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Background: Feather pecking (FP) is a maladaptive behavior in laying hens that is associated with numerous physiological traits, including those involving the central neurotransmitter system and the immune system, which have been identified in many species as being regulated by the gut microbiota via the “microbiota-gut-brain” (MGB) axis. Yet, it is unknown whether and how gut microbiota influences FP by regulating multiple central neurotransmission systems and immune system.

Methods: This study was measured the prevalence of severe FP (SFP) in the commercial layer farm. The chicken flock with the highest frequency of SFP were selected for FP phenotype identification. Nontargeted metabolomics was performed to investigated the differences in the peripheral and central metabolites and 16S rDNA sequencing was performed to investigated the differences in gut microbiome of laying hens with different FP phenotypes. Correlation analysis was performed to determine the potential mechanism by which the disturbed gut microbiota may modulate host physiology and behavior.

Results: The results showed that pullets (12 weeks of age) showed significantly higher SFP frequencies than chicks (6 weeks of age) and adults (22 weeks of age; p < 0.05). Compared to neutrals (N), peckers (P) exhibited the stress-induced immunosuppression with the increased plasma levels of corticosterone and norepinephrine, and the decreased plasma levels of IgA, IL-1, IL-6 and tumor necrosis factor α (p < 0.05). In the cecum, the relative abundances of Bacteroides and Gemmiger were higher in the P group, while Roseburia, Ruminococcus2, Anaerostipes, Lachnospiracea_incertae_sedis and Methanobrevibacter were more enriched in the N group. Moreover, increased plasma levels of L-tryptophan, beta-tyrosine and L-histidine were found in the P group (p < 0.05). Notably, in the P group, hippocampal levels of L-tryptophan, xanthurenic acid, L-histidine and histamine were improved and showed a positive association with L-glutamic acid levels. Plasma levels of L-tryptophan, beta-tyrosine and L-histidine were both positively correlated with Bacteroides abundance but negatively correlated with Methanobrevibacter abundance.

Conclusion: Overall, these findings suggest that the development of FP may be affected by the gut microbiota, which regulates the central glutamatergic nerve system by altering the metabolism of tryptophan, histidine and tyrosine.

KEYWORDS
 microbiota-gut-brain axis, laying hens, feather pecking, glutamatergic nerve system, metabolism, the commercial layer farm


1. Introduction

Feather pecking (FP) is a maladaptive behavior with an identified prevalence of 80% in all laying hens housing systems (Gunnarsson, 1999). FP was divided into gentle feather peck (GFP) and severe feather pecking (SFP). SFP, a detrimental type of FP, can cause feather loss and skin damage, and in some cases, this can escalate to severe injuries and cannibalism, while GFP is suggested to be similar to social exploration without damage (Kops et al., 2013). What’s more, SFP can spread rapidly through learning among chickens, severely damaging animal welfare and causing economic losses (Rodenburg et al., 2013). Therefore, FP, especially SFP in laying hens is one of the most important unsolved behavioral issues in modern agriculture.

FP is multifactorial and has been linked to numerous behavioral characteristics, such as fearfulness, stress sensitivity and depression, but also to the central and peripheral physiological characteristics (Rodenburg et al., 2013). Deficiency or redundancy in the central serotonergic system can predispose birds to develop FP, while birds with high FP tendency generally have low rates of central serotonin (5-HT) and dopamine (DA) turnover at a young age but high turnover in the brain at an adult age (de Haas and van der Eijk, 2018). The brain transcriptomes of laying hens divergently selected for FP reveal the potential role of GABAergic and glutamatergic neurotransmitter systems in the development of FP (Falker-Gieske et al., 2020). Birds selected for high FP (HFP) and low FP (LFP) differ in innate and adapted immune characteristics (van der Eijk et al., 2019a,b). These studies above suggest that the occurrence of FP may be related to alterations in multiple central neurotransmission systems and immune system, however, there is a lack of clear evidence for the cause of these alterations.

The gastrointestinal tract is a complex ecosystem containing a large number of resident microorganisms that have been found to play an important role in the maintenance of host behavior via the “microbiota-gut-brain” (MGB) axis (Zheng et al., 2019). Recent evidence suggests that alterations in gut microbiota composition, via, for example, anti-, pre-or probiotic treatment, affect anxiety, stress sensitivity and fearfulness (Desbonnet et al., 2010; Ait-Belgnaoui et al., 2014). Moreover, the regulatory effects of the gut microbiota on serotonergic, dopaminergic, GABAergic and glutamatergic neurotransmitter systems in the central nervous system (CNS) and immune system have also been identified by many studies (Miller et al., 2011; Zheng et al., 2019; Hasebe et al., 2021). Notably, a growing number of studies are focusing on the potential role of the regulation of the gut microbiota in FP development. Laying hens that are divergently selected for FP (HFP and LFP) show significant differences in gut microbiota composition (Birkl et al., 2018; van der Eijk et al., 2019c). Early-life transplantation of microbiota from HFP birds influences the behavioral and physiological characteristics that are related to FP (van der Eijk et al., 2020). Collectively, these findings highlight the novel possibility that disturbances of gut microbiota or the MGB axis may contribute to the onset of FP in laying hens. Yet, it is unknown whether and how gut microbiota influences FP by multiple central neurotransmission systems and immune system. Metabolism is an important pathway of two-way communication between gut microorganisms and the brain (Zheng et al., 2019), however, there is a lack of systematic studies on the metabolism in laying hens with different FP phenotypes (including pecker, victim and neutral).

Outcomes from numerous research methods, including improving the house climate (light intensity, temperature, humidity and sound) and foraging condition (rearing intensity, feed shape and nonstarch polysaccharide concentration), indicate that the appropriate rearing environment plays a key role in alleviating the development of FP in laying hens (Lambton et al., 2010; Gilani et al., 2013). The physically, nutritionally, sensorially and socially restricted environment in which the majority of commercial laying hens hatch and live can be a powerful social and environmental chronic stressor that could induce a high occurrence rate of SFP (Maes et al., 2009). Therefore, the aim of this research was to investigate the prevalence of SFP in the commercial layer farm, as well as the metabolic characteristics and the gut microbial characteristics of laying hens with different FP phenotypes, and to reveal the potential correlation between gut microbiota and FP.

To address this issue, the frequency of SFP in the three stages of laying hens, which include chick, pellet and adult was investigated in a commercial layer farm. The chicken flock with the highest frequency of SFP were selected for FP phenotype identification and laboratory analysis. 16S ribosomal RNA (16S rRNA) gene sequencing analysis was performed to reveal the difference in the gut microbial communities of laying hens with different FP phenotypes. We conducted nontarget metabolomic analysis of the plasma and hippocampus to investigate metabolic changes in the peripheral and central systems. Finally, correlation analysis was performed to determine the potential mechanism by which the disturbed gut microbiota may modulate host physiology and behavior.



2. Materials and methods


2.1. Animals and housing conditions

This research was conducted in a commercial layer farm (Guangdong Lvyang Agricultural Co., LTD, Guangdong Province, China). First, preliminary FP observation was conducted for three consecutive days to select the chicken flock with the highest frequency of SFP among three different stages of chicken flocks (chick, pellet and adult stages of chicken) of beak-trimming Hyline gray laying hens. Specifically, 6 cages were randomly selected from laying hens at 6 weeks of age (40 chicks per cage), 12 weeks of age (25 pullets per cage) and 22 weeks of age (10 adults per cage), and pullet flocks at 12 weeks of age showed more SFP (Figure 1). Therefore, a total of 200 12-weeks-old beak-trimmed birds (8 cages, 25 birds per cage) were then selected, individually identified using numbered silicone backpacks (6 × 6 × 0.5 cm; Birkl et al., 2017) and transferred to the top cage without disturbing the flock. Birds were kept in battery layer cages (120 l*60 W*45 H cm for chicks, 100 l*50*45 H cm for pullets and 120 l*60 W*45 H cm for adults) and reared under conventional management conditions on a commercial farm. One camera (HIKVISION DS-2CD2T55(D)-I3, Hangzhou, China) was installed 1 meter above each cage to enable a full view of the cage. The cages were arranged at intervals, so it was certain that there was no visual contact between the different cages. At 6 weeks of age, the light was on for 9 h, from 8:00 until 17:00. At 12 weeks of age, the light was provided from 6:00 to 22:00, and this stayed the same throughout the laying period. Birds had ad libitum access to well water and commercial layer feed. The animals used in this study were treated in accordance with the approval of the Scientific Ethics Committee of South China Agricultural University under approved permit number SYXK2014-0136.

[image: Figure 1]

FIGURE 1
 The SFP frequencies of birds at different stage of laying hens. The statistically significant differences between different groups are indicated as asterisks (*p < 0.05, **p < 0.01, and ***p < 0.001).




2.2. Behavioral observations

For the preliminary FP observation, each cage was video recorded for 10 min (1 × in the morning between 8 and 11 am, 1 × in the after between 3 and 5 pm) on 3 consecutive days. FP was divided into GFP (subdivided into exploratory FP and stereotyped FP) and SFP as adapted from (Birkl et al., 2017). SFP was defined as follows: “A bird grips and pulls or tears vigorously at a feather of another bird with her beak, causing the feather to lift up, break or be pulled out. The recipient reacts to the peck by vocalizing, moving away or turning toward the pecking bird.” The number of SFP events was observed using the video and recoded at the cage level. After individual identification and transfer, birds were provided 2 weeks before the experiment started. Backpacks were fastened around the wings via two elastic straps secured to the backpacks with metal eyelets (Mindus et al., 2021). At 14 weeks of age, FP behavior was observed at an individual level. SFP was observed from video recordings, and each observation lasted 20 min and was performed once in the morning (8:30–11:30) and once in the afternoon (14:00–17:00). The number of SFP events, either given or received, was summed over 4 consecutive days, thus including one morning and one afternoon observation with a total observation period of 40 min, and was used to identify FP phenotypes (Daigle et al., 2015). When a bird gave more than one and received zero or one severe FP, it was defined as a pecker (P). When a bird gave and received zero or one severe feather peck, it was defined as neutral (N). We did not include victims or feather pecker-victims in this study. All-occurrence sampling was used to record initiators and recipients of SFP interactions. An occurrence was defined as a sequence of uninterrupted behavior lasting more than 4 s aimed at the same bird (Birkl et al., 2017). All behavioral observations were performed by a trained, blinded observer.



2.3. Sample collection

After FP observation, one pecker and one natural were chosen from each cage, for a total of 16 hens. Blood samples were collected from the wing vein using EDTA-coated vacutainer tubes. Blood samples were stored on ice (maximum of 4 h) until centrifugation (4°C, 2,500 rpm, 15 min) for plasma separation. Plasma was aliquoted into 1.5 ml microtubes and stored at-80°C until further determination of plasma stress and immune indices. After blood sampling, the birds were euthanized by cervical dislocation to obtain the contents of the duodenum, ileum and caeca. Gut contents were stored in 2 ml cryovials at-80°C until further analysis. The hippocampus, considered the memory and learning area in both mammals and birds, was quickly sampled on ice and stored in liquid nitrogen (Colombo and Broadbent, 2000).



2.4. Measurement of plasma stress and immune indices

The plasma levels of interleukin-1 (IL-1), interleukin-6 (IL-6), immunoglobulin A (IgA), immunoglobulin G (IgG), tumor necrosis factor α (TNF-α), and corticosterone (CORT) (Item No#: YJ059829, YJ042757, YJ002792, YJ042771, YJ002790, YJ059881, Shanghai Enzyme Linked Biotechnology Co., Ltd., Shanghai, China) were measured using a commercially available ELISA kit following the manufacturer’s protocol. The optical density of each sample was read at 450 nm using Nessler’s reagent spectrophotometry (Shanghai Ao Yi Technology Co., Ltd., Shanghai).



2.5. DNA extraction and 16S rRNA gene sequencing

The total bacterial DNA of each sample of gut content was extracted using the QIAamp PowerFecal Pro DNA Kit (Qiagen, Hilden, Germany) following the manufacturer’s instructions. DNA quality was examined by electrophoresis on a 1% agarose gel, and the final DNA concentration of each sample was determined using an ultrafine, ultraviolet spectrophotometer (Shanghai Ao Yi Technology Co. Ltd., Shanghai). DNA samples were stored at-80°C until further analysis.

The 16S rRNA gene amplicons were used to determine diversity and compare the structures of bacterial communities among samples to reveal taxonomic composition. Next-generation sequencing library preparations and Illumina NoveSeq sequencing were conducted at Novogene Co., Ltd., Tianjin, China. The V3-V4 hypervariable regions of the 16S rRNA genes were amplified with forward primers containing the sequence 5’-CCTAYGGGRBGCASCAG-3′ and reverse primers containing the sequence 5’-GGACTACNNGGGTATCTAAT-3′. Furthermore, indexed adapters were added to both ends of the 16S rDNA amplicons to generate indexed libraries ready for downstream NGS sequencing on the Illumina NovaSeq platform. The quality of each DNA library was validated with an Agilent 2,100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, United States), and the concentration was measured by a Qubit 2.0 Fluorometer (Thermo Fisher Scientific, Carlsbad, CA, United States). DNA libraries were multiplexed and loaded on an Illumina NovaSeq6000 instrument according to the manufacturer’s instructions (Illumina, San Diego, CA, United States). Sequencing was performed using the 2 × 300 bp paired-end configuration. Image analysis and base calling were performed by NovaSeq Control Software embedded in the NovaSeq instrument.



2.6. Nontargeted metabolomics

Thawed plasma samples at 4°C were vortexed for 1 min after thawing and mixed evenly as described in previous research (Zelena et al., 2009) with some modifications. For metabolite extraction, cold methanol (stored at-20°C) was added at a ratio of 400 μl per 100 μl of plasma. The samples were then vortexed for 1 min and centrifuged for 10 min at 4°C and 13,000 rpm. The samples were kept on ice between the steps. The supernatant was transferred to a new 2 ml centrifuge tube and dissolved in 150 μl of 2-chloro-l-phenylalanine (4 ppm) solution prepared with 80% methanol water (stored at 4°C). The supernatant was filtered with a 0.22 μm membrane and inserted into HPLC vials for analysis. To extract hippocampal metabolites, samples weighing 60 mg were ground at 50 Hz for 1 min in 1 ml of cold tissue extract (75% 9:1 methanol: chloroform, 25% H2O) with 3 steel balls (Want et al., 2013). After room temperature ultrasound for 30 min and ice bath for 30 min, the samples were centrifuged at 12000 rpm and 4°C for the supernatant. The supernatant was then redissolved with 200 μl of 50% acetonitrile solution prepared with 2-amino-3-(2-chlorophenyl)-propionic acid (4 ppm; stored at 4°C) and filtered through a 0.22 μm membrane for Liquid chromatography-mass spectrometry (LC–MS) detection.

All samples were analyzed by LC–MS. Liquid chromatography (LC) analysis was performed on a Vanquish UHPLC System (Thermo Fisher Scientific, United States). Chromatography was carried out with an ACQUITY UPLC ® HSS T3 (150 × 2.1 mm, 1.8 μm; Waters, Milford, MA, United States). The column temperature was maintained at 40°C. The flow rate and injection volume were set at 0.25 ml/min and 2 μl, respectively. For LC-ESI (+)-MS analysis, the mobile phases consisted of (C) 0.1% formic acid in acetonitrile (v/v) and (D) 0.1% formic acid in water (v/v). Separation was conducted under the following gradient: 0 ~ 1 min, 2% C; 1 ~ 9 min, 2% ~ 50% C; 9 ~ 12 min, 50% ~ 98% C; 12 ~ 13.5 min, 98% C; 13.5 ~ 14 min, 98% ~ 2% C; 14 ~ 20 min, 2% C. For LC-ESI (−)-MS analysis, the analytes were carried out with (A) acetonitrile and (B) ammonium formate (5 mM). Separation was conducted under the following gradient: 0 ~ 1 min, 2% A; 1 ~ 9 min, 2% ~ 50% A; 9 ~ 12 min, 50% ~ 98% A; 12 ~ 13.5 min, 98% A; 13.5 ~ 14 min, 98% ~ 2% A; 14 ~ 17 min, 2% A. Mass spectrometric (MS) detection of metabolites was performed on a Q Exactive (Thermo Fisher Scientific, United States) with an ESI ion source. Simultaneous MS1 and MS/MS (Full MS-ddMS2 mode, data-dependent MS/MS) acquisition was used. The parameters were as follows: sheath gas pressure, 30 arb; aux gas flow, 10 arb; spray voltage, 3.50 kV and-2.50 kV for ESI(+) and ESI(−), respectively; capillary temperature, 325°C; MS1 range, m/z 81–1,000; MS1 resolving power, 70,000 FWHM; number of data-dependent scans per cycle, 10; MS/MS resolving power, 17,500 FWHM; normalized collision energy, 30%; dynamic exclusion time, automatic.



2.7. Statistical analysis


2.7.1. Behavior observation data analysis

The SFP frequencies were determined per individual cage per min and averaged at the cage level. IBM SPSS Statistic 26 software (IBM Corp., Armonk, NY) was used to compare the SFP frequencies by one-way analysis of variance (ANOVA). Multiple comparisons were conducted using the Duncan method. The data are presented as the means ± standard errors (SE). Significant differences were reported as those with p < 0.05.



2.7.2. Plasma stress and immune data analysis

The plasma stress and immune data were analyzed with independent sample T tests using IBM SPSS Statistic 26 software (IBM Corp., Armonk, NY). The data are presented as the means ± SE. Significant differences were reported as those with p < 0.05.



2.7.3. 16S rRNA gene sequencing data analysis

The 16S rRNA gene sequencing data were analyzed using the QIIME data analysis package (V1.9.11) in R software (version 4.0.3) and R studio (version 1.3.1093). The forward and reverse reads were joined to form joined sequences. After removing barcode and primer sequences, the reads of each sample were spliced using FLASH V 1.2.7.2 Quality filtering of the joined sequences was performed. Sequences that did not fulfill the following standards were discarded: sequence length < 200 bp, no ambiguous bases, and mean quality score ≥ 15. The remaining sequences were compared with the reference database (RDP Gold database) using the UCHIME algorithm3 to detect chimeras. Sequences with chimeric sequences were removed from further analysis. Filtered sequences were grouped into operational taxonomic units (OTUs) using the clustering program VSEARCH (V2.15.14) against the Silva 119 database at 97% sequence identity. The Ribosomal Database Program (RDP) classifier was used to assign taxonomic categories to all OTUs at a confidence threshold of 0.8. The α and β diversity analyzes were conducted using USEARCH (V10.0.2405).

Alpha diversity (α-diversity) indices, including the Shannon index for diversity6 and the Chao1 index for richness,7 were calculated by QIIME (1.9.1) from rarefied samples. Difference analyzes of the alpha diversity index, parametric tests and nonparametric tests were conducted. Because there were only two groups, the T test was used for the difference analysis of the alpha diversity index. Beta diversities were calculated using unweighted UniFrac distances. The unweighted pair group method with arithmetic mean was used to generate dendrograms from the beta diversity distance matrix. The principal coordinate analysis (PCoA) and the significance analysis of microbial structure were performed using the OmicStudio tools at https://www.omicstudio.cn/tool. The PCoA analysis was performed based on the unweighted unifrac distance and the p value was calculated using the analysis of similarity (ANOSIM). The key bacterial taxa responsible for discrimination between the two groups were identified using linear discriminant analysis (LDA) effective size (LEfSe).8 The threshold of the logarithmic LDA score was 3.5.



2.7.4. Nontargeted metabolomic data analysis

The raw data were first converted to mzXML format by MSConvert in the ProteoWizard software package (v3.0.8789) and processed using XCMS for feature detection, retention time correction and alignment. The metabolites were identified by accuracy mass (< 30 ppm) and MS/MS data, which were matched with HMDB,9 massbank,10 LipidMaps,11 mzclound12 and KEGG.13 The robust LOESS signal correction (QC-RLSC) was applied for data normalization to correct for any systematic bias. After normalization, only ion peaks with relative standard deviations (RSDs) less than 30% in QC were kept to ensure proper metabolite identification.

Ropls software was used for all multivariate data analyzes and modeling. Data were mean-centered using scaling. Models were generated on principal component analysis (PCA), orthogonal partial least-square discriminant analysis (PLS-DA) and partial least-square discriminant analysis (OPLS-DA). The metabolic profiles could be visualized as a score plot, where each point represents a sample. The corresponding loading plot and S-plot were generated to provide information on the metabolites that influence the clustering of the samples. All the models evaluated were tested for overfitting with permutation tests. The descriptive performance of the models was determined by R2X (cumulative; perfect model: R2X (cum) = 1) and R2Y (cumulative; perfect model: R2Y (cum) = 1) values, while their prediction performance was measured by Q2 (cumulative; perfect model: Q2 (cum) = 1) and a permutation test. The permuted model should not be able to predict classes: R2 and Q2 values at the Y-axis intercept must be lower than those of Q2 and the R2 of the nonpermuted model. OPLS-DA allowed the determination of discriminating metabolites using the variable importance on projection (VIP). The p value, variable importance projection (VIP) produced by OPLS-DA and fold change (FC) were applied to discover the contributable variables for classification. Finally, results with a p value < 0.05 and VIP values > 1 were considered to be statistically significant metabolites. Differential metabolites were subjected to pathway analysis by MetaboAnalyst,14 which combines results from powerful pathway enrichment analysis with pathway topology analysis. The metabolites identified in the metabolomics analysis were then subjected to KEGG pathway analysis for biological interpretation of higher-level systemic functions. The metabolites and corresponding pathways were visualized using the KEGG Mapper tool.





3. Results and discussion


3.1. Twelve-week-old birds showed more serious SFP

The SFP frequencies of birds at different stages are shown in Figure 1. Pullets showed significantly higher SFP frequencies than chicks and adults (p < 0.05). Compared to adults, pullets were kept at a higher rearing density. A previous study identified that the high rearing density of laying hens results in FP at the pullet stage and not the adult stage in hens (30 weeks of age) on commercial farms (Bestman et al., 2009). In this study, in addition to evaluating rearing density, continuous inspection and isolation of victims during commercial farming were investigated and may have been a potential factor contributing to the decrease in SFP at the adult stage of laying hens. The pullet stage is the stage of fastest weight gain, with higher stress vulnerability and more serious SFP than in chicks (Rodenburg et al., 2004). Therefore, pullets were selected for further investigation in this study.



3.2. Stress-induced immunosuppression in peckers

After 4 consecutive days of behavioral observation, one pecker and one natural were chosen from each cage, resulting in a total of 16 hens, for further investigation. The plasma levels of stress and immune indices were measured by ELISA (Figure 2). The plasma levels of IgA, IL-1, IL-6 and TNF-α in the P group were significantly lower than those in the N group (p < 0.05), while the IgG level showed no significant difference. Plasma CORT and Norepinephrine (NE) (Supplementary Figure S6) levels, which are measured in bird stress indices, were increased in the P group (p < 0.05). The increased stress hormone levels measured in the P group suggest that the FP birds were in a state of stress, and stress hormone signaling has been identified as the final common pathway involved in regulating the pathophysiological status and behavior of animals (Dallman et al., 1994). Various unpredicted extreme or mild chronic stresses, such as noise, mixing chicken breeds, strengthening or weakening light intensity and chicken transfer, have been found to contribute to the development of FP in chickens (Maes et al., 2009). The outcomes from numerous experiments indicate that unpredicted stress is associated with many detrimental behaviors, including depression-like and anxiety-like behavior, via the immune system in both humans and animals (Ait-Belgnaoui et al., 2014). In this research, the suppressed immune system, which was associated with decreased levels of IgA and proinflammatory cytokines (IL-1, IL-6 and TNF-α), may have been the result of central anti-inflammatory cytokines (IL-10) expression caused by long-term stress (Mormède et al., 2003). Moreover, elevated stress hormone levels can lead to disrupted gut barrier function and altered commensal bacteria (Maes et al., 2013).
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FIGURE 2
 The plasma level of stress (CORT) and immune indices (IgA, IgG, IL-1, IL-6 and TNF-α). IgA = Immunoglobulin A, IgG = Immunoglobulin G, IL-1 = interleukin-1, IL-6 = interleukin-6, TNF-α = tumor necrosis factor-α, CORT = corticosterone. The values in the violin plot are the means ± SE (n = 8). The statistically significant differences between the P and the N group are indicated as different letter (a, b; p < 0.05). P = feather pecker, N = neutra.




3.3. Changes in the intestinal microbiota community in peckers

In total, we obtained 967,536 high-quality reads across all cecal samples, and these reads were clustered into 509 OTUs at 97% sequence similarity. In the duodenum and ileum, 809,736 and 785,292 high-quality sequences and 788 and 817 OTUs were obtained, respectively. Most rarefaction curves tended to approach the saturation plateau, suggesting that the sequencing depth was sufficient to cover the whole bacterial diversity (Supplementary Figures S1A–C). Alpha diversity (α-diversity) showed that both the richness index (Chao 1) and diversity index (Shannon) of the duodenum, ileum and cecum did not differ between the P group and the N group (Figures 3A,B). To determine whether the microbial composition of birds with FP was substantially different from that of the N group, we carried out β-diversity analysis. Based on the unweighted UniFrac distance, PCoA revealed a significant difference in the cecal microbiota community (p < 0.05) but no significant difference in the duodenum and ileum (p > 0.05; Figure 3C; Supplementary Figures S2A,B). Therefore, we focused on the characteristics of the cecal microbial community in the rest of this study. At the phylum level, the top five phyla identified were Firmicutes, Bacteroidetes, Proteobacteria, Euryarchaeota and Fusobacteria in the cecum of laying hens (Figure 4A). Among these phyla, Firmicutes and Bacteroidetes were dominant. At the genus level, the majority of 16S rRNA amplicons belonged to Bacteroides, Faecalibacterium, Methanobrevibacter, Ruminococcus2, Alistipes and Lactobacillus (Figure 4B). To further identify the cecal microbiota responsible for discriminating peckers from neutrals, we carried out LEfSe. This analysis identified 7 differential microorganisms responsible for the discrimination between the two groups at the genus level (Figures 4C,D). The relative abundances of Bacteroides and Gemmiger were higher in the P group, while Roseburia, Ruminococcus2, Anaerostipes, Lachnospiracea_incertae_sedis and Methanobrevibacter were more enriched in the N group (p < 0.05). These data imply that the structure of the cecal microbiota was disordered in peckers.
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FIGURE 3
 The diversity of gut microbiota of laying hen with different FP phenotype. (A) Chao 1 index of cecum (n = 8), duodenum (n = 6) and ileum (n = 6); (B) Shannon index of cecum, duodenum and ileum; (C) The principal co-ordinates (PCoA) analysis of cecum based on the unweighted unifrac distance. P = feather pecker, N = neutral.
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FIGURE 4
 The relative abundance of cecal bacterial composition at the phylum and genus level and LefSe analysis of cecal microbiota. (A) The Relative abundance of cecal bacterial composition at phylum level; (B) The Relative abundance of cecal bacterial composition at genus level; (C) and (D) LEfSe analysis of cecal microbiota. The threshold of the logarithmic LDA score was 3.5. P = feather pecker, N = neutral.


The gut microbiota, known as the second brain, has been found to exert its effect on the brain and behavior by regulating catabolism or the nervous system based on the “gut-brain axis” (Zheng et al., 2019). To date, an increasing number of investigations have focused on whether gut microbiota affect feather pecking in laying hens. Early-life microbiota transplantation showed a long-term influence on depression-like and anxiety-like behavior related to FP in laying hens (van der Eijk et al., 2020). The gut microbiota analysis of LFP and HFP birds revealed significantly different diversity and composition, including increased abundance of Lactobacillus and decreased abundance of Clostridiales in HFP birds (van der Eijk et al., 2019c). Moreover, ingestion of Lactobacillus rhamnosus retards chronic stress-induced FP in chickens, suggesting the important role of gut microorganisms in relieving FP in birds (Mindus et al., 2021). The features of the gut microbiota found in this research showed a different pattern from those observed in previous studies, which could have been the result of multiple factors, including genetics, nutrition and stress (Maes et al., 2013; Tremblay et al., 2021). Bacteroides, Ruminococcus2 and Methanobrevibacter, the main enriched microorganisms, were found to have a higher or lower relative abundance in peckers, which has a close association with depression-like and anxiety-like behavior (Chen et al., 2021; Zhang et al., 2022). Knowledge regarding the underlying associations between feather pecking and these differential microbes are vague and require further metabolomics analysis.



3.4. Changes in the metabolic profile in peripheral and central organisms in peckers

We further performed nontargeted metabolomics to determine whether the metabolic state reflected in the plasma and hippocampus were paralleled by an altered gut microbiota. To further explore the metabolic distinctions between the P and N groups, the multivariate statistical analysis was performed (Supplementary Figures S3–S5). Furthermore, a total of 94 metabolites were changed significantly in the P groups. The P group had 89 metabolites with higher levels and 5 metabolites with lower levels than in the N group (p < 0.05; Supplementary Figure S6; Supplementary Table S1). Tryptophan, as the precursor of the central major inhibitory neurotransmitter 5-HT, can pass through the blood brain barrier (BBB) and affect brain function and behavior (Hasebe et al., 2021). Tryptophan-5-HT deficiency has been identified to be involved in the development of many maladaptive behaviors in birds, such as aggression and FP (de Haas and van der Eijk, 2018). In the P group, however, the plasma concentration of L-tryptophan was significantly higher than that in the N group by 2.19-log2−fold (p < 0.05). Moreover, indole and quinolinic acid, downstream metabolites of tryptophan, also had log2-fold increases of 1.78 and 2.36, respectively (p < 0.05). NE, which acts as a neurotransmitter and as a hormone, is usually activated after exposure to stress and has been found to have increased levels in the blood of HFP birds in response to manual restraint (Korte et al., 1997). In our research, the levels of NE and its precursor tyrosine were higher in the P group than in the N group (p < 0.05). Outcomes from various experiments suggest that cognition and memory function are tightly related to fluctuations in the histidine level in the peripheral system (Holeček, 2020). In the P group, the L-histidine concentration was more enriched in plasma than in the N group (p < 0.05). Notably, peripheral histidine and aromatic amino acids (AAA, tyrosine, phenylalanine and tryptophan), which had increased levels in P plasma, can be transported into the brain via large neutral amino acids (LNAAs) transporter and affect the CNS neurotransmitters histamine, 5-HT, glutamic acid and GABA (Oldendorf et al., 1988). To further investigate the characteristics of the metabolic profile in peckers, we conducted KEGG pathway enrichment analysis of differential metabolites via MetabAnaylst. Specifically, 9 metabolic pathways, including ‘glycine, serine and threonine metabolism’, ‘alanine, aspartate and glutamate metabolism’, ‘beta-alanine metabolism’, ‘histidine metabolism’ and ‘tyrosine metabolism’, were identified (Figure 5A; Supplementary Table S2). The peripheric change including glycine, serine and threonine metabolism’, ‘alanine, aspartate and glutamate metabolism’, ‘beta-alanine metabolism’, ‘histidine metabolism’ and ‘tyrosine metabolism’ have previously reported to be associated with depression (Goto et al., 2017; Liu et al., 2020; Johnston et al., 2021; Solís-Ortiz et al., 2021). Next, the association between KEGG metabolic pathways and differential metabolites was exhibited by a network plot (Figure 5B). These enriched metabolic pathways exhibit a complicated interaction involving metabolites, including L-tryptophan, L-histidine and NE.
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FIGURE 5
 Changes in the metabolic profile in plasma obtained from FP birds. (A) Bubble chart using the top 25 KEGG pathways enriched by the differential metabolites in plasma; (B) Network plot using the top 10 KEGG pathways enriched from the differential metabolites in plasma.


To determine the central effects of the changes in plasma metabolism and the cecal microbial community, hippocampal metabolomics analysis was performed. For subsequent differential metabolite screening and pathway enrichment analysis, multivariate statistical analysis was performed (Supplementary Figures S7–S9). According to the criteria: p value < 0.05 and VIP values > 1, 51 differential metabolites were detected in the metabolic profiles of the two groups. In the P group, the levels of 47 metabolites were higher and the levels of 4 metabolites were lower than in the N group (Supplementary Figure S10; Supplementary Table S3). It is worth noting that the L-glutamic acid concentration showed a log2-fold increase of 1.51 in the hippocampus in group P (p < 0.05). Glutamic acid, which acts as the main excitatory neurotransmitter in the CNS, plays an extensive and key role in the maintenance of brain functions, including emotion and cognition, therefore affecting numerous behaviors, such as aggression, depression and anxiety (Gerhard et al., 2016; Zheng et al., 2019). In the hippocampus of peckers, the concentration of L-tryptophan was also higher than that in the N group (p < 0.05). The levels of 5-HT, which is an important product of tryptophan and central neurotransmitters and plays an important role in regulating the onset of FP in laying hens (de Haas and van der Eijk, 2018), did not differ between the two groups. Instead, the levels of xanthurenic acid, one crucial metabolite in the kynurenine (KYN) pathway of tryptophan, significantly increased in the P group (p < 0.05). The KYN pathway is an alternate tryptophan breakdown pathway that, under physiological conditions, metabolizes tryptophan (> 95%) into KYN and an array of downstream neuroactive metabolites, including xanthurenic acid (Danielski et al., 2018). Xanthurenic acid, an endogenous kynurenine, is a known vesicular glutamic acid transport (VGLUT) inhibitor and has also been proposed as a mGlu2/3 receptor agonist (Neale et al., 2013). Previous studies have found stereoselective blood–brain barrier transport of histidine by in vivo or in vitro experiments (Nowak et al., 1997; Yamakami et al., 1998). Histamine, which is synthesized from the amino acid histidine through oxidative decarboxylation by histidine decarboxylase in the brain, exerts complicated effects in depression-like and anxiety-like behavior (Raber, 2005). In the present study, the hippocampal levels of L-histidine and histamine were increased in the P group (p < 0.05). The decreased NE concentration shown in group P (p < 0.05) may have been the result of the competition between peripheral tyrosine (the precursor of NE), other AAAs (phenylalanine and tryptophan) and histidine to LNAA carriers to be transported into the brain (Oldendorf et al., 1988). The KEGG pathway enrichment analysis of differential metabolites showed 9 significantly enriched metabolic pathways, including ‘Histidine metabolism’, ‘Phenylalanine, tyrosine and tryptophan biosynthesis’, ‘Arginine and proline metabolism’, ‘Tryptophan metabolism’ and ‘Aminoacyl-tRNA biosynthesis’ (Figure 6A; Supplementary Table S4). The central alteration, including ‘Histidine metabolism’, ‘Phenylalanine, tyrosine and tryptophan biosynthesis’, and ‘Tryptophan metabolism’ have reported to be associated with depression-like behaviors (Yoshikawa et al., 2014; Wang et al., 2022). The network diagram showed the association between differential metabolites and enrichment pathways (Figure 6B). L-glutamic acid shows a complex relationship with multiple metabolic pathways, suggesting the potentially important role of L-glutamic acid in FP development.
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FIGURE 6
 The turbulence of metabolic profile in hippocampus of FP bird. (A) Bubble chart from the top 25 KEGG pathways enriching with the differential metabolites in plasma; (B) The network plot from the top 10 KEGG pathways enriching with the differential metabolites in hippocampus.




3.5. Correlation analysis

To investigate potential associations among the gut microbiome, plasma physiological index, plasma metabolites and hippocampal metabolites, correlation analysis was conducted. Figure 7A shows the results of Spearman’s correlation analysis performed using the levels of hippocampal differential metabolites and Mantel’s test performed using the levels of hippocampal differential metabolites and plasma metabolic pathways. L-glutamic acid levels showed a significant positive correlation with L-histidine, histamine, L-tryptophan and xanthurenic acid levels in the hippocampus (Spearman r > 0.6, p < 0.01). A previous study reported an association between glutamic acid and histidine levels (Ritz et al., 2002). The main pathway of histidine catabolism begins with deamination catalyzed by histidase to urocanate and leads through 4-imidazolone-5-propionate and formiminoglutamate to glutamic acid, while the alternative pathways of histidine catabolism include transamination to imidazolepyruvate and decarboxylation to histamine. Increased L-histidine and histamine levels were also found in a rat model of glutamic acid excitotoxicity and other neurodegenerative disorders (Fang et al., 2014). The present study revealed an increase in xanthurenic acid concentration but not in 5-HT levels. Xanthurenic acid is a known VGLUT inhibitor and has also been proposed as a mGlu2/3 receptor agonist (Neale et al., 2013). These results indicated that the development of FP is potentially correlated with changes in the glutamatergic system in the CNS. Furthermore, the levels of multiple differential metabolites, including L-histidine, histamine, L-tryptophan and xanthurenic acid, in the hippocampus were significantly correlated with ‘glycine, serine and threonine metabolism’, ‘tyrosine metabolism’ and ‘histidine metabolism’ in plasma. Collectively, these findings indicated that the disturbed glutamatergic system was potentially associated with the differential metabolites involved in ‘glycine, serine and threonine metabolism’ or ‘histidine metabolism’ in plasma. Therefore, a total of 16 differential metabolites, such as L-histidine, L-tryptophan and beta-tyrosine, which participate in ‘glycine, serine and threonine metabolism’, ‘tyrosine metabolism’ and ‘histidine metabolism’, were chosen to perform Spearman correlation analysis with cecal flora genera and plasma physiological indices (Figure 7B). Bacteroides and Methanobrevibacter abundance showed the closest association with the plasma metabolite profile. L-tryptophan, L-histidine and beta-tyrosine levels were both positively correlated with Bacteroides abundance but negatively correlated with Methanobrevibacter abundance. Bacteroides, the most prominent genus that was enriched in the P group, was associated with abnormal behaviors of the host. The gut microbiome from major depressive disorder patients was found to be enriched with the genus Bacteroides, and these microbes were found to be associated with increased anxiety and depression-like behavior and impaired hippocampal neurogenesis in rats subjected to fecal microbiota transplantation (Zhang et al., 2022). Outcomes from numerous experimental methods, including dietary tryptophan restriction and histidine supplementation, have revealed that Bacteroides play an important role in histidine metabolism and tryptophan metabolism (Zapata et al., 2018; Kang et al., 2020). More OTUs were enriched in the genus Methanobrevibacter, which had decreased abundance in the P group, and its function is closely related to anxiety and depression-like behavior (Chen et al., 2021). Previous research found a negative association between the abundance of Methanobrevibacter and dietary tryptophan levels (Rao et al., 2021). Elevated levels of stress hormones, including CORT and N, can also lead to disrupted gut barrier function and altered commensal bacteria (Maes et al., 2013). In this research, the increase in the levels of NE and CORT, which are stress hormones, was positively correlated with Bacteroides abundance. However, the potential association between NE, CORT and Bacteroides is unclear. To our knowledge, NE levels were found only to change with a significant negative correlation with Bacteroides abundance, which was reported in research on depression (Chen et al., 2021).
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FIGURE 7
 Correlation analysis between gut microorganisms, metabolites and plasma physiological indices. (A) Pairwise comparisons of hippocampus metabolites, with a color gradient denoting the Spearman’s correlation coefficients. Plasma KEGG pathways enriched with differential metabolites was correlated with each hippocampus metabolites by partial Mantel tests. Curve width represents the significant correlation coefficients (p < 0.05) of the partial Mantel tests. (B) Spearman’s correlation analysis between differential microorganism, plasma differential metabolites and plasma physiological indices.





4. Conclusion

Taken together, our results demonstrated the different patterns of the gut microbiota, metabolism and immune system and revealed the potential association between FP, the gut microbiota and the glutamatergic neurotransmitter system. In this research, peckers were found to suffer from long-term stress with a suppressed immune system. Disturbances in the cecal microbiota, including increased Bacteroides abundance and decreased Methanobrevibacter abundance, were found in peckers. The abundances of the two microorganisms showed significant correlations with the plasma levels of L-tryptophan, beta-tyrosine and L-histidine, which may further affect the hippocampal levels of metabolites involved in the glutamatergic neurotransmitter system, including L-glutamic acid, L-tryptophan, xanthurenic acid, and L-histidine. In conclusion, the findings of this study have provided a new insight into developing novel biotherapeutic strategies for alleviating FP in laying hens.
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Introduction: The modernized lifestyle has been paralleled by an epidemic of inflammatory bowel disease (IBD). Excessive consumption of cold beverages is especially common among the modern humans. However, whether cold stress contributes directly to the gut barrier and gut–brain axis is not clear.

Methods: We conducted a cold stress model induced by cold water. The mice were treated with 14 consecutive days of intragastric cold or common water administration. We observed changes in gut transit and gut barrier in the colon. We also employed RNA sequencing-based transcriptomic analysis to identify the genes potentially driving gut injury, and simultaneously examined the gut microbiota and metabolites in the feces.

Results: We found that cold stress disturbed the intestinal function and increased gut permeability. A set of core genes related to immune responses were consistently overexpressed in the cold stress group. Additionally, cold stress induced decreased bacterial diversity, ecological network, and increased pathogens mainly belonging to Proteobacteria. The dopamine signaling pathway-related metabolites were largely reduced in the cold stress group.

Conclusion: This study revealed that cold stress could trigger an IBD-like phenotype in mice, implying that cold stress is a possible risk factor for IBD development.

KEYWORDS
 cold stress, inflammatory bowel disease, gut microbiota, gut–brain axis, animal research


Introduction

The modernized lifestyle has been paralleled by an epidemic of several gastrointestinal diseases worldwide beginning in the 1980s, including irritable bowel disease (IBD) characterized by gut barrier dysfunction (Ananthakrishnan, 2015; Khademi et al., 2021). Especially, the incidence of IBD is continuously rising among young people, even among children (Barnes and Kappelman, 2018). Patients with IBD present symptoms similar to those of patients with irritable bowel syndrome (IBS) to some extent, including anxiety and depression (Spiller and Major, 2016). These findings suggest a potential link between modernized lifestyle, gut barrier, and gut–brain interaction.

Excessive consumption of cold beverages is highly prevalent in modern population subsets, especially in the youth. Mounting evidence has shown that sweeteners, food additives, and other food ingredients in beverages play important roles in IBD (He et al., 2021). However, whether some other related factors (for instance, cold stress in the gut) might affect IBD occurrence or not, is still not quite clear. It has shown that cold meal intake disturbs contractile activity of the gastric (Sun et al., 1995; Verhagen et al., 1998).

Interestingly, industrial and domestic refrigeration development is regarded as a key environmental factor in the etiology of IBD since it increases the chance for exposure of human populations to psychrotrophic bacteria (such as Yersinia), which exacerbate intestinal inflammation (Hugot et al., 2021). However, only approximately 10% of patients with IBD were found to harbor Yersinia in their gut (Le Baut et al., 2018); therefore, the theory of psychrotrophic bacteria cannot explain these conditions completely. Consequently, some other related factors (for instance, cold stress in the gut) might affect IBD occurrence.

To untangle the link between cold stress, gut barrier, and the gut–brain interaction, we mimicked excess cold beverage consumption in a mouse model. Metabolic syndrome is a potentially important confounder factor, which can indirectly affect the gut–brain axis by changing a myriad of physiological and endocrine systems (Sun et al., 2018). To uncouple the metabolic effects directly caused by excess calorie intake from the beverage rather than the cold stress, we treated mice with cold water by gavage for 14 consecutive days. We then evaluated the gastrointestinal physiology and stress-related behavior in mice. Moreover, we investigated whether cold stress could affect the microbiota and metabolites of fecal contents since gut microbiota and metabolites are essential for bidirectional interactions within the gut–brain axis. These findings could highlight a link between cold stress on gut barrier dysfunction, gut microbiota, and metabolite disturbance, providing new preventive strategies to quell the creeping up in the incidence of IBD.



Materials and methods


Animals

The C57BL/6 mice (8 weeks, male) were used in this study. Sixteen mice were divided into two groups: In the control group (n = 8), the mice were subjected to gavage with room-temperature water (20–25°C). In the cold stress group (n = 8), the mice were subjected to gavage with cold water (0–4°C).

Regular drinking water and food were available to the mice at all times. Additionally, each mouse was given a total of 1 ml cold or room-temperature water. Prior to use the water was autoclaved and handled using sterile vessels. The maximum dose given by gavage was 200 μl at a time, and we gave it five times. This treatment had lasted for 2 weeks. Gut function tests and behavioral tests were carried out after gavage for 2 weeks. The protocol was approved by the Animal Research Ethics Board of the Northwest University (Approve number: 20210204).



Fecal output, fecal moisture content evaluation, and Bristol score

All the mice were transferred into separate clean cages, and the feces were numbered and collected for 4 h between 8 am, and 12 am. All the feces during the procedure were collected and placed in tubes, then tubes were weighed and the wet weight were recorded, dried overnight at 60°C, then reweighed, and the dry weight were recorded. At last the water content was calculated. The criteria for Bristol score were evaluated as described in the previous study (Koh et al., 2010).



Histological analysis and disease activity index score

The mice were killed by cervical dislocation. Then, the mice were dissected and the whole intestines were removed from the abdomen. Several segments were taken from the ileum and colon, respectively, and rinsed with cold saline, fixed in 4% polyformaldehyde. The ileum and colon samples were prepared for histological examination of lesions. The resected segments were opened lengthwise, embedded in paraffin, and sectioned. Hematoxylin–eosin staining of the ileum and colon was performed. Intestinal inflammation was assessed by observing ulcer formation, epithelial cell changes (goblet cells), lymphocyte infiltration, and lymph node formation, according to a previous report (Zielinska et al., 2017). DAI score is evaluated according the stool consistency, blood and weight loss as previously described (Kim et al., 2012).



Gut peristalsis

In brief, 0.6 g of carmine was dissolved in 0.5% hydroxymethyl cellulose solution to obtain a 6% carmine solution. A 200 μl aliquot of the 6% carmine solution was administered to the mice via gavage. The animals were then placed in separate cages on a white sheet of paper (to facilitate recognition of red feces). Gut peristalsis activity was defined as the time between gavage and the first red bolus excreted (Zielinska et al., 2017).



Indirect calorimetry

In this study, we randomly selected 6 mice from the control group and 6 mice from the cold stress group, to perform the metabolic tests. Twelve mice were transferred into metabolic cages (Columbus Comprehensive Lab Animal Monitoring System, Columbus, OH, USA) and housed for 24 h with food and water provided ad libitum. After 24 h of adaptation, the oxygen volume (VO2), carbon dioxide volume (VCO2), respiratory exchange ratio (RER; VCO2/VO2), heat production, food intake, and drink intake were automatically measured during the following 24 h by the system.



Immunofluorescence

The immunofluorescence was performed on paraffin section from the colon tissue as described (Dinallo et al., 2019). The slides were incubated overnight at 4°C with the primary antibodies E-cadherin (1:1000; BD Biosciences) and ZO-2 (1:1000; Cell Signaling Technology), after washing three times with PBS, slides were incubated for 1 h at room temperature with specific secondary antibodies coupled with Alexa Fluor Dyes (1:300; Servicebio). Coverslips were mounted on glass slides using ProLong Gold antifade reagent with DAPI to counterstain the DNA. Lastly, the images were acquired on fluorescence microscope.



Depression- and anxiety-like behaviors test

The tail suspension test (TST) was used to evaluate depression- like behaviors. As described previously (Steru et al., 1985), the mice were admitted to suspend for 6 min. All sessions were video-recorded. The time spent struggling in TST (The mice have obvious struggling movements) within a 6-min session was recorded and evaluated as behaviors for survival. The behaviors with reduced time for struggling were regarded as depression-like behaviors. Additionally, anxiety-like behaviors were examined using Open Field Test (OFT) as described previously (Walsh and Cummins, 1976). Their locomotor activity were monitored for 15 min. The time spent in the central area were recorded as indicators of exploratory behavior. The behaviors with reduced time in the center were regarded as anxiety-like behaviors.



Feces collection, 16S rDNA sequencing, and untargeted metabolomic analysis

Feces samples were collected between 8 am and 11 am. The feces samples collected were stored at −80°C. The feces DNA extraction, polymerase chain reaction, library construction, and sequencing were performed as previously described (Sun et al., 2019a). Diversity indices were calculated using QIIME2. Principal coordinate analysis was performed using Calypso online tools. The relative abundances, Spearman correlation coefficients, and heatmap were calculated and compared using T packages. Spearman’s rank correlations at the genus level were calculated as our previous study (Sun et al., 2019b).

The liquid chromatography-mass spectrometry (LC–MS) was employed to analyze the fecal metabolome. We used the ACQUITY UPLC system (Waters Corporation, Milford, MA, United States) coupled with an AB SCIEX Triple TOF 6600 System (AB SCIEX, Framingham, MA, United States) in positive- and negative-ion modes as described previously (Su et al., 2020; Yan et al., 2020).



RNA sequencing and bioinformatics analysis

The TRIzol reagent (Invitrogen, Carlsbad, CA, United States) was used to extract the RNA, then assess the RNA integrity by Bioanalyzer 2,100 (Agilent, CA, United States). Poly(A) RNA was purified and fragmented into small pieces, and reverse-transcribed to synthesize cDNA, treated with U-labeled double-stranded DNAs with the heat-labile enzyme UDG, then amplified. Finally, the products were sequenced on an Illumina NovaSeq 6,000 platform (LC-Biotechnology Co., Ltd., Hangzhou, China).

We used the Fastp software for quality control, used HISAT2 to map the reads, and used StringTie to assemble them. The different mRNAs were selected as the following criteria: mRNAs with fold change of >2 or < 0.5 and p < 0.05 in a parametric F-test comparing nested linear models.



Statistical analysis

All data in gut function and behavioral tests were showed as the mean ± SEM. Statistical analysis was performed by using Student’s t-test for comparisons between cold stress group and control group. Statistical analysis for bioinformatics data of RNA-seq, gut microbiota, and metabolites was performed using the R package vegan. The p value less than 0.05 was regarded as statistical significance.




Results


Cold stress disturbs intestinal function and increases gut permeability in mice

A total of 15 mice (8 in control group and 7 in cold stress group) were able to complete the experiment, as one mouse died from choking during gavage. There were no significant differences in heat production, food intake, drink intake, or respiratory exchange rate between the two groups (Supplementary Figures S1A–D). No changes were observed in the jejunum (Supplementary Figure S1E) or colon length (Supplementary Figure S1F) in the cold stress group. Assessment of gastrointestinal motility by carmine red administration showed that gastrointestinal propulsion was impaired in the cold stress group (Supplementary Figure S1G). In the cold stress group, lower fecal output (t = 2.493, p = 0.027; Figure 1A), lower fecal moisture percentage (t = 4.815, p < 0.001; Figure 1B), and lower Bristol scores (t = 3.015, p = 0.010; Figure 1C) were observed. These results suggest that cold stress disturbs the intestinal function. Altered fecal properties, bloody stools, and weight loss are the most important characteristics in IBD, then we used the DAI scores to evaluate the severity of the colitis. We found that the DAI scores in the cold stress group were significantly higher than in the control group (t = −4.861, p < 0.001; Figure 1D). Correspondingly, hematoxylin–eosin staining showed sparse intestinal villus, and edema in the intestinal villi of the jejunum (Figure 1E), a significant reduction in goblet cells, an enhanced inflammation response, and an elevated histological score in the colon (t = −2.193, p = 0.047; Figure 1F). As to the gut barrier, we found that the expression of E-cadherin and ZO-2 was lowered by immunofluorescence (Figure 1G), compared to that in the control group.
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FIGURE 1
 Cold stress disturbs intestinal function and increases gut permeability in mice. (A) Feces output in 4 h. (B) Fecal moisture percentage. (C) Bristol scores. (D) DAI scores calculating using body weight and fecal characters. (E,F) Hematoxylin and eosin-stained jejunum and colon sections from control and cold stress-treated mice and the corresponding histological scores. (G) Representative images of markers of gut barrier in the colon, E-cadherin (left) and ZO-2(right) Scale bars = 50 μm. All the data are expressed as mean ± SEM (n = 8 in the control group; n = 7 in the cold stress group). *p < 0.05.




Cold stress exacerbates the inflammatory response of the intestinal tissue in mice

To further identify the changes in gene expression in the intestinal tissue after cold stress, we randomly selected out 6 mice from the two groups and investigated the gene expression profiles of the intestinal tissue using RNA sequencing (Figure 2A). A total of 432 genes with differential expression between groups were identified, with 330 genes upregulated and 102 genes downregulated in the cold stress group when compared with the control group (Figure 2B). Gene Ontology analysis showed that all the genes most strongly enriched in immune function processes, including innate immune response and adaptive immune response, such as the B cell activation and B cell receptor complex, immunoglobulin production, immunoglobulin complex, complement activation, antigen binding, and defense response to a bacterium (Figure 2C). In accordance with these findings, KEGG pathway analysis also showed that the genes were enriched in immune activation in the colon, including the primary immunodeficiency, B cell receptor signaling, intestinal immune network for IgA production, NK cell-mediated cytotoxicity pathways, leukocyte transendothelial migration, Th1 and Th2 cell differentiation, Th17 cell differentiation, cytokine–cytokine receptor interaction, and chemokine and Fc gamma R-mediated phagocytosis, all of which are closely related to the immune response in the colon (Figure 2D).
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FIGURE 2
 Cold stress exacerbates the inflammatory response of the intestinal tissue in mice. (A) Number of genes upregulated and downregulated in the cold water-treated group. (B) Volcano plot of genes differentially expressed between the two groups. (C,D) GO and KEGG pathway enrichment analysis between the two groups. (E) Gene set enrichment analysis of the cold stress group compared to the control group. Data are representative of three biological repeats (n = 3).


To further reveal the effects of cold stress on the colon, we used gene set enrichment analysis to analyze the genes which revealed substantial upregulation of genes involved in the B and T cell receptor signaling pathway, leukocyte transendothelial migration, FC epsilon RI signaling pathway, chemokine signaling pathway, and cytokine–cytokine receptor interaction (Figure 2E). These findings suggested that cold stress triggers an IBD-like phenotype in mice.



Cold stress leads to low bacterial diversity and a fragile ecological network in the gut microbiota

In general, IBD is considered to occur when the immune system overreacts to the resident gut microbiota, inducing a chain of inflammatory events that can destroy the gut barrier (Eisenstein, 2016). These findings prompted us to further investigate whether changes in microbiota or bacterial metabolites from the feces under cold stress stimulation may regulate the gut barrier and gut–brain interactions.

Eight individual fecal samples from the control group and seven individual fecal samples from the cold stress group were collected and sequenced. The principal component plots with unweighted UniFrac distances showed a clear separation between the cold stress and control groups (Figure 3A), which suggested that cold stress led to a significant alteration in the gut microbiota composition. The Shannon index showed no difference between the two groups (Figure 3B). However, at the operational taxonomic unit (OTU) level, the microbiota were significantly differed (Figure 3C). The abundances of OTU198 (Lachnospiraceae_unclassified), OTU337 (Clostridiales_Incertae_unclassified), OTU156 (Muribaculaceae_unclassified), OTU254 (Erysipelotrichaceae_unclassified), OTU88 (Duncaniella), OTU334 (Muribaculaceae_unclassified), OTU13 (Paramuribaculum), OTU433 (Proteobacteria_unclassified), OTU215 (Lachnospiraceae_unclassified), OTU258 (Firmicutes_unclassified), OTU115 (Paramuribaculum), OTU272 (Mailhella), and OTU34 (Akkermansia) were significantly increased in the cold stress group. Additionally, the abundances of OTU246 (Anaerotruncus), OTU15 (Alistipes), and OTU209 (Clostridiales_unclassified) decreased under cold stress (Figure 3D). The detailed information has been shown in Supplementary Table S1. Linear discriminant analysis of effect size further showed that the bacteria with increased abundance in the cold stress group mainly belong to Proteobacteria (Supplementary Figure S2). To determine the pattern of bacteria, we constructed their networks in the two group respectively, we found that the network of the cold stress-treated mice had a simpler property (nodes/edges = 81/176) than the control group (nodes/edges = 80/234), indicating that cold stress may induce vulnerability to environmental stress in the gut microbiota (Figure 3E).
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FIGURE 3
 Cold stress leads to low bacterial diversity and a fragile ecological network in the gut microbiota. (A) Principal component analysis (PCoA) plots of unweighted UniFrac distances between the two groups. (B) Shannon diversity scores. (C) Heatmap of key operational taxonomic units (OTUs). (D) Gut bacteria with different abundances at the OTU level. (E) Network analysis at the genus level. V: number of nodes. E: number of edges. (n = 8 in control group and n = 7 in cold stress group).




Cold stress downregulates metabolites of the dopamine-related pathway in the intestinal flora

As a microbe–host bridge, some metabolites of the intestinal flora can affect host physiology by entering the bloodstream. Therefore, we analyzed fecal metabolites using LC–MS. We found that the metabolic data clusters of the control and cold stress groups were separated from each other in both positive- and negative-ion modes by partial least-squares discriminant analysis (Figures 4A,B). The heatmap also showed that cold stress led to significant alterations in fecal metabolite levels (Figure 4C); 1,179 metabolites were upregulated, and 1896 metabolites were downregulated with significant changes (Figure 4D). The most strongly impacted metabolic pathways included cocaine addiction, dopaminergic synapse, amphetamine addiction, and alcoholism addiction (Figure 4E), all of which were accompanied by a significant reduction in levels of dopamine, l-dopamine, l-tyrosine, and homovanillic acid (Figure 4F). As one of the most important neurotransmitters, decreased dopamine levels may contribute to anxiety-like and depression-like behaviors in the cold stress mice. Additionally, patients with IBD present some similar symptoms to patients with IBS, including anxiety and depression. Therefore, these behaviors were further evaluated.
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FIGURE 4
 Metabolites in the dopamine-related pathway are downregulated by cold stress treatment. (A) Partial least-squares discriminant analysis (PLS-DA) scores of all peak features in positive-ion mode. (B) PLS-DA scores of all peak features in negative-ion mode. (C) Heatmap of the metabolites that altered in the cold stress group. (D) Number of differentially expressed (DE) metabolites between the two groups. (E) Pathways impacted. (F) Metabolites in dopamine-related pathways (dopamine, l-dopamine, l-tyrosine, and homovanillic acid). *p < 0.05 (n = 8 in control group and n = 7 in cold stress group).




Cold stress increases depression-like behaviors in mice

In the tail suspended test, the struggling time was significantly decreased in the cold stress group (t = 2.347, p = 0.035; Figure 5A), suggesting an increase in depression-like behaviors in mice exposed to cold stress. Furthermore, in the open field test, the center time (t = 2.451, p = 0.029) was reduced in the cold stress group (Figure 5B), implying a tendency of decreased exploratory behavior and increased anxiety-like behavior in the cold stress group.
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FIGURE 5
 Cold stress increases anxiety- and depression-like behaviors. (A) Struggling time (left) and motion tracking (right) in the tail suspended test. (B) Center time and motion tracking in the open field test. *p < 0.05. (n = 8 in control group and n = 7 in cold stress group).




Correlations of gut microbiota and metabolic changes

Finally, to explore the functional significance of the metabolite perturbations in the gut microbiota of the cold stress-treated group, the 97 annotated metabolites with significant differences were selected, and their Spearman correlation coefficients with different bacteria were calculated. Significant correlations were observed between the gut microbiota and metabolites (Supplementary Figure S3A), and also observed between metabolites and gut function (Supplementary Figure S3B).




Discussion

Increased beverage consumption has long been recognized to play an important role in the pathogenesis of metabolic diseases and colorectal cancer (Yoshida and Simoes, 2018; Goncalves et al., 2019; Hur et al., 2021). Although food additives such as emulsifiers, food colorants, titanium dioxide, and aluminum have largely contributed to the development of these conditions, recent evidence have also identified that food additives are pathogenic factors for colitis (He et al., 2021). In this study, we focused on the potential contribution of cold water to IBD development. These findings suggest that exposure to cold stress in the gut is also a novel risk factor for IBD in humans and a potential trigger for establishing experimental IBD in mice.

Dysregulation of the gut barrier in IBD is caused by environmental factors and genetic predisposition (Graham et al., 2020); however, identifying specific environmental factors has been difficult. Specific food additives are identified as environmental risk factors for IBD (Yang et al., 2018). Here, we aimed to identify whether the low temperature directly affects the development of colitis. Similar to observations in humans, the administration of cold water to mice attenuated gut transit; additionally, the mice exhibited a colitis-like phenotype of gut barrier injury. The fact that increased cold beverage consumption is related to some gastrointestinal symptoms seemingly suggests a link between cold stress and intestinal disorders. Indeed, our results indicate that exposure to cold water not only induces gut transit disturbances but also produces low-grade inflammation. In line with these considerations, cold stress exposure expectedly led to activation of ubiquitous inflammatory signaling pathways, suggesting local mucosal immune cell activation and immune cell trafficking. These are also the characteristics of IBD patients (Neurath, 2019).

Low-grade inflammation in colitis is associated with and may be promoted by gut microbiota dysbiosis (Frank et al., 2007). The low bacterial diversity and altered gut microbiota observed in the cold stress group in this study are extremely similar to those observed in IBD. For example, microbial diversity studies have demonstrated the overgrowth of Proteobacteria in IBD patients (Zhou et al., 2018). Under normal homeostasis, epithelial cells, tight junctions, and the local immune system prevent the translocation of pathogens in the gut. However, in genetically susceptible individuals, Proteobacteria expand to colonize the lumen and invade the lamina propria, further aggravating disruption of the gut barrier (Mukhopadhya et al., 2012). The host recognizes Proteobacteria via nucleotide oligomerization domain-like receptors, Toll-like receptors, and retinoic acid-inducible gene I-like receptors. Moreover, microbiota-derived products such as lipopolysaccharide, peptidoglycan, and flagellin from Proteobacteria trigger the activation of immune responses in the mucosa. Our study suggests that the increased abundance of pathogens accompanied by cold stress may contribute to gut barrier disruption in mice by accelerating inflammation in the gut.

Apart from the microbiota-derived products, the metabolites of the gut microbiota are also key actors in the development and exacerbation of IBD. Accumulating evidence suggests that signals from microbial metabolites affect mucosal integrity and immune homeostasis. Moreover, in IBD patients, the metabolites composition and function are disturbed seriously, including bile acids, short-chain fatty acids, and tryptophan (Lloyd-Price et al., 2019; Lavelle and Sokol, 2020). Significant alteration in the gut microbiota metabolites was also identified under cold stress exposure in this study. Interestingly, we found a remarkable reduction in the levels of several metabolites in the dopamine-related pathway.

Dopamine is a critical catecholaminergic neurotransmitter that present in the peripheral tissues and central nervous system simultaneously, which regulates blood pressure, sodium balance, glucose homeostasis, cognition, memory, the sympathetic nervous system, and mood (Pinoli et al., 2017). Although the dopamine is mainly synthesized in the brain, T cells, dendritic cells, and as well as by gut commensals such as members of the genus Clostridium (Vidal and Pacheco, 2020), recently, it has recently recognized as an important regulator of the immune system. Disturbance of the dopamine pathway affects both innate and adaptive immunity largely, causing the development of inflammatory pathologies (Vidal and Pacheco, 2020). A significant proportion of patients with gut barrier injury suffer from anxiety and depression (Byrne et al., 2017), implying a rational connection between the gut and the brain. Consistently, we examined their behaviors and found that cold stress leads to a tendency to depression. Our findings suggest that cold water stress results in reduced neuro-activities in gut microbiota and enhanced pro-inflammatory activity that promotes anxiety and depression, this is may be related to the dopamine pathway disturbance.

Nevertheless, our study has several limitations. We handled mice with cold water to explore the effect of cold stress to the gut barrier, microbiota, and metabolites. These findings acknowledge the important role of cold stress; however, it cannot mimic the condition of cold beverage consumption completely in humans because of the variety of beverages used and the differences between human and mouse physiology. In addition, although we find a significant overgrowth of pathogens and decreased dopamine-related metabolites in cold stress-treated mice, we cannot completely identify that the alteration in gut microbiota causes the gut barrier injury. Further studies to investigate the role of microbiota and their metabolites with the effect on gut barrier and behavior are also needed to deeply elucidate their causal or accompanied relationships. This is a novel attempt to describe the systematic and detailed phenotypes of this model, and the sample size is somewhat too small, more studies are needed to assure the conclusions furtherly.



Conclusion

In summary, our study shows that exposure to cold stress promotes the development of colitis in mice. Our results may also have implications for human beings, as habit-forming consumption of cold beverages or food is implicated in IBD development.
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Polysaccharides derived from plants, algae, or fungi serve as the major components of some human diets. Polysaccharides have been shown to exhibit diverse biological activities in improving human health, and have also been proposed to function as potent modulators of gut microbiota composition, thus playing a bi-directional regulatory role in host health. Here, we review a variety of polysaccharide structures potentially linked to biological functions, and cover current research progress in characterizing their pharmaceutical effects in various disease models, including antioxidant, anticoagulant, anti-inflammatory, immunomodulatory, hypoglycemic, and antimicrobial activities. We also highlight the effects of polysaccharides on modulating gut microbiota via enrichment for beneficial taxa and suppression of potential pathogens, leading to increased microbial expression of carbohydrate-active enzymes and enhanced short chain fatty acid production. This review also discusses polysaccharide-mediated improvements in gut function by influencing interleukin and hormone secretion in host intestinal epithelial cells.
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1. Introduction

Polysaccharides, formed by α- or β-glycosidic bond of identical or various monosaccharide monomers with10 or more polymerization, are naturally produced in large quantities by plants and fungi (Tan et al., 2017). To date, numerous polysaccharides have been shown to exhibit a range of biological activities, including anticoagulation, antiviral, antitumor, antioxidant, hypoglycemic, and immunomodulatory effects (Zeng et al., 2019; Zhang et al., 2019; Wang et al., 2019b; Kalinina et al., 2020; Chaisuwan et al., 2021; Chen C. et al., 2021; Kiddane and Kim, 2021; Liang Q. et al., 2021; Surayot et al., 2021; Figure 1 and Table 1). In addition, many studies have proposed that some polysaccharides also contribute to shaping the structure, diversity and function of gut microbiota and thus play a role in enhancing human health (Koropatkin et al., 2012; Chang et al., 2015; Lin et al., 2018; Zhang L. et al., 2018; Zhang X. et al., 2018; Chen G. et al., 2019; Ding et al., 2019; Wang M. et al., 2019; Wang Y. et al., 2020; Wang et al., 2020b; Guo et al., 2021a).

[image: Figure 1]

FIGURE 1
 Bioactivities of polysaccharides (anticoagulation, antiviral, antitumor, antioxidant, hypoglycemic, anti-inflammatory and immunomodulatory). PI3K, phosphoinositide 3-kinase; AKT, serine/threonine-specific protein kinase; ERK, extracellular-signal-regulated kinase; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor-κB; ROS, reactive oxygen species; GSH-Px, glutathione peroxidase; SOD, superoxide dismutase; CAT, catalase; Nrf2, nuclear factor erythroid 2–related factor 2.




TABLE 1 The action of some bioactive polysaccharides in disease prevention and treatment.
[image: Table1]

Gut microbes share a symbiotic lifestyle with human hosts, colonizing the gastrointestinal tract, and a large number of studies have highlighted the significance of these microbes, collectively termed microbiota, in mediating interactions that determine human health or disease states involving the gastrointestinal, cardiovascular, orthopedic and even neurological systems (Björkstén et al., 2001; Li et al., 2019). Recently, naturally occurring undigestable polysaccharides in plants and foods were found to exert regulatory effects on gut microbiota by selecting for beneficial microorganisms in the gut while inhibiting the growth of pathogenic bacteria. This activity reinforces the structural and functional integrity of the intestinal mucosal barrier, and enhances the intestinal immune system via modulation of cytokine expression levels (de Vrese and Schrezenmeir, 2008; Chiu et al., 2014; Fuke et al., 2019; Han et al., 2020; Zhang et al., 2020; Zhao et al., 2020; Guo et al., 2021b). For example, Hawthorn HAW1-2 Polysaccharide (Guo et al., 2021b), Ziziphus Jujuba Polysaccharide (Han et al., 2020), glycyrrhiza polysaccharide (Zhang X. et al., 2018), and Lycium barbarum polysaccharide (Ding et al., 2019) were all reported to act as prebiotics by affecting gut microbiota structure and diversity. In addition, fungal polysaccharides were also found to play an important regulatory role as prebiotics through mechanisms similar to that of plant polysaccharides (Liang J. et al., 2021). However, studies of these various prebiotic effects of polysaccharides have yet to fully uncover the full range of interaction mechanisms between polysaccharides and gut microbiota. Thus, a summary of the different plant sources and structures of known bioactive polysaccharides can facilitate ongoing research efforts, especially their prebiotic effects and modulation of microbiota in the context of human health. It should be noted that progress toward understanding the diversity of prebiotic polysaccharide functions requires the integration of plant phenotypic data with multi-omics analyses to identify tripartite host-polysaccharide-microbiota interactions.



2. Overview of polysaccharides and their bioactivities


2.1. Structure and classification of polysaccharides

To provide an overview of higher order polysaccharide structures, polysaccharides are first categorized by their primary structure, determined by connection types, the organization and composition of sugar residues, the configuration of glycosidic bonds, and the conformation of sugar rings (Yang et al., 2020). The secondary structure of oligosaccharides, i.e., their regular conformation resulting from hydrogen bonding (the most common secondary bonds between main chains), is determined by the dihedral Φ, Ψ or ω angles of the polymer backbone (Hatcher et al., 2011). Based on the secondary structure of polysaccharides, the tertiary structure is formed by non-covalent interactions among carboxyl groups, hydroxyl groups, sulfate groups, and/or amino groups on the sugar units. The polysaccharide quaternary structure refers to aggregates formed by non-covalent bonding between polymer chains (Lafond et al., 2016). In addition, polysaccharides can be classified as either homopolysaccharides or heteropolysaccharides, homo-polysaccharides are composed of a single type of monosaccharide and hetero-polysaccharides are composed of different types of monosaccharides (Sinha and Kumria, 2001; Liu et al., 2008). For example, glucans are glucose homopolysaccharides, while mannans are mannose homopolysaccharides (d’Ayala et al., 2008). Overall, polysaccharides are categorized as glucans, mannans, pectin polysaccharides, arabinogalactans, galactans, fucoidan, fructan, and polyxylose, among others, based on their monosaccharide composition and linkage types (Tan et al., 2017; Maji, 2019; Figure 2).
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FIGURE 2
 Classification and composition of some representative polysaccharides and commonly polymerized monosaccharides. (A) Xylan (B) Beta-Glucan (C) Mannan (D) Arabinogalactan (E) Galactan (F) Fucoidan (G) Fructan.


Different monosaccharide contents and branching exhibit various bioactivities. Wu et al. (2020) isolated polysaccharide from the seeds of Litchi chinensis Sonn. and reported reduction of antitumor activity of branched backbone of polysaccharides with more than four monosaccharide units. The monosaccharide contents of polysaccharides could also influence their anti-inflammatory activity (Chen Y. C. et al., 2019). In addition, polysaccharides contain many functional groups, including hydroxyl groups and a hemiacetal reducing end that has the potential to reduce precursor salts (Park et al., 2011). Studies have revealed that the oxidation of polysaccharide hydroxyl groups to carbonyl groups play a significant role in reducing gold salts (Mata et al., 2009). Alternatively, the reducing end of polysaccharides has been used to introduce an amino functional group capable of forming complexes with and stabilizing metallic nanoparticles (Nadkarni et al., 1994). Carbohydrates with these amino groups bind strongly to the surface of gold or silver nanoparticles to provide a hydrophilic surface (Kemp et al., 2009). The introduction of specific functional groups will change a polysaccharide’s molecular weight, structure, types, position and number of substituents groups, and may alter the physiochemical and functional properties of that polysaccharide (Li et al., 2016). More specifically, various modifications, including sulfation, phosphorylation, carbomethylation, benzoylation or acetylation have all been shown to enhance the biology activity of some specific polysaccharides (Xu Y. et al., 2019). For instance, in heparan sulfate (HS) polysaccharides, negatively charged sulfate and carboxylate decorations can be organized into a variety of different so-called HS S-domains through a tightly controlled biosynthetic pathway that enables remarkable structural variability (Li and Kusche-Gullberg, 2016). Using standard DPPH and ABTS assays, Cao et al. (2020) characterized the antioxidant properties of sulfated polysaccharides from Amana edulis (Cao et al., 2020). Another study illustrated the positive effects of phosphorylation- based modifications on increasing the antioxidant activity of polysaccharides isolated from Momordica charantia (Chen F. et al., 2019). Recently, nanocellulose incorporated polysaccharides were reported to extent nanoparticle application in health promotion. Incorporation of chitosan and nanocellulose could improve their antimicrobial activity (Tomé et al., 2013), as well as exerting roles in wound healing (Hasan et al., 2017). These different combinations of functional groups of polysaccharides from diverse sources, along with monosaccharide composition, linkage types, and chemical modifications can thus result in different biological activities.



2.2. Polysaccharide bioactivities


2.2.1. Anticoagulation and anti-inflammatory effects

Polysaccharides are widely reported to exhibit anticoagulation properties by inhibiting thrombin activity, decreasing platelet counts, inhibiting platelet adhesion and aggregation, enhancing plasminase activity, and promoting the dissolution of fibrin (Matsubara et al., 2001; Pawlaczyk et al., 2011; Xue et al., 2018). Souza et al. (2015) identified polysaccharides from spinosa bark that could provide anticoagulant, antiplatelet and antithrombotic effects without increasing inducing a greater likelihood of hemorrhage (Souza et al., 2015). Similarly, an acidic polysaccharide was extracted from the edible mushroom Auricularia auricula which contained mannose, glucose, glucuronic acid and xylose oligosaccharides, but no sulfate ester links. This polysaccharide displayed potent anticoagulation effect by inhibiting thrombin via antithrombin activation (Yoon et al., 2003). Sulfated galactans produced by the seaweed Hypnea musciformis were also found to have antioxidant, anticoagulant, and immunostimulatory properties, depending on the method of their extraction (Gabriela das Chagas Faustino Alves et al., 2016).

Other than anticoagulant effects, polysaccharides are also known to exert anti-inflammatory activities. Fu et al. (2022) studied the structure of polysaccharides from Chinese aconite (Aconitum carmichaelii) leaves and demonstrated that these polysaccharides have immunomodulatory and anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation in intestinal epithelial cells (Fu et al., 2022). In addition, in vitro investigation of the bioactivity of polysaccharides from Typha angustifolia using RAW264.7 cell provided evidence indicating that these polysaccharides can significantly suppress inflammatory cytokine production, nuclear factor-κB (NF-κB) signal pathway activation, and reactive oxygen species (ROS) production (Wei et al., 2021). Study on Sargassum fusiforme fucoidan has shown that polysaccharides can inhibit selectin-mediated leukocyte migration and infiltration by blocking interactions between P-selectin and its ligands on leukocytes, ultimately reducing the levels of IL-6, IL-8, TNF, and CRP cytokines to ameliorate systemic inflammation (Wu S. et al., 2019). Guo et al. (2018) studied the anti-inflammatory activity and related mechanism of polysaccharides isolated from Sargentodoxa cuneata. Their findings demonstrated that these polysaccharides could markedly inhibit carrageenan-induced edema in the hind paw of rats by decreasing malondialdehyde and prostaglandin E2 levels in the hind paw, serum and liver, while promoting SOD activity in serum and liver (Guo et al., 2018).



2.2.2. Immunomodulatory effects

Numerous polysaccharides from fungi and plants can reportedly provide various dietary and medicinal benefits, including marked effects on immune system function. Polysaccharides have also been shown to function as immunomodulators through a variety of mechanisms (Mousavi et al., 2015), such as activating macrophages, T cells, B lymphocytes, or natural killer cells, or by activating complements and promoting cytokine production (Kouakou et al., 2013). This regulation of innate immune response can substantially impact the host’s ability to rapidly respond to pathogens. As an essential component of the host immune system, macrophages collaborate with other cell types, such as neutrophils, to resist the adverse effects of biotic and abiotic stresses (Schepetkin and Quinn, 2006; Shen et al., 2014). To augment this function, some polysaccharide signal molecules can activate a macrophage-mediated immune response via binding with different receptors on macrophages, such as Toll-like receptor 4, complement receptor 3, scavenger receptor, mannose receptor, and Dectin-1, consequently initiating one or more intracellular signaling cascades that ultimately result in production of inflammation-related cytokines (Schepetkin and Quinn, 2006; Liao et al., 2015; Bunyatyan et al., 2017; Gong et al., 2017; Zhou et al., 2020). These macrophage-associated immunomodulatory effects of plant polysaccharides are largely mediated by increased ROS generation, cytokine secretion, cell proliferation, and phagocytic activity of macrophages (Gong et al., 2017) One earlier study described a novel polysacchaide obtained from the fruiting body of Dictyophora indusiate that could significantly promote macrophage secretion of NO, TNF-α, and IL-6 via complement receptor 3 in mouse RAW 264.7 cells (Liao et al., 2015). As organic selenium compound with complex chemical structure and diverse sources, selenium polysaccharide has been widely studied as its biological activities. A wide variety of non-specific immune cells, such as natural killer cells and macrophages display significantly improved immune function in the presence of selenium polysaccharides (Zhou et al., 2020). These advances in understanding the scope of polysaccharide activity suggest that many more plant polysaccharides with immunomodulatory effects have yet to be identified through extensive screening and research.



2.2.3. Hypoglycemic effects

Diabetes is a chronic, metabolic disease with typical hyperglycemia symptoms which is characterized by insulin resistance and a relative/absolute insulin insufficiency (Bunyatyan et al., 2017). Plant polysaccharides can also stimulate insulin secretion, modulate the activity of glucose metabolizing enzymes, inhibit the gluconeogenesis pathway, and promote glucose utilization in peripheral tissues, thus performing important functions in the prevention and treatment of diabetes (Wu et al., 2016). Tea made with guava (Psidium guajava L., Myrtaceae) leaves has long been used as a traditional herbal treatment for diabetes in Asia and North America (Oh et al., 2005). Polysaccharides from guava leaf have been shown to exhibit potent free-radical scavenging activity toward DPPH, OH, and ABTS, and can significantly lower fasting blood sugar, total cholesterol, total triglyceride, glycated serum protein, creatinine, and malonaldehyde levels (Luo et al., 2019). In addition, treatment with these polysaccharides can significantly increase total antioxidant activity and superoxide dismutase (SOD) enzyme activity in diabetic mice, consequently ameliorating damage to the liver, kidney, and pancreas (Luo et al., 2019). Recently, the application of bitter gourd (Momordica charantia) as herbal medicine/vegetable in the treatment against diabetes has been widely reported. One study investigating the hypoglycemic effects of Momordica charantia polysaccharides in alloxan-induced diabetic mice model showed that the polysaccharide treatment led to significantly lower fasting blood glucose levels and improved glucose tolerance, thus proposed dose-dependent anti-diabetic activity (Xu et al., 2015). In order to obtain better antidiabetic activities, a selenylated polysaccharide from Momordica charantia has been applied to diabetic mice and was reported to prevent pancreatic islets, liver and kidney damage from diabetes by reduction of fasting blood glucose levels, enhancement of insulin levels and antioxidant enzyme activities (Ru et al., 2020). The pumpkin polysaccharides also demonstrated a significant glucose tolerance effect, and effectively alleviated insulin resistance in addition to providing cytoprotective benefits on type II diabetes mellitus (T2DM) mice (Chen X. et al., 2019). In particular, glucomannan and glucogalactan have been shown to exhibit significant antidiabetic properties by inhibiting alpha-amylase and alpha-glucosidase activity to promote pancreatic beta cell proliferation and stimulate insulin sensitivity and secretion (Mirzadeh et al., 2021).

Mechanistically, these effects are mediated by phosphorylated tyrosine residues present in the intracellular substrates of the insulin receptor (IRS) (Mirzadeh et al., 2021). These substrates could activate the phosphoinositide 3-kinase (PI3K), phosphoinositide-dependent protein kinase 1 and 2 (PDK1/2) and then activates serine/threonine-specific protein kinase (AKT) pathways (Ganesan and Xu, 2019). AKT activates the phosphorylation of glycogen synthase kinase 3 (GSK3), resulting in upregulation of glycogen synthesis in the liver and skeletal muscle (Mirzadeh et al., 2021). Moreover, AKT can also stimulate the translocation of glucose transporter 4 (GLUT4) to the plasma membrane which consequently enhance glucose uptake (Wang et al., 2012). Study also found that AkT is a main mediator in activating the extracellular-signal-regulated kinase (ERK) /mitogen-activated protein kinase (MAPK) pathways thereby triggering several physiological and biochemical mechanisms, such as cell differentiation, proliferation, apoptosis, and cell endurance (Jayachandran et al., 2019). IRS studies on Ophiopogon japonicus polysaccharide and glucopyranose-rich heteropolysaccharide from Catathelasma ventricosum demonstrated that these compounds could trigger the PI3K/AKT signaling pathway through IRS1, PI3K-p85, and phosphorylated AKT to promote insulin sensitivity and improve diabetes-associated renal disease (Wang et al., 2012; Liu et al., 2016a,b). Collectively, polysaccharide could regulate glucose uptaking, glycogen synthesis and β-cell activity through PI3K/Akt pathway and ERK/MAPK pathways and resulting in playing an anti-diabetic role (Figure 3).

[image: Figure 3]

FIGURE 3
 The hypoglycemic function of bioactive polysaccharides on the insulin signaling pathway. IRS, insulin receptor substrate; PI3K, phosphoinositide 3-kinase; PDK1/2, phosphoinositide-dependent protein kinase 1 and 2; AKT, serine/threonine-specific protein kinase; GSK-3, glycogen synthase kinase-3; GLUT4, glucose transporter type 4; ERK, extracellular-signal-regulated kinase; MAPK, mitogen-activated protein kinase.




2.2.4. Antioxidant effects

Oxidative stress can be link to a variety of diseases including cancer, cardiovascular diseases, diabetes, respiratory diseases, immune deficiency and neurodegenerative disorders, while antioxidants could protect cells against free radicals and reduce the risk of many diseases (Fridovich, 1999; Fang et al., 2002). Plant polysaccharides have been shown to directly eliminate free radicals by inhibiting lipid peroxidation, scavenging hydroxyl free radicals, and clearing superoxide anion free radicals. They also act on free radicals indirectly by enhancing the activities of SOD, catalase (CAT), and glutathione peroxidase to maintain a balance of free radicals, which can collectively diminish or avert the occurrence of disease (Xie et al., 2016). Lin et al. (2022) used enzymatic and microwave extraction methods to obtain polysaccharides from Purple-Heart Radish (Raphanus sativus) that displayed high antioxidant effects by inhibiting lipid peroxidation (Lin et al., 2022). Studies of polysaccharides from yerba mate (Ilex paraguariensis) tea reported IC50 values of 3.36 ± 0.31 mg/mL for ·OH scavenging activity, suggesting a strong antioxidant capacity (Chen X. et al., 2019). Xu et al. (2012) characterized polysaccharides from flowers of Camellia sinensis and found a high, dose-dependent capacity for scavenging superoxide anion free radicals (Xu et al., 2012). Study of polysaccharides from Astragalus membranaceus (Fisch.) has shown that ROS levels decrease, SOD activity increases, and superoxide dismutase free radical scavenging is enhanced, which can alleviate tissue damage and delay senescence (Song et al., 2019). Shan et al. (2011) found that administering Lycium barbarum polysaccharides led to significantly higher SOD and glutathione peroxidase (GPX) levels in rats with exercise-induced oxidative stress, indicating that these polysaccharides played a significant role in preventing oxidative stress after exhaustive exercise (Shan et al., 2011). Investigation of alfalfa polysaccharides illustrated their antioxidant effects on immune response in preventing H2O2-induced oxidative damage by activating mitogen-activated protein kinase (MAPK)/nuclear factor erythroid 2–related factor 2 (Nrf2) signaling pathways while suppressing NF-κB signaling in mouse embryonic fibroblasts (Wang et al., 2019a).

In addition to naturally occurring polysaccharides, chemical modification can also enhance the antioxidant effects of some polysaccharides. For example, findings by Gao et al. (2017) showed that selenylation of Angelica sinensis polysaccharide could enhance its antioxidant and hepatoprotective activity through inhibition of p- ERK and p-JNK signaling in mice with hepatic injury (Gao et al., 2017). Collectively, polysaccharides from diverse sources have been applied as functional antioxidant components in many pharmaceutical/nutraceutical products due to their capacity for modulating ROS levels, enzymatic and non-enzymatic antioxidant defense responses (e.g., SOD, CAT, GPX), and oxidative stress-induced signaling pathways (e.g., MAPK ERK, and JNK).



2.2.5. Antitumor and antiviral capacities

Cancer remains one of the greatest threats to public health worldwide, and is a long-standing focus of research attention and drug development, especially those with reduced side-effects. Bioactive polysaccharides have been identified that exert anti-tumor activity toward a variety of tumor cells without inducing cytotoxicity in normal cells (You et al., 2013). In the cactus (Opuntia dilleniid), polysaccharides were found that can induce S-phase arrest and block the growth of SK-MES-1 cells, possibly through increased levels of P53 and phosphatase and tensin homolog deleted on chromosome 10 protein (PTEN) (Li et al., 2014). The screening and discovery of new anti-tumor polysaccharides represents an ongoing pursuit for many research groups, with the most common direct tumor-killing mechanisms of anti-tumor polysaccharides involving cell cycle arrest, blocking angiogenesis, and inducing apoptosis. In addition, some polysaccharides act through immunomodulation to indirectly induce tumor killing (Khan T. et al., 2019; Lu et al., 2020).

Several studies have described antiviral effects of both natural and chemically modified polysaccharides. For example, Witvrouw et al. (1994) observed antiviral activity by a sulfated polysaccharide isolated from the red seaweed (Aghardhiella tenera) in vitro and found that it could inhibit the cytopathic effects of human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2), as well as against other enveloped viruses. Examination of the inhibitory effects of Glycyrrhiza polysaccharide (GPS) on bovine immunodeficiency virus (BIV), adenovirus type III (AdVIII), and coxsackie virus (CBV3) revealed that GPS could inhibit BIV to some extent, but showed obvious inhibition or direct inactivation of AdVIII and CBV3 (Wang Y. et al., 2020). Further technological advances in plant polysaccharide research will enable more comprehensive screening for effective anti-tumor and antiviral polysaccharide drugs.





3. Prebiotic effects of various sources of polysaccharides on gut microbiota

The adult human intestinal tract harbors an estimated stable community of 39 trillion microbial cells, which has been recognized as a diverse and dynamic ecosystem containing bacteria, fungi, protozoa, and viruses (Rajakovich and Balskus, 2019). Gut bacterial communities are generally comprised of six major phyla, including Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Verrucomicrobia, and Fusobacteria (Gong et al., 2020), which collectively contribute to protecting the intestinal barrier, preventing pathogen invasion, participating in vitamin synthesis (Vitamin K, Vitamin B), host metabolism, and other functions related to nutrient uptake (Cresci and Bawden, 2015). In addition, mutual interactions between gut microbiota and their host were found to provide important functions in host health, and dysbiosis in gut microbiota has been linked to inflammatory bowel disease, obesity, allergies, and psychological disorders (Coyte et al., 2015). Patterson et al. (2016) proposed a possible association between gut microbiota and obesity and metabolic syndrome, which are both accompanied by an increased ratio of Firmicutes to Bacteroidetes in obese phenotypes patients, compared with that in non-obese individuals (Patterson et al., 2016). Other studies have indicated that gut microbiota can influence the development of neurological disorders as autism, depression, Alzheimer’s disease, and Parkinson’s disease (Dinan and Cryan, 2017).

Several factors, including infant delivery modes and feeding patterns, host, diet, antibiotic usage, and other factors have all been reported to affect gut microbiota composition and diversity (Cresci and Bawden, 2015). Among these factors, host and diet exert a particularly strong influence on gut microbiota. Our own previous study identified clear differences in gut microbiota driven by dietary variation among people living in close regional proximity (Liu et al., 2020). Furthermore, dietary intervention was recently recognized as a reliable strategy for altering gut microbiota and enhancing gut function, especially through prebiotics. Prebiotics are food components that may promote health in the host by exert activity in the gastrointestinal microbiota, such as fructose oligosaccharides, arabino-oligosaccharides, isomalt oligosaccharides, polyphenols and polyunsaturated fatty acids and etc. (Gibson et al., 2004, 2017). Among these prebiotics, dietary polysaccharides are relatively large macromolecules that are difficult to digest and absorbed, but can serve as carbon sources that potentially enrich beneficial gut microbes, or regulate microbial growth, activity, and metabolite production (Koropatkin et al., 2012; Chang et al., 2015; Wang et al., 2018). Furthermore, the polysaccharides affected gut microbiota modulation via enrichment for beneficial taxa and suppression of potential pathogens, leading to increased microbial expression of carbohydrate-active enzymes and enhanced short chain fatty acid production. In addition, polysaccharide mediated improvements in gut function such as influencing immune-related cytokines and hormone secretion in host intestinal epithelial cells and maintaining gut barrier function (Figure 4).
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FIGURE 4
 Prebiotic effects of polysaccharides toward gut microbial modulation. LPS, lipopolysaccharide; VH/CD, villus height/crypt depth; CAZymes, carbohydrate-active enzymes; SCFA, short-chain fatty acids; PPARγ, peroxisome proliferator-activated receptor-γ; PYY, peptide tyrosine; IL-2, interleukin-2; IFN-γ, interferon-γ; TNF-α, tumor necrosis factor-α.


Plant polysaccharides have been frequently proposed to serve as regulators of gut microecology (Fang et al., 2019), and have been shown to regulate the diversity and structure of gut microbiota, thus altering metabolic functions in the gastrointestinal tract (Zhao et al., 2021). Oral administration of polysaccharides from Ziziphus Jujuba cv. Pozao in cyclophosphamide-induced mice led to enrichment of Firmicutes and decreased Bacteroidetes, with genus-level increases in the relative abundance of Bacteroidales-S24-7-group, Lachnospiraceae, Alloprevotella, Alistipes, and Bacteroides (Han et al., 2020). Chen and colleagues showed that Sarcodon aspratus polysaccharides could serve as a prebiotic treatment to prevent obesity in mice fed with a high-fat diet, and led to increased relative abundance of Lactobacillus, Bacteroides and Akkermansia, decreased Firmicutes-to-Bacteroidetes ratio, inhibitory effects on immune cells activation and adipocyte differentiation in adipose tissues (Chen et al., 2020). Poria cocos polysaccharides were shown to alleviate intestinal mucosal injury, improve intestinal integrity, and restore the composition and structure of gut microbiota following dysbiosis by promoting the proliferation of beneficial bacteria in Ob/Ob Mice (Sun et al., 2019). Li et al. (2020) investigated the hypoglycemic and hypolipidemic effects of tea polysaccharides, potentially mediated by changes in gut microbiota and metabolism, in a rat model of type 2 diabetes. They stated that treatment with tea polysaccharides restored some specific bacterial taxa, such as Lachnospira, Victivallis, Roseburia, and Fluviicola in diabetic rats, whereas Bacteroides was decreased (Li et al., 2020). Taken together, polysaccharides play an important role in improving body health by increasing the enrichment of beneficial bacteria and reducing the proximity of harmful bacteria.

In addition, gut microbiota could produce short-chain fatty acids (SCFAs) and other metabolites, such as acetic acid, propionic acid, butyric acid, lactic acid and succinic acids, etc. These SCFAs can, in turn, affect gut functions to jointly regulate health (Wu Y et al., 2019). SCFAs are the final product of polysaccharide fermentation by gut microbiota (Mitsou et al., 2020), and are well-known to contribute to maintaining epithelial cell growth in the colon, modulate host metabolism, participate in immune regulation of the intestinal system, and play an indispensable role in maintaining the homeostasis of human gut microbiota (Morrison and Preston, 2016). In a study by Guo et al., treatment with polysaccharide from hawthorn (Crataegus monogyna) by gavage ameliorated inflammation symptoms in mice with dextran sulfate sodium (DSS)-induced colitis through significantly increased production of total SCFAs and acetic acid, attributable to greater relative abundance of Alestipes and Odoribacter (Guo et al., 2021b). Investigation of Cyclocarya paliurus polysaccharides in type 2 diabetic rat models. Suggested that these molecules could enrich for SCFA-producing bacteria, leading to elevated SCFA production and upregulation of associated sensory mediators that alleviate symptoms of type 2 diabetes (Yao et al., 2020). β-glucans, inulin, and oligofructose have all been found to significantly increase butyric acid production, which serve as a nutrient source for intestinal epithelial cells, reduces pH in the lumen, and provides energy for human activities (Song et al., 2014; Kim and Jazwinski, 2018), whereas polysaccharides such as α-glucan, fructan, and arabinoxylan can reportedly increase intestinal acetic acid levels (Shang et al., 2018). Insoluble polysaccharide isolated from the sclerotium of Poria cocos, as a prebiotic, increased the abundance of butyrate-producing bacteria such as Lachnospiracea and Clostridium, leading to an increase in the level of butyrate and improvement of gut mucosal integrity and activated the intestinal PPAR-γ pathway, significantly improving glucose and lipid metabolism and alleviating hepatic steatosis in ob/ob mice, suggesting its potential for the treatment of metabolic diseases (Sun et al., 2019). As one of the important natural polysaccharides source, marine polysaccharides were also well studied recently. Lentinan and sea anemone polysaccharides were recently reported to facilitate the production of total SCFAs, maintain gut homeostasis, and provide energy (Wang et al., 2018). In addition, polysaccharides from tea, C. sinensis, can also reduce blood glucose and lipid levels, promote SCFA production, attenuate insulin resistance, confer protective effects against pancreatic damage in type 2 diabetic rat model (Li et al., 2020).

In addition to regulating SCFA production, study showed that plant polysaccharides can up-regulate the expression of genes encoding carbohydrate-active enzymes (CAZymes), enhancing CAZyme activity and thus leads to higher SCFA production and increased tight junction protein expression with concurrent suppression of metabolic endotoxemia and decreased expression of inflammatory factors (Nguyen et al., 2016). Guo et al. (2021a) reported that Ganoderma lucidum polysaccharide could also upregulate CAZyme expression, especially glycoside hydrolases, polysaccharide lyases, glycosyltransferases, and carbohydrate esterases, leading to improved health.

Furthermore, polysaccharides can facilitate repair of damaged intestinal barrier to ensure the integrity of intestinal structures (Liang J. et al., 2021). Zhou et al. (2021) conducted co-treatment of American ginseng polysaccharide and ginsenoside altered uric acid, xanthurenic acid, acylcarnitine and restored the morphology of intestine. Specifically, the co-treatment resulted in an up-regulation of the villus height (VH)/crypt depth (CD) ratio, as well as an increase in the areas of mucins expression, quantity of goblet cells and expression of tight junction proteins (ZO-1, occludin) and then protecting the intestinal barrier (Zhou et al., 2021). Additionally, study of Yu et al. (2021) found that Cyclocarya paliurus polysaccharides dramatically increased the intestine antioxidant defense of CTX-induced mice, repaired the intestinal barrier by restoring the length of villi and depth of crypt, up-regulating the expression of tight junction proteins, shifting the composition and diversity of the gut microbiota, and regulating the relative abundances of specific taxa, then restoring intestinal mucosal barrier function (Yu et al., 2021).

Additionally, polysaccharide mediated improvements in gut function such as influencing immune-related cytokines and hormone secretion. Study of Lycium barbarum polysaccharide also suggested that polysaccharide treatment could protect immune organs, enhance the production of immune-related cytokines (IL-2, IL-6, IL-1β, TNF-α, and IFN-γ) and prevent the hepatotoxicity in cyclophosphamide (CTX)-induced mice (Ding et al., 2019). In immunosuppressed mice, Cordyceps sinensis polysaccharide was found to modulate gut microbiota, alleviate gut injury, and regulate the balance of T helper (Th)1/Th2 cells (Chen S. et al., 2021). Khan I. et al. (2019) reported that the treatment of Ganoderma lucidum polysaccharides markedly promoted SCFA produced bacteria and abridged sulfate-reducing bacteria in a time-dependent manner, altered expressions of histone deacetylases, anti-cancer gut hormone PYY, and PPAPγ in ApcMin/+ mice. Collectively, both in vitro and animal experiments applied for polysaccharide from different sources has been proved to have gut modulation capacity as prebiotic, however, clinical application of well recognized polysaccharides could help further understanding the actual response of human gut microbiota. These studies collectively indicate that plant polysaccharides share a complex relationship with gut microbes, and further study is required to reveal the full scope of mechanisms. In addition, gut regulation by postbiotic as secreted polysaccharides and extracellular polysaccharides has aroused attention recently. In several studies, the lactic acid bacteria-exopolysaccharides showed anti-oxidative and immunomodulatory activities as well as gut microbiota regulation effect (Xu R. et al., 2019; Xu Y. et al., 2019; Nataraj et al., 2020; Wang et al., 2020a). Further research into the biological activities of these metabolites is expected to reveal novel uses for postbiotics in medicine and beyond.

In general, the influence of polysaccharides on gut microbes can be summarized in three main aspects. Firstly, polysaccharides can attenuate damage to intestinal mucosa, alleviate intestinal inflammation, facilitate repair of damaged intestinal barrier, and ensure the integrity of the intestinal structure. Second, polysaccharides can alter intestinal microbial community composition and function, enriching beneficial bacteria while suppressing the proliferation of potential pathogens, consequently improving the relative content of various intestinal metabolites, especially SCFAs, that positively impact overall health. Third, polysaccharides can directly regulate gut function, such as modulating the secretion of interleukins and hormones in intestinal epithelial cells, or activating microbial CAZyme expression, which can reduce the likelihood of gut disease. However, most of these interventional studies are based on in vitro experiments or model animals, and thus clinical trials examining the effects of polysaccharide-based treatments in gut dysbiosis could improve our understanding of the interactions between polysaccharides, gut microbiota, and gastrointestinal function in humans.



4. Conclusion

Dietary polysaccharides have been shown to exert a range of biological activities, including anticoagulation, anti-inflammatory, immunomodulatory, hypoglycemic, antitumor, and antioxidant effects that impact gut health, in addition to modulating gut function and microbiota composition. These diverse functions are largely dependent on the primary structure and functional groups of the saccharide monomers. Ongoing innovations in data mining and compound screening continually expand the range of available bioactive polysaccharides, and drive the development of their pharmacological applications. It is noteworthy that these bioactive polysaccharides are not strictly limited to plants, and have been screened from fungi and algal sources, suggesting that there are likely a multitude of such metabolites with potential health benefits that are yet to be discovered in nature.
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With an ever-growing human population, the need for sustainable production of nutritional food sources has never been greater. Aquaculture is a key industry engaged in active development to increase production in line with this need while remaining sustainable in terms of environmental impact and promoting good welfare and health in farmed species. Microbiomes fundamentally underpin animal health, being a key part of their digestive, metabolic and defense systems, in the latter case protecting against opportunistic pathogens in the environment. The potential to manipulate the microbiome to the advantage of enhancing health, welfare and production is an intriguing prospect that has gained considerable traction in recent years. In this review we first set out what is known about the role of the microbiome in aquaculture production systems across the phylogenetic spectrum of cultured animals, from invertebrates to finfish. With a view to reducing environmental footprint and tightening biological and physical control, investment in “closed” aquaculture systems is on the rise, but little is known about how the microbial systems of these closed systems affect the health of cultured organisms. Through comparisons of the microbiomes and their dynamics across phylogenetically distinct animals and different aquaculture systems, we focus on microbial communities in terms of their functionality in order to identify what features within these microbiomes need to be harnessed for optimizing healthy intensified production in support of a sustainable future for aquaculture.
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1. Introduction

As the global population continues to expand rapidly, so too does the need for sustainably produced food. The world’s water bodies cover over 70% of the planet and are home to a bounty of protein-rich seafood (edible fish, invertebrates and algae from marine, brackish and freshwater environments). Global consumption of seafood (from capture and culture production in inland and marine waters) is growing at an annual rate of 3.1% (1961–2017), which is faster than for any livestock and animal production sector (FAO, 2020). Concurrent with stagnation of wild fisheries, aquaculture has progressively increased its contribution to fish and shellfish production with a mean annual growth of 5.3% between 2001 and 2018 (FAO, 2020), accounting for 52% of all seafood produced for human consumption in 2018 (FAO, 2020). The continued expansion of aquaculture has however been hampered by outbreaks of infectious disease, concerns over environmental footprint, and impacts of climate change.

Health management in aquaculture has historically relied upon antibiotics and other chemotherapeutics (de Bruijn et al., 2018), but continued development of targeted vaccines (Ma et al., 2019) and selective breeding to generate disease resistant lines (Houston et al., 2020) are now coming to the forefront as environmentally sustainable alternatives. A more holistic approach to health management in aquaculture is to consider the cultured animal and its surrounding environment together. Emerging evidence indicates that microbial communities both within and surrounding an animal in aquaculture can contribute directly to productivity in terms of growth, disease resistance and animal welfare (Perry et al., 2020; Rajeev et al., 2021; Dai et al., 2022; Murphy et al., 2022). Microbial communities play dynamic functional roles with both commonalities and contrasts across cultured animal groups from invertebrates such as mollusks and crustaceans to vertebrates—predominantly finfish—and should be viewed as central components in the development of a sustainable aquaculture industry.

The associated microbial communities both within and surrounding farmed aquatic animals are commonly referred to as the microbiome (Figure 1). Bacterial communities are the focal point of the vast majority of microbiome studies and a paucity of information exists relating to the communities of other microbes including viruses, fungi, archaea and protozoa. The fungal community has been characterized in telelosts including zebrafish, the gut of which contained fungal taxa belonging to more than 15 classes across the phyla Ascomycota, Basidiomycota, and Zygomycota, and distinct profiles in wild versus laboratory reared fish (Siriyappagouder et al., 2018). In the wood-eating Amazonian catfish (Panaque nigrolineatus), the mycobiome varied in different gut regions, and as a function of diet (Marden et al., 2017). Using a metatranscriptomic approach in the intestine of gilthead sea bream (Sparus aurata), fungal transcripts were found to be as abundant as bacterial, and while bacteria were important in vitamin and amino acid metabolism as well as rhythmic and symbiotic pathways, fungi were determined to play a role in host immunity, digestion and endocrine processes (Naya-Català et al., 2022). In green-lipped mussels (Perna canaliculus), the fungal community was determined in gills, hemolymph, digestive gland and stomach, and the majority of amplicon sequence variants (ASVs) belonged to the phylum Ascomycota in line with other studies (Li et al., 2022). However, more than 50% of ASVs for fungal taxa were only classified at the phylum level, highlighting the lack of fungal studies and thus lack of reference sequences, a hurdle which will need to be overcome to fully characterize complete microbial communities.

[image: Figure 1]

FIGURE 1
 What is a microbiome? A microbiome can be defined simply as “a community of commensal, symbiotic, and pathogenic microorganisms within a body space or other environment” (Lederberg and McCray, 2001), although many varying definitions exist (Berg et al., 2020). A microbiome comprises a community of microbes including bacteria, viruses, fungi, microeukaryotic and metazoan parasites and Archaea (collectively known as the microbiota) as well as the downstream products and functionality of the microbiota. Cultured aquatic species harbor communities of microbes in the gut or gastrointestinal tract, as well as in the skin, nasal and oral cavities, gills, hemolymph, shells, integument and hepatopancreas, some of which are common across all cultured animal phyla (e.g., gills). The established microbiome composition is complex and involves not only host factors such as genotype and the host immune system, but also external environmental influences such as diet, physical parameters of culture systems, microbes in the aquatic environment and an array of water physiochemical parameters, including temperature, salinity, and dissolved oxygen. Together these parameters determine microbiome composition in host niches and these communities of commensals influence host health. Key determinants of host microbiome composition in cultured aquatic animals. Host microbiomes are determined by both environmental and host-associated factors. Environmental parameters can also reciprocally impact each other, as well as the host, particularly the microbial community within the water. Environmental parameters can be measured and, in some cases, controlled in aquaculture as can host factors such as genetics. Microbiomes occur in all cultured taxa including finfish, bivalve mollusks and crustaceans. Common microbial niches are found in a number of mucosal tissues including gut, gill and skin while others are specific to particular phyla, for example invertebrate hemolymph. Host microbiome composition itself has important implications for host health, but the functional and mechanistic pathways underlying these associations are poorly understood in aquaculture.


Across cultured phyla there are common tissues which host microbial communities including gut and gill, but microbiomes also occur in fish on their skin, and in their nasal and oral cavities, and in crustaceans and mollusks in their hemolymph (blood), digestive glands, shells (mollusks) and integument (crustaceans). Differences in microbiome composition in different tissues is driven by niche specialization and host selective pressures (Kelly and Salinas, 2017). A common feature across phylogenetically distinct animals in aquaculture is the primary role of internal mucosal microbiomes in digestion and nutrient absorption while external mucosal communities assume a primarily defensive role from the perspective of outcomes for the host. Yet microbiomes can also contain opportunistic pathogens, and to some extent are determined by the surrounding environment and not regulated by the host. In this perspective we explore how microbiomes contribute to productivity and health in aquaculture, with a particular focus on the commonalities and differences between phylogenetically diverse cultured animals and culture systems. We also present future prospects on how we may harness the power of the microbiome to promote sustainable aquaculture as production seeks to be intensified.



2. Establishing the host microbiome—where do commensal microbes come from in aquaculture?

Distinct from their terrestrial counterparts, aquatic organisms are in constant contact with (potentially) microbially rich water and this constant exposure may offer adaptive advantages, in addition to some inherent threats. In aquaculture systems, the aquatic environment is highly dynamic and can change both frequently and rapidly in response to many factors, including weather, temperature, and husbandry practices. The majority of aquaculture species, both invertebrate and vertebrate, reproduce by external fertilization, producing an independent egg exposed to the environment. External mucosal surfaces are first colonized by environmental microbes shortly after hatching (Giatsis et al., 2014; Stephens et al., 2016). As initial colonizers originate from the environment, hatchery conditions play a strong role in determining the diversity and richness of the initial colonizing community (Minich et al., 2021). In contrast, the internal gut mucosa is not colonized until the time of mouth opening and first feeding, exposing this internal niche to a potentially different pool of colonizers from the environment as well as diet-associated microbes. Critically, a sterile or partially sanitized environment restricts the pool of microbes from which to establish resident communities.


2.1. Selectivity in colonization—how to tell friend from foe?

Interactions between mucosal microbiota and the host immune system is particularly intense during initial colonization by commensals. Commonalities exist between invertebrates and vertebrates during the first phase of colonization in that acceptance or rejection of microbial taxa is controlled by a triad of the environmental conditions, the microbes themselves, and the host innate immune system. Germline-encoded cell receptors, where they exist, can play an early role in community selection and the innate immune system must have the ability for tolerance and allow settlement of commensals while selectively excluding opportunists or undesirable taxa (Kelly and Salinas, 2017). These cell receptors are likely to differ between mucosal surfaces, which raises interesting mechanistic questions. However, it is not solely the case that the immune system “selects” symbionts, but also that microbes from the environment may successfully colonize as they are best adapted to survive in the nutrient rich biochemical environment of the mucosal surface, independent of host influences.

In contrast with crustaceans and mollusks, the immune systems of which are devoid of lymphocytes and immunoglobulins (Igs), the acquired immune system or immunological memory capability of fish develops at first-feeding (Castro et al., 2015), while initial colonization of the gut occurs between mouth opening and first-feeding. As such, in addition to being exposed to a temporally distinct group of potential colonizers, colonization of the gut may be regulated by different immune pathways in invertebrates and vertebrates. In fish, as in other vertebrates, Igs are a key feature in acquired mucosal immunity, coating resident microbes to aid in selectivity (Woof and Mestecky, 2005; Kelly and Salinas, 2017). Dominant Ig isotypes have been identified at different mucosal sites, suggesting a role in determining site specific microbiota (Salinas et al., 2021). Although mollusks and crustaceans lack immunological memory in terms of Ig-mediated mechanisms, they harbor complex repertoires of lectins and other binding molecules which enable recognition of diverse microbes, resulting in control of undesirable species for successful innate immune protection (Vasta et al., 2007, 2012; Gerdol et al., 2018; Coates et al., 2022). Thus, successful colonizers are microbes in the environment which are suited to a mucosal niche and evade exclusion by the host immune system. This has been well studied in bobtail squid, Euprymna scolopes which acquire a specific strain of Vibrio fischeri from the surrounding environment into a specialized light organ, excluding all other bacterial taxa (Kostic et al., 2013). An additional facet of the immune system to consider when trying to understand microbial colonization are antimicrobial peptides (AMPs). AMPs refer to small peptides also known as bacteriocins including hepcidins, beta-defensins, cathelicidins and fish-specific piscidins (Masso-Silva and Diamond, 2014; Katzenback, 2015). AMPs are generally toxic to closely-related strains, although wider target ranges also occur (Rodney et al., 2014) and thus have the potential to impact colonization and succession by making an inhospitable environment for certain taxa. Less well understood in aquaculture is the interaction between environmental microbes and host genetics in microbiome colonization.



2.2. How do host genetics impact microbial colonization?

Host genetics may play a role in the establishment of microbial associations through microbial recognition, immune selection, and determination of the biochemical niche (Spor et al., 2011). Fish of different species reared in the same or closely related environments can differ in their microbiome composition (Nikouli et al., 2021). Additionally, a genetic component may persist within species. In genetically divergent three-spined stickleback (Gasterosteus aculeatus) populations, divergence in the intestinal microbiota is greater than could be accounted for by environment and ecology, supporting a role for host genetics in the selection of bacterial species (Smith et al., 2015; Steury et al., 2019). Even within populations, an interaction between major histocompatibility complex class IIb (MHC class IIb) polymorphisms and genotype could impact microbiome diversity (Bolnick et al., 2014). However, other studies in Atlantic salmon (Salmo salar) identified a relatively minor role of host genetics (Dvergedal et al., 2020), particularly when compared to environmental effects (Uren Webster et al., 2018). Yet using hybrid populations of Chinook salmon, compositional differences in microbiota were attributed to quantitative genetic architecture (Ziab et al., 2023). It may be the case that, in common with mammalian systems, genotype-dependent selection may influence specific microbes, as opposed to the whole microbial community (Tabrett and Horton, 2020). Some animals in aquaculture, particularly salmonids, generally originate from brood-stock under genetic selection for production traits, notably related to growth, which may influence the contribution of environmental relative to genetic factors. In the case of shrimp farming, traits selected for are almost entirely focused on disease resistance. Importantly, genetic processes select microbes after the host has come into contact with bacterial communities in the environment, an important consideration in trait selection for different environments.

Little is known about the interactions between host genetics, microbiome stability, and health outcomes in relation to animals in aquaculture. Pacific oyster [Crassostrea (Magallana) gigas] families susceptible to Ostreid herpesvirus-1 have been shown to have differences in bacterial community structure and evenness compared to resistant families (King et al., 2019; Clerissi et al., 2020) and there are similar observations for the gill and gut of susceptible and resistant rainbow trout (Oncorhynchus mykiss) in response to Flavobacterium psychrophilum infection (Brown et al., 2019). In addition to genetic influences, epigenetic processes provide a link between host and microbiota. Metabolites resulting from cellular metabolic processes can impact the activity of enzymes involved in histone and DNA methylation and demethylation (Narne et al., 2017; Reid et al., 2017). The environmental microbiome is important in host immune system maturation, including the development of pathogen recognition systems. In the Pacific oyster, early life exposure to microbes improved survival during a challenge with Pacific oyster mortality syndrome (POMS) not just in the exposed generation, but in the following generation also. A combination of microbiota, transcriptomics, genetics and epigenetic analyses determined a distinct change in epigenetic methylation marks during microbial exposure leading to an altered immune gene expression and long-lasting, intergenerational immune protection against POMS (Fallet et al., 2022).

Overall, host genetics appear to play a central role in microbiome establishment, but little is known about the genomics x environment interaction for establishment and maintenance of microbial communities. The interactive nature of genetics and environment raises the potential for targeted environmental conditioning in aquaculture. To consider such approaches, it is important to first understand the role of physical aquaculture systems in dictating parameters which influence both host and environmental microbes.




3. Aquaculture system dynamics and host microbiome determination

Water has many variable properties including temperature, salinity, pH, ionic composition and chemistry related to dissolved gasses. Additionally, physical aquaculture systems dictate water exchange rate, retention time, and a level of biological sterility, particularly in hatcheries, a key stage for community establishment. Water harbors an array of microbes which provide ecosystem services within wild, and aquaculture systems and system parameters are important determinants of microbial dynamics. In low diversity microbial environments with input of organic material, fast-growing opportunistic r-strategists characteristic of instability can outcompete slow-growing K-strategists which are markers of stability. However, if water retention time in the system is short, opportunists are less able to replicate and stability of the system is more likely maintained by virtue of this management practice (Attramadal et al., 2012; Vadstein et al., 2018). A key end-goal of system optimization in aquaculture is to define environmental parameters which are conducive to desirable microbiomes in terms of sustainability and productivity, and to then have the ability to monitor and control these parameters to ensure optimum performance. However, due to the wide range of aquaculture system types (categorized as flow-through, open, or recirculating) and their associated temporal dynamics, a “one-size fits all” approach to determining optimum parameters is unlikely to succeed.


3.1. Aquaculture systems and evolving microbial stability

The nature of the aquaculture system can have major impacts on microbiomes of finfish (Minich et al., 2020, 2021; Uren Webster et al., 2020) and invertebrates, as illustrated for oyster (Arfken et al., 2021) and shrimp (Tepaamorndech et al., 2020). Such impacts are determined by physical and environmental parameters within systems and can influence production outcomes including growth and survival (Table 1). Culture systems come in an array of shapes and sizes and can be broadly described on a scale from open to closed (Figure 2). Larval stages are generally cultivated in highly controlled flow-through or recirculating aquaculture system (RAS) hatcheries with many species requiring planktonic organisms as feed before being transferred to on-growing facilities that vary between species. On-growing occurs in tanks, ponds and cages, or on other structures such longlines and rafts for bivalves (Tidwell, 2012). Most commonly these on-growing stages are exposed to the natural environment and generally employ the use of processed diets for finfish and crustaceans, or natural feed for filter feeding animals. Most open systems such as sea cages are exposed to natural fluctuations in the environment and may experience temperature extremes, exposure to harmful algal blooms, jellyfish (Clinton et al., 2021), and pollutants (Trabal Fernández et al., 2014). Such challenges have direct impacts on microbial communities and exposure to pathogens. The desire to have greater control over environmental parameters with a view to optimizing water quality to promote growth and minimize pathogen exposure, has led to an expansion of closed or semi-closed systems such as RAS. However, although it is more feasible in closed environments to maintain a high degree of stability, water chemistry can change over time in closed systems, depending on how they are maintained, and this can affect the biological load (Fossmark et al., 2020) and in turn the environmental microbiome. How the physiochemistry of the different aquaculture systems may affect microbial stability in aquaculture is now a significant area of research interest. Although the physical systems in which invertebrates and vertebrates are reared in and on-grown differ, commonalities can be defined in terms of the nature of the systems on the scale from open to closed.



TABLE 1 Key published literature describing system parameter effects on animal microbiomes and production outcomes.
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FIGURE 2
 Microbiome dynamics in different aquaculture systems. Water usage, farmer control, environmental inputs and microbial variability in aquaculture systems. An important consideration in microbial maturation within aquaculture systems is water usage, particularly in terms of water flow and exchange. Systems vary from open (e.g., Atlantic salmon pens in lochs or fjords) to closed (e.g., land-based recirculating aquaculture systems; RAS) with systems between the two extremes referred to as flow-through (e.g., tilapia or shrimp ponds). Farmer control over environmental parameters including temperature and photoperiod are greater moving from open to recirculating systems and environmental factors such as natural seasonality and exposure to pollutants decrease. These dynamics may suggest a more stable microbial environment in closed systems, but in reality microbial variability is unlikely to follow a gradient from open to closed systems. Open systems are exposed to a rich pool of natural microbes which vary with season and geographic location. Contrastingly, strict husbandry practices to ensure pathogen exclusion in RAS, may result in periods of near sterility in the system, effectively re-setting the microbial community and introducing variability. In both cases, the result is potential instability in the system, but it is not known if stability is essential to a functioning microbiome.




3.2. Open versus closed—what do aquaculture system structures mean for the microbiome?

In open aquaculture systems with constant water exchange—such as those used in shellfish cultivation and finfish cage culture—water quality, chemistry and microbial composition vary with geographical location, time, and season, with temperature having a strong impact on the microbiota (Sunagawa et al., 2015). For example, in response to increased water temperature, a surge in opportunistic pathogenic taxa in the Pacific oyster, C. gigas with dominance of Vibrionaceae occurs (Green et al., 2019). Similarly in marine Atlantic salmon, gut microbiomes are dominated by Leuconostoc and Weissella in cold water temperatures, but by Vibrio, Allivibrio, and Photobacterium in warmer water (Zarkasi et al., 2014). Circadian rhythmicity is naturally determined by latitude and influences microbiome composition in rainbow trout skin (Ellison et al., 2021), but photoperiod is also often manipulated in aquaculture to promote growth and enable year-round production (Mero et al., 2019; Wang et al., 2020; Pino Martinez et al., 2021), and is likely to impact on immune function with consequences in mucosal immune activity (West et al., 2021).

In RAS, microbial processes are vital in maintaining water quality (Attramadal et al., 2012; Blancheton et al., 2013). Biofilters in the RAS loop host essential communities of bacteria which regulate conversion of waste nutrients to prevent build-up of toxic metabolites such as ammonia and hydrogen sulfide resulting from uneaten feed and fecal matter. Build-up of organic matter or introduction of pathogens result in mass mortalities, and therefore various forms and combinations of filtration and disinfection are often carried out in a RAS loop (Summerfelt et al., 2009). Filtration in the RAS loop assists in stabilizing carrying capacity (Fossmark et al., 2020), while disinfection is an effective means of removing pathogens, but may effectively “re-set” the community. Such dynamics raise questions about how, where, and when RAS water should be subject to disinfection. Simply put, how clean is too clean? At the other end of the sterility scale, the use of biofloc technology, a microbial feed source added to culture water to maintain microbial communities in culture water, has associated benefits for immune reactivity in shrimp (Tepaamorndech et al., 2020), and faster growth in tilapia (Nguyen et al., 2021). Importantly, despite the relative stability of RAS in comparison to open systems, microbiomes in Atlantic salmon gut in RAS are still temporally dynamic, possibly related to biological load in the system (Lorgen-Ritchie et al., 2021).

Intermediate between open and closed states, pond systems are the dominant forms of global aquaculture, particularly prominent in low-middle income countries of Asia, responsible for farming carp, tilapia and shrimp (FAO, 2020). Similar to open systems, ponds are exposed to fluctuating external environmental parameters, but the physiochemical and biotic condition of ponds can shift rapidly due to their shallow depth and limited water exchange, especially when compared to the large water body buffer of open cage culture. During the rainy season, rapid salinity fluxes occur due to rainwater diluting ion concentrations. In intensive culture, algal blooms can form due to excessive food and fertilizer (e.g., manure) inputs providing the key phytoplankton nutrients phosphorous and nitrogen (Huang et al., 2016). In summer months overgrowth of photoautotrophic bacteria can lead to highly turbid pond water, limiting oxygen production (Sriyasak et al., 2015; Dien et al., 2019). In the oriental river prawn (Macrobrachium nipponense) hypoxia induced changes in the intestinal microbiome composition with a deviation toward higher levels of pathogenic bacteria (Aeromonas) (Sun et al., 2020). Mitigation strategies for anoxic conditions include pond aeration (Boyd, 1998), and multi-trophic farming with mollusks that filter feed on phytoplankton resulting in a net increase of dissolved oxygen (Cunha et al., 2019). As aquaculture continues to expand, it would be beneficial to employ an ecosystem-based approach when designing and optimizing aquaculture systems, attempting to integrate interactions between physical environment, host, and microbiome to promote establishment of desirable microbiomes for productivity and host health.




4. Which microbiomes promote animal health in aquaculture?

Productivity and welfare in all areas of the aquaculture industry are under constant threat from opportunistic pathogens, infectious disease and syndromes which result in poor health. A growing body of evidence challenges the idea of a single pathogen causing a single disease; the concept of a “pathobiome” implies that a triad of interactions between environmental microbes, host-associated commensals and the host itself steer overall host health (Bass et al., 2019). For example, in skin mucus of brook charr (Salvelinus fontinalis), host stress was associated with a decreased abundance of beneficial commensals including Methylobacterium and Propionibacterium, known to produce pathogen growth inhibitors poly-β-hydroxybutyrate and bacteriocin, coincident with a rise in abundance of opportunistic pathogenic genera including Aeromonas, Psychrobacter and Acientobacter (Boutin et al., 2013). Additionally, cryptic infection is possible whereby pathogens with dormant, or non-pathogenic life stages may infect a host asymptomatically, but be activated as a pathogen in response to a change in the environment, for example, seasonal changes in temperature (Overstreet and Lotz, 2016; Bass et al., 2019). Mucosal surfaces and their associated microbiota are the first line of defense against pathogens and are equipped with a range of protective molecules such as antimicrobial peptides and immune-related cell components (Reverter et al., 2018) which may induce competitive advantage directly or indirectly. It is becoming increasingly clear that disease impacts host microbiomes, but also that host micorbiomes can mediate disease severity or progression (Table 2). For example, in Atlantic salmon infected with amoebic gill disease (AGD), a significant reduction in bacterial diversity was apparent when compared with healthy individuals and a particular taxon (Tenacibaculum dicentrarchi) was particularly prevalent in lesions of infected gill tissue (Slinger et al., 2020). In red abalone suffering from Withering syndrome (WS), Mycoplasma was replaced as the dominant taxon in the digestive gland by Candidatus Xenohaliotis californiensis, but C. X. californiensis was also a member of the microbiome of healthy individuals, suggesting that in this case, the ratio between the two taxa may be key in determining pathogenicity of the disease (Villasante et al., 2020). The array of life history strategies, species and systems across which aquatic animals are farmed represent a challenge in identifying desirable microbiome signatures at the taxonomic level, yet at a functional level, commonalities can be identified. In this line of thinking, it is the ability of the microbiome to maintain functionality in the face of environmental change that promotes host health, rather than consistency of the taxonomic composition of microbial communities.



TABLE 2 Key published literature exploring the interaction between disease and host microbiome composition.
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4.1. Can a “healthy” microbiome be defined for aquaculture practices?

Attempts have been made in the past to define a “healthy” microbiome in terms of aquaculture but realistically a single consistent “healthy” microbiome is unlikely to exist, even within a single species in a single culture system (Infante-Villamil et al., 2021; Rajeev et al., 2021). Thus, perhaps a desirable microbiome for aquaculture should instead be defined as one that has the capacity to adjust to its environment, and in doing so maintain a beneficial symbiotic relationship with the host. Maintenance of community homeostasis historically has been considered important, but this should be expanded to considering community homeostasis in terms of functionality rather than taxonomic identity. Microbial communities can be remarkably dynamic in response to changes in their environment and a highly plastic, dynamic microbiome may also contribute to host phenotypic plasticity, and thus host ability to tolerate environmental stressors. The “Anna Karenina principle” (Zaneveld et al., 2017) infers that stressors create more stochastic microbiomes as a consequence of a dampening of the host’s ability to regulate its microbial communities, resulting in increased inter-individual variation in microbiomes of hosts experiencing stress (Boutin et al., 2013). However, the contrasting pattern has also been observed, with remarkably similar microbiome responses to environmental disturbance which have been attributed to reduced competition allowing increased dominance of certain taxa (Webster et al., 2019). Such differences may well reflect differences in external environment. In open systems with more variation in environmental microbes, we might expect greater stochasticity, but in closed systems with less environmental microbial variation, we might expect to see the domination of certain taxa.

Although maintaining low levels of stress in aquaculture is a central tenet of stock management, even routine husbandry practices can induce stress, which may increase disease susceptibility (Eissa and Wang, 2016). A microbiome with a high adaptive plasticity is less likely to be disturbed by environmental stressors and therefore there are less likely to be knock-on adverse effects of microbiome disturbance on host health. A plastic microbiome may also confer specific fitness benefits to the host (e.g., an ability to metabolize or sequester dietary toxins, adapt to novel nutrient or feed sources, or to cope with changing water temperatures) (Alberdi et al., 2016; Macke et al., 2017). It is important to consider that the nature and outcomes of stress responses will depend on the nature of the existing microbial community, with different mucosal sites displaying differing responses to stress in terms of both cortisol levels and microbiome dynamics (Webster et al., 2019). Despite variable responses, identification of markers of stress or dysbiosis across datasets could enable these to be leveraged in real-time microbiome monitoring in aquaculture through non-invasive sampling of water, feces, or external mucus to detect microbial signatures of potential ill-health. Going a step further, the future ideal would be to actively intervene and manipulate the microbiome during these periods of dysbiosis to help re-balance disruptions and maintain optimal host health.



4.2. Dysbiosis and rebiosis—an opportunity to condition microbiomes for sustainable aquaculture?

As explained above, the first microbial colonizers are key in determining succession via competitive exclusion or “colonization resistance,” competing for nutrients and physical space (Vonaesch et al., 2018). Post-colonization, development of the fish microbiome is characterized by periods of establishment and proliferation which are especially dynamic and strongly influenced by environment, and periods of stabilization which are strongly influenced by the host. Husbandry practices can introduce instability to the environment and these transitional periods are often accompanied by high levels of mortality or increased disease susceptibility (Paul-Pont et al., 2013; Johansson et al., 2016). As an example, on-growing of Atlantic salmon requires transition from a freshwater to a saltwater environment, exposing commensal microbes to a distinct shift in salinity and ultimately creating a new niche for salt-tolerant taxa to the detriment of freshwater commensals. Such distinct shifts in environmental parameters are accompanied by rapid remodeling of host microbiomes (Dehler et al., 2017; Lorgen-Ritchie et al., 2021) characterized by an initial loss of community structure, a process known as dysbiosis, followed by re-establishment of a new community—rebiosis. Periods of rapid change in the microbiome are especially sensitive to external influences of incoming microbes that may later be more inhibited by colonization resistance, and this may have a lasting effect on microbiome composition and function via priority effects (Debray et al., 2021). This could have important implications for aquaculture as these periods may be especially sensitive to disruption but may also represent an opportunity for increased sensitivity to conditioning.

Dysbiosis in the naturally occurring microbiome of the host often coincides with infection or poor health, from invertebrates to humans. Dysbiotic states may manifest as (i) loss of beneficial organisms, (ii) expansion of pathobionts and/or (iii) loss of microbial diversity (Petersen and Round, 2014). It is important to consider community interactions when trying to understand these processes. Ecological theory suggests diverse communities are more resistant to dysbiosis and invasion by opportunistic pathogens (Levine and D'Antonio, 1999) as they have more diverse functionality and more effective competitive exclusion. Salmon experimentally infected with the copepod “louse” ectoparasite, Lepeophtherius salmonis, have been shown to display a reduced bacterial richness in their skin microbiome (Llewellyn et al., 2017). A similar pattern has been observed in the gut of shrimp suffering white feces syndrome (Hou et al., 2018). However, in shrimp suffering from white spot syndrome virus (WSSV), no significant difference in diversity was observed although community composition was distinct in control vs. diseased animals (Wang et al., 2019). Moving forward, defining dysbiosis in terms of loss of functional integrity and knock-on effects on host health may be more useful when it comes to potential development of therapeutics.

It remains unclear whether dysbiosis occurs in response to infection or if opportunists exploit an existing or incipient dysbiotic state, perhaps induced by change in environmental conditions or host physiology or immune capabilities, in order to infect. A combination of both is probably most likely—infection may well exacerbate an already dysbiotic state. To illustrate this scenario, production of the Pacific oyster (C. gigas) is hampered by disease, especially Pacific oyster mortality syndrome (POMS) that has caused major economic losses (Segarra et al., 2010). POMS is a polymicrobial disease where oysters become infected by osterid herpes virus 1 μvar (OSHV-1 μvar) and this leads to immune suppression facilitating dysbiotic shifts in the oyster’s microbiome. This altered microbiome, the pathobiome, is characterized by dominance in taxa including Vibrio, Aliivibrio, Arcobacter, Marinobacterium, Marinomonas, Photobacterium, Psychrobium, and Pschromonas (de Lorgeril et al., 2018; Clerissi et al., 2020; Petton et al., 2021; Richard et al., 2021). Affected oysters show bacteremia where opportunistic vibrios including V. aestuarianus cause significant mortality. Oyster families displaying greater microbial diversity within individuals tend to be less likely to suffer from POMS (Clerissi et al., 2020) and selective breeding programs may improve disease resistance and hence reduce the impact of this condition (Dégremont et al., 2020). Similarly in Atlantic salmon, amoebic gill disease (AGD) is a increasing gill health issue, the etiological agent of which is the free-living amoeba Neoparamoeba perurans (Crosbie et al., 2012). AGD infection is initiated by adherence of N. perurans to the gill mucosa where commensal bacteria persist (Embar-Gopinath et al., 2005). Microbial profiling revealed lower bacterial diversity and a moderate positive correlation between N. perurans and Tenacibaculum dicentarchi in infected tissues (Slinger et al., 2020). Altering bacterial load on the gills prior to N. perurans infection using antimicrobial treatments resulted in differing progression of AGD with significantly higher severity observed in chloramine-trihydrate (CI-T) treated fish vs. control fish. High levels of Tenacibaculum were observed in the CI-T group again suggesting a protagonistic role for this taxon in AGD infection highlighting the potential for dysbiosis to allow expansion of potentially pathogenic communities which may affect subsequent disease progression (Slinger et al., 2021). Future research is needed to identify useful commonalities in these intertwined relationships between dysbiosis, disease progression, and host health.




5. Moving from microbiome characterization to beneficial manipulation in aquaculture

Identifying commensal microbes and their dynamics is the first step in understanding the value of microbiomes for aquaculture productivity and sustainability. If “the microbiome” (accepting there are many), is to be used as a tool to improve health and performance of the animals, we need to know not just which microbes are present, but how these microbial communities function (Gibbons, 2017). In recent years there has been a distinct shift in microbiome research to “function over phylogeny.” Functionality has historically been inferred from high-throughput amplicon sequencing, but predictions are limited in their use in aquaculture studies due to poor taxonomic resolution and low numbers of characterized bacterial genomes across aquaculture environments (Infante-Villamil et al., 2021). Additionally, such predictions relate to a specific set of conditions, and functional analysis tools assume that all genes are transcriptionally active in all microbial taxa at that moment in time, which more often than not is simply not the case. More holistic ‘omics strategies such as metagenomics (Tepaamorndech et al., 2020), metatranscriptomics (Nam et al., 2018), metaproteomics (Jose et al., 2020), and metabolomics (Roques et al., 2020), as well as integration of these approaches (multi-omics) (Uengwetwanit et al., 2020) are increasingly being adopted. A step further is to consider the “hologenome,” that is the collection of genes in the microbiomes along with those of the host (Rosenberg et al., 2007; Rosenberg and Zilber-Rosenberg, 2018). The strength of these approaches is the ability to examine microbiomes in terms of community ecology, considering interactions among microbiota, with the host and with the environment, but integration requires well designed and executed sampling strategies, sufficient levels of sampling (generally producing very large datasets), and complex bioinformatics analyses. Omics approaches are key to uncovering contrasts and commonalities between microbiome function across aquaculture but must be applied in combination with carefully designed mechanistic studies.


5.1. Modeling a desirable microbiome function for aquaculture

One approach to understanding functionality is to use germ-free (GF) or gnotobiotic models. Gnotobiotic refers to animals hatched and reared in a sterile environment which provide a “blank canvas” on which to test the impact of introducing a single microbe or a community of microbes. Although gnotobiotic research has been applied to aquaculture species since the 1940s (Zhang et al., 2020), full use of this approach as a tool to understand microbiome functionality is only now being realized. Nile tilapia (Oreochromis niloticus) models have been used to test the efficacy of therapeutics and to study colonization by free-living microbes (Situmorang et al., 2014; Giatsis et al., 2016) while in gnotobiotic rainbow trout larvae commensal taxa which offered protection against pathogenic infection have been identified (Pérez-Pascual et al., 2021). Furthermore, cod (Gadus morhua) models have recently been used to study the role of microbiota in innate immune development and gut morphology (Vestrum et al., 2022). Gnotobiotic oyster (Crassostrea gigas) models have also been utilized to detect effects of pathogens (Arzul et al., 2001) while in crustacea, germ-free Artemia brine-shrimp (Baruah et al., 2017) and Daphnia (Macke et al., 2020) models are widely used to study host-microbiome-environment interactions.

Pioneering work in zebrafish (reviewed in Murdoch and Rawls, 2019) established a germ-free model, but also a conventionalized model by harvesting bacteria from tank water of conventionally reared zebrafish and adding this community to gnotobiotic zebrafish medium to colonize germ-free animals (Rawls et al., 2004). Using these models and transcriptomic analysis, 212 genes regulated by the microbiota were identified in the intestine, and 59 responses were conserved in the mouse intestine indicative of an evolutionary conserved role of the vertebrate gut microbiome. Similarly, exposure of germ free zebrafish to yeast in the form of Pseudozyma sp. elucidated differential expression of 59 genes compared to naive controls, many involved in metabolism and immune response, indicating that commensal fungi also have the potential to influence the early development of fish larvae (Siriyappagouder et al., 2020). This work was extended using reciprocal gut microbiome transplants from zebrafish and mice to germ-free recipients and identified the importance of host habitat selection (Rawls et al., 2006). Transplanted communities resembled the community of origin in terms of taxonomic lineages present, but relative abundances were modified to resemble the normal microbial community composition of the recipient host. These transplantation studies are important in understanding microbiome function and selection pressures during colonization, but also have the potential to be adapted for therapeutic means similar to fecal microbiota transplantation (FMT) (Petersen and Round, 2014; Vargas-Albores et al., 2021). Such approaches may well be used in aquaculture as understanding of functionality of microbiomes improves.

Limitations exist in terms of long-term germ-free husbandry and untangling complexities of microbe-microbe interactions. Genetic manipulations including knock-out, knock-in and clonal approaches are additional avenues by which to uncover mechanistic microbiome pathways and potential genetic influences on microbiome composition. IgT, a teleost mucosal immunoglobulin believed to be an important adaptive immune determinant of microbial homeostasis, was depleted in a rainbow trout model. This depletion resulted in dysbiosis characterized by an increased presence of pathobionts, tissue damage and inflammation as well as increased susceptibility to mucosal parasites, highlighting the importance of this immunoglobulin in microbiome homeostasis in finfish (Xu et al., 2020). Clonal lines of aquaculture species are an additional tool that can be utilized to uncover genetic contributions to microbiome composition under varying environmental conditions. Clonal lines have advantages over inbred lines by avoiding artificially low levels of heterozygosity and inbreeding depression. The first clonal line of Atlantic salmon has recently been verified (Hansen et al., 2020) adding to previous lines in aquaculture species, and future work could potentially see the extension of aquaculture breeding programs to select for resistant microbiome types if these can be determined. These tools take time to develop, but with the increasing availability of fully sequenced genomes of aquaculture species, genetic manipulations to enhance functional understanding are becoming more accessible. Despite the evolution of ‘omic tools, the practice of culturing microbes is also making a resurgence as a tool for understanding functionality by enabling mechanistic experiments to determine physiological processes of microbes, or how they interact with their host. Culturing also allows for more in depth genomic analyses of taxa and discovery and description of novel taxa which can then feed into sequencing databases (Hitch et al., 2021).



5.2. Applying microbial manipulation effectively in aquaculture systems

Potential therapeutics for the aquaculture industry must be biologically- and cost-effective to manufacture and apply. Evidence-based procedures should be adopted with a view to identifying pivotal taxa, whether that is a single species which plays a role in a specific disease or resistance to infection provided by controlled communities of bacteria and other microbes.

Gut microbiomes of many organisms play an important role in aiding digestion and supporting gut (and organismal) health. Perhaps the most well-known or widely-applied example of microbial therapeutics in aquaculture (and human) health are the inclusion of pre- pro- or synbiotics in the diet. Probiotics refer to live microbial feed supplements which promote host health (Hill et al., 2014) whereas pre-biotics are non-digestible feed ingredients which selectively stimulate the growth of one or a limited number of particular microbes (Yadav et al., 2022). Synbiotics refers to products containing both pre- and pro-biotics working in synergy (Schrezenmeir and de Vrese, 2001). Recent reviews on prebiotic and probiotic use have shown favorable outcomes including increased growth or survival, improved immune responses, increased digestive efficiency, and improved water quality (López Nadal et al., 2020; El-Saadony et al., 2021; Knipe et al., 2021), but caution that more knowledge is needed in fish to promote efficacy (Brugman et al., 2018).

Probiotics can exert their function via the principles of competitive exclusion, be that exploitation or interference competition (Knipe et al., 2021). In exploitation, competition is indirect and characterized by consumption of resources while in interference, direct harm is caused, for example via the production of antimicrobial compounds. For example, the lactic acid bacteria (LAB) family of probiotics produce antimicrobial substances including lactic acid, acetic acid, hydrogen peroxide and bacteriocins interfering with the growth of other bacteria (Ringø, 2020; Ringø et al., 2020). Feeding shrimp (Litopenaeus stylirostris) with a diet containing the probiotic Pediococcus acidilactici resulted in the purging of potentially pathogenic vibrios from the gut (Castex et al., 2008). Similarly, in freshwater marron crayfish (Cherax cainii), feeding with Clostridium butyricum resulted in a reduction of Vibrio and Aeromonas counts in the hindgut (Foysal et al., 2019). In Atlantic salmon, feeding with Peiococcus acidilactici resulted in distinct reduction of Fusobacteriia, Clostridiales, Actinomycetales, Pasteurellales, and Streptococcacea, and an increase in Bradyrhizobiaceae in gut mucosa, but also identified that this probiotic effect is dependent on the water habitat (fresh vs. seawater) (Jaramillo-Torres et al., 2019). Contrastingly, in Nile tilapia, probiotic feeding with a mix of three Bacillus species did not modify gut microbiota to any large extent (Adeoye et al., 2016). Despite differences in efficacy, intervention with probiotics, prebiotics or synbiotics in an aquaculture setting more often than not illicit changes in the host microbiome (Table 3).The complex and dynamic nature of changing environments in aquaculture systems has confounded wide usage of probiotics to date. Variability in efficacy may be a consequence of therapeutics often being derived from non-aquatic hosts or systems, resulting in poor tolerance of biophysical conditions within the host and subsequently poor survival and establishment. In reality, to ensure efficacy, any potential pro- or pre-biotic therapeutic needs to be evaluated under different environmental circumstances to target optimum windows of application for maximum impact, particularly in aquaculture where the environment itself can often be manipulated. Although pre- and pro-biotics are generally applied via feed, the opportunity also exists in aquaculture systems to apply such therapeutics directly to the water with a view to directly influencing external microbial communities (Rowley, 2022). Utilizing specific microbial probiotics targeted at specific pathogens carries a degree of risk whether it be the invasion of secondary pathogens or evolution of target pathogen to evade the mechanism of exclusion (Knipe et al., 2021). AMPs are an intriguing route toward developing therapeutic compounds in aquaculture as they have the power to modulate the immune system while maintaining a low probability of the development of bacterial resistance (Chaturvedi et al., 2020). The gut microbiome represents an environment which may harbor AMPs with therapeutic and microbiome sequencing datasets can be mined to uncover candidate AMPs (Dong et al., 2017).



TABLE 3 Key published literature analyzing the impact of probiotic, prebiotic, and synbiotic interventions on microbiome composition.
[image: Table3]




6. Future prospects

The importance of the microbiome in the future development of sustainable aquaculture systems is clearly evident considering the vast outpouring of research in this area over the past 5–10 years, including a raft of recent reviews (de Bruijn et al., 2018; Perry et al., 2020; Legrand et al., 2020b; Infante-Villamil et al., 2021; Parata et al., 2021; Rajeev et al., 2021; Vargas-Albores et al., 2021; Diwan et al., 2022; Paillard et al., 2022). Despite this great interest, few focused studies have been conducted relating to the impact of microbiomes on host health and subsequent productivity, and the vast majority of studies have focused only on bacteria, mainly due to technical difficulties or cost associated with characterizing eukaryotes and viruses. Understanding more about these other communities and their interactions is imperative and also holds many opportunities for microbiome engineering, for example using phage to control opportunistic pathogens (Donati et al., 2021). There is now a critical need for better understanding of microbiome function in the context of aquaculture for enabling application to enhancing improved production systems. Poor animal welfare and loss of revenue due to disease remains one of the most restrictive issues in aquaculture development. One future focus should be pinpointing optimum periods for microbiome conditioning or manipulation, both during immune system development at larval stages and within periods of dysbiosis caused by disease or husbandry practices. Directing studies also toward functionality over identity will also be key in unlocking the full therapeutic potential of the microbiome in the aquaculture sector and employing next generation sequencing technologies in tandem with culture-based approaches will be essential in making this transition.
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The aim of this study was to compare the effect of different additives on nutritional quality, fermentation variables and microbial diversity of hybrid Pennisetum silages. A control (CK – no additives) and seven treatments were tested, namely, Lactiplantibacillus plantarum (LP), Lentilactobacillus buchneri (LB), propionic acid (PA), calcium propionate (CAP), LP + LB; LP + PA and LP + CAP. In comparison with CK, all treatments increased the contents of crude protein and lactic acid, decreased the content of butyric acid, and altered the bacterial communities of the silage. Except for the CAP and LP + CAP treatments, the additives decreased pH and the ammonia nitrogen:total nitrogen (NH3-N:TN) ratio. The results of principal component analysis revealed that the PA, LP + PA and LP + LB treatments ranked as the top three silages. The PA and LP + PA treatments exhibited higher water-soluble carbohydrate content, but lower pH, and NH3-N:TN ratio than the other treatments. With the PA and LP + PA treatments, the relative abundances of Lactobacillus and Enterobacter decreased, and of Proteobacteria and Delftia increased, while the carbohydrate metabolism of the microorganisms improved. The LP and LB treatments reduced the Shannon and Simpson diversities. In the beta diversity, PA and LP + PA separated from the other treatments, indicating that there were differences in the composition of bacterial species. The relative abundance of Lactobacillus increased in the LP and LB treatments and of Leucanostoc and Weissella increased in the CAP and LP + CAP treatments. In summary, the addition of L. plantarum, L. buchneri, propionic acid, calcium propionate, and their combinations improved fermentation quality, inhibited harmful bacteria and conserved the nutrients of hybrid Pennisetum.

KEYWORDS
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1. Introduction

With the rapid development of the livestock industry and the increased demand for animal products, more animal feed is needed. This has increased the cost of animal feed and the competition for land between food for humans and feed for livestock (Sandström et al., 2022; Zhao et al., 2022), which has led to utilization of different forage resources for ruminants (Li D. et al., 2019; Wang N. et al., 2022). Hybrid Pennisetum (Pennisetum americanum × Pennisetum purpureum) has been incorporated into animal feed and has great potential to be used for ruminants. It is distributed widely in southern China, and is characterized by low cultivation input, high biomass, and strong stress tolerance (Song et al., 2019; Cai et al., 2020; Wu et al., 2020).

Ensiling is a traditional method of preserving forage (Ren et al., 2018; Drouin et al., 2021). However, the hybrid Pennisetum is difficult to ensile because of its low lactic acid bacteria (LAB) count (Shah et al., 2020). Bacterial inoculants and chemicals are often added to improve the fermentation and nutrient qualities of the silage, and to inhibit the activity of harmful microbiota (Queiroz et al., 2018; He Q. et al., 2021). The LAB inoculants are known for their ability to alter fermentation patterns, and are added widely to improve fermentation in the production of silage (Ogunade et al., 2017). Lactiplantibacillus plantarum, the most common additive, is a homofermentative LAB that produces lactic acid efficiently and reduces the pH rapidly (Xu et al., 2021; Xian et al., 2022). Lentilactobacillus buchneri, also a heterofermentative LAB, produces acetic acid during fermentation, inhibits yeast and mold, improves aerobic stability and reduces feed loss (Romero et al., 2017; Zhang et al., 2020). Propionic acid is an aerobic microbial inhibitor that affects nitrogen conversion and reduces the degradation of protein by acidizing the silage or limiting the activity of undesirable bacteria at the early stage of fermentation (Carvalho et al., 2012; He et al., 2020; Ren et al., 2021). Due to the volatility of propionic acid and its relatively short residual time, calcium propionate (CAP), which has the same antibacterial effect as propionic acid after ionization in water, was developed (Xiong et al., 2017). The above-mentioned additives have advantages, but little information is available on their effect on silage quality and the bacterial community of hybrid Pennisetum. To fill this knowledge gap, we compared the effects of L. plantarum, L. buchneri, propionic acid, calcium propionate, and their combinations on the chemical composition, fermentation quality, and microbial community of hybrid Pennisetum.



2. Materials and methods


2.1. Silage preparation

Hybrid Pennisetum was harvested in Fujian Province (117.93 °E, 26.79 °N, subtropical monsoon climate) in May 2021 by manually mowing at 8–10 cm above ground level, and was transported to the laboratory immediately. The Pennisetum was spread out evenly, and air-dried for 6 h, resulting in a dry matter (DM) content of 181.3 g/kg fresh weight (FW), and was chopped into 1–2 cm lengths using a paper cutter. The following were added to the Pennisetum: (1) distilled water (CK); (2) L. plantarum (LP, provided by Fujian Academy of Agricultural Sciences, viable counts ≥1 × 106 cfu/g FW); (3) L. buchneri (LB, BNCC187961, Beijing Beina Chuanglian Biotechnology Institute, Beijing, China, viable counts ≥1 × 106 cfu/g FW); (4) propionic acid (PA, 0.5% FW, analytical pure, Fuzhou Mili Biotechnology Co., Ltd., Fuzhou, China); (5) calcium propionate (CAP, 0.5% FW, Fuzhou Mili Biotechnology Co., Ltd., Fuzhou, China); (6) LP + LB; (7) LP + PA; and (8) LP + CAP. Each additive was dissolved in 10 mL sterile water and sprayed evenly onto the surface of the Pennisetum (CK was sprayed with an equal volume of distilled water). Subsequently, 400 g of the sprayed hybrid Pennisetum samples were placed in a polyethylene bag (248 mm × 344 mm), with 3 replicates for each treatment. The bags were vacuum sealed, and ensiled at room temperature of 26°C for 30 or 60 days.



2.2. Nutritional composition and fermentation variables of hybrid Pennisetum silage

After ensiling, DM content of the silage was determined by oven drying at 65°C for 48 h, and the oven-dried samples were sieved through a 0.425 mm screen. The content of water-soluble carbohydrates (WSC) was determined by anthrone sulfuric acid colorimetry (Fu and Diao, 2007); total nitrogen (TN) was determined using an automatic nitrogen analyzer (K9840 Kjeldahl, Hanon, Jinan, China), the crude protein (CP) content was calculated as TN × 6.25; and the neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents were measured following Van Soest et al. (1991).

Ten g of sample were added to 90 mL of distilled water for 24 h at 4°C, and filtered through 4 layers of gauze for pH determination (pHS-3D, Shandong, China). Ammonia nitrogen (NH3-N) was determined by phenol sodium hypochlorite colorimetry (Arthur Thomas, 1977), and lactic, acetic, propionic, and butyric acids were determined using high-performance liquid chromatography (Wang et al., 2020).



2.3. The pH and microbial count during aerobic exposure

The pH and microbial counts of the treatments after 60 days of ensiling were determined at 0, 3, 6, and 9 days after aerobic exposure. The pH was determined as described previously. The methods of Dong et al. (2017) were used to measure the counts of LAB, yeast, and aerobic bacteria during aerobic exposure with the de Man Rogosa Sharpe medium, Potato Dextrose Agar medium, and Plate Count Agar medium, respectively (Fuzhou Mili Biotechnology Co., Ltd., Fuzhou, China). No antibiotics were added to the culture media.



2.4. Microbial diversity analysis

After 60 days of ensiling, a sample of each treatment was stored at −80°C for microbial diversity determination. High throughput sequencing was performed in triplicate, and total DNA was extracted using the CTAB/SDS method to check DNA concentration and purity with a 1% agarose gel. The 16S rDNA gene of the bacterial V3 ~ V4 hypervariable region was obtained by primer sequences 338F (ACTCCTACGGGAGGCAGCAG) and 806R (GGACTAC HVGGGTWTCTAAT) (Ling et al., 2022). PCR amplicons were identified by agarose gel electrophoresis using NEXTFLEX® Rapid DNA-Seq Kit for Miseq library construction and sequencing. After the library qualified, it was sent to Majorbio BioPharm Technology Co. Ltd. (Shanghai, China) for sequencing. The library was paired-end sequenced based on the Illumina Novaseq sequencing platform resulting in a complete microbial community.



2.5. 16S rRNA gene sequence analysis

Raw fastq files were demultiplexed and quality filtered using Trimomatic, and further merged by FLASH software. Uparse software (Uparse v7.0.1001)1 was used to cluster the entire high-quality sequences of all samples, and, by default, the sequences were clustered to operational taxonomic units (OTUs) with 97% similarity (He L. et al., 2021). Alpha diversity was determined using species richness indices (Ace and Chao 1) and species diversity indices (Shannon and Simpson) (Zheng et al., 2020). Beta diversity was determined using principal coordinates analysis (PCoA), and was further analyzed using the ANOSIM test (Dong et al., 2017). The metabolic function of bacteria was predicted by comparing the Kyoto Encyclopedia of Genes and Genomes (KEGG) database with the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUSt2) (Langille et al., 2013). Spearman’s correlation tested the relationships between silage quality and the relative abundances of bacteria at the genus levels in each treatment. Raw sequencing files and associated metadata have been deposited in NCBI’s Sequence Read Archive (PRJNA946341).



2.6. Statistical analyses

The data of silage quality were analyzed by the GLM program in SPSS software (version 26.0, Chicago, IL, United States) with ensiling time, additive treatment and their interaction. The principal component analysis used SPSS software. The eigenvalues of the variance matrix, the variance contribution rate and the weight coefficient of each factor were calculated to generate the principal component equation. The principal component comprehensive score was calculated by standardizing the original data into the principal component equation (Tharangani et al., 2021).




3. Results and discussion


3.1. Nutritional quality of hybrid Pennisetum silage

The DM and WSC contents of hybrid Pennisetum silage were affected by ensiling time, additives and their interactions (Table 1). When compared to CK, the LP treatment had a lesser (p < 0.05) DM content, while the LP + LB, PA, LP + PA, CAP and LP + CAP treatments had greater (p < 0.05) DM contents. The loss of DM from silage was due to the breakdown of nutrients, as aerobic microbes converted carbohydrates to water, carbon dioxide, and heat (Haas et al., 2011). In the present study, the DM content in the PA treatment was greater than in the other treatments after 60 days of ensiling. It is likely that the addition of propionic acid inhibited the growth of undesirable microorganisms and reduced their consumption of nutrients (Li et al., 2022). Propionic acid has antifungal properties by maintaining its activity on the surface of microorganisms and competing with amino acids for enzyme activity sites or by altering the cell permeability of the organisms (Gheller et al., 2021).



TABLE 1 Nutritional quality of hybrid Pennisetum silage after 30 and 60 days of ensiling.
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With the prolongation of ensiling, the CP content in each treatment decreased. The degradation of protein during ensiling involves a series of plant and microbial enzymes (Xiong et al., 2017). Proteins are converted into free amino acids and peptides through the catalytic hydrolysis of plant enzymes, and then are degraded further (Zheng et al., 2022). In the present study, the CP content was greater (p < 0.05) with each additive than in CK. Previous studies reported that propionic acid inhibited Clostridia and Enterobacteria effectively, as these bacteria were poor acid resistant bacteria, and reduced protein breakdown (Ali and Tahir, 2021). Adding calcium propionate also reduced CP loss, but less so than propionate, which might be due to the lesser concentration of dissociated propionate ions with CAP. The increase (p < 0.05) of CP content with the LB treatment most likely involved propionic acid. L. buchneri produces 1,2-propanediol from sugars and then propionic acid in the metabolic process, resulting in a bacteriostatic effect (Ling et al., 2022).

The WSC content of all silages was lower (p < 0.05) at 60 days than at 30 days of ensiling. The WSC serves as an energy source for microorganisms and its consumption implies microbial activity (Gheller et al., 2021). The WSC is converted into organic acid to reduce the pH of the silage (Zhang et al., 2019; Zhu et al., 2022). The NDF content of silage was reduced (p < 0.05) with the LP + LB treatments. Similarly, Du et al. (2022) reported that the content of NDF in ryegrass silage inoculated with L. plantarum, L. buchneri and L. casei was reduced after 60 days of ensiling. When ensiled for 30 days, the PA and LP + PA treatments had a lesser (p < 0.05) NDF content than CK. This could be due to the increase in total organic acids after the addition of PA, which could hydrolyze digestible cell walls (Jiang et al., 2020; Ren et al., 2020).



3.2. Fermentation quality of hybrid Pennisetum silage

Table 2 presents the effect of different additives on the silage fermentation parameters of hybrid Pennisetum. A pH in the range of 3.6–4.2 for silage is considered optimal, as it effectively reduces undesirable microorganisms (Lv et al., 2020; Bao et al., 2023). In the current study, the pH was below 4.2 at 30 days of ensiling in all treatments except for CAP, LP + CAP and LB, in which the pHs were greater (p < 0.05) than for CK. Li M. et al. (2019) concluded that CAP led to an increase in buffering energy and, thus, a rise in pH in the silage, which could explain the results in the present study. L. plantarum, which is regarded as the most commonly used homofermentative LAB, has the ability to reduce pH rapidly (Muck et al., 2018; Bai et al., 2022). L. buchneri could improve the aerobic stability of silage (Magnusson and Schnürer, 2001), and when combined with L. plantarum, reduced the pH at the initial stage of fermentation. Consequently, the pH of the LP + LB treatment was lesser than the LP and LB treatments.



TABLE 2 Fermentation characteristics of hybrid Pennisetum silage after 30 and 60 days of ensiling.
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After 30 days of ensiling, the LB and LP + LB treatments increased acetic acid content, and after 60 days of ensiling all treatments had greater (p < 0.05) lactic acid content than CK. The LP treatment had the lowest pH and highest lactic acid content of all treatments. It is likely that lactic acid has a lower pH than other organic acids and plays a vital role during fermentation (Jaipolsaen et al., 2021). In this study, the concentration of lactic acid at 30 days was greater (p < 0.05) than at 60 days of ensiling in all treatments, except for the PA treatment. Concomitantly, there was a decrease in acetic acid content, which implied that homolatic fermentation dominated. Li et al. (2018) concluded that the addition of L. plantarum enhanced the quality of alfalfa silage. At 30 days of ensiling, the LP + LB, PA, and LP + CAP treatments had greater (p < 0.05), but the LP, LB and CAP treatments (p < 0.05) had lesser concentrations of propionic acid than CK. The increase in propionic acid content was likely a result of lactic acid being consumed by L. buchneri (Li et al., 2018). With the prolongation of the ensiling period, the content of propionic acid in the CAP treatment increased (p < 0.05), which could be attributed to the dissociation of corresponding organic acid salts (Dai et al., 2022), as was reported by Wen et al. (2017). Kung et al. (2018) reported that butyric acid below 5 g/kg DM was optimal for high quality fermentation, and the butyric acid content of all treatments in the present study met this criterium. After an increase in the ensiling period, the content of butyric acid was lesser (p < 0.05) in the LP, PA, LP + PA and CAP treatments than in CK. The production of silage undergoes dynamic enzymatic and microbial processes of which the degradation of proteins is one of the most crucial stages (Wang S. et al., 2022). In the present study, the NH3-N:TN ratios in the PA and LP + PA treatments were lesser (p < 0.05) than in the other treatments, probably because the lower pH inhibited the activity of the protease (Tian H. et al., 2022). In addition, the NH3-N:TN ratios in the LP, LB and LP + LB treatments were lesser (p < 0.05) than in CK. L. plantarum inhibits protein degradation through its effect on enzymes and microorganisms (Xian et al., 2022), whereas, L. buchneri, through its bacteriostatic effect, reduces the degradation of protein by undesirable microorganisms. The combination of L. buchneri and L. plantarum had a synergistic effect in reducing the degradation of protein.



3.3. Correlations and principal component analysis of silage indices of hybrid Pennisetum

After 30 days of ensiling, CP was correlated positively (p < 0.05) with DM content, but negatively (p < 0.05) with NDF and ADF contents (Figure 1A). After 60 days of ensiling, CP content was correlated positively (p < 0.05) with lactic acid content and negatively (p < 0.001) with butyric acid content (Figure 1B). The WSC content was correlated negatively with acetic acid content (p < 0.05), pH (p < 0.01) and the NH3-N:TN ratio (p < 0.001). Moreover, the WSC content was correlated negatively with pH as a result of the lactic acid produced by LAB, with WSC as a substrate (Filya, 2003). Lactic acid plays the major role in reducing the pH of silage (Fu et al., 2022). After 30 days of ensiling, there was a positive correlation (p < 0.05) between pH and the NH3-N:TN ratio, and this correlation was stronger after 60 days of ensiling. Generally, NH3-N accumulates continuously during fermentation (Dong et al., 2022a). When LAB dominated in the late stages of ensiling, lactic acid was produced by the fermentation of plant biomass and the pH was reduced to a level that inhibited the activity of ammonia nitrogen producing bacteria (Fan et al., 2022). This could explain the correlation between pH and the NH3-N:TN ratio.
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FIGURE 1
 Heatmap of Pearson correlations between nutritional quality and fermentation parameters after 30 days (A) and 60 days (B) of ensiling hybrid Pennisetum. *p < 0.05, **p < 0.01, ***p < 0.001. DM, dry matter; CP, crude protein; WSC, water-soluble carbohydrates; NDF, neutral detergent fiber; ADF, acid detergent fiber; NH3-N:TN, ammonia nitrogen:total nitrogen ratio; LA, lactic acid; AA, acetic acid; PA, propionic acid; BA, butyric acid.


Principal component analysis (PCA) not only reduces the loss of original information, but also simplifies multiple related indicators into independent components, and, subsequently, assesses the indicators based on the difference in principal component scores (Gallo et al., 2013). In the present study, the PCA of 11 indicators of hybrid Pennisetum silage ensiled for different time lengths was carried out. The results of the PCA after 30 days of ensiling are presented in Tables 3, 4. The cumulative contribution of three extracted principal components, based on the characteristic value >1, reached 86.7%, that is, 86.7% of the original index was retained. The positive load value of the NH3-N:TN ratio and the negative load value of WSC were the greatest in the first principal component in their corresponding eigenvector, indicating that the WSC content could limit the silage quality of hybrid Pennisetum. In the second principal component, the positive load value of DM content and the negative load value of lactic acid were the greatest, indicating that the content of lactic acid was the chief factor limiting the quality of hybrid Pennisetum silage. The butyric acid content positive load value and the NDF negative load value were the greatest in the third principal component, which meant that the NDF content held a dominant position in limiting the quality of hybrid Pennisetum silage. The first principal component was correlated positively with NH3-N:TN, NDF, ADF and pH, and negatively with CP and WSC. The second principal component was correlated positively with DM, pH and propionic acid, and negatively with lactic acid and WSC, and the third principal component was correlated positively with organic acids such as butyric acid. After 60 days of ensiling, the cumulative contribution rate of the three extracted principal components, based on the characteristic value >1, reached 89.7% (Tables 3, 4). Similar to ensiling for 30 days, WSC, ADF and butyric acid were the main limiting factors of the principal components after ensiling for 60 days.



TABLE 3 Index coefficient and contribution rate of hybrid Pennisetum silage.
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TABLE 4 Principal component score, comprehensive score and ranking of hybrid Pennisetum silage.
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We concluded that the lower composite scores indicated better silage quality according to the composite of each original index and the proportion of principal components. Therefore, the top three treatments were LP + PA, PA, and LP + LB.



3.4. pH and microbial abundances of hybrid Pennisetum after aerobic exposure

The changes in pH and relative abundances of microorganisms during aerobic exposure after 60 days of ensiling are presented in Table 5. The resistance against spoilage varies greatly among silages, and different additives are used to prevent aerobic spoilage (Puntillo et al., 2020; Ferrero et al., 2021). With an increase in aerobic exposure, the pH increased (p < 0.05) in all treatments, except for the PA and LP + PA treatments. When the pH of the silage increases by 0.5 after aerobic exposure, it could be regarded as aerobic deterioration (Mu et al., 2021). In the current study, the pH of only the PA and LP + PA treatments did not increase by 0.5 after 6 days of aerobic exposure. The pH of the CAP and LP + CAP treatments were always greater (p < 0.05) than that of CK during aerobic exposure. During aerobic exposure, the abundance of LAB in the CK, LP, LB and LP + LB treatments displayed an increasing trend between days 0 and 6 and then a decreasing trend between days 6 and 9 (p < 0.05), while the abundance of LAB in the PA, LP + PA, CAP and LP + CAP treatments displayed an increasing trend (p < 0.05). When the number of yeasts exceeded 5 log10 cfu/g FW, the silage was prone to aerobic spoilage (Chen et al., 2016). In this study, the number of yeasts in each treatment, except for the organic acid treatment, exceeded this number at 6 days of aerobic exposure, indicating a trend of aerobic spoilage (Wang et al., 2014). The activity of aerobic microorganisms increased after the silage was exposed to air, and they used lactic acid, sugars and amino acids to produce heat continuously, resulting in aerobic putrefaction (Hu et al., 2009; Zhou et al., 2019). In this study, PA and LP + PA inhibited the proliferation of aerobic microorganisms, while the abundance of aerobic bacteria in the other treatments exhibited an increasing trend. The counts of yeast and aerobic bacteria in the PA treatment during aerobic exposure were lower (p < 0.05) than in other treatments, while the pH remained stable, and was lower (p < 0.05) than in other treatments on day 9, which improved the aerobic stability of the silage. The LB treatment failed to inhibit the proliferation of yeast, resulting in an increase (p < 0.05) in pH during aerobic exposure. It is likely that the undesirable microorganisms used the high content of residual lactic acid as a substrate after aerobic exposure (Rabelo et al., 2019).



TABLE 5 Changes of pH and microbial quantity of hybrid Pennisetum silage during aerobic exposure.
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3.5. Microbial diversity

After sequencing and quality control, a total of 1,044,312 optimized sequences were obtained. According to the 3% difference, a total of 1985 OTUs were obtained by OTU clustering. In total, 88 OTUs were shared by 8 processing units, accounting for 4.43% of all OTUs (Figure 2). CK, LP, LB, LP + LB, PA, LP + PA, CAP and LP + CAP had 11, 1, 2, 3, 63, 102, 5 and 16 OTUs, respectively. Alpha-diversity reflects the microbial abundance and species diversity of a single sample (Xian et al., 2022). Chao1 and ACE diversities are commonly used to measure species richness, while Shannon and Simpson indices are used to measure species diversity (Dong et al., 2020). Compared to CK, except for the LB treatment, the ACE index of all treatments increased, with the LP + CAP treatment being higher than the other treatments (Figure 3). The microbial community within the crop formed in the field, and when the stable environment was disrupted, the microorganisms that were not adapted to the fermentation system were eliminated, and the more adaptable microorganisms dominated in the new environment (Dong et al., 2022b). In this study, the Simpson index of LP was greater (p < 0.05) than the other treatments, while the Chao 1 index was greater (p < 0.05) and the ACE were lesser (p < 0.05) in the LP treatment than CK. Compared to CK, Shannon indices of LP and LB and the Simpson index of LP + CAP were lesser (p < 0.05), while the Shannon index of LP + CAP and the Simpson indices of LP, LB and LP + LB were greater (p < 0.05) than CK. The Shannon indices of LP + LB, LP + PA and LP + CAP were greater but the indices were lesser (p < 0.05) than the LP treatment (p < 0.05). The change in alpha diversity among silages was caused by the dynamic response of microorganisms (Feng et al., 2022). The composition and function of bacteria could differ during the period of ensiling (Sepehri and Sarrafzadeh, 2019).
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FIGURE 2
 Petal diagram illustrating the degree of overlap of bacterial operational taxonomic units (OTUs) in the 8 silages. CK, distilled water; LP, L. plantarum; LB, L. buchneri; LP + LB, L. plantarum and L. buchneri; PA, propionic acid; LP + PA, L. plantarum and propionic acid; CAP, calcium propionate; LP + CAP, L. plantarum and calcium propionate.
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FIGURE 3
 Effects of different additives on alpha diversity of hybrid Pennisetum silage. ACE (A), Simpson (B), Shannon (C) and Chao1 (D) indexes are used to reflected alpha diversity. CK, distilled water; LP, L. plantarum; LB, L. buchneri; LP + LB, L. plantarum and L. buchneri; PA, propionic acid; LP + PA, L. plantarum and propionic acid; CAP, calcium propionate; LP + CAP, L. plantarum and calcium propionate. Means with different lowercase letters differ from each other (p < 0.05).


The PCoA based on the Bray–Curtis dissimilarity displayed distinct clusters among the eight silages (Figure 4). Further analysis through ANOSIM revealed that the results were reliable (R = 0.73, p = 0.001). According to PCoA, CK and LP + LB were clustered in the second and third quadrants, LP and LB in the third quadrant, PA and LP + PA mainly in the fourth quadrant, and CAP and LP + CAP mainly in the second quadrant. In addition, PA and LP + PA were separated from the other treatments, indicating that there were differences in the composition of species; whereas, CK was relatively close to LP, LB, and LP + LB, indicating that the composition of species was similar among these treatments. These results demonstrated that different additive treatments had significant effects on the bacterial community of hybrid Pennisetum silage (Tian J. et al., 2022).

[image: Figure 4]

FIGURE 4
 Principal coordinate analysis (PCoA) of microbial diversity of hybrid Pennisetum silage treated with different additives. CK, distilled water; LP, L. plantarum; LB, L. buchneri; LP + LB, L. plantarum and L. buchneri; PA, propionic acid; LP + PA, L. plantarum and propionic acid; CAP, calcium propionate; LP + CAP, L. plantarum and calcium propionate.


After 60 days of ensiling hybrid Pennisetum, the main bacterial phylum was Firmicutes, followed by Proteobacteria and Cyanobacteria (Figure 5A). Liu et al. (2019) reported that Firmicutes and Proteobacteria were the most abundant phyla of barley silage at any point during the ensiling process with or without LAB inoculants, and continued to rise to 99% of the total bacteria at 60 days of ensiling. Most bacteria involved in lactic acid fermentation belong to Firmicutes and Proteobacteria and they play important roles in an anaerobic environment (Yuan et al., 2020). The relative abundance of Firmicutes was lesser (p < 0.05) and of Proteobacteria was greater (p < 0.05) in PA and LP + PA than in CK, while there was no difference (p > 0.05) in the other treatments. The relative abundance of Cyanobacteria in the LP and CAP treatments was lesser (p < 0.05), and in the LP + PA treatment was greater (p < 0.05) than in CK. Cyanobacteria is often found in tropical herbage and could be replaced by Lactobacillus and Enterobacteria after fermentation, but further studies are needed to determine their roles in silage production (Li et al., 2019). The relative abundance of Actinobacteriota in LB was lesser (p < 0.05), while of Actinobacteriota in CAP and LP + CAP was greater (p < 0.05) than in CK. When mixed with L. plantarum, the relative abundances of Firmicutes and Cyanobacteria in LP + PA were greater (p < 0.05), while the relative abundance of Proteobacteria was lesser (p < 0.05) than in LP. The relative abundance of Actinobacteriota in the LP + PA and LP + CAP treatments was greater (p < 0.05) than in the LP treatment. It was reported that Actinobacteriota had the potential of bioremediation to degrade pesticides and heavy metals (Alvarez et al., 2017).
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FIGURE 5
 Bacterial abundance at phylum (A) and genus (B) levels of hybrid Pennisetum silage. Linear discriminant analysis effect size (LEfSe) of hybrid Pennisetum silage treated with different additives (C). CK, distilled water; LP, L. plantarum; LB, L. buchneri; LP + LB, L. plantarum and L. buchneri; PA, propionic acid; LP + PA, L. plantarum and propionic acid; CAP, calcium propionate; LP + CAP, L. plantarum and calcium propionate.


The bacterial genera after 60 days of ensiling hybrid Pennisetum is presented in Figure 5B. Lactobacillus was the dominant genus in each treatment. Xu et al. (2020) reported that Lactobacillus was often the most important microbe in the late stages of ensiling, which, together with Weissella and Pediococcus, were the main producers of lactic acid. The relative abundance of Lactobacillus in LP (85.4%) was greater (p < 0.05), but in PA (46.8%) was lesser (p < 0.05) than in CK. The relative abundance of Weissella in the LP, LB, PA and LP + PA treatments was lesser (p < 0.05) than in CK (12.7%). Weissella belongs to the heterofermentative bacteria and consumes WSC to produce a mixture of lactic acid and acetic acid (Huang et al., 2021; Sun et al., 2021). The relative abundance of Delftia in the PA and LP + PA treatments was greater (p < 0.05) than in CK. Delftia is often present in soil and plants and promotes the growth and bioremediation of plants (Liu et al., 2018; Bhat et al., 2022). Dong et al. (2022b) concluded that the low pH of the silage might be due to an accumulation of nitrite in the silage. This occurred because Delftia, as a reductant of nitrate, could not reduce nitrite further. In the acidic environment of silage, nitrite could be converted into nitrogen oxides to reduce the pH of silage. The addition of organic acids reduced the relative abundances of Klebsiella, Paenibacillus, and Enterobacter in corn silage (Jiang et al., 2020). In the present study, the relative abundances of Enterobacter in the PA and LP + PA treatments and of Enterobacterin in the LP + LB treatment were greater (p < 0.05) than in CK. Guo et al. (2020) reported that Enterobacter was one of the dominant bacteria during ensiling, especially in silage treated with LAB. However, Enterobacter was unwanted due to nutrient loss caused by acetic acid fermentation (Ni et al., 2017b), although most Enterobacter bacteria in silage were considered non-pathogenic (Santos et al., 2016). The relative abundances of Weissella and Pediococcus in LP + CAP were greater (p < 0.05) than in LP, while the relative abundances of Delftia and norank_o__Chloroplast in LP + PA were greater (p < 0.05), but the relative abundance of Enterobacter in LP + PA and LP + CAP was lesser (p < 0.05) than in CK. The relative abundance of Methylobactere-methylorubrum in LP + CAP (1.42%) was greater (p < 0.05) than in the other treatments. Methylobactery-methylorubrum is a gram negative, rod-shaped, strictly aerobic bacteria that can utilize methanol and other reduced one-carbon compounds via the serine pathway (Dong et al., 2022b). The high pH of the LP + CAP treatment after 60 days of ensiling was consistent with the neutrophilic property of Methylobacter-methylorubrum (Knief et al., 2012). Methylobacterium was the dominant genus in alfalfa silage (Ni et al., 2017a; Ogunade et al., 2018).

LEfSe was used to analyze the different bacteria species in each treatment. A total of 25 species with relative abundance differences was identified in the 8 treatments (LDA score > 4) (Figure 5C). Proteobacteria and Delftia were biomarkers of the PA treatment at the phylum and genus levels, respectively, while Cyanobacteria and Enterobacter were biomarkers of the LP + PA treatment. Firmicutes was the most abundant phylum in the CAP treatment. In addition, the highest abundances of each treatment at the genus level were as follows: Lactococcus in CK, Lactobacillus in LP, and Weissella and Pediococcus in LP + CAP. Previous studies reported that Pediococcus was generally highly abundant in silage with high pH (Zhao et al., 2022; Zong et al., 2022), and the treatment with LP + CAP in this study had the highest pH at 60 days of ensiling (Table 2).

Figures 6A,B present the second-level classification of microbial community metabolic functions. The metabolic pathway with the greatest abundance in all treatments was carbohydrate metabolism. This metabolism was greater in the PA and LP + PA treatments than in the other treatments, perhaps due to the their high WSC content (Table 1). In addition, the lactic acid content in the PA and LP + PA treatments was greater (p < 0.05) than in CK, which most likely was due to carbohydrate metabolism. The metabolism abundances of the CAP, LP + CAP, PA and LP + PA treatments were greater than CK (p < 0.05), which might be due to the response of microorganisms to long-term acid stress in silage (Bai et al., 2022). The metabolic abundances of terpenoids and polyketides were predicted to be relatively high in the PA and LP + PA treatments. Terpenoids are natural compounds, mainly in Chinese herbal medicine, and are reputed to possess antibacterial and antioxidant properties (Elshamy et al., 2016; Tian et al., 2017). Further predictions of the third-level metabolic pathways of carbohydrate metabolism are presented in Figure 6C. The PA and LP + PA treatments had similar metabolic functions in all carbohydrates, and both had greater metabolism of pyruvate, propanoate, butanoate, ascorbate and aldarate than CK. It was reported that pyruvate metabolism was related to the formation of organic acids such as lactic acid, α-acetolactic acid, acetic acid, and formic acid (Dong et al., 2022a). Pyruvate, an intermediate in the glycolytic pathway, is crucial in lactic acid generation by LAB utilizing WSC, and can interconvert sugars, fats, and amino acids through the acetyl CoA and tricarboxylic acid cycles. As mentioned above, the lactic acid contents of the PA and LP + PA treatments were greater than in CK, and the pH was the lowest among all treatments, which might be related to the up-regulation of this pathway. In addition, the increase in the metabolism of ascorbate and aldarate, C5-branched dibasic acid and inositol phosphate, and glyoxylate and dicarboxylate suggests the consumption of sugar (Yin et al., 2022).
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FIGURE 6
 Prediction of microbial metabolic functions of hybrid Pennisetum silage. The second-level (A,B) and third-level (C) classification of microbial community metabolic functions. CK, distilled water; LP, L. plantarum; LB, L. buchneri; LP + LB, L. plantarum and L. buchneri; PA, propionic acid; LP + PA, L. plantarum and propionic acid; CAP, calcium propionate; LP + CAP, L. plantarum and calcium propionate.


Spearman’s correlation tested the relationships between microbial communities at the genus level and nutrients and fermentation characteristics of hybrid Pennisetum silage. Lactococcus correlated positively with ADF (r = 0.44, p < 0.05), and negatively with CP (r = −0.53, p < 0.01) (Figure 7). Moreover, WSC correlated positively with Pseudomonas (r = 0.68, p < 0.001) and Delftia (r = 0.66, p < 0.001), and negatively with Pediococcus (r = −0.85, p < 0.001) and Weissella (r = −0.76, p < 0.001). WSC could be used by microorganisms as a substrate, so it was not surprising that WSC correlated negatively with microorganisms (Zheng et al., 2022). In addition, Enterobacter (r = −0.52, p < 0.01), Pantoea (r = −0.67, p < 0.001), and Microbacterium (r = −0.65, p < 0.001) were correlated negatively with CP. Previous studies had shown that certain Enterobacter were proteolytic, which could cause the loss of protein from silage (Yang et al., 2020). In this study, Weissella was correlated negatively with lactic acid content (r = −0.65, p < 0.001) and positively with acetic acid (r = 0.62, p < 0.01), propionic acid (r = 0.68, p < 0.001), butyric acid (r = 0.87, p < 0.001), pH (r = 0.87, p < 0.001) and NH3-N:TN (r = 0.76, p < 0.001). Results were consistent with those of Zheng et al. (2022) who reported that pH and the concentration of acetic acid were correlated positively with the abundance of Weissella. Furthermore, Pediococcus was correlated positively with NH3-N:TN (r = 0.83, p < 0.001) and acetic acid (r = 0.86, p < 0.001). Several studies indicated that Pediococcus possessed probiotics properties (Fugaban et al., 2021; Jiang et al., 2021). According to Yang et al. (2019), Pediococcus plays a major role in the initial stage of ensiling by helping to create an anaerobic environment that is suitable for LAB growth. Microbacterium might reduce silage quality as this bacterium correlated negatively with lactic acid and CP and positively with pH, butyric acid and NH3-N:TN. Microbacterium is a gram-positive bacterium belonging to Actinobacteria, and is generally isolated from terrestrial and aquatic ecosystems (Marchant et al., 2006). It was reported Microbacterium had the ability to degrade hydrocarbons and complex polysaccharides (Cordovez et al., 2018). However, its specific role in silage production warrants further research.
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FIGURE 7
 Heatmap of Spearman correlations between nutritional composition (A), fermentation parameters (B) and bacterial abundance of hybrid Pennisetum silage. *p < 0.05; **p < 0.01, ***p < 0.001. NDF, neutral detergent fiber; ADF, acid detergent fiber; WSC, water-soluble carbohydrate; CP, crude protein; LA, lactic acid; AA, acidic acid; PA, propionic acid; BA, butyric acid; NH3-N:TN, ammonia nitrogen:total nitrogen ratio.





4. Conclusion

Additives affected the quality of hybrid Pennisetum silage by increasing crude protein and lactic acid contents and inhibiting the growth of undesirable bacteria. Principal component analysis revealed that the silage quality of the PA, LP + PA and LB + LP treatments ranked as the top three of the seven treatments. The synergistic effect of L. plantarum combined with L. buchneri improved the quality of silage more so than any one of them alone. The addition of propionic acid was very beneficial, as it increased the relative abundance of Delftia, inhibited the activity of Enterobacter, maintained pH, butyric acid and the NH3-N:TN ratio at low levels and reduced the contents of NDF and ADF. In summary, L. plantarum, L. buchneri, propionic acid, calcium propionate and their combinations could improve the silage of hybrid Pennisetum, which would mitigate the shortage of feed for livestock.
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Staphylococci, mainly including Staphylococcus aureus and coagulase-negative staphylococci (CNS), are one of the most common pathogens causing bovine mastitis worldwide. In this study, we investigated the antimicrobial resistance and virulence profiles of staphylococci from clinical bovine mastitis in Ningxia Hui Autonomous Region of China. Antimicrobial resistance was determined by disc diffusion combined with E-test method. Genes of antimicrobial resistance and virulence factors were determined by PCR. A total of 332 staphylococcal isolates were confirmed from 1,519 mastitic milk samples, including 172 S. aureus and 160 CNS isolates. Fifteen CNS species were identified, with S. chromogenes being the most frequent found (49.4%), followed by S. equorum (13.8%). Noticeably, 2 S. agnetis isolates were found among the CNS isolates. To our knowledge, this is the first report documenting the presence of S. agnetis from bovine mastitis in China. The S. aureus and CNS isolates showed high resistance against penicillin, followed by erythromycin and tetracycline. Multidrug resistance was found in 11.6 and 16.3% of the S. aureus and CNS isolates, respectively. Resistance to penicillin was attributed to the presence of blaZ, erythromycin resistance to ermC (alone or combined with ermB) and tetracycline resistance to tetK (alone or combined with tetM). Notably, one S. equorum isolate and one S. saprophyticus isolate were both methicillin-resistant and mecA positive. Additionally, all S. aureus isolates carried the adhesin genes fnbpA, clfA, clfB, and sdrC, and most of them contained cna and sdrE. Conversely, only a few of the CNS isolates carried clfA, cna, and fnbA. Regarding toxin genes, all S. aureus isolates harbored hlb, and most of them were hlg positive. The lukE-lukD, lukM, sec, sed, sei, sen, seo, tst, seg, seh, and sej were also detected with low frequencies. However, no toxin genes were observed in CNS isolates. This study reveals high species diversity of staphylococci from clinical bovine mastitis in Ningxia Hui Autonomous Region of China. The findings for the genetic determinants of antimicrobial resistance and virulence factor provide valuable information for control and prevention of staphylococcal bovine mastitis.
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1. Introduction

Bovine mastitis remain the most frequent and costly disease affecting dairy cattle due to its effects on health, welfare, and productivity. Staphylococci, mainly including Staphylococcus aureus and coagulase-negative staphylococci (CNS), are one of the most common etiological agents causing bovine mastitis worldwide. S. aureus is generally considered major mastitis pathogen and mainly induce clinical mastitis, while CNS have traditionally considered minor mastitis-causing pathogen and usually cause subclinical mastitis (Naranjo-Lucena and Slowey, 2023). Currently, however, reports of subclinical and clinical mastitis cases caused by different CNS species have surfaced largely and they have emerged as an important pathogen (Li et al., 2015; De Visscher et al., 2017; Mahato et al., 2017; Ferreira et al., 2022). Among the group of CNS commonly isolated from bovine milk samples, S. chromogenes, S. epidermidis, S. haemolyticus, S. simulans, and S. xylosus have been identified as the CNS species most likely to cause mastitis (Leroy et al., 2015).

Mastitis is the most common reason for antimicrobials use to control or prevent staphylococcal infections in dairy cattle. Unfortunately, the selective pressure from antimicrobial agents significantly contributes to the dissemination of resistant strains, which greatly attenuate the therapeutic effectiveness of antimicrobial therapy (Isaac et al., 2017; Ahmed et al., 2020). Antimicrobial resistance of staphylococci are mainly attributed to various resistant determinants, such as genes blaZ and mecA for β-lactams resistance, tets for tetracyclines resistance, and erms for macrolides resistance. The reduced susceptibility of staphylococci against these commonly used antimicrobials in veterinary medicine might promote their persistence in the dairy herd (Kot et al., 2012; Piessens et al., 2012). Therefore, surveillance of antimicrobial resistance is important to ensure optimal results of antimicrobial use and minimize the risk for development and spread of antimicrobial resistance (Waller et al., 2011).

Staphylococci possess a wide variety of virulence factors, including different cell wall-associated adhesins and toxins, that facilitate the bacteria to avoid the immune system and contribute to increased severity of infections. Although most of these factors are originally identified in S. aureus, they have also been detected in CNS, including the isolates from bovine origin (González-Martín et al., 2020). In the last decades, the virulence factors in S. aureus isolates from bovine mastitis had been frequently reported worldwide. However, despite the emergence of CNS as pathogens, the knowledge regarding their virulence as well antimicrobial resistance in CNS is still poorly understood and is not usually identified at species level, especially the isolates from bovine mastitis in China, which makes it difficult to control infection because a great diversity of species have their own characteristics. Thus, this study was designed to investigate the antimicrobial resistance and virulence profiles of staphylococci isolated from clinical bovine mastitis cases in Ningxia Hui Autonomous Region of China.



2. Materials and methods


2.1. Bacterial isolation and identification

The 332 staphylococcal isolates tested in this study were isolated from 1,519 clinical mastitic milk samples from cows from 12 commercial dairy herds located in Ningxia Hui Autonomous Region in China during July 2021 to Aug 2022 (Figure 1; Supplementary Table S1). Bovine udder showing obvious signs, such as oedema, lumps, increase in temperature, hardening or pain, and milk samples showing any visual evidence of abnormality, such as the presence of clots, flakes or blood, were classified as clinical mastitis (Schmidt et al., 2015; Pérez et al., 2020). Before sampling, teats were disinfected using hydrophilic cotton saturated with 70% ethanol. The first milk squirts were discarded, and 5–10 mL of milk was collected in sterile tubes and transported to the laboratory under refrigeration in cool boxes with ice packs. After transportation to the laboratory, 100 μL of milk was inoculated onto blood agar plates supplemented with 5% defibrinated sheep blood and incubated at 37°C for 48 h. Colonies were initially identified as staphylococcal isolates by appearance (shape, color, and size), Gram staining, catalase and coagulase testing. The suspected isolates were further confirmed by PCR and sequencing as described in our previous study (Yang et al., 2019). Briefly, the genomic DNA was extracted through the Bacterial DNA Kit (Omega Bio-Tek, Norcross, GA) according to the manufacturer’s instructions.1 The 16S rRNA gene was amplified by the 16S rDNA Bacterial Identification PCR Kit (Takara, Shiga, Japan) in accordance with the manufacturer’s recommendation.2 The PCR products were purified and sequenced by Sanger sequencing by Sangon Biotech (Shanghai) Co., Ltd. in China. Nucleotide sequences were analyzed with the program NCBI-BLAST.3 Sequences with 99 to 100% identity to sequences deposited in public domain databases were considered to be positive identification. Confirmed isolates were kept into tryptic soy broth with 20% glycerol at −70°C for molecular testing.

[image: Figure 1]

FIGURE 1
 Sampling areas of mastitic milk in Ningxia Hui Autonomous Region, China.




2.2. Antimicrobial susceptibility testing

Antimicrobial susceptibility was determined by disc diffusion method on Mueller-Hinton agar (Oxoid, United Kingdom) according to the protocol of Clinical and Laboratory Standards Institute (CLSI, 2018). The panel of antimicrobial agents (Oxoid) included penicillin (10 U), cefoxitin (30 μg), gentamicin (10 μg), erythromycin (15 μg), tetracycline (30 μg), ciprofloxacin (5 μg), nitrofurantoin (300 μg), trimethoprim-sulfamethoxazole (1.25/23.75 μg), chloramphenicol (30 μg), quinupristin/dalfopristin (15 μg), and linezolid (30 μg). Susceptibility to cefoxitin was used to detect the methicillin-resistance phenotype. The E-test strips (Liofilchem, Roseto, Italy) were used to detect the vancomycin (0.016 to 256 μg/mL) susceptibility of the staphylococcal isolates. S. aureus ATCC 25923 was used as quality control strain. Multidrug-resistant (MDR) isolates were defined as an isolate being resistant to at least 3 antimicrobial agents belonging to different antimicrobial categories (Magiorakos et al., 2012).



2.3. Detection of antimicrobial resistance and virulence genes

The resistance genes for penicillin (blaZ), methicillin (mecA and mecC), tetracycline (tetK and tetM), and erythromycin (ermA, ermB, and ermC) were tested by PCR as described previously using specific primer sets in Supplementary Table S2 (Paterson et al., 2012; Yang et al., 2016). Similarly, the adhesins encoding genes fnbpA (fibronectin bind protein), clfA and clfB (clumping factor), cna (collagen binding protein), sdrC, sdrD and sdrE (serine-aspartic acid repeat proteins), bbp (bone sialoprotein-binding protein), ebpS (elastin-binding protein) and map/eap (major histocompatibility complex class II analogous protein/extracellular adherence protein), as well as toxins encoding genes sea, seb, sec, sed, see, seg, seh, sei, sej, sen, seo, and sem (staphylococcal enterotoxins), tst (toxic shock syndrome toxin-1), eta and etb (exfoliative toxins), lukS/lukF-PV, lukE-lukD, and lukM (leukocidins), hla, hlb, hld, and hlg (hemolysins) and edin (epidermal cell differentiation inhibitor) were evaluated through PCR (Supplementary Table S2; Jarraud et al., 2002; Peacock et al., 2002). The PCR products were analyzed using 1.0% agarose gel electrophoresis.




3. Results


3.1. Bacterial identification

Overall, 172 S. aureus and 160 CNS isolates were identified from the 332 staphylococcal isolates. Among the CNS isolates, a total of 15 species were identified. The predominant species were S. chromogenes (49.4%), followed by S. equorum (13.8%), S. succinus (9.4%), S. xylosus (6.3%), S. simulans (5.0%), S. haemolyticus (4.4%), S. hominis (2.5%), S. saprophyticus (1.9%), S. lugdunensis (1.9%), S. gallinarum (1.9%), S. agnetis (1.3%), S. auricularis (0.6%), S. cohnii (0.6%), S. epidermidis (0.6%), and S. hyicus (0.6%) (Table 1).



TABLE 1 Distribution and the antimicrobial resistance of staphylococci isolated from clinical bovine mastitisa.
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3.2. Antimicrobial susceptibility testing

The antimicrobial susceptibility of the staphylococcal isolates against 12 antimicrobial agents were evaluated. The S. aureus isolates showed highest resistance rate to penicillin (101, 58.7%), followed by erythromycin (38, 22.1%), tetracycline (26, 15.1%), gentamicin (18, 10.5%), ciprofloxacin (15, 8.7%), and chloramphenicol (10, 5.8%). In addition, 20 (11.6%) S. aureus isolates exhibited MDR. Similar to the antimicrobial resistance profile of S. aureus, the CNS isolates displayed high resistance to penicillin (114, 71.3%), followed by erythromycin (46, 28.8%), tetracycline (31, 19.4%), gentamicin (15, 9.4%), chloramphenicol (9, 7.9%), ciprofloxacin (4, 2.5%), and cefoxitin (2, 1.3%). Methicillin-resistant phenotype was detected in 1 S. equorum and 1 S. saprophyticus isolates based on their susceptibility to cefoxitin. Antimicrobial resistance rates varied by CNS species. Multidrug resistance was found in 26 (16.3%) CNS isolates, including S. chromogenes (12, 15.2%), S. equorum (5, 22.7%), S. succinus (1, 6.7%), S. xylosus (2, 20.0%), S. simulans (1, 12.5%), S. haemolyticus (3, 42.9%), S. saprophyticus (1, 33.3%), and S. epidermidis (1, 100.0%). None of the staphylococcal isolates showed resistance to nitrofurantoin, trimethoprim-sulfamethoxazole, quinupristin/dalfopristin, linezolid or vancomycin in this study (Table 1, Supplementary Table S3).



3.3. Genetic determinants for antimicrobial resistance

The staphylococcal isolates showed higher resistance to penicillin, erythromycin and tetracycline compared to other tested antimicrobial agents in this study. Hence, the resistance encoding genes for these antimicrobial agents as well as methicillin resistant genes mecA and mecC were tested and shown in Table 2 and Supplementary Table S3. In S. aureus isolates, the blaZ was detected in 105 (61.0%) isolates. All penicillin-resistant S. aureus isolates carried blaZ. Besides, 4 penicillin-susceptible isolates also contained this gene. The tetK and tetM were determined in 21 (12.2%) and 17 (9.9%) isolates, respectively. All tetK positive (alone or combined with tetM) isolates showed resistance to tetracycline. Five tetracycline-resistant S. aureus isolates were negative for tetK or tetM. Additionally, genes ermC and ermB were found in 38 (22.1%) and 23 (13.4%) S. aureus isolates, respectively. And all erythromycin-resistant isolates harbored ermC alone or in combination with ermB. None of the isolates were positive for the mecA, mecC or ermA.



TABLE 2 Resistance genes of staphylococci isolated from clinical bovine mastitis.
[image: Table2]

Among the 160 CNS isolates evaluated, the blaZ was found in 111 (69.4%) isolates and all of them showed resistance to penicillin. Two S. equorum and 1 S. simulans that were resistant against penicillin were negative for blaZ. Importantly, both of the methicillin-resistant isolates, 1 S. equorum and 1 S. saprophyticus, carried mecA. The tetK and tetM were determined in 28 (17.5%) and 20 (12.5%) CNS isolates, respectively. All tetK-carrying (alone or combined with tetM) isolates showed resistance to tetracycline. Three tetracycline-resistant isolates, including 1 S. chromogenes, 1 S. haemolyticus and 1 S. saprophyticus, did not harbored tetK or tetM. Moreover, ermC and ermB were detected in 45 (28.1%) and 27 (16.9%) CNS isolates, respectively. All ermC-carrying (alone or combined with ermB) isolates displayed resistance to erythromycin. One erythromycin-resistant S. equorum was negative for ermC or ermB. None of the CNS isolates were positive for the mecC or ermA (Table 2, Supplementary Table S3).



3.4. Genetic determinants for virulence factors

The presence and distribution of adhesin and toxin genes in staphylococcal isolates were presented in Table 3 and Supplementary Table S3. All S. aureus isolates harbored the adhesin genes fnbpA, clfA, clfB, and sdrC. Most of them contained cna (137, 79.7%) and sdrE (118, 68.6%), while genes ebpS, sdrD and map/eap were only found in 34.3% (59), 12.8% (22), and 18.6% (32) of the isolates, respectively. For the toxin genes, hlb was present in all S. aureus isolates, followed by hlg (118, 68.6%), lukE-lukD (59, 34.3%), and lukM (38, 22.1%). Genes sec, sed, seg, seh, sei, sej, sen, seo and tst were only observed in 15.7% (27), 15.7% (27), 6.4% (11), 6.4% (11), 15.7% (27), 6.4% (11), 15.7% (27), 15.7% (27), and 15.7% (27) of the isolates, respectively. None of the S. aureus isolates were positive for bbp, sea, seb, see, sem, eta, etb, lukS/lukF-PV, hla, hld, and edin. In contrast to S. aureus, virulence genes were detected in a small number of the CNS isolates. Only 10.0% (16) of the CNS isolates were positive for clfA, 1.9% (3) for cna and 0.6% (1) for fnbA. The toxin-encoding genes were not observed in any of the CNS isolates.



TABLE 3 Virulence genes of staphylococci isolated from clinical bovine mastitis.
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4. Discussion

A variety of bacteria have been implicated in bovine mastitis, with staphylococci being considered one of the most significant and prevalent causative agents in China and other countries (Gao et al., 2017). Understanding the pathogen profile for mastitis is critical to management (Dyson et al., 2022). In routine mastitis diagnostic laboratories, CNS are usually not identified to the species level but are reported as a single group. Consequently, limited knowledge is available regarding the epidemiology and relative importance of different species in this group (Ruegg et al., 2015; Schmidt et al., 2015; Dyson et al., 2022; Zigo et al., 2022). Although a protective effect against clinical mastitis has been postulated (Addis et al., 2020), ascribing the beneficial effect to the CNS as a group is probably inaccurate and still a topic of debate; such effect will rather be situated at the species or even strain level (Vanderhaeghen et al., 2014). The CNS group isolated from bovine milk samples consists of more than 50 different species and subspecies (Locatelli et al., 2013), and the distribution of CNS species change over time and vary between different regions (Dyson et al., 2022). In our study, 172 S. aureus and 160 CNS isolates were identified from the 332 staphylococcal isolates through 16S rRNA gene sequencing. A total of 15 species were confirmed among the CNS isolates. These species were frequently observed in both clinical and subclinical mastitis with slight differences among herds worldwide (Frey et al., 2013; Condas et al., 2017; El-Razik et al., 2017; Lianou et al., 2021), but the proportion of different Staphylococcus species varied between studies carried out in different countries (Schmidt et al., 2015; Xu et al., 2015). In accordance with the previous reports (Rall et al., 2014; Dos Santos et al., 2016; Valckenier et al., 2021), the predominant CNS species analyzed in this study was S. chromogenes. Normally, S. equorum was a less frequently detected species among CNS from dairy cattle (Adkins et al., 2018; Mahmmod et al., 2018; Jenkins et al., 2019; Valckenier et al., 2021). However, the S. equorum was the second most prevalent CNS species in our study, similar to the report that high proportion of this species was found in bulk milk (De Visscher et al., 2017), suggesting that this species might be relevant for udder health in the sampling site. Additionally, although S. epidermidis and S. haemolyticus commonly presents a high prevalence among CNS from bovine origin (Lee and Lee, 2022), the S. epidermidis and S. haemolyticus in our study were only observed in few isolates. This may indicate that these two species are not significant causative agent of mastitis in our studied area. Management practices, origin and strategy of samples, housing systems, climate and herd size used in the studies could probably explain some of the differences. Moreover, the distribution of the most common species has been shown to change over time (Koop et al., 2012; Nyman et al., 2018). Notably, although the prevalence was low, S. agnetis isolates were identified among the CNS isolates in the current study. This Staphylococcus species, an emerging pathogen, was described as a separate species in 2012 and frequently isolated from mastitic milk samples in other countries (Condas et al., 2017; Mahato et al., 2017; Poulsen et al., 2017; Rahmdel et al., 2018; Szafraniec et al., 2020). To our knowledge, this is the first report documenting the occurrence of S. agnetis from bovine mastitis in China. Further sampling is required to ascertain the true prevalence and significance of this species in local dairy herds.

Antimicrobial therapy has been used as a successful strategy for controlling staphylococcal mastitis. β-Lactams, tetracyclines and macrolides were commonly used to treat staphylococcal mastitis. But the therapeutic effects are hampered by the increasing number of drug-resistant strains (Kim et al., 2019; Achek et al., 2020). In the present study, the most resistance was observed against penicillin in both S. aureus and CNS isolates, followed by erythromycin and tetracycline. Meanwhile, low resistance rates of gentamicin, ciprofloxacin and chloramphenicol were also found in the staphylococcal isolates tested in this study. Resistance to these antimicrobials was also frequently reported by other authors (Cheng et al., 2019; Vasileiou et al., 2019; Francisco et al., 2021; Lianou et al., 2021; Mostafa Abdalhamed et al., 2022). In agreement with other recent studies (Fernandes Dos Santos et al., 2016; Taponen et al., 2016), resistance to the tested antimicrobials was higher in CNS than that in S. aureus with the exception of gentamicin and ciprofloxacin in the present study. Nevertheless, our results were similar to previous studies reporting low-level resistance to gentamicin and ciprofloxacin in both S. aureus and CNS isolates from bovine mastitis (Frey et al., 2013; Mahato et al., 2017; Martins et al., 2017; Klibi et al., 2018), probably due to the low frequent use of these antimicrobials in dairy farm in comparison with penicillin, erythromycin and tetracycline. Notably, 1 S. equorum and 1 S. saprophyticus isolates were resistant to methicillin in the current study. The occurrence of methicillin resistance in these 2 CNS species isolated from humans, livestock and farm environment has been previously described (Cicconi-Hogan et al., 2014; Teeraputon et al., 2017; Lu et al., 2020; Bonvegna et al., 2021; Garbacz et al., 2021). However, to the best of the available knowledge, there are no reports of the methicillin resistance in S. equorum and S. saprophyticus causing bovine mastitis in China. These resistant bacteria have been reported as an emerging problem in veterinary medicine and pose a threat to public health due to their transfer from animals to the humans caring for them (Kim et al., 2019). Moreover, our findings were in accord with previous study found that CNS often exhibit greater tendency to develop multidrug resistance (MDR) than S. aureus (Schmidt et al., 2015). The high phenotypic resistance could be explained by the frequent use of these antimicrobials for the treatment of mastitis or other diseases such as lameness, respiratory, or reproductive problems. An augmented exposure to antimicrobials can lead to an increase in resistant strains and consequently to the diversity we observed in the resistance profile of the isolates (Fernandes Dos Santos et al., 2016; Osman et al., 2016). Furthermore, we found very large differences in antimicrobial resistance between different CNS species, possibly due to the limited number of isolates at the species level.

In this study, the most commonly antimicrobial resistance determined was against penicillin, erythromycin and tetracycline. Thus, the genes conferring resistance to these antimicrobials as well as methicillin were detected. Corresponding to the phenotypic resistance, blaZ showed high prevalence and was found in all penicillin-resistant S. aureus isolates in this study. However, 4 blaZ-containing isolates were susceptible to penicillin. Previous studies also found the phenomenon that some blaZ-positive S. aureus isolates were susceptible to penicillin (Ruegg et al., 2015; Andrade et al., 2021). The discrepancy may be attributable to the lack of blaZ expression (Hammad et al., 2014). In CNS, all blaZ-positive isolates were resistant to penicillin. But 3 penicillin-resistant CNS isolates were negative for this gene. This may be attributed to the fact that mechanisms such as efflux pump or biofilm other than expression of the blaZ gene can cause penicillin resistance because multiple mechanisms of resistance often exist in these isolates (Osman et al., 2015; Addetia et al., 2019; Francisco et al., 2021). Moreover, the mecA was observed in both of the methicillin-resistant isolates (one isolate each of S. equorum and S. saprophyticus), which confirmed the phenotypic resistance to methicillin. To date, at least 38 tetracycline resistance genes have been found, and the genes tetK and tetM has been commonly found in species of staphylococci (Ruegg et al., 2015). In this study, despite the low occurrence of tetM, the tetK was determined in most of the tetracycline-resistant staphylococcal isolates. This may not be surprising because tetK is very frequent in staphylococci species from cows with clinical mastitis (Klibi et al., 2018). Furthermore, all tetK-carrying (alone or combined with tetM) isolates showed resistance to tetracycline. A few staphylococcal isolates showed phenotypic resistance to tetracycline but were negative for tetM or tetK. Additionally, 10 genes have been identified encoding resistance to erythromycin until now, being ermA, ermB, and ermC the major mechanism in staphylococci for erythromycin resistance (Sun et al., 2018). But in our study, aside from 1 erythromycin-resistant S. equorum that was negative for ermC or ermB, the ermC alone or in combination with ermB were detected in all erythromycin-resistant staphylococcal isolates, which is supported by previous research indicating that ermC is the most prevalent erm gene recovered from cases of staphylococcal bovine mastitis and most of the isolates exhibited phenotypic resistance to erythromycin (Ruegg et al., 2015). The coexistence of these tetracyclines and macrolides resistance genes has been frequently reported in S. aureus or CNS isolates from bovine mastitis in China and other countries (Klibi et al., 2018; Naranjo-Lucena and Slowey, 2023). The discrepancies observed between the phenotypic susceptibility and resistance genes could be due to the presence of other resistance-encoding genes, such as tetL or tetO for tetracyclin and ermE, ermT, mefA, or mefE for erythromycin, or due to a mutation in the primer-annealing site (DiPersio et al., 2008; Schmidt et al., 2015).

The pathogenicity of staphylococci is mainly related to its capacity to encode and produce a multitude of virulence factors, facilitating their adhesion and invasion of the host cells and establishment of infection (Klibi et al., 2018). The initial attachment of staphylococci to epithelial cells of the teat canal depends on the interaction of bacterial adhesins with host surface proteins, peptides and molecules located in the basement membrane (Stutz et al., 2011). In the current study, the S. aureus isolates exhibited high prevalence of fnbpA, clfA, clfB, sdrC, cna, and sdrE. Similar observations have also been reported in our previous study and by other reports (Yang et al., 2020; Avila-Novoa et al., 2022; Ibrahim et al., 2022). However, the frequencies of ebpS, sdrD, and map/eap found in our study was lower than those reported by other authors (Cheraghi et al., 2017; Kot et al., 2022). Our findings indicated that a diversity of adhesins were involved in the initial attachment of host cells and colonization of the mammary gland by S. aureus in Ningxia Hui Autonomous Region. In addition, this group of isolates was also evaluated for toxin genes related to the invasion of host cells and the evasion of immune response. Hemolysins are pore-forming toxins that attack cell membranes and cause platelet damage, lysosome destruction, ischemia, and necrosis (Abril et al., 2020). Most S. aureus isolates from bovine and human origins have been reported to primarily possess the hla, which causes incomplete or partial hemolysis (Zhang et al., 2018; Khan et al., 2021). However, the hlb and hlg were the predominant hemolysin genes in this study, and none of the isolates contained hla. Leukocidins are also pore-forming two-component toxins that specifically attack immune cells (Abril et al., 2020). Similar to previous studies (Haveri et al., 2007, 2008; Thomas et al., 2021), lukE-lukD was the most prevalent leukocidin-encoding gene in our study, followed by lukM. Moreover, enterotoxins and toxic shock syndrome toxin-1 are pyrogenic toxins known as staphylococcal superantigens causing staphylococcal food poisoning and are able to interrupt host immune responses (Podkowik et al., 2013; Abril et al., 2020). In the present study, enterotoxin-encoding genes sec, sed, seg, seh, sei, sej, sen, and seo as well as toxic shock syndrome toxin-1-encoding gene tst were detected with low frequencies. These findings were in accordance with those of other reports involved in bovine S. aureus (Hummerjohann et al., 2014; Rall et al., 2014; Mello et al., 2016 Vaughn et al., 2020). The variation in the prevalence of the tested virulence factors could be associated with the genetic diversity of strains, the source and sizes of samples or their geographic locations (Avila-Novoa et al., 2022). Given that certain virulence genes are overrepresented in some clonal lineages and that some combinations are correlated with high pathogenic potential (Achek et al., 2020), further investigations need to be performed to explore the diversity of virulence factors combination in S. aureus pathogenesis.

Consistent with other studies (Supré et al., 2011; Xu et al., 2015; França et al., 2021), the virulence genes in CNS were significantly less prevalent than that in the S. aureus in our study. Previous study indicated that collagen binding protein (cna) and fibronectin binding protein (fnbA) were often associated with CNS attachment in bovines (Pizauro et al., 2019). However, in the current study, only few of the CNS isolates carried cna and fnbA. Similar results were obtained from subclinical mastitis milk in China (Xu et al., 2015). Additionally, a few of the CNS isolates were positive for clfA in this study, in line with the report by Felipe et al. that 12.2% of the CNS isolates contained this gene (Felipe et al., 2017). The capacity to adhere to bovine mammary epithelial cells strongly differs among the different CNS isolates and potentially reflects intra-species diversity in ecology and epidemiological behavior (Souza et al., 2016). Recent studies have provided strong evidence for the presence of toxin genes and production of the corresponding toxins in CNS in China and other countries, especially the enterotoxins (Rall et al., 2014; Salaberry et al., 2015; Mahato et al., 2017; Martins et al., 2017; Pizauro et al., 2019). However, the toxin-encoding genes were not observed in any of the CNS isolates in our study. Our results were similar to those presented by other authors that all CNS species were negative for the toxin genes, even though a wide range of genes were tested (Nemati et al., 2008; Klempt et al., 2022). This may be attributed to the fact that the low prevalence of toxin-producing CNS isolates in the studied area, or the presence of other toxin genes which were not tested (Xu et al., 2015). Another possible reason is the requirement of different primer sets to detect the target genes (Vanderhaeghen et al., 2014). Furthermore, previous studies demonstrated that the use of antimicrobial drugs influenced the expression of virulence genes in staphylococci. The connection between genetic elements conferring resistance to antimicrobials and expression of virulence factors is intricately linked to the ability of bacteria to communicate through two-component system and quorum sensing system and has not yet been fully elucidated (Pérez et al., 2020). In further research, large sample size and sufficient numbers of isolates of each species are needed to explore the species-specific association between antimicrobial resistance and virulence factors in staphylococci.



5. Conclusion

This study provides high species diversity of staphylococci from clinical bovine mastitis in Ningxia Hui Autonomous Region in China. Noticeably, to our knowledge, we first describe the occurrence of S. agnetis from bovine mastitis in China. The S. aureus and CNS isolates displayed high frequencies of phenotypic and genotypic resistance to penicillin, erythromycin and tetracycline, which remind the government to pay continuous attention to the commonly used antimicrobial agents in dairy industry. Moreover, the high occurrence of the adhesin genes fnbpA, clfA, clfB, sdrC, cna, and sdrE tested in this study as well as the toxin genes hlb and hlg in S. aureus indicate their pathogenic potential causing bovine mastitis in the studied area. Further investigation is necessary to explore the diversity of virulence factors combination in S. aureus pathogenesis. Furthermore, despite the absence of toxin genes in CNS in this study, a more extensive examination is needed to demonstrate the true toxigenic potential of this organisms group in mastitis.
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Industrialized layer chicken feedlots harbor complex environmental microbial communities that affect the enrichment and exchange of gut bacteria and antibiotic resistance genes (ARGs). However, the contribution of different environmental sources to the gut ARGs of layer chickens is not clear. Here, layer chicken gut and environmental samples (air, water, feed, cage, feather, maternal hen feces, uropygial glands) were collected during the early 3 month period before the laying of eggs, and the source and characteristics of the gut microorganisms and ARGs were analyzed by performing 16S rRNA and metagenomic sequencing. The results showed that the abundances of Bacteroidetes and Actinobacteria in cecum of layer chickens gradually increased, while that of Proteobacteria decreased with age, and the number and relative abundance of ARGs decreased significantly with age. On day 5, 57% of the layer chicken cecal ARGs were from feather samples, and 30% were from cage samples. Subsequently, the contribution of cage ARGs became progressively more prominent over time. At days 30 and 57, the contribution of cage ARGs to the chick cecal ARGs reached 63.3 and 69.5%, respectively. The bacterial community composition (especially the abundances of Klebsiella pneumoniae and Escherichia coli) was the major factor impacting the ARG profile. K. pneumoniae and E. coli were mainly transmitted from feathers to the layer chicken cecum, and the contribution rates were 32 and 3.4%, respectively. In addition, we observed the transmission of ARG-carrying bacteria (Bacteroides fragilis) from the cage to the gut, with a contribution rate of 11.5%. It is noteworthy that B. fragilis is an opportunistic pathogen that may cause diarrhea in laying hens. These results can provide reference data for the healthy breeding of layer chickens and the prevention and control of ARG pollution.

KEYWORDS
 industrialized feedlot, lohmann layer chicken, cecal microbiome, antibiotic resistance genes, source tracker


1. Introduction

Antibiotic resistance genes (ARGs) are emerging environmental contaminants that have raised serious public health concerns. Approximately 700,000 people die every year because of resistant infections, and by 2050, that number will increase to 10 million deaths a year (Chin et al., 2018). It has been reported that approximately 73% of antibiotics use occurs in the farming industry (Van Boeckel et al., 2019). Antibiotics are administered to animals, usually through feed or drinking water for the prevention and treatment of diseases (Hu and Cheng, 2016). Therefore, the gut microbes of food animals likely constitute a large reservoir for ARGs, significantly increasing the risk of ARGs transmission through the food chain (Wang et al., 2019). However little attention has been paid to the gut microbial composition and associated ARGs in laying chicken, in contrast to the extensive studies of pig and broiler microbiomes and ARGs (He et al., 2014; Zhao et al., 2018). Consequently, a comprehensive study on the structure and function of the bacterial community composition and its associated ARGs in laying chickens is urgently needed.

The ARGs in the gut microbiota are mainly affected by bacterial community composition (Li et al., 2021). As the primary host of ARGs, bacterial communities account for 4.8–32.2% of the variation in the ARG profile (Pu et al., 2020; Yang et al., 2021). The establishment of the laying chicken gut microbiota is a complex and dynamic process (Diaz Carrasco et al., 2019). Age is an important factor affecting the composition of the gut microbiota. Early life is a critical window period for the colonization of gut microbiota in animals (Liu et al., 2019). The gut microbiota that is established during this early stage has an important influence on the growth of the animals and the development of the immune system (Tamburini et al., 2016). Therefore, it is helpful to further understand the association between changes in the gut microbiota and ARGs in laying chicken by studying the changes in gut microbiota over time in early life.

Despite evidence suggesting that newborn laying chicks acquire their initial microbial community from their maternal hen and immediate environment, the impact and relative contribution of different microbial sources in shaping the gut microbiota in layer chickens remains poorly understood (Lee et al., 2019; Maki et al., 2020). Research has shown that Halomonas and Ochrobactrum are dominant genera in embryos, and there was a moderate correlation (0.4) between the maternal hen and the embryo (Ding et al., 2017). The results suggest that the maternal hen fecal microbiota on eggshells may contribute to the establishment of gut microbiota in chicks. In addition, the rearing environment also exerts a sustained influence on the development of infant gut microbiota. The microbiota of indoor hens consists of a higher number of bacterial species than the microbiota of outdoor hens (Seidlerova et al., 2020). However, no longitudinal studies have been conducted to analyze the relative contributions of these bacterial sources to the colonization of newborn laying chicks.

Thus, a large-scale study was conducted to investigate the spatial and temporal development of cecal bacteria and ARGs in healthy newborn laying chicks, and to explore the relationship between bacterial transmission and the changes in ARGs within the gut microbiota. In addition, relative contributions of different microbial sources from the maternal hen fecal and the rearing environment (air, water, chicken cages, chicken feed, uropygial glands, and feathers) were also assessed.



2. Materials and methods


2.1. Sample collection

The layer chicken management was performed according to our previous study, we chose to sample more frequently during the early stages of rapid development and changes in the gut microbiota (0–7 days), and then transition to less frequent sampling during the later stages of community stabilization (Xiao et al., 2021). Random samples (5 g) of feed (day 0, 12, 43) were taken from the feed trough using sterile spoons and placed into sterile sampling bags. Six layer chickens were randomly obtained from the flock in the middle of house at days 0, 1, 3, 5, 7, 12, 18, 24, 30, 36, 40, 43, 50, and 57 after hatching, with a total of 84 layer chickens used for this study (Supplementary Figure S1). Using sterile scissors, 8–10 feathers were cut from the neck, back, abdomen, wings, and tail of the chickens, and mixed together in a sterile bag. And than the layer chicken selected for each time point were killed by cervical dislocation. After the abdomen was opened; the caecum was removed from each chicken, and immediately placed in liquid nitrogen and collected, transferred to the laboratory and stored at −80°C until DNA extraction. At the same time, maternal fecal samples were collected rectally from each laying hen using a sterile cotton swab (Hua Chen Yang, Shen Zhen, China) premoistened with sterile phosphate-buffered saline (PBS), and then the swab head was placed in a 5 mL sterile screw top collection tube (Corning, NY, United States). The uropygial gland was cut off with sterilized scissors and placed in a 5 mL sterile screw-top collection tube. Three water samples (approximately 3 L each) were collected from the water trough and placed into sterile containers at each sampling timepoint. Indoor air samples were collected using liquid-based air samplers, which were placed ~50 cm above the floor. Three replicate air samples were collected at 8:00, 12:00 and 16:00 by drawing air for 1 h at a rate of 13 L per min through impingers filled with sterile molecular-grade water. For each replicate, the air sample was collected three times simultaneously at five points indoors, and the resulting samples (30 mL each) were pooled (150 mL total volume). Cage surface samples from each coop were collected from six sites. During this procedure, a swab premoistened with sterile PBS was rubbed back and forth several times at each sampling site, and then the swab head was placed in a 5-mL sterile screw-top collection tube. Samples were immediately placed in liquid nitrogen after collection, transferred to the laboratory and stored at-80°C until DNA extraction.



2.2. Sample pretreatment and DNA extraction

For swab-collected samples (cage surface samples), the six-swab head was vortexed at maximum speed in a bead tube with sterile PBS. After discarding the swabs, the tube was centrifuged and the pellets were suspended in PowerBead solution and C1 buffer from the DNA isolation kit. Zirconium glass beads (400 mg; diameter, 0.1 mm) (BioSpec, Bartlesville, OK, United States) were added, and the mixture was shaken vigorously using an automatic rapid sample grinding instrument (JXFSTPRP-48, Shanghai Jingxin). The mixture was then incubated at 95°C for 5 min to maximize bacterial DNA extraction. All subsequent steps followed the manufacturer’s protocol for the PowerFecal DNA Kit (Qiagen, Germany). For DNA extraction with a PowerWater DNA Isolation Kit (Qiagen, Germany), the water samples and impinger liquid from the air samples were vacuum filtered onto sterile 0.22 μM polycarbonate filters (Sigma, St. Louis, MO, United States), transferred to 0.7 mm garnet bead tubes containing 1 mL of PW1 solution, and vortexed at maximum speed for 10 min. The remaining steps were performed according to the manufacturer’s protocol. To obtain microbial samples from the feather surface, the feather sample was divided into three parts and placed into a centrifuge tube containing 30 mL of PBS (0.1 mol/L, pH 7.0). After vortex oscillation at 180 r/min at 4°C for 3 h and ultrasonication at 4°C for 30 min, the feather sample cleaning solution was vacuum filtered onto sterile 0.22-μM polycarbonate filters (Sigma, St. Louis, MO, United States) and transferred to 0.7-mm garnet bead tubes containing 1 mL of PW1 solution. The mixture was shaken vigorously using a FastPrep-24 instrument, and the remaining steps were performed according to the manufacturer’s protocol. Uropygial glands (0.02 mg) were hydrolyzed with proteinase K before being processed with a DNA Mini Kit (Qiagen, Germany). Microbial DNA was extracted from the chicken feed using a DNeasy PowerFood Microbial Kit (Qiagen, Germany). DNA quality control was performed on the samples using several steps. Firstly, DNA degradation and potential contamination were monitored on 1% agarose gels. Secondly, DNA purity was assessed by determining the ratios of OD260/OD280 and OD260/OD230 using the NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies, Wilmington). Finally, DNA concentration was measured using the Qubit® dsDNA Assay Kit and Qubit 2.0 fluorometer (Invitrogen, Thermo Fisher Scientific, MA). DNA samples with OD values ranging from 1.8 to 2.0 and DNA contents above 1 μg were deemed suitable for library construction.



2.3. 16S rRNA sequencing

To analyze the microbiota community composition, specific V4 regions of the 16S rRNA gene were amplified with barcoded primers (F:5′-GTGCCAGCMGCCGCGGTAA-3′; R:5′-GGACTACHVGGGTWTCTAAT-3′) and PremixTaq (TaKaRa) was used for PCR amplification. PCR conditions were as follows: (1) 94°C for 3 min; (2) 30 cycles of 94°C for 30 s, 56°C for 30 s and 72°C for 30 s; and (3) a final extension at 72°C for 5 min. The amplicons were purified using a QIAquick PCR Purification Kit (Qiagen, Germany), and 250-bp read sequencing was performed on the Illumina HiSeq platform. The raw reads from 16S rRNA gene sequencing were demultiplexed and quality-filtered using Quantitative Insights into Microbial Ecology (QIIME2–2020.6) (Bokulich et al., 2013). Clean data were clustered using the Divisive Amplicon Denoising Algorithm 2 (DADA2) method with amplicon sequence variant (ASV) levels. The feature sequences were taxonomically assigned at the kingdom, phylum, class, order, family and genus levels. The α-diversity analysis, including the Chao1 and Shannon indexes, was conducted using QIIME2. For β-diversity analysis, the principal coordinates analysis (PCoA) was performed using QIIME2 to investigate the dissimilarities in bacterial community structure among samples. The 16S rRNA gene sequences in this study were deposited into the National Center for Biotechnology Information (NCBI) database (PRJNA855329).



2.4. Metagenomic sequencing and ARG analysis

The DNA extracted from the layer chicken cecal, feather, uropygial gland and cage samples on days 5, 30, and 57 for 16S rRNA gene sequencing was simultaneously used for metagenomic sequencing analysis. Sequencing libraries were generated with the NEBNext® Ultra™ DNA Library Prep Kit (E7645S, NEB, United States) according to the manufacturer’s recommendations. Then, the metagenomic libraries were sequenced on the Illumina HiSeq platform (Novogene, Beijing, China) using the 150-bp paired-end module. The raw reads were filtered and trimmed to obtain high-quality reads (clean reads), and quality control was performed using the following criteria: (1) reads with >10% unidentified nucleotides (N), (2) reads with ≥50% bases with mass fraction ≤20, and (3) reads aligned with barcodes were removed. The metagenomic sequences in this study were deposited into the NCBI database (PRJNA855329). We identified the taxonomic profiles (including kingdom, phylum, class, order, family, genus, and species information) of the metagenomic samples using kraken2. ARG-OAP v2.0 was applied to determine the ARG profiles (Yang et al., 2016). Briefly, potential ARG reads and 16S rRNA genes were extracted, and ARG-like reads were identified and annotated using the Perl package Ublastx_stageone X by combining the Comprehensive Antibiotic Resistance Database (CARD) and Antibiotic Resistance Gene Database (ARDB) (Yin et al., 2018). The normalized abundances of ARGs were expressed as “copies of ARGs per bacterial cell” (Jia et al., 2020). Species attribution analysis of resistance genes and resistance mechanism analysis were also conducted (McArthur et al., 2013; Jia et al., 2017).



2.5. SourceTracker

We used SourceTracker to evaluate the possible sources and proportions of microbial communities in the layer chicken cecum in the early stage. ASVs present in less than 1% of samples were first filtered, and the resultant ASV table was imputed with default parameters (Knights et al., 2011), with the layer chicken cecum at different days as the “sink” and the samples from different sources (feathers, uropygial gland, air, water, chicken feed and cage) identified as the “source.” The SourceTracker algorithm was then used to estimate the probability that the species in the intestinal samples came from the source environment (probability>80%).

To identify transfer events involving ARGs, SourceTracker was run with the default settings using the feather and cage ARGs as the source.



2.6. Statistical analysis

Data preparation was performed in Microsoft Excel 2019 (Microsoft, United States). SPSS 20.0 (IBM Corp, USA) was used to assess statistical significance, and the results were visualized with GraphPad Prism 8.0 software. The threshold for significance was set at p < 0.05. PCoA was performed using the coverage correlation matrix of the ARG subtypes. Venn diagrams were drawn with the Venn Diagram package. Network plots of the ARGs and bacterial communities (species level) were generated with Cytoscape 3.9.1 software.




3. Results


3.1. ARG distribution characteristics and differences among layer chicken cecal, feather, and cage samples

A total of 620 ARG subtypes were detected in the layer chicken cecal, feather and cage samples, even though no antibiotics were used on the farm. These ARGs were associated with 19 antibiotic types (350 β-lactam, 74 multidrug, 40 macrolide-lincosamide-streptogramin (MLS), 39 tetracycline, and 36 aminoglycoside resistance genes, among others) (Figure 1). The number of ARG subtypes in each group varied, ranging from 205 to 416. The 10 most abundant ARG subtypes in the different groups are summarized in Supplementary Table S1. The feathers on day 5 contained the most ARG types (416), and the total abundance was also the highest. The layer chicken cecum contained the fewest types (205), and there was a significant decrease in the total abundance of ARGs in the chick cecum over time (Figure 2A). These changes may be related to changes in gut microbes. Notably, no resistance genes were detected in the uropygial gland microbiome samples.
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FIGURE 1
 Statistics of ARG diversity between groups. The total number of detected ARG subtypes in different ARG types in all samples is shown on top, the total number of detected ARG subtypes in different groups is shown on the right, and the bubble chart shows the relative abundance of each ARG type in different groups.
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FIGURE 2
 ARG distribution characteristics. (A) The total abundance of ARGs in different groups. In the box chart, “□” represent the means, boxes represent the upper and lower quartiles, lines represent the medians, and whiskers represent ranges. (B) PCoA plots showing the ARG composition differences among groups. (C) Venn diagram showing the number of shared and unique ARGs among groups.


We then assessed the global similarity of ARG composition in each group based on principal coordinates analysis (PCoA). The results showed that the layer chicken cecum on day 5 differed from that on day 30 and day 57 in terms of ARGs, and the cage ARGs from different days clustered together, indicating that the ARGs composition in different groups changed over time. In addition, the results showed that the layer chicken cecum ARGs on day 5 were overall more similar to the feather ARGs than to the cage ARGs (Figure 2B), implying that the feather ARGs might have been transmitted to the layer chicken cecum on day 5.

A total of 123 ARGs belonging to 17 types were shared by the layer chicken cecal, feather and cage samples on different days (Figure 2C, summarized in Supplementary Table S2). In terms of total coverage, these 123 shared ARGs contributed to 97.01 ± 0.79%, 95.13 ± 0.08%, and 91.15 ± 0.10% of the total ARGs detected in the chick cecal and feather samples on day 5; 84.80 ± 3.4%, 63.17 ± 0.29%, and 93.30 ± 0.83% on day 30; and 82.2 ± 4.3%, 67.89 ± 0.36%, and 94.34 ± 0.17% on day 57 (Supplementary Figure S2). These shared ARGs included 34 multidrug resistance genes (emrA, emrB, mdtA, TolC, etc.) and 13 tetracycline resistance genes (tetA, tetW, totO, tet44, etc.). There were more unique ARGs in the cage and feather samples than in the layer chicken cecal samples.



3.2. Microbial community composition in different microbial sources

Supplementary Figure S3 shows the alpha diversity of different groups. Both the richness index and Shannon index revealed an increase in microbial diversity in the layer chicken cecum over time, and there was a significant difference in alpha diversity among the microbial sample types from different sources (uropygial gland>cage>feather; p < 0.05).

The results showed that Proteobacteria (48.31 ± 9.18%) and Firmicutes (47.32 ± 7.62%) were the major phyla in the layer chicken cecum on day 5 (Figure 3); at the genus level, they were dominated by Escherichia (36.83 ± 8.53%) and Flavonifractor (15.44 ± 4.61%) (Supplementary Figure S4). Similarly, increased relative abundances of Bacteroidetes and Actinobacteria and a decreased relative abundance of Proteobacteria were observed in the layer chicken cecum (p < 0.05) on day 30 and day 57. Bacteroides and Alistipes were the major genera in the layer chicken cecum on days 30 and 57. Furthermore, among the different microbial sources, Proteobacteria, Firmicutes and Actinobacteria were the major phyla in the uropygial gland samples, Firmicutes were dominated by Escherichia in the feather samples, and Firmicutes were dominated by Lactobacillus in the cage samples.
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FIGURE 3
 Relative abundances of the top 10 phyla in the layer chicken cecal, feather, uropygial gland and cage samples.


Further analysis showed shared and unique bacteria among the layer chicken cecal, feather, uropygial gland and cage samples (Supplementary Figure S5). The results showed that between days 5 and 57, the number of microbial species increased from 2,998 to 4,708, indicating that the gut microbes early in life are derived from a dramatic and complex transition from a near-sterile state to extremely dense colonization. More bacterial species (2885) in the layer chicken cecum were shared with the uropygial gland than with the other groups on day 5. At days 30 and 57, the layer chicken cecum shared a high number (2,869 and 3,379 respectively) of microbial species with the cage samples, and some opportunistic pathogens, such as Escherichia and Enterococcus species, were also shared among the cage, feather, uropygial gland and layer chicken cecal samples.



3.3. Layer chicken microbial sources and estimated proportions of the early gut microbial communities

To investigate the development and potential sources of gut microbiota in layer chickens, we collected cecal contents and corresponding environmental samples, including feather, uropygial gland, water, air, feed, and cage microbiota samples at post-hatching days 0, 1, 3, 5, 7, 12, 18, 24, 30, 36, 40, 43, 50, and 57. The PCoA ordination based on Bray–Curtis dissimilarity showed that the early layer chicken cecal samples (at days 0 and 7) clustered with the layer chicken uropygial gland and feather samples, but they gradually diverged with age, eventually showing some similarities with the cage sample (Figure 4). These results suggest that the uropygial gland, feather, and cage microbiomes may play a role in the early colonization of the cecal microbiome in layer chickens, but further investigation is needed to determine the extent and mechanisms of transmission.
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FIGURE 4
 β-Diversity of the cecal, feed, maternal fecal, uropygial gland, feather, water, air and cage samples. Bray–Curtis dissimilarity was calculated using the abundance of ASVs.


SourceTracker, a Bayesian probability tool, was used to further investigate how different microbial sources contributed to the cecal community assembly of hatchlings. The results revealed that the feather and uropygial gland microbiota contributed the most to the cecal (day 0) microorganisms compared with other sources, with contributions of 47.0 and 38.6%, respectively, but their contributions gradually declined with age. Interestingly, the relative contribution of the cage microbiota to the chick cecal microbiome was more than 12% at all stages, indicating that the cage may be the primary environmental source of bacterial communities in layer chickens, especially seven days after hatching (Figure 5). To our surprise, there was little evidence that water and air microbes colonized hatchlings that had a microbiota from largely unknown sources.
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FIGURE 5
 Dynamic contributions of different microbial sources to the layer chickens cecal microbiota during the first 57 days. The proportion of the microbiota from cecal samples of layer chicken was estimated as originating from different sources (colored regions) using bacterial source tracking.


Next, we sought to identify specific genera transmitted from different microbial sources to the layer chicken cecum. These transmission events included diverse taxa from Firmicutes, Proteobacteria and Bacteroidetes, some of which (Escherichia, Enterococcus, Ruminococcaceae, and Helicobacter) include opportunistic pathogenic strains responsible for zoonotic infections (Supplementary Figure S6). Among them, Escherichia was the main bacterial taxon transmitted from feathers to the layer chicken cecum at day 0, with a contribution rate of 40.8%, and Ruminococcaceae was mainly transmitted to the cecum through the cage, with a contribution rate of 3.0%. The transmission of these opportunistic pathogenic strains indicates that the surroundings during feeding may pose underappreciated occupational hazards in industrialized farming. To confirm that the species and their resistance genes were environmentally acquired, we performed metagenomic analysis of the layer chicken cecal, feather, uropygial gland and cage microbiome samples at days 5, 30, and 57.



3.4. Transmission of microbes and ARGs from cages and feathers to the layer chicken cecum

The results of the SourceTracker algorithm analysis showed that, on day 5, 30% of the layer chicken cecal ARGs were from the cage, 57% were from feathers and 13% were from unknown sources. The contribution of cage ARGs became progressively more prominent with age, and cage ARGs contributed 63.3 and 69.5% of the layer chicken cecal ARGs between days 30 and 57 (Figure 6A). In addition, we identified 290 ARGs involved in transfer from cage and feather samples to the layer chicken cecum, including 152 β-lactam resistance genes, 45 multidrug resistance genes, 21 tetracycline resistance genes and 17 MLS resistance genes. Among them, 240 ARGs contributed more than 0.1% (summarized in Supplementary Table S3).
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FIGURE 6
 Transmission of microbes and ARGs from feathers and cages to the layer chicken cecum. (A) Predicted proportions of ARGs in the layer chicken gut microbiota at different days after hatching (5, 30, and 57) that originated from their feathers and cages. (B) Proportion of the microbiota from the cecal samples of layer chickens at different days estimated as having originated from the uropygial gland, feather and cage. (C) Microbial species transmission network from the feather and cage to the layer chicken cecum. The red square depicts the intestine (different days are displayed in the center of each node), circles indicate transmitted species, connecting arrows represent the transmission events, and the edge thickness is equivalent to the magnitude of the contribution.


Members of the bacterial community are the main hosts of ARGs. To identify the ARG hosts more accurately, metagenomics was used to analyze the species attributions of ARGs. A total of 4,364 species were the main 240 ARG hosts. However, not all ARG-carrying bacteria can be transmitted from cages and feathers to the chick cecum. The SourceTracker algorithm was again used to assess bacterial transmission from the cage and feather to the layer chicken cecal samples (Figure 6B). The results showed that on day 5, 54.4% of the layer chicken cecal microbes originated from cages, 41% from feathers, 0.32% from the uropygial gland and 4.2% from unknown sources. The contribution of cage microbes gradually increased to 77.3% on day 30, and that of the uropygial gland microbes to cecal microbes increased to 11.8%, while the contribution of feathers to the cecum decreased sharply and was negligible. At day 57, the contribution of the cage microbes to cecal microbes decreased slightly to 63%, and the contribution of the uropygial gland was 7.1%. A ternary plot was used to more intuitively reflect the contribution of various bacterial sources to each cecal microbiome of layer chickens on different days. As shown in the plot, at day 5, almost all the layer chicken samples showed a uniform distribution between feather and cage samples, and the layer chicken cecal samples gradually became increasingly closely related to the cage samples over time (Supplementary Figure S7), which was similar to the results of the ARG source analysis.

Among them, we identified 85 species that contributed more than 0.1% (Figure 6C). The cage contributed the greatest number of bacterial species (57) on day 5, and the highest contributions were Bacteroides fragilis (11.5%), Bacteroides dorei (6.5%) and Odoribacter splanchnicus (4.8%). The feathers contributed 15 kinds of bacteria, and the highest contributions were Escherichia coli (32.0%) and Klebsiella pneumoniae (3.4%). The uropygial gland contributed only one bacterium, Clostridium butyricum, and the contribution was low (0.12%). On day 30, the cage contributed the highest number of bacterial species (56), including B. fragilis (38.0%), Flavonifractor plautii (3.2%) and Clostridiales bacterium CCNA10 (3.0%), and the uropygial gland contributed 8 bacterial species, including B. fragilis (3.1%) and Bacteroides ovatus (0.6%). On day 57, the number of bacterial species contributed by the cage increased to 59, including B. fragilis (11.5%), B. dorei (6.5%), O. splanchnicus (4.8%) and Faecalibacterium prausnitzii (3.1%). The number of bacterial species contributed by the uropygial gland decreased to 4, namely, B. fragilis (1.1%), Alistipes finegoldii (0.6%), O. splanchnicus (0.5%) and B. dorei (0.4%).

Next, we analyzed the correlations between 85 bacterial species and 240 ARGs, and the results indicated that 63 bacterial species were speculated to be possible hosts of 60 ARGs (Figure 7A). For instance, K. pneumoniae was a potential host for 32 ARG subtypes, 23 of which were multidrug resistance genes (acrA, emrK, mdfA, mdtB, mexA, mtrE, etc.), 3 were tetracycline resistance genes (tetQ, tetS and tetX), 3 were MLS resistance genes (lmrB, mscrC and vgaD), 2 were vancomycin resistance genes (vanA and vanC) and 1 was a quinolone resistance gene (norB). E. coli was a potential host for 24 ARG subtypes, 16 of which were multidrug resistance genes (acrA, emrK, mdtA, etc.), 3 were MLS resistance genes (msrC, vatD, vatE and vgaD), 2 were tetracycline resistance genes (tetQ and tetX), 1 was a β-lactam resistance gene (ampC) and 1 was a vancomycin resistance gene (vatC). B. fragilis was a potential host for 13 ARG subtypes, such as acrA and emrB. In addition, Intestinimonas butyriciproducens and Clostridioides difficile were the predominant hosts and harbored most of the diverse ARG subtypes for multidrug resistance. Figures 7B-D shows the 11 bacteria with the highest number of resistance gene types. The results show that the relative abundances of K. pneumoniae and E. coli gradually decreased, but those of L. salivarius L. bacterium KGMB03038 gradually increased. These results suggest an extensive exchange of antibiotic-resistant bacteria between layer chickens and their surrounding environments.
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FIGURE 7
 Microbial (species-level) attributions of ARGs. (A) The connecting line between two points indicates an affiliation. For example, emrk is linked to Escherichia coli, indicating that Escherichia coli contained emrk. The large nodes represent bacterial phyla, and the small nodes represent ARG types. The nodes are colored in accordance with the ARG types or phyla. (B-D) Relative abundances of the top 11 ARG-carrying bacteria with the largest number of ARG type variations over time [Proteobacteria (B), Bacteroidetes (C) and Firmicutes (D)].





4. Discussion

By the metagenomic shotgun sequencing method, we identified 650 ARGs across layer chicken cecal, feather and cage samples on days 5, 30, and 57, and more diverse ARGs were observed in the cage and feather samples than in the layer chicken cecal sample. A total of 123 ARGs were shared among all samples, and these were mainly multidrug resistance genes and tetracycline resistance genes. The contribution rates of 123 shared ARGs to the gut ARGs of layer chickens were all more than 82%, suggesting that the environment is an important contributor to the gut ARGs in layer chickens (Ding et al., 2022).

The number and total abundance of gut ARGs in layer chicken decreased significantly over time, consistent with previous studies showing that the fecal ARG abundance in the brooding period was higher than that in the growing period (Zhu et al., 2021). The microbial community was the key factor that directly affected the ARGs (Wang et al., 2020). We identified ARG hosts using metagenomic assembly-based host-tracking analysis. The results showed that K. pneumoniae, E. coli, I. butyriciproducens and C. difficile were the main host bacteria of ARGs. The relative abundance of these ARG-carrying bacteria gradually decreased in the layer chickens, which may explain the decrease in total ARG abundance. It has been suggested that K. pneumoniae has a flexible ability to accumulate and switch resistance and is the host of many ARGs; together with other highly important multidrug-resistant pathogens, it has been classified as an ESKAPE organism (Navon-Venezia et al., 2017). In our study, we found that K. pneumoniae was the host of 32 ARGs. In addition, E. coli is also a common host of ARGs; antibiotic-resistant E. coli strains carrying different ARGs have been widely studied as possible environmental pollutants in recent years, and their dissemination poses potential risks to human health (Power et al., 2016; Chika et al., 2019; Zhang et al., 2020). We found that E. coli harbored 24 ARGs, including acrA, tetX, and lmrB. Zhou et al. (2020) found that the poultry microbial community shifts after antibiotic administration were mainly induced by increased abundances of the families Escherichia/Shigella and Klebsiella. However, no antibiotics were used during the whole experiment, and the relative abundance of Escherichia peaked at day 5, which was gradually replaced by the probiotic Bacteroides. This suggests that banning the use of antibiotics plays a positive role in maintaining gut microbial homeostasis and reducing ARG levels in laying hens. It is worth noting that this study found that probiotics (e.g., B. fragilis) are also potential hosts. It has been shown that polysaccharide A (PSA) of B. fragilis is the archetypical example of a commensal molecule that can modulate the host immune system in health and disease (Erturk-Hasdemir and Kasper, 2018). In this experiment, we found that B. fragilis is the host for tetQ and tetS. This suggests that probiotics may contain ARGs. Feeding with probiotics carrying a high abundance of ARGs may further increase the risk of ARG transmission in the environment.

Furthermore, through SourceTracker analysis of the sources of related ARGs and microbes, it was found that the environment contributed more to the shaping of the gut microbiota, and the contribution of adult hen to the layer chickens only 2.5% at day7.However the cecal microbiota of chicks remaining in contact with an adult hen developed quickly and within a week reached a composition similar to that observed in adult hen (Kubasova et al., 2019). This was mainly because in commercial laying hen production, the microbes attached to the surface of the eggshell are killed because of the treatment of eggs (disinfection and fumigation) before hatching (Videnska et al., 2014). Direct contact between chicks and parents after hatching does not occur as in wild birds, so the external environment plays a vital role in shaping the gut microbial community in layer chickens (Maki et al., 2020). In this study, beta and SourceTracker analysis revealed that layer chicken gut microbes were more similar to feather and uropygial gland microbes after hatching, which has not been reported previously. We speculate that this may be related to the commercial production mode, in which layer chickens that hatch at the same time are usually fed together and are afraid of the cold, easily frightened and have a clustering habit (Appleby et al., 2004). In addition, compared with free layer chickens, caged layer chickens feed daily due to their appetite, so the nutritional needs of layer chickens can be satisfied sooner, while the feeding density is large and the activity space is restricted, thus causing layer chicken psychological tension and anxiety, which can easily induce feather pecking and anal pecking (Tahamtani et al., 2022). Therefore, feather and uropygial gland microbes, including E. coli, K. pneumoniae and C. butyricum, are more likely to be transmitted to the gut for colonization. Among them, K. pneumoniae and E. coli are the main hosts of ARGs. It is worth noting that the SourceTracker results of the ARGs were similar to those of microorganisms. Early ARGs came mainly from feathers. These results suggest that the early gut ARGs in layer chickens may originate via the transmission of microbes from feathers.

However, cage microbes gradually became the major source of gut microbes in layer chickens. Although the cage was cleaned and disinfected before raising chickens, the frequent activities of layer chickens in the cage created a unique microbial environment. Studies have shown that feather pecking is negatively correlated with ground pecking and that a decrease in feather pecking is associated with an increase in ground pecking (Aneja et al., 2008). Frequent ground pecking in poultry leads to horizontal transmission of microbes, and cage microbes may originate from the feces of layer chickens, dust in the air, water and feed residues. However, the contribution of air and water bacteria to the colonization of the layer chicken cecum was very low in our study. The reason for this may be that the aerobic bacteria in the air did not adapt well to the anaerobic environment of the layer chicken gut. Volf et al. (2021) found that the feed microbiota and water microbiota were not the major sources of gut anaerobes for chickens in commercial production. Litter microbes have a great influence on poultry gut microbes in commercial production (Wang et al., 2016). Cressman et al. (2010) showed the cycling of certain bacteria between the litter and gut of poultry. The same results were found in commercially produced lambs and piglets (Bi et al., 2019; Chen et al., 2020). The results showed that the early gut was more easily colonized by cage microbes when the chicks were not in contact with their parents. The frequent exchange of ARG-carrying bacteria between the gut and cage of layer chickens may lead to the accumulation of ARGs in the gut and the environment, posing a threat to animal and environmental safety.

Although, in this study, we carried out comprehensive sampling of commercial layer chickens, the samples were used for SourceTracker analysis of gut microbes and ARGs in layer chickens, and the study still had several limitations. For example, since the experimental site was a brood farm, samples could not be collected during the laying period for a more comprehensive and systematic assessment of microbial and ARG transmission.

Despite these shortcomings, we can still provide some suggested management strategies for layer chickens. In daily management, (1) attention should be given to reducing the stimulation of layer chickens and reducing rearing density to reduce the feather pecking and anal pecking behavior of layer chickens. (2) The cages should be kept clean and hygienic, and any remaining feces and food residues in the cages should be promptly removed. This will not only reduce the transmission of ARGs and ARG host bacteria from the environment to the layer chicken gut but also help improve animal welfare.



5. Conclusion

There was a high relative abundance of ARGs in the layer chicken cecal, feather and cage samples, including ARGs that confer resistance to multiple drugs, such as tetracycline, aminoglycosides, and β-lactams. The layer chicken cecal ARGs originated mainly from cage. The variations in ARG profiles in layer chicken cecal samples and identified the bacterial species that primarily influence these changes, including K. pneumoniae, E. coli, B. fragilis, and B. dorei Our findings indicate that these bacteria are mainly transmitted from the cage to the layer chicken cecum. The cycling of ARG-carrying bacteria between these two environments may result in the accumulation of ARGs in the gut and cage environment, ultimately posing a potential risk to animal health. It is noteworthy that B. fragilis is an opportunistic pathogen that may cause diarrhea in laying hens, suggesting that the transmission of opportunistic pathogens may pose a dual risk. However, further experiments are needed to verify this risk. These results can provide reference data for the healthy breeding of layer chickens and the prevention and control of ARG pollution.
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Escherichia coli is a common inhabitant of the intestinal microbiota and is responsible for udder infection in dairy cattle and gastro-urinary tract infections in humans. We isolated E. coli strains from a dairy farm environment in Xinjiang, China, and investigated their epidemiological characteristics, phenotypic and genotypic resistance to antimicrobials, virulence-associated genes, and phylogenetic relationship. A total of 209 samples were collected from different sources (feces, slurry, water, milk, soil) and cultured on differential and selective agar media (MAC and EMB). The presumptive identification was done by the VITEK2 system and confirmed by 16S rRNA gene amplification by PCR. Antimicrobial susceptibility testing was done by micro-dilution assay, and genomic characterization was done by simple and multiplex polymerase chain reaction (PCR). A total of 338 E. coli strains were identified from 141/209 (67.5%) of the samples. Most of the E. coli strains were resistant to sulfamethoxazole/trimethoprim (62.43%), followed by cefotaxime (44.08%), ampicillin (33.73%), ciprofloxacin (31.36%), tetracycline (28.99%), and a lesser extent to florfenicol (7.99%), gentamicin (4.44%), amikacin (1.77%), and fosfomycin (1.18%). All of the strains were susceptible to meropenem, tigecycline, and colistin sulfate. Among the resistant strains, 44.4% were identified as multi-drug resistant (MDR) showing resistance to at least one antibiotic from ≥3 classes of antibiotics. Eighteen out of 20 antibiotic-resistance genes (ARGs) were detected with sul2 (67.3%), blaTEM (56.3%), gyrA (73.6%), tet(B) (70.4%), aph(3)-I (85.7%), floR (44.4%), and fosA3 (100%, 1/1) being the predominant genes among different classes of antibiotics. Among the virulence-associated genes (VAGs), ompA was the most prevalent (86.69%) followed by ibeB (85.0%), traT (84.91%), ompT (73.96%), fyuA (23.1%), iroN (23.1%), and irp2 gene (21.9%). Most of the E. coli strains were classified under phylogenetic group B1 (75.45%), followed by A (18.34%), C (2.96%), D (1.18%), E (1.18%), and F (0.30%). The present study identified MDR E. coli strains carrying widely distributed ARGs and VAGs from the dairy environment. The findings suggested that the dairy farm environment may serve as a source of mastitis-causing pathogens in animals and horizontal transfer of antibiotic resistance and virulence genes carrying bacterial strains to humans via contaminated milk and meat, surface water and agricultural crops.
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 antibiotic resistance genes (ARGs), antimicrobial resistance, multi-drug resistance, virulence associated genes, Escherichia coli
, dairy environment
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GRAPHICAL ABSTRACT
 



1. Introduction

Escherichia coli (E. coli) is an opportunistic and common inhabitant of the intestinal microbiota of animals as well as humans (He et al., 2019). Moreover, E. coli is also the most common organism responsible for causing udder infection in animals (Cheng et al., 2019) and bloodstream infections in humans (Jara et al., 2021). The use of antibiotics to prevent disease and promote the health of growing animals remains an integral part of livestock farming. It has been 50 years since antibiotic-supplemented feeds were first approved for livestock to improve overall health and increase the productivity of animals (Afema et al., 2018). However, the emergence and spread of pathogens resistance to multiple antibiotics has become a growing problem for veterinary medicine and public health (Murray et al., 2022). It was estimated that antimicrobial resistance results in $55 billion annual economic loss in USA (Dadgostar, 2019). The China also rank high in consumption of antibiotics for food producing animals especially in dairy sector.

Transmission of antimicrobial resistance (AMR) may occur by multiple ways, but contact with human and animal feces is the most common pathway (Graham et al., 2019). Dairy cattle act as a potential source of spread of antibiotic-resistant and zoonotic bacterial strains, especially Shiga-toxin producing E. coli (STEC) through the contamination of the farm environment and food products such as milk and meat, and direct contact with animals (Amézquita-López et al., 2018; Sobur et al., 2019). Animal farming, especially intensive livestock farming, plays a major role in AMR transmission between humans, animals, and the environment (Manyi-Loh et al., 2018). Due to the widespread use of antimicrobials in livestock production, livestock manure is considered a hotspot for the spread and transmission of AMR genes. Genetically diverse E. coli strains exist in animal manures, and their ability to survive in various ecological niches (Beattie et al., 2020). E. coli strains carrying blaCTX-M and blaCMY genes confer resistance to β-lactam antibiotics are frequently found in animal manure (Cookson et al., 2022). Therefore, animal manure is thought to be harming to animals via udder infections by environmental pathogens such as E. coli, humans via contaminated food products, and environment by using manure as fertilizer in soil or waste water (Sarowska et al., 2019). This increases the potential of antibiotic resistance genes (ARGs) to integrate into human intestinal microbiota by horizontal gene transfer mechanism (Lima et al., 2020). A better understanding of the transmission and spread of AMR, especially in areas with intensive livestock production, is important to understand. Therefore, the present study investigated the prevalence of E. coli in the dairy farm environment and their drug resistance characteristics. We also investigated the diversity of virulence associated genes (VAGs) responsible for pathogenicity and their distribution within phylogenetic groups.



2. Materials and methods


2.1. Sample sources and collection strategy

A total of 209 environment samples were collected from 2017–2019 from a large dairy farm (herd size = 25,000 animals) in Xinjiang province, China. The environmental samples included were fecal samples (n = 50), manure slurry from a storage tank (n = 36), raw milk (n = 90), water samples from the residential area (n = 9), soil samples (n = 12), and crop field soil (n = 12) based on random sampling technique (Figure 1). A 50 g of manure sample was collected from the animal living area and storage tank from five different sites using a five-point mixed sampling method (Sharp et al., 2012) and stored in sterile zipper bags. Raw milk samples (10 mL) were collected and transferred to sterile falcon tubes according to the guidelines of the National Mastitis Council (Hogan and Smith, 1992). The water samples (50 mL) were collected in sterile water bottles from the residential area by randomly selecting three different water outlets. The blank and crop field soil samples were collected from different sites on farm and fodder growing fields, respectively. All the collected samples were kept at 4°C and transferred to the laboratory within 24 h for further processing.
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FIGURE 1
 Distribution of samples collected from different sources.




2.2. Isolation and identification of Escherichia coli

The 25 g of fecal, manure, and soil samples were first mixed in 225 mL of phosphate-buffered saline (PBS) to solubilize them. After mixing, 1 mL of the liquid was transferred to a 10 mL LB broth tube for bacterial enrichment by incubation at 37°C with continuous mixing at 160 rpm. From each tube, 100 μL of the enrichment culture was sub-cultured on MacConkey (MAC) agar under prior mentioned incubation conditions. However, the water and milk samples were swabbed directly onto MacConkey agar and incubated at 37°C overnight. Based on colony shape and color, large, smooth, and pink colonies were picked and further streaked onto Eosin Methylene Blue (EMB) agar and incubated overnight at 37°C. The appearance of a metallic green sheen with dark center colonies on EMB agar was indicative of E. coli growth (Peng et al., 2022). Further, presumptive identification was done by the VITEK2 system (BioMerieux, France) (Alfinete et al., 2022) and confirmation by 16S rRNA gene amplification by PCR using primers reported previously (Liu et al., 2021). The PCR-amplified product was visualized on 1% agarose gel under the GelDoc XR system (Supplementary Figure S1). The confirmed isolates were preserved in 20% glycerol at −80°C for further analysis.



2.3. Detection of virulence-associated genes

The 16S rRNA-confirmed E. coli isolates were subjected to the identification of seven VAGs by the previously described method (Hu et al., 2022). The genomic DNA was extracted using a DNA extraction kit (Tiangen Biotech Beijing, Co., Ltd.) following the manufacturer’s guidelines. The virulence genes were identified by PCR amplification of target gene primers mentioned in Supplementary Table S1. The PCR reaction mixture (25 μL) consisted of 12.5 μL PreTaq Mix (Vazyme Biotech, China), 1 μL forward primer, 1 μL reverse primer, 1 μL genomic DNA, and 9.5 μL of deionized water under the following conditions; prior denaturation at 94°C for 5 min followed by 35 cycles of denaturation at 94°C for the 30s, annealing at varying temperatures mentioned in Supplementary Table S1 for 30s, initial extension at 72°C for 30s followed by a final extension at 72°C for 5 min. After amplification, the PCR product was run on 1% agarose gel electrophoresis at 180 V/200 mA followed by ethidium bromide staining for visualization, and images were taken under the GelDoc XR system (Supplementary Figure S2).



2.4. Antimicrobial susceptibility testing

The AST was done by broth micro-dilution assay following the EUCAST guidelines.1 Briefly, the preserved isolates were thawed at room temperature and re-suspended in LH broth by vigorous mixing (120 rpm) at 37°C for 12 h. The loopful enriched broth was streaked on MacConkey agar following the overnight incubation. The bacterial inoculum was prepared by adjusting the cell density at 5 × 105 CFU/mL. The 96-well round bottom plate was used for broth dilution assay and 100 μL of Mueller Hinton (MH) broth was added from the 1st well to the 12th well with a micropipette. Next, 50 μL of prepared bacterial inoculum was added from the 1st to 11th well by keeping the 12th well as a negative control. The antibiotics were selected based on medical and veterinary use which includes trimethoprim-sulfamethoxazole (SXT), ampicillin (AMP), cefotaxime (CTX), tetracycline (TET), ciprofloxacin (CIP), gentamicin (GEN), amikacin (AMK), colistin sulfate (CS), florfenicol (FFC), meropenem (MEM), and tigecycline (TIG) were added from 1st to 10th well by keeping 11th well as a positive control. The reference strain E. coli ATCC 25922 was used as a quality control. The MIC (minimum concentration that inhibits visible growth of bacteria) of fosfomycin was calculated by the agar dilution method, recommended by EUCAST. The MIC of all antibiotics was evaluated by visualizing the growth in the bottom of the plate well as tinny buttons/turbidity. The MIC values were compared with standard EUCAST MIC breakpoints (Supplementary Table S2). The strains showing resistance to at least one antibiotic from ≥3 classes were classified as MDR.



2.5. Detection of antibiotic resistance genes

Phenotypically resistant E. coli strains were subjected to the detection of 20 ARGs from eight antibiotic classes (Supplementary Table S3) according to the method described previously (Yu et al., 2020). The bacterial DNA was extracted using a DNA extraction kit (Tiangen Biotech Beijing, Co., Ltd.) and used as a template for PCR amplification of 20 ARGs (listed in Supplementary Table S3). The PCR reaction mixture (25 μL) consisted of 12.5 μL PreTaq Mix (Vazyme Biotech, China), 1 μL of forward and reverse primer each, 1 μL of bacterial DNA, and 9.5 μL of deionized water. The reactions were performed under the following conditions: denaturation at 94°C for 5 min followed by 35 cycles of denaturation at 94°C for 30s, annealing at varying temperatures (see Supplementary Table S3) for 30s, and extension at 72°C for 30s, followed by a final extension at 72°C for 5 min. After amplification, the PCR product was separated on 1% agarose gel at 180 V/200 mA and stained with ethidium bromide for visualization using the GelDoc XR system.



2.6. Phylogenetic analysis

The phylogenetic grouping of E. coli strains was carried out by 2 sets of PCR using primers listed in Supplementary Table S4. The quadruple PCR reaction mixture (25 μL) consists of Premix Taq TM 12.5 μL, 1 μL of each forward and reverse primers (chuA, yjaA, tspE4C2), 2 μL of each arpA forward and reverse primers, 1.5 μL DNA template, and 1 μL dd H2O. PCR was carried out under the following conditions; pre-denaturation at 94°C for 4 min, 30 cycles of denaturation at 94°C for 5 s followed by annealing at 59°C for 20 s, and extension at 72°C for 5 min. The PCR reaction for group E and C identification consisted of Premix Taq TM 12.5 μL, 0.6 μL of trpBA forward and reverse primers each, 1 μL of each group-specific primer (Supplementary Table S4), 1.5 μL DNA template, and 2.8 μL dd H2O. In the PCR reaction solution, trpBA primers were added as an internal control. The PCR amplifications conditions were pre-denaturation at 94°C for 4 min, 30 cycles of denaturation at 94°C for 5 s, annealing at 57°C (group E) or 59°C (group C) for 20 s, and final extension at 72°C for 5 min. After the PCR amplification, the PCR product was run on 1% agarose gel and visualized under the GelDoc XR system (Supplementary Figure S3), and the phylogenetic group was identified by comparing the results with Supplementary Table S4.



2.7. Data analysis

The prevalence was calculated using the formula described by Thrusfield (2018).
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The antimicrobial susceptibility data were analyzed by descriptive statistics using Microsoft Excel. Moreover, the data for various factors such as sampling source and sampling year affecting the prevalence, AMR and virulence rates were analyzed using the Pearson’s Chi-Squared test keeping the level of significance, α = 5% (Zhao et al., 2021; Ma et al., 2022). p-value < 0.05 was considered statistically significant and vice versa. The graphical representation of data was done by GraphPad Prism version 8.2.1 and Microsoft Excel.




3. Results


3.1. Isolation of Escherichia coli strain from different sources

A total of 209 samples were collected from different sites of dairy environment including fecal samples (n = 50), manure slurry from the storage tank (n = 36), raw milk (n = 90), water samples (n = 9), soil samples (n = 12), and crop field soil (n = 12) samples. In total, 534 suspected E. coli strains were isolated from 141/209 (67.5%) samples based on colony characteristics. Subsequently, 338 E. coli strains were confirmed by 16S rRNA gene amplification. The isolation rates were comparable over the years, with 30.8% (104/338) in 2017, 34.9% (118/338) in 2018, and 34.3% (116/338) in 2019 (Figure 2A). Overall, most of the E. coli strains were isolated from manure slurry (39.3%, 133/338), followed by fecal samples (34.9%, 118/338), raw milk (24.8%, 84/338), crop field soil (0.59%, 2/338), and least from blank soil (0.29%, 1/338). However, none of the E. coli strains was isolated from water samples (Figure 2B). In 2019, a higher number of E. coli strains were isolated from fecal and milk samples compared to other sampling years while more E. coli strains were isolated from slurry samples in 2018. Moreover, only 1 and 2 strains were isolated in 2017 from blank and crop field soil samples, respectively, while none in 2018 and 2019 (Figure 2B).
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FIGURE 2
 Isolation of Escherichia coli strains in different sampling years and sources. (A) Total number of E. coli strains isolated in different years. (B) Distribution of E. coli strains isolated from different sources in different years; **, indicate non-significant difference (p > 0.05); *, indicate not applicable; ***, indicate significant difference (p < 0.05).




3.2. Antimicrobial susceptibility of Escherichia coli strains

The AST of 338 E. coli strains showed that 284/338 (84.0%) were resistant to at least one antibiotic and 54/338 (26.0%) were susceptible strains (Figure 3A). Most of the strains were resistant to trimethoprim/ sulfamethoxazole (62.43%, 211/338), followed by cefotaxime (44.08%, 149/338), ampicillin (33.73%, 114/338), ciprofloxacin (31.36%, 106/338), tetracycline (28.99%, 98/338), and less to florfenicol (7.99, 27/338), gentamicin (4.44%, 15/338), amikacin (1.77%, 6/338), and fosfomycin (1.18%, 4/338). All of the E. coli strains were susceptible to meropenem, tigecycline, and colistin sulfate (Figure 3B). All E. coli strains from 2017–2019 were found 100% susceptible to meropenem, tigecycline, and colistin sulfate. Additionally, the AMR rate of AMP (44.23%), CIP (40.38%), TET (44.23%), and GEN (4.81%) was noted higher with a significant difference (p < 0.05) in 2017 than in other sampling years. Moreover, E. coli strains showed higher AMR to CTX (55.93%), SXT (68.64%), and AMK (3.39%) in 2018 with a significant difference (p < 0.05). However, none of the E. coli strain from 2017 and 2019 exhibited resistance to AMK and FOS (Figure 3C).
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FIGURE 3
 Antimicrobial susceptibility of the 338 E. coli strains isolated from the dairy environment. (A) The overall resistant (R) and susceptible (S) E. coli strains. (B) The overall antimicrobial susceptibility of 338 E. coli strains against individual antibiotic tested. (C) The comparison of antimicrobial susceptibility of E. coli strains from different sampling years. AMP, ampicillin; CTX, cefotaxime; MEM, meropenem; SXT, trimethoprim-sulfamethoxazole; CIP, ciprofloxacin; AMK, amikacin; GEN, gentamicin; TET, tetracycline; TIG, tigecycline; FFC, florfenicol; FOS, fosfomycin; CS, colistin sulfate; **, indicate non-significant difference (p > 0.05); *, indicate not applicable; ***, indicate significant difference (p < 0.05).




3.3. AMR characteristics of Escherichia coli strains isolated from different sources

Most of the E. coli strains from all samples were resistant to trimethoprim/sulfamethoxazole (SXT) and 100% susceptible to meropenem (MEM), tigecycline (TIG), and colistin sulfate (CS). Moreover, E. coli strains from fecal samples exhibited higher resistance to ampicillin (AMP), ciprofloxacin (CIP), and tetracycline (TET) in 2017 than other sampling years with a significant difference (Figure 4A). A similar trend was observed for E. coli strains isolated from milk and manure slurry (Figures 4B,C). Furthermore, E. coli strains isolated from blank and crop field soil in 2017 exhibited 100% resistant to CTX, CIP, TET, and SXT, while none of the strains isolated from 2018 and 2019 was resistant (Figures 4D,E). In addition, E. coli strains from crop field showed 50% resistance to AMP and florfenicol (FFC).
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FIGURE 4
 AMR rates of E. coli strains isolated from different sources. (A) fecal sample. (B) manure slurry from the storage tank. (C) raw milk. (D) blank soil. (E) crop field soil. AMP, ampicillin; CTX, cefotaxime; MEM, meropenem; CIP, ciprofloxacin; AMK, amikacin; GEN, gentamicin; TET, tetracycline; TIG, tigecycline; SXT, trimethoprim/sulfamethoxazole; FOS, fosfomycin; COL, colistin; FFC, florfenicol; **, indicate non-significant difference (p > 0.05); *, indicate not applicable; ***, indicate significant difference (p < 0.05).




3.4. Drug resistance spectrum

Among the resistant strains, 126/284 (44.4%) were identified as multi-drug resistant (MDR) and 158/284 (55.6%) were recognized as non-MDR (Figure 5A). Most of the strains showed resistance to 2 antibiotics (63.38%), followed by 3 (50.0%), 1 (36.61%), 4 (30.28%), 5 and 6 (7.75% each), 7 (3.17%), and 8 (0.70%) antibiotics (Figure 5B). Moreover, diverse AMR patterns were recognized such as CTX + AMP, CTX + AMP + SXT, CTX + AMP + SXT + CIP, CTX + TET + SXT + CIP, CTX + AMP + SXT + CIP + GEN, CTX +AMP + SXT + CIP + TET + FFC, AMP + CTX + GEN + TET + SXT + FFC + FOS, and AMP + CTX + CIP + GEN + TET + SXT + FFC. Only 1 strain showed resistance to 8 antibiotics, AMP + CTX + CIP + AMK + GEN + TET + SXT + FFC (Table 1).
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FIGURE 5
 Drug-resistance spectrum of E. coli strains isolated from the dairy environment. (A) proportions of MDR and non-MDR strains. (B) Percentage resistance spectrum of 284 E. coli strains to 1 ~ 8 antibiotics.




TABLE 1 The phenotypic drug resistance spectrum of Escherichia coli strains.
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3.5. Detection of ARGs and correlation with phenotypic resistance

The genotypic analysis was done by targeting 20 ARGs among 8 classes of antibiotics (mentioned in Table 1). Eighteen out of 20 ARGs were identified, and the prevalent genotypes included sul2 (67.3%, sulfonamides), blaTEM (56.3%, beta-lactams), gyrA (73.6%, quinolones), tet(B) (70.4%, tetracycline’s), aph(3)-I (85.7%, aminoglycosides), floR (44.4%, amphenicol), and fosA3 (100%, phosphonic). The percentage distribution of other ARGs identified was as follows: sulfonamides (sul1, 27.9%; sul3, 18.1%), β-lactams (blaOXA, 25.8%; blaCTX-M, 22.4%), aminoglycosides (aac(3)-IV, 14.3%; aac(3)-II, 33.3%; aadA, 0.00%; rmtB, 4.76%), quinolones (qnrB, 0.94%; qnrS, 9.43%), polymyxin (pmrB, 0.35%) and tetracycline’s (tet(A), 11.2%; tet(D), 0.00%) (Figure 6).
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FIGURE 6
 Percentage distribution of ARGs among E. coli strains.


The correlation between phenotypic resistance and genotypic detection of ARGs was noted variable. For example, no strains showed resistance to colistin sulfate phenotypically but one strain was carrying the ARG upon genotypic analysis. Moreover, the number of strains carrying ARGs was noted higher as compared to phenotypic resistance among sulfonamides, beta-lactams, and aminoglycosides-resistant strains while the inverse was noted among quinolone, tetracycline, and amphenicol-resistant strains. However, the phenotypic and genotypic expression was observed 100% correlated for fosfomycin-resistant strains (Table 2).



TABLE 2 Percentage of resistant strains carrying ARGs and correlation with phenotypic resistance.
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3.6. Virulome gene analysis

Among the VAGs, ompA was most prevalent (86.69%), followed by ibeB (85.0%), traT (84.91%), ompT (73.96%), fyuA (23.1%), iroN (23.1%), and irp2 (21.9%) (Figure 7A). All of the E. coli strains carrying the fyaA gene were also carrying the iroN gene. Moreover, 93.59% of E. coli strains carrying irp2 were also harboring the fyuA gene. VAGs such as ompT, traT, iroN, ibeB, and ompA were detected in E. coli strains from all sources while irp2 and fyuA genes were not observed from manure slurry and fecal samples, respectively. However, both irp2 and fyuA genes (36.9%, 31/84) were identified in strains of milk origin. Collectively, a higher percentage of VAGs was identified in strains of milk origin as compared to feces and slurry (Figure 7B).
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FIGURE 7
 Escherichia coli strains carrying virulence-associated genes (VAGs). (A) Overall percentage and number of positive E. coli strains to carry VAGs. (B) Percentage distribution of VAGs among the E. coli strains isolated from different sources.




3.7. Distribution of VAGs among phylogenetic groups

The phylogenetic analysis of 338 E. coli strains showed most of the strains belong to the B1 group (75.45%, 255/338), followed by A (18.34%, 62/338), C (2.96%, 10/338), D (1.18%, 4/338), E (1.18%, 4/338), and F (0.30%, 1/338). However, the phylogenetic group for 2 of the strains was not identified. The most prevalent VAGs among the various phylogenetic groups were as follows; B1 (ompA, 87.4%), A (ibeB and ompA, 88.7%), C (traT and ompA, 90.0%), D (traT, ibeB, and ompA, 100%), E (traT, 100%), and F (traT, 100%). Moreover, the percentage distribution of other VAGs among the phylogenetic groups is presented in Table 3.



TABLE 3 Distribution of VAGs in different phylogeny groups.
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4. Discussion

Antimicrobial resistance particularly in the Enterobacteriaceae family possesses a major threat to global public health. The present study isolated E. coli from the dairy environment, which serves as a reservoir of bacterial pathogens and ARGs and a source of spread of ARGs between the bacterial species via horizontal gene transfer and to humans via fecal contamination of drinking water and milk. The isolation rates of E. coli in this study were found similar to the findings of Sobur et al. (2019) who reported 75% prevalence of E. coli from dairy cattle and farm environment. Other studies conducted by Li et al. (2022) reported 84.6% E. coli isolation from fecal samples of cattle, chicken, and pigs while 34.4% was noted by Liu et al. (2021) from raw milk samples and 81.1% from raw cheese (Imre et al., 2022). Beattie et al. (2020) also reported a similar isolation rate of E. coli from dairy manure in the USA. It is also reported that the presence of E. coli in the dairy environment may be the cause of clinical mastitis in dairy cows (Su et al., 2016).

The antimicrobial susceptibility results showed higher resistance to SXT, followed by CTX, AMP, CIP, TET, and the least resistance to FFC, GEN, AMK, and FOS. These results are consistent with the findings of Peng et al. (2022) who isolated E. coli strains from pigs that were highly resistant to SXT (80.38%), AMP (92.86%), and TET (96.26%). A similar study conducted by Beattie et al. (2020) reported that E. coli strains from manure isolates showed higher resistance to AMP and CTX. However, a lower resistance rate to AMK and GEN was also noted by Lu et al. (2022) and Liu et al. (2021) respectively. We noted the E. coli strains were susceptible to the “last resort” antimicrobials such as MEM, TIG, and CS, which is consistent with the findings of a study conducted by Hu et al. (2019) in the human setting. Moreover, other studies conducted by Wang et al. (2021), Zou et al. (2021), and Ma et al. (2022) in animal settings also reported 100% susceptibility of MEM and TIG against E. coli strains. We noted no resistance to CS, which is consistent with a previous report that colistin resistance is decreasing in animal and human settings because of the CS ban in China (Wang et al., 2020). The percentage of MDR E. coli was noted at 44.4% in the current study, which is comparable with what was previously reported (54.4%) by Su et al. (2016) and lower than what was reported by Yu et al. (2020) in dairy milk. Another study conducted by Salinas et al. (2019) reported higher resistance to SXT, CIP, AMP, CTX, and TET by E. coli isolated from child and domestic animal origin, which is also consistent with current findings.

We identified 18 ARGs out of 20 belonging to different classes of antibiotics. The most prevalent ARGs were sul2 (67.3%, sulfonamides), blaTEM (56.3%, beta-lactam), gyrA (73.6%, quinolones), tet(B) (70.4%, tetracycline’s), aph(3)-I (85.7%, aminoglycosides), floR (44.4%, amphenicol), and fosA3 (100%, fosfomycin). Previous studies reported AMR in humans is linked to food animals raised for milk and meat purposes because of environmental contamination and drug residues (Bacanlı and Başaran, 2019; Pormohammad et al., 2019; Ma et al., 2021). The use of antimicrobial drugs in food animals also enhances the percentage of MDR bacteria and ARGs in human microbiota (Ma et al., 2022). Moreover, E. coli is also known to serve as donor bacteria for horizontal gene transfer within and between species (Oladeinde et al., 2019). Lima et al. (2020) highlighted the importance of animal manure and manure-substituted agriculture lands as a major source of antibiotic residues, ARGs, and AMR bacteria in the environment posing a potential threat to public health via horizontal gene transfer mechanisms with the help of mobile genetic elements such as plasmids, transposons, and integrons. Qian et al. (2018) detected 109 ARGs from the fresh manure of chicken, cattle, and pigs responsible for AMR to a class of antibiotics widely used in human and animal settings.

We investigated multiple VAGs in the isolated E. coli and most of the investigated VAGs (ompA, ibeB, traT, ompT, fyuA, iroN, irp2) belong to ExPEC, which may cause urinary tract infections in humans. VAGs are responsible for the production of virulence factors which play an important role in the pathogenicity of bacteria through multiple mechanisms such as adhesion, invasion, toxin production, and immune evasion (Kudva et al., 2020). Virulence genes investigated in the present study have various functions. ompA encodes for outer membrane protein A, ibeB is an invasion protein gene, traT encodes for complement resistance protein, ompT encodes for outer membrane protease protein, fyuA encodes for yersiniabactin receptor, iroN encodes for aerobactin receptor, and irp2 gene encodes for iron-responsive element binding protein 2. Zhang et al. (2021) investigated similar VAGs in E. coli strains isolated from healthy waterfowls in Hainan, China. A study carried out by Raimondi et al. (2019) also identified similar VAGs in E. coli isolated from the feces of healthy individuals in Italy. Another study conducted by Khalifeh and Obaidat (2022) identified the iroN gene in E. coli strains from milk and fecal origin similar to the present study. In the current study, most of the E. coli strains were classified under phylogenetic group B1, which is consistent with the findings of Raimondi et al. (2019). These results suggest that the occurrence of ARGs and VAGs may vary by antimicrobial use and other unknown factors. This study also suggests regular monitoring of antimicrobial usage on dairy farms and proper manure treatment before disposal be ensured.



5. Conclusion

The present study identified multi-drug resistant E. coli strains carrying various ARGs and VAGs in the dairy environment, which may pose a potential threat to human, animal, and environmental health. Moreover, all of the E. coli strains were susceptible to meropenem, tigecycline, and colistin sulfate, which may be considered as critical antibiotics for therapeutic purposes in human and animal settings. Given the widespread distribution of AMR in the dairy environment, it is a potential reservoir of transferring ARGs genes to humans via various direct and indirect gene transfer mechanisms. This prudent the use of antibiotics on dairy farms, proper manure treatment, and enhancement of sanitation, especially in milk processing and transportation, are necessary to reduce the risk to food safety, public health, and environmental health.
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Oxidative stress, inflammatory response, and gut-liver axis dysbiosis have been suggested as the primarily involved in the pathogenesis of alcoholic liver injury. Previous research established that yeast extract (YE) has antioxidant, immune-boosting or microbiota-regulating properties. However, there is currently lack of information regarding the efficacy of YE on alcoholic liver injury. This study seeks to obtain data that will help to address this research gap using a Wistar male rat experimental model. Histologic and biochemical analysis results showed that the groups treated with both low-dose yeast extract (YEL) and high-dose yeast extract (YEH) had lower degrees of alcohol-induced liver injury. The abundance of Peptococcus and Ruminococcus reduced in the low-dose yeast extract (YEL) group, while that of Peptococcus, Romboutsia, Parasutterella, and Faecalibaculum reduced in the high-dose (YEH) group. Furthermore, Spearman analysis showed that the gut microbes were significantly associated with several liver-related indicators. For the analysis of differential metabolites and enriched pathways in the YEL group, the abundance of lysophosphatidylcholine (16:0/0:0) significantly increased, and then the levels of histamine, adenosine and 5′ -adenine nucleotide were remarkedly elevated in the YEH group. These findings suggest that both high and low doses of YE can have different protective effects on liver injury in alcoholic liver disease (ALD) rats, in addition to improving gut microbiota disorder. Besides, high-dose YE has been found to be more effective than low-dose YE in metabolic regulation, as well as in dealing with oxidative stress and inflammatory responses.
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1. Introduction

Alcoholic liver disease (ALD) is a widespread worldwide condition and is one of the main causes of chronic liver damage (Singal et al., 2018). According to a systematic analysis of the Global Burden of Disease Study that was published by the World Health Organization (WHO), alcohol abuse was responsible for an estimated three million deaths in 2016, thereby accounting for nearly 6% of total global deaths (GBD 2016 Alcohol Collaborators, 2018). Alcoholic fatty liver (AFL), alcoholic hepatitis (AH), alcoholic cirrhosis (AHF), and alcoholic hepatocellular carcinoma (AHC) are the main pathological changes of alcoholic liver disease, and they can exist alone, partially overlap, or even coexist (Magdaleno et al., 2017). Alcohol abuse can cause damage to multiple organs, including the intestines, brain, and the liver, which is mainly involved in alcohol metabolism. In China, alcohol has become the second leading cause of liver injury, after hepatitis virus (Crabb et al., 2020). Mild liver damage caused by alcohol can be alleviated by long-term alcohol abstinence. However, when the situation develops to a severe stage in the later stage, the damage to the liver is extreme, irreversible, and even life-threatening (Joshi et al., 2016). Therefore, early intervention against and protection from ALD is of paramount importance.

Ethanol is mainly metabolized in the liver to form acetaldehyde, a reaction that is catalyzed by alcohol dehydrogenase (Setshedi et al., 2010). The acetaldehyde is then converted to acetic acid by acetaldehyde dehydrogenase (Kong et al., 2019). When excessive alcohol is consumed, acetaldehyde accumulates in the liver, and this, in turn, activates cytochrome P450 2E1 (CYP2E1) (Hyun et al., 2021). The activated CYP2E1 promotes acetaldehyde production through the formation of reactive oxygen species (ROS) (Cederbaum et al., 2009; Leung and Nieto, 2013). Meanwhile, the cumulative acetaldehyde reacts with antioxidants such as glutathione, reduces the level of antioxidants in the body, leads to an imbalance between oxidation and antioxidants in the body, and aggravates liver damage (Peixoto et al., 2004). This imbalance will increase neutrophil inflammation and protease secretion to generate ROS, eventually leading to oxidative stress (Lee et al., 2017; Albillos et al., 2020). The ROS also impair intestinal integrity (Seok et al., 2013). Additionally, research has found that alcohol consumption can increase the expression of miR-212, which down-regulates the expression of Zonula occludens 1 (ZO-1), ultimately leading to increased intestinal permeability (Tang et al., 2008). Therefore, lipopolysaccharide (LPS) produced by intestinal Gram-negative bacteria can be transported into the liver through the portal vein, thereby triggering the secretion of Kupffer cells such as interleukin-6 (IL-6), leukocytes-1β (IL-1β) (Aldred and Nagy, 1999; Wang et al., 2012), and tumor necrosis factor-α (TNF-α) (Wei et al., 2022). All these factors contribute to the development of ALD.

Yeast extract (YE) is a valuable source of amino acids, proteins, vitamin B-complex, peptides, and free nucleotides (Chae et al., 2001; Takalloo et al., 2020). It has been widely used as a nutritional resource, food flavoring, additive, and vitamin supplement (Eom et al., 2021). By adding YE to the feed, it can significantly improve the growth performance and antioxidant capacity of juvenile pacific white shrimp, along with the relative abundance of beneficial bacteria in the gut microbiota, while reducing the relative numbers of the conditional pathogenic bacteria (Zheng et al., 2021). A daily supplement of 100 mg/kg YE has been shown to reduce blood triglycerides and total cholesterol in rats (Waszkiewicz-Robak, 2013; Tao et al., 2023). YE also exerted anti-inflammatory properties by down-regulating the gene expression of inflammatory factors such as TNF-α and IL-1β in the body (Yuan et al., 2017; Jin et al., 2018). In terms of disease prevention, research has shown that yeast cell wall extract has a certain alleviating effect on necrotic enteritis in broiler chickens (M'Sadeq et al., 2015). Therefore, the YE has great potential for disease prevention and control across various fields. However, to date, there is a lack of research reports on the application of YE in the study of alcoholic liver injury. In this study, a rat model was established to explore the protective effects of different doses of the YE on alcoholic liver injury. By combining 16S rRNA sequencing and TM widely targeted metabolomics analysis, the “gut-liver” axis mechanism of the YE’s protective action on the alcoholic liver injury was investigated.



2. Materials and methods


2.1. Materials

YE (MF-4, purity≥98%, nutrient composition are shown in Supplementary Table S1)was supplied from Mufan Biotechnology Co., Ltd. (Henan, China). Silymarin (H20181067, 140 mg/capsule) was obtained from Plantextrakt GmbH & Co. KG. The liquid diet was purchased from Trophic Animal Feed High-Tech Co., Ltd. (Nantong, China). Detection kits for alanine aminotransferase (ALT), aspartate aminotransferase (AST), total antioxidant capacity (T-AOC), glutathione peroxidase (GPX), malondialdehyde (MDA), superoxide dismutase (SOD), lactic dehydrogenase (LDH), and superoxide Anion (O2-) were purchased from Beijing Boxbio Science & Technology Co., Ltd. Detection kits for alkaline phosphatase (AKP), triglyceride (TG), total cholesterol (T-CHO), lipid peroxidation (LPO), alcohol dehydrogenase (ADH), Hydroxyl Radical Scavenging Ability (OH Scavenging Ability), total nitric oxide synthase (TNOS), and inducible nitric oxide synthase (iNOS) were purchased from Jiancheng Corp (Nanjing, China). ELISA kits for leukocytes-1β (IL-1β), tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ) were supplied from Elabscience Biotechnology Co., Ltd. Fish oil was purchased from Shanghai Yien Chemical Technology Co., Ltd. (Shanghai, China). Leukocytes-1β (IL-1β), tumor necrosis factor-α (TNF-α) and interferon-γ (INF-γ) were supplied from Elabscience Biotechnology Co., Ltd. Fish oil was purchased from Shanghai Yien Chemical Technology Co., Ltd. (Shanghai, China).



2.2. Animals and experimental design

Four-week-old male Wistar rats were purchased from Lanzhou University Animal Experimental Center (Lanzhou, China). The rats were housed in a clean environment with a 12-h light–dark cycle at 20–22°C and 45 ± 5% humidity. All the rats were free to access food and water ad libitum. All experiments involving animals were approved by the Ethics Committee of School of Public Health, Lanzhou University (IRB22030601). After one-week of acclimatization, the rats were randomly divided into the following five groups (11 rats per group): liquid diet control group (LC), alcohol liquid diet group (AL), low-dosage yeast extract intervention group (YEL, 60 mg/kg/day), high-dosage yeast extract intervention group (YEH, 120 mg/kg/day), and silymarin intervention group (PC, 120 mg/kg/day). AL, PC, YEL, and YEH groups were all given liquid diet with an alcohol concentration of 8% (v/v). Both types of liquid diet (with and without alcohol) had calorie densities of 1 kcaL/mL. The source of fatty acids in the diet was fish oil. During the first 3 days of adaptive feeding, all groups were given a control liquid diet. From the fourth to the nineth day, all groups (except for the LC group) entered the adaptive feeding stage of an alcohol liquid diet. The ratio of liquid control feed to liquid alcohol feed was 2:1, 1:1, and 1:2, and each ratio was fed for 2 days. After the adaptive feeding period, the rats were provided with a complete liquid alcohol diet. At the start of the alcohol feeding procedure, YE and silymarin were well-dissolved in ultrapure water prior to daily administration to the animals via gavage, over a period of 6 weeks. Food intake and body weight were monitored daily and weekly, respectively. At the end of the experiments, the rats were gavaged with 40% alcohol (15 mL/kg). After 12 h, the rats were anesthetized with an intraperitoneal injection of 3% sodium pentobarbital and then sacrificed. The liver of each rat was weighed to calculate the liver organ coefficient (wet liver weight, mg/ body weight, g). The livers were removed and rinsed with cold PBS. Portions of the liver were used for histological evaluation, and others were stored at −80°C for further analysis. Fecal samples were immediately frozen in liquid nitrogen and stored at −80°C until analysis was done.



2.3. Hepatic histological analysis

Samples of the right liver lobe were fixed in 4% paraformaldehyde for 24 h, embedded in paraffin wax, and then cut into 5 μm-thick sections. The sections were blurred by Hematoxylin–eosin (H&E) staining and Masson’s trichrome. The pathological changes on the liver were observed using the BX53 system microscope with an attached camera (Olympus, Japan) at 400× magnification.



2.4. Analysis of liver function index

The liver samples (about 100–150 mg) were mixed with 0.9% normal saline at a ratio of 1:9 to make homogenates. Centrifugation was then done at 3000 rpm for 15 min, at 4°C. The supernatant was collected for subsequent analyzes. The levels of ALT, AST, AKP, ADH, and LDH were assessed according to the instructions on the commercial assay kits.



2.5. Detection of oxidative stress indicators

To evaluate the oxidative stress indicators, homogenates were prepared using liver samples weighing 200 mg combined with normal saline, at a ratio of 1:9. The levels of MDA, T-AOC, LPO, SOD activity, and GPX activity were detected, following the manufacturer’s instructions.



2.6. Inflammatory parameters analysis

The liver tissues (about 50–100 mg) were mixed with normal saline at a ratio of 1:9 to prepare homogenates. Supernatants were collected after centrifugation. The levels of TNOS and iNOS in the liver tissues were analyzed by assay kits (Nanjing, China), according to the manufacturers’ instructions. The levels of IL-1β, TNF-α, and INF-γ in liver tissue were measured using ELISA kits (Elabscience Biotechnology, China) followed by the method described in the instructions.



2.7. 16S rRNA gene sequencing analysis

The analysis was conducted at Metware Biotechnology Co., Ltd. (Wuhan, China). Genomic DNA from the fecal samples (six samples were randomly selected from each group) was extracted by the Magnetic Soil and Stool DNA kit (TianGen Biotech Co., Ltd., Beijing, China). The bacterial sample was used to amplify the V4 hypervariable region of the 16S rRNA gene with primers 515F(GTGCCAGCMGCCGCGGTAA) and 806R(GGACTACHVGGGTWTCTAAT) (Itoh et al., 2014). Purified PCR products were quantified, using enzyme-labeled quantification, and the sequencing library preparation was performed based on the manufacturer’s instructions (Illumina, San Diego, CA, United States). Quantification was performed by Qubit and Q-PCR;sequencing was done using NovaSeq6000 (Illumina, San Diego, CA, United States). For these data, the reads of each sample were assembled using FLASH (v1.2.11, http://ccb.jhu.edu/software/FLASH/) after truncating the barcode and primer sequences, resulting in the Raw Tags. The Raw Tags were then truncated at the first low-quality base site, with consecutive low-quality values (default quality threshold: ≤ 19) and a base number reaching the set length (default length value is 3). Subsequently, the truncated Tags were filtered to remove those with a continuous high-quality length below 75% of the Tags length. The effective Tags were sequenced using Novaseq 6,000 (Illumina, San Diego, CA, United States), and the Uparse algorithm (v7.0.1001, http://www.drive5.com/uparse/) was used to cluster all sequences into OTUs (Operational Taxonomic Units). For the species annotation analysis of OTUs sequences, the Mothur method and the SSUrRNA database of SILVA138.11 were used, setting the threshold between 0.8 ~ 1.

Furthermore, the Qiime software (version 1.9.1) was used to the “observed number,” as well as the Shannon and Simpson indices. R software (version 4.1.2) was employed in creating the Rank abundance curve. The nonparametric test of the difference between groups in Alpha diversity index was done using the Kruskal-Wallis test. LEfSe analysis was performed using the LEfSe software (version 1.0, https://huttenhower.sph.harvard.edu/lefse/), and the default LDA score filtering value was set to 4. The Mothur software (University of Michigan, Michigan, United States) was used in Metastats analysis at each classification level to obtain the p value (p < 0.05). The Benjamini and Hochberg False Discovery Rate method was then used to correct the p value to obtain the q value.



2.8. Metabolomics analysis

In this research, the metabolites were analyzed at Metware Biotechnology Co., Ltd. (Wuhan, China). Fecal samples (six samples were randomly selected from each group) stored at −80°C refrigerator were thawed. A 400 μL solution (methanol: water = 7:3, v/v) containing an internal standard was added into each sample (20 mg) and vortexed for 3 min. All samples were sonicated in an ice bath for 10 min and vortexed for 1 min before being placed in −20°C for 30 min. These samples were then centrifuged at 12000 rpm for 10 min at 4°C. Each supernatant was recentrifuged at 12000 rpm for 3 min at 4°C. 200 μL aliquots of each supernatant were transferred for ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS, Sciex, United States) analysis, which included both non-targeted and broad-spectrum targeted detection. The non-targeted metabolites were separated on a pre-column (ACQUITY HSS T3 C18,1.8 μm, 2.1 mm*100 mm), with the column temperature being set at 40°C. mobile phase A consisted of water with 0.1% formic acid, and mobile phase B was comprised of acetonitrile with 0.1% formic acid. The gradient program was as follows: 95:5 v/v at 0 min; 10:90 v/v at 10.0 and 11.0 min; 95:5 v/v at 11.1 min; 95:5 v/v at 14.0 min. The flow rate was 0.4 mL/min, with an injection volume of 5 μL. The Quadrupole-Time of Flight mass spectrometry analysis was performed with an electrospray ionization (ESI) temperature of 500°C, voltage of 5,500 V (positive) and − 4,500 V (negative), ion source gas I (GS I) at 50 psi, gas II (GS II) at 50 psi, and Curtain gas (CUR) at 25 psi. The delustering potential collision energy was set at 80 psi, and the collision energy spread was at 15 psi. For Broad-spectrum targeted detection, a waters ACQUITY UPLC HSS T3 C18 chromatographic column (1.8 μm, 2.1 mm*100 mm) was employed, with an injection volume of 2 μL. Tandem mass spectrometry (QTRAP®) analysis was carried out using the same ESI temperature, voltage, ion source gas, and curtain gas condition as those in the Quadrupole-Time of Flight mass spectrometry.

All sample extracts were mixed in equal amounts to form a QC sample. Based on the database MWDB (including secondary spectrum, retention time RT), DB-all public database (including HMDB, KEGG and other databases), AI prediction library, and MetDNA, metabolites identification and extraction of multiple ion pairs, as well as retention time RT information were performed The MRM accurate quantification of the metabolites in the new library was carried out using the Q-Trap instrument platform.

The OPLS-DA function of the MetaboAnalyst R package in the R software was used for analysis. Based on the OPLS-DA results, the Variable Importance in Projection (VIP) of the OPLS-DA model was determined from the obtained multivariate analysis, and the differential metabolites were further screened by combining with the fold change. The selected data with different amounts of the metabolites were treated with UV (unit variance scaling). The R software Complex Heatmap package was used to draw the cluster heat map. Pearson correlation analysis was used to analyze the association between different metabolites that were identified according to the screening criteria.

Finally, the KEGG (Kanehisa and Goto, 2000)2 and HMDB3 database were used to annotate metabolites and identify the pathways of differential metabolite enrichment.



2.9. Statistical analysis

All statistical analysis was carried out using the SPSS statistical software (version 22.0, IBM, White Plains, New York, United States), and the measurement data were expressed as mean ± standard error of mean deviation. One-way ANOVA was used for comparison among multiple groups and the significance of difference between the two groups was determined by LSD test. When the variances are not equal, Dunnett’s T3 was used to test the differences between the two groups. Values of p < 0.05 were considered significant. All images were generated by OriginPro (2019, OriginLab, Massachusetts, United States) and GraphPad Prism (version 9.5.1, Graphpad Software, California, United States).




3. Result


3.1. Effect of YE on alcohol-induced hepatoxicity

To explore the effects of YE on ALD, H&E and Masson staining were performed to check the histomorphological changes that were induced by alcohol. The hepatocytes arranged neatly without obvious pathological changes in the LC group, but there was irregular arrangement of hepatocytes, diffuse steatosis, and a large number of inflammatory cell infiltration in AL group (Figure 1B). According to Masson staining, there were more parts that were dyed blue in the AL group, suggesting a more serious case of fibrosis (Figure 1A). Compared with the AL group, the pathological changes observed in the liver were alleviated in the PC, YEL, and YEH groups, with YEH exhibiting the most significant improvement (Figures 1A,B). In comparison to the AL group, a remarkable decrease in the liver organ coefficient was observed in the YEH group (p < 0.05, Figure 1C), whereas no significant reduction was noted in the PC and YEL groups. Biochemical analysis demonstrated that the levels of hepatic ALT, AST, and AKP, which are diagnostic markers of liver injury, remarkably increased in the AL group compared to the LC group. However, the administration of YE and Silymarin effectively inhibited the increase (Figures 1D–F). The administration of YE also reduced the accumulation of TC and TG (p < 0.01, Figures 1G,H). Additionally, high doses of YE significantly decreased LDH levels (p < 0.01, Figure 1J). Furthermore, YE administration effectively prevented the decrease in ADH levels (p < 0.001, Figure 1I).
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FIGURE 1
 Effect of yeast extract on alcohol-induced liver injury. (A) Histopathological changes of liver sections stained with Masson (400× magnification), black arrow: liver tissue fibrosis. (B) Histopathological changes of liver sections stained with H&E (400× magnification), yellow arrow: inflammatory exudation; blue arrow, steatosis. (C) The levels of liver organ coefficient. (D) The hepatic AST levels. (E) The hepatic ALT levels. (F) The hepatic AKP levels. (G) The hepatic TC levels. (H) The hepatic TG levels. (I) The hepatic ADH contents. (J) The hepatic LDH contents. All data were expressed as mean ± SD (n = 8–10), *p < 0.05, **p < 0.01, ***p < 0.001.




3.2. YE inhibited alcohol-induced oxidative stress

The levels of T-AOC, GPX, SOD and·OH scavenging ability remarkably decreased in the AL group than in the LC group (Figures 2A,B,D,F). On the other hand, the levels of MDA and O2− exhibited opposing trends (p < 0.05, Figures 2C,E). It is noteworthy that the groups with the YE intervention exhibited strong antioxidant activity by resisting alcohol-induced liver damage, which showed good protective effects (p < 0.05, Figures 2A–F). However, there were no significant changes in the levels of T-AOC and O2− after treatment with Silymarin (p > 0.05, Figures 2D,E). The highest level of ·OH scavenging ability was observed in the YEL group (p < 0.05, Figure 2F).
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FIGURE 2
 Effect of yeast extract on oxidative stress in alcohol-induced liver injury in rats. (A) The levels of GPX. (B) The levels of SOD. (C) The levels of MDA. (D) The levels of T-AOC. (E) The levels of O2−. (F)·OH scavenging ability. Data were expressed as mean ± SD (n = 6–9), *p < 0.05, **p < 0.01, ***p < 0.001.




3.3. YE reversed alcohol-induced inflammatory response

Some studies have reported that excessive or chronic alcohol use can trigger an inflammatory response in the liver (Xiao et al., 2020; Hyun et al., 2021). As shown in Figure 3, alcohol ingestion significantly increased the levels of IL-1β, TNF-α, IFN-γ, iNOS, and TNOS in the liver of rats (p < 0.05, Figures 3A–E). Compared with the AL group, administration with high-dosage YE inhibited alcohol-induced inflammatory response, and this was consistent with LC group (p < 0.05, Figures 3A–E). However, the levels of IL-1β, TNF-α, and IFN-γ in the YEL group and those of IFN-γ in the Silymarin group did not exhibit obvious changes (p > 0.05, Figures 3A–C). These findings suggested that YE intervention can reduce the levels of inflammatory factors and alleviate alcohol-induced liver damage. High dosage of YE appear to provide superior protective effects.
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FIGURE 3
 Effect of yeast extract on inflammatory response in alcohol-induced liver injury in rats. (A) The levels of IL-1β. (B) The levels of TNF-α. (C) The levels of IFN-γ. (D) The levels of TNOS. (E) The levels of iNOS. Data were expressed as mean ± SD (n = 8–10), *p < 0.05, **p < 0.01, ***p < 0.001.




3.4. Effects of YE intervention on gut microbiota

ALD is closely associated with the gut microbiota. Long-term consumption of alcohol can substantially alter the structure of the gut microbiota in ALD patients (Bishehsari et al., 2017; Wang et al., 2021).To characterize alterations in gut microbiota, fecal samples were subjected to 16S rRNA gene sequencing. The analysis revealed specific and shared OTUs among the five groups of mice (Supplementary Figure S1A). In comparison to the LC group, all experimental groups exhibited an increase in both the Shannon and Simpson diversity index (Supplementary Figures S1B,C). The Weighted Unifrac analysis demonstrated that the β-diversity of gut microbiota in the PC, YEL, and YEH groups was significantly distinct from that of the AL group, but closer to that of the LC group (Supplementary Figures S1D,E). These results suggest that YE intervention could reverse alcohol-induced dysbiosis of gut microbiota in rats.

The structure of the gut microbiome was investigated at both phylum and genus levels (Figures 4A,B). Bacteroidetes and Firmicute were the most abundant at the phylum level in all groups. However, when compared with the AL group, the ratio of Firmicutes to Bacteroidetes (F/B) was reduced in the other groups, though the change was not significant (Figure 4C). On the other hand, the population of Proteobacteria was significantly elevated in both the YEH and PC groups (p < 0.05), compared to the AL group. At the genus level, intervention with YEL and YEH resulted in a decrease in the relative abundance of Peptococcus and Tyzzerella, while an increase in the relative abundance of Gemella (Figures 4D–F), compared to the AL group was observed. In the YEL group, the relative abundance of Ruminococcus and Faecalibacterium was significantly decreased (Figures 4G,H). It was also noted that the administration of YEH resulted in a significantly reduced relative abundance of Faecalibaculum, Helicobacter, Parasutterella and Romboutsia compared to the AL group, while the Corynebacterium remarkably increased (Figures 4I–M).
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FIGURE 4
 Yeast extract intervention altered the gut microbiota structure of alcohol-induced liver injury in rats. (A) Bacterial taxonomic composition at phylum level. (B) Bacterial taxonomic composition at genus level. (C) The ratio of Firmicutes to Bacteroidetes (F/B). (D) The relative abundance of Peptococcus. (E) The relative abundance of Tyzzerella. (F) The relative abundance of Gemella. (G) The relative abundance of Ruminococcus. (H) The relative abundance of Faecalibacterium. (I) The relative abundance of Romboutsia. (J) The relative abundance of Faecalibaculum. (K) The relative abundance of Corynebacterium. (L) The relative abundance of Parasutterella. (M) The relative abundance of Helicobacter, n = 6, *p < 0.05, **p < 0.01, ***p < 0.001.


Linear discriminant analysis (LDA) and LEfSe analysis were used to identify biomarkers with significant differences. Based on LDA scores, the relative abundance of Ruminococcus was significantly higher in the AL group compared to the YEL group (Figure 5A). In addition, Romboutsia, Faecalibaculum, and Parasutterella were found to be more abundant in the AL group than in the YEH group (Figure 5B). The alterations in gut microbiota have a certain degree of correlation with some physicochemical indicators that are related to liver injury. As shown in Figure 5C, the genera such as Tyzzerella and Peptococcus decreased after YE intervention, and these positively correlated with ALT, AST, and MDA. In addition, positive correlation was observed between Peptococcus and AKP. However, negative correlation was noted between Peptococcus and ADH, SOD, GSH, and T-AOC. After YE intervention, Gemella increased, while Corynebacterium levels only increased in the YEH group. Both genera showed significant positive correlations with hydroxyl radical scavenging ability, but significant negative correlations with TNOS were observed (Figure 5C). In the YEL group, Faecalibacterium and Ruminococcus significantly decreased. Faecalibacterium showed a positive correlation with MDA and TC, but a negatively correlation with SOD. On the other hand, the abundance of Ruminococcus positively correlated with ALT, AST, AKP, TC, TG, and MDA, while it was negatively associated with levels of ADH, SOD, GPX, and hydroxyl radical scavenging ability (Figure 5C). The genera Romboutsia and Faecalibaculum decreased in the YEH intervention group. Romboutsia exhibited a significant positive correlation with TNOS and iNOS, while Faecalibaculum showed a positive correlation with TC and iNOS, but a negative association with GPX (Figure 5C).
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FIGURE 5
 Linear discriminant analysis (LDA) and the correlation between genera and liver related indicators. (A) Linear discriminant analysis between AL group and YEL group. (B) Linear discriminant analysis between AL group and YEH group. (C) Spearman’s correlation between the liver related indicators and the relative abundance of significantly different genera, n = 6, *p < 0.05, **p < 0.01, ***p < 0.001. Red squares represent positive correlation and blue squares represent negative correlation. The darker the red, the greater the correlation coefficient, and the darker the blue, the smaller the correlation coefficient.




3.5. Yeast extract altered metabolic profiles

To further explore and understand the effects of altered gut microbiota on metabolite changes, a total of 2029 metabolites were detected through the extensive targeted metabolomics analysis (Figure 6A). According to the orthogonal partial least-squares discriminant analysis (OPLS-DA), metabolites in the YEH group could be well separated from those in the AL group (Q2 > 0.5) (Figure 6C). Based on the threshold of fold change ≥2 or fold change ≤0.5 and VIP > 1, 201 differential metabolites were identified between the AL and YEL groups, while 470 differential metabolites were found between AL and YEH groups. By combining pathways with significant enrichment in KEGG and HMDB databases, it was discovered that among the samples of AL and YEH, 14 metabolites were significantly different (two up-regulated metabolites and 12 down-regulated metabolites). Additionally, there were six remarkedly different metabolites (five up-regulated metabolites and one down-regulated metabolite) among the samples of AL and YEL groups. The heatmaps of specific metabolic difference substances are shown (Figures 7A,B).
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FIGURE 6
 Effects of yeast extract on metabolic profiling. (A) Composition of all metabolites. (B) The orthogonal partial least-squares discriminant analysis (OPLS-DA) of AL and YEH groups. (C) OPLS-DA of AL and YEH groups.
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FIGURE 7
 Effects of yeast extract on metabolic profiles. (A) Heatmap of differential metabolites in AL and YEL groups. (B) Heatmap of differential metabolites in AL and YEH groups. (C) Spearman’s correlation between the relative abundance of significantly different genera and differential metabolites. Red squares represent positive correlation while blue squares represent negative correlation. The darker the red, the greater the correlation coefficient, and the darker the blue, the smaller the correlation coefficient, n = 6.


To explore the relationship between the co-regulation of gut microbes and metabolites, the Spearman correlation analysis was performed (Figure 7C). Gemella levels were found to exhibit notable negative correlation with 17β-estradiol 3-(β-D-glucuronide) concentrations. Parasutterella positively correlated with histamine and adenosine, while Corynebacterium inversely correlated with histamine.

According to the KEGG database, the YEL notably affected insulin resistance (Figure 8A), while the HMDB database indicated that the intervention of the YEL significantly affects two major metabolic pathways: taurine and hypotaurine metabolism, as well as phospholipid biosynthesis. According to the KEGG database, there are significant differences in steroid hormone biosynthesis, morphine addiction, cGMP-PKG signaling pathway, and gastric acid secretion between the AL and YEH groups (Figure 8C). Based on the HMDB database, YEH significantly impacted three metabolic pathways: intracellular signaling via adenosine receptor A2a and adenosine, intracellular signaling through adenosine receptor A2b and adenosine, and intracellular signaling mediated histamine receptor H2 and histamine (Figure 8D).
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FIGURE 8
 Metabolic pathway analysis of differential metabolites. (A) KEGG enrichment pathways based on the differential metabolites (AL and YEL). (B) HMDB enrichment pathways based on the differential metabolites (AL and YEL). (C) KEGG enrichment pathways based on the differential metabolites (AL and YEH). (D) HMDB enrichment pathways based on the differential metabolites (AL and YEH).





4. Discussion

YE has strong antioxidant and anti-inflammatory properties. Oxidative stress and inflammation are important mechanisms that greatly contribute to alcoholic liver injury. Yeast extract primarily consists of yeast cell wall, yeast protein, and yeast nucleotide. The presence of β-glucan in the yeast cell wall has been scientifically demonstrated to enhance the activity of immune cells, thereby boosting immunity (Zhang et al., 2018). Additionally, yeast nucleotide has been found to mitigate the adverse effects of Eimeria on the intestinal tract (Leung et al., 2019). In this study, we hypothesized that the YE could exert protective effects against liver injury. We established an animal model for alcoholic liver injury. Related physicochemical indicators, as well as the response of the gut microbiota and metabolites were analyzed to verify our hypothesis.

As expected, the levels of AST, ALT, AKP (Figures 1D–F), TC and TG (Figures 1G,H) in the rats of the AL group significantly increased. Hepatocyte damage can be assessed by the rise in ALT and AST levels (Giannini et al., 2005; Ozer et al., 2008), while the increase of AKP might suggest that cholestasis could occur in the liver (Ramaiah, 2007). Chronic alcohol consumption can lead to hepatic lipid metabolism disorders, resulting in a rise of TG and total TC levels (Xu et al., 2018). After the YE intervention, the levels of the above-mentioned indicators were significantly reduced in both the YEL and the YEH groups. This indicated that YE can effectively alleviate alcohol-induced liver cell dysfunction and promote lipid metabolism.

Oxidative stress is an imbalance between antioxidants and oxidation in the body, with the former being significantly lower. Ethanol consumption depletes a substantial amount of antioxidant enzymes (such as SOD or GPX) and generates an abundance of ROS, which ultimately causes damage. The intervention of the YE can markedly increase GPX, SOD and T-AOC (Figures 2A,B,D), while significantly decreasing MDA (Figure 2C), thereby effectively reducing oxidative stress (Yuan et al., 2018; Gao et al., 2022).

After the YE and silymarin interventions, the levels of TNOS and iNOS were significantly reduced (Figures 3D,E). TNOS and iNOS are crucial indicators of inflammatory injury so reducing the expression levels of their related genes can lower the inflammatory response (Lee et al., 2016). Continuous intake of ethanol induces the production of iNOS (Davis and Syapin, 2004), an isoform of nitric oxide synthase which oxidizes L-arginine to L-citrulline and generates nitric oxide (Chen et al., 2015). The nitric oxide combines with the superoxide anion to form an oxidant that causes lipid peroxidation, which damages the body (Zhu et al., 2023). In addition, the intervention of YEH significantly reduced the levels of IL-1β, TNF-α, and IFN-γ (Figures 3A–C), with effects that were even better than those that were observed in the silymarin intervention group. LPS that are produced by intestinal bacteria can stimulate Kupffer cells to secrete TNF-α. In addition, rats with lower IL-1β levels exhibited a significant reduction in the transition from steatosis to steatohepatitis and liver fibrosis, suggesting that IL-1β also plays a key role in liver injury (Tilg and Moschen, 2011). The results demonstrate that the intervention of the YE can effectively improve the alcohol-induced liver oxidative stress and inflammatory response, with the YEH exhibiting better anti-inflammation efficacy.

The 16S rRNA sequencing results showed that the β-diversity of LC, YEL, and YEH was significantly higher than that of the AL group (Supplementary Figures S1D,E), with no significant difference among the three groups. Studies indicated that ethanol can significantly decrease the level of β-diversity, which is closely related to alterations in the gut microbiota (Piacentino et al., 2021; Xia et al., 2021). In terms of gut microbiota composition, the ratio of Firmicutes to Bacteroidetes in the YE group was lower than that in the alcohol-induced model group (Figure 4C). This ratio positively correlated with the extent of gut microbiota disturbance (Shao et al., 2018; Belancic, 2020; Jasirwan et al., 2021). This indicated that the YE has certain positive regulatory effects on the gut microbiota.

At the genus level, the intervention of the YEL could significantly reduce the relative abundance of Ruminococcus and Faecalibacterium (Figures 4G,H). Studies have shown that the relative abundance of Ruminococcus in the intestinal tract of obese and non-alcoholic fatty liver children is significantly higher than that of healthier children (Del Chierico et al., 2017). In addition, Ruminococcus has also been confirmed to be positively associated with liver function indicators like alanine aminotransferase (AST) and aspartate aminotransferase (ALT) (Jiao et al., 2022; Quan et al., 2022). The relative abundance of Faecalibacterium in patients with alcoholic hepatitis significantly increased (Philips et al., 2019).

In the YEH intervention group, the relative abundances of Faecalibaculum, Helicobacter, Romboutsia, and Parasutterella were significantly lower than those in the alcohol-induced model group (Figures 4I,J,L,M). According to the analysis of the correlation between intestinal microbes and liver injury factors, Romboutsia and Faecalibaculum positively correlated with TNOS and iNOS. Previous studies have shown that alcohol intake can significantly increase the relative abundance of Romboutsia, accompanied by an increase in the mRNA of fibrosis-related markers (Yu et al., 2020). It was also reported that the relative abundance of Helicobacter increases in mouce with alcohol feeding (Philips et al., 2022) and positively correlate with the extent of the oxidative stress that is caused by chronic inflammation (Hardbower et al., 2013). By comparing the differences in gut microbiota between nonalcoholic fatty liver rats induced by high-fat diet and normal diet rats (Zhuge et al., 2022), it was found that Helicobacter, Romboutsia and Faecalibaculum were enriched in the high-fat diet group, further characterized by the presence of hepatic oxidative stress, fibrosis, and intestinal inflammation. Additionally, Parasutterella was positively associated with intestinal inflammation and irritable bowel disorder (Huang et al., 2017; Chen et al., 2018). In this study, the intervention of YEH significantly reduced the relative abundance of the above-mentioned microorganisms, indicating that it can alleviate the liver inflammatory response and lipid metabolism disorder that is caused by alcohol. This happens through the downregulation of the levels of Helicobactere, Romboutsia, Faecalibaculum, and Parasutterella, thereby exerting a protective effect on the liver.

The intervention of YEH can also significantly increase the relative abundance of Corynebacterium (Figure 4K). Both YEL and YEH interventions can reduce the relative abundance of Peptococcus and Tyzzerella (Figures 4D,E). Studies have reported that the relative abundance of Corynebacterium and Tyzzerella is significantly decreased in people with non-alcoholic fatty liver disease (Kordy et al., 2021; Zhang et al., 2021). Besides, a mouse experiment targeting liver fat accumulation showed a significant increase in the relative content of Tyzzerella. The contents of TC, TNF- α, IFN- γ, and IL-1β are positively correlated with Tyzzerella. This further indicates that YE can enhance antioxidant ability in the liver, which reduces alcohol-induced liver damage.

According to KEGG and HMDB databases, there were enriched pathways between the AL and YEL groups and between the AL and YEH groups. Compared with the AL group, YEL intervention significantly up-regulated the levels of D-mannose-6-phosphate and D-glucose-6-phosphate (Figure 7A). D-glucose-6-phosphate is a product from the phosphorylation of glucose by glucokinase. If it accumulates in the liver for a long time, it can promote triglyceride synthesis and lead to lipid accumulation in the liver (Rajas et al., 2019). In addition, low doses of YE can also affect the metabolism of taurine and hypo taurine (Figure 8B), resulting in a significant increase in the content of taurine (2-aminoethane sulfonic acid). This substance is widely used as a dietary supplement, which can reduce the expression of TNF-α, IL-6, and IL-1β mRNA and reduce the inflammatory response (Shi et al., 2021). Taurine can also increase the activity of SOD and MDA, thereby reducing oxidative stress that is caused by alcohol (Murakami et al., 2018).

Lysophosphatidylcholine (16:0/0:0) (Figure 7A), which is present in the phospholipid biosynthesis pathway, was also significantly increased. It has been confirmed to alleviate lung injury of acute respiratory distress syndrome by down-regulating the mRNA expression of inflammatory factors such as TNF-α, IL-6, and IL-1β, as well as by reducing neutrophil infiltration (Du et al., 2022). This suggests that lysophosphatidylcholine (16:0/0:0) has certain anti-inflammatory effects. However, in the YEL group, the content of acetylcholine (Figures 7A,B) in the pathway was significantly lower than that in the AL group, while the levels of this substance in the YEH group were significantly higher (Figure 7B). Acetylcholine can alleviate colonic inflammation by promoting the secretion of Interleukin 10 (IL-10) and down-regulating the mRNA expression of TNF-α, IFN-γ, and IL-1β. Thus, the YEH group has better anti-inflammatory properties.

Observations from this study showed that the YEH intervention tends to downregulate the secretion of gastric acid secretion (Figure 8C). Some studies have reported that long-term alcohol consumption can damage the gastric mucosal barrier defense system and reduce gastric mucosa’s ability to resist the invasion of gastric acid, bile, and various digestive enzymes. Excessive gastric acid can cause mucosal damage (Ning et al., 2012; Wu et al., 2021). At the same time, gastric acid inhibitors (Zhang et al., 2016) have been confirmed to reduce the damage of alcohol to the stomach. Therefore, high doses of yeast extract have a certain protective effect on the stomach. In addition, YEH was able to reduce the content of histamine in this pathway, which mediates GI tract damage that is induced by alcohol (Zimatkin and Anichtchik, 1999). Studies in mouse models have found that the oral administration of histamine can cause gut microbiota disorder, oxidative stress, inflammatory response (Luo et al., 2022), and cause liver fibrosis (Kennedy et al., 2020). In morphine addiction and cGMP-PKG signaling pathways, high doses of yeast extract modulate both pathways by reducing the levels of adenosine and 5′ -adenine nucleotide (Figure 7B). The acetaldehyde that is produced by alcohol metabolism can inhibit adenosine reabsorption (Nagy et al., 1990) and is associated with the level of adenosine and cGMP-PKG signaling. ATP- binding produces adenosine (Pardo et al., 2013; Purnell et al., 2023), which, in excess, inhibits respiration (Dunwiddie and Masino, 2001) and promotes liver fibrosis (Fausther, 2018). Also, when 5 ‘-monophosphate was injected, the expression of genes related to fatty acid metabolism in the liver was significantly inhibited (Kondo et al., 2020). However, histamine and adenosine levels positively correlated with Parasutterella, while Corynebacterium inversely correlated with histamine (Figure 7C). While Corynebacterium numbers showed a significant positive correlation with ·OH clearance, those of Parasutterella were shown to be positively correlated with intestinal inflammation and irritability (Huang et al., 2017; Chen et al., 2018). Therefore, the antioxidant activity of YE is closely related to the gut microbiota and their metabolites.



5. Conclusion

In this study, the administration of different concentrations of yeast extract to ALD rats could alleviate the alcohol-induced liver hepatoxicity, oxidative stress, and inflammatory response. Compared with the YEL, the YEH inhibited the inflammatory response to a greater extent exhibiting even better results than the positive drug group. Yeast extract can also improve gut microbiota disorders and regulate their metabolic products in ALD rats, thus alleviating liver oxidative stress and inflammatory damage through the “liver-intestine” axis. It is important to note that high-dose yeast extract has a greater effect on metabolic products. However, there are some limitations associate with study that can be addressed in future research. First, although we have shown that yeast extract has a protective effect on alcohol-induced liver damage, it is a complex mixture whose functional components need to be further explored. Second, we observed that yeast extract intervention had impacts on some gut microbiota and their metabolites. However, further exploration of the functional validation of both is still required to better explain the mechanism through which yeast extract affects alcohol-induced liver damage.
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Introduction: Pullorum disease is one of the common bacterial infectious diseases caused by Salmonella pullorum (S. pullorum), which can result in a decrease in the reproductive performance of laying hens, thus causing considerable economic losses. However, studies about the characteristics of intestinal microbiota with pullorum and their potential association with reproductive performance in hens are still limited. This study was to identify the gut microbiota associated with S. pullorum in poultry.

Methods: A total of 30 hens with S. pullorum-negative (PN) and 30 hens with S. pullorum-positive (PP) were analyzed for hatching eggs laid in 2 weeks (HEL), fertilization eggs (FE), chick number (CN), and microbial structure.

Results: There were significant differences in HEL (p < 0.01), FE (p < 0.01), and CN (p < 0.01) between PP and PN. Histomorphological observations showed abnormal morphology of the ovaries and fallopian tubes and low integrity of epithelial tissue in the ileum and cecum in PP. 16S rRNA gene sequencing revealed that beneficial cecal microbes, such as Bacteroides, Desulfovibrio, and Megamonas, were positively correlated with reproductive performance and had lower abundance in PP (p = 0.001). Furthermore, diminished phosphotransferase system (PTS) and pentose phosphate pathway, butanoate metabolism and oxidative phosphorylation were also found in PP.

Discussion: Taken together, this study clarified the morphological characteristics of the reproductive tract and intestines of chickens infected with S. pullorum and preliminarily explored the potential association between cecal microbiota and reproductive performance in hens. Our data may provide a reference for revealing the intestinal microbial characteristics of hens in resisting pullorum and exploring novel approaches to infection control in future studies.
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Introduction

Pullorum disease, caused by Salmonella pullorum (S. pullorum), is transmitted both vertically and horizontally in chickens (Berchieri et al., 2001; Li et al., 2018; Zhou et al., 2022). It is an acute systemic disease and is more common in young birds (Soria et al., 2012; Wang et al., 2020), and some of the infected adult birds are asymptomatic carriers that transmit the bacteria to the offspring and other chickens in the flock, some of which show the symptoms of diarrhea, decreased fertility and laying, reproductive tract abnormalities, inappetence, and weight loss (Shivaprasad, 2000; Wigley et al., 2001; Setta et al., 2012; Ding et al., 2021; Shen et al., 2022). Every year, Salmonella infection leads to serious economic losses in the poultry industry, especially in developing countries (Wigley et al., 2002; Barrow and Freitas Neto, 2011; Li et al., 2018, 2019). Previous studies suggested that in mainland China, PD was highly prevalent in the autumn, followed by the winter. Their findings also demonstrated that PD still posed a major threat to the poultry industry and that comprehensive and stringent strategies should be used to prevent and control this disease (Lv et al., 2022; Jiang et al., 2023). There is conclusive evidence that increased stocking density and larger farms result in an increased occurrence, persistence, and spread of Salmonella in laying hen flocks (Hazards et al., 2019). It causes decreased production performance and even the death of poultry, as well as being a threat to public health. Although eradication programs have been carried out as a prevention and control measure, the agglutination test results are erratic, including false-negative reactions and a lack of sensitivity, so Salmonella infection is still one of the most important problems worldwide (Barrow et al., 2012; Wang et al., 2020).

The use of antibiotics to prevent and treat bacterial diseases, such as Salmonella, leads to an increase in multiple drug-resistant bacteria worldwide (Zhou et al., 2020). Sulfonamides have been used in the treatment of pullorum disease, including sulfadiazine, sulfamerazine, sulfathiaole, sulfamethazine, and sulfaquinoxaline. However, most studies have indicated that no drug or combination of drugs has been found to be capable of eliminating infection from treated flocks (Shivaprasad, 2000). Globally, the animal industries are moving toward restricting and eventually a total ban on the usage of antibiotic growth promoters (Liao and Nyachoti, 2017). Meanwhile, the Chinese government is promoting a reduction in antibiotic use currently (Zhang et al., 2015). This trend prompts people to actively seek an ideal alternative to antibiotics.

The inclusion of alternative feed additives in lieu of antibiotics in animal diets is definitely required to support a profitable and sustainable poultry industry (Liao and Nyachoti, 2017). As is known, the gut microbiota can be manipulated by feed additives such as exclusion products, probiotics, prebiotics, organic acids, plant extracts, essential oils, and feed enzymes (Shin et al., 2008; De Lange et al., 2010; Le Bon et al., 2010; Heo et al., 2013). However, there is no report on preventing and controlling pullorum disease in the Chinese local chicken breeds. An animal's character can be affected by changes in the microbiota. As it is an opportunistic pathogen, the occurrence of pullorum disease is mainly caused by an imbalance of the intestinal microbiota (Shivaprasad, 2000). Probiotics are defined as a microbial feed supplement that beneficially affects the host animal by improving its intestinal balance (Fuller, 1989). They are a category of feed additives that can be used to replenish the gut microbial population while recuperating the host immune system (Liao and Nyachoti, 2017). Many recent studies have shown that humans and animals fed probiotics have altered intestinal microbiota, increased intestinal immunity, improved resistance to disease, reduced shedding of pathogens and disease symptoms, and improved health status (Zhao et al., 2013; Chiu et al., 2014; Upadhaya et al., 2015; Gao et al., 2017; Liao and Nyachoti, 2017; Li et al., 2017; Chen et al., 2020; Wang et al., 2021). The gut microbiota affecting the pullorum and its functions in chickens need further study.

Due to the large diversity of bacterial species, the gut microbiome contains circa 9 million unique protein-coding genes, but they have not been studied extensively (Rosenberg and Zilber-Rosenberg, 2018). The availability of high-throughput sequencing will shortly enable the sequencing of whole bacterial populations, enabling a more comprehensive view of bacterial evolution among related bacterial species (Barrow and Freitas Neto, 2011). This study aimed to analyze the intestinal microbial characteristics of hens resisting pullorum and their relationships with hatching eggs laid in 2 weeks (HEL), fertilization eggs (FE), and chick number (CN) in hens.



Materials and methods


Ethics statement

All procedures and the use of animals were carried out in accordance with the Guidelines for the Ethics and Animal Welfare Committee of the Shanghai Academy of Agricultural Sciences (No. SAASPZ0522051).



Animal experiment and sample collection

S. pullorum infections in chickens were diagnosed by S. pullorum and S. gallinarum polyvalent antigen rapid slide agglutination test reagents (Beijing Zhonghai Biotech Co., Ltd., China). On a clean glass slide, 50 μl of polyvalent antigen and 50 μl of venous blood were placed. The samples were deemed positive if 50% or more agglutination occurred in the mixture within 2 min, and samples without agglutination were considered negative. In this study, two chicken groups were obtained after three times of the slide agglutination tests, and the results of the S. pullorum infection texts were positive or negative all three times. A total of 60 New Pudong chickens [samples from 30 hens with S. pullorum-negative (PN) and 30 hens with S. pullorum-positive (PP)] were selected from the experimental farm of the Shanghai Academy of Agricultural Sciences, Shanghai, China. These 60 hens were artificially inseminated at the age of 47 weeks. Recording the number of eggs laid, fertilized, and hatched chicks per hen and the performance, including HEL, FE, and CN, were analyzed during chick hatching processes. All eggs received disinfection before hatching. All hens were in the same poultry house (PN hens were distributed in the east of the poultry house and PP hens were distributed in the west of the poultry house), selected according to a unified breed standard, and fed antibiotic-free corn-soybean diets (Supplementary Table S1). Antibiotics in the feed or for any therapeutic purposes were not provided for hens after the age of 1 week. These 60 hens were slaughtered at the age of 49 weeks. After slaughter, tissue samples of the ovaries, fallopian tubes, ileum, and cecum with the size of about 2 × 3 cm were cut with a sterile scalpel and quickly stored in 4% paraformaldehyde for separate morphological observation. Cecal content was individually collected in 2 ml centrifuge tubes for 16S rRNA gene sequencing. All samples were kept in an ice box for preservation and transportation and then stored at −80°C in the laboratory (Janssen and Kersten, 2015).



Morphological observation of the ovaries, fallopian tubes, ileum, and cecum

Tissues were routinely embedded in paraffin wax blocks, sectioned at 5 μm thickness, mounted on glass slides, and stained with hematoxylin & eosin (H&E). Morphological observations were conducted by a Nikon ECLIPSE 80i light microscope with a computer-assisted morphometric system (Nikon Corporation, Tokyo, Japan).



16S rRNA sequencing and bioinformatics analysis

The gut microbiota population in the hens with S. pullorum-negative (n = 30) and S. pullorum-positive (n = 30) was analyzed by 16S rRNA gene sequencing, respectively. Microbial community genomic DNA was extracted from cecum samples using the E.Z.N.A.® soil DNA Kit (Omega Bio-tek, Norcross, GA, United States) according to the manufacturer's instructions. The DNA extract was checked on 1% agarose gel, and the DNA concentration and purity were determined using NanoDrop 2000 UV-vis spectrophotometer (Thermo Scientific, Wilmington, United States). The hypervariable V3-V4 region of the 16S rRNA gene with a length of ~468 bp was targeted for sequencing. PCR amplification was performed with gene-specific primers 338 F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806 R (5′-GGACTACHVGGGTWTCTAAT-3′) under the following conditions: initial denaturation at 95°C for 3 min, followed by 27 cycles of denaturing at 95°C for 30 s, annealing at 55°C for 30 s, extension at 72°C for 45 s, single extension at 72°C for 10 min, and end at 4°C.

The PCR mixtures contain 5 × TransStartFastPfu buffer 4 μl, 2.5 mM dNTPs 2 μl, forward primer (5 μM) 0.8 μl, reverse primer (5 μM) 0.8 μl, TransStartFastPfu DNA Polymerase 0.4 μl, template DNA 10 ng, and finally ddH2O up to 20 μl. PCR reactions were performed in triplicate. The PCR product was extracted from a 2% agarose gel, purified using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, United States) according to the manufacturer's instructions, and quantified using the Quantus™ Fluorometer (Promega, United States). Purified amplicons were pooled in equimolar amounts and paired-end sequenced on an Illumina MiSeq PE300 platform (Illumina, San Diego, United States) according to the standard protocols by Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China). All obtained raw sequence datasets have been deposited into the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) with the accession number PRJNA799073.

The raw 16S rRNA gene sequencing reads were demultiplexed, quality-filtered by the FastP version 0.20.0 (Chen et al., 2018) and merged by the FLASH version 1.2.7 (Magoc and Salzberg, 2011) with the following criteria: the 300 bp reads were truncated at any site receiving an average quality score of <20 over a 50 bp sliding window, and the truncated reads shorter than 50 bp were discarded; reads containing ambiguous characters were also discarded; only overlapping sequences longer than 10 bp were assembled according to their overlapped sequence. The maximum mismatch ratio of the overlap region is 0.2. Reads that could not be assembled were discarded; samples were distinguished according to the barcode and the primers, and the sequence direction was adjusted for exact barcode matching and a 2-nucleotide mismatch in primer matching. Operational taxonomic units (OTUs) with a 97% similarity cutoff (Schloss et al., 2009) were clustered using the UPARSE version 7.1, and chimeric sequences were identified and removed. The taxonomy of each OTU representative sequence was analyzed by RDP Classifier version 2.2 (Wang et al., 2007) against the 16S rRNA database (Silva version 138) using a confidence threshold of 0.7.



Statistical analysis

Reproductive performance, including HEL, FE, and CN, was calculated using the SAS 9.4 software (Shen et al., 2014). Alpha diversity was calculated using the Mothur (Schloss et al., 2009). Venn diagrams and rank abundance distribution curves were performed using Mothur. Linear discriminate analysis effect size (LEfSe) was used to identify the bacteria enriched (Segata et al., 2011). The pair-wise phylogenetic distance was measured by weighted UniFrac (Lozupone et al., 2006) to compare community compositions across samples. Principal component analysis (PCA) was used to compress dimensionality into 2D principal coordinate analysis plots (Vazquez-Baeza et al., 2013), enabling visualization of sample relationships. PICRUSt was used to explore the functional composition of that bacterial community that the data might convey (Langille et al., 2013). The visualization of conventional results was achieved by Origin 2023. The co-occurrence network is implemented through the Gephi 0.10 software.




Results


Comparisons of reproductive performances in S. pullorum-negative hens and S. pullorum-positive hens

The reproductive performance showed that the average hatching eggs laid in 2 weeks (HEL), average fertilization eggs (FE), and average chick number (CN) of S. pullorum-negative hens were higher than that of S. pullorum-positive hens (p < 0.01, Figure 1). The average HEL of S. pullorum-negative hens was 12.5, which was 0.5 more than that of S. pullorum-positive hens. The average FE of S. pullorum-negative hens was 11.7, which was 8.4 times more than that of S. pullorum-positive hens. The average CN of S. pullorum-negative hens was 11.0, which was 9.8 times more than that of S. pullorum-positive hens.


[image: Figure 1]
FIGURE 1
 (A–C) Comparisons of reproductive performances in S. pullorum-negative hens and S. pullorum-positive hens. PN, S. pullorum-negative group; PP, S. pullorum-positive group.




Morphological observation of the reproductive tract and intestinal tract

Morphological observations showed that the presence of deformed follicles, follicular dysplasia, or even necrosis occurred in the S. pullorum-positive hens (Figures 2A, B). Moreover, in the S. pullorum-positive hens, epithelial cells of the oviductal mucosa consisted mostly of ciliated cells, with few secretory cells and an underdeveloped lamina propria (Figures 2C, D). Histomorphological observations of the ileum and cecum in PP revealed that the intestinal epithelial integrity was low and there was severe intestinal epithelial damage. Severe detachment of mucosal epithelial cells and exposure of the lamina propria in the intestinal lumen were mainly observed (Figures 2E, H).


[image: Figure 2]
FIGURE 2
 (A–H) Morphological observation of ovaries, fallopian tubes, ileum, and cecum of PN and PP. PN, S. pullorum-negative group; PP, S. pullorum-positive group.




Bacterial community structure and prediction functions of S. pullorum-negative hens and S. pullorum-positive hens

More than 4 million sequences were obtained from all samples, and there were 16,888 high-quality sequences per sample. The average sequence length was 417 bp. Microbial composition analysis showed that, at the phylum level, the two most dominant phyla were Firmicutes and Bacteroidetes, which comprised 72.6% of the total sequences in PN and 71.6% of the total sequences in PP, respectively (Figure 3). At the genus level, a total of 357 genera were identified from all samples, and the enrichment of these genera in the PN and PP had a large variation (Figure 3). The two most dominant genera were Bacteroides and Rikenellaceae_RC9_gut_group belonging to the phylum Bacteroidota and comprised 25.70% of the total sequences in PN and 24.42% of the total sequences in PP, respectively (Figure 3). A total of 1,880 OTUs were identified from all samples, and the VENN diagram showed the unique OTUs and genera of the two groups and the shared OTUs and genera (Supplementary Figure S1). In addition, principal component analysis (PCA) at the genus level revealed a significant separation between the samples of PN and PP, indicating a large difference in the cecum microbiota of these two groups (Figure 4). The diversity and richness of the cecum microbiota were significantly lower in the PP group than in the PN group (Figures 5A, E).


[image: Figure 3]
FIGURE 3
 Phylogenetic tree of cecal microbiota and its microbial community composition in PN and PP. PN, S. pullorum-negative group; PP, S. pullorum-positive group.
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FIGURE 4
 Principal component analysis (PCA) at genus level between PN and PP. PN, S. pullorum-negative group; PP, S. pullorum-positive group.
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FIGURE 5
 (A–H) Cecum microbial alpha diversity and its relationships with reproductive performance. (A, E), Shannon and Chao indexes, respectively. (B, D, F, H) Correlations between reproductive performance with Shannon and Chao indexes, respectively.


A Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis was performed to investigate the functional properties of microbiota. Using the KEGG pathway annotation information, we found that among the major microbial functions (top 100), the PP cecum microbial functions were generally weaker than the PN group (Figure 6A), where the phosphotransferase system (PTS), pentose phosphate pathway, butanoate metabolism, and oxidative phosphorylation were significantly less abundant in PP than PN (Figures 6B–E).
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FIGURE 6
 (A–E) Functional composition of microbiota and their differences between two groups. Microbial functional composition. (A) Heatmap of the functional composition (top 100) of microbiota. (B–E) Comparison of abundance of phosphotransferase system (PTS) and pentose phosphate pathway, butanoate metabolism, and oxidative phosphorylation.




Correlations of reproductive performances with the gut microbiota

It is noteworthy that the alpha diversity of the cecum microbiota was positively correlated with the reproductive performance (HEL, FE, and CN) of hens (p < 0.01, Figures 5B–D, F–H). To further investigate the microbial differences between the PP and PN groups, the Wilcoxon rank-sum test was used, and it was found that there were 68 significantly different genera between these two groups (p < 0.05, Supplementary Table S2). LEfSe was used to further determine the taxa that most likely explain the differences between PN and PP samples. A total of 65 genera were found to be potential biomarkers between PN and PP. There was a significant enrichment of 50 genera (including Bacteroides, Desulfovibrio, and Megamonas) in PN (Figure 7 A). Additionally, enrichment of 15 genera, including Salmonella, was found in PP (Figure 7A). Notably, we found significant positive correlations between Bacteroides, Desulfovibrio, and Megamonas, with reproductive performance (HEL, FE, and CN, Figures 7B–D).
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FIGURE 7
 (A–D) Identification of differential microbes and the associations between microbial abundance and reproductive performance. (A) Linear discriminant analysis (LDA) effect size (LEfSe) analysis. (B–D) Correlation analysis microbial abundance and reproductive performance.PN, S. pullorum-negative group, PP, S. pullorum-positive group.




Analysis of the co-occurrence network of microorganisms between S. pullorum-negative hens and S. pullorum-positive hens

Analysis of the co-occurrence network of microorganisms at the genus level found that in the PP and PN groups, the genus Firmicutes is the core microbe in the co-occurrence network and has extensive connections with microbes from other phyla (Figure 8). In addition, compared with the control group, the association between members of the Firmicutes phylum in the PP group seems to be closer (Figure 8B).
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FIGURE 8
 (A, B) Microbial co-occurrence network analysis at the genus level. (A) was PN, (B) was PP. Node size indicates relative abundance. Red edges indicate significant positive correlation (P < 0.05), and green edges indicate significant negative correlation (p < 0.05). PN, S. pullorum-negative group; PP, S. pullorum-positive group.





Discussion

Pullorum is a disease caused by S. pullorum through both horizontal and vertical transmission. It is known that a percentage of birds that survive clinical disease when they are infected as young chicks may show few signs of infection but may become carriers. Intestinal carriage of S. pullorum in the poultry host does not cause substantive gastrointestinal disease and is asymptomatic. Therefore, it is of great significance to identify gut microbiota related to pullorum disease in chickens. This will lead to the development of novel prevention and control strategies for S. pullorum infection in poultry production.

Among the different diseases occurring in poultry, those caused by the genus Salmonella are the most common, leading to serious economic losses to the poultry industry in terms of mortality, reduced growth, and loss of egg production (Shivaprasad, 2000; Wigley et al., 2001). One aim of the current study was to investigate and characterize the effect that S. pullorum infection had on reproductive performances. The results illustrated that S. pullorum infection in chickens reduced their reproductive performances and altered the gut microbial composition, resulting in variations in the microbial metabolic pathways and functions. Previous studies have reached the same conclusion (Ding et al., 2021). This study illustrated that pullorum disease reduced reproductive performance including HEL, FE, and CN. Pullorum disease is manifested by decreased egg production, fertility, and hatchability in hens. Shivaprasad HL showed that regressing ovarian follicles can be found in the ovaries of chickens and microscopic lesions in adults include fibrinosuppurative to pyogranulomatous inflammation of ovarian follicles characterized by necrosis. Caeca may contain necrotic caseous debris within the lumen and necrosis of the mucosa with the infiltration of heterophils into the lamina propria (Shivaprasad, 2000). The other aim of this study was to investigate the different bacterial communities between S. pullorum-negative hens and S. pullorum-positive hens and their microbial functions. The availability of high-throughput sequencing will shortly enable the sequencing of whole bacterial populations, giving us a more comprehensive view of bacterial evolution among related bacterial species (Barrow and Freitas Neto, 2011). Shen et al. studied the dissemination pattern of S. pullorum in different organs and at different time points. It showed that the cecum carried S. pullorum throughout the experiment duration, while the small intestine did not carry S. pullorum during the last few days of the experiment (Shen et al., 2022). Therefore, this study examined DNA sequence data and the bacterial community structure of S. pullorum-negative hens and S. pullorum-positive hens in the cecum. It obtained a large number of effective sequences. The two most dominant phyla were Firmicutes and Bacteroidota. The similar results were obtained in previous studies (Wei et al., 2013; Khan et al., 2020; Rychlik, 2020). The two most dominant genera were Bacteroides and Rikenellaceae_RC9_gut_group, which belong to the phylum Bacteroidota comprised 34.1% of the total sequences in PN and 16.2% of the total sequences in PP, respectively. Ding et al. investigated that the dominant phyla were Firmicutes (65.5% in group N and 62.1% in group P), Fusobacteria (16.3% in group N and 18.7% in group P), and Proteobacteria (9.37% in group N and 9.95% in group P); the preponderant genera were Lactobacillus, Fusobacterium, Peptoclostridium, and Gallibacterium (Ding et al., 2021). The reasons that lead to different results in similar studies are complicated. Many factors can cause different microbiome compositions (e.g., breeds, age, gender, nutritional level, and sample selection). It is interesting that although significant enrichment of Salmonella was found in PN, there was a low abundance of Salmonella in PP. The basis of host specificity in salmonellosis continues to elude scientific explanation (Barrow et al., 2012). The outcome of infection is the combined effect of the microbial gene set and the host's genetic background. After an intestinal infection, where are the sites of Salmonella serovar Pullorum persistence in convalescent birds? Wigley et al. showed that Salmonella serovar Pullorum evades the immune response by surviving intracellularly within macrophages, which would be required by Salmonella serovar Pullorum to persist in both the spleen and the reproductive tract (Wigley et al., 2001). Salmonella serovar Pullorum localizes in the reproductive tract of chickens and, as a consequence, may be transmitted vertically to chicks by transovarian transmission of the bacteria into developing hatching eggs (Wigley et al., 2001). The correlation analysis between reproductive performances (HEL, FEN, and CN) and gut microbiota was therefore significant.

After a systemic disease, there may be negative effects on immunity, such as the balance of gut microbes, which could be upset, and the ability of harmful bacteria to secrete toxins, which could be increased. In this study, the ileum and cecum in PP revealed low intestinal epithelial integrity, and this should cause negative effects in the absorption and digestion of feed nutrients. Intestinal integrity is essential to prevent animal bacterial diseases (Citi, 2018). A stable and healthier intestinal state can inhibit pathogenic bacteria and reduce the production of toxins to ensure better capacity for digestion and absorption in hens (Jackman et al., 2020; Papadopoulos et al., 2022; Cui et al., 2023). The gut microbiota is widely perceived as being closely related to gut health and the growth performance of the host (Wang et al., 2016). The results elaborated that the abundances of 29, 32, and 39 genera were separately positively correlated with HEL, FEN, and CN. Meanwhile, the abundances of 7, 6, and 2 genera were separately negatively correlated with HEL, FEN, and CN.

The 50 genera, which were significant enrichments for S. pullorum-negative hens, were used to make PICRUSt1 function prediction analyses in all samples. The most important functions and metabolic pathways of the above different potential biomarkers were amino acid transport and metabolism and amino acid metabolism, respectively. Among these 50 genera, previous studies showed that Bacteroides and Megamonas could produce short-chain fatty acids (SCFA) by fermenting carbohydrates to provide energy for the gut and promote the growth performance of animals (Hooper et al., 2002; Shimizu et al., 2019; Ni et al., 2021; Zhu et al., 2021). Desulfovibrio consumes free hydrogen for the reduction of sulfate, thus contributing to the removal of free hydrogen formed during anaerobic fermentation in the gut environment (Rychlik, 2020). Faecalibacterium as a probiotic candidate has shown promising results toward enhancing food safety and gut health (Khan et al., 2020). The major source energies of Suterrella and Parasutterella originate from protein, amino acid, and fatty acid metabolism (Line et al., 2010; Polansky et al., 2015). Rychlik showed that Megasphaera and Phascolarctobacterium were capable of butyrate production (Rychlik, 2020). Zhang indicated that high body weight chickens contained Sphingomonas more abundantly (p < 0.05) (Zhang et al., 2021). In-feed supplementations of probiotics strengthen the gut microbiota for improved host performance and colonization resistance to gut pathogens such as Salmonella and Campylobacter. The mechanisms of action of prebiotics and probiotics come through the production of organic acids, the activation of the host immune system, and the production of antimicrobial agents. Many probiotic preparations contain high numbers of lactobacilli that normally produce large quantities of volatile fatty acids such as formic acid. The incorporation of these into feed has been shown to inhibit gut colonization by zoonotic serovars of Salmonella (Barrow and Freitas Neto, 2011). Mixed probiotics effectively reduced the mortality of pullorosis in chicks, promoted growth performance, regulated the balance of the intestinal flora, improved immune function, resisted pullorosis disease, completely prevented chicks from pullorosis after infection, and reduced economic loss in the poultry industry (Chen et al., 2020). The probiotics reported above could be in culture, but most of these were poor or unclear, and most studies are empirical in nature.

Many studies have revealed the importance of probiotics in the context of infectious diseases, including pullorum. Zhou et al. studied the effect of a selected yeast fraction (Safmannan, SYF) on the prevention of pullorum disease in commercial breeder chickens and demonstrated that SYF supplementation could significantly decrease SP and SG infection rates and improve the body weight of birds challenged with S. pullorum (Zhou et al., 2020). Mon et al. examined the three-way interaction that occurred between host metabolites, resident gut microbiota, and Salmonella following inoculation of Salmonella enteritidis in 2-week-old layer chicks. It showed that there was differential regulation in many of the metabolites in association with Salmonella enteritidis colonization in chickens; perturbation in metabolic pathways related to arginine and proline metabolism as well as the TCA cycle was most prominently detected (Mon et al., 2020). Alrubaye et al. learned that the microbial metabolite deoxycholic acid shapes microbiota against Campylobacter jejuni chicken colonization and suggested that there was a bidirectional interaction between microbiota and microbial metabolites (Alrubaye et al., 2019). In this study, most of the genera we obtained by 16S rRNA sequencing were uncultured. The use of competitive exclusion gut flora preparations has the same protective effect as the normal flora in animal intestines. There is the possibility of a very intimate interaction between host bacteria and pathogens in the cecum (Barrow et al., 2012), and one area for future Salmonella control exploration is the development of probiotic organisms that have a rational basis for protection. Utilization of the information generated in this study should improve the efficacy of surveillance and biological interventions, both for intestinal carriage.



Conclusion

Pullorum disease reduced reproductive performance. Abnormal morphology of the ovaries and fallopian tubes and low integrity of epithelial tissue in the ileum and cecum were found in PP. Pullorum disease reduced the cecal microbial alpha diversity and relative abundance of Bacteroides, Desulfovibrio, and Megamonas, which were positively correlated with reproductive performance. Diminished phosphotransferase systems (PTS) and pentose phosphate pathways, butanoate metabolism, and oxidative phosphorylation were also found in PP. Taken together, this study clarified the morphological characteristics of the reproductive tract and intestines of hens infected with S. pullorum and preliminarily explored the potential association between cecal microbiota and reproductive performance in hens.
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Background: Toxicity concerns persist in the fields of public health, environmental science, and pharmacology. The intricate and vital role of the gastrointestinal microbiome in influencing toxicity and overall human health has gained increasing recognition in recent years. This study presents a comprehensive bibliometric analysis to evaluate the global scientific output, emerging trends, and research focal points in the area of gastrointestinal microbiome and toxicity.

Methods: The Web of Science Core Collection database was retrieved for publications on the gastrointestinal microbiome and toxicity from 1980 to 2022. Our analysis included scholarly research papers written in English and excluded duplicate publications. We used Biblioshiny and R to summarize the count and citation metrics of included articles, and visualized research trends and keywords. CiteSpace was used to identify reference literature, keywords, and citation bursts. VOSviewer was used to visualize the network of related countries, institutions, authors, co-cited authors, and keywords.

Results: A total of 2,140 articles were included, allowing us to identify significant countries, institutions, authors, and research focal points. Our results indicate a growing trend in the field, with China and the United States leading the research. The most productive journal in this area is Science of the Total Environment. Key findings revealed that research hotspots have shifted from drugs to environmental pollutants, emphasizing microplastics. Important mechanisms studied include oxidative stress, metabolism, inflammation, and apoptosis, with target organs being the gastrointestinal tract, liver, and brain. Furthermore, we highlight the rising significance of the gut-brain axis and the usage of zebrafish as a model organism.

Conclusion: Despite certain limitations, such as focusing solely on English-language publications and excluding unpublished literature, our findings provide valuable insights into the current state of research on toxicity and the gastrointestinal microbiome. In the future, modifications to the gastrointestinal microbiome could offer new directions for treating and mitigating toxicity. These discoveries provide a comprehensive perspective on the broader scope of this research field.
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Introduction

Toxicity issues have long been a primary concern in public health, environmental protection, and pharmacology. Toxicity research is essential for ensuring environmental, food, drug, and occupational safety and developing and evaluating new drugs (Arome and Chinedu, 2013). With the advancement of science and technology and changing societal needs, toxicity research has shifted from descriptive to mechanistic, from single substances to composite materials, from animal experiments to alternative methods, and from empiricism to system science. The gastrointestinal microbiome refers to the complex community of microorganisms in the human gastrointestinal tract, including bacteria, fungi, viruses, and more (Lindon et al., 2018). There is an increasing consensus suggesting that the gastrointestinal microbiome plays a crucial role in maintaining human health (Marchesi et al., 2016). These microorganisms participate in the body’s metabolism and absorption of nutrients and are closely associated with various physiological functions, such as the immune and endocrine systems (Belkaid and Hand, 2014; Gomaa, 2020).

The past decade has witnessed a significant surge of interest in understanding the gastrointestinal microbiome and its crucial role in maintaining health and contributing to the development of diseases. This growing interest has prompted a rapid expansion of research efforts to explore the gastrointestinal microbiome’s influence on various aspects of human wellbeing, including its potential relationship with toxicity. Concurrently, there has been an increased incidence of gastrointestinal disorders that could be influenced by the gastrointestinal microbiome and toxicity. For instance, recent estimates suggest that over 70 million people in the United States suffer from gastrointestinal (GI) disorders (O’Neill et al., 2021). The global rise in GI disorders has been linked to factors such as dietary changes, elevated stress levels, and exposure to environmental toxins, all of which can impact the gastrointestinal microbiome (Mohr et al., 2020). Given the burgeoning interest in this field and its potential implications for public health, there is a pressing need for a comprehensive and systematic analysis of the current state of knowledge, which is the primary focus of our study.

In recent years, research has unveiled complex interactions between the gastrointestinal microbiome and toxicity, which can be synergistic or antagonistic. On the one hand, the gastrointestinal microbiome can metabolize certain exogenous or endogenous toxic substances (Jeong et al., 2013), such as drugs, environmental pollutants, and endocrine disruptors, altering their structure, bioavailability, activity, or toxicity (Wilson and Nicholson, 2017). On the other hand, the gastrointestinal microbiome can also produce toxic metabolites such as D-lactic acid, ammonia, endotoxins, or carcinogens, thereby increasing the toxicity experienced by the host (Van de Wiele et al., 2005). Furthermore, an imbalance or disruption of the gastrointestinal microbiome, such as a decrease in microbial populations, overgrowth, or displacement, can lead to immune dysfunction, intestinal barrier damage, inflammatory responses, or systemic toxicity within the host (Chi et al., 2019).

Therefore, comprehending the mechanisms underlying the interactions between the gastrointestinal microbiome and toxicity, and finding ways to modulate the gastrointestinal microbiome to prevent or treat diseases associated with toxicity, are subjects of great importance and complexity. Various strategies centered around the gastrointestinal microbiome have been proposed or developed, including probiotics, fecal transplantation, microbial metabolites, and synthetic biology. These approaches promise to enhance the effectiveness and safety of drugs, reduce the risk of exposure to environmental pollutants, and augment the immune response against cancer.

Bibliometric analysis is a quantitative research method widely used in scientific research globally (Bornmann and Mutz, 2015). It has become one of the most extensively employed methods for evaluating the credibility, quality, and impact of academic work (van Raan, 1996). Bibliometric analysis can help us understand the current state, development trends, and research hotspots in a particular field. However, no bibliometric studies have hitherto been conducted on the association between gastrointestinal microbiome and toxicity. Therefore, we conducted a bibliometric analysis to reveal the major achievements, key technologies, and future development directions in this field. We hope this work can serve as a guide to identify critical knowledge and research priorities, assist researchers in formulating research strategies, optimize resource allocation, and achieve more breakthrough results in gastrointestinal microbiome and toxicity.



Materials and methods


Data acquisition

Bibliometric research is a quantitative method used to analyze and evaluate scientific literature. Web of Science (WOS) is one of the most commonly used academic database sources and is considered the most comprehensive and reliable database in bibliometric analysis (Wang et al., 2015). To prevent bias caused by daily database updates, the literature relevant to this study was searched for and exported from the Web of Science Core Collection (WOSCC) as plain text files containing full records and cited references on February 20, 2023.

Our search strategy details are provided in Supplementary Table 1. For this study, the literature was selected based on the following inclusion and exclusion criteria: (i) The publication timeframe was limited to articles published until December 31, 2022; (ii) Only research articles and reviews were considered for inclusion; (iii) There were no limitations on the species or organisms studied; (iv) Publications written in English were included, while those in other languages were excluded; (v) Duplicate publications were removed from the analysis to ensure the uniqueness of the dataset. Given that this study uses publicly available secondary data and does not involve interaction with human subjects, it does not require an ethical review.



Data analysis

Our bibliometric analysis study was conducted using multiple tools, including Biblioshiny and R-version 4.2.2, VOSviewer (1.6.19), CiteSpace 6.2.R1 (64-bit), Tableau 2022.4, and Microsoft Excel 2021.

The Impact Factor (IF) is a widely used metric for assessing the significance and influence of scientific journals. It is calculated by dividing the total number of citations received by papers published in the journal during the previous 2 years by the total number of papers published in that journal during the same period (Garfield, 2006).

CiteSpace is a software tool developed by Professor Chaomei Chen of Drexel University to analyze and visualize scientific literature, particularly in the field of bibliometrics (Chen, 2017). It is widely used by researchers, librarians, and information professionals to gain valuable insights into the structure and evolution of scientific fields. In this study, we utilized CiteSpace to conduct visual analyses encompassing various aspects such as country distribution, institutional distribution, reference analysis, and keyword and citation bursts. The specific parameters used in CiteSpace were set as follows: time slicing (from 1980 to 2022, years per slice = 1), term source (title, abstract, author, keyword, and keywords plus), node type (one option chosen at a time from author, institution, country, keyword, cited reference, cited author, and cited journal), link strength (Cosine), link scope (Within Slices), selection criteria (g-index K = 25), and pruning (none).

VOSviewer is a powerful tool for visualizing and analyzing bibliometric networks based on distance-based bibliometric tools. It was developed by Nees Jan van Eck and Ludo Waltman of Leiden University, and can categorize related items into clusters of various colors, with the same color indicating a higher degree of association among these items (Van Eck and Waltman, 2011). This study used VOSviewer to examine and visualize the distribution of countries, institutions, authors, and co-cited authors and explore keyword co-occurrence and overlay networks.

Biblioshiny is a web-based software tool built using R programming language, designed to facilitate bibliometric analyses and generate interactive visualizations of the obtained results. It was jointly developed by Aria and Cuccurullo (2017) from the University of Naples and the University of Campania in Italy. In our study, we primarily utilized Biblioshiny to summarize the volume and citation counts of the bibliometric analyses, assess the performance of articles and journals, identify the occurrence of annual cumulative keywords/terms, calculate national influence and collaboration frequency, and visualize research trends and keyword timelines. The specific parameter information used in Biblioshiny is detailed in Supplementary Table 2. We also used generalized additive models using the MGCV package in R to estimate the trend and quantity of related literature publications (Wood, 2018). The source code file is provided in Supplementary Table 3.

Tableau is a widely used visualization tool for exploring and analyzing data. In this study, it was employed to analyze and visualize the distribution of publications over time and the number of publications by country.




Results


Publication output and trends

After the literature retrieval and screening process, 2,140 publications met the inclusion and exclusion criteria (Figure 1), including 1,606 research articles and 534 review articles. As shown in Figure 2A, the first article was published in 1980 (Carter et al., 1980). From 1980 to 2022, the number of publications increased from 1 in 1980 to 494 in 2022, with an annual compound growth rate of 15.52%. Although the number of annual publications fluctuated slightly, an overall increasing trend was observed. To facilitate a comprehensive understanding of the development of publications in this field, the timeline was divided into three distinct stages: (i) Early stage (1980–1990): during this stage, the number of publications was extremely low, with a maximum of only 1 record per year.; (ii) Moderate growth stage (1991–2012): during this stage, the number of publications began to increase with 4–24 publications/per year; (iii) Rapid growth stage (2013–2022): during this stage, the number of publications escalated, with the annual number of articles increasing from 45 to 494 in 2022.
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FIGURE 1
Flow diagram of the selection process.
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FIGURE 2
Trends in the number of publications on gastrointestinal microorganisms studied in the field of toxicity from 1980 to 2022. (A) The annual number of publications. (B) Generalized additive model fit curve plot.


A generalized additive model was also used to analyze the relationship between the number of publications and the corresponding year (Figure 2B). The formula for the model is “count ∼ s(year),” where “year” is the predictor variable, and the smooth term “s(year)” indicates that the relationship between “year” and “count” is not strictly linear, and is modeled using a smoothing function. The effective degrees of freedom (edf) for the smoothing term were 8.918, and the corresponding F-statistic and p-value indicated that the smoothing term was highly significant (p-value < 2e-16). The model demonstrated a strong fit to the annual trend of publications (R2 = 0.997, Deviance explained = 99.8%). Based on the model’s prediction, the total number of publications related to the toxicity of gastrointestinal microbiome is projected to exceed 592 in 2023 and will continue to increase in the next 10 years to 2032, with an estimated 1,445 publications in 2032.



Most prolific countries/regions analysis

Figure 3A provides an overview of the distribution of the 2,140 included articles among 84 countries/regions. The top 10 countries/regions, ranked by the number of publications, include a diverse representation from different parts of the world. Among these top contributors, there were five European countries, three Asian countries, two North American countries, and Australia. China emerged as the country with the highest number of publications (n = 908), followed by the United States (n = 519), while the remaining countries/regions published fewer than 100 articles each. Figure 3B illustrates the international collaborations among 47 countries/regions that have collaborated on at least five publications.
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FIGURE 3
Countries/regions involved in the field of research. (A) World map of countries/regions based on the number of related publications. (B) The countries/regions collaboration network in this field. Circles represent countries, with the size of the circle indicating the number of publications. Different colors represent distinct clusters, while the lines connecting items represent international collaborations between countries. The thickness of the connecting lines indicates the strength of the collaboration.




Most prolific institutions

The analysis revealed that a total of 2,585 institutions made contributions to research in the field of toxicology and gastrointestinal microbiome. The top 10 most productive institutions are presented in Table 1. Within the overlapping network of institutional collaboration analysis, 66 institutions published more than 10 related articles (Figure 4). Researchers affiliated with the University of London’s Imperial College of Science, Technology and Medicine, and Harvard University, have been actively engaged in this field since its early stages. On the other hand, researchers from the Chinese Academy of Fishery Sciences and Chengdu University of Traditional Chinese Medicine have more recently begun exploring this study area.


TABLE 1    Top 10 institutions in terms of number of articles issued.
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FIGURE 4
The overlay visualization of institutional collaboration in this field. Circles represent institutions, with the size of the circle indicating the number of publications. The gradient of the color denotes the average starting year of publications in a specific research area for each institution. Lines connecting the items represent collaborations between institutions, while the thickness of these lines signifies the strength of the collaboration.




Journal analysis

The 2,140 selected publications were published across 745 journals. Among them, 415 articles were published in the top 10 journals, accounting for 19.4% (415/2140) of the total articles. Table 2 presents the top 10 journals and their respective IF for 2022. Among these journals, 90% (9/10) were classified as Q1 in the Journal Citation Reports (JCR), with five journals categorized as environmental sciences and nine with an IF greater than 5. In terms of publisher location, four of the top 10 journals were based in the United Kingdom, two in the United States, two in the Netherlands, and two in Switzerland. Furthermore, we employed Bradford’s Law to identify the core journals in gastrointestinal microbiota and toxicology research (Bradford, 1934). As illustrated in Supplementary Figure 1, the application of Bradford’s Law identified 28 core journals, with one-third of the articles published in core journals.


TABLE 2    The top 10 most published journals in the field of gastrointestinal microbiology and toxicity research.
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Most influential author analysis

Analysis of the authors in the included literature revealed that 11,894 authors contributed to publications related to gut microbiota and toxicity research. Table 3 shows the top 10 authors in terms of the number of published articles and co-citation frequency. Regarding the publication count, except for Kun Lu from the United States, the remaining nine authors were all from China. Yuanxiang Jin from Zhejiang University of Technology was the most prolific author (n = 28 articles), followed by Wei Chen and Hao Zhang from Jiangnan University (n = 25 articles), and Zhengwei Fu from Zhejiang University of Technology (n = 21 articles). Among the top 10 co-cited authors, four were from the United States, and two were from China. Notably, Yuanxiang Jin emerged as the most prolific author, having the highest count of publications and citation frequency, suggesting that he has been actively engaged in research and has achieved considerable recognition and influence within the gut microbiota and toxicity research field. Jeremy K. Nicholson from the Imperial College of Science, Technology and Medicine and Peter J. Turnbaugh from the University of California San Francisco ranked second and third regarding co-citation frequency.


TABLE 3    Top 10 authors in terms of number of publications and frequency of co-citations.
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The author collaboration analysis was performed using VOSviewer (Figure 5A), where authors with a publication count of 5 or more were included. The 164 included authors were classified into 30 clusters based on their collaborations, and the connections between different clusters were relatively scarce, indicating limited collaboration among research teams/laboratories involved in gut microbiota and toxicity studies. Figure 5B shows the co-cited author relationship network, which included 131 authors with a citation frequency of 50 or more. The network is visualized with colored sections representing the similarities in research interests among the co-cited authors. The analysis reveals a high level of homogeneity among the focus areas of the relevant researchers, as they can be divided into 5 distinct clusters. However, it is worth noting that the purple group appears to have fewer connections with other clusters, indicating a relatively sparse relationship with the research interests of other groups.
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FIGURE 5
Visualization of co-authorship and co-citation relationships among authors in gastrointestinal microbiota and toxicology research. (A) Network visualization of collaborations between authors. The size of the items represents the number of publications by the author, and different colors mark different clusters. The thickness of the connections between items indicates the strength of the relationships. (B) Co-citation author network. The size of the items represents the frequency of co-citations for each author.




Analysis of research hotspots


Most cited local literature

The impact of an article in a particular research field can be gauged by the number of citations it receives (Sun et al., 2022). Table 4 lists the top 10 most globally cited documents. Half of these 10 articles have been cited more than 500 times, including 3 research articles and 7 review articles. Specifically, the most cited article in this field, “Plastic and Human Health: A Micro Issue?,” published in 2017, has been cited 1,042 times (Wright and Kelly, 2017). This influential review utilized interdisciplinary literature to discuss and evaluate the potential impact of microplastics on human health, highlighting that microplastics can damage human health by triggering immune responses through gastrointestinal microbiome and inflammatory reactions. The second and third most cited articles were “Symbiotic gut microbes modulate human metabolic phenotypes” (Li et al., 2008) and “Gut microorganisms, mammalian metabolism, and personalized health care” (Nicholson et al., 2005), with 809 and 674 citations, respectively.


TABLE 4    Top 10 most global cited documents.
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Cluster analysis of co-cited references

Co-citation is a research method to measure the degree of relationship between cited references, which requires two different articles to be cited by the same document, forming a co-citation relationship (Small, 1973). Table 5 shows the top 10 highly cited references in the field of gastrointestinal microbiome and toxicity research. These articles are often regarded as fundamental to the development of this research area. Among the top four ranked articles, three were published in Science and focused on the relationship between the gastrointestinal microbiome and anti-PD-1 immunotherapy.


TABLE 5    Top 10 highly cited references.
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Furthermore, we analyzed the relationships between co-cited documents using CiteSpace 6.2.R1, and the co-citation network of cited references consisted of 1,422 nodes and 5,979 links (Figure 6A). Cluster analysis generated 192 co-citation clusters, with the top ten clusters shown in Figure 6B (Chen, 2020). The largest cluster was #0, characterized by the keyword “drug metabolism,” with the most representative article being “Effects of single and combined toxic exposures on the gut microbiome: current knowledge and future directions” by Tsiaoussis et al. (2019). Figure 6C presents a timeline view of the co-citation clusters of cited references, reflecting the temporal characteristics of research hotspots in this field.
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FIGURE 6
Co-citation analysis and citation burst ranking of references. (A) Co-citation network of references. Nodes with different colors represent different years; node size indicates citation frequency, and red nodes denote documents with citation bursts. (B) Top 10 clusters of co-cited references in the network. (C) Timeline view of co-cited references. Clusters are placed vertically in descending order of size. The position of nodes on the horizontal axis indicates the time when they were first cited, and connecting lines represent co-citation relationships. The number of citations determines the size of the nodes. (D) Top 25 references with the highest citation burst strength. Blue lines represent the timeline, while the orange segments denote the citation burst periods, displaying the starting year, ending year, and duration of the burst.




Citation bursts analysis of references

Citation bursts refer to sudden increases in the number of times an article is cited, indicating heightened attention to the topic by scholars and reflecting new trends and hotspots in the field. Figure 6D presents the top 25 cited references with the strongest citation bursts. The shortest burst duration was 1 year, while the longest lasted 18 years. Among these articles, the one with the strongest citation burst was “Gut microorganisms, mammalian metabolism and personalized health care,” published in Nature Reviews Microbiology, with a burst spanning from 2007 to 2016 (Nicholson et al., 2005). In addition, several articles have experienced citation bursts in the past 5 years and are still ongoing, such as “The microbiome, cancer, and cancer therapy” (Helmink et al., 2019) and “Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish” (Qiao et al., 2019). These results suggest that these research directions have gained considerable popularity in recent years and are expected to continue to be a prominent area of study in the coming years.




Keyword analysis

A total of 9,628 keywords were initially considered during the analysis of keywords. To ensure the inclusion of relevant keywords while avoiding overly general or infrequent ones, a minimum occurrence threshold of 30 was applied. This resulted in 101 keywords meeting the criteria and being included in the analysis. The chosen threshold has been validated in previous bibliometric studies and has proven effective (Sweileh, 2019; Sun et al., 2022). The National Library of Medicine’s Medical Subject Headings (MeSH) vocabulary was used to consolidate similar keywords. This vocabulary is widely recognized and comprehensive in biomedical research (Supplementary Table 4). Table 6 lists the top 10 most frequently occurring keywords. Excluding those related to microbiology, the highest-frequency keywords were “toxicity,” “oxidative stress,” “metabolism,” “exposure,” “inflammation,” and “health.” Figure 7A displays the network visualization of these keywords. We observed that in the largest red cluster, the keywords were related to microbiology and cancer, such as “gastrointestinal microbiome,” “microbiota,” “neoplasms,” and “chemotherapy.” The second green cluster was associated with inflammation and metabolomics, featuring keywords like “inflammation,” “expression” and “metabolomics.” The third blue cluster was related to environmental toxicity, with primary keywords including “toxicity,” “exposure,” “microplastics,” “pesticides” and “metals, heavy.” Additionally, Figure 7B displays the overlay visualization of the keywords. The results revealed that “pharmacokinetics,” “diarrhea,” “Escherichia coli,” “cytotoxicity” and “inflammatory bowel disease” were the major themes in the early stages. In contrast, recent years have seen research hotspots focusing on keywords such as “oxidative stress,” “exposure,” “immunotherapy,” “dysbiosis,” and “microplastics.” Figure 7C illustrates the development trends of keywords over the years. As shown in Figures 7B, C we observed a gradual transition in the research focus of the gastrointestinal microbiome and toxicity fields, shifting from a focus on drugs to environmental pollutants.


TABLE 6    Top 10 keywords in terms of frequency of occurrence.

[image: Table 6]


[image: image]

FIGURE 7
Keyword analysis. (A) Keyword co-occurrence network relationship diagram. Items represent keywords, and the size of items represents the frequency of keyword co-occurrence, clusters are marked using different colors, and links represent co-occurrence between keywords. (B) Overlay visualization of Keyword co-occurrence network. Items represent keywords; the size of items indicates the frequency of keyword co-occurrence. Early keywords are displayed in blue, while orange indicates recent keywords. (C) Trends in Keywords Plus development over the years. The blue line indicates the timeline of keywords, and the bubble size indicates the frequency of keywords. (D) Top 26 keywords with the strongest Co-occurrence frequency burst. The blue bars represent the time period when the keywords appear; the orange bars represent the time interval when the keywords are found to erupt, indicating the beginning year, end year, and duration of the outbreak.


Moreover, we conducted a burst analysis of keywords using the CiteSpace software. Figure 7D displays the top 26 keywords with the highest burst strength. Among them, the keywords “Diarrhea” (1996–2017), “active metabolite” (1996–2013), “beta-glucuronidase” (2000–2016), and “bacteria” (2002–2016) attracted attention for an extended duration. The keyword “Microplastics” (2021–2022) was most recently used, suggesting that this keyword has recently garnered significant attention and may become a future research hotspot.




Discussion

This bibliometric analysis investigated research development in the gastrointestinal microbiome and toxicity from 1980 to 2022. The advancement of scientific systems is closely intertwined with the progress of human civilization, and the field of toxicology is no exception. The late 20th century witnessed a golden era of development, attributable to factors such as rapid global economic growth, ecological degradation, increased exposure to human health issues, and accelerated advancements in computer science and medicine (Watson and Wexler, 2009). During this period, molecular research techniques played a crucial role in the study of gastrointestinal microbiome, resulting in significant breakthroughs in the analysis of gastrointestinal microbiome polymorphism and conducting qualitative and quantitative studies. On the other hand, the development of model organisms and genetically engineered animals has been paralleled by increased research on the physiological functions of gastrointestinal microbiome based on animal models (Stappenbeck et al., 2002; Bäckhed et al., 2004; Rakoff-Nahoum et al., 2004). In the late 20th and early 21st centuries, researchers increasingly focused on understanding the contribution of the gastrointestinal microbiome to overall health and disease states (Cho and Blaser, 2012). These early studies provided the groundwork for more complex explorations into the relationships between the gastrointestinal microbiome, disease progression, and responses to toxins.

With the official launch of the Human Microbiome Project in 2007 [ Integrative HMP (iHMP) Research Network Consortium, 2019] and the thriving development of high-throughput sequencing technologies (Caporaso et al., 2010), the scientific community’s enthusiasm for gastrointestinal microbiome research reached unprecedented heights. A review by Sekirov et al. (2010) examined the gastrointestinal microbiome’s influence on host physiology and its role in health and disease. They explored how changes in the microbiome can lead to disorders like inflammatory bowel disease and obesity, setting a foundation for further research into the microbiome’s role in disease development (Sekirov et al., 2010). In the first half of 2012, Science published a special issue on “The Gut Microbiota” and Nature followed suit in the second half of the same year with a special issue on “Gut microbes and health” (Lupp et al., 2012; Mueller et al., 2012). Since 2010, there has been a growing focus on the gastrointestinal microbiome’s role in influencing the efficacy of various treatments, including cancer therapies (Moayyedi et al., 2010; Simrén et al., 2013; Perez-Chanona and Jobin, 2014; Rajagopala et al., 2017). The results of these studies have expanded our understanding of how the gastrointestinal microbiome can modulate treatment responses, including potential toxicities. Since 2013, research on the relationship between toxicology and the gastrointestinal microbiome has gained momentum, driven by contemporary demands. Amidst this research boom, the field has amassed considerable findings and data. A comprehensive summary and analysis of its developmental trends, disciplinary frontiers, and research hotspots are important for facilitating further in-depth investigations.

China and the United States emerged as the leading countries in terms of the number of publications in the field of gastrointestinal microbiome and toxicity research, along with the highest frequency of collaboration. The substantial volume of articles from China can be attributed to increased research investment, particularly in the biomedical field, by the Chinese government in recent years (Xie and Freeman, 2019). China’s rapid economic development has also led to a heightened focus on ecological and public health issues. In terms of total link strength, the United States ranked first, primarily due to its high reputation in scientific research and innovation and numerous world-renowned research institutions and universities that attract researchers and scholars from around the world (Adams, 2012). This contributes to collaboration and development in this field (Ioannidis et al., 2018). As barriers to international exchange are eliminated, it is highly conceivable that influential countries and regions will experience complementary advantages, which will significantly impact the long-term development of this field.

Although China, India, and Japan are major countries in the gastrointestinal microbiome and toxicity research, the publishers of the ten most active journals in this field are all from Western Europe and the United States, without representation from Asia. This observation highlights the importance of developing internationally influential journals in Asia. Furthermore, we found that the majority of the top 10 journals in terms of article quantity are environmental science journals, including Science of the Total Environment, Environmental Pollution, Ecotoxicology and Environmental Safety, and others. This finding indicates that gastrointestinal microbiome and toxicity research has become a significant topic in environmental science.

In bibliometric analysis, hotspots typically refer to the most active and widely followed research directions or topics within a specific field and the characteristics and changes of hotspots can be reflected through citation analysis, keywords, and other indicators (Wu et al., 2021). Citation analysis can demonstrate the academic influence of research (Breugelmans et al., 2015). Interestingly, among the top 10 most globally cited documents, “microplastics” and “cancer therapy” were recurring topics. The top-ranked article, a review published in Environmental Science and Technology in 2017, was cited 1,042 times (Wright and Kelly, 2017). This article suggests that exposure to microplastics may affect the intestinal microbiome by promoting the growth of certain types of bacteria and altering the balance of microbial communities, potentially leading to adverse health outcomes such as inflammation and weakened immunity. In addition, three of the top 10 explored the role of the microbiome, particularly the gastrointestinal microbiome, in cancer and cancer therapy (Chaput et al., 2017; Roy and Trinchieri, 2017; Helmink et al., 2019). The gastrointestinal microbiome can modulate the response to various forms of cancer treatment, such as chemotherapy and radiotherapy, by influencing drug metabolism, pharmacokinetics, anticancer activity, and toxicity.

Interestingly, among the top 10 most co-cited articles, the majority (70%) focused on “cancer therapy” and were published in Science from 2010 to 2018. Three of these articles, cited over 110 times, were all dedicated to studying how the gastrointestinal microbiome influences the efficacy of PD-1-based immunotherapy (Sivan et al., 2015; Gopalakrishnan et al., 2018b; Routy et al., 2018). Anti-PD-1 immunotherapy is a type of cancer treatment that blocks the interaction between programmed cell death protein 1 (PD-1) and its ligands (PD-L1 and PD-L2), thereby enhancing T-cell anti-tumor activity. However, this therapy can also cause various adverse events, such as immune-related colitis. The severity and frequency of these toxicities depend on the type and combination of PD-1 or PD-L1 inhibitors used (Naidoo et al., 2015). The gastrointestinal microbiome has been shown to modulate the efficacy of anti-PD-1 immunotherapy, with higher diversity and abundance of certain bacterial taxa (such as Bifidobacterium and Faecalibacterium) being associated with better prognosis and lower incidence of immune-related adverse events (Sivan et al., 2015). Possible mechanisms by which the gastrointestinal microbiome regulates anti-PD-1 immunotherapy include affecting the composition and function of immune cells, altering the expression of PD-L1 on tumor cells, and producing metabolites that regulate inflammation and immunity (Gopalakrishnan et al., 2018a; Miller and Carson, 2020). These findings demonstrate the significant role of cancer therapy in the field of gastrointestinal microbiome and toxicity research. Therefore, interventions targeting the gastrointestinal microbiome, such as probiotics, prebiotics, antibiotics, or fecal microbiota transplantation, represent a promising strategy to improve cancer treatment outcomes and reduce toxicity.

In addition, the analysis of citation bursts, keyword clustering, and keyword bursts provides valuable insights into the key focus areas in the gastrointestinal microbiome and toxicity research. Several notable characteristics that attract significant attention in this field were identified: (1) toxic substances: drugs, nanoparticles, microplastics, heavy metals, pesticides, and biotoxins; (2) target organs: gastrointestinal tract, liver, and brain; (3) mechanisms: oxidative stress, metabolism, inflammation, and cell apoptosis. It is essential to interpret the identified burst keywords with caution. While they can be instrumental in signaling new and fast-emerging research areas, they do not always correlate with the quality or significance of the research. Thus, while these findings provide an overview of the research trajectory, a further qualitative assessment is required to discern the impact and importance of these emerging trends.

Interestingly, the research hotspots in the field of gastrointestinal microbiome and toxicity have gradually shifted from drugs to environmental pollutants. Indeed, since 2018, studies on the correlation between microplastic toxicity and gastrointestinal microbiome have begun to intensify. Microplastics are a common environmental pollutant that can lead to particle toxicity, oxidative stress, and inflammatory responses in organisms (Prata et al., 2020). Jin et al. (2018) found that exposure to two sizes of polystyrene microplastics for 14 days resulted in a significantly decreased abundance of Bacteroidetes and Proteobacteria in the intestine, while Firmicutes significantly increased. Besides, the levels of inflammatory factors IL-1α, IL-1β, and IFN were increased in the gut. Moreover, several studies have confirmed that microplastics can lead to gastrointestinal microbiome dysbiosis and metabolic disorders (Jin et al., 2019; Lu et al., 2019; Qiao et al., 2019). Notably, microplastics may also induce neurobehavioral toxicity through the gut-brain axis, potentially activating neuroactive ligand-receptor interaction and serotonergic synapse-related pathways (Huang et al., 2022). Importantly, Lianguo Chen et al. (2018) found that the toxicity of titanium dioxide nanoparticles and bisphenol A exposure in zebrafish is associated with the gastrointestinal microbiome, with the combined exposure leading to oxidative stress closely related to the ratio of pathogenic Lawsonia and normal metabolic Hyphomicrobium (Chen et al., 2018). Recent research findings indicate that the ingestion of differentially charged nanoplastics leads to the development of inflammatory lesions in the gut, disruption of electron transfer processes, inhibition of energy metabolism during mitochondrial oxidative phosphorylation, oxidative stress, increased expression of pro-inflammatory factors, and disturbances in pathways related to glycolipid metabolism (Xu et al., 2023). Our findings highlight that zebrafish is the predominant model organism in environmental toxicity studies. Their appeal as a crucial animal model in environmental toxicology research stems from several advantages: low maintenance cost, high breeding rate, swift growth, and considerable genetic homology with humans.

The primary target organs in the gastrointestinal microbiome and toxicity research are the gastrointestinal tract, liver, and brain. Studies on the microbiota-target organ axis have flourished in recent years, spurring many researchers to explore toxicology in this field. Zhong et al. (2021) investigated the toxic effects of arsenic trioxide (ATO) on the intestines and liver of ducks. The results demonstrated that ATO could mediate hepatic and jejunal inflammation and pyroptosis through the gut-liver axis and LPS/TLR4/NF-κB signaling pathway (Zhong et al., 2021). Another study found that exposure to perfluorooctanoic acid (PFOA) in mice led to a decrease in intestinal probiotics (including Lactobacillus and Bifidobacterium), while Dehalobacterium and Pseudomonas genera were significantly disturbed, which are associated with liver inflammation and oxidative stress. This confirmed that the hepatotoxicity of PFOA might be related to gastrointestinal microbiome dysbiosis (Wang et al., 2021). As previously mentioned, the importance of the gut-brain axis in toxicity research is increasing. Diazinon is an organophosphorus insecticide known to cause neurotoxicity. Studies have found that diazinon disrupts the gut microbiota composition and its metabolic functions in a sex-specific manner (Gao et al., 2017). Sub-chronic and chronic exposure to glyphosate-based herbicides (GBH) induces anxiety and depression-like behaviors in mice and leads to a decrease in the abundance of Bacteroides, Firmicutes, Pseudomonas, and Lactobacillus in the mouse gastrointestinal microbiome. Researchers hypothesized that gut dysbiosis might be highly associated with the observed changes in neurobehavior (Aitbali et al., 2018). In a recent study, a correlation between the gut microbiota and two specific organs, the lungs and the brain, has been established. The study found that inhalation of zinc oxide nanoparticles by the lungs can potentially lead to cerebral cortical impairment by disrupting the intricate lung-gut-brain axis (Zhang L. et al., 2023).

Oxidative stress, metabolism, and inflammation are the most reported mechanisms involving gastrointestinal microbiome and toxicity. The gastrointestinal microbiome can induce or exacerbate oxidative stress by metabolizing drugs or environmental pollutants to produce reactive oxygen species or free radicals or influence the host’s antioxidant system. For instance, the oral antiviral brivudine can be metabolized by the host and gastrointestinal microbiome into bromovinyluracil, exhibiting hepatotoxicity. The hepatotoxicity of brivudine may be associated with oxidative stress induced by its metabolic products (Jameson and Hsiao, 2019). Moreover, the gastrointestinal microbiome can induce or modulate inflammatory responses by regulating the host’s immune system or releasing endotoxins or pro-inflammatory cytokines. For example, the gastrointestinal microbiome can indirectly influence an individual’s response to immunotherapy in cancer treatment. Some commensal bacteria in the gut can enhance the antitumor effects of immune checkpoint inhibitors (ICIs), while some pathogenic bacteria may suppress the efficacy of ICIs or increase their toxic side effects (Lu et al., 2022). Nevertheless, certain probiotics can potentially exert a beneficial effect on the toxicity of specific substances. In this respect, the efficacy of Lactobacillus fermentum HNU312 has been demonstrated in mitigating oxidative damage and behavioral abnormalities induced by chronic lead exposure during early brain development (Zhang Z. et al., 2023). The gastrointestinal microbiome can influence the metabolism of drugs and environmental pollutants in various ways, thereby altering their toxicity (Li et al., 2008; Inamura, 2021).

An important direction for future research in the gastrointestinal microbiome field is exploring the therapeutic potential of manipulating the microbiome to mitigate the harmful effects of toxins. Building upon the existing knowledge of how the gastrointestinal microbiome influences responses to cancer therapies and the effects of environmental pollutants, investigations can focus on interventions such as probiotics, prebiotics, antibiotics, or fecal microbiota transplantation to enhance treatment efficacy and reduce toxicity. In addition, given the complexity of the interactions between the gastrointestinal microbiome and host health, interdisciplinary research approaches will be crucial in advancing our understanding of this field. Collaborations among toxicologists, microbiologists, environmental scientists, and health professionals could significantly advance our understanding of the gastrointestinal microbiome and its role in toxicity.

Despite the insights provided by our bibliometric analysis, this study is not without limitations. This study employed bibliometric analysis to assess research progress on the gastrointestinal microbiome and toxicity. However, it is important to note that bibliometric analysis mainly provides a quantitative assessment of the literature and does not necessarily reflect the quality or impact of the research. It allows for an objective and comprehensive exploration of the literature but does not substitute for a thorough qualitative assessment. Evaluating the quality of bibliometrics should not solely depend on quantitative measures. Instead, it requires an amalgamation of different methods and standards, such as peer review, expert opinion, and societal benefits, among others, to attain a more comprehensive and equitable scientific assessment. We acknowledge that our study was limited to English publications, potentially omitting significant contributions from non-English sources. A more extensive and inclusive approach would entail translating and analyzing scientific literature published in other languages. Furthermore, our study did not include unpublished literature, such as conference presentations, thesis work, and data from ongoing studies, which could also contribute valuable insights. While this literature is an essential part of the scientific discourse, its inclusion often presents practical challenges due to accessibility and verification issues. Nonetheless, future studies should also consider these sources to capture a more comprehensive view of the research landscape. In addition, this study only analyzed publications indexed in the Web of Science Core Collection database, which may not represent the entire body of literature on this topic. Therefore, these results should be interpreted with consideration of this limitation.



Conclusion

In conclusion, the relationship between the gastrointestinal microbiome and toxicity has become a research hotspot, with a substantial growth in annual publications indicating the global importance of this research field. China and the United States are the core competitive countries in this field. This research has identified the major researchers and institutions involved in this field globally. Science of the Total Environment is the most productive and core journal in this research area. Gastrointestinal microbiome and their relationships with metabolism, immune systems, and cancer treatments are considered hot topics, while environmental pollution and health may be the focus of future research. While we have discussed the potential for modifications to the gastrointestinal microbiome as new directions for treating and mitigating toxicity, we acknowledge the complexity of the underlying mechanisms. These complex interactions require further rigorous investigation. In summary, bibliometric analysis can provide valuable insights into the current state of toxicity and gastrointestinal microbiome research, highlight knowledge gaps, and identify potential future developments. These insights can guide future research directions, facilitate collaboration, and ultimately lead to the development of effective gastrointestinal microbiome intervention strategies for preventing and treating toxicity.
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Inflammatory bowel disease (IBD) is a serious global public health concern. Although the pathogenesis of the disease is currently unknown, it has been reported to be associated with both intestinal microbiota and inflammatory mediators. There is evidence suggesting that the feces of the Plateau pika is useful for treating gastrointestinal injuries and pain. Although fecal microbiota transplantation is highly efficacious intervention for IBD prevention, however, potential the transfer of pathogenic microbes or toxic substances is potentially hazardous. Fortunately, micropore filtering of the donor feces can minimize the risk of bacterial infection allowing retention of the therapeutic effects of the residual bacteriophages. Here, we demonstrated that Plateau pika feces not only alleviated the IBD symptoms but also promoted optimal structure and composition of the intestinal microbiota. Additionally, Plateau pika feces transfer also enhanced phenotypic features, such as, body-weight, disease activity index, and histological scores. In conclusion, Plateau pika feces was found to protect mice against colitis induced by dextran sodium sulfate by reducing inflammation and regulating microbial dysbiosis. These findings suggest the potential of Plateau pika feces as an alternative therapy for IBD.
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 inflammatory bowel disease, Plateau pika feces, fecal microbiota transplantation, gut microbiota, colitis murine model


Introduction

Inflammatory bowel disease (IBD) is a progressive immune-associated disease, characterized by persistent remission and relapse, that increases the risk of colorectal cancer (Cleynen et al., 2016). The incidence of the disease is currently increasing, and it is particularly common in recently industrialized countries (Gecse and Vermeire, 2018; Xiao et al., 2019). The risk factors of IBD include dysregulation of the mucosal immune response against bacteria-derived antigens, leading to the increased production of pro-inflammatory cytokines (Olén et al., 2020). Considering the crucial relevance of intestinal microbiota in keeping pathogens at bay and in maintaining overall health, there is growing research interest in supporting and enhancing the healthy microbial ecosystem to achieve better physical health (Jess et al., 2012). Moreover, these interventions may also assist in relieving the clinical manifestations of ulcerative colitis (UC) and Crohn’s disease (CD). The small lagomorph the Plateau pika (Ochotona curzoniae) from the alpine meadows of the Tibetan Plateau is a keystone species as it is food for predators, and provides shelter for small nesting tiny birds in its burrows (Olén et al., 2020).

Despite its overall protective actions against harmful circumstances such as pathogen infection, inflammation often involves pathways that aggravate pathogenic processes, thereby increasing the vulnerability of the host to further attacks (Ng et al., 2017). Many cytokines, such as, TNF-α, IL-6, and IL-1 are targets of the NF-кB pathway (Nadeem et al., 2020). While inhibitor proteins (IBs) typically restrict the activity of NF-кB in the cytoplasm, after translocation of the protein to the nucleus NF-кB promotes a series of complex phosphorylation and degradation events leading to the expression of downstream target genes and subsequent pro-inflammatory signaling (Kuipers et al., 2015). The NF-кB axis is reported to be closely associated with the pathogenesis of both UC and CD in humans and animals (Odenwald and Turner, 2017; Schirmer et al., 2019).

The interaction between intestinal microbiota and pro-inflammatory factors in UC is complex (Xavier and Podolsky, 2007). Prior investigations have revealed that the alleviation of UC symptoms occurs via an intricate balance between beneficial bacteria, host genetic factors, and common environmental stimuli. The recently introduced technique of fecal microbiota transplantation (FMT) has been shown to effectively enhance the structural regulation of the intestinal microbiota, thus relieving IBD and persistent gastrointestinal dysbiosis (Roda et al., 2016; Na and Moon, 2019). Nevertheless, the precise mechanism where FMT treatment relieves UC symptoms remains undetermined, and the majority of published information to date has been from case reports and allied research.

Previous studies have shown a reduced risk of UC when Plateau pika feces, host genetic factors, and common environmental stresses interact in a balanced manner (Paramsothy et al., 2019). Here, we explored the role of Plateau pika FMT in relieving IBD in a mouse model of colitis.



Materials and methods


Animals

All protocols involving the C57BL/6 J mice followed the Care and Use of Laboratory Animals (Gansu Province Animal Care Committee, Lanzhou, China) guidelines, and the study received ethical approval from the Lanzhou Institute of Husbandry and Pharmaceutical Sciences, CAAS. The mice were housed in an environment with constant temperature (20–24°C) and humidity and a 12-h / 12-h light/ dark cycle. Mice received food and water ad libitum.

The animal protocol is presented in Figure 1. Briefly, mice(n = 10/ group) were randomly assigned to one of three groups: (i) control; (ii) dextran sodium sulfate (DSS); (iii) FMT. For the first 7 days, all mice, apart from the controls received drinking water containing 3% DSS solution thus establishing the UC model. Subsequently, we collected, accumulated, gently homogenized, and froze the cecal contents of 10 Plateau pikas in 10% sterile glycerol. To generate a working FMT solution, the frozen fecal material was thawed and diluted to 0.05 g/ml with sterile saline, followed by homogenization, centrifugation (5,000 g 30 min, 4°C), and subsequent filtration of the supernatant using a 0.45 μm PES filter (Minisart® High Flow Syringe Filter, Sartorius™, Germany; Slack et al., 2022). The mice received FMT via a gavage of 200 μl of the supernatant from the Plateau pika fecal samples once a day over 2 weeks. Meanwhile, the control and DSS mice received a gavage of 200 μl of 0.9% saline solution. To establish the colitis mouse model, we supplemented sterile water with 3% DSS for 7 days, with 7 additional days of water without DSS. the pika feces supernatant was administered via gavage to the FMT mice, while control mice were given 0.9% saline solution. Daily parameters, including body-weight, changes in the consistency of the feces, and the presence of blood in the feces were monitored. To analyze the intestinal microbiota using 16S rRNA gene sequencing, feces were collected from the mice on day 14, and colonic tissue was harvested from the mice following euthanasia (Figure 1). DAI was scored as earlier described (Supplementary Table S1; Murthy et al., 1993; Camuesco et al., 2004).

[image: Figure 1]

FIGURE 1
 FMT reduced colonic damage of the colitis mouse model. Experimental design for FMT treatment on DSS-induced colitis in mice. (A) Weight loss (n = 10). (B) DAI (n = 6). (C) Colon length, and (D) Colon weight. Statistics were calculated with a two-tailed Student’s t test. *, p < 0.01; **, p, 0.01 (C,D). Data are presented as the mean 6 SEM.


After completion of the treatment, all animals were first anesthetized with sodium pentobarbital (5%), and then sacrificed by cervical dislocation immediately before dissection. Their colons opened, and the feces were gently moved using forceps. The distal colon (about 30 mm) together with additional intestinal regions were used for histological analysis using hematoxylin–eosin (HE) staining, respectively. We also collected colon samples for proinflammatory cytokine evaluation.



Histopathological analysis and HE staining

Mouse colons were fixed in 10% buffered formalin, before paraffin embedding, sectioning into 5 μm sections, HE staining, and examination under light microscopy.



Assessment of colonic oxidative stress (OS) parameter

Colonic parameters, namely, malondialdehyde (MDA) levels, total antioxidant capacity (T-AOC), catalase (CAT), and superoxide dismutase (SOD) activities, were measured using the appropriate kits (Nanjing Jiancheng Bioengineering Institute, China).



16S rRNA gene amplicon sequencing

We next determined the composition of the intestinal microbial communities in the distal ileal mucosa and intestinal lumen using 16S rRNA gene (V3-region) amplicon sequencing using NextSeq with v2 MID, 300-cycle, paired-end chemistry on a NextSeq (Illumina United States) platform. Total DNA was isolated using a Bead-Beat® Micro AX Gravity Kit (A&A Biotechnology, Poland), according to the provided directions. A library was generated, as reported previously (Slack et al., 2022). The mean amplicon sequencing depth per sample was 35,840 reads (minimum 9,286; maximum 63,584 reads).



Statistical analysis

Data were analyzed using GraphPad Prism and SPSS. p < 0.05 was set as the significance threshold. Data are presented as mean ± standard deviation (SD) and compared using one-way ANOVA and Duncan’s test.




Results


FMT-mediated regulation of mouse colitis development and clinicopathological manifestations

Among other consequences, DSS-triggered colitis causes the formation of ulcers in the intestinal epithelium, resulting in disruption of the inner mucosal layer, and promoting the invasion of acute and inflammatory immune cells (Das et al., 2020; Bell et al., 2022). Typical biomarkers of IBD are body weight, disease activity index (DAI) scoring, and the length/colon weight ratio (Ni et al., 2017; Chen et al., 2021). These variables were, therefore, used in the present study to evaluate the FMT-mediated regulation of colitis development and progression in vivo. It was found that all three variables were significantly reduced in DSS-treated mice (p < 0.01) compared with the controls (Figure 1). Significant weight gain was observed after FMT administration, which was equivalent to the weight of the control mice (p < 0.05). FMT-treated mice also showed substantially reduced DAI scores. Together, these results are consistent with previous findings (Weingarden and Vaughn, 2017), and indicated that treatment with FMT could successfully prevent DSS-driven IDB.



Plateau pika feces mitigated the pathological manifestations of DSS-induced experimental UC

We developed a DSS-induced mouse model of UC using 14-week-old C57BL/6 J mice to elucidate the influences of Plateau pika microbiota transplantation on UC. Relative to the control mice, the mice receiving Plateau pika feces microbiota transplantation showed significant improvements in their colons (Figure 1). The changes in body weight of the FMT-treated mice were also moderate. It was also found that the FMT treatment strongly prevented weight loss, relative to the control mice (p = 0.038; Figure 1A). Additionally, the DAI scores of the FMT-treated mice were substantially reduced, in comparison with the controls (p = 0.027; Figure 1B).



FMT-mediated regulation of histopathological changes in the colon

Representative images of the colon histology from each group of mice are shown in Figure 2. As expected, control mice showed normal colon histomorphology (Figure 2). In contrast, the DSS-treated mice showed thickening of the intestinal walls, submucosal edema, mucosal invasion, cytoplasmic mucin depletion, and ulceration of the colon (Figure 2). These characteristic symptoms of UC were significantly reduced after FMT administration (Figure 3). These results are consistent with those of Newman et al. (2017).
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FIGURE 2
 Effects of FMT intervention on the mouse colon histological changes (Representative hematoxylin and eosin staining) (Control) Control group, (B) B group, (DB) DB group.
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FIGURE 3
 FMT modulated DSS-induced NF-κB activation in the colonic tissue. NF-κB protein levels in the colonic tissue were analyzed by immunohistochemical.




FMT-mediated regulation of oxidative status in colonic tissue

The present as well as prior UC studies demonstrated a link between intestinal OS and disease (Figure 4). Reactive oxygen species (ROS) are typically produced when proinflammatory factors activate phagocytes (Sun et al., 2017). Hence, any intervention that enhances the cellular antioxidant capacity can potentially prevent the development and severity of UC (Paramsothy et al., 2017; Mishra et al., 2022). Markedly reduced levels of CAT, SOD, and T-AOC together with significantly raised MDA levels were observed in DSS mice relative to the controls. CAT requires the splitting of the superoxide anion to catalyze O2 reduction to H2O2, as well as H2O2 conversion to water (Ortiz-Rivera et al., 2017), while T-AOC modulates body function and the susceptibility to certain diseases (Özçam et al., 2019). The MDA content is a well-established indicator of OS (Özçam et al., 2022). This evidence suggests that the colon undergoes OS during UC. Here, it was found that after FMT treatment, the CAT, SOD, and T-AOC levels rose significantly (p < 0.05) while those of MDA declined sharply (p < 0.01), thus indicating that FMT treatment could successfully reduce OS.

[image: Figure 4]

FIGURE 4
 Effects of FMT intervention on colonic oxidative stress parameters in DSS-induced colitis mouse. (A) T-AOC, (B) MDA, (C) CAT, and (D) SOD. Data are presented as mean ± SD. ##p < 0.01 and #p < 0.05 vs. the control group. **p < 0.01 and *p < 0.05 vs. the B model group.




Plateau pika feces modulated the composition of the intestinal microbiota in a DSS-induced mouse model of UC

Colitis is closely linked to modifications in the composition and organization of the intestinal microbiota (Sartor and Wu, 2017). We used 16S rRNA sequencing of fecal samples collected after 2 weeks of DSS treatment to explore the significance of Plateau pika feces for regulating intestinal microbiota in a DSS-driven mouse model of colitis. The rarefaction analysis showed that the bacterial composition was quite diverse (Zhu et al., 2018). The intestinal microbiota of all three groups differed in their species compositions (Figure 5). The Simpson index was used to evaluate the alpha diversity at the species level in samples from all three groups collected on day 14. This showed that the Simpson index of FMT-treated mice differed markedly from that of the control mice (Figure 5). Treatment with Plateau pika feces increased the composition and variety of the microbiota throughout the chronic inflammatory phase, which, in turn, accelerated healing. Measurement of beta diversity using principal coordinate analysis (P-CoA) with the Bray Curtis distance metric revealed two distinct clusters for the FMT and control mice (Figure 5), further indicative of significantly altered microbial compositions, even in species diversity, in the FMT-treated mice by day 14. Our overall findings revealed that FMT treatment strongly regulated the intestinal microbiota throughout the chronic and recuperation stages of intestinal inflammation. Moreover, FMT-treated mice exhibited unusual microbial compositions throughout recovery from intestinal inflammation, namely, the presence of Dubosiella and Lactobacillus, while Ileibacterium, unclassified_f_Lachnospiraceae, Bifidobacterium, Turicibacter, Lachnospiraceae_NK4A136_group, and Candidatus_Saccharimonas were more prevalent on day 14.
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FIGURE 5
 Influences of FMT administration on gut microbiota β-diversity. (A) Hierarchical clustering tree of weighted UniFrac distance, and (B) Principal coordinates analysis (PCoA) of ASV level. (C) NMDS of ASV level. (D) Phylogenetic tree on genus level. (E) Community barplot analysis. (F) Kruskal-Wallis H test bar plot. Data are presented as mean ± SD. ##p < 0.01 and #p < 0.05 vs. the control group. **p < 0.01 and *p < 0.05 vs. the DSS model group.





Discussion

The aim of this investigation was to determine the overall effects of Plateau pika feces on recovery from intestinal inflammation in a DSS-induced mouse model of colitis. The relief of UC symptoms may have resulted from the restoration of the intestinal structure, function, and micro-environment. The findings of this study provide important information on alternative treatment methods for colonic inflammation employing functional probiotics and the use of Plateau pika feces in IBD.

We demonstrated that Plateau pika feces alleviated the symptoms of DSS-triggered colitis, shown in reduced colon length, weight-loss, DAI scores, mucosal loss, and the invasion of inflammatory cells, as documented in previous publications (Park et al., 2018; Wang et al., 2020, 2021; Jeong et al., 2022).

Importantly, the Plateau pika feces cohort outperformed single-strain mice in terms of minimizing body-weight fluctuations, DAI, and colonic histological scores (Kühl et al., 2015; Gasaly et al., 2021). This may be because, after entry into the gut, bacterial strains may directly diminish inflammation by modulating the total microbial network, apart from their interaction with mucosal epithelial cells (Liang et al., 2021). We also confirmed that on day 8 of the development of colonic inflammation and on day 14 of healing in colitis mice, Plateau pika feces effectively rescued micro-ecological dysregulation. Based upon reports, altered microbiota may prevent colitis progression. The alpha and beta diversities revealed that the structural composition of the FMT mice intestinal microbiota differed significantly from that of the controls (Sun et al., 2020; Wang et al., 2021). The single strain-based intestinal microbiota recovery mostly occurred on day 14, which made it less efficacious than the Plateau pika feces. Metabolites that enter hosts are quickly absorbed into the intestine. They also reach the small intestinal epithelial cells, whereby their utilization is further augmented.

The intestinal microbiota is modulated directly by metabolites as they include bacteriocins with significant antibacterial activity (Salminen et al., 2021). The logical conclusion is that following absorption into the gastrointestinal tract, metabolites may potentially exhibit indirect anti-inflammatory activities through additional regulation of microbial communities.

Considering such significant alterations of the microbiota in FMT-treated colitis, we consider that treatments with Plateau pika feces have great potential in treating UC. Consequently, RFCV discovered 11 unique bacterial taxa. Given that only three taxa, namely, Lactobacillaceae Lactobacillus, Dubosiella Firmicutes, and Rikenellaceae Rikenellaceae were strongly influenced by the single strains suggests that single strains are less beneficial for enhancing the intestinal microbiota. The Plateau pika feces are particularly controlled by the other eight taxa. it was found that six taxa, namely, Muribaculaceae Muribaculaceae, Bacteroidaceae Bacteroides, Oscillospirales UCG.005, Lachnospiraceae Ruminococcus, Tissierellales Anaerovoracaceae, and Clostridia Clostridia, were abundant in the FMT-treated group, relative to controls. Muribaculaceae is known for its effect in lowering inflammation, inhibiting dangerous microorganisms, and fostering anticancer immunity (Setoyama et al., 2003). Bacteroides are potent candidates for next-generation probiotics due to their unique ability to generate short-chain fatty acids and sphingolipids that support intestinal barrier integrity, as well as modulation of the immune response, which, in turn, repairs intestinal damage (Brown et al., 2019; Wang et al., 2022). The other four species produce butyrate, with Oscillospirales UCG.005 and L. ruminococcus showing a relatively low abundance in patients with UC and CRC patients (Mancabelli et al., 2017). The remaining two Clostridia taxa enhance the proliferation and differentiation of regulatory T cells to alleviate IBD and allergic diarrhea (Atarashi et al., 2013). Conversely, here, DSS treatment strongly increased the relative abundances of Parasutterella Burkholderiales, and Bacteroidales Tannerellaceae in mice, consistent with the conclusions of prior publications (Silvestri et al., 2020).

IBD patients have increased numbers of P. burkholderiales, which is correlated with persistent colonic inflammation (Chen et al., 2018; Zhao et al., 2021). Importantly, there are no significant variations in the relative abundances of the eight taxa in the metabolite intervention experiment between the mix and control groups, indicating that mixed metabolites cannot fully control the colonic microbiota. As a result, we hypothesized that metabolite delivery would influence microbial ecology in the small intestine. The relative abundance of Acidiferrobacterales Acidiferrobacteraceae, Sphingomonadaceae Sphingosinicella, and Reyranellaceae Reyranella was markedly reduced in the controls, confirming the supposition that metabolites act by balancing the small intestine microenvironment.

Despite widespread acknowledgement that IBD is correlated with alterations in the composition and metabolism of the intestinal microbiota, there have been no reports of a causal association between dysbiosis and IBD in humans (Ni et al., 2017). There is very limited research on the association between intestinal microbiota and the IBD phenotype. Here, our RDA provided strong evidence for an association between microbial and colitis phenotypic data in the probiotic FMT group, whereby core species-level microbial data provided essential phenotypic data, such as disease severity and colonic pathology. Co-occurrence networks to established to investigate the relationship between the phenotypic data and the microbiological markers. In FMT-treated mice, we clearly identified the presence of B. bacteroides, M. muribaculaceae, B. tannerellaceae, and P. burkholderiales, as well as a stronger and broader interaction network on day 8. Since many microbial markers in the metabolite intervention experiments were stand-alone taxonomic units and not symbiotic communities, they obviously did not affect phenotypic parameters. In all the interventions, M. muribaculaceae was found to be pivotal in the co-occurrence networks, indicating its importance in the interplay between the general microbiota and disease phenotypes. Collectively, our findings and those of other published work demonstrated that Plateau pika feces might effectively reduce intestinal inflammation and restore function in a colitis animal model.



Conclusion

Here, we demonstrated that Plateau pika FMT relieved the intestinal inflammatory symptoms associated with colitis by altering the structure and composition of the intestinal microbiota. Our findings demonstrated a strong link between the intestinal microbiota and the colitis phenotype. These findings in an animal model highlight the potential use of Plateau pika FMT in the maintenance of intestinal health and may contribute toward the development of clinically applicable Plateau pika FMT-based interventions for IBD and other intestinal inflammatory diseases.


Limitations of our research

The current investigation has several limitations. Firstly, we did not employ metagenomics for the evaluation of bacterial community composition. This will be done in future investigations. Secondly, to identify suitable potential therapeutic targets, the associated intestinal microbiota- and inflammation-related pathways require further examination. Lastly, additional metabolomics research is warranted to clarify the methods of the purification and identification of vital components that operate via the mixed-metabolite intervention.


Importance

IBD is a chronic, nonspecific inflammatory disease. It is characterized by ulceration and erosion of the colonic mucosa and can also cause a wide variety of other lesions that frequently affect the entire colon. In this study, we investigated the efficacy of Plateau pika feces administration in reducing gut inflammation and the restoration of gut microecology restoration. The results showed that Plateau pika feces significantly reduced inflammation and accelerated recovery when compared with the control group. These findings support the use of Plateau pika feces as an alternative therapeutic approach for IBD.
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Hypoxia represent a condition in which an adequate amount of oxygen supply is missing in the body, and it could be caused by a variety of diseases, including gastrointestinal disorders. This review is focused on the role of hypoxia in the maintenance of the gut homeostasis and related treatment of gastrointestinal disorders. The effects of hypoxia on the gut microbiome and its role on the intestinal barrier functionality are also covered, together with the potential role of hypoxia in the development of gastrointestinal disorders, including inflammatory bowel disease and irritable bowel syndrome. Finally, we discussed the potential of hypoxia-targeted interventions as a novel therapeutic approach for gastrointestinal disorders. In this review, we highlighted the importance of hypoxia in the maintenance of the gut homeostasis and the potential implications for the treatment of gastrointestinal disorders.
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1. Introduction

Oxygen is essential for mammals to survive, including humans. It is also a key factor in several biochemical reactions involved in the normal physiology of the body. At the same time, it may be also converted into reactive oxygen species (ROS), which was reported to have negative impact on cells. Hypoxia-inducible factor (HIF) could activate gene transcription and modulate the cellular oxygen levels and metabolic activity (Choudhry and Harris, 2018), playing a role in the oxygen sensing within mammalian cells (Agani and Jiang, 2013), demonstrated by investigations about the erythropoietin regulation. Since its discovery, the number of known HIF and hypoxia-regulated target genes increased, including the ones encoding proteins of several and important biological processes, such as erythropoiesis, angiogenesis, glycolytic pathway, glucose transport, metastasis, and cell survival (Cummins et al., 2008; Colgan and Eltzschig, 2012). As a result, HIF was identified as the most involved factor in the regulation of the cellular responses to oxygen deprivation (Agani and Jiang, 2013). Indeed, the HIF and its related signaling pathways are essential to facilitate the metabolic adaptation to hypoxia-induced stress (Jin et al., 2018; Zhong et al., 2020). Additionally, HIF is involved in many important physiological processes such as cardiovascular generation (Semenza, 2014), tumor progression (Palazon et al., 2017), and pulmonary hypertension (Luo et al., 2019). Over the past decade, the importance of intestinal microbiota in human physiological and metabolic functions has been widely recognized. At the same time, research shows that HIF also plays an important role in regulating intestinal function (Kumar et al., 2020). Specifically, HIF-1α facilitates the host-microbe crosstalk maintaining the gut homeostasis (Fan et al., 2015) as it up-regulates the tight junction proteins, thereby improving the integrity of the epithelial barrier, leading to a resolution of gut inflammation while facilitating the microbial colonization (Kumar et al., 2020). The mucin induced by HIF-1α promotes the colonization of commensal bacteria within the mucus layer, an essential component of the innate immune system, forming a defensive physical barrier for pathogens at the intestinal epithelium level (Kang et al., 2022). Substantial evidence indicated that HIF-1α contributed to the development of disease, and that it can be considered as a promising therapeutic target due to its involvement in the intestinal homeostasis maintenance. This review comprehensively discussed the HIF-1α structure and function, the associated signaling pathways, its role in the disease development, as well as the impact on the intestinal homeostasis.



2. Structure and function of HIF

Semenza et al. (1991), Ratcliffe (2007), and Pugh et al. (1991) discovered a transcriptional enhancer able to control the expression levels of erythropoietin, which is in turn regulated by the oxygen concentration as it is induced under hypoxic conditions. The hypoxia-inducible gene expression is regulated by a group of proteins recognized as hypoxia-inducible factors (HIFs). In 1992, Semenza et al. (1991) found that HIF-1 is composed of two proteins (HIF-1α and HIF-1β) that mediates the body adaptation to hypoxic conditions through red blood cell and angiogenesis. There are five major isoforms of HIFs, including HIF1α, HIF2α, and HIF3α which are oxygen-sensitive, and HIF1β and HIF1β2 that showed oxygen-insensitive (Hankinson, 2008; Prabhakar and Semenza, 2012; Choudhry and Harris, 2018). HIF-1α and HIF-2α are stable in hypoxic conditions, they form heterodimers with HIF-1β and thus to activate the gene transcription (Smythies et al., 2019). Interestingly, HIF-1α showed high activation during brief stage of severe hypoxia or anoxia, while HIF-2α was found to be more active in mild or physiological hypoxia, and retain continuous active in 48–72 h of hypoxia (Hu et al., 2022). Thus, it may be possible to state that HIF-1 is responsible for initiating the hypoxic response, while HIF-2α plays a more predominant role in driving the prolonged hypoxic response (Koh et al., 2011; Koh and Powis, 2012; Hu et al., 2022).

Being an oxygen-sensitive transcription factor, HIF-1α is correlated with the maintenance of oxygen homeostasis in mammalian cells, and it mediates the adaptive responses to hypoxia (Choudhry and Harris, 2018; Sousa et al., 2019). The protein stability of HIF-1α is mainly modulated by the oxygen-dependent degradation domain (Sun et al., 2017; Zheng et al., 2021). In the presence of oxygen, HIF-1/2α encounters hydroxylation via a specific prolyl hydroxylases (PHDs) at two conserved proline residues (P402/P564 and P405/P531 for human HIF-1α and HIF-2α, respectively) (Hu et al., 2022). After hydroxylation, HIFα is thus identified by von Hippel–Lindau (VHL) to be subsequently degraded through an oxygen-dependent ubiquitin-proteasome pathway (Figure 1) (Sousa et al., 2019). Therefore, under regular conditions, HIF-1α has a very short half-life. The hydroxylation of proline residues in HIFα is critical for VHL binding and relies on PHD, α-ketoglutarate-dependent dioxygenase, and asparagine hydroxylase, that have inhibitory effects on HIF (Choudhry and Harris, 2018). In case of hypoxia, the proteasomal of HIFα is stably expressed and not degraded by the ubiquitin ligase system. HIF-1α is therefore accumulated and it can be translocated to the nucleus, where it binds to aryl carbon receptor nuclear translocator (ARNT) to form the HIF-1α/β heterodimer (Aj et al., 2010; Lee et al., 2019), that binds to p300 to form a transcriptional activation complex targeting the hypoxia response element (HRE) within the DNA that activated the transcription of HIF-1 target genes, such as vascular endothelial growth factor (VEGF), erythropoietin, inducible nitric oxide synthase (iNOS), and glucose transporter (GLUT) (Choudhry and Harris, 2018; Singh et al., 2018). HIF-2α is an heterodimeric transcription factor formed following the dimerization between HIF-2α subunit and its obligate partner subunit nuclear translocator (ARNT) (Wu et al., 2019). Similarly to HIF-1α, HIF-2α is activated in hypoxic conditions through a common signaling pathway (Hu et al., 2022), causing a more relevant response to hypoxia due to its higher affinity for the promoters of genes involved in the hypoxia response (Hu et al., 2022), which results also in an enhanced inducing activity of HIF-2α in some cancers (Wu et al., 2019). The inhibitory PAS domain protein (IPAS), a short splice variant of hypoxia-inducible factor 3 alpha (HIF-3α), has been shown to drive transcriptional activity through its interactions with HIF-1α and HIF-2α in mice, as demonstrated by Tanaka et al. (2009) and Kobayashi et al. (2015). HIF-3α has been traditionally considered as a negative regulator of the hypoxia response pathway (Ravenna et al., 2016). However, recently it was found that long variants of HIF-3α have the capacity to create αβ dimers with an inverse activation ability (Tolonen et al., 2020). HIF-β subunit, also named as the aromatic hydrocarbon ARNT, is not regulated by e oxygen levels. Recent research has revealed that a prolonged hypoxic environment can increase HIF-1β expression in high-risk multiple myeloma cells, with this effect mediated via the expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) (Wu et al., 2018).
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FIGURE 1
 Oxygen-dependent regulation of HIFs.


HIFs is classified within the bHLH/PAS protein family, and it is composed of one N-terminal basic-helix–loop–helix (bHLH) domain and two Per-ARNT-Sim (PAS) domains that are crucial for DNA binding and dimerization (Bersten et al., 2013; Yang et al., 2021). Activation of the target gene is facilitated by the N-terminal transactivation domain (NTAD) present in HIFα isoforms, as well as by the C-terminal transactivation domain (CTAD) that is included in both isoforms (Prabhakar and Semenza, 2012). HIF-3α features a unique C-terminal leucine zipper (LZIP) domain that facilitates protein–protein interactions instead of the CTAD. On the other hand, both HIF-1β and HIF-2β lack the ODDD/NTAD and LZIP domains, and while they possess a CTAD, they lack an asparagine residue (Figure 2) (Ravenna et al., 2016). Within the DNA binding and dimerization domains, HIF-1α and HIF-2α shared a high level of homology in both DNA sequence and structure (Smythies et al., 2019). However, substantial evidence suggests that HIF-1α and HIF-2α heterodimers show distinct physiological functions and different roles in the same disease (Rosenberger et al., 2002; Takeda et al., 2010). For example, following the activation of both subtypes in VHL-deficient renal cancer, it was suggested that HIF-2α is oncogenic, whereas HIF-1α has tumor suppressor properties (Shen et al., 2011; Salama et al., 2015). Structurally, HIF-2α and HIF-1α are highly similar, with an overall amino acid (aa) identity of 48%. In particular, their bHLH domains share up to 83% of aa identity, while their PAS regions approximately 70% of aa identity (Hu et al., 2022). Despite a common consensus DNA-binding motif, HIF-1α and HIF-2α bind two distinct but overlapping sites in chromatin with common and unique patterns of downstream gene induction (Koh et al., 2011). Through the examination of the gene induction pattern in renal cell carcinoma 786-O WT-8 cellsstrongly indicates that the upregulation of ADRP, NDRG-1, and VEGF can be attributed to the activity of HIF-2α (Keith et al., 2011). A previous investigation that decreased the expression of specific HIF-α isoforms in Hep3B cells by siRNA revealed a predominant function of HIF-2α in the stimulation of erythropoietin (EPO) production (Shu et al., 2019). Several investigations demonstrated that HIF-1α or HIF-2α could regulate the expression of several genes induced by hypoxia, however, each HIFα isoform showed also distinct targets (Figure 3) (Rr et al., 2005). Several studies suggested that different transcriptional responses mediated by HIF-1α and HIF-2α allow the adaptation to hypoxia (Colgan and Eltzschig, 2012). For example, the ones that coordinate the glycolytic pathway include multiple target genes, and it appears that the HIF-1α subtype is more selective than HIF-2α (Keith et al., 2011). Hif-1α−/− ES cells lost the hypoxic response of the glycolytic genes GLUT-1 and VEGF, suggesting a regulation only by HIF-1α (Keith et al., 2011). In addition, compared with HIF-1α, HIF-2α shows a more prominent effect on the induction of erythropoietin (Shu et al., 2019).
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FIGURE 2
 Schematic illustration of the domain structure of HIFs.
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FIGURE 3
 Representative shared and unique target genes regulated by HIF-1α and HIF-2α.




3. HIF-1α and signaling pathways

HIF-1α is located in a wide range of human cells and it interacts with several up-stream and downstream proteins to establish different signaling pathways. HIF-1α mediates the hypoxia signals, leading to a range of compensatory responses to hypoxia, and it plays a significant role in physiological and pathological processes within the body (Xu et al., 2022). The HIF stabilization during the hypoxia is important to upregulate several hundred of downstream target genes, in light of the complexity and importance of HIF signaling (Lee et al., 2019). Most recent research studies indicate that HIF-1α is involved in several signaling pathways, including phosphatidylinositol-3 kinase/protein kinase/mechanistic target of rapamycin (PI3K/Akt/mTOR), extracellular signal-regulated kinase (ERK), Wnt/β-catenin, Notch, and NF-κB (Figure 4) (Malekan et al., 2021; Zhang et al., 2021). These pathways affect several functions including cellular metabolism, regulation of cell proliferation, and control of inflammatory responses (Luo et al., 2022).
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FIGURE 4
 Signaling pathway of HIF-1α. HIF-1α induced expression of downstream genes by activating different signaling pathways.


Previous research indicated that the phosphatidylinositol-3 kinase/protein kinase B signaling pathway (PI3K/Akt), governs a variety of cellular processes, is able to modulate the HIF-1α expression (Zhang et al., 2018). The downstream localization of HIF-1α is modulated by the mechanistic target of rapamycin complex 1 (mTORC1) pathway, while the PI3K/Akt signaling pathway regulates mTORC1 in an independent way (Malekan et al., 2021). In human mesenchymal stem cells, the exposure to hypoxia stimulated an increase in the levels of both p-Akt and HIF-1α, with p-Akt reaching its maximum earlier than HIF-1α (Zhang et al., 2018). The Akt inhibitor, wortmannin, is also able to inhibit the expression of HIF-1α while mTOR is Akt specific and represent a target of Akt during phosphorylation (Zhang et al., 2018). mTOR functions as an up-stream mediator of HIF-1α activation, and it was recently demonstrated that PI3K/Akt signaling pathway may regulate HIF-1α through mTOR. This regulation may be on a post-transcriptional protein level, altering HIF-1α (Liu et al., 2014). The activation of platelet-derived growth factor (PDGF), transforming growth factor (TGF), tumor necrosis factor-α (TNF- α), and inter-leukin-1β (IL-1β) triggers the HIF-1α regulation through the PI3K/Akt pathway (Oktay et al., 2007; Niu et al., 2008), that lead to an enhanced expression of HIF-1α when activated by receptor tyrosine protein kinase (RTK) (Xie R. et al., 2019). All together these findings suggest that PI3K/Akt/mTOR signaling pathway regulates the HIF-α mRNA levels.

NF-κB is a transcription factor involved in different biological processes including apoptosis, viral replication, tumorigenesis, inflammation, and autoimmune diseases (Barnabei et al., 2021). Endothelial cells (EC) were found able to autocrine TNF-α in case of hypoxia, and to activate the HIF pathway through a NF-κB-dependent process, while producing VEGF that led to the neovascularization (Jin et al., 2019). The silencing of HIF1α and specific glycolytic enzymes can reduce the NF-κB activation and ex-pression of pro-inflammatory genes in endothelial cells when exposed to a disordered flow (Wu et al., 2017). Consequently, endothelial cells when exposed to low and turbulent flow increase the HIF-1α expression and inflammatory signaling by enhancing the NF-κB activation while upregulating the number of glycolytic enzymes (Li et al., 2017). The principal mechanism underlying the canonical NF-κB activation involves a site-specific phosphorylation of IκBα by the multi-subunit IκB kinase (IKK) complex, that leads to its inducible degradation (LaGory and Giaccia, 2016). Furthermore, the activation of the non-canonical NF-κB pathway (i.e., TNFSF14/LIGHT) induces an in-creased expression of HIF, specifically HIF-2α. This is also facilitated by direct interaction of NF-κB subunit p52 and HIF-2α, that initiates multiple site binding on the subunit (Wu et al., 2017). In previous studies, we observed that TNFα, which is a canonical activator of NF-κB, may also be involved in the activation of the HIF pathway in ECs (Yao et al., 2015). Studies have shown that the anti-angiogenic activity of low-density lipoprotein (LDL) is focused on the reduction of HIF-1α and HIF-2α protein levels in ECs, and this is possibly related to the inactivation of NF-κB and down-regulation of HIF-1β (Yao et al., 2015). Inflammatory stimulants and other factors can increase the HIF-1 gene and protein level expressions by modulating NF-κB-dependent signaling (Xu et al., 2022). Other studies demonstrated that the NF-κB pathway can activate the expression of HIF-2α mRNA in osteoarthritis following the increased HIF-2α expression in mouse articular chondrocytes following the treatment with IL-1β, which is a stimulator of the NF-κB pathway (Yang et al., 2010). Additionally, icariin regulated the NF-κB/HIF-2α axis and reduced the inflammation in chondrocytes (Wang et al., 2020), and NF-κB signaling was found to stimulate the expression of HIF-1β (van Uden et al., 2011).

The ERK pathway represent another key pathway triggering the expression of HIF-1α by increasing the HIF-1α protein generation (Wan and Wu, 2016; Luo et al., 2022). It is important to note that the ERK pathway not only regulates the synthesis of HIF-1α but also phosphorylates the coactivator CBP/p300, thus enhancing the formation of the HIF-1α/p300 complex (Malekan et al., 2021). Hyperthermia induces the expression of HIF-1α in lung cancer through the AKT and ERK signaling pathways (Wan and Wu, 2016). In addition, it was demonstrated that photodynamic therapy (PDT) increases the expression of HIF-1α through the ROS-ERK axis, thereby enhancing the resistance to the treatment (Lamberti et al., 2017), indicating a regulation role of ERK signaling on the HIF-1α expression.

Besides the signaling pathways mentioned above, Wnt/β-catenin and Notch pathways are also involved in the modulation of HIF signaling. HIF-1α indeed acts downstream and upstream of the Wnt/β-catenin signaling pathway indicating their mutually regulating functions (Liu et al., 2015; Wu et al., 2015). Specifically, Wnt/β-catenin regulates the function of HIF-1α by initiating the PI3K/Akt signaling pathway (Laukoetter et al., 2008; Lau et al., 2011). The high expression of HIF-1α resulting from hypoxia in cells can activate the Wnt/β-catenin signaling pathway and thus increasing the β-catenin (Wu et al., 2015), while HIF-1α signal also regulates Wnt/β-catenin pathway via calreticulin (Liu et al., 2021). In turn, as an upstream pathway through related signaling pathways, Wnt/β-catenin can indirectly regulate the HIF-1α expression. Recently, it was also demonstrated the role of Notch/HIF-1α signaling in different processes like liver regeneration, angiogenesis, and cancer epithelial-mesenchymal-transition (Li et al., 2020). It was reported that the downstream Janus kinase (JAK)-STAT3 signaling pathway is activated by IL-6, leading to an increase in HIF-α. Notably, this mechanism is consistent with the fact that mTORC1 phosphorylates STAT3, and is involved in the upregulation of HIF-1α mRNA expression (LaGory and Giaccia, 2016).



4. HIF and gut homeostasis

In the recent years, it was extensively described that the gut microbiota plays a crucial role for the balance between health status and disease development of host species. The microbiota can be considered as a distinct “human organ” (Shepherd et al., 2018; Marietta et al., 2019). The establishment, selection, and colonization of microbes are governed by a complex molecular network of host-gut microbiota interactions (Kumar et al., 2020). Specifically, several clinical studies showed that hypoxia and inflammation are present in the tissue microenvironment in several inflammatory diseases (Malkov et al., 2021). At a cellular level, the primary control underlying the tissue adaptation to hypoxia is through the HIF signaling pathway (Malkov et al., 2021), and in particular HIF-1α is considered a key regulator of hypoxic injury. In case of IBD, not only the entire mucosa can become even more hypoxic and the expression of HIF-1α and HIF-2α may also be elevated in intestinal surgical specimens (Eltzschig and Carmeliet, 2011). Intestinal epithelial cells (IECs) are thus exposed to the hypoxic environment within the intestinal lumen and represent a major site for host–microbe interactions in order to modulate physiological outcomes (Muenchau et al., 2019; Kumar et al., 2020). The intestinal epithelium not only is re-sponsible for the transfer of nutrients, water, and electrolytes from the lumen to the underlying tissues, but also plays a crucial role in maintaining gut homeostasis by serving as a physical and immunological barrier that prevents the entry of commensal bacteria and potentially harmful microorganisms (König et al., 2016). Altered intestinal barrier function is known to increase susceptibility to enteric infections and disrupt the physiological mechanisms responsible for maintaining tolerance to commensal microorganisms. These changes can ultimately lead to chronic gastrointestinal inflammation and the development of inflammatory bowel diseases, including Crohn’s disease (CD) and ulcerative colitis (UC) (Konjar et al., 2021).


4.1. The effect of HIF on the intestinal barrier

Studies have found that HIF-1α may play a key role in maintaining intestinal homeostasis by regulating the integrity of the intestinal epithelial barrier while cultivating a suitable ecological niche (Kumar et al., 2020). Additionally, HIF-1α maintains the intestinal epithelial integrity by upregulating genes involved in the maintenance of the intestinal barrier integrity, such as muc2, ITF, cldn1 as well as other tight junction proteins (Figure 5) (Kumar et al., 2020). Given that HIF-1α plays a direct role in preserving the intestinal epithelial integrity by promoting barrier functionality (Muenchau et al., 2019), the increased integrity of the gut barrier may have immunosuppressive effects, as it seals paracellular pathways while inhibiting the immune cells activation (Chelakkot et al., 2018). Both HIF-1α and HIF-2α are expressed in the intestinal epithelial cells of ulcerative colitis and Crohn’s disease patients and in mouse models of colitis (Xue et al., 2013). In a model of radiation-induced intestinal toxicity, HIF-2α restores epithelial integrity and reduces apoptosis by inducing angiogenic gene expression (Olcina and Giaccia, 2016). Following intestinal injury, HIF-2α directly regulates chemokine/cytokine networks to recruit neutrophils and multiple pro-inflammatory mediators to eliminate noxious stimuli and restore the mucosal barrier (Singhal and Shah, 2020). The differentiation of regulatory T (Treg) (Lei et al., 2015) cells plays a crucial role in the establishment and proliferation of the human gut microbiome (Luu et al., 2017). In particular, under cellular hypoxic conditions, HIF-1α promotes the differentiation of naive CD4 cells into regulatory T cells by inducing the transcription of FoxP3., and the anti-inflammatory cytokine IL-10 is produced, to downregulate the immune response, thereby reducing the colonic inflammation while promoting the immune tolerance (Luu et al., 2017). Extracellular ATP is subject to enzymatic hydrolysis by nucleoside triphosphate dephosphorylase (NTPDase or CD39) to generate AMP, which is in turn converted into adenosine by Ecto-5′- Nucleotidase (5-NT or CD73) (Allard et al., 2017). Adenosine exerts immune-modulatory effects and promotes the enhancement of the epithelial barrier by activating A2B adenosine receptors, that then trigger the phosphorylation of vasodilator-stimulated phosphoprotein (VASP) (Aherne et al., 2015). Elevated expression levels of HIF-1α were evidenced in patients with Crohn’s disease and ulcerative colitis, indicating its protective role in mitigating inflammatory bowel disorders by improving the epithelial barrier functionality (Shah, 2016).

[image: Figure 5]

FIGURE 5
 HIF-1α plays an important role in maintaining the intestinal homeostasis as it enhances the epithelial barrier integrity by upregulating the expression of genes, thereby reducing intestinal inflammation, and promoting microbial colonization. IEC and other cellular activation (such as ILC3) release anti-inflammation cytokines and increase the oxygen consumption to stabilize the expression of HIF-1α.




4.2. Interaction of NF-κB and HIF-1α in the intestine

The maintenance of gut homeostasis depends on an intricate functional crosstalk between HIF-1α and NF-κB signaling pathways. Specifically, HIF-1α inhibits TAK1, which in turn prevents the downstream activation of IKK, ultimately leading to downregulation of NF-κB activity and decreased inflammation (Liu et al., 2017). The transcription factor NF-κB is involved in the expression of numerous genes involved in immune response, serving as a key mediator of inflammatory responses. Specifically, NF-κB induces the expression of numerous pro-inflammatory genes, which encoding cytokines and chemokines, and also is involved in the regulation of inflammasomes (Cutolo et al., 2022). HIF-1α pathway indeed strongly affects the epithelial and immune system function and development during inflammation by activating an adaptive response in these cells (Taylor et al., 2016). The pro-inflammatory function of NF-κB has been widely investigated in macrophages, which are innate immune cells located across several tissues with defensive functions against infectious agents. Notably, the constitutive activation of NF-κB was detected in the inflamed colonic tissue of individuals diagnosed with IBD (Liu et al., 2017). NF-κB serves as a pivotal transcription factor in M1 macrophages and plays a crucial role in inducing a multitude of inflammatory genes, such as those encoding TNF-α, IL-1β, IL-6, IL-12p40, and cyclooxygenase-2 (Wang et al., 2014). A recent study employing dextran sulfate sodium (DSS)-induced colitis mouse model reported that the absence of HIF-1α in dendritic cells leads to intestinal inflammation through the upregulation IL-6 and IL-23 (Flück et al., 2016). Additionally, HIF-1α can activate NF-κB under hypoxic conditions and enhance the expression of TNF-α (Gerri et al., 2017; Gunton, 2020). Furthermore, HIF-1α-induced NF-κB pathway increases TLRs expression while inducing an inflammatory cascade leading to ECs injury (Groschwitz and Hogan, 2009; Gerri et al., 2017). In turn, downregulation of HIF-1α expression can effectively reduce the inflammation and oxidative stress-induced damage during EC stress in hyperglycemia-induced mice (Liu et al., 2018; Xie Y. et al., 2019). The stabilization of HIF-1α conferred protective effects by attenuating the NF-κB signaling pathway, and thus reducing the cellular inflammation (Bandarra et al., 2015). Given the potential therapeutic properties of HIF for inflammatory disorders, further investigations into the role of inflammatory cytokines in the HIF pathway may provide novel therapeutic insights into the management of inflammatory diseases.



4.3. Hypoxia-mediated effects of HIF-1α and SCFAs

Microbiota-derived short-chain fatty acids (SCFAs) have gained a growing attention in recent years. The microbial supply for SCFAs, especially butyrate, is a recognized contributor to the gut homeostasis and disease resistance, while is used as a favorable energy source for enterocytes of the colon (Wang et al., 2021). The mucus layer, secreted by goblet cells, functions as a protective barrier against both endogenous and exogenous irritants, as well as microbial adhesion and invasion (Kang et al., 2022). As a vital element of the innate defense system, the mucosal barrier not only contributes significantly to mucosal repair but also safeguards the mucosal epithelium from a range of injuries within the gastrointestinal tract (Guo et al., 2023). SCFAs increase oxygen consumption by intestinal epithelial cells, reduce their availability in the intestine and lead to hypoxia (Bersten et al., 2013; Pral et al., 2021). The decrease in oxygen utilization stabilizes the expression of HIF-1α and translocates it to the nucleus, causing the transcriptional expression of multiple genes (Choudhry and Harris, 2018). Stable expression of HIF-1α upregulates the expression of related genes such as MUC2, MUC3, and intestinal trefoil factor (Guo et al., 2023). Furthermore, related studies have shown that mice lacking HIF-1α exhibit less organized and diffusible mucin granules, suggesting that HIF-1α is necessary for mucin processing and maintenance of mucosal integrity (Kumar et al., 2020). Fachi et al., demonstrated in a mouse model that butyrate increases the expression of claudin in a HIF-1α-dependent manner, leading to improved barrier integrity and reduced inflammation by inhibiting microbial translocation (Fachi et al., 2019; Muenchau et al., 2019), and HIF-1α was found to be required for butyrate protection of the intestinal epithelium in a mouse model of Clostridium difficile infection (CDI) (Fachi et al., 2019). Butyrate inhibits PHDs leading to the stabilization of HIF-1α, which in turn upregulates the expression of genes involved in intestinal barrier function, including muc2, ITF, cldn1, and other tight junction proteins (Kumar et al., 2020). Kelly et al. (2015) demonstrated that the treatment of Caco-2 cells with butyrate resulted in a decreased barrier permeability. Studies demonstrated that the knockdown of HIF-1β using specific shRNA in T84 and Caco-2 cells resulted in a decrease in the expression of claudin-1 at both mRNA and protein levels along with defects in barrier function and abnormal morphology of tight junctions (Muenchau et al., 2019). The researchers found that the gut barrier was weakened, HIF-1α was activated and the HIF-1αΔIEC phenotype was reversed during 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis in a mouse model (Karhausen et al., 2004; Holmquist-Mengelbier et al., 2006). Hirota et al., reported an alleviation of intestinal injury and inflammation induced by C. difficile in mice expressing HIF-1α in IECs compared to Hif1α-deficient mice (Hu et al., 2003; Hirota et al., 2010). Taken together, these findings suggest that SCFAs increase the oxygen consumption of intestinal epithelial cells, stabilize the expression of HIF-1α, and upregulate the gene expression of tight junction proteins and intestinal barrier function, maintaining mucosal and epithelial barrier integrity, thereby reducing intestinal inflammation and promoting Microbial colonization.



4.4. HIF-1α and SCFA-mediated regulation of ILC3s

Innate lymphoid cells (ILCs) play a crucial role in regulating mucosal immunity, inflammation, and tissue homeostasis.” ILCs includes cytotoxic cells (NK cells) and “helper-like” ILCs, that are primarily tissue-resident cells and play a vital role in tissue homeostasis, inflammation, and mucosal immunity. These cells act rapidly in the immune response, responding to signals or inducer cytokines that are expressed by tis-sue-resident cells (Vivier et al., 2018). ILC3s are highly prevalent in mucosal tissues and play a crucial role in the innate immune response against extracellular bacteria and in the containment of intestinal commensals (Rankin et al., 2016). SCFAs regulates the number of ILC3s in peripheral tissues and attenuates rodent infection in mouse gut by promoting cytokine signaling and activating the mammalian target of rapamycin (mTOR) pathway (Sepahi et al., 2021). ILC3s produce the predominant homeostatic cytokine, IL-22, which is important for the maintenance of the intestinal homeostasis and proliferation of intestinal stem cells (Figure 5). Studies using antibodies against IL-22 and IL-22 knockout mice have demonstrated the role of this cytokine in alteration of the gut microbiota by stimulating the production of antimicrobial peptides (AMPs) such as the regenerating protein RegIIIγ (Lo et al., 2019). Additionally, activation of hypoxia/HIF-1α signaling was shown to enhance murine resistance to C. difficile infection. This was demonstrated by an improvement in clinical scores together with a reduction in intestinal bacterial translocation in infected wildtype (WT) mice com-pared to mice with a conditional RORyt-specific HIF-1α knockout (HIF-1αfl/flRORc-Cre) (Fachi et al., 2021). Several studies have also demonstrated that butyrate has anti-inflammatory effects on M1 macrophages stimulated with LPS, as it is capable of reducing the production of pro-inflammatory mediators such as NO and IL-6 (Chang et al., 2014). M2 macrophages are involved in the resolution of inflammation and tissue repair by producing anti-inflammatory cytokines such as IL-10 and IL-13, as well as growth factors and extracellular matrix proteins (Cekic and Linden, 2016; Liu et al., 2017). Commensal microbe-derived butyrate, as a novel effector molecule, can ameliorate DSS-induced colitis in mice by reducing the activation of M1 macrophages and promoting the differentiation of regulatory T cells. DCs treated with butyrate show less ability to stimulate T cells with a reduction in the production of the pro-inflammatory cytokines IL-12p40 and IFN-γ, while instead releasing greater amounts of the an-ti-inflammatory cytokine IL-10 (Liu et al., 2012).



4.5. HIF-1α and intestinal homeostasis mediate alcoholic liver disease

Previous research showed that alcoholic liver disease (ALD) is associated with gut dysbiosis and release of endotoxins (Shao et al., 2018). Shao et al. demonstrated that HIF-1α plays a critical role in regulating the expression of genes involved in maintaining intestinal homeostasis, including those involved in hepatic lipogenesis, maintenance of intestinal barrier function, antimicrobial defense, and the normal microbiome (Zhao et al., 2010). Goblet cells, a specialized cell type within the intestinal epithelium, are responsible for producing protective trefoil factors and mucins, which are heavily core glycosylated and can be found within the cell membrane or secreted into the lumen where they can form the mucus layer (Zhao et al., 2010; Shao et al., 2018), which is the first barrier encountered by bacteria and that needs to be penetrated in order to reach the epithelial cells (Johansson et al., 2008). In IEhif1α−/− mice subjected to alcohol exposure, there is a decrease in intestinal trefoil factor (ITF), claudin-1, and p-glycoprotein, leading to a compromised gut barrier functionality. This leads to an increased concentration of lipopolysaccharide in the serum and E. coli protein in the liver (Shao et al., 2018). Long-term and excessive alcohol consumption can lead to intestinal dysbiosis, which leads to increased intestinal permeability and translocation of LPS into the blood. After LPS binds to TLR4 on hepatocytes (including hepatocytes and Kupffer cells), it triggers an inflammatory response and Leads to hepatic steatosis (fat buildup) and inflammation (Shao et al., 2018). Activation of HIF-1α can regulate the gut bacterial homeostasis by increasing the production of anti-microbial peptides. Additionally, HIF-1α stabilization leads to upregulation of P-glycoprotein and tight junction proteins, which help to maintain barrier functions (Chen et al., 2015). Therefore, ALD can be prevented/treated by developing dietary methods and drugs that specifically activate the intestinal HIF-1α.




5. Future perspectives

HIF-1α represents a crucial transcription factor produced under hypoxic conditions, and it plays a pivotal role in the regulation of several cellular processes, including angiogenesis, glucose metabolism, apoptosis, and autophagy. Moreover, HIF-1α is involved in the regulation of multiple signaling pathways, being essential during the body growth and development, as well as in several physiological and pathological processes. Diverse HIF isoforms are responsible for physiological and pathological processes, and HIF-1α may be involved in the development of diseases through the regulation of multiple target genes. Comprehensive investigations on HIF-1α better elucidated its regulatory roles in angiogenesis, glucose metabolism, apoptosis, autophagy, and several signaling pathways. It is well to point out that further advancements in HIF-1α-based therapeutic strategies and the related research will gain more attention, and it may lead to the development of potent HIF-1α inhibitors to use for clinical applications, allowing new discoveries and achievements in terms of disease prevention and treatment.

Significant differences in baseline oxygen tension between gastrointestinal mucosal tissues play unique roles in intestinal homeostasis and inflammation. With in-depth research, more and more evidence shows that the intestinal mucosal barrier, as an important component of intestinal immunity, not only serves as a medium for the absorption and exchange of substances between organisms and the environment, but also prevents external antigens from entering the body. The complete composition and function of the intestinal mucosal barrier function is critical for maintaining immune homeostasis. Once the intestinal barrier function is damaged under the action of multiple factors, immune homeostasis will be disrupted and inflammatory responses will be triggered. Hypoxia regulates the expression of hundreds of genes through HIF transcription factors, such as enhancing tight junctions and reducing intestinal permeability, as well as increasing mucus and AMP to protect mucosal integrity. HIF has been extensively studied in the areas of modulating intestinal tissue barrier function, metabolism, and inflammatory and immune responses. Many studies have highlighted the therapeutic potential of targeting hypoxic signaling pathways in intestinal diseases. Therefore, hypoxia and activation of the HIF pathway may be considered as putative therapeutic targets for the treatment of certain inflammatory and/or infectious diseases, particularly those affecting the gut such as CDI and IBD. Therefore, further studying the interaction between HIF and intestinal microorganisms may be a new strategy for preventing and treating different diseases in the future.
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Background: Previous observational studies have shown that there is an important relationship between gut microbiota and hypertension, we performed a two-sample Mendelian randomization analysis to examine whether the gut microbiota is causally related to hypertension in order to find a basis for potential diagnostic or intervention approaches for hypertension.

Methods: We obtained significant single nucleotide polymorphisms related to gut microbiota and hypertension from publicly available genome-wide association studies for a two-sample Mendelian randomization study. A total of 18,340 individual genome-wide genotype data were included from 24 population-based cohorts. The inverse-variance weighted meta-analysis is the main analytical method for evaluating causal relationships, and the Mendelian randomization research results have been validated through a series of sensitivity analyses.

Results: The inverse-variance weighted analysis results indicated that phylum Verrucomicrobia (OR:0.831, 95%CI: 0.710–0.972; p = 0.021), family BacteroidalesS24.7group (OR:0.672, 95%CI: 0.496–0.911; p = 0.01), family Bifidobacteriaceae (OR:0.709, 95%CI:0.569–0.884, p = 0.002), genus Adlercreutzia (OR: 0.991, 95%CI: 0.982–0.999, p = 0.035), genus Phascolarctacterium (OR:0.819, 95%CI:0.685–0.981; p = 0.03), genus LachnospiraceaeNK4A136group (OR:0.990, 95%CI:0.981–0.999; p = 0.025), and genus Ruminococcus2 (OR:0.988, 95%CI: 0.979–0.997; p = 0.008) had protective causal effects on hypertension. The Family Alcaliginaceae (OR:1.011, 95%CI:1.000–1.021, p = 0.04), Genus Anaerostipes (OR:1.375, 95%CI:1.096–1.653; p = 0.025), Genus Collinsella (OR:1.899, 95%CI:1.361–2.348; p = 0.02), and Genus Lachnospiraceae_UCG_010 (OR:1.536, 95%CI:1.072–2.202; p = 0.019) were associated with a higher risk of HTN. The reverse Mendelian randomization analysis results showed no reverse causal relationship between HTN and these bacterial taxa.

Conclusion: Our Mendelian randomization analysis results indicate a potential causal relationship between these bacterial taxa and hypertension, providing a new perspective for the treatment and prevention of hypertension.

KEYWORDS
 hypertension, gut microbiota, Mendelian randomization, causal relationship, blood pressure


1 Introduction

As a global public health concern, Hypertension (HTN) is related to a significant global burden of cardiovascular disease and premature death (Mills et al., 2020). Hypertension is also a leading hazard factor for cerebrovascular, cardiovascular, and chronic kidney diseases (Franklin and Wong, 2013; Mills et al., 2016; Kjeldsen, 2018). Globally, Compared to high-income countries, without effective intervention the increasing burden of hypertension in low- and middle-income countries will exacerbate the global epidemic of cardiovascular and kidney diseases. By 2010, more than 30% of the adult population (1.39 billion) suffered from hypertension, and hypertension is also recognized as the primary cause of global mortality (Zhou et al., 2021). The prevalence of hypertension is steadily rising worldwide due to factors such as an aging population and increased exposure to lifestyle risk factors, including unhealthy diets (such as high alcohol consumption, excessive sodium intake, and insufficient potassium intake) and lack of physical activity (Whelton, 2002; Louca et al., 2020). To effectively prevent and treat hypertension, it is crucial to gain a better understanding of the underlying mechanisms that contribute to its development. However, the exact cause of the increasing incidence rate of hypertension remains to be fully elucidated.

It is believed that the development process of hypertension is multifactorial, and one’s predisposition to hypertension is influenced by bot genetic and environmental factors, and the interaction of the two. A multitude of environmental factors increase the risk for HTN, including unbalanced diet, lack of physical activity, overweight and obesity, smoking, and psychological stress (Louca et al., 2020; Tsao et al., 2023). Recently, accumulating evidence has indicated that gut microbiota (GM) composition is closely related to human health and cardiovascular disease, including hypertension, which was strongly supported by at least three systematic reviews (Tang et al., 2017; Muralitharan et al., 2020; Louca et al., 2021). Considerable attention has been paid to the potential role of the gut microbiome in altering the development of hypertension, obesity, type-2 diabetes, and atherosclerosis (Tilg and Kaser, 2011; Howitt and Garrett, 2012; Karlsson et al., 2012; Qin et al., 2012; Tang et al., 2013; Yan et al., 2017). Studies have consistently shown that patients with hypertension exhibit dysbiosis in their gut microbiota, including reduced microbial richness, evenness, and diversity, and an increase in the Firmicutes/Bacteroidetes ratio (Yang et al., 2015).

Compared with germ-free mice that received an FMT (fecal microbiota transplantation) from 2 normotensive donors, germ-free mice that received FMT from a hypertensive human donor developed a significant increase in diastolic and systolic blood pressure after 8 weeks (Li et al., 2017; Muralitharan et al., 2020). In addition, daily consumption of probiotics for more than 8 weeks can significantly reduce diastolic and systolic blood pressure in hypertensive patients (Khalesi et al., 2014). Oral medication (minocycline) can also regulate blood pressure and normalize the ratio of Firmicutes to Bacteroidetes in spontaneously hypertensive rats and angiotensin II-induced hypertensive rats (Yang et al., 2015). The observational study showed that the composition and abundance of intestinal microbiota in HTN patients had significant changes compared with the healthy control group. However, while all this research evidence emphasizes the correlation between gut microbiota and HTN, it is still unclear which specific bacterial taxa lead to population differences (Yang et al., 2015; Yan et al., 2017). Confirming whether the correlation between gut microbiota and hypertension is causal and which microbiota taxa are the most important for hypertension is of great significance for the clinical practice of HTN management. Further research on the causal relationship between hypertension and gut microbiota will provide new prospects and perspectives for the treatment and prevention of hypertension and related diseases.

The traditional observational study is vulnerable to the influence of many potential factors such as lifestyle, socioeconomic status, and so on in the implementation process, which is prone to prejudice. Large randomized controlled trials (RCT) or cohort studies for a specific gut microbiome taxa are expensive however, so a new strategy is needed to study the causal effect of gut microbiome taxa on hypertension.

Mendelian randomization (MR) studies use genetic variations associated with modifiable exposure, typically single nucleotide polymorphisms (SNPs), to statistically evaluate the causal relationship between exposure and outcomes, in order to reduce confounding factors (lifestyle, socio-economic factors) and potential biases in reverse causality (Skrivankova et al., 2021). At the same time, MR research can overcome the shortcomings of extrapolation differences and data acquisition difficulties of traditional observational epidemiological research results. The purpose of this study is to explore the causal effects of gut microbiota on hypertension, systolic blood pressure (SBP), and diastolic blood pressure (DBP) using the Genome-Wide Association Study (GWAS) dataset through MR studies.



2 Materials and methods

The summary-level data used in this study was obtained from publicly available GWAS studies. Each cohort involved in the GWAS study received ethical approval and participation consent from their respective institutions, and aggregated data was published for analysis. In short, the gut microbiota is exposure, while hypertension is the outcome. This study employed stringent inclusion and exclusion criteria to select single nucleotide polymorphisms (SNPs) that are strongly associated with specific gut microbiota taxa as instrumental variables (IVs). Sensitivity analyses were performed to assess the robustness of the observed correlations. Furthermore, a reverse Mendelian randomization (MR) analysis was conducted to address potential confounding effects of hypertension on the causal relationship between gut microbiota and health outcomes.

In addition, the MR analysis relies on three key assumptions: (1) the instrumental variables used should exhibit a significant correlation with the exposure of interest. The strength of this correlation is typically evaluated using F-statistics, with a value of F ≥ 10 indicating no significant evidence of instrumental variable bias. If the F-statistic is less than 10, indicating a weak correlation, the corresponding instrumental variable is excluded. The formula for the F-statistic is F = (beta/se)^2. (2) The instrumental variables should be independent of confounding factors that may influence both the exposure and the outcomes. (3) There should be no horizontal pleiotropy, meaning that the instrumental variables only affect the outcomes through their impact on the exposure. Overall, the study employed rigorous methods to select instrumental variables and ensure the validity of the MR analysis.


2.1 Gut microbiota

The summary data of gut microbiota was obtained from a large-scale multi-ethnic GWAS coordinated by the MiBioGen consortium. As the largest human microbiome genetics study to date, a total of 18,340 individual genome-wide genotype data were included from 24 population-based cohorts (11 countries in Asia, Europe, North America, etc.) (Kurilshikov et al., 2021), and 22 cohorts are composed of adults or adolescents (n = 16,632), and two cohorts are composed of children (n = 1708). Among the 211 microbiome taxa, it includes five biological classifications: phylum, class, order, family, and genus. Five levels of IV of gut microbiome taxa were extracted from this large-scale GWAS to be applied in this study. The summary statistical data of the gut microbiota association research can be publicly available on the website www.mibiogen.org.



2.2 Hypertension

We obtained the outcome data (blood pressure) from the MR basic database, which is a well-planned database designed to ensure the effective implementation of the Mendelian randomization method. The MR-base database includes 1,674 GWAS datasets1 (Hemani et al., 2018). To identify relevant studies, we searched for keywords such as “hypertension,” “high blood pressure,” “systolic blood pressure,” and “diastolic blood pressure” in the MR-base database. We focused on studies conducted on the European population up to 2023.

Among the identified studies, we selected the one with the largest sample size as our outcome dataset. The selected dataset, with the ID “ukb-b-14177,” is from the MRC Integrative Epidemiology Unit (MRC-IEU) consortium based on the UK Biobank. The UK Biobank is a large and detailed prospective research institute that recruited over 500,000 participants aged 40 to 69 globally between 2006 and 2010 (Sudlow et al., 2015). The “ukb-b-14177” dataset includes 46,188 participants, with 2,076 cases and 460,857 controls. This dataset provides information on the diagnosis of hypertension by doctors. For the outcomes of systolic and diastolic blood pressure, we selected the datasets “ieu-b-38” and “ieu-b-39,” respectively. These datasets are based on the International Consortium for Blood Pressure (ICBP), which is a multi-stage design GWAS study on systolic and diastolic blood pressure for 200,000 Europeans (The International Consortium for Blood Pressure Genome-Wide Association Studies, 2011).2 The “ieu-b-38” and “ieu-b-39” datasets include summary-level data from the ICBP study (Evangelou et al., 2018) (Supplementary Tables). Please note that Supplementary Tables are available for further details.



2.3 Statistical analysis

All statistical analyses in this study were conducted using R software (version 4.1.2). We utilized the R software package “TwoSampleMR” to perform MR analysis investigating the causal relationship between the GM classification group and hypertension. The evaluation indicators for assessing the magnitude of each specific microbiota effect in MR studies were odds ratio (OR) and 95% confidence interval (95% CI). A statistical significance level of p < 0.05 was considered as evidence of potential causal effects (Waters and Ley, 2019; Xiang et al., 2021).

To ensure the authenticity and accuracy of the causal relationship between gut microbiome and hypertension, we implemented quality control measures to eliminate the interference of strong linkage imbalance caused by SNPs. This was accomplished through a series of screening settings: (1) SNPs with a value of p threshold of 1 × 10–5 were identified based on the genetic group of 18,000 European individuals; (2) The clumping distance between two SNPs was set to 10,000 kb; (3) The correlation coefficient r2 threshold of linkage disequilibrium (LD) between genes is set to 0.001. (4) Palindrome SNPs were removed to prevent the influence of alleles on the causal relationship between gut microbiome taxa and hypertension. (5) In cases where there was no SNP associated with exposure in the outcome GWAS, a proxy SNP significantly associated with the variation of interest (r2 > 0.8) was selected.

The primary analysis method used in this Mendelian randomization (MR) study was inverse variance weighted (IVW) (Burgess et al., 2013; Wang et al., 2021). IVW is a meta-analysis technique that combines ratio estimates with inverse variance weighting, ensuring the validity of each instrumental variable (IV) and accounting for SNP heterogeneity (Burgess et al., 2013; Bowden et al., 2017; Liu et al., 2022). The MR-Egger method, on the other hand, includes an intercept term in the weighted regression to assess horizontal pleiotropy among IVs (Burgess et al., 2017). The presence of a non-zero intercept suggests the presence of horizontal pleiotropy. While MR-Egger provides an estimate of the causal effect, it is less statistically efficient (Bowden et al., 2015). In contrast, the weighted median approach is able to provide consistent estimates of causal effects even when more than 50% of IVs are invalid (Hartwig et al., 2017). The weighted median method has advantages over MR-Egger in terms of result accuracy and maintaining a more precise causal effect estimate (Bowden et al., 2016; Xiang et al., 2021). Additionally, weighted mode and simple mode were used as additional methods for MR analysis (Hartwig et al., 2017; Wu et al., 2020).

To ensure the reliability and robustness of the causality assessment results, sensitivity analyses were performed. Cochrane’s Q-test was used to assess heterogeneity among the selected SNPs associated with each bacterial taxa. A value of p < 0.05 indicated significant heterogeneity among the IVs. MR-Egger regression was used to test for horizontal pleiotropy among the included SNPs. Furthermore, a weighted median analysis was conducted, which is more robust to individual genetic variants with strong outlier causality estimates. To investigate the causal effect of hypertension (HTN) on the identified significant bacterial genus, a reverse MR analysis was performed (i.e., HTN as exposure and the identified causal bacterial genus as outcome) using SNPs associated with HTN as IVs.




3 Results

Table 1 shows the results of pleiotropy and heterogeneity tests for all bacterial taxa (phylum, order, family, genus) included in the study. In sensitivity analysis, we confirmed the impact of accurate MR results from one phylum, one order, three families, and seven genera on HTN.



TABLE 1 The results of pleiotropy and heterogeneity tests for all bacterial taxa.
[image: Table1]

Supplementary Tables show the relationship between 211 gut microbiome taxa and HTN; Figure 1 shows the results of Mendelian randomization analysis of three subtypes of hypertension and gut microbiota. For SBP, the IVW results showed a positive correlation between two bacterial traits: Genus Collinsella (OR:1.790, 95%CI:1.217–2.632; p = 0.003), Genus Lachnospiraceae_UCG_010 (OR:1.536, 95%CI: 1.072–2.202; p = 0.019) and systolic blood pressure, indicating that these two bacteria are risk factors for hypertension. And family BacteroidalesS24.7group (OR:0.672, 95%CI:0.496–0.911; p = 0.01) is negatively correlated with systolic blood pressure, indicating that these bacterial traits are protective factors for hypertension. The weighted median MR estimation also indicates that genus Collinsella (OR:1.899, 95%CI:1.361–2.348; p = 0.02) is a risk factor for systolic blood pressure.

[image: Figure 1]

FIGURE 1
 The results of Mendelian randomization analysis of three subtypes of hypertension and gut microbiota.


As for DBP, IVW analysis results showed a positive correlation between genus Anaerostipes (OR:1.399, 95%CI:1.103–1.773; p = 0.006) and diastolic blood pressure, and these bacterial traits are a risk factor for diastolic blood pressure. The weighted mode MR analysis results of Genus Anaerostipes (OR:1.375, 95%CI:1.096–1.653; p = 0.025) also support this viewpoint. The IVW analysis results of bacterial traits: family Bifidobacteriaceae (OR:0.709, 95%CI:0.569–0.884, p = 0.002), genus Phascolarctobacterium (OR:0.819, 95%CI:0.685–0.981; p = 0.03), order Bifidobacte- rials (OR:0.709, 95%CI:0.569–0.884; p = 0.002), phylum Verrucomimicrobia (OR:0.831, 95%CI:0.710–0.972; p = 0.021) indicate that they are protective factors for diastolic blood pressure and negatively correlated with diastolic blood pressure. The MR analysis results of other weighted median values indicate that order Bifidobacterials (OR:0.738, 95%CI: 0.478–0.998; p = 0.022) is negatively correlated with diastolic blood pressure and has a protective effect on it.

As for DiagHyper (vascular/cardiac problem diagnosed by doctors: hypertension), IVW analysis results showed that family Alcaliginaceae (OR:1.011, 95%CI: 1.000–1.021, p = 0.04) was positively correlated with hypertension, indicating that these two bacteria are risk factors for hypertension, while genus Adlercreutzia (OR: 0.991, 95%CI:0.982–0.999, p = 0.035), genus Lachnospiraceae NK4A136 group (OR:0.990, 95%CI:0.981–0.999; p = 0.025), genus Ruminococcus2 (OR:0.988, 95%CI:0.979–0.997; p = 0.008) were negatively correlated with hypertension, indicating that these bacteria traits are protective factors for hypertension.



4 Discussion

This Two-sample MR study is the first to analyze the causal relationship between gut microbiome taxa and hypertension through multiple datasets. After sensitivity analysis and reverse causality analysis, and the deletion of gut microbiota taxa lacking validity and reliability, The research results indicate that the levels of phylum Verrucomimicrobia, family BacteroidalesS24.7group, family Bifidobacteriaceae, genus Adlercreutzia, genus Phascolarctacterium, genus Lachnospiraceae NK4A136 group, and genus Ruminococcus2 are negatively correlated with the risk of hypertension, and have a protective causal effect on the pathogenesis of HTN. Family Alcaliginaceae, Genus Anaerostipes, Genus Collinsella, and Genus Lachnospiraceae- _UCG_010 may be risk factors for the onset of hypertension. The results were examined through some sensitivity analyses—MR-Egger analysis, IVW analysis, and MR-PRESSO Global Test analysis (Verbanck et al., 2018), which is consistent with our findings, and may promote the study of novel biomarkers in future HTN experiments. In the meantime, our results provide novel insights for future HTN prevention and therapeutic treatments: targeted regulation of dysbiosis of specific gut microbiome taxa to prevent and treat HTN.

The gut microbiota has the characteristic of diversity, it is mainly made up of 4 phyla: (1) Firmicutes, (2) Bacteroidetes, (3) Actinobacteria, and (4) Proteobacteria. The relative balance of gut microbiota composition plays a key role in maintaining intestinal immunity and systemic homeostasis; the imbalance of gut microbiota is often referred to as microecological imbalance, which is marked by the ratio of Firmicutes (F) to Bacteroides (B), compared to changes in the microbiota of healthy individuals (Guarner and Malagelada, 2003). Furthermore, some bacteria from the phylum Firmicutes are important producers of metabolic products that lower blood pressure, such as short-chain fatty acids (Petersen and Round, 2014). A multitude of studies indicated that there is an association between gut microbiota and hypertension (Yang et al., 2015; Li et al., 2017; Sun et al., 2019). The effect of gut microbiota on blood pressure regulation may be partially explained by the production of short-chain fatty acids (SCFAs) by gut bacteria, including beneficial SCFAs (acetate, butyrate, and propionate) and non-beneficial lactates. Meanwhile, Beli et al. suggested that gut microbiota interventions would be a new method for the prevention and treatment of HTN (Jose and Raj, 2015).

Considering the GM classification group at the phylum level, we found that Phylum Verrucomimicrobia is a protective factor for diastolic blood pressure. Verrucomimicrobia exists in the inner layer of the intestinal mucosa and is abundant in healthy individuals. They can decompose polysaccharides such as mucopolysaccharides and cellulose, providing energy and nutrients. The Verrucomimicrobia can also produce short-chain fatty acids, such as propionic acid and butyric acid, which play an important role in regulating intestinal health and the immune system (Schlesner et al., 2006). At the class level, we did not find a causal relationship between the GM taxa and HTN. It may be because refining the interactions between different taxonomic groups (such as the level of families and genera) can affect the observation results.

Furthermore, at the order level, we found that order Bifidobacteriales has a protective causal effect on diastolic blood pressure. Studies have shown that the abundance of bifidobacteria is higher in the healthy control group than in HTN patients (Peng et al., 2018). Short-chain fatty acids are produced in the process of fiber fermentation that are difficult to digest, and are one of the most characteristic microbial-derived metabolites. Acetate, propionate, and butyrate are three SCFAs with high abundance (Verhaar et al., 2020). The abundance of bifidobacteria in hypertension patients is lower, while Bifidobacterium, Enterococcus, and Lactobacillus are considered as probiotics. These three SCFA-producing microbes can produce SCFA and have multiple health benefits such as anti-inflammatory and beneficial metabolic effects (Hiippala et al., 2018; Parada Venegas et al., 2019). In addition, oral treatment of gut microbiota (specific bifidobacteria, lactobacilli, and SCFA-producing Anaerobutyricum soehngenii species that produce short-chain fatty acids) has a moderate antihypertensive effect on humans (Khalesi et al., 2014; Gilijamse et al., 2020).

At the family level, the family BacteroidalesS24.7group is a protective factor for systolic and diastolic blood pressure; research has shown a positive correlation between Bacteroides and blood pressure (Palmu et al., 2020). The family Bifidobacteriaceae belongs to the order Bifidobacteriales, and the analysis of the family Bifidobacteriaceae is as above. Family Alcaliginaceae is a risk factor for hypertension. Family Alcaliginaceae: In animal experiments, it was observed that after FMT transplantation in spontaneously hypertensive rats with normal blood pressure rats, the abundance of family Alcaliginaceae decreased in the gut (Adnan et al., 2017).

Unlike other GM and hypertension studies, we further identified three taxa at the genus level that increased the systolic blood pressure risk, five taxa at the genus level that increased the diastolic blood pressure risk, and four taxa at the genus level that increased the hypertension risk. The research results also showed that the genus adlercreutzia is negatively associated with BP Indices (Dan et al., 2019). Palmu et al. (2020) found that Genu Collinsella is Positively Associated with BP Indices. Meanwhile, cross-sectional studies in humans showed that the gut microbiota of symptomatic atherosclerosis patients had a higher abundance of the Collinsella genus, Enterobacteriaceae, Streptococcaceae, and Klebsiella spp., and a lower abundance of bacteria Eubacterium, Roseburia, and Ruminococcaceae spp. that can produce short chain fatty acids compared with the healthy control group (Karlsson et al., 2012; Jie et al., 2017; Liu et al., 2019). In animal models of hypertension complications (acute myocardial infarction), the gut microbiome, especially the Lachnospiraceae family, Syntrophomonadaceae family, and Tissierella soehngenia genus, exhibit a higher trend (Wu et al., 2017). Cross-sectional studies on gut microbiota composition in hypertension in humans showed a lower abundance of genus Anaerostipes in HT. Salt intake in diets will affect the incidence rate of hypertension and the composition of intestinal microbiota. In animal trials, higher salt intake is associated with changes in microbial community composition, including an increase in Ruminococcus and Lachnospiraceae, as well as a decrease in Lactobacillus and Oscillibacter (Wilck et al., 2017; Bier et al., 2018). Butyrate is a kind of SCFA, and the microbial community that produces butyric acid includes bacteria from families Ruminococcaceae and Lachnospiraceae, as well as Anaerobutyricum hallii and Anaerostipes spp. Our research results also indicated a negative correlation between the Lactobacillus genus and some Lachnospiraceae genera and blood pressure. The reduction of butyric-acid-producing bacteria is related to inflammatory diseases (including diabetes, obesity, hypertension, and inflammatory bowel disease), which is because butyric acid has an anti-inflammatory effect (Bach Knudsen et al., 2018; Li et al., 2018). Previous studies have shown that butyrate, as the main energy source of colon cells, can regulate tight junction proteins and maintain intestinal barrier integrity (Wu et al., 2019). Onyszkiewicz et al. (2019) found that butyrate enters the bloodstream after passing through the intestinal vascular barrier, and has a vasodilation effect on the mesenteric artery. This process occurs after acting on the G-protein coupled receptor (GPR) (Onyszkiewicz et al., 2019). Wang et al. (2017) found that sodium-butyrate can also inhibit ANGII induced hypertension by inhibiting the renin-angiotensin system mediated by the renin-(pro) renin receptor. In short, butyric acid may play an important role as a differentially beneficial metabolite in the regulation of hypertension. When analyzing the microbiota composition, a negative correlation between the SCFA-producing taxa Clostridiaceae, Ruminococcus, and Coprococcus on women and systolic BP was observed (Durgan, 2017). Bacteria within the Ruminococcaceae family are the key SCFAs-producing bacteria, which also play a crucial role in maintaining homeostasis and gut development (Biddle et al., 2013).

The main advantage of our study is that it is the first to use MR analysis to examine the relationship between gut microbiota and hypertension. This approach reduces confounding factors and provides more reliable results compared to observational studies. Additionally, our findings highlight the potential role of Verrucomimicrobia in the development of hypertension, which has not been previously reported. This suggests that Verrucomicronia may serve as a new biomarker for hypertension. However, our study does have some limitations. First, in terms of sample size, the gut microbiota GWAS contains a relatively small number of samples. Second, the MR study cannot determine whether there is data overlap in the included GWAS summary data. Of course, we have minimized the bias of participant overlap using the F-statistic (F > 10). Third, in this MR analysis, we did not find a causal relationship with HTN at the class level. Researchers can expand the sample to explore the relationship between gut microbiome taxa and HTN at the class level in future research.

In summary, our study provides a comprehensive assessment of the causal relationship between gut microbiota and hypertension. We identified eight gut bacteria (phylum Verrucomicrobia, order Bifidobacteriales, family BacteroidalesS24.7group, family Bifidobacteriaceae, genus Adlercreutzia, genus Phascolarctobacterium, genus Lachnospiraceae NK4A136 group, and genus Ruminococcus2) that have a negative causal relationship with hypertension, making them potential protective factors. Additionally, we found four gut bacteria (family Alcaligenaceae, genus Anaerostipes, genus Collinsella, and genus Lachnospiraceae_UCG_010) that have a positive causal relationship with hypertension, indicating they are hazard factors. These strains may serve as new biomarkers for the treatment and prevention of hypertension, providing new insights into the mechanisms underlying gut microbiota-mediated hypertension.
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Livestock on the Qinghai-Tibetan Plateau is of great importance for the livelihood of the local inhabitants and the ecosystem of the plateau. The natural, harsh environment has shaped the adaptations of local livestock while providing them with requisite eco-services. Over time, unique genes and metabolic mechanisms (nitrogen and energy) have evolved which enabled the yaks to adapt morphologically and physiologically to the Qinghai-Tibetan Plateau. The rumen microbiota has also co-evolved with the host and contributed to the host's adaptation to the environment. Understanding the complex linkages between the rumen microbiota, the host, and the environment is essential to optimizing the rumen function to meet the growing demands for animal products while minimizing the environmental impact of ruminant production. However, little is known about the mechanisms of host-rumen microbiome-environment linkages and how they ultimately benefit the animal in adapting to the environment. In this review, we pieced together the yak's adaptation to the Qinghai-Tibetan Plateau ecosystem by summarizing the natural selection and nutritional features of yaks and integrating the key aspects of its rumen microbiome with the host metabolic efficiency and homeostasis. We found that this homeostasis results in higher feed digestibility, higher rumen microbial protein production, higher short-chain fatty acid (SCFA) concentrations, and lower methane emissions in yaks when compared with other low-altitude ruminants. The rumen microbiome forms a multi-synergistic relationship among the rumen microbiota services, their communities, genes, and enzymes. The rumen microbial proteins and SCFAs act as precursors that directly impact the milk composition or adipose accumulation, improving the milk or meat quality, resulting in a higher protein and fat content in yak milk and a higher percentage of protein and abundant fatty acids in yak meat when compared to dairy cow or cattle. The hierarchical interactions between the climate, forage, rumen microorganisms, and host genes have reshaped the animal's survival and performance. In this review, an integrating and interactive understanding of the host-rumen microbiome environment was established. The understanding of these concepts is valuable for agriculture and our environment. It also contributes to a better understanding of microbial ecology and evolution in anaerobic ecosystems and the host-environment linkages to improve animal production.
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1 Introduction

Ruminants play an essential role in global human societies due to their unique ability, via their rumen microbiome, to convert low-quality feedstuffs into valuable animal products such as milk and meat for human consumption. The rumen microbiota exerts a profound influence on dietary nutrient metabolism, the quality of animal products, animal production, and the environment (Mizrahi et al., 2021). Over the past decades, the rumen microbiome has emerged as central to tackling major challenges associated with the global demand for agriculture, rising animal protein demands (milk and meat products, 63% and 76%, respectively) (Alexandratos and Bruinsma, 2012; Huws et al., 2018), approximately 18% of total methane (CH4) emissions from all anthropogenic sources (Mizrahi et al., 2021), and sustainable and efficient ruminant production along with land constraints (Huws et al., 2018).

Ruminant performance is not only affected by host genetics but also by the environment and the microorganisms that inhabit the rumen (Brito et al., 2020; Mizrahi et al., 2021). Genetics and environmental determinants and their interactions have guided empirical and theoretical research in animal production and ecology for decades (Brinks et al., 1962; Angilletta and Sears, 2011). Studies have reported that rumen microorganisms can provide more than 70% of the host's metabolic and protein requirements (Siciliano-Jones and Murphy, 1989; Bergman, 1990). The integrated interactions between the host, rumen microbiome, and the environment, therefore, mutually contribute to animal performance. Understanding the complex linkages between the rumen microbiota, the host, and the environment is essential to optimize rumen function to meet the growing demands for animal products while concurrently minimizing the environmental impact of ruminant production (Huws et al., 2018; Mizrahi et al., 2021). However, to date, little is known about the mechanisms related to host-rumen microbiome-environment linkages and how they ultimately benefit the animal in adapting to changes to optimize their performance.

More than 14 million yaks (Bos grunniens) are raised on the Qinghai-Tibetan Plateau. They are essential for the livelihood of the local inhabitants as they provide meat, milk, dung, fiber, and transport (Long et al., 1999a). Under the harsh environmental conditions, yaks have evolved and adapted themselves morphologically (Shao et al., 2010), physiologically (Ishizaki et al., 2005), and genetically (Qiu et al., 2012) to the severe Qinghai-Tibetan Plateau (QTP). Yaks are more efficient in utilizing the poor-quality, high-fiber forage that is mainly available for long periods on the QTP. Previous studies have reported that the rumen microbiota in yaks enables the host to survive the extreme environment (Zhang Z. et al., 2016; Mizrahi et al., 2021). In this review, we piece together the yak's unique adaptation to the QTP ecosystem by describing the rumen microbiome of yaks and the obligatory dependence of yaks on their microbes for the degradation and digestion of the plants they ingest. The linkages between host genes, metabolisms, and rumen microorganisms that coordinate and affect the quality of yak milk and meat are clarified. The review offers a systemic, integrated perspective on the host-rumen microbiome-environment linkages while attempting to decipher their key interactions for the purpose of understanding and regulating animal performance as a whole.



2 The harsh environment shapes the unique nutritional deprivation adaptation of yak

The Qinghai-Tibetan Plateau, regarded as the “Third Pole” and commonly referred to as the “Roof of the World,” has an average elevation exceeding 4,000 m above sea level (m a.s.l.). The high-altitude Qinghai-Tibetan Plateau is characterized by severe cold, low atmospheric pressure, oxygen partial pressure, and intense ultraviolet light, resulting in a short forage growing season (Long et al., 2008). Winters are particularly severe for grazing livestock, as the availability of forage is frequently insufficient and of subpar quality. The cold season could last for 8 months, especially in the dry forage phase in autumn and winter, during which time the cellulose and lignin contents gradually increase while the crude protein content decreases (Figure 1) (Long et al., 1999a). Neutral detergent fiber (NDF) contents account for up to 65.7% and crude protein account for only 2.96%−6.81% of the pasture dry matter from November to April (Xie and Chai, 1996; Ding et al., 2014). This nutritional shortage could result in a body weight loss of 30% or could even cause the death of the livestock (Long et al., 1999b). Such harsh environmental conditions have shaped the yaks' extraordinary nutritional deprivation adaptations to the harsh QTP. Yaks have demonstrated distinct energy and protein metabolic adaptations and host gene regulation.
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FIGURE 1
 Yaks exposed to natural pastures of different qualities.



2.1 Energy metabolism

Basal energy metabolism is defined as the minimal level of heat production during complete rest in a thermoneutral environment. It was estimated that the maintenance energy requirement for yaks is 458 kJ/kg BW0.75 (Han and Xie, 1991), and heat production scales to BW0.52 rather than BW0.75 (Hu, 1994; Hu et al., 2002). Diverging from other mammals, yaks exhibit a reduced metabolic rate as air temperature decreases, thereby employing a unique way of energy conservation (Han et al., 2002; Ding et al., 2014). At the lowest of the three elevations in the trials conducted by Hu (2001), the absolute fasting heat production of yaks exceeded that of yellow cattle (Bos taurus). However, such a distinction was not evident at the higher altitudes in their study. At 1–3 years of age, fasting heat production per day of yak at the altitudes of 3,250 m and 4,271 m were 329 kJ/kgW0.75 and 281–376 kJ/kgW0.75, respectively, compared to yellow cattle at 353–414 kJ/kgW0.75 and 360–516 kJ/kgW0.75, respectively (Hu and Xie, 1992; Han et al., 2002).



2.2 Nitrogen metabolism

Several studies have reported a higher efficiency of utilization of dietary nitrogen (N) in yaks than in lower-altitude cattle (Long et al., 1999c; Xue and Han, 2001; Wang et al., 2011). A few other studies reported the low N requirements for maintenance [0.40–0.53 g/(kg W0.75·d)] by yaks (Hu, 2001; Long et al., 2004). For instance, Guo et al. (2012) found that 87% of the urea synthesized in the liver of yak could be recycled into the digestive tract, providing nitrogen for rumen microbes to synthesize microbial proteins. With low N intake, rumen microbes are almost the only source of digestible protein for the host (Ørskov, 1982). Under such conditions, yaks utilized urea-N to meet the requirements of nitrogen for nearly 6 months (Wang et al., 2002), which could well point to an adaptive response of the yak to life at high altitudes and to the nutritional deprivation that yaks experience in winter and early spring.



2.3 Genes' regulation

Gene families related to nutrition assimilation and utilization and energy metabolism have expanded dramatically in the yak genome (Qiu et al., 2012). Qiu et al. (2012) linked nutrition metabolism from the field of yak host genes in comparison with cattle. These authors' study revealed five genes that were involved in integrated nutrition pathways and positively selected in the yak lineage. Among the genes, HSD17B12, GLUL, GCNT3, and WHSCL play important roles in the metabolism of fatty acids, amino acids, and polysaccharides. GLUL may be vital for the high level of nitrogen utilization in yaks (Qiu et al., 2012). Correspondingly, in nitrogen cycling, the PepT1 expression was found to be enriched in the yak epithelium of the small intestine compared to cattle epithelium (Wang et al., 2016). The positively selected changes in CAMK2B play a regulatory role in the secretion of gastric acid in the rumen, thereby contributing to the assimilation of short-chain fatty acids (SCFAs) that provide 70% of metabolic energy for the host and are produced by ruminal fermentation (Bergman, 1990; Qiu et al., 2012). Through the transcriptome analysis of rumen wall epithelial cells in yak and cattle, it was further revealed that 36 genes associated with the energy (SCFAs) and translocation were upregulated in yak compared to cattle. The genes were the following: SCFA transport: PLA2G5, FABP3, CLCN1, GABRA3, BEST1, SLC12A3, SLC4A11, P2RY4, P2RY6, SLC4A7, SLC20A2, SLC13A3, SLC4A3, SLC13A5, SLC6A6, and SLC16A6; fatty acid metabolic process: ALOX5AP, SYK, ABCD1, CPT1C, PLA2G15, PTGES, LTC4S, PRKAA1, PRKAB2, BRCA1, and MCAT; regulation of carbohydrate metabolic process: IFNG, DYRK2, and SPDYA; Glycolysis: LDHC, PKLR, and HK3; organic acid catabolic process: DDO; and pyruvate metabolic process: PC and ENO2 (Zhang Z. et al., 2016).




3 Rumen microbiome services are synergetic linkages with nutritional deprivation

The host functions as an ecosystem within which microbial processes play out. The gut microbiota of importance in ruminants maintains a healthy state for the host, especially the rumen microbiota. The biomass of rumen microorganisms is comprised of protozoa (~50%), fungi (~8%), bacteria (largely distributed), archaea (0.3%−4%), and little proportion of as yet largely uncharacterized viruses, especially phages (Tapio et al., 2017; Gilbert et al., 2020; Lobo and Faciola, 2021). In comparison with cattle, rumen microbial activity provides the following services for yaks:


3.1 Lower methane emission

Methane (CH4), a byproduct from ruminal fermentation by methanogens, results in energy loss, and the energy equivalent amounts to 2%−15% of gross energy intake (Moss et al., 2000; Shabat et al., 2016). Annual CH4 emissions from ruminants are approximately 2.1 GtCO2e (gigatons of carbon dioxide equivalent), accounting for 20.2% of global CH4 emissions (IPCC, 2019). Methane emission of yaks is less than other ruminants and has been confirmed through various approaches (mask, SF6, model estimation, and in vitro gas technique) (Figures 2A, B, Supplementary Tables 1, 2), indicating that yaks are low-carbon emission animals and are proven to have high efficiency (Shabat et al., 2016). The rumen microbiome determines the amount of CH4 production.
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FIGURE 2
 Box and whisker plots of rumen fermentation profiles comparing yaks and cattle. (A) The in vivo methane emission comparison (n = 7). (B) The in vitro methane production comparison (n = 9); (C) The in vivo comparison of feed digestibility (n = 3); (D) The in vitro comparison of feed digestibility (n = 9); (E) The rumen fermentation VFA profile (in vivo) (Acetate and TVFA: n = 17; propionate, butyrate, and AP ratio: n = 16); (F) The in vitro rumen fermentation VFA profile (n = 6) (see Supplementary Tables 1–5). Values in parentheses indicate the percentage from the statistical analysis comparing yaks with cattle (cattle represent baseline as zero). Wilcoxon Signed Rank test: **p < 0.01; *p < 0.05; ns = not significantly different from zero. TVFA, total volatile fatty acid; DM, dry matter; NDF, neutral detergent fiber; ADF, acid detergent fiber; AP ratio, acetate to propionate molar ratio.


Studies of bacteria reported that S24-7, Butyrivibrio, Shwartzia, Treponema, Clostridium, RFP12, Coriobacteriaceae, and Methanosphaera reduce CH4 emissions and improve animal production performance (Cunha et al., 2017). Under grazing conditions, the core genus (relative abundance >0.5%) of the yak is YRC22, with unidentifiable BS11 and BF311 and unidentified S24-7 and CF231 in Bacteroidetes; Treponema in Spirochaetes; Clostridium sensustricto in Firmicutes; and unrecognized RFP12 in Verrucomicrobia. Treponema and RFP12 are enriched in the grazing yak (Xue et al., 2017), which might be associated with the lower enteric CH4 emission.

It has been reported that the percentage of archaea in the rumen microorganisms is only approximately 0.3%−4%, but the percentage is vital as hydrogen sinks in the rumen and for CH4 emissions from ruminants. It is speculated that the low-methane emission trait may be due to the high diversity of archaea; the archaeal diversity in grazing yaks is higher than that in yellow cattle (Huang et al., 2016), which was also reported in another study (Xue et al., 2016). A high diversity in low CH4 emitters has been confirmed by Auffret et al. (2017). Methanobrevibacter (>60%), Methanomicrobium (~15%), and Methanomassiliicoccales (~16%) are the abundant genera in the archaeal community (St-Pierre and Wright, 2012; Borrel et al., 2014), while Methanobacteriales and Thermgymnomonas have been reported as the dominant archaea in yaks (Huang et al., 2012, 2016; Mi, 2016; Wang et al., 2017). Thermogymnomonas, which belongs to Thermoplasmatales-affiliated Lineage C (TALC), has the highest abundance. Methanobrevibacter, composing only 25% (Wang et al., 2017), and a large number of unknown methanogen TALCs were found in yaks (Huang et al., 2012). Thermoplasmatales, belonging to the family Methanomassiliicocaceae (Rumen cluster C, RCC), is a major component of methanogens (Janssen and Kirs, 2008; Poulsen et al., 2013; Borrel et al., 2014) with a methylotrophic methanogenesis pathway; methylotrophic methanogens, belonging to the class Thermoplasmata, have been associated with decreased CH4 production (Poulsen et al., 2013); and relative abundances are significantly higher in yaks than in cattle (Bos taurus) (Zhang Z. et al., 2016). Although the majority of methane is generated via the hydrogenotrophic methanogenesis pathway, i.e., utilizing H2 and CO2 or formate as substrates rather than acetate, the methylotrophic methanogenesis pathway, which employs methanol and methylamines as substrates, also contributes to a certain extent (Carberry et al., 2013), indicating that the methanogenesis pathway is unusual in yaks. Methanomassiliicoccales could also provide natural protection in the gut (Brugère et al., 2014) and tend to be more abundant in high-feed-efficiency ruminants (Li et al., 2016; Li and Guan, 2017). Methanobrevibacter gottschalkii, an archaea of higher abundance in cattle than yak (Zhang Z. et al., 2016), has also been correlated positively with CH4 emission (Tapio et al., 2017).

The density of protozoa in the rumen is between 104 and 106/ml, and its biomass is large, accounting for more than half of the rumen microorganisms. The total number of ciliates ranges from 0.7 to 8.5 × 105/ml in yaks (Bi et al., 1989; Xie et al., 1989; Gui et al., 2000; Yao et al., 2002), which is lower than that in cattle (Bos taurus) and buffaloes (Bubalus bubalis) (Ito et al., 1994; Chaudhary et al., 2000). Rumens with fewer protozoa possess fewer methanogens, which may be one of the reasons for low CH4 emissions in yaks. The functional genes of the protozoa, such as mcr A and fmd B genes, are also associated with CH4 emissions (Roehe et al., 2016). The role of the protozoa has been reported as contributing to the maintenance of prokaryotic diversity in the rumen and potentially mitigating the impact of competitive exclusion among bacterial taxa (Solomon et al., 2022). However, the role of protozoa in yaks during methane production needs further research.

Sequencing of the rumen microbiome demonstrated that microbial genes are directly associated with CH4 emissions. In yellow cattle, the gene enrichment included the CO2/H2 and methanogenic pathways (Zhang Z. et al., 2016), indicating the higher energy efficiency of yak ruminal microbes in utilizing crude feed. Similarly, in low-efficient dairy cows, the methanogenic metabolic pathway is enriched, while in the high-efficiency groups, the lactic acid-propionate conversion pathway is enriched (Shabat et al., 2016). In rumen anaerobic fermentation, stoichiometric laws of chemical balance are maintained between the amount of metabolic hydrogen released during carbohydrate oxidation and the amount of hydrogen incorporated into the reduced end products, namely, methane, propionate, and butyrate (Immig, 1996). Yaks have more unknown hydrogen sinks and fewer hydrogen sinks shifting to methanogenesis than other ruminants (Wang, 2020). An increase in the ratio of yak to cattle rumen inoculum decreased CH4 production and increased fiber digestion and VFA profile in vitro. The reduced CH4 production, possibly attributed to reductive acetogenesis competing for CO2 and H2 as intermediate, aligns with the decrease in metabolic hydrogen recovery ([2H]recovery) as the yak rumen inoculum increases, which indicates that reductive acetogenesis may elucidate a portion of the unexplained metabolic hydrogen ([2H]) in the fermentation of the yak rumen inoculum. Reductive acetogenesis herein might be the case for yaks exerting more function in their digestive tract than other bovines (Joblin, 1999; Wang et al., 2020). Streptococcus, which is found to harbor hydrogenotrophic microbes, exhibited a significant correlation with the metabolism of hydrogen and carbon dioxide with higher relative abundances in the yak rumen inoculum compared with cattle (Godwin et al., 2014; Wang, 2020).



3.2 Higher feed digestibility

The ability to digest plant structural carbohydrates such as cellulose distinguishes ruminants from humankind. Yak rumen microbiota can digest more fibrous feed than cattle with higher feed digestibility (DM, NDF, and ADF digestibility) (Figure 2C, Supplementary Table 3); in particular, there are significant differences in their in vitro fermentation comparisons (Figure 2D, Supplementary Table 3). The core members of bacteria cellulose- and hemicellulose-degrading bacteria such as Fibrobacter succinogenes, Ruminococcus albus, and Ruminococcus flavefaciens are the main cellulose-degrading bacteria, and several bacterial species belonging to the genera Prevotella, Butyrivibrio, and Pseudobutyrivibrio demonstrate high efficiency in hemicellulose degradation (Perlman et al., 2021). A higher abundance of fiber-degrading bacteria is found in the yak than in cattle rumen under grazing conditions. These include Ruminococcus, Fibrobacter, Clostridium, Butyrivibrio, Rumenococcus, Treponema, cellulase-related (GH48, GH5, GH45), and hemicellulase-related (GH44, GH16, GH17, GH11) (Huang, 2013; Mi, 2016; Zhao et al., 2022). Ascomycota or Neocallimastigomycota is the most dominant fungi phylum in the rumen of yaks, regardless of dietary intake (Cao et al., 2010; Yan et al., 2018; Guo et al., 2020). The ability to decompose lignocellulose is enhanced when Piromyces ruminosae in yaks secreted polysaccharide hydrolase (xylanase) (Wei et al., 2016). This process may be associated with the fiber-digesting capacity, thus resulting in more structural carbohydrate fermentation and more acetate production when compared with cattle (Bos taurus). The carbohydrate-active enzymes (CAZymes) encoded by the microbiome in the rumen play a pivotal role in the digestion of feed in ruminants. Unlike cattle, yaks exhibit a higher relative abundance of CAZymes. Specifically, cellulase, hemicellulase, and PL families are significantly enriched in the rumen microbiome of yaks than in cattle (Zhao et al., 2022), which may help explain the improved fiber degradation in yaks.



3.3 Higher short-chain fatty acid concentrations

Higher feed digestibility (DM, NDF, and ADF digestibility) leads to higher energy SCFA concentrations. The rumen microbiome ferments plant materials anaerobically to produce metabolic end products, such as SCFAs while supporting complex food webs (Shabat et al., 2016). Many in vivo and in vitro studies suggest that yak rumen fermentation can produce more SCFAs (Figures 2E, F, Supplementary Tables 4, 5), especially more acetate and propionate SCFAs, than cattle under in vitro rumen fermentations to sustain themselves in harsh environments. Prevotella plays an important role in starch and protein degradation and hemicellulose utilization. A high relative abundance of Prevotella in the yak is associated with high propionate concentration (Zhang Z. et al., 2016). The increased succinate-producing and utilizing bacterial species such as Prevotella albensis, Prevotella brevis, Prevotella bryantii, Fibrobacter succinogenes, and Succinimonas amylolytica might also promote propionate concentration in yaks (Zhao et al., 2022). Metagenomic sequencing illustrated the enrichment of yaks' rumen microbial genes in the SCFA production pathways (such as the citrate cycle, TCA cycle, fructose, mannose metabolism, and carbon fixation pathways) (Zhang Z. et al., 2016). Similarly, increased gene and transcript abundances for propionate and butyrate were also observed in high-efficiency ruminants (Kamke et al., 2016). Moreover, yaks demonstrate a higher abundance of glycosyl transferases compared to cattle. The top four microbial KEGG pathways in yaks are pantothenate and CoA biosynthesis, lipopolysaccharide biosynthesis, cysteine and methionine metabolism, and biofilm formation—Vibrio cholerae (Zhao et al., 2022).



3.4 Higher rumen microbial protein production

Ammonia and amino acids serve as the sources of nitrogen in the rumen, which, in turn, is used by microbes to synthesize microbial proteins. The microbial proteins absorbed from the small intestine account for 40%−80% of the protein needs of the host (Owens and Bergen, 1983). Zhou et al. (2017) used purine derivative excretion estimation and nitrogen isotope techniques to study the differences in nitrogen (N) excretion and retention and urea N recycling in yaks and yellow cattle. The authors found that yaks had low urinary N excretion but higher N retention and urea N recycling to the gut. They also observed that recycled urea N captured by ruminal bacteria was higher in yaks, resulting in higher production of rumen microbial protein synthesis (MCP) than that of yellow cattle (Bos taurus) (Zhou et al., 2017, 2018) with the same dietary intake. In addition, Streptococcus, Akkermansia, and uncultured Eubacterium WCHB141_ge may also regulate the synthesis of MCP during rumen fermentation in yaks (Wang, 2020; Guo et al., 2021). Through the rumen metagenomic sequencing of yaks and cattle, the amino acid pathways (such as valine, leucine, and isoleucine biosynthesis, glycine, serine, and threonine metabolism) and nitrogen metabolism were enriched in the rumen microbiota of yaks compared with those of cattle (Zhang Z. et al., 2016; Zhao et al., 2022), which was likely related to the higher MCP production in yaks (Zhou et al., 2017). Rumen microbial metabolic pathways and metabolites were different than in cattle, and mainly, amino acids were also confirmed later in yaks (Zhao et al., 2022). A total of 11% of amino acids absorbed by the small intestine were derived from protozoa (Shabi et al., 2000), and in the absence of nitrogen in the rumen, protozoa and bacteria synthesized and stored polysaccharides and used them when sufficient nitrogen was available (Dewhurst et al., 2000). Therefore, further research is needed to determine the function of protozoa in yaks during the MCP synthesis.

In total, the summarized research on yaks sheds light on the muti-dimensional and intricate rumen ecosystem. However, rumen microorganisms sustain their functionalities and homeostasis through a complex and coordinated process, which involves the establishment of successive food webs with cross-feeding interactions among different rumen microorganisms to provide synergetic services such as SCFAs and MCP for the host (Morais and Mizrahi, 2019). Homeostasis includes interactions between the number and diversity of species, hydrogen shifting, thermodynamics, and corresponding metabolisms of the microorganisms. Among them, microbial interactions were identified as key contributors to the formation of rumen community states, with niche modification emerging as a primary mechanism for their formation. The microbial metabolic cascades, thus, were carried out by the microbial community interactions and provided basic metabolites, which were the outcome of the establishment of numerous parallel trophic chains within each of these structured environments (Morais and Mizrahi, 2019; Mizrahi et al., 2021). To clarify the complex microbial community and its homeostasis, Morais and Mizrahi (2019) proposed categorizing the microbial community into functional groups that could streamline the comparative analysis of rumen communities. This approach is particularly valuable as functional groups have the potential to clarify taxonomic uncertainties resulting from functional redundancies and events of horizontal gene transfer. Mizrahi et al. (2021) additionally highlighted that rumen metabolism could be categorized into three trophic-like levels, representing the broad chemical transformations of plant fiber macromolecules and polymers in broad terms. The degradation and metabolism of cellulose and hemicellulose occurred in the first level. At the second level, in the process of utilizing hexoses and pentoses, specific transporters facilitated the import of soluble sugars into microbial cells. Subsequently, these sugars underwent metabolism through diverse pathways, including the pentose phosphate pathway and the Embden-Meyerhoff-Parnas pathway. In the third level, certain excreted metabolites, including hydrogen, carbon dioxide, lactate, and succinate, underwent additional transformations to yield methane, acetate, propionate, butyrate, and various other byproducts (Mizrahi et al., 2021). Therefore, in yaks, the rumen microbiota composition, the abundance of functional microbiota, and the gene expression were linked with rumen fermentation profiles, which are shown in Figures 3A–C. Although the rumen microbiome has been studied using metatranscriptomic, meta-proteomic, and metabolic methodologies, the study of metaproteome and virome behind the rumen is still in its infancy in yaks.
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FIGURE 3
 The summarized host gene, rumen microbiota, and the related microbial pathways and hydrogen balance response to the nutritional deprivation in yaks (adapted from Morais and Mizrahi, 2019). (A) The microbial community involved in the hydrolysis of macromolecules and fermentation processes. A “+” in the parentheses refers to higher relative abundance, a “–” in the parentheses refers to lower relative abundance in yaks; (B) Comparison of methanogenesis and volatile fatty acid (VFA) formation pathways between yaks and cattle (adapted from Zhang Z. et al., 2016). The annotation highlighted in red represents enrichment in the yaks and that in blue represents enrichment in cattle rumen microbiota fermentation. (C) Metabolic hydrogen ([2H]) shifting between yak and cattle in vitro inocula fermentation. In (C) (+) or (–) indicate the enrichment or reduction of the parameters in yaks. (D) Host and rumen microbiome interactions on regulating the VFA, microbial protein genesis, and their absorption (adapted from Qiu et al., 2012).





4 Host-rumen microbiome interacts with the feed efficiency-related traits

Evidence indicates a strong connection between host genetics and the microbiome present in the rumen, wherein the genetics of ruminants affects the rumen microbial community structure (Hernandez-Sanabria et al., 2013). The heritability of rumen microbiota has been investigated in ruminants (Li et al., 2019; Wang et al., 2023), and potentially heritable microorganisms could be linked to the phenotype of the host. Some microorganisms own moderate heritability estimates, and they were closely linked with feed efficiency and CH4 emissions (Roehe et al., 2016; Difford et al., 2018; Li et al., 2019). For instance, rumen microbiota-associated single-nucleotide polymorphisms (SNPs) played an important role in contributing to the variability observed in feed efficiency traits within the beef cohort (Li et al., 2019), and the relative abundance of certain bacteria and archaea were heritable and exerted their association with CH4 production (Difford et al., 2018). The genes annotated within specific genomic regions, such as chromosome 19 at position 3.0–4.0 Mb and chromosome 27 at position 3.0–4.0 Mb, also suggested that the observed associations were directed toward the selective absorption of SCFAs from the rumen, thereby increasing energy availability for the animal (Abbas et al., 2020). However, host genetics may outweigh rumen microorganisms in shaping the related heritable traits, as the variance in CH4 production is attributable to both host genetics and the presence of rumen bacteria and archaea. While host genetics account for 21% of the variation, rumen microbes contribute 13% (Difford et al., 2018). Similarly, heritability for sheep body weight could be 39% in genetics, and rumen microbiota explain only 20% of the phenotypic variation (Wang et al., 2023). Although the coevolution of microorganisms with the host might be a mechanism that elucidates varying host genetic effects on distinct rumen microbial taxa, the related heritable rumen microbiota in yaks remains unknown. In addition, host microRNAs, a group of non-coding RNAs and potential molecules, might act as crucial regulators during the metabolic processes and interface the regulation of nutrition, genes, and gut microbes (Malmuthuge et al., 2019; Ojo and Kreuzer-Redmer, 2023), but further research is needed on yaks in this context (Figure 3D).



5 Host-rumen microbiome–environment interactions on the dependent animal productivity traits

Microbiome-, host-, and environment-dependent mechanisms contribute to varied performance in the milk and meat production quality of yaks. The microbial metabolite SCFAs, microbial proteins, and the host genes are key molecules that are involved in animal production.


5.1 Milk quality

Plants are degraded and fermented by rumen microbes, and the derived microbial metabolite SCFAs and microbial proteins from microbial fermentation are precursors that directly impact the biosynthesis of milk (Flint and Bayer, 2008; Patil et al., 2018). Mostly, milk fatty acids (FAs) are synthesized by the rumen microbiota and exogenous uptake (Parodi, 2004). Acetate and β-hydroxybutyric acid are conveyed to the mammary gland for the synthesis of short and medium-chain FAs, while butyrate is assimilated and transformed into β-hydroxybutyric acid by rumen epithelial cells. The long-chain FAs primarily originate from dietary lipids and adipose tissue (Buitenhuis et al., 2019). The particular plateau environment and rumen microbial services, such as more ruminal SCFAs and more microbial proteins, contribute to the unique nutritional profile of yak milk. Yak milk is known as “natural milk concentrate,” and its protein (4.0–5.9%), fat (5.3–8.8%), lactose (4.0–5.9%), total dry matter content, and ash are significantly higher than in milk of ruminants (Li et al., 2011, 2023).

The microbial metabolites greatly influence the milk quality of yaks. Compared to cow milk, yak milk exhibits considerably elevated levels of essential amino acids, immunoglobulin A (IgA), IgG, and IgM. Immunoglobulin A and IgG concentrations could be approximately 1.5 times higher than those found in human milk (Li et al., 2023). Although the fat content ranges from approximately 5.3% to 8.8% and is the most variable component in yak milk (Ma et al., 2021a), yak milk possesses almost twice the amount of fat compared to Holstein milk (Li et al., 2011). Regarding the fatty acids (FAs) contained in yak milk, it has a reduced concentration of short and medium-chain FAs but an elevated level of long-chain FAs and unsaturated FAs in contrast to Holstein milk (Li et al., 2023). The concentration of conjugated linoleic acid (CLA) in yak milk is significantly greater than that found in cow milk (Zongo et al., 2021). In addition, due to the activity of yak rumen microorganisms and enzymes, numerous polyunsaturated FAs present in fresh forage are hydrogenated and eventually absorbed by the intestine in the form of saturated FAs and trans FAs, leading to their deposition in tissues affecting milk quality (Li et al., 2023). However, little is known about the microbiome-host-dependent mechanisms for yak milk containing high mineral and vitamin content. The main mineral and vitamin content in regular cow milk is lower than in yak milk (Dosek et al., 2007; Ma et al., 2017). The elevated levels of vitamin D in yak milk may be associated with strong ultraviolet radiation at high altitudes. Additionally, the abundant presence of vitamin C and vitamin E imparts strong antioxidant capabilities to yak milk, which may help mitigate oxidative damage induced by the high-altitude harsh environment (Dosek et al., 2007).



5.2 Meat quality

The fundamental health of livestock species and traits related to meat quality depend on the symbiotic interactions between the host and microbes (Yeoman and White, 2014). The fatty acid composition of meat can be influenced by rumen microbial fermentation, which supplies precursors for de novo fatty acid synthesis (Shingfield et al., 2013). The majority of fatty acids present in ruminant products primarily originate from the metabolism of fat in the rumen rather than from the diet (Toral et al., 2018). Short-chain fatty acids (SCFAs) improve meat quality traits and are conveyed through the host's systemic circulation, reaching extraintestinal organs and exerting broad-range impacts on the host (Tremaroli and Bäckhed, 2012; Koh et al., 2016). The conversion of SCFAs such as acetate, butyrate, and propionate into acetyl-CoA or propynyl-CoA occurs through pathways that include the acetyl-CoA carboxylase (ACSSs) and beta-oxidation. This process results in the generation of ATP, thereby sustaining cellular homeostasis (Dalile et al., 2019). Liu et al. (2021) have highlighted the favorable outcomes of SCFAs derived from the gut microbiota on both muscle and fat tissue, subsequently influencing meat quality. Altering the gut microbiota has the potential to regulate both intramuscular fat deposition and host immunity, contributing to the enhancement of meat quality. Given the overlap among numerous bacterial taxa associated with intramuscular and subcutaneous fat deposits that did not occur, the gut microbiota likely mainly influences adipose accumulation through separate adipogenic pathways (Krause et al., 2020). Therefore, understanding the interaction between the host and rumen microbiota is essential for developing knowledge-based strategies that improve both animal meat quality and host health. Concerning the quality of yak meat, it features a reduced fat yet a higher protein percentage and is abundant in essential amino acids, fatty acids, and minerals when compared to commercial beef meat from low-altitude regions (Yin et al., 2009; Wan et al., 2012).



5.3 Host genes are involved in milk and meat production

Yak milk is characterized by its elevated levels of fat and protein, and the gene expression patterns are also related to its synthesis. For instance, the genes associated with the uptake of fatty acids from the blood (CD36 and LPL), intracellular fatty acid activation of long and short-chain fatty acids (ACSL1, ACSS1, and ACSS2), intracellular fatty acid transport (FABP3), triacylglycerol synthesis (LPIN1, AGPAT6, and GPAM), lipid droplet formation (BTN1A1, PLIN2, and XDH), desaturation (SCD), and ketone body utilization (BDH1 and OXCT1) exhibit significant upregulation during yaks' lactation. In particular, compared to the upregulation levels in dairy cows, the processes of triacylglycerol synthesis (GPAM, AGPAT6, and LPIN1) and intracellular de novo fatty acid synthesis (ACACA, ACSS2, and FABP3), which potentially orchestrate as components within the gene network controlled by SERBF1 during milk fat synthesis, exhibit a higher degree of activation (Lee et al., 2017). Moreover, in the lactation cycle of yaks, the highest expression of certain milk fat genes (such as XDH and FABP3) in mammary tissue occurs earlier than observed in dairy cows (Yuan et al., 2020). FASN is one of the genes with high expression levels in the yak mammary gland and subcutaneous fat and has the potential to be a genetic marker in breeding programs to enhance the milk fat content and total milk solid levels (Shi et al., 2019). As to the meat quality, under the nutritional deprivation environment, comparative transcriptomics of yak and cattle show that the genes differentially expressed in tissues, including skeletal muscles, are significantly enriched in the energy metabolism-related process (Tang et al., 2017; Ma et al., 2021b). Another comparative gene expression study performed based on subcutaneous adipose tissues showed that introducing yak genes into cattle breeds by hybridization dramatically changed the expression patterns of genes related to fatty acid biosynthesis and catabolism and improved the yield and quality of meat (Song et al., 2019), highlighting the unique genetic basis of nutrition accumulation in yaks. Similarly, unique patterns of adaptations related to meat production have also been revealed by population genetics in yak. Furthermore, the genomic copy number variations of the CHKB and CHRM3 genes, which are detected in domesticated yak populations using whole genome resequencing data (Zhang X. et al., 2016), are significantly associated with improved growth traits such as higher body weight and greater chest girth (Goshu et al., 2019, 2020). Intriguingly, these copy number variations have not been detected in cattle breeds (Yue et al., 2014; Zhang et al., 2014), implying the distinct genetic basis of energy storage, growth, and development in yaks.

In summary, these findings provide insights into the rumen microbiome-dependent traits that interact with the metabolism, environment, and animal production, demonstrating the host-rumen microbiome-environment as a whole in response to environmental stress. However, the interactions of host-rumen microbiome-environment on the yak productivity traits need to be clarified.




6 Implications


6.1 Integrating host-gut microbe-environment interactions into understanding animal performance and improving the systematic management

The proposal by Kohl (2018) to include host-microbe interactions in the established field of animal comparative physiology opened exciting research opportunities for both fields. However, our knowledge about the mechanistic bases of host-environment linkages and how they ultimately benefit the organism in adapting to changes to serve the ecosystem is limited (Hutchinson, 1957; Angilletta and Sears, 2011). The adaptation of yak to environmental stress sheds light on understanding some of these linkages. The yak's adaptation to the stress of nutritional shortage is directly related to environmental services (Figure 4). By coping with the harsh environment, the animals themselves show multi-faceted synergism. At the host level, yaks possess genes that are co-regulated, embodied in the regulation of traits ranging from molecules, cells, tissues, organs, and systems (Dalziel et al., 2009; Shao et al., 2010; Qiu et al., 2012; Jing et al., 2022). In addition to tissue morphology, the host's metabolism processes (energy metabolism, nitrogen metabolism, etc.) and gene regulation interact with each other (Qiu et al., 2012). Mediated by the host, gut microbes process their niches and reciprocally provide services to sustain a symbiotic relationship with the host (Figure 4). Adaptation, thus, is a consequence of the interactions at various hierarchical levels including climate pressure, nutritional pressure, host, and rumen microbiome and its services to the yaks. These selective pressures of the host combine with the environment to affect the gut microbe, which ultimately effectuates the adaptation of the microorganism-host symbionts to the environment.


[image: Figure 4]
FIGURE 4
 Hierarchical structure of the environment and host-gut microbe interactions.


From the ecological systematic balance, understanding the host-rumen-environment linkages is beneficial for further animal management. The host-environment linkages may provide a means for devising improved animal management strategies. For instance, under the stress of cold, with low temperature and insufficient forage on the Qinghai-Tibetan Plateau, the yak loses body weight (Long et al., 1999b) and increases forage intake from the grassland to avoid the nutritional deprivation, increasing the pressures on the grassland. Better management, therefore, would involve reducing the selective pressure of grassland to increase its biomass productivity or directly decreasing the number of grazing yaks. Artificial seeding or supplementary feeding of fodder for the animals are approaches to relieve the pressure. However, the animal management strategy should also focus on the forage (biomass, fatty acid content, richness and diversity, etc.) from the pasture. Since the forage from the pasture provides a certain level of nutrients, they can influence the quality of animal products. For instance, the concentrations of total conjugated linoleic acid (CLA), CLA isomer c9t11, and CLA isomer t10c12 in the milk of grazing yaks were significantly higher during the peak grass stage compared to the dry grass stages (Pan et al., 2021). Ruminants grazing artificial pasture led to an elevation in the levels of polyunsaturated fatty acids (PUFAs) in meat, particularly an increase in n3 PUFA concentrations and a decrease in the n6/n3 ratio (Wang et al., 2021). Ruminants fed with alfalfa (Medicago sativa L.) exhibited significantly higher contents of saturated fatty acids such as C14:0, C16:0, and C18:0 in meat (Wang et al., 2022). Therefore, maintaining the quality of the grass is also crucial for healthy animal products.

The gut-environment linkages are also vital in understanding adaptation (Boyce et al., 2020) and devising improved animal management strategies. Precise supplemental feeding methods for the yaks during warm and cold seasons are advisable since the rumen microbiota can utilize low levels of dietary nitrogen better than the high (Zhou et al., 2017; Hao, 2019), and excessively high concentrations of protein, which may result in unnecessary waste and environmental pollution. Moreover, the correlation between forage and milk fatty acids is significantly affected by the biohydrogenation occurring in the yak rumen alongside the particular community of rumen microorganisms (Li et al., 2023). The intestinal microbiota of yaks determine their feed quality, and studies have shown that yaks can selectively intake certain plants. Its consumption varies with different pastures and seasons (Ding, 2007; Guo et al., 2021), which is essential for regulating the flavor and quality of milk and animal products. From the gut-environment linkages, microbiota also provides regulation services that help to maintain a stable condition for the Qinghai-Tibetan Plateau and may prevent the plants from aggressive growth. Many plants produce compounds to deter herbivores and include chemical compounds such as alkaloids, glycosides, terpene, benzene, and some secondary metabolites such as essential oils, tannins, and nitrate compounds (Long et al., 1999a; Hart et al., 2008). Gut microbiota could detoxicate “biohazardous waste” that is poisonous or other undesirable ingesta. The long-term association between the gut microbiome of yaks and undesirable plants is perhaps indicative of the development of strategies adapted by yaks to benefit from these plants. It has been reported that yaks can digest toxic plants during harsh winters (Guo et al., 2021). The ingested plant tannins bind themselves to microbial proteins and prevent them from being degraded in the rumen, thereby forming more proteins for intestinal absorption. This may have helped yaks not suffer from nitrogen deficiency (Long et al., 2003). Studying such an adaptive behavior can suggest new prospects for improving animal production (for instance, incorporating host-gut-environment linkages into breeding strategies as a whole), understanding the role of rumen microbiota systematically that shape the feed efficiency and withstanding the body homeostasis or co-evolve with the host, and developing more tools to decipher and manipulate the microbes.

The latest “omics” techniques propose to integrate a database to optimize the microbiome fermentation traits, including flavonoids (Oh et al., 2017; Morales et al., 2018), essential oils (Cobellis et al., 2016), nitro-compounds (Latham et al., 2016), or other secondary metabolites fermentation. Although the rumen microbial community composition and fermentation profiles are attributable predominantly to diet, with the host having a lesser influence (Henderson et al., 2015), integrating host-gut microbe interactions into understanding the host-environment linkages might favor the establishment of a predictive theory of the niche in organismal biology. In this context, the yak is an excellent animal model to study the influences of environmental factors on the host and the relationship between the host and rumen microbiome.



6.2 The potential to understand the host-gut microbe-environment linkages

Understanding these linkages can augment our capacity to anticipate and predict relationships among hosts, gut microbes, and environments over space and time (Angilletta and Sears, 2011; Kohl, 2018). A modeling approach, thus, could advance prediction with a combination of experiments for validation by integrating and synthesizing biological principles from the bottom up. On the other hand, an experimental approach involving reduction and analysis is from the top down. Generating such predictions necessitates a comprehensive collection of models that elucidate how hosts interact with their environments and the reasons behind their specific interactions. The poor coordination between theoretical and empirical activities and previous models fails to explain variations in fundamental ecological niches within and among organisms (Angilletta and Sears, 2011). Focusing on the ecological foundations of the rumen microbiota could lead to an enhanced understanding of both functions and unexplored fermentation pathways of the rumen in yaks (Huws et al., 2018; Solomon et al., 2022), improving the understanding and predicted linkages between host and environments and the integration of mathematical models and crucial experiments in a manner that has worked for biological disciplines (Gilarranz et al., 2017). With the development of research tools and methodology, mathematical models (Dalziel et al., 2009) such as network-based approaches (Dee et al., 2017; Huws et al., 2018) and deep learning algorithms. These are better choices for systematic processing and quantification, helping us to better understand complex systems and their related connections. Although comprehensive network-based approaches have clarified the connections in microbial communities (Adai et al., 2004), large-scale, integrative models have yet to be developed (Huws et al., 2018). A systematic analysis of animals (in vivo or between different host systems) and their living environment is essential to better manage the performance of animals and their habitats. This involves integrating various layers of interactive networks, including living organisms, vegetation, landscapes, soils, gut microbes, and other layers.




7 Conclusion

The host gene regulation, host gene metabolism, and the rumen microbial services of yaks to survive in an extreme environment provide a basic understanding of the animal adaptability mechanisms and performance. In this review, a hierarchical model of the adaptability between the host, the environment, and the related host-rumen microbiome-environment interactions was integrated and proposed. It offers more solutions for the regulation of rumen microorganisms and is mutually beneficial for the hosts as well as the microorganisms. To better understand the relationship between organisms and the environment, it is proposed that multi-level interactions and primary determinants be highlighted and clarified in systematic biology research. It would be beneficial for sustainable animal production management and systematized regulation, but further research is required.
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Genus Terrisporobacter 3.952220093 0.266669933 6.167996805 0.186948539 0.039684959 0.285404614 1123244775 0.26
Order Bifidobacteriales 1502526844 0.09024423 15.11111161 0.128063133 —0.006208448 0.825678433 17.6722745 0.184
Phylum Verrucomicrobia 10.8592147 0.368591242 11.07836421 0436721724 0.009009972 0.662843233 13.07632936 049

Vascular/heart problems Family Alcaligenaceae 8.984902097 0.533537023 9.632878335 0.563680602 ~0.001199876 0.439556577 1147265556 0578

diagnosed by doctor: Genus Eubacteriumbrachy group 7982163269 0435214413 1108297392 0270064365 000238492 0.116285204 1357264127 032

High blood pressure Genus Adlercreutzia 5.827899736 0442742582 6.204478903 0516086812 0.001102424 0.561967397 8.155085342 0514
::':: Lachnospiraceae NK4A136 17.81451668 0.164689992 19.12433776 0160252445 —~0.00068179 0346083125 2184675528 0.184
Genus Ruminococcus? 17.04735469 0197148326 17.12865265 0.24938676 0000241436 0807258568 19.56399246 0.254
Genus Terrisporobacter 4.165436759 0.244145183 4.613481409 0.329302769 0.000927873 0.609733334 6918175552 0.424

Order Burkholderiales 1701729425 0.048445838 1849378295 0.047183938 ~0.001440391 0.399862741 2228472063 0.058
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genus Terrisporobacter 5 HEH 0381(0.216100.672)  0.001
genus Subdoligranulum 1 HE—{ 0589 (0.353t00.983)  0.043
genus Eubacteriumbrachygroup 8 HiH 0691(0.484100.985)  0.041
genus LachnospiraceaeUCGO10 8 —E— 1536(1.072102.202)  0.019
family Prevotellaceae 15 HEH| 0680(0.479t00.966)  0.031
genus Collinsella 8 ——— 1.790(1217102632)  0.003
family BacteroidalesS24.7group 7 i 0672(049%100.911)  0.01

DBP genus Prevotella? 10 HEH 0789 (0630t00.988)  0.039
genus Terrisporobacter 5 HH 0719(0.575t00.900)  0.004
family Bifidobacteriaceae 1 HH 0709 (0.569t00.884)  0.002
genus Phascolarctobacterium 9 HH 0819(0685t00.981)  0.03
genus Escherichia. Shigella 9 —— 1502 (1.051102.148)  0.026
phylum Verrucomicrobia 12 R 0.831(0.710t00.972)  0.021
family Prevotellaceae 15 i 0770(0.645t00.918)  0.004
genus Anaerostipes 1 i 1.399(1.103t01.773)  0.006
order Bifidobacteriales 1 HEH 0709 (0.569t00.884)  0.002

DiagHyper genus Terrisporobacter 5 0984 (0.974t00.994)  0.002
genus Eubacteriumbrachygroup 10 0993 (0.987t00.999)  0.025
order Burkholderiales 1 1.016(1.001101.030) 0034
genus Ruminococcus2 15 0988 (0.97900.997)  0.008
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family Alcaligenaceae 12 1011(1.000t01.021)  0.04
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OPS/images/fmicb-14-1276050/crossmark.jpg
(®) Check for updates






OPS/images/fmicb-14-1183130/fmicb-14-1183130-g002.jpg
HO

OH

o) OH
OH
HO
Xylan
OH
\
[e] o
OH O
OH
OHO
(e} O OH
OH

Arabinogalactan

OH

Ve
o

0=
HO OI~$;><OH

ne' -+

Beta-Glucan

Galactan

Fucoidan

Fructan





OPS/images/fmicb-14-1183130/fmicb-14-1183130-g003.jpg





OPS/images/fmicb-14-1183130/fmicb-14-1183130-g004.jpg
@B Accticacid
[ Je—"

Bioactive poly- / -

saccharide ——

2 Butyric acid

Beneficial bacteria

@ /\ A Propionic acid

Gut microbes \ |
o Harmful flora . .
e MY

-®
f v \.| e\\. il

Immune-related cytokines

Lipopolysaccharide Gut hormones.





OPS/images/fmicb-14-1134246/fmicb-14-1134246-g004.jpg
ity

Normalized inte:

4x10°

32107

2¢10°

1<10°

Positive ion modes
PLSDA Scor Pt
_Control :lCo]dsu:ss

. N
" .

PC(13%)

Negative ion modes
PLSDA Seors Pt

Control * Cold stress

POL(142%)

Dopamine
*

Dol kil sirons:

Contol

Conirdl €5l

Coldstess

ity

Normalized intesi

D

e | e

. jr—

3

& 0

=

a8

=

e

.“-é.m

b
= 20 pr—
i

E
L Fr——
et g &.sicin
o [ e &
2 .
°
Pathway Ipact
T-Tyrosine Homovanillic acid
2x10'%; * 5x107- L 2
1.5%1010-
1100 k|
S 2x10™
£

Control  Cold stress.

Control | Cold stress.





OPS/images/fmicb-14-1134246/fmicb-14-1134246-g005.jpg
Center time (s)

Struggling time (%)
N

80

60

Control * Cold stress

Control Cold stress

Tail Suspended Test

Control

woup | & || 8

(n=8)

Cold stress|

goup | ¥ (|4

(=7)

Open Field Test

Control
eroup

(n=8)

Cold stress

group
@=7)

Motion Trace

Motion Trace






OPS/images/fmicb-14-1183130/crossmark.jpg
(®) Check for updates






OPS/images/fmicb-14-1183130/fmicb-14-1183130-g001.jpg
Cytokine
NF- k B signal pathway
ROS
GSH-Px
SOD Alpha-amylase
MAPK/NIf2 pathways Alpha-glucosidase
CAT PI3K/Akt pathway
Lipid peroxidation
Free radicals Polysaccha.r ide ERICMARR iy
Bioactivities
Apoptosis W Platelet adhesion
Cell cycle arrest Platelet aggregation
Blocking angiogenesis Thrombin
Tumor killing Macrophages Platelet counts
e Plasminase
B cells
Natural killer cells
Cytokine
Complements






OPS/images/fmicb-14-1231372/fmicb-14-1231372-t006.jpg
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1 Gastrointestinal microbiome 1,319 4,891
2 Toxicity 663 2,723
3 Microbiota 412 1,780
4 Oxidative stress 267 1,187
5 Metabolism 263 1,103
6 Exposure 234 1,099
7 Inflammation 200 938
8 Bacteria 170 757
9 Health 157 725
10 Probiotics 143 669
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Ranking Sources Articles | Country IF JCR-c
1 Science Of The Total 76 Netherlands 10.754 ENVIRONMENTAL SCIENCES-SCIE (Q1)
Environment

2 Environmental Pollution 58 England 9.988 ENVIRONMENTAL SCIENCES-SCIE (Q1)

3 Ecotoxicology And 56 England 7.129 ENVIRONMENTAL SCIENCES-SCIE (Q1);
Environmental Safety TOXICOLOGY-SCIE (Q1)

4 Chemosphere 47 England 8.943 ENVIRONMENTAL SCIENCES-SCIE (Q1)

5 Frontiers In Microbiology 39 Switzerland 6.064 MICROBIOLOGY-SCIE (Q1)

6 Journal Of Hazardous Materials 37 Netherlands 14.224 ENGINEERING, ENVIRONMENTAL-SCIE (Q1);

ENVIRONMENTAL SCIENCES-SCIE (Q1)

7 Plos One 28 USA 3.752 MULTIDISCIPLINARY SCIENCES-SCIE (Q2)

8 Frontiers In Pharmacology 27 Switzerland 5.988 PHARMACOLOGY AND PHARMACY-SCIE (Q1)

9 Food And Chemical Toxicology 24 England 5:572 TOXICOLOGY-SCIE (Q1)

10 International Journal Of 23 USA 6.208 BIOCHEMISTRY AND MOLECULAR

Molecular Sciences BIOLOGY-SCIE (Q1)

IE, impact factor (2021); JCR-c, Journal Citation Reports category (2021).
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Institutions

Co-citations
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regions

Institutions

1 Jin, Yuanxiang 28 China Zhejiang University of Jin, Yuanxiang 299 China Zhejiang University of
Technology Technology

2 Chen, Wei 25 China Jiangnan University Nicholson, Jeremy K 241 England Univ London Imperial

Coll Sci
3 Zhang, Hao 25 China Jiangnan University Turnbaugh, Peter | 218 USA University of California
San Francisco

4 Fu, Zhengwei 21 China Zhejiang University of Zhai, Qixiao 214 China Jiangnan University
Technology

5 Zhao, Jianxin 20 China Jiangnan University Caporaso, J. Gregory 212 USA Univ Colorado

6 Zhai, Qixiao 16 China Jiangnan University Ley, Ruth E 203 Germany Max Planck Inst Dev Biol

Lu, Kun

University of Georgia

Cani, Patrice D

Catholic Univ Louvain

8 Liu, Yang 16 China Henan Normal Robert C Edgar 166 USA University of California,
University Berkeley
9 Tian, Fengwei 14 China Jiangnan University Stringer, Andrea M 153 Australia University of South
Australia
10 Li, Yuan 14 China Chinese Academy of Wallace, Bret D 152 USA University of North
Medical Carolina
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Author Journal

Article type

1 Plastic and Human Health: A Micro Issue? Wright, Stephanie L 2017 1,042 Review Environmental Science and 11.357
Technology
2 Symbiotic gut microbes modulate human metabolic Li, Min 2008 809 Article Proceedings of The National 12.779
phenotypes Academy of Sciences of The
United States of America
3 Gut microorganisms, mammalian metabolism and Nicholson, ] K 2005 674 Review Nature Reviews Microbiology 78.297
personalized health care
4 Baseline gut microbiota predicts clinical response and Chaput, N 2017 604 Article Annals of Oncology 51.769
colitis in metastatic melanoma patients treated with
ipilimumab
5 Environmental exposure to microplastics: An overview Prata, Joana Correia 2020 524 Review Science of The Total Environment 10.753
on possible human health effects
6 Intestinal alkaline phosphatase detoxifies Bates, Jennifer M 2007 499 Article Cell Host and Microbe 31.316
lipopolysaccharide and prevents inflammation in
zebrafish in response to the gut microbiota
7 Postinfectious Irritable Bowel Syndrome Spiller, Robin 2009 485 Review Gastroenterology 33.883
8 Microbiota: a key orchestrator of cancer therapy Roy, Soumen 2017 478 Review Nature Reviews Cancer 69.8
9 Commensal Clostridia: leading players in the Lopetuso, Loris R 2013 453 Review Gut Pathogens
maintenance of gut homeostasis
10 The microbiome, cancer, and cancer therapy Helmink, Beth A 2019 448 Review Nature Medicine

IE, impact factor (2021).
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Journal

1 QIIME allows analysis of high-throughput community sequencing data J Gregory Caporaso 2010 144 Nature Methods 47.990
2 Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors Bertrand Routy 2018 118 Science 63.714
3 Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients V Gopalakrishnan 2018 117 Science 63.714
4 Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy Ayelet Sivan 2015 115 Science 63.714
5 Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota Marie Vétizou 2015 111 Science 63.714
6 The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide Sophie Viaud 2013 107 Science 63.714
7 Alleviating cancer drug toxicity by inhibiting a bacterial enzyme Bret D Wallace 2010 107 Science 63.714
8 An obesity-associated gut microbiome with increased capacity for energy harvest Peter ] Turnbaugh 2006 102 Nature 69.504
9 Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment Noriho Iida 2013 92 Science 63.714
10 Effects of environmental pollutants on gut microbiota Yuanxiang Jin 2017 91 Environmental Pollution 9.988

IE, impact factor (2021).
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Top 25 Keywords with the Strongest Co-occurrence Bursts

Keywords Year Strength Begin End 1980 - 2022
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active metabolite 1996 4.8 1996 2013
beta-glucuronidase 1993 7.6 2000 2016
Escherichia coli 1991 6.09 2001 2011
bacteria 1994 6.59 2002 2016
Gastrointestinal Tract 1993 4.34 2005 2011
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pattern recognition 2007 3.99 2007 2016 . ——
metabolomics 2008 5.84 2008 2020 ey
systems biology 2008 4.02 2008 2016 A —
absorption 1994 3.95 2008 2019
Microbiota 1991 9.74 2009 2017
rats 2003 7.07 2009 2017 —sr =
in vivo 2011 445 2011 2018 ———
in vitro 2009 553 2013 2017 o ——
plasma 2013 393 2013 2018 R —
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mice 1997 4.46 2016 2018
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Rank Institution Documents Original country

1 Chinese Academy of Sciences 111 China
2 University of Chinese Academy of Sciences 67 China
3 Zhejiang University of Technology 46 China
4 Nanjing University 30 China
5 Jiangnan University 29 China
6 Shanghai Jiao Tong University 29 China
7 Univ N Carolina 27 USA

8 Zhejiang University 27 China
9 China Agricultural University 26 China
10 University of Adelaide 25 Australia
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CHL, chloramphenicol; QDA, quinupristin-dalfopristin; LZD, linezolid.
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Microbiomes
(s)

Species

System (s)

Factor

Description

References

Atlantic salmon | Gutand water RAS
(Salmo salar)
Nile tilapia Gut RASand FTS

(Oreochromis

niloticus)

“Tilapia (Coptodon | Skin and water Pond
rendalli and

Oreochromis

shiranus)

Commoncarp | Gut,sediment and Pond
(Cyprinus carpio) | water

European lobster | Larvac,biofilmand  RASand FTS
(Homarus water

Gammarus)

Easternoyster | Larvae and water RASand FTS
(Crassostrea

virginica)

Nile tilapia Gut,biofloc, water and | RAS
(Oreochromis feed

niloticus)

Pacific whiteleg  Gutand biofloc Static tank
shrimp
(Litopenaeus

vannamei)

RAS, recirculating aquaculture system; ETS, flow-through system.

Membrane

filtration

Hatchery type

Location

Water quality

UV disinfection

Hatchery type

Biofloc

Biofloc

Salmon parr in RAS with membrane ultrafiltration (mRAS)
compared against conventional RAS (cRAS) in periods of high
and low organic loading. With high organic loading in cRAS,
‘opportunistic bacteria colonized the gut microbiome.
Ultrafltration in mRAS stabilized the water microbiota,

preventing growth of and colonization by opportunists.

Tilapia embryos reared to fry in FTS, RAS or RAS with
probiotic feed (RASB). Lower survival i fish reared in FTS
compared to RAS and RASB. Gut microbiota composition
differed in fish from different hatchery types and showed

correlation with survival rate and size at harvest.

“Tilapia reared in seven earthen ponds in two pond systems in
distinet geographic regions. 92% of taxa shared by skin and
water, but enriched and core taxa differed. Strong site-specific

clustering of water samples, but not skin, highlighting some

dependence of skin microbiome from that of the

environment.

Carp reared in pond and sampled on 10 occasions across five
months. The impact of water quality on water microbiota was
stronger than the influence of gut or sediment microbiota, Gut

microbiota dynamics were most closely associated with

sediment microbiota.

Lobster larvae reared in RAS, RAS with UV disinfection or
FTS in two separate experiments. Significantly different larval
and water microbiomes were identified in cach system.
Survival was consistently highest in RAS without disinfection

in replicate tanks and experiments.

Compared microbiomes of larvae originating from 4 different
hatcheries for two consecutive spawning events. Larval
microbiota were distinct from water and between hatcheries
and spawning events. Hatchery had the strongest effect. Core
OTUs (n=25) ident

ied across larval microbiomes.

“Tilapia reared in RAS, RAS with in situ biofloc or fed a diet
containing live or dead ex stu biofloc. I situ biofloc increased
‘microbiome diversity in the gut with an increase in abundance
of potentially beneficial taxa. Growth was also increased in

fish from the i situ biofloc treatment.

Shrimp reared in indoor tanks with no water exchange, with
or without biofloc. Microbiota composition similar with or
without biofloc, but individual taxa enriched. Expression of
immune-related genes and immune status enhanced in shrimp

reared with biofloc.

Bugten etal. (2022)

Deng etal. (2022)

McMurtrie et al.
(2022)

Jing etal. (2021)

Attramadal et al,

(2021)

Arfen etal. (2021)

Dengetal. (2021)

Tepaamorndech
etal. (2020)
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Species sue (s)

Crayfish Gutand

(Procambarus clakii) | hepatopancreas

Black tiger shrimp | Hepatopancreas

(Penaeus monodon)

Pacific oyster Whole oyster
(Crassostrea gigas)

Atlantic salmon Gill

(Salmo salar)

Atlantic salmon Mouth

(Salmo salar)

Red abalone (Haliofis | Digestive gland

rufescens)

Yellowtail Kingfish ~ Gutand skin
(Seriola lalandi)

Pacific whiteleg Gut
shrimp (Litopenaeus

vannamei)

ease

White spot syndrome
virus (WSSV)

Vibriosis

Pacific oyster
mortality syndrome
(POMS)

Amoebic gl disease
(AGD)

Tenacibaculosis
(Yellow Mouth, YM)

Withering syndrome
(ws)

Gut enteritis

White spot syndrome
virus (WSSV)

Descripti

Crayfish infected with WSSV displayed decreased intestinal
‘microbiota diversity and richness and relative abundance of an
opportunistic pathogen (Aeromonas) increased. The potential
pathogenicity in the gut microbiota of WSSV-infected crayfish was
increased compared to healthy controls.

Infected and non-infected shrimp obtained from six hatcheries.
Alpha diversity was reduced in the hepatopancreas of infected
shrimp. Eight bacterial genera were associated with a shift in the

‘microbiome in infected shrimp.

Oysters from resistant or susceptible families infected with POMS.
Allindividuals from susceptible families died, but during early
infection, microbiota of the whole oyster showed a reduction in

evenness compared to resistant familics.

‘The microbiota of AGD-affected and non-affected gilltissue biopsies
was compared. Bacterial diversity was significantly reduced in
biopsies from both AGD-affected and un-affected gl tissue from
infected fish compared to uninfected fish. Lesions in AGD-affected

issue contained higher abundance of Tenacibaculum dicentrarchi.

Comparing YM infected fish with uninfected control, a reduction in
‘microbiota diversity and distinct dysbiosis were identified. High
levels of the primary causative agent Tenacibaculum maritimum were
seen in infected and healthy fish indicating additional unknown
factors responsible for pathology of YM. An association between T:

‘maritimun and Vibrio abudance was identified.

In red abalone affected by WS, Candidatus Xenohaliotis calforniensis
replaced Mycoplasma as the dominant taxon in the digestive gland
microbiota. C. X. californiensis was also sequenced in healthy
specimens, suggesting that the ratio between the two taxa may

be more important in determining pathogenicity of WS.

Microl

a and gene expression in gut and skin analyzed in fish
affected by gut inflammation. The gut microbiota of affected fish was
dominated by a Mycoplasmataceae sp., while a reduction in microbial

diversity in the skin was identified at the early stages of discase. Gene

expression analysis revealed litle differentiation in the gut between
healthy and affected fish while extensive differences were identified

in the skin, related to pathways indicative of a weakened host.

In shrimp infected with WSSV, there was no significant impact on
bacterial richness or diversity. However, community composition
was different between infected and non-infected individuals with
increased Proteobacteria and Fusobacteria, but reduced Bacteroidetes

and Tenericutes in infected shrimp.
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Species Intervention (s)  Supplement (s)  Descriptiot References

Rainbow trout Probiotic and synbiotic  Probiotic - Multiomics approach identified changes in the microbiome with a Rasmussen et al.
(Oncorhynchus BACTOCELL reduced relative abundance of Candidatus Mycoplasma salmoninae (2022)
mykiss) (Pediococcus directly associated with changes in microbial arginine biosynthesis

acidilactici) and terpenoid backbone synthesis pathways. Additionally differences

Synbiotic - in microbiota composition were associated with alterations in

BACTOCELL + ‘metabolomic profiles.

galacto-

oligosaccharides
Nile tilapia Prebiotic Honey Oligosaccharides of honey can act as a prebiotic. The impact of four Aryati etal. (2021)
(Oreochromis dietary treatments (honey inclusion of 0,025, 05 and 1%) were
niloticus) tested. Honey inclusion increased growth performance, reduced feed

conversion ratio, increased microvillilength, and improved
‘microbiota diversity i the gut of tilapia with the best dictary dose

determined to be 1%.

Pacific whitleg | Probiotic, prebioticand  Probiotic - Bacillus sp. | Shrimp were fed with control, pre-, pro- or symbiotic treatments. All | Hasyimi et al.(2020)
shrimp. synbiotic NP RE* experimental treatments resulted in increased growth rate, feed
(Litopenaeus Prebiotic -~ honey conversion ratios, and digestive enzyme activities compared to
vanname) Synbiotic - honey + controls with the prebiotic treatment being the most effective. The

Bacillus sp. NP RF* prebiotic also increased the presence of a number of known probiotic

candidates.

Pacific whitleg | Prebiotic Mannan Shrimp in intensive pond culture were fed with mannan Gainza and Romero
shrimp. oligosaccharides oligosaccharide (MOS) supplementation. Shrimp survival was (2020)
(Litopenaeus increased by 30%. Changes were identified in the gut microbiota with
vannamei) the prevalence of potential opportunistic pathogens (Vibrio,

Acromonas, Shewanella) negligible in MOS fed shrimp.

Atlantic salmon  Probiotic Pediococcus acidilactici | “The impact of seawater transfer (SWT) on gut microbiome in fish Jaramillo-Torres et al.

(Salmo salar) MAIS/5M with or without dietary incl

ssion of probiotic was assessed. Both (2019)
probiotic supplementation and SWT impacted gut microbiome

composition. A higher antiviral response of fish fed the probiotic diet

was indicative of a causal link between microbiome composition and

activation of the antiviral response.

Marron crayfish | Probiotic Clostridium butyricun: | Feeding with probiotic supplementation resulted in increased growth, | Foysal et ol (2019)
(Cherasx cainii) attributed to an increase in molt occurrence. Probiotic inclusion also

increased bacterial diversity and abundance of pathogenic taxa

(Vibrio and Aeromonas) were significantly reduced. Additionally, the

expression of immune-responsive genes was modulated in probiotic

fed individuals when challenged with Vibrio mimicus.
Eastern oyster Probiotic Bacillus pumilus RI06- | Daily addition of a probiotic to culture water had no impact on the Stevick etal. (2019)
(Crassostrea 95 diversity of bacterial communities in oyster larvae and water.

virginica) However, abundances of Oceanospirillales and Bacillus were higher in

probiotic treated water and oyster larvae, and co-occurrence network
analysis indicated a role for probiotic treatment in decreasing

potentially pathogenic taxa.
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Source Polysaccharide

Laminaria japonica  Fucoidan

Inonotus obliquus Polysaccharide

Walnut green husk Polysaccharide

Walnut green husk Polysaccharide

Hypsizygus ulmarius Polysaccharide

Momordica charantia L.
(Se-MCPIla-1)

Hawthorn (Crataegus.)  Polysaccharide

Cratacgus pinnatifida Polysaccharide

Lactobacillus plantarum  Exopolysaccharide
ywil
Bacillus subiils Exopolysaccharide

Red seaweed Gelidium  Sulfated polysaccharide

pacificum Okamura

Selenylated polysaccharide

Disease

Parkinson’ disease (PD)

Alzheimers disease (AD)

Inflammatory bowel disease
(IBD)

Obesity

Diabetes mellitus (DM)

DM

Colon cancer

1BD

Bacterial infections

Antibiotic-associated
diarrhea (AAD)

Action

Reversed the loss of nigral dopaminergic neurons
and striatal dopaminergic fibers

Improved the pathological behaviors correlated
with memory and cognition, upregulated Nrf2
expression and its downstream proteins,
decreased f-amyloid peptides deposition and

neuronal fiber tangles

Enhanced the Production of SCFAs through
fermentation in the colon which help on
allivating inflammatory damage and protecting

integrity of the intestinal barrier function

Relieved the oxid:

stress in the liver by
modulating the MAPK/Ntf2 pathway, and

promoted the browning of inguinal white adipose

tissue and thermogenesis in brown adipose

tissue.

Exhibited moderate inhibi

n activity against
a-amylase and a-glucosidase enzyme ina
concentration-dependent manner

Reduced fasting blood glucose levels and
increased insulin levels

Arrested the cell cycle in the $ and G2/M phases,
increased the rate of apoptosis, downregulated
the expression of Cyclin AU/DI/EL and CDK-1/2
Restored the pathological lesions in colon,
decreased the expression of inflammatory
cytokines (IL-1f, IL-6, and TNF-o)

Inhibited inflammatory cytokines (TNF-a IL-1§,
1L-6, IFN-y and IL-12) and enhanced the anti-

inflammatory cytokine IL-10.

Limited superantigens-T cell activation by S.
aureus and abrogated systemic induction of
gamma interferon.

Promoted the recovery of the gut microbiota and
improved mucosal barrier function,
downregulated the levels of inflammatory
cytokines and enhanced the production of
SCRAs.
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“Nif2, nuclear factor erythroid 2-related factor 2; SCFA, short-chain faty acids; MAPK, mitogen-activated protein kinase; CDK1/2, cyclin dependent kinase-1/2 IL, interleukin; IEN,

interferon; TNE, tumor necrosis factor.
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CK, distlled water; LP, L. plantarum; LB, L. buchneri; LP-+ LB, L. plantarum and L. buchneri; PA, propionic acids LP + PA, L. lantarum and propionic acids CAR, calcium propionate; LP + CAP,
L. plantarum and calcium propionate. D= ensilage days effect; T=treatment effect; D x T= the interaction between ensilage days and treatment. Means of additive treatment within a row
followed by different lowercase superscripts differ from each other (p<0.05). Means of ensiling time within a column followed by different uppercase superscripts diffe from each other
(p<0.05).
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Dry matter (g/kg FW)
30 0100 1965 2065 22054 2650% 2450 2185
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Crude protein (g/kg DM)
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Water-soluble carbohydrates (g/kg DM)
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Neutral detergent fiber (g/kg DM)
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Acid detergent fiber (g/kg DM)
30 39360 3630 3887 74 3625 3300° 386" 3522°

4798 0004 <0001 0058
60 3260 3900 33N 2160 3006 350 3134 3505"

EW, fresh weight; DM, dry matter; CK, distlled water; LP, L. lantarun; LB, L. buchneri; LI+ LB, L. plantarum and L. budhneri; PA, propionic acid; LP-+ PA, L. plantarum and propionic acid;
CAP, calcium propionate; L+ CAP. L. plartarum and calcium propionate. D = ensilage days effect; T=treatment effect; D T = the interaction between ensiling days and treatments. Means of
treatment within a row followed by different lowercase superscripts differ from each other (p<0.03). Means of ensiling time within a column followed by different uppercase superscripts differ
from each other (p<0.05).
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pH
30 4410 436 388 360 3460 162 168
0068 0045 0465 0046
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Lactic acid (g/kg DM)
30 802 10318 886" 1337 1403 1013 803 685"
0438 <0001 <0001 <0001
60 s64 L7 1658" 13,07 17.18" 12,95 1075" 892
Acetic acid (g/kg DM)
30 039" 052 069" 0.62 002 002" 042" 039
0030 0091 0271 0.002
60 017% 026" 033 034 0o 014 0.29% 051"
Propionic acid (g/kg DM)
30 207 167 182 2324 2334 200% 182 257%
0075 <0001 <0001 <0001
60 7 L6 211 248" 177% 225% 3107 364
Butyric acid (g/kg DM)
30 038" 01y 039 044 00 003" 012 037"
0022 <0001 <0001 <0001
60 050 016 021 0.22¢ 003 001 0304 0294

Ammonia nitrogen/total nitrogen

30 108 33 3000 2730 3% 340 39.8% 38.2%
2811 <0001 | <0001 | <0001
60 39 385" 3950 367" 7.0m 62" 64.1% 702%

CK, distlled water; LP, L. plantarum; LB, L. buchneri; LP-+ LB, L. plantarum and L. buchneri; PA, propionic acids LP + PA, L. lantarum and propionic acids CAR, calcium propionate; LP + CAP,
L. plantarum and calcium propionate. D= ensilage days effect; T =treatment effect; D T= the interaction between ensilage days and treatment. Means of additive treatment within a row
followed by different lowercase superscripts differ from each other (p<0.05). Means of ensiling time within a colum followed by different uppercase superscripts differ from each other
(p<0.05).
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F1L score of the irst principal component; E2, score of the second principal component; F3,
score of the third principal component; F, comprehensive score of principal components;
CK, distilled water; LP, L. lantarun; LB, L. buchneri; LP + LB, L. plantarum and L. buchneri;
PA, propionic acids LP + PA, L. plantarun and propionic acids CAP, calcium propionate;
LP+ CAP, L. plantarum and calcium propionate.
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