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Editorial on the Research Topic

Electromyography (EMG) Techniques for the Assessment and Rehabilitation of Motor

Impairment Following Stroke

The nineteen papers of the research topic Electromyography (EMG) Techniques for the Assessment
and Rehabilitation of Motor Impairment Following Stroke highlight a variety of ways that
EMG may be used to better understand and treat stroke-induced brain damage. Seven papers
addressed the impact of weekly training on EMG properties and function post-stroke, and one
paper examined the effect of a robotic exoskeleton on gait during a single training session
(Exercise/therapy interventions). Six of the seven training studies were concerned with upper
limb function (one of which also assessed corticomuscular coupling), and one examined the effect
of foot drop stimulator training. The six upper limb studies used a variety of training modalities
includingWii-based upper limb therapy (two papers from one group), EMG-driven robotic devices
with or without neuromuscular electrical stimulation (NMES) (three papers), and traditional
physical/occupational therapy (one paper).

Another seven papers were focused on using EMG to examine motor impairment after stroke
(Mechanisms of motor impairment). These included one study that addressed coupling between
the index finger and thumb, whereas another addressed upper limb synergies during reaching. One
paper examined EMG co-contraction during gait, and one addressed gait EMG during obstacle
crossing. One group examined reticulospinal pathways during elbow flexor activity using startling
acoustic stimulation. Another studied masticatory muscle activity following brainstem stroke.
Finally, one group addressed coupling between the electroencephalogram (EEG) and EMG signals
during upper limb movements.

Four studies used novel EMG processing techniques to study motor control and
impairment post-stroke (Novel EMG processing techniques). These included new approaches to
intramuscular EMG decomposition, coherence of motor unit firing patterns from surface EMG,
clustering index analysis of surface EMG, and pattern recognition from high density surface EMG.

EXERCISE/THERAPY INTERVENTIONS

A number of studies examined the effects of an exercise/therapy program, or a single exercise
session, on EMG and motor function. Some also addressed the associated cortical plasticity.
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Upper Limb
Many addressed the effect of exercise/therapy on upper limb
muscle activation properties. Hesam-Shariati et al. examined
changes in upper limb EMG activity resulting from the
standardized 14-day Wii-based Movement Therapy program
(i.e., Wii-tennis, golf, baseball) in chronic stroke survivors. They
found that training lead to different patterns of EMG changes
that were related to the level of motor deficit. In their companion
paper Hesam-Shariati et al. they quantified muscle synergies
during therapy (Wii baseball swing) based on EMG activity of the
affected arm muscles using a non-negative matrix factorization
algorithm. They were able to identify differences in the number
of muscle synergies used by patients as a function of the level of
motor deficit.

Device-assisted interventions offer a way to study and train
patients with more severe limb impairment. In a case study, Lu et
al. used forearm EMG signals to detect a stroke survivor’s motion
intent, and then used the EMG to drive a hand exoskeleton to
assist with finger motion in real time. After 10-weeks of robot-
assisted hand therapy, the patient showed improved grip strength
and hand function. The results demonstrate the feasibility of
robot-assisted training driven by myoelectric pattern recognition
in chronic stroke survivors.

After a stroke, it is critically important to start rehabilitation
early to take advantage of the highly plastic period of the neural
system. In a pilot randomized control trial, Qian et al. evaluated
the effects of 1 month (20 sessions) of EMG-driven NMES
combined with robotic assistance, targeting the elbow, wrist, and
fingers of subacute stroke survivors. EMG parameters, including
the co-contraction index and the activation level of targeted
muscles were used to monitor the muscle coordination patterns.
They found that the NMES combined with robotic training could
achieve higher motor outcomes at the distal joints and more
effective reduction in muscle tone than traditional therapy.

Some investigators also addressed training-related cortical
plasticity and corticomuscular coupling. Wilkins et al. found
EMG-driven NMES task-specific arm/hand training (7 weeks)
improved hand opening and functional use in chronic stroke
survivors with moderate to severe motor impairments.
Functional improvement was paralleled with functional
reorganization in the ipsilesional primary sensorimotor cortex.
The neural plastic reorganization after functional improvement
was also seen with strengthened corticomuscular coupling. In a
case study of a subacute stroke subject, Zheng et al. evaluated
corticomuscular coupling between EEG and EMG (biceps)
signals during elbow flexion before and after 1 month of regular
physical and occupational therapy. Corticomuscular coherence
was increased in the affected limb with functional improvement,
but not in the non-affected limb. These results exemplify that
stroke survivors with severe motor impairments may still
have the potential to improve hand function if appropriate
interventions are used to induce neural plasticity.

Lower Limb
Pilkar et al. used different EMG-based indices to quantify
the effects of a foot drop stimulator on muscle activation

during gait over a 6 month period of community walking.
A wavelet-based time-frequency analysis approach was used
to quantify activation changes of multiple ankle muscles in
chronic stroke survivors. The findings suggest alterations in
motor unit recruitment strategies after foot drop stimulator use.
The outcomes establish the efficacy of a foot drop stimulator as a
rehabilitation intervention that may promote motor recovery in
addition to reducing foot drop.

Quantitative and continuous monitoring of muscle activation
is necessary to adjust training protocols in a timely manner.
Androwis et al. used novel EMG analysis (Burst Duration
Similarity Index) to quantify the intensity and timing of muscle
activation during a single session of robotic gait therapy in acute
stroke survivors. The authors showed that a robotic exoskeleton
can reduce the soleus and rectus femoris muscle activity in the
affected limb during stance phase, and can also improve the
timing of muscle activation in the affected limb.

Mechanisms of Motor Impairment
Surface EMG together with other signals recorded peripherally
or centrally provides a means to assess mechanisms of motor
impairment. Jones and Kamper studied the coupling of the
index finger and thumb during close-open pinching motions in
chronic stroke survivors. A Cable-Actuated Finger Exoskeleton
was used to perturb joints of the index finger during pinching
motions, while finger/thumb muscle surface EMG and finger
kinematics were recorded. They found that involuntary finger-
thumb coupling was present during the dynamic pinching task,
with perturbation of the index finger impacting thumb activity.
This finding reveals a potential mechanism to improve hand
mobility following stroke. Li et al. analyzed motor synergies
during arm reaching based on surface EMG recordings from
multiple muscles and correlated with reaching kinematics. They
were able to detect task-specific deficits in reaching movements
after stroke

Ma et al. studied lower limb muscle activity during obstacle
crossing using surface EMG in chronic stroke survivors. EMG
activity of the leading limb during the swing phase was larger
in all muscles in the stroke compared to the control group, and
TA activity increased with obstacle height in both groups. Co-
contraction between agonist-antagonist muscle pairs was larger
in the stroke group in the leading/ trailing limb during certain
phases. The authors suggested that the greater muscle activation
during obstacle crossing following stroke may have a negative
impact on balance.

It remains unclear whether co-contraction of agonist-
antagonist muscles is excessive and impacts gait significantly
following stroke. In chronic stroke survivors, Banks et al.
quantified surface EMG co-contraction of agonist-antagonist
muscle pairs in three ways (no normalization, normalized to
the maximal EMG of the gait cycle, normalized to the M-
wave) and determined their association with gait impairment
during treadmill walking. Co-contraction during the terminal
stance phase was not different between healthy controls and
the stroke subjects, regardless of the normalization method.
Normalization also did not impact the ability to resolve group
differences. Furthermore, the correlation between stance phase
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co-contraction and walking speed was modest. Pathological
co-contraction may not be a primary factor contributing to
impaired gait in most stroke survivors. The authors suggest other
approaches that account for timing and amplitude components
of the EMG (i.e., muscle synergy analysis) may better capture the
relevant deficits.

The coupling strength between the EEG and EMG signals
during motion is instructive in assessing motor function. Gao
et al. studied subacute stroke patients completing tasks such as
hand gripping and elbow bending. Stroke subjects demonstrated
greater strength in the bi-directional corticomuscular coupling
between the EEG and EMG signals. Such changes suggest a
compensational strategy after the brain lesion.

It is difficult to assess activities of brainstem nuclei in vivo
even with the most advanced neuroimaging techniques. Startling
acoustic stimulation is known to stimulate the reticulospinal
pathways, thus allowing the opportunity to assess the role of
brainstem motor system indirectly. Li et al. analyzed changes
in EMG and force in response to startling acoustic stimulation
during isometric elbow flexion in stroke survivors and healthy
controls. They reported that the sound-induced force and EMG
increase in stroke survivors was not significantly different from
those in healthy controls. As such, there results suggest that
the reticulospinal projections do not increase their contributions
to muscle strength in stroke. Jian et al. analyzed surface EMG
signals of bilateral masticatory muscles in stroke survivors after
brainstem stroke using multiple EMG parameters. In addition
to expected differences between muscles and sides, they did not
observe the head position effect on muscle activation on both
sides. These are valuable information as the results could advance
the understanding whether head positions alter chewing and
swallowing activities in stroke survivors.

Novel EMG Processing Techniques
Examining motor unit discharge and recruitment patterns
post-stroke can disclose valuable information pertaining
to impaired spinal versus supraspinal motor control. EMG
decomposition into constituent motor unit action potential
(MUAP) trains, however, is challenging with severe superposition
of multiple MUAPs. Ren et al. developed a new intramuscular
EMG decomposition technique to improve the accuracy
of EMG decomposition with interference patterns. The
technique was implemented by using six stages of analysis
including feature extraction, clustering, refinement of the
classification, and splitting of the superimposed MUAPs.
A high accuracy of MUAP detection was reported in 8

subacute stroke survivors (88%) and 20 healthy control
participants (94%).

Dai et al. quantified the different types of connectivity in
the spinal networks and changes in their relative contributions
after a stroke. By comparing the coherence of motor unit
firing pattern across different isometric contractions, they
identified significant changes in coherence in three frequency
bands: delta (1–4Hz), alpha (8–12Hz), and beta (15–30Hz)
in the paretic hand muscles. These changes reflect increased
common synaptic inputs in the subcortical pathway and provide
evidence on different origins of impaired muscle activation in
stroke.

To further differentiate neurogenic and myopathic changes
in the muscle, Tang et al. applied clustering index analysis to
examine surface EMG in the distal and proximal muscles of the
upper limb from 12 stroke survivors. They observed abnormally
high or low clustering index values in the paretic muscles
compared to healthy controls. This finding may indicate that
both neurogenic and myopathic changes may occur in paretic
muscles.

Selection of appropriate features from surface EMG is
essential for development of highly effective pattern recognition
algorithms in the EMG-controlled devices. Wang et al. developed
a novel pattern recognition technique for precise discrimination
of 20 hand/upper limb functional movements in stroke survivors.
Specifically, they applied wavelet packet to extract the neural
control features and used the Fisher’s class separability index
and the sequential feedforward selection analyses to select
appropriate channels in high density surface EMG. Such
implementation can facilitate use of surface EMG control in
stroke rehabilitation.
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Background: Robotic exoskeleton (RE) based gait training involves repetitive

task-oriented movements and weight shifts to promote functional recovery. To effectively

understand the neuromuscular alterations occurring due to hemiplegia as well as due

to the utilization of RE in acute stroke, there is a need for electromyography (EMG)

techniques that not only quantify the intensity of muscle activations but also quantify

and compare activation timings in different gait training environments.

Purpose: To examine the applicability of a novel EMG analysis technique, Burst Duration

Similarity Index (BDSI) during a single session of inpatient gait training in RE and during

traditional overground gait training for individuals with acute stroke.

Methods: Surface EMG was collected bilaterally with and without the RE device for five

participants with acute stroke during the normalized gait cycle to measure lower limb

muscle activations. EMG outcomes included integrated EMG (iEMG) calculated from the

root-mean-square profiles, and a novel measure, BDSI derived from activation timing

comparisons.

Results: EMG data demonstrated volitional although varied levels of muscle activations

on the affected and unaffected limbs, during gait with and without the RE. During the

stance phase mean iEMG of the soleus (p = 0.019) and rectus femoris (RF) (p = 0.017)

on the affected side significantly decreased with RE, as compared to without the RE. The

differences in mean BDSI scores on the affected side with RE were significantly higher

than without RE for the vastus lateralis (VL) (p = 0.010) and RF (p = 0.019).

Conclusions: A traditional amplitude analysis (iEMG) and a novel timing analysis (BDSI)

techniques were presented to assess the neuromuscular adaptations resulting in lower

extremities muscles during RE assisted hemiplegic gait post acute stroke. The RE gait

training environment allowed participants with hemiplegia post acute stroke to preserve

their volitional neuromuscular activations during gait iEMG and BDSI analyses showed

that the neuromuscular changes occurring in the RE environment were characterized by

correctly timed amplitude and temporal adaptations. As a result of these adaptations,

VL and RF on the affected side closely matched the activation patterns of healthy gait.

Preliminary EMGdata suggests that the RE provides an effective gait training environment

for in acute stroke rehabilitation.
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INTRODUCTION

Recovery of function post stroke is based on neural adaptation,
and progressive task specific repetitive training based on the
principles of neuroplasticity (1, 2). While major advances
have been made in early intervention for the treatment of
patients post stroke, the majority of survivors have residual
mobility challenges and hemiplegia (3, 4). Hemiplegia typically
manifests in pronounced asymmetrical deficits and is one
of the most common disabling impairments resulting from
stroke (5). Asymmetrical gait can be associated with muscle
weakness, leading to inefficient ambulation, balance control
challenges and risk of musculoskeletal injury to the non-
paretic limb (6, 7). Task-oriented, high-repetition movements
can improve muscular strength, motor control and movement
coordination in patients post stroke (2). The task-specific
training pertains to the training driven to achieve a functional
task such as walking rather than focusing on minimizing an
impairment (8, 9). In acute phase, traditional gait rehabilitation
administered by a physical therapist is strenuous, inconsistent
(in terms of movements generated) and less intense (in terms
of number of steps). Integrating robotic exoskeleton (RE)
technology into standard of care programs during the critical
acute phase when the injured nervous system is highly plastic
could maximize repetitive practice (9, 10), improve functional
outcome measurements and provide quality gait training (10,
11). Programmable RE technology can also be used to advance
progression during treatment and under the guidance of a
physical therapist can emulate some features of manual assistance
in a consistent and reproducible manner (2). The RE based
training involves repetitive task-oriented (gait) movements and
weight shifts to promote functional recovery. RE gait training
may lead to changes in muscle activation as it provides
task-specific movements to the lower limbs, increased step
dosing and may provide a more symmetrical gait pattern
(12).

An additional challenge in acute stroke is that many patients
have a difficult time producing volitional movements that
can be practiced repeatedly especially during the acute stage.
In order to recover from physiological and functional lower

extremity deficits, the task-related activities should include
contributions from appropriate muscle groups during practice

of these movements (13). Using an RE during gait rehabilitation
in the acute phase may allow volitional muscle activation
and improved phasic coordination (activation timing) during
walking. However, the accuracy of these muscle contributions
should be tracked. Surface electromyography (EMG) is one of
the most effective, non-invasive tools which provides easy access
to underlying neuromuscular processes that cause muscles to
generate force, produce movement and achieve any functional
task (14). During gait, EMG data reveals characteristic patterns
of activation associated with each involved muscle in terms of
onset timings, burst durations and levels of activations (15).
These characteristic patterns significantly differ between healthy
and pathological gait and this information can be used to
assess the levels of improvement in muscle function, motor
control, and neuromuscular adaptations post rehabilitation

interventions. Bilateral EMG recordings of lower extremities can
be further utilized to compare changes on the paretic side with
respect to non-paretic side to assess inter-limb synchronization
post RE intervention in individuals with stroke related
hemiplegia.

To effectively understand the alterations occurring due to
the RE, there is a need for EMG techniques that not only
quantify the intensity of muscle activations but also quantify
and compare activation timings for a single muscle during
different gait training environments (e.g., overground or RE
assisted). Although EMG amplitude is one of the most common
variables reported in the literature (14, 16, 17), it does not
distinctively provide temporal information (on–off timings).
Particularly, in a cyclic activity such as gait, it is not only
important for lower extremity muscles to produce activations
but also activate them at the accurate time, especially for
individuals with neurological disability such as acute stroke
(16). In the post-stroke gait rehabilitation setting, the need to
assess temporal information is even more apparent as muscle
activation timingmay be altered due to, (1) hemiplegia secondary
to stroke and (2) the presence of a RE. The temporal features
extracted from EMG data can allow the assessment of accuracy
of participant’s volitional contributions during training but also
assess the modifications that the RE guided gait training may
have. Several techniques have been used to extract the temporal
information of muscle activations; however, their applicability
in the domain of RE based gait training in acute stroke is
limited.

The purpose of this investigation was to examine the
applicability of a novel EMG analysis technique, Burst Duration
Similarity Index (BDSI) during a single session of inpatient gait
training in a RE and during traditional over ground gait training
for individuals with acute stroke. EMG outcomes included
standard measures of integrated EMG (iEMG) calculated from
the root-mean-square (RMS) profiles, and a novel measure,
BDSI (18) which quantifies the similarity between the two
muscle activations by measuring co-excitation (common active
regions) and co-inhibition (common inactive regions) during
gait. Using iEMG and BDSI EMG analyses techniques, we
hypothesized that the RE gait training environment will
preserve the volitional neuromuscular activations in acute stroke.
Volitional neuromuscular activations represent the residual
post stroke muscle function during walking in the lower
limbs. Our secondary hypothesis is that the RE gait training
environment will change the activation timing of lower extremity
muscles, measured by applying the BDSI technique, to match
established normative healthy gait muscle activation timing
patterns (15).

METHODOLOGY

Participants
Eligible participants were admitted to an acute inpatient
rehabilitation facility, diagnosed with stroke (<6 months),
between the age 18 and 82 years and had to physically fit into the
RE device (height between 1.5 and 1.8m; weight <99.7 kg). Five
participants with acute stroke and unilateral hemiparesis (Age
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51 ± 17 years; Height 1.7 ± 0.1m; Weight 81.6 ± 3.6 kg; Time
since injury 34.8 ± 34 days; Length of stay in acute inpatient
rehabilitation 36 ± 24.6 days; Admission Motor Functional
Independence Measure (FIM) 26 ± 4; three males, two females;
two with right hemiplegia) were recruited for RE gait training
during inpatient rehabilitation in conjunction with traditional
therapy, Table 1. Participants had unilateral hemiplegia and
lower extremity motor strength scores for all participants affected
and unaffected side are presented in Table 2. All participants
had: (1) no history of injury or pathology (unrelated to their
stroke) within the last 90 days; (2) lower limb joint range of
motion (ROM) within normal functional limits for ambulation;
(3) no lower limb joint contracture or spasticity that limits ROM
during ambulation; (4) sufficient strength of the contralateral
limb to use an assistive device for ambulation; (5) upper body
strength to balance with a walker or cane; (6) no skin issues that
would prevent wearing the device; (7) stable blood pressure, with
no diagnosis of persistent orthostatic hypotension, uncontrolled
hypertension, or coronary artery disease. Participants were
excluded if they had joint contractures of the hip, knee, or
ankle that would prohibit the fitting of the RE, or concomitant
medical conditions that would prevent inpatient gait training.
Individuals were able to ambulate for 10mwith physical therapist
assistance with and without the RE. All procedures performed in
this investigation were approved by the Human Subjects Review

Board and informed consent was obtained prior to participation
in the study.

Robotic Exoskeleton (RE) Device
Robotic gait training was provided to participants during stroke
rehabilitation at an inpatient rehabilitation hospital through
a commercially available FDA approved robotic exoskeleton
(EksoGT, Ekso Bionics, Inc. Richmond, CA, USA). The RE is
intended for overground gait rehabilitation under the guidance
of a licensed physical therapist. The device provides motor
assistance to patients by driving their angular joints of the lower
extremity through a repetitive predefined trajectory to complete
the gait pattern. The device is attached to the user with backpack
style shoulder harnessing, a torso brace, affixed to the legs with
upper thigh straps and shin guards on the shank, and a secure
foot binding (Figure 1). The RE includes two powered joints
(hip and knee) which provide bilateral angular motion and a
passively sprung ankle joint with adjustable stiffness that provides
resistance in the sagittal plane (dorsiflexion and plantarflexion).
ROM provided at the ankle is from −10 to 20◦ dorsiflexion.
The actuated ROM at the hip is −20 to 135◦ and the actuated
range for the knee is 0 to 120◦. Additional ROM is provided to
assist with functions such as standing and sitting. The physical
therapist can adjust the walking pattern (i.e., step speed and
length) to facilitate progression and variable assistance to each

TABLE 1 | Study participants’ demographic information.

Type of assistive device Gender Age

(years)

Height

(m)

Weight

(kg)

Affected

side

Motor FIM Length of

stay (LOS)

(days)

Time since

injury (days)

Participant With

RE

Without

RE

Admission Discharge

P1 RW RW M 73 1.70 80.6 Right 25 60 10 14

P2 QC QC F 30 1.63 87.8 Left 31 50 28 33

P3 QC, DW NBQC M 38 1.75 79.2 Left 20 57 49 94

P4 QC QC F 56 1.60 78.8 Left 27 42 13 19

P5 NBQC NBQC M 58 1.75 81.9 Right 27 66 11 14

Type of Assistive Device: QC, quad cane; NBQC, narrow base quad cane; DW, dorsiflexion wrap; RW, rolling walker.

Motor Functional Independence Measure (FIM), Admission—The FIM Motor score measured at the time of admission to inpatient rehabilitation.

Motor Functional Independence Measure (FIM), Discharge—The FIM Motor score measured at the time of discharge from inpatient rehabilitation.

Length of Stay—Calculated as the time in days from admission to an acute inpatient rehabilitation facility to the date of gait testing.

Time Since Injury—Calculated from the date of the participants stroke (date of injury) to the date of gait testing.

TABLE 2 | Study participants’ lower extremity strength scores.

Joint movement Affected side Unaffected side

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

Hip flexion 3+ 1 3– 1 2– 4 5 5 5 5

Hip extension 3 1 3+ 1 3 4 5 5 5 5

Hip abduction 3 0 2– 1 2+ 4 5 5 5 5

Knee extension 5 2+ 3+ 2+ 3 4 5 5 5 5

Dorsiflexion 3+ 0 0 0 0 5 5 5 5 5

Plantarflexion 5 0 1 0 0 5 5 5 5 5

P, participant; Strength measurements performed by treating physical therapist (maximum score was 5).

Frontiers in Neurology | www.frontiersin.org August 2018 | Volume 9 | Article 63010

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Androwis et al. Stroke Gait EMG in Robotic Exoskeleton

FIGURE 1 | (A) Frontal view of the EksoGT, (B) Oblique view of EksoGT, (C) One representative participant in the commercially available RE device (EksoGT, Ekso

Bionics, Inc. Richmond, CA, USA) during gait analysis and EMG data collection. (Media consent provided by the participant for publication).

leg. The control technique of the robot depends on participants
shifting their center of mass (COM) laterally and forward onto
the leading limb, while offloading the trailing limb during toe-
off in preparation for the next step (RE step mode: ProStep+).
The RE can be used in conjunction with assistive devices (cane,
walker, hemiwalker, etc.).

Experimental Procedures
During a single session of inpatient gait training participants
diagnosed with stroke performed walking trials on level ground
at a self-selected pace under two conditions: (1) walking
overground with an assistive device (similar to their traditional
inpatient gait training environment) and (2) walking in the RE
device with an assistive device. Table 1 identifies the type of
assistive device used for each participant for ambulation with and
without RE. Retroreflective markers were placed on anatomical
landmarks and on the RE for all walking trials. EMG data
were collected from six lower extremity muscles: tibialis anterior
(TA); gastrocnemius (GA); soleus (SOL); rectus femoris (RF);
vastus lateralis (VL); and biceps femoris (BF). During all walking
trials, participants were allowed to stop and rest if necessary and
research staff provided non-contact guarding for safety. The total
duration of the experimental session was ∼2 h. Kinematic data
were collected at 60Hz (Motion Analysis, Inc., Santa Rose, CA,
USA), and time synched with wireless EMG data collected at
2,520Hz (Noraxon, Inc., Scottsdale, AZ, USA). During initial
post processing in Cortex software (Motion Analysis, Inc., Santa
Rose, CA, USA) heel strike and toe-off gait cycle events were
identified for all walking trials with and without RE. Heel strike
and toe-off were determined based on the event of heel contact

with the ground (or first foot contact in pathological gait) and
the event of toe lift off of the ground (or the last foot contact
with the floor in pathological gait) respectively. These temporal
events were used for all subsequent EMG analyses to identify and
normalize the affected and unaffected gait cycles as well as to
identify and normalize the stance and swing phases of gait. An
average of 11 gait cycles (minimum of 8 and a maximum of 14)
were used for analysis of the with RE condition and an average of
six gait cycles (minimum of 5 and a maximum of 6) were used for
the without RE condition for each subject. EMG and temporal
events were exported for further custom analysis in MATLAB
(MATLAB R2014B, The MathWorks Inc., Natick, MA).

Data Processing and Outcome Measures
EMG data were band pass filtered (zero-lag, 4th order
Butterworth; cut-off frequencies of 20 and 300Hz) and notch
filtered at 60Hz. Filtered data were full wave rectified and root
mean squared (RMS) with a 70ms time window to smooth the
data. For standardization, EMG data were normalized to 100%
of a gait cycle based on the temporal events (heel strikes and
toe-offs) extracted from the kinematic data. Each gait cycle (heel
strike to heel strike) was subdivided into stance (heel strike to
toe off) and swing (toe off to subsequent heel strike) phases. The
stance and swing phases of the gait cycle were each normalized to
100% for standardization and to allow comparisons between and
within subjects.

EMG outcomes included: (1) Amplitude analysis: integrated
EMG (iEMG) and (2) Timing Analysis: Burst Duration Similarity
Index (BDSI).
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Integrated EMG (iEMG)
iEMG is defined as the area under the curve of the rectified
EMG signal. It is a parameter routinely utilized to compare EMG
activation and is considered a measure of voluntary muscle drive.
An increase in iEMG may be caused by an increase in firing
frequency and the recruitment of additional motor units (19).
In the current investigation, EMG data were segmented based
on temporal events to indicate stance and swing phases. The
iEMG during the normalized stance (0–100%) and normalized
swing (0–100%) phases of gait were computed using a trapezoidal
numerical integration in MATLAB as described in Equation 1
(20). Changes in iEMG were calculated for all collected muscles
with and without RE. The calculated values of iEMG were
averaged across participants and means and standard deviations
were used for analysis.

∫ b

a
f (x) dx ≈

b − a

2N

∑N

n= 1
(f (xn) + f (xn + 1)) (1)

N equals the length of the signal. In the integration process

the term b − a
2N is a representation of spacing between each

point.

Burst Duration Similarity Index (BDSI)
BDSI compares muscle activations (EMG “on”) as well as
inhibitions (EMG “off”) and quantifies the match between the
two EMG signals (18). For BDSI calculations, band pass filtered
EMG data were normalized to 0–100% of gait cycles. For each
participant, EMGs collected during all gait cycles for all walks
were ensemble-average to get a single EMG representation for
each muscle for each condition (with/without RE). Each EMG
profile was processed using Teager Kaiser Energy Operator
(TKEO). TKEO uses a sliding window approach to calculate
the instantaneous energy changes with respect to neighboring
samples. As a result, it amplifies the energy of the action potential
spikes and differentiates between the relaxed and contracted
muscle (21, 22). The baseline noise level for TKEO output was
calculated and a threshold of eight standard deviations (SD)
above the calculated baseline noise was determined. An EMG
signal with amplitude above the calculated threshold for 10%
of gait cycle was considered “ON” while amplitudes below the
threshold for 10% was defined as the “OFF” period. Duration
of 10% gait cycle was selected based on our previously reported
data (18). Once the ON-OFF timings were determined for EMGs
collected from each muscle during each walking condition, the
BDSI between the two EMG signals, s1 and s2, of length N was
determined in the following two steps,

(i) Create timing vectors as,

On-timing: a binary vector of length N with 1 indicating
simultaneous activation of s1 and s2 and 0 otherwise.
Off-timing: a binary vector of length N with 1 indicating
simultaneous inactivation of s1 and s2 and 0 otherwise.

(ii) The BDSI, as a function of two EMG signals, f (s1, s2), is
calculated as,

BDSI = f (s1, s2 ) =
sum

(

On− timing
)

+ sum(Off − timing)

N
× 100

(2)

BDSI were calculated by comparing EMGs collected from
each muscle with and without RE as well as comparing to
normative healthy adult gait activation. On-timing and off-
timing vectors for healthy adult gait were generated from well-
established normative data (15). Adult gait muscle activation
timing information (in percent) presented in Perry et al. (15) was
utilized as a healthy reference for the on-off durations during a
normalized gait (100% gait cycle), and used in binary form (0–
OFF, 1–ON) for comparison with the collected data (with and
without RE) to compute BDSI scores.

Figure 2 demonstrates the EMG onset detection for a left
RF muscle of one representative participant with and without
the RE. Solid blue lines represent ON–OFF time points during
a normalized gait (0–100% gait cycle) determined using TKEO
processed 8 SD threshold method. Healthy gait is represented
by solid red lines. Co-excitation (solid green) represents regions
during a normalized gait when RF activation matched with
the same for healthy gait. Co-inhibition represents the regions
where both EMGs under comparison were inactive. Equation (2)
was used to quantify the similarity based on co-excitation and
co-inhibition in terms of BDSI.

Statistical Analysis
Paired sample t-tests were performed to determine if there
were significant differences in mean iEMG and BDSI scores
in two conditions: (1) walking overground with an assistive
device (similar to their traditional inpatient gait training
environment) and (2) walking in the RE device with an assistive
device. Secondary analyses investigated if the RE gait training
environment altered the activation timing of lower extremity
muscles to match healthy muscle activation timing patterns.
Paired sample t-tests were used to determine if there were
significant differences between the affected and unaffected side
while walking overground and in the RE.

RESULTS

Electromyography Amplitude Analysis of
Lower Extremity Muscles
Mean EMG data demonstrate volitional although varied levels
of muscle activations on the affected (Figure 3A) and unaffected
limbs (Figure 3B), during gait with and without RE. These
muscle activiations are characterized by variations in both
amplitude and timing. In addition, the activations do not
consistently correlate with the activation timing of healthy gait.

Bilateral Mean iEMG Changes With the RE
During the stance phase mean iEMG of SOL [with RE: 5.9± 3.9;
without RE: 23.0 ± 11.8, t(4) = −3.79, p = 0.019; effect size =

2.18, power = 94.61%] and RF [with RE 3.6 ± 1.8, without RE
9.8 ± 4.4, t(4) = −3.92, p = 0.017; effect size = 2.34, power =
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FIGURE 2 | Left RF EMG onset detection using TKEO – 8 standard deviation threshold method for a 58 year old representative participant (A) with and (B) without RE.

FIGURE 3 | EMG activation of (A) the affected limb and (B) the unaffected limb for all participants (n = 5) during gait with and without RE. Shaded rectangular areas

with red horizontal lines indicate when a muscle is active based on normative healthy adult gait, Perry et al. (15).

96.78%] on the affected side significantly decreased with RE, as
compared to without the RE (Figure 4A), however, no significant
differences were found for the other muscles on the affected side
with the RE, as compared to without the RE (Figure 4A). During
the swing phase, no significant differences were found for any
muscles on the affected side with the RE, as compared to without
RE (Figure 4B). There was an increase in iEMG of the TA during

the swing phase on the affected side with the RE, but this change
was not significant (p= 0.127).

During the stance phase mean iEMG of SOL [with RE: 12.5
± 10.5; without RE: 29.4 ± 15.0, t(4) = −3.91, p = 0.017]
on the unaffected side significantly decreased with the RE, as
compared to without the RE (Figure 4C). An increase in iEMG
was observed for the TA during the stance phase of the unaffected
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FIGURE 4 | Mean iEMG of the TA, SOL, GA, BF, VL, and RF with and without the RE during the affected (A) stance and (B) swing phase of gait and the unaffected

(C) stance and (D) swing phase of gait. *Within limb significant differences during stance and swing across gait training environments (p ≤ 0.05). a−jThe inter-limb

comparisons during the stance and swing phases within the same gait training environment (with or without RE). a. TA affected vs. unaffected without RE during

stance (p ≤ 0.05), b. GA affected vs. unaffected without RE during stance (p ≤ 0.05), c. BF affected vs. unaffected with RE during stance (p ≤ 0.05), d. BF affected

vs. unaffected without RE during stance (p ≤ 0.05), e. RF affected vs. unaffected with RE during stance (p ≤ 0.05), f. SOL affected vs. unaffected with RE during

swing (p ≤ 0.05), g. SOL affected vs. unaffected without RE during swing (p ≤ 0.05), h. GA affected vs. unaffected without RE during swing (p ≤ 0.05), i. BF affected

vs. unaffected with RE during swing (p ≤ 0.05), j. BF affected vs. unaffected without RE during swing (p ≤ 0.05).

side with the RE, as compared to without the RE, but this change
was not significant (p= 0.145). During the stance phase, no other
significant differences were found for the other muscles on the
unaffected side with the RE, as compared to without RE. During
the swing phase on the unaffected side mean iEMG of the TA
[with RE: 79.4 ± 61.6; without RE: 32.0 ± 28.2, t(4) = −3.00, p
= 0.039] significantly increased while the SOL [with RE: 9.5 ±

3.8, without RE: 28.9 ± 10.8, t(4) = −5.77, p = 0.004; effect size
= 2.78, power = 99.39%] significantly decreased with the RE,
as compared to without the RE (Figure 4D). During the swing
phase no significant differences were found for the other muscles
on the unaffected side with the RE, as compared to without
RE.

Inter-limb iEMG Comparisons Without the RE
During the stance phase mean iEMG of TA [affected side 9.0
± 6.2, unaffected side 33.1 ± 18.5, t(4) = −3.84, p = 0.018],
GA [affected side 7.9 ± 6.4, unaffected side 24.0 ± 11.8, t(4) =
−2.79, p = 0.049] and BF [affected side 4.1 ± 3.0, unaffected
side 17.5 ± 5.2, t(4) = −9.95, p < 0.001] significantly decreased
without the RE on the affected side (Figures 4A,C). During the
stance phase without the RE, no significant differences were

found for the other muscles (Figures 4A,C). During the swing
phase, mean iEMG of SOL [affected side 7.3 ± 8.4; unaffected
side 28.9 ± 10.8, t(4) = −3.74, p = 0.020], GA [affected side
5.1 ± 5.9, unaffected side 19.2 ± 10.6, t(4) = −2.81, p = 0.048],
and BF [affected side 4.1 ± 3.6, unaffected side 18.5 ± 1.7, t(4)
= −14.28, p = 0.002] significantly decreased without the RE
on the affected side (Figures 4B,D). During the swing phase
without RE, no significant differences were found for the other
muscles on the affected as compared to the unaffected side
(Figures 4B,D).

Inter-limb iEMG Comparisons With the RE
During the stance phase, mean iEMG of BF [affected side
6.1 ± 4.5; unaffected side 16.0 ± 8.4, t(4) = −4.62, p =

0.009] and RF [affected side 3.6 ± 1.8, unaffected side 9.6 ±

4.4, t(4) = −3.03, p = 0.038] significantly decreased with RE
on the affected side (Figures 4A,C). During the swing phase
with RE, no significant differences were found for the other
muscles on the affected as compared to the unaffected side
(Figures 4A,C). During the swing phase, mean iEMG of SOL
[affected side 3.2 ± 1.2; unaffected side 9.5 ± 3.8, t(4) = −3.50,
p = 0.024] and BF [affected side 4.2 ± 3.0, unaffected side
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19.8 ± 9.8, t(4) = −3.20, p = 0.032] significantly decreased
with RE on the affected side (Figures 4B,D). During the swing
phase with RE, no significant differences were found for the
other muscles on the affected as compared to the unaffected side
(Figures 4B,D).

In summary, the EMG amplitude analysis presented in
terms of iEMG shows that the RE preserves the volitional
muscle activation during walking. Moreover, while iEMG for
TA is amplified, iEMG for SOL and RF is reduced during
RE-assisted walking. To comprehensively understand these
alterations, muscle activation timings were analyzed using
BDSI.

Burst Duration Similarity Index (BDSI)
BDSI scores were calculated for each muscle collected during
normalized gait with and without RE and were averaged over all
participants. Figure 5A shows the mean BDSI scores calculated
by comparing muscle activation timings on the affected side with
and without RE and Figure 5B shows the mean BDSI calculated
by comparing muscle activation timings on the unaffected side.
Higher BDSI scores (closer to 1) indicate the similarity in muscle
activation timings with and without RE. In contrast, lower BDSI
scores (closer to 0) in Figures 5A,B suggest the dissimilarity in
muscle activation timings with and without the RE suggesting the
alteration in the muscle activation during the RE assisted walking
trials.

The RF muscle on the affected side showed the lowest
BDSI score (0.42 ± 0.15) indicating the most dissimilarity
in activation of RF muscle between with and without RE
conditions (Figure 5A). The BF muscle was shown to produce
the most similar muscle activations bilaterally (affected side:
0.73 ± 0.19, unaffected side: 0.7 ± 0.17) during both
conditions (Figures 5A,B). Figure 5C shows the mean BDSI
scores calculated by comparing muscle activation timings on
the affected side to healthy gait muscle activations timings (15)
during walking, with and without the RE. Higher BDSI values
(closer to 1) suggest a closer match to healthy gait muscle
activation timing (Figures 5C,D). The mean BDSI scores were
higher for the TA (with RE: 0.53± 0.27; without RE: 0.42± 0.17),
VL (with RE: 0.59± 0.22; without RE: 0.26± 0.16), and RF (with
RE: 0.6± 0.02; without RE: 0.44± 0.09) on the affected side with
the RE as compared to without the RE (Figure 5C). The mean
BDSI scores on the affected side with the RE were significantly
higher than without the RE for the VL [t(4) = 4.6, p = 0.010;
effect size = 2.06, power = 92.35%] and RF [t(4) = 3.79, p =

0.019; effect size = 1.78, power = 83.91%]. These results suggest
that utilization of the RE during walking significantly resulted in
the temporal adaptations of VL and RF to more closely match
healthy muscle activation patterns during gait. The posterior
lower extremity muscles, SOL (with RE: 0.61 ± 0.24; without
RE: 0.64 ± 0.08), GA (with RE: 0.57 ± 0.07; without RE: 0.66
± 0.1) and BF (with RE: 0.50 ± 0.29; without RE: 0.64 ± 0.1)
on the affected side showed a better match to the healthy muscle
activation patterns without the RE when compared to with the
RE, though no significant differences were found possibly due
to the variability among the participants. On the unaffected side,
the mean BDSI scores were higher for the SOL (with RE: 0.64 ±

0.1; without RE: 0.44 ± 0.14), GA (with RE: 0.5 ± 0.14; without
RE: 0.46 ± 0.08), VL (with RE: 0.37 ± 0.08; without RE: 0.31
± 0.2) and RF (with RE: 0.52 ± 0.1; without RE: 0.48 ± 0.11)
with the RE when compared to walking without the RE, however,
these differences were not significant for GA (p = 0.671), VL
(p = 0.495), RF (p = 0.551), and near-significant for SOL (p =

0.054).

DISCUSSION

This investigation presented a traditional feature (iEMG) and
a novel temporal feature (BDSI) of EMG data collected during
RE-assisted walking in acute stroke. RE-assisted walking is a
collective work of instrumentation power and varied levels of
effort from a participant. Assessing these different levels of effort
in terms of electrophysiological responses (via EMG) is essential
for understanding the role of a user as well as the RE during
gait training. In the acute phase post-stroke when the brain is
highly plastic, these individual roles and the interaction between
the user and the RE are essential in developing and evaluating the
advanced training paradigms for gait rehabilitation. Further, the
features extracted from the EMG data such as iEMG and BDSI
allow the assessment of these individual roles and interactions
during RE-assisted gait training. These features also help to
understand if the neuromuscular adaptations occurring due to
the RE are in accordance with the normative muscle activation
patterns.

Significance of iEMG and BDSI Techniques
In this investigation, iEMG is presented as the amplitudemeasure
and changes in iEMG may indicate variations in the levels
of effort for a single muscle (15). iEMG, unlike root-mean-
squared (RMS) or mean amplitudes, represents the neural drive
to the muscle over a specified time. When iEMG is presented
over an unspecified time interval it would simply represent
the average over that unspecified time. In a cyclic activity
such as gait, EMG profiles show characteristic patterns during
different phases of gait. Therefore, utilization of iEMG for EMG
quantification during gait phases may be more appropriate as
these phases occur during a certain time duration in a gait
cycle. Along with the amplitude parameter, we present a novel
timing parameter, BDSI (18) to assess the temporal changes
in muscle activation during gait, with and without the RE.
Previous research has demonstrated the applicability of the
BDSI algorithm to show a training effect on the TA muscle
during hemiplegic gait post foot drop stimulator utilization
(18).

TKEO (21, 22) based EMG processing was performed to
improve the accuracy of onset detection and resultant BDSI
scores on five additional lower extremity muscles (SOL, GA, BF,
VL, and RF) including the TA. Although our onset detection
component relies on a traditional approach of threshold
detection (23), our BDSI calculation provides a novel way to
compare EMG onset timings across many conditions. Since
the BDSI calculation is performed on binary sequences (0:
no activation, 1: activation), it not only allows for intra-
limb (with and without RE), and inter-limb (affected vs.
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FIGURE 5 | Mean BDSI calculated using Equation (2), by comparing (A) affected side with and without RE, (B) unaffected side with and without RE, (C) affected side

compared to normative healthy gait muscle activation timing (15), with and without RE and (D) unaffected side compared to healthy gait with and without RE. The

titles (for A,B) and the legends (for C,D) show the exact arguments used in the Equation (1) for computing BDSI. *p ≤ 0.05.

unaffected) comparisons but also provides the opportunity to
compare to muscle activation timing patterns during healthy
gait (15).

Neuromechanical Responses in RE
Environment
Amplitude Adaptations Using iEMG
We hypothesized that the RE gait training environment will
preserve the volitional neuromuscular activations in acute stroke.
iEMG analyses showed that muscle activation levels during RE
gait training environment were maintained, reduced, as well as,
enhanced, and there was no single common pattern associated
with all tested muscles. This may suggest that the RE did
not completely override the volitional muscle activations and
the residual neuromuscular function post stroke was preserved
and participants were actively engaged during the gait training.
Although the inter-limb differences in EMG patterns post
hemiplegia have been widely reported in the literature (24), they
are not well established for acute stroke in a RE gait training
environment.

In the current investigation we began to evaluate the effect of
the RE on inter-limb activation. The iEMG analyses showed that

for individuals post stroke in the RE environment the TA (during
stance) and the GA (during stance and swing) muscles were no
longer significantly different between the affected and unaffected
side. This change could be due to the variability (shown by
higher standard deviations) among the subjects (Figure 4) and
may not be due to the reduced inter-limb differences in iEMG
values for both muscles. There were increased TA activations
bilaterally with the RE which may be due to several reasons: (1)
the RE may promote the TA activation by providing a controlled
trajectory and stable support during swing, allowing the muscle
to activate in a stable environment; (2) TA may try to perform
the ankle dorsiflexion against the foot strap during the swing
phase, resulting in increased activation. There were significant
reductions in iEMG values for SOL (stance), RF (stance) on the
affected side with RE. This response seemed to be consistent
for 4 out of 5 participants (shown as amplitude adaptations in
Figure 6A for P2, P3, P4, and P5). During the stance phase
with the RE, the significant decrease in the activation of SOL
was observed potentially due to the quasi-static position of the
sprung ankle joint at ∼90◦. It has also been reported that SOL
muscle activation decreases when an external device is utilized
such as an ankle foot orthotic (AFO) (25). In the presence
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FIGURE 6 | RMS EMG profiles for (A) SOL, (B) RF, and (C) VL of the affected side in the RE gait training environment for each study participant (P1 to P5). The

shaded rectangular areas represent the periods of healthy muscle activations. Amplitude adaptations (shown as a green rectangle) represent the events where

excessive muscle activation was reduced in the RE environment. Temporal adaptations (shown as a red rectangle) represent the events where the muscle activation

was correctly time-shifted to the correct phase of the gait cycle in the RE environment.

of RE, the need to plantar flex against the ground for joint
stabilization is reduced due to the weight bearing provided by
RE, thus resulting in reduction of SOL activation, bilaterally.
During the stance phase with the RE, the significant decrease
in RF activation may be related to the reduction in “excessive”
hip flexion at initial contact due to controlled trajectory guidance
provided by RE. This was particularly apparent in affected RF
profiles of participants P2, P3, and P4 (Figure 6B) where RF
activations were reduced during 12–46% of a GC and 71–
90% of a GC. Similar amplitude adaptations were observed
for affected VL in the RE environment for all the participants,
suggesting the consistency of these amplitude adaptation across
the group.

Overall, iEMG analyses show the presence of active
neuromuscular participation which may be essential for
optimizing the rehabilitation outcomes during highly plastic
acute phase post stroke. Ensuring that these adaptations are
in accordance with the healthy muscle activation patterns is
essential for effective gait training.

Temporal Adaptations Using BDSI
Our novel feature, BDSI allowed for this assessment with
hypothesis that the RE gait training environment will alter
the activation timings of lower extremity muscles to match
the normative healthy gait muscle activation patterns. BDSI
analysis showed that, in terms of activation timings, RF and

VL on the affected side were significantly altered to match
the normative muscle activation patterns in the RE training
environment. EMG profiles showed that RF and VL, the muscles
predominantly used for knee flexion/extension during walking
had sustained contractions without the RE (Figures 6B,C)
potentially due to the disrupted loading mechanisms on the
affected side. While the amplitudes were higher for the RF and
VL in the traditional gait training environment, BDSI analysis
showed that these activations were characterized by inaccurate
timings, compared to healthy gait (15). This was particularly
apparent for P2, P3, and P4 as shown in Figures 6B,C (see the
amplitude adaptations notations). In the RE environment the
VL and RF had reduced activations (shown in Figures 6B,C)
during the “off” periods (compared to healthy gait cycle)
but preserved volitional activation during the “on” periods
(shown as temporal adaptations in Figures 6B,C), closely
matching the overall healthy activation timings during gait
as evidenced by the significantly higher BDSI scores as a
group (Figure 5C). These modifications could be due to the
“powered” assistance provided during the loading response
and knee extension during terminal swing or due to the
possibility that the RE is programmed to follow a pre-determined
trajectory that may not facilitate full knee extension and
flexion. As surface EMGs were used in this investigation, RF
may have recorded the crosstalk from vastii during loading
responses (15). Hence, it may be difficult to identify the exact
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alterations occurring in RF muscle activation as a result of
hemiplegia post stroke or due to the presence of RE. Apart
from providing quantifiable comparisons for muscle activation
timings with healthy muscle activation timings, BDSI feature also
allowed for intra-limb comparisons with different gait training
environments.

Inter-subject Variability
Although there were several improvements seen in terms of
iEMG (bilateral VL, unaffected TA during stance) and BDSI
(affected TA and SOL, GA, VL, RF on the unaffected side),
these changes were not significant. This may be due to the
variability in the data among the participants. In acute stroke,
factors such as time since stroke and severity of the stroke
can contribute to varied levels of residual function as well
as responses to the RE intervention. All participants were
currently admitted and participating in gait training at the
same inpatient rehabilitation facility, and the motor FIM for
all participants at admission was comparable (range from 20
to 31 points) indicating a similar level of motor impairment at
admission. The 13 FIM motor items range from 13–91 points
and rates an individual’s ability to perform motor activities of
daily living independently (26). All participants improved their
FIM motor score from admission to discharge with an average
improvement of 29± 11 points, the minimal clinically important
difference (MCID) for the motor FIM is 17 points. While all
participants had similar motor FIM scores at admission they
were at different stages in their rehabilitation and recovery
and time post stroke varied from 14 to 94 days and their
length of stay at the time of gait testing varied from 10 to 49
days. Four participants were admitted to inpatient rehabilitation

within 3–6 days post stroke, while one participant was not
admitted until 45 days post stroke and this participant had the

lowest motor FIM score at admission. All participants were
able to successfully use the RE device with the assistance of
a physical therapist as well as participate in inpatient gait
rehabilitation. It is important to note that each participant
progressed at an independent rate and may have been at a
different timepoints in their recovery which will also have
an impact on the EMG activation patterns during dynamic
movements.

Limitations and Future Considerations
This investigation presented an EMG technique and was not

intended to comprehensively compare the efficacy of RE to
traditional gait training and therefore only a single session was

evaluated. Although we were able to demonstrate changes in

activation of lower extremity muscles with the use of RE in

acute stroke, our interpretations of the RE as a rehabilitation

intervention is limited by the small sample size. Additionally,

there may be variability due to the different levels of assistance
provided by RE and physical therapists. Future work will
include the kinematic indices which could be utilized to further

understand the neuromuscular adaptations resulting due to RE
in a larger sample.

CONCLUSION

The EMG amplitude and timing analysis were presented to assess
the neuromuscular adaptations resulting in lower extremities
muscles during RE assisted hemiplegic gait post acute stroke.
The RE assisted gait training environment allowed participants
with hemiplegia post acute stroke to preserve their volitional
neuromuscular activations during gait. The RE promoted
activations of the VL and RF on the affected side to more closely
match the activation patterns of healthy gait. The purpose of
this investigation was to present an EMG technique and not
to comprehensively evaluate the efficacy of RE over traditional
standard of care. Instead, we demonstrated that patients were
actively contracting and participated in both environments,
therefore both environments represent potentially beneficial
modalities in gait rehabilitation. Accurate understanding of the
electrophysiological responses in individuals with stroke while
walking is essential to develop and measure advanced training
paradigms for gait rehabilitation. Preliminary EMG data suggests
that the RE provides an effective gait training environment
for acute stroke rehabilitation. Further, the combination of
iEMG and BDSI techniques provides a comprehensive set of
assessments to measure changes in muscle activation levels,
excitation and inhibition during walking, with and without RE
conditions in individuals with hemiplegia post acute stroke.
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Finger–thumb coordination is crucial to manual dexterity but remains incompletely  
understood, particularly following neurological injury such as stroke. While being controlled 
independently, the index finger and thumb especially must work in concert to perform a 
variety of tasks requiring lateral or palmar pinch. The impact of stroke on this functionally 
critical sensorimotor control during dynamic tasks has been largely unexplored. In this 
study, we explored finger–thumb coupling during close–open pinching motions in stroke 
survivors with chronic hemiparesis. Two types of perturbations were applied randomly to 
the index with a novel Cable-Actuated Finger Exoskeleton: a sudden joint acceleration 
stretching muscle groups of the index finger and a sudden increase in impedance in 
selected index finger joint(s). Electromyographic signals for specific thumb and index 
finger muscles, thumb tip trajectory, and index finger joint angles were recorded during 
each trial. Joint angle perturbations invoked reflex responses in the flexor digitorum 
superficialis (FDS), first dorsal interossei (FDI), and extensor digitorum communis mus-
cles of the index finger and heteronymous reflex responses in flexor pollicis brevis of the 
thumb (p < 0.017). Phase of movement played a role as a faster peak reflex response 
was observed in FDI during opening than during closing (p < 0.002) and direction of 
perturbations resulted in shorter reflex times for FDS and FDI (p < 0.012) for extension 
perturbations. Surprisingly, when index finger joint impedance was suddenly increased, 
thumb tip movement was substantially increased, from 2 to 10 cm (p < 0.001). A greater 
effect was seen during the opening phase (p < 0.044). Thus, involuntary finger–thumb 
coupling was present during dynamic movement, with perturbation of the index finger 
impacting thumb activity. The degree of coupling modulated with the phase of motion. 
These findings reveal a potential mechanism for direct intervention to improve poststroke 
hand mobility and provide insight on prospective neurologically oriented therapies.

Keywords: exoskeleton, motor control, coupling, reflex, hand, robot, rehabilitation

inTrODUcTiOn

The dexterity of the digits of the hand is one of the hallmarks of human motor control and a 
central factor in the evolution of our species. The highly individuated movement enables com-
plex and dynamic interaction with the environment, such as for manipulating tools and objects. 
Motion (1) and force (2) independence are especially great in the index finger and thumb, the 
two most functionally important digits.
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FigUre 1 | Finger connected to Cable-Actuated Finger Exoskeleton device 
for performing the experiments. Motors are located off the splinted hand and 
wrist such that they can be supported by an external structure, the TA-WREX 
(21, 22).
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Yet, coordination between these digits is critical for proper 
execution of a number of important tasks. During object manipu-
lation through pinch, for example, the thumb and index finger- 
tip forces must create equal and oppositely directed forces to 
prevent slip of the object. Alteration in the force created by one 
digit, such as might arise due to perturbations or changing con-
ditions such as sweat, requires immediate compensation by the  
other digit.

The finger and thumb have multiple degrees-of-freedom 
(DOF) available which can be exploited to match the other digit’s 
movement; this redundancy, however, contributes substan- 
tially to variability in movement (3). By introducing coupling 
between these DOF, variability in motor output can be reduced 
(4), thereby improving performance of the digits in a coordi-
nated task. Accordingly, research has shown evidence for neural 
coupling between neuromuscular units for different digits in 
the human hand. For example, EMG–EMG coherence was 
observed between pairs of finger and thumb muscles during 
a pinching task (5) and during a three-digit grasping para- 
digm (6).

In stroke survivors, unfortunately, coordination between fin-
ger and thumb may be disrupted. For example, we have observed 
strong coupling between thumb and finger flexors when stretch 
is applied to the nominally passive finger flexors (7). We have 
also seen this aberrational finger flexor-thumb flexor coupling 
during voluntary isometric task performance (7).

Study of finger–thumb coupling during dynamic tasks, how-
ever, has been limited. While perturbation techniques are often 
used to study motor control in the arm (8), this methodology 
is more challenging in the hand due to the many DOF present 
within a relatively small volume. Cole and Abbs examined 
response to an extension perturbation of the thumb in neurologi-
cally intact individuals (9, 10), but thumb motion was limited to 
a single joint and perturbations were applied to only one thumb 
joint. Schettino et  al. recently examined perturbation of the 
index finger during a reach-to-grasp task, but kinetic perturba-
tions only were applied and muscle activation patterns were not  
addressed (11).

Even fewer such studies have been performed with stroke 
survivors. Thus, for this study, we examined thumb-finger 
coupling during a natural dynamic movement in stroke survi-
vors. Using a novel actuated finger exoskeleton, we introduced 
precise perturbations to the index finger during a voluntary 
palmar pinch-open task. First, we investigated possible reflex 
coupling at the spinal level by applying rapid rotation of the 
metacarpophalangeal (MCP) joint to evoke a stretch reflex in 
the finger muscles. We hypothesized that this would elicit het-
eronymous reflexes in the unperturbed thumb motoneurons 
with a similar delay. We further hypothesized that this coupling 
would be stronger when perturbations were applied during the 
closing phase of a pinch movement than when applied during 
digit opening. Next, we examined possible hierarchical control 
during the pinching task by perturbing the index finger trajec-
tory. We hypothesized that perturbations which altered the 
index finger trajectory would lead to corresponding alterations 
in the pathway of the thumb to reduce task error. Furthermore, 
we expected the effect on thumb movement to be greater when 

the index finger was perturbed during the closing phase of 
pinch when coupling of movement was most critical.

MaTerials anD MeThODs

The Cable-Actuated Finger Exoskeleton (CAFE) (12, 13) was 
employed to perturb joints of the index finger. This rigid exo-
skeleton structure has joints that are aligned with the flexion/
extension axis of each of the three index finger joints: meta-
carpophalangeal (MCP), proximal interphalangeal (PIP), and 
distal interphalangeal (DIP). The structure runs along the radial 
side of the finger and couples to the finger through bars contact-
ing the dorsal and palmar sides of each finger segment. Rotation 
of the exoskeleton joint, thus, produces equivalent rotation of 
the anatomical joint. Cables running from electric servomotors 
located proximal to the wrist connect to gears located at each 
joint (Figure 1). Winding of the cable about a spool connected to 
the motor thereby produces joint rotation. One motor produces 
flexion and another produces extension at each joint, for a total 
of six motors. The cables run through a series of pulleys before 
terminating at the appropriate joint. By placing the gearing 
directly at the joint, the relative influence of cable force at a joint 
other than the targeted joint is reduced. Further compensation 
is achieved through the controller. Precise, independent control 
of each joint of the index finger can be achieved over a wide 
range of velocities and torques.

Participants
A convenience sample of eight adult individuals with chronic 
hemiparesis resulting from a single stroke incurred at least 
6 months prior, with a mean (±SD) age of 63 (±9) years, par-
ticipated in the study. Subjects were selected based on having 
moderate hand impairment as characterized by a rating of  
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Stage of Hand 4 or 5 on the Chedoke-McMaster Stroke 
Assessment (14). Subjects at these levels typically exhibit sub-
stantial gross finger extension, but have difficulty producing 
individuated finger movements. A significant spastic reflex in 
the finger flexors has been detected in stroke survivors with this 
level of impairment (15). The group consisted of two females 
and six males. All participants were right-hand dominant. This 
investigation was conducted at the Rehabilitation Institute 
of Chicago and all participants provided written consent in 
accordance with processes approved by the Northwestern 
University Institutional Review Board.

Protocol
Each subject participated in two sessions. During the initial 
session, we captured the kinematics of the subject’s natural 
pinching motion while the wrist was held in a fixed, neutral 
posture. Beginning with the finger and thumb positioned in 
an open-handed posture by the device, subjects were asked 
to create a palmar pinching motion with the index finger and 
thumb (closing phase). Once the thumb and index finger made 
approximate contact, the subject was instructed to immediately 
begin to open the digits to return them to the original posture 
(opening phase). Precise contact position and movement 
duration was subject-specific to allow completion of move-
ment and a naturally paced trajectory, although participants 
were required to complete the full close–open motion within 
2  s for a minimum frequency of 0.5 Hz. All movements were 
initiated with audible cues to first prepare to move and then to 
initiate movement. The kinematics of the index finger during 
the movement were recorded using an external camera system 
(Optotrak, 3020, 3010, Northern Digital, Inc., Waterloo, ON, 
Canada) employing infrared markers at each of the finger joints 
(MCP, PIP, DIP) and fingertip. Marker locations were sampled 
at a rate of 100 Hz. We subsequently used these data to compute 
the joint angles that served as the desired motion trajectories in 
the second session.

During the second session, subjects participated in two 
sets of experimental conditions, each consisting of a within-
subject repeated measures experimental design to examine 
finger–thumb interactions during voluntary movement. Digit 
kinematics and muscle activity were measured for both sets of 
experimental conditions. Thumb tip location was captured with 
the Optotrak camera system, while index finger joint angles were 
recorded by the CAFE at 1 kHz. Activation of specified finger 
and thumb muscles, selected for their participation in finger–
thumb pinch (16–20) and accessibility for electrode placement, 
were recorded with EMG electrodes. Surface electrodes (Delsys, 
Inc., Boston, MA, USA) were placed over flexor digitorum 
superficialis (FDS), extensor digitorum communis (EDC), and 
first dorsal interossei (FDI) of the index finger and over flexor 
pollicis brevis (FPB) and abductor pollicis brevis (APB) of the 
thumb. EMG signals were sampled at 1 kHz. Data collection is 
synchronized at time of collection between the Optotrak and 
EMG DAQ simultaneously via a shared electrical signal.

With the subject seated comfortably, we coupled their index 
finger to the CAFE device. We then splinted the subject’s wrist 
and forearm to a platform of an external device (TA-WREX) 

(21, 22) to support the weight of the arm and the exoskele- 
ton motors and fix wrist flexion/extension and abduction/
adduction.

Joint Angular Perturbation
To examine index finger–thumb reflexive coupling during goal-
directed palmar pinching, we instructed subjects to create the 
same pinching motion as they did during the first session. In 
this session, however, the CAFE moved according to the joint 
angle trajectories recorded during the prior session. Subjects 
performed isokinetic movements with the index finger and 
were instructed to push against the device in the direction of 
motion during movement, resulting in an average muscle force 
generation of roughly 10% of maximum voluntary contraction 
(MVC) throughout both the closing and opening phases. This 
baseline muscle activation increases the probability of generating 
a reflex in response to applied muscle stretch (23). To determine 
the MVC, a series of three alternating flexion and extension con-
tractions are performed prior to trials, the peak EMG values of 
which are compared to the peak EMG envelope following reflex 
response; the greatest of which are taken as the MVC value for 
the respective muscle.

During random trials, position-controlled angular perturba-
tions of approximately 40° at 600°/s were applied to the MCP 
joint of the index finger to elicit a stretch reflex in certain index 
finger muscles. These perturbations were applied roughly halfway 
through either the opening or closing movement phase (±10° 
variation), in either the flexion (stretching MCP extensors) or 
extension (stretching MCP flexors) direction (Figure 2A). Ten 
trials were performed for each phase-direction perturbation con-
dition (closing-extension, closing-flexion, opening-extension, 
and opening-flexion), along with 20 no-perturbation control 
trials, for a total of 60 trials. A series of at least 10 control tri-
als were presented before any perturbation was introduced to 
allow the participant to become familiarized with the system. 
Additionally, we exposed subjects to the movement of the device 
to test the fit and the accuracy of the movement profile, as well 
as to build comfort with the system, prior to the beginning of the 
first control trials.

Joint Impedance Perturbation
In the second set of trials, we used the CAFE to disrupt the 
movement of the finger during natural palmar pinching motions. 
Subjects created the same close–open pinching movement as 
in the previous experiment. However, in this experiment, the 
exoskeleton minimizes contact force between itself and the user, 
thus reducing the muscle activation required to move and not 
also preventing the exoskeleton from assisting in the movement.

During certain trials, the CAFE applied an impedance 
perturbation to the MCP or PIP  +  DIP (perturbed together) 
joints of the index finger. The impedance perturbation consisted 
of an abrupt transition to a very stiff joint, essentially locking 
movement of the joint(s) of the device for 750 ms (Figure 2B). 
In this manner, we could alter the index finger trajectory with-
out displacing the joints (which could evoke a stretch reflex). 
Perturbations were applied approximately halfway through 
each phase of movement (±10° variation). Thus, there were 
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FigUre 2 | Example of perturbations. (a) Displacement applied to metacarpophalangeal (MCP) joint to create stretch of finger muscles. Blue line shows unperturbed 
subject-specific trajectory while the other lines show flexion (increasing angle) or extension (decreasing joint angle) or extension imposed during either the closing or 
opening phase of movement. (B) Impedance of MCP joint suddenly increased for 750 ms during the closing phase of the pinching task.
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four phase-joint perturbation combinations: MCP perturbation 
during closing (closing-MCP), IP perturbation during closing 
(closing-IP), MCP perturbation during opening (opening-
MCP), and IP perturbation during opening (opening-IP). Each 
subject performed 10 trials of each perturbation condition with 
20 no-perturbation control trials, presented in random order, 
for a total of 60 trials. A series of at least 10 control trials was 
presented before any perturbation was introduced, and rest was 
provided as needed.

Data analysis
EMG signals were analyzed to quantify the reflex response for 
the experiment involving rapid muscle stretch. Thumb motion 
data from the Optotrack were the primary outcome measure for 
the experiment involving the sudden change in exoskeleton joint 
impedance.

Stretch Reflex
To find the shorter-latency reflex responses to the perturbations, 
we examined the EMG envelope during the 150-ms window 
following the onset of perturbation. This time span captures 
the reflexive, but not voluntary muscle activation in response 
to perturbation. EMG of each muscle was rectified and then 
low-pass filtered forwards and backwards through a fifth-order 
Butterworth filter with a cutoff frequency of 40  Hz to create 
the EMG envelope. This envelope was then normalized by the 
maximum envelope value across all trials and the initial MVCs 
for the corresponding muscle and subject.

From these absolute measures, perturbed and unperturbed 
EMG, we created two outcome measures: A-EMG, the absolute 
value of each normalized EMG signal and D-EMG, the differ-
ence between the EMG during the perturbed trial and the unper-
turbed trials. In order to examine whether the stretch produced 
reflex activity, we compared peak A-EMG with and without 
perturbation for each muscle by employing multiple analysis of 
covariance (MANCOVA). Due to violations in assumptions of 

normality, we used the non-parametric Mann–Whitney U test 
to look at the impact of movement phase (closing/opening) and 
stretch direction (extension/flexion) on D-EMG. We examined 
the impact of phase and direction on time to peak reflex EMG 
response using MANCOVA. Individual post  hoc ANOVA are 
performed to quantify individual effects where appropriate.

Impedance Perturbation
For the impedance perturbation experiment, we examined thumb 
tip kinematics, recorded with the Optotrak system. We first 
examined the aperture during the movement and then focused 
on the time window covering the period from the start of index 
finger perturbation until the time at which the unperturbed phase 
ended. Specifically, we computed the normal distance between 
fingertip and thumb tip Optotrak markers, computing the total 
aperture during movement.

We then isolated the thumb movement from the exoskeleton-
controlled finger movement by computing the Euclidian norm 
of the thumb tip position, zeroed at the angle and the time of 
perturbation (positive indicates closing and negative indicates 
opening). We then compared the thumb trajectory for each 
individual trial to the average trajectory of the unperturbed trials 
for the same subject by computing the root mean squared error 
(RMSE) between the two. We employed ANOVA to examine the 
effects of condition (perturbed/unperturbed), movement phase 
(closing/opening), and joint (MCP/IP) on RMSE.

resUlTs

Subjects performed pinching movements in the CAFE as 
instructed for both the reflex and impedance experiments. All 
subjects completed both sets of experiments.

stretch Perturbation
While subjects made active, volitional pinching movements, stretch 
perturbations produced strong reflex activity. Post-perturbation  
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FigUre 3 | Across-subjects mean EMG envelopes for each muscle following extension perturbation during the closing phase. Unperturbed (blue) and perturbed 
(red) conditions are shown with their across-subjects mean values (line) and associated SDs (shaded).
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peak EMG was greater than the time-matched EMG for unper-
turbed trials for every muscle (p  <  0.017) with the exception 
of APB. A-EMG (absolute magnitude) following perturbation 
was typically greater than in the unperturbed case by 10–15% 
of MVC. Thus, stretch of a given set of finger muscles produced 
reflex responses in all observed index finger muscles, as well as 
in the thumb flexor FPB (Figure  3). However, no such reflex 
response was observed in APB (Figure 3).

The delay between the initiation of the perturbation and 
the time to peak reflex EMG (TR) was significantly depend-
ent upon both movement phase (closing or opening) and 
perturbation direction (flexion or extension), but the size of the 
reflex response (D-EMG) did not vary significantly with either. 
Moving the MCP into extension (thereby lengthening the finger 
flexor muscles), resulted in a shorter time to peak reflex for both 
FDS and FDI (p < 0.012). Furthermore, TR for FDI was also 
significantly affected by phase of the movement (p  <  0.002) 
such that the delay was shorter during the opening portion of 
the movement than during the closing portion. The mean delay 
for FDS and FPB was very similar for a stretch perturbation of 
FDS during closing, but the FPB peak response was delayed by 

25 ms, on average, with respect to the FDS peak reflex response 
during opening (Figure 4).

impedance Perturbation
Surprisingly, for each type of impedance perturbation (MCP/IP, 
closing/opening), the aperture remained relatively unchanged 
(Figure 5). This is evident during the onset of each perturbation 
where the finger is delayed, indicating the thumb movement is 
accelerated in the absence of finger movement.

Thus, rather than stopping or slowing to match the checked 
movement of specific index finger joints, thumb movement 
increased beyond previous levels (Figure  6). ANOVA results 
revealed that the RMSE in thumb trajectory from the mean 
unperturbed trajectory was significantly impacted by the per-
turbation (p < 0.001), with greater RMSE during perturbed trials 
(Figure 7A).

The increased thumb movement occurred in the intended 
direction of movement. Hence, during closing, thumb flexion 
after index finger perturbation became greater, more closely 
matching what would be expected in unimpaired individuals 
performing this movement, particularly at the thumb MCP 
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FigUre 4 | Mean elapsed time (ms) to peak reflex response (TR) for each condition across subjects. Error bars indicate ±1 SD.
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joint. Even more startling, a large increase in thumb extension 
was observed for perturbations applied to the index finger dur-
ing the opening phase. Thus, RMSE was significantly affected 
by phase of movement (p < 0.044), with greater RMSE during 
opening (Figure 7B). While greater mean thumb displacements 
were observed for perturbation of the MCP joint during clos-
ing and the IP joints during opening, there was no significant 
effect of the joint(s) perturbed (finger MCP or IP) on thumb 
movement.

DiscUssiOn

Using a novel finger exoskeleton, we were able to assess invol-
untary coupling present between the thumb and index finger 
during a dynamic movement in stroke survivors. Kinematic 
and EMG data revealed strong, perturbation-dependent inter-
actions between index finger and thumb muscles in the stroke 
survivors.

reflex response
Imposed stretch perturbations of the index finger muscles 
during the dynamic task evoked significant reflex EMG activ-
ity in all of the measured index finger muscles. In nominally 
passive stroke survivors (those who are not actively utilizing 
muscles), we have observed that a similar rapid stretch of the 
finger flexors, such as FDS, likewise produces a significant 
stretch reflex in the stretched muscles (24). This study shows 
that this behavior is also evident during voluntary movement 
in stroke survivors, as has been described for the elbow (25, 26).  
The observed reflex behavior in shortening muscles, such as 
EDC during an extension perturbation, is reminiscent of the 
occasional reflex response observed in EDC during stretch of 
the spastic flexors in passive stroke survivors (24). It should be 

noted that the delay to the peak EDC reflex during extension 
was longer than that for FDS, thereby suggesting a longer reflex 
loop.

Stretch of EDC during the flexion perturbation also resulted 
in reflex generation. This contrasts to the case in passive stroke 
survivors, within whom stretch of finger extensors such as EDC 
generally fails to produce any reflex response (15). The EDC 
stretch produced a reflex response present in the finger flexors as 
well. Reflex activity in the non-stretched muscles may arise from 
loss of reciprocal inhibition or even a transition to reciprocal 
excitation following the stroke (27, 28).

In support of our hypothesis, we also observed reflex cou-
pling between certain finger and thumb muscles. Thus, stretch 
of finger muscles produced reflex responses in a non-stretched 
thumb muscle, FPB. We previously observed this phenomenon 
in passive stroke survivors (29), but this is the first time we have 
been able to verify that these coupled reflexes can be evoked 
during voluntary movement. Intriguingly, significant reflex 
behavior was not induced in all thumb muscles, but rather in 
FPB and not in APB. Thus, it appears that coupling may be 
greater between thumb and finger flexors, as we observed in 
the passive condition (29). It should be noted that rapid stretch 
of thumb muscles in passive stroke survivors failed to elicit 
a spastic stretch reflex (30). Limited APB reflex may also be 
attributed to a reduction in heterogeneous extrinsic–intrinsic 
connections (7). FDS, FDI, and FPB reflex timing follow the 
same temporal pattern of reflex activation with peak EMG 
occurring 19–25  ms earlier for extension perturbations, as 
compared with flexion perturbations. It should be noted that 
thumb movement was controlled voluntarily throughout the 
task and so may have varied. As one head of FDI originates 
on the thumb metacarpal, thumb movement may have influ-
enced FDI length and thus excitability, resulting in increased 
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FigUre 5 | Finger and thumb aperture during perturbed (red) and unperturbed (blue) trials following perturbations. Each perturbation condition is shown,  
(a) metacarpophalangeal (MCP) perturbation during opening, (B) MCP perturbation during closing, (c) proximal interphalangeal (PIP)/distal interphalangeal (DIP)  
joint during opening, (D) PIP/DIP during closing. Examples of joint angle trajectories with perturbations are provided for reference; note, flat region indicates 
joint-locked perturbation.
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variability between trials and differing strategies between  
subjects.

The magnitude of the heteronymous reflex activity observed 
in the thumb muscles due to stretch of the index finger muscles 
did not vary significantly with movement phase. However, 
while the time to peak reflex response was very similar for FDS 
and FPB during closing, it was much longer for FPB during 
opening, when less coordination was required between the 
thumb and index finger. Thus, modulation of the finger–thumb 
coupling may occur with movement phase, although it may be 
partially impaired in stroke survivors. Indeed, the interaction 

of phase and direction was non-significant for every muscle. 
This absence of an effect may suggest the loss of capacity for 
modulating index finger and thumb neurological coupling 
specific to the motor control task. This is consistent with 
previous findings of unmodulated hyperreflexia across static 
postures of the wrist (31) where, despite changing posture of the 
wrist, reflex gains remained unmodulated, as well as a general 
deficit in modulation of EMG patterns in the finger and thumb  
(32, 33). By contrast, phase-dependent reflex modulation has 
been reported in a previous study examining cyclical arm move-
ments (cycling) in neurologically intact individuals (34).

26

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


FigUre 7 | Root mean squared error (RMSE) for the effect of (a) condition (perturbed/unperturbed) and (B) phase (closing/opening).

FigUre 6 | Norm of 3D thumb tip displacement vector following metacarpophalangeal (MCP) (left column) or IP (right column) joint-locked perturbation during 
closing (top) or opening (bottom). Movement is shown for the period of time from initiation of perturbation to end of movement phase for the unperturbed trials. Mean 
perturbed (red line) and unperturbed (blue line) trajectories are shown with associated SDs (shaded regions). Y-axis zeroed to the angle of perturbation such that 
negative angles are in closing and positive angles are in opening directions.
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impedance Perturbation
The response of thumb tip motion to imposed disruption of 
index finger movement was especially intriguing. Contrary to 
our hypothesis, impeding finger movement led to increased 
thumb movement. The thumb is observed to maintain the 
anticipated aperture, indicating an accelerated trajectory. This 
movement is beyond what was achieved without any perturba-
tions, flexing further during closing and extending further dur-
ing opening following perturbation. During the closing phase 
perturbed trials, thumb motion showed acceleration just prior 
to reaching the unperturbed point of contact, thereby sug-
gesting that the thumb was indeed responding to an imposed 

deficit in the index finger by moving further than normal to 
meet the finger. This movement may have been encouraged 
by stabilizing the index finger via increased joint impedance. 
Alternatively, greater thumb movement may have arisen as 
the result of increased somatosensory feedback arising from 
perturbation contact forces in the index finger.

The most striking result was the increase in thumb exten-
sion during the opening phase for the perturbed trials. Stroke 
survivors typically have difficulty in creating active thumb 
extension (34). This was evident in our stroke survivors who 
typically generated less than 2  cm of thumb extension during 
the unperturbed trials. When the index finger impedance was 

27

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


Jones and Kamper Finger–Thumb Coupling Following Stroke

Frontiers in Neurology | www.frontiersin.org March 2018 | Volume 9 | Article 84

suddenly increased, however, mean thumb extension increased 
to over 10  cm, an amount roughly equivalent to what would 
be expected in neurologically intact subjects. The mechanisms 
behind this improvement are unclear. One possibility is that the 
perturbation leads to increased involuntary activation of all digit 
extensor muscles.

coupling
The presence of a coupled response between the index finger 
and thumb affirms previous findings during coordinated rapid 
grasping tasks in neurologically intact individuals (9, 10, 35) 
and indicates a preservation of coupling following stroke. 
Thumb kinematic responses to index finger perturbation align 
with previously demonstrated influence over thumb kinematics 
during healthy grasp (36). This outcome supports the notion of 
preservation of components of motor control following stroke, 
including coupling between digits (37, 38). The presence of phase 
changes indicates there is some preservation of modulation of 
index finger–thumb coupling, in contrast to findings following 
reflex-inducing perturbations. The modulation effects are present 
across larger temporal scales (0.5–0.75 s).

The remarkable improvement of thumb movement in 
response to impedance of index finger movement may arise 
as the result of excitatory or inhibitory coupling between 
index finger and thumb muscles. During the opening phase, 
impedance to finger movement could give rise to increased 
activation of finger extensor muscles which, in the presence 
of coupling to the thumb, could create reciprocal excitation 
of thumb extensors and/or reciprocal inhibition of thumb 
flexors; both of these would result in improved movement 
of the thumb. However, due to the use of surface electrodes, 
extensor EMG data were not available for the thumb in this 
study; efforts should be made to include thumb extensor EMG 
in future investigations.

One such route of coupling may follow the reticulospinal 
pathway, which has been demonstrated to integrate somatosen-
sory feedback into motor control (39). Inhibition through such 
a pathway may improve movements in the presence of large 
somatosensory stimuli. In this way, somatosensory stimulation 
of the index finger may provide a pathway for intervention fol-
lowing stroke to promote thumb movement. Similar targeted 
haptic feedback has been shown to improve motor control in the 
arm (40–42).

Potential limitations
These experiments only examined reflexes during part of the 
movement: midway through the closing and opening phases  
of movement. Further experiments examining reflex modula-
tion across the range of postures during the movement would 
better inform the extent of modulation and contributions of 
reflex activity to motor control during pinch.

Sample size was limited. Part of the goal of this study was 
to ensure feasibility of use of the CAFE with stroke survivors. 
Further exploration of the observed increase in thumb extension 
resulting from index finger perturbation in more subjects is war-
ranted. Future work in conjunction with a thumb exoskeleton  

or other enhanced thumb kinematic measures will enable 
increased insight into thumb muscle behavior.

Additionally, reflex modulation may have been impacted by 
contact with the exoskeleton. Somatosensory cutaneous afferents 
have been shown to contribute to neuromodulation at the spinal 
cord (43). Contact with the exoskeleton was designed to be 
constant throughout the flexion or extension phase as subjects 
were instructed to maintain a specific voluntary activation level. 
Coupling of interaction between finger and thumb extensor 
muscles could not be examined as thumb extensor activity was 
not monitored.

cOnclUsiOn

While the index finger and thumb are capable of highly individu-
ated movements, they also exhibit substantial coupling in tasks 
requiring finger–thumb coordination. These results suggest 
that coupling is highly evident in stroke survivors and appears 
to maintain behavior appropriate to task despite the underlying 
hand impairment.

In particular, the thumb clearly experienced a coupled 
response during the dynamic pinching task following index 
finger perturbation. Intriguingly, sudden arrest of index 
finger extension led to a profound increase in active thumb 
extension, far beyond what was generated without the per-
turbation. Further research is needed to validate and explore 
this finding, but the potential significance for rehabilitation 
is great.
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A novel electromyography (EMG) signal decomposition framework is presented for 
the thorough and precise analysis of intramuscular EMG signals. This framework first 
detects all of the active motor unit action potentials (MUAPs) and assigns single MUAP 
segments to their corresponding motor units. MUAP waveforms that are found to be 
superimposed are then resolved into their constituent single MUAPs using a peel-off 
approach and similarly assigned. The method is composed of six stages of analytical 
procedures: preprocessing, segmentation, alignment and feature extraction, clustering 
and refinement, supervised classification, and superimposed waveform resolution. The 
performance of the proposed decomposition framework was evaluated using both syn-
thetic EMG signals and real recordings obtained from healthy and stroke participants. 
The overall detection rate of MUAPs was 100% for both synthetic and real signals. The 
average accuracy for synthetic EMG signals was 87.23%. Average assignment accura-
cies of 88.63 and 94.45% were achieved for the real EMG signals obtained from healthy 
and stroke participants, respectively. Results demonstrated the ability of the developed 
framework to decompose intramuscular EMG signals with improved accuracy and 
efficiency, which we believe will greatly benefit the clinical utility of EMG for the diagnosis 
and rehabilitation of motor impairments in stroke patients.

Keywords: eMg decomposition, segments detection, minimum spanning tree, superposition waveform resolution, 
pseudo-correlation measure

inTrODUcTiOn

Electromyography (EMG) signals carry information regarding the motor unit action potential 
trains (MUAPTs) generated by the motor units (MUs) that are recruited during muscle contraction. 
Each MUAPT is made of a series of intermittent discharges that take the form of spatially dispersed 
individual motor unit action potentials (MUAPs). Intramuscular EMG is commonly acquired by 
means of indwelling needles or fine wire sensors that provide direct and targeted contact with the 
musculatures. Clinically, intramuscular EMG is used as a routine method for the electrophysiologi-
cal examination of neuromuscular symptoms.

EMG decomposition reverses the process of signal generation by separating the de-noised EMG 
signal into its constituent MUAPTs. This process is accomplished by identifying MUAP waveforms 
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generated by the MUs adjacent to the detection surface and 
assigning these MUAPs to their corresponding MUAPTs. 
Characteristic properties of a decomposed MUAP, such as wave 
shape and firing pattern (1), can provide critical details regard-
ing the health of the nervous system—details that are essential 
for the clinical diagnosis of neuropathies and myopathies (2–6), 
and the investigation of the neuromuscular control loop (7). 
Unfortunately, EMG decomposition is often a difficult and chal-
lenging task due to both external interferences, such as poor 
signal-to-noise ratio (SNR), movement artifacts, shifts in needle 
position, and so on, and interior challenges, such as waveform 
variations, intermittent MU firing, and the superposition of 
multiple MUAPs. EMG decomposition, therefore, requires a 
complex of advanced signal processing techniques. In the past 
few decades, many researchers have sought to develop advanced 
EMG decomposition techniques (8–15). The resultant decom-
position methods can be grouped into three categories based 
on the extent of human interaction: manual, semi-automatic, 
and automatic (16). Following the manual method, MUAP 
analysis is performed directly by users who visually inspect 
and identify the distinctive MUAP patterns (17). This method 
is time-consuming in practice, highly experience-dependent, 
and incapable of resolving superimposed waveforms (18, 19). 
Hence, the development of automatic MUAP extraction meth-
ods is imperative to improve the work efficiency and clinical 
applicability of EMG decomposition. Despite the unremitting 
effort devoted to the optimization of automatic intramuscular 
EMG decompositions (5, 16, 20–23), there is still an unmet need 
for more accurate, complete, and reliable EMG decomposition 
techniques.

In this paper, we propose a novel intramuscular EMG decom-
position framework by advancing the completeness and accuracy 
of MUAP decomposition. This framework is realized through six 
stages of analytical procedures: (1) EMG signal de-noising, (2) 
MUAP segmentation and extraction, (3) MUAPs alignment, fea-
ture extraction, and similarity measurement, (4) MUAP cluster-
ing and cluster refinement, (5) supervised classification, and (6) 
superimposed waveform resolution. Following this framework, 
we have attempted to improve the decomposition performance in 
four ways. First, we utilized a modified segment extraction scheme 
that is capable of detecting complete MUAP sets by incorporating 
amplitude threshold detection and resting segment recognition 
techniques. Second, single and overlapped MUAP waveforms 
were identified based on a phasic detection scheme, where phase 
templates were chosen based on the neurological condition of the 
tested muscle. The single MUAP segments of each MU under-
went a clustering process that markedly reduced the buffer size 
and processing time required for this task. Third, all recognized 
single MUAP segments were aligned by centering their main 
peaks (regardless of polarity). Finally, we resolved superimposed 
waveforms using a peel-off approach based on measurements 
of pseudo-correlation (PsC). The performance of the proposed 
decomposition framework was evaluated using both synthetic 
EMG signals and real recordings obtained from healthy and stroke 
participants. Results demonstrated the favorable performance of 
the developed framework in decomposing intramuscular EMG 
signals with improved accuracy and efficiency.

MaTerials anD MeThODs

subjects
Twenty healthy subjects (20–35  years of age, 16 males and 4 
females) participated in our data collection. No subject reported 
any history of neuromuscular diseases. Eight subacute hemipa-
retic stroke subjects (46–74 years of age, 6 males and 2 females, 
within 1 month of the ictal event) were recruited from the Third 
Xiangya Hospital of Central South University in China. The 
research protocol was approved by the local research ethics com-
mittee. All subjects were informed about the purpose and details 
of the experiment prior to the data collection.

Data acquisition
All EMG signals were recorded from the biceps brachii muscle. 
Subjects were seated in a chair with either the right forearm (for 
healthy subjects) or the affected forearm (for the stoke patients) 
supported by a horizontal table. Subjects were then asked to 
maintain elbow flexion at a 90° angle with their palms facing 
upward. A conventional needle electrode (9013s0032, Natus 
Neurology, USA) was inserted into the muscle belly at a depth of 
approximately 1 cm. Each subject was then asked to perform 10-s 
constant-force isometric contractions by resisting a load with 
pre-trained force. Each subject performed three contractions at 
both mild (3–4 MUs detected) and moderate (6–8 MUs detected) 
force levels. A 3-min break was provided following each contrac-
tion to avoid muscle fatigue. Signal quality and force level were 
monitored on a real-time display screen with audio feedback. All 
clinical procedures were performed by an experienced physician 
(Xuhong Li). The frequency band of the standard EMG instru-
ment was set to 2 Hz–10 kHz. All signals were sampled at 48 kHz 
and stored for off-line decomposition using an EMG workstation 
(Dantec Keypoint Focus, Natus Neurology, USA).

generation of synthetic eMg signals
Synthetic EMG signals are valuable for evaluating decomposi-
tion results as, unlike real recordings, the exact firing patterns 
and waveform templates of the synthetic MUs are known. The 
use of synthetic EMG signals thereby represents the only way to 
assess the sensitivity of decomposition algorithms to different 
parameters. In this study, 5-s segments of EMG signals (sampled 
at 30 kHz) were generated based on a model proposed by Farina 
et al. (24), where each segment consisted of one or more chan-
nels of synthetic intramuscular EMG recordings. The model was 
built using a library of real MUAP pools to better approximate 
biological signals. This library included 40 MUAP waveforms 
artificially extracted from real EMG signals. Each waveform 
was expanded by associated Hermite expansion functions in a 
16-dimensional space. The firing pattern was generated based on 
both regular and random firing. The regular firing component 
of this pattern was created using a mean inter-pulse interval 
within a stationary-renewal point process, while the embodied 
random-firing component were determined by uniform random 
variables (i.e., the positions of the random firing, which were 
determined by uniform random variables, were used to denote 
the pattern of the random firing). The synthetic EMG signals were 
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then corrupted by adding random white noise with a variable 
SNR and background noise. The random noise was simulated as 
band-pass filtered Gaussian white noise with a zero mean and 
normally distributed random sequences. The frequency band of 
the band pass filter was 100 Hz–10 kHz. The background noise 
was the residual signal obtained by subtracting all recognized 
active MUAP segments from the original EMG signal. Thirty sets 
of synthetic EMG signals were generated to evaluate the perfor-
mance of the proposed decomposition framework.

De-noising through Wavelet Filtering and 
Threshold estimation
Signal preprocessing followed the methods described in our 
previous publications (25, 26). Briefly, a wavelet filter was first 
applied to remove random interference by identifying the wave-
lets whose frequency range lay outside the 30 Hz–8 kHz window 
and setting their coefficients to zero. A hard-threshold estimation 
method was subsequently implemented to eliminate background 
noise. After performing threshold estimation, the de-noised EMG 
signals could be reconstructed by an inverse discrete wavelet 
transform (WT) using modified wavelet coefficients. Additional 
single-channel-independent component analysis method and 
digital notch filtration were applied to further remove the residual 
power-line interference when necessary (25, 26).

segmentation and isolated/Overlapped 
MUaP segments separation
All active MUAP segments were first identified using a modi-
fied segmentation scheme. A detection window of 1.25 ms was 
shifted through the entire EMG signal. A resting segment was 
recognized if the absolute values of the signal within the window 
were continuously lower than the pre-set amplitude threshold. 
Whenever two or more successive resting epochs were detected, 
the signals spanning between these epochs were extracted as the 
active segments, in which the signal exceeded this pre-set ampli-
tude threshold. The boundaries of identified active epochs were 
then spatially expanded by at least 0.2 ms to ensure that the whole 
MUAP waveform was preserved. This amplitude threshold level 
was defined as k multiplied by the estimated noise power, σn

2. The 
noise power of the inactive segments was estimated automatically 
according to Eqs 1 and 2, based on original EMG signal. The value 
of k was selected by the investigator according to the force level, 
with a range of 5–8.
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where LR is the length of a window and the sEMG[k] is the discrete 
EMG signal. σn

2 is calculated as the minimum value of σi
2 accord-

ing to Eq. 2

 σ σn i
2 2= min . (2)

Extracted MUAP-containing segments can be either isolated 
or overlapped. Isolated MUAPs that discharge multiple times 
can be easily recognized and labeled using clustering methods. 
Conversely, overlapped MUAP waveforms are created by the 
partial or full superposition of two or more single MUAPs 

discharging simultaneously, making the constituent waveforms 
much more difficult to parse. According to Thornton and Michell 
(27), MUAPs from a healthy musculature may contain up to four 
phases while an increase in MUAP phases may be indicative 
of the MU remodeling period that occurs after pathological 
denervation. In this study, the subject-specific recognition of 
isolated/overlapped MUAPs was carried out by assigning a 
tetraphasic (4-phase) template to the EMG signals from healthy 
participants and a hexaphasic (6-phase) template to the signals 
from stroke participants. The phasic properties of the MUAPs 
are affected by many variables, so it may be improper to assign 
phasic parameters a fixed value. Thus, the extraction results were 
evaluated and phasic thresholds were fine-tuned if some of the 
isolated MUAPs were incorrectly assigned to the overlapped sets. 
In our experiment, we applied a pentaphasic (5-phase) template 
for 6 of the 20 healthy data sets and octophasic (8-phase) template 
for 3 of the 8 stroke data sets. Superimposed waveforms always 
possess longer durations so, during alignment, segments were 
zero padded to match the duration of the longest event (22, 28). 
A very large buffer size would be required if all active segments 
were to be aligned. To save buffer size and computing time, seg-
ment grouping was performed in advance and only the isolated 
MUAPs were inputted for alignment and clustering. Overlapped 
MUAPs were not processed until the superimposed waveforms 
are resolved (see Resolving Superimposed Waveforms Using the 
Peel-Off Approach Based on Pseudo-Correlation).

Extracted active segments with only one phase or a MUAP 
duration shorter than 1.5 ms were regarded as invalid and excluded 
from the detected MUAP set. Finally, the remaining single MUAP 
segments were retained as a valid set for the following alignment. 
The beginning points of these active segments, representing the 
onsets of the MU firing instances, were assembled into a separate 
one-dimensional array.

MUaP Waveforms alignment and Feature 
extraction
At this stage, all of the detected MUAP waveforms were aligned with 
their main peaks (either positive or negative) at the spatial center 
and shorter waveforms were zero padded so that all segments were 
of equal length. This alignment scheme can enhance the sensitivity 
in discerning and grouping MUAPs into their MU origins.

Wavelet-domain features have been shown to improve stabil-
ity when analyzing EMG signals that are contaminated by high 
frequency background noise or baseline drift (1, 16). As a result, 
we implemented WT at the sixth level using the aligned MUAP 
segment data. The wavelet coefficients from the third through 
sixth levels of aligned MUAP segments were chosen as the feature 
space. For WT, we used a compactly supported biorthogonal 
wavelet base, namely the Daubechies compactly supported wave-
let with five vanishing moments, or db5.

After feature extraction, the distance matrix was calculated 
based on the variance of the error normalized by the sum of the 
RMS values for the paired segments (20). This is denoted as
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where s1(n) and s2(n) are the two active segments to be compared 
and e(n) is their error signal. The distance measure defined by 
Eq. 3 was used as a similarity measure for clustering.

clustering and refinement Using the 
Minimum spanning Tree (MsT) Method
The MUAP set was partitioned into its constituent MUAPTs based 
on the similarity measure presented above. To do this, we utilized 
a single-linkage hierarchical clustering algorithm that permits a 
simple graph-theoretical interpretation, namely the MST method. 
The MST method, considered best suited for EMG clustering (1), 
is able to cluster the MUAPs with low variation from one occur-
rence to the next and does not depend on the presentation order of 
the samples. We generally set the number of cluster equal to 8–12 
depending on the size of the detected single MUAP segments.

A subsequent cluster refining procedure was performed to 
verify if any potential class should be deleted or subdivided. 
Clusters with at least three templates were chosen as potential 
MUAP classes, while those with less than three templates were 
regarded as invalid MU clusters and excluded. All MUAP seg-
ments belonging to these deleted clusters were moved to an 
unclassified set for subsequent supervised classification. At times, 
two different MU clusters can be incorrectly assigned to the same 
cluster due to similarities in their characteristic waveforms. In 
these cases, the mis-clustered MUs should also be subdivided 
based on the MST method. MUAPT templates were then 
calculated as the mean waveforms of each MUAP cluster. After 
clustering, we obtained the initial sets of MU clusters and the 
unassigned MUAPs were set aside to be classified in the next step.

supervised classification Based on the 
Minimum Distance classifier
At this stage, we used the supervised minimum distance classifier, 
which is based on measurements of Euclidean distance, to classify 
the MUAP waveforms in the unassigned candidate set. The clas-
sification program was based on the wavelet coefficient features 
and valid clustering results. During classification, the threshold 
was set to the lowest mean value obtained from the inter-class 
distances. Signal instability and electrode movement can cause 
MUAP shapes to vary from discharge to discharge. Therefore, a 
weighted averaging technique reported by Zennaro et al. (7) was 
utilized to adapt the MUAP class template.

resolving superimposed Waveforms 
Using the Peel-Off approach Based on 
Pseudo-correlation
During muscle contraction, a portion of the entire MU pool is 
recruited and the intermittent firing pattern of each recruited 
MU can be extracted as its MUAPT. Multiple MUs that discharge 
simultaneously or within a very short interval will results in the 
superposition of MUAP waveforms. Resolving these waveforms 
is the process of identifying the overlapped MUAP segments and 
splitting them into their constituent single MUAPs. In our study, 
a peel-off approach based on PsC was adopted to resolve the 
superimposed waveforms after the isolated MUAP segments had 
been successfully classified.

According to Florestal et al. (5), PsC outperforms standard 
techniques such as cross-correlation-based matched filters and 
the normalized Euclidean distance. In addition, the PsC between 
superimposed segments and MU template waveforms can be 
calculated directly without alignment. Therefore, it is feasible 
to use PsC as the similarity measure between the superposed 
segments and MU template waveforms. The PsC between a 
superimposed segment and a MU template waveform at point 
k, PsCk, is defined (5, 29) as

 

PsC
x y x y x y

x y
k

j k j j k j j k j
j

m

j k

=
− −+ + +

=

+

∑( )

(

| | max{| |,| |}

max{| |,|

1

jj
j

m k n
|}

, , , , ,
)2

1

1 2

=
∑

= 

 (4)

where xj is clustered MU template waveform, yj the superimposed 
segment, and m and n are the size of x and y, respectively.

The waveform that has the greatest PsC at the point k was 
regarded as the optimal match and was first subtracted from the 
superimposed segment aligned at point k. The matched MUAP 
waveform and its firing time k were then, respectively, assigned 
to the corresponding MU cluster and associated firing time array. 
Then the MUAP waveform that had the second greatest PsC was 
similarly subtracted and assigned. The resolving process contin-
ued repeating until segment subtraction resulted in a negative PsC 
value or an increase in the residual signal energy. In our work, the 
number of the iterations was experientially set to 3, which was the 
maximal MUAP number included in the superposed waveform.

Performance indices
The following three measures related to the MUAP waveform 
detection and the EMG decomposition process were used to 
evaluate the performance of the EMG decomposition system.

Detection Ratio
The detection ratio (DR%) was used to measure the rate of the 
successful detection of active MUAP segments. The DR% is 
defined as

 
DR%

NM
NM

detected

total

= ×100%,
 

where NMtotal is the total number of MUAP segments—either 
the size of recruited library of MUs (for synthetic signals) or the 
number of MUs manually obtained by a neurophysiologist (for real 
signals)—and NMdetected is the number of MUAP segments detected.

The Assignment Ratio
The assignment ratio (AR%) measures the rate of MUAP assign-
ment using the proposed EMG decomposition framework. It is 
defined as

 
AR%

NM
NM

unassigned

detected

= − ×1 100%,
 

where NMunassigned is the number of MUAP segments not assigned 
by the EMG decomposition framework and NMdetected the total 
number of MUAP segments detected.
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TaBle 1 | Decomposition results from synthetic and real EMG signals.

eMg data synthetic eMg real eMg (healthy) real eMg (stroke)

DR% 100 100 100
AR% 99.79 98.66 91.52
CCR% 87.23 88.63 94.45

DR%, detection ratio; AR%, assignment ratio; CCR%, correct classification rate.

FigUre 1 | (a–c) are, respectively, the real EMG signals from a healthy subject, the assigned motor unit action potential (MUAP) signals, and the residual signal by 
subtracting the assigned MUAP signals from the original signal. (D–F) are, respectively, the details of a section of signals denoted in panels (a–c).
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The Correct Classification Rate
The correct classification rate (CCR%) assesses the performance 
of the whole EMG decomposition system. It is defined as the 
ratio of NMcorrect (the number of correctly decomposed MUAPs) 
to NMdetected (the total number of MUAPs detected):

 
CCR

NM
NM

correct

detected

% %.= ×100
 

resUlTs

In our study, the DR% of the MUAP detection program for all real 
and generated EMG recordings reached 100% by using the novel 
MUAP segment detection scheme.

The complete decomposition of the superimposed waveforms 
resulted in a marked improvement in the assignment ratio. In this 

paper, the average assignment ratios (AR%s) of our decomposi-
tion system were 99.79% for the synthetic signals, and 98.66 and 
91.52% for real recordings from healthy and stroke participants, 
respectively (listed in Table 1).

Figures 1A,B show representative examples of real de-noised 
EMG signals and the correspondingly assigned MUAP signals, 
respectively. After decomposition, the classified MUAPs were 
subtracted from the original EMG signal in order to obtain the 
residual signal, which is shown in Figure 1C. A total of 216 active 
MUAP segments were detected with an AR% of 99.54% for the 
signals shown in Figure 1. Only one MUAP segment in this case 
(marked by the bold arrow in Figure 1D) could not be assigned 
by the proposed framework.

Figure 2 illustrates representative decomposition results based 
on the synthetic EMG signal, together with the firing patterns and 
the six identified MUAP template waveforms. Figure 2A shows 
the MUAP template waveforms decomposed from the signal 
shown in Figure 2B. Figure 2B depicts the de-noised synthetic 
EMG signal. Figure  2C demonstrates the corresponding MU 
firing patterns for each MU class identified by the decomposition 
framework.

Figure  3 then provides one example of the decomposition 
results from a stroke patient. Figure  3A shows the MUAP 
template waveforms for the three MUAPTs identified from the 
de-noised signal (shown in Figure  3B). Figure  3C shows the 
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FigUre 2 | An example of decomposition result based on a synthetic EMG signal. (a) The motor unit action potential template waveforms of all motor unit action 
potential train decomposed from the signal shown in (B). (B) The de-noised signal based on a synthetic EMG signal. (c) The resulting motor unit (MU) firing patterns 
for each MU classes identified by the whole decomposition system.
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corresponding MU firing patterns for each MU class identified 
by the decomposition framework.

Table 1 illustrates the decomposition results based on the syn-
thetic and real EMG signals. The decomposition results from the 
synthetic signals were compared to the known information of the 
EMG model. The results of the real EMG signals were compared 
to manual decomposition analysis (assumed gold-standard), 
performed by an experienced neurophysiologist.

According to Table  1, the CCR% was 87.23% for synthetic 
EMG signals, and 88.63 and 94.45% for real recordings from 
healthy subjects and stroke patients, respectively.

Accurate clustering results are critical to the decomposition 
performance. In our study, we performed a cluster refining step 
to improve the accuracy of results. Cluster refinement in this case 
included deleting invalid clusters and subdividing one incorrectly 
identified cluster into two or more clusters. Figure 4A demon-
strates a MU cluster after preliminary clustering, where two clus-
ters were found incorrectly grouped due to similarities in their 
waveforms. Further clustering refinement was performed based 
on methods described in Section “Clustering and Refinement 
Using the Minimum Spanning Tree (MST) Method,” where an 
MST method was adopted to further subdivide the erroneous 
cluster into two separate MU clusters, shown as in Figure  4B. 
Following this method, the erroneous cluster was successfully 
subdivided into two separate MU clusters.

The whole analysis process was conducted using a custom 
MATLAB script and performed on 2.5 GHz Intel i7 desktop com-
puter. The average processing time for decomposing a 10-s-long 
EMG data was approximately 15–20 min.

DiscUssiOn

EMG decomposition has been widely employed to provide 
information of alterations in motor unit characteristics in stroke 
patients (30). Achieving the complete and accurate motor unit 
firing pattern is vital for the understanding of pathological altera-
tions in patients, as well as for clinical diagnosis and manage-
ment. Therefore, the goal of this EMG decomposition framework 
is to identify complete MUAP segments in the EMG signal and 
classify them accurately into their constituent MUAPTs. Both 
the template waveforms and firing rates of the MUAPTs are 
largely dependent on the configuration of the needle electrode, 
the relative position of electrode to the muscle fibers, the level of 
contraction, and the pathological condition of the muscle. In this 
study, we developed an EMG signal decomposition framework 
based on a novel MUAP segmentation method and the resolu-
tion of superimposed MUAP waveforms. Results showed strong 
decomposition performance with high values for DR%, AR%, 
and CCR%. It should be noted that the CCR%s obtained for the 
stroke subject EMG signals were higher than those found in the 
other two conditions (signals from simulated and healthy sub-
jects), signifying a potential clinical application for this method 
in the assessment of neurogenic disorders. This is probably due 
to a well-studied denervation process that occurs in post-stroke 
patients (30). Compromised MU recruitment in these cases often 
leads to sparser MU firing patterns and consequently higher 
identification accuracy.

A high DR% value is critical, as the successful extraction of 
MUAPs greatly impacts subsequent decomposition procedures 
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FigUre 3 | The results of decomposition based on the real EMG signals from a stroke subject. (a) Motor unit action potential template waveforms of all motor unit 
action potential train decomposed from the signal shown in (B). (B) The de-noised signal based on the stroke EMG signal. (c) The relative motor unit (MU) firing 
patterns for each MU classes identified by the whole decomposition system.
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and, consequently, the AR% and CCR%. All active MUAP 
segments and resting segments comprise the whole EMG 
signal. Due to signal disparities, direct identification of MUAP 
segments is more difficult than the identification of the resting 
epochs. Thus, we utilized a wavelet hard-threshold estimation 
technique to attenuate instrumental and background noises, 
then applied a novel segmentation scheme based on resting 
segment detection. All active MUAP segments were further 
detached by subtracting rest segments from the original signal. 
The employment of a modified segmentation scheme greatly 
enhanced the performance, achieving a DR% value of 100% and 
demonstrating the complete detection of all active MUAP seg-
ments. Conventional segmentation methods often fail to identify 
some active MUAPs, even when using different rigid detection 
thresholds, because of the abnormal waveform complexity 
(26). Therefore, this complete detection of MUAPs—reaching 
a DR% of 100%—is unlikely to be achieved using conventional 
approaches.

Motor unit action potential segments detected in the 
aforementioned manner can be either isolated MUAP seg-
ments or superimposed MUAP waveforms. Then isolated/
overlapped MUAP segments were separated based on either 
tetra- or hexaphasic waveform recognition methods. Segments 

with more than four MUAP phases for healthy subjects or six 
phases for stroke subjects were generally recognized to contain 
superposed MUAPs and separated for further analysis to resolve 
the superposition. Thus, by grouping segments based on their 
isolated MUAP characteristics in the first instance, the effi-
ciency of the decomposition system was improved greatly. The 
implemented main peak alignment method further served to 
improve the methodical distinguishability of MUAPs originat-
ing from different MU clusters, resulting in more accurate and 
efficient results.

In our study, the MUAP waveforms were clustered using a 
single-linkage hierarchical clustering algorithm. This technique 
is suitable for the clustering of MUAPs with slow variation 
and does not depend on the presentation order of the samples. 
However, the results of clustering are very sensitive to the value of 
the discriminatory threshold. Clustering results were, therefore, 
verified through visual inspection. Invalid clusters were excluded 
or subdivided again using the MST algorithm to ensure that all 
final clusters are valid. In addition, the fuzzy k-means algorithm 
is based on the minimization of a global cost function, which 
is related to its classification ability. It is our ongoing effort to 
further integrate these two clustering algorithms and, in doing 
so, achieve optimal clustering results.
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To obtain a thorough EMG decomposition, superimposed 
waveforms need to be resolved into their constituent MUAPs. 
This stage is the most time-consuming and critical procedure 
in the whole EMG decomposition framework. As it is essential 
to obtain a high-level AR% and complete information, the con-
sistent achievement of AR%s over 90% by the new framework 
represents a marked improvement over the 67% classification 
rate achieved by our previous methods (25). Two typical types 
of superposed waveform resolution approaches have been com-
monly employed: peel-off and modeling (31). In this study, we 
resolved superimposed waveforms using the peel-off approach 
based on a pseudo-correlation method that improves resolution 
efficiency. Despite its apparent efficacy, it should be noted that the 
peel-off method is incapable of identifying MUAP waveforms that 
superimpose in a destructive manner (1). Waveform resolution 
based on modeling can yield a more accurate separation but is 
also more time-consuming. Therefore, identifying a method that 
improves the efficiency and accuracy of superimposed waveform 
decomposition remains a focus for further exploration.

In summary, an effective EMG decomposition framework was 
developed. First, we utilized a novel MUAP segment extraction 
method to detect all active MUAP segments. This procedure was 
based on amplitude threshold detection and resting segment 

recognition. We then grouped the MUAP segments into single 
and overlapped waveforms using tetraphasic or hexaphasic 
detection schemes to save buffer size and improve computational 
efficiency. Third, all recognized single MUAP segments were 
aligned with the main peak at the center for the effective assess-
ment of waveform similarities. Finally, we resolved superimposed 
waveforms using a peel-off approach based on a measure of PsC. 
By incorporating multiple analytical approaches, this developed 
EMG decomposition framework achieves accurate and complete 
results without hampering computational speed, which we 
believe will greatly benefit clinical EMG utilities.
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The study protocol was approved by the West China ethics com-
mittee of Sichuan University and the Institutional Review Board 
of Third Xiangya Hospital, Central South University.
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XR led the development of the proposed decomposition algorithm, 
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FigUre 4 | The result of the cluster refinement. (a) A motor unit (MU) firing incorrectly clustered after original clustering. (B) Two correct MU firings (displayed, 
respectively, in black and blue) subdivided by cluster refinement.
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Whether stroke-induced paretic muscle changes vary across different distal and proxi-
mal muscles remains unclear. The objective of this study was to compare paretic muscle 
changes between a relatively proximal muscle (the biceps brachii muscle) and two distal 
muscles (the first dorsal interosseous muscle and the abductor pollicis brevis muscle) 
following hemisphere stroke using clustering index (CI) analysis of surface electromyo-
grams (EMGs). For each muscle, surface EMG signals were recorded from the paretic 
and contralateral sides of 12 stroke subjects versus the dominant side of eight control 
subjects during isometric muscle contractions to measure the consequence of graded 
levels of contraction (from a mild level to the maximal voluntary contraction). Across all 
examined muscles, it was found that partial paretic muscles had abnormally higher or 
lower CI values than those of the healthy control muscles, which exhibited a significantly 
larger variance in the CI via a series of homogeneity of variance tests (p < 0.05). This 
finding indicated that both neurogenic and myopathic changes were likely to take place 
in paretic muscles. When examining two distal muscles of individual stroke subjects, 
relatively consistent CI abnormalities (toward neuropathy or myopathy) were observed. 
By contrast, consistency in CI abnormalities were not found when comparing proximal 
and distal muscles, indicating differences in motor unit alternation between the proximal 
and distal muscles on the paretic sides of stroke survivors. Furthermore, CI abnormali-
ties were also observed for all three muscles on the contralateral side. Our findings help 
elucidate the pathological mechanisms underlying stroke sequels, which might prove 
useful in developing improved stroke rehabilitation protocols.

Keywords: muscle weakness, clustering index, surface electromyography, neuromuscular changes, stroke 
rehabilitation

inTrODUcTiOn

Muscle weakness is the most common clinical symptom of many neuromuscular diseases (such as 
stroke and spinal cord injury) and it greatly impacts the day-to-day quality of life for patients and 
their caregivers (1, 2). Stroke studies have reported that weakness related to voluntary muscle con-
traction is a primary cause of impairments, including spastic hypertonia and abnormal movement 
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coordination (3). This contributes to impaired motor control (4). 
Therefore, it is of great importance to understand the specific 
pathological mechanisms underlying muscle weakness after 
a stroke, which is a prerequisite for designing effective stroke 
rehabilitation protocols.

The interruption of the corticospinal tract and muscle atro-
phy are commonly accepted as two potential contributors to 
the muscle weakness of stroke survivors (5, 6). How a cerebral 
lesion affects motor unit (MU) survival and function, however, 
still remains ambiguous. Since the MU offers a structure–func-
tion framework for understanding the neuromuscular system, 
investigations into MU alternations provide valuable insights 
into the neuropathology of stroke-induced muscle weakness. 
Many muscle biopsy studies have reported various contradic-
tory findings. For example, little difference was found between 
the paretic side and contralateral side of stroke survivors even 
within populations of stroke subjects and control subjects (7, 8). 
However, some other muscle biopsy studies showed atrophy of 
type II fibers, small angular fibers, grouped atrophy, and fiber-
type grouping (9, 10), which all indicated degeneration of MUs. 
The same results were observed in electrophysiological studies. 
Some studies have found spontaneous fibrillation potentials and 
positive sharp waves in paretic muscles (6, 9, 11). Furthermore, 
reduced compound muscle action potentials and MU number 
estimates were also reported (12–14). Nevertheless, other 
electrophysiological studies did not report consistent findings 
(15–17). These studies were associated with either invasive pro-
cedures or laborious electrical stimulations. In contrast, surface 
electromyogram (EMG) is an alternative approach for examining 
MU alternations in a noninvasive manner. Surface EMG studies 
in stroke patients have been previously performed through an 
EMG-force relation (18–20), peak amplitude distribution (21), 
and power spectral analysis (22). These studies have reported 
mixed observations, suggesting that there are a variety of complex 
neural and muscular changes collectively contributing to muscle 
weakness following a stroke (23–25).

However, different choices with respect to the muscles 
examined might be another explanation for the previously mixed 
observations. Muscles in various body parts often show different 
changes poststroke. For example, in an experiment involving 
simultaneous flexion of proximal and distal paretic muscles of 
stroke survivors, which included the deltoids, biceps, and wrist/
finger flexors, the wrist/finger flexors had the lowest coefficient of 
variation (26). Furthermore, the finger flexor was also reported 
to have a higher motor unit action potential (MUAP) median 
frequency and larger range of MUAP RMS amplitude than biceps 
brachii (BB) muscles following stroke (27). One possible hypoth-
esis to explain this is that the pathological MU alternation may 
take place in different muscles to different degrees and this might 
vary from proximal to distal positions. Therefore, it is necessary 
to explore whether there are differences in the MU alternation 
between proximal and distal muscles on the paretic sides of stroke 
survivors.

This study presented a novel study of the proximal and 
distal muscles of stroke subjects using the clustering index (CI) 
method. The CI method, originally proposed by Uesugi et  al. 
(28), is applied on surface EMG signals to quantitatively assess 

the clustering degrees for the signals. The clustering or density 
degree of surface EMG signal, as characterized by the value of CI, 
can be a useful indicator of neuromuscular changes. It was found 
that highly clustered EMG interference patterns can be a sign 
of neurogenic changes, while flat and dense EMG interference 
patterns might indicate myopathic changes (28–30). Thus, the 
CI method has strong diagnostic power in differentiating neu-
rogenic and myopathic changes (28). Taking advantage of such 
a powerful tool, we aimed to discriminate neurogenic and/or 
myopathic changes taking place in the paretic muscles of stroke 
survivors and we compared these changes among the proximal 
and distal muscles examined. Similarities or differences between 
the proximal and distal muscles after a stroke, if discernable by 
a CI analysis, might help to understand the specific pathological 
mechanisms underlying muscle weakness. This would contribute 
to the development of a more accurate rehabilitation protocol 
targeting different muscles.

MaTerials anD MeThODs

subjects
Twelve stroke subjects (S1–S12, age: 63 ± 12 years, mean ± SD, 
range: 46–82  years) and eight age-matched healthy control 
subjects (C1–C8, age: 58  ±  10  years, range:48–75  years) were 
recruited for this study, which was approved by the Medical 
Ethics Review Committee at the First Affiliated Hospital of Anhui 
Medical University (FAHAMU, Hefei, Anhui Province, China). 
Study inclusion criteria included: (1) experience of first stroke 
with an initial onset >14 days; (2) medically stable with clear-
ance to participate; (3) experience of hemiparesis with mild to 
severe muscle weakness on the paretic side; (4) ability to fully or 
partially perform voluntary contraction of the three examined 
muscles on the paretic side, including the BB muscle, the first 
dorsal interosseous (FDI) muscle, and the abductor pollicis brevis 
(APB) muscle; (5) no history of severe muscle spasticity for the 
three examined muscles based upon a modified Ashworth scale 
not exceeding 1 for any muscle; and (6) no history of concurrent 
neurological disorders or other symptoms (such as neuropathy 
or radiculopathy). All stroke subjects were recruited from the 
inpatient department of rehabilitation medicine in the FAHAMU. 
Clinical assessments performed prior to each patient’s participa-
tion included both an assessment of motor recovery after a stroke 
based on the Brunnstrom stage and the upper-extremity compo-
nent of the Fugl-Meyer test. Detailed information pertaining to 
the stroke subjects is presented in Table 1. Written consent was 
obtained from all subjects before the initiation of experiments.

experiments
Ag/AgCl disc surface electrodes (Junkang, Shanghai, China) with 
a recording diameter of 10 mm were used for recording surface 
EMG signals. The surface EMG data were collected from the 
biceps, FDI muscle, and APB muscle on both sides of all stroke 
subjects and on the dominant side of all control subjects. After 
the skin was prepared with medical alcohol, a pair of electrodes 
was firmly attached to each targeted muscle and oriented in the 
direction of the muscle fibers with an inter-electrode distance 
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Table 1 | Demographic information for each stroke subject.

iD # age in a range 
(years)

Duration 
(days)

Paretic 
side

b stage F-M Mas

S1 75–80 27 L 3 33 0
S2 71–75 89 L 2 15 0
S3 51–55 153 L 5 45 0
S4 81–85 34 L 5 55 0
S5 45–50 30 L 4 43 0
S6 55–60 71 L 4 21 0
S7 71–75 31 L 4 39 0
S8 55–60 47 R 3 38 0
S9 51–55 51 R 3 42 0
S10 61–65 28 L 2 29 0
S11 81–85 24 R 5 37 0
S12 45–50 45 L 4 34 0

B stage, Brunnstrom stage; F-M, upper-extremity Fugl-Meyer assessment; MAS, 
Modified Ashworth Scale.

FigUre 1 | The placement of three surface electromyogram (EMG) sensors that targeted three muscles in each arm.
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During the experiment, subjects were seated in a comfortable 
chair with their tested arm bent approximately 90° and placed on 
a height-adjustable table. The stroke patients were also allowed 
to lie in an examination bed with their tested arm held still and 
placed against the inside of the body. The recordings were per-
formed on each side of the subject in random order.

For each subject, the experiment was carried out in multiple 
trials. In each trial, the subjects were asked to perform a specific 
task according to the main function of the muscle being exam-
ined. We designed specific tasks to examine the APB, FDI, and 
BB muscles, including adducting the thumb, abducting the index 
finger, and elbow flexion, respectively. In a single trial, each task 
was performed as isometric muscle contractions with different 
contraction levels ranging from a mild to submaximal to, ulti-
mately, maximal voluntary contractions (MVC). The contraction 
strengths roughly corresponded to 10, 30, 50, 70, and 90% of the 
full MVC. The contraction strengths were subjectively determined 
by each subject. In this regard, the MVC presented here was not 
accurately measured, but instead roughly estimated as the maxi-
mal level that each subject was encouraged to reach. At the same 
time, a resistance force was provided by the experimenter to help 
generate an isometric contraction. The corresponding resistance 
force was almost equal to the force provided by each subject.  

(center-to-center distance) of about 20 mm to produce a single-
differential channel of surface EMG signals. A round electrode 
was placed on an arm fossa cubitalison on the same side as a 
reference. Figure  1 illustrates the electrode placement on the 
right arm as an example.
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In order to examine the APB muscle, a resistance force on the tested 
thumb was generated. As for the FDI muscle, a resistance force was 
applied on the index finger. When the BB muscle was examined, 
the subjects were instructed to perform elbow flexion with their 
elbow flexed at 90°, while a resistance force was applied on the 
inner side of the forearm. We encouraged the subjects to remain 
as stable as possible for at least 3 s during each type of contraction 
in order to ensure that the interference EMG patterns recorded 
for each trial exhibited a sequence of graded contraction levels. 
For each task, multiple (almost 3) trials were performed in order 
to obtain a sufficient amount of data. Sufficient rest was allowed 
between consecutive trials to avoid mental and muscular fatigue.

Surface EMG data were recorded using a custom-made data 
acquisition system supporting up to 128 EMG channels. Each 
recorded EMG channel was amplified by a two-stage ampli-
fier with a total gain of 60 dB, which was band-pass filtered at 
20–500  Hz and subsequently converted into digitalized data 
with a 16-bit A/D converter. The sampling rate for each chan-
nel was set to 1,000 Hz. All recorded data were transferred to a 
laptop computer via a USB cable for off-line analysis in Matlab  
(The Mathworks, MA, USA) using customized programs.

Data analysis
Each surface EMG channel was preprocessed using a zero-lag 
fourth-order Butterworth band-pass filter at 20–500  Hz to 
eliminate low-frequency motion artifacts and high-frequency 
interference. If necessary, a set of second-order notch filters at 
the 50-Hz power line interference and its harmonics were also 
applied.

Since we collected data from three different muscles, the 
following data analyses were performed on individual muscles. 
Specifically, for each muscle, data segmentation was done after 
preprocessing. According to the experimental protocol, the 
recorded surface EMG data in each trial generated graded inter-
ference patterns. Thus, a series of non-overlapping epochs with 
a 1-s duration were segmented from the recorded data, using a 
straightforward scheme based on the signal amplitude threshold-
ing (31). These epochs were selected from stable isometric muscle 
contractions. Those epochs with varying contraction strengths 
were discarded. We obtained approximately 10 epochs from each 
trial, including epochs at different force strengths. Finally, for 
each muscle, we obtained approximately 30 epochs from different 
force strengths. The following CI analysis was performed on these 
epochs from each muscle.

In order to calculate CI values, the signal for each epoch was 
divided into a series of non-overlapping consecutive windows of 
the same length. We set the window length as 15 ms, which was 
considered to include approximately one individual MUAP in this 
study (28–30). We assumed that there were k windows derived in 
an epoch, and the area of each window was Ai. The differential 
sequences for the area values between every consecutive window 
(DAi), every second window (DBi), and every third window (DCi) 
were defined as follows:

 DA for i iA A k= − = −+1 1 2 1i i, , , , ,  (1)

 DB for i i iA A i k= − = −+2 1 2 2, , , , ,  (2)

 DC for i i iA A i k= − = −+3 1 2 3, , , , .  (3)

Consequently, we can calculate CI according to the following 
equation:
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The CI values ranged from 0 to 1, while the higher values were 
derived from signals with higher area clustering degrees, which 
appeared isolated in large action potential spikes (30).

Since the CI value is affected by muscle contraction strength, 
its effect needed to be taken into consideration prior to the 
establishment of diagnostic criteria. A linear relationship was 
reported between the CI value and the signal area (representing 

the muscle contraction strength calculated by Area =
=
∑
i

k

iA
1

) of 

the epochs from all healthy control subjects using a double-
logarithmic scale, and it was recommended by the proposer of 
the CI method. We found this was also the case for our data and 
the processed the data in the same way. Therefore, each analysis 
epoch was expressed as a point in the CI-area plot with the value 
of log (Area) and log (CI). For each muscle examined, the points 
derived from all the analysis epochs were scattered to form a data 
cloud in a CI-area plot. More details can be found in Figure 2 and 
the Section “Results.”

Quantification of the normal data reference was the prereq-
uisite for identifying muscle abnormalities using the CI method.  
To define the normal range in the CI-area plot, we performed a 
linear regression analysis on epochs (1 ≤ Area ≤ 100 μV·s) col-
lected from the corresponding control muscles for both log (CI) 
and log (Area). Subsequently, for each epoch, the deviation of 
CI on the logarithmic scale from the linear regression line was 
calculated. These deviation values were averaged over all the 
epochs from each examined muscle, and a mean residual (Rm) 
was obtained. The Rm was then used to assess the presence of 
abnormalities for each muscle.

Afterward, the mean μR and SD σR of the Rm values for all 
corresponding muscles of all controls were calculated. On this 
basis, a Z-score for the Rm, which was calculated by (Rm − μR)/ σR, 
was defined for a tested muscle in a given subject. According to 
the original literature regarding the CI method (28, 30), Z-scores 
were used as the final representative indicator for the diagnostic 
assessment. We defined a muscle with a Z-score outside ±2.5 
as abnormal. Assuming that the normal data obey a Gaussian/ 
normal distribution, probability for a Z-score outside ±2.5 (with 
a deviation of 2.5 times SD from the mean) is less than 1.25%. 
With such a low probability, a Z-score outside this range was 
defined to be abnormal. Further, muscle with a Z-score higher 
than +2.5 was diagnosed as neurogenic, while a Z-score lower 
than −2.5 indicated a myopathic change.

statistical analysis
We first performed a series of homogeneity of variance tests 
(F-tests) on Z-scores derived from any two of the three groups 
(the paretic, the contralateral, and the control) for each of the 
three examined muscles/positions. Then, a series of Student’s 
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FigUre 2 | The clustering index (CI)-area plot [(a,c,e) left panel] and the resultant Z-scores [(b,D,F) right panel] using CI analysis of the biceps brachii (BB) muscle 
(a,b), the first dorsal interosseous (FDI) muscle (c,D), and the abductor pollicis brevis (APB) muscle (e,F). In the CI-area plots, the red dots represent the paretic 
muscles, the black circles represent the contralateral muscles, and the blue rhombuses represent the control muscles. In the subplots for the Z-scores, the muscles 
with Z-scores outside the normal range and some approximating to the normal range are marked with their subject IDs.
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t-tests were performed to compare the Z-scores derived from 
both the paretic muscle group and the control muscle group for 
each of three examined muscles/positions. Moreover, a two-way 
repeated-measure analysis of variance (ANOVA) was applied to 
the Z-scores with both sides (two observation levels: contralateral 
and paretic) and muscles/positions (three observation levels: BB, 
FDI, and APB) considered as within-subject factors. When neces-
sary, post hoc pairwise multiple comparisons with a Bonferroni 
correction were used. The level of statistical significance was set 
to p < 0.05 for all analyses. All statistical analyses were completed 
using SPSS software (ver. 16.0, SPSS Inc., Chicago, IL, USA).

resUlTs

Figure 2 shows the results of the CI-area plot and the Z-scores for 
the signals of all three muscles examined on the contralateral and 
the paretic sides of all stroke subjects and on the dominant sides 
of all control subjects. In the CI-area plots, we observed that all 
the control data were distributed over the normal area (spanning 
within ±2.5 times the SE of the linear regression), while some 
epochs from the paretic and contralateral muscles were scattered 
outside the normal range. In particular, a portion of the epochs 
from the paretic muscles were found to be distributed beyond or 
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below the normal range. Furthermore, epochs from the paretic 
muscles were always distributed at a narrower horizontal range 
when compared with those from the contralateral muscles and 
the control muscles.

Of all the control subjects, the Z-scores derived from the BB 
muscle (0.00 ± 1.00, mean ± SD), the FDI muscle (0.00 ± 1.00), 
and the APB muscle (−0.13 ± 0.99) scored within the predefined 
normal range from −2.5 to +2.5. In contrast, on the paretic side of 
all stroke subjects, the Z-scores were reported to be −1.33 ± 2.83 
for paretic BB muscles, 0.23 ± 2.54 for paretic FDI muscles, and 
0.068 ± 2.28 for paretic APB muscles. Some subjects displayed 
Z-scores outside the normal range. This was true for each of the 
three paretic muscles examined. On the contralateral side of all 
stroke subjects, the Z-scores were −1.30 ± 1.11 for the contralat-
eral BB muscle, −1.41 ± 1.46 for the contralateral APB muscle, 
and 0.67 ± 1.28 for the contralateral FDI muscle.

The homogeneity of variance test revealed that paretic mus-
cles had significant larger variances in Z-scores than the control 
muscles (p  <  0.05) for each of the three muscles examined.  
In contrast, both the contralateral muscles and the control 
muscles exhibited homogeneity of variance for the Z-scores, and 
no significant differences were observed between them for any 
of the three examined muscles (p > 0.05). The Student’s t-tests 
revealed no significant differences in Z-scores between the 
paretic muscles and the control muscles (p > 0.05). In addition, 
the two-way repeated-measure ANOVA only yielded an overall 
significant effect of muscle/position (F = 6.04, p = 0.008), while 
the side-related effect (F = 0.299, p = 0.595) and the interaction 
(F  =  2.071, p  =  0.15) between both factors were found to be 
insignificant. The FDI muscle was found to yield higher Z-scores 
than any of the other two muscles, and statistical significance 
was obtained by post  hoc pairwise comparisons (p  =  0.006 for 
FDI versus BB muscle; p = 0.008 for FDI versus APB muscle).  
No statistical significance was found between the BB muscle and 
the FDI muscle (p = 0.329).

In particular, on the paretic side, one BB muscle from the 
subject S1, four FDI muscles from S1, S7, S11, and S12, and two 
APB muscles from S1 and S7, all had Z-scores greater than +2.5. 
These were diagnosed as being neurogenic changes. At the same 
time, four BB muscles from S4, S7, S10, and S12, two FDI muscles, 
and two APB muscles both from S5 and S8 all had Z-scores below 
−2.5. For these cases, myopathic abnormalities were reported. 
The paretic muscles that are not mentioned above had Z-scores 
within the normal range. Moreover, on the contralateral sides, 
two BB muscles from S4 and S3, in addition to two APB muscles 
from S5 and S3, had Z-scores below −2.5. Meanwhile, two FDI 
muscles from S2 and S5 had Z-scores above +2.5. The other 
remaining contralateral muscles were all reported to be normal.

DiscUssiOn

In this study, we examined the FDI muscle, APB muscle, and 
BB muscle on both sides of all stroke subjects, in addition to 
the dominant sides of all control subjects using the CI method. 
The CI method was employed because of its reported diag-
nostic power in discriminating neuromuscular changes. Each 

paretic muscle examined showed diverse CI alternations when 
compared with the corresponding control muscle. Moreover, 
abnormalities in the two distal muscles (the FDI muscle and 
the APB muscle) have been obviously consistent, while this has 
not been the case for the proximal muscle (the biceps) when 
compared to distal muscles at the individual level. Regardless, 
abnormalities have also been reported on the contralateral side 
using the CI analysis.

Another reason for applying the CI method was its simple and 
convenient protocol as a result of manipulating and examining 
surface EMGs. Aside from its noninvasive aspects, the protocol 
does not involve accurate measurements of muscle force with a 
load cell, which is regarded to be tedious and time consuming 
(19–22). Although previous studies reported that accurate force 
measurements were crucial for providing substantial information 
(4) during routine clinical EMG examination, clinical electro-
physiologists offer appropriate resistance to the tested muscle to 
estimate its level of activation (28–30). The use of this approach 
allows this study to have potentially wide applications in clinical 
practice.

This study confirms the previous report that CI analysis of 
surface EMG signals is capable of revealing complex neuromus-
cular changes occurring in paretic muscles following a stroke 
(29). For each examined muscle, some stroke subjects showed 
abnormally high Z-scores on the paretic side, indicating neuro-
pathic changes. The abnormal increase in CI values in paretic 
muscles may be attributed to MU loss, reorganization of the 
MU architecture [including fiber-type grouping (10, 14)], and 
muscle fiber reinnervation (21, 23, 24, 32, 33), impairment of 
MU control properties [such as compression of MU recruitment 
threshold (18, 21, 34)], an increase in MUAP synchronization 
(35–37), and a reduction in MU firing rates (37–39). All of 
these factors are very likely to occur after a stroke as reported 
by previous studies. For some paretic muscles, we observed an 
abnormal decrease in CI leading to Z-scores that were lower than 
the predefined normal range, indicating myopathic changes.  
A CI decrease means that a flatter and denser surface EMG was 
very likely due to muscle fiber atrophy (9, 40, 41) and a selective 
degeneration of the large and superficial MUs (41–43). Both 
phenomena have been reported in stroke studies. For the other 
paretic muscles, their Z-scores fell within the normal range. 
However, their experience of substantial muscle weakness needs 
to be carefully considered. Two primary reasons may relate to 
the “normal” CI examination. One reason is a combination or 
canceling effect of both neurogenic and myopathic processes. 
The other is a deficit of the descending central drive. In the  
event of upper motor neuron lesions, the lower motor neurons 
and the muscles themselves might still function more or less 
normally without significant degeneration (25). Therefore, the 
paretic muscles that do not display EMG abnormalities still 
suffer from substantial muscle weakness.

It is worth noting that in the original CI method, CI decreases 
are mainly attributed to myopathic changes. The differential loss 
of relatively larger MUs is regarded as leading to the CI decreases 
in this study, but it is only a factor indicating neurogenic changes. 
This limits the traditional distinction between neurogenic and 
myopathic changes using the CI method. Therefore, it is necessary 
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to supplement and even revise the way CI results are interpreted 
in order to draw diagnostic conclusions given the findings from 
this stroke study. Furthermore, we find that muscle fiber atrophy 
and the differential loss of larger MUs are both factors potentially 
contributing to the CI decrease. In the early phases since stroke 
onset (which is true for a majority of stroke subjects in this study), 
however, there is limited chance for the former factor to occur 
(9, 40). Therefore, the differential loss of larger MUs is regarded 
as the primary reason for the abnormal CI decrease observed in 
our study.

Across three different muscles on the paretic side, the two 
distal muscles showed almost consistent results, whereas the 
corresponding proximal muscle had obviously inconsistent CI 
scores for the same stroke subjects. This is a really interesting 
finding that needs to be further explained. The anatomical 
innervation structure would be one reason. It is well known 
that the FDI and APB muscles are dominated by the ulnar nerve 
and the median nerve, respectively, and both originate from the 
C8 andT1 spinal cord segments. In contrast, the BB muscle is 
dominated by the musculocutaneous nerve derived from the 
C5, C6, and C7 spinal cord segments. The difference in spinal 
cord segments and nerve root levels may contribute to diverse 
paretic muscle changes across both distal and proximal muscles 
at the individual subject level. This implies that the pathological 
changes as a result of the hemisphere brain damage have signifi-
cant structural characteristics.

Different muscular structures and their original character-
istics may be another reason. For example, the tissues (such as 
the fat or skin) between the electrode and the targeted muscle 
are considered to be a volume conductor likely to filter out 
high-frequency components of surface EMG signals. This effect 
of the volume conductor is always enhanced by the proximal 
BB muscles because of its thicker tissue composition compared 
to the other two distal muscles. Therefore, the ability for the 
CI-based surface EMG to discern some neurogenic changes 
(such as muscle fiber reinnervation and MU architecture reor-
ganization) might be compromised because they likely result 
in reinnervated, enlarged MUs that specifically contribute to 
high-frequency EMG activities. As mentioned above, these 
neurogenic processes should lead to a CI increase. When vari-
ous processes occur involving both concurrent CI increases and 
decreases, the reduced impact of the processes leading to a CI 
increase may collectively decrease CI values. This could account 
for the overall CI decrease in BB muscle when compared with 
the other two distal muscles.

Additionally, both of the distal muscles are regarded as 
dominantly carrying small MUs composed of slow-twitch, low-
force muscle fibers, which are suitable for fine motor control.  
In contrast, the BB muscle consists of a greater portion of larger 
MUs with faster muscle fibers that generate larger forces. It has 
been discussed above that the selective loss of larger and superfi-
cial MUs is potentially taking place in paretic muscles, leading to 
a decrease in the CI. Therefore, the BB muscle is hypothesized to 
lose its larger MUs because of the impact of a stroke, whereas this 
factor may not be evident for smaller and more distal muscles. 
This hypothesis is partially supported by our experimental data. 

Part B of Figure 2 show that 4 out of the 12 paretic BB muscles  
that had abnormally decreased CI and Z-scores, many more than 
that number (2) of distal paretic FDI and APB muscles reported 
CI abnormalities with Z-scores below −2.5. Thus, a greater pro-
portion of larger MUs in the proximal BB muscle likely degener-
ate following a stroke compared to small distal muscles like the 
FDI and APB.

It is surprising that the CI-revealed neuromuscular abnor-
malities appeared in some muscles on the contralateral side of 
stroke subjects regardless of the muscle position. This finding is 
inconsistent with our current understanding that the contralateral 
muscles are considered to be neurologically intact. The muscle 
abnormalities on the contralateral side might be attributed to 
impaired interactions in the partially damaged brain (44, 45). 
Furthermore, motor control in muscle that is compensatory on 
the contralateral side after hemiparesis is another reason (46). For 
example, changes in control strategies in the motor neuron pool 
may lead to altered MU recruitment strategies and firing proper-
ties. This finding suggests the necessity of delivering a treatment 
to the contralateral muscles during stroke rehabilitation.

The main limitation of this study was the limited choice of 
either proximal or distal muscles. Future investigations will be 
continuously performed with more muscles in order to draw 
stronger conclusions. Moreover, although CI measurements can 
provide a valuable assessment of paretic muscles, more delicate 
analyses are required to further discriminate the underlying 
complex factors contributing to the observed CI patterns (47). 
Modeling (18, 48) might be an effective approach to detect the 
CI marker’s sensitivity with respect to individual factors, which 
will help to obtain a more accurate interpretation of abnormal 
CI findings. All of these efforts will help us better understand 
muscle pathologies that arise after a stroke, which is the prereq-
uisite for designing and developing effective stroke rehabilitation 
protocols.
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purpose: Motor deficits after stroke are supposed to arise from the reduced neural drive 
from the brain to muscles. This study aimed to demonstrate the feasibility of reflecting 
the motor function improvement after stroke with the measurement of corticomuscular 
coherence (CMC) in an individual subject.

Method: A stroke patient was recruited to participate in an experiment before and after 
the function recovery of his paretic upper limb, respectively. An elbow flexion task with 
a constant muscle contraction level was involved in the experiment. Electromyography 
and electroencephalography signals were recorded simultaneously to estimate the 
CMC. The non-parameter statistical analysis was used to test the significance of CMC 
differences between the first and second times of experiments.

Result: The strongest corticomuscular coupling emerged at the motor cortex contralat-
eral to the contracting muscles for both the affected and unaffected limbs. The strength 
of the corticomuscular coupling between activities from the paretic limb muscles and 
the contralateral motor cortex for the second time of experiment increased significantly 
compared with that for the first time. However, the CMC of the unaffected limb had no 
significant changes between two times of experiments.

Conclusion: The results demonstrated that the increased corticomuscular coupling 
strength resulted from the motor function restoration of the paretic limb. The measure of 
CMC can reflect the recovery of motor function after stroke by quantifying interactions 
between activities from the motor cortex and controlled muscles.

Keywords: stroke, electromyography, electroencephalography, corticomuscular coherence, motor impairment

INtRoDUCtIoN

Stroke is one of the major diseases that cause long-term motor deficits of adults (1). However, our 
poor understanding of the mechanisms underlying motor impairments after stroke limits greatly the 
development of effective intervention and evaluation methods. In general, motor impairments after 
stroke are deemed to arise from changes in both neural and muscle properties. Poststroke changes in 
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FIgURe 1 | The motion task of elbow flexion (a) and the visual feedback information on screen (B). When the biceps brachii contracts, the wrist will press the strain 
gage and the force level can be detected. The circle can be shifted vertically by applying force to the strain gage and the position of the ring is fixed. The subject 
was requested to move the circle into the ring as soon as possible when a trial started and maintain the force until the end of a trial when the circle and the ring both 
disappeared. The force needed to shift the circle into the ring was 3 N.
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the neural system have been studied from different points of view 
such as the decreased excitability of the affected cortex (2, 3) and 
the increased inhibitory effect from the unaffected hemisphere on 
the affected hemisphere (4). Spasm and flaccid paresis of muscles 
are believed to result from the loss of control input from the brain 
at different phases after stroke. Even though stroke survivors have 
been demonstrated to have significant descending information 
flow in the affected side during the chronic period (5), there is 
evidence that poststroke impairments reflect the reduced central 
neural drive to muscles. Mima et al. and Fang et al. found that 
the functional coupling between cortical commands and conse-
quent muscle activities of stroke subjects were weaker than that 
of healthy controls (6, 7). The conduction time from the central 
cortical rhythm to peripheral oscillations in the affected side was 
significantly prolonged compared with that of the unaffected side 
after stroke (8).

It is believed that stroke interrupts the motor-related neural 
network and then reduces the neural drive to the muscles. The 
coherent activities between the motor cortex and the muscles 
are believed to reflect the synchronized discharge of corticospi-
nal cells (9). It can be estimated by analyzing the frequency 
domain coherence (10) between electromyography (EMG) 
and electroencephalography (EEG) signals termed as cortico-
muscular coherence (CMC). Although previous studies have 
demonstrated that the CMC strength of poststroke subjects was 
weaker than that of healthy controls, it is still not clear whether 
the corticomuscular coupling will enhance along with the motor 
function recovery to directly reflect the motor function state 
of paretic limbs after stroke. In the current study, a poststroke 
patient was recruited to participate in two times of experiments 
involving an elbow flexion task. The time interval between two 
times of experiments was determined to guarantee that the 
patient had obtained an obvious motor function recovery of the 
affected upper extremity. CMC from two times of experiments 
was estimated and compared to verify whether motor function 
recovery can be reflected by the change of corticomuscular 
coupling strength.

BaCKgRoUNDs

experiment and subject
An elbow flexion task was designed for the stroke patient because 
only poor rehabilitation outcomes can be generally obtained for 
hand. The force applied by the elbow flexion was monitored by a 
strain gage and fed back to the patient visually to help him finish 
the task with moderate and constant muscle contractions (11), 
because coherence analyses (12, 13) have demonstrated that the 
coupling is most pronounced in the beta-band range during 
steady muscle contractions and the beta-band CMC is assumed 
to be associated with strategies for controlling submaximal mus-
cle forces (12, 14, 15). The designed motion task and the visual 
feedback information on screen are illustrated in Figures 1A,B, 
respectively. A trial was initiated when a circle and a target ring 
showed on screen and was over when they disappeared. Each trial 
lasted 11  s and there was a 2-s long interval between adjacent 
trials. Each run contained 20 trials and each side of upper limbs 
performed two runs, respectively. The subject practiced before 
data recording until the target force could be reached within the 
first 2 s of each trial.

The Net Amps 300 system together with a polygraph input 
box (Electrical Geodesics Inc.) was selected to amplify the EEG 
and EMG signals. An elastic cap that has 128 electrodes was 
used to detect EEG activities, and EMG signals were recorded 
from the biceps brachii using two adhesive surface electrodes 
with a 2-cm interelectrode distance. The reference electrode for 
EEG recording was located at the “Cz” position. The ground 
electrode, common for EEG and EMG signals, was positioned 
on the midline of the scalp at the level of the prefrontal cortex. 
EEG and EMG signals were sampled at 1,000 Hz together with 
event markers to synchronize with force signals. Force data were 
recorded simultaneously from the strain gage at a sampling 
rate of 200 Hz. All signals were saved on a hard disk for off-line 
analyses.

The subject suffered from his first cerebral hemorrhage at the 
right basal ganglia and had paralysis of his left upper extremity. 
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FIgURe 2 | The topographies of beta-band (15–30 Hz) corticomuscular coherence with the peripheral reference of right biceps brachii (a) and left biceps brachii 
(B), respectively for the first time of experiment.

Zheng et al. CMC Reflecting Recovery of Stroke

Frontiers in Neurology | www.frontiersin.org January 2018 | Volume 8 | Article 728

His age was 35. No cognition impairment was reported. Two times 
of experiments were performed with an interval of 1 month. The 
first time was carried out 6 weeks after the stroke onset. During 
the period, the subject was in hospital and received regular reha-
bilitation trainings including physical therapy and occupational 
therapy. The Fugl-Meyer (upper limb section) score was 15 points 
for the first time of experiment and a Fugl-Meyer score of 38 
points was obtained for the second time. The subject participated 
in the experiment with the approval of the local ethics committee 
and the informed consent in accordance with the Declaration of 
Helsinki. The written informed consent was obtained from the 
subject for the publication of this case report.

Data analyses
The same CMC estimation method was used as in our previous 
study (11). Original EEG and EMG signals were first filtered 
using a two-pass finite impulse response filter with a pass band 
from 3 to 45 Hz. Artifacts caused by eye blinks, cardiac activities, 
and power-line interferences were eliminated with the independ-
ent component analysis method (16, 17). Then, EEG and EMG 
signals within the muscle contraction period of each trial were 
segmented to 1  s long segments with no overlap. EEG signals 
from all electrodes within each segment were transformed into 
the reference-free current source density (CSD) distribution 
using the scalp surface Laplacian (18–20). The CMC spectrum for 
each EEG electrode was determined by calculating the coherence 
between the corresponding CSD signal and the unrectified EMG 
signal with the multitaper method (21).

A non-parameter statistic method (22) was used to compare 
the difference of the CMC between the first and second times 
of experiments. This method can solve the unequal estimation 
bias problem and the multiple comparison problem in the 
statistical analysis of frequency domain coherence differences 
under two different conditions (22). The original CMC difference 
C1(f) − C2(f) was transformed to the z-spectrum CMC difference,
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where n1 = 1/d1 − 2, n2 = 1/d2 − 2, C1(f) and C2(f) are the CMC 
spectrum of condition 1 and 2, respectively. d1 and d2 are the 
number of degrees of freedom for coherence estimation (22). 
The procedure to estimate the p-value included several steps. 
Data segments from both conditions were first merged into 
a single set and then randomly selected to construct new data 
sets for both conditions. The result of this procedure was called 
a random partition and the corresponding Z(f) was estimated. 
A test statistic that was based on the clustering of adjacent 
frequencies (22) was extracted from Z(f) to avoid the multiple 
comparison problem. The procedures above were repeated for a 
large number of times (5,000 times), and a histogram of the test 
statistics from all random partitions was constructed. From the 
test statistic calculated with the actually observed data and the 
histogram constructed with all random partitions, the proportion 
of the random partitions that resulted in a larger test statistic than 
the observed one, i.e., the Monte Carlo p value, was calculated.

Results
The topographies of beta-band (15–30) CMC from the first and 
second times of experiments are illustrated in Figures 2 and 3, 
respectively. Figures 2A and 3A illustrate the CMC topographies 
between activities from the cortex and the right biceps brachii. 
Figures 2B and 3B show the results with the left biceps brachii as 
the peripheral reference. A consistent result was that the strongest 
CMC emerged at the contralateral motor area to the contracting 
muscles. Meanwhile, there were minor differences about the 
electrode locations where the strongest CMC showed up between 
the first and second times of experiments. They might result from 
the small shift of wearing positions of the electrode cap. Further 
statistical analyses were based on the CMC spectrum obtained 
at the electrodes where the strongest beta-band corticomuscular 
coupling emerged.

The non-parameter statistical analysis was performed to 
verify whether there were significant differences of the beta-band 
CMC between the first and second times of experiments. The 
CMC spectrum between activities from the left biceps brachii 
(affected side) and the contralateral motor cortex is illustrated in 
Figure 4A. For the first time of experiment, the spectrum peaks 
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FIgURe 4 | The corticomuscular coherence (CMC) spectrum between activities from the right motor cortex and the left biceps brachii (a) and the results of the 
corresponding statistical analysis for the beta-band CMC differences between two times of experiments (B). The CMC spectrum between activities from the left 
motor cortex and the right biceps brachii (C) and the results of the corresponding statistical analysis for the beta-band CMC differences between two times of 
experiments (D).

FIgURe 3 | The topographies of beta-band (15–30 Hz) corticomuscular coherence with the peripheral reference of right biceps brachii (a) and left biceps brachii 
(B), respectively for the second time of experiment.
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within the beta band were located at 16 and 26 Hz, respectively 
and there was a sharp decrease at 21 Hz. For the second time of 
experiment, the spectrum peaks were similarly located within 
the beta band at around 18 and 23  Hz. The beta-band CMC 
magnitude of the second time was apparently larger than that of 
the first time. The null hypothesis was that the beta-band CMC 

of the second time was not larger than that of the first time when 
muscles of the affected side contracted. The distribution of test 
statistics from 5,000 random partitions is shown in Figure 4B. 
The test statistic of the observed data was 20.05 and the result-
ing Monte Carlo p-value was 0.005. Thus, the null hypothesis 
was rejected and the beta-band CMC of the second time was 

52

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


Zheng et al. CMC Reflecting Recovery of Stroke

Frontiers in Neurology | www.frontiersin.org January 2018 | Volume 8 | Article 728

significantly larger than that of the first time when muscles of 
the affected side contracted.

The significance of the beta-band CMC difference between 
the first and second times of experiments when the right biceps 
brachii (unaffected side) contracted was also tested with the 
non-parameter statistical analysis. The CMC spectrum of both 
times of experiments is illustrated in Figure 4C. There was no 
obvious difference of the CMC spectrum within the beta band. 
The peaks were both located at approximately 24 Hz and their 
amplitudes were similar. The null hypothesis was, therefore, set to 
be that there was no significant difference of the beta-band CMC 
between the first and second times of experiments when muscles 
of the unaffected side contracted. The distribution of test statistics 
from 5,000 random partitions is shown in Figure 4D, and the test 
statistic of the observed data was 1.18 with a Monte Carlo p-value 
of 0.7306. The null hypothesis cannot be rejected and, therefore, 
it was correct.

DIsCUssIoNs

Poststroke motor deficits arise essentially from the damages to 
the descending spinal tracks. The damage makes the brain lose 
control of limb muscles. CMC is believed to be a direct measure of 
interactions between physiological oscillatory activities from the 
brain and the controlled muscles. Therefore, the corticomuscular 
coupling strength might be weakened by stroke theoretically. 
However, it is not known whether stroke survivors can regain the 
normal strength level of corticomuscular coupling after motor 
function recovery. The most significant result of the current study 
was that the corticomuscular coupling strength between activities 
from the paretic limb muscles and the contralateral motor cortex 
increased along with the recovery of the patient’s paretic limb. 
However, the CMC of the unaffected limb had no significant 
changes, which demonstrated that the familiarization with the 
task could not contribute to the increase of the corticomuscular 
coupling strength in the current study. Therefore, the increased 
coupling strength of the affected limb would only result from the 
motor function recovery of the paretic upper limb. This means 
that the measure of CMC can reflect the change of abilities for the 
brain to control muscular activities after stroke. Further studies 
will recruit more stroke subjects and focus on the sensitivity of 
the CMC as a measure to quantify the motor function state of 
paretic limbs.

The corticomuscular coupling is weakened for poststroke 
patients compared with healthy controls (6, 7). The results in 
the current study further demonstrated that the recovery of 
motor function was related to the enhanced corticomuscular 
coupling. In addition, previous studies showed that improved 
fine movement control was related to higher CMC (13, 23) and 
motor learning was associated with increased CMC and better 
performance (23). Thus, it may be speculated that increasing the 
corticomuscular coupling strength of the paretic limb for stroke 
patients is both the goal and the way for regaining motor func-
tion. Many factors have been identified to influence the cortico-
muscular coupling strength and some of them have the potential 
to be utilized in limb rehabilitation interventions (11). Above 

all, the results of the current study remind us that exploring the 
influence of rehabilitation interventions on corticomuscular 
coupling may provide another way to verify their validity from 
a new point.

In the current study, the CMC showed significant beta-band 
differences. This was inconsistent with Fang’s study in which 
CMC differences between stroke patients and healthy controls 
mainly occurred in the gamma band (6). This might be caused 
by the fact that different motion tasks were used. The elbow 
flexion task in the current study involved isometric muscle 
contractions with static output force while the reaching task in 
Fang’s study was more related to isometric muscle contractions 
with dynamic output force. Omlor et al. (24) demonstrated that 
corticomuscular coupling occurred within the beta band under 
the condition of isometric muscle contractions with static output 
force; whereas the most significant CMC shifted to the gamma 
band with isometric muscle contractions with dynamic output 
force. The difference of coherent frequency bands might reflect 
different ways for the brain to control muscle contractions under 
different conditions.

The CMC spectrum in Figure 4 showed that the peak mag-
nitude of beta-band CMC of the affected side was larger than 
that of the unaffected side after recovery. This is consistent with 
the results from Mima’s study in which stroke survivors at their 
chronic phase were recruited (7). The study demonstrated that 
the corticomuscular coupling of unaffected side was significantly 
stronger than that of affected side during power grip and wrist 
extension. However, the corticomuscular coupling of unaffected 
side was slightly weaker during elbow flexion compared with 
that of affected side even though it is counterintuitive. The exact 
underlying mechanism is not known but might be associated with 
the contribution of the descending direct corticospinal pathway 
to the proximal and distal muscles after stroke (25). Further stud-
ies will be needed to verify its universality and fully understand 
the neural mechanism.

The limitation of the current study was that we cannot tell 
whether the increased corticomuscular coupling strength resulted 
from spontaneous recovery or motor rehabilitation training. 
Since the patient was at his subacute stage of stroke, spontane-
ous recovery could happen. Meanwhile, he received physical 
and occupational therapy that also might result in his recovery. 
Therefore, it cannot be verified through our study whether the 
spontaneous recovery or the rehabilitation training alone, or both 
contributed to the increased corticomuscular coupling. This will 
be explored in our further studies.

CoNCLUDINg ReMaRKs

This study demonstrated that the corticomuscular coupling 
strength for the paretic limb increased along with its function 
recovery while the coupling strength for the unaffected limb did 
not change through a case study. We concluded that interrupted 
corticomuscular interactions account for the motor deficits and 
CMC, as a measure of coherent activities between motor cortex 
and controlled muscles, can reflect the function recovery of 
paretic limbs after stroke.
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The coupling strength between electroencephalogram (EEG) and electromyography 
(EMG) signals during motion control reflects the interaction between the cerebral motor 
cortex and muscles. Therefore, neuromuscular coupling characterization is instructive in 
assessing motor function. In this study, to overcome the limitation of losing the charac-
teristics of signals in conventional time series symbolization methods, a variable scale 
symbolic transfer entropy (VS-STE) analysis approach was proposed for corticomuscular 
coupling evaluation. Post-stroke patients (n = 5) and healthy volunteers (n = 7) were 
recruited and participated in various tasks (left and right hand gripping, elbow bending). 
The proposed VS-STE was employed to evaluate the corticomuscular coupling strength 
between the EEG signal measured from the motor cortex and EMG signal measured 
from the upper limb in both the time-domain and frequency-domain. Results showed 
a greater strength of the bi-directional (EEG-to-EMG and EMG-to-EEG) VS-STE in 
post-stroke patients compared to healthy controls. In addition, the strongest EEG–EMG 
coupling strength was observed in the beta frequency band (15–35 Hz) during the upper 
limb movement. The predefined coupling strength of EMG-to-EEG in the affected side 
of the patient was larger than that of EEG-to-EMG. In conclusion, the results suggested 
that the corticomuscular coupling is bi-directional, and the proposed VS-STE can be 
used to quantitatively characterize the non-linear synchronization characteristics and 
information interaction between the primary motor cortex and muscles.

Keywords: corticomuscular coupling, symbolic transfer entropy, stroke, electroencephalogram, electromyography

inTrODUcTiOn

Electroencephalogram (EEG) is a non-invasive brain imaging technique that uses scalp elec-
trodes to measure the voltage fluctuations induced by the mass electrical activity of neurons (1). 
Electromyography (EMG) technique is usually used to record the electrical activity produced by 
skeletal muscles (2). In the process of movement, the central nervous system associated with relevant 
brain regions and the peripheral nerve system associated with specific muscles is automatically 
synchronized in addition to the synergistic effect between different brain regions (1, 2). As such, the 
synchronization strength reflects the interaction between the primary motor cortex and the muscles 
and provides theoretical basis for the rehabilitation of stroke and dyskinesia patients (3).

Since Conway et al. (4) first reported a correlation between EEG and EMG in the process of exer-
cise in 1995, dynamic interactions between brain activities and muscle motion feedbacks have been 
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TaBle 1 | Demographic information the subjects.

subject 
#

age Used 
hand

status condition

S1 45 Left Suffering from 
stroke for 2 months

Small amount of bleeding in 
right intracranial brain, left foot 
cannot walk flexibly

S2 47 Right Suffering from 
stroke for 1 month

Right brain intracranial 
hemorrhage, limbs can only 
complete the basic actions

S3 49 Right Suffering from 
stroke for 1 month

Right brain intracranial 
hemorrhage, limbs can 
complete basic movements

S4 51 Right Suffering from 
stroke for 2 months

Right brain intracranial 
hemorrhage, upper limbs can 
only complete simple actions

S5 47 Right Suffering from 
stroke for 1 month

Right brain intracranial 
hemorrhage, upper limbs can 
only complete simple actions

S6 27 Right Healthy No
S7 26 Right Healthy No
S8 24 Right Healthy No
S9 25 Right Healthy No
S10 27 Right Healthy No
S11 26 Right Healthy No
S12 25 Right Healthy No
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widely investigated. It was found that the coherence of EEG–EMG 
signals is closely related to the motion tasks (5). For instance, the 
oscillation in the beta band is associated with mild-to-moderate 
isometric contraction, and the oscillation in the low range of the 
gamma band is related to strategies for controlling stronger muscle 
force production and dynamic movements (6). Various coherence 
analysis techniques, including cortical–muscular functional cou-
pling (7, 8), Granger causality analysis (9, 10), transfer entropy (TE) 
analysis (11, 12), and symbolic transfer entropy (STE) analysis (13) 
have been developed and applied to EEG and EMG signal coupling 
analysis. Among these, the STE technique is an effective method 
to analyze the relationship between neural and muscular activity 
coupling. In general, the STE yields characteristics not depending 
on the established model and non-linear quantitative analysis (14). 
It can be used to estimate the functional coupling strength and 
information transfer direction between cortices and muscles and 
to reveal movement control and response mechanisms during 
movements (15). For instance, the STE has been used to analyze 
the non-linear functional connection between EEG single and 
surface EMG signals of hand muscles (16), which demonstrated 
that the functional corticomuscular coupling is significant in the 
beta band in the static force output for healthy subjects.

However, the STE also holds ineligible challenges in practice. 
For example, the number of symbols applied in the time sequence 
in traditional STE is fixed, which is therefore not flexible and 
dynamic characteristics of signals are easily lost. In addition, the 
STE has only been applied to health subjects so far, has not been 
tested in stroke patient population yet (16–18).

To bridge this gap, a variable scale symbolic transfer entropy 
(VS-STE) analysis approach was developed in this study to better 
investigate the corticomuscular coupling in both post-stroke patients 
and healthy volunteers. In particular, the corticomuscular coupling 
strength was assessed based on the EEG signals measured from the 
motor cortex and EMG signals obtained from upper limb in both 
time-domain and frequency-domain. The EEG–EMG coupling 
strength of subjects were also quantitatively evaluated in terms of 
significant area, which provided evidence to apply corticomuscular 
coupling in the rehabilitative evaluation of motor function disorders.

MaTerials anD MeThODs

experimental Design
Participants
Twelve male subjects, including a control group (n  =  7, age: 
25.7 ± 1.11 years, all right handed) and a patient group (n = 5, 
age: 47.8 ± 2.28 years) were recruited in this study. The details 
of the subjects are summarized in Table 1, where S1, S2, and S3 
are patients with mild stroke, S4 and S5 are patients with severe 
stroke, and S6–S12 are healthy volunteers. The study protocol 
was approved by the Institutional Review Board of Guangdong 
Provincial Work Injury Rehabilitation Hospital. Prior to the 
experiment, all the subjects were informed of the details of the 
experiments and signed the informed consent form.

Experimental Paradigm
To stabilize force outputs, a spring grip meter (EH101, Lynx Mall, 
China) was used in hand gripping tasks at 5 kg, 10 kg force levels, 

and elbow flexion task. The complete paradigm is illustrated 
in the Figure 1. All motor tasks for each subject started with a 
resting condition for 20 s, then subjects were asked to perform 
specific motor execution task for 5 s according to the instruction 
of a screen placed 1-m in front of their eyes, and then relaxed 
for 20 s. Each motor task contained five repeats, and all subjects 
performed each motor task using their left and right hand, 
respectively. After each motor task was completed, the subjects 
rested for 20 min before switched to next motor task to prevent 
muscle fatigue. Finally, the whole experiment ended up with 30 
trials (2 hands × 3 tasks × 5 repeats) for each subject. As subjects 
S4 and S5 are severe stroke survivors, gripping tasks were only 
performed in the subject S4 at 5 and 10 kg force levels in both 
hands, and the 5 kg force level in both hands, and at 10 kg force 
level in the right hand in the subject S5. All other subjects suc-
cessfully completed all experiments.

Data Collection
An EEG acquisition system (Brain Products GmbH, Germany) 
was utilized to collect 32-channel EEG signals from the whole 
head and 12-channel EMG signals from both sides of upper limbs 
(Figure 2A). EEG electrodes were placed on the scalp according 
to the international 10–20 standard system (FP1, FP2, F7, F8, F4, 
F3, FZ, FC5, FC1, FC2, FC6, T7, C3, CZ, C4, T8, CP5, CP1, CP2, 
CP6, TP9, P7, P3, PZ, P4, P8, TP10, PO9, O1, OZ, O2, PO10), and 
the binaural mastoid was used as reference electrodes. EMG sig-
nals were recorded from upper limb muscles including the flexor 
digitorum superficialis (FDS), brachioradialis muscle, radial 
wrist flexor, ulnar wrist flexor, musculus biceps brachii (MBB), 
and triceps (Figure 2B). The skin surface was carefully prepared 
and cleaned by alcohol before the electrodes were attached. The 
sampling frequency of EEG and EMG signals was set to 1,000 Hz.

56

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


FigUre 1 | Illustration of the experimental paradigm.

Gao et al. EEG–EMG Coupling Analysis in Stroke

Frontiers in Neurology | www.frontiersin.org January 2018 | Volume 8 | Article 716

EEG and EMG Signal Preprocessing
To study the coupling relationships between the EEG and the EMG 
signals associated with various motor tasks, the EEG signals of C3, 
C4, CP5, and CP6 channels, which covered the premotor cortex 
and the somatosensory cortex of the brain, and the EMG signals 
of the FDS and biceps muscle were selected for further analysis.

As the EEG and EMG signals are vulnerable and susceptible to 
noise such as powerline interference and baseline drift, such arti-
facts were subsequently removed by the EEG recording amplifiers 
and analysis software during data collection. The independent 
component analysis was employed to remove electrooculogram 
artifact, and the wavelet decomposition was employed to remove 
motion artifact (19) and improve the quality of EEG and EMG 
signals for further analysis.

Variable-scale Transfer entropy analysis
Time-Domain Analysis of EEG–EMG Signals
Symbolic transfer entropy analysis technique is an effective method 
to analyze the relationship between neural and muscular activity 
coupling. Symbolization (16–18), a technique processing coarse 
graining of the physiological signal before the calculation of TE, can 
capture large-scale dynamic characteristics of the signal and therefore 
reduce the effects of noise. For STE, the accuracy of symbolization 
affects the accuracy of the TE calculation and the dynamic coupling 
performance of the system. In particular, for traditional STE, fixed 
number of symbols is applied to symbolize the time sequence in 
advance. If the symbol sets is too large, data partitioning becomes 
smaller, which increases the computation cost and aggravates the 
noise. On the other hand, if the symbol set is too small, the data 
partition becomes thick, and the dynamic characteristics of signals 
are easily lost. To address the above shortcomings, a variable scale 
parameter symbolization method was proposed in this paper. The 
procedures of this proposed method is described as follow:

 (1) Given a time series signal, the mean, maximum, and mini-
mum values of the time series are first computed;

 (2) A variable symbolic scale is set and denoted as piece, which 
segments the time series into pieces + 1 copies. The larger 
value of piece results in smaller segmentations and therefore 
more details of the signal can be retained;

 (3) Then symbolize the time series. The segmentation fell into the 
smallest interval is assigned with the symbol − pieces

2
, followed 

by − +
pieces
2

0 5. , and so on. The largest symbol is pieces
2

.

The specific function form is as shown in Eq. 1:
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where i represents the length of the time series, S(i) repre-
sents the symbolized sequence, min(x) and max(x) represent 
the minimum and maximum values of the time series, delta 
represents the value of increasement per interval, which  
is max

pieces
( ) ( )x x−

+
min
1

.
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FigUre 2 | (a) Experimental environment of the electroencephalogram and 
electromyography (EMG) data measurement; (B) illustration of the locations 
of EMG electrodes on upper limb.
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TE is an indicator of the directional delivery of time series 
information, for instance, TEX→Y denotes the amount of informa-
tion transferred from X to Y.

If given time series X = {x1, x2, …, xT} and Y = {y1, y2, …, yT},  
where T is the length of the time series, x1, y1 are the first 

observation, and x2, y2 are the second observation of time series, 
respectively. The TE of Y to X is defined as TEY→X shown in Eq. 2, 
and the TE of X to Y is defined as TEX→Y shown Eq. 3 (20–22):

 
TEY X n n n

n n n n

n n n n
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(3)

where n is the discrete time index, τ is the predicted time, and p(⋅) 
represents the probability distribution.

Combining the variable scale parameter symbolization method 
and TE, a VS-STE approach was proposed in this paper to analyze 
the relationship between cerebral cortex and muscle electrical 
coupling and to explore the corticomuscular coupling. Generally, 
VS-STE is a method based on probability distribution and 
Shannon entropy to detect the asymmetry between time series, 
so as to obtain the causality between time series. In particular, the 
TE of EEG–EMG reflects the amount of information exchange 
between the cerebral cortex and motor neurons. Therefore, the 
TE of EEG to EMG represents the amount of information that the 
cerebral cortex transmits to the control muscle, and TE of EMG to 
EEG represents the amount of information that muscle cells feed 
back to the cerebral cortex.

Frequency-Domain Analysis of EEG–EMG Signals TE
After the pretreatment of Section “EEG and EMG Signal 
Preprocessing,” two sets of EEG and EMG time series signals 
were marked as X = {x1, x2, …, xM} and Y = {y1, y2, …, yM}, respe-
ctively. Then, the EEG and EMG signals, which ranged from 1 
to 50 Hz, were filtered into 49 sub-band signals with a frequency 
interval of 1 Hz using a finite impulse response filter. Based on 
the definition of TE in Eqs  2 and 3, the TE of each sub-band 
of the EEG and EMG signals was expressed as TEX→Y(f) and 
TEY→X(f), where f represents the sub-band frequency. In general, 
the greater the entropy, the larger the amount of information was 
transferred in this band.

Definition of Coupling Strength
To quantify the brain’s ability to control the arm and the arm’s 
response to the brain control command, a parameter named sig-
nificant area was employed in this study to quantitatively describe 
the coupling strengths (CS) of EEG and EMG signals in different 
directions (16). Based on significant area, the CS from EEG to 
EMG is defined as CSX→Y, which shows the ability of the cerebral 
cortex to control the motor muscle, and CSY→X, which indicates 
the response of the motor muscle to the control command, as 
shown in Eqs 4 and 5, respectively:

 
CS TEX Y X Y

f

f f→ →= ⋅∑∆ ( ),
 

(4)

 
CS TEY X Y X

f

f f→ →= ⋅∑∆ ( ),
 

(5)

where Δf represents the sub-band resolution, TEX→Y(f) and 
TEY→X(f) represent the TE at the frequency f in different directions.
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TaBle 2 | Delay time of all the subjects (ms).

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

τ(EEG → EMG)/ms 31 27 25 29 31 21 25 23 26 19 24 27
τ(EMG → EEG)/ms 27 23 21 26 28 26 28 27 22 27 27 23

EEG, electromyography; EMG, electroencephalogram.

FigUre 3 | Different delay time of TE with respect to the direction of 
information flow.

FigUre 4 | Mean and SD of the STE hand gripping task with respect to 
different scale parameters. (a) Left hand 5 kg gripping; (B) right hand 5 kg 
gripping; (c) left hand 10 kg gripping; (D) right hand 10 kg gripping; (e) left 
hand elbow bend; (F) right hand elbow bend.
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resUlTs

Theoretically the premotor area in the cerebral cortex is primarily 
activated when the subject performed motor task on the contralat-
eral limb. The primary motor area (M1) is activated when the 
body maintains a movement, while the primary somatosensory 
area (S1) is activated when the sensation of the limb is received 
(10). Therefore, EEG signals from C3/C4 channel located in the 
primary motor zone, CP5/CP6 channel in the primary somatic 
sensory area, and EMG signals from the FDS, the bicipital muscle 
(MBB) channel were selected to study the TE in the article. For 
each 5-s motor task, the selected data length was N = 5,000.

Determination of the information Delay
There were certain delays in the flow of information in both direc-
tions between EEG and EMG (23). In particular, STE is believed 
to reach the peak between τ = 20 and 30 ms. Therefore, in this 
case, the STE of EEG-to-EMG and EMG-to-EEG were computed 
across all subjects by shifting the delay τ from 0 to 50  ms on 
the EEG signal of the C3 channel and the EMG signal of right 
hand’s FDS. Specifically, the delay of each individual subject was 
determined according to the optimal value of the STE (16). The 
STE of the subject S1 is shown in Figure 3 as an example, which 
shows that the delay of subject S1 is 31 ms from EEG to EMG and 
27 ms from EMG to EEG. The summary of all subjects is shown 
in Table 2. It can be observed that delays of the descending (EEG 
to EMG) and ascending (EMG to EEG) pathways are different for 
individual subject, but generally concentrated around 20–30 ms, 
which is consistent with the results of a previous study (24).

scale Parameter selection of Vs-sTe
As we introduced earlier, the scale parameter represents the 
degree of symbolization of the time series signal. If the number 

of symbols applied in the time sequence in STE is fixed before-
hand, it is not flexible for further processing and the dynamic 
characteristics of the signals are easily lost. In this study, for each 
hand gripping task, EEG signals of C3/C4 channels and EMG 
signal of the FDS were first selected, then VS-STE method was 
used to analyze the coupling strength between EEG and EMG 
with respect to different scale parameters. For all subjects, the 
mean and SD of STE underwent 5 kg gripping, 10 kg gripping, 
and elbow flexion tasks in both hands after symbolization, are 
shown in Figure 4, respectively.

As shown in Figure  4, as the scale parameter piece 
increased, higher STE can be obtained from the symbolized 
time series, which indicated the loss of dynamic information 
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FigUre 5 | The bi-directional STEs between electroencephalogram and electromyography with respect to different tasks. (a) Left hand 5 kg gripping; (B) right 
hand 5 kg gripping; (c) left hand 10 kg gripping; (D) right hand 10 kg gripping; (e) left hand elbow flexion; (F) right hand elbow flexion. PA, patients; HC, healthy 
controls; STE, symbolic transfer entropy.

FigUre 6 | Summarized coupling strength (CS) of patient group (S1–S5) with respect to various motor tasks. (a) Left 5 kg; (B) right 5 kg; (c) left 10 kg; (D) right 
10 kg; (e) left elbow flexion; (F) right elbow flexion.
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was alleviated. However, it was also observed that the SD 
increased as the scale parameter increased, resulting in higher 
fluctuation of the STE. Therefore, it is necessary to compre-
hensively consider the mean and SD of STE to choose the scale 
parameter.

To select the appropriate scale parameters for symbolization, the 
objective function G was defined in Eq. 6 as follow in this article:

 

G a M b S
a b
= −
+ =







∗ ∗

1
,
 

(6)

where M and S denote the normalized mean and SD values of STE 
with respect to different scales, a and b are constants. Here, a and 
b are set to 0.5. The optimal scale parameter was then determined 
when the objective function reached its peak.

In this article, the scale parameter was set as 25 based on the 
Eq. 6, with which the time series was symbolized, then further 
coupling analysis of EEG–EMG signals was carried out.

analysis of Time-Domain sTe in subjects
The bi-directional STE between EEG and EMG signals was com-
puted using the pre-selected scale parameter for all motor tasks 
across all 12 subjects. The average bi-directional STEs between 
EEG and EMG signals of each group under different motor tasks 
were shown in Figure 5.

From Figure 5, it can be observed that for all motor tasks the 
mean value of STE from the EEG to EMG signals was greater than 
that from the EMG to EEG signals in the patient group as well as 
the control group. It can also be noticed that the mean value of 
the STE between the EEG and EMG signals in the patients tended 
to be higher than that of the healthy subjects, as demonstrated in 
Figure 5.

analysis of Frequency-Domain  
sTe in subjects
Because different EEG rhythms may be involved in different 
ways during movement, the oscillatory responses of different 
frequency bands may be different with respect to various move-
ments. Therefore, the STE between EEG and EMG signals were 
analyzed in multi-frequency bands for all subjects in this article. As 
reported in the previous study (16), significant area was employed 
to evaluate the coupling strength (CS) between EEG signals and 
EMG signals of specific frequency bands, including theta band 
(4–8 Hz, θ), alpha band (8–14 Hz, α), beta band (15–35 Hz, β), 
and gamma frequency band (35 Hz or more, γ). The results of 
the frequency-domain analysis for all the patients after stroke 
(S1–S5) and all healthy subjects were shown in Figures 6 and 7, 
respectively. The mean and SD of the coupling strength across all 
subjects were computed and summarized in Table 3.

FigUre 7 | Mean coupling strength (CS) of healthy subjects (S6–S12) with respect to various motor tasks. (a) Left 5 kg; (B) right 5 kg; (c) left 10 kg; (D) right 
10 kg; (e) left elbow flexion; (F) right elbow flexion.
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It is noticeable from Figures  6 and 7 that the coupling 
strength of EEG-to-EMG and EMG-to-EEG in the beta and 
gamma bands of all subjects were larger than theta and alpha 
bands during the execution of three motor tasks. In particular, 
for patients group, the mean value of the coupling strength in 
beta frequency band all exceeded 9.42 (9.65 ± 0.20), while the 
controls group showed similar results in beta frequency band 
7.59 (7.89 ± 0.29). In addition, as shown in Figures 6 and 7 and 
Table  3, the results also demonstrated that in the beta band, 
the coupling strength from EEG to EMG was slightly higher 
than that from EMG to EEG band in control group, while for 
post-stroke patients the coupling strength from EEG to EMG 
appeared to be lower than that from EMG to EEG except 5 kg 
hand gripping in the right hand.

To better compare the difference of corticomuscular coupling 
strength between stroke patients and healthy subjects, according 
to the results in Table  3, the strength differences between the 
ascending neural pathway (EMG-to-EEG) and descending neu-
ral pathway (EEG-to-EMG) with respect to different motor tasks 
were evaluated by two sample t test using SPSS software (V22.0, 
IBM Corp., Armonk, NY, USA) within the β band. Results sug-
gested that there is a significant difference (p < 0.05) in the cou-
pling strength between patient group and control group, except 
for the 5 kg gripping task in right hand (p = 0.3272 > 0.05). As 
subject S4 and S5 were unable to complete the elbow flexion task 
due to severe stroke, the statistical test was not performed for 
elbow flexion task since the available samples in patient group 
was too small.

DiscUssiOn anD cOnclUsiOn

In this study, the corticomuscular coupling strength of both 
post-stroke patients (n = 5) and healthy volunteers (n = 7) were 
assessed under various motor tasks using the proposed VS-STE 
analysis method.

In time-domain, the VS-STE between EEG signals selected 
from the primary motor area and the somatosensory sensory 
area of the brain, and EMG signals was analyzed with respect 
to different motor tasks in all the five post-stroke patients and 
seven healthy controls. The results revealed that the STE from 
EEG to EMG signals was increased in patients after stroke dur-
ing movements compared to healthy controls (Figure 5), which 
indicated that the amount of information transferred from the 
motor cortex to the muscles tended to increase in the post-stroke 
patients to complete the same movement. The reason may lie in 
the fact that more cerebral cortex areas, such as sensory motor 
cortex, auxiliary exercise area, pre-exercise area, and ipsilateral 
posterior parietal cortex area, were needed to be activated for the 
post-stroke patients to complete and maintain stable movements 
(23). In addition, the STEs from EMG to EEG in all motor tasks 
were also increased in patient group compared to those of control 
group, which may be caused by control disorder resulted from 
the damage of the motor function area and thereby prevent them 
activating the motoneuron and motor cortex exactly (25). The 
neural mechanism behind the appearance of abnormal coordina-
tion patterns during post-stroke recovery are largely unknown, 
but they are possibly related to a loss in cortical control and an 

TaBle 3 | Comparison (mean ± SD) of the coupling strength across all subjects.

Tasks Fre. group left hand right hand Overall

eeg > eMg eMg > eeg eeg > eMg eMg > eeg

5 kg θ PA 1.86 ± 0.43 1.89 ± 0.39 1.97 ± 0.48 1.90 ± 0.15 1.91 ± 0.05
HC 1.74 ± 0.18 1.63 ± 0.20 1.42 ± 0.14 1.25 ± 0.19 1.51 ± 0.21

α PA 3.26 ± 0.75 3.28 ± 0.67 3.45 ± 0.79 3.31 ± 0.23 3.33 ± 0.09
HC 3.05 ± 0.31 2.95 ± 0.36 2.48 ± 0.25 2.29 ± 0.24 2.69 ± 0.36

β PA 9.55 ± 1.39 9.60 ± 1.22 10.18 ± 1.58 9.74 ± 1.13 9.76 ± 0.29
HC 9.31 ± 0.73 8.99 ± 0.93 7.63 ± 0.65 6.81 ± 0.87 8.19 ± 1.17

γ PA 6.79 ± 1.64 7.01 ± 1.54 7.16 ± 1.45 7.08 ± 0.83 7.01 ± 0.16
HC 6.82 ± 0.44 6.49 ± 0.37 5.64 ± 0.55 5.26 ± 0.62 6.05 ± 0.72

10 kg θ PA 1.83 ± 0.52 1.87 ± 0.27 1.93 ± 0.39 1.79 ± 0.43 1.86 ± 0.06
HC 1.50 ± 0.20 1.29 ± 0.29 1.58 ± 0.12 1.41 ± 0.20 1.45 ± 0.12

α PA 3.20 ± 0.85 3.30 ± 0.46 3.36 ± 0.58 3.16 ± 0.79 3.26 ± 0.09
HC 2.62 ± 0.35 2.34 ± 0.38 2.76 ± 0.22 2.54 ± 0.24 2.57 ± 0.17

β PA 9.29 ± 0.51 10.39 ± 1.91 9.31 ± 1.06 10.10 ± 2.05 9.78 ± 0.56
HC 7.95 ± 0.78 6.94 ± 0.74 8.18 ± 0.78 7.31 ± 1.07 7.59 ± 0.63

γ PA 6.72 ± 0.47 7.28 ± 1.31 6.71 ± 1.02 6.97 ± 1.71 6.92 ± 0.27
HC 5.91 ± 0.42 5.39 ± 0.39 5.64 ± 0.63 5.30 ± 0.49 5.56 ± 0.44

Elbow bend θ PA 1.70 ± 0.60 1.82 ± 0.38 1.79 ± 0.62 1.75 ± 0.33 1.76 ± 0.05
HC 1.68 ± 0.39 1.49 ± 0.47 1.53 ± 0.21 1.24 ± 0.42 1.48 ± 0.17

α PA 2.99 ± 0.58 3.17 ± 0.68 3.15 ± 1.07 3.06 ± 0.62 3.09 ± 0.08
HC 2.97 ± 0.70 2.71 ± 0.76 2.67 ± 0.37 2.26 ± 0.65 2.65 ± 0.30

β PA 8.82 ± 2.44 9.83 ± 1.09 9.40 ± 1.97 9.64 ± 0.95 9.42 ± 0.44
HC 8.87 ± 1.76 8.31 ± 1.98 7.87 ± 1.14 6.55 ± 2.04 7.90 ± 0.87

γ PA 6.67 ± 1.19 7.15 ± 0.79 6.69 ± 1.03 7.11 ± 0.76 6.98 ± 0.22
HC 6.31 ± 0.74 5.67 ± 1.12 5.46 ± 0.86 4.92 ± 1.13 5.59 ± 0.43

PA, patients; HC, healthy controls; EEG, electromyography; EMG, electroencephalogram.
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One limitation of this preliminary study is that the results 
obtained by the proposed method cannot be effectively validated 
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the current findings in this preliminary study do provide 
evidence and new insights to apply corticomuscular coupling 
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eThics sTaTeMenT

The study protocol was approved by the Institutional Review 
Board of Guangdong Provincial Work Injury Rehabilitation 
Hospital. Prior to the experiment, all the subjects were informed 
of the details of the experiments and signed the informed consent 
form.

aUThOr cOnTriBUTiOns

YG contributed to the study design, data analysis, and paper 
writing; LR contributed to data analysis and paper writing; RL 
contributed to the study design, result interpretation, and paper 
writing; YZ contributed to the study design, experimental design, 
result interpretation, and paper writing.

FUnDing

This study is supported in part by the Natural Science Foundation 
of Zhejiang Province (Grant No. LY18F030009), the Natural 
Nature Science Foundation of China (Grant No. 61372023, 
61671197), Research Innovation Foundation of Hangzhou Dianzi 
University (Grant No. CXJJ2017051), the University of Houston 
and Guangdong Provincial Work Injury Rehabilitation Hospital.

63

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive
https://doi.org/10.1103/PhysRevLett.98.054102
https://doi.org/10.1016/j.neunet.2017.04.002
https://doi.org/10.1016/j.neunet.2017.04.002
https://doi.org/10.3870/zgkf.2011.05.006
https://doi.org/10.1016/j.neuroimage.2012.08.023
https://doi.org/10.1016/j.neuroimage.2006.10.018
https://doi.org/10.1007/s00221-015-4404-8
https://doi.org/10.1111/ejn.13641
https://doi.org/10.1177/1352458512452921
https://doi.org/10.7498/aps.65.118701
https://doi.org/10.1007/s10827-010-0262-3
https://doi.org/10.1016/j.physa.
2017.04.181
https://doi.org/10.1016/j.physa.
2017.04.181
https://doi.org/10.7498/aps.63.218701
https://doi.org/10.7498/aps.62.238701


Gao et al. EEG–EMG Coupling Analysis in Stroke

Frontiers in Neurology | www.frontiersin.org January 2018 | Volume 8 | Article 716

transfer entropy. Acta Physica Sinica (2015) 64(24):248702. doi:10.7498/aps.64. 
248702

17. Shen W, Wang J. Time irreversibility analysis of ECG based on symbolic rela-
tive entropy. Acta Phys Sin (2011) 60(11):2509–15. doi:10.7498/aps.60.118702

18. Zhang M, Chao C, Qian-Li M, Zong-Liang G, Jun W. Coupling analysis of 
multivariate bioelectricity signal based symbolic partial mutual information. 
Acta Phys Sin (2013) 62(6):068704. doi:10.7498/aps.62.068704

19. Ping X, Yang FM, Chen XL, Du YH, Wu XG. EEG-EMG synchronization 
analysis based on gabor wavelet transform-granger causality. Chin J Biomed Eng 
(2017) 36(1):28–38. doi:10.3969/j.issn.0258-8021.2017.01.004

20. Shao S, Guo C, Luk W, Weston S. Accelerating transfer entropy compu-
tation[C]. International Conference on Field-Programmable Technology. 
Shanghai: IEEE (2014).

21. Vicente R, Wibral M, Lindner M, Pipa G. Transfer entropy—a model-free 
measure of effective connectivity for the neurosciences. J Comput Neurosci 
(2011) 30(1):45–67. doi:10.1007/s10827-010-0262-3 

22. Wang J, Yu ZF. Symbolic transfer entropy-based premature signal analysis. 
Chin Phys B (2012) 21(1):18702–5. doi:10.1088/1674-1056/21/1/018702 

23. Jiao Y, Zhang XD, Lan L, Yang FM, Xia SM, Weng XC.  Comparison of the brain 
activation pattern in passive single finger exercise between a normal testee 
and a stroke patient. Chin J Clin Rehabil (2005) 9(12):14–6. doi:10.3321/j.
issn:1673~8225.2005.12.001

24. Witham CL, Riddle CN, Baker MR, Baker SN. Contributions of descending 
and ascending pathways to corticomuscular coherence in humans. J Physiol 
(2011) 589(Pt 15):3789–800. doi:10.1113/jphysiol.2011.211045 

25. Takashi O, Masahiko M, Junichi U. Functional recovery in upper limb 
function in stroke survivors by using brain-computer interface a single case 

A-B-A-B design[C]. 35th Annual International Conference of the IEEE EMBS. 
Osaka (2013). p. 265–8.

26. Chen A, Yao J, Dewald J. A novel experimental setup combining EEG and 
robotics to investigate brain activity driving controlled reaching movements 
in chronic stroke survivors[C]. IEEE 10th International Conference on 
Rehabilitation Robotics. Noordwijk (2007). p. 876–82.

27. Fermaglich J. Electric fields of the brain: the neurophysics of EEG. JAMA 
(1982) 247(13):1879. doi:10.1001/jama.1982.03320380071046 

28. Siemionow V, Yue GH, Ranganathan VK, Liu JZ, Sahgal V. Relationship 
between motor activity-related cortical potential and voluntary muscle 
activation. Exp Brain Res (2000) 133(3):303–11. doi:10.1007/s002210000382 

29. Miao P, Wang C, Li P, Wei S, Deng C, Zheng D, et al. Altered gray matter 
volume, cerebral blood flow and functional connectivity in chronic stroke 
patients. Neurosci Lett (2017) 662:331–8. doi:10.1016/j.neulet.2017.05.066

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2018 Gao, Ren, Li and Zhang. This is an open-access article distrib-
uted under the terms of the Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other forums is permitted, provided 
the original author(s) or licensor are credited and that the original publication 
in this journal is cited, in accordance with accepted academic practice. No use, 
distribution or reproduction is permitted which does not comply with these  
terms.

64

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive
https://doi.org/10.7498/aps.64.248702
https://doi.org/10.7498/aps.64.248702
https://doi.org/10.7498/aps.60.118702
https://doi.org/10.7498/aps.62.068704
https://doi.org/10.3969/j.issn.0258-8021.2017.01.004
https://doi.org/10.1007/s10827-010-0262-3
https://doi.org/10.1088/1674-1056/21/1/018702
https://doi.org/10.3321/j.issn:1673~8225.2005.12.001
https://doi.org/10.3321/j.issn:1673~8225.2005.12.001
https://doi.org/10.1113/jphysiol.2011.211045
https://doi.org/10.1001/jama.1982.03320380071046
https://doi.org/10.1007/s002210000382
https://doi.org/10.1016/j.neulet.2017.05.066
http://creativecommons.org/licenses/by/4.0/


December 2017 | Volume 8 | Article 699

Original research
published: 22 December 2017

doi: 10.3389/fneur.2017.00699

Frontiers in Neurology | www.frontiersin.org

Edited by: 
Sheng Li,  

University of Texas Health Science 
Center at Houston, United States

Reviewed by: 
Xiaogang Hu,  

University of North Carolina at Chapel 
Hill, United States  
Erwin Van Wegen,  

VU University Medical Center, 
Netherlands

*Correspondence:
Carolynn Patten  

patten@phhp.ufl.edu

Specialty section: 
This article was submitted to  

Stroke, a section of the journal  
Frontiers in Neurology

Received: 01 July 2017
Accepted: 05 December 2017
Published: 22 December 2017

Citation: 
Banks CL, Huang HJ, Little VL and 
Patten C (2017) Electromyography 

Exposes Heterogeneity in Muscle 
Co-Contraction following Stroke.  

Front. Neurol. 8:699.  
doi: 10.3389/fneur.2017.00699

electromyography exposes 
heterogeneity in Muscle  
co-contraction following stroke
Caitlin L. Banks1,2, Helen J. Huang3, Virginia L. Little1 and Carolynn Patten1,2,4*

1 Neural Control of Movement Lab, Malcom Randall VA Medical Center, Gainesville, FL, United States, 2 Rehabilitation 
Science Doctoral Program, University of Florida, Gainesville, FL, United States, 3 Department of Mechanical and Aerospace 
Engineering, University of Central Florida, Orlando, FL, United States, 4 Department of Physical Therapy, University of Florida, 
Gainesville, FL, United States

Walking after stroke is often described as requiring excessive muscle co-contraction, 
yet, evidence that co-contraction is a ubiquitous motor control strategy for this pop-
ulation remains inconclusive. Co-contraction, the simultaneous activation of agonist 
and antagonist muscles, can be assessed with electromyography (EMG) but is often 
described qualitatively. Here, our goal is to determine if co-contraction is associated 
with gait impairments following stroke. Fifteen individuals with chronic stroke and nine 
healthy controls walked on an instrumented treadmill at self-selected speed. Surface 
EMGs were collected from the medial gastrocnemius (MG), soleus (SOL), and tibialis 
anterior (TA) of each leg. EMG envelope amplitudes were assessed in three ways:  
(1) no normalization, (2) normalization to the maximum value across the gait cycle, or  
(3) normalization to maximal M-wave. Three co-contraction indices were calculated 
across each agonist/antagonist muscle pair (MG/TA and SOL/TA) to assess the effect 
of using various metrics to quantify co-contraction. Two factor ANOVAs were used to 
compare effects of group and normalization for each metric. Co-contraction during the 
terminal stance (TSt) phase of gait is not different between healthy controls and the 
paretic leg of individuals post-stroke, regardless of the metric used to quantify co-con-
traction. Interestingly, co-contraction was similar between M-max and non-normalized 
EMG; however, normalization does not impact the ability to resolve group differences. 
While a modest correlation is revealed between the amount of TSt co-contraction and 
walking speed, the relationship is not sufficiently strong to motivate further exploration of 
a causal link between co-contraction and walking function after stroke. Co-contraction 
does not appear to be a common strategy employed by individuals after stroke. We 
recommend exploration of alternative EMG analysis approaches in an effort to learn 
more about the causal mechanisms of gait impairment following stroke.

Keywords: stroke, co-contraction, electromyography, walking, methodology, motor disorders

inTrODUcTiOn

After a stroke, most individuals experience lifelong walking impairments, including forward propul-
sion deficits, which contribute to metabolically inefficient gait (1–4). Abnormal muscle activation 
patterns, especially excessive co-contraction, are commonly argued to be a major contributing factor 
to these walking impairments (5–7). Co-contraction refers to simultaneous activity in agonist and 
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TaBle 1 | Demographics.

control stroke

Demographics
n 9 15
Sex (m/f) 5/4 14/1
Age (years) 60 ± 9.33 65.87 ± 9.76
Self-selected walking speed (m/s) 1.40 ± 0.2a 0.93 ± 0.3a

Chronicity (years) 5.52 ± 3.73
Affected side (r/l) 8/7

clinical characteristics
Routine ankle foot orthosis (AFO) use (n) 4
LE Fugl-Meyer Motor Score (/34) 30 (16, 34)
Dynamic Gait Index (/24) 21 (10, 24)
Short Physical Performance Battery (/12) 11 (7, 12)

Demographic and clinical data are presented mean ± SD and median (range), 
respectively. Of the four individuals who routinely use an ankle-foot orthosis, three 
typically use a custom-molded AFO and one uses a prefabricated Aircast®.
aIndicates a significant difference between groups, p < 0.05.
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antagonist muscles across the same joint (6, 8). This phenomenon 
is sometimes called agonist/antagonist co-activation or simply 
co-activation. However, co-activation can also refer to simulta-
neous activity in synergist muscles. Here, we will use the term 
co-contraction and address the relationship between agonist and 
antagonist muscle co-activity.

Co-contraction is a normal motor control strategy observed 
in healthy individuals during functional motor tasks. Its pres-
ence varies in response to environmental and task demands on 
different time scales. For example, when encountering uncer-
tainty, such as challenges to posture and balance, increased 
co-contraction can be observed as an early response to the 
novel environment (9). Evidence suggests that co-contraction 
facilitates rapid torque development (10), compensates for 
non-linearities in muscle properties and torque scaling (11), 
and counteracts agonist torques and off-axis torques (12, 13). 
Thus, co-contraction affords a robust mechanism to rapidly 
counteract perturbations. Co-contraction is also often present 
when motor tasks are novel or require limb stabilization for 
performance accuracy. Over a longer time scale (e.g., minutes, 
hours or days), co-contraction decreases progressively. Indeed, 
an asymptote in co-contraction often serves as a hallmark of 
motor learning and adaptation (14, 15). Important to its role 
as a normal motor control strategy, co-contraction is actively 
modulated during movements such as walking, occurring more 
prominently at predictable points in the gait cycle to stabilize 
joints and enable efficient walking (8).

In contrast to this normal pattern of co-contraction, chronic 
presence of excessive or invariant co-contraction should reflect 
pathology (16). Disturbed voluntary muscle activation follow-
ing stroke is thought to involve excessive co-contraction, which 
may stem from diffuse descending motor drive or exaggerated 
stretch reflexes generated in the antagonist muscle by movement  
(i.e., antagonist restraint) (17, 18). Clinical perspectives have 
emphasized the presence of excessive and invariant co-contrac-
tion in neuropathologic conditions, fueling an expectation that 
it is ubiquitously present (16, 19–21). However, the literature to 
date remains inconclusive regarding either its presence or causal 
role in motor dysfunction (10, 19–21). Furthermore, it is thought 
that co-contraction contributes to slow, inefficient walking after 
stroke (5, 6, 22, 23). Importantly, if excessive co-contraction is 
present during walking after stroke, it should be quantifiable and 
associated with robust measures of gait impairment, particularly, 
generation of plantarflexor power.

While objective, quantifiable methods exist for analyzing 
co-contraction in healthy individuals, the literature provides 
no “best” method to account for co-contraction as a feature of 
pathologic muscle activation patterns (24). We surveyed the 
existent literature and selected two popular metrics. The first, 
developed by Falconer and Winter, is a metric based on normal 
gait patterns from ten healthy adults (8). This method computes 
a ratio of antagonist to agonist electromyography (EMG) activity 
within each phase of the gait cycle. Another common method 
quantifies the “wasted contraction” (WC) shared between an 
agonist and antagonist muscle by denoting the smaller of the two 
traces as the WC and the remaining EMG activity as the “effec-
tive contraction,” which generates movement. This approach was 

developed by researchers studying upper limb motor adaptation 
and computational motor control (25). To our knowledge, the 
WC measure has not been applied to evaluate co-contraction 
during walking. Both metrics evaluate muscle activation patterns 
in a manner that does not account for the biomechanical role of 
each muscle within the task. That is, the larger magnitude EMG 
signal is assumed to arise from the agonist and the smaller signal 
from the antagonist. However, this assumption does not always 
hold, especially after stroke. Impaired EMG amplitude and phas-
ing following stroke may, therefore, require a metric that is sensi-
tive to these changes in muscle roles throughout the gait cycle. 
EMG normalization also varies considerably when quantifying 
co-contraction, which may further influence data interpretation 
and outcomes.

The goal of the present study is to assess the relationship 
between ankle co-contraction and gait impairment following 
stroke. Given the challenges involved with detecting co-
contraction in a pathologic population, we will investigate the 
effect of various methods for quantifying co-contraction. Here, 
we introduce a modified version of the Falconer and Winter 
metric in which the agonist and antagonist muscle roles are 
prescribed within each phase of the gait cycle. We will investigate 
the effects of co-contraction metric and EMG normalization in 
order to comprehensively assess the presence and magnitude of 
pathologic co-contraction. Our results will allow us to determine 
whether, and how, the metric impacts the ability to detect patho-
logic co-contraction patterns after stroke, while accounting for 
inconsistencies in the literature that may underlie detection of 
this phenomenon.

MaTerials anD MeThODs

subjects
This is a subgroup analysis from a larger study. We included 15 
individuals post-stroke and 9 healthy controls. Demographic data 
are presented in Table  1. Overall, participants were included if 
they were: greater than 18 years of age, able to walk independently 
for a distance of at least 15 m with or without an assistive device, 
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and medically stable. Participants post-stroke were included 
following clinical presentation of a single, unilateral stroke— 
confirmed by neuroimaging—at least 6 months prior to enrollment. 
Individuals with brainstem or cerebellar involvement, bilateral 
involvement, major neurologic or neurodegenerative conditions 
other than stroke, orthopedic or cardiovascular conditions that 
precluded walking on a treadmill, or pregnancy were excluded.

Testing occurred at the Brain Rehabilitation Research Center 
in the Malcom Randall VA Medical Center in Gainesville, FL, 
USA.

instrumentation and Protocol
Participants walked on an instrumented split-belt treadmill 
(Bertec, Columbus, OH, USA, sampling frequency 2,000  Hz) 
at their self-selected speed. No handrail support was provided 
and participants wore a modified mountain climbing harness 
for fall arrest (Robertson Harness, Henderson, NV, USA); no 
substantial body weight support was provided. Four participants 
regularly used a custom-molded ankle foot orthosis (n = 3) or 
ankle brace (n = 1) on the paretic leg. Two of these participants 
wore an Aircast® AirSport™ (DJO Global, Vista, CA, USA) for 
mediolateral support during testing, while all other participants 
were tested without ankle support. Reflective markers were placed 
over anatomical landmarks using a modified Helen Hayes marker 
set (26). Coordinates of the anterior superior iliac spines were 
located using a digitizing pointer (C-Motion, Inc., Germantown, 
MD, USA). Locations of the medial and lateral malleoli were digi-
tized for AirCast® wearers due to interference with skin contact. 
Marker data were recorded by 12 infrared cameras (Vicon MX, 
Vicon Motion Systems Ltd., Oxford, UK) at 200 Hz.

Surface EMG was recorded using active preamplifiers (MA-
420, Motion Lab Systems, Baton Rouge, LA, USA; input imped-
ance >100,000,000 Ω, CMRR >100 dB at 65 Hz, noise <1.2 μV 
RMS, signal bandwidth 10–2,000  Hz) attached to gel surface 
electrodes (Cleartrace 2, Conmed, Utica, NY, USA). Skin was 
abraded and cleaned with alcohol, then electrodes were placed 
on the muscle belly of the medial gastrocnemius (MG), soleus 
(SOL), and tibialis anterior (TA) of each leg according to the 
SENIAM guidelines (27). To assure maximal resolution, amplifier 
gains were adjusted minimally by visual inspection during iso-
lated ankle movements prior to data collection. EMG data were 
recorded in Signal (Version 6.0, Cambridge Electronic Design, 
Cambridge, England) at 2,000 Hz.

Maximal M-waves (M-max) were elicited through stimulation 
with a Digitimer stimulator (DS-7A or DS-7AH for high-current 
stimulation, Hertfordshire, UK) using either a hand-held bipolar 
stimulator probe (CareFusion, Middleton, WI, USA) or a custom 
monopolar ball electrode. M-max was elicited in the paretic 
or test leg MG/SOL or TA by supramaximal stimulation of the 
tibial nerve or common peroneal nerve, respectively (28). M-max 
amplitudes were averaged across 4–7 consecutive stimulations. 
One control subject was excluded from M-max analysis because 
data were overwritten.

Participants were instructed to walk with their arms relaxed 
at their sides. Data were collected in 1-min walking blocks, with 
seated or standing rest breaks taken as needed.

Data analysis
EMG Processing
EMG data were band-pass filtered to remove noise (fourth 
order Butterworth, cutoff frequency 10–450  Hz), rectified, 
low-pass filtered (fourth order Butterworth), time-normalized 
to a 1,001-point gait cycle, and signal averaged (60 cycles), to 
establish a linear envelope. The ideal low-pass filter frequency 
was determined by each individual’s mean stride time (cutoff 
frequency 5/stride time Hz; control 4.6  ±  0.3  Hz, stroke 
3.9  ±  0.5  Hz), as recommended by Shiavi et  al. (29). The 
linear envelopes were then amplitude-normalized in each of 
three ways: (1) no normalization (non), (2) to the maximum 
value across the gait cycle (max), or (3) to M-max. Data were 
processed using custom MATLAB scripts (The MathWorks 
r2015a, Natick, MA, USA).

Quantification of Co-Contraction
The gait cycle was divided into seven bins using gait events 
extracted from ground reaction force and heel marker data. 
The events defined bins following the standard established by 
the Rancho Los Amigos Medical Center Pathokinesiology Lab: 
loading response (LR), mid-stance (MSt), terminal stance (TSt), 
pre-swing (PSw), initial swing (ISw), mid-swing (MSw), and 
terminal swing (TSw) (30). The three swing bins each represent 
one-third of the swing phase.

We used three metrics to quantify co-contraction. The first 
metric, which we will denote as CItraditional, was first described by 
Falconer and Winter (8). This metric represents a ratio of agonist/
antagonist overlap to total muscle activation. The total antagonist 
activity within each bin, Iant, is calculated as the area under the 
curve created by the smaller EMG envelope as indicated by 
the shaded region in the top row of plots in Figure 1. The total 
activity, Itot, is the sum of the agonist and antagonist EMG areas 
within a given pair of muscles (i.e., MG/TA or SOL/TA). The co-
contraction index can then be quantified as:

 
C traditional

ant

tot
I I

I
=

2 100∗ .
 

(1)

A CI value of 100% represents total co-contraction, while 
a value of 0% represents pure agonist activation. This measure 
has been widely cited and applied in the literature (31–35). We 
calculated two co-contraction indices for each phase of the gait 
cycle, one with the MG/TA pairing, and one with the SOL/TA 
pairing.

The second metric, CIfixed, is analogous to the traditional 
Falconer and Winter metric, except the agonist/antagonist 
muscle relationship was fixed to the biomechanical function of 
these muscles within each of the seven bins of the gait cycle, as 
demonstrated by typical EMG patterns of healthy individuals 
(Figure  1, middle plots). During LR, ISw, MSw, and TSw, the 
TA should be the agonist muscle, while the MG should be the 
antagonist:

 
C fixed

MG

tot
I I

I
=

2 100∗ .
 

(2)
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FigUre 1 | Example co-contraction metrics. (a) Eight gait events dividing the gait cycle into seven phases: loading response (LR), mid-stance (MSt), terminal 
stance (TSt), pre-swing (PSw), initial swing (ISw), mid-swing (MSw), and terminal swing (TSw). Illustrated immediately below, is example EMG in the medial 
gastrocnemius (MG, solid) and tibialis anterior (TA, dotted) for a healthy control (left) and an individual post-stroke (right). The shaded area reflects the area under the 
lower trace at any point, used as the antagonist in the traditional co-contraction index calculations. (B) Illustration using the same example EMG as above, however 
the shaded area reflects the area under the muscle that should be the antagonist within each phase. PSw is not shaded because the antagonist muscle typically 
switches between MG and TA in this phase. (c) The resulting wasted contraction for the same subjects, the lower of the two traces (wide dashes), and the effective 
contraction, which is calculated as the higher trace minus the lower trace (narrow dashes). The wasted contraction index is the mean of the wasted contraction, 
expressed as a percentage of the maximum effective contraction.
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During MSt and TSt, the MG should be the agonist and the TA 
the antagonist muscle:

 
C fixed

TA

tot
I I

I
=

2 100∗ .
 

(3)

In health, the ankle muscles switch agonist/antagonist roles 
in PSw; thus, we were unable to calculate a co-contraction index 
during PSw using this method. CIfixed for the SOL/TA pairing was 
calculated in the same manner as Eqs 2 and 3 above; however, 
the SOL was used as the antagonist muscle during LR and the 
swing phases.

The final metric, illustrated in the bottom plots of Figure 1, 
was developed by Thoroughman and Shadmehr to represent the 
amount of “wasted contraction” that occurs due to co-contraction 
(25). Similar to CItraditional, the smaller of the two EMG envelopes 
is designated to represent the contraction that is wasted by 

simultaneous activity in opposing muscles. This amount can be 
subtracted from the EMG envelope of the larger signal to deter-
mine “effective contraction,” or the amount of agonist activation 
that effectively performed the movement. The wasted and effective 
contraction traces can be divided by the maximum effective con-
traction, resulting in units expressed as the percentage of maxi-
mum effective contraction. This step was necessary to compare 
the effects of EMG normalization since the units of wasted and 
effective contractions are the same as the units of the EMG traces 
from which they are based (e.g., microvolts). The mean wasted and 
effective contractions were calculated for each gait phase.

Quantification of Motor Impairment
Clinical and Functional Assessments
We used two functional assessments of motor impairment: the 
lower extremity Fugl-Meyer Assessment of Motor Performance 
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FigUre 2 | Reduced concentric ankle plantarflexor power is noted following 
stroke. Example ankle power curves, derived from inverse dynamics, for a 
healthy control (gray) and an individual following stroke (black) demonstrate 
diminished peak concentric plantarflexor power (A2) late in the stance phase 
of gait.

Banks et al. Co-Contraction after Stroke

Frontiers in Neurology | www.frontiersin.org December 2017 | Volume 8 | Article 699

(LE FMA) and walking speeds (36). Self-selected and fastest 
 comfortable walking speeds (SSWS and FCWS, respectively) were 
captured using 3–5 passes on a 16-foot GaitRite pressure-sensitive 
walkway (Platinum Plus System, Version 3.9, Havertown, PA, 
USA). SSWS involved walking at a casual, comfortable pace. 
Fastest comfortable speed was assessed as the fastest speed 
the participant could safely attain when walking, “as if you are 
crossing the street and the walk signal changed to a red hand.”  
All clinical and functional assessments were performed by a 
licensed physical therapist (VLL).

Ankle Power
We used ankle power to quantify a key biomechanical aspect of 
walking function. Power was calculated using inverse dynamics 
by the following formula:

 P M= ⋅ωω,  (4)

where P is the rate of work done by the ankle muscles (i.e., power), 
M is the joint moment, and ω is the angular velocity (37, 38).  
An example ankle power curve is shown in Figure 2. The second 
peak of the ankle power curve, or A2, is prominent in late stance 
for both normal and pathologic gait (37, 39). A2 is often dimin-
ished with aging and in individuals post-stroke (39, 40). Although 
A2 scales with walking speed, the deficit in these individuals is 
present even when compared to speed-matched controls (41, 42).  
Because the plantarflexors are the primary mediators of A2 and 
A2 and accounts for both joint motion and muscular output 
through torque generation (43), this outcome is highly sensitive 
and relevant to functional changes after stroke.

statistics
Data were tested for normality using a Shapiro–Wilk W test.  
In the cases where the assumption of normality was not met  
(all cases except SOL/TA CItraditional), data were transformed using 
a base 10 logarithmic transformation. In the final case, raw data 
were analyzed. Separate two-factor ANOVAs assessed the effects 
of group (control or stroke) and normalization (maximum value, 
M-max, or no normalization) on each of the three co-contraction 
indices and muscle pairs (MG/TA, SOL/TA). Tukey’s Honestly 

Significant Difference was performed post hoc when significant 
effects were detected. To account for multiple comparisons, 
significance was established using a Bonferroni corrected value 
of p < 0.0083. Spearman’s correlations assessed the relationship 
between co-contraction and walking function. The Bonferroni 
corrected significance level for correlation analyses was 
p < 0.0125. Statistical testing was performed in JMP Pro 11 (SAS 
Institute, Inc., Cary, NC, USA).

resUlTs

Visual assessment of EMG patterns during walking revealed 
consistent patterns in healthy controls, accompanied by vast 
heterogeneity in the stroke group. Differences between healthy 
and stroke subjects are most relevant in TSt, where peak plan-
tarflexor EMG tends to occur. TSt is also the gait phase when 
plantarflexor EMG contributes to A2—the most robust measure 
of gait function employed in this study. Moving forward, all 
results will be presented during TSt unless specified otherwise. 
Group co-contraction responses during TSt can be visualized by 
metric in Figure 3 for the paretic leg and Figure 4 for the non-
paretic leg. Because the core findings are largely similar between 
legs and we are primarily interested in paretic leg function, we 
performed statistics only on the paretic leg.

The metric adjusted for the muscles’ biomechanical roles,  
CIfixed, showed no significant main effect of Group or Group ×   
Normalization interaction. In the SOL/TA muscle pairing, there 
was a significant main effect of normalization method (p = 0.0032, 
Figure 3). Post hoc testing revealed that M-max normalization 
produced greater CIfixed than maximum value normalization 
(p = 0.0024). The MG/TA pairing revealed no significant main 
effects.

CItraditional resulted in values similar to CIfixed during TSt, 
and the statistical findings are largely the same. Both muscle 
pairings revealed no significant main effects of Group or 
Group  ×  Normalization interactions. The SOL/TA pairing 
revealed a significant main effect of Normalization (p = 0.0051). 
Post hoc testing revealed that M-max normalization was again 
greater than maximum value normalization (p  =  0.0035). The 
MG/TA pairing revealed no significant main effects.

The WC, when expressed as a percentage of the effective con-
traction, has the potential to create outliers when the two EMG 
traces are similar in magnitude. In the case of maximum value 
normalization, one subject’s EMG produced an extreme value for 
both the MG/TA and SOL/TA muscle pairings, corresponding to 
z-scores of 6.3 and 7.0, respectively. Since no data transformation 
could normalize the dataset with outliers of that magnitude, we 
adjusted each of the outliers to a z-score of 3. This step allowed 
for adequate statistical comparison within the remaining dataset. 
Both the MG/TA and SOL/TA muscle pairings revealed only a sig-
nificant main effect of Normalization (p = 0.0008 and p = 0.0005, 
respectively). Post hoc testing for the MG/TA pairing revealed that 
maximum value normalization produced greater WC values than 
both M-max (p = 0.0044) and WC derived from non-normalized 
EMG (p = 0.0018). In the SOL/TA muscle pairing, WC was greater 
with maximum value normalization than M-max normalization 
(p  =  0.0004). Because the adjusted outlier would have created 
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FigUre 4 | Non-paretic leg co-contraction appears unchanged across group, metric, and normalization method. Plots moving left to right represent three different 
co-contraction indices: a co-contraction ratio with fixed muscle roles derived from referencing healthy EMG (CIfixed, left), a traditional index for co-contraction during 
normal walking (CItraditional, center), and an index of the “wasted contraction” produced by antagonist activation countering agonist activation (right). Co-contraction in 
terminal stance appears unchanged between control (gray) and stroke (black) in both (a) the medial gastrocnemius and tibialis anterior (MG/TA) and (B) the soleus 
and tibialis anterior (SOL/TA).

FigUre 3 | Paretic leg co-contraction following stroke is not different from healthy controls. (a) Co-contraction of the medial gastrocnemius and tibialis anterior 
(MG/TA) in terminal stance is shown by three EMG normalization methods: maximum value (Max), maximal M-wave (M-max), and non-normalized (Non). Plots 
moving left to right represent three different co-contraction indices: a co-contraction ratio with fixed muscle roles derived from referencing healthy EMG (CIfixed, left), a 
traditional index for co-contraction during normal walking (CItraditional, center), and an index of the “wasted contraction” produced by antagonist activation countering 
agonist activation (right). There are no group differences between stroke (gray) and control (black) in any of the three comparisons. (B) Co-contraction of the soleus 
and tibialis anterior (SOL/TA) in terminal stance. Again, there were no significant differences between control and stroke. *Indicates significance with a Bonferroni-
corrected p < 0.0083.
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an even higher mean value for maximum value-normalized WC, 
these significant findings are consistent with the original direc-
tion of the adjusted outlier. When calculating WC, we observed 

an interesting phenomenon. Two subjects with visually different 
EMG patterns revealed comparable WC values in TSt (Figure 5). 
Aside from the maximum value normalization condition, the WC 
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FigUre 5 | Two subjects show vastly different EMG with same wasted contraction (WC) value in terminal stance. The left column depicts example EMG for the 
medial gastrocnemius (MG) and tibialis anterior (TA) muscles in (a) a healthy control and (B). an individual post-stroke. The right column depicts the resultant wasted 
and effective contraction, with WC in TSt denoted above each plot.
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values tended to have low variability, despite obvious visual dif-
ferences present in the original EMG. This circumstance creates 
a problem for interpreting the WC results, which we will revisit 
in the Section in the discussion.

Non-normalized CIfixed values are moderately correlated with 
functional metrics across groups. We observed similar results 
across all co-contraction indices. Because non-normalized data 
are most straightforward to interpret, we chose this metric to 
perform correlations with functional measures. Therefore, CIfixed 
serves as representative of the patterns present across metrics. 
Four comparisons were made between CIfixed and LE FMA, SSWS, 
FCWS, and A2 (Figure 6). CIfixed was not significantly correlated 
with either LE FMA (Spearman’s ρ = −0.6079, p = 0.0162) or A2, 
our most sensitive assessment of walking function (ρ = −0.4557, 
p = 0.0252). CIfixed was significantly correlated with both SSWS 
(ρ = −0.6438, p = 0.0007) and FCWS (ρ = −0.6026, p = 0.0018).

DiscUssiOn

Despite our systematic analysis of co-contraction during gait, we 
are unable to conclude that co-contraction is ubiquitously present 
post-stroke. As illustrated in Figure 7, this sample of individuals 
post-stroke revealed vast heterogeneity in EMG patterns, and no 
distinct pattern of co-contraction emerged. Furthermore, regard-
less of the metric used to assess co-contraction, our results fail 
to indicate clear differences between stroke and healthy controls. 
Although results reported here are limited to the TSt phase of 
gait, this finding is consistent across all gait phases. Nearly four 
decades of literature discuss pathological co-contraction after 
stroke, arguing for its presence as either study motivation or data 
interpretation, yet failing to show convincing evidence through 
results. Taken together with results of the current analysis, this 
lack of evidence leads us to reconsider the assumption that 
pathological co-contraction is a primary factor contributing to 

impaired gait post-stroke. The following discussion enumerates 
the details leading to this conclusion.

Early studies assessing EMG during gait post-stroke carefully 
described the authors’ observations while presenting mostly 
qualitative evaluations and proposing future avenues of research. 
Knutsson and Richards are often credited for the suggestion that 
co-contraction could be a strategy employed in post-stroke gait, 
but they carefully acknowledged that the heterogeneity present 
within their sample limited their ability to draw distinct conclu-
sions (22). Another group classified whole-leg muscle activation 
patterns, classifying less than half of their sample in the chronic 
phase of recovery as expressing excessive co-contraction (5). 
There is heterogeneity in virtually all motor outcomes measured 
following stroke, and that heterogeneity impacts the ability 
to assess treatment efficacy (44). Equally important, no strong 
evidence has emerged in favor of co-contraction as either 
the predominant strategy or one of a few common strategies 
employed by these individuals. Moreover, the evidence provides 
no indication that mitigating co-contraction is a productive treat-
ment target. Working under the assumption that co-contraction 
indices provide useful information, therefore, limits our ability to 
appropriately quantify motor impairment within this population.

Heterogeneity of responses among individuals post-stroke 
leads many groups to seek a single metric, or a simple collection 
of metrics, which can parse these individual differences. Here, we 
employed a two-factor approach by combining EMG metrics with 
measures of motor or gait impairment. Although our data reveal 
some significant correlations, these are not sufficiently strong to 
support an argument for a causal link between co-contraction 
and impaired biomechanical function. Lower extremity coordi-
nation during gait requires much more than the ankle muscles; 
however, the vital importance of the ankle plantarflexors affords 
an ideal test-bed for assessing the relevance of lower extremity 
co-contraction post-stroke. Yet, no clear patterns emerged. It 
is worth noting that four of the individuals within this sample 
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FigUre 7 | Heterogeneity in electromyography (EMG) activation is present following stroke. Healthy control (left) and stroke (right) EMG envelopes are illustrated for 
the: (a) tibialis anterior (TA) and (B) medial gastrocnemius (MG). The heavy line depicts the ensemble average for each group and the cloud illustrates the SEM with 
individual subject responses overlaid (thin lines). Considerable variation in activation patterns of each muscle is apparent within the stroke group, illustrating the 
difficulty inherent in selecting a single metric to capture all of the possible deviations from the pattern of healthy controls.

FigUre 6 | Co-contraction index in terminal stance correlates to some, but not all, indices of motor function. Medial gastrocnemius/tibialis anterior CI_fixed in 
terminal stance with non-normalized EMG varies as a function of: (a) lower extremity Fugl-Meyer (LE FMA), (B) self-selected walking speed (SSWS), (c) fastest 
comfortable walking speed (FCWS), and (D) peak concentric ankle plantarflexor power (A2) for healthy controls (gray), individuals post-stroke (black). The only 
correlations reaching statistical significance occur with SSWS and FCWS.
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regularly wore some form of ankle brace. The extent to which 
bracing impacted the EMG patterns differentially from the stroke 
itself is not known. We compared these participants against those 
who did not wear a brace and found no apparent differences.  
We acknowledge this is a limitation within our sample that may 
be worth exploring in the future. It is also important to note that 
EMG assesses the final common pathway (45), and these periph-
eral signals cannot be used to draw specific conclusions about 
central nervous system function. Although we expect surface 
EMG signals to provide information about motor coordination, 
co-contraction may not be sufficiently robust to explain central 
nervous system dysfunction.

Changing the co-contraction metric offered variable results. 
Contrary to our initial expectations, fixing the biomechani-
cal roles of the muscles was only marginally more informative 
than the existing CI, which was not designed to account for 
abnormal muscle activation patterns. Importantly, the group-
level results were the same; neither metric revealed differences 
between healthy individuals and individuals post-stroke. On the 
group level, even the WC metric performed similarly to the two 
co-contraction indices. However, thorough evaluation of the 
relationship of the individual numeric values to the EMG profiles 
provides insight that the WC metric does not perform well during 
gait. From production of extreme outliers to equivalent numeric 
values in obviously different EMG patterns (Figure  5), we can 
conclusively state that the WC metric is not useful for assessment 
of co-contraction in multi-segmental lower extremity tasks.

Normalization also provided varying results, creating a need 
for careful consideration of normalization procedures before, 
during, and after EMG assessment. Perhaps the most interest-
ing result from the normalization analysis is the congruency of 
the M-max and non-normalized EMG co-contraction indices. 
Choosing not to normalize EMG can be advantageous because 
it avoids data transformation beyond recognition. Our findings 
support arguments presented by Lamontagne regarding EMG 
metrics in stroke (6). While EMG normalization is not strictly 
necessary in this context because calculating a ratio from normal-
ized data effectively normalizes the data twice, most studies in the 
literature employ some type of normalization prior to calculating 
a co-contraction index (46–48). In our sample, maximum value 
normalization suggested a different picture of relative muscle 
activation than either M-max normalization or no normalization.

Co-contraction does not appear to be a universal characteristic 
of impaired gait post-stroke. We do not mean to suggest that exces-
sive co-contraction does not occur in some individuals; however, 
the pattern does not occur sufficiently often enough to be consid-
ered a prominent compensatory strategy following stroke. Ours is 
not the first study to find a lack of strong evidence for the presence 
of excessive co-contraction following stroke. In both the upper 
and lower extremities, the current evidence suggests that reaching 
and walking deficits, respectively, are more likely to result from 
agonist activation impairment than co-contraction (49, 50). It is 
possible that co-contraction represents too narrow of a concept 
to represent and characterize neuromotor pathology post-stroke. 
Accordingly, it may be time to reconsider how we frame the 
problem. Aberrant EMG is descriptively characterized by timing 
and amplitude deficits, and the ability to organize responses to 

the biomechanical constraints of the task and environment (51). 
In this broader context, approaches other than a co-contraction 
metric may better capture the relevant deficits. Some recent 
efforts that have yet to be robustly evaluated in stroke include: 
Ricamato and Hidler’s EMG metric that incorporates both timing 
and amplitude components (52); muscle synergy analysis (53, 
54); and EMG-driven biomechanical modeling that effectively 
accounts for subject-specific neuromuscular constraints on 
dynamic outcomes (55). Our intent is not to prescribe any one of 
these methods to adequately quantify neurophysiologic impair-
ments with EMG. Rather, we would argue that these and other 
alternatives be explored in an effort to learn more about the causal 
mechanisms of gait impairment following stroke.

Beyond an exercise in signal processing and EMG data anal-
ysis, our results provide an opportunity for discussion regard-
ing the neural implications of co-contraction following stroke. 
Heterogeneity among individuals also presents a challenge for 
understanding behavior after stroke, especially in terms of muscle 
activation patterns. Our data illustrate that, even when assessed 
with a variety of metrics, co-contraction does not emerge as 
the strong indicator of neuromotor pathology the literature has 
conditioned us to expect. Instead, we must look to other EMG 
quantification methods that can provide greater insights regard-
ing causal mechanisms of gait impairment.
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The reticulospinal Pathway Does 
not increase its contribution to the 
strength of contralesional Muscles 
in stroke survivors as compared to 
ipsilesional side or healthy controls
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1 Department of Physical Medicine and Rehabilitation, McGoven Medical School, University of Texas Health Science  
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Objective: Startling acoustic stimulation (SAS), via activation of reticulospinal (RS) 
pathways, has shown to increase muscle strength in healthy subjects. We hypothesized 
that, given RS hyperexcitability in stroke survivors, SAS could increase muscle strength 
in stroke survivors. The objective was to quantify the effect of SAS on maximal and 
sub-maximal voluntary elbow flexion on the contralesional (impaired) side in stroke survi-
vors as compared to ipsilesional (non-impaired) side and healthy controls.

Design: Thirteen hemiparetic stroke survivors and 12 healthy subjects volunteered 
for this investigation. Acoustic stimulation was given at rest, during ballistic maximal 
and sustained sub-maximal isometric elbow contractions using low (80 dB) and high 
intensity sound (105 dB). The effect of acoustic stimuli was evaluated from EMG and 
force recordings.

results: Prevalence of acoustic startle reflex with shorter latency in the impaired 
biceps was greater as compared to the response in the non-impaired side of stroke 
subjects and in healthy subjects. Delivery of SAS resulted in earlier initiation of elbow 
flexion and greater peak torque in healthy subjects and in stroke subjects with spastic 
hemiplegia during maximal voluntary elbow flexion tasks. During sub-maximal elbow 
flexion tasks, SAS-induced force responses were slightly greater on the impaired side 
than the non-impaired side. However, no statistically significant difference was found 
in SAS-induced responses between impaired and non-impaired sides at maximal and 
sub-maximal elbow flexion tasks.

conclusion: The findings suggest RS hyperexcitability in stroke survivors with spastic 
hemiplegia. The results of similar SAS-induced responses between healthy and stroke 
subjects indicate that RS projections via acoustic stimulation are not likely to contribute 
to muscle strength for stroke survivors to a significant extent.

Keywords: spasticity, reticulospinal, stroke, acoustic stimulation, strength, muscle
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inTrODUcTiOn

Weakness for voluntary contraction is a common sequela of 
a hemispheric stroke. Among other clinical symptoms, weak-
ness is a primary contributor to the overall impairment (1) 
and specifically toward impaired motor control (2). Damage 
of ipsilesional motor cortex and its descending corticospinal 
(CS) pathway to spinal motoneurons after stroke is presumably 
a primary contributor to weakness. Muscle weakness can also 
be attributed to altered intracortical inhibition (3, 4). A number 
of motor rehabilitation interventions have been used for motor 
recovery, such as constraint-induced movement therapy (5, 6), 
robotic training (7–9), and body weight-supported treadmill 
training (10, 11). A previous longitudinal MRI study (12) has 
provided evidence that recovery of locomotor function after 
such repetitive motor training in post-stroke hemiplegia is 
accompanied by increased activation in the ipsilesional motor 
cortex and evolution from contralesional activation to ipsile-
sional activation.

Both CS and reticulospinal (RS) projections contribute to 
the motor output. Originated from the brainstem reticular 
system, the RS projections can influence the CS motor output 
from the motor cortex. The RS system can be stimulated by 
acoustic stimuli via a relatively simple reflex circuit, i.e., acous-
tic startle reflex (ASR). The reflex circuit in humans consists of 
the cochlear nucleus, the caudal pontine reticular nuclei, the 
motoneurons of the brainstem, and the spinal motoneurons 
activated via the medial RS pathway (13–15). After several trials 
of startling acoustic stimulation (SAS), ASR responses habitu-
ate, while ensuing SAS stimulates RS projections non-reflexively  
(16, 17). Ensuing SAS has been shown to reduce reaction time 
and facilitate motor initiation in healthy subjects (18–20) and 
after stroke (21). It can also augment the magnitude of voluntary 
muscle contraction in healthy subjects and Parkinson’s patients 
(19, 22). Furthermore, the RS projections have been shown to 
compensate for damage of CS pathways for motor recovery after 
stroke in animal models (23–28).

The role of RS system in post-stroke motor recovery in 
humans is still unclear. RS hyperexcitability occurs as a result of 
unmasking and disinhibition effect from damage to the motor 
cortex and its descending CS projections in patients with spas-
tic hemiplegia (29, 30). RS hyperexcitability contributes mainly 
to development of spasticity, but not to motor recovery after 
stroke (31, 32). However, there are reports suggesting a possible 
role of RS in motor recovery in stroke survivors. Integration 
of acoustic stimuli in the forms of rhythmic cueing or music 
therapy into training programs, possibly via non-reflexive 
stimulation of RS pathways, improves initiation and pacing of 
voluntary movement in stroke survivors (33–36). The results 
of motor improvement after such training could be attributed 
to repetitive training and/or acoustic stimulation. However, 
the role of acoustic stimulation in motor improvement can 
not be delineated. Furthermore, Aluru et  al. (37) found that 
that auditory rhythmic cueing improved motor performance 
in stroke subjects with severe spastic paresis of wrist flexors 
but not in those subjects with minimal impairment or spastic 
co-contractions. The authors argued that auditory cueing and 

stimulation have different effects at different stages of post-
stroke recovery via recruiting distinct neural substrates.

The purpose of the present study was to first examine whether 
startling acoustic stimulation (SAS) could induce greater aug-
mentation in maximum voluntary contraction (MVC) in stroke 
subjects with spastic hemiplegia, since RS hyperexcitability was 
reported at this stage of recovery (29, 30). In clinical practice, 
most motor training interventions use repetitive exercises 
at sub-maximal levels. Therefore, we also aimed to examine 
whether SAS-induced force increment was greater in the spas-
tic-paretic (impaired) side than the non-impaired side in stroke 
subjects at sub-maximum voluntary contraction. Accordingly, 
a cohort of stroke subjects with chronic spastic hemiplegia and 
healthy subjects received unexpected SAS in the beginning of 
experiments to examine the occurrence frequency of ASR at 
rest. Subjects then received SAS during MVC and sub-maximal 
elbow flexion tasks in a random order to quantify and compare 
the SAS-induced responses.

MaTerials anD MeThODs

subjects
Twelve healthy subjects (age: 25–44 years; weight: 125–205 lb; 
five males and seven females; and three left handed and nine 
right handed) volunteered for this investigation. No subject 
had any known history or symptoms of neuromuscular or 
skeletal disorders. Thirteen hemiparetic stroke survivors  
(age: 48–92  years; eight males and five females; eight right 
and five left hemiplegia; and averaged 77 months after stroke) 
were recruited in the experiment. Table  1 displays character-
istics of the stroke subjects. Inclusion criteria were as follows:  
(1) ≥1 year post-stroke; (2) unilateral, single stroke (no restric-
tion on type (ischemic or hemorrhagic) with unilateral spasticity; 
(3) mild-to-moderate spasticity [3 or less according to modified 
Ashworth scale (MAS)], note that some subjects did not have 
spasticity in elbow flexors but had spasticity in hand and finger 
flexors (not shown in the table); and (4) able to voluntarily 
contract impaired biceps. Exclusion criteria included patients 
who had (1) visual deficit and/or neglect; (2) hearing or cogni-
tive impairment; (3) unstable medical conditions; (4) presence 
of contracture that would limit full elbow range of motion on 
the impaired side; and (5) unable to understand or follow study 
instructions. Written consent was obtained from all subjects 
for their participation in the study. This study was approved 
by the Committee for the Protection of Human Subjects at the 
University of Texas Health Science Center at Houston and TIRR 
Memorial Hermann Hospital.

experimental setting
Both stroke and healthy subjects used the same experimental 
setup. The subjects were seated on a height adjustable chair. 
Conventional single differential surface electrodes (Delsys 2.1, 
Boston, MA, USA) were used for EMG recordings. After skin 
preparation, bipolar surface electromyogram (sEMG) elec-
trodes were placed over muscle belly of biceps brachii of both 
dominant and non-dominant sides, according to the SENIAM 
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FigUre 1 | Experimental settings.

TaBle 1 | Characteristics of stroke subjects (M: male, F: female, MAS: modified Ashworth scale; ip: impaired side; nip: non-impaired; ASR: acoustic startle reflex).

iD gender age 
(years)

stroke onset 
(months)

affected  
side

Mas of  
elbow flexor

MVc_ip (nm) MVc_nip (nm) asr freq 
(impaired) (%)

asr freq (non-
impaired (%)

asr freq 
(control %)

1 M 77 52 RIGHT 1 33 37.5 0 0
2 F 58 81 RIGHT 1+ 12 38 100 33
3 F 59 81 LEFT 1 8.2 23 100 100
4 M 60 25 LEFT 0 10 18 0 33
5 F 61 109 LEFT 1 3.5 32 67 0
6 M 48 67 LEFT 0 60 85 100 100
7 M 75 14 LEFT 1 6.4 9 33 33
8 M 92 109 RIGHT 1 17 20 100 67
9 M 55 157 RIGHT 1+ 7 40 100 0

10 M 63 109 RIGHT 0 34 38 100 0
11 M 68 64 RIGHT 1+ 14 50 100 0
12 F 66 88 RIGHT 1+ 22 34 0 0
13 F 62 46 RIGHT 2 18 37 0 0
Average 64.9 77.1 19.6 35.5 61.5 28.2 14.1

Note: Subjects 7 & 9 were not pub.
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recommendations (38). The electrode was secured using self-
adhesive tape to ensure contact. The reference electrode of 
sEMG was attached to the lateral condyle of the humerus of 
the test arm. After placement of electrodes, the arm to be tested 
was firmly secured on a customized apparatus (Figure 1). The 
elbow joint was set to approximately 90° of flexion. The shoul-
der was positioned at approximately 45° of abduction and 30° 
of flexion. The forearm was firmly secured using four vertical 
plates at the proximal and distal forearm. Subjects were explic-
itly instructed to naturally relax their wrist and fingers, i.e., not 
to make a fist, or flex fingers and wrist, or to extend wrist and 
fingers. The center of the elbow joint was aligned with the axis 
of rotation of the shaft to prevent translation and rotation of  
the arm. The other arm of the subject was comfortably rested 
in an appropriately symmetrical position.

A single beep sound was generated by the computer using 
a 16-bit sound card (Creative Sound Blaster 16 SB1040EF) 
and Yamaha powered speaker (Model HS 50  M). Two levels 
of sound stimulus: “low” around 80 dB (for baseline response) 
and “high” around 105  dB (commonly used in the literature 
to elicit ASR) were used in this experiment. The intensity of 
the acoustic tone was measured and confirmed using a sound 
level meter (model 407730; Extech Instruments) at a distance 
of 30 cm from the speaker (approximately the distance to both 
ears of the subject).

experimental Tasks
The experiments consisted of the following three tasks: (1) ASR 
rest tasks, (2) Ballistic maximum voluntary contraction (MVC) 
tasks, and (3) sub-maximal elbow flexion tasks. All subjects 
performed ASR rest tasks first, and the order of remaining 
two tasks was randomized to avoid the effect of order. Healthy 
subjects performed on their dominant side, and stroke subjects 
repeated movement tasks on both sides in a random order. 
Thirteen stroke subjects were enrolled in the study. All of them 
performed the resting startle task. One stroke subject could not 
finish the movement tasks and one more was omitted due to 
motor apraxia. Only 11 of them executed ballistic tasks.

ASR Rest Task
Subjects were asked to relax and sound was delivered randomly 
between the 8th and 10th second of a 15-s trial. At first, one 
low sound and then three high sounds were delivered with 
2-min intervals. The same order was followed for all subjects to 
standardize the protocol. Subjects were explicitly asked to react 
naturally to the sound and continue to stay relaxed as much 
as possible until the end of the trial. ASR responses are usu-
ally habituated after three trials, while the ensuing high sound 
(SAS) continues to stimulate RS tracts without causing reflex 
responses in healthy subjects (16, 17, 39). Only EMG signals 
were recorded during this task.

Ballistic MVC Task
Subjects performed ballistic isometric elbow contractions in 
response to two levels of sound stimulus at a random order. 
They were instructed before each trial to flex elbow joint as fast 
and as strong as they can, after hearing the sound and hold it 
for 2–3  s, i.e., a reaction time task with elbow flexion MVC. 
They were also instructed to focus on one object (e.g., staring 
at the computer screen) and be consistent throughout all trials. 
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The sound was delivered randomly between the 4th and 8th 
second of a trial. Healthy subjects performed 10 trials on the 
dominant side, while to avoid fatigue stroke subjects performed 
six trials on each side. Subjects were allowed to rest between 
trials to minimize possible muscle fatigue. The same procedure 
was repeated on the other arm for stroke subjects. Before test-
ing, subjects were required to practice the task 3–5 times before 
testing to familiarize themselves with the task and equipment. 
Similar to test trials, SAS was delivered during practice trials. 
The intervals between practice trials were about 30 s. As such, 
it was expected that practice trials were able to minimize the 
systematic bias, because the number of test trials was different 
between healthy and stroke subjects.

Sub-maximal Contraction Task
Subjects performed a series of isometric elbow flexion at sub-
maximal levels. As in our recent study (40), elbow flexion MVC 
was first determined for each arm. The higher value of two 
MVC trials was estimated as the MVC value. Visual targets were 
established and displayed on the computer screen in a random 
order. Healthy subjects performed 3, 6, 10, 20, 30, and 40% of 
MVC on the dominant side. Stroke subjects performed 5, 10, 
20, 30, and 40% of MVC on each side to minimize possible 
fatigue effect. The order of levels was randomized and balanced 
among subjects. Subjects were verbally cued for the beginning 
of a 20-s trial. Subjects then initiated elbow flexion against the 
vertical plates in a self-paced manner to achieve the visual target. 
Subjects were instructed to naturally curve the wrist and fingers 
during elbow flexion tasks. They were verbally encouraged to 
match the visual target as accurately as possible during all the 
trials. After the force was stabilized at the target level, high sound 
stimulus of 105  dB was given randomly between 6 and 8  s of 
the trial. Approximately 3–5 practice trials were allowed for all 
subjects to familiarize themselves with the task requirement. 
All sub-maximal isometric contractions were performed three 
times by healthy subjects and twice by stroke subjects to avoid 
fatigue. Between trials, subjects were allowed to have enough  
rest to minimize possible muscle fatigue.

Data Processing and analysis
Torque was measured with a torque sensor (Model TRS 500; 
Transducers Techniques, CA, USA). The output of the surface 
EMG electrodes was connected to an EMG amplifier (Bagnoli 8; 
Delsys Inc., Boston) to a PC computer with a BNC-2090A con-
nector block and a data acquisition board (National Instruments, 
Austin, TX, USA). Custom LabVIEW software (National 
Instruments) was used. All raw sEMG and torque signals were 
band-pass filtered at 20–450  Hz and were digitized at 1,000 
sample/s. Data were saved for offline analysis using a custom-
ized MATLAB (MathWorks, MA, USA) program. Before further 
processing, mean of raw EMG signal of a trial was subtracted 
from the EMG data to nullify any data shift. EMG signal was 
then rectified and filtered (Butterworth, fourth order, low cutoff 
10  Hz) for finding envelop of muscle activity. Baseline activity 
(100 ms at the beginning of trial) was subtracted from a complete 
trial to nullify any data shift. Data analysis was performed by MB 
who performed the experiments.

ASR Rest Task
As described in Li et  al. (30), responses to acoustic startle 
were quantified by (1) onset latency: time interval between the 
stimulus and the onset of EMG burst and (2) burst amplitude: 
peak amplitude of filtered EMG signals within 500 ms after the 
stimulus. As in previous studies (41, 42), the startle response 
onset was defined as time when it took the baseline EMG to 
increase by 2 SDs. The onset was confirmed by visual inspec-
tion and marked on the raw EMG signals from biceps muscles. 
Burst amplitude was computed by subtracting the baseline value 
(200 ms before stimulation) from mean of 10 ms data centered 
on the peak EMG value. Response frequency was calculated as 
percent of trials with ASR responses as a group (Table 2).

Ballistic Movement Task
Reaction onset after the sound stimulation was marked by visual 
inspection of EMG response. Reaction time was calculated from 
the difference between sound stimulation and onset of biceps 
EMG signals. Trials with significantly late start or incomplete 
movement were considered as outliers and were discarded from 
analysis. Mean reaction time of all selected trials was calculated 
for each sound level. Torque data for each trial was arranged to 
start at reaction onset mark. A final torque profile was created by 
taking average of onset matched torque profiles from these trials. 
Peak torque was extracted from the average torque profile for 
each subject. Rate of force development was calculated by finding 
time required to reach 70% of MVC (19, 22).

Sub-maximal Contraction Task
Both EMG and torque responses to sound stimulation during 
sub-maximal contraction were quantified. The EMG response 
was quantified by subtracting baseline value (average over 
200 ms before stimulation) from mean of 10 ms data centered 
on the peak EMG value. The torque response to sound stimula-
tion was quantified by subtracting baseline value (average over 
200 ms before stimulation) from the peak torque value. Average 
of all trials for each contraction level was calculated. The final 
torque response was normalized by MVC to avoid data variation 
as a result of anthropometry spread between subjects. Similarly, 
the EMG response was normalized by the corresponding EMG 
value obtained from the MVC task.

Statistical Analysis
Given large variations, descriptive statistical analyses including 
response frequency and paired t-tests were used to evaluate 
startle responses. For ballistic tasks, paired t-tests were per-
formed to compare reaction time and peak torque between two 
sound levels for healthy subjects. Two-way repeated measures 
ANOVA was performed with the factors SIDE (x2, impaired/
non-impaired side) and SOUND (x2 levels of sound stimulus) 
for reaction time, peak torque, and rate of force development 
analysis in stroke subjects. Paired and independent t-tests 
were performed to compare the percent peak torque change.  
To compare the torque and EMG responses in sub-maximal 
tasks across all the subjects, one-way repeated measures ANOVA 
for controls and two-way repeated measures ANOVA for stroke 
survivors were performed with the factors SIDE and LEVEL (x5/
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TaBle 2 | Stroke subject acoustic startle reflex parameters: (1) onset latency (OL): time interval between the onset of stimulus and onset of EMG burst and (2) burst 
amplitude (BA): peak amplitude of rectified EMG.

subj iD impaired side non-impaired side

T1 T2 T3 response freq (%) T1 T2 T3 response freq (%)

1 OL – – – 0.00 – – – 0

BA – – – – – –

2 OL 170 166 168 100 206 – – 33

BA 0.004 0.003 0.002 0.002 – –

3 OL 135 108 133 100 135 137 142 100

BA 0.012 0.026 0.017 0.044 0.043 0.004

4 OL – – – 0 – – 123 33

BA – – – – – 0.00

5 OL 133 174 – 67 – – – 0

BA 0.003 0.001 – – – –

6 OL 109 111 94 100 102 94 90 100

BA 0.049 0.013 0.012 0.020 0.010 0.009

7 OL 154 – – 33 154 – – 33

BA 0.001 – – 0.002 – –

8 OL 84 102 84 100 115 – 90 67

BA 0.189 0.094 0.094 0.002 – 0.003

9 OL 94 88 75 100 – – – 0

BA 0.016 0.050 0.027 – – –

10 OL 92 102 94 100 – – – 0

BA 0.022 0.002 0.035 – – –

11 OL 109 96 108 100 – – – 0

BA 0.074 0.018 0.031 – – –

12 OL – – – 0 – – – 0

BA – – – – – –

13 OL – – – 0 – – – 0

BA – – – – – –

Avg response  
freq (%)

69 62 54 62 38 15 31 28

Freq: frequency. T1, T2, and T3 stand for trials 1, 2, and 3, respectively.
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x6 voluntary contraction levels). Means and standard deviations 
are presented in the text, while means and SEs are presented  
in the figures. p < 0.05 was chosen to indicate statistically sig-
nificant differences.

resUlTs

asr rest Task
Averaged response frequency of acoustic startle response was 
62% on the impaired side, 28% on the non-impaired side, and 
14% for healthy subjects (Tables 1 and 2). Averaged EMG onset 
latency was 126 ± 30.1 ms on the impaired side, 142 ± 34.6 ms on 
the non-impaired side, and 137 ± 33.2 ms in the healthy subjects. 
The results were consistent with previous studies showing that 
stroke survivors were startled more frequently with shorter 
latency on the impaired side (30).

Ballistic Movement Task
As shown in representative trials (Figure 2), high sound led to 
an early initiation of contraction and a greater peak torque in 
both healthy and stroke subjects. In healthy subjects, high sound 
stimulation significantly reduced reaction time (p = 0.001) and 

increased peak torque (p  =  0.013) compared with low sound. 
The same pattern of results was observed in stroke subjects. 
There were main effects of SOUND on reaction time (F(1, 
10) = 24.88, p = 0.0005) and on peak torque (F(1, 10) = 8.50, 
p  =  0.0153) for both impaired and non-impaired sides 
(Figure  3). The percent increment – the difference between 
peak torque induced by low sound and high sound and then 
normalized to the peak torque with low sound was not signifi-
cantly different between the impaired side (15.8 ± 3.1%) and 
the non-impaired side (8.0 ± 3.9%). The percent increment in 
healthy subjects (6.0 ± 2.9%) was not statistically different from 
those in impaired and non-impaired sides of stroke subjects. 
There was no significant effect on the rate of force development 
between impaired and non-impaired sides of stroke subjects 
(F(1, 10) = 3.8563, p = 0.07795).

sub-maximum Voluntary contraction Task
As most of the functional movements do not require maximal 
strength, we also evaluated the effect of loud sounds within sub-
maximal contraction range. We found that while maintaining 
sub-maximal isometric elbow flexion, a loud sound could trig-
ger a response in both healthy and stroke subjects (Figure 4). 
The torque response ranged between 0.3 and 1.5% MVC in the 
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FigUre 2 | Representative trials: healthy subject and stroke subject during maximum voluntary contraction elbow flexion tasks in response to startling acoustic 
stimulation. Note that the x-axis and y-axis values are the same for the stroke subject.
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healthy subjects (Figure 5A). A similar range of triggered torque 
response (0.4–1.3% MVC) was observed on the non-impaired 
side of stroke subjects. In contrast, the triggered torque response 
was approximately 3–4 times greater on the impaired side of 
the stroke subjects (1.7–4.7% MVC), but with large variations 
(Figure 5B). There was a significant level dependence in torque 
response in healthy subjects (F(5,55)  =  4.45, p  =  0.045), but 
non-significant for EMG response (F(5,55) =  4.45, p =  0.52). 
Furthermore, a significant level dependence was observed in 
both torque (F(4, 40) = 4.4382, p < 0.005) and EMG response 
(F(4, 40) = 15.348, p < 0.001) for stroke subjects. However, no 
difference in normalized torque and EMG responses between 
impaired and non-impaired sides was found. This non-signif-
icant difference in torque response may be a consequence of 
normalization to MVC. We re-analyzed the SAS-induced torque 
responses by normalizing to the corresponding target value, i.e., 
percent torque increase per Nm. The same pattern of results 
(no statistical difference in torque response between impaired 
and non-impaired sides) was found. However, there was a trend 
toward significance (p = 0.08).

DiscUssiOn

In the present study, we quantified responses to startling acoustic 
stimulation (SAS) from biceps brachii muscles in both healthy 
subjects and stroke subjects with chronic spastic hemiplegia 
at rest, during ballistic MVC elbow flexion and sub-maximal 
voluntary elbow flexion. Our results confirmed previous find-
ings that (1) greater prevalence of ASR with shorter latency in 
the impaired biceps as compared to the response in the non-
impaired side of stroke subjects and in healthy subjects and (2) 
delivery of SAS resulted in earlier initiation of elbow flexion 
and greater peak torque in healthy subjects. The novel find-
ings included (1) SAS-induced reduction in reaction time and 
increased peak torque were also observed in stroke subjects with 
spastic hemiplegia during maximal voluntary elbow flexion tasks;  
(2) SAS-induced force responses in sub-maximal voluntary 
elbow flexion were similar in both healthy and stroke subjects; 
and (3) no statistically significant difference was found in SAS-
induced responses between impaired and non-impaired sides  
at maximal and sub-maximal elbow flexion tasks.
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FigUre 3 | Reaction time and peak torque during ballistic tasks. ms: 
milliseconds, Nm: newton-meter. Mean and SEs are shown.

FigUre 4 | Representative trials: (a) healthy subject and (B) stroke subject during sustained sub-maximal elbow flexion tasks in response to startling acoustic 
stimulation.

Li et al. Startling Acoustic Stimulation in Stroke

Frontiers in Neurology | www.frontiersin.org November 2017 | Volume 8 | Article 627

Our findings of greater prevalence of ASR with shorter 
latency in the impaired biceps in stroke subjects with spastic 
hemiplegia were consistent with previous findings (29, 30). 

In a previous study (30), ASR occurred in 58.3% of all trials 
in the spastic biceps, while only 10% in the contralateral side 
of stroke subjects. In this study, we observed ASR responses 
in 61.5% of all trials in the impaired side, 28.2% in the non-
impaired side of stroke subjects, and 14% in healthy subjects. 
These similar results support the idea of RS hyperexcitability in 
the impaired side of stroke survivors with spastic hemiplegia  
(29–32, 43).

After several trials of SAS, ASR responses habituate, while 
ensuing SAS stimulates RS projections non-reflexively (16, 17). 
In the subsequent MVC and sub-maximal elbow flexion tasks 
of our study, SAS stimulated RS projections non-reflexively. In 
MVC reaction time tasks, repetitive SAS induced earlier initia-
tion, augmented peak force response with no difference in the 
rate of force development in both impaired and nonimpaired 
side of stroke subjects. These findings are consistent with those 
observed in healthy subjects and subjects with Parkinson’s dis-
ease (18–20, 44). We further observed that SAS-induced force 
increment during sustained elbow flexion in sub-maximal 
tasks in both healthy and stroke subjects. These findings 
extended the effect of SAS to sub-maximal levels. These find-
ings suggest that RS stimulation via SAS could contribute and 
increase force output during both MVC and sub-maximal 
elbow flexion tasks. Given RS hyperexcitability in the impaired 
side of stroke subjects, the finding of statistically non-signif-
icant SAS-induced force responses between impaired and 
non-impaired sides of stroke subjects and healthy subjects is  
not trivial.

Collectively, our findings suggest that RS hyperexcitability in 
stroke subjects with spastic hemiplegia is not likely to contribute 
to development of voluntary strength in these stroke survivors to 
a significant extent. RS hyperexcitability represents a phenom-
enon of maladaptive plasticity after stroke (31, 32, 43). For those 
stroke involving damage to motor cortex and its descending CS 
projections, cortico-reticular tracts ending in lateral reticular 
network are usually damaged due to their anatomically proximity 
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FigUre 5 | Torque and EMG response to startling acoustic stimulation during sustained sub-maximal elbow flexion. (a) Healthy subjects and (B) stroke subjects. 
Magnitudes were normalized to the MVC values. Means and SEs are shown. Note that the y-axis values for (a,B) are the same.
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with CS tracts. Subsequently, function of lateral RS projections 
diminishes. As a result of lack of unopposed activation, medial 
RS hyperexcitability and its excitatory descending input to spinal 
reflex circuits develops. Such maladaptive RS hyperexcitability is 
viewed as a primary mechanism mediating post-stroke spasticity 
(31, 32, 43). In the course of complete motor recovery through 
flaccid, spastic, and recovered stages, RS hyperexcitability is 
only observed in the spastic stage, but normal in the flaccid or 
recovered stages (30). Such findings suggest that motor recovery 
in a late recovered stage does not rely on RS projections. As men-
tioned in Section “Introduction,” recovery in locomotor function 
is accompanied with increased ipsilesional cortical activation 
after repetitive motor training in stroke (12). This observation 
demonstrates the important role of ipsilesional motor cortex 
in motor recovery. Improvement in motor performance after 
motor rehabilitation program integrating with auditory cueing 
or pacing is likely to be mediated by repetitive exercise (33–36). 
It has been shown that intensive therapy improves motor func-
tion, but has no effect on spasticity (45). As mentioned in Section 
“Introduction” (37), motor training with auditory rhythmic 
cueing and stimulation improved motor performance in stroke 
subjects with severe spastic paresis of wrist flexors but not in 
those subjects with minimal motor impairment or spastic co-
contractions. The results of different responses suggest that the 
outcome of motor training depends on the primary impairment. 
For example, if weakness is the primary impairment in subjects 
with severe spastic paresis, motor performance improves after 
increase in strength from motor training. However, no change 

is motor performance is expected if the primary impairment is 
spasticity (spastic co-contraction) or minimum weakness.

There are a number of limitations in this study. The sample 
sizes of healthy and stroke subjects were small. However, 
there were a robust pattern of findings as mentioned above 
(significant effects of SAS but not between two sides of stroke 
subjects or healthy subjects). Due to heterogeneity of stroke 
data, we viewed the results rather positively. Due to the experi-
mental settings, we only recruited stroke subjects with the 
ability to perform voluntary elbow flexion. Stroke survivors 
with more severe impairment or spasticity (MAS  ≥  3) were 
not included. The results may not represent the features of 
all stroke survivors. Healthy subjects were not age matched 
and gender matched to stroke survivors. These factors may 
account for the large variations in results and may affect the 
results. Nevertheless, our results were in general consistent 
with previous findings. Future study will need to take into 
account these factors.

cOnclUsiOn

In summary, we quantified and compared responses to startling 
acoustic stimulation (SAS) from biceps muscles in both healthy 
subjects and stroke subjects with chronic spastic hemiplegia 
at rest, during ballistic MVC elbow flexion and sub-maximal 
voluntary elbow flexion. Our findings of greater ASR responses 
in the impaired side are consistent with previous findings of RS 
hyperexcitability in chronic stroke with spastic hemiplegia. Our 
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results also showed similar results of SAS-induced effects in the 
impaired side as compared to the non-impaired side of stroke 
subjects and healthy subjects. Collectively, these results suggest 
that RS projections via acoustic stimulation are not likely to 
contribute to development of voluntary strength in these stroke 
survivors to a significant extent.
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Background: Effective poststroke motor rehabilitation depends on repeated limb prac-
tice with voluntary efforts. An electromyography (EMG)-driven neuromuscular electrical
stimulation (NMES)-robot arm was designed for the multi-joint physical training on the
elbow, the wrist, and the fingers.

Objectives: To investigate the training effects of the device-assisted approach on sub-
acute stroke patients and to compare the effects with those achieved by the traditional 
physical treatments.

Method: This study was a pilot randomized controlled trial with a 3-month follow-up.
Subacute stroke participants were randomly assigned into two groups, and then received 
20-session upper limb training with the EMG-driven NMES-robotic arm (NMES-robot
group, n = 14) or the time-matched traditional therapy (the control, n = 10). For the
evaluation of the training effects, clinical assessments including Fugl-Meyer Assessment 
(FMA), Modified Ashworth Score (MAS), Action Research Arm Test (ARAT), and Function 
Independence Measurement (FIM) were conducted before, after the rehabilitation train-
ing, and 3 months later. Session-by-session EMG parameters in the NMES-robot group, 
including normalized co-contraction Indexes (CI) and EMG activation level of target
muscles, were used to monitor the progress in muscular coordination patterns.

results: Significant improvements were obtained in FMA (full score and shoulder/
elbow), ARAT, and FIM [P  <  0.001, effect sizes (EFs)  >  0.279] for both groups.
Significant improvement in FMA wrist/hand was only observed in the NMES-robot
group (P  <  0.001, EFs  =  0.435) after the treatments. Significant reduction in MAS
wrist was observed in the NMES-robot group after the training (P < 0.05, EFs = 0.145) 
and the effects were maintained for 3 months. MAS scores in the control group were
elevated following training (P < 0.05, EFs > 0.24), and remained at an elevated level
when assessed 3 months later. The EMG parameters indicated a release of muscle
co-contraction in the muscle pairs of biceps brachii and flexor carpi radialis and biceps 
brachii and triceps brachii, as well as a reduction of muscle activation level in the wrist 
flexor in the NMES-robot group.
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Conclusion: The NMES-robot-assisted training was effective for early stroke upper limb 
rehabilitation and promoted independence in the daily living comparable to the traditional 
physical therapy. It could achieve higher motor outcomes at the distal joints and more 
effective release in muscle tones than the traditional therapy.

Clinical Trial registration: ClinicalTrials.gov, identifier NCT02117089; date of registra-
tion: April 10, 2014.

Keywords: stroke, upper limb, robot, neuromuscular electrical stimulation, electromyography

and the fingers) together in the clinical practice (17). New tech-
niques are needed to assist in the manually conducted upper limb 
coordinating rehabilitation.

Rehabilitation robots can assist human therapists to conduct 
the intensive and repeated physical training with different 
numbers and sizes of electrical motors. Various robots have 
been designed for poststroke upper limb rehabilitation (18–21). 
Among them, the robots with the involvement of voluntary 
efforts from the residual neuromuscular pathways demonstrated 
better rehabilitation effects than those with passive limb motions, 
i.e., the limb motions are entirely dominated by the machine (18). 
It has been found that physical trainings with passive motions 
only contributed to the temporary release of muscle spasticity. 
However, voluntary practice could improve the motor functions 
of the limb with longer sustainability (18, 22). Neuromuscular 
electrical stimulation (NMES) is a technique that can generate 
limb movements by applying electrical current on the paretic 
muscles (23). Poststroke rehabilitation assisted with NMES has 
been found to effectively prevent muscle atrophy and improve 
muscle strength (23, 24), and the stimulation also evokes sensory 
feedback to the brain during muscle contraction to facilitate motor 
relearning (25). NMES can improve limb functions by limiting 
“learned disuse” that stroke survivors are gradually accustomed 
to managing their daily activities without using certain muscles, 
which has been considered as a significant barrier to maximize 
the recovery (26). However, NMES alone is hard to achieve 
desired accuracy in kinematics, such as speed and trajectories, as 
in the robot-assisted training (27).

In our previous works, we designed a series of voluntary 
intention-driven rehabilitation robotics for physical training at 
the elbow, the wrist, and fingers (22, 28–31). Residual electromyo-
graphy (EMG) from the paretic muscles was used to control the 
robots to provide assistive torques to the limb for desired motions 
(31, 32). Later, we integrated NMES into the EMG-driven robot 
as an intact system for wrist rehabilitation. It has been found that 
the combined assistance with both robot and NMES could reduce 
the excessive muscular activities at the elbow and improve the 
muscle activation levels related to the wrist in chronic stroke, 
which was absent in the pure robot-assisted training (31). Pure 
robot-assisted upper limb training also showed no superiority on 
motor improvements on chronic stroke in comparison with the 
traditional treatments in a reported randomized controlled trial 
(33). More recently, combined treatment with robot and NMES 
for the wrist by other research group also demonstrated more 
promising rehabilitation effectiveness in the upper limb motor 
recovery than pure robot training (34). However, most of the 

inTrODUCTiOn

Stroke is one of the leading causes of permanent disability in 
adults (1). Approximately 80% stroke survivors regain their 
walking independence (2). However, less than 25% survivors 
could achieve some limited recovery on the upper limb function, 
and only around 5% of them could obtain complete functional 
recovery 6 months later after the onset (2, 3). Dysfunctions in the 
upper limb are a combination of muscle weakness, spasticity, and 
discoordination among different muscle groups (4, 5). Significant 
spontaneous motor recovery usually occurs within the first sev-
eral weeks to 6 months after stroke, i.e., in the subacute period (6). 
Physical rehabilitation in this early period can optimize the spon-
taneous neural plasticity and motor responsiveness, and result 
in maximized motor outcomes (7, 8). In comparison with the 
rehabilitation treatment administrated in the chronic period (i.e., 
6 months later after the onset), motor functions resorted in the 
subacute period are more likely to be generalized into functional 
activities in the daily life (9, 10). One of the major reasons is that 
the persons with subacute stroke have not been used to adopt the 
unaffected limb only for daily tasks as commonly observed in the 
chronic. The traditional rehabilitation treatments in early stage 
after stroke are usually conducted manually by human therapists, 
which are time consuming and labor demanding (5). It is chal-
lenging to the current medical and health-care system to provide 
adequate or intensive rehabilitation treatments to persons with 
subacute stroke, due to the lack of professional manpower in the 
physical therapy industry even in developed countries (11) and 
the expanding of stroke populations worldwide (3).

Effective motor restoration after stroke depends on repeated 
and intensive practice of the paralyzed limbs with voluntary 
efforts (7, 12, 13). Repetitive practice with high-intensity has been 
proven to speed up the process of motor restorations (6, 13). The 
involvement of voluntary effort from the residual neuromuscular 
pathways has been convinced to carry out better performance 
with higher efficiency when compared with the continuous pas-
sive motion trainings (14, 15). Coordinated upper limb practices 
among different joints, especially the involvement of the distal 
joints (e.g., the wrist and fingers) have also been found more 
effective to translate the motor improvements into meaningful 
limb functions than single joint practice (16). However, due to the 
overall muscle weakness in early stage after stroke and a delayed 
motor return at the distal joints in comparison with the proxi-
mal, it is always a difficulty for human therapists to instruct and 
support the coordinated upper limb motions with the proximal  
(i.e., the shoulder and the elbow) and distal joints (i.e., the wrist 
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FigUrE 1 | The experimental and training setup of the electromyography-
driven neuromuscular electrical stimulation (NMES)-robot system: (a) the 
mechanical exoskeleton module of the system consisted of the wrist part and 
the elbow part; (B) the training setup in a session assisted with the 
NMES-robot training system, the visual feedback interface, and the hanging 
system.
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proposed devices are for single joint treatment, and the related 
trials were conducted on chronic stroke. We hypothesized that 
poststroke multi-joint coordinated training with both NMES and 
robot in the subacute stroke period could improve the muscular 
coordination in the whole upper limb and translate the motor 
improvements into daily functions. In this work, we developed 
an EMG-driven NMES-robotic arm for multi-joint coordinated 
training on the elbow, wrist, and fingers. The feasibility of the 
EMG-driven NMES-robotic arm assisted upper limb training on 
subacute stroke, and the training effectiveness were investigated 
through a pilot randomized controlled trial in comparison with 
the traditional upper limb physical rehabilitation.

METHODOlOgY

The EMg-Driven nMES-robot System
The integrated EMG-driven NMES-robot training system 
(Figure 1) can assist a stroke survivor to perform the sequencing 
motions, i.e., (1) elbow extension, (2) synchronized wrist exten-
sion and hand open, (3) wrist flexion, and (4) elbow flexion, 
which simulates the coordination of the joints in arm reaching, 
hand grasping, and withdrawing motions in daily activities. 
The starting position of the motion cycle was set as elbow joint 
extended at 180° and the wrist extended at 45°, respectively. The 

range of motion (ROM) for the elbow joint in the system was set 
from 30° flexed to 180° extended; and the ROM for the wrist joint 
was from 60° flexed to 45° extended. The ROMs for the elbow and 
wrist joints had been tested on their feasibilities when applied to 
stroke participants in our previous works (27, 28, 31). The paretic 
arm of a participant could be fixed in a solid exoskeleton orthosis 
through a bracing system. The movement of the mechanical exo-
skeleton for the elbow and the wrist parts are controlled by two 
independent servo motors (MX 106, ROBOTIS, with a maximal 
stall torque of 8.4 Nm) (27) (Figure 1A). When using the system 
in this work, the paretic upper limb of a participant mounted with 
the system was lifted up to a horizontal level with a hanging sys-
tem (Figure 1B). It was understood that stroke survivors in early 
stage (e.g., subacute period) usually experienced more muscular 
weakness rather than spasticity as in the chronic period, and most 
stroke survivors at this period could not even lift up their paretic 
limbs with voluntary effort, which was mainly due to the muscle 
atrophy at the shoulder. The hanging system was necessary for a 
subacute stroke participant to perform the upper limb tasks with 
the system in the study.

Four-channel NMES was applied on the muscles of biceps 
brachii (BIC) during elbow flexion, triceps brachii (TRI) during 
elbow extension, flexor carpi radialis (FCR) for wrist flexion, and 
the last channel on both the extensor carpi ulnaris (ECU) and 
extensor digitorum (ED) for wrist extension and the associated 
hand open (i.e., finger extension). The muscles of the ECU and ED 
are close to each other anatomically with narrow muscle bellies 
on the dorsal side of the forearm, and can be recruited together 
by just one-channel surface NMES (35). They were treated as a 
muscle union (ECU-ED) for both NMES and EMG detection 
in this work. The function of the motors and NMES were under 
the control of the EMG detected from the BIC, TRI, FCR, and 
ECU-ED muscles. The configuration for the EMG and NMES 
electrodes on a target muscle is shown in Figure 2, which also 
has been adopted in our previous NMES-robot system for wrist 
rehabilitation (32). For the ECU-ED muscle union, the EMG and 
NMES electrodes were located on the common area of the muscle 
bellies of the two. There was no NMES or robotic support to the 
hand close motion, since most of the stroke survivors experi-
enced difficulties in hand open rather than hand close (5, 36), 
and NMES on finger flexors also may accelerate the development 
of the muscle tones in the fingers (5).

Assistance from both the robot and NMES modules was under 
the control of EMG signals from the target muscles and helped 
the participant to conduct the phasic and sequential limb tasks, 
i.e., (1) elbow extension, (2) wrist extension and hand open, (3) 
wrist flexion, and (4) elbow flexion. EMG-triggered control was 
adopted in this work, i.e., in each motion phase, once the EMG 
activation level of a driving muscle exceeded a preset threshold 
[three times of the SD above the EMG baseline in the rest, by 
following the standard detection of the onset of voluntary EMG 
in a contracting muscle (37)], the related joint motor would 
move with a constant velocity of 10°/s (either flexion or extension 
within the ROMs), and it was a joint angular velocity acceptable 
for stroke survivors in our previous works (31, 32). Meanwhile, 
constant NMES would also be turned on by the voluntary EMG 
level which surpassed the triggering threshold and be delivered 
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FigUrE 2 | (a) The electrode configuration on the target muscles, i.e., the biceps brachii (BIC), the triceps brachii (TRI), flexor carpi radialis (FCR), and the muscle 
union of the extensor carpi ulnaris and extensor digitorum (ECU-ED). The reference electrode was attached on the olecranon; (B) the illustration of the configuration 
of the electromyography electrodes and neuromuscular electrical stimulation (NMES) electrodes on a target muscle.
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(square-wave pulses with a constant amplitude of 80 V, stimula-
tion frequency at 40 Hz, individual pulse width at 100 µs) to the 
target muscle (i.e., the driving muscle in a motion phase) in the 
related motion phase. Once the joint motors and the NMES were 
initiated by the EMG signals from the driving muscle, there was 
no voluntary effort needed from the participant and the training 
system would help the limb complete the rest of the motion in the 
phase. All EMG signals were amplified with a gain of 1,000 (ampli-
fier: INA 333, Texas Instruments Inc.), band-pass filtered from 10 
to 500 Hz, and then sampled with 1,000 Hz for digitization. The 
EMG signals during the triggering period for the initiation of the 
movements were full-wave rectified and moving-averaged with 
100 ms window to obtain the EMG activation levels.

Subject recruitment and Training Protocol
The study was approved by the Human Subjects Ethics 
Subcommittee of Hong Kong Polytechnic University and Joint 
Chinese University of Hong Kong-New Territories East Cluster 
Clinical Research Ethics Committee. We screened the stroke 
inpatients in the teaching hospital, and recruited participants 
with upper limb motor deficits satisfying the following inclusion 
criteria: (1) had a singular and unilateral brain lesion due to a 
stroke acquired within 4 months; (2) had standard medical care 

and sustained in a stable condition; (3) had enough cognition to 
understand the content or purpose of the study and follow simple 
instructions as assessed by the Mini-Mental State Examination 
(MMSE > 21) (38); (4) motor impairments affected in the upper 
limb ranged from severe to moderate as assessed by Fugl-Meyer 
Assessment (15 < FMA < 45, with a maximal score of 66 for the 
upper limb) (39); (5) the spasticity affected at the elbow, the wrist 
and the fingers below 3 as measured by the Modified Ashworth 
Scale [MAS, ranged from 0 (no increase in the muscle tone) to 4 
(affected part rigid)] (40); (6) the passive ROM of the participants 
for the wrist was from 45° extension to 60° flexion and the ROM 
for the elbow was from 30° flexion to 180° extension; (7) aged 
from 18 to 78 years (41, 42); (8) had detectable voluntary EMG 
from the target muscles (i.e., three times of the SD above the base-
line); (9) had a stable medical condition for physical training with 
multiple sessions. Subjects were excluded if they did not meet 
the above inclusion criteria, or had the following conditions: (1) 
currently pregnant, (2) severe aphasia, and (3) had an implanted 
pacemaker.

The study was a pilot randomized controlled trial with 
a 3-month follow-up (3MFU). Inpatients after stroke were 
screened by a collaborative clinician according to the inclusion 
criteria 7–10  days before the start of the training, in a project 
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FigUrE 3 | The Consolidated Standards of Reporting Trials flowchart of the experimental design.
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period of 24 months. The potential participants were told about 
the training program of the study, and the recruited participants 
gave the written consent on the participation in the training 
program which could be either the device-assisted training or 
the traditional treatment before the randomization. Then, the 
recruited participants were randomly assigned into two groups, 
according to a computer-based random number generator, i.e., 
the computer program generated either “1” (the experimental 
group) or “2” (the control group) with an equal probability of 0.5 
(Matlab 2015, Mathworks, Inc.). The recruitment of the subjects 
was in a relatively sequential way due to the availability of the 
training device (only one set for the respective left and right sides) 
and the hospital stay of the participants in the management. Once 
both sides of the robotic arms were occupied for the training, 
the recruitment was suspended. In the subject screening period, 
the clinician also needed to take into account of the availability 
of the device for left or right hemiplegia in the coming possible 
NMES-robot-assisted training. Figure 3 shows the Consolidated 
Standards of Reporting Trials flowchart of the training program.

In the experimental group, i.e., the NMES-robot group, each 
participant received 20-session upper limb training assisted by 
the NMES-robot system with an intensity of 5  sessions/week, 
1 session/day (from Monday to Friday), finished in one month. In 
each session, a participant was instructed to conduct the device-
assisted and repeated limb motions, i.e., (1) elbow extension, (2) 
wrist extension and hand open, (3) wrist flexion, and (4) elbow 
flexion for totally 40 min. There was a break of 10 min after a 

practice of 20 min to avoid the muscle fatigue. In this work, the 
training loads between the NMES-robot group and the control 
group were matched by the time and the frequency of the sessions 
for the upper limb training. The upper limb rehabilitation time of a 
session for the NMES-robot group was deducted from the routine 
upper limb training (1 h from Monday to Friday in a common 
treatment room in the management of the collaborative hospital) 
by human therapists. The routine upper limb treatment included 
muscle stretching, passive/assistive ROM and occupational treat-
ments such as feeding/eating, grooming practices. In the practical 
operation in this work, the participants in the NMES-robot group 
were transferred to another treatment room to receive the 40-min 
device-assisted training, and then returned to receive the rest of 
the routine physical treatments on the upper limb. For most of 
the participants in the NMES-robot group, they only practiced 
the muscle stretching and passive ROM after returned from the 
NMES-robot training for around 10–15 min, due to the fatigue 
experienced in the upper limb. The participants in the control 
group only received the routine rehabilitation therapies on the 
upper limb (i.e., 1 h in the common treatment room).

Training Effects Evaluation
Clinical Assessments
In this study, functional evaluation for each participant on their 
paretic upper limbs were scored by the following assessments: the 
FMA (the full score ranging from 0 to 66, the shoulder/elbow part 
ranging from 0 to 42, and the wrist/hand part ranging from 0 to 24),  
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applied for performance-based measurement of motosensory 
functions on the poststroke hemiplegia (39); the Action Research 
Arm Test (ARAT), mainly used to measure one’s hand functions 
to handle objects in different size, weight and shape (43); the 
Function Independence Measurement (FIM) for the evaluation 
of patients’ activities of daily living (ADL) (44); and the MAS, 
applied for the evaluation of poststroke spasticity at the elbow, 
the wrist and the fingers (40). All the clinical assessments were 
conducted before the training started and immediately after the 
20 training sessions, as well as 3 months later after the training by 
a training-blinded assessor. The stroke participants in the study 
and the assessor were told not to communicate on the training 
details and the assessor was kept blinded to the training protocol.

Session-By-Session Evaluation by EMG
In each training session for the NMES-robot group, a participant 
was first instructed to perform a bare-arm evaluation task before 
the device-assisted rehabilitation training, in order to trace the 
evolution of the muscle coordination during the recovery as we 
did in the robot-assisted upper limb training on chronic stroke 
previously (31). The evaluation task had two parts, i.e., horizontal 
task and vertical task. In the horizontal task, a participant was 
required to use the affected limb to grasp a sponge and transport 
it to the lateral side with a distance of 50  cm on a table; then, 
release the sponge. After that, the participant needed to pick up 
the sponge again and then transport it back to the original place. 
In the vertical task, the participant was required to complete 
the pick-up and release cycle vertically between two layers of 
a shelf on the table (31, 32). The horizontal and vertical tasks 
were repeated twice for each with a 5  min break between two 
consecutive practices to avoid the muscle fatigue. The detailed 
configuration and description of the two bare-arm evaluation 
tasks could be found in our previous work (31, 32). The main 
objective of the bare-arm evaluation in each session is to simulate 
upper limb motions in daily activities (i.e., hand grasping, arm 
reaching, and withdrawing) and to reveal the recovery progress 
across the training sessions of the upper limb motor function 
without device assistance. In each evaluation task, EMG record-
ing was started when a participant received the command from 
the trainer, and ended when the testing arm released the sponge 
at target position. It was understood that subacute patients might 
not be able to complete the tasks by using their affected limbs 
independently due to the early muscle weakness in the first 
several sessions. Therefore, we set a 10-s maximum time limit: 
if the paretic arm could not grasp the sponge or lift up in 10 s 
then the participants would be allowed to use the intact hand 
to help the affected arm grasp or lift up. Only the EMG signals 
within the 10  s were included for analysis. All participants in 
the NMES-robot group could grasp the sponge and conduct the 
horizontal arm transportation with the affected limb in the evalu-
ation from the first session. The major difficulties encountered by 
the participants were hand open to release the sponge and the lift 
of the whole arm in the vertical tasks. Therefore, successful hand 
release of the sponge was not required in this study, although the 
participants were required to make the voluntary efforts to extend 
the fingers. The 10-s maximum time limit was mainly applied to 
the vertical tasks in the early sessions. During the 10-s period, 

the participants were required to exert voluntary effort to achieve 
the task by using all possible muscular coordinating strategies in 
the affected upper limb, with the purpose to record the muscular 
patterns for an intended target motion. According to our empiri-
cal observation, longer attempt periods would cause frustration 
due to failure and fatigue, i.e., less muscular effects exerted. At 
the 20th session of the training, all participants recruited in the 
NMES-robot group could complete the evaluation tasks by the 
paretic arm without the support from the unaffected limb.

EMG Parameters
Two EMG parameters were used for quantitative cross-session 
monitoring of the muscle activation and coordination pattern 
changes during the evaluation in this work: (1) normalized EMG 
activation level of each muscle; and (2) normalized co-contraction 
index (CI) between the muscle pairs. The processing methods of 
the normalized EMG activation level was calculated as follows, i.e.,

 
EMG EMG= ( )∫

1

0T
t dt

T

i ,
 

(1)

where EMG was the EMG activation level of muscle i, EMGi(t) 
was the EMG linear envelope with respect to the maximal value 
recorded during the bare-arm evaluation tasks and maximum 
voluntary contractions in each session, and T was the length of 
the signal as we did previously (22, 28). In this work, the EMG 
activation levels in a session for an individual participant were 
further normalized with respect to the maximal EMG activation 
level of the participant recorded across the training sessions. This 
operation would show the tendency of the EMG activation level 
of a participant across the training session with the normalized 
values vary from 0 to 1, in order to minimize the variations among 
different participants as we encountered previously (22, 28).

The CI between a pair of muscles could be expressed as:

 
CI = ( )∫

1

0T
A t dt

T

ij ,
 

(2)

where Aij(t) represented the overlapping activity (i.e., 
Minimum[EMGi(t), EMGj(t)]) of the EMG linear envelopes for 
muscle i and j, and T was the length of the signal, EMGi,j(t) are 
the EMG envelopes as in Eq. 1 (22, 28). An increase of the CI 
values would represent an enlarged co-contraction phase of a 
muscle pair; and a decrease would suggest a separation in the 
co-contraction phase of the two muscles within the same joint or 
across multi joints. Similar normalization on the CI values in a 
session with respect to the maximal CI value across the sessions 
for individual participants was conducted as we did for the EMG 
activation levels. Monitoring the varying patterns of the EMG 
parameters across the 20 training sessions would provide a better 
understanding on the recovery progress of the affected upper 
limb functions.

Statistical analysis
The baselines of the two groups were first compared by independ-
ent t-test with an insignificant statistical difference (P > 0.05) on 
all clinical assessments (i.e., pre-assessments on FMA, MAS, 
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TaBlE 2 | The mean and 95% confidence intervals for each measurement of the clinical assessments, and the probabilities with the estimated effect sizes of the 
statistical analyses.

Pre Post 3MFU 1-way anOVa 2-way analysis of covariance

P (Partial η2)

Evaluation Mean (95% Confidence interval) P (Partial η2) Session group S*g

FMa
Full score, Neuromuscular 
Electrical Stimulation 
(NMES)-robot

22.3 (16.5–28.1) 43.6 (37.9–49.4) 42.5 (36.7–48.3) 0.001### (0.475) 0.000ΔΔΔ (0.615) 0.000ΔΔΔ (0.282) 0.003ΔΔ (0.160)

Control 20.3 (14.2–26.4) 30.1 (24.0–36.2) 30.9 (24.8–37.0) 0.031# (0.227)
Shoulder/elbow, 
NMES-robot

13.6 (10.1–17.0) 24.1 (20.6–27.5) 22.3 (18.9–25.7) 0.000### (0.360) 0.000ΔΔΔ (0.401) 0.000ΔΔΔ (0.112) 0.029Δ (0.047)

Control 11.6 (8.2–15.0) 17.3 (13.9–20.7) 17.4 (14.0–20.8) 0.030# (0.229)
Wrist/hand, NMES-robot 8.7 (5.3–12.1) 19.6 (16.2–22.9) 20.2 (16.8–23.6) 0.000### (0.435) 0.000ΔΔΔ (0.551) 0.000ΔΔΔ (0.311) 0.001ΔΔΔ (0.184) 
Control 8.7 (4.8–12.6) 12.8 (8.9–16.7) 13.5 (9.6–17.4) 0.176 (0.021)

araT
NMES-robot 15.7 (8.8–22.6) 29.2 (22.3–36.1) 33.2 (26.3–40.1) 0.002## (0.268) 0.000ΔΔΔ (0.279) 0.284 (0.018) 0.912 (0.003)
Control 12.0 (4.0–20.0) 24.2 (16.2–32.2) 26.6 (18.6–34.6) 0.030# (0.229)

FiM
NMES-robot 44.7 (38.8–50.6) 56.6 (50.7–62.5) 61.6 (55.7–67.5) 0.001### (0.311) 0.000ΔΔΔ (0.542) 0.117 (0.037) 0.418 (0.027)
Control 44.3 (39.3–49.3) 62.1 (57.1–67.1) 64.6 (59.6–69.6) 0.000### (0.603)

MaS
Elbow, NMES-robot 0.8 (0.3–1.3) 0.3 (−0.2–0.8) 0.6 (0.1–1.0) 0.362 (0.051) 0.051 (0.087) 0.000ΔΔΔ (0.204) 0.001ΔΔΔ (0.201)
Control 0.3 (−0.1–0.7) 0.8 (0.5–1.2) 1.2 (0.8–1.5) 0.005## (0.322)
Wrist, NMES-robot 0.7 (0.3–1.0) 0.1 (−0.2–0.4) 0.3 (0.0–0.7) 0.048# (0.145) 0.119 (0.064) 0.000ΔΔΔ (0.232) 0.000ΔΔΔ (0.241)
Control 0.3 (−0.1–0.6) 0.8 (0.4–1.1) 1.1 (0.7–1.4) 0.009## (0.292)
Finger, NMES-robot 0.5 (0.2–0.9) 0.3 (−0.1–0.6) 0.2 (−0.1–0.5) 0.354 (0.052) 0.425 (0.026) 0.000ΔΔΔ (0.176) 0.005ΔΔ (0.152)
Control 0.4 (0.1–0.7) 0.7 (0.4–1.1) 1.1 (0.8–1.4) 0.025# (0.240)

Differences with statistical significance are marked with superscripts beside the P values (“#” for 1-way-ANOVA intragroup tests, “Δ” for 2-way ANCOVA tests on the group and 
session effects with the pre-assessment as the covariate). Significant levels are indicated as, 1 superscript for <0.05, 2 superscripts for ≤0.01, and 3 superscripts for ≤0.001. The 
degrees of freedom in the 1-way-ANOVA tests are (1) NMES-robot group, the corrected total = 41, between-group = 2, and within-group = 39; (2) the control group, the corrected 
total = 29, between-group = 2 and within-group = 27. The degrees of freedom in the 2-way ANCOVA tests are (1) the corrected total = 71, (2) pre-test = 1, (3) Session = 2, (4) 
Group = 1, and (5) S*G = 67.
FMA, Fugl-Meyer Assessment; MAS, Modified Ashworth Score; ARAT, Action Research Arm Test; FIM, Functional Independence Measurement; 3MFU, 3-month follow-up; ANOVA, 
analysis of variance; S*G, the interaction between the session and group.

TaBlE 1 | Demographic data of the participants after the randomization.

group no. of participants Min/Max days after 
stroke

Stroke types, 
hemorrhage/ischemic

lesion site, left/right gender, female/
male

age (years)

Neuromuscular Electrical  
Stimulation (NMES)-robot

14 25/148 9/5 11/3 5/9 54.6 ± 11.3

Control 10 14/142 6/4 9/1 4/6 64.6 ± 3.43

Qian et al. NMES-Robot for Early Stroke Rehabilitation

Frontiers in Neurology | www.frontiersin.org September 2017 | Volume 8 | Article 447

ARAT, and FIM scores, Table  2) to ensure the likelihood of 
the baseline equivalence (45). Two-way analysis of covariance 
(ANCOVA) was then used to evaluate the differences with 
respect to the independent factors of the group (i.e., the NMES-
robot and the control groups) and the time point on the clinical 
assessments (i.e., the pre-, the post-, and the 3MFU assessments) 
by taking the pre-assessment as a covariate, with the purpose 
to further minimize the possible baseline difference between 
the groups (45). Then, one-way analysis of variance (ANOVA) 
was conducted to investigate the intragroup difference of either 
NMES-robot group or control group at different time points with 
the Bonferroni post hoc tests. The post hoc between-group com-
parisons on the clinical scores at the respective post- and 3MFU 

assessments were evaluated by one-way ANCOVA with the 
pre-assessment as a covariate. The EMG parameters (i.e., EMG 
levels and CI values) across the 20 sessions were also analyzed 
by one-way ANOVA for the investigation of recovery process 
across the whole training sessions in the NMES-robot group. The 
primary outcomes of the study were the FMA and MAS clinical 
scores; and the other clinical scores and EMG parameters were 
the secondary outcomes. It was because FMA could reflect task-
specified voluntary motor functions in the whole upper limb and 
MAS could reflect the variation of muscle spasticity at different 
joints in the upper limb compared to other clinical scores. The 
levels of statistical significance were indicated at 0.05, 0.01, and 
0.001 in this study.
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FigUrE 4 | The clinical scores [evaluated before the first and after the 20th training session, as well as the 3-month follow-up (3MFU)] of the participants in both 
neuromuscular electrical stimulation (NMES)-robot and control groups: (a) Fugl-Meyer Assessment (FMA) full scores, (B) FMA shoulder/elbow scores, (C) FMA 
wrist/hand scores, (D) Action Research Arm Test (ARAT) scores, (E) Function Independence Measurement (FIM), and (F) Modified Ashworth Score (MAS) scores at 
the elbow, the wrist, and the fingers, presented as mean value with 2-time SE (error bar) in each evaluation session. The solid lines are for the NMES-robot group, 
and the dashed lines are for the control group. The significant inter-group difference is indicated by “*” (P < 0.05, one-way analysis of covariance), and “#” is used to 
indicate the significant intragroup difference (P < 0.05, one-way analysis of variance with Bonferroni post hoc tests).
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rESUlTS

We screened 78 stroke inpatients in the wards of the hospital, 
and 54 of them did not meet the inclusion criteria with single or 
multiple reasons of (1) unstable clinical symptoms for continuous 
and long-term physical training, (2) secondary stroke, (3) cogni-
tive impairment, (4) severe motor impairment (full FMA < 15), 
and (5) no detectable EMG in a driving muscle (<3 SD of the 
baseline). A total of 24 participants fulfilled the inclusion criteria 
and were recruited in this study. They were randomly assigned 
into two groups: the NMES-robot group (n = 14) and the control 
group (n = 10). The demographic data of the participants after the 
randomization are presented in Table 1.

Figure 4 presents the clinical scores of participants in both 
the NMES-robot and control groups, with FMA, ARAT, FIM, 
and MAS evaluated at three time points: before the first train-
ing session (pre-training assessment), immediately after the 
last (20th) training session (post-training assessment), and 
3  months after the last training session (i.e., 3MFU). Table  2 
summarizes the means and 95% confidence intervals of each 
clinical assessment together with the two-way ANCOVA 
probabilities and the estimated effect sizes (EFs) with respect 
to session and group, and the one-way ANOVA probabilities 
with the EFs for the intragroup evaluation with respect to the 
assessment sessions. Table  3 shows the probabilities and EFs 
of the between-group comparison on the respective post- and 
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TaBlE 3 | The statistical probabilities and the estimated effect sizes of the 
1-way analysis of covariance (ANCOVA) on the respective post-assessment and 
3-month follow-up (3MFU) between the groups, by taking the pre-assessment as 
the covariate.

Evaluation 1-way anCOVa on the Post- and 3MFU 
assessments between the groups

Post_Pre P (Partial η2) 3MFU_Pre P (Partial η2)

FMA
Full score 0.000*** (0.478) 0.005** (0.319)
Shoulder/elbow 0.037* (0.190) 0.040* (0.186)
Wrist/hand 0.000*** (0.538) 0.005** (0.322)

Action Research Arm 
Test (ARAT)

0.417 (0.032) 0.455 (0.027)

Function Independence 
Measurement (FIM)

0.123 (0.109) 0.169 (0.088)

Modified Ashworth  
Score (MAS)

Elbow 0.003** (0.359) 0.004** (0.334)
Wrist 0.001*** (0.430) 0.002** (0.367)
Finger 0.074 (0.144) 0.000*** (0.507)

Differences with statistical significance are marked with ‘*’ beside the P values. 
Significant levels are indicated as, * for <0.05, ** for ≤0.01, *** for ≤0.001. The degrees 
of freedom are (1) the corrected total = 23, (2) pre-test = 1, (3) between-group = 1, 
and (4) within-group = 21.
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3MFU assessments by one-way ANCOVA with the adjustment 
of the baseline effect.

Figures 4A–C show the variation in FMA scores at the three 
evaluation sessions. Significant differences were observed with 
respect to the factors of group and session in the FMA full score, 
the FMA shoulder/elbow and FMA wrist/hand sub-scores (two-
way ANCOVA, P < 0.05, Table 2). The interactions between the 
group and session factors were also statistically significant for 
the three FMA scores (P < 0.05, Table 2), where the FMA wrist/
hand achieved the most significant level (P = 0.001, EF = 0.184, 
Table 2) and the FMA shoulder/elbow achieved the least signifi-
cant level (P = 0.029, EF = 0.047, Table 2). For the FMA full score 
(Figure  4A), both groups demonstrated significant increases 
immediately after the training (i.e., post-assessment), and these 
increments with respect to the pre-assessment were maintained 
3 months later after the training (P < 0.05, one-way ANOVA with 
post hoc tests, Table 2). The increments in the FMA full score for 
the NMES-robot group were significantly higher than the control 
group at the post- and 3MFU assessments (one-way ANCOVA, 
P < 0.01, Table 3). In Figures 4B,C, the FMA shoulder/elbow and 
wrist/hand scores demonstrated the similar behaviors as those 
observed in the FMA full score. However, the FMA wrist/hand 
scores indicated more significant levels with larger EFs in the 
interaction between the group and session (two-way ANCOVA, 
Table  2), and in the between-group one-way ANCOVA com-
parisons at the post- and 3MFU assessments (Table  3). There 
was no significant improvement in the FMA wrist/hand score for 
the control group after the training (P > 0.05, one-way ANOVA, 
Table 2).

Figure  4D presents the ARAT scores in the pre-training 
assessment, post-training assessment, and 3MFU for both groups. 
Significant difference was observed with respect to the evaluation 

sessions (P < 0.001, EF = 0.279, two-way ANCOVA, Table 2), 
whereas no significant difference was observed with respect to the 
groups. The ARAT scores significantly increased after training in 
both the NMES-robot and the control groups (P < 0.05, one-way 
ANOVA with Bonferroni post hoc tests), and the improvement 
could be maintained for 3 months (P < 0.05, one-way ANOVA 
with Bonferroni post hoc tests).

Function Independence Measurement scores in both the 
NMES-robot and control groups are shown in Figure 4E. Significant 
difference was observed with respect to the factor of the evaluation 
time points (P < 0.001, EF = 0.542 two-way ANCOVA, Table 2), 
whereas no significant difference was observed with respect to the 
factor of the groups. The FIM scores were significantly higher in 
the post-training assessment and 3MFU compared with those in 
the pre-training assessment for both groups (P ≤ 0.001, one-way 
ANOVA with Bonferroni post hoc test).

Figure 4F displays the variation in MAS scores at the finger, 
wrist, and elbow across the evaluation sessions for the two groups. 
Significant group differences were detected by two-way ANCOVA 
(P < 0.001, EF > 0.176, Table 2). Significant interactions between 
the factors of the group and the evaluation time point were 
also captured at all three parts (i.e., elbow, wrist, and fingers) 
(P < 0.01, EF > 0.152, Table 2). The MAS scores were significantly 
elevated at the elbow, wrist, and fingers at the post-assessment in 
the control group and were remained above the elevated levels 
when assessed 3 months later (P < 0.05, one-way ANOVA with 
Bonferroni post hoc tests, Table 2). Significant decrease in MAS 
was observed at the wrist for the NMES-robot group, and this 
decreased level was maintained as detected by the 3MFU assess-
ment (one-way ANOVA, P = 0.048, EF = 0.145, Table 2). There 
was no significant variation in the elbow and finger MAS scores 
for the NMES-robot group (P > 0.05, one-way ANOVA, Table 2). 
In the between-group comparison on the MAS, significant lower 
MAS scores were observed in the NMES-robot group at the elbow 
and the wrist during the post-assessment (P < 0.01, EF > 0.359, 
one-way ANCOVA, Table 3), and at all joints during the 3MFU 
assessment (P < 0.01, EF > 0.334, one-way ANCOVA, Table 3).

Figure  5 shows the variation patterns of EMG parameters 
(i.e., EMG activation level and CI) across the 20 training ses-
sions in the NMES-robot group. A significant reduction was 
observed in the EMG activation levels of the FCR (Figure 5A; 
P < 0.05, one-way ANOVA with Bonferroni post hoc tests). The 
EMG activation levels increased in the first few training sessions 
and reached the peak around the third session. Subsequently, 
the values decreased in the following 17 sessions and finally 
reached a plateau in the last five training sessions. No significant 
variation was observed in other target muscles (BIC, TRI, and 
ECU-ED). Figure 5B presents the variation patterns of CI values 
among different muscle pairs either within a single joint or across 
multiple joints. The CI values of the FCR&BIC and BIC&TRI 
muscle pairs were significantly reduced along the 20 training 
sessions (P < 0.05, one-way ANOVA with Bonferroni post hoc 
test). The CI values of both muscle pairs reached the peak within 
the first eight training sessions and then continually decreased 
in the following process, then reached a steady level in the last 
three sessions. No significant change was observed in CI values 
of other muscle pairs.
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A

B

FigUrE 5 | The variation of electromyography (EMG) parameters recorded across the 20 training sessions: (a) the changes of the normalized EMG activation levels 
with significant decline observed in the flexor carpi radialis (FCR) muscle (P < 0.05, 1-way analysis of variance (ANOVA) with Bonferroni post hoc tests); (B) the 
significant decline of the normalized co-contraction Indexes (CI) values observed in the BIC&TRI and FCR&BIC muscle pairs (P < 0.05, 1-way ANOVA with 
Bonferroni post hoc tests). The values are presented as mean value with 2-time SE (error bar) in each session.
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DiSCUSSiOn

The results of this study indicated that in the early stage after 
stroke, motor function in the paretic upper limbs of stroke 
participants could be significantly improved through both 
traditional rehabilitation treatment and upper limb training 
by the EMG-driven NMES-robotic system. The ARAT and 
FIM scores suggested that the effects of early intervention 
using EMG-driven NMES-robot training were comparable to 
the effects of traditional treatments; these findings reflected 
the improved upper limb function, particularly, in the hand 
(by ARAT), and improved independence of ADL (by FIM) 
observed in this study. Although no specific tasks were assigned 
to the finger joints in this study, the increase in the ARAT scores 

after NMES-robot training also indicated the voluntary motor 
improvement in the fingers after the treatments. We noticed 
that there was no significant improvement in the FIM scores 
observed after NMES-robot training for chronic stroke patients 
in our previous study (31). However, in this study, the FIM score 
results suggested that NMES-robot-assisted intervention was 
effective in enhancing stroke patients’ ADL levels in the early 
stage after stroke. Moreover, these improvements could last till 
3 months later.

As indicated by the FMA scores, the NMES-robotic arm 
developed in this study could assist stroke patients to improve 
the motor function of their entire paretic upper limb, with 
voluntary effort. Both the NMES-robot training and traditional 
physical therapies improved the participants’ motor function at 
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the shoulder and elbow, and this improvement was maintained 
even after 3 months. However, the NMES-robot group achieved 
greater improvement in the FMA shoulder/elbow and wrist/
hand scores than did the control group. Two possible reasons 
for the improvements in the entire upper limb in the NMES-
robot group, especially the shoulder (no actuated assistance in 
the training), motor function are as follows: (1) The participants’ 
shoulder-related muscles for arm lifting were practiced during 
the training process supported by the hanging system used in 
this study and (2) when the muscle around a joint was trained, 
the adjacent proximal joint would be simultaneously improved, 
as indicated in our previous study (31); accordingly, wrist train-
ing led to improved elbow function in our previous study, and 
elbow training led to shoulder improvement in this study. We also 
observed that through the EMG-driven NMES-robot-assisted 
training, participants achieved significant motor improvement 
in the wrist/hand, as indicated by their FMA scores, whereas 
no significant improvement was achieved in the participants 
of the control group, who were given traditional physical treat-
ments. The possible reason could be that compared with the 
rehabilitation of the proximal joints (e.g., shoulder and elbow), 
motor recovery in the distal joints is more difficult to manage 
in the manual rehabilitation. Usually, it is hard for a therapist 
to manage distal and proximal joint training at the same time 
in the physical practice; hence, most of the manual-conducted 
training regimens follow a proximal-to-distal sequence (46, 47). 
Besides, in the early phase after stroke, manually provided 
physical trainings are focused on the proximal joints, and lit-
tle effort is allocated for the distal joints (26, 48). Although the 
movements provided by the NMES-robot system for a joint were 
simple flexion and extension, the target joints could be more 
precisely exercised with the aid of well-positioned motors and 
NMES, and could be organized into multi-joint coordinated 
movements with computer programs. In addition, traditional 
manual therapies alone usually cannot be used to exert voluntary 
effort in the wrist extensors (i.e., ECU-ED in this study) in the 
early phase after stroke (48). By contrast, NMES-robot training 
could be used to apply physical training directly to the wrist 
joint and to coordinate motor practice across multiple joints 
synchronously, with mechanical support from the servo motors 
at the wrist and elbow. The assistance from NMES could produce 
repetitive motosensory experiences and enable the participants 
to concentrate more on the target muscles at the distal joints, 
thus helping to evoke the voluntary effort (49, 50).

After the traditional rehabilitation treatments, the par-
ticipants’ muscle tone (spasticity) increased significantly at 
all three parts (elbow, wrist, and finger joints). This could be 
because of the following: (1) the muscle tone was gradually 
generated through spontaneous recovery process, following 
the pathological sequence after stroke (51); (2) compensatory 
muscular activity increased due to the fatigue during the 
motor practices (31); and (3) motor stimulation in the flexors 
increased during the traditional physical training process, with 
a lack of synchronous spasticity control. Although the changes 
in MAS scores in the NMES-robot group were not significant 
for the elbow and fingers, the results of interactions (S*G) 
(Table 2) revealed a completely different evolutionary trend in 

the muscle tone compared with the control group. The muscle 
tone declined at all three parts (elbow, wrist, and finger joints) 
in the NMES-robot group, and a significant reduction was 
observed at the wrist, which suggested that NMES-robot train-
ing could effectively release the muscle spasticity at the wrist 
joint, and this effect could be maintained until 3 months later. 
One of the possible reasons could be the intensive practice in a 
short period for the NMES-robot group in this work. The fre-
quency of the EMG-driven NMES-robot arm assisted training 
(5 sessions/week, finished in one month) was higher than other 
clinical trials with equivalent total training hours practiced 
manually, for example, 3 times/week and finished in 16 weeks 
(52), where between-group differences could be submerged by 
other baseline effects. A significant release of muscle spasticity 
at the finger joints was also observed in our previous study 
on chronic stroke when NMES and robotic assistance were 
provided to the wrist joint with a high training frequency (31). 
In this sense, NMES-robot-assisted upper limb rehabilitation 
could be a relatively affordable complement to the traditional 
manual rehabilitation, without too much additional manpower 
due to the automation.

The improvement in upper limb motor function in the 
NMES-robot group was reflected by the clinical scores, and the 
session-by-session recovery progress was revealed through the 
EMG parameters. The reduced EMG activation levels of FCR 
implied a release of muscle spasticity at the wrist, which was 
consistent with the variation in the MAS wrist scores. Most of 
the patients reached a steady state after the 15th training session. 
The reduction of FCR was also related to the decrease in the CI 
values of FCR&BIC, indicating a release in the co-contraction 
patterns between the elbow and wrist joints. These joints could 
be moved more independently during arm withdrawing/flex-
ing motions. In addition, a significant reduction in CI values 
between the BIC&TRI muscle pair was observed, suggesting 
improved coordination between the flexors and extensors at the 
elbow joint and an improved independence in muscle contrac-
tion over the 20 training sessions. The EMG activation levels of 
the FCR increased in the first 3–4 training sessions, and the CI 
values of BIC&TRI muscle pairs reached the peak within the first 
eighth training session. This was reasonable because in subacute 
stroke, most of the patients experience muscle weakness in the 
very beginning, and the muscle strength then recovers through 
both spontaneous processes and physical training. In addi-
tion, the participants needed to adapt to the training process 
in the first several training sessions. The results of the EMG  
parameters suggested that NMES-robot training could help 
release the muscle spasticity and promote muscle coordination 
within and across different joints effectively, particularly at the 
wrist in this work.

liMiTaTiOn

The main limitation of this study is the small sample size. Despite 
the relatively small populations recruited, we observed consistent 
results on the motor improvements achieved in the NMES-robot 
group by clinical assessments and EMG parameters. The EMG 
parameters were only recorded for the NMES-robot group to 
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provide the understanding on the evolutionary process of the 
muscular activities under the training program. Unbalanced arms 
were obtained after the randomization in this work, mainly due 
to the limited project period and the small sample size recruited 
in a relatively sequential way. Randomized clinical trials with 
larger scales (e.g., larger sample sizes and multi-centers) will be 
conducted to consolidate the rehabilitation effectiveness of the 
EMG-driven NMES-robot-assisted upper limb training in the 
future.

COnClUSiOn

In this work, the EMG-driven NMES-robot arm was applied for 
multi-joint coordinated upper limb rehabilitation on subacute 
stroke participants in comparison with the traditional physical 
therapy. Both of the treatments could significantly promote the 
independence in daily activities with comparable intensities. The 
NMES-robot-assisted training could be more effective in releas-
ing muscle tones and in improving the muscle coordination in 
the whole upper limb, because of the intensive practices on both 
the proximal and the distal joints delivered in a short period of 
rehabilitation. All the training effects achieved by the NMES-
robot-assisted rehabilitation could be maintained for 3 months 
after the training. The NMES-robot-assisted upper limb training 
could be complementary to the traditional manual training to 
cope with the shortage of the human rehabilitation professionals 
in the industry.
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Background: A foot drop stimulator (FDS) is a rehabilitation intervention that stimu-
lates the common peroneal nerve to facilitate ankle dorsiflexion at the appropriate time 
during post-stroke hemiplegic gait. Time–frequency analysis (TFA) of non-stationary 
surface electromyograms (EMG) and spectral variables such as instantaneous mean 
frequency (IMNF) can provide valuable information on the long-term effects of FDS 
intervention in terms of changes in the motor unit (MU) recruitment during gait, sec-
ondary to improved dorsiflexion.

Objective: The aim of this study was to apply a wavelet-based TFA approach to assess 
the changes in neuromuscular activation of the tibialis anterior (TA), soleus (SOL), and 
gastrocnemius (GA) muscles after utilization of an FDS during gait post-stroke.

Methods: Surface EMG were collected bilaterally from the TA, SOL, and GA muscles 
from six participants (142.9 ± 103.3 months post-stroke) while walking without the 
FDS at baseline and 6 months post-FDS utilization. Continuous wavelet transform 
was performed to get the averaged time–frequency distribution of band pass filtered 
(20–300  Hz) EMGs during multiple walking trials. IMNFs were computed during 
normalized gait and were averaged during the stance and swing phases. Percent 
changes in the energies associated with each frequency band of 25 Hz between 25 
and 300 Hz were computed and compared between visits.

results: Averaged time–frequency representations of the affected TA, SOL, and GA 
EMG show altered spectral attributes post-FDS utilization during normalized gait. The 
mean IMNF values for the affected TA were significantly lower than the unaffected TA 
at baseline (p = 0.026) and follow-up (p = 0.038) during normalized stance. The mean 
IMNF values significantly increased (p = 0.017) for the affected GA at follow-up during 
normalized swing. The frequency band of 250–275 Hz significantly increased in the 
energies post-FDS utilization for all muscles.

conclusion: The application of wavelet-based TFA of EMG and outcome measures 
(IMNF, energy) extracted from the time–frequency distributions suggest alterations in 
MU recruitment strategies after the use of FDS in individuals with chronic stroke. This 
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further establishes the efficacy of FDS as a rehabilitation intervention that may promote 
motor recovery in addition to treating the secondary complications of foot drop due to 
post-stroke hemiplegia.

Keywords: time–frequency analysis, functional electrical stimulation, wavelet transform, electromyography, 
spectral analysis

inTrODUcTiOn

Stroke is one of the leading causes of serious and long-term 
disability, and foot drop is one of the most common disabling 
impairments resulting from hemiplegia due to stroke (1). Foot 
drop characterized by weakness and/or lack of voluntary control 
in the ankle and toe dorsiflexor muscles (2) can result in gait 
related deficiencies (decreased speed, a disruption in weight 
acceptance and transfer, asymmetry and instability), further 
limiting the activities of daily living (3, 4). The application 
of an ankle foot orthosis (AFO) to compensate for foot drop 
throughout the gait has been the common modality of treat-
ment. Although AFOs have been shown to increase gait speed 
and functional ambulation (3, 5), as a rehabilitation intervention 
it is not targeted to restore muscle function (2).

Functional electrical stimulation (FES) has been evident as 
a targeted rehabilitation intervention that may promote motor 
recovery, especially when applied in a task-specific environment 
(6–9). FES applied to the common peroneal nerve through a 
foot drop stimulator (FDS) provides a focused excitation to 
the peroneal nerve to promote active ankle dorsiflexion during 
initial double support at heel strike, at pre-swing lift-off and dur-
ing the swing phase of gait to sufficiently clear the foot (10–12). 
Using FDS to drive muscle groups in specific activation patterns 
during walking has been shown to improve strength, walking 
speed, spatiotemporal parameters, and retrain ankle dorsiflexor 
muscle [tibialis anterior (TA)] activation timings (2, 9, 13–16). 
These demonstrate the efficacy for FDS utilization in post-stroke 
rehabilitation, but they fail to precisely indicate how FDS tech-
nology can restore motor function (2, 12, 14, 16–20).

To understand the role of FDS-based gait rehabilitation in 
recovering motor function, it is important to understand the 
intrinsic electrophysiological modifications that may elicit the 
improvements in the muscle function. Surface electromyography 
is one of the most effective non-invasive tools, which provide easy 
access to the underlying physiological processes that cause the 
muscle to generate force, produce movement, and achieve any 
functional task (21). Electromyograms (EMG) data collected 
during gait can provide us with a quantitative measure of muscle 
activations and activation timings, which could be used to assess 
the level of improvement post-rehabilitation (10, 15, 22, 23). As 
a result, the application of various signal processing techniques 
to extract meaningful information from the EMG data has been 
an on-going process in stroke rehabilitation. To better under-
stand the electrophysiological processes behind neuromuscular 
activations, it is essential to study these signals in time as well as 
frequency domain. Signal processing methods such as empirical 
mode decomposition (EMD) (24, 25) and wavelet analysis (26–
28) have provided researchers tools to interpret non-stationary 

EMG data in time and frequency domain simultaneously. EMD 
has gained popularity for analyzing non-stationary signals and 
has been utilized in filtering EMG signals (25, 29, 30), time–fre-
quency analysis (TFA) (25), fatigue analysis (31) due to its ability 
to decompose EMG signals into physically meaningful intrinsic 
mode functions (IMFs). Although EMD-based approach has 
advantages in analyzing EMG, time–frequency representations 
obtained using EMD-Hilbert transform could be excessively 
detailed, making it difficult to interpret, particularly for EMGs 
collected during dynamic movements such as gait. Although 
smoothing techniques have been suggested to obtain more 
continuous Hilbert spectrums, it has been suggested that such 
techniques may result in degradation of time–frequency resolu-
tion as well as physically meaningful content (24). In contrast, 
wavelet-based TFA provides more continues representation 
of the data and has been widely utilized to identify motor unit 
(MU) recruitment patterns (26), motor strategy patterns (28) 
and perform clinical assessments (27) during gait. In the current 
literature, these analyses have only been performed in individuals 
with cerebral palsy, diabetic neuropathy, ankle osteoarthritis, and 
healthy populations (26–28). The current investigation presents 
a novel application of wavelet-based TFA of EMG signals in 
individuals post-stroke during gait. In addition, wavelet-based 
TFA from lower extremity muscles is further analyzed to assess 
the neuromuscular changes occurring due to FDS-based gait 
retraining has not been done yet.

The purpose of this study was to apply a wavelet-based TFA 
approach to assess the neuromuscular changes in the TA, soleus 
(SOL), and gastrocnemius (GA) muscles after utilization of 
an FDS as a gait rehabilitation tool in individuals post-stroke. 
Changes in the spectral variable—instantaneous mean fre-
quency (IMNF) and energies associated with bands of frequen-
cies (25–300 Hz) extracted from time–frequency distributions 
of EMGs from TA, SOL, and GA muscles are compared to assess 
the alterations in MU recruitments post-FDS utilization. We 
hypothesize that the time–frequency distribution of targeted 
TA and indirectly stimulated SOL and GA muscles will show 
changes in time–frequency distribution (TFD) with increased 
mean IMNF and energy after utilization of an FDS.

MaTerials anD MeThODs

study Participants
Six individuals (age: 63.7 ± 10.6 years, height: 176.5 ± 6.2 cm, 
weight: 84.9 ±  8.3  kg, three right side affected, and three left 
side affected) with drop foot and hemiplegia secondary to 
stroke (142.9  ±  103.3  months post-stroke) were recruited for 
participation in this investigation. Hemiplegia was defined as 
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FigUre 1 | The Walkaide® used for addressing foot drop.
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paralysis affecting only one side of the body diagnosed by the 
participants’ treating physician. All participants (1) were at least 
6 months post-stroke, prior to enrollment; (2) uninvolved lower 
limb had no history of injury or pathology; (3) were able to 
walk independently for 10 m without any assistive device; and 
(4) not currently participating in or is a minimum of 30 days 
post-inpatient or outpatient: stroke, cardiac, pulmonary, or any 
other physical rehabilitation on the lower extremities at time 
of enrollment. Individuals with severe cardiac disease, seizure 
disorders and/or orthopedic, neuromuscular, or neurological 
pathologies that would interfere with their ability to walk were 
excluded. All procedures performed in this investigation were 
approved by the Kessler Foundation Institutional Review Board, 
and written as well as informed consent was obtained from 
participants prior to study participation.

Foot Drop stimulator
All participants received a commercially available FDS 
(Walkaide®; Innovative Neurotronics, Inc., Austin, TX, USA) at 
their baseline visit for use during ambulation in the community 
as part of a larger multi-site clinical trial. The Walkaide® is a 
battery operated single-channel, asymmetrical biphasic stimu-
lator with programmable pulse width and frequency that was 
utilized during walking as an FES orthotic device (Figure  1). 
The technology is controlled by a tilt sensor and accelerometer to 
provide electrically induced muscle activation via two electrodes 
and electrode leads to dorsiflex the foot on the affected side at 
the appropriate time during gait. The small device [87.9 g, 8.2 cm 
(H) × 6.1 cm (W) × 2.1 cm (T)] was attached to a molded cuff 
located just below the knee, secured with a latch, and properly 
aligned using anatomical landmarks and visual indicators. The 
two electrodes were specifically placed near the head of the fibula, 
directly over the motor nerve and proximal musculature. Each 
participant used their own FDS device for daily ambulation in 
the community. Each device was custom programmed (stimulus 
intensity, timing and duration of muscle activation) during the 
gait cycle by a licensed clinician at baseline. The pulse width 

ranged from 25 to 300 μs and stimulation frequency ranged from 
17 to 33 Hz.

Testing Procedures
Participants completed 10 walking trials with (five trials) and 
without (five trials) the FDS at a self-selected pace on level 
ground (4.5 m) at baseline and following 6 months of FDS use 
for ambulation in the community. Participants wore shoes during 
all walking tests, and members of the study team provided non-
contact guarding for safety. For consistency, the FDS was worn by 
the patient during all trials but switched off to prevent stimulation 
during the trials without the FDS. All walking trials without the 
FDS were used for subsequent analysis in the current investiga-
tion to measure the rehabilitative effect of the device.

Data acquisition and Processing
Wireless EMG data were collected bilaterally from the TA, SOL, 
and GA (medial head) muscles at 2,520  Hz using a Noraxon 
DTS system (Noraxon, Inc., Scottsdale, AZ, USA). All data were 
imported into Matlab (The Mathworks, Inc., Natick, MA, USA) 
for custom processing and analysis. EMG data during each walk-
ing trial (without FDS) were band pass filtered between 20 and 
300 Hz and notch filtered at 60 Hz. The EMG amplitudes were 
normalized to the maximum voluntary contractions (MVCs). 
MVCs were collected for all selected muscles at the beginning 
of each testing session prior to walking trials and were done in 
accordance with SENIAM (32). Kinematic data were collected 
at 60 Hz (Motion Analysis Corporation, Santa Rose, CA, USA), 
and time synchronized with EMG data. During initial post-
processing in Cortex software (Motion Analysis Corporation, 
Santa Rose, CA, USA) heel-strike and toe-off gait cycle events 
were identified for all trials based on the event of heel contact 
with the ground (or first foot contact in pathological gait) and 
the event of toe lift-off of the ground (or the last foot contact 
with the floor in pathological gait), respectively (Figure  2A). 
All EMG data were divided into gait cycles (GCs) for further 
analysis. A single GC consisted of consecutive heel-strike events 
of the same limb (Figures  2B,C). Each GC was subdivided 
into stance and swing based on heel-strike and toe-off events 
(Figure  2B). The total number of GC considered for analysis 
varied from a minimum of 18 to a maximum of 46 for baseline 
and a minimum of 11 to a maximum of 36 for follow-up visit 
across all participants.

Data analysis and Outcome Measures
Wavelet-Based TFA
One of the challenges of performing frequency or TFA of EMG 
data is the presence of non-stationarity (33). Non-stationarity in 
EMG data has been associated with several factors such as meta-
bolic changes that induce fatigue, changes in muscle length as well 
as muscle force due to dynamic movements or the displacement 
of electrodes during movements (33). To better understand the 
underlying electrophysiological modifications that may cause 
improvements in the muscle function, we used a wavelet-based 
TFA approach, which has been shown to be suitable for analyz-
ing non-stationary EMG data collected during dynamic muscle 
contractions (26–28).
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FigUre 2 | (a) Raw EMG signal recorded from tibialis anterior muscle on the affected side of a single representative participant during a single walk. Gait cycle (GC) 
events, heel strike and toe off, were identified. (B) Band pass filtered EMG with stance and swing events identified during a GC. (c) Raster plot representation of the 
individual GCs during a single walk. (D) A 3D time–frequency representation of GC1 data using continuous wavelet transform. (e) A time frequency representation of 
a single walk (averaged over five GCs). (F) Instantaneous mean frequency profile extracted from time–frequency representation shown in (e). The shaded area in 
(F) represents the SD within the gait cycles during a single walk.
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The continuous wavelet transform (CWT) has the following 
general definition:
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where ψ*(⋅) is a complex conjugate of the basic wavelet function, 
ψ, also called the mother wavelet. The parameter a is the dilation 
factor the controls the width of the wavelet, and b represents 
the translation of the origin thus controlling the location of 
the wavelet on time axis. The variable 1/ a gives the frequency 
scale and b gives the temporal location of event for a signal x. In 
general, W(a,b;x,ψ) represents the energy of signal x of scale a at 
time, t = b. In this investigation, we performed the CWT using 

the analytic “bump” function as the mother wavelet of center 
frequency, fc = 5/2π Hz using the command cwtft in Matlab. 
The scales, a, ranged from fc/(fmax × dt) to fc/(fmin × dt) where fmin 
and fmax were set to 1 and 500 Hz, respectively, as surface EMG 
signals are band-limited below 500 Hz. Also, dt represents the 
sampling duration.

For the current analysis, CWT was applied on the EMG 
data during each GC of varied time length to get the individual 
time–frequency representation, W. During the stance phase, 
swing phase and entire GC, W was individually resampled on 
the time axis to get the normalized representations (Figure 2D) 
for stance (0–100% of stance), swing (0–100% of swing), and 
entire GC (0–100% of entire GC). As a final step, TFDs were 
computed for both phases, during all walks (Figure  2E), and 
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all participants were individually averaged to get a combined 
averaged TFD for each muscle.

Instantaneous Mean Frequency
Mean frequency (MNF) is an average frequency of a power den-
sity spectrum of a signal. IMNF can be computed from a TFD, 
W(f, t) as

 
IMNF t
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Figure  2B shows the IMNF profile for a single normalized 
walk. IMNF was computed from the TFD of TA, SOL, and GA 
during stance and swing phases, and each were normalized to 
0–100%. The averaged IMNF values were used for comparing the 
affected and unaffected side at each visit as well as comparing 
baseline and follow-up for each side.

TFD Energy (E)
The energy values were computed from the TFD, W obtained 
using CWT for a total of eleven frequency bands, each with a 
bandwidth of 25 Hz. The first band covered the frequencies from 
25 to 50 Hz, the second band ranged from 51 to 75 Hz, and sub-
sequent bands covering up to 300 Hz. Frequencies below 25 Hz 
and above 300  Hz were not considered for this analysis as the 
energies associated with these frequencies were negligible due to 
band pass filtering between 20 and 300 Hz. The TFD energy for 
each band was computed as a percentage of the total distribution 
energy as:
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where fa and fb are frequency limits for the band. Energy values 
were computed separately for normalized stance and swing 
phases, for all the tested muscles at baseline and follow-up. The 
rationale behind dividing the entire time–frequency spectrum 
into several frequency bands was to isolate frequencies that 
showed significant changes in energy which may further help us 
understand the changes in MU recruitment strategies after the 
FDS utilization.

statistical analysis
Paired sample t-tests were used to compare the differences in 
IMNF values of TA, SOL, and GA between the affected and unaf-
fected sides. To evaluate the effect of FDS utilization on TA, SOL, 
and GA, IMNF and energy (E) values at baseline and follow-up 
visits were also compared using paired sample t-tests. Significance 
level was set to p < 0.05 for all statistical analyses.

resUlTs

Time–frequency plots show distinct patterns of muscle activa-
tion and energy association with different phases of the GC for 
all tested muscles on the affected side (Figure 3). During healthy 
gait, the TA muscle produces two bursts of activation during the 
normalized gait cycle with initial activation occurring between  

0 and 12% GC (during initial double support) and the second 
burst occurring at 55 and 100% of GC (during swing) (22). 
Figures 3A,B show similar patterns of TA activation at baseline 
and follow-up; however, the initial burst of activation appears 
to be prolonged for stroke participants compared to what is 
observed in healthy gait. At baseline, the highest energy is 
localized between 20 and 40% of GC and is associated with 
frequencies between 75 and 100  Hz. Furthermore, the TA 
inhibitory (inactive) period, which is usually apparent in 
healthy gait during 13–54% of GC, seems to be indistinct at 
baseline for stroke participants. At follow-up, time–frequency 
plot show alterations in TA activation (Figures 3B,C). This is 
characterized by (1) an increase in the energies during 0–10% 
and 30–40% of GC (Figure 3C) and (2) the presence of clear 
inhibition during approximately 50–70% of GC shown by 
negligible energy content (Figure 3B).

Soleus is active during 6–52% of GC during healthy gait 
(22). In the case of stroke gait, the energy contained within 
the SOL muscle is approximately between 5 and 75% of GC 
(Figures 3D,E). At follow-up, TFD of the SOL shows increased 
energies associated with frequencies ranging from 75 to 200 Hz 
(Figure 3F).

Time–frequency plots of the affected GA show a clear 
shift in the peak energy localization during normalized gait 
(Figures 3G,H). At baseline, the energies are localized at low 
frequencies (<50  Hz) between 20% and 30% of GC, suggest-
ing the predominant use of slow-twitch MU (Figure  3G). 
However, after 6 months of FDS utilization, the energy content 
shows a clear shift toward higher frequencies (50–150  Hz) 
(Figures 3H,I). As seen with TA and SOL, GA time–frequency 
plots for stroke participants show wide energy spread compared 
to healthy gait.

To quantify the time–frequency distributions, IMNF was 
computed during the normalized (0–100%) stance and swing 
using Eq. 2. Figure 4 shows difference in the IMNF trajectories 
between the affected and unaffected side, for all three muscles 
during baseline and follow-up visits. The unaffected TA has an 
initial decrease in the averaged IMNF profile approximately 
during 0–13% of normalized stance followed by a gradual incre-
ment and a plateau. During normalized swing, the unaffected 
TA shows a gradual decrease up to 63% followed by an increase 
in the averaged IMNF profile. Such a pattern is not apparent for 
the affected TA during normalized stance as well as swing. The 
averaged IMNF profiles of the unaffected SOL and GA muscles, 
being less impaired, show increasing trend in MNF with time 
during normalized stance (Figure 4A, right column) and show 
decreasing trend with time during normalized swing (Figure 4B, 
right column). Such a characteristic response is not seen on 
the affected side (Figures  4A,B, left columns, respectively). 
Moreover, it is observed that there is higher variability in IMNF 
profiles on the affected side across all participants compared to 
the unaffected side, particularly during normalized stance.

Table  1 presents the mean IMNF values computed during 
normalized stance and swing for each tested muscle bilaterally 
during both testing sessions. The mean IMNF values computed 
from the TA during normalized stance on the affected side 
were significantly lower than the unaffected side at baseline 
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FigUre 3 | Averaged time–frequency representations of affected tibialis anterior (a–c), soleus (D–F), and gastrocnemius (g–i) muscles during normalized gait at 
baseline (left column) and follow-up (middle column) for all participants (n = 6). The right column represents the positive changes in the distributions after follow-up. 
Energy levels are presented as a color bar for each muscle. Horizontal bars indicate activation (ON–OFF) for the same muscle during normalized healthy gait, 
reported by Perry and Burnfield (22).

Pilkar et al. EMG Spectral Alterations Post FDS Utilization

Frontiers in Neurology | www.frontiersin.org August 2017 | Volume 8 | Article 449

(p  =  0.026) as well as follow-up (p  =  0.038) (Table  1). There 
were no significant differences in mean IMNF for SOL and GA 
between affected and unaffected sides during stance (refer to 
Table 1—Pa values). The affected GA muscle showed a significant 
increment in the mean IMNF values during swing at follow-up 
(p = 0.017). There were no significant differences for the TA and 
SOL on each side during swing between baseline and follow-up 
(refer to Table 1—Pb values).

To further quantify the time–frequency distribution plots 
and evaluate the effect of FDS utilization on muscle activation 
patterns, energies contained within eleven bands, each of 25 Hz 

bandwidth were computed in terms of percent of total energy 
and compared between the two visits. In general, the highest 
percent of energy was contained in low frequency bands and 
energies decreased as the frequency in the signal increased 
(Figure  5). Of all the energy bands, band 10 (250–275  Hz) 
was the most consistent in showing significant changes in 
energies for all three muscles bilaterally during normalized 
stance and swing, after FDS utilization. On the affected side, 
the TA showed a significant decrease in energies in band 3 
(75–100 Hz) during stance (p = 0.04) and band 4 (101–125 Hz) 
during swing (p  =  0.038) at follow-up. The unaffected SOL 
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TaBle 1 | Comparison of mean IMNF of TA, SOL, and GA muscles during normalized stance and swing phases of gait cycle for individuals with stroke (n = 6).

stance swing

Baseline Follow-up Pb value Baseline Follow-up Pb value

TA Affected 83. 8 (6.8) 82.6 (9.3) 0.715 82.9 (7.0) 84.5 (14.1) 0.842
Unaffected 98.6 (6.7) 95.3 (2.8) 0.518 88.9 (8.1) 87.7 (8.4) 0.926
Pa value 0.026* 0.038* 0.366 0.796

SOL Affected 111.2 (19.2) 102.5 (14.1) 0.451 106.2 (17.6) 100.2 (13.2) 0.867
Unaffected 95.3 (4.7) 96.7 (8.1) 0.118 96.9 (8.5) 99.7 (3.8) 0.072
Pa value 0.201 0.713 0.366 0.847

GA Affected 91.1 (11.5) 97.2 (11.7) 0.116 85.6 (8.6) 92.7 (7.9) 0.017*
Unaffected 94.6 (18) 88.1 (9.4) 0.944 94.2 (19.8) 90.4 (8.9) 0.646
Pa value 0.943 0.084 0.606 0.476

Pa: p- values computed using paired t-test for comparing affected and unaffected side for each visit.
Pb: p- values computed using paired t-test for comparing baseline and follow-up visits for each side.
*p < 0.05.

FigUre 4 | Instantaneous mean frequency profiles extracted from time–frequency distributions of tibialis anterior, soleus, and gastrocnemius EMG for affected (left 
column) and unaffected (right column) sides during normalized (a) stance and (B) swing at baseline and follow-up. The solid lines represent the mean and the 
shaded areas represent the ±SD across six stroke participants.
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showed a significant increase (p = 0.025) in energy in band 4 
(101–125 Hz) during swing. The affected GA showed a signifi-
cant decrease in band 1 (25–50 Hz) during stance and showed 
a significant increase in energies associated with bands 2 and 
3 (51–100 Hz) (p = 0.007 and p = 0.034, respectively) during 
swing. On the unaffected side, GA showed significant energy 
increments in band 2 (50–75 Hz) during stance (p = 0.008) as 
well as swing (p = 0.03).

DiscUssiOn

Previous assessments to evaluate the efficacy of an FDS in gait 
retraining have focused on walking speed, spatiotemporal 
changes and muscle activation timings (2, 11, 12, 15, 16). 
The purpose of this study was to apply a wavelet-based TFA 
approach to assess the alterations in neuromuscular activations 
of TA, SOL, and GA muscles after utilization of an FDS during 
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FigUre 5 | Time frequency distribution (TFD) energies associated with 11 predefined frequency bands during normalized stance and swing at baseline and 
follow-up for TA (a–D), SOL (e–h), and GA (i–l). TFD energy in each band is presented as a percentage of total TFD energy during a normalized gait averaged 
across six stroke participants. Error bars represent ±SD. Significant differences are shown as *(p < 0.05) and t(p < 0.005). The frequencies associated with the 
predefined bands are 1: 25–50 Hz, 2: 51–75 Hz, 3: 76–100 Hz, 4: 101–125 Hz, 5: 126–150 Hz, 6: 151–175 Hz, 7: 176–200 Hz, 8: 201–225 Hz, 9: 226–250 Hz, 
10: 251–275 Hz, and 11: 276–300 Hz.
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gait in individuals with stroke. FDS stimulates the common 
peroneal nerve which innervates the TA muscle. However, elec-
trical stimulations are not spatially restricted to only stimulated 
nerves or muscles but also travel and stimulate neighboring 
muscles due to the electrical conductivity, interconnection 
within peripheral nervous system and physiological composi-
tion of muscles. Hence, although the TA received a targeted 
stimulation, GA and SOL are also indirectly stimulated during 
gait. In this study, the walking trials without FDS were used 
for analysis purposes to potentially examine the training or 
therapeutic effect of FDS utilization over the 6-month interven-
tion period. Our results begin to demonstrate that utilization of 
FDS provides FES-based training not only to the TA but also 
to the GA and SOL muscles. As a result, the changes seen in 
time–frequency representations, IMNF and energies could be 
the training effect characterized by alterations in muscle activa-
tion patterns.

application of cWT
Time–frequency representations of TA, SOL, and GA muscles 
of the affected side showed altered neuromuscular activation 
during normalized gait post-FDS utilization. These alterations 
were indicated by increase in the signal energy (for TA and 
SOL), shifting of localized energy content on the time and fre-
quency axis (for GA) and presence of inhibition (for TA) during 

normalized gait. The TA on both sides showed energy localiza-
tion below 100  Hz on the frequency axis. This could suggest 
that predominantly slow MUs of the TA were recruited during 
gait due to the neuromuscular impairment as a result of foot 
drop. A shift in the peak energy localization on the frequency 
axis (from <50 to >100  Hz) for GA muscle on the affected 
side could be due to the change in MU recruitment strategies  
(slow to fast) post-FDS usage. However, there are potentially 
several reasons that may cause the above changes. The increase 
in the energy content could be directly related to an increase 
in the neuromuscular activation, which could be the result of 
FDS-based retraining. Motor learning using FES is thought 
to work through the creation of positive feedback of residual 
myoelectric activity acting to increase long-term potentiation 
of the corticomuscular connection (6–8, 16). Active repetitive 
movement training in combination with task-specific FES (such 
as gait) has shown to be perhaps the most promising use of FES 
for the facilitation of motor recovery (8). Specifically cyclic or 
EMG-based FES activation that acts to promote the movement 
goal in combination with voluntary effort has been found to pro-
duce greater physiological and functional gains than FES alone 
(9). In this study, the participant used the FDS in combination 
with volitional efforts to perform a cyclic activity—gait that may 
have promoted the changes in the time–frequency domain for 
TA, SOL, and GA muscles.
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changes in iMnF
The spectral parameters extracted using wavelet-based analysis 
have shown to be associated with fatigue, muscle properties (fiber 
types), and MU recruitment strategies (28, 34, 35). The spectral 
measures such as IMNF and instantaneous median frequencies 
(IMDFs) have been extensively used is assessing muscle fatigue 
during isometric muscle contractions, as IMNF/IMDFs show a 
clear downward shift in frequency with respect to time as a result 
of fatigue (36). Furthermore, muscle fatigue may also cause 
decrease in signal power at high frequencies, a small increase 
in signal power at low frequency due to alterations in recruit-
ment firing and conduction velocities, and synchronization of 
the signals (37). During normalized stance as well as swing, TA, 
SOL, and GA muscles of unaffected side showed distinct patterns 
of IMNF compared to affected side as shown in Figure 4. Mean 
IMNF values for the TA EMG during normalized stance was 
significantly lower for the affected side than unaffected side dur-
ing baseline as well as follow-up visits. With the TA muscle being 
impaired due to foot drop post-stroke, the decrease in the mean 
IMNF could be due to impairment in recruitment of fast MU 
during stance. During swing, this difference was insignificant.

Affected GA muscle showed a significant increase in the 
mean IMNF values during swing at follow-up. This increment in 
mean IMNF can be correlated to the shift in peak energy locali-
zation to higher frequencies (Figures 3H,I) in TFD for affected 
GA muscle at follow-up. This could be due to either increment 
in recruitments of number of MUs within band 2 (51–75 Hz), 
band 3 (76–100 Hz), and band 10 (251–275 Hz), or increment in 
outputs generated by MUs of firing rates lying among bands 2, 3, 
and 10 or all. Although our analysis does not identify the exact 
MUs that underwent such alterations, it definitely identifies the 
frequency bands within which the alterations in recruitment 
strategies occurred as a result of FDS-based training in cyclic, 
task-specific environment such as gait.

The difference between the affected and unaffected sides was 
demonstrated by IMNF profiles for SOL and GA (Figure  4). 
The IMNF profiles were influenced by the dynamic movement 
of ankle and knee during gait. During stance, SOL and GA act 
as plantar flexors to “lock” the ankle so the limb and foot rotate 
on the forefoot rocker (22). As a result, the increase in IMNF 
from 0 to 60% during normalized stance for both GA and SOL 
on the unaffected side could not be associated with the ankle joint 
positional changes but may suggest the recruitment of MU in the 
order of slow to fast MUs. Conversely, decrease in IMNF between 
approximately 50 and 80% of normalized swing on the unaffected 
side could be related to start of the inhibition/de-recruitment 
of MU from the order of fast to slow MUs. It has been shown 
that, at the upper limit of MU recruitment, the mean or median 
frequencies should reach a plateau (34). This confirms with our 
IMNF profiles for SOL and GA on the unaffected side during 
normalized gait where IMNF gradually increases on EMG onset, 
plateaus during peak activation and subsides prior to the end of 
the activations.

changes in the TFD energies
Previously, foot orthoses have been shown to alter the ener-
gies associated with high frequency bands of lower extremity 

muscle activity in recreational runners (38). We found that the 
energies associated with the second highest frequency band of 
250–270 Hz significantly increased for all tested muscles during 
normalized gait. There are several physiological factors such as 
conduction velocity of fibers within MU, shape of intracellular 
action potentials, number of MU recruited, MU discharge rates, 
and MU synchronization that may affect the generation of an 
EMG signal (34). Furthermore, the amplitude of the surface 
EMG is related to the net MU activity: the recruitment and the 
discharge rates of active MUs (34). As a result, the energy changes 
associated with a frequency band in a TFD could be related to 
either increase or decrease in the amplitudes of MUs with firing 
rates within that band or the number of MUs recruited, e.g., 
GA muscle on the affected side showed a significant decrease 
in the energies associated with low frequencies (25–50 Hz) and 
significant increase in energies between 50 and 100 Hz. These 
alterations in the MU recruitment patterns (slower to faster 
MUs) could be a result of post-stroke spontaneous recovery or 
long-term recovery due to neuroplasticity or a rehabilitation 
intervention that promotes motor learning and recovery. In the 
current investigation, the participants represent a chronic stroke 
population with duration since last stroke ranging from 33 to 
244  months. Hence, the possibility of such alterations in MU 
recruitment due to spontaneous recovery is unlikely. Therefore, 
significant energy changes specifically between 250 and 270 Hz 
could suggest the effect of FDS-based intervention. It should be 
noted that the purpose of this investigation was not to uniquely 
identify the activity of individual MUs using the sEMG but to 
detect the alterations in spectral attributes of EMG which may 
suggest the changes in recruitment strategies resulting from 
FDS-based gait retraining.

The SD of IMNF profiles (Figure  4) and the TFD energy 
values (Figure  5) at the lower frequency bands (bands 1–4) 
showed higher variability across the participants. The variability 
in the EMG data and its spectral correlates across participants 
can be associated with variability in several factors such as 
affected areas of the brain, months post-stroke, and compensa-
tory gait strategies. Another factor that may have contributed to 
variability in the data is FDS parameters (stimulation intensity, 
pulse width, stimulation frequency, and frequency of FDS use). 
FDS stimulation frequency ranged from 19 to 33 Hz, and pulse 
width ranged from 25 to 300 µs. Selection of these parameters 
was done by a trained clinician based on the gait cycle timing, 
amount of dorsiflexion needed to lift the foot, gait speed, and 
patient discomfort threshold. Variability in FDS parameters, 
FDS dosing, as well as a small sample size may have led to the 
lack of significant differences for mean IMNF values of affected 
TA and SOL.

limitations and Future Work
The changes in EMG and its correlates bilaterally could be further 
explained by potentially altered spatiotemporal and kinematic 
parameters after FDS utilization. However, these variables were 
not analyzed in the current investigation. Future research will 
explore the relationship between CWT-based time–frequency 
measures, spatiotemporal parameters, and kinematic variables. 
The current investigation is also limited by a smaller sample 
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size. Future research will focus on assessing training effects of  
FDS-based gait intervention on a larger sample and will also 
include a control group to isolate the effect of FDS intervention 
on the spectral properties of EMG data.

cOnclUsiOn

This investigation demonstrates the applicability of wavelet-
based TFA of EMG data to assess the neuromuscular alterations 
after the use of FDS during gait for individuals with chronic 
stroke. The changes in time–frequency distributions, IMNF, and 
energies may suggest the alterations in MU recruitment after 
FDS utilization during gait, thus further establishing the utility 
of FDS as a rehabilitative intervention that may promote motor 
recovery secondary to treating foot drop resulting from hemiple-
gia post-stroke.
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Poststroke weakness on the more-affected side may arise from reduced corticospinal 
drive, disuse muscle atrophy, spasticity, and abnormal coordination. This study investi-
gated changes in muscle activation patterns to understand therapy-induced improve-
ments in motor-function in chronic stroke compared to clinical assessments and to 
identify the effect of motor-function level on muscle activation changes. Electromyography 
(EMG) was recorded from five upper limb muscles on the more-affected side of 24 
patients during early and late therapy sessions of an intensive 14-day program of Wii-
based Movement Therapy (WMT) and for a subset of 13 patients at 6-month follow-up. 
Patients were classified according to residual voluntary motor capacity with low, mod-
erate, or high motor-function levels. The area under the curve was calculated from EMG 
amplitude and movement duration. Clinical assessments of upper limb motor-function 
pre- and post-therapy included the Wolf Motor Function Test, Fugl-Meyer Assessment 
and Motor Activity Log Quality of Movement scale. Clinical assessments improved over 
time (p < 0.01) with an effect of motor-function level (p < 0.001). The pattern of EMG 
change by late therapy was complex and variable, with differences between patients 
with low compared to moderate or high motor-function levels. The area under the curve 
(p = 0.028) and peak amplitude (p = 0.043) during Wii-tennis backhand increased for 
patients with low motor-function, whereas EMG decreased for patients with moderate 
and high motor-function levels. The reductions included movement duration during 
Wii-golf (p = 0.048, moderate; p = 0.026, high) and Wii-tennis backhand (p = 0.046, 
moderate; p  =  0.023, high) and forehand (p  =  0.009, high) and the area under the 
curve during Wii-golf (p = 0.018, moderate) and Wii-baseball (p = 0.036, moderate). 
For the pooled data over time, there was an effect of motor-function (p = 0.016) and an 
interaction between time and motor-function (p = 0.009) for Wii-golf movement duration. 
Wii-baseball movement duration decreased as a function of time (p  =  0.022). There 
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Figure 1 | Flow of patients through this study. Patients were recruited from 
concurrent studies of Wii-based Movement Therapy (WMT) for this data 
analysis.
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was an effect on Wii-tennis forehand duration for time (p  =  0.002), an interaction of 
time and motor-function (p = 0.005) and an effect of motor-function level on the area 
under the curve (p = 0.034) for Wii-golf. This study demonstrated different patterns of 
EMG changes according to residual voluntary motor-function levels, despite heteroge-
neity within each level that was not evident following clinical assessments alone. Thus, 
rehabilitation efficacy might be underestimated by analyses of pooled data.

Keywords: muscle activation, movement duration, motor-function, upper limb, rehabilitation, chronic stroke

inTrODucTiOn

Motor impairment is the most common outcome after stroke 
(1–4) and is predominately attributed to muscle weakness 
(5–7) as a consequence of reduced corticospinal drive (8), disuse 
muscle atrophy (9, 10), impaired voluntary control of muscles 
(11, 12), spasticity (13–16), and impaired muscle coordination 
(17–19). These factors, either in isolation or combination, result 
in abnormal muscle activation during voluntary movements 
(20–22). Multifactorial contributions to impaired upper limb 
motor-function are more common than in the lower limb  
(23, 24) and a more important focus for improving independence 
in activities of daily living (25, 26). Poststroke upper limb recovery 
may be slower and more complicated than that of the lower limb, 
given that upper limb tasks are typically more complex involving 
more degrees of freedom in multi-joint movements (27, 28).

Recovery after stroke is a complex combination of spontane-
ous neurological mechanisms and relearning processes (28–30). 
It is commonly thought that learning-dependant mechanisms 
are only operative during natural recovery and interact with 
therapeutic interventions (31, 32). Furthermore, true recovery 
is thought to be complete between 4 and 10  weeks poststroke  
(31, 33) or reaches a plateau over 6 months (30–32, 34). It has 
been speculated that any improvement in the chronic period is 
not true improvement, but rather a restitution of therapy gains 
made earlier and lost over time (35). Despite this, significant 
improvements are possible in chronic stroke, but motor-function 
in this period needs intensive rehabilitation for continued 
improvements (1, 22, 36).

Clinical motor assessment both after stroke and with reha-
bilitation is traditionally based on task completion with limited 
assessment of movement quality (26, 37–39). Most assessments 
are qualitative with subjective and categorical scoring and many 
suffer from ceiling and floor effects (40). To provide more objec-
tive and quantitative measures, recent studies have examined 
muscle activation and joint kinematics to evaluate poststroke 
motor outcomes; yet, most upper limb studies consist of simple 
tracking tasks (41–43) or reaching movements (27, 34, 44, 45) 
constrained in time and space.

In this study, electromyography (EMG) analysis was used in 
addition to clinical assessments to provide quantitative measures 
of outcomes with therapy in chronic stroke. The aim of this 
study was to examine changes in muscle activation (EMG) with 
an intensive 14-day program of Wii-based Movement Therapy 
Wii-based Movement Therapy to investigate the mechanisms 
underlying therapy-induced motor improvements. Wii-based 
Movement Therapy is the equivalent of current best practice in 

upper limb stroke rehabilitation, Constraint-induced Movement 
Therapy (46). The stability of motor-function improvements and 
changes in EMG during therapy were assessed via a longitudinal 
comparison to 6-month follow-up. We hypothesized that there 
would be distinct patterns of change in EMG and that these would 
vary according to the level of residual voluntary motor capacity 
and correlate with improvements in motor-function quantified 
using clinical assessments.

MaTerials anD MeThODs

Participants
The data from 30 patients with chronic stroke (i.e., ≥3 months 
poststroke) were included in this study from those previ-
ously recorded from patients consecutively recruited from St. 
Vincent’s and Prince of Wales Hospitals, Sydney, for concurrent 
studies of Wii-based Movement Therapy (Figure 1). The level 
of residual voluntary motor-function was classified pre-therapy 
for each patient as low, moderate, or high based on performance 
of the Box and Block Test of gross manual dexterity and the 
grooved pegboard test of fine manual dexterity; patients unable 
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Table 1 | Baseline patient characteristics.

Motor-function level low Moderate high all

N 8 8 8 24
Age 59.1 ± 13.9 55.1 ± 11.3 59.4 ± 12.2 57.9 ± 12.1 Range (37–80)
Sex (F/M) 4/4 2/6 2/6 8/16
More-affected dominant (Y/N) 1/7 3/5 3/5 7/17
Stroke type (isch/haem) 3/5 7/1 6/2 16/8
Time poststroke (months) 33.3 ± 9.4 27.3 ± 8.0 19.6 ± 4.5 26.7 ± 4.3 Range (3–88)
Baseline WMFT-tt (s) 81.6 ± 6.9 26.5 ± 10.4 6.3 ± 2.6 38.1 ± 7.8
Baseline FMA (/66) 25.3 ± 3.4 53.1 ± 3.0 61.6 ± 1.5 46.7 ± 3.6
Baseline MALQOM (/150) 18.9 ± 11.2 60.0 ± 14.3 101.5 ± 14.7 60.1 ± 8.7

Age is reported as mean ± SD, remaining data are reported as mean ± SE. More-affected dominant indicates that the more-affected side is the dominant side.
Isch, ischemic; haem, hemorrhage; WMFT-tt, mean time for the Wolf Motor Function-timed tasks where a lower time indicates better motor-function; FMA, upper limb motor  
Fugl-Meyer Assessment; MALQOM, Motor Activity Log Quality of Movement scale.

Hesam-Shariati et al. Heterogeneous EMG Changes with Poststroke Therapy

Frontiers in Neurology | www.frontiersin.org July 2017 | Volume 8 | Article 340

to move >1 block in Box and Block Test were classified with 
low motor-function, those able to move >1 block but unable 
to complete the pegboard test were classified with moderate 
motor-function, and those who could complete the pegboard 
test were classified with high motor-function (47). Thirteen 
patients were classified with low, nine patients were classified 
with moderate, and eight patients were classified with high 
motor-function. To ensure balanced groups, the data for all 
eight patients with high motor-function were included and 
the data for eight patients were randomly selected using a 
computer-generated algorithm from each group of patients 
with low and moderate motor-function. The data analysis 
reported here has not been published previously although 
the clinical assessment data for all patients have been. Twenty 
patients were included in other Wii-based Movement Therapy 
trials investigating cardiovascular fitness (48), lower-limb 
symmetry (25), and motor-function measures (40); 9 patients 
were included in a randomized-controlled trial comparing Wii-
based Movement Therapy and modified Constraint-induced 
Movement Therapy (46); and 20 patients were also included 
in a genotype study (49). The inclusion criteria for this study 
were as follows: unilateral stroke with a contralesional upper 
limb deficit; ≥3  months poststroke; English communication; 
≥10° of voluntary movement in at least one digit of the more-
affected hand; age ≥18 years; medically stable; carer available 
during home practice; and cognitive competency measured as 
a Mini-Mental State Examination score of ≥24. Exclusion cri-
teria included co-morbidities significantly affecting upper limb 
sensorimotor function, unstable blood pressure, frail skin that 
prevented sensor placement and adhesion during recordings, 
and concurrent formal upper limb therapy. Demographics and 
baseline characteristics are listed in Table 1. All patients gave 
signed informed consent to the studies, which were approved 
by St. Vincent’s Hospital Human Research Ethics Committee, 
Sydney, and conducted in accordance with the Declaration of 
Helsinki. All patients were enrolled in a standardized 14-day 
program of Wii-based Movement Therapy. No attempt was 
made to control for activities after this period and prior to the 
6-month follow-up, although suggestions were made to each 
patient on how they might best maintain therapy-induced gains. 
A follow-up session was conducted for all available patients, 
i.e., a subset of 13 patients at 6-months post-therapy (3 low, 

5 moderate, and 5 high motor-function levels). As shown in 
Figure  1, 10 patients were unavailable, 1 patient returned to 
work, 4 patients had moved interstate or overseas, 2 patients 
had unrelated health problems, 3 patients had insufficient time 
for neurophysiological recordings, and the data for 1 patient was 
lost due to technical issues.

Therapy
The standardized 14-day Wii-based Movement Therapy program 
targeted movement quality of the more-affected arm and inde-
pendence in everyday activities (46, 50). Therapy consists of 1-h 
formal sessions with an Accredited Exercise Physiologist on 10 
consecutive weekdays with increasing prescribed home practice 
starting on day 2 (see Figure 2A). Wii-based Movement Therapy 
uses the Nintendo Wii and Wii-Sports games (Nintendo, Japan) 
of golf, baseball, bowling, tennis, and boxing as a rehabilitation 
tool in a structured protocol that can be individually tailored 
to the level of motor-function and progress of each patient  
(46, 51). Patients used only the more-affected upper limb during 
therapy activities. When unavoidable, assistance was provided 
either with the less-affected hand or by the therapist. Game 
performance was recorded during formal sessions, but the scores 
were used only for motivational purposes and were not the focus 
of therapy.

eMg recording
Surface EMG data were recorded during formal Wii-based 
Movement Therapy sessions at two time-points during therapy, 
i.e., at early (day 2–3) and late (between days 12 and 14) therapy; 
and for a subset of patients at 6-month follow-up. The EMG was 
not recorded on day 1 to avoid overwhelming patients as they 
became familiar with the therapy, the device and the therapist. 
Recordings were made using wireless telemetry sensors (Trigno, 
Delsys, USA) placed on the following muscles of the more-
affected upper limb: deltoid medius (DM), biceps brachii (BB), 
flexor carpi radialis (FCR), extensor carpi radialis (ECR), and 
first dorsal interosseous (FDI). Each sensor employs four silver 
bar electrodes in two pairs with an interelectrode pair distance 
of 10 mm. Each sensor is optimized for detecting the maximum 
EMG signal in an orientation perpendicular to the muscle fibers. 
The small interelectrode distance helps to minimize crosstalk 
from adjacent muscles. EMG signals were filtered between 20 
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Figure 2 | (a) Wii-based Movement Therapy (WMT) protocol showing electromyography (EMG) recordings on days 2 and 14. (b) Single patient raw EMG at early 
and late therapy for a 68-year-old female, 46 months poststroke with low motor-function during Wii-tennis. FDI, first dorsal interosseous; ECR, extensor carpi 
radialis; FCR, flexor carpi radialis; BB, biceps brachii; DM, deltoid medius.
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and 450 Hz, amplified 300 times, sampled at 2 kHz at the source 
in EMGworks (Delsys, USA), and then analyzed using custom 
scripts in Spike2 software (CED, UK).

To maximize consistency across patients and sessions, the 
sensors were placed on the most prominent portion of the 
muscle belly based on manual palpation during a weak voluntary 
contraction. Each recording session was preceded by a calibration 
sequence that consisted of three conditions each held for at least 
3 s with the limb segment: (1) supported at rest, (2) unsupported 
against gravity, and (3) unsupported with the addition of a 1 kg 
weight placed across the distal joint (51).

Primary Outcome Measures
Electromyography data were analyzed for movement duration, 
averaged peak amplitude, and the area under the curve for stereo-
typical movements of each activity using custom scripts in Spike2 
software (CED, UK). Movement duration, peak amplitude, and 
area under the curve were averaged for 10 consecutive swings 
of Wii-golf, -baseball, -tennis forehand, and -tennis backhand of 
each patient at early and late therapy and for a subset of patients 
at 6-month follow-up. Wii-tennis forehand and backhand swings 

were analyzed separately due to the need for distinctly differ-
ent movement patterns. Wii-bowling data were not analyzed 
as patients with low motor-function could not coordinate the 
necessary button press, and the speed of Wii-boxing movements 
particularly for patients with high motor-function was too fast 
to enable unambiguous movement identification. Therapy was 
completed standing for all patients except one (moderate) during 
Wii-tennis at early therapy due to fatigue.

secondary Outcome Measures
Upper limb motor-function was assessed using the Wolf Motor 
Function Test-timed tasks (WMFT-tt) (39) and the upper limb 
motor Fugl-Meyer Assessment (FMA) (37). The Motor Activity 
Log Quality of Movement scale (MALQOM) (26) was used to 
assess independence in activities of daily life. Additionally, the 
modified Ashworth Scale (52) was used as a clinical measure 
of muscle resistance at the shoulder, elbow (53), and wrist (54). 
These clinical tests were measured for all patients immediately 
pre- (baseline) and post-therapy and for a subset of 13 patients 
at 6-month follow-up. The clinical assessments were unrelated to 
the content of therapy.
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Although the primary goal of therapy was quality of movement 
and not game performance, the scores of Wii-golf, -baseball, and 
-tennis games were recorded during therapy. In Wii-golf, the aim 
was to successfully land the ball in the hole and each success was 
noted, while Wii-baseball and -tennis swings were scored when 
the ball was hit, regardless of whether the hit was successful or not 
according to the rules of each game.

Data analysis
Data analysis for this study was conducted by an independent 
assessor who was not involved in clinical assessments or therapy 
delivery. We have used the terms early therapy and late therapy to 
refer to EMG data recorded during formal therapy sessions and 
pre- and post-therapy to refer to assessments made using clinical 
tools prior to and following the therapy protocol.

The EMG data were detrended (DC removed), and root 
mean square (RMS) processed using a sliding 50  ms window. 
The mean baseline EMG was measured over 2–3 s prior to the 
commencement of each activity at rest and then subtracted from 
the EMG signal. High definition video recordings were used to 
match the EMG signal to therapy movements. Due to the het-
erogeneous patterns of motor control and impairment between 
patients and sports, EMG analysis was targeted to the dominant 
EMG signal for each patient. Proximal muscles (DM/BB) were 
primarily analyzed. However, if proximal muscles were silent or 
tonically active with no phasic activity, and clear task-related 
activity was evident in a distal muscle (FDI, ECR, or FCR), the 
distal muscle was used. For example, proximal muscle signals 
were analyzed in Wii-golf and -tennis except for three and two 
patients, respectively. In Wii-baseball, the distal muscle signals 
were more distinct compared to proximal muscles in most 
patients. For consistency, distal muscle signals were analyzed in 
Wii-baseball where possible. The same muscle was analyzed for 
each patient at each time-point.

To identify the onset and offset of therapy movements, a 
threshold level was set at 5 SD above the mean baseline EMG 
for each activity of each patient. The movement duration was 
measured as the interval between the onset and offset of move-
ment; the peak amplitude of each movement was averaged over 
a 50 ms interval around the absolute peak EMG; and the area 
under the curve was defined as the area above the baseline level 
between the onset and offset of the RMS-processed EMG. Both 
peak amplitude and area under the curve were normalized to 
the weighted condition of the calibration sequence to enable 
comparison between patients.

statistical analysis
Data were compared for each motor-function group (low, moder-
ate, and high) from early to late therapy (EMG analysis), or pre- to 
post-therapy (clinical measures) using paired t-tests for normally 
distributed data and reported as mean and SE; otherwise using 
Wilcoxon signed-rank tests, reported as median and interquartile 
range.

Longitudinal data were analyzed using mixed models of 
repeated measures with factors of motor-function (low, moderate, 
and high) and time (pre-therapy/early therapy, post-therapy/late 
therapy, and 6-month follow-up). Linear mixed models provide 

unbiased estimates for the missing data (55) at 6-month follow-
up and are more powerful and flexible (56, 57) than repeated 
measures ANOVA in the presence of multiple missing data points 
because of the emphasis on the pattern of change rather than the 
quantitative difference (57).

The relationship between the change in area under the curve 
and clinical assessments was investigated using Spearman’s 
rank-order correlation with Bonferroni corrections for multiple 
comparisons. Statistical analyses were conducted in SPSS 23 
software (IBM, USA), and differences were considered significant 
when p < 0.05.

resulTs

All patients completed all formal therapy sessions, home prac-
tice, and clinical assessments; 10 patients were unavailable for 
6-month follow-up (Figure 1). Data are reported at early and late 
therapy for Wii-golf putting (n = 23), -baseball swing (n = 24), 
and -tennis forehand and backhand (n = 23). The same activities 
at follow-up are reported for 12, 13, and 12 patients, respectively. 
Data could not be analyzed during therapy for Wii-golf for one 
patient (with moderate motor-function) due to tonic muscle 
activity and during Wii-tennis for another patient (low motor-
function) with limited shoulder movement that prevented this 
activity. No adverse events were reported, either minor or major.

changes in eMg as a consequence of 
Therapy (early to late Therapy)
Changes in the area under the curve, movement duration, and 
peak amplitude of muscle activation from early to late therapy 
for different Wii-activities are listed in Table 2 and illustrated 
in Figure  3. For Wii-golf putting, the movement duration 
decreased significantly for patients with moderate (p = 0.048) 
and high motor-function levels (p = 0.026); area under the curve 
was also reduced for patients with moderate motor-function 
(p  =  0.018). The movement duration of Wii-baseball swings 
showed a trend toward decreasing for patients with low motor-
function (p = 0.050), while there was a reduction in the area 
under the curve for the patients with moderate motor-function 
(p =  0.036). The movement duration of Wii-tennis forehand 
(p = 0.009) and backhand (p = 0.023) decreased for patients 
with high motor-function by late therapy. Moreover, the move-
ment duration of Wii-tennis backhand decreased (p = 0.046) 
for patients with moderate motor-function. The area under the 
curve (p =  0.028) and peak amplitude (p =  0.043) increased 
for patients with low motor-function during backhand swings, 
while the area under the curve (p = 0.050) showed a reduction 
trend for patients with high motor-function.

changes in eMg over Time (early Therapy, 
late Therapy, and Follow-up)
Linear mixed models demonstrated an effect of motor-function 
during Wii-golf (p = 0.009) and an interaction between time and 
motor-function (p = 0.016) for movement duration. Wii-baseball 
movement duration changed as a function of time (p = 0.022). 
Wii-tennis forehand swing movement duration demonstrated 
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an effect of time (p  =  0.002) and an interaction of time and 
motor-function (p = 0.005). In addition, the pattern of change 
for Wii-tennis backhand movement duration over time showed 
a non-significant trend (p  =  0.059). For Wii-golf area under 
the curve, there was an effect of the level of motor-function 
(p  =  0.034), with a non-significant trend for an interaction 
between time and motor-function (p = 0.072). Finally, there was 
a non-significant trend for the effect of time on Wii-baseball area 
under the curve (p = 0.070).

changes in clinical assessments with 
Therapy (Pre- to Post-Therapy)
Clinical assessment data showed improvements from pre- to 
post-therapy for the pooled data (n  =  24) for WMFT timed 
tasks (p = 0.004), FMA (p = 0.001) and MALQOM (p < 0.001). 
There were no changes in Ashworth scores at wrist (p = 0.355), 
elbow (p = 0.796), or shoulder (p = 0.592) at post-therapy. The 
detailed results for each level of motor-function are presented 
in Figure 4.

changes in clinical assessments over 
Time (Pre-Therapy, Post-Therapy, and 
Follow-up)
Linear mixed models demonstrated improvement over time 
for WMFT-tt (p  =  0.008), FMA (p  =  0.001), and MALQOM 
(p < 0.001). There was an effect of the level of motor-function for 
the WMFT-tt, FMA, and MALQOM (p < 0.001 for all).

game Performance
Game performance improved from early to late therapy. The suc-
cessful Wii-golf swings (landing the ball in the hole) increased 
by 30.7% (p = 0.004). The number of Wii-baseball hits increased 
by 51.5% (p < 0.001), while the combined Wii-tennis forehand 
and backhand hits increased by 91.5% (p = 0.012). The increase 
in game scores was sustained at 6-month follow-up with signifi-
cant improvements over time for Wii-golf (p = 0.004), -baseball 
(p < 0.001), and -tennis (p = 0.022).

Qualitative eMg Observations
As detailed earlier, EMG data demonstrated therapy-induced 
changes particularly for patients with low motor-function. 
Qualitative observations included that the EMG signal from 
muscles with prolific single motor unit activity became more 
compound by late therapy indicating increased motor unit 
recruitment; tonic activity became more phasic; and there were 
more distinct and task-related bursts of EMG in more muscles 
(see Figure 2B).

relationship between changes in eMg 
and clinical assessments
The correlation between therapy-induced changes in clinical 
motor assessments (WMFT-tt, FMA, and MALQOM) and the 
changes in EMG parameters (of Wii-golf, -baseball, -forehand, 
and -backhand) were examined. For the pooled data, there was 
no relationship between the change in the clinical assessments 
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Figure 4 | Changes in clinical assessments over time. Significant changes are evident for (a) Motor Activity Log Quality of Movement scale, (b) upper limb motor 
Fugl-Meyer Assessment and (c) Wolf Motor Function Test-timed tasks (note a decrease in time reflects improved performance). (D) Modified Ashworth Scale 
pre-therapy (baseline) data are presented as there were no changes over time. All data are presented as mean ± SE.

Figure 3 | Pooled data showing changes in electromyography over time. Changes are presented as mean ± SE for the area under the curve according to the level 
of poststroke motor-function. Significant changes in movement duration (md) are also indicated.
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Figure 5 | Changes in electromyography over time, individual patient data. The mean area under the curve is shown for each patient (n = 24) with low, moderate, 
and high motor-function levels at early and late therapy and for a subset of patients (n = 13) at 6-month follow-up during Wii-golf putting.
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and the change in area under the curve of each activity (r < 0.39, 
p > 0.18 for all comparisons) and the change in movement dura-
tion of the same activities (r < 0.20, p > 0.90 for all comparisons). 
Furthermore, within each level of motor-function, no relation-
ship was found either for area under the curve (low: r <  0.45, 
p > 0.78; moderate: r < 0.71, p > 0.14; high: r < 0.54, p > 0.50), or 
movement duration (low: r < 0.73, p > 0.12; moderate: r < 0.62, 
p > 0.30), with the single exception of a significant correlation 
that was found between the change in Wii-baseball movement 
duration and clinical assessments in patients with high motor-
function (r = −0.81, p = 0.048).

DiscussiOn

In this study, we investigated changes in upper limb muscle 
activation to gain greater insight into the neurophysiological 
mechanisms of improved motor-function in a heterogeneous 
stroke cohort from early to late therapy and with a subset of 
patients at 6-month follow-up. To the best of our knowledge, 
this study is the first longitudinal analysis of upper limb EMG 
during therapy in chronic stroke. Moreover, the movements 
we studied were largely unconstrained in time and space with 
no experimentally pre-defined start- or end-points. Although 
all patients made significant improvements on clinical assess-
ments, and muscle activation changed with therapy, contrary 
to our hypothesis, there was no consistent pattern of change in 
EMG in the pooled data or within any motor-function group  
(see Figure 5). Qualitatively, there were more discrete bursts of 
EMG, less tonic activity, and less co-contraction (see Figure 2B). 
These findings demonstrate that there is no one pattern of 
improvement regardless of the level of motor-function, that 
task-related EMG demands may increase or decrease, and that 
both are associated with improved therapy (game) performance 
and independence in everyday tasks.

One of the two primary objectives of Wii-based Movement 
Therapy is movement quality, rather than EMG activity or game 
scores. Thus, therapy activities were not modified in any way to 
enhance the recorded EMG signals (25, 48, 51). Wii-activities 
provide a wide range of movement demands. For example, the 
self-paced Wii-golf putting requires movements that are smaller 

and more-controlled compared to the externally-timed Wii-
baseball and -tennis swings that can be used to target movement 
speed, range, power, and coordination (58).

The pattern of change in the EMG signals by late therapy was 
complex and variable. There were distinct differences between 
patients with low motor-function and those with moderate and 
high motor-function levels (49, 59, 60). The pattern of change in 
the area under the curve showed an increase for patients with low 
motor-function from early to late therapy for all activities except 
Wii-baseball in which there was no change. This pattern was 
reversed for patients with high motor-function, while those with 
moderate motor-function had a reduction in Wii-golf putting 
and -baseball swings and an increase in Wii-tennis forehand and 
backhand hits. In contrast, clinical motor assessments with the 
exception of the modified Ashworth Scale improved for the pooled 
cohort. The differences between the levels of motor-function arise  
as a consequence of the limitation of each assessment tool, 
particularly for the modified Ashworth Scale (46, 47, 61). These 
data emphasize differences in the level of residual voluntary 
motor capacity in chronic stroke. Although patients with low 
motor-function retain the capacity to improve, the level of 
impairment may limit their ability to participate fully in each 
activity and hence circumscribe the potential for improvement. 
Those with moderate motor-function have the greatest capacity 
for improvement, whereas patients with high motor-function are 
the most likely to show improvements (34). Regardless of changes 
in EMG and movement ability, the MALQOM data demonstrate 
that every patient became more independent in activities of daily 
living (46, 62).

Muscle activation after stroke is typically analyzed during 
simple single-joint tasks (20, 22, 43), or during experimentally 
constrained movements (41, 45, 63). Our analysis focused on the 
area under the curve because it is the product of EMG amplitude 
and the movement duration and so provides a more holistic view 
of the movement. While changes in movement duration were 
larger, there were fewer changes in peak amplitude. In this study, 
the movements were largely unconstrained, in that patients chose 
their own starting position within a task-dependent framework 
and the end position predominantly reflected movement capacity. 
When essential, positioning assistance was provided either with 
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the less-affected arm or by the therapist. Wii-golf was self-paced, 
Wii-baseball was paced by the game but required the develop-
ment of fine response timing, while the timing of Wii-tennis 
was variable from swing to swing. Thus, these activities provide 
a better reflection of upper limb use in everyday life than more 
constrained experimental tasks and are more likely to reflect the 
neurophysiology underlying functionally relevant changes in 
poststroke motor-function.

Despite monotonic improvements in clinical assessments, 
there were heterogeneous changes in muscle activation patterns 
during therapy. Patients in each level of motor-function used 
different strategies to perform a task according to their specific 
neuromuscular limitations. Wii-activities target various muscles 
and movements (58), and differences in residual voluntary mus-
cle activation alter the goals of therapy for each patient and result 
in movement patterns that differ from those of healthy control 
subjects (46, 50). These differences precluded analysis based on 
a single pre-determined muscle for all patients. Single muscle 
analysis provides some information about corticomotor changes 
in motor control but little about the coordination of muscles in 
the production of a complex movement. For this reason, these 
data were further analyzed to investigate the neuromuscular 
coordination of these complex movements [see (64)].

clinical implications
Although all patients completed a standardized protocol of Wii-
based Movement Therapy and improved on clinical assessments, 
the pattern of change in EMG differed. Each motor-function 
group had a dominant pattern; yet, there was a large amount 
of variation within each group (see Figure  5). Regardless of 
the pattern of improvement in EMG, therapy-induced changes 
were reflected in improvements in independence (MALQOM) 
and quality of movement in activities of daily living that were 
unrelated to the content of therapy (see Figure 4). These data sug-
gest that Wii-based Movement Therapy tasks can target different 
aspects of motor control. For example, the area under the curve in 
Wii-golf putting increased over time for patients with low motor-
function showing that these patients were able to perform longer 
and stronger movements after therapy. Therefore, Wii-golf can 
be used to focus on slower and more-controlled movements with 
a sustained position at the end of the swing to target positional 
stability. Patients with moderate and high motor-function levels 
had a reduction in area under the curve over time indicating more 
coordinated and smaller movements, confirmed by video record-
ings. The increased area under the curve during Wii-tennis for 
patients with low and moderate motor-function levels suggests a 
greater ability to move from one side of the body to the other so 
that fuller “strokes” were played for both forehand and backhand 
as seen in video recordings. In contrast, the reduced area under 
the curve for patients with high motor-function suggests more 
efficient movements that can be used to target the difference 
between making one movement and preparing for the next move-
ment. An ancillary benefit of these changes is that Wii-tennis also 
promotes greater stepping (25), which we hypothesize will also 
improve standing balance.

Game scores indicated that patients improved in terms of 
game performance; however, game scores do not necessarily 

reflect performance. Task difficulty is increased during therapy 
based on patient progress (25, 51). The increased difficulty typi-
cally lowers game scores resulting in a pattern of oscillating scores 
with a trend of improvement over time.

Electromyography analysis provides a mean of demonstrating 
neurophysiological changes in chronic stroke underlying signifi-
cant improvements in clinical assessments, suggesting that ongo-
ing rehabilitation is effective. Preliminary data from our group 
(65) emphasize that a continuous trajectory of improvement in 
clinical measures is possible when additional periods of therapy 
are provided in the chronic phase of stroke.

study limitations
In this study, the sample size within each level of motor-function 
is small. Yet, the pooled sample size is comparable to published 
studies of poststroke EMG (66–69). A wide range of poststroke 
motor impairment is included in this study based on clinical 
assessment data. Patients with low motor-function are not typi-
cally recruited in most neurophysiological studies due to meth-
odological challenges. These patients need special care during 
assessment and therapy sessions due to pain, limited mobility 
and fatigue. Significant upper limb motor heterogeneity, together 
with the largely unconstrained movements during therapy and 
EMG acquisition from a variety of muscles increase the complex-
ity of EMG analysis and interpretation.

The absence of healthy control subjects is a limitation to this 
study. Given that therapy focuses on the quality of movements 
and increasing the use of more-affected upper limb in everyday 
activities, the instructions given to stroke patients are differ-
ent from those given to healthy subjects performing the same 
Wii-activities. The movements used in therapy are designed to 
replicate movement patterns of real-world sporting activities, 
despite all activity being targeted as far as possible, to use of the 
more-affected upper limb alone. Initially movements may be 
fractionated into their constituent parts for practice using the 
principles of shaping (70). By the end of therapy, most patients 
are able to perform the necessary reconstituted whole movements 
with game performance and scores used only as a motivational 
tool (46). In contrast, healthy subjects playing the same games 
used more modified movements than the real-world equivalent, 
and despite skill acquisition during Wii-Sports, showed no change 
in clinical assessments of motor-function (50). Thus, these differ-
ences in movement patterns may limit the utility of comparisons 
between healthy subjects and patients.

Although patients were drawn from several concurrent Wii-
based Movement Therapy studies, all received the standardized 
protocol and we have seen very little variation in therapy outcomes 
across trials (46, 50, 62). The patients were instructed to perform 
the same task-dependent movements; however, the variability in 
movement strategies, tonic muscle activity, level of impairment, 
and the ability to voluntarily relax muscles after each movement 
prevented the use of single muscle for all analyses. This approach 
adds complexity to the analysis but was preferable to attempting to 
ensure all patients activated a given muscle as this was either not 
possible for some patients or would have produced extraneous or 
counterproductive movements. To enable comparisons between 
patients and between multiple time-points, EMG data were 
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normalized to a standardized condition, even though it has been 
suggested that EMG normalization in poststroke data might lead 
to higher variability (45). An unsupported weighted condition 
was used for normalization as this was considered more reliable 
for stroke survivors than a maximal voluntary contraction that 
might be restricted due to pain (71). Such variability is an inher-
ent problem of longitudinal poststroke therapy studies when the 
aim of therapy is to change the muscles themselves, in addition to 
changing the neuromuscular control of those muscles.

cOnclusiOn

This study demonstrates the magnitude of the variability in 
poststroke response to therapy and Wii-based Movement 
Therapy-induced changes in upper limb EMG in chronic stroke. 
The absence of correlations between EMG activity, game perfor-
mance, and clinical assessments highlights the complexity and 
heterogeneity that are characteristic of stroke, even in the chronic 
period. Despite the absence of readily identifiable patterns across 
the pooled EMG data, the pattern of changes in EMG was asso-
ciated with the level of residual voluntary motor capacity. The 
heterogeneity within each level shown in this EMG study was not 
evident using clinical assessments of motor-function, although 
improved independence in everyday activities was evident for 
all patients. These data emphasize the importance of examining 
individual patient responses to therapy using multiple tools, 
as rehabilitation efficacy will be underestimated when data are 
pooled.
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Christine T. Shiner1,2 and Penelope A. McNulty1,2*
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Fine motor control is achieved through the coordinated activation of groups of muscles, 
or “muscle synergies.” Muscle synergies change after stroke as a consequence of the 
motor deficit. We investigated the pattern and longitudinal changes in upper limb muscle 
synergies during therapy in a largely unconstrained movement in patients with a broad 
spectrum of poststroke residual voluntary motor capacity. Electromyography (EMG) was 
recorded using wireless telemetry from 6 muscles acting on the more-affected upper body 
in 24 stroke patients at early and late therapy during formal Wii-based Movement Therapy 
(WMT) sessions, and in a subset of 13 patients at 6-month follow-up. Patients were clas-
sified with low, moderate, or high motor-function. The Wii-baseball swing was analyzed 
using a non-negative matrix factorization (NMF) algorithm to extract muscle synergies from 
EMG recordings based on the temporal activation of each synergy and the contribution 
of each muscle to a synergy. Motor-function was clinically assessed immediately pre- and 
post-therapy and at 6-month follow-up using the Wolf Motor Function Test, upper limb 
motor Fugl-Meyer Assessment, and Motor Activity Log Quality of Movement scale. Clinical 
assessments and game performance demonstrated improved motor-function for all patients 
at post-therapy (p < 0.01), and these improvements were sustained at 6-month follow-up 
(p > 0.05). NMF analysis revealed fewer muscle synergies (mean ± SE) for patients with 
low motor-function (3.38 ± 0.2) than those with high motor-function (4.00 ± 0.3) at early 
therapy (p = 0.036) with an association trend between the number of synergies and the 
level of motor-function. By late therapy, there was no significant change between groups, 
although there was a pattern of increase for those with low motor-function over time. The 
variability accounted for demonstrated differences with motor-function level (p < 0.05) but 
not time. Cluster analysis of the pooled synergies highlighted the therapy-induced change 
in muscle activation. Muscle synergies could be identified for all patients during therapy 
activities. These results show less complexity and more co-activation in the muscle activa-
tion for patients with low motor-function as a higher number of muscle synergies reflects 
greater movement complexity and task-related phasic muscle activation. The increased 
number of synergies and changes within synergies by late-therapy suggests improved 
motor control and movement quality with more distinct phases of movement.

Keywords: muscle synergy, non-negative matrix factorization, upper limb, rehabilitation, chronic stroke
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inTrODUcTiOn

Fine motor control of the upper limb requires complex move-
ments based on multiple degrees of freedom that permit move-
ment variability and versatility (1, 2). The central nervous system 
controls such complex motor tasks by coordinated activation 
of groups of muscles, referred to as “muscle synergies” (3–6). 
The combination of the brain and spinal circuitry is essential 
for the simultaneous recruitment of multiple muscle synergies 
that explain a wide range of movement patterns (7, 8). Muscle 
synergies have been extracted from electromyography (EMG) 
recordings to define movements in both animals including frogs 
(9, 10), rats (11), cats (12–14), and monkeys (15); and humans 
with reference to gait (16–18), balance and posture (19, 20), hand 
function and posture (21, 22), arm movements (2, 7, 23), and 
isometric force (24, 25).

Multiple temporal synergy profiles are weighted and inte-
grated to define coordinated muscle activation during a task 
(2). Muscle synergies can include any number of muscles and 
each muscle can contribute to multiple synergies (8). Muscle 
synergies have been investigated in acute, subacute (26–28), 
and chronic stroke (17, 23, 29) showing abnormalities compared 
to healthy people (18, 30, 31). Such changes reflect poststroke 
motor impairment which can be attributed in large part to 
disorders in the neural pathway (8), reduced corticospinal drive 
(32), disuse atrophy (33), and loss of independent joint control 
and impaired motor coordination (29).

Muscle synergy analysis has detected poststroke abnormalities 
in the number, structure, and recruitment profile of muscle syner-
gies. For example, the number of muscle synergies recruited in 
the poststroke gait cycle was reduced in patients with more severe 
impairment and in comparison to healthy subjects (17, 34). This 
presumably reflects a change in the number of independent 
motor subtasks given the standard analysis of the gait cycle in four 
distinct phases and the use of four synergies for healthy subjects 
and patients with high motor-function.

Several analysis algorithms have been suggested for the 
decomposition of muscle activation profiles into muscle syner-
gies. Tresch and colleagues (35) evaluated and compared different 
matrix factorization methods including factor analysis, independ-
ent component analysis alone and applied to principle compo-
nent analysis, and non-negative matrix factorization (NMF). The 
authors concluded that these methods identify muscle synergies 
very similar to one another. In this study, we implemented NMF 
which has commonly been used to detect muscle synergies from 
EMG activation (17, 25, 36, 37). NMF quantifies muscle syner-
gies as a linear combination of the timing profile and a weighting 
assigned to each muscle involved in each synergy.

Few studies have examined the changes in poststroke muscle 
synergies with rehabilitation, but see Ref. (28). In this study, we 
extracted muscle synergies during a complex task to investigate 
the changes in muscle activation profiles (i.e., muscle synergies) 
in chronic stroke during an intensive 14-day protocol, in this case 
Wii-based Movement Therapy (WMT) (38, 39). This therapy is 
as effective as the current best practice in stroke rehabilitation, 
Constraint-induced Movement Therapy (38, 40). The primary 
aim of this study was not the therapy itself, but to quantify 

poststroke muscle synergies during therapy. Muscle synergy 
analysis cannot be used to investigate recovery mechanisms 
occurring in the brain but was used here as a neurophysiological 
indication to distinguish the level of impairment and the effect of 
therapy on coordinated muscle activation (41). To identify some 
of the neuromuscular mechanisms underpinning the improve-
ment reported using clinical motor-function assessments (38, 
39), NMF was applied to the EMG recorded from six muscles of 
the more-affected arm and upper body during the Wii-baseball 
component of WMT. This longitudinal study examined EMG at 
early and late therapy, and at 6-month follow-up for a subset of 
patients. We hypothesized that the number of muscle synergies 
would be correlated with the level of motor-function after stroke 
and that the number of synergies would change with therapy.

MaTerials anD MeThODs

Participants
Twenty four patients (16 males, 8 females) aged 37–80  years 
(57.9 ± 12.1, mean ± SD) and 3–88 months poststroke (26.7 ± 4.3, 
mean ±  SE) were randomly selected from a larger cohort who 
were consecutively recruited from St. Vincent’s and Prince of 
Wales’ Hospitals, Sydney [the same patients as presented in 
Hesam-Shariati et al. (42), see Table 1 for a summary of baseline 
characteristics]. All participants were hemiparetic following 
either an ischemic or hemorrhagic stroke and were classified into 
three groups of low, moderate, or high motor-function based on 
their ability to perform two tests of upper limb manual dexterity 
(43). The inclusion criteria were as before: ≥10° of voluntary 
movement in at least one digit of the more-affected hand; cogni-
tive competency measured as a Mini-Mental State Examination 
score ≥24; suitable skin for sensor placement; and the ability to 
communicate in English. Exclusion criteria included unstable 
blood pressure; comorbidities affecting upper limb sensorimotor 
function; and engagement in any other formal upper limb reha-
bilitation program. All participants gave signed informed consent 
to the study that was approved by the St. Vincent’s Hospital Human 
Research Ethics Committee, Sydney, and conducted in accord-
ance with the Declaration of Helsinki. Ten of the 24 patients could 
not attend the 6-month follow-up session for a range of reasons 
including: return to work, too far to travel, and unrelated health 
problems. The data for one patient were excluded for technical 
issues [see Ref. (42), Figure 1]. As detailed in Hesam-Shariati 
et al. (42), the clinical assessment results for all patients (but not 
NMF analyses) have been published previously [see Ref. (44) 
n = 20; (38) n = 9; and (40) n = 8].

Therapy
WMT is a standardized 14-day program focused on the more-
affected upper limb, which consists of 1-h of formal therapy on 
10 consecutive weekdays delivered by an Accredited Exercise 
Physiologist, augmented by prescribed home practice starting on 
day 2 and increasing throughout the program [see Figure 2A in 
Ref. (42)]. This therapy uses the Nintendo Wii and Wii-Sports 
games (Nintendo, Japan) as a rehabilitation tool that targets 
movement quality and independence in activities of daily living 
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(38, 39). The movements required in Wii-Sports were modified 
according to the capacity, range of motion, and strength of each 
patient. Although WMT games include Wii-golf, -baseball, -ten-
nis, -bowling, and -boxing, the analyses of this study were applied 
only to Wii-baseball swings. Each patient played two or three 
games of Wii-baseball during each session of therapy. This Wii-
baseball movement was selected for analysis for several reasons. 
First, all patients were able to complete this game, regardless of 
the level of residual voluntary motor-function. Second, the game 
determines the onset of each movement by pitching the ball. This 
allowed individual movements to be identified more clearly in the 
EMG signal. Finally, the nature of the game provided the most 
consistent task demands.

eMg recording
Surface EMG was recorded from six muscles of the upper body 
on the more-affected side: trapezius (middle portion), deltoid 
medius, biceps brachii (BB), extensor carpi radialis, flexor carpi 
radialis, and first dorsal interosseus (FDI) using Trigno wireless 
sensors (Delsys, USA). The data were collected continuously dur-
ing formal WMT sessions at early (day 2–3) and late (between 
days 12–14) therapy, and in a subset of patients, again during the 
6-month follow-up session. Each EMG sensor contains four silver 
bar electrodes, arranged in two pairs with an interelectrode pair 
distance of 10 mm. The sensor is designed to maximize the detec-
tion of muscle activation in a field perpendicular to the muscle 
fibers. Data were amplified 300 times, filtered between 20 and 
450 Hz, and sampled at 2 kHz using EMGworks (Delsys, USA) as 
per intrinsic device settings.

clinical Motor-Function assessments  
and game Performance
The efficacy of WMT was evaluated using clinical motor-func-
tion tests as described in Hesam-Shariati et  al. (42) including 
the Wolf Motor Function Test (WMFT) (45), upper limb motor 
Fugl-Meyer Assessment (FMA) (46), and the Motor Activity 
Log Quality of Movement scale (MALQOM) (47). The Wii-
baseball game performance was assessed as the number of hits, 
regardless of the outcome according to the rules of baseball, and 
this was recorded during therapy. However, the primary goal of 
therapy was movement quality and not game performance. The 
average duration of each swing for each trial was measured in 
seconds.

Data analysis
EMG Preprocessing
Electromyography signals were DC removed, root mean square 
processed using a sliding 50  ms window and demeaned using 
Spike2 software (CED, UK). Mean baseline EMG was measured 
over 1 s prior to the beginning of the Wii-baseball game, while 
the muscles were at rest. The mean was subtracted from the 
signal of the same game for each patient. To enable comparison 
between patients, the EMG of each muscle was normalized to its 
peak amplitude, then averaged over 10 consecutive Wii-baseball 
swings for each patient at early and late therapy and at 6-month 
follow-up.

Non-Negative Matrix Factorization
Muscle synergies were extracted from the EMG signals using 
the NMF method (4, 35, 48, 49). This optimization method 
was applied to the EMG recordings of the six muscles using 
the in-built nnmf function in MATLAB R2014a (MathWorks, 
USA). Random initial values were generated as the input for the 
multiplicative algorithm of the function, the output of which 
provided the initial values of the alternating least squares (ALS) 
algorithm (50). Then, the ALS algorithm was used to characterize 
the EMG of the six recorded muscles (m =  6) as a lower-rank 
combination of the relative weighting (W) of each muscle and the 
timing profile (H) of each synergy (equation below) in a complex 
movement (see Figure 1).
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Number of Muscle Synergies
The number of muscle synergies needed to define coordinated 
muscle activation in a complex movement was determined using 
the term variability accounted for (VAF) (14, 17) and the mean 
squared error (MSE) term (9, 51) according to the formula below. 
The VAF is defined as 100 times the squared correlation coefficient 
between the original EMG (EMGo) and the reconstructed EMG 
(EMGr) from the NMF algorithm (23). The minimum number 
of synergies was identified when VAF increased by less than 2% 
when another synergy was added. VAF for the acceptable number 
of synergies was required to be greater than 97% while the MSE 
was less than 10 × 10−4.
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Similarity of Synergy Timing Profiles
The similarity between individual synergy timing profiles from 
each subject on a group basis was quantified using the scalar 
product (1, 31). More than 50% of patients used four distinct 
synergies to account for the variability of muscle activation at 
early and late therapy and at 6-month follow-up. The analysis of 
similarity between timing profiles requires the same number of 
synergies from each patient to be entered in the analysis to enable 
the comparison of synergy profiles. Thus, regardless of the actual 
number of synergies, four synergies were extracted from the 
muscle activation of all patients. Then, one set of four synergies 
from one subject was randomly selected in each motor-function 
group and used as the template. The synergy timing profiles from 
all other subjects within the same motor-function group at each 
time point were matched to provide the highest scalar product 
between two synergies. The scalar product (r-value) is a measure 
of the similarity in which one numerical vector is projected onto 
another, so that an r-value of 1 represents complete similarity and 
a value of 0 represents the absence of any similarity.
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FigUre 1 | Single patient electromyography (EMG) data showing the progression through analysis using non-negative matrix factorization (NMF). The 61-year-old 
male patient with moderate motor-function was 5 months poststroke. (a) Preprocessed normalized EMG from six upper body muscles on the more-affected side 
during Wii-baseball swings prior to processing by the NMF algorithm. (B) Reconstructed EMG after processing by NMF as the integration of muscle synergies for 
each muscle. (c) Each derived muscle synergy is a combination of the timing profile and muscle weightings. FDI, first dorsal interosseous; ECR, extensor carpi 
radialis; FCR, flexor carpi radialis; BB, biceps brachii; DM, deltoid medius; trap, trapezius (middle portion).
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Clustering Synergy Structures
The muscle weightings of the actual synergies from all subjects 
were pooled to be categorized using cluster analysis (23, 51) 
at early and late therapy. This procedure was performed using 
the in-built functions from the MATLAB statistics toolbox. 
Euclidean distance was used to measure the similarity between 
pairs of muscle weightings. The minimum number of clusters 
was determined based on grouping synergies when there was no 
more than one synergy from a subject in each cluster. Cluster 
analysis requires the inclusion of all extracted synergies to avoid 
overlap and to merge the analysis to a limited and realistic num-
ber of clusters. This method avoids the inclusion of more than one 
synergy from each patient in each cluster.

statistical analysis
A potential relationship between the number of muscle synergies 
and the level of motor-function was investigated using Pearson 
chi-square test, Fisher’s exact test, and linear-by-linear associa-
tion. If more than 20% of the cells had an expected count <5, the 
p-value of Fisher’s exact test was reported instead of Pearson 
chi-square. In addition, linear-by-linear association was used to 
reveal trends in larger than 2 × 2 tables. The same tests were used 
after the cluster analysis to evaluate the incidence of each cluster 
in each level of motor-function.

A mixed-effect model was implemented for any given number 
of synergies (range 1–5) to detect the effect of motor-function 
level (low, moderate, high) and time (early therapy, late therapy, 
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FigUre 2 | Number of synergies required to define Wii-baseball swing. (a) Comparison of the number of synergies used for patients (n = 24) with different levels of 
motor-function at early and late therapy and for a subset (n = 13) at 6-month follow-up. (B) The number of synergies for all patients (n = 24) at early and late therapy 
(mean ± SE). At early therapy, there was a significant difference between patients with low and high motor-function. There was also a trend toward an increase in the 
number of synergies from early to late therapy for patients with low and moderate motor-function. (c) The number of synergies for the subset of patients (n = 13; 3 
low, 5 moderate, and 5 high motor-function) who completed 6-month follow-up assessments (mean ± SE). There was no significant change over time.
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follow-up) on VAF. This model is powerful and flexible with 
missing data (i.e., to account for n = 13 at follow-up). Clinical 
assessments and game performance data were analyzed using 
paired t-test (for parametric data) and Wilcoxon signed-rank 
test (for non-parametric data) to compare means between time 
points. Statistical analyses were conducted in SPSS 23 software 
(IBM, USA) and the differences were considered significant when 
p < 0.05.

resUlTs

number of synergies extracted  
from Wii-baseball
Difference in the Number of Synergies across Groups
The number of muscle synergies required to define the Wii-
baseball movement is presented in Figure 2A for each level of 
motor-function at each time point. At early therapy, most patients 
with low motor-function used three synergies, while most patients 
with moderate and high motor-function used four synergies to 
define the movement. However, two patients with high motor-
function used five synergies. As can be seen in Figure 2B at early 
therapy, the number of synergies (mean ± SE) for patients with 
low motor-function (3.38 ± 0.18) was significantly less than for 

patients with high motor-function (4.00 ± 0.27) (p = 0.036). At 
early therapy, Fisher’s exact test showed no relationship between 
the number of muscle synergies and the level of motor-function 
(p  =  0.217), although linear-by-linear association indicated a 
trend (p = 0.045).

Changes in the Number of Synergies over Time
At late therapy, an increase in the number of synergies was evi-
dent for patients with low and moderate motor-function, albeit 
not statistically significant (Figure 2B). The number of synergies 
(mean ± SE) increased from 3.38 ± 0.18 to 3.63 ± 0.18 (p = 0.317) 
for patients with low motor-function and from 3.75  ±  0.16 to 
3.88 ± 0.23 (p = 0.564) for patients with moderate motor-function 
from early to late therapy. There was no change for patients with 
high motor-function. For the subset of patients with 6-month 
follow-up data, the number of synergies over time is illustrated 
in Figure 2C. There were no significant changes over time for this 
subset of patients.

consistency of synergy Timing Profiles 
within groups
The synergy timing profiles (Figure 3) were similar for patients 
in each level of motor-function. The timing profile of muscle 
synergies in each group was matched based on the scalar product 
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FigUre 4 | Variability accounted for (VAF) in muscle synergies. VAF changed 
little over time; the mean VAF was measured for any given number of 
synergies and compared between patients for the three levels of motor-
function. For each number of synergies, patients with low motor-function had 
higher VAF compared to the other two groups (p < 0.05). Lower VAF for 
patients with moderate and high motor-function indicated that the analysis is 
less able to account for variability of muscle activation because of more 
movement complexity.

FigUre 3 | Synergy activation timing for patients according to the level of residual voluntary motor-function. Thin gray lines illustrate the synergy timing profile for 
each patient (mean of 10 trials), overlaid by the within-group mean (black line). Similar synergies are overlaid based on the scalar product between synergies. The 
r-value shown for each synergy indicates the group-averaged scalar product. For patients with low motor-function, the scalar product between mean synergy 1 and 
2 indicated similarity (r = 0.71). These two synergies were assumed to be one (as indicated by the overlaid box). Thus, patients with low motor-function used three 
distinct synergies to define the movement, while patients with moderate and high motor-function required four synergies.
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(r-value) between pairs of synergies from different patients in 
each group. The within-group mean r-value is shown for each 
synergy in Figure  3. Four distinct synergies demonstrated the 
profile of muscle synergies for patients with high and moder-
ate motor-function. For patients with low motor-function, the 
between-synergy scalar product for synergy 1 and 2 (r = 0.71) 
showed high similarity, suggesting a single synergy. Thus, three 
distinct synergies defined the movement in patients with low 
motor-function.

Variability (VaF) of Muscle synergies 
across groups
Variability accounted for increased with a higher number of syn-
ergies (Figure 4). A mixed-effect model revealed changes in VAF 
according to the level of motor-function over time for any given 
number of muscle synergies (range 1–5) for each patient. The 
level of motor-function, but not the time point, had an effect on 
the VAF (for any given number of synergies p < 0.05); although 
the VAF appears similar between groups in Figure 4, the vari-
ability within each group was large.

Muscle synergy clusters
At early- and late-therapy, the muscle weightings of each synergy 
from all patients were pooled and then categorized into 10 and 
11 clusters, respectively. Thus, all the synergy structures from 
all patients can be summarized into 10 or 11 distinct synergies 

(Figure 5). At early therapy, there was no significant difference in 
the incidence of muscle synergies from different levels of patient 
motor-function in each cluster based on Fisher’s exact test, except 
for cluster 2 (Figure 6). However, a trend was observed in the 
incidence of cluster 3 and 9 using linear-by-linear association  
(see Figure 6).
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FigUre 5 | Composition of muscle synergies at early and late therapy. Synergy muscle weightings at early and late therapy were categorized into 10 and 11 
clusters, respectively. For each cluster, the distribution of muscle weightings from different synergies is shown, overlaid by the group mean. The synergy clusters 
changed from early to late therapy except for the first four clusters.

FigUre 6 | Incidence of muscle synergy clusters across groups at early 
therapy. The incidence of muscle synergies did not differ with the level of 
motor-function except for cluster 2 (p < 0.01). There was a trend between 
the incidence of muscle synergies and the level of motor-function in  
clusters 3 and 9 (p < 0.05).
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Wii-baseball game Performance
The number of balls hit by patients was averaged for each record-
ing session. The number of Wii-baseball hits increased (p < 0.001) 
from early therapy (4.42 ±  0.63) to late therapy (7.37 ±  0.40) 
and was sustained at 6-month follow-up (6.33 ± 0.65, p = 0.106). 
There was no difference in the duration of the Wii-baseball swing 
between groups (low, 1.30  ±  0.51  s; moderate, 1.37  ±  0.24  s; 
high, 0.75 ± 0.15 s; p = 0.379), i.e., there was no effect of motor-
function level.

clinical Motor-Function assessments
The clinical motor-function measures showed significant 
improvements from pre- to post-therapy. WMFT task times for 
the pooled data reduced (improved) from 38.1 ± 7.8 to 33.6 ± 7.2 s 
(p = 0.004), FMA scores increased from 46.6 ± 3.6 to 48.9 ± 3.6 
(p  =  0.001), and MALQOM scores of 60.1  ±  8.7 increased 
to 91.3 ±  8.1 (p <  0.001). All improvements were sustained at 
6-month follow-up so that changes from post-therapy to the 
follow-up assessments were not significant (WMFT, p = 0.917; 
FMA, p = 0.107; MALQOM, p = 0.454).
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DiscUssiOn

In this longitudinal study, we identified and quantified muscle 
synergies during formal therapy sessions for patients with 
chronic stroke and different levels of motor-function at early and 
late therapy, and for a subset of patients at 6-month follow-up. 
As far as we can ascertain, this is the first study to investigate 
changes in the coordinated activation of muscles in chronic 
stroke during rehabilitation activities, rather than during 
unrelated clinical assessment tasks or restricted experimental 
tasks. The novel aspects of this study include a broad spectrum 
of poststroke residual voluntary motor-function; and the nature 
of the complex movement that was largely unconstrained, i.e., 
the start and end points were not experimentally predetermined. 
Therapist-guided quality of movement was the primary objec-
tive of the task during which EMG was recorded, and not the 
recording per se or game performance. Despite this, we identified 
differences in the number of muscle synergies used by patients 
as a function of the level of motor deficit. Thus, the profile of 
coordinated muscle activation varied by the level of residual 
motor-function in chronic stroke.

There is abundant evidence in the literature that motor ability 
is stable in the poststroke chronic period (52–54), even in the 
presence of some therapy protocols (55). It is also clear that 
targeted therapy can improve motor ability in contrast to control 
groups [(56, 57), see Ref. (58)]. The control groups receiving usual 
care in these studies provide further evidence of the stability of 
motor performance in chronic stroke for patients not receiving 
therapy or receiving usual care. In our setting, stable motor per-
formance was established using pre-baseline to baseline testing in 
a randomized controlled study comparing WMT and modified 
Constraint-induced Movement Therapy (38).

The statistical outcomes in this study underestimate the level 
of information provided by this complex series of analyses and 
reflect the absence of a consistent pattern of change for between-
patient EMG as identified in Hasam-Shariati et  al. (Paper 1). 
The number of synergies used during Wii-baseball increased 
(although not significantly) with therapy for patients with low 
and moderate motor-function. At early therapy, there was a trend 
between the number of synergies and the level of motor-function 
that suggests different patterns of coordinated muscle activation 
between motor-function groups. The VAF of muscle synergies 
increased with a higher number of synergies, since the muscle 
activation can be defined more accurately with more synergies 
(i.e., smaller error) (17). VAF changed significantly with the level 
of motor-function but not over time within a level. Clustering 
the synergies from all patients showed that the incidence of three 
clusters has an association with the level of motor-function. 
Cluster analyses provide a means of demonstrating changes in the 
muscle weighting of some synergies between control and stroke 
groups (51). This suggests the distribution of muscle weightings 
within synergies in the present study changed as a consequence 
of therapy, as most synergy clusters changed from early to late 
therapy.

The similarity of muscle synergies has been investigated 
differently across studies. For example, the similarity of muscle 
weightings was used to demonstrate patients with different levels 

of motor ability used the same muscles during an isometric 
force generation task (51); whereas the timing profile was used 
to reveal different numbers of muscle synergies according to the 
level of motor ability during gait cycle (17). Our results reflect 
those of Clark et al. (17), in that the similarity of synergy timing 
profiles was used to distinguish the difference in the number of 
muscle synergies between groups: three distinct synergies defined 
the movement for patients with low motor-function, while four 
synergies were required for patients with moderate and high 
motor-function.

The coordination necessary to define a complex movement 
was associated with the level of residual voluntary motor-func-
tion but not the duration of the swing, with differences across 
time points not as evident as those shown in EMG analysis 
(42). This was confirmed by video recordings showing less 
complexity and more muscle co-activation for patients with 
low motor-function. Yet despite significant improvements 
in clinical assessments and Wii-baseball game performance, 
there was no difference in the number of muscle synergies 
over time. However, the change in the structure of muscle 
weightings from the cluster analysis at early and late therapy 
indicates that muscle recruitment changed between time points 
and that there was more diversity in muscle synergies after 
therapy.

Typically, muscle synergies for stroke patients are derived from 
stereotypical (1, 17) or experimentally constrained (30, 51) tasks. 
However, in this study, the movement was largely unconstrained. 
Although this may have reduced the sensitivity of the analysis, it 
is a better reflection of task-related real-world use of the upper 
limb after stroke. This approach also provides a more direct 
assessment of the neurophysiological changes induced by therapy 
(59). Stroke patients with different levels of motor-function use 
different strategies to resolve the same problem (task) (60). As 
highlighted by Hesam-Shariati et al. (42), the muscle characteris-
tics for each patient differ depending on various neuromuscular 
limitations including weakness, hypertonicity, and spasticity. 
Such differences alter the goals of therapy (38) and result in more 
deliberate movement patterns than are seen in healthy control 
subjects (39).

The movement analyzed in this study was performed as 
part of a structured therapy program (61) with no attempt at 
standardization as would occur under experimental conditions 
(7, 51). Due to the range of motor impairment of the patients 
involved in this study, there were no standardized requirements 
for specific joint involvement or movement. The aim of this 
movement during therapy was to increase movement excur-
sion (range of motion), velocity, strength, and control based on 
the generalized movement parameters of a baseball swing by a 
healthy subject. Although little attention was paid to the rules of 
the game, those for Wii-baseball provided some consistency in the 
patient striking response, in that the ball must be pitched (by the  
device) within a relatively small area (62). Thus, the onset of 
movement was determined through the delivery of the ball 
by the device. When the patient mistimed the movement and  
did not hit the ball but completed a swing, this movement was 
included in the analysis. While the start point of the move-
ment was in an unrestricted task-dependant spatiotemporal  
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framework, the end point, duration, speed, and direction were 
unconstrained a priori (38, 40).

The muscles contributing to a synergy varied from patient 
to patient and between patients within each level of motor-
function. Synergy analysis provides a means of examining changes 
in motor coordination after stroke independent of the movement 
strategy of each patient (63). Our previous paper (42) focused 
on the dominant muscle activated during each activity. Here, 
synergy analyses provide a means of understanding how the brain 
coordinates neuromuscular control of movement (64) that can 
be used to build a dynamic model of the poststroke rehabilitation 
process.

Clearly, more than six muscles are necessary to produce the 
movement studied, even poststroke. We were limited in the 
number of channels available by the recording system and have 
previously reported EMG of tibialis anterior (59). The upper 
body muscles in this study were selected for two main reasons. 
First, they included a distribution along the neuromuscular 
axis of the more-affected side. Second, this recording montage 
limits the potential for EMG cross talk (65) while still reflecting 
the major muscle groups involved in the movement across the 
patient cohort (62). We incorporated EMG from the trapezius 
muscle in this analysis as a surrogate marker for trunk rota-
tion where biceps and deltoid activation were insufficient to 
generate sufficient swing movements in Wii-baseball. EMG 
data from FDI were included to reflect the use of the hand 
during therapy because this muscle is readily accessible during 
therapy and was taken as a surrogate marker of intrinsic hand 
muscle activity. FDI activation was task dependant during Wii-
baseball. EMG from triceps brachii was not recorded due to 
technical limitations including its very low level of activation 
compared to BB (66) and problems with loose skin in older 
patients which when combined with gravity acted to pull 
the sensor away from the muscle, rendering such recordings 
unreliable.

Synergy analysis addresses coordinated muscle activation 
(between muscles) rather than activation within each muscle. It 
is impossible after stroke to assume any similarity of underlying 
physiology and anatomy or to individually record the activity 
of each motor unit contributing to compound muscle activity. 
Any recording of EMG or method of EMG analysis will provide 
a biased estimate of activity (67, 68). The number of simultaneous 
recordings will not reduce the bias; in our experience, it increases 
the potential for cross talk and phase cancelation. Given the 
variability of impairment and ability after stroke both in the neu-
romusculature and factors impinging on the neuromusculature 
(e.g., somatosensation), in addition to the trial to trial variability 
for any given patient, it would be extremely difficult to estimate 
the ideal number of channels necessary for error-free synergy 
analyses.

clinical implications
This study addresses the paucity of neurophysiological stud-
ies after stroke and as a consequence of therapy. This lon-
gitudinal investigation of changes in muscle synergies with 
therapy in chronic stroke across patients with different levels of  
motor-function provides initial insights into some of the 

neurophysiological mechanisms underpinning a therapy that 
is the equivalent of current best practice poststroke, namely, 
Constraint-induced Movement Therapy (38). Although there 
were few changes in the number of synergies, the altered structure 
of muscle synergies suggest that the coordination of muscle acti-
vation did improve and that this change was reflected in improved 
clinical assessment data (28) [presented in detail in Hesam-
Shariati et al. (42)]. In particular, the significant improvements 
in MALQOM scores reflect greater independence in activities of 
everyday living (38).

This study demonstrates that the number of synergies, synergy 
timing profiles, distribution of muscle weightings, and VAF for 
muscle synergies differ according to the level of motor-function; 
particularly for patients with low motor-function at early therapy. 
These differences provide more detailed information about the 
neurophysiological functioning after stroke and how this changes 
with therapy. We hypothesize that altered muscle synergy struc-
ture reflects changes in brain connectivity, but this requires spe-
cific investigations of brain imaging or brain stimulation (69, 70). 
Nevertheless, the structure of muscle synergies can be used as an 
approach to classify stroke patients and to inform rehabilitation 
methods. However, muscle synergy analyses are insufficient on 
their own to fully understand neurophysiological changes with 
therapy after stroke and these analyses further emphasize the 
absence of any one tool to adequately quantify and explain the 
changes after stroke or with rehabilitation.

study limitations
The primary focus of WMT is on the quality of move-
ment, and increasing independent use of the more- 
affected upper limb in everyday tasks (38, 39). For this reason, 
therapy instructions are not those that would be used with healthy 
control subjects. For example, the different phases of the move-
ment are emphasized differently depending on the level of motor 
impairment and may be practiced individually before being 
combined during the game performance using the principles of 
shaping (71), much like a sporting drill. Although the absence of 
healthy control subjects is a limitation of this study, the different 
movement patterns observed during game play (39) may limit  
the usefulness of such comparisons.

The sample size in this study is small within each level of 
motor-function. However, the total number of patients compares 
well with previous stroke studies investigating muscle synergies 
(18, 23, 30, 51). According to clinical assessment scores, this 
cohort included a wide range of residual voluntary motor capac-
ity, particularly those with low motor-function who are rarely 
recruited in poststroke therapy and neurophysiology studies. 
This approach reduces the potential for statistically significant 
outcomes when data are pooled (59) but provides data that can 
be more readily generalized to the stroke population, although 
this study in chronic stroke cannot be generalized to the acute 
and subacute phase.

cOnclUsiOn

Motor control differs for patients with different levels of residual 
voluntary motor-function when performing the same movement. 
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Despite this, muscle synergies can be identified and monitored 
during therapy to understand changes in motor control of a 
largely unconstrained complex movement. A higher number 
of muscle synergies reflects greater movement complexity and 
task-related phasic muscle activation. This result is evidence for 
less complexity and more co-activation in the patterns of muscle 
activation for patients with low motor-function. The increased 
number of synergies by late therapy suggests improved motor 
control with more distinct phases of movement for patients with 
low motor-function. The change in the muscle synergy clusters 
by late therapy and different patterns of recovery indicate that 
the recruitment and activation of muscles change during therapy.
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The central nervous system produces movements by activating specifically programmed 
muscle synergies that are also altered with injuries in the brain, such as stroke. In this 
study, we hypothesize that there exists a positive correlation between task-specific 
muscle synergy and motor functions at joint and task levels in patients following 
stroke. The purpose here is to define and evaluate neurophysiological metrics based 
on task-specific muscle synergy for assessing motor functions in patients. A patient 
group of 10 subjects suffering from stroke and a control group of nine age-matched 
healthy subjects were recruited to participate in this study. Electromyography (EMG) 
signals and movement kinematics were recorded in patients and control subjects while 
performing arm reaching tasks. Muscle synergies of individual patients were extracted 
off-line from EMG records of each patient, and a baseline pattern of muscle synergy 
was obtained from the pooled EMG data of all nine control subjects. Peak velocities 
and movement durations of each reaching movement were computed from measured 
kinematics. Similarity indices of matching components to those of the baseline synergy 
were defined by synergy vectors and time profiles, respectively, as well as by a com-
bined similarity of vector and time profile. Results showed that pathological synergies 
of patients were altered from the characteristics of baseline synergy with missing 
components, or varied vector patterns and time profiles. The kinematic performance 
measured by peak velocities and movement durations was significantly poorer for the 
patient group than the control group. In patients, all three similarity indices were found 
to correlate significantly to the kinematics of movements for the reaching tasks. The 
correlation to the Fugl-Meyer score of arm was the highest with the vector index, the 
lowest with the time profile index, and in between with the combined index. These 
findings illustrate that the analysis of task-specific muscle synergy can provide valuable 
insights into motor deficits for patients following stroke, and the task-specific similarity 
indices are useful neurophysiological metrics to predict the function of neuromuscular 
control at the joint and task levels for patients.

Keywords: muscle synergy, stroke, physiological index, reaching movement, motor performance, kinematics
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inTrODUcTiOn

Stroke is the top three causes of death in aging population (1), 
and the followed disability has obliged a compelling medical 
and social need for rehabilitation (2). Among the impairments, 
motor dysfunction causes the most widely afflicted medical con-
dition in patients suffering from stroke (3), especially that of the 
upper extremity due to its high usage in daily activities in life and 
non-stereotypical motor patterns (4). Even though substantial 
research efforts have been devoted to improving recovery (2), 
motor rehabilitation in the upper extremity is still a challenging 
issue because of limited understanding of the neurophysiologi-
cal underpinning of recovery and lack of effective interventions 
(2, 5, 6).

One of the main issues in the rehabilitation of motor func tion 
is to assess the residual motor ability of patients quantitatively, 
so as to determine the amount of intervention necessary and to 
give precise guide in rehabilitation training. In clinical practice, 
measurements of kinematics and graded scores have often been 
used to estimate the overall ability of patients to accomplish 
daily tasks (4) and are adopted as outcome measures in clini-
cal trials and research (7). The clinical scores commonly used 
in the evaluation of upper limb functions include Fugl-Meyer 
(FM) Score, Wolf Motor Function Test, and Motor Assessment 
Scale (8), which are based on performance outcomes of a set of 
required motor tasks. These scores lack the detailed information 
with regard to the ways that muscles and joints are controlled 
during a motor task (4, 9, 10). Since the motor task may be 
accomplished by a patient using the normal way (restitution), 
or using alternative strategies (compensation) (4), it is desir-
able that the assessment of motor ability can provide additional 
information that allows clinicians to determine the integrity of 
neuromuscular control in patients. This is particularly important 
in clinical intervention using multi-muscle functional electrical 
stimulation (FES) (11, 12).

To understand the control of the complex, redundant neu-
romuscular system (13), muscle synergy has been proposed 
as an optimized strategy by the central nervous system (CNS) 
(14–17), in which a group of muscles is activated in a specific 
spatiotemporal pattern (14, 15, 18–28). Muscle synergy allows 
the description of motor behaviors with a relatively limited set 
of muscle activation patterns (28). In this study, we adopted the 
“synchronous synergies” (9, 27, 29, 30), in which motor tasks 
are controlled by linear combinations of a few stereotyped sets 
of muscles (synergy vectors) that are activated simultaneously 
by corresponding temporal sequences (time profiles). Multiple 
computational approaches using factorization algorithms have 
demonstrated a robust synergy (31). Studies of upper limb and 
cyclic movements in healthy human subjects also revealed that 
muscle synergies are consistent across subjects (32–35).

Muscle synergy changes as new motor skills are acquired in 
infants with time (36), or with injuries in the CNS (37, 38), such 
as stroke (33), or in the peripheral neuromuscular system (29). 
Synergy analysis of a group of motor tasks in upper limb of stroke 
patients has indicated that nervous injuries might cause direct 
changes in the spatial connection or temporal activation of syner-
gies (33, 39) and the followed adaptation may lead to merging or 

fractionation of synergy components in patients (39). A group of 
isometric force tasks in upper limb showed that muscle synergy 
differed in patients suffering from mild-to-severe stroke (40). It 
is also shown that there existed a correlation between clinical 
scores and performance of individual components of the mus-
cle synergy during cycling in the lower extremity (41). These 
early studies strongly suggested that synergy analysis may be a 
potentially promising method for assessing motor functions in 
patients following stroke. Yet, questions remain as to how well a 
task-specific muscle synergy, such as reaching by the upper limb 
(6), could be a good metric for assessing neuromuscular control, 
task performance, and clinical outcome in hemiparetic patients. 
This is particularly relevant since task-oriented training (TOT) 
revealed a better recovery of motor function than non-task 
specific training (2, 6). Hemiparetic patients often had problems 
in reaching (42) due to abnormally high spasticity of muscles in 
the shoulder and elbow joints (42–44), especially in elbow exten-
sion (45). The structure of muscle synergy for a specific task may 
contain useful information on the residual ability, or deficits, of 
neuromuscular control in patients poststroke.

In this study, we hypothesized that there exists a positive corre-
lation between task-specific muscle synergy and motor functions 
at joint and task levels in patients following stroke. The objective 
here was to establish a functional correlation between task-spe-
cific muscle synergy and performance at neuromuscular, joint, 
and task levels. To understand the relationship between normal 
and pathological synergy patterns, we developed a procedure to 
analyze synergies of forward and lateral reaching movements 
in age-matched control subjects and patients with hemiparesis. 
Both tasks required elbow extension and were highly used in 
daily activities of life. New similarity indices of synergy vectors, 
time profiles, and their combination were defined to represent 
quantitatively the relationship of pathological synergies of 
patients to the baseline synergy from control group. Analysis 
was carried out to correlate task-specific similarity indices with 
kinematics of joint movements, as well as the clinical FM score 
of patients. The task-specific muscle synergy is relatively simple 
to obtain clinically, and these quantitative metrics can be used 
in conjunction with clinical scores for assessing motor abilities 
and deficits in patients. More importantly, the pathological and 
baseline patterns of muscle synergies are useful in designing 
patient specific, assistive FES strategies for stroke rehabilitation 
(11, 12). Preliminary results of this study were also reported 
elsewhere in a conference proceeding (46).

MaTerials anD MeThODs

subjects
Ten hemiparetic patients with poststroke (S04–S13, 60.9  ±   6.6 
years, nine males, detailed description in Table 1) were recruited 
from Ruijin Hospital of School of Medicine (Shanghai, China) for 
this study; they all suffered from moderate-to-severe impairment 
from ischemic stroke with a Fugl-Meyer score of upper limb 
(FMul) <50. The clinical scores presented in Table 1 were meas-
ured before the experiment by designated physical therapists. 
Patients had one of the following conditions were excluded from 
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Table 1 | Description of stroke patients recruited for this study.

Patient iD Most affected side location of lesion Months poststroke bs MMas FMul FMarm

S04 Right Left thalamus, right temporal lobe 5 IV 1 27 16
S05 Left Brain stem, bilateral basal ganglia 5 IV 1 28 23
S06 Left No significant lesions 10 IV 0 18 17
S07 Left Right lateral ventricle, right frontal lobe 5 III 1 18 16
S08 Left Right corona radiata 2 III 1 22 16
S09 Left Right basal ganglia 3 IV 0 31 24
S10 Left Right basal ganglia, right lateral ventricle, right frontal lobe 2 III 1+ 21 20
S11 Left Right pontine 2 III 0 32 21
S12 Left Right lateral ventricle 3 IV 0 20 16
S13 Right Left temporal, parietal and occipital lobe 2 II 1+ 20 13

BS, Brunnstrom Scale (I, no movement; IV, appear activities out of cooperative movement); MMAS, Modified Ashworth score for the elbow (0, no increase in muscle tone; 4, marked 
increase in muscle tone, affected part is rigid); FMul, Fugl-Meyer score of upper limb (full score of 66 for motor function in upper limb); FMarm, Fugl-Meyer score of arm (upper arm 
and forearm, full score of 44).

FigUre 1 | (a) Forward reaching (FR) and lateral reaching (LR) tasks and (b) experimental set up. Subjects moved the pointer from point 5 to point 8 when 
performing FR and from point 6 to point 9 for LR when the right arm was evaluated (point 4 to point 7 when the left arm was evaluated). Seven channels of 
electromyography (EMG) were recorded with wireless EMG sensors indicated by filled squares in (a), the recorded muscles were pectoralis clavicular (PC), anterior 
deltoid (DA), posterior deltoid (DP), biceps (BI), triceps long head (Tlh), Brachioradialis (BR), and triceps lateral head (Tlt). θel and θsh are the angles of elbow and 
shoulder joints. Signals of position were collected by seven motion sensors (B), and they were put on bilateral upper arms, forearms, palms, and thorax (back of 
neck).
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our study: spasticity higher than 1+ (MMAS); metal implant; 
cognitive difficulties; any other diseases that cause neurological 
impairment; and passive attitude with the experiment. Nine age-
matched healthy subjects from the institute’s campus (H01–H09, 
57.8  ±  5.9  years, five males, one left-handed) were recruited 
randomly as control. This study was approved by the Institutional 
Review Boards of Ruijin Hospital and the Ethics Committee of 
Human and Animal Experiments of the Med-X Research Institute 
of Shanghai Jiao Tong University. All subjects signed the form of 
informed consent before the experiment.

experiments
All subjects performed horizontal point-to-point reaching move-
ments by their evaluated upper limb (affected hand of patient and 
dominant hand of control subject). As shown in Figure 1, subjects 
sat comfortably next to the table, with the trunk restrained with 
a corrective backrest to reduce its leaning forward and backward. 
The forearm was configured onto an arm brace on a smoothed 
motion plane. The hand was holding a vertical handle (pointer) 
with a diameter of 3 cm. The tasks included forward reaching (FR) 

and lateral reaching (LR). In FR, subjects moved the pointer from 
point 5 to 8 (36 cm), and in LR, the reaching was 48 cm from point 
6 to 9 (right hand evaluated)/point 4 to 7 (left hand evaluated). 
The initial and terminal points were indicated by black dots on 
the horizontal motion plane with a diameter of 1 cm. Before the 
experiment, the subjects were trained to react to a verbal trigger 
and perform reaching as fast as possible without displacing their 
trunk. After practicing about five trials to make smooth reaching 
tasks, the recording started. During movements, no corrections 
were allowed and there was no feedback on their performance. 
Each task was repeated 10 times. A rest of 10 s in between trials 
and a break of 5 min between tasks were given for the subjects. 
During the experiment, positions of upper limb were captured at 
120 Hz by seven magnetic motion sensors (Figure 1) with Motion 
Monitor II System (Innovative Sports Training, Inc., USA), and 
joint angles of shoulder and elbow were calculated from sensor 
signals. Electromyographys (EMGs) of seven muscles, including 
pectoralis clavicular (PC), anterior deltoid (DA), posterior deltoid 
(DP), biceps (BI), triceps long head (Tlh), brachioradialis (BR), 
and triceps lateral head (Tlt), were recorded at 1,925.9 Hz using 
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the Trigno Wireless EMG System (Delsys Inc., USA), the isolated 
EMG sensors (37 mm × 26 mm × 15 mm) were placed center of 
each muscle belly under the guidance of therapists.

signal Processing
Data of the 10 patients and nine control subjects were pre-
processed before synergy analysis. Kinematic data were low-
passed filtered with a cutoff frequency of 10  Hz (10th order 
zero-lag Butterworth) and differentiated to obtain velocity. The 
time instant where the velocity of hand was 10% of its peak 
value was defined as the initiation and termination of move-
ment (47). The reaction time was defined as the time period 
from the instant of verbal trigger to that of movement initia-
tion. A bell-shaped velocity profile (48) was used to fit the hand 
velocity of subjects (with time length of twice the movement 
duration, centered on the peak) to a Gaussian distribution 
curve (Curve Fitting Tool, MATLAB 2012b; MathWorks Inc.), 
the coefficient of determination (R of bell-shape) was adopted 
as the goodness of fitting.

Before processing the EMGs, signals from the Motion Moni tor 
system and the Delsys EMG system were synchronized with the 
trigger signal. The EMG was first notch filtered at 50 and 120 Hz 
and their higher harmonics (16th order zero-lag Butterworth) to 
eliminate the interferences of power line and magnetic transmit-
ter of Motion Monitor II System. The EMGs were then demeaned 
and band-passed filtered between 20 and 400 Hz (48th order zero-
lag Butterworth) to remove motion artifacts and high frequency 
noise. Filtered EMG signals were finally full-wave rectified and 
low-passed filtered at the cutoff frequency of 20 Hz (19th order 
zero-lag Butterworth) to obtain the EMG envelope. The signals 
were filtered with zero phase shift, and all processing were 
performed off-line by custom developed programs (MATLAB 
R2012b; MathWorks Inc.).

Muscle synergy extraction
We computed task-specific synergy for FR and LR tasks inde-
pendently. Non-negative matrix factorization (NNMF) algorithm 
(31, 49) was chosen here to extract synchronized synergy from 
recorded EMGs of seven muscles (28). The algorithm modeled 
muscle activities as linear combinations of a sufficient number 
of synergy vectors (muscle weight) with time profiles of muscle 
activation. The algorithm was applied to the data set of each sub-
ject (including patients and control subjects) to extract individual 
synergy, as well as a pooled data set from all control subjects to 
extract a baseline synergy.

For individual synergy extraction, EMG envelopes with a time 
length of twice movement duration, centered at the peak of hand 
velocity, were selected to construct EMG matrix. The synergy 
decomposition was given in the following equation:

 M T Vt t n n×( )× ×( )× ×= +1 000 7 1 000 7, , residuals (1)

where M is the original EMG matrix with seven columns of EMG 
data, t is the number of trials with each trial resampled to 1,000 
data points; V is the matrix of n synergy vectors, in which each 
row contains a combination of the seven muscles with different 
weights, each vector was normalized to have unit length during 
factorization, and T is the matrix of time profiles, in which each 

column contains the activation profiles corresponding to each 
row of vector in all trials. During the extraction, the number of 
synergy vector (n) was increased successively from one to seven, 
and for each iteration of n, the NNMF was repeated 25 times, 
the repetition with the lowest residuals of reconstruction was 
selected.

We defined the baseline synergy for each task as that obtained 
from pooled data of all nine control subjects. For each task, data 
of all trials from H01 to H09 were cascaded together to construct 
the pooled EMG matrix, and the baseline synergy was then 
computed from Eq. 1 using the pooled EMG matrix.

To evaluate the goodness of EMG reconstruction, the criterion 
of variance account for (VAF) (27, 29, 33, 39, 50) was adopted 
here in the following equation:

 VAF mean = − || − || || − ||1 2 2( )( )M D M M/  (2)

in which, D is the reconstructed EMG matrix; the operator 
“mean” constructs a matrix of the same size of M but with the 
elements of each row replaced by the mean value of correspond-
ing row in M. The number of synergy vectors (k) that sufficiently 
recaptured the original EMGs was then defined as the minimum 
number (n) when VAF exceeded 80% (39) in more than half of 
the subjects in both groups. We checked the goodness of recon-
struction of global and individual muscle’s EMG at k synergy 
components with another widely used criterion of variance 
account for (VAF′) (40, 41, 51) as well, which is sensitive to both 
shape and amplitude of the signals (50).

 VAF′ || || || ||( )= − −1 2 2M D M/  (3)

similarities of Task-specific synergies
To quantify the overall similarity between the synergies of sub-
jects and the baseline synergy for each task, we defined new simi-
larity indices to evaluate the degree of matching (see Appendix 
in Supplementary Material for computational details). We first 
calculated a value of closeness of individual synergy vector and 
time profile in each subject with respect to those of baseline 
synergy as in previous studies (29, 41, 51). Referring to the 
maximal scalar product criterion (29), individual synergy vector 
of a subject was paired to one of the baseline vectors, which had 
the maximal value of scalar product with it. Closeness of vec-
tors (CV) was defined as the scalar product of the paired vectors. 
The two corresponding time profiles were then identified as the 
same profile, with the closeness (CT) given by a shape symmetry 
index (52). In this study, we proposed three similarity indices, 
such as vector similarity (SV), time profile similarity (ST), and 
combined similarity (SCOM), to evaluate the overall similarity of 
subject’s synergy to the baseline synergy. The similarity indices 
of SV and ST were calculated using the closeness of individual 
vectors (CV) and time profiles (CT), respectively, weighted by 
their contributions (eigenvalues) in the reconstruction of origi-
nal EMG matrix (see Appendix in Supplementary Material for 
computational details). The combined similarity (SCOM) was the 
average of SV and ST. The three similarity indices of task-specific 
synergy, such as SV, ST, and SCOM, were subsequently used to 
analyze how good was the neuromuscular control in patients 
than in control subjects.
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statistical and correlation analyses
Two-way ANOVA was performed to detect the difference in kin-
ematics, closeness, and similarity indices for group (cross-task, 
namely the pool of FR and LR) and task (cross-group, namely 
the pool of patients and control subjects). Independent two-tailed 
two sample t-test was used to detect differences in kinematics, 
closeness, and similarity indices between tasks within each 
group and between groups within each task. Linear regression 
was carried out in each task to assess the correlation of similarity 
indices to functional performance, such as kinematics and clini-
cal FM scores. Cross-task similarity indices (SV ′, ST ′, and SCOM ′
) were also obtained by averaging the similarity indices of the 
two tasks, such as FR and LR, which were also correlated to the 
clinical FM score. Such correlations may allow us to establish 
the functional relationship of task-specific similarity indices to 
performance outcomes assessed by kinematic measurements and 
clinical scores. The significance level in statistical and correlation 
analyses was set at p < 0.05.

resUlTs

Kinematics and eMgs in control and 
stroke subjects
The kinematics and EMGs of two patients (S04 and S11) and 
two control subjects (H01 and H09) are presented in Figure 2. 
The synergy patterns of S04 and S11 were analyzed because they 
showed two extremes of performance in kinematics and clinical 
score (FMarm), as well as synergy. Comparing the two groups, 
control subjects showed a short reaction time, a smooth trajec-
tory, and a classic bell-shaped velocity profile. However, the two 
patients showed a longer reaction time, a stagnated movement 
trajectory, and a multi-peak velocity profile, especially in FR (see 
for example in S04). For LR, both groups performed with higher 
speeds and smoother trajectories than for FR. The envelope of 
EMGs also exhibited intergroup differences. EMGs of H01 and 
H09 generally showed high bursting levels during movements 
and returned to steady state in a short period of time. In contrast, 
patients tended to activate their Tlt repeatedly in order to extend 
the elbow to reach to the final position. As shown in Figure 2C, 
both patients had weak firings of their Tlh, but a high background 
EMG in BR and PC, which impeded elbow and shoulder exten-
sions. Patients also used a prolonged co-contraction of antago-
nistic muscles to stabilize joints after reaching the destination.

Distribution of cross-task kinematic parameters in the two 
groups of subjects is plotted in Figure 3A. Separated distributions 
between patients and control subjects in reaction time, duration, 
R of bell-shape, and peak velocity could be visually recognized. 
Statistical analysis was performed to detect the differences of 
kinematics between tasks and groups. When comparing the two 
groups, significant difference was found in the four kinematics 
for each individual task (two-tailed, two sample t-tests) and 
the cross-task (two-way ANOVA). More specifically, patients 
possessed longer reaction time, longer duration of movement, 
lower R of bell-shape, and smaller velocity (p = 0.000 for the four 
parameters in FR, LR, and cross-task). The larger variability of 
duration and R of bell-shape (p = 0.000 for the two parameters in 

FR, LR, and cross-task) in patients reflected the varying degree 
of motor functional deficits. Two-way ANOVA also showed that 
kinematics except duration were significantly different between 
the two tasks with the cross-group (Figure  3B). LR displayed 
longer reaction time (p = 0.028), larger velocity (p = 0.000), and 
higher R of bell-shape (p  =  0.008). This is in accordance with 
better kinematic profiles of LR than FR in Figures 2A,B.

Muscle synergies in control and stroke 
subjects
In this study, we adopted the 80% VAF criterion (39) in the 
extraction of task-specific synergy in both control subjects 
and poststroke patients. For the baseline synergy from nine 
control subjects, the global VAF was 82.39% for FR with a three-
component synergy and 89.95% for LR with a four-component 
synergy. As for individual subjects, global VAF of all subjects 
exceeded 80%, except for one case (S06) with a VAF  =  74%  
in LR. When the number of components was increased to four 
for FR or five for LR, respectively, the improvement of VAF was 
less than 5%. Thus, we adopted the three-component synergy for 
FR and the four-component synergy for LR. We calculated the 
goodness of reconstruction with VAF′ as well (Eq. 3) (40, 41, 51). 
In both baseline and individual synergies, the global VAF′ for 
FR at three components and LR at four components were over 
94%. In baseline synergy, VAF′ of individual muscle revealed 
the average of 88 (±13)% for FR at three components (VAF′ of 
six muscles exceeded 75%, except for muscle BR at 69%), and 
90 (±12)% for LR at four components (VAF′ of six muscles 
exceeded 75%, except for muscle PC at 73%). For synergies of 
individual subject in the two groups, VAF′ of individual muscle 
was 93 (±2)% for FR at three components and 94 (±4)% for LR 
at four components.

Figure  4 depicts the synergies of FR (Figure  4A) and LR 
(Figure 4B) for the baseline pattern, a control subject (H09), and 
two patients (S04 and S11). Matching components and close-
ness of H09, S04, and S11 were indicated above the vectors and 
time profiles (also listed in Tables A1 and A2 in Supplementary 
Material). The matched vectors and time profiles within a task 
were indicated with the same color. The value of closeness ranged 
from 0.00 to 1.00, with 1.00 representing the highest degree of 
resemblance. It was clear that the synergy of H09 (Figure 4, b,f)  
possessed all components of those in the baseline synergy 
(Figure 4, a,e) with a high degree of resemblance in spatial and 
temporal patterns in both tasks. However, the synergies of patients 
of S04 (Figure 4, c,g) and S11 (Figure 4, d,h) deviated significantly 
from the baseline synergy. In FR task, the Tlt- and Tlh-dominant 
components of VB(1) in the baseline synergy were missing in the 
synergies of both patients. The DP-dominant component of VB(2) 
was partially preserved by two subjects, with a low closeness due 
to the dominating of BI. Only the third component VB(3) was kept 
relatively intact. In LR task, the components VB(1), VB(3), and 
VB(4) were well preserved in the synergies of both patients. Only 
the second component VB(2) was missing from the synergies of 
S04 and S11. The missing component in the two patients could 
be explained by their weak activations of Tlt and Tlh. Component 
of V(3) in S04 and V(4) in S11 showed poor closeness to VB(4), 
probably due to spastic firing of their PCs. In both tasks, the time 
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FigUre 2 | Hand traces (a), hand velocities and joint angles (b), and seven channels of averaged electromyography (EMG) (c) of four typical subjects, with forward 
reaching (FR) in the left column and lateral reaching (LR) in the right column. The bold profiles in (a) represent averaged trajectories. The black dots on profiles of 
velocity and angle indicate trigger tag. θel and θsh were angles of elbow and shoulder joint. Initial angles of shoulder and elbow were calibrated to mean of the four 
subjects’ angles. Each channel of EMG was normalized according to its maximal firing level among trials in each task. The EMGs were collected from pectoralis 
clavicular (PC), anterior deltoid (DA), posterior deltoid (DP), biceps (BI), triceps long head (Tlh), Brachioradialis (BR) and triceps lateral head (Tlt).
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FigUre 3 | Distribution of reaction time, duration, and R of bell-shape with peak velocity in control subjects and stroke patients (a) and statistical comparison 
between the two groups and tasks (b). Two-way ANOVA was performed with the factor of group (cross-task) and factor of task (cross-group); two-tailed two 
sample t-tests were used to detect differences in kinematics between tasks within one group and between group within one task; *p < 0.05, **p < 0.01, 
***p < 0.001. R of bell-shape represents the coefficient of determination in fitting the velocity profile to Gaussian distribution curve.
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profiles of both patients exhibited lower closeness to those of the 
baseline synergy than H09.

The matching pairs and closeness values of each vector (CV) 
and time profile (CT) in the two groups of subjects are listed in 
Tables A1 and A2 in Supplementary Material for FR and LR, 
respectively (see Appendix in Supplementary Material). As shown 
in Figure 4, the closeness values for FR were ranked generally in 
the order of the control subject H09 (high), patient S11 (low), and 
patient S04 (lowest). But for LR, the closeness values in the two 
patients (S04 and S11) was comparable to those of the control 
subject (H09), comparing to those of FR.

Inter-task comparison of baseline synergy showed that VB(1) 
and VB(2) in FR had the closeness of 0.97 to VB(2) and VB(1) in LR, 
respectively. VB(3) in FR and LR had a closeness of 0.84. The high 
closeness values declared that FR and LR possessed similar pattern 
of the first three components. This could explain the phenomenon 
that patients missing VB(1) of FR often missed VB(2) of LR simulta-
neously (Figure 4, Tables A1 and A2 in Supplementary Material). 
VB(4) was an extra decelerating component required in LR, and it 
had been well preserved by subjects in both group [closeness of 
0.94 averaged from highest closeness to VB(4) in each subject]. The 
difference in the first three components between FR and LR lies 
in contribution of each component and their timing of activation. 
VB(1) and VB(2) acted as accelerating and decelerating units in 
FR, respectively, while in LR, VB(1) and VB(2) were synergistic in 
extension of the joints. VB(3) in FR was activated first in FR to 

flex the shoulder and extend elbow, and in LR, it helped with the 
extension of elbow after shoulder extension by VB(1) of LR. The 
mean closeness in patients to VB(1), VB(2), and VB(3) were 0.70, 
0.64, and 0.56 in FR and 0.84, 0.89, and 0.94 in LR, respectively.

statistical analysis of closeness  
and similarity
Results of statistical analysis on closeness in all vectors (CV) 
and time profiles (CT) between groups and tasks are plotted in 
Figure  5, a,b. LR showed higher averaged closeness of vectors 
than FR in patients (p = 0.001), control (p = 0.044), and cross-
group (p =  0.000). No difference in CT was found between FR 
and LR in patients, control subjects, and cross-group (p > 0.05). 
Between groups, patients presented lower CV and CT than those 
of control subjects in FR, LR, and cross-task, except for CV in LR 
(Figure 5, a).

To quantify the overall resemblance of muscle synergy of 
patients to baseline synergy, we defined more comprehensive 
similarity indices, a vector index (SV), a time profile index (ST), 
and a combined index (SCOM) (Eqs A7–A9 in Supplementary 
Material). Statistical results (Figure  5B) indicated significant 
higher similarity of SV and SCOM in LR than FR in patients, con-
trol subjects, and cross-group (p values in legends of Figure 5). 
Between groups, similarity indices of SV, ST, and SCOM showed 
significantly higher values for control group than those for 
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FigUre 4 | Synergy of baseline pattern, H09, S04, and S11 in forward reaching (FR) (a) and lateral reaching (LR) (b). VB and TB are the vector component and time 
profile of the baseline synergy from the nine control subjects of the control group. V and T are the vector component and time profile from individual subject. Paired 
synergy vectors were plotted with same color for each task, the corresponding time profiles were presented successively under vector plots within each subject. 
The value on top of each vector and time profile indicates the value of closeness of individual vector and time profile.
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the patients in FR, LR, and cross-task (p values in legends of 
Figure 5). This result illustrated that the similarity indices were 
capable of distinguishing the different abilities of neuromuscular 
modulation in control subjects from those in patients.

correlation of similarity indices with 
Kinematics and FM score
The similarity indices were correlated to kinematics of movements 
and clinical FM scores of patients, as presented in Figures 6 and 
7, respectively. In general, significant correlations were found for 
the three similarity indices with respect to kinematic performance 
(Figure 6, significances were indicated in separated regressions), 
except for an insignificant correlation between ST and R of bell-shape 

in LR (Figure 6, e). Patients with a higher value of similarity indices 
tended to produce a better performance with a higher ratio of peak 
velocity and duration (P/D) (Figure 6A), and a better bell-shape 
profile (Figure 6B). Thus, the three similarity indices represent well 
the abilities of patients to control FR and LR tasks.

A relationship between patient FM scores and similarity indi-
ces is also clearly demonstrated in Figure 7. Since the recorded 
muscles were concerned with functions of the arm, the Fugl-
Meyer score of arm (FMarm) was picked out from the Fugl-Meyer 
score of upper limb (FMul) as a factor for correlation analysis. For 
FR shown in Figure 7A, the FMarm score was found to have a 
significant positive correlation with SV (p = 0.040) (Figure 7, a)  
and SCOM (p  =  0.039) (Figure  7, c). Only a weak correlation 
between ST and FMarm (p = 0.074) was evident (Figure 7, b). 
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FigUre 5 | Statistical analysis of closeness (a) and similarity indices (b) between the two groups and tasks. CV and CT are closeness of individual vector and time 
profile, CV ′ and CT ′ are closeness in cross-task, and the values were averaged from CV and CT of the two tasks, respectively. SV, ST, and SCOM are similarity indices of 
vectors, time profiles, and their combination. SV ′, ST ′, and SCOM ′ were cross-task similarity indices averaged from those of forward reaching (FR) and lateral reaching 
(LR). Two-way ANOVA was performed with the factor of group (cross-task) and factor of task (cross-group); two-tailed two sample t-tests was used to detect 
differences between tasks within one group and between group within one task; *p < 0.05, **p < 0.01, ***p < 0.001. Significant difference in similarity between FR 
and LR was found in SV and SCOM in patients [p(SV) = 0.007 and p(SCOM) = 0.018], control subjects [p(SV) = 0.004 and p(SCOM) = 0.003], and cross-group 
[p(SV) = 0.002 and p(SCOM) = 0.006]. Significantly lower similarities in patients were found in FR [p(SV) = 0.002, p(ST) = 0.000, and p(SCOM) = 0.000], LR 
[p(SV) = 0.020, p(ST) = 0.000, and p(SCOM) = 0.001], and cross-task [p(SV) = 0.000, p(ST) = 0.000, and p(SCOM) = 0.000].
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For LR, however, the correlation of the FMarm was not significant 
for all three similarity indices (Figure 7B). This may be due to 
the fact that FMarm data points in LR were more scatted around 
the regression line (Figure 7B). Using the cross-task similarity 
indices (Figure 7C), a strong correlation of FMarm was evident, 
especially for the vector similarity SV ′ (p = 0.007) (Figure 7, g) 
and the SCOM ′ (p = 0.018) (Figure 7, i). Nevertheless, a trend was 
clearly displayed in that patients with a higher FMarm score 
generally demonstrated a higher value of similarity indices. We 
also checked that no significant correlation existed between all 
similarity indices and the Fugl-Meyer score of upper limb (FMul).

DiscUssiOn

In this study, we developed a computational procedure to evaluate 
task-specific synergies of reaching movements in stroke patients 
and age-matched control subjects. We found that three and four 
components were required to account for forward and lateral 
reaching movements, respectively. New quantitative indices 
of similarity of synergy in patients with respect to the baseline 
synergy were developed and employed to establish positive 
correlations to kinematic performance and clinical scores, such 
as FMarm. The results supported our hypothesis that there is a 

positive correlation between task-specific similarity indices and 
motor performance in joint and task levels in patients following 
stroke. This indicated that the new similarity indices based on 
task-specific synergy could be useful neurophysiological metrics 
in clinical evaluation to estimate motor dysfunction, or the ability 
of motor control in conjunction with clinical scores. The main 
contribution of this study is that we extended the analyses of 
muscle synergy (33, 40, 41) into quantitative metrics that may 
facilitate the clinical evaluation of patient’s motor functions with 
insights into neuromuscular control.

Task-specific Muscle synergy
We focused on task-specific synergy in patients and demon-
strated that the synergy analysis of a specific task could provide 
valuable insights into deficits in motor functions. TOT has been 
widely encouraged in stroke rehabilitation (2). Under certain 
requirements, patients with motor dysfunction are activated to 
search for better solutions to motor problems (6), and TOT has 
revealed better recovery of motor function than unspecific task 
training (2). We chose reaching tasks because discoordination 
of joints and abnormal co-activations of muscles in upper limb 
(43, 44) often resulted in difficulty in performing reaching move-
ments in most stroke patients (42). In particular, elbow extension 
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FigUre 6 | Correlations between similarity indices and kinematics [P/D in (a) and R of bell-shape in (b)]. P/D is the ratio of peak velocity and duration. R of 
bell-shape represents the coefficient of determination in fitting the velocity profile to Gaussian distribution curve. SV, ST, and SCOM are similarity indices of vectors, 
time profiles, and their combination.
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was found to be an important predictor for motor function in 
patients (45). Thus, instead of pooling a set of arm movements 
together (33, 35, 39, 40, 53), we chose to examine the forward and 
lateral reaching movements for task-specific synergy evaluation. 
This approach could also be applied to other motor tasks that are 
relevant to clinical task-oriented interventions (2).

We obtained the task-specific baseline synergy as a target of 
comparison from pooled data of nine control subjects perform-
ing FR and LR tasks. Studies have shown that muscle synergies 
were robust across healthy subjects (32–34). Thus, we adopted 
the synergy extracted from dominant arms of the control group 
as an efficient baseline of synergy (54, 55) and compared synergy 
of the affected arm in patients to the baseline synergy. In our 
study, synergy baseline extracted from healthy control group 
presented similar muscle activations with previous studies  
(28, 32). To evaluate the degree of alteration in individual syn-
ergy component in subjects, we adopted scalar product (33, 41) 
to compute closeness between synergy vectors; a component of 
synergy of an individual subject was then matched with that 
of the baseline synergy giving the maximal value of closeness 
between vectors (29). Closeness of time profiles of paired 
synergy components was evaluated by a shape symmetry index 
using cross-correlation (51, 52). Thus, changes of synergy pat-
tern in patients with respect to the baseline synergy could be 
quantitatively reflected by the values of closeness (Tables A1 

and A2 in Supplementary Material). Statistical results showed 
significant higher closeness in control subjects than those in 
patients (Figure 5A). This confirmed altered muscle synergy in 
patients after cortical injury (39, 40).

Patients following stroke often had missing components of the 
baseline synergy (Figure 4; Tables A1 and A2 in Supplementary 
Material). Yet, pathological synergies might still preserve some 
components of the baseline synergy. Merging in synergy vectors 
has been observed in patients following stroke (39, 56). This was 
evident in the task of FR in both patients. V(3) of S04 was the 
merging of the three components in baseline synergy (recon-
struction closeness at 0.98), V(2) of S11 was the combination 
of VB(1) and VB(3) (reconstruction closeness at 0.90). This was 
in accordance with the finding by Cheung et  al. (39), patients 
had more baseline components that were merged in residual 
components (S04, comparing with S11) usually showed poorer 
performance of kinematics and FMarm. This neural compensa-
tion may be due to plasticity taking place in the brain (57–59). In 
addition, identification found fractionation in LR in both patients 
(39), that V(3) of S04 and V(4) of S11 were differentiated from 
VB(4) of baseline synergy. These alterations of synergy vectors in 
muscle weights in patients shed light not only to the impairment 
in individual muscle control but also to the regroup of muscles by 
neural compensation in the brain, which are important indicators 
of recovery of motor functions after stroke (56).
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FigUre 7 | Correlations between similarity indices and FMarm score in forward reaching (FR) (a), lateral reaching (LR) (b), and the cross-task (c). FMarm is 
Fugl-Meyer score of arm. SV, ST, and SCOM are similarity indices of vectors, time profiles, and their combination, respectively; while the indices of SV ′, ST ′, and SCOM ′ 
are cross-task similarity indices averaged from those of FR and LR.
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similarity indices and correlation with 
Kinematic and clinical Performance
We extended previous analyses of muscle synergy (33, 40, 41) 
into quantitative neurophysiological metrics by defining three 
new similarity indices with values ranging from 0 to 1 to evaluate 
the integrity of motor functions in patients. An index value of 1 
might indicate a nearly normal motor functions, and an index 
value of 0 might imply a severe loss of motor functions. It is 
shown that the similarity scores of patients were significantly 
lower than those of control subjects in both tasks (Figure 5B). 
Significant correlations were found between similarity and 
kinematics, so as with the Fugl-Meyer score of arm (FMarm). 
In particular, the similarity indices of synergy vector SV, and 
time profile ST, showed good correlations with movement kin-
ematics (Figure 6), indicating a strong causal relation of neural 
organization of muscle activation with motor performance (9). 
For FMarm score, its correlation was task sensitive. In FR, the 

similarity index of vector SV was well correlated to clinical score 
of FMarm (Figure 7A). This suggested that SV could be a good 
estimate of the residual ability of muscle coordination in the 
execution of motor tasks by patients (40, 41). Cross-task indices 
that combined the similarity indices of the two tasks, time profile 
ranked the worst amongst all three indices in the correlation 
with FMarm (Figure 7C). The weak correlation between ST and 
FMarm may result from the fact that the clinical score of FMarm 
is often assessed by the final outcome of task performance, while 
ST may be a good indicator of soundness of dynamic planning 
and execution of motor tasks in patients (9, 41).

It is interesting to note that in LR, there was not a significant 
correlation between FMarm score and all similarity indices 
(Figure 7B). In fact, baseline vectors of the two tasks were quite 
similar except for a forth component in LR, while patients showed 
higher closeness and similarity indices in LR than those of FR 
(Figure 5, a,c,e). This might arise from synergetic role of muscles 

144

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


Li et al. Evaluating Task Performance Using Synergy

Frontiers in Neurology | www.frontiersin.org July 2017 | Volume 8 | Article 337

in the extension of elbow and shoulder during LR, and in FR, it 
required the flexion of shoulder and extension of elbow at the 
same time. Previous study has indicated that the ability to cooper-
ate elbow extension during reach was a significant predictor of 
motor performance (45). These implied that FR in which a larger 
range of elbow extension was required might be a task more chal-
lenging. In other words, similarity indices are task sensitive, and 
synergy performance of FR may better distinguish different levels 
of motor ability in patients with varying degrees of impairment.

Methodological consideration
In our study, the synergies were extracted from non-normalized 
EMG, for there is not a method of EMG normalization (60) that 
may best serve our purpose here. The method of maximal isomet-
ric voluntary contraction (MVC) is undermined by the question 
whether the measured MVC represents the real maximal activat-
ing level (60), and measurements in patients are probably affected 
by their varying degrees of motor deficits. This might bring a larger 
inter-subject variability (61). Also, EMG is often normalized to the 
peak or the mean value for a specific task (PEAK/MEAN) (62). 
Nevertheless, EMG variations between different tasks, and the 
same task collected at different recovery stages in the same patients 
could not be intuitively compared by the method of PEAK/MEAN 
(60). Considering our interest to analyze the difference of synergy 
between tasks in this study, we did not try to normalize the EMG. 
In future studies, a proper method of EMG normalization applica-
ble for both healthy and stroke patients may be considered.

Further implications for 
neurorehabilitation
Muscle synergy could also provide guidance to intervention 
strategy using multi-muscle FES. FES has been widely used in 
the rehabilitation training in patients poststroke (2), and benefits 
are obtained both in improvements of movement control and 
brain cortical perfusion (63, 64). Multichannel stimulation 
showed an appreciable enhancement of motor ability in affected 
arm of patients poststroke (11, 64). A spatiotemporal neuro-
modulation of electrical stimulation series derived from synergy 
patterns from healthy rats demonstrated a significant recovery 
of motor function of spinal cord injured rats (65), supporting 
the use of synergy-based electrical stimulation for rehabilitation 
of motor control (59, 66). Our earlier study also explored the 
feasibility of applying synergy-guided electrical stimulation to 
the rehabilitation of motor control in patients poststroke (67).  
A synergy-based FES strategy was adopted in a TOT training 
procedure for patients following stroke using previously devel-
oped multichannel FES system (11, 12). Personalized interven-
tion could be designed for each patient (12). It is promising to 
apply synergy-based approach in the assessment of motor func-
tions and in the intervention of motor rehabilitation for patients 
poststroke.

cOnclUsiOn

In this study, a computational approach to evaluate task-specific 
synergies of reaching movements was established that may be 

applied to clinical evaluation of motor functions of patients fol-
lowing stroke. New quantitative indices of similarity of synergy 
of patients were evaluated to establish positive correlations to 
kinematic performance and clinical scores. Our results illustrated 
that muscle synergy patterns contain rich information in their 
spatial components and temporal profiles. Comparing pathologi-
cal synergies of patients to the baseline synergy can reveal deficits 
in the underlying neuromuscular coordination and control in 
patients suffering from stroke. The similarity indices based on 
such comparisons were found to relate well the individual ability 
of patients in task control to their kinematic performance and 
clinical scores of assessments. The analysis of task-specific muscle 
synergies should offer both researchers and clinicians new insights 
into the impairments in the neural organization of motor control 
in patients following stroke. The similarity indices may be useful 
neurophysiological metrics to evaluate deficits in motor functions 
and outcome of rehabilitation in conjunction to clinical scores.
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Currently, hand rehabilitation following stroke tends to focus on mildly impaired individuals,  
partially due to the inability for severely impaired subjects to sufficiently use the paretic 
hand. Device-assisted interventions offer a means to include this more severe population 
and show promising behavioral results. However, the ability for this population to demon-
strate neural plasticity, a crucial factor in functional recovery following effective post-stroke 
interventions, remains unclear. This study aimed to investigate neural changes related to 
hand function induced by a device-assisted task-specific intervention in individuals with 
moderate to severe chronic stroke (upper extremity Fugl-Meyer <  30). We examined 
functional cortical reorganization related to paretic hand opening and gray matter (GM) 
structural changes using a multimodal imaging approach. Individuals demonstrated a 
shift in cortical activity related to hand opening from the contralesional to the ipsilesional 
hemisphere following the intervention. This was driven by decreased activity in contrale-
sional primary sensorimotor cortex and increased activity in ipsilesional secondary motor 
cortex. Additionally, subjects displayed increased GM density in ipsilesional primary 
sensorimotor cortex and decreased GM density in contralesional primary sensorimotor 
cortex. These findings suggest that despite moderate to severe chronic impairments, 
post-stroke participants maintain ability to show cortical reorganization and GM struc-
tural changes following a device-assisted task-specific arm/hand intervention. These 
changes are similar as those reported in post-stroke individuals with mild impairment, 
suggesting that residual neural plasticity in more severely impaired individuals may have 
the potential to support improved hand function.

Keywords: stroke, hand rehabilitation, eeg, cortical reorganization, voxel-based morphometry, functional 
electrical stimulation, gray matter, neuroplasticity

inTrODUcTiOn

Nearly 800,000 people experience a new or recurrent stroke each year in the US (1). Popular thera-
pies, such as constraint-induced movement therapy (CIMT), utilize intense task-specific practice of 
the affected limb to improve arm/hand function in acute and chronic stroke with mild impairments 
(2, 3). Neuroimaging results partially attribute the effectiveness of these arm/hand interventions to 
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TaBle 1 | Subject demographics and clinical characteristics.

subject age range Time since stroke (years) lesioned hemi lesion location Ue FMa Pre BBT Post BBT Pre arOM (°) Post arOM (°)

S01 60–65 9 L IC 23 0 6  −20 11
S02 60–65 8 R IC, BG 12 1 3 0 5
S03 65–70 3 R Par, Occ, IC 17 0 1 0 0
S04 60–65 22 R IC, BG, Thal 11 0 1 0 17.5
S05 60–65 13 R Occ, IC 24 0 0 0 2.5
S06 70–75 20 L IC, BG, Thal 13 0 0 0 1.5
S07 55–60 6 L IC, BG 24 0 3 0 5
S08 60–65 9 L IC, Thal 22 11 13 38.5 55

AROM, active range of motion; BBT, Box and Blocks Test; BG, basal ganglia; FMA, Fugl-Meyer Assessment; IC, internal capsule; Occ, occipital lobe; Par, parietal lobe; Thal, 
thalamus; UE, upper extremity.
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cortical reorganization in the ipsilesional hemisphere following 
training in acute and mild chronic stroke (4). Unfortunately, 
CIMT requires certain remaining functionality in the paretic 
hand to execute the tasks, and only about 10% of screened patients 
are eligible (5), thus disqualifying a large population of individu-
als with moderate to severe impairments. Recently, studies using 
device-assisted task-specific interventions specifically targeted 
toward moderate to severe chronic stroke reported positive 
clinical results (6–8). However, these studies primarily focus on 
clinical measures, but it is widely accepted that neural plasticity 
is a key factor for determining outcome (9–11). Consequently, 
it remains unclear whether moderate to severe chronic stroke 
[upper extremity Fugl-Meyer Assessment (UEFMA)  <  30] 
maintains the ability to demonstrate neural changes following  
an arm/hand intervention.

Neural changes induced by task-specific training have been 
investigated widely using animal models (12). For instance, mon-
keys or rodents trained on a skilled reach-to-grasp task express 
enlarged representation of the digits of the hand or forelimb in 
primary motor cortex (M1) following training as measured by 
intracortical microstimulation (13, 14). Additionally, rapid local 
structural changes in the form of dendritic growth, axonal sprout-
ing, myelination, and synaptogenesis occur (15–18). Impor tantly, 
both cortical and structural reorganization corres ponds to motor 
recovery following rehabilitative training in these animals (19, 20).

The functional neural mechanisms underlying effective task-
specific arm/hand interventions in acute and chronic stroke 
subjects with mild impairments support those seen in the animal 
literature described above. Several variations of task-specific 
combined arm/hand interventions, including CIMT, bilateral 
task-specific training, and hand-specific robot-assisted practice, 
have shown cortical reorganization such as increased sensorimo -
tor activity and enlarged motor maps in the ipsilesional hemi-
sphere related to the paretic arm/hand (21–24). These results 
suggest increased recruitment of residual resources from the 
ipsilesional hemisphere and/or decreased recruitment of con-
tralesional resources following training. Although the evidence 
for a pattern of intervention-driven structural changes remains 
unclear in humans, several groups have shown increases in gray 
matter (GM) density in sensorimotor cortices (25), along with 
increases in fractional anisotropy in ipsilesional corticospinal 
tract (CST) (26) following task-specific training in acute and 
chronic stroke individuals with mild impairments.

The extensive nature of neural damage in moderate to severe 
chronic stroke may result in compensatory mechanisms, such as 
contralesional or secondary motor area recruitment (27). These 
individuals show increased contralesional activity when moving 
their paretic arm, which correlates with impairment (28, 29) and 
may be related to the extent of damage to the ipsilesional CST (30). 
This suggests that more impaired individuals may increasingly 
rely on contralesional corticobulbar tracts such as the corticore-
ticulospinal tract to activate the paretic limb (29). These tracts lack 
comparable resolution and innervation to the distal parts of the 
limb, thus sacrificing functionality at the paretic arm/hand (31). 
Since this population is largely ignored in current arm/hand inter-
ventions, it is unknown whether an arm/hand intervention for 
these more severely impaired post-stroke individuals will increase 
recruitment of residual ipsilesional corticospinal resources. These 
ipsilesional CSTs maintain the primary control of hand and finger 
extensor muscles (32) and are thus crucial for improved hand 
function. Task-specific training assisted by a device may reengage 
and strengthen residual ipsilesional corticospinal resources by 
training distal hand opening together with overall arm use.

The current study seeks to determine whether individuals 
with moderate to severe chronic stroke maintain the ability to 
show cortical reorganization and/or structural changes alongside 
behavioral improvement following a task-specific intervention. 
We hypothesize that following a device-assisted task-specific 
intervention, moderate to severe chronic stroke individuals will 
show similar functional and structural changes as observed in 
mildly impaired individuals, demonstrated by (i) a shift in cortical 
activity related to paretic hand opening from the contralesional 
hemisphere toward the ipsilesional hemisphere and (ii) an 
increase in GM density in sensorimotor cortices in the ipsilesional 
hemisphere.

MaTerials anD MeThODs

subjects
Eight individuals with chronic hemiparetic stroke (age: 63.5 ± 4) 
and moderate to severe impairment (UEFMA: 11–24) participated 
in this study. Clinical information for each subject is provided 
in Table 1 and lesion locations in Figure 1. All individuals were 
screened for inclusion by a licensed physical therapist. Inclusion 
criteria include a UEFMA between 10 and 30 out of 66, no cognitive 
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FigUre 1 | Lesion locations for the eight subjects overlaid on axial Montreal Neurological Institute T1 slices. The color bar indicates the number of subjects with 
lesioned tissue in a particular voxel. LH indicates the lesioned hemisphere.

Wilkins et al. Neural Plasticity Following Stroke Intervention

Frontiers in Neurology | www.frontiersin.org June 2017 | Volume 8 | Article 284

or perceptual impairment, no botulinum toxin within the last 
6 months, MRI compatibility, no lesion including sensorimotor 
cortices, the ability to elicit enough EMG activity at wrist/finger 
extensors, and the ability for the FES to generate a hand opening 
of at least 4  cm between the thumb and the index finger. This 
study was approved by the Northwestern University institutional 
review board, and all subjects gave informed consent.

experimental Protocols
Intervention
Subjects participated in a 7-week intervention consisting of three 
2-h visits per week. During the visit, subjects completed 20–30 
trials of the following sequence of movements: (1) reaching 
out toward a jar, (2) driving the wrist/finger extensors to open 
the paretic hand, (3) grabbing the jar, (4) bringing the jar back 
toward themselves, and (5) releasing the jar. The weight, distance/
height, and orientation of the jar relative to the subject were 
progressively altered to increase the challenge to each subject, 
as determined by the physical therapist. All subjects started the 
motor task with the arm supported by the table. Depending on 
ability, subjects were encouraged to progressively lift the paretic 
limb actively. During the task, a novel EMG-FES device, called 
ReIn-Hand, was used to assist paretic hand opening (see Figure 
S1 in Supplementary Material). This device recorded EMG activi-
ties from eight muscles (deltoid, biceps brachii, triceps, extensor 
communis digitorum, extensor carpi radialis (ECR), flexor 
digitorum profundus, flexor carpi radialis (FCR), and abductor 
pollicis). While the user performed the functional reaching and 
opening, the ReIn-Hand detected hand opening by extracting 
EMG features to trigger an Empi transcutaneous electrical 
neuro-stimulation device (Vista, CA, USA). The stimulation 
electrodes were applied to the wrist/finger extensors with the fol-
lowing settings: biphasic waveform, frequency = 50 Hz ± 20%, 
pulse width = 300 μs, amplitude = sufficient for maximal hand 
opening without discomfort, and duration  =  3  s. The novelty 
of this device is that even with the increased expression of the 
flexion synergy at the elbow (33), wrist, and fingers (34, 35) 
during reaching that is prevalent in this population, the device 
can still detect the hand opening and drive the paretic hand 
open, thus allowing for a user-driven stimulation to support 
functional usage of the paretic hand and arm. All participants 

could successfully use the device to complete the described 
task (including opening, grasping, and releasing), although 
some subjects experienced difficulty in sufficiently supinating 
the hand when releasing the jar to keep it upright on the table. 
Additionally, the physical therapist stretched the hand and arm 
at the beginning of the experiment and between trials to effec-
tively elicit hand openings with the EMG-FES device.

Pre- and Post-Intervention Tests
Clinical Assessments
For each subject, within 1 week prior to and following the inter-
vention, a licensed physical therapist completed a set of clinical 
assessments, with the motor-related parts including UEFMA, 
Box and Blocks Test (BBT), and active range of motion (AROM) 
averaged over the II and V digit.

Structural Imaging of the Brain
Within 2 weeks prior to and following the intervention, subjects 
participated in MRI scans at Northwestern University’s Center  
for Translation Imaging on a 3  TS Prisma scanner with a 
64-channel head coil. Structural T1-weighted scans were acquired 
using an MP-RAGE sequence (TR = 2.3 s, TE = 2.94 ms, FOV 
256 mm × 256 mm) producing an isotropic voxel resolution of 
1 mm ×  1 mm ×  1 mm. Visual inspection of acquired images 
was performed immediately following the data acquisition to 
guarantee no artifacts and stable head position.

Functional Imaging Related to Hand Opening
Within 1 week prior to and following the intervention, subjects 
also participated in an EEG experiment. During the EEG experi-
ment, participants sat in a Biodex chair (Biodex Medical Systems, 
Shirley, NY, USA), which restrained the trunk with straps cross-
ing the chest and abdomen. The subject’s paretic arm was placed 
in a forearm-hand orthosis attached to the end effector of an 
admittance controlled robotic device (ACT3D) instrumented with 
a six degree of freedom load cell (JR3, Inc., Woodland, CA, USA). 
At the beginning of each trial, subjects moved their hand to a 
home position, with the shoulder at 85° abduction, 40° flexion, 
and the elbow at 90° flexion angle. The subject then received an 
auditory cue. Following the cue, subjects relaxed at the home 
position for 5–7 s and then self-initiated a maximum attempted 
paretic hand opening with the arm resting on a haptic table. 
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Subjects were instructed to avoid eye movements by focusing  
on a point and avoid movements of other body parts during 
the performance of each trial, which was visually confirmed by 
the experimenter. Subjects performed 60–70 trials of attempted 
paretic hand opening, broken into blocks (one block consisted of 
20–30 trials). Rest periods varied between 15 and 60 s between 
trials and 10  min between blocks. The typical duration of the 
experiment was around 5–6 h, including ~2 h of setup, ~1 h for 
lunch, and ~2 h of data collection.

Scalp recordings were made with a 160-channel high-density 
EEG system using active electrodes (Biosemi, Inc., Active II, 
Amsterdam, The Netherlands) mounted on a stretchable fabric 
cap based on a 10/20 system. Simultaneously, EMGs were 
recorded from the ECR, FCR, and intermediate deltoid of the 
paretic arm. All data were sampled at 2,048  Hz. The imped-
ance was kept below 5 kΩ for the duration of the experiment. 
Additionally, the positions of EEG electrodes on the subject’s 
scalp were recorded with respect to a coordinate system defined 
by the nasion and preauricular notches using a Polaris Krios 
handheld scanner and reflective markers (NDI, ON, Canada). 
This allowed for coregistration of EEG electrodes with each 
subject’s anatomical MRI data. Due to post-stroke abnormal 
synergy, finger/wrist extensors and flexors, and often the shoul-
der abductors, usually co-activate together when performing 
maximal hand opening (34). Therefore, in order to provide a 
reliable indicator of movement onset, EMGs were simultane-
ously recorded from the ECR, FCR, and anterior deltoid (IDL) 
of the paretic arm.

Data analysis
Reorganization of Cortical Activity Related  
to Hand Opening
EEG data were aligned to the earliest EMG onset of the three 
muscles and segmented from −2,200 to +200  ms (with EMG 
onset at 0  ms) using Brain Vision Analyzer 2 software (Brain 
Products, Gilching, Germany). Data were then visually inspected 
for the presence of artifacts. Trials exhibiting artifacts (e.g., eye 
blinks) were eliminated from further analysis. The remaining 
EEG trials were baseline-corrected (from −2,180 to −2,050 ms), 
low-pass-filtered at 70 Hz, and ensemble-averaged. The averaged 
EEG signals were down-sampled to 256 Hz and imported into 
CURRY 6 (Compumedics Neuroscan Ltd., El Paso, TX, USA). 
The cortical current density strength (μA/mm2) in the time 
between 150 and 100 ms prior to EMG onset was computed using 
the standardized low-resolution electromagnetic brain tomog-
raphy (sLORETA) method (Lp = 1) based on a subject-specific 
boundary element method model with the regulation param-
eter automatically adjusted to achieve more than 99% variance 
counted (36, 37). Possible sources were located on a cortical layer 
with 3  mm distance between each node. Although the inverse 
calculation was performed over the whole cortex, only the activity 
in bilateral sensorimotor cortices was further analyzed. Specific 
regions of interest (ROI) included bilateral primary sensorimotor 
cortices [primary motor cortex (M1) + primary sensory cortex 
(S1)] and secondary motor cortices [supplementary motor area 
(SMA) + premotor area (PM)].

To investigate the shift of cortical activity related to hand 
opening, we used the estimated current density strengths to 
calculate a laterality index [LI = (I − C)/(I + C)], where I and C 
are the current density strengths from the ipsilesional and con-
tralesional sensorimotor cortices, respectively (i.e., combined 
primary sensorimotor and secondary motor cortices). LI reflects 
the relative contributions of each cerebral hemisphere to the 
source activity, with a value close to +1 for an ipsilesional source 
distribution and −1 for a contralesional source distribution.

Additionally, we quantified a cortical activity ratio 

CAR = ∑
∑

S

S
n

n

m
m
1

1

 for each of the four ROIs, where S represents the 

current density strength of one of the nodes, and n and m rep-
resent the number of nodes in the ROI and whole sensorimotor 
cortices, respectively. The cortical activity ratio reflects the rela-
tive strength from one ROI as normalized by the total combined 
strength of the four ROIs.

Structural Changes in GM Density
Anatomical T1 data were analyzed with FSL-voxel-based morphom-
etry (VBM) 1.1 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM; 
Oxford University, Oxford, United Kingdom) (38) using FSL tools 
(39). First, T1 images for participants who have left hemisphere 
lesions were flipped to ensure that the lesions of all subjects were 
in the right hemisphere. The T1 images were then brain-extracted 
using the Brain Extraction Tool and segmented into GM using 
FAST4. The resulted GM partial volume images were aligned 
to Montreal Neurological Institute (MNI) 152 standard space 
using the affine registration tool FLIRT and averaged to create a 
study-specific GM template. Subsequently, individual GM partial 
volume images in native space were non-linearly registered to this 
template using FNIRT, modulated to correct for local expansion 
or contraction due to the non-linear component of the spatial 
transformation, and then smoothed with an isotropic Gaussian 
kernel with a sigma of 3 mm. Finally, a voxel-wise General Linear 
Model was applied with Threshold-Free Cluster Enhancement 
(40) to detect changes in GM density following the interven-
tion. Voxel-based threshold of changes in GM density was set at 
p < 0.001 uncorrected.

statistical analysis
Statistics were performed using SPSS (IBM, V23). Clinical and 
neural measures were examined for normality using a Shapiro–
Wilk test. A Wilcoxon signed rank test was used if assumptions 
of normality were not met. A paired t-test was performed on LI. 
A 2 (time) × 4 (region) repeated measures ANOVA was per for med 
on the cortical activity ratio. We performed post hoc paired t-tests 
when a main ANOVA effect was found. Significance was set at 
p < 0.05. Individual data are depicted for all significant findings.

resUlTs

changes in arm/hand Function following 
eMg-Fes Task-specific Training
Table  1 shows pre and post BBT and AROM scores. Notably, 
most subjects initially scored a 0 on the pre-assessment BBT and 
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FigUre 2 | (a) Ensemble-averaged EEG of the 160 channels (blue butterfly plot) and Mean Global Field Power (MGFP; red line) from −2 s to +0.2 s (0 = EMG 
onset). Vertical dashed lines represent the start and end of the window of interest (−150 to −100 ms). A scale bar is included in the lower left; (B) reconstructed 
cortical activity between −150 and −100 ms prior to movement onset for Subject 1 during hand opening pre-intervention, and (c) post-intervention. Color bars 
indicate the current density reconstruction (CDR) statistic from sLORETA. Left hemisphere is the lesioned hemisphere.
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showed 0° of AROM due to the severity of their motor impair-
ments at the arm/hand. The clinical data violated the assump-
tions of normality based on the Shapiro–Wilk test. Therefore, a 
Wilcoxon signed rank test was used and reported a significant 
increase in BBT following the intervention (average increase of 
1.9 blocks per minute, p = 0.03; Table 1) and AROM (average 
increase of 9.9°, p = 0.03; Table 1), indicating improvement of 
paretic arm/hand control, although FMA did not change.

cortical reorganization related  
to the hand
Figure 2A shows an example of ensemble-averaged EEG for the 
160 channels for Subject 1. There is a clear baseline from roughly 
−2 to −1.5 s prior to EMG onset and then a slow increase in elec-
trical potential when approaching EMG onset, consistent with 
the Bereitschaftspotential. The reconstructed cortical activity  

for Subject 1 while performing hand opening on the table is  
depicted in Figure  2B pre-intervention and in Figure  2C 
post-intervention. This subject showed bilateral activity in sen-
sorimotor cortex prior to the intervention as seen in Figure 2B 
and dominant ipsilesional activity following the intervention as 
seen in Figure 2C. We quantified the pre- and post-intervention 
LI in each of the participants (see results in Figure 3). A paired 
t-test found a significant increase in LI following the intervention 
[t(7) = 3.09, p = 0.02], signifying a post-intervention shift toward 
the ipsilesional hemisphere.

To further investigate regions responsible for the post- 
intervention LI changes, we quantified the pre- and post- 
intervention cortical activity ratios for primary sensorimotor 
(M1/S1) and secondary motor (SMA/PM) cortices (see results 
in Figure 4). A 2 (time) × 4 (region) repeated measures ANOVA 
found a significant time  ×  region interaction [F(1,7)  =  3.47, 
p  =  0.03]. Post hoc paired t-tests found that following the 
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FigUre 3 | Box plots of laterality index (LI) prior to and following the 
intervention for paretic hand opening. Positive LI indicates predominantly 
ipsilesional activity. *indicates p < 0.05.

FigUre 4 | Box plots depicting cortical activity ratio prior to and following the intervention for hand opening on the table. Regions of interests include M1/S1 and 
supplementary motor area/premotor area (SMA/PM) for both ipsilesional (left side of figure) and contralesional (right side of figure) hemispheres. *indicates p < 0.05, 
#indicates p = 0.06.
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intervention, there was a decrease in the cortical activation ratio 
in contralesional M1/S1 (p  =  0.04) and a trending increase in 
ipsilesional SMA/PM (p = 0.06) related to paretic hand opening.

gM Density
Following the intervention, subjects displayed significantly greater 
GM density in M1 and S1 in the lesioned hemisphere (x = 52, 
y = −16, z = 30, t-value = 2.55, p < 0.001) and a decrease in GM 
density in M1 and S1 in the non-lesioned hemisphere (x = −46, 
y = −20, z = 60, t-value = 2.41, p < 0.001; x = −44, y = −18, 
z = 36, t-value = 2.79, p < 0.001) as depicted in Figures 5A,B. 

Additionally, subjects displayed greater GM density in the 
thalamus in the lesioned hemisphere (x =  2, y = −20, z =  10, 
t-value = 3.13, p < 0.001) as shown in Figure 5C. A complete list 
of significant regions is provided in Table S1 in Supplementary 
Material.

DiscUssiOn

The present study investigated neural changes in individuals 
with moderate to severe stroke following an EMG-FES-assisted 
task-specific arm/hand intervention. Specifically, we found a 
shift of sensorimotor cortical activity related to hand opening 
from contralesional to ipsilesional cortex, along with structural 
changes in the form of increased ipsilesional M1/S1 and decreased  
contralesional M1/S1 GM density. Although similar device-
assisted hand/arm training in this population has been investi-
gated before to examine behavioral improvements (7, 41, 42), this 
study provides evidence for corresponding neural changes even 
in this more severe chronic population.

shift toward ipsilesional hemisphere
As expected, before the intervention, subjects showed cortical 
activity predominantly from the contralesional hemisphere 
related to open the paretic hand, as reflected by the overall negative 
LI. This contralesional activity may suggest an increased reliance 
on low-resolution contralesional corticobulbar pathways such as 
the corticoreticulospinal tract (31, 43) for general paretic arm 
function. In fact, more severely impaired subjects actually tend to 
involuntarily close the hand and activate shoulder muscles when 
asked to open (35), which may reflect this increased reliance on 
ipsilateral corticobulbar pathways that innervate primarily flexor 
hand and proximal muscles compared to extensors (44). These 
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FigUre 5 | Statistical maps of gray matter (GM) density changes across all patients. Significant increases (red/yellow) and decreases (Blue) in GM density are 
depicted on sagittal, coronal, and axial sections (left to right) on Montreal Neurological Institute T1 slices. Sections show the maximum effect on (a) ipsilesioned  
M1/S1, (B) contralesional M1/S1, and (c) ipsilesional thalamus. Les indicates the side of the lesioned hemisphere. Color maps indicate the t values at every voxel.  
A statistical threshold was set at p < 0.001 uncorrected.

pathways lack sufficient innervation to extensor muscles of the 
hand to produce appropriate hand opening (45) and are often 
associated with greater motor impairment (29, 31).

Effective hand/arm interventions in mildly impaired post-
stroke individuals have reported a post-intervention shift toward 

ipsilesional sensorimotor areas (46, 47). This shift is thought to 
be a beneficial since it may indicate increased use of ipsilesional 
CSTs, which maintain the primary innervations to the extensor 
muscles of the hand (32). Intervention-induced shifts toward the 
ipsilesional hemisphere have rarely been investigated in more 
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severely impaired post-stroke individuals, especially not for 
arm/hand training partially due to the lack of inclusion of these 
subjects in arm/hand interventions. In this study, we found that 
a ReIn-Hand-assisted arm/hand intervention induced a positive 
change in LI. Our results suggest that even moderate to severe 
chronic stroke subjects maintain the ability to show similar 
cortical reorganization back toward the ipsilesional hemisphere 
following task-specific training as seen in more mild subjects. 
This ipsilesional shift may suggest decreased recruitment of 
contralesional corticobulbar pathways and increased reliance 
on ipsilesional CSTs during paretic hand opening, which may 
allow for greater functionality at the hand as seen by the increase 
in BBT and AROM. Additionally, it could reflect increased abil-
ity to actually drive hand opening when instructed rather than 
involuntary closing and activating proximal muscles (35). It is 
worth noting that only six out eight participants exhibited this 
intervention-induced shift despite all showing improvements on 
either BBT or AROM, possibly reflecting compensatory behav-
ioral strategies following the intervention rather than recovery 
in these two participants.

changes in cortical activity Driving  
li shift
We calculated the cortical activity ratio in each sensorimotor 
region to further elucidate which regions were contributing to the 
LI shift. Following the intervention, subjects showed decreased 
activity in contralesional primary sensorimotor cortex (M1/S1) 
and a trending increase in ipsilesional secondary motor cortex 
(SMA/PM).

Increased contralesional primary sensorimotor cortex activity  
is associated with greater impairment following stroke (48, 49) 
 and greater damage to CST (50, 51). Therefore, this decreased 
activity could reflect either decreased recruitment of contral-
esional descending motor pathways or changes in interhemi-
spheric balance between primary sensorimotor cortices (52) and 
thus allow for increased functional usage of the affected hand.

Stroke patients tend to activate secondary motor areas more 
following greater CST damage (51) and show positive correlations 
between ipsilesional secondary motor area activation and recovery 
(53, 54). The increased recruitment of ipsilesional SMA/PM 
may be due to increased recruitment of direct projections to the 
spinal cord (55), although these connections are not as efficacious 
as connections from M1 to the spinal cord (56). Alternatively, 
plasticity within intrinsic cortico-cortico neuronal connections in 
M1 (57) may allow increased communication between SMA/PM 
and M1 following injury. Thus, ipsilesional secondary motor areas 
may serve as a potential avenue for functionally relevant cortical 
reorganization via either descending or intrinsic connections in 
addition to removal of contralesional cortical activity.

increased gM Density in ipsilesional 
sensorimotor cortex
Previous work demonstrated significant decreases in GM volume 
in ipsilesional precentral gyrus following a subcortical stroke, 
which was associated with greater impairment (58). However, fol-
lowing task-specific training, mild chronic stroke subjects showed 

increases in GM density in ipsilesional sensorimotor cortex (25), 
and increases in perilesional GM density were associated with 
better recovery in acute stroke (59). Similarly, we found increased 
ipsilesional M1/S1 GM density following the intervention in our 
moderate to severe stroke population. Additionally, a significant 
positive correlation was found between changes in LI and changes 
in GM density in ipsilesional M1/S1 following the intervention 
(R2  =  0.70, p  <  0.05; Figure S2 in Supplementary Material), 
showing that activity shifting to the ipsilesional hemisphere was 
associated with increased ipsilesional M1/S1 GM density.

Increases in GM density may suggest potential synaptogenesis, 
dendritic growth, or gliogenesis at the cortex (60). Thus, these 
changes may be due to new synapse formation and dendritic 
growth commonly seen in animal training models (61). Addi-
tionally, these subjects likely experienced cortical atrophy prior 
to the intervention due to disuse of the paretic limb, which may 
have been partially remedied following the intervention due to 
increased use of the paretic arm/hand. Despite greater damage 
to ipsilesional descending motor tracts, these severely impaired 
individuals demonstrate the ability to reorganize ipsilesional 
primary sensorimotor cortices.

In these more severely impaired post-stroke individuals, we 
also found intervention-induced decreases in contralesional 
M1/S1 GM density, which were not reported before in mildly 
impaired individuals. This decrease may be specific to more 
severe patients since post-stroke, increased use of the con-
tralesional hemisphere occurs to a greater degree in severely 
impaired individuals compared with milder individuals (29). 
The decrease in GM density in contralesional M1/S1 may 
indicate a decrease in dendritic complexity or synapses in these 
areas (62). These structural changes may be a result of decreased 
activation in these areas due to decreased recruitment during 
movement or overall decreased use (63, 64). Alternatively, they 
may be due to decreased tonic activity in these contralesional 
sensorimotor areas, which is thought to be a contributor to 
hyperexcitability in the brainstem and subsequent increased 
tone in this population (65, 66).

The increases in GM density seen in the thalamus in our 
results may be due to the repeated use of electrical stimulation 
throughout the intervention. Although we focused on the motor 
changes in this study, it is likely that these subjects show sensory 
neural changes as well due to the augmented afferent feedback 
generated by the EMG-FES device. Therefore, it is not surpris-
ing to see changes in the thalamus due to its central role as a 
sensory relay station for both the cutaneous and proprioceptive 
sensory modalities (67).

limitations
The main limitation of the current study is the small sample size. 
Despite the relatively small n, we observed consistent patterns 
of functional and structural changes. These changes signify the 
importance of examining the potential neural mechanisms found 
here in a larger population of moderate to severe chronic stroke 
subjects. Additionally, there was no control group in the present 
study. However, this study was aimed at investigating whether 
this population maintained the ability to show neural changes 
following an intervention, rather than answering the question 
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of what is the optimal intervention for this population. Another 
potential confounding factor from the task-specific interven-
tion is the amount of stretching. However, stretching on its own  
is unlikely to drive the functional and structural changes found 
in this study (68), even though it may temporarily reduce 
the stretch reflex activation of wrist and finger flexors (69). 
Additionally, reduced flexion synergy and subsequent decreased 
involuntary shoulder abduction/adduction force generation 
during hand opening (34) could contribute to intervention-
induced changes in LI.

One of the primary long-term goals of the current study is 
to substantially increase the population included in task-specific 
therapy. Although the current ReIn-Hand device allowed our 
cohort of moderate to severe chronic stroke individuals to par-
ticipate in task-specific training, it does require both detectable 
extensor EMGs to drive the device and responsiveness to FES to 
create sufficient hand opening. In our experience, limiting our 
inclusion criteria to an FMA ≥10 satisfied these requirements in 
most of initially screened participants (18 out of 20). However, 
due to the current sample size, it is difficult to accurately specify 
the portion of individuals who could utilize the ReIn-Hand 
device. However, considering that only ~5% of nearly 800 post- 
stroke individuals in the Clinical Neuroscience Research 
Registry hosted by the Rehabilitation Institute of Chicago and 
Northwestern University exhibit FMA scores less than 10, it 
clearly substantially increases coverage compared with conven-
tional task-specific training.

cOnclUsiOn

The present study shows the ability of even moderate to severe 
chronic stroke subjects to show cortical reorganization at both 
the functional and structural levels following a device-assisted 
task-specific intervention in a manner resembling that seen in 
mild chronic stroke subjects. Despite the tendency to focus on 
acute or mild chronic stroke patients in hand function rehabilita-
tion, the current study encourages the continued push to use 
devices to involve moderate to severe chronic stroke subjects in 
task-specific arm/hand rehabilitation.
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The performance of the masticatory muscle is frequently affected and presents high 
heterogeneity poststroke. Surface electromyography (EMG) is widely used to quantify 
muscle movement patterns. However, only a few studies applied EMG analysis on the 
research of masticatory muscle activities poststroke, and most of which used single 
parameter—root mean squares (RMS). The aim of this study was to fully investigate the 
performance of masticatory muscle at different head positions in healthy subjects and 
brainstem stroke patients with multiparameter EMG analysis. In this study, 15 healthy 
subjects and six brainstem stroke patients were recruited to conduct maximum volun-
tary clenching at five different head positions: upright position, left rotation, right rotation, 
dorsal flexion, and ventral flexion. The EMG signals of bilateral temporalis anterior and 
masseter muscles were recorded, and parameters including RMS, median frequency, 
and fuzzy approximate entropy of the EMG signals were calculated. Two-way analysis 
of variance (ANOVA) with repeated measures and Bonferroni post hoc test were used 
to evaluate the effects of muscle and head position on EMG parameters in the healthy 
group, and the non-parametric Wilcoxon signed rank test was conducted in the patient 
group. The Welch–Satterthwaite t-test was used to compare the between-subject dif-
ference. We found a significant effect of subject and muscles but no significant effect 
of head positions, and the masticatory muscles of patients after brainstem stroke per-
formed significantly different from healthy subjects. Multiparameter EMG analysis might 
be an informative tool to investigate the neural activity related movement patterns of the 
deficient masticatory muscles poststroke.

Keywords: stroke, entropy, vestibular stimulation, masticatory muscles, median frequency

inTrODUcTiOn

Stroke, a cerebrovascular disease with a high incidence and a high mortality rate, is divided into 
hemorrhagic and ischemic types (1). The cerebral damage in survived patients was often left with 
sequela of motor dysfunction and abnormal muscle activation. Patients frequently have disorders of 
masticatory system, with masticatory muscle activity, bite force, flexibility of tongue, lip force and 
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TaBle 1 | Demographic and clinical information of patients.

no. age (years) sex Duration 
(months)

Type FOis Facial sagging 
side

1 58 M 32 H 1 R
2 44 M 28 H 5 R
3 64 F 5 I 5 W
4 43 M 28 H – W
5 77 M 16 I 3 W
6 70 M 35 H 1 R

M, male; F, female; H, hemorrhage; I, ischemia; FOIS, Function Oral Intake Scale; –, 
without the diagnosis of clinical doctor; L, left; R, right; W, without facial asymmetry.
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chewing performance affected, especially after brainstem stroke 
(2). It is important for stroke patients to go through a rehabilita-
tion training and recover the masticatory function. However, 
the impairments of the masticatory system are usually of a high 
heterogeneity, and the effect of the masticatory rehabilitation 
training should be enhanced. To improve the effect of training, 
the overall characteristics of the impaired masticatory system and 
their responses to neural stimuli in patients after stroke should 
be studied.

The motor nucleus of the trigeminal in the brainstem is 
responsible for providing motor innervation to the masticatory 
muscles (3). The vestibular stimuli caused by changing head 
positions can affect the performance of the masticatory muscles. 
Evidences shown in the studies of Funakoshi et al. (4) and Deriu 
et al. (5) proved that the activation of masticatory muscles was 
different at different head positions. On the other hand, Kushiro 
et  al. (6) showed a reverse effect that chewing gums increased 
postural stability when people stood uprightly. Besides, animal 
experiments suggested that there could be an anatomical connec-
tion between the vestibular nuclei and trigeminal motoneurons 
in the brainstem (7–9). We hypothesized that the impairment of 
the brainstem might interrupt the responses of the masticatory 
system to the changes in head position. However, former studies 
were performed in healthy people. Therefore, the effect of changes 
in head position on the performance of the masticatory muscles 
needs further studies.

Surface electromyography (EMG) is a useful tool for quan-
tifying the activation patterns of muscles. However, there were 
only a few studies evaluating the impairment of masticatory 
system based on an EMG signal analysis. Cruccu et  al. (10) 
and Wang et al. (11) used a linear EMG parameter, root mean 
squares (RMS), to evaluate the excitability of muscles (12) and 
found that the activation of the masticatory muscles was lower 
in the affected side of patients poststroke during clenching. 
Another linear parameter, median frequency (MDF), is also 
widely used to describe spectral characteristics of EMG signals 
with a good specificity and sensitivity in reflecting the muscle 
electrophysiology (13, 14). Due to the non-linearity and com-
plexity of EMG signals, it has been reported that non-linear 
EMG parameters should be included (15, 16). Entropy, as a 
non-linear parameter, is introduced to assess the complexity 
of the EMG signal. Approximate entropy (ApEn) and sam-
ple entropy were two of the most used entropy estimations. 
Giannasi et  al. (17) evaluated the reliability of several EMG 
parameters in the masticatory muscles of cerebral palsy patients 
and demonstrated that RMS, MDF, and ApEn were most reli-
able. Fuzzy approximate entropy (fApEn) uses an exponential 
fuzzy function to enhance the consistency and monotonicity, 
and it is considered as an improved version of ApEn (18). 
Previous studies reported that fApEn was related to motor unit 
recruiting and firing (19). A combination of above linear and 
non-linear EMG analysis would help to obtain more informa-
tion, from different perspectives, about the performance of the 
masticatory muscles.

This study aimed to investigate whether there existed a certain 
activation pattern of the masticatory muscles in patients after 
brainstem stroke. Fifteen healthy subjects and six brainstem 

stroke patients were recruited and requested to occlude as hard  
as possible at five different head positions: (1) upright position; 
(2) turning left by 30° (left rotation); (3) turning right by 30° (right 
rotation); (4) turning up by 30° (dorsal flexion); (5) turning down 
by 30° (ventral flexion). In the meanwhile, surface EMG signals of 
bilateral temporal anterior and masseter muscles were recorded 
and analyzed with RMS, MDF, and fApEn.

MaTerials anD MeThODs

subject recruitment
Six brainstem stroke patients (five males, one female, mean age 
was 59.33 ± 13.79 years) were recruited from Stroke Rehabilitation 
Department at Guangdong Work Injury Rehabilitation Center. 
This study received permission from local ethics committee and 
volunteered to take part in this study. They all signed the written 
informed consent about the purpose and procedures of the study 
prior to the experiment. The neurologist accompanied beside the 
patients during the experiment to avoid accidents. The clinical 
diagnosis of the patients was evaluated by neurologist based on 
MRI or CT scanning images. No patient had a history of neu-
rological disorders or symptoms prior to stroke. The Function 
Oral Intake Scale (FOIS) was used to evaluate the masticatory 
function of patients. Low scores indicated weak masticatory 
function. The exclusion criteria were: associated diseases such as 
dental problems, missing teeth (between the premolar and molar 
in the left and right side), temporomandibular disorder, feeling 
painful during clenching and changing head positions, and 
under an orthodontic treatment. The demographic and clinical 
characteristics of all the patients were listed in Table 1. Specially, 
one of the patients had no FOIS score, but he did not have any 
facial asymmetry and did a good job in the experiment.

Fifteen healthy subjects (8 males, 7 females, age: 22 ± 2 years) 
were recruited from Sun Yat-sen University. All subjects were 
in general good health and had a normal occlusion without any 
pathologic changes in the orofacial myofunction, masticatory 
system, or cervical spine. The inclusion criteria were complete-
ness of natural permanent teeth, i.e., at least 28 teeth, including 
complete bilateral molar and premolar. Thirteen healthy subjects 
habitually chewed with their right sides. One of the remaining 
two subjects usually used the left side to chew, and the other had 
no habitually chewing side.
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FigUre 1 | The lateral and vertical view of the schematic diagram of experiment in the experiment. There were five markers on the smooth wall. Point O 
was of the same height as those of the subject’s eyes. The others were, respectively, located on the wall to the left, right, upside, and downside of the point O with a 
distance D, represented various head positions, i.e., left rotation, right rotation, dorsal flexion, and ventral flexion.
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recording system
Surface EMG signals were recorded with disposable Ag–AgCl 
bipolar electrodes. Before the placement of the electrodes, the 
skin beneath the electrodes was cleaned with 70% alcohol. 
Surface electrodes were positioned on the muscular bellies of 
bilateral temporal anterior and masseter muscles of subjects, 
paralleled to muscular fibers with an inter-electrode distance of 
20 mm. For the temporal anterior muscle, the electrodes were 
placed vertically along the anterior margin of the muscle, while 
for the masseter muscle, at the lower third of the line between the 
lateral angle of eye and the gonial angle. Subjects were requested 
to clench to adjust the location of electrodes. The reference 
electrodes were positioned at the corresponding ipsilateral elbow 
joint.

The activation of muscles was recorded by a four-channel 
EMG amplifier, sampled at 1,000 Hz by a 16-bit data acquisition 
card (DAQ USB-6341, National Instrument Corporation, Austin, 
TX, USA). The bandwidth of the on-board analog band-pass 
filter was 10–500 Hz. A program was designed in LabVIEW™ 
(LabVIEW 2012, National Instruments Corporation, Austin, TX, 
USA) to store the data.

experimental Protocol
Figure 1 described the schematic diagram of the experimental 
setup. During the experiment, subjects seated straightly on a fixed 
chair with their hands put on the knees. The knee joints were kept 
at 90°. A smooth wall, with five markers indicating the five head 
positions, was in front of the subjects with a distance X1. Point 
O on the smooth wall represented the upright position. When 
the subjects turned their heads to straightly face the other four 
points, they actually turn their head 30° in the four directions: 
left, right, up, and down. The height of point O was determined 
by the height of the participant’s eyes. X1 was measured before 
the experiment. The positions of the other four points on the wall 
representing head positions of left rotation, right rotation, dorsal 
flexion, and ventral flexion were determined by D X= × °

1 30tan .

A short training was conducted before the experiment. Then 
the subjects were requested to turn their head to straightly face 
the five different markers on the wall in turn to induce static 
vestibular stimuli. After each change in head position, the sub-
jects followed the verbal instruction of beginning the clench at 
7  s (Figure  2, command), such as “clench,” and they occluded 
as hard as possible [to generate maximum voluntary clenching: 
maximal voluntary clenching (MVC)]. The occlusion phase of a 
trial lasted for 10 s. At each head position, the trial was repeated 
four times, so the task consisted of five 4-trial blocks. To avoid 
fatigue, there was a 30-s rest after each trial, and a 2-min rest 
between each two blocks.

Data analysis
A representative example of raw EMG signals of the left masse-
ter muscle of three subjects during MVC in the upright position 
was displayed in Figure 2. Patient 1 could not eat with mouth 
and was tube dependent, and his FOIS score was 1. Patient 2 
had a FOIS score of 5. Although the two patients had different 
FOIS scores, their raw EMG signals were similar. The delay 
between the clenching command and the actual EMG clench-
ing onset was due to the response time of the research assistant 
and the subject. The duration of the MVC phase was 10  s in 
each trial, and a 5-s analysis window was added from 3 to 8 s 
of the clench phase (Figure 2). The raw data were preprocessed 
with a fourth-order 10–300 Hz band-pass digital Butterworth 
filter. RMS, MDF and fApEn were calculated using the filtered 
EMG signals.

Root mean squares represented the amplitude of the signals, 
and it was calculated using the following formula:

 
RMS = ∑1 2

N
u

i
i

 

where ui was the filtered EMG signals (i = 0, 1, …, N − 1), and 
N was the length of the EMG signals. MDF was defined as the 
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FigUre 2 | Three samples of raw electromyography (eMg) signal of 
the masticatory muscle in response to the command in patients and 
healthy subjects. The task was divided into a 7-s preparation phase and a 
10-s maximal voluntary clenching (MVC) phase. An analysis window was 
added from 10 to 15 s.
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frequency point that divided the spectrum into two equal parts. 
To calculate MDF, the following equation should be satisfied.

 j
j

j

M

j
j

M

jP P P
= = =
∑ ∑ ∑= =

1 1

1
2

MDF

MDF  

where Pj represents the power spectrum of the filtered EMG, j 
represents the j-th discrete frequency, and M represents the 
bandwidth of the power spectrum analysis.

The calculation steps of fApEn were as follows:

 

X u i u i u i m u i i
N m n N m

i
m = + … + −{ }− = …

− + = − +

( ), ( ), , ( ) ( ), , , ,
,
1 1 0 1 2

1 1  

where Xi
m represented an m dimensional vector reconstructed 

with the filtered EMG signals u(i). u0 (i) was the average 
value of the m discrete filtered EMG data, and was defined as 
u i

m
u i j

j

m

0 1

0

1

( ) ( )= +
=

−

∑ . The distance between two different m 

dimensional vectors was calculated as

 d X Xij
m

i j i
m

j
m= −≠max  

where Xi
m and X j

m were the two reconstructed m dimensional 
vectors, and dij

m was the distance between Xi
m and X j

m. According 
to the concept of fuzzy entropy (18), the smaller the distance, 
the higher the similarity. The similarity degree of Xi

m and X j
m was 

determined by a fuzzy function of dij
m, n and r:

 
D n r

d
nij

m ij
m r

,( ) = −
























exp
 

where Dij
m denoted the similarity degree, r was the similarity 

tolerance should be predefined, the parameter n reweighted 

the contribution of distance dij
m, e.g., a larger n indicating more 

contribution of smaller distances of dij
m.
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where ∅m n r( ),  was averaged similarity. According to above equa-
tions, Xi

m+{ }1  and ∅m+1 could be calculated in the same manner, 
and

 fApEn( )m n r N n r n rm m, , , ln , ln ,( ) ( )= ∅ − ∅ +1  

where fApEn was the fuzzy approximate entropy of an N sample 
time series.

It was important to set proper values of m, r, and n before 
calculating the fApEn. Previous studies recommended m to use 
2 or 3 because the length of the physiological signal was often 
not long enough to satisfy the need of the lager value of m (18), 
and m = 2 was the choice in this study. The similarity boundary 
was determined by the value of r and n. A too narrow boundary 
increased the sensitivity to noise, while a too wide one resulted in 
information loss. Besides, Sun et al. used the EMG data of a stroke 
patient to test how the fApEn changed with the values of N and 
r, and they found that when N > 300 and r ranged from 0.02 to 
1, there was no crossover effect in the performance of the fApEn 
(19). Consequently, N, r, and n were respectively set to 1,000, 0.15, 
and 2 in this study (18–20).

All above calculations were processed in Matlab (Matlab 
R2014a, MathWorks Inc., Natick, MA, USA).

statistical analysis
All the parameters were described as mean ± SD in the paper. 
The level of significance was set at 0.05 (P  <  0.05). Levene 
test was used to test for normal distribution of the data. If the 
Levene test result showed no significant deviations from variance 
homogeneity, the data were analyzed by three-way analysis of 
variance (ANOVA) with repeated measures. The three fac-
tors were: subject (healthy and patient), muscle (left temporal, 
right temporal, left masseter, right masseter) and head position 
(upright position, left rotation, right rotation, ventral flexion, 
dorsal flexion). If a large variance with non-normal distribution 
in the data of a subject group, a non-parametric test should be 
selected to analyze the data (21). Song et al. (22) suggested that 
the Wilcoxon signed rank test should be applied to analyze the 
statistical significance in a small sample size of subjects with high 
heterogeneity. In the current study, the sample size of the patient 
group was small. It is complex to perform a non-parametric test 
of multi-factors and their interactions (23, 24). If the patients’ 
data did not pass the Levene test and did not display normality, we 
would use the Wilcoxon signed rank test to analyze the within-
subject effects of muscle, head position and their interaction in 
the patient group based on manually paired data. In addition, if 
one of the effect was non-significant, we merged the data in the 
corresponding groups and performed the Wilcoxon signed rank 
test again to perform multiple comparison. If the healthy group 
passed the Levene test, a two-way analysis of variance (ANOVA) 
with repeated measures was used to evaluate the influences of the 
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FigUre 3 | The root mean squares (rMs) (a), median frequency (MDF) (B), fuzzy approximate entropy (c) means and sDs of the four masticatory 
muscles at different head positions in healthy subjects and patients. Temp., temporal anterior muscle; Mass., masseter muscle; Pos., position; Rot., rotation; 
Flex., flexion.
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two within-subject factors. Bonferroni post hoc test was used to 
detect the subgroup differences after the ANOVA comparison. 
To compare the between-subject differences with unequal-
variance data, the Welch–Satterthwaite t-test was applied and the 
significant within-subject effect was controlled. All the statistical 
procedures were computed using the Statistical for Social Science 
(SPSS) version 22.0.

resUlTs

Figure  3 shows performance of the four masticatory muscles, 
in terms of RMS, MDF and fApEn, at different head positions. 
Some trends in the activities of masticatory muscles could be 
observed in the healthy subjects. For example, when they turned 
their head to the left, the muscles in the left was activated more 
than the contralateral ones’, while the muscles in the right had 
higher RMS means when turning to the right. However, no such 
trend was observed in the patients. Besides, fApEn means in the 
patient group had a much larger SD, which surpassed the effect 
of head position.

The healthy subject’s data passed the Levene test (RMS: 
P = 0.367; MDF: P = 0.563; fApEn: P = 0.667), but the patients’ 
data did not pass the Levene test (RMS: P = 0.001; MDF: P = 0.013; 
fApEn: P < 0.001).

The two-way repeated measure ANOVA results showed that 
muscle had significant effect (RMS: P = 0.001; MDF: P = 0.416; 
fApEn: P = 0.179), but head position and muscle × head position 
interaction had no significant effect (head position: P =  0.905; 
interaction: P = 0.818). Bonferroni post hoc test showed that the 

RMS mean of the left masseter muscle was significantly lower 
than all the other muscles.

The Wilcoxon signed rank test conducted in the patient group 
showed a significant effect of Muscle but no significant effect of Head 
position (data not shown) and muscle × head position interaction 
(Table 2). Besides, the Wilcoxon signed rank test (Figure 4) indi-
cated that the RMS means of any paired muscles were significantly 
different (P < 0.007) except that of the right masseter and temporal 
muscles, the scores of bilateral masseter muscles were significantly 
higher than those of bilateral temporal muscles in MDF (P < 0.005), 
and the masseter muscles had significantly higher fApEn means 
than the ipsilateral temporal muscles (P < 0.005).

We observed significant between-subject RMS differences 
in all muscles except the left masseter muscle (P < 0.001). The 
patient group showed significantly higher MDF means in the 
bilateral masseter muscles (P < 0.001). Besides, significant lower 
fApEn means were detected in all the muscles except the left 
masseter muscle (P < 0.005) (Figure 4).

For each parameter, we plotted a case-by-case plot to compare 
each patient’s mean value with the subject mean in the healthy 
group (Figure 5). We found that the RMS means of Patients 1–4 
and Patients 5 and 6 clustered into two patterns: Type I and Type 
II. Type I was characterized by significantly less activation in the 
right masticatory muscles, while Type II was characterized by 
equal weakness of all the four muscles. For the MDF, we found 
that all the patients’ data varied in the same way, and the mean 
values of the bilateral masseter muscles laid above the healthy 
subjects’ corresponding means. The fApEn case-by-case plot 
showed a large heterogeneity of patients.
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TaBle 2 | The result of the Wilcoxon signed rank test for statistical significance of muscle × head position interaction on the three electromyography 
parameters.

Muscles head positionsi head positionsj root mean squares Median frequency Fuzzy approximate 
entropy

Z P Z P Z P

Left Temp. Upright Pos. Left Rot. −0.447 0.655 −0.447 0.655 −1.342 0.180
Right Rot. −0.447 0.655 −1.342 0.180 −0.447 0.655
Dorsal Flex. −0.447 0.655 −0.447 0.655 −1.342 0.180
Ventral Flex. −1.342 0.180 −1.342 0.180 −1.342 0.180

Left Rot. Right Rot. −0.447 0.655 −1.342 0.180 −1.342 0.180
Dorsal Flex. −0.447 0.655 −0.447 0.655 −1.342 0.180
Ventral Flex. −1.342 0.180 −1.342 0.180 −1.342 0.180

Right Rot. Dorsal Flex. −0.447 0.655 −1.342 0.180 −1.342 0.180
Ventral Flex. −0.447 0.655 −1.342 0.180 −0.447 0.655

Dorsal Flex. Ventral Flex. −0.447 0.655 −1.342 0.180 −1.342 0.180

Right Temp. Upright Pos. Left Rot. −1.342 0.180 −0.447 0.655 −1.342 0.180
Right Rot. −1.342 0.180 −0.447 0.655 −0.447 0.655
Dorsal Flex. −1.342 0.180 −0.447 0.655 −0.447 0.655
Ventral Flex. −1.342 0.180 −0.447 0.655 −1.342 0.180

Left Rot. Right Rot. −0.447 0.655 −0.447 0.655 −0.447 0.655
Dorsal Flex. −0.447 0.655 −0.447 0.655 −0.447 0.655
Ventral Flex. −0.447 0.655 −0.447 0.655 −1.342 0.180

Right Rot. Dorsal Flex. −0.447 0.655 −0.447 0.655 −0.447 0.655
Ventral Flex. −0.447 0.655 −0.447 0.655 −0.447 0.655

Dorsal Flex. Ventral Flex. −1.342 0.180 −1.342 0.180 −0.447 0.655

Left Mass. Upright Pos. Left Rot. −0.447 0.655 −1.000 0.317 −1.342 0.180
Right Rot. −0.447 0.655 −0.447 0.655 −0.447 0.655
Dorsal Flex. −1.342 0.180 −0.447 0.655 −0.447 0.655
Ventral Flex. −1.342 0.180 −1.342 0.180 −1.342 0.180

Left Rot. Right Rot. −0.447 0.655 −1.342 0.180 −0.447 0.655
Dorsal Flex. −1.342 0.180 −1.000 0.317 −0.447 0.655
Ventral Flex. −1.342 0.180 −0.447 0.655 −1.342 0.180

Right Rot. Dorsal Flex. −1.342 0.180 −1.342 0.180 −0.447 0.655
Ventral Flex. −1.342 0.180 −1.342 0.180 −0.447 0.655

Dorsal Flex. Ventral Flex. −0.447 0.655 −0.447 0.655 −0.447 0.655

Right Mass. Upright Pos. Left Rot. −1.342 0.180 −1.000 0.317 −1.342 0.180
Right Rot. −1.342 0.180 −0.447 0.655 −1.342 0.180
Dorsal Flex. −1.342 0.180 −0.447 0.655 −1.342 0.180
Ventral Flex. −1.342 0.180 −1.342 0.180 −1.342 0.180

Left Rot. Right Rot. −1.342 0.180 −1.342 0.180 −0.447 0.655
Dorsal Flex. −1.342 0.180 −1.000 0.317 −0.447 0.655
Ventral Flex. −1.342 0.180 −0.447 0.655 −0.447 0.655

Right Rot. Dorsal Flex. −0.447 0.655 −1.342 0.180 −1.342 0.180
Ventral Flex. −0.447 0.655 −1.342 0.180 −1.342 0.180

Dorsal Flex. Ventral Flex. −0.447 0.655 −0.447 0.655 −1.342 0.180

Head positionsi: one of the head positions in the task; Head positionsj: a different head position which was used to pair with Head positionsi; Temp., temporal anterior muscle; Mass., 
masseter muscle; Pos., position; Rot., rotation; Flex., flexion.
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DiscUssiOn

This study was designed to investigate the activation pattern of 
masticatory muscle at different head positions in the healthy 
subjects and brainstem stroke patients when performing the 
maximal voluntary clenching (MVC). RMS, MDF and fApEn 
were used to analyze the EMG data. Significant differences 
between the healthy subjects and the patients were found in 
certain muscles.

comparison between the healthy subjects 
and stroke Patients
The lower RMS means of the stroke patients’ right masticatory 
muscles compared with those of the healthy subjects’ implied 
that the muscle excitation of their right muscles was quite low. 
Wang et al. (11) and Cruccu et al. (10) found that the affected side 
activated lower during clenching. The reduction of the muscle 
activation in patients was consistent with previous studies.
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FigUre 5 | The case-by-case plot. Comparison of the root mean squares (RMS) (a), median frequency (MDF) (B), fuzzy approximate entropy (fApEn) (c) means 
of each muscle in each patient with the subject means of the corresponding muscle in all healthy subjects. Temp., temporal anterior muscle; Mass., masseter 
muscle.

FigUre 4 | The root mean squares (rMs) (a), median frequency (MDF) (B), fuzzy approximate entropy (fapen) (c) means and sDs of the four 
masticatory muscles in healthy subjects and patients. *P < 0.05; Temp., temporal anterior muscle; Mass., masseter muscle.
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Compared to healthy subjects, the MDF means of the bilateral 
masseter muscles in patients was higher. Since MDF was associ-
ated with the conduction velocity in the muscle fiber and the 
action duration of motor unit (25), a higher MDF mean might 
suggest a higher conduction velocity and a smaller action dura-
tion. The shift of the spectrum toward higher frequencies might 
implied that, after brainstem stroke, the proportion of fast-twitch 
motor units that were enrolled in masticatory movement was 
lower (26). Another possible interpretation of the spectrum shift 
might be the deficiency of the monoaminergic neurons in the 
brainstem poststroke. The monoaminergic input amplifies the 
small motor neurons’ current non-linearly and causes the slow-
twitch motor units to sustain the contraction even after the action 
potential is over (27). After brainstem stroke, the monoaminergic 
regulation of the input–output properties might be affected  
(28, 29), and the contribution of the slow-twitch motor units in 
the masseter muscles was then lowered.

The fApEn means of all the muscles in the stroke patients were 
smaller than those in healthy subjects. Previous studies reported 
that fApEn might be related to the amount of recruited motor 
units and the firing rate (30). Therefore, the decrease of fApEn in 
the three muscles might be due to the changes in the neurological 
control after stroke, such as reduction of the number of recruited 
motor unit or lowering of the firing rate. The decreased firing 

rate in stroke patients was recently proven by a high-density 
EMG study (31). The large variability of fApEn in stroke patients 
suggested that large arithmetic cancels should happen when 
calculating means, hence some real situation might be hidden 
behind the fApEn means. In the case-by-case plot (Figure 5C), 
Patient 3 and 6 showed marked lower fApEn values of the left 
masseter muscle, while the other patients’ data lied around the 
healthy subject’s fApEn mean.

influences of Muscles
For healthy subjects, the right masseter muscle yielded a higher 
RMS compared to the left one, which could be interpreted by 
different activations of the working-side and the balancing-side 
of the masseter muscles (32). It might reflect the truth that most 
(13/15) of the healthy subjects in this study habitually chewed 
with their right side. However, we observed no significantly 
different MDF and fApEn among different muscles. It might sug-
gest that the neurological control of the jaw muscles in healthy 
subjects may be homologous.

For patients, mean values of the RMS and MDF between 
bilateral masseter muscles were statistically different, and the 
bilateral temporal muscles exhibited significantly different RMS 
but non-significantly different MDF. The lower RMS means of the 
right masticatory muscles might be due to the weakness of the 
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right masticatory muscles. According to the case-by-case RMS 
plot, four patients exhibited right-side weakness, but only two of 
them had right face sagging (Table 1). EMG analysis might reveal 
the unseen weakness of the patients. MDF is a parameter often 
used to characterize fatigue (33), and both masseter and temporal 
muscles yield lower MDFs in a sustain clench fatigue experiment 
(34). Previous studies have reported that successive recruitment 
of new motor units might be the reason of spectrum shift during 
muscular fatigue (35). The task in our study was fatigue-free, and 
the higher MDF in the right masseter muscle might due to the 
smaller action duration of the motor units (36).

The large variability of the fApEn implied that it might be 
more sensitive to the pathological status of the patients. From the 
case-by-case fApEn plot, we observed that most of the data points 
of patients were lower than the corresponding healthy subjects’ 
means, which was in agreement with previous study showing 
smaller fApEn in the patient group (37). Combined fApEn with 
RMS, we might obtain more information about the masticatory 
function of the patient. For example, although Patient 5 and 6 had 
Type II RMS muscle pattern, the right masseter muscle’s data of 
Patient 5 lied within the mean ± SD interval of healthy subjects, 
while Patient 6’s data lied markedly beneath that interval. It sug-
gested a larger deficiency of the neuromuscular control of the 
right side in Patient 6, and this patient had a form of right face 
sagging (Table 1).

influences of head Positions
Changing head position is a kind of static vestibular stimulation 
(5), which interferences balance control. In the other hand, occlu-
sion is widely interrelated to gaze stabilization (38) and balance 
control (39) through activating complex nervous reflexes (40). A 
previous study (4) observed two types of EMG responses of the 
masticatory muscles to changes in head position. In the balanced 
type, the corresponding bilateral muscles (e.g., left and right 
temporal muscles) were activated equally when subjects perform-
ing ventral and dorsal flexion, while ipsilateral activation was 
observed in the rotation or tilting of the head. The unbalanced type 
exhibited asymmetrical and irregular activations. Although our 
results showed no statistical significance of head position, there 
exhibited similar trends to Ref. (4), i.e., the right muscles of the 
healthy subjects were much more activated when rotating to the 
right. The neuromuscular mechanism of changes in head position 
influencing muscle activation might be due to the tonic neck reflex, 
which was demonstrated with rats (41). The reasons why head 
position was a non-significant effect in our study might be due 
to the interindividual variation, also pointed out in the previous 
study (4), and the different experimental protocol we used, i.e., 
we instructed the subjects to clench as hard as possible instead of 
recording their rest EMG signals. Biting hard activated the whole 
muscle synchronously (42), and the weak tonic-neck-reflex origin 
EMG signal would be buried in the large firing signal. However, the 
sternocleidomastoid muscles would be co-activated (43) during 
maximum voluntary clenching. Therefore, the tonic neck reflex 
might be actually enhanced (44) although we could not see it. From 
the case-by-case EMG parameter values to head position curve of 
patients (data not show), we found again the high heterogeneity 
of patients’ performance, but the clinical relevance was not clear.

limitation of the study
In the current study, we have investigated the muscle activities in 
response to variations in head position using three EMG parameters 
in both the healthy subjects and brainstem stroke patients. However, 
several limitations still should be addressed. First, we recruited the 
healthy youths rather than age-matched healthy adults. It should 
be noted that age might be one of the factors that influenced the 
EMG parameters, but age effect was not included in this study. In 
this preliminary study, we mainly focused on whether the three 
EMG parameters were discriminating and suited for assessing the 
masticatory function poststroke. The age effect should be further 
studied in the future. Second, more patients should be recruited in 
the future study to improve the statistical power of the study.

cOnclUsiOn

In this study, three EMG parameters, RMS, MDF and fApEn, 
were used to evaluate the activities of bilateral masseter and 
temporal muscles at different head positions in healthy subjects 
and brainstem stoke patients. We found that subject and muscle 
effected significantly on these parameters, but head position was a 
non-significant effect. The stroke patient group performed differ-
ently during MVC compared with healthy subjects and exhibited 
a large heterogeneity. Several patterns and trends were detected 
using multiparameter EMG analysis. Multiparameter EMG 
analysis might provide rich information and should be a potential 
useful tool of quantifying the neural activity related movement 
patterns of the deficient masticatory muscles poststroke.
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After a cerebral stroke, a series of changes at the supraspinal and spinal nervous  
system can alter the control of muscle activation, leading to persistent motor impair-
ment. However, the relative contribution of these different levels of the nervous system 
to impaired muscle activation is not well understood. The coherence of motor unit (MU) 
spike trains is considered to partly reflect activities of higher level control, with different 
frequency band representing different levels of control. Accordingly, the objective of this 
study was to quantify the different sources of contribution to altered muscle activation. 
We examined the coherence of MU spike trains decomposed from surface electromyo-
gram (sEMG) of the first dorsal interosseous muscle on both paretic and contralateral 
sides of 14 hemispheric stroke survivors. sEMG was obtained over a range of force 
contraction levels at 40, 50, and 60% of maximum voluntary contraction. Our results 
showed that MU coherence increased significantly in delta (1–4 Hz), alpha (8–12 Hz), 
and beta (15–30 Hz) bands on the affected side compared with the contralateral side, 
but was maintained at the same level in the gamma (30–60 Hz) band. In addition, no 
significant alteration was observed across medium–high force levels (40–60%). These 
results indicated that the common synaptic input to motor neurons increased on the 
paretic side, and the increased common input can originate from changes at multiple 
levels, including spinal and supraspinal levels following a stroke. All these changes can 
contribute to impaired activation of affected muscles in stroke survivors. Our findings also 
provide evidence regarding the different origins of impaired muscle activation poststroke.

Keywords: motor unit, coherence, stroke, synchronization, surface electromyogram

inTrODUcTiOn

After a cerebral stroke, a series of changes at the spinal and supraspinal levels of the nervous sys-
tem can influence the control of muscle activation, leading to different motor impairment. One 
convenient way of identifying the different levels of contributions to altered muscle activation is to 
characterize the discharge patterns of motor unit (MU), given that MU discharge activities at the 
populational level can now be readily obtained from the skin surface (1, 2). Since different alpha 
motor neurons receive common synaptic excitations from spinal and supraspinal pathways during 
sustained contraction (3–6), the discharging times of MU should exhibit some degree of correlation. 
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Table 1 | Participant demographic information.

Participant iD gender age Years side chedoke Fugl-Meyer

1 M 61 4 R 6 63
2 F 62 15 L 2 17
3 F 59 23 R 2 22
4 M 66 9 L 4 16
5 F 53 3 R 6 63
6 F 58 5 R 4 38
7 F 71 7 R 6 66
8 M 60 11 R 5 52
9 M 61 7 R 4 3

10 F 69 15 L 4 30
11 M 58 4 R 5 45
12 F 59 1 L 3 20
13 F 62 9 R 6 53
14 M 48 7 L 5 60

Age, year of age; Years, years since stoke; Side, paretic side; Chedoke, Chedoke-
McMaster stroke assessment ranging from 1 to 7, with 1 being the most severe 
impairment; Fugl-Meyer, Fugl-Meyer assessment ranging from 1 to 66, with 1 being the 
most severe impairment; M, male; F, female; R, right; L, left.
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The cross-correlation analysis of MU spike trains in the time 
domain has been widely used to study the connectivity between 
the motor neuron pool and the spinal or cortical inputs (7–11). 
However, the relative strength of correlation across different 
levels cannot be systematically quantified using this approach.

In contrast, the coherence analysis, which reflects the cross-
correlation of MU spike trains in the frequency domain, provides 
complementary and important information from another 
perspective that can reveal these activities of higher level control 
(12–14). Previous studies have established the findings that the 
coherence of MU spike trains under 60  Hz is critically impor-
tant and can be separated into four different frequency bands, 
including delta band (1–4 Hz), alpha band (8–12 Hz), beta band 
(15–30 Hz), and gamma band (30–60 Hz) (5, 15–17). Moreover, 
physiological origins for the synchronization of each band have 
been widely accepted. Specifically, the delta band is thought to 
reflect the common modulation of firing rates (18, 19); the alpha 
band highly depends on the feedback from muscle spindles and 
possibly results from rhythmical activities of the spinal reflex 
loop (20, 21); the beta band may reflect cortical and subcortical 
activities (15, 19); and the gamma band also represents cortical 
activities (19).

Previous studies have found that the MU synchronization of 
certain frequency bandwidths change under atypical conditions. 
A recent study reported an increase of MU coherence in delta, 
alpha, and beta bands after muscle fatigue (17). Another recent 
study (22) examined the variation of coherence with muscle pain. 
Their results indicated that muscle pain led to an increase in the 
coherence of MU spike trains in the delta band, but a decrease in 
the alpha band. Given the direct and indirect cortical and subcor-
tical projections to the motor neuron pool, it can be conjectured 
that the alteration of synaptic inputs to motor neurons may 
influence the MU coherence at different frequency bandwidths. 
To date, few studies have examined the possible changes of 
MU synchronization in stroke survivors (23, 24). These studies 
were mostly based on electroencephalogram—electromyogram 
(EMG) synchronization rather than the coherence of MU spike 
train itself—and did not specifically quantify the variation of 
coherence in each frequency corresponding to specific physi-
ological implications.

Accordingly, the objective of our current study was to sys-
tematically investigate the potentially altered control at different  
levels in contribution to impaired finger muscle activation in 
stroke survivors. In our study, MU spike trains were acquired from 
the decomposition of surface electromyogram (sEMG) of the first 
dorsal interosseous (FDI) muscle at a wide range of index finger 
abduction forces on both paretic and contralateral sides of hemi-
spheric stroke survivors. The discharge coherence of concurrently 
active MUs was calculated across four frequency bandwidths at 
different force levels and was compared between the affected 
and contralateral muscles. The finger muscle was examined 
because stroke survivors tend to show persistent impairment in 
finger muscle activation. Particularly, the FDI muscle was tested 
because FDI is the only muscle involved in index finger abduc-
tion force, which can avoid force contribution of other muscles, 
and because the FDI is superficial and is accessible from the skin 
surface during EMG recordings. Our findings provide evidence 

that there are substantial changes in the common input, arising 
from the spinal and supraspinal circuitry, to the motor neuron 
pool innervating affected muscles, which can modify the control 
of muscle activation of stroke survivors.

MaTerials anD MeThODs

experimental apparatus and Procedures
Participants
Experimental data from 14 chronic hemiparetic stroke par-
ticipants (detailed demographic information is shown in Table 1) 
were acquired at the Rehabilitation Institute of Chicago. All 
participants provided written informed consent. The experimen-
tal protocols were approved by the Institutional Review Board 
(#STU00084379) at Northwestern University.

The major inclusion criteria for stroke participants included 
(1) ability to provide written informed consent; (2) ability to 
communicate with and understand the instructions of the exper-
imenter; (3) the duration since stroke >6 months; (4) impairment 
level of hand function measured with the Chedoke-McMaster 
score ranged from 2 to 6; (5) no medication; (6) no upper extrem-
ity inflammation, recent injury, pain, or other concurrent severe 
medical illness; (7) no history of vascular impairment.

Experimental Setup
The detailed information about the experimental setup has been 
reported in a previous study (25, 26). Briefly, participants sat in 
the experimental apparatus with their upper arm comfortably 
placed on a support, their forearm oriented at a full pronation 
position, secured with a cast and located in a ring mount inter-
face attached to a forearm rest, and their wrist held neutral with 
respect to flexion/extension (Figure 1A). Their middle, ring, and 
little fingers were abducted away from the index finger resting on 
a supporting frame. The index finger casted and fixed to another 
ring mount interface was placed at approximately 60° apart 
from the thumb and directly attached to a 6 degree-of-freedom 
load cell (ATI, Inc., Apex, NC, USA). The recorded isometric 
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FigUre 1 | experimental apparatus, electromyogram recordings and motor unit decomposition. (a) Experimental setup. (b) The five-probe sensor array. 
(c) The four-channel surface electromyogram (sEMG) signals during a trapezoidal force production. In addition, motor unit spike trains and corresponding templates 
after sEMG decomposition are also displayed.
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index finger abduction forces were low-pass filtered at 200 Hz 
cutoff frequency and sampled at 2  kHz, and a high sampling 
rate is required to avoid aliasing effect from channel cross-talk. 
The participant’s skin above the FDI muscle was scrubbed with 
alcohol pads to reduce background noise. A five-pin sensor array 
(Delsys, Inc., Natick, MA, USA) was placed on the skin surface. 
Five 0.5-mm diameter cylindrical probes are located at the center 
of sensor array within a 5 mm × 5 mm square (Figure 1B). The 
sensor array and a reference electrode were connected to a Delsys 
Bagnoli sEMG system to record sEMG signals generated by 
the pairwise differentiation of these five electrodes. The sEMG 
recordings were amplified by a 1,000 gain and filtered with a 
bandwidth of 20–2  kHz with a sampling frequency at 20  kHz 
(Figure 1C).

Procedures
The data collection included two main sessions (one for each 
side) with same experimental protocols. Before the two main ses-
sions, participants were required to perform maximum voluntary 
contractions (MVCs) for 3 s. Three repeated trials with 60 s rest 
between trials were tested to obtain the largest force value, which 
was designated as the MVC. To ensure a fair comparison between 
two sides, the MVC of paretic side was used during the force tasks 
on the contralateral side, such that the two sides produced the 
same absolute forces. Then, participants performed five repeated 
trials for five isometric contraction levels at 20, 30, 40, 50, and 
60% MVC. The force trajectory contained a 5-s quiescent period 
for baseline noise calculation, an up-ramp increasing at 10% 
MVC/s, a constant force at prescribed MVC for 12 s, a down-ramp 
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FigUre 2 | block diagram for the entire data analysis. EMG, electromyography; STA, spike trigger average algorithm; CST, composite spike train; MU,  
motor unit.
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decreasing at 10% MVC/s, and a final 3-second quiescent period. 
The order of the force levels was randomly selected for each par-
ticipant. One minute of rest period was provided between trials 
to avoid cumulative fatigue.

Data analysis
Preprocessing
The sEMG and force recordings selected for further data analysis 
must satisfy the following requirements: (1) no sudden change in 
the up-ramp force; (2) the variability of force during steady state 
within ±2 SDs of background force level; (3) the sEMG signal 
with the baseline noise level within ±10 μV, and signal-to-noise 
ratio greater than 5 (signal-to-noise ratio was defined as peak–
peak amplitude of the EMG signal at steady state contractions 
divided by peak–peak amplitude of the baseline noise). Based on 
the criteria above, three trials for each MVC level per participant 
were finally selected for the coherence analysis. During the analy-
sis, the accepted number of MU must be over eight to be included 
in the analysis because the large number of MUs resulted in an 
accurate coherence estimate.

MU Acceptance
All raw sEMG recordings were automatically decomposed 
using Nawab’s algorithm (1). The autodecomposition algorithm 
extracted the firing times, and four different MU action poten-
tial waveforms (from the four-channel EMG recordings) of  
each identified MU spike train. Then, a robust postexamination 
method, spike trigger average (STA) algorithm (27), was used 
to determine which MUs were retained for further analysis. The 
STA method reestimated MU action potential templates based 
on the firing times, MU action potential templates, and raw EMG 
signals obtained from Delsys. A high agreement of two differ-
ent algorithms for each MU provided confidence regarding the 
reliability of decomposition results. The STA method calculated 
the coefficient of variation (CV) for peak–peak amplitude of 
MU action potential templates and the maximum correlation 
coefficient between STA MU action potential estimation and 
Delsys MU action potential templates. Only MUs with a mean 
correlation >0.7 and CV <0.3 across four channels were selected 
for data analysis based on our previous studies (17, 27, 28).

Coherence Calculation
The magnitude of coherence increased substantially with the 
number of MU spike trains selected. Therefore, using more MUs 
for coherence calculation was recommended (29, 30), providing 
a better estimation than a small number of MUs. Moreover, the 
coherence values can only be compared across different trials 
when the same amount of MU spike trains was analyzed. Since 
some trials only had a small number of accepted MU spike trains, 
eight MUs were selected for coherence calculation. For those trials 
with more than eight accepted MUs, the same amount of MU spike 
trains was randomly chosen from accepted MUs pool. A total of 
eight spike trains were randomly separated into two groups and 
then summed up into two composite spike trains (CSTs). The 
Welch’s averaged, modified periodogram method (31), adopted 
by multiple previous MU coherence studies (16, 17, 22), was 
performed to calculate the magnitude of squared coherence Cxy( f ) 
between the two CSTs:
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where Pxy( f ) is the cross-spectrum mean of two CSTs, 
and Pxx( f ) and Pyy( f ) are, respectively, their autospectrum 
densities. The calculation of the coherence-square used the 
MATLAB function “mscohere” with a length of 1,024 sample 
segments tapered by a Hann window and overlapped by 75% 
to estimate the entire frequency spectrum. The data process-
ing steps are summarized in Figure  2. To obtain a better 
coherence estimate, the parameter selection for the coherence 
calculation was based on a previous study (32). In addition, 
to reduce the effect caused by random selection, 100 repeated 
tests were operated and averaged to acquire final coherence 
estimation for each trial. [An exemplar coherence estimation 
of the affected and contralateral sides of a stroke survivor is 
shown in Figure 3 (top)].

The confidence limit for coherence estimate was

 γ 1 αα1−
−( ) = −2 1 1/ ,EDOF

 (2)

where α is (1 − α)% confidence level, and EDOF is the equivalent 
degree of freedom for Hann window (33).
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FigUre 3 | Top: non-standardized coherence; bottom: z-coherence. 
An exemplar frequency-coherence plots from a representative stroke 
participant at 40% maximum voluntary contraction. The solid thick red line 
represents the coherence of the affected side, and the blue line represents 
the contralateral side. Thin lines present SE.

Table 2 | The number of accepted motor units across different 
maximum voluntary contraction levels on two sides.

affected side contralateral side <8

20% 15.24 ± 4.51 18.71 ± 6.32 4
30% 16.76 ± 3.33 19.24 ± 6.10 3
40% 17.40 ± 4.94 20.10 ± 5.80 0
50% 17.76 ± 5.45 20.22 ± 6.33 0
60% 18.02 ± 6.26 20.50 ± 7.07 0

Dai et al. Altered MU Coherence in Stroke

Frontiers in Neurology | www.frontiersin.org May 2017 | Volume 8 | Article 202

Four different bands—delta band (1–4  Hz), alpha band 
(8–12 Hz), beta band (15–30 Hz), and gamma band (30–60 Hz)—
were analyzed separately due to their different physiological 
meanings. We began by exploring the potential influence of three 
factors (two sides, four bands, and three MVC levels) on coher-
ence. The magnitude of coherence for each band was quantized 
by its mean band coherence:

 
MBC =

( )∫
� f

f

xyC f df

B
1

2

,
 

(3)

where Cxy( f ) is the magnitude of squared coherence, B is the 
width of one frequency band, and f1 and f2 are the lower and upper 
bounds of the corresponding band, respectively.

Correlation Analysis
A linear regression was performed to investigate the relationship 
between the possible factors (age, years poststroke, and the sever-
ity of impairment measured with Fugl-Meyer assessment) and the 
increased percentage of coherence on the paretic side compared 
with the contralateral side. We chose Fugl-Meyer assessment 

instead of Chedoke because the values of Fugl-Meyer assessment 
spread across a wider range from 1 to 66, which can give a better 
resolution for linear regression, and the correlation coefficient 
between Fugl-Meyer and Chedoke was 0.82. Therefore, only 
Fugl-Meyer was included in the regression.

Statistics
The coherence estimate was examined mainly on three aspects: 
comparisons of coherence amplitude across different MVC 
levels, comparisons between the affected and contralateral side,  
and comparisons of coherence amplitude across different fre-
quency bands. The differences were tested statistically using a 
three-way repeated measures ANOVA, with post  hoc pairwise 
comparisons conducted using Bonferroni correction method. 
A significance level of p = 0.05 was used. To satisfy the ANOVA 
test assumption, all coherence values (C) were transformed 
to Fisher’s values (FZ), which has been used in previous MU 
coherence studies (16, 34, 35). The fisher’s z-transformation 
equation is

 FZ arctan= h C . (4)

resUlTs

After decomposition and cross validation between STA and 
Delsys, the overall number of accepted MU spike trains is shown 
in Table 2. Low contraction levels that yielded a small number of 
MUs caused two main issues: (1) the number of accepted MUs 
cannot satisfy the requirement of coherence calculation (≥8). 
The “<8” column in Table 2 presents the number of trials with 
number of MUs  <  8; (2) the random grouping algorithm for 
coherence calculation may be biased due to a small MU pool. 
Therefore, 40, 50, and 60% MVC were used for the final data 
analysis, while 20 and 30% MVC were excluded. (See Section 
“Discussion” for further details regarding the choice of MU 
numbers.) For these participants, under 40, 50, and 50% contrac-
tion levels, the average number of accepted MU spike trains was 
17.73 ± 5.57 per single trial for the affected side and 20.27 ± 6.38 
for the contralateral side; while the corresponding mean firing 
rates were 13.55 ± 4.04 pulse per second (pps) and 12.90 ± 3.31 
pps, respectively.

A three-way repeated measures ANOVA was tested across three 
isometric contraction levels (40, 50, and 60%) on two sides and 
four different frequency bands. The ANOVA results showed that 
there is an interaction [F(3,39) = 9.708, p < 10−4] between the side 
and frequency band. However, the third factor MVC showed no 
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Table 3 | The fitting coefficients with corresponding p values, the r2 
value of the linear regression on four bands.

age Years since 
stroke

Fugl-Meyer r2

Delta −0.0035 (0.0755) 0.0175 (0.3632) 0.0057 (0.2854) 0.372
Alpha −0.0202 (0.2460) 0.0064 (0.7150) 0.0083 (0.1064) 0.364
Beta −0.0133 (0.1278) 0.0074 (0.3969) 0.0014 (0.5470) 0.264
Gamma −0.0120 (0.0314)* 0.0081 (0.1407) 0.0022 (0.1507) 0.505

Individual p-values are shown in parentheses.
*Significance at 95% level.

FigUre 5 | Top: paretic side; bottom: contralateral side. Post hoc 
pairwise comparison across four bands. Each red circle presents the mean 
value of one frequency band, and the red horizontal line is its corresponding 
95% confidence interval. The vertical dashed lines show the overlap of two 
bands, which means no significant difference.

FigUre 4 | comparison of the z-coherence of different frequency 
bands between affected side and contralateral sides. Each bar 
presents its corresponding average magnitude of mean band z-coherence 
(z-MBC), and the error bar presents its SE across 14 participants. Asterisks 
indicate the significant difference.
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measured using Fugl-Meyer) and the increased percentage of 
coherence on paretic side compared with contralateral side. 
Separate regression was performed on the four different bands. 
Table  3 shows the fitting coefficients with the r2 value of each 
frequency band. The r2 values of the linear regression for the 
delta, alpha, beta, and gamma bands were 0.372, 0.364, 0.264, 
and 0.505, respectively. The results showed that the three factors 

significant difference [F(2,26) = 1.666, p = 0.209], and also showed 
no interaction with other factors {[F(2,26) = 0.030, p = 0.971] 
between MVC and side; [F(6,78)  =  0.982, p  =  0.443] between 
MVC and frequency band; and [F(6,78) = 0.086, p = 0.997] for 
all three}.

The interaction (side ×  frequency band) led us to conduct 
further post  hoc pairwise comparisons separately. First, we 
compared the difference between paretic side and contralateral 
side for each individual band. The pairwise comparisons showed 
that the coherences were significantly different for delta band 
(p = 0.013), alpha band (p = 0.005), and beta band (p = 0.022), 
between the affected and contralateral sides, but not differ-
ent for gamma band (p  =  0.717). The average z-transformed 
mean coherence across all participants for delta band, alpha 
band, and beta band on affected side were 0.2720  ±  0.0254, 
0.3468 ± 0.0282, and 0.2881 ± 0.0150, which were higher than 
those on the contralateral side (0.2116 ± 0.0112, 0.2620 ± 0.0082, 
and 0.2625 ± 0.0078, respectively, as shown in Figure 4). The 
baseline coherence was 0.2123 ± 0.004 and is comparable to the 
gamma band coherence.

Second, post  hoc pairwise comparisons were tested across  
four bands on two sides separately, and both showed a sig-
nificant difference. For the paretic side, Figure 5 (top) shows 
post hoc evaluation, which revealed that (1) the alpha band had 
the highest mean coherence (p  <  0.05); (2) the gamma band 
had the lowest mean value (p < 0.05); (3) the magnitude of delta 
band and beta hand had no statistical difference (p = 0.284). For 
the contralateral side, the post hoc comparison (Figure 5, bot-
tom) showed that (1) the alpha and beta bands had significantly 
high coherence compared with the delta band and gamma band 
(p  <  0.001); (2) the magnitude of the alpha and beta bands, 
or the delta and gamma bands had no statistical difference 
(p > 0.9).

Third, a linear regression was performed between three pos-
sible factors (age, years of poststroke, and the severity of stroke 
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tended to have a linear relation with the increased coherence 
value.

DiscUssiOn

The coherence of MU spike trains is considered to partly reveal 
the relations between the motor neuron pool and spinal/
superaspinal network, and the coherence of each frequency 
bandwidth can reflect the relative connectivity between the 
motor neuron pool and the upstream circuitry. Our current 
study quantified the changes of the coherence of each frequency 
band on the affected side, compared with the contralateral side 
of hemiparetic stroke survivors. Our results provided strong 
evidence that the coherences of three frequency bands (delta, 
alpha, and beta) showed a significant increase compared with the 
contralateral side. The coherence of the delta band and the alpha 
band increased substantially on the affected side (increased  
by 28.5 and 32.4%, respectively), compared with the contralat-
eral side. The coherence in the beta band on the affected side 
also revealed moderate increase (by 9.6%), compared with the 
contralateral side. However, the magnitude of the gamma band 
coherence remained unchanged. Our general findings indicate 
that there are substantial changes in the common input to the 
motor neuron pool, arising from the spinal and supraspinal 
circuitry, which can modify the control of muscle activations 
after a stroke.

influence of Muscle activation level  
on coherence
We found that the coherence estimates are consistent across a 
range of medium–high force levels (40–60%), indicating that 
the relative contribution of common synaptic input to the motor 
neuron pool is not sensitive to the levels of muscle contraction. 
The findings suggest that we can use a single prespecified muscle 
activation level (40–60% MVC) to estimate the coherence at dif-
ferent frequency ranges. It should be emphasized that the MVC 
levels affect the number of recruited MUs. During the coherence 
analysis, only a fixed number of MUs are randomly selected to 
the pool. Therefore, if the number of MUs used for the coherence 
analysis was identical, the MVC level within 40–60% MVC did 
not influence the estimate of coherence. However, the coherence 
estimate at force levels outside of the range was not examined, 
because lower force levels tend to yield a smaller number of MUs 
(see Table 2, some 20 and 30% trials cannot meet the minimum 
requirement), which may bias the coherence calculation. In 
contrast, higher forces tend to induce early muscle fatigue, which 
has been shown as a factor that can affect MU coherence (17). 
These factors can potentially bias our current coherent estima-
tion, due to the sampling requirement of the coherence analysis 
and a relative steady MU discharge rate based on the assumption 
of the discharge spectrum analysis.

Physiological implications for the  
Variation of each band
Although the partition of frequency band range from different 
studies was not identical, the four specific ranges were divided 

similarly, and the corresponding physiological concepts have 
been widely accepted (17, 19, 22). In our present study, the 
gamma band always maintained at a stable and low power level 
on both paretic and contralateral sides. A substantial increase 
of the delta and alpha bands coherence was observed in the 
affected muscle in our stroke cohort. It is believed that the delta 
coherence is associated with the modulation of mean firing 
rate of the MUs. The increased delta coherence may reflect a 
compensatory change in response to the reduced firing rate 
and the reduced modulation of firing rate of MUs observed 
in stroke survivors (36). The large SE (see Figure  4) on the 
affected side also illustrated that the increased rate of these 
common inputs was different across participants, possibly due 
to the different severity of stroke. The alpha band coherence is 
associated with afferent feedback/spinal reflex contributions. In 
addition, previous studies indicated that the coherence between 
MUs increased with increasing muscle spindle activities (20, 22, 
37). A flexed finger posture, potentially due to hyperreflexia, 
is a common feature in spastic stroke survivors. In addition, 
hyperreflexia is one common pathology in stroke survivors 
(38, 39), and it is conceivable that there is an increased spinal 
reflex contribution to the MU activation. However, we do not 
have direct evidence that the FDI muscle is hyperreflexia in our 
stroke cohort, since spasticity is not routinely assessed in the 
finger muscles.

The increase of common synaptic inputs affected beta band 
that revealed cortical and subcortical activities and short-term 
MU synchronization. The increased coherence in beta band 
results provided a consistent evidence with previous studies, 
which reported that the coherence of MU firing times had 
significant linear relationship with shared motor neuron inputs 
(6, 40). The stronger correlated higher level input to the FDI 
motor neuron pool may reflect more centralized control with 
a few cortical neurons directly projecting to the whole motor 
neuron pool, rather than having a complex network directly 
and indirectly modulating the activation of the motor neuron 
pool. In addition, a reduction of inhibitory high level input, due 
to stroke, could also contribute to more synchronized input. 
Clearly, additional studies are necessary to verify these potential 
changes.

correlations with subject Demographic 
information
To identify potential associations between the change of coher-
ence in the affected FDI and the participant clinical informa-
tion, separate multiple linear regression was performed for each 
coherence bandwidth. A moderate overall correlation was found 
as indicated by the r2 values. However, the individual demo-
graphic factors were not significant predictors on the change of 
coherence. A lack of strong correlations may arise from multiple 
aspects. First, the heterogeneous features of our stroke cohort 
of 14 participants may limit our correlation estimates, and a 
larger sample size may yield a better fit. Second, the change 
of coherence at different bandwidth may have stronger asso-
ciations with other clinical features such as the lesion location 
or the integrity of the cortical spinal track, and the Fugl-Meyer 
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or time poststroke may not be specific enough to show a strong 
correlation.

cOnclUsiOn

In conclusion, we observed a significant increase of MU spike 
train coherence on the affected side of stroke survivors in the 
delta band, the alpha band, and the beta band, compared with the 
contralateral side. Our findings indicate that changes at multiple 
levels, including spinal and supraspinal levels, can all contribute to 
altered activation of affected muscles in stroke survivors. Further 
studies may be necessary to investigate possible relations between 
common drive and other frequency bands for stroke survivors 

and to explore if the increase in common drive on paretic side can 
lead to MU synchronization across different muscles.
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A hand exoskeleton driven by myoelectric pattern recognition was designed for stroke 
rehabilitation. It detects and recognizes the user’s motion intent based on electromy-
ography (EMG) signals, and then helps the user to accomplish hand motions in real 
time. The hand exoskeleton can perform six kinds of motions, including the whole hand 
closing/opening, tripod pinch/opening, and the “gun” sign/opening. A 52-year-old 
woman, 8 months after stroke, made 20× 2-h visits over 10 weeks to participate in 
robot-assisted hand training. Though she was unable to move her fingers on her right 
hand before the training, EMG activities could be detected on her right forearm. In each 
visit, she took 4× 10-min robot-assisted training sessions, in which she repeated the 
aforementioned six motion patterns assisted by our intent-driven hand exoskeleton. 
After the training, her grip force increased from 1.5 to 2.7 kg, her pinch force increased 
from 1.5 to 2.5 kg, her score of Box and Block test increased from 3 to 7, her score of 
Fugl–Meyer (Part C) increased from 0 to 7, and her hand function increased from Stage 
1 to Stage 2 in Chedoke–McMaster assessment. The results demonstrate the feasibility 
of robot-assisted training driven by myoelectric pattern recognition after stroke.

Keywords: electromyography, myoelectric pattern recognition, hand exoskeleton, rehabilitation, case report

INtRoDUCtIoN

Robot-assisted upper limb training is considered to be more efficient (1) and economic (2) than 
conventional therapy in neurorehabilitation. Controlling the robot with the user’s own electromyo-
graphy (EMG) signals connects the user’s intended motion and his actual movements. It can there-
fore enhance therapeutic effects and promote motor learning (3–5). Various EMG-driven robots 
and exoskeletons have been developed for neurorehabilitation (6–8), primarily based on one-to-one 
mapping, which typically maps one channel of EMG signal to a corresponding single degree-of-
freedom (DOF) or variable such as speed and torque using a conventional “on-off ” or proportional 
strategy. Robots based on such control strategy work well on training joints with only a few DOFs 
such as elbow and wrist. However, a human hand has up to 27 DOFs (9) and is controlled by complex 
temporal and spatial coordination of multiple muscles. It is therefore not feasible to regain hand 
dexterity through conventional control strategies. Myoelectric pattern-recognition techniques have 
been developed to extract motion intentions from EMG signals (10, 11). The extracted intentions 
can then be used to control a multiple-DOF robot such as a prosthesis (12). Previous studies have 
also shown that motion intentions can still be extracted after neurological impairment (13–15). 
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FIGURe 1 | training with the exoskeleton hand driven by myoelectric 
pattern recognition.
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We therefore developed an intent-driven hand training system. 
The system employs an exoskeleton hand, which is controlled by 
myoelectric pattern recognition. As soon as the user’s intention 
is detected (usually within 250 ms), the system is able to assist to 
accomplish the intended motions (16).

Case RepoRt

subject
A 52-year-old woman participated in this robotic hand-assisted 
training 8  months after stroke. She was right-handed before 
stroke and had hemiplegia on her right side after her stroke. She 
was able to walk independently with an ankle foot orthosis but 
had difficulties in moving her right arm. Her fingers were flexed 
naturally. She was unable to move any of the fingers on her right 
hand, but EMG signals were able to be recorded from her forearm. 
Her Fugl–Meyer score (Part A–D, max 66) was 16, with a 0 in Part 
C (Hand, max 14). She had no pain when her whole hand was 
passively opened or closed. She did not receive any other hand or 
upper limb therapies while participating in this study. During her 
visits, she was able to understand and follow all the instructions.

exoskeleton Hand
The exoskeleton hand, Hand of Hope (Rehab-Robotics, Hong 
Kong), was used in this study to help the subject move her hand 
(Figure 1). The exoskeleton hand has five individual fingers. Each 
finger is actuated by a linear actuator that can pull and push lin-
early. The mechanical design of the fingers converts these linear 
movements into the rotations of a virtual metacarpophalangeal 
(MCP) joint and a virtual proximal interphalangeal (PIP) joint. 
Both joints rotate together to help the hand perform closing and 
opening movements (7). The motion range is 55° and 65° for MCP 
and PIP joints, respectively. The subject’s palm and five fingers 
are fixed to the exoskeleton hand with Velcro belts. Each finger 
can be bent or straightened individually by the exoskeleton hand. 
The exoskeleton hand stands on a brace, which also supports the 

subject’s forearm, so that the subject can be totally relaxed when 
attached to the exoskeleton. The exoskeleton hand used in this 
study can perform six different motion patterns, including hand 
closing (HC); hand opening (HO); thumb, index, and middle 
fingers closing (TIMC or tripod pinch); thumb, index, and mid-
dle fingers opening; middle, ring, and little fingers closing (MRLC 
or the “gun” sign); and middle, ring, and little fingers opening. 
The exoskeleton hand can perform HC, TIMC, or MRLC when 
it is open. However, after performing any one from these three 
patterns, it can only return to the original open status (e.g., there 
is no direct way from the “tripod pinch” to the “gun” sign).

Conventional EMG control of the device was applied in previ-
ous studies for training hand opening/closing function for stroke 
survivors (17, 18). In order to make all these six motion patterns 
available for the subject, a myoelectric pattern-recognition system 
was developed for this study to control the exoskeleton hand. This 
system is able to detect and recognize the subject’s muscle activ-
ity patterns, indicate his/her intended hand motions, and then 
assist the patient in accomplishing these motions in real time. 
When the subject tries to perform a hand motion, EMG signals 
can be detected from those activated muscles. The myoelectric 
pattern-recognition system then extracts the motion intent from 
these EMG signals and maps the intent into control commands. 
The exoskeleton hand therefore performs the same motion as the 
subject’s intent, so that the subject can accomplish the motion 
with both robotic assistance and his/her own participation.

protocol
The subject made 20 visits (experiments) for the robot-assisted 
training, 2 visits per week. During the experiment, the subject was 
seated comfortably in a chair, next to a small height-adjustable 
side table. The exoskeleton hand was placed beside her on the 
table on her right side. Her right hand was fixed in the exoskel-
eton, and her forearm was placed on the brace (Figure 1). The 
exoskeleton was placed and locked on the brace. Therefore, the 
subject’s right arm and hand could be totally relaxed instead of 
resisting gravity. The height of the table was adjusted to make 
the angle between her upper arm and her trunk about 45°, and 
the angle between her upper arm and her forearm about 90°. The 
subject was free to move her left hand. She was also allowed to 
move her right arm by moving the brace when she took breaks 
between two training sessions. Considering that the virtual palm 
was locked, the subject’s right hand was always in a neutral posi-
tion, and her forearm was never rotated even when she moved 
the brace. The brace would be moved to its initial position before 
another training session began.

Seven bipolar surface electrodes (Delsys 2.1) were attached on 
the subject’s forearm using double-sided tapes, covering the first 
dorsal interossei, flexor digitorum superficialis, flexor digitorum 
profundus, extensor digitorum, abductor pollicis longus, exten-
sor digiti minimi, and extensor pollicis longus muscles. The refer-
ence electrode was placed on the olecranon. The skin was cleaned 
using sterile alcohol wipes before electrodes were placed. EMG 
signals were acquired using a Bagnoli-8 EMG System (Delsys 
Inc., Boston, MA, USA), which amplified raw EMG signals 
10,000 times and filtered the signals using a 20–450 Hz band pass 
filter. The acquired EMG signals were then input into a desktop 
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taBLe 1 | assessment results before and after the training.

tests pretreatment posttreatment

Grip force (kg) 1.5 2.7
Pinch force (kg) 1.5 2.5
Box and Block 3 7
Fugl–Meyer (part C) 0 7
Chedoke–McMaster (hand) 1 2
Control accuracy (%) 75.0 76.9
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running Windows 7 through a data acquisition device, USB-6221 
(National Instruments Inc., Austin, TX, USA), which digitized 
the signals at 1,000 Hz with a 16-bit resolution.

The digitized EMG signals were then analyzed by a myoelec-
tric pattern-recognition program developed for this study, which 
aimed to extract motion intentions from multi-channel EMG 
signals. The analysis was based on the EMG signals recorded in 
the most recent 200 ms (named a processing window) and was 
performed every 100 ms, so that the recognition result could be 
updated at 10 Hz (19), which is acceptable for real-time control. 
A motion detection algorithm was first performed to tell whether 
this window contained EMG signals that corresponded to the 
user’s voluntary motions. It calculated the mean absolute value 
(MAV) (20) of the processing window. If the MAV was smaller 
than a given threshold (it was 80% of the average MAV of EMG 
signals recorded from this subject at her median force level), no 
further processing would be performed, and the recognition 
result was “no motion.” Otherwise, a motion was considered to 
be detected because one or more muscles were active. Then, a 
pattern-recognition algorithm was performed, in which a support 
vector machine classifier (21) was applied to recognize motions 
based on a set of features including root mean square amplitude 
(20), fourth order auto regressive coefficients (22), and waveform 
length (20). The output of the classifier was then mapped onto 
control commands and sent to the hand exoskeleton.

Each visit included five sessions. In the first session, the subject 
repeated each motion pattern 15 times. Although she was unable 
to move her fingers, she was encouraged to try controlling the 
fingers. For each motion pattern, the subject was asked to imagine 
moving her fingers in the desired motion. The first 2 s of above-
threshold EMG signals were recorded before the exoskeleton 
subsequently provided assistance corresponding to the motion 
pattern. These EMG signals recorded in these 2-s periods were 
used to train the classifier. The next four sessions were all training 
sessions. In each session, the subject controlled the exoskeleton 
using her own motion intent. She was asked to try performing all 
of the six motion patterns and then to follow through with the exo-
skeleton hand while it moved through its full motion range. When 
the exoskeleton reached the final range, it stopped, and began 
waiting for another motion intent from the subject. The subject 
was therefore encouraged to perform the next motion right after 
the exoskeleton stopped. The subject was always free to choose 
any of the executable patterns, but sometimes the experimenter 
gave suggestions in order to balance the training amount of each 
motion pattern. Considering the subject’s EMG signals were very 
weak, it was necessary for her to perform motions using about 
70% of her maximal force in all these sessions. Consequently, she 
got fatigued quickly after 8–10 min training. In order to avoid 
fatigue, each training session was set to 10  min and could be 
terminated at any time after 8 min. Moreover, she was given as 
much time as needed to rest between sessions. Therefore, each 
visit took about 2 h, including approximately 40 min training.

ResULts

Assessments, including grip force (using Jamar Plus  +  Digital 
Hand Dynamometer, Patterson Medical, Warrenville, IL, USA), 

pinch force (using PG-60 Pinch Gauges, B&L Engineering, Santa 
Ana, CA, USA), Box and Block test (23), Fugl–Meyer (Part C 
only, ranging from 0 to 14), and Chedoke–McMaster (the Hand 
Stage only, ranging from 1 to 7) (24), were performed before 
and after the 20-visit training. Results are shown in Table  1. 
The results of both the grip force and the pinch force were the 
maximal readings from three measurements. The result of Box 
and Block test was the highest score of three trials. As to the 
Fugl–Meyer and Chedoke–McMaster assessment, only the hand-
related score were reported because only hand function was 
trained. The average control accuracy of the 1st and the 20th visit 
was also calculated. The subject was requested to report every 
time when the exoskeleton hand performed a motion that was 
different from her intent. The control accuracy was calculated 
based on the number of wrong motions and the total number 
of motions.

After the training, the results of all the assessments were 
improved dramatically. The grip force and pinch force were almost 
doubled. She also regained some voluntary finger movements. 
These improvements were quantified by three functional assess-
ments from different aspects. Before the training, she was not able 
to perform observable finger movements. Her Fugl–Meyer score 
(Part C) was 0 and Chedoke–McMaster stage was 1 because she 
failed to do all the tasks in these assessments. After the training, 
she could flex all her fingers in a small range, so that she was 
able to partially perform many of the tasks. For example, she was 
able to hold a pencil, though loosely. As a result, she obtained 1 
point in each grip task in the part C of the Fugl–Meyer assessment 
except the task “flexion in interphalangeal joints and extension in 
MCP.” Also because of these active motions, she met the criteria 
of Hand Stage 2 in the Chedoke–McMaster assessment. However, 
she did not get to Stage 3 because her range of motion was not 
greater than 50% plus that she did not have opposition to bring 
the thumb to the index finger. The same functional improvement 
increased her score in the Box and Block test. Because she was 
not able to open/close her hand before the training, she developed 
an alternative way to accomplish this task, which was to push a 
block into the space between her thumb and other fingers using 
arm movements. When she managed to push two corners of a 
block into her hand, she could pick up the block. Holding the 
block in hand was difficult given that her grip was weak and she 
was not holding the whole block. As a result, preventing dropping 
the block half way was more challenging for her, compared with 
releasing the block. After the training, she used the same way to 
move the blocks. Although the range of motion for HO was still 
not large enough to pick up or hold one block, it was easier for her 
to push the block in. And she could hold the block for a longer 
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time because of her increased grip force, so that she had more 
time to move the block over the barrier. The scores of her three 
trials after training were 4, 7, and 4, respectively, while her highest 
score before training was 3.

DIsCUssIoN

In the previous studies applying conventional control (17, 18), the 
exoskeleton was triggered when the EMG amplitude of the moni-
tored muscle(s) exceeded a given threshold, while other muscles’ 
activities were ignored. However, finger motions are generated by 
coordinating a series of muscles. Pattern-recognition algorithms 
were therefore introduced in this study in order to analyze the 
motion patterns of up to seven muscles. These algorithms also 
made it possible to control the hand exoskeleton in multiple DOFs 
and provided an approach to training fine motions and improv-
ing hand dexterity. Both the myoelectric pattern-recognition 
techniques and the robot-assisted training are safe. No adverse 
event was observed, and no discomfort was reported. Although 
fatigue was reported sometimes, it usually went away after a few 
minutes break.

This intent-driven control required the subject to be active 
during the training. This subject was able to activate her muscles 
though she could not perform finger motions. The real-time 
assistance from the exoskeleton gave her the feedback of mus-
cle activities and helped her strengthen her motion patterns. 
Although the subject had severely impaired hand functions 
before the training (Hand Stage 1 according to the Chedoke–
McMaster assessment), she still achieved 75% control accuracy. 
Our algorithms recognized most of the subject’s motion intents 
correctly, which assisted her in accomplishing these motions. Her 
hand function improved after the training, and all the assessments 
showed consistent improvements.

Although the training program for this subject demonstrates 
promising outcomes, a comprehensive evaluation of the effec-
tiveness of the robotic hand-assisted training driven by myoe-
lectric pattern recognition requires testing with a larger number 
of stroke subjects. We are aware that for a wide range of stroke 
patients with mild to severe impairment, some patients may not 

be suitable for such training due to lack of muscle activity or 
impaired muscle activity patterns (25, 26), while those stroke 
subjects who are able to generate muscle activity patterns and 
achieve reasonable accuracies can participate in the training 
program. In this regard, a pre-examination or assessment might 
be necessary to determine the stroke subjects who are able to 
control the exoskeleton hand with myoelectric pattern recogni-
tion, and who can benefit most from the robotic hand aided 
training.
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Objective: This study investigates changes in the neuromuscular activation pattern of 
the lower limb muscles in stroke survivors when crossing obstacles of three different 
heights.

Methods: Eight stroke survivors and eight age-, height-, and gender-matched healthy 
controls were recruited and instructed to cross over obstacles with heights of 10, 20, 
and 30% leg length. Surface electromyography (EMG) signals were recorded from the 
rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and medial gastrocnemius 
(MG) of both limbs. Muscle activation signals were normalized to maximum voluntary 
contraction. Differences between groups and heights were compared using the root 
mean square of EMG, the cocontraction index of agonist and antagonist muscles, and 
power spectral analysis based on the mean power frequency (MPF). The correlations 
between the calculated variables and clinical scales such as Berg Balance Scale and 
Fugl-Meyer assessment (FMA) were also examined.

results: During the leading limb swing phase, the activation levels of all four muscles 
were greater in the stroke group than the healthy controls (p < 0.05), and the TA showed 
increased activation level with increasing obstacle height in both groups (p  <  0.05). 
Cocontraction between the TA and MG was higher in the stroke group during the 
swing phase of the leading limb and between the RF and BF during the stance phase 
(p < 0.05). Similarly, for the trailing limb, increased cocontractions between the two pairs 
of agonist and antagonist muscles were found during the stance phase in the stroke 
group (p < 0.05). During the crossing stride, the frequency analysis showed significantly 
smaller MPF values in all four lower limb muscles in the leading limb of stroke survivors 
compared with healthy controls (p < 0.05). Moreover, significant correlations were found 
between the FMA scores and the BF and TA activations in the leading limb during the 
swing phase (p < 0.05).

conclusion: Greater activation levels of the lower limb muscles resulted in higher mus-
cular demands for stroke survivors, which might lead to greater difficulty in maintaining 
balance. The increased cocontraction during obstacle crossing might be compensation 
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inTrODUcTiOn

Stroke is a leading cause of disability associated with a loss of 
ability to generate force, which results in activity limitations and 
has a negative impact on motor function (1). Following a stroke, 
motor control impairments such as weakness, slow movements, 
spasticity, fatigue, and incoordination often occur in the lower 
limbs, which lead to gait abnormalities (2).

Daily walking commonly involves avoiding obstacles, such as 
doorsteps, stones, and stairs, and stepping across obstacles has 
been demonstrated to require greater muscle force, increased 
balance control, and enhanced muscle coordination than level 
walking (3, 4). One study showed that almost half of the tested 
stroke survivors failed to step across an obstacle, and their ability 
to maintain balance was compromised (5). The loss of balance 
in stroke survivors during obstacle crossing may lead to a high 
risk of falls and cause soft tissue injuries or fractures. Therefore, 
it is important to analyze the characteristics of the motion during 
obstacle crossing in stroke survivors. In spite of compromised 
balance, it is possible that stroke survivors may use compensa-
tory strategies to avoid falls. It would therefore be helpful to 
understand the mechanism of preventing falls and ensuring safe 
crossing.

The balance and postural stability of stroke survivors have 
been quantified using kinematic and kinetic parameters, such 
as joint angles, joint moment, end-point distance, the distance 
between the center of mass and the center of pressure, and the 
ground reaction force (6–8). The balance was compromised in 
stroke survivors, and they might take a strategy involving greater 
pelvic posterior tilt and greater joint angles to ensure enough toe-
obstacle clearance compared with healthy controls during obstacle 
crossing. However, little has been investigated about the neuro-
muscular changes during obstacle crossing. Electromyography 
(EMG) signals recorded from the surface of the muscles show 
the activity of motor neurons, which can reflect the relative level 
of muscle activation and provide valuable information about 
muscle function (9). Hahn et al. compared the EMG signals of 
the lower limb muscles between the elderly and the young (10). 
They found that elderly adults were able to negotiate different 
heights during walking and that the higher muscular demands 
could lead to a high risk of falls. The level of activity was reduced 
in the hemiparetic muscles in stroke survivors compared with the 
normal subjects, while the muscle’s activity of the non-paretic side 
was increased compared with the normal subjects, which helped 
maintain standing balance in response to sideways pushes (11). 
However, the neuromuscular mechanism of maintaining balance 
when crossing obstacles of different heights remains to be inves-
tigated in stroke survivors. Stepping over obstacles of different 
heights requires varying the activation levels of the agonist and 
antagonist muscles. Muscle cocontraction is the simultaneous 

activity of agonist and antagonist muscles (12, 13). Kitatani et al. 
demonstrated increased muscle coactivation in the trailing limb 
of stroke survivors with increasing obstacle heights, which could 
increase postural stability and decrease the rate of trips (14). 
However, they did not compare the coactivation patterns between 
healthy subjects and stroke survivors during obstacle crossing to 
understand more about the coordination mechanism following 
stroke.

Electromyography signals can also be analyzed in the 
frequency domain based on the power spectrum to reflect the 
neuromuscular function. The mean power frequency (MPF) and 
median frequency (MF) mainly reflect changes in the conduc-
tion velocity of the active motor units which could be damaged 
after stroke (15). It has been speculated that alternations of the 
EMG spectrum are related to loss of muscle fibers, changes in 
the composition of motor unit type (peripheral), synchroniza-
tion of multiple motor units, and disorder control of motor unit 
(central factors). Many studies have investigated the relationship 
between muscle activation level and MPF and MF values for 
both healthy people and stroke survivors. Decreased MPF values 
are usually found in the muscles of the paretic side compared 
with the non-paretic side (16, 17). The amplitude of the EMG 
signals increases with the level of muscle force, but studies on the 
relationship between the EMG spectrum and contraction force 
remain uncertain. Hu et al. found slightly decreased MF values 
in the paretic biceps brachii with increased muscle contraction 
in stroke survivors (18), while Kaplanis et al. reported increased 
MF in the EMG of the biceps brachii with increased isometric 
torque in healthy subjects (19). EMG spectral analysis could help 
better understand the cause of neuromuscular changes in the 
stroke survivors during obstacle crossing, which has not been 
investigated in previous studies.

This study investigates neuromuscular changes in stroke sur-
vivors to maintain balance when crossing obstacles of different 
heights in comparison with healthy controls. We examined the 
relative muscle activation levels, the cocontraction of the agonist 
and antagonist muscles of the knee joint and ankle joint, and the 
power spectrum of the muscles, also their relationship with the 
clinical scales. The results may provide knowledge of the mecha-
nism of motor control during obstacle crossing and information 
for designing fall prevention programs for rehabilitation follow-
ing stroke.

MaTerials anD MeThODs

Participants
Eight stroke survivors and eight healthy subjects matched by age, 
height, and gender were recruited in this study (Table 1). The inclu-
sion criteria for the stroke survivors included (i) the occurrence 

for the affected stability and enable safe crossing for stroke survivors. The reduced MPF 
in the affected limb of the stroke group might be due to impairments in motor units or 
other complex neuromuscular alterations.

Keywords: stroke, obstacle crossing, electromyography, gait analysis, activation pattern
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TaBle 1 | Basic characteristics of study subjects.

characteristic stroke group (n = 8) control group 
(n = 8)

p-Value

Age, years (mean ± SD) 58.88 ± 10.61 60.62 ± 8.33 0.445
Height, cm 167.33 ± 7.35 165.51 ± 5.92 0.296
Mass, kg 63.57 ± 7.68 61.67 ± 8.94 0.392
Gender Male = 6, female = 2 Male = 6, 

female = 2
Brain lesion side 4 Right and 4 left
Duration post-stroke, 
months (range)

12.51 ± 11.22 (3–29)

Berg test scores (range) 40.38 ± 6.94 (27–47) 56 ± 0 (56) <0.001a

FMA scores (range) 23.12 ± 3.48 (18–28) 34 ± 0 (34) <0.001a

aSignificant effect using an independent t-test.
FMA, Fugl-Meyer assessment scale of the motor function in paretic low-extremity (total 
score: 34).
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of a first stroke with unilateral hemiparesis lesions confirmed by 
magnetic resonance imaging or computed tomography; (ii) an 
interval of at least 3 months post-stroke; (iii) the ability to step 
across an obstacle height of 30% leg length; and (iv) the ability 
to sign an informed consent form. This study was approved by 
the Ethics Committee of the First Affiliated Hospital of Sun Yat-
sen University. All procedures were conducted according to the 
Declaration of Helsinki and all subjects provided written consent 
before the experiments. The motor function of stroke survivors 
was evaluated by an experienced physiotherapist based on the 
Berg Balance Scale (BBS) and Fugl-Meyer assessment (FMA) for 
lower extremities.

apparatus
Circular silver–silver chloride (Ag–AgCl) electrodes with a 
diameter of 5 mm and inter-electrode distance of 20 mm were 
bilaterally attached to the bellies of the rectus femoris (RF), 
biceps femoris (BF), tibialis anterior (TA), and medial gastroc-
nemius (MG) of the lower limbs of the subjects. The muscle 
groups showed obvious changes when stepping over obstacles 
(20). Eight pre-amplified wireless transmission modules (DTS 
Noraxon, Scottsdale, AZ, USA) at a gain of 4,000 were linked 
with the electrodes to record EMG signals at a sample frequency 
of 1 kHz.

A total of 35 spherical 15-mm infrared-reflective mark-
ers were fastened to the subject’s whole body according to the 
Vicon Plug-In Gait marker placement. A 6-camera 3D motion 
analysis system (Vicon Motion Systems, Oxford, UK) recorded 
the marker positions at a sample frequency of 100 Hz. Two force 
plates (464 mm × 508 mm × 83 mm, AMTI, Watertown, MA, 
USA) at a sample frequency of 1 kHz were placed in the middle of 
the path with the obstacle between them. All the EMG, kinematic, 
and kinetic signals were recorded simultaneously and processed 
by the Vicon Nexus operating system.

Procedure
Anthropometric characteristics were measured before the gait 
analysis (height, leg length, and bodyweight). Leg length was 
measured with scaled tape from the anterior superior iliac spine 
to the lateral malleolus and used to calculate the obstacle height 

of each individual. The electrodes and spherical markers were 
then attached to the corresponding locations on the subject. 
Before the electrode placement, the area around the muscles were 
shaved and cleaned with alcohol, and surgical tape was used as 
appropriate around the electrode and amplifier to obtain better 
EMG signals.

When the preparation was finished and the subjects had enough 
rest, the subjects were instructed to walk at a self-selected speed 
with bare feet  along an 8-m walkway with a height-adjustable 
obstacle placed midway. The leading limb was defined as the first 
limb to cross the obstacle. The stroke subjects were instructed to 
use their affected leg as the leading limb of the obstacle crossing, 
and the healthy controls were instructed to use their dominant 
leg. The obstacle was set to three height conditions (10, 20, and 
30% leg length). The three height conditions were performed 
in random order, and three trials of each height condition were 
recorded. Trials in which the subjects touched the obstacle were 
ignored and excluded from analysis. Prior to the trials, subjects 
visually and manually inspected the obstacle, and then practiced 
two to three trials according to the therapist’s instructions. 
Subjects were reminded to perform the task within their limits 
of safety and stop if they felt at risk. A therapist accompanied 
the subject and walked to the side to provide protection and 
assistance if required.

After all the trials were finished, the subject was asked to rest 
for a few minutes and then instructed to lay supine with the 
tested limb placed at 90° hip and knee flexion, and the other limb 
resting in neutral to perform maximum voluntary contraction 
(MVC) tests (21). Another experienced therapist held a hand-
held dynamometer (MicroFET3, Hoggan Inc., UT, USA; with 
the precision of 0.4 N and range from 13 to 1,330 N) stably as 
a resistance at the corresponding position of the measured joint 
(22), and the subject used tested muscle group to push maximally 
against the hand-held dynamometer for about 5  s. To measure 
the MVC of the TA and MG, the hand-held dynamometer was 
placed proximally to metatarsophalangeal joints on dorsal and 
plantar surface of foot. To measure the MVC of the RF and BF, 
the hand-held dynamometer was placed proximally to ankle on 
anterior and posterior surface of leg (23). The subject performed 
2–3 submaximum voluntary contractions before the MVC test 
began to become familiar with the test procedure. MVC test 
included knee flexion and extension, dorsiflexion, and plantar 
flexion, and the MVC was recorded three times for each muscle. 
During the MVC procedure, subjects were verbally encouraged 
to ensure maximal recruitment.

Data Processing
For all MVC and gait trials, raw EMG signals were collected at 
1  kHz, band-pass filtered through a fourth-order Butterworth 
filter with a bandwidth of 10–350  Hz, full-wave rectified, and 
low-pass filtered through a second-order Butterworth filter with 
a cut off frequency of 6 Hz. The root mean square was calculated 
during a particular phase of the gait. The filtered signals from 
the gait trials were then normalized to the MVC for each muscle 
to determine the relative activation levels. The calculation of the 
cocontraction index (CI) required two more steps with a linear 
envelope: (1) subtraction of the average resting EMG activity and 
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(2) normalization to the maximum value of EMG activation in 
each muscle during the MVC tests (24). The CI value is given by

 CI= 1
T

A t dtij
T

( )∫  

where Aij(t) is the overlapping activity of EMG linear envelopes 
after subtraction and normalization for the agonist and antagonist 
muscles i and j, T is the length of the signal period. The CI value 
varies from 0 to 1. Zero means there is no overlapping of the two 
EMG envelopes, and 1 means the two muscles are fully activated 
to 100% MVC during the trial.

The MPF was calculated using the band-pass filtered signals 
(through a fourth-order Butterworth filter with a bandwidth of 
10–350 Hz) for each time window (the stance, swing, or entire 
gait cycle). The MPF value is given by

 MPF =
( )

( )

∞

∞

∫

∫

fP f df

P f df

0

0

 

where P(f) indicates the power intensity curve and f indicates the 
frequency. The kinematic data were filtered by a 20-Hz low-pass 
Butterworth filter. We considered the toe-off time to be when the 
toe marker was 2  mm off the ground and the heel-strike time 
as when the force platform received enough signals to make the 
measurement reliable (25). The gait cycle was then divided into a 
swing phase and stance phase for a single lower limb.

statistical analysis
Descriptive statistics (mean values and SD) were calculated for 
all dependent variables. The normalized EMG activation, CI, 
and MPF values were subjected to a repeated-measures two-way 
(group: stroke and control × obstacle height: 10, 20, and 30% of 
leg length) analysis of variance (ANOVA). The ANOVA results 
were adjusted using a Bonferroni post hoc test. If there was an 
interaction between the two effects, then one-way ANOVA 
was separately performed for the group effect and height effect. 
Pearson product–moment correlations were used to examine the 
relationships between the calculated variables and clinical scales. 
The level of significance was set at an alpha level of 0.05. All 
statistical analyses were done using SPSS 19 statistical software.

resUlTs

All subjects were able to complete the tasks with three different 
obstacle heights and the MVC tasks. No incidents of falling 
were observed, and we discarded the trials in which the subjects 
touched the obstacle or received help from the therapist. Subjects 
did not indicate discomfort during the tasks, nor did they show 
any feelings of fatigue.

The rectified and normalized EMG signals showed that the 
muscles were activated at a corresponding phase during the gait 
in a typical trial of a stroke subject and control subject (Figure 1). 
The muscle activation level and activation duration were greater 
among the stroke survivors than the healthy controls in the four 
muscles of the leading limb respectively. Also, there were some 
abnormal cocontractions among stroke survivors. For example, 

the TA and MG (a pair of agonist and antagonist muscles) had 
greater coactivation level in the stroke survivor (CI =  12.15%) 
compared to the healthy control (CI = 4.31%) during the swing 
phase of the obstacle crossing, as indicated by a circle in Figure 1.

The stroke survivors showed greater relative activation levels 
in the leading and trailing limbs compared to healthy controls 
(Table 2). For all height conditions during the swing phase, the 
TA activation of the stroke survivors reached an average of 41% 
of their maximum capacity, in contrast to 29% in the healthy con-
trols. Interactions were found between the groups and heights in 
the TA muscle of the leading limb during both swing and stance 
phases. The activation of the TA of the leading limb significantly 
increased with the obstacle height during both swing and stance 
phases (one-way ANOVA with post hoc tests, p < 0.05). The TA 
activation was significantly greater in the stroke survivors com-
pared to the healthy controls at the 20 and 30% heights during the 
swing phase and at 30% height during the stance phase (one-way 
ANOVA, p <  0.05). For the trailing limb, the activation of the 
BF and TA also significantly increased with the obstacle height 
during the swing phase (p < 0.05).

During the stance phase in the leading limb, the average CI for 
all height conditions of the RF and BF of the stroke survivors was 
17.95 ± 7.90%, which was significantly greater than the average 
of 13.81 ± 4.89% (p < 0.05) for the healthy controls. Also, the 
average CI of the TA and MG was also significantly higher for 
the stroke survivors (10.53 ±  5.54%) than the healthy controls 
(7.60 ± 2.98%) during the swing phase (p < 0.05). Similarly, in 
the trailing limb, the average CI of the RF and BF (15.51 ± 5.18%) 
and the TA and MG (14.33  ±  8.52%) were significantly larger 
among stroke survivors than the healthy controls (RF and BF: 
7.48  ±  2.39%, TA and MG: 7.85  ±  2.54%, p  <  0.05), but only 
during the stance phase. The average CI showed no significant 
difference between stroke survivors and healthy controls in other 
conditions (p > 0.05).

Figure 2 shows the details of the CI at each obstacle height for 
both the leading and trailing limbs during the swing and stance 
phases. For the CI of the two muscle pairs of the leading limb, a 
between-group difference was found at the 30% height in the RF 
and BF and the 20 and 30% heights for the TA and MG (p < 0.05). 
There was a significant difference between the 10 and 30% and the 
20 and 30% heights for the RF and BF during the stance phase, as 
well as between the 10 and 30% and the 20 and 30% heights for 
the TA and MG (p < 0.05). For the trailing limb, between-group 
differences in CI were found during the stance phase except for 
the TA and MG at the 10% height (p < 0.05). There was also a 
significant difference between the 10 and 30% heights and the 
20 and 30% heights for the TA and MG during the swing phase 
(p < 0.05, Figure 2).

The stroke survivors had significantly smaller global MPF val-
ues of the leading limb during the entire crossing gait cycle (RF: 
130.18 ± 13.33 Hz, BF: 134.67 ± 18.69 Hz, TA: 145.35 ± 12.52 Hz, 
MG: 130.18  ±  13.51  Hz) than the healthy controls (RF: 
139.26 ± 10.21 Hz, BF: 148.40 ± 9.57 Hz, TA: 151.89 ± 6.96 Hz, 
MG: 140.18 ±  17.49 Hz), respectively (p <  0.05). However, no 
significant difference was found in the MPF values of the trail-
ing limb during the entire crossing gait cycle between groups 
(p > 0.05). Figure 3 shows a more detailed comparison of MPF 
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FigUre 1 | The rectified and normalized electromyography (eMg) signals of the four muscles of the leading limb of a stroke survivor and a healthy 
control during 10% obstacle height. The solid vertical lines indicate the time of foot contact, the dot vertical lines indicate the time of toe-off, and the dashed 
vertical lines indicate the time of toe-off when crossing the obstacle. Gait cycle 0–1 indicates the cycle before the obstacle, gait cycle 1–2 indicates the crossing 
cycle, and gait cycle 2–3 indicates the cycle after the obstacle. The circle labeled zone is used to demonstrate the phenomenon of cocontraction.
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values in the leading limb at each obstacle height during different 
phases. The MPF of the four muscles of the leading limb was 
significantly smaller in the stroke survivors than the healthy con-
trols (p < 0.05). There was also a decreasing trend (no significant 
difference) for the MPF value of the muscles as the obstacle height 
increased in most conditions. However, the MPF value of the TA 
in the leading limb showed an increasing trend (no significant 
difference) with increasing obstacle height.

We also examined the correlation between the calculated 
variables including activation levels, CI, and MPF values and 
the clinical scales (FMA and BBS). We only found a significant 

positive correlation between the activation of BF and FMA 
(r  =  0.802, p  =  0.017) and a significant negative correlation 
between the activation of TA and FMA (r = −0.817, p = 0.013) 
during the swing phase at the 10% obstacle height (Figure 4). No 
significant difference was found in other situations or between 
other variables and clinical scales.

DiscUssiOn

In this study, we recorded the EMG signals of the four main 
lower limb muscles of stroke survivors and healthy controls 
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TaBle 2 | normalized electromyography activation percentages during swing and stance phases for rectus femoris (rF), biceps femoris (BF), tibialis 
anterior (Ta), medial gastrocnemius (Mg) of both leading and trailing limbs: mean (sD).

limb/time Muscle group Obstacle height (% leg length)

10 20 30 effect

Leading limb, swing phase RF Healthy 6.54 (4.06) 6.76 (4.02) 9.49 (8.02) a

Stroke 19.02 (18.44) 17.51 (16.30) 21.71 (19.68)
BF Healthy 11.93 (5.96) 12.70 (4.51) 13.62 (5.48) a

Stroke 16.21 (9.67) 17.74 (7.92) 20.53 (11.25)
TA Healthy 29.14□ (6.23) 30.14d (6.82) 32.66□,d (8.09) a,b,c

Stroke 34.03Δ,□ (10.49) 44.23Δ,○,d (13.89) 56.38□,○,d (16.78)
MG Healthy 19.27 (4.99) 22.91 (7.13) 25.5 (10.47) a

Stroke 34.21 (11.00) 35.98 (17.42) 36.48 (22.5)

Leading limb, stance phase RF Healthy 15.76 (10.52) 18.28 (11.23) 16.63 (12.10) a

Stroke 27.25 (14.68) 31.16 (16.53) 33.20 (14.24)
BF Healthy 21.26 (7.06) 20.33 (5.55) 21.23 (3.89) a

Stroke 23.00 (11.49) 38.55 (12.71) 36.92 (12.47)
TA Healthy 27.13 (12.80) 27.05 (16.72) 27.63d (12.09) c

Stroke 27.24 (7.43) 28.88○ (11.41) 42.08○,d (16.27)
MG Healthy 27.21 (6.66) 29.77 (10.30) 34.05 (11.21) a,b

Stroke 27.75 (11.47) 44.05 (20.79) 42.11 (13.32)

Trailing limb, stance phase RF Healthy 13.61 (8.39) 12.41 (6.91) 12.67 (8.45) a

Stroke 20.03 (12.42) 19.93 (11.8) 31.13 (26.62)
BF Healthy 8.08 (4.49) 8.66 (3.40) 9.42 (4.03) a

Stroke 24.42 (11.26) 28.71 (17.22) 30.38 (14.39)
TA Healthy 21.04 (10.31) 19.34 (7.02) 22.54 (12.12) a

Stroke 36.22 (15.25) 40.38 (11.29) 41.64 (18.34)
MG Healthy 18.05 (5.94) 18.09 (7.58) 21.07 (8.71)

Stroke 28.16 (18.73) 27.94 (17.22) 28.84 (17.82)

Trailing limb, swing phase RF Healthy 8.62 (2.53) 8.39 (2.78) 7.97 (2.77) a

Stroke 14.81 (5.92) 14.04 (4.87) 14.29 (5.44)
BF Healthy 21.97 (8.98) 24.41 (9.57) 29.91 (13.69) b

Stroke 23.18 (11.51) 26.94 (15.68) 29.66 (14.08)
TA Healthy 21.31 (6.74) 29.89 (7.17) 32.04 (5.54) a,b

Stroke 32.46 (12.23) 35.99 (12.05) 44.62 (16.74)
MG Healthy 20.25 (8.44) 22.06 (6.78) 25.32 (9.61) a

Stroke 39.24 (7.73) 33.39 (10.31) 37.71 (12.61)

aSignificant group effect.
bSignificant height effect.
cSignificant interaction effect.
dSignificant group effect by post hoc test.
Δ,□,○Significant height effect by post hoc test. “Δ” means significant height effect between 10 and 20% leg length height. “□” means significant height effect between 10 and 30% leg 
length height. “○” means significant height effect between 20 and 30% leg length height.
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during obstacle crossing. Our study demonstrated the activa-
tion levels of the muscles and the coactivation of agonist and 
antagonist muscles were greater, and the MPF values of the 
muscles were lower in the stroke survivors than the healthy 
controls, which indicated abnormal patterns of the gait and 
obstacle crossing following stroke. In addition, the significant 
correlations between the muscle activation of BF, TA, and FMA 
provided a reliable method to analyze the muscles of stroke 
survivors.

Muscle activation level
When crossing the obstacles, the two groups encountered the 
same mechanical challenge (obstacle heights equal to the same 
percentage of leg length), but the stroke survivors showed greater 
overall muscle activation levels than the healthy controls in both 
the leading limb and the trailing limb (Table 2). Postural stability 

and the ability to maintain balance were impaired after stroke. 
Kirker et al. demonstrated that while a normal pattern of hemi-
paretic muscle activation was found in stepping, these muscles 
remained badly impaired in response to a perturbation and com-
pensated by increased activity of the non-paretic muscles (11). 
Obstacle crossing challenges the stroke survivors to the limits of 
their capacity, and they are required to activate a greater level of 
their neuromuscular capacity to walk and safely step across obsta-
cles. This may cause more serious postural instability (6). Similar 
results were also found in children with cerebral palsy. The RF 
and MG activation have been reported to increase in the swing 
phase of gait, which is considered an abnormal activation pat-
tern that results from muscle weakness caused by cerebral palsy 
(26). According to Hahn et  al., the relatively higher activation 
level might lead to muscular fatigue and place stroke survivors at 
higher risk of falls (10).
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FigUre 2 | The details of cocontraction index (ci) of each height for both leading and trailing limbs during swing and stance phases. (a) The CI of 
rectus femoris (RF) and biceps femoris (BF) of leading limb during swing phase. (B) The CI of RF and BF of leading limb during stance phase. (c) The CI of tibialis 
anterior (TA) and medial gastrocnemius (MG) of leading limb during swing phase. (D) The CI of TA and MG of leading limb during stance phase. (e) The CI of RF and 
BF of trailing limb during stance phase. (F) The CI of RF and BF of trailing limb during swing phase. (g) The CI of TA and MG of trailing limb during stance phase. 
(h) The CI of TA and MG of trailing limb during swing phase. The asterisk (*) indicates significant effect between groups. The bar (-) indicates significant effect 
between heights.
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We found that the activation level of TA increased with 
increasing obstacle height in the swing phase of both leading and 
trailing limbs in stroke survivors. The TA muscle is the primary 
ankle dorsiflexor and is activated from the initial swing to let the 
ankle joint turn into a neutral position. However, Antonopoulos 
et  al. found no significant height effect of the activation of the 
TA muscle for young adults during obstacle crossing (27). The 
increased activation level of TA in stroke may related to spasticity. 
Because of the excessive coactivation of the antagonist (MG), the 
increased activation level of TA was necessary to ensure a safe 
clearance during obstacle crossing.

Muscle cocontraction
Although cocontraction is inefficient for joint movement, it 
might be important for providing joint stability, especially in 
tasks like obstacle crossing (14). When the leading limb steps 
over an obstacle, the cocontraction of the TA and MG is greater 
in the stroke survivors compared with the healthy controls and 
also increased with increasing obstacle height (Figure  2C). 
The dorsiflexor (TA) strength is weakened after stroke, and 
the cocontraction of the antagonist (MG) might reduce the 
dorsiflexion range but increase the stability during the swing 
phase to ensure safe crossing (28). Also, the cocontraction 
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FigUre 3 | The details of mean power frequency (MPF) value of four muscles of the leading limb of each height for both stroke survivors and healthy 
controls during obstacle crossing. (a) The MPF of rectus femoris (RF) during swing phase. (B) The MPF of biceps femoris (BF) during swing phase. (c) The MPF of 
tibialis anterior (TA) during swing phase. (D) The MPF of medial gastrocnemius (MG) during swing phase. (e) The MPF of RF during stance phase. (F) The MPF of BF 
during stance phase. (g) The MPF of TA during stance phase. (h) The MPF of MG during stance phase. The asterisk (*) indicates significant effect between groups.
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of thigh muscles (BF and RF) is greater in the post-obstacle 
stance phase of the leading limb of the stroke survivors com-
pared with the healthy controls, which is helpful to maintain 
balance by controlling the knee position during loading (29)  
(Figure 2B).

The greater cocontraction of the two pairs of lower limb 
muscles with increasing height also indicated muscle weakness 
on the paretic side of stroke survivors, who needed greater cocon-
traction to maintain balance when crossing obstacles of higher 
heights. Muscle cocontraction is also related to postural stability 
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FigUre 4 | The correlation between the Fugl-Meyer assessment (FMa) scores and the muscle activation levels when crossing the 10% leg length 
height obstacle. (a) Correlation between FMA scores and muscle activation level of biceps femoris (BF). (B) Correlation between FMA scores and muscle 
activation level of tibialis anterior (TA).
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and dynamic strength in osteoarthritis (30), cerebral palsy (31), 
and Parkinson’s disease (32). The increased muscle cocontraction 
is a metabolically costly process (33), but it may help preserve 
some mobility in those with weakness (34).

When the trailing limb steps over the obstacle, the cocontrac-
tion of the TA and MG also showed a height effect, but there was 
no significant difference between groups during the swing phase 
(Figure 2H). This indicates that the cocontraction might be an 
adaptation strategy for both stroke survivors and healthy controls 
to increase postural stability. Both of the two pairs of lower limb 
muscles showed greater cocontraction in stroke survivors during 
the trailing limb stance phase (Figures  2E,G), which could be 
attributed to the need for greater stability and motor adaptation 
to the weakness of the affected leading limb to support body 
weight (35, 36). With motor recovery, the muscle strength could 
be increased and enable a more efficient strategy with decreased 
muscle cocontraction. Hu et al. investigated the motor function 
recovery process in cases of chronic stroke and found that CI 
values decreased during the recovery process as motor func-
tion improved (24). Assessing muscle cocontraction helps us to 
understand the coordination mechanism in stroke survivors and 
the adaptation strategy they use to ensure safe crossing.

analysis of Power spectrum
The overall power spectrum analysis of all subjects indicated that 
stroke survivors had reduced MPF of the surface EMG in the lead-
ing limb compared with healthy controls (Figure 3). The reduc-
tion in MPF or MF on the paretic side has been report previously 
(16, 17). The decrease in MPF values of the paretic muscles could 
be due to the loss of muscle fibers and impairments in the motor 
unit following stroke. The firing rate has been demonstrated to 
be lower on the paretic side of stroke survivors compared both 
with the non-paretic side of stroke survivors and with the healthy 
controls during contraction (37, 38), which might also cause the 
reduced MPF values.

Alternations in the EMG spectrum have also been reported 
in children with cerebral palsy. Wakeling et al. and Gestel et al. 
found increased MPF value in such children compared with 
asymptomatic controls during gait and related it to the muscle 
dysfunction (26, 39). The assessment of the EMG spectrum could 
be used as an evaluation tool for functional muscle strength. 
No significant difference of MPF was found in the trailing limb 
between stroke survivors and healthy controls. This might be due 

to our instruction to the stroke survivors to use their affected 
side to cross the obstacle first and to use the unaffected limb as 
the trailing limb. This might have taken less effort to cross the 
obstacle and resulted in the lack of a significant between-group 
difference.

Obstacle crossing is a complex task, and the different heights 
place different demands on the subjects. Both groups showed a 
decreasing trend in MPF value with increasing obstacle height in 
the leading limb except for the MPF of the TA (Figure 3). Gabriel 
and Kamen also reported a significant decrease in the spectra 
with the force in the biceps brachii (40). With increased muscle 
activation level, there might be an increased degree of motor 
unit synchronization for the stroke survivors with the increasing 
obstacle height, which was likely to lead to reduction in the MPF 
values and fatigue (41, 42).

correlation
One interesting finding in our study is that there were significant 
correlations between calculated muscle activation levels of BF 
and TA in the leading limb and FMA scores measured by the 
therapists during swing phase at 10% leg length height (Figure 4) 
in stroke survivors. No significant correlation was found between 
muscle activation levels and FMA scores during 20 or 30% leg 
length height obstacle crossing in stroke survivors. Performance 
of stroke survivors was more disturbed during challenging task 
such as for obstacle crossing of higher height (43), and they 
couldn’t take good control of themselves which led to abnormal 
patterns and large variations within group when step across the 
obstacle. The activation level of the BF increased while that of the 
TA decreased with increasing obstacle height. Proximal control 
is more efficient than distal control in the lower limbs for stroke 
survivors to ensure safe obstacle crossing according to kinematic 
analysis (7). Our research showed through EMG analysis that 
stroke survivors with high FMA scores had greater BF activation, 
which controlled the hip joint and knee joint to elevate the toe. 
At the same time, the TA (which is related to ankle dorsiflexion) 
was abnormally activated to a larger degree in the face of fall 
risk among stroke survivors with lower FMA scores. Similar to 
Li et al., we found no significant correlation between the MPF 
values and clinical scales or between CI and clinical scales (16). 
Nevertheless, the significant correlation between the muscle 
activation levels and FMA scores means that it is reliable to use 
EMG signals to analyze the muscles of stroke survivors.
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limitations
This study has several limitations. The recruited stroke survivors 
in this study had good function, so the results might not be useful 
for moderate or severe stroke survivors. We instructed the stroke 
survivors to use their hemiparetic side to take the first step over 
the obstacle and to use the unaffected side as the supporting limb, 
which is safer for them. We neglected situations using the other 
limb as the leading limb, which might lead to a minor difference 
in the results. Moreover, significant differences between stroke 
survivors and healthy controls should also be interpreted with 
caution considering the relatively small sample size. We plan to 
recruit more stroke survivors of different functional levels and 
to instruct them to use both limbs as the leading limb in future 
work to obtain a more comprehensive understanding of the 
neuromuscular changes.

conclusion
In this study, stroke survivors were recruited to step across 
obstacles of three different heights and compared with healthy 
controls to investigate motor control mechanisms that could 
not be reflected during level walking. Although the stroke sur-
vivors could safely step across the obstacles, they demonstrated 
abnormal motor control patterns, such as greater overall muscle 
activation level and larger cocontraction of the agonist and 
antagonist muscles. These might result in muscle fatigue, which 
would lead to a high risk of tripping and higher energy cost. 
The reduction in the MPF values of the paretic side of stroke 
survivors could be related to impairments of the motor unit or 
other complex neuromuscular alterations. The decreasing trend 

of the MPF values when crossing higher heights might due to 
greater motor unit synchronization, which could also lead to 
fatigue. The significant correlations between muscle activation 
levels and clinical scales provided a reliable method of analyzing 
the muscle functions of stroke survivors. These findings could 
help therapists to understand the neuromuscular changes fol-
lowing stroke and work out specific methods for rehabilitation 
of the lower limb muscles.
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This study presents wavelet packet feature assessment of neural control information in
paretic upper limb muscles of stroke survivors for myoelectric pattern recognition, taking
advantage of high-resolution time–frequency representations of surface electromyogram
(EMG) signals. On this basis, a novel channel selection method was developed by
combining the Fisher’s class separability index and the sequential feedforward selection
analyses, in order to determine a small number of appropriate EMG channels from
original high-density EMG electrode array. The advantages of the wavelet packet features
and the channel selection analyses were further illustrated by comparing with previous
conventional approaches, in terms of classification performance when identifying 20
functional arm/hand movements implemented by 12 stroke survivors. This study offers
a practical approach including paretic EMG feature extraction and channel selection
that enables active myoelectric control of multiple degrees of freedom with paretic
muscles. All these efforts will facilitate upper limb dexterity restoration and improved stroke
rehabilitation.

Keywords: myoelectric control, pattern recognition, wavelet packet transform, channel selection, stroke
rehabilitation

INTRODUCTION

Restoration of upper limb function is an important but challenging task in stroke rehabilitation due
to arm/hand dexterity (which is critical for daily activities). A number of upper limb robotic devices
have been designed to assist rehabilitation training for promoting upper limb motor recovery (1, 2)
among which some recently emerging ones involve different human–machine interfaces enabling
active response to user’s intention. Compared with passive training, such an active control approach
has proven to be more effective for motor function improvement (3, 4).

Electromyogram (EMG) is one of the most commonly used control signals for artificial limbs,
rehabilitation robots, and other assistive devices (5–7). Most development in myoelectric control is
primarily based on a simple control strategy that the EMG of a single muscle is mapped to a single
degree of freedom (DOF). Considering the complexity of upper limb functional movements per-
formed bymultiplemuscles, it is unfeasible to controlmultiple DOFs through such a straightforward
mapping (8). Because of this, myoelectric pattern recognition has been developed for controlling of
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multiple DOFs (8–10). So far, the myoelectric pattern recogni-
tion control strategy has been primarily focused on improving
dexterity of prosthesis control for amputee users, whereas its
application for neurological injury patients has not been fully
explored (5). Only very recently, myoelectric pattern recognition
was first reported to detect movement intention of affected limb
after stroke (8). A more comprehensive assessment of neural
control information from paretic muscles of stroke subjects was
further performed using high-density surface EMG recording and
pattern recognition techniques (4).

While high-density surface EMG pattern recognition has
revealed substantial neural control information that can be
extracted from neurologically impaired muscles, there are a num-
ber of issues to be considered for developing a myoelectric control
system. These include assessment of different EMG features, selec-
tion of a practical number of appropriate EMGchannels (myoelec-
tric control sites), and user-specific design according to individual
need and performance. A variety of features describing surface
EMG signals in different (time, frequency, time–frequency, etc.)
domains have been used for myoelectric pattern recognition anal-
ysis, but primarily aimed at prosthetic control (9–12). So far
for patients with neurological injuries, the myoelectric pattern
recognition analysis has been limited to using conventional time-
domain (TD) feature set [four time domain statistics proposed by
Hudgins et al. (9) and auto-regressive (AR)+ root mean square
(RMS) feature set (a combination of AR coefficients and RMS
amplitude) (5)]. Assessment of EMG features for neurological
injury patientsmight be promising to improvemyoelectric pattern
recognition performance, particularly given the neurologic injury
induced muscle impairments (such as weakness, spasticity, and
abnormal coactivation) (13).

Time–frequency analysis has been developed as a useful
tool for processing non-stationary biosignals (such as EMG).
Time–frequency representations of surface EMG such as using
wavelet packet transform (WPT) can also be applied in myoelec-
tric pattern recognition, as demonstrated in amputees or able-
bodied subjects (10, 14, 15). In the current study, the utility
of applying WPT to stroke subjects was examined. The WPT
is able to generate a redundant set of subspaces arranged in a
binary tree structure with any designed depth/resolution, where
the input signal can be accordingly decomposed. Performing
wavelet packet analysis of surface EMG recordings from paretic
muscles has several advantages. For example, its high resolution
in both time and frequency domains makes it feasible to pro-
duce a sufficient number of features, from which those highly
associated with different movement intentions of the affected
limb (i.e., discriminable features) can be easily selected via a
best basis selection approach to maximize the pattern sepa-
rability (15, 16). Moreover, such a feature selection approach
can be expanded for selecting surface EMG channels (myoelec-
tric control sites) from the high-density surface EMG record-
ings (by adopting the same discriminant measure). The advan-
tages of the WPT analysis for myoelectric pattern recognition
and channel selection were demonstrated for stroke patients.
These findings provide useful information for developing a pat-
tern recognition-based myoelectric control system for stroke
rehabilitation.

METHODS

Dataset Description
The dataset used in this study was selected from a database previ-
ously reported in Zhang and Zhou (4), which was approved by the
Institute Review Board of Northwestern University (Chicago, IL,
USA). This database included high-density surface EMG record-
ings from 12 chronic stroke subjects with hemiparesis during
their performance of different functional movements involving
the affected upper limb, notably the affected hand. The detailed
demographic information and clinical assessment for the stroke
subjects can be found in Ref. (4). All subjects gave their informed
consent before the experiment. Table 1 displays demographics
and clinical information of all stroke subjects in detail.

During the experiment, each subject was instructed to perform
20 functional movements using the affected upper limb, namely,
wrist flexion/extension, wrist supination/pronation, elbow
flexion/extension, hand open/close, thumb flexion/extension,
index finger flexion/extension, finger 3–5 flexion/extension,
fine pinch, lateral pinch, tip pinch, gun posture, and ulnar wrist
down/up. A video demonstration of each movement was used as
a guide for subjects to follow and perform the movement. The
experiment protocol comprised of 20 trials, each trial consisting
of 5 repetitions of the same movement. For each repetition, the
subject was asked to hold the muscle contraction for roughly 3 s
and then relaxed for a rest period of 5–20 s.

The high-density surface EMG signals in the original database
were recorded via 89 monopolar surface electrodes placed on the
affected upper arm, forearm, and hand muscles. A Refa EMG
recording system (TMS International BV, Netherlands) with a
band-pass filter between 20 and 500Hz was used for multi-
channel EMG recording at a sampling rate of 2 kHz per chan-
nel. Due to improved myoelectric classification performance and
more clinical relevance compared with monopolar configuration,
46-channel bipolar surface EMG data were produced from the
original 89-channel EMG recordings. The detailed information
about the electrode formation and single spatial differential fil-
ter is shown in Figure 1. Besides, 10 bipolar channels, namely,
the channel 9, 13, 17, 19–21, 23, and 41–43 were selected from

TABLE 1 | Subject demographics and clinical information.

Subject # Age Sex Duration Paretic FMUE C–M hand

1 59 F 13 L 28 2
2 56 M 23 L 15 2
3 67 M 8 L 20 4
4 63 F 7 R 19 2
5 45 M 6 L 58 5
6 58 F 2 R 23 2
7 64 M 8 L 38 2
8 61 M 7 R 56 4
9 65 M 15 L 20 2
10 46 M 13 L 52 3
11 81 M 17 L 28 2
12 71 F 22 R 22 3

Duration, years post stroke; paretic, the side of hemiparesis; FMUE, the Fugl-Meyer
assessment scale of the paretic upper-extremity (total score: 66); C–M hand, the hand
impairment part of the Chedoke–McMaster stroke assessment scale (from 1 to 7).
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FIGURE 1 | Illustration of the electrode placement for 46-channel bipolar sEMG signal recordings derived from 89-channel monopolar sEMG
database. The 10 electrode channels marked in a black/darker color are included in an empirically defined channel set.

the 46 channels to form a channel set. The selection of such
a channel set was in accordance with electrode sites frequently
used inmany previously reportedmyoelectric control systems (8).
These channels were regarded to target at primary muscles with
high relevance to functional movements of the upper limb, as
marked in a black/darker color in Figure 1. In this study, such an
empirically defined channel set was compared with all 46 high-
density channels or a number of optimally selected channels in
terms of myoelectric control performance.

For the recorded signals, the onset and offset of a voluntary
EMG activity segment corresponding to each repetition of muscle
contractionwere determined first as described inRef. (4). For each
repetition of muscle contraction, the EMG activity segment in a
form of multiple channels was further segmented into a series of
overlapping analysis windows with a window length of 256ms

and an overlapping rate of 75% for two consecutive windows.
Consequently, the following feature extraction and classification
procedures were performed on these analysis windows.

Feature Extraction Using WPT
The WPT was a generalized version of classical wavelet decompo-
sition method that offers a multi-resolution and time–frequency
analysis of non-stationary, such as biomedical signals (17, 18).
Define the original signal space as Ω0,0. The WPT is able to split
the signal into an approximation (in subspace Ω1,0) and a detail (in
subspace Ω1,1). Each approximation or detail obtained from the
top-level, supposed in the subspace Ωj ,k, can be further split into
a new approximation and a new detail, located in two orthogonal
subspaces Ωj+1,2k and Ωj+1,2k+1, respectively. This process can be
iteratively performed to a targeted depth J. Here, j is a scale index
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ranging from 0 to J, and k represents subband index within the
scale, ranging from 0 to 2j − 1. Consequently, the WPT generates
a binary tree structure of subspaces spanned by a set of bases, to
which a signal can be mapped for multi-resolution analysis. Such
a characteristic allows WPT to be successfully applied to feature
extraction in the fields of pattern recognition (14, 15, 18).

In this study, the WPT with the five-order symmlet wavelet
was first applied to each channel of an analysis window for
feature extraction. The five-order symmlet wavelet was selected
from many mother wavelet functions frequently used in previous
reports (10, 14, 15) and was further determined by some pretests
in terms of classification performance. The WPT depth is also an
important factor forWPT analysis. It is acknowledged that a small
depth cannot yield sufficient resolution for extracting effective
features, whereas a large depth leads tomuchmore computational
complexity. By considering this trade-off, the WPT depth of 3
or 4 has been recommended by previous studies (15, 19). The
WPT depth of 4 was chosen in this study after some pretests, thus
producing 30 subspaces in total. After the WPT, the energy values
of all 30 subspaces were calculated as potential features (refer to
feature selection approach in the following section), where the
energy of each subspace was defined as a logarithmic value of
the summation of the squares of all wavelet packet coefficients in
the subspace. The logarithmic transform was chosen for showing
better performance of classification after some tests.

Feature Selection Using Best Basis
Selection
The WPT binary tree yielded a redundant set of subspaces due
to the subspace overlap in frequency axis. Afterward, the features
extracted from all subspaces were regarded to carry redundant
information. A great number of redundant features were likely
to impose high computational cost and compromise classifica-
tion performance. For application of the WPT analysis to feature
extraction or pattern recognition, a best basis is usually chosen to
maximize the class separability in terms of a proper discriminant
measure. To achieve this goal, a feature selection procedure relying
on a best basis selection algorithm is necessary. In this study, the
algorithm was designed to choose the best set of subspaces from
the WPT binary tree, since each subspace produced a potential
feature. To determine the best subspace, Fisher’s class separa-
bility index (FCSI) described in Ref. (20) was employed as the
discriminant measure, which is introduced below.

Suppose that
{
x(c)
i,(j,k)

}Nc

i=1
represents a set of energy features

extracted from the subspace Ωj ,k of the training signals belonging
to class c (1≤ c≤C, here C= 20), where Nc is the number of
samples (i.e., analysis windows) in class c.

For each subspace, the mean and variance of these features
grouped by class can be calculated as

m(c)
j,k =

1
Nc

∑Nc

i=1

{
x(c)
i,(j,k)

}Nc

i=1
, (1)

var
1≤i≤Nc

(
x(c)i,(j,k)

)
=

1
Nc

∑Nc

i=1

(
x(c)i,(j,k) − m(c)

j,k

)2
. (2)

Here, the operator vari(·) is defined to calculate the variance of
a set of constant variables indexed by i. Thus, the FCSI, for the

subspace Ωj ,k, is finally defined as

FCSI =
∑K−1

p=1

∑K

q=p+1

∣∣∣m(p)
j,k − m(q)

j,k

∣∣∣2
var

1≤i≤Np

(
x(p)i,(j,k)

)
+ var

1≤i≤Nq

(
x(q)i,(j,k)

) .

(3)
where p and q represent the indices of two different classes.
Generally, a higher value of FCSI indicates higher degree of class
separability. The best basis selection algorithm using FCSI is able
to rank the features and make it practical to choose a subset of
these regarded as being most discriminant.

In this study, feature selection approachwas independently per-
formed on each channel. Many previous studies regarding wavelet
packet features also took the same procedure (10, 21, 22). For
each channel, the number of selected subspaces/features needed
to be carefully determined. It should be acknowledged that inad-
equate number of features may not guarantee the classification
performance, whereas too many features lead to much computa-
tional cost. Considering such a trade-off, we set the number of
subspaces/features per channel to 12 after performing sensitivity
analysis (in terms of classification accuracy) by varying the feature
number per channel from 1 to 25. Finally, the features from all
channels were further concatenated as a high-dimensional feature
vector for each analysis window.

Feature Dimensionality Reduction
and Classification
Even with the above feature selection procedure, the high-density
surface EMG recordings still resulted in very high-dimensional
feature vectors (i.e., 552-dimensional feature vectors with 12 best
bases for each of 46 channels). In this case, feature dimensionality
reduction is required to ensure the generalization capability of
a classifier (23). In this study, uncorrelated linear discriminant
analysis (ULDA) was used to reduce the feature dimension, which
minimizes within-class distance and maximize between-class dis-
tance by an optimal transformation (24).

After the feature dimensionality reduction, linear discriminant
classifier (LDC) was employed in this study. The LDC is able to
model the within-class density of each class as a multi-variant
Gaussian distribution and gives decisions of unknown samples
by using the maximum a posteriori probability (MAP) rule and
Bayesian principles (9, 25). The LDC was used due to its ease of
implementation and efficient classification performance (4, 8).

In this study, the pattern classification was conducted in a
user-specific manner, where both training dataset and testing
dataset were derived from the same stroke subject. A fivefold
cross-validation was conducted to evaluate the classification per-
formance. This indicated that the EMG data from any four repeti-
tions of muscle contraction were selected and assigned as training
dataset, while the EMG data from the remaining repetition were
used to form the testing dataset. The classification performance
for each subject was evaluated as classification accuracy, which
was calculated as the percentage of correctly classified windows
over all the testing windows including all movement patterns over
testing dataset. These window numbers were summed up over all
fivefold tests for each subject.
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For the performance comparison, the routine TD feature set
including four statistics of the surface EMG signals, namely, mean
absolute value (MAV), the number of zero crossing (ZC), the
slope sign change (SSC), and the waveform length (WL), was
also employed during the tests. The TD feature set was used in
a similar way as previous studies that all TD features from all the
considered channels were concatenated to form a feature vector
for each analysis window. The same feature dimension reduction
approach using ULDA was applied as well before LDC classifier
implementation.

Channel Selection
The use of FCSI for quantifying the discriminating power of fea-
tures was further extended to channel selection from high-density
surface EMGrecordings. After the feature extraction and selection
methods introduced above, a subset of features was determined
for each channel and used to form a vector representing the most
discriminable information from that channel. In order to perform
channel selection, it was necessary to assess the discriminating
power of feature vectors rather than scalars. Thus, the FCSI was
accordingly modified as follows.

Here, let
{
x(c)i,l

}Nc

i=1
be a set of feature vectors extracted from

the l-th channel of the training data belonging to class c. The
mean of these feature vectors, originally defined in Eq. 1, needs to
be modified, and their variance, namely var

1≤i≤Nc

(
x(c)i,l

)
, is further

defined to be the summation of all variances calculated along any
single dimension of the vector, as depicted in Eqs 4 and 5.

m(c)
l =

1
Nc

∑Nc

i=1
x(c)i,l , (4)

var
1≤i≤Nc

(
x(c)i,l

)
= var

1≤i≤Nc

(
x1(c)

i,l

)
+ var

1≤i≤Nc

(
x2(c)

i,l

)
+ · · · + var

1≤i≤Nc

(
xd(c)

i,l

)
, (5)

where x= [x1, x2, . . ., xd]T denotes a d-dimensional vector. Thus,
the FCSI, for the l-th channel, can be finally computed via

FCSI =
∑K−1

p=1

∑K

q=p+1

∣∣∣m(p)
l − m(q)

l

∣∣∣2
var

1≤i≤Np

(
x(p)i,l

)
+ var

1≤i≤Nq

(
x(q)i,l

) , (6)

where p and q represent the indices of two different classes
again. Similarly, a higher FCSI value indicates a higher degree
of class separability for a certain channel. Following the strategy
of feature selection using FCSI, a subset of optimal channels can
be selected by ranking the channels using FCSI. This channel
selection approach was termed as FCSI method in this study.

Channel selection has also been conducted in previous studies
(25, 26) to assess themyoelectric pattern recognition performance
using a reduced number of EMG channels selected from high-
density signal recordings. A straightforward algorithm, termed
as sequential feedforward selection (SFS), was often used, which
iteratively adds the most informative channels in terms of clas-
sification accuracy. In the first iteration of this algorithm, each
of all candidate channels is independently used and the channel

producing the highest classification accuracy was selected to be
the first optimal channel. During the next iteration, the previously
selected channels were combined with each of the other channels
to form a new subset sequentially, and the subset producing the
highest classification accuracy was determined. This procedure
can be iteratively performed when meeting a desired number of
selected EMG channels. Note that the SFS directly uses the classi-
fication accuracy as the criterion, which conventionally requires
classifier training and testing procedures in each iteration. Thus,
the channels selected by the SFS algorithm are more likely to be
overfitted to the testing data with limited generalization ability. In
order to avoid such overestimated performance in some degree,
the SFS algorithm used in this study was performed only on
the training dataset. This required the original training dataset
consisting of four repetitions of muscle contraction to be further
divided into two parts, one consisting of three repetitions for SFS
training and the other consisting of the remaining repetition for
SFS testing. To evaluate the classification performance with the
channels selected by the SFS algorithm, a classifier was imple-
mented with all the four repetitions (used for SFS) as training
dataset and the remaining fifth repetition (which was not used for
SFS) as testing dataset.

The channel selection using FCSI is able to independently
choose a subset of best channels in any size m. It should be
acknowledged that the m best channels may not be the best m
channels. By contrast, the standard SFS algorithmoffers a practical
way of selecting a subset of appropriate channels by taking the
effect of channel combination into account, but it conventionally
suffers from the overfitting problem. By taking advantage of both
methods to overcome its owndrawbacks, a novel channel selection
method named FCSI+ SFS was proposed in this study. For clarity,
the FCSI+ SFS algorithm can be briefly described as follows:

(a) Initialize a candidate channel set Φ = {l|l= 1, 2, . . ., L} and
a selected channel set ψ = empty, where L denotes the total
channel number.

(b) For any channel l in Φ, calculate its FCSI value via Eqs 4–6.
(c) Choose the channel lm that yields the highest FCSI value

among channels in Φ and then move the channel lm from Φ
to ψ.

(d) For any remaining channel l in Φ, combine the channel l with
all channels in ψ and calculate the FSCI value of their combi-
nation via Eqs 4–6. Note that in this case, the feature vector x
is formed by concatenating features from all combined chan-
nels. If applicable, the high dimensionality of these feature
vectors was reduced by ULDA prior to the FSCI evaluation.

(e) Choose the channel lm that yields the highest FCSI value,
when it is combined with all channels in ψ, and then move
the channel lm from Φ to ψ.

(f) Repeat the steps (d) and (e), until the size of the selected
channel set ψ reaches into a preset number.

Consequently, the performance of the proposed FCSI and
FCSI+ SFS algorithms was examined and compared with solely
using the SFS algorithm for channel selection. To ensure a fair
comparison, all the three algorithms selected their respective
desired channels using the training dataset (i.e., four repetitions),
while the classification performance of the selected channels was
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evaluated using the fifth one (not involved in channel selection
process) as testing dataset for the classifier.

RESULTS

Feature Selection and Classification
An example of the effectiveness of FCSI for quantifying the
discriminating power of features is shown in Figure 2, where
the distribution of features for three representative classes were
demonstrated in three scatter plots: (a) with the lowest FCSI
values, (b) with the highest FCSI values, and (c) from three TD
parameters (WL, ZC, and SSC). From the visual inspection, it
can be found that the features determined by three highest FCSI
values reflect good class separability in the figure, whereas such
separability was not observed for features with lowest FCSI values
or three TD features.

Following the wavelet packet feature extraction and selection
using FCSI, along with LDC classification, pattern recognition
analysis was implemented in a user-specific manner for all 12
stroke subjects. Table 2 summarizes the classification perfor-
mance in terms of overall accuracy for identifying 20 intended
upper limb movement, when both the WPT-based method and
TD feature extraction method were applied to the EMG data
consisting of 46 high-density channels or 10 predefined channels,
respectively. A two-way repeated-measure ANOVA was applied
on the classification accuracies, with the channel number (high-
density 46 and 10) and feature set (WPT and TD) both considered
as within-subject factors, in order to examine their effect. It can be
unsurprisingly observed that high classification accuracies above
95% were achieved for almost all subjects when the 46 high-
density channels were totally used, regardless of the feature extrac-
tionmethods. By contrast, the use of predefined 10 channels led to
a performance compromise with an averaged accuracy of 91.15%
for the TD features and 92.91% for the WPT features, respectively.
An overall significant effect of both channel number (F= 14.597,
p= 0.003) and feature set (F= 10.031, p= 0.009) on classification
accuracy was revealed by the ANOVA. In this case, the WPT-
based feature extraction approach showed superior performance

to the routine TD feature extractionmethod by about 2% accuracy
improvement with statistical significance.

Channel Selection
The performance of the proposed method for selecting an appro-
priate subset of channels was further examined. Admittedly, the
performance of myoelectric pattern recognition is sensitive to
both the channel number and the number of extracted features
per channel. By changing both factors, their effect on the classifi-
cation performance was simultaneously examined using the FCSI
algorithm. Figure 3 shows a representative example from Subject
2 illustrating how the classification performance (as described
by error rate) changes in the extracted/selected feature number
per channel varying from 1 to 25 and the channel number vary-
ing from 1 to 20. It can be observed that very low (approxi-
mately 1 or 2) feature number per channel or channel number

TABLE 2 | Classification accuracy (unit: %) in stroke subjects when both
TD and WPT features were extracted from the EMG data of 46 high-density
channels and 10 predefined channels, respectively.

Subject # 46 high-density
channels

10 predefined
channels

TD WPT TD WPT

1 94.36 98.74 82.89 86.57
2 91.15 95.75 80.61 82.46
3 94.07 98.56 93.47 89.34
4 87.36 98.00 82.93 87.69
5 96.81 94.22 96.73 98.49
6 95.02 98.61 86.56 86.65
7 99.65 100.0 94.67 96.56
8 99.58 100.0 96.39 99.47
9 93.63 98.96 95.94 94.90
10 97.84 99.78 86.80 96.26
11 99.32 99.78 98.60 97.95
12 100.0 100.0 98.20 98.60
Average 95.73±3.90 98.53±1.82 91.15±6.68 92.92±5.95

TD, the time domain feature set; WPT, the proposed feature set using wavelet packet
transform.

FIGURE 2 | Illustration of the effect of FCSI values on feature separability. Three upper limb movements (wrist flexion, wrist supination, and fine pinch) in the
18-th channel from Subject 3 are used as an example to produce the scatter plots. The three-dimensional coordinate axes stand for feature values. (A) Three
features with the lowest FCSI values; (B) three features with the highest FCSI values; and (C) three TD features (WL, ZC, and SSC) used for comparison.
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FIGURE 3 | Effect of number of optimal wavelet basis on the channel selection performance from Subject 2. The three-dimensional x, y, and z coordinate
axes stand for number of channels, number of features, and error classification rates evaluated by LDC classifier. The number of optimal wavelet basis can be
determined based on features first reaching the minimum error rate and the trade-off of computational cost and classification performance.

could not produce high classification performance (low error
rate) and the increase of channel number played a critical role in
performance improvement. Similar findingswere observed for the
other subjects. Considering the trade-off between classification
performance and practicability (i.e., low computational cost and
reduced number of channels), the feature number was set to be 12,
producing an error rate of 1.22% for Subject 2 when the channel
number was reduced to 7. This confirmed our setting of feature
number per channel to 12 in both previous and following data
analyses.

After the feature number per channel was appropriately deter-
mined, the performance of three channel selection algorithms was
evaluated. Figure 4 reports the classification accuracies averaged
across 12 stroke subjects, when the EMG channels were pro-
gressively selected using FCSI, SFS, and FCSI+ SFS, respectively.
When applying WPT and TD feature extraction methods on
10 predefined channels, in addition, the achieved classification
accuracies are indicated as two horizontal dashed lines in Figure 4
for comparison purpose. It can be found that each of the three
algorithms yielded a similar increasing trend of classification
accuracy when the channel number increased. The classification
accuracy increased rapidly to approximately or over 90% at chan-
nel number ranging from 1 to 10 and then remained almost steady
or slightly increased with further channel number increasing. The
proposed FCSI+ SFS method demonstrated its superior perfor-
mance to the other two with highest average accuracies. Specifi-
cally, by using 10 optimally selected channels as compared with
the 10 predefined channels, improved classification performance
was obtained. Meanwhile, the use of only 5 channels optimally
selected by either FCSI+ SFS or SFS algorithm was found to
produce classification performance comparable to that of using
10 predefined channels. Furthermore, a series of bivariate Pear-
son’s correlation analyses were conducted to further examine the

effect of subjects’ clinical information (including years post stroke,
FMUE, and C–M hand scores) on the classification accuracies
derived from the use of any channel number (high-density 46,
predefined 10, or optimally selected 10 channels by FCSI_SFS or
SFS) along with any feature set (WPT or TD), respectively. No
significant correlationwas foundbetween any clinical information
and the classification accuracy (p> 0.058) except the correlation
between the FMUE score and the classification performance with
WPT feature extracted from 10 predefined channels (correlation
coefficient R= 0.651, p= 0.022).

Table 3 shows the first 10 selected channels for each subject
using the 3 methods. It was found, as would be expected, that
the selected channels were different across subjects even using the
same method. For each subject, the selected channels also varied
when three methods were performed, respectively. However, for
each subject, several channels (marked in bold numbers, though,
with varying order of selection)were commonly selected using any
of the three algorithms.

DISCUSSION

Myoelectric pattern recognition has great potential for imple-
menting interactive control of assistive robotic devices, which is
of particular importance for restoration of dexterous arm/hand
functions. Previous high-density surface EMG pattern recog-
nition analysis using conventional TD or AR+RMS features
has revealed that substantial neural control information can be
readily extracted from paretic muscles of stroke patients. In the
current study, a feature extraction method based on WPT was re-
examined and applied to high-density surface EMG signals from
stroke subjects for improvedmyoelectric pattern-recognition per-
formance. Taking advantage of the classic wavelet packet fea-
ture extraction and selection approach, a novel channel selection
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FIGURE 4 | The classification performance as a function of number of channels selected via the FCSI, SFS, and FCSI+SFS methods, respectively. For
each subject, the classification accuracies were derived from the testing dataset. The classification accuracies from all 12 subjects were averaged and plotted with
SD error bars. The classification accuracies derived from applying both WPT and TD features to 10 predefined channels are indicated as two horizontal dashed lines.

TABLE 3 | List of the first 10 selected channels for all 12 stroke subjects using 3 channel selection methods, respectively.

Subject # FCSI +SFS SFS FCSI

Channel combination Channel combination Channel combination

1 (46, 6, 7, 29, 40, 5, 26, 27, 20, 44) (6, 46, 2, 27, 3, 17, 36, 29, 26, 7) (19, 11, 3, 46, 43, 20, 2, 12, 7, 21)
2 (10, 17, 44, 1, 6, 13, 34, 36, 24, 8) (4, 25, 44, 5, 6, 10, 31, 17, 7, 27) (2, 44, 13, 17, 25, 10, 1, 5, 38, 16)
3 (22, 38, 45, 12, 18, 43, 44, 31, 2, 25) (18, 30, 45, 5, 43, 25, 26, 29, 27, 1) (45, 30, 42, 31, 41, 1, 38, 8, 23, 22)
4 (30, 42, 46, 22, 12, 32, 4, 25, 35, 21) (4, 45, 5, 35, 39, 22, 19, 6, 26, 20) (33, 32, 28, 25, 20, 17, 19, 12, 4, 40)
5 (37, 42, 17, 21, 44, 24, 34, 27, 46, 9) (24, 37, 43, 27, 31, 35, 18, 10, 32, 4) (42, 45, 37, 3, 38, 4, 9, 44, 41, 27)
6 (46, 24, 37, 40, 5, 34, 30, 6, 42, 43) (46, 30, 18, 40, 32, 20, 24, 17, 34, 16) (41, 44, 43, 46, 27, 5, 28, 13, 38, 18)
7 (37, 43, 46, 31, 41, 17, 22, 24, 13, 19) (37, 23, 17, 34, 27, 30, 35, 39, 15, 26) (1, 13, 16, 9, 10, 5, 8, 14, 6, 27)
8 (4, 43, 41, 38, 17, 11, 5, 32, 23, 3) (17, 19, 23, 29, 26, 13, 39, 8, 11, 6) (5, 4, 13, 22, 12, 3, 2, 11, 8, 25)
9 (21, 38, 22, 44, 24, 37, 9, 29, 42, 17) (37, 22, 20, 41, 10, 44, 35, 21, 12, 23) (44, 22, 17, 4, 2, 26, 10, 40, 32, 7)
10 (10, 31, 33, 45, 16, 30, 26, 44, 11, 38) (30, 18, 15, 28, 25, 23, 33, 34, 26, 38) (10, 16, 8, 9, 1, 33, 7, 15, 32, 2)
11 (31, 17, 40, 30, 28, 45, 42, 43, 24, 23) (31, 25, 13, 36, 4, 16, 18, 5, 21, 17) (42, 45, 46, 43, 25, 37, 23, 39, 31, 17)
12 (24, 21, 5, 16, 43, 44, 12, 17, 32, 38) (24, 5, 37, 27, 9, 1, 35, 3, 7, 6) (32, 43, 44, 25, 41, 37, 24, 4, 2, 12)

The bold numbers represent commonly selected channels using any of the three methods for each subject.

methodwas furthermore developed to determine a practical num-
ber of appropriate EMG channels for maintaining high classifica-
tion accuracies, an issue particularly important for implementing
a practical myoelectric control system.

The FCSI was used in this study to quantify the discriminating
power of each feature or wavelet packet basis/subspace where
the feature was derived. There have been different algorithms
or criteria for determining the best basis or subspace in WPT
analysis (15, 20). For pattern recognition analysis, the adopted
criterion is preferably associated with class separability. The FCSI
is such a criterion that is able to measure the class separability of
a feature or feature vector, more specifically, in almost the same
way as the LDC classifier does. The FCSI was used to determine

the most discriminating features from those produced by WPT
analysis in various time–frequency scales. Due to the advantages
of time–frequency resolution provided by the WPT as well as the
FCSI analysis, the wavelet packet feature extraction and selection
approaches demonstrated improved performance, as compared
with the previously used conventional time domain or frequency
domain feature sets, especially for subjects with relatively high
levels of impairments. For example, 5 of 12 stroke subjects (i.e.,
Subjects 1, 2, 3, 4, and 9) produced relatively low classification
accuracies below 95.0%, respectively, when the TD feature set was
applied, whereas improved accuracies above 95% (Table 2) were
achieved for these subjects using the wavelet packet features. It is
worth noting that the TD and AR features were often employed
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for myoelectric pattern recognition for amputee subjects toward
prosthesis control, which can achieve comparable performance
to more complicated features including wavelet packet features
(8, 9, 25). In contrast, the advantages of wavelet packet feature
extraction and selection appeared more evident in processing
stroke data, presumably due to the fact that the residual mus-
cles of an amputee subject are neurologically intact, whereas the
paretic muscles of stroke subjects usually suffer from different
symptoms such as weakness, spasticity, etc. Due to the fact that
neural control information delivery is hampered by injuries to
neuromuscular pathways after stroke, more complicated features
(e.g.,WPT features) are likely to emerge their advantage in charac-
terizing such paretic EMG signals, whichwas demonstrated in this
study.

The FCSI used for WPT feature selection was further extended
for channel selection, in combination with the SFS method. The
combined FCSI+ SFS method demonstrated superior perfor-
mance for channel selection in terms of classification performance
than solely using the SFS or the FCSI method. Using the FCSI
rather than the direct classification accuracy in combination with
the SFS algorithm avoids repeated training and testing of a classi-
fier (required for each iteration). Furthermore, in this study, the
channel selection procedure and the performance testing proce-
dure were not based on the same datasets in order to overcome
the overfitting problem. Besides, when the same number (e.g.,
10) of channels were employed, the channels selected via an
optimal algorithm (e.g., FCSI+ SFS) yielded higher classification
accuracies across all 12 stroke subjects than those predefined elec-
trode sites. In addition, with the WPT feature set, the correlation
analyses revealed dependence of the classification performance
on the FMUE score with statistical significance (p= 0.021) when
a set of predefined 10 channels were used. Such dependence
disappeared when high-density 46 channels or optimally selected
10 channels were adopted (p> 0.021), indicating that those sub-
jects with relatively high levels of impairments (i.e., low clinical
assessment scores) had substantial improvement of classification
performance. The channel selection analysis not only confirms
previous findings in Ref. (4, 27) that it is feasible to use a small
number of EMG channels (rather than a high-density electrode
array) for decoding sufficient neural control information from
paretic muscles but also indicates the necessity of determining
appropriate control site locations (rather than predefined chan-
nels) for improved classification performance. Therefore, effective
algorithms, such as the FCSI+ SFS, reported in this study are
of critical demand for developing a practical myoelectric control
system, particularly for stroke users.

When examining the selected channel index, it was found that
the selected channels were different among 12 stroke subjects
even using the same channel selection method, primarily due to
individual subject difference following stroke (such as impair-
ment nature and level, recovery status, daily activity, etc.). It
confirms our previous suggestion (4) that the myoelectric pattern
recognition should be designed or conducted in a user-specific
manner. The designed system may include appropriate EMG
features and channels (e.g., electrode number, location, configu-
ration, etc.) that maximize the classification accuracy to enhance
its usability for stroke subjects with any impairment level, while

its suitability for real time application (such as computational
cost, adaptability to slight electrode movement, etc.) should also
be considered. We acknowledge that the examined WPT-based
feature extraction and selection approach may induce relatively
higher computational complexity than using conventional TD
feature set. Even so, the WPT method is still very practical for
real-time implementation demonstrated by an enormous number
of previous studies (10, 14, 28). Also, the choice of the target
movements or controlled function should consider subject need
and classification performance. Although high-density surface
EMG recording contains much redundant information for myo-
electric pattern recognition analysis, it provides a very useful and
essential way to optimize the myoelectic control system designed
for individual stroke patients. In this regard, the high-density
sEMG recording, along with effective channel selection, can be
designed as a necessary calibration procedure. Such a procedure
is recommended to be conducted just once, rather than regu-
larly, during the prescription of the myoelectrically controlled
robotic training for stroke patients with different impairment
levels.

CONCLUSION

In this study, a feature extraction method based on WPT was
applied to myoelectric pattern recognition analysis in stroke
survivors. By processing high-density surface EMG recordings
from paretic muscles of 12 stroke subjects, the WPT features
achieved an improved performance for classification of 20 differ-
ent arm/hand movements compared with the conventional TD
EMG features. Furthermore, a novel channel selection method
was developed by combining the FCSI and the SFS analyses, which
can effectively determine a small number of appropriate EMG
channels without significantly compromising the classification
performance achieved from high-density surface EMG. These
novel feature extraction and channel selection analyses confirm
substantial neural control information available in pareticmuscles
of stroke survivors, and moreover, demonstrate the feasibility of
extracting such information with a practical number of EMG
channels. The findings are helpful for development of myoelectric
control systems for stroke rehabilitation.
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