is a transcription
factor for HMOX1. These results are confirmed in vivo in 4T1-
tumor bearing mice exposed to the combination iCoDMSN/
radiotherapy. Compared to mice treated with iCoDMSN, a
increased tumor volume inhibition and survival rate are observed
in mice treated with iCoDMSN/radiotherapy. Ex vivo analysis
confirms the results obtained in vitro (reduced KEAP1, increased
NRF2, HMOX1, iron, and MDA).

Aimed at overcoming radiation resistance and reducing
radiotherapy damages to normal tissues, Sun and colleagues have
proposed gadolinium (Gd)-based NPs (AGulX) (Sun et al., 2022).
AGulX are based on polysiloxane covering Gd entrapped by the
chelator dodecane tetraacetic acid (DOTA) moieties that functionalize
the polysiloxane. Upon IR exposure, AGulX produce secondary and
Auger electrons as well as free radicals. These NPs are under clinical
investigation in brain, lung and pancreatic cancers. In the study by Sun
et al., AGulX are evaluated in triple negative breast cancer cells (MDA-
MB-231 andMDA-MB-468 cell lines) in vitro and in vivo. Compared to
the treatment with AGulX or IR, the combination AGulX/IR reduces cell
growth as well as cell migration and invasion capability. Additionally,
cells exposed to the combination enhance ROS production, DNA
damage (increased number of γ-H2AX foci) as well as G2/M cell-
cycle arrest. Molecularly, the combination stimulates the
phosphorylation of ATR and Chk1 (e.g., G2/M block) and reduces
the phosphorylation of ATM and Chk2 (e.g., reduced homologous
recombination repair ability). Moreover, by diminishing the activation
of the MRN-ATM-Chk2 axis, the combination also impairs the non
homologous end-joining, which is reflected by the reduced
phosphorylation of p53 and BRCA1. Besides apoptosis induction
(e.g., PARP and caspase 3 activation), cells exposed to AGulX/IR
reduce the expression of NRF2 favoring ferroptosis by attenuating
SLC7A11 activity, in turn reducing GSH synthesis and GPX4 activity.
The increased levels of lipid perixidation and MDA support the
induction of ferroptosis as a mechanism of cell death. These findings
are confirmed by the observation that ferroptosis is attenuated by the
siRNA-mediated silencing of NRF2, SLC7A11 and GPX4 as well as by
the treatment with ferrostatin-1. The in vitro results parallel the in vivo
observations in MDA-MB-231 tumor-bearing mice. No important signs
of toxicity are reported in treated animals.

A series of metal-biotin-conjugated nano-structures based
on different metals endowed with radiosensitizer properties is
proposed by Yang and colleagues (Yang et al., 2022). Among the
different nano-systems, the gold derivative 3a is selected for
further investigations. 3a contains a biotin moiety for favoring
tumor selectivity and uptake, a triply bonded dicarbon alkynyl
amide linker joining biotin to Au, which is hidden by a lipophilic
phosphine residue to increase membrane solubility. Compared
to the auranofin (the reference), 3a shows similar
antiproliferative potency on human cervical carcinoma HeLa
and SiHa cells. Moreover, the tumor selectivity of 3a, which is
dependent on biotin, is supported by the observation that 3a
uptake is higher in Hela cells (expressing high levels of biotin

receptor) with respect to normal human cervical epithelial
H8 cells (expressing low levels of the receptor). Au-
containing compounds, including auranofin, inhibit
thioredoxin reductases (TRXR) and 3a-treated cells show
reduced TRXR enzymatic activity. This finding is
corroborated by docking studies showing that Au binds the
selenium of the TRXR. The inhibition of the detoxification
properties of TRXR stimulates ROS production and favors
G2/M cell-cycle arrest as well as apoptosis (e.g., reduced
Bcl2, increased Bax and alteration of the mitochondria
membrane potential). Gene expression analysis performed on
HeLa cells exposed to 3a shows a differential expression of genes
involved in ferroptosis, including TXNRD1, HMOX1, SLC7A11,
GCLM, FTH1, FTL, GPX1, GPX1P1, and GPX4. The exposure of
HeLa cells to IR following 3a treatment stimulates DNA damage
(increased γ-H2AX levels) and downregulates GPX4 expression,
leading to reduced cell survival. This behavior is counteracted by
the exposure to N-acetyl L-cysteine or ferrostatin-1. The
radiosensitizing properties of 3a are confirmed in vivo in
zebrafish transplanted with Hela cells exposed to the
combination 3a/IR.

Along this way, Hou et al. have reported the synthesis and the
antitumor properties of PBmB-DOXNPs (Hou et al., 2022). PBmB-DOX
include a core of Bi2S3 covered by PEGylated doxorubicin (DOX).
Moreover, PBmB-DOX contain-Mn-O- bonds that are sensitive to
high GSH level, which is typical of the TME, allowing tumor
selectivity and release of DOX under acidic conditions. The PBmB-
DOX disassembling mediated by high levels of GSH favors the release of
Mn2+ that, besides stimulating Fenton reaction and potentiating DOX-
mediated antitumor activity, allows magnetic resonance contrast
enhancement. The downregulation of GSH reduces 4T1 cell
proliferation, while no important changes are evidenced in the growth
of normal PBmB-DOX-treated HUVECs cells. The depletion of GSH
upon treatment reduces the expression of GPX4 and increases lipid
peroxidation. PBmB-DOX are more potent than free DOX on 4T1 cells
and, compared to the exposure to IR or PBmB-DOX as single treatments,
the combination PBmB-DOX/IR increases the amount of γ-H2AX foci.
In vivo studies in 4T1 tumor-bearingmice demonstrate that PBmB-DOX
are biocompatible with no important toxic effects reported for major
organs, and that they preferentially accumulate into the tumor. Longer
circulation time in plasma is reported for PBmB-DOXwith respect to free
DOX, and PBmB-DOX more efficiently suppress tumor growth with
respect to free DOX. The exposure to IR upon PBmB-DOX treatment
significantly improves antitumor activity with no important signs of
toxicity. Histological analysis of tumors explanted from mice shows
increased expression of γ-H2AX and reduced GPX4 levels following
the exposure to the combination. Lastly, a remarkable signal
enhancement in tumor is evidenced in MRI after 6 h post-injection of
PBmB-DOX, thus confirming the theranostic properties of the nano-
system.

4 Ionizing radiation-associated gene
signatures

Recently, results from investigations focused on the studies of
ferroptosis-associated gene signatures for predicting radiotherapy
patient outcomes have been reported (Table 3).
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The combination of temozolomide and radiotherapy is used
for the treatment of malignant glioblastoma (GBM). Though
effective, the combination is not curative and the identification
of radiosensitive-associated biomarkers is an urgent need for
predicting prognosis and therapy outcome. In the study by Xie
et al. (2022), expression profiles of genes involved in radiation
response and ferroptosis-associated pathways of GBM patients
and healthy subjects from The Cancer Genome Atlas (TCGA)
database are analyzed. Among the differentially expressed genes
(DEGs) intersecting the two pathways, seven genes (MAPK1,
ZEB1, MAP1LC3A, HSPB1, CA9, STAT3, and TNFAIP3)
overlap and the analysis of the protein-protein interaction
network indicates STAT3 as the hub gene. The application of
the Least Absolute Shrinkage and Selection Operator (LASSO)
and Cox regression analysis defines a risk score that stratifies
patients in low- and high-risk groups. Patients in the high-risk
group show low overall survival (OS) and high mortality.
Receiver Operating Characteristic (ROC) curve and K-M
analysis confirm the power of the signature in predicting
patients’ survival. The prognostic model is validated by data
from Chinese Glioma Genome Atlas (CGGA) database used as
an external independent validation cohort. Functional
enrichment analyses defined by Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) as well
as immune cell infiltration patterns analysis from single-sample
Gene Set Enrichment Analysis (ssGSEA) allow the identification
of the most represented pathways in high-risk group, including
IL-17, cytokine-cytokine receptor interaction, TNF signaling

pathways, DCs, macrophages, Tumor-infiltrating lymphocytes
(TIL) and Treg cells. In vitro experiments performed in
glioblastoma U87 and U251 cells treated with the
combination erastin/IR support the relationship between
radiosensitivity and ferroptosis.

Gene expression profiles of breast cancer and normal tissues
as well as the survival and clinical information from TCGA
database are analyzed by Liu and colleagues (Liu et al., 2022).
Among the DEGs associated with ferroptosis, SLC7A11 is the
most upregulated in tumors compared to normal tissues.
Numerous clinic-pathologic properties associate with
SLC7A11 levels, including the expression of estrogen
receptor (ER). ER-positive tissues show lower levels of
SLC7A11 (e.g., increased ferroptosis) with respect to ER-
negative samples. The univariate Cox regression for OS
model demonstrates that high SLC7A11 levels associate with
worse OS. In vitro experiments carried out in a panel of breast
cancer cell lines (ER-positive MCF7 and ZR-75-1 as well as ER-
negative MDA-MB-231) treated with ferrostatin-1 or erastin in
combination with IR support the critical role played by
SLC7A11 in regulating IR-induced ferroptosis in ER-positive
cells. The study also shows a positive correlation between the
expression of estrogen receptor 1 (ESR1) and SLC7A11 and the
analysis by K-M predicts poor prognosis for patients with high
levels of ESR1. Molecularly, IR exposure stimulates the
expression of ESR1 that, in turn, increases SLC7A11 levels
attenuating ferroptosis. This finding is supported by the
observation that upon ESR1/SLC7A11 knockdown in ER-

TABLE 3 Gene signatures associated to ionizing radiation.

Gene signature Tumor types Cell line validation Pathway involved References

MAPK1 Malignant glioblastoma U87 IL-17 Xie et al. (2022)

ZEB1 U251 Cytokine-cytokine receptor interaction

MAP1LC3A TNF signaling pathways

HSPB1 DCs

CA9 Macrophages

STAT3 TIL

TNFAIP3 Treg cells

SCL7A11 Breast cancer MCF7 SLC7A11/ESR1 Liu et al. (2022)

ZR-75-1 SLC7A11/NEDD4L

MDA-MB-231

ACSL3 Prostate cancer No Epithelial–mesenchymal transition Feng et al. (2022)

EPAS1 Allograft rejection

FASN Fc gamma R-mediated phagocytosis

GSTP1 TGF beta signaling

LDHB ECM receptor interaction

NEDD4L Adipocytokine signaling

Androgen response

Notch signalling
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positive cells, IR-induced ferroptosis is enhanced.
Immunoprecipitation assay revels that no direct protein-
protein interaction occurs between ESR1 and SLC7A11.
Conversely, a protein interaction involving SLC7A11 and the
E3 ubiquitin ligase neural precursor cell expressed
developmentally downregulated gene 4-like (NEDD4L) is
critical for stimulating the proteasome-mediated degradation
of SLC7A11. Based on these findings, the authors suggest that
two pathways, including ESR1/SLC7A11 and SLC7A11/
NEDD4L, control SLC7A11 level and regulate ferroptosis
induced by IR exposure.

By analyzing expression data (mRNA and lncRNA) from
Gene Expression Omnibus (GEO) database of normal and
prostate cancer tissues of patients treated with radical
radiotherapy and intersecting them with ferroptosis-related
genes, Feng and co-workers construct a gene signature,
including ACSL3, EPAS1, FASN, GSTP1, LDHB, and
NEDD4L. This signature allows the definition of a
ferroptosis-related gene prognostic index (FGPI) useful for
predicting biochemical recurrence (BR) and radiation
resistance of prostate cancer suffering patients (Feng et al.,
2022). FGPI allows the stratification of the patients in high-
and low-risk groups. Although ROC curve poorly discriminates
BR patients from patients who do not experience BR, it
evidences that FGPI potentially reflects radiation resistance.
Indeed, compared to no BR patients, a significant higher
FGPI is observed for BR patients treated with radical
radiotherapy. The application of the K-M curve shows that
FGPI is an independent risk factor for biochemically relapse
(BCR) and metastasis-free survival (MFS) in patients treated
with radical radiotherapy. Moreover, compared to low-risk,
high-risk group patients treated with radical prostatectomy
are at higher risk of metastasis. The application of the
GeneMANIA database and ceRNA network assigns a critical
role to lnRNAPART1 in controlling ACSL3 and
EPAS1 expression via a intricate crosstalk involving
60 different miRNAs. Gene Set Enrichment Analysis (GSEA)
shows differences in pathway enrichment in high-risk
(epithelial–mesenchymal transition, allograft rejection, Fc
gamma R-mediated phagocytosis, TGF beta signaling
pathway, and extracellular matrix receptor interaction) with
respect to low-risk patients (adipocytokine signaling pathway,
androgen response and notch signalling). Drug and
immunologic analysis as well as TME analysis resulting from
the application of dedicated softwares, which consider the
expression of ACSL3 and EPAS1, underline potential
sensitivity to nine drugs (OSI-027, OSI-930, PAC-1, PHA-
793887, PI-103, PIK-93, SNX-2112, TPCA-1, and UNC0638)
for high-risk patients. Compared to no BR patients, BR patients
group shows lower expression levels of METTL14, which predict
sensitivity to methylating agents, and higher expression of
PDCD1LG2 (PD-L2) and CD96. However, only CD96 is
significantly associated with BCR-free survival. Regarding the
results of TME analysis, cancer-related fibroblasts,
macrophages, stromal score, immune score, estimate score,
and tumor purity are risk factors for BCR closely associated
to BCR-free survival.

5 Conclusion

Although radiotherapy is the first choice for the treatment of
different tumors types, the development of radiation resistance
impairs its effectiveness and medical strategies aimed at
overcoming this drawback are urgent. Among these strategies,
the combination of IR with ferrptosis inducers proved to synergize
thus potentiating radiotherapy. Moreover, since the activation of
defense cellular pathways in response to IR exposure attenuates
radiotherapy effectiveness, deeper investigations aimed at studying
the involved pathways as well as at developing ferroptosis inducers
or novel combinatorial strategies are intriguing ways to pave for
combating radiation resistance. Besides the use of small molecules
inducing ferroptosis, the combination of IR with nano-systems
endowed with both diagnostic and therapeutic potential is
promising. In spite of their capability to overcome the
resistance to apoptosis developed by tumors exposed to
conventional chemotherapeutics, ferroptosis inducers show
drawbacks typical of small molecules, including low solubility,
limited tumor targeting, and toxic side effects that have often
impeded their clinical evaluation. These drawbacks have been
tackled by NPs that, functioning like a “Trojan horse”, localize
into the tumors via the enhanced permeability retention effect and
are entered into the therapeutics armamentarium for fighting
tumors. NPs ameliorate the circulation time of encapsulated
drugs and stimulate anticancer immunity at the tumor site.
Specific decoration aimed at targeting peculiar tumor-expressing
molecules as well as exploiting non physiologic conditions typical
of TME potentiate the tumor selectivity of NPs. Tumor targeting is
also in part guaranteed by the local irradiation of the tumor. NPs
are designed to disassemble themselves under peculiar conditions
(e.g., the acidic pH as well as the presence of specific enzymes),
ameliorating the selectivity of the cargo release. Therefore, the
magnetic properties of the metal composing the structure of the
NPs account for their theranostics potential. Among the
combinations including small molecules here reported, only IR/
niraparib is currently under investigation in phase I-II clinical
trials (https://www.clinicaltrials.gov) in triple negative breast
cancer (NCT03945721 and NCT04837209), pancreatic tumors
(NCT04409002), prostate cancer (NCT04194554,
NCT04037254), glioblastoma (NCT05666349) and head and
neck squamous cell carcinoma (NCT05784012) patients.
Regarding the clinical studies exploiting NPs, although all the
NPs considered have been tested in vivo showing interesting
antitumor profile, only AGluX is under phase I-II clinical
evaluation in patients with brain tumors and brain metastasis,
gynecologic cancers, non small cell lung cancers, and pancreatic
cancers (NCT04899908, NCT03308604, NCT02820454,
NCT04789486, NCT03818386, and NCT04784221. https://www.
clinicaltrials.gov). Lastly, the continuous implementation of the
gene signatures predicting IR response via ferroptosis-
mediated cell death is expected to positively impact on patient`s
health.

In conclusion, despite the preclinical success achieved with
the combination strategies, additional efforts and clinical
investigations are required in the future to demonstrate their
safety profile as well as their antitumor effectiveness.
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Iron regulatory proteins: players
or pawns in ferroptosis and
cancer?

Cameron J. Cardona and McKale R. Montgomery*

Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, United States

Cells require iron for essential functions like energy production and signaling.
However, iron can also engage in free radical formation and promote cell
proliferation thereby contributing to both tumor initiation and growth. Thus,
the amount of iron within the body and in individual cells is tightly regulated.
At the cellular level, iron homeostasis is maintained post-transcriptionally by iron
regulatory proteins (IRPs). Ferroptosis is an iron-dependent form of programmed
cell death with vast chemotherapeutic potential, yet while IRP-dependent targets
have established roles in ferroptosis, our understanding of the contributions of
IRPs themselves is still in its infancy. In this review, we present the growing
circumstantial evidence suggesting that IRPs play critical roles in the adaptive
response to ferroptosis and ferroptotic cell death and describe how this
knowledge can be leveraged to target neoplastic iron dysregulation more
effectively.

KEYWORDS

iron homeostasis, cancer, iron-sulfur cluster biogenesis, programmed cell death, reactive
oxygen species, lipid peroxidation

1 Introduction

Iron is an essential metal for all forms of life; in fact, a large portion of the Earth itself is
made of iron, making it the most abundant element on the planet (Sheftel et al., 2012). The
essentiality of iron has led to its long-established role in medicine. Since the 1500s, iron has
been used by physicians to treat a wide range of medical ailments (Beutler, 2002). Iron
primarily exists in two forms: a reduced ferrous (Fe2+) form and an oxidized ferric (Fe3+)
form. In its ferrous form, iron is highly reactive, interacting with hydrogen peroxide to form
reactive oxygen species (ROS) and ferric iron (Vogt et al., 2021). The importance of iron
homeostasis in the prevention of human disease is well recognized and is exemplified by
paitents with the hereditary iron overload disorder hemochromatosis. Individuals with
hemochromatosis are at increased risk for diabetes, hematologic malignancies, colorectal
and gastric cancers, as well as cirrhosis and hepatocellular carcinoma, which account for
nearly 20%–30% of deaths for patients with untreated or poorly controlled hemochromatosis
(Bradbear et al., 1985; Nelson et al., 1995; Pietrangelo, 2010).

Despite this potential danger, iron is necessary for DNA synthesis, cell signaling, and
cellular respiration, among other functions (Vogt et al., 2021), so insufficient iron availability
is also very deleterious (Camaschella, 2019). Iron deficiency is primarily caused by
inadequate dietary intake, but can be secondary to infection, inflammation, and genetic
disorders. The primary symptoms of iron deficiency are fatigue and reduced work capacity,
but when severe, iron deficiency is also associated with impaired cognititive development
and increased risk of child and maternal mortality and is a major cause of disability
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worldwide (Kassebaum et al., 2014; Camaschella, 2019; The Lancet,
2019). As such, both systemic and cellular iron homeostasis need to
be tightly regulated tomaintain health and prevent disease (Chifman
et al., 2014).

Absorption of iron is regulated via secretion of the hormone
hepcidin (Meynard et al., 2014) and cellular iron levels are mediated
post-transcriptionally by iron regulatory proteins (IRPs) (Chifman
et al., 2014). Hepcidin maintains systemic iron homeostasis by
controlling the movement of iron from the enterocyte into
circulation (Meynard et al., 2014). IRPs function by sensing
intracellular iron levels and binding to iron responsive elements
(IRE) in the untranslated regions (UTRs) of the mRNA encoding
many of the proteins involved in cellular iron homeostasis
(Anderson et al., 2012). Depending on the location of the IRE,
IRP binding can have two vastly different effects (Anderson et al.,
2012). Binding of IRPs to IREs in the 5′ UTR results in translation
inhibition and binding in the 3’ UTR results in mRNA stabilization
(Wallander et al., 2006).

Ferroptosis is a form of iron-dependent cell death, that is, the
result of excess lipid peroxidation (Dixon et al., 2012; Stockwell,
2022). Under normal conditions, endogenous antioxidants such as
Glutathione peroxidase 4 (GPX4) can alleviate these lipid peroxides
(Lee et al., 2021; Stockwell, 2022). Cysteine is imported into the cell
via solute carrier family 7 member 11 (SLC7A11), one half of the
antiporter system Xc− (Stockwell, 2022). This cysteine is then
converted to cystine prior to its incorporation into glutathione
(GSH) (Stockwell, 2022). GPX4 then oxidizes GSH to reduce
lipid peroxides to lipid alcohols (Stockwell, 2022). Disruption of
any part of these endogenous antioxidant regulatory systems is
sufficient to trigger ferroptosis (Lee et al., 2021).

Oxidation in ferroptosis can occur via both iron-based auto-
oxidation or enzymatic-mediated mechanisms (Lee et al., 2021).
Non-enzymatic auto-oxidation is the result of Fenton-like
chemistry, in which ferrous (Fe2+) iron reacts directly with
oxygen leading to the formation of ferric (Fe3+) iron and a
radical (Dixon et al., 2012; Lee et al., 2021). Multiple iron-
containing oxidation enzymes can also lead to the development
of ROS (Lee et al., 2021). However, the role of iron metabolism in
ferroptosis has only just begun to be elucidated and the roles of many
iron-related proteins have yet to be described. While increased
mitochondrial iron import (Yuan et al., 2016) and inhibition of
iron sulfur cluster biogenesis have been shown to increase
ferroptosis sensitivity in cancer cells (Novera et al., 2020), cellular
iron accumulation is associated with resistance to ferroptosis in
neuronal and senescent cell types (Wang et al., 2016; Masaldan et al.,
2018). These findings indicate that the role of iron in ferroptosis is
complex and likely context- and cell-type dependent.

2 Dietary iron metabolism and systemic
iron homeostasis

In the diet, iron is present as both heme and non-heme iron
(Abbaspour et al., 2014). Non-heme iron is primarily found in plant
sources, while heme iron comes directly from the myoglobin and
hemoglobin in animal products (Abbaspour et al., 2014). These two
forms of iron have drastically different bioavailabilities, with
maximum bioavailabilities of 10 and 30-percent, respectively

(Skolmowska and Głąbska, 2019). Although there is no regulated
pathway for the excretion of iron, absorption of at least 1–2 mg of
iron daily by enterocytes in the duodenum is necessary to directly
replace iron lost through the death of skin and intestinal cells, sweat,
and menstruation (Wallander et al., 2006; Anderson et al., 2012;
Chifman et al., 2014). Thus, the recommended dietary allowance for
iron in male and female individuals is set at 8 mg/day and 18 mg/
day, respectively, to account for low bioavailability and increased
loss in females.

Elemental iron from non-heme sources enters the enterocyte
through solute carrier family 11 member 2 (SLC11A2, also known as
divalent metal transporter I (DMT1)), a transport protein, that is,
able to transport ferrous iron (Yanatori and Kishi, 2019). However,
at this point dietary non-heme iron is in the ferric form, so it has to
be reduced by the ferric reductase, cytochrome b reductase 1
(CYBRD1) prior to its absorption (Chifman et al., 2014). Though
heme iron transporters have been described, the primary dietary
heme iron transporter has yet to be identified (Muckenthaler et al.,
2017). Inside the cell, iron is released from heme via the action of
heme oxygenase 1 (HMOX1) and joins non-heme iron in the labile
iron pool (Chifman et al., 2014). This iron can now be used by the
enterocytes (Abbaspour et al., 2014), stored in the iron storage
protein, ferritin (Chifman et al., 2014; Plays et al., 2021) or exported
to the rest of the body via solute carrier family 40 member 1
(SLC40A1), also known as ferroportin (Sheftel et al., 2012).
Because ferroportin only exports ferric iron, ferrous iron must
first be oxidized by hephaestin (HEPH), a membrane-anchored
multicopper ferroxidase (Deshpande et al., 2017). After movement
through SLC40A1, iron binds the iron transport protein transferrin
(TF), enters the plasma, and is transported to other cells throughout
the body (Chifman et al., 2014). When iron levels are adequate,
hepcidin antimicrobial peptide (HAMP), commonly referred to as
hepcidin, is excreted by the liver and blocks the export of iron by
promoting SLC40A1 internalization and degradation (Meynard
et al., 2014). Due to the short lifespan of enterocytes, the
remaining iron is inevitably lost when these cells are sloughed off
and excreted in the feces (Anderson et al., 2012).

Two major destinations for TF-bound iron leaving the small
intestine are the liver and bone marrow (Chifman et al., 2014;
Meynard et al., 2014). The liver has two major iron-related
functions—Iron storage and regulation of systemic iron
homeostasis via HAMP (Meynard et al., 2014). Hepatocytes
internalize iron via the proteins transferrin receptor and
transferrin receptor 2 (TFRC, TFR2) and the homeostatic iron
regulator (HFE) (Chifman et al., 2014). Transcription of hepcidin
is regulated through a process in which bone-morphogenic protein
six (BMP6) binds its receptor, triggering the phosphorylation of
receptor mediated SMAD homolog (R-SMAD) (Meynard et al.,
2014). This results in SMAD family members 1, 5 and 8 (SMAD1,
SMAD5, SMAD8), forming a complex with SMAD 4, resulting in
downstream suppression of hepcidin secretion (Meynard et al.,
2014; Xiao et al., 2020; Xu et al., 2021). Hepcidin is primarily
regulated in response to iron availability, but can also be
triggered by inflammation, hypoxia and the rate of erythrocyte
formation (Chifman et al., 2014). Hepatic iron stores can vary
significantly based on gender and a variety of other factors
(Pietrangelo, 2016). Because of its role in iron storage, multiple
diseases occur due to the storage of excess iron in the liver

Frontiers in Molecular Biosciences frontiersin.org02

Cardona and Montgomery 10.3389/fmolb.2023.1229710

149

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1229710


(Pietrangelo, 2016). Although symptoms of these diseases are
similar, they are the result of a variety of pathophysiologies,
including genetic or acquired loss of hepcidin, inhibition of
hepcidin function and loss of ferroportin (Pietrangelo, 2016).

Another major destination for iron in the body is the erythroid
bone marrow (Chifman et al., 2014). Here, iron is essential for
erythropoiesis as it is a major component of hemoglobin (Kautz and
Nemeth, 2014). Iron enters erythroblasts via TFRC-mediated
endocytosis and the mitochondria through the protein solute
carrier family 25 member 37 (SLC25A37), also known as
mitoferrin-1 (Chifman et al., 2014). In both the cytosol and
mitochondria, it is used for heme formation, prior to being
combined with the globin chains synthesized in the cytoplasm to
form hemoglobin (Anderson et al., 2012; Chung et al., 2012; Farid
et al., 2022). Once mature erythrocytes become senescent, their iron
can be recycled by macrophages of the reticuloendothelial system
(RES) (Chifman et al., 2014). RES macrophages phagocytose
erythrocytes forming an erythrophagolysosome (EPL) that travels
through the cytoplasm to the endoplasmic reticulum (ER) (Sheftel
et al., 2012). The ER is then able to recruit HMOX1 (Sheftel et al.,
2012) which frees iron for use by the macrophage or export to other

cells through ferroportin (Chifman et al., 2014). This system is well
described; however, the exact mechanism by which iron leaves the
EPL has yet to be elucidated (Sheftel et al., 2012). Most iron used by
the body is maintained through this efficient iron recycling system
involving the bone marrow, erythroblasts, and reticuloendothelial
macrophages (Winn et al., 2020). Figure 1 illustrates how iron status
is sensed by the liver to regulate iron absorption, recycling, and
distribution throughout the body.

3 IRP-mediated control of cellular iron
metabolism and homeostasis

Across the body, the movement of iron into and out of cells must
be tightly regulated. Cellular iron metabolism and homeostasis are
regulated by the binding of iron regulatory proteins (IRPs),
aconitase 1 (ACO1, also known as IRP1) and iron response
element binding protein 2 (IREB2, also known as IRP2) to iron-
responsive elements (IRE) in the untranslated regions (UTRs) of the
mRNA of many iron related proteins (Anderson et al., 2012). The
IRE is a stem looped portion of the mRNA containing the sequence

FIGURE 1
Absorption, Distribution and Metabolism of Iron. (A) Each day, 1–2 mg of iron are absorbed in the duodenum. Ferric, non-heme iron must first be
reduced by duodenal cytochrome B (CYBRD1) to be transported into the enterocyte via divalent metal transporter 1 (DMT1). Dietary heme iron enters the
enterocyte via an unknown transporter where the iron is then released from heme by heme oxygenase (HMOX1), joining non-heme iron in the labile iron
pool. If not needed by the enterocyte, the ferrous iron is released into circulation, by exiting the cell through ferroportin. Following export across the
basolateral membrane, ferrous iron is oxidized by hephaestin (HEPH) before it is bound to transferrin (TF) for transport to various tissues. (B) Transferrin-
bound iron binds to transferrin receptor (TFRC) on the cell surface where the TF/TFRC complex is internalized though receptor-mediated endocytosis.
The acidic pH of the endosome results in the release of iron from TF so that it can be pumped into the cytoplasm,most likely through DMT1. TF and TFRC
are recycled back to the cell surface where they dissociate upon encountering a neutral pH. Inside the cell, iron can be stored in ferritin, utilized for iron-
dependent processes such as the synthesis of myoglobin in skeletal muscle or erythropoiesis in the bone marrow, or exported back into circulation via
ferroportin. (C)Whole-body iron homeostasis is maintained though the hepatic synthesis of hepcidin (HAMP) and the efficient recycling of senescent red
blood cells by reticuloendothelial macrophages. In response to inflammation and increased iron availability, hepcidin production is increased. The
binding of hepcidin to ferroportin at the cell surface of enterocytes and macrophages leads to its internalization and degradation, subsequently
diminishing iron absorption and release from stores, respectively. Hepcidin production is decreased in response to hypoxia and enhanced erythropoiesis
to increase iron uptake and availability.
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CAGUG followed by uracil or cytosine, that is, around
28 nucleotides in length (Wallander et al., 2006). This region is
highly conserved across IRE containing mRNAs (Wallander et al.,
2006). IREs can be located in either the 3′ or 5′UTRs of mRNA, with
5′IRE-IRP binding resulting in translational repression, and 3′IRE-
IRP binding inhibiting endonucleolytic degradation (Wallander
et al., 2006; Anderson et al., 2012). Classic examples of 5′IRE
containing mRNAs include those involved in the storage (FTH1,
FTL) and export (SLC40A1) of iron and examples of 3′IRE
containing mRNAs include those involved in the import (TFRC,
SLC11A2) of iron (Chifman et al., 2014). In 2011, Sanchez and
colleagues (Sanchez et al., 2011) identified over 30 additional IRE
containing mRNAs using immunoselection and microarrays.

Although IRP1 and IRP2 are similar in structure, they do have
significant differences in the way they sense iron and bind to IREs
(Volz, 2008). IRP1 exists in two forms: a cytosolic aconitase isoform
that doesn’t bind IREs, or an RNA binding form, that binds IREs
with a high affinity (Anderson et al., 2012). In conditions where
adequate iron is available, assembly of an Fe-S cluster confers
enzymatic activity, whereas under low iron conditions,
disassembly of the Fe-S cluster promotes IRE binding (Wallander
et al., 2006). IRP1 is also able to respond to multiple non-iron inputs
including the presence of reactive oxygen and nitrogen species, the
presence of heme compounds and phosphorylation of the serine it
the 138th position (Volz, 2008; Anderson et al., 2012), all of which
result in the disassembly of the Fe-S cluster, allowing for IRE binding
(Volz, 2008). In addition to these multiple feedback loops, the
ubiquitin E3 ligase responsible for iron-induced proteasomal
degradation of IRP2 has been shown to also ubiquitinate IRP1
(Anderson et al., 2012).

Despite having almost sixty-percent similarity to IRP1,
IRP2 lacks an Fe-S cluster and is primarily regulated by
alterations in protein stability (Volz, 2008). IRP2’s degradation
occurs in response to ubiquitination by its E3 ubiquitin ligase,
F-box and leucin-rich repeat protein 5 (FBLX5), a protein with a
hemerythrin-like domain in its N-terminal that allows it to sense the
presence of iron and oxygen in the cell (Ruiz and Bruick, 2014).
During times where iron is limiting or the occurrence of hypoxia, the
hemerythrin-like domain conformationally changes FBXL5,
resulting in increased stability and IRP2-IRE binding activity
(Ruiz and Bruick, 2014). IRP2 also differs from IRP1 in that it
has a 73 amino acid sequence rich in cysteine, glycine, lysine, and
proline (Volz, 2008). Residues in this domain can be oxidized by
heme, allowing the protein RANBP2-type and C3HC4-type zinc
finger containing 1 [RBCK1, also known as heme-oxidized
IRP2 ubiquitin ligase (HOIL-1)] to mark it for degradation in
response to heme availability (Anderson et al., 2012).
Additionally, IRP2 has been shown to have altered IRE binding
affinity at different stages in the cell cycle as phosphorylation at the
157th position during the G2/M transition results in an inability to
bind IREs (Wallander et al., 2008).

In response to low iron, the IRE binding activity of both
IRP1 and IRP2 are increased, leading to ferritin degradation and
TFRC stabilization in an attempt to increase cellular iron content
(Anderson et al., 2012). Circulating transferrin bound to iron is then
able to bind to its receptor, found on the cell surface, resulting in
receptor mediated endocytosis, during which a clathrin coated
sorting endosome is formed (Sheftel et al., 2012). This endosome

contains a v-ATPase pump, that is, able to manipulate the pH of the
endosome, resulting in a pH of around 5.6 (Sheftel et al., 2012; Ogun
and Adeyinka, 2022). At this low pH, iron is released from
transferrin (Sheftel et al., 2012), allowing both TF and TFRC to
return to the cell surface (Chifman et al., 2014). Within the
endosome, ferric iron is reduced back to its ferrous form by a
member of the six transmembrane epithelial antigen of the prostate
(STEAP) family prior to its export into the cytoplasmic labile iron
pool through DMT1, where it is made available to the cell or stored
in ferritin (Sheftel et al., 2012).

Inside of the cell, iron can be used for a variety of cellular
processes, including hemoglobin synthesis, cell signaling, iron-sulfur
cluster group formation, energy production, DNA synthesis, and cell
respiration (Abbaspour et al., 2014). Because of it’s potential to form
toxic free radicals, iron, that is, not used by the cell or exported, is
stored in the iron storage protein ferritin, a nanocage made up of
various repeats of light and heavy chains that can oxidize and store
up to 5,000 molecules of iron (Plays et al., 2021). The heavy chains
are responsible for oxidation of iron prior to storage in the light
chains (Plays et al., 2021). When the cell develops an increased need
for iron, autophagosomes and autolysosomes are utilized to free
ferritin bound iron for use through a nuclear receptor activated 4
(NCOA4) mediated process known as ferritinophagy (Liu et al.,
2022). This process is IRP-independent and a secondary pathway
through which ferritin is degraded (Liu et al., 2022).

Movement of iron within the cell is achieved by chaperone
proteins, such as poly (rC)-binding protein 1 (PCBP1), which allow
iron to move throughout the cell without contributing to ROS
formation (Patel et al., 2021). In some cells, ferrous iron in the
labile iron pool can be transported through the membrane transport
protein ferroportin into the plasma, where it is almost immediately
bound to transferrin (Sheftel et al., 2012; Chifman et al., 2014). Prior
to this export, it must be oxidized back to its ferric form, as discussed
previously. The binding of iron to transferrin is possible because of
the presence of a carbonate in transferrin that contains a charge
opposite that of ferric iron (Ogun and Adeyinka, 2022). This process
is essential to allow transferrin to safely move iron throughout the
body without forming toxic free radicals (Chifman et al., 2014).

4 Ferroptosis

In 2012, Scott Dixon and colleagues in the Stockwell lab
described a novel form of regulated cell death they coined
ferroptosis due to its dependence on iron availability (Dixon
et al., 2012). Ferroptosis occurs as the result of the iron-
dependent accumulation of lipid reactive oxygen species (ROS)
and results in shrunken mitochondria with thickened membranes
(Dixon et al., 2012). The description of ferroptosis as an alternative
form of programmed cell death has resulted in a booming new area
of research across many chronic diseases including cancer,
neurodegeneration, and cardiovascular diseases (Stockwell, 2022).
Key to understanding the therapeutic potential of ferroptosis in
health and disease is the availability of two agents of ferroptosis
induction characterized in the original description of ferroptosis:
erastin and RAS-selective lethal 3 (RSL3) (Dixon et al., 2012).

Erastin induces ferroptosis by blocking the function of
SLC7A11 resulting in downstream interruption of glutathione
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(GSH) production, and subsequently GPX4 synthesis (Dixon et al.,
2014). RSL3 induces ferroptosis by directly binding to and inhibiting
the function of GPX4 (Yang et al., 2014). Ferroptosis then occurs as
the result of excess lipid peroxidation, beyond the capacity of the
endogenous lipophilic antioxidant glutathione peroxidase 4 (GPX4)
to repair them (Stockwell, 2022). The ensuing lipid ROS
accumulation leads to altered function and membrane
destruction, resulting in cell death (Lee et al., 2021).

GPX4 is an endogenous antioxidant that selectively targets lipids
(Lee et al., 2021; Stockwell, 2022). The canonical GPX4 production
pathway begins with system Xc−, which refers to the two membrane
transport proteins solute carrier family 3 member 2 (SLC3A2) and
solute carrier family 7 member 11 (SLC7A11) (Stockwell, 2022).
These proteins function as antiporters, responsible for the import of
cystine and export of glutamate, respectively (Lu et al., 2017). Inside
of the cell, cystine is reduced to two cysteines which are incorporated
into GSH prior to its oxidation by GPX4 to reduce lipid peroxides to
lipid alcohols (Lu et al., 2017; Stockwell, 2022). As such, exogenous
lipophilic antioxidants can be used to prevent ferroptosis (Lee et al.,
2021). The two most commonly used examples are liproxstatin-1
(Lip-1) and ferrostatin-1 (Fer-1) (Zilka et al., 2017; Stockwell, 2022).
Both of these function as radical trapping antioxidants (RTAs),
meaning that they prevent autooxidation rather than influencing the
activity of the oxidases contributing to lipid peroxide formation
(Zilka et al., 2017). Other inhibitors of ferroptosis also exist, for
example: probucol, an antioxidant drug used to treat dyslipidemia
(Yamashita et al., 2015), is able to inhibit ferroptosis (Stockwell,
2022). Additionally, selenium, nitroxide, iron chelators like
deferoxamine (DFO) and even, at very high doses, necrostatin-1,
a necrosis inhibitor, have been shown to inhibit ferroptosis
(Stockwell, 2022).

Since the generation of lipid ROS is the main mechanism of
damage leading to cell death by ferroptosis, lipid metabolism plays a
critical role in ferroptosis. Phospholipids that contain
polyunsaturated fatty acid (PUFA-PLs) are at an especially high
risk for peroxidation, particularly PUFAs containing adrenic or
arachidonic acids (Lee et al., 2021; Stockwell, 2022). This role
applies specifically to membrane-incorporated PUFA-PLs, as the
oxidation of PUFAs that are not membrane anchored and
incorporated into PUFA-PLs do not contribute to ferroptosis
(Lee et al., 2021). The lipid metabolism protein, achaete-scute
family belch transcription factor 4 (ASCL4), which incorporates
long chain fatty acids and acyl-CoA into fatty acid esters prior to
phospholipid generation by lysophosphatidylcholine acyltransferase
3 (LPCAT3) is an important mediator between lipid metabolism and
ferroptosis (Doll et al., 2017). In breast cancer cells, decreased or
increased ASCL4 expression is associated with reduced or
augmented ferroptosis sensitivity, respectively (Lee et al., 2021).
Additionally, monounsaturated fatty acids have been shown to be
ferroptosis protective, possibly due to competition with PUFAs for
phospholipid synthesis (Lee et al., 2021).

There are two main mechanisms of lipid peroxidation in
ferroptosis: enzyme-mediated and auto-oxidation (Lee et al.,
2021). Enzymatic oxidation is the result of the action of many
iron containing proteins, including lipoxygenases (LOXs),
cytochrome P450 oxidoreductase (POR), and nicotinamide
adenine dinucleotide phosphate (NADPH) oxidases (NOXs) (Lee
et al., 2021). LOXs function by oxidizing PUFAs to PUFA lipid

hyperoxides (Kuhn et al., 2015). Increased POR activity is
hypothesized to accelerate the conversion of ferrous iron in its
heme group to ferric iron and vice versa, either promoting or directly
contributing to lipid peroxidation (Lee et al., 2021). Finally, NOXs
generate lipid superoxides through a reaction in which NADPH and
oxygen are converted to a hydrogen, a superoxide radical, and
NADP+ (Panday et al., 2015). Non-enzymatic auto-oxidation
occurs as the result of Fenton chemistry whereby ferrous iron
and hydrogen peroxide (H2O2) react resulting in hydroxyl
radicals and ferric iron, amongst other products (Dixon et al.,
2012; Lee et al., 2021).

When ferroptosis was originally described, it was demonstrated
that iron chelation and supplementation decreased and increased
ferroptosis, respectively (Dixon et al., 2012). Thus, the name,
ferroptosis, was inspired by the essentiality of available redox-
active iron for any of the above-mentioned processes to occur. Li
et al. (2017) demonstrated that exposure to excess levels of both
hemoglobin and ferrous iron resulted in ferroptosis. The authors
showed that excess hemoglobin results in increased lipid peroxide
accumulation as a result of GPX4 inhibition (Li et al., 2017). It is
important to note that increased total cellular iron is not necessary
for ferroptosis, as release of iron from ferritin can be ferroptosis
promoting (Quiles del Rey and Mancias, 2019). Despite these
findings, the role of iron metabolism in ferroptosis is only
beginning to be elucidated and the functions of many proteins
involved in iron metabolism in ferroptosis remain poorly
understood.

5 Iron and IRPs in ferroptosis

Ferroptosis is driven by extensive iron-dependent accumulation
of lipid reactive oxygen species (ROS), which ultimately commits
cells to death (Dixon et al., 2012). Importantly, IRPs, the principal
regulators of cellular iron homeostasis themselves are also regulated
by iron availability and reactive oxygen species (Anderson et al.,
2012), yet our understanding of how the IRP-IRE-system
contributes to iron accumulation during ferroptotic cell death is
still in its infancy. Investigations into the roles of IRPs in ferroptosis
are made complicated however because even though IRP1 and
IRP2 are ubiquitously expressed (Meyron-Holtz et al., 2004a),
their relative expression levels differ in cell type and tissue-
dependent manners, and they can display distinct biological roles
under different physiologic conditions (Meyron-Holtz et al., 2004b).

It is currently understood that uptake of transferrin-bound iron,
via the IRP target TFRC, is necessary for ferroptosis and that RNAi
knockdown of TFRC decreases ferroptosis sensitivity (Gao et al.,
2015). Nevertheless, the question as to why TFRC would continue to
import iron following ferroptosis induction at the cost of cell death
remains. Research into TFRC regulation during ferroptosis
induction has led to conflicting findings. Wang et al. (2016)
reported reduced TFRC expression after erastin treatment. Such
results are consistent with an appropriate cell response, wherein
IRPs sense a relative cellular iron overload and decrease mRNA
binding to reduce TFRC expression and subsequent cellular iron
uptake (Wang et al., 2016).

Conversely, however, Alvarez et al. (2017) reported increased
TFRC expression following erastin treatment. The authors
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speculated that the increase in TFRC expression is the result of
decreased Fe-S biogenesis/stability and the ensuing increase in
IRP1 mRNA binding activity (Alvarez et al., 2017). Nonetheless,
neither IRP1 nor IRP2 expression or activity were assessed in either
of these studies. Given the essentiality of iron availability to the
effectiveness of ferroptosis activation, there is a fundamental need to
understand the contribution of this major iron regulatory system to
ferroptosis to fully harness its therapeutic potential.

IRP2 was first identified as a critical ferroptosis regulatory gene
using a high-throughput shRNA screening library in the seminal
work by Dixon et al. (2012). A strength of this work was that these
findings were then validated by shRNA knockdown of IRP2 and its
negative regulatory E3 ubiquitin ligase FBXL5, which resulted in
reduced and enhanced sensitivity to ferroptosis induction,
respectively. However, IRP2 mRNA binding activity was not
assessed, and oxidized IRPs will not bind IRE (Henderson and
Kuhn, 1995; Zumbrennen et al., 2009), so it cannot be assumed that
increased levels of IRP2 protein expression indicates active IRE
binding. Indeed, the effects on downstream IRP2 targets were
inconsistent with functional changes in IRP2 mRNA binding
activity (Dixon et al., 2012). This raises the possibility that in
ferroptosis, IRP2 may be functioning independently of its
canonical role in mRNA binding.

In support of this hypothesis, changes in IRP mRNA binding
activity do not always predict differences in ferroptosis sensitivity
(Thompson et al., 2020). The context-dependent differences in IRP
involvement are likely multifaceted. Factors such as mode of
ferroptosis induction (Gryzik et al., 2021), metabolic state of the
cell (Novera et al., 2020), and differences in endogenous antioxidant
capacities (Cardona et al., 2022) that influence the ability to handle a
given amount of labile iron could all contribute to IRP
responsiveness. Regardless, increased IRP-IRE binding activity

(Chen et al., 2020), and even the increased expression of either
IRP1 (Yao et al., 2021; Zhang et al., 2022) or IRP2 (Li et al., 2020)
alone have been shown to augment ferroptosis sensitivity (Figure 2).

Fe-S cluster biogenesis is also another critical link between IRP-
dependent control of cellular iron homeostasis and ferroptotic cell
death as both cysteine deprivation and glutathione depletion
promote ferroptosis and diminish Fe-S cluster biogenesis (Sipos
et al., 2002; Novera et al., 2020). The formation, or lack thereof then,
of an Fe-S cluster into IRP1 determines its role within the cell. When
intracellular iron levels are low, IRP1 regulates iron homeostasis
through its mRNA binding activity, but under iron adequate
conditions, IRP1 primarily exists in an Fe-S cluster containing
enzymatic form (Meyron-Holtz et al., 2004a).

The most commonmeans of inducing ferroptosis include inhibiting
system xc−, and thus preventing cysteine import and glutathione
production, or directly inhibiting GPX4 activity. As such, a negative
impact on Fe-S cluster biogenesis, and subsequent promotion of
IRP1 mRNA binding activity has been assumed by a number of
investigators (Yuan et al., 2016; Terzi et al., 2021; Zhang et al., 2022),
but has only been indirectly assessed by measuring changes in aconitase
activity (Novera et al., 2020; Yao et al., 2021). The accumulation of
mitochondrial iron however is also consistent with the hypothesis that
ferroptosis induction disrupts Fe-S biogenesis and promotes
IRP1 mRNA binding activity (Sipos et al., 2002; Yuan et al., 2016;
Novera et al., 2020). Moreover, stabilization of the mitochondrial
membrane protein, CDGSH iron sulfur domain 1 (CISD1), which
can aid in the repair of oxidatively damaged IRP1 Fe-S clusters, has
been shown to inhibit ferroptosis by decreasing mitochondrial lipid
peroxidation (Yuan et al., 2016). Thus, current evidence does at least
support a role for IRP1 mRNA binding activity in contributing to
ferroptotic cell death, but it appears to be due to a pathologic disturbance
of Fe-S biosynthesis rather than a response to changes in cellular iron.

FIGURE 2
Workingmodel of IRP-mediated contributions to cellular iron availability during ferroptosis. Under iron replete conditions, IRPmRNAbinding activity
is decreased. Subsequently, iron uptake by TFRC is reduced, while storage of iron in ferritin is increased to maintain a relatively small pool of labile iron
within the cell. Whereas, under iron deficient conditions, or with impaired Fe-S cluster biogenesis, IRP mRNA binding activity is increased, reducing the
capacity of the cell to safely store iron in ferritin while simultaneously promoting iron uptake by increasing TFRC abundance. Increased IRP mRNA
binding activity then facilitates ferroptotic cell death by increasing the size of the labile iron pool and enabling ROS production.
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It has also been hypothesized that IRP1 expression can be
modulated to avoid cell death by ferroptosis (Zhang et al., 2022).
Zhang et al. (2022) found that enolase 1 (ENO1), an enzyme
involved in glycolysis is able to bind IRP1 mRNA and recruit
CCR4-NOT transcription complex subunit 6 (CNOT6), a protein
that utilizes its nuclease domain to degrade IRP1 mRNA (Zhang
et al., 2022). The authors of the study also reported that expression of
solute carrier family 25 member 37 (SLC25A37), also referred to as
mitoferrin-1 (MFRN1), the protein responsible for import of iron
into the mitochondria, is decreased in response to ENO1 (Zhang
et al., 2022). Additionally, they showed that decreased
SLC25A37 expression led to decreased ROS formation, leading to
the hypothesis that ENO1 regulated an IRP1-SLC25A37 axis to alter
ferroptosis sensitivity (Zhang et al., 2022). These findings support
another role for IRP1 in ferroptosis.

Intriguingly however, disruption of Fe-S cluster biogenesis by
cysteine deprivation in ovarian clear cell carcinoma cell lines only
led to ferroptotic cell death in cells which were relying more heavily
on glycolysis for energy production (Novera et al., 2020). Whereas
cells that were depending more heavily on oxidative
phosphorylation appeared to succumb to apoptosis (Novera
et al., 2020). The authors postulated the observed differences in
cell death may be due to the high use of Fe-S containing proteins to
complete oxidative metabolism, and thus metabolic state may be
important to consider when assessing the role of IRPs in ferroptosis
(Novera et al., 2020). Given the preferences for glycolytic energy
production in many tumor cell types, these findings suggest
disruption of Fe-S cluster assembly and perturbation of IRP
function could be used to further augment ferroptosis sensitivity
cancer.

Previous work indicates that in addition to the control of
IRP1 function, IRP2 stability is also dependent upon Fe-S cluster
assembly proteins (Stehling et al., 2013), but this has only
recently been explored in the context of ferroptosis (Terzi
et al., 2021). In both reports though, IRP2 stability and mRNA
binding activity were increased upon inhibition of cytosolic Fe-S
protein assembly. This suggests that activation of ferroptosis by
restricting cysteine and glutathione availability would also mimic
an iron starvation response by increasing the mRNA binding
activity of both IRP1 and IRP2. However, the mRNA binding
activity of neither IRP1 nor IRP2 has been fully characterized
following treatment with traditional ferroptosis inducing agents
such as erastin or RSL3.

Some artemisinin derivatives like artemether (ART) and
dihydroartemisinin (DAT) can also be ferroptosis inductive
(Chen et al., 2020; Li et al., 2020), and one way these compounds
may promote ferroptosis is by increasing IRP mRNA binding
activity (Chen et al., 2020; Li et al., 2020). In 2020, when
studying ART as a potential liver fibrosis treatment, Li et al.
(2020) found that ART induced ferroptosis through IRP2. They
reported a dose dependent increase in IRP2 expression in response
to ART treatment and that IRP2 knockdown significantly decreased
ART’s ability to induce ferroptosis (Li et al., 2020). Intriguingly,
labile iron within the cell may also bind directly to DAT. In this
form, the DAT-iron complex retains iron’s redox potential but is
unable to alter IRP activity (Chen et al., 2020). Thus, artemisinin
derivatives may be particularly useful in combination with other
small molecule inducers of ferroptosis.

6 IRPs in cancer and ferroptosis

In cancer, IRP signaling can be corrupted in an effort to acquire
sufficient iron to support rapid cell proliferation. For example,
IRP2 overexpression in breast cancer results in increased TFRC
expression, decreased ferritin expression, and subsequently an
increased labile iron pool (Wang et al., 2014). Increased
expression of TFRC was also found to have worse clinical
prognosis in patients that had renal cell carcinoma (Greene et al.,
2017). As mentioned above, increased expression of TFRC is
typically mediated by increased IRP mRNA binding activity, but
overexpression of IRP1 was actually found to decrease tumor growth
in vivo (Chen et al., 2007). Thus, despite their similar roles in the
maintenance of iron homeostasis, IRP1 and IRP2 exhibit opposing
phenotypes in the reduction and promotion of tumor growth,
respectively.

The disparate effects of IRP1 versus IRP2 expression in cancer
outcomes may be partially explained by the specific 73 amino acid
insert in IRP2 that structurally distinguishes it from IRP1. Indeed,
overexpression of wild-type IRP2 significantly increased tumor
burden in a mouse xenograft model, but when a mutant version
IRP2 lacking the 73 amino acid insert was overexpressed in the same
model, this response was blunted (Maffettone et al., 2010).
Intriguingly, the expression of canonical IRP targets was largely
unaffected in tumors expressing either the wild-type or mutant
version of IRP, but rather wild-type IRP2 bearing tumors displayed
increased levels of MYC proto-oncogene, bHLH transcription factor
(MYC) and mitogen-activated protein kinase 1/3 (MAPK1/3)
phosphorylation. These findings suggest that IRP2 may promote
tumor development independently of its role in iron metabolism.

IRP2 has also been implicated in tumor progression via its
capacity to suppress translation of the tumor suppressor gene, tumor
protein p53 (TP53) (Zhang et al., 2017). However, this regulation
seems to function in a highly regulated feedback loop as
TP53 inactivation of the IRE-IRP system can also facilitate tumor
cell growth arrest by restricting cellular iron availability (Zhang
et al., 2008). This work was recently expanded upon by the discovery
that wild-type TP53 can specifically modulate IRP1 RNA binding
activity via the transcriptional regulation of the iron-sulfur cluster
assembly enzyme (ISCU) (Funauchi et al., 2015). The importance of
the iron-TP53 feedback loop in tumor suppression is further
supported by the findings that decreased ISCU expression in
human liver cancer tissues is associated with TP53 mutations
(Funauchi et al., 2015).

As TP53 is the most commonly mutated gene in all of human
cancers, our lab then asked the question as to how IRP1 and IRP2 are
regulated in cancer cells harboring distinct TP53mutation types.We
found that induction of mutant TP53 expression significantly
reduced ferredoxin reductase (FDXR) expression, and that this
reduced expression was associated with impaired mitochondrial
Fe-S cluster biogenesis and altered IRP function in response to
changes in cellular iron availability (Clarke et al., 2019). Notably,
proper FDXR signaling has also been shown to be essential for
IRP2 mediated control of TP53-dependent tumor suppression
(Zhang et al., 2017). In humans, FDXR is critical for Fe-S cluster
biogenesis and its reduction is associated with misregulation of
cellular iron homeostasis (Shi et al., 2012). As such, ferroptosis
induction has been proposed as a way to therapeutically target
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tumor cells expressing distinct mutant TP53 subtypes (Thompson
et al., 2020).

Fe-S cluster containing proteins are also essential components of
energy metabolism and DNA repair enzymes, and their impaired
assembly could significantly impact tumor progression. Intriguingly,
the antidiabetic drug pioglitazone was recently shown to inhibit iron
transfer into the mitochondria by stabilizing the [2Fe-2S] cluster in
CDGSH iron sulfur domain 1 (CISD1) (Zuris et al., 2011). It was then
proposed that an unrecognized benefit of pioglitazone use for diabetic
patients might be reduced ROS production as a result of decreased
mitochondrial iron availability. However, an unintended consequence
of this mitochondrial iron restriction could be diminished ferroptosis
sensitivity. Indeed, Yuan et al. (2016) demonstrated that pioglitozone
diminishes ferroptotic cell death in a CISD1-dependent manner by
protecting against mitochondrial iron accumulation. Continued
investigations are needed to delineate how pioglitazone influences
cellular IRP mRNA binding activity, and how this influence could
impact ferroptosis sensitivity.

7 Conclusion

Cancer cells are extravagant users of iron, and as such, much
effort has been devoted to taking advantage of cancers cells’ “iron
addiction” by restricting iron availability (Lui et al., 2015). However,
these approaches are confounded by the essential nature of iron for
noncancerous cells as well. Ferroptosis has been described as a novel
approach to exploiting the toxic nature of iron to promote
programmed cell death, but again the toxic potential of iron for
all cell types must be considered. Given the essentiality of the IRP-
IRE system to the maintenance of iron homeostasis, and the growing
body of evidence implicating the key players of this system in
ferroptotic cell death, delineating the specific roles of IRP1 and

IRP2 in ferroptosis is of fundamental importance to fully harness its
chemotherapeutic potential.
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Ferroptosis is a novel types of regulated cell death and is widely studied in cancers
and many other diseases in recent years. It is characterized by iron accumulation
and intense lipid peroxidation that ultimately inducing oxidative damage. So far,
signaling pathways related to ferroptosis are involved in all aspects of determining
cell fate, including oxidative phosphorylation, metal-ion transport, energy
metabolism and cholesterol synthesis progress, et al. Recently, accumulated
studies have demonstrated that ferroptosis is associated with gynecological
oncology related to steroid hormone signaling. This review trends to
summarize the mechanisms and applications of ferroptosis in cancers related
to estrogen and progesterone, which is expected to provide a theoretical basis for
the prevention and treatment of gynecologic cancers.
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1 Introduction

Ferroptosis is a unique iron-dependent non-apoptotic cell death and is considered as one
of the most widely studied regulated cell death types in the last decade. The concept of
ferroptosis is first proposed by Dixon et al., in 2012, they triggered ferroptosis with erastin (a
selective lethal small molecule drug targeting the oncogenic RAS) and described its major
features (Dixon et al., 2012). During ferroptosis, the outer mitochondrial membrane is
ruptured and the mitochondrial cristae reduction is commonly observed in mitochondrial
morphology. The regulation of ferroptosis is associated with iron homeostasis and lipid
metabolism (Li et al., 2020). Multiple factors caused Fe2+ accumulation that generates
numerous reactive oxygen species (ROS) from hydrogen peroxide through the Fenton
reaction and lead to ferroptosis. Lipid peroxidation is considered as the primary driver of
ferroptosis (Gaschler and Stockwell, 2017; Kagan et al., 2017). Either the depletion of
glutathione (GSH) or reduction of glutathione peroxidase 4 (GPX4) activity would attenuate
lipid peroxide metabolism, increase ROS level and cause ferroptosis. The molecular
mechanism of ferroptosis is involved in a complex regulation network such as system
xc−-GSH-GPX4 pathway, serotransferrin-mediated iron uptake, unsaturated fatty acid-
mediated lipid peroxidation, and cholesterol synthesis related mevalonate pathway, et al.
(Figure 1). We are interested in the crosstalk between ferroptosis and steroid hormone
signaling pathway in gynecologic cancers. Here this review trends to summarize the
molecular mechanisms of ferroptosis on steroid hormone signaling pathway and its
applications in gynecologic cancers.

OPEN ACCESS

EDITED BY

Yanqing Liu,
Columbia University, United States

REVIEWED BY

Xudong Wang,
University of Pennsylvania, United States
Ran Tao,
Texas A&M University Baylor College of
Dentistry, United States

*CORRESPONDENCE

Qiaoling Liu,
1134447805@qq.com

Tianming Wang,
wangtianming@njmu.edu.cn

RECEIVED 16 May 2023
ACCEPTED 22 June 2023
PUBLISHED 04 July 2023

CITATION

Lai W, Chen J, Wang T and Liu Q (2023),
Crosstalk between ferroptosis and steroid
hormone signaling in
gynecologic cancers.
Front. Mol. Biosci. 10:1223493.
doi: 10.3389/fmolb.2023.1223493

COPYRIGHT

©2023 Lai, Chen, Wang and Liu. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Review
PUBLISHED 04 July 2023
DOI 10.3389/fmolb.2023.1223493

158

https://www.frontiersin.org/articles/10.3389/fmolb.2023.1223493/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1223493/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1223493/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2023.1223493&domain=pdf&date_stamp=2023-07-04
mailto:1134447805@qq.com
mailto:1134447805@qq.com
mailto:wangtianming@njmu.edu.cn
mailto:wangtianming@njmu.edu.cn
https://doi.org/10.3389/fmolb.2023.1223493
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2023.1223493


2 Molecular mechanism of ferroptosis

Ferroptosis occurs mainly by targeting two pathways (extrinsic and
intrinsic pathways) (Tang and Kroemer, 2020). In the extrinsic pathway,
ferroptosis beginswith the inhibition of cystine/glutamic acid transporter
(system xc−) or with the activity of the serotransferrin (TF)-mediated
iron uptake. In the intrinsic pathway, it is activated by blocking
intracellular antioxidant enzyme such as GPX 4 (Chen et al., 2021a).

2.1 System xc−-GSH-GPX4 pathway

System xc−-GSH-GPX4 pathway is the main defense system to
antiferroptosis. The system xc− is comprised of two subunits: solute
carrier family 7 member 11(SLC7A11) and solute carrier family
3 members 2 (SLC3A2) (Sato et al., 2000). After the exchange of
Cysteine and Cystine, system xc−maintains the GSH generation in a
continuous reactions (Lewerenz et al., 2013). In mammalian cells,
one of the most important functions of system xc− is mediating
Cystine transport by glutamate reverse transportation. Cystine is
convert to cysteine, then cysteine is catalyzed by glutamate-cysteine
ligase (GCL) and glutathione synthetase (GSS) for GSH synthesis
(Bayır et al., 2020). SLC7A11 is commonly used as the target of
system xc−. SLC7A11 promotes the expression of GPX4 through the
mTORC-4EBP1 signaling pathway (Zhang YY. et al., 2021). Up-
regulating the expression of system xc− is involved in the enhanced
chemoresistance and tumor growth (Ishimoto et al., 2011; Habib
et al., 2015). Inhibiting SLC7A11 causes GSH depletion (Dixon et al.,
2012). Down-regulating system xc− by targeting TP53 (Jiang et al.,
2015; Liu S. et al., 2022), NFE2L2 (Chen et al., 2017), BAP1 (Zhang
et al., 2018), BECN1 or OTUB1(Song et al., 2018), can reduce GSH
synthesis, enhance ROS generation, and result in ferroptosis.
GPX4 belongs to GSH peroxidases and it is an antiferroptotic
molecular (Seibt et al., 2019). It reduces the generation of
phospholipid hydroperoxide and converts it to phospholipid
alcohol. The GPX4 activity is depended on the presence of GSH
and selenium, which finally affect ferroptosis (Ingold et al., 2018).
Some small molecular compounds can inhibit GPX4 activity directly
or indirectly to induce ferroptosis, and some other compounds can
lead to the degradation of GPX4 (Yang et al., 2014; Shimada et al.,
2016). High expression level of GPX4 is correlated with bad
prognosis in breast cancer (BC) patients, and the
GPX4 reduction enhances the sensitivity of cancer cells to
cisplatin (Zhang et al., 2020).

2.2 Serotransferrin-mediated iron uptake

Intracellular Fe2+ accumulation is one of central events to induce
ferroptosis. The increased iron uptake and the reduced iron storage
as well as the limited iron efflux can induce ferroptosis (Chen X.
et al., 2020). Iron metabolism capability determines cell
susceptibility to ferroptosis by regulating cell labile iron (LIP).
Increasing LIP could enhance the Fenton reaction so as to
produce more hydroxyl radicals (Feng et al., 2020). The iron-
loaded Serotransferrin (TF) binds to Transferrin receptor protein
1 (TFRC) locating in cytomembrane and forms a TF-TFRC complex
(Yang and Stockwell, 2008; Wang Y. et al., 2020). The complex

releases iron (Fe2+) into the cytoplasm mediated by solute carrier
family 11 member 2 (SLC11A2) (Montalbetti et al., 2013; Gao et al.,
2015). The intracellular free iron is stored as a ferritin-Fe3+ complex
(Muhoberac and Vidal, 2019) and this complex releases Fe2+

through a ferritinophagy manner (Park and Chung, 2019).
Ferritinophagy is an autophagy-dependent degradation of ferritin
progress. During ferritinophagy, the ferritin-Fe3+ complex is
mediated by nuclear receptor coactivator 4 (NCOA4) to degrade
in autolysosome and releases Fe2+, which increases cell sensitivity to
ferroptosis (Mancias et al., 2014; Mancias et al., 2015; Gatica et al.,
2018; Liang et al., 2022). Enhancing iron output or increasing ferritin
output can suppress ferritinophagy. The iron output is mediated by
solute carrier family 40 member 1 (SLC40A1) in cytomembrane, the
ferritin output is mediated by exosome, both of them are able to
inhibit ferroptosis (Geng et al., 2018; Brown et al., 2019).

2.3 Unsaturated fatty acid-mediated lipid
peroxidation

The unsaturated fatty acids-mediated lipid peroxidation is an
important pathway to induce lipid peroxidation and ferroptosis. The
intracellular free fatty acids are mainly generated from two ways: the
first way is the fatty acid de novo synthesis mediated by Acetyl-CoA
carboxylase (ACAC); the second way is the fatty acid release derived
from lipid droplet (LD). In the fatty acid de novo synthesis progress,
acetyl-CoA is catalyzed by ACAC to malonyl-CoA, and then is
subjected to a continuous polymerization into fatty acids
(Batchuluun et al., 2022). In this progress, several major enzymes
(including ACLY, ACSs, ACC, FASN, and SCD1) are involved in
fatty acid generation (Li et al., 2022). The excess free fatty acids are
usually synthesized into triacylglycerols (TAGs), which are mainly
stored in LD. Multiple enzymes regulate LD formation and LD
catabolism: during LD formation, GPAT, AGPAT, Lipin and DGAT
are required (Tan et al., 2014; Onal et al., 2017); during LD
catabolism, ATGL, HSL and MGL are the rate-limiting enzymes
of lipolysis that catalyze LD into fatty acids step-by-step (Zechner
et al., 2012; Missaglia et al., 2019;Wang T. et al., 2020); in addition to
lipolysis, an autophagy-dependent progress referred to lipophagy
also has a function of LD breakdown mediated by acid lipases in the
autolysosome (Kaur and Debnath, 2015; Schott et al., 2019). The
polyunsaturated fatty acids (PUFAs), either from ACAC-mediated
de novo synthesis or LD breakdown, are able to trigger ferroptosis. In
this progress, long-chain fatty acid–CoA ligase 4 (ACSL4) and
lysophospholipid acyltransferase 5 (LPCAT3) are required.
Combining with CoA, ACSL4 catalyzes the free arachidonic acid
(AA) or adrenergic acid (Ada), which is most likely to undergo
peroxidation, to form AA-CoA or Ada-CoA (Yuan et al., 2016; Doll
et al., 2017; Kagan et al., 2017). LPCAT3 promotes PUFA-CoA and
phospholipid (PL) to form into PUFA-PL, enhances lipid
peroxidation and induces ferroptosis (Dixon et al., 2015; Chen
et al., 2021a).

2.4 Mevalonate (MVA) pathway

Cholesterol can be produced by receptor-mediated LDL-
cholesterol uptake or cholesterol de novo synthesis. In cholesterol
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biosynthesis pathway, three molecules of acetyl-CoA are catalyzed
by HMG-CoA synthase into 3-hydroxy-3-methylglutaryl-CoA
(HMG-CoA). This CoA-derivative is then converted to
Mevalonate (MVA) through a reduction reaction by HMG-CoA
reductase (HMGCR), which is a rate-limiting enzyme for cholesterol
biosynthesis (Liao et al., 2016; Ni et al., 2021). In the next step, MVA
forms isopentenyl diphosphate (IPP) via phosphorylation and
decarboxylation (Kuzuyama and Seto, 2012; Bathaie et al., 2017).
With catalytic action of the endoplasmic reticulum cyclase and
oxygenase, IPP is catalyzed into squalene, then into lanosterol,
and is finally converted to cholesterol through multiple steps. In
addition, IPP also has a function of antiferroptosis, it promotes the

expression of GPX4 to defend lipid peroxidation so as to inhibit
ferroptosis (Warner et al., 2000; Ingold et al., 2018). Statins can also
reduce GPX4 and inhibit ferroptosis by targeting HMGCR activity
through MVA pathway (Yu et al., 2017).

2.5 Other pathways

Besides the system xc−, cysteine can also be produced through
the thiolation. The transsulfuration pathway is another antioxidant
process that inhibits lipid peroxidation. In this pathway, methionine is
converted by methionine adenosyltransferase to S-adenosylmethionine

FIGURE 1
Regulation mechanisms of estrogen and progesterone on ferroptosis in gynecologic cancers. Ferroptosis is driven by iron-dependent lipid
peroxidation. There are multiple molecular mechanisms involved in the regulation of ferroptosis. Iron-loaded TF-TFRC complexes releases Fe2+ into the
cytoplasm via SLC11A2. The intracellular free iron is stored as Fe3+-ferritin complex. The autophagy-dependent ferritinophagy is mediated by NCOA4 for
degradation of ferritin at lysosome to release Fe2+. The excess Fe2+ induces lipid peroxidation via Fenton reaction. PUFAs, which are mainly from
ACAC-mediated fatty acid synthesis or by the lipophagy, also can induce ferroptosis. PUFAs convert to PUFA-PL by ACSL4 and LPCAT3, finally induce lipid
peroxidation. The system xc−-GSH-GPX4 pathway mainly acts as a defense system so as to antiferroptosis. In this pathway, cystine enters the cell and is
oxidized to cysteine, with the action of GCL and GSS, GSH is synthesized and catalyzed by GPX4 to antiferroptosis. IPP, a metabolic intermediate from
MVA pathway related to cholesterol synthesis, can enhanceGPX4 activity and cause antiferroptotic effect. Transsulfuration pathway, GCH1-BH4 pathway
and AIFM 2-CoQ10 pathway also have unique mechanisms to antiferroptosis. Estrogen binds to ESR and reduces free iron by inhibition of TFRC and
ferritin or by promotion of ferroportin. Estrogen can also suppress lipid peroxidation through Wnt/β-catenin pathway. Progesterone enhances lipid
peroxidation via its receptor PR-A. The other progesterone receptor PGRMC1 also mediated lipophagy to increase ROS generation. Both estrogen and
progesterone supplement can inhibit cholesterol synthesis, which regulates GPX4 in turn.
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and is further converted to S-adenosylhomocysteine (SAH). The
S-adenosylhomocysteine hydrolase (SAHH) hydrolyzed SAH to the
cysteine precursor homocysteine (HCY) (Chen et al., 2016). It is
reported that increasing DJ-1 (an oxidative stress-related protein)
promotes the stability of SAHH activity and HCY synthesis through
this pathway (Cao et al., 2020). Knockdown of Cysteine-tRNA
synthetases (CARS), which is a molecular that links cysteine to
tRNA for protein translation, promotes transsulfuration, enhances
cysteine synthesis, increases GSH, and inhibits ferroptosis (Yao and
Fox, 2013; Hayano et al., 2016).

In addition, Apoptosis-inducing factor mitochondrion-
associated 2 (AIFM2)-Coenzyme Q10 (CoQ10) axis is another
antiferroptosis pathway. AIFM2 (also known as FSP1) is a
NADP-dependent oxidoreductase of CoQ10 (Wei et al., 2020).
CoQ10 is a lipophilic compound and is considered as a lipophilic
free radical scavenger. It is reported that overexpressing
AIFM2 inhibited ferroptosis and positively correlated with
ferroptosis resistance in many cancers (Bersuker et al., 2019).

Similarly, the GCH1-BH4 pathway is reported to inhibit lipid
peroxidation and defend ferroptosis (Kraft et al., 2020).
Tetrahydrobiopterin (BH4) is an integral part of the antioxidant
system and GTP cyclohydrolase-1 (GCH1) is the rate-limiting
enzyme in the synthesis of BH4 (Latremoliere and Costigan, 2011;
Cronin et al., 2018). GCH1 selectively inhibited the peroxidation of
certain PUFA-PL, overexpressing GCH1 rescues ferroptosis induced
by RSL-3 (a GPX4 inhibitor) in mouse fibroblasts.

3 Steroid hormone and steroid
hormone signaling

3.1 Steroid hormone synthesis

It is well known that the main substrate for estrogen and
progesterone synthesis is cholesterol. The receptor-mediated LDL-
cholesterol uptake and cholesterol de novo synthesis is the major
source of cholesterol. In the progress of receptor-mediated LDL-
cholesterol uptake, after endocytosis, the cholesterol ester is cleaved
by acid lipase in lysosome, free cholesterol is then transferred onto NPC
intracellular cholesterol transporter 1 (NPC1) which is located in
lysosomal membrane, and followed by a further transport to other
organelles (Pfeffer, 2019). Cholesterol also could be generated through
cholesterol de novo synthesis pathway. In this pathway, HMG-CoA,
which is condensed from acetyl-CoA, is then reduced to MVA by
HMGCR, and is further phosphorylated and decarboxylated into IPP.
IPP is used to generate cholesterol through multiple steps (Kuzuyama
and Seto, 2012; Liao et al., 2016; Bathaie et al., 2017;Ni et al., 2021). Then,
as for substrate of steroid hormone synthesis, cholesterol could be
catalyzed into estrogen and progesterone. Cholesterol enters into
mitochondria, it is then catalyzed to pregnenolone by a cytochrome
P450 monooxygenase referred to Cholesterol side-chain cleavage
enzyme (CYP11A1 or P450scc) through hydroxylation of the side-
chain and cleavage (Strushkevich et al., 2011). Pregnenolone or
progesterone could be hydroxylated by Steroid 17-alpha-hydroxylase/
17,20 lyase (CYP17A1 or P450c17) to form 17-alpha hydroxy
metabolites. Then 17-OH pregnenolone is converted to
dehydroepiandrosterone (DHEA) and finally forms estrogens
(Auchus et al., 1998; Miller, 2002; DeVore and Scott, 2012; Petrunak

et al., 2014; Yoshimoto et al., 2016) (Figure 2). Steroid hormones also
have the capability to regulate intracellular cholesterol level in turn. A
previously study referred to the effect of steroid hormone on cholesterol
synthesis, has demonstrated that the inhibition of cholesterol synthesis
could be found in the treatment ofmany steroids (DHEA, beta-estradiol,
pregnenolone, progesterone and deoxycorticosterone included)
(Metherall et al., 1996).

3.2 Steroid hormone signaling pathway

Estrogen is mainly generated by granulosa cells of ovaries
(Fuentes and Silveyra, 2019). It maintains normal physiological
function such as reproductive system development, body
metabolism level regulation, immune regulation and a variety of
sex hormone-driven cancers (Baker et al., 2017; Kumar and Goyal,
2021). Estrogen encompasses four estrogenic steroid hormones
(estrone, 17-beta-estradiol (E2), estriol and estetrol). Among the
four terms, E2 has the highest affinity of estrogen receptors (ERs)
(Russell et al., 2019). ERs are divided into two categories: nuclear
receptor type and membranous receptor type. The nuclear receptors
mainly contain ESR1 (also called ERα) and ESR2 (also named ERβ),
while the membranous receptor is G protein-coupled estrogen
receptor (GPER1). ESR1 and ESR2 are highly homologous in the
amino acid sequence of their DNA binding domain (96%) and the
ligand binding domain (55%) (Kuiper and Gustafsson, 1997).
ESR1 locates in epithelial and muscle cells of the uterus and
vagina, epithelial and stromal cells of the breast, germinal
epithelium of the ovary, and testicular interstitial cells (Pelletier
and El-Alfy, 2000). ESR2 has a broad distribution of tissues,
including the gastrointestinal tract, lung, and brain (Younes and
Homma, 2011). They trigger different transcriptional responses
and have opposite effects to determine the cell fate (Kwon et al.,
2020). In the genomic effects of estrogen-mediated signaling, estrogen
binds to ESR1 or ESR2, forms a estrogen-receptor complex, and
regulates the transcription of downstream genes in the nucleus by
interaction with estrogen response elements (EREs) directly or by
tethering to Sp-1 and Ap-1 (Fuentes and Silveyra, 2019; Chen P. et al.,
2022). Under physiological condition, estrogen regulates a variety of
cellular processes such as autophagy, proliferation, apoptosis, survival,
differentiation, and vasodilation. It also regulates Ca2+ mobilization,
PI3K signaling, and MAPK pathway through membrane-bound ERs
with a non-genomic effect (Chen YC. et al., 2022).

In addition to estrogen, progesterone also plays an important role in
gynecologic cancers (Kim et al., 2013). Progesterone is a natural
progestin, it is produced from follicular granulosa cells after reaching
the luteinizing hormone (LH) peak in themiddle of themenstrual cycle,
and is mainly produced by the corpus luteum and placenta (Bulletti
et al., 2022). Besides the functions of maintaining the implantation of
embryonic endometrium and sustain pregnancy, progesterone has
multiple biological effects such as utero-relaxation and
neuroprotection (Bulletti et al., 1993; Jodhka et al., 2009). In animal
models, progesterone affects cognitive ability and suggests its potential
role of cognitive ability in human (particularly more relevant for
women) (Henderson, 2018). Classical progesterone signaling
pathway can be activated by the steroid hormone progesterone
through nuclear progesterone receptor (nPR), which has two major
isoforms (PR-A and PR-B) (Ali et al., 2023). PR-A is necessary for
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uterine development and PR-B is necessary for mammary gland
development (Conneely and Lydon, 2000). The two isoforms can
form a homodimer or heterodimer, and regulate the transcription of
downstream genes in the nucleus by interaction with progesterone
response elements directly or by tethering to Sp-1 and Ap-1 (Tsai et al.,
1988; Tseng et al., 2003; Daniel et al., 2011). Progesterone also activates
non-classical pathway via non-nuclear PR containing progesterone
receptor membrane component 1 (PGRMC1) and progesterone
receptor membrane component 2 (PGRMC2). Numerous studies in
endometriosis (EMs) have shown the association of progesterone and
iron overload (Van Langendonckt et al., 2002; Van Langendonckt et al.,
2004; Lousse et al., 2009). In addition, progesterone takes part in
ferroptosis by affecting protein-protein interaction. Progesterone
targets Fibulin-1 (FBLN1) in the process of endometrial stromal
cells (ESCs) decidualization, FBLN1 interacts with EGF-containing
fibrin-like extracellular matrix protein 1 (EFEMP1) and affects the
stability of EFEMP1. Silencing of EFEMP1 inhibits the effect of
FBLN1 on ferroptosis (Wan et al., 2022).

4 Crosstalk in gynecologic cancers

4.1 Steroid hormone signaling and
gynecologic cancers

Ovarian cancer (OVCA) is one of the most lethal malignancies,
including epithelial tumor, sexual cord-mesenchymal tumor and
germ cell tumor. The epithelial OVCA is most common among all
the OVCA types with less than 50% on the 5-year relative survival rate

(Torre et al., 2018). High estrogen level is often observed in patients
with OVCA, and the estrogen receptor is also high expressed in
OVCAs (Mungenast and Thalhammer, 2014; Englert-Golon et al.,
2021; Xu et al., 2022). High progesterone level also increases the risk of
OVCA. The progesterone signaling promotes the development of
high-grade serous carcinoma intometastatic OVCAvia BRCA1/DNA
repair signaling pathway (Kim et al., 2020).

Endometrial cancer (EC) is the sixth most common cancer in the
world. In the United States, its incidence rate increases year by year.
The prognosis of patients with recurrent EC and clinical histological
detection of aggressive EC is usually limited (Siegel et al., 2019).
Surgery, radiotherapy and chemotherapy are the current approach for
EC treatment, but have unsatisfactory effects. Estrogen stimulates EC
proliferation, while progesterone inhibits it. In estrogen-dependent
EC, ESR1 is high expressed, it interacts with GPER and promotes the
proliferation of EC cells via PI3K signaling pathway and MAPK
signaling pathway (Yu et al., 2022). Progesterone acts to antagonize
estrogen in EC. PR is mainly expressed in epithelial cells and stromal
cells. It inhibits the proliferation of EC cells with a paracrine manner
(Kim et al., 2013; Gompel, 2020).

Cervical cancer (CC) is also most common in women, and almost
all cases of cervical squamous cell carcinoma can be attributed to the
infection of human papillomavirus (HPV). Basing on their
carcinogenic potential, HPVs are classified as low-risk HPV
(lrHPV) or high-risk HPV (hrHPV) (Bedell et al., 2020). About
67% of HPV infections will be eliminated within 12 months
without intervention and the eliminated rate would reach 90%
within 24 months, however, the remaining HPV infections might
have high persistent potential (Plummer et al., 2007). Persistent HPV

FIGURE 2
The relationship between ferroptosis and the synthesis of estrogen and progesterone. The synthesis of estrogen and progesterone depends on
cholesterol. Three molecules of acetyl-CoA condense successively to form HMG-CoA. HMG-CoA is then reduced to MVA by HMGCR, and is further
phosphorylated and decarboxylated to form IPP. IPP is condensed to produce squalene and then squalene forms lanosterol by the catalysis of
endoplasmic reticulum cyclase and oxygenase, finally lanosterol is converted to cholesterol. Cholesterol enters into mitochondria and converts to
pregnenolone by P450scc. Then 17-OH pregnenolone is converted to DHEA and finally forms estrogen.
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infection will lead to an abnormal proliferation in the lesion region
named cervical intraepithelial neoepithelial neoplasia (CIN).
According to pathological grade, CIN is classified as CINI, II, and
III, or is classified as low-grade squamous intraepithelial lesion (LSIL)
and high-grade squamous intraepithelial lesion (HSIL). CINI
corresponds to LSIL or dysplasia, CINII and most CINII
correspond to HSIL or moderate and severe dysplasia (Jayshree,
2021). CC is a non-estrogen-dependent cancer. But estrogen
coordinates with HPV by increasing the DNA double-strand
breaks (DSBs), then it promotes proliferation of CC cells through
G protein-coupled receptor 30 (GPR30) signaling pathway (Ogawa
et al., 2023). The estrogen receptor ESR1 is expressed higher in the
nucleus of squamous epithelium than that in cervical lesions. And the
expression of ESR1 in squamous epithelium is higher than that in the
cervical glands. Progesterone receptor is important for suppression of
CC occurrence, low expression of PR may increase the risk of CC,
activating PR bymedroxyprogesterone acetate reduces the occurrence
of CC (Park et al., 2021; Baik et al., 2022). Notably, PGRMC1 has been
reported to promote migration of CC cells, siRNA-mediated
PGRMC1 knockdown reduces the proliferation of CC cells and
inhibits the migration ability of CC cells (Shih et al., 2019).

Besides to gynecologic cancers, breast cancer (BC) is considered to be
the most relative cancer of steroid hormone signaling. BC is one of the
highest incidence cancers in the world (Duggan et al., 2021). The breast
has a uniquemicroenvironment containing a large number of adipocytes.
Thus, hormone signaling and lipid metabolism capability may be
involved in the invasion and metastasis of BC. In hormone-
dependent BC, estrogen has a high level in BC and it can induce
DNA damage by metabolites (Starek-Świechowicz et al., 2021).
Estrogen activates PI3K signaling pathway by ERs to promote cell
proliferation of BC cells where ERs is highly expressed (Vasan et al.,
2019). Progesterone influences early events in the occurrence of BC. PR-B
mediates the proliferation of BC cells related to progesterone and it also
regulates the actions of extranuclear signaling of PRs (Trabert et al., 2020).

4.2 Steroid hormone signaling and
ferroptosis

The relation between ferroptosis and steroid hormone signaling
has been studied in a variety of cancer types from molecular
mechanism to the development of targeted therapeutic drug.
Activation of estrogen-related receptor gamma (ESRRG) may
enhance the effect of ferroptosis in HCC cells with sorafenib-
resistant (Kim et al., 2022). Increasing PGRMC1 expression
promotes fatty acid oxidation and enhances the sensitivity of
paclitaxel-tolerant cancer cells (PCC) to ferroptosis in head and
neck cancer (You JH. et al., 2021). It is well known that most
gynecologic cancers (including EC, CC and OVCA) are driven by
sex hormone (Baker et al., 2017), so deeply understanding the
crosstalk between ferroptosis and steroid hormone signaling is
helpful for tumor-targeted therapy in gynecologic cancers. In
molecular mechanism, the effect of steroid hormone signaling on
ferroptosis is complex (Figure 1). Firstly, steroid hormone signaling
is able to regulate iron homeostasis. Secondly, abnormal steroid
hormone level may affect the endogenous antioxidant capacity.

In most of gynecologic cancers, estrogen disrupts intracellular iron
level and promotes free iron export into systemic circulation. Hepcidin

is an important regulator of systemic iron balance. A previous study on
female mouse model has reported that estrogen can reduce the
expression of hepcidin (Yang et al., 2020). An in vivo study has
reported that serum hepcidin levels declines more than 40% after E2
treatment in females (Lehtihet et al., 2016). Estrogen represses hepcidin
expression via ERE of its promoter region; ovariectomizing reduces
serum iron level in mice, but elevates the tissue iron level (Hou et al.,
2012). Besides to hepcidin, estrogen also affects iron uptake and iron
export in multiple gynecologic cancer types (Bajbouj et al., 2019; Riera
Leal et al., 2020). Ovarian clear cell carcinoma (CCC) is amost common
OVCA type. Among endometriosis-associated OVCA (EAOC), the
positive percentage of ESR in CCC is only 8%, which is lower than the
other OVCA types (Lai et al., 2013). In a previously study of CCC, it is
found that free iron levels in endometriotic cysts and CCCs are both
higher than that in nonendometriotic benign cysts (Yamaguchi et al.,
2008). In doxorubicin-treated OVCA cells and BC cells, E2 inhibits the
expression of TFRC but promotes that of ferroportin and ferritin
(Bajbouj et al., 2019). In BCs, from a study of ferroptosis induced
by sulfasalazine, it is reported that the expression level of TFRC in ER-
positive BCs is much lower than that in the ER-negative BCs, and
ESR1 knockdown increases TFRC expression (Yu et al., 2019). From a
meta-analysis of CC patients in China, the result indicates that high
serum iron levels may have a protective function for CC patients (Chen
S. et al., 2020). In CC cell lines, the effect of E2 that it reduces free iron
and intracellular ferritin level is only found in HaCaT cells (Riera Leal
et al., 2020). However, this effect is not found in some other CC cell
types (HeLa, SiHa and C33A) (Riera Leal et al., 2020). Progesterone is
another important steroid sex hormone with a function of maintaining
iron level, but sometimes its effect on iron regulation is contradictory. In
zebrafish model, progesterone promotes the degradation of ferroportin
and enhances the transcriptional expression of hepcidin (Li et al., 2016).
PGRMC1, rather than the classical PRs, mediates the activity of SRC
family kinases to promote hepcidin biosynthesis, and this effect can be
rescued by the inhibition of SRC family kinase (Li et al., 2016).
Moreover, PGRMC1 is found expressed higher in triple-negative BC
(TNBC) than that in the other BC subtypes. Overexpression of
PGRMC1 reduces free iron level and inhibits ferroptosis by binding
to intracellular iron; the inhibition of PGRMC1 enhances sensitivity of
BC cells (MDA-MB231) to ferroptosis inducer (Zhao et al., 2023).

Abnormal steroid hormone level also affects antioxidant
capacity of cancer cells so as to regulate their sensitivity to
ferroptosis. For instance, IPP, an intermediate product in
cholesterol synthesis, could defend ferroptosis by promoting
GPX4 activity (Warner et al., 2000; Ingold et al., 2018); while
inhibiting HMGCR activity by statins could also inhibit
GPX4 through the same pathway (Yu et al., 2017). Moreover,
increasing Sterol regulatory element-binding protein 2 (SREBP2),
which promotes cholesterol synthesis by targeting HMGCR, could
also suppress ferroptosis (Hong et al., 2021). Because steroid
hormones (E2 and progesterone) have been proven to inhibit
cholesterol synthesis (Metherall et al., 1996), thus, steroid
hormone may act to antiferroptosis. Estrogen has been reported
to protect against oxidative stress by promoting the expression of
mitochondrial antioxidant enzymes (SOD2, GPXs), increasing
antioxidants and reducing free radicals in many organs and cells
(Irwin et al., 2008; Vina and Borras, 2010). In CC cells, E2 reduces
NO level and MDA level (final product of the lipid peroxidation).
This effect could be reversed by metformin treatment (Riera Leal
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et al., 2020). It can also inhibit oxidative stress through Wnt/β-
catenin signaling pathway in ovarian endometrioid adenocarcinoma
(Wu et al., 2007). Progesterone is reported to increase ROS level in
sperm and fallopian tube fibroblasts (Gimeno-Martos et al., 2020;
Wu et al., 2023). Progesterone induces ROS generation and
suppresses OVCA via its receptor PR-A (Wu et al., 2017).
Fallopian tube (FT) is well known as the origin of high-grade
serous ovarian cancer, and defective p53 is considered as an early
event in the FT epithelium-to-OVCA transition. After progesterone
treatment, combining with more ROS generation, necroptosis is
activated via TNF-α/RIPK1/RIPK3/MLKL pathway in p53-defective
human FT fimbrial epithelial cell line (FE25 cells). The antioxidant
Necrox-2 and acetylcysteine could rescue this effect (Wu et al.,
2017).

Simply elevating iron level may lead to an unexpected effect.
From a study of ECOA, the authors indicate that iron-induced
oxidative stress may promote the production of the antioxidants,
and follow by apoptosis-resistance malignant transformation of
endometriosis (Kobayashi et al., 2019). A recent study also
reports that persistent and mild ferroptosis increases the
expression of antioxidant genes and promotes initiation of HPV-
positive CC (Wang T. et al., 2022). Iron deprivation with iron
chelators represses HPV E6/E7 oncogene expression and has
profound antiproliferative effects in HPV-positive CC cells (HeLa
and SiHa) (Braun et al., 2020). Thus, targeting ferroptosis for killing
serous gynecologic cancer cells should consider their respective
features (steroid hormones and the expression levels of their
receptors).

4.3 Ferroptosis in gynecologic cancers

Ferroptosis is important for repressing the occurrence,
development and metastasis of gynecologic cancers (Fan et al.,
2022). In OVCA, a lot of studies have proven that enhancing
lipid peroxidation is important for inhibiting OVCA cells,
providing us with an emerging strategy for the OVCA treatment
(Park et al., 2018; Zhao et al., 2019; Zhao X. et al., 2022). Resent study
has indicated that drug-resistant OVCA cells are vulnerable to
GPX4 inhibition, the ferroptosis inducer (RSL3) suppress the
viability of drug-resistant OVCA cells but less affect the parental
cells (Hangauer et al., 2017). Another study has proven that
inhibition of monounsaturated fatty acids generation by the
blockage of SCD1 sensitizes OVCA cells to RSL3 (Tesfay et al.,
2019). Moreover, the inhibition of ROS generation through the
Nrf2/heme oxygenase 1 (HMOX1) signaling pathway, promotes the
cell proliferation of cisplatin-resistant OVCA cells (Sun et al., 2019).
All the studies suggest that the drug resistance of OVCA cells
depends on the endogenic antioxidant system. Ferroptosis is also
proved to have a synergistic effect with chemotherapy, radiotherapy
and immunotherapy in killing OVCA cells (Zhao H. et al., 2022).
Ferroptosis can be induced in OVCA cells by artesunate in a ROS-
dependent manner, transferrin pretreatment enhances this effect
and ferrostatin-1 can rescue (Greenshields et al., 2017). Basing on
the effect of ferroptosis in OVCA, a scoring system related to
ferroptosis genes is used to predict the prognosis of OVCA
patients (You Y. et al., 2021). Thus, there are convincing
evidences to show a closely relationship of OVCA and ferroptosis.

Ferroptosis is found in SILs from patients with hrHPV infection
and persistent ferroptosis contributes to an anti-ferroptosis effect in
CC (Wang T. et al., 2022). In addition, more ROS generation is
found in cancer cells because the cancer cells require large amount of
nutrients for rapid proliferation (Wang et al., 2019). So, cancer cells
increase the antioxidant activity to maintain the redox balance and
prevent from cell death caused by high level of ROS. Lipid
peroxidation is one of the most obvious features of ferroptosis,
and its importance in CC has been proven in many studies,
providing us with new insight for CC treatment by targeting
ferroptosis (Jelić et al., 2018; Jelic et al., 2021).

Recently, the study on the relation between ferroptosis and EC
gets many attentions. Basing on the expression profiles of cancer
genomic database, some research teams have described the
characteristics of ferroptosis-related genes in EC, and further
provided evidences to describe the relationship between
ferroptosis and the immune microenvironment, suggesting that
ferroptosis-related genes could be used for the prognosis
prediction of EC (Liu J. et al., 2021; Weijiao et al., 2021; Liu L.
et al., 2022). A recently study has identified a centrosome
microtubule-binding protein Centrosome spindle pole-associated
protein (CSPP1), which functions in cell cycle-dependent
cytoskeletal tissue and ciliation, to be a potential biomarker of
ferroptosis, providing a novel target for the diagnosis, prognosis
and therapy of EC (WangW. et al., 2022). Another study has shown
that ETS transcription factor ELK1 (ELK1) is upregulated in EC
cells, and it binds to the promoter of GPX4 to antiferroptosis,
indicating the ELK1/GPX4 axis might be a potential therapeutic
target to develop drugs for EC (Wei et al., 2022).

Besides to gynecologic cancers, numerous studies of ferroptosis
on the development and treatment of BC have been reported. And
ferroptosis is considered to be a potential and valuable research
direction for the treatment of BC (Sui et al., 2022). Some randomized
controlled studies have reported that TF level is positively related to
the incidence of ER-negative BC (Hou et al., 2021); the dietary iron
supplementation is negatively correlated with the risk of BC; but in
the postmenopausal women, heme iron is positively correlated with
the risk of ER-positive and/or PR-positive BC (Chang et al., 2020).
Iron transport protein and hepcidin have protective functions for
BC patients (Pinnix et al., 2010), and the expression of TFRC is
positively related to the quantity of immunocytes in BC patients
(Chen et al., 2021b). Interferon -γ (IFN-γ) secreted from
immunocytes suppress the cystine-uptake by reducing SLC7A11
(a ferroptosis related gene) in BC cells, followed by a lipid
peroxidation and ferroptosis (Wang W. et al., 2019). In BC
tissues, SLC7A11 expresses higher than that in adjacent normal
tissues. From a study of IR on BC, it is positively correlated with
ESR1. ESR1 promotes SLC7A11 expression early after IR, either
ESR1 or SLC7A11 knockdown enhances ferroptosis induced by IR
in the ER-positive BC cells (Liu R. et al., 2021). It is reported that
ESR1 inhibition enhances the sensitivity of ER-positive BC cells to
ionizing radiation (IR) by inducing ferroptosis (Liu and Gu 2022).
Drugs such as siramesine and lapatinib can reduce GSH level,
increase ROS generation, and induce ferroptosis in BC cells (Ma
et al., 2017). MUC1-C is able to interact with CD44v (CD44 variant)
to stable the system xc−, increase GSH level and result in
antiferroptosis in BC cells (Hasegawa et al., 2016). Notably, drug-
resistant BC cells exhibits a dependence of GPX4 activity, thus,
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targeting GPX4 to induce ferroptosis might potentially overcome
drug-resistant BC (Hangauer et al., 2017). A recently study has
developed a series of small molecules that trigger to ferroptosis, and
verified the effect on selectively killing drug-resistant BC stem cell-
like cells (bCSC) with mesenchymal phenotypes in vitro (Taylor
et al., 2019).

5 Tumor therapy in gynecologic
cancers

5.1 Steroid hormone-targeted tumor
therapy

The hormone-targeted therapy in BC can be divided into three
broad categories. The first category is selective estrogen receptor
modulator (SERM), which functions by binding to ER to block
estrogen, including Tamoxifen, Toremifene and Fulvestrant.
Tamoxifen is most commonly used in ER + BC (Legha, 1988;
Yang et al., 2013), Toremifene has a comparable efficacy of
Tamoxifen (Zhou et al., 2011), and Fulvestrant is the latest
generation of ER inhibitor for the treatment of ER + BC (Chen
P. et al., 2022). The second category is aromatase inhibitors, which
functions to inhibit estrogen synthesis, including Letrozole
(Mukherjee et al., 2022), Anastrozole (Nabholtz, 2006), and
Exemestane (Wang Y. et al., 2022). The third category is the
progesterone analogue, which functions to active PRs, including
megestrol and medroxyprogesterone. Megestrol acetate (MA) is one
of the first pregnancy promotors to be evaluated for hormonal
treatment of advanced BC (Sedlacek, 1988). Some clinical trials have
shown that luteinizing hormone releasing hormone receptor
antagonists, such as Goserrelin, are also effective for BC (Moore
et al., 2015).

Basing on the steroid hormone signaling characteristics of
gynecological cancers, there are a lot of steroid hormone-targeted
drugs applied for cancer therapy. Letrozole (an aromatase
inhibitors) is used for the treatment of low-grade serous ovarian
cancer and high-grade serous ovarian cancer by inhibition of
estrogen generation (Heinzelmann-Schwarz et al., 2018). Besides
Letrozole, there are some the third-generation aromatase inhibitors
such as Anastrozole and Exemestane. Fulvestrant has a high affinity
of ER and downregulates its expression. Fluvestrant is effective for in
patients with disease recurrence after endocrine therapy, some
ongoing clinical trials suggest that Fluvestrant may be effective in
OVCA (Bidard et al., 2022; Cristofanilli et al., 2022).

Because CC is a non-hormone-responsive cancer, steroid
hormone-targeted tumor therapy is not common in CC. But
there are some studies which have reported the relation between
long-term oral contraceptives and the increasing risk of CC (Chung
et al., 2010), which reminds us to concerned about the use of
hormone replacement therapy in patients with CC.

For the treatment of EC, steroid hormone-targeted drugs are
usually applied in well-differentiated endometrioid
adenocarcinoma, young women with early stage EC who need to
maintain fertility, and patients with advanced, recurrent, or
inoperable EC. Medroxyprogesterone acetate (MPA) and MA are
high-potency progesterone drugs that commonly used in EC,
Levonorgestrel-releasing intrauterine device (LNG-IUD) also

appears to be an alternative therapy in patients who do not
tolerate oral therapy (Garzon et al., 2021; Zhao H. et al., 2022;
Markowska et al., 2022). The application of SERM, gonadotropin-
releasing hormone agonist (GnRH agonist) (Emons and Gründker,
2021) or aromatase inhibitors is good option for the treatment of EC
(Zhang et al., 2019; Markowska et al., 2022). Tamoxifen is a selective
estrogen receptor modulator that is effective for low-toxicity
advanced or recurrent EC (Emons et al., 2020). Some clinical
trials suggest that Fluvestrant is effective for EC (Battista and
Schmidt, 2016; Bogliolo et al., 2017) and other aromatase
inhibitors (letrozole, anastrozole) also have meaningful efficacy in
patients with recurrent EC (Slomovitz et al., 2015; Heudel et al.,
2022; Slomovitz et al., 2022).

5.2 Ferroptosis-targeted tumor therapy

There is a good application prospect of ferroptosis induced by
the blockage of endogenous antioxidant system or by the regulation
of intracellular free iron level in immunotherapy, radiation therapy
and drug treatment of gynecologic cancers (Table 1). For example,
MA-resistant EC cells are susceptible to ferroptosis (Murakami et al.,
2023); Carboplatin is effective for estrogen-resistant BC (Larsen
et al., 2012). Immune checkpoint inhibitor (ICI) has made
unprecedented breakthrough in some cancer types (Hernandez
et al., 2022), however, due to lack of tumor-infiltrating
lymphocytes, numerous cancer types with poor prognosis after
ICI immunotherapy remain. A recent study has reported that
CD8+T cells release cytokines to induce ferroptosis in OVCA
cells (ID8) by suppressing system xc−, restraining cystine uptake,
and enhancing lipid peroxidation (Wang K. et al., 2019). For
radiation therapy (RT), there are plenty of evidences supporting
its association with ferroptosis in cancers from multiple organs,
including breast, ovarian, vulvar, and melanoma (Lang et al., 2019;
Lei et al., 2020; Ye et al., 2020). Ionizing radiation (IR) inhibits
system xc− in an ATM-dependent manner, which is a core
component of DNA damage/repair systems (Matsuoka et al.,
2007). In addition, Olaparib (a PARP inhibitor) can repress
system xc− and induces ferroptosis in OVCA cells (Zhang et al.,
2021a).

Artemisinin is proposed to promote free radical generation by
Fe2+ (Li and Zhou, 2010). Its safety on intravenous or intravaginal
administration in patients with advanced solid tumors (NCT
02353026) and cervical intraepithelial neoplasias (NCT 02354534)
have been evaluated (Chen et al., 2021c; von Hagens et al., 2017).
Artesunate (ART) can promote ferritinophagy to release free iron,
and thus induce ferroptosis (Eling et al., 2015; Ooko et al., 2015; Lin
et al., 2016; Du et al., 2019). ART-conjugated phosphorescence
rhenium (I) complexes can promote ROS generation and induce
ferroptosis in OVCA and CC cells (Shield et al., 2009; Greenshields
et al., 2017; Ye et al., 2021). Sorafenib is able to inhibit GSH and
promote ROS generation in CC cells (Wang C. et al., 2021).
Quinones inhibits cell growth of EC cells by inducing ferroptosis
through both iron regulation and blockage of endogenous
antioxidant system (Zhang et al., 2021b).

In addition, unsaturated fatty acid-mediated lipid peroxidation
could be activated by IR, leading to ferroptosis in BC cells (MCF-7)
(Lei et al., 2020). Sulfasalazine (SSZ) has recently been recognized as
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a system xc− inhibitor (Babu and Muckenthaler, 2016). It affects
iron metabolism by disruption of circadian rhythms of TFRC
expression (Yoshida, 2015; Okazaki et al., 2017; Yoshida, 2018).
SSZ has been planned to be administered for clinical therapy of
patients with BC and chronic pain from a Phase I clinical trial
(NCT03847311). Statins can inhibit GPX4 and CoQ10 through
MVA pathway, which triggers ferroptosis (Shimada et al., 2016;
Viswanathan et al., 2017). Atorvastatin and fluvastatin also have
antiproliferative effects on the BC cells with high expressing
HMGCR (Garwood et al., 2010; Bjarnadottir et al., 2013).
Lapatinib (a tyrosine kinase inhibitor) is reported to induce

ferroptosis by activation of autophagy-dependent ferritinophagy
in BC cells (Ma et al., 2017). Vitamin C can promote
ferritinophagy for the release of free iron and to increase ROS
level by Fenton reaction (Wang C. et al., 2021). It is reported to
inhibit BC by targeting miR-93-Nrf2 axis (Singh et al., 2013).

Furthermore, steroid hormone-targeted therapy combining with
ferroptosis inducer is applied in some gynecologic cancers with drug
resistance. More than 30 years ago, the treatment of cisplatin,
doxorubicin, cyclophosphamide, and MA is used for recurrent
and metastatic EC (Hoffman et al., 1989). Besides the effect on
ferroptosis, Artemisinin selectively reduces ESR1 level. The

TABLE 1 List of ferroptosis-targeted tumor therapy drugs in gynecologic cancers.

Tumor Drug Mechanism of action References

Cervical Cancer Artemisinin Promote free radical generation by Fe2+ and selectively reduces ESR1 level Li and Zhou (2010)

ART-conjugated phosphorescence
rhenium (I) complexes

Inactivate GPX4, promote ROS generation and induce ferroptosis Greenshields et al.
(2017)

Ye et al. (2021)

Shield et al. (2009)

Sorafenib Inhibit GSH and promote ROS generation Wang et al. (2021b)

Ovarian Cancer Olaparib Repress system xc− to induce ferroptosis Zhang et al. (2021a)

Artesunate Promote ferritinophagy to release Fe2+ Du et al. (2019)

Eling et al. (2015)

Lin et al. (2016)

Ooko et al. (2015)

ART-conjugated phosphorescence
rhenium (I) complexes

Inactivate GPX4, promote ROS generation and induce ferroptosis Greenshields et al.
(2017)

Ye et al. (2021)

Shield et al. (2009)

Immune checkpoint inhibitors Promote CD8+T cells to release cytokines that trigger ferroptosis by suppressing
system xc− and enhancing lipid peroxidation

Wang et al. (2019a)

Endometrial
Cancer

Quinones Inhibit system xc−, affect iron level via the regulation of heme oxygenase and
transferrin

Zhang et al. (2021b)

Breast Cancer Sulfasalazine Inhibit system xc− and disrupt circadian rhythms of TFRC expression Babu and Muckenthaler
(2016)

Yoshida (2015)

Yoshida (2018)

Okazaki et al. (2017)

Statins (Atorvastatin and Fluvastatin) Inhibit GPX4 and CoQ10 through MVA pathway Shimada et al. (2016)

Viswanathan et al.
(2017)

Bjarnadottir et al. (2013)

Garwood et al. (2010)

Lapatinib (a tyrosine kinase inhibitor) Promote ferritinophagy with autophagy-dependent manner Ma et al. (2017)

Vitamin C Promote ferritinophagy to release Fe2+ and increase ROS level by Fenton reaction Wang et al. (2021a)

Singh et al. (2013)
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tamoxifen–artemisinin hybrids and estrogen–artemisinin hybrid
compounds are highly active against BC cells (MCF-7) (Fröhlich
et al., 2020).

6 Future perspective and conclusion

Gynecologic cancers are the most common malignant cancers in
women. They affect thousands of lives and have attracted public
attention due to the increased incidence rate worldwide. As a new
type of RCD, ferroptosis has become a hot-spot issue in cancer research.
In the past decade, there have been many studies on various aspects of
ferroptosis, including molecular mechanisms, metabolic pathways,
regulatory factors and tumor-related signaling pathways. Although
some studies have proposed the importance of ferroptosis in
gynecologic cancers, however, the underlying molecular mechanisms
involved in ferroptosis and the occurrence and development of
gynecological cancers have not yet been fully elucidated. We should
also notice the relationship between steroid hormone signaling and
ferroptosis in gynecologic cancers. The steroid hormone levels are
distinct due to gynecologic cancer types, and the expression levels of
steroid hormone receptors also have great difference. We examined the
expression levels of steroid hormone signaling-related genes (ESR1,
ESR2, PR and PGRMC1) in gynecologic cancer tissues and their
adjacent samples from TCGA RNA seq data (Supplementary Figure
S1). From the TCGA RNA seq data of CC with 317 patients
documented, we found that ESR1 and PR were decreased in
primary tumors and metastatic tumors compared to that in normal
tissues, while ESR2 and PGRMC1 were increased in metastatic tumors
compared to that in normal tissues and primary tumors. From the
TCGA RNA seq data of OVCA with 758 patients documented, we did
not find significant difference of the four genes between primary tumors
and recurrent tumors. From the TCGA RNA seq data of EC with
606 patients documented, PR was decreased in primary tumors
compared to that in normal tissues, while the other genes were not
changed. From the TCGA RNA seq data of BC with 1,284 patients
documented, ESR1 was increased in primary tumors and metastatic
tumors compared to that in normal tissues, while ESR2 was decreased
in primary tumors andmetastatic tumors. In addition, ESR2 was found
a low expression level in CC, OVCA and EC tissues. All the four genes
were expressed much higher in BC tissues than that of CC, OVCA and
EC tissues (Supplementary Figure S1). We next examined the
expression levels of ferroptosis-related genes (GPX4, TFRC,
HMGCR and ACSL4) in gynecologic cancer tissues and their
adjacent samples from TCGA RNA seq data. From the TCGA RNA
seq data of CC, we found that GPX4, TFRC and HMGCR were
increased in primary tumors and metastatic tumors compared to
that in normal tissues, while ACSL4 was decreased (Supplementary
Figure S2). From the TCGA RNA seq data of OVCA, only ACSL4 was
increased in recurrent tumors compared to that in primary tumors.
From the TCGA RNA seq data of EC, we found that GPX4, TFRC and
HMGCRwere increased in primary tumors compared to that in normal
tissues, while ACSL4 was not changed. From the TCGA RNA seq data
of BC, only ACSL4 was decreased in primary tumors and metastatic
tumors compared to that in normal tissues, while the other genes were
not changed (Supplementary Figure S2).

It is important to select the best manner to trigger ferroptosis
basing on the expression levels of ferroptosis-genes and

characteristic of steroid hormone signaling in gynecologic
cancers. In OVCA, due to the high expression of ER and low
expression of PR, inhibition of estrogen signaling or activation of
non-classical progesterone signaling pathway mediated by
PGRMC1 are beneficial to ferroptosis. PGRMC1 has been
reported to induce ferroptosis by enhancing LD lipolysis in other
cell type, thus increasing unsaturated fatty acid generation to
enhance lipid peroxidation and inhibiting GPX4 to reduce the
antioxidant ability of OVCA cells may induce ferroptosis.

During CC development, we should also notice the function
of PGRMC1 rather than ESR1 and PR. Although serotransferrin-
mediated iron uptake is increased and PGRMC1 can promote
LD lipolysis, but the decrease of ACSL4 may weaken this effect.
The activation of the MVA pathway and the elevated
GPX4 expression may constitute a strong antioxidant defense
system against ferroptosis. Thus, stains and GPX4-targeted
drugs may have a better treatment effect to trigger ferroptosis
in CC.

In EC, due to the high expression of ESR1, PR and PGRMC1,
inhibition of estrogen signaling or activation of progesterone
signaling may have good effect for inducing ferroptosis. Basing
on the elevated expression of TFRC and HMGCR in EC, drugs
enhancing ferritinophagy and inhibiting the MVA pathway may
induce ferroptosis of EC cells.

During the progress of BC development, both inhibition of
estrogen signaling and enhance of progesterone signaling are
necessary. Although the decrease of ACSL4 may weaken
ferroptosis, enhanced LD lipolysis is still beneficial in promoting
ferroptosis because the breast is rich in fat. In addition, stains and
GPX4-targeted drugs may also have good treatment effect in BC.
Thus, basing on the features of ferroptosis and steroid hormone
signaling, the combination of steroid hormone-targeted tumor
therapy and ferroptosis-targeted tumor therapy is expected to
solve the problem of drug-resistance and may further enhance
therapeutic efficiency of gynecologic cancers.

How to use the ferroptosis mechanism for tumor-targeted
therapy still has a long way to go in gynecologic cancers. In the
future, we hope to investigate the regulatory mechanism of
ferroptosis on the estrogen and progesterone signaling pathways
in order to provide a theoretical basis for the prevention and
treatment of gynecological cancers.
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