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Complex problem solving (CPS) and related topics such as dynamic decision-making 
(DDM) and complex dynamic control (CDC) represent multifaceted psychological 
phenomena. In a broad sense, CPS encompasses learning, decision-making, and acting 
in complex and dynamic situations. Moreover, solutions to problems that people face 
in such situations are often generated in teams or groups. This adds another layer of 
complexity to the situation itself because of the emerging issues that arise from the 
social dynamics of group interactions. This framing of CPS means that it is not a single 
construct that can be measured by using a particular type of CPS task (e.g. minimal 
complex system tests), which is a view taken by the psychometric community. The 
proposed approach taken here is that because CPS is multifaceted, multiple approaches 
need to be taken to fully capture and understand what it is and how the different 
cognitive processes associated with it complement each other. 
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Thus, this Research Topic is aimed at showcasing the latest work in the fields of CPS, 
as well as DDM and CDC that takes a holist approach to investigating and theorizing 
about these abilities. The collection of articles encompasses conceptual approaches 
as well as experimental and correlational studies involving established or new tools to 
examine CPS, DDM and CDC. This work contributes to answering questions about what 
strategies and what general knowledge can be transferred from one type of complex 
and dynamic situation to another, what learning conditions result in transferable 
knowledge and skills, and how these features can be trained.
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Editorial on the Research Topic

Complex Problem Solving Beyond the Psychometric Approach

In 2005, Quesada et al. (2005) titled a paper “Complex problem-solving: A field in search of a
definition.” Thirteen years later, it seems that the field has found it in the form of multiple (or
minimal) complex systems such as MicroDYN. While MicroDYN certainly has brought the field
a boost of attention and serves as a standard of comparison, not all researchers agree that it is an
appropriate operationalization for complex problem solving (CPS). So is the field still searching?
A pessimist would affirm this. However, the present collection of articles shows that the search is
productive. For the intended scope of the research topic, please refer to the overview.

First, there is a number of conceptual papers. Dörner and Funke stake out the domain of
complex problem solving. They claim that complex real-life problems need to be an important
part of it. To bridge the gap between internal and ecological validity they recommend utilizing
a broad range of research methods. Güss et al. make an argument for incorporating motivation
into theoretical considerations about CPS. They substantiate their claim with the analysis of a
thinking-aloud protocol of a subject (having worked on the WINFIRE simulation) with respect to
three theories of motivation. Holt and Osman give an overview of various approaches to cognitive
modeling of dynamic system control. They present strengths and weaknesses of those and conclude
that due to the limitations of each single approach hybrid models are most promising. Huber
presents theoretical considerations and reviews results about representation and evaluation in
decision making. He had identified an advantages first principle, which is cushioned with the use of
risk defusing operators. While this research has been conducted in the context of classical decision-
making, it appears worthwhile to incorporate its principles into models of CPS. Overall, these
papers give a good impression of the diversity of research questions and approaches within CPS
and on its borders. Classifying these four papers as conceptual does not mean that the other papers
are devoted to pure empiricism. Many of those contain elaborated forms of theoretical reasoning.

A next class of papers can be characterized by using a correlational methodology. Süß and
Kretzschmar investigated the significance of intelligence and knowledge for performance in two
different microworlds: a complex real-life oriented system (Tailorshop) that is largely in line
with common knowledge, and a complex artificial world problem (FSYS) that was designed
to minimize the influence of prior knowledge. The authors interpret their results as evidence
that there is little reason to assume the existence of an ability construct CPS that explains
variance in control performance over and above knowledge and reasoning. Molnár and Csapó
present a large cross-sectional data set of strategy use in MicroDYN. They classified knowledge
acquisition strategies with respect to effectiveness ex ante and found the expected developmental
effects. The finding that using effective strategies, although being a predictor of control
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performance, is nonetheless neither necessary nor sufficient
for high performance, shows that things are more intricate as
desired, even in the rather plain environment of MicroDYN. In
another large study with first year university students, Csapó
and Molnár correlated several academic test scores, self-report
measures of learning strategies, and MicroDYN performance.
Besides the well-established relations among math scores,
science scores, and control performance, the study revealed
significant paths from elaborative (+) and memorizing (–)
learning strategies to math and science test scores. Baars et al.
present a study about the involvement of several affective and
motivational variables on self-regulated learning of complex
hereditary problems. Surprisingly, they found correlations
mainly with negative variables: Negative affect, perceived mental
effort and low self-assessment accuracy predicted low posttest
problem-solving performance, whereas autonomous motivation
was not a significant predictor. These results show that it is
advisable to assist novice problem-solvers to regulate their mood
when it comes to realistic self-assessment. The contribution of
Hagemann and Kluge is the only one that addresses CPS in teams.
This is an important aspect of solving problems in the real world.
The requirement to coordinate team activities can be a source of
additional complexity. In the context of a “model of the idealized
teamwork process,” the authors investigated the hypothesized
relations of cohesion, trust, and collective orientation and found
that collective orientation had an effect on team performance
mediated by the teams’ coordination behavior.

In a third set of contributions, authors used experiments as
their primary method. Beckmann et al. argue, based on a person
task situation (PTS) framework, that it is important to distinguish
difficulty from complexity. They demonstrate the implications
of their claim with an experiment that varied semantic content
of the system to be controlled and the assignment of tasks. The
results confirmed the expected effects of complexity (induced
by situation and task) on the observed difficulty. Schoppek and
Fischer compared MicoDYN with a set of more dynamic, real-
time driven control tasks (Dynamis2) in a transfer experiment.
Besides the expected correlations among control performances
in the two tasks and figural reasoning, the experiment revealed
positive transfer from MicroDYN to Dynamis2, which was
mediated by the use of a specific variant of the VOTAT strategy.
Kumar and Dutt tested the effects of a dynamic climate change
simulator (a stock-flow scenario) on misconceptions about CO2

accumulation in the atmosphere. They showed under various
conditions that working with the dynamic climate change
simulator reduced the misconceptions “correlation heuristic”
and “violation of mass balance.” Prezenski et al. present an
ACT-R model of a multidimensional classification task. The
model combines an exemplar-based and a rule-based approach.
It includes perceptual-motor and metacognitive aspects and
is able to reproduce the essential effects of the underlying
experiment.

At first sight, the diversity of research questions and methods
in these contributions seems to be a severe hindrance to
drawing conclusions. However, there are crosslinks that can give
orientation in this maze.

1. Four papers agree in their appraisal thatmotivational variables
and processes need to be considered in the investigation of
CPS (Baars et al.; Dörner and Funke; Güss et al.; Hagemann
and Kluge). This claim is as plausible as it is hard to prove:
Studies have often failed to demonstrate pronounced effects
of (global) motivational variables. Therefore, researchers need
to incur the laborious approach of identifying and measuring
proximal motivational variables that accompany the problem
solving process.

2. Several papers address the role of knowledge in CPS. The
considered knowledge types range from learning instances
(e.g., Kumar and Dutt) to explicit knowledge about the
structure of a system (e.g., Csapó and Molnár). The
significance of prior knowledge is ambiguous: It can be helpful
for successful problem solving (Süß and Kretzschmar), but
also detrimental (Beckmann et al.). Although “knowledge” is
one of the most elaborate topics within CPS, a model that
unites several knowledge types in one framework is still a
distant prospect (but see Schoppek and Fischer).

3. The question about strategies for CPS is closely related to
the previous topic, because many of the strategies being
investigated in the present collection of papers are serving
the purpose of knowledge acquisition: VOTAT (Molnár and
Csapó), VONAT (Beckmann et al.), and PULSE (Schoppek
and Fischer). In addition, Huber’s advantages first principle
and Kumar and Dutt’s correlation heuristic remind us of the
possibility that in CPS not every course of action is so clearly
scripted as in VOTAT.

4. As cognitive models of CPS need to specify knowledge and
strategy, they embrace the previous two topics. Even though
cognitive models have been used in that context for a while
(e.g., Fum and Stocco, 2003), we believe that this methodology
still helps to gain a better understanding of the interplay of
strategies and the various knowledge types.

5. A final crosslink is constituted by the use of the minimal
complex system MicroDYN (Csapó and Molnár; Molnár and
Csapó; Schoppek and Fischer), showing that even though
many authors take a skeptical view toward MicroDYN as
the operationalization of CPS per se, it is still useful as a
well-documented point of reference.

We hope that the present collection of articles will stimulate
the exchange among researchers in the field of CPS, which is
necessary to overcome potential separation. We also hope that it
will serve as a guidepost on the way to an architecture of complex
problem solving. Summarizing the present proposals, such a
differentiated architecture would be hybrid and hierarchical, in
order to incorporate diverse elements such as instance-based
learning, rule induction, decision-making, and motivational
variables.
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Complex Problem Solving: What It Is
and What It Is Not
Dietrich Dörner1 and Joachim Funke2*

1 Department of Psychology, University of Bamberg, Bamberg, Germany, 2 Department of Psychology, Heidelberg University,
Heidelberg, Germany

Computer-simulated scenarios have been part of psychological research on problem
solving for more than 40 years. The shift in emphasis from simple toy problems to
complex, more real-life oriented problems has been accompanied by discussions about
the best ways to assess the process of solving complex problems. Psychometric issues
such as reliable assessments and addressing correlations with other instruments have
been in the foreground of these discussions and have left the content validity of complex
problem solving in the background. In this paper, we return the focus to content issues
and address the important features that define complex problems.

Keywords: complex problem solving, validity, assessment, definition, MicroDYN

Succeeding in the 21st century requires many competencies, including creativity, life-long
learning, and collaboration skills (e.g., National Research Council, 2011; Griffin and Care, 2015),
to name only a few. One competence that seems to be of central importance is the ability to solve
complex problems (Mainzer, 2009). Mainzer quotes the Nobel prize winner Simon (1957) who
wrote as early as 1957:

The capacity of the human mind for formulating and solving complex problems is very small compared
with the size of the problem whose solution is required for objectively rational behavior in the real world
or even for a reasonable approximation to such objective rationality. (p. 198)

The shift from well-defined to ill-defined problems came about as a result of a disillusion with
the “general problem solver” (Newell et al., 1959): The general problem solver was a computer
software intended to solve all kind of problems that can be expressed through well-formed
formulas. However, it soon became clear that this procedure was in fact a “special problem solver”
that could only solve well-defined problems in a closed space. But real-world problems feature open
boundaries and have no well-determined solution. In fact, the world is full of wicked problems
and clumsy solutions (Verweij and Thompson, 2006). As a result, solving well-defined problems
and solving ill-defined problems requires different cognitive processes (Schraw et al., 1995; but see
Funke, 2010).

Well-defined problems have a clear set of means for reaching a precisely described goal state.
For example: in a match-stick arithmetic problem, a person receives a false arithmetic expression
constructed out of matchsticks (e.g., IV = III + III). According to the instructions, moving one of
the matchsticks will make the equations true. Here, both the problem (find the appropriate stick to
move) and the goal state (true arithmetic expression; solution is: VI = III + III) are defined clearly.

Ill-defined problems have no clear problem definition, their goal state is not defined
clearly, and the means of moving towards the (diffusely described) goal state are not clear.
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For example: The goal state for solving the political conflict in
the near-east conflict between Israel and Palestine is not clearly
defined (living in peaceful harmony with each other?) and even
if the conflict parties would agree on a two-state solution, this
goal again leaves many issues unresolved. This type of problem is
called a “complex problem” and is of central importance to this
paper. All psychological processes that occur within individual
persons and deal with the handling of such ill-defined complex
problems will be subsumed under the umbrella term “complex
problem solving” (CPS).

Systematic research on CPS started in the 1970s with
observations of the behavior of participants who were confronted
with computer simulated microworlds. For example, in one of
those microworlds participants assumed the role of executives
who were tasked to manage a company over a certain period
of time (see Brehmer and Dörner, 1993, for a discussion of this
methodology). Today, CPS is an established concept and has even
influenced large-scale assessments such as PISA (“Programme
for International Student Assessment”), organized by the
Organization for Economic Cooperation and Development
(OECD, 2014). According to the World Economic Forum, CPS
is one of the most important competencies required in the
future (World Economic Forum, 2015). Numerous articles on
the subject have been published in recent years, documenting the
increasing research activity relating to this field. In the following
collection of papers we list only those published in 2010 and
later: theoretical papers (Blech and Funke, 2010; Funke, 2010;
Knauff and Wolf, 2010; Leutner et al., 2012; Selten et al., 2012;
Wüstenberg et al., 2012; Greiff et al., 2013b; Fischer and Neubert,
2015; Schoppek and Fischer, 2015), papers about measurement
issues (Danner et al., 2011a; Greiff et al., 2012, 2015a; Alison
et al., 2013; Gobert et al., 2015; Greiff and Fischer, 2013; Herde
et al., 2016; Stadler et al., 2016), papers about applications (Fischer
and Neubert, 2015; Ederer et al., 2016; Tremblay et al., 2017),
papers about differential effects (Barth and Funke, 2010; Danner
et al., 2011b; Beckmann and Goode, 2014; Greiff and Neubert,
2014; Scherer et al., 2015; Meißner et al., 2016; Wüstenberg
et al., 2016), one paper about developmental effects (Frischkorn
et al., 2014), one paper with a neuroscience background (Osman,
2012)1, papers about cultural differences (Güss and Dörner, 2011;
Sonnleitner et al., 2014; Güss et al., 2015), papers about validity
issues (Goode and Beckmann, 2010; Greiff et al., 2013c; Schweizer
et al., 2013; Mainert et al., 2015; Funke et al., 2017; Greiff et al.,
2017, 2015b; Kretzschmar et al., 2016; Kretzschmar, 2017), review
papers and meta-analyses (Osman, 2010; Stadler et al., 2015), and
finally books (Qudrat-Ullah, 2015; Csapó and Funke, 2017b) and
book chapters (Funke, 2012; Hotaling et al., 2015; Funke and
Greiff, 2017; Greiff and Funke, 2017; Csapó and Funke, 2017a;
Fischer et al., 2017; Molnàr et al., 2017; Tobinski and Fritz, 2017;
Viehrig et al., 2017). In addition, a new “Journal of Dynamic
Decision Making” (JDDM) has been launched (Fischer et al.,
2015, 2016) to give the field an open-access outlet for research
and discussion.

1The fMRI-paper from Anderson (2012) uses the term “complex problem solving”
for tasks that do not fall in our understanding of CPS and is therefore excluded
from this list.

This paper aims to clarify aspects of validity: what should be
meant by the term CPS and what not? This clarification seems
necessary because misunderstandings in recent publications
provide – from our point of view – a potentially misleading
picture of the construct. We start this article with a historical
review before attempting to systematize different positions. We
conclude with a working definition.

HISTORICAL REVIEW

The concept behind CPS goes back to the German phrase
“komplexes Problemlösen” (CPS; the term “komplexes
Problemlösen” was used as a book title by Funke, 1986).
The concept was introduced in Germany by Dörner and
colleagues in the mid-1970s (see Dörner et al., 1975; Dörner,
1975) for the first time. The German phrase was later translated
to CPS in the titles of two edited volumes by Sternberg and
Frensch (1991) and Frensch and Funke (1995a) that collected
papers from different research traditions. Even though it looks as
though the term was coined in the 1970s, Edwards (1962) used
the term “dynamic decision making” to describe decisions that
come in a sequence. He compared static with dynamic decision
making, writing:

In dynamic situations, a new complication not found in the
static situations arises. The environment in which the decision
is set may be changing, either as a function of the sequence
of decisions, or independently of them, or both. It is this
possibility of an environment which changes while you collect
information about it which makes the task of dynamic decision
theory so difficult and so much fun. (p. 60)

The ability to solve complex problems is typically measured via
dynamic systems that contain several interrelated variables that
participants need to alter. Early work (see, e.g., Dörner, 1980)
used a simulation scenario called “Lohhausen” that contained
more than 2000 variables that represented the activities of a small
town: Participants had to take over the role of a mayor for a
simulated period of 10 years. The simulation condensed these ten
years to ten hours in real time. Later, researchers used smaller
dynamic systems as scenarios either based on linear equations
(see, e.g., Funke, 1993) or on finite state automata (see, e.g.,
Buchner and Funke, 1993). In these contexts, CPS consisted
of the identification and control of dynamic task environments
that were previously unknown to the participants. Different task
environments came along with different degrees of fidelity (Gray,
2002).

According to Funke (2012), the typical attributes of complex
systems are (a) complexity of the problem situation which is
usually represented by the sheer number of involved variables;
(b) connectivity and mutual dependencies between involved
variables; (c) dynamics of the situation, which reflects the role of
time and developments within a system; (d) intransparency (in
part or full) about the involved variables and their current values;
and (e) polytely (greek term for “many goals”), representing
goal conflicts on different levels of analysis. This mixture of
features is similar to what is called VUCA (volatility, uncertainty,

Frontiers in Psychology | www.frontiersin.org July 2017 | Volume 8 | Article 11539

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-08-01153 July 8, 2017 Time: 15:17 # 3

Dörner and Funke What Is CPS?

complexity, ambiguity) in modern approaches to management
(e.g., Mack et al., 2016).

In his evaluation of the CPS movement, Sternberg (1995)
compared (young) European approaches to CPS with (older)
American research on expertise. His analysis of the differences
between the European and American traditions shows
advantages but also potential drawbacks for each side. He
states (p. 301): “I believe that although there are problems
with the European approach, it deals with some fundamental
questions that American research scarcely addresses.” So, even
though the echo of the European approach did not enjoy strong
resonance in the US at that time, it was valued by scholars like
Sternberg and others. Before attending to validity issues, we will
first present a short review of different streams.

DIFFERENT APPROACHES TO CPS

In the short history of CPS research, different approaches can be
identified (Buchner, 1995; Fischer et al., 2017). To systematize, we
differentiate between the following five lines of research:

(a) The search for individual differences comprises studies
identifying interindividual differences that affect the ability
to solve complex problems. This line of research is reflected,
for example, in the early work by Dörner et al. (1983) and
their “Lohhausen” study. Here, naïve student participants
took over the role of the mayor of a small simulated
town named Lohhausen for a simulation period of ten
years. According to the results of the authors, it is not
intelligence (as measured by conventional IQ tests) that
predicts performance, but it is the ability to stay calm in the
face of a challenging situation and the ability to switch easily
between an analytic mode of processing and a more holistic
one.

(b) The search for cognitive processes deals with the processes
behind understanding complex dynamic systems.
Representative of this line of research is, for example,
Berry and Broadbent’s (1984) work on implicit and explicit
learning processes when people interact with a dynamic
system called “Sugar Production”. They found that those
who perform best in controlling a dynamic system can
do so implicitly, without explicit knowledge of details
regarding the systems’ relations.

(c) The search for system factors seeks to identify the aspects of
dynamic systems that determine the difficulty of complex
problems and make some problems harder than others.
Representative of this line of research is, for example,
work by Funke (1985), who systematically varied the
number of causal effects within a dynamic system or the
presence/absence of eigendynamics. He found, for example,
that solution quality decreases as the number of systems
relations increases.

(d) The psychometric approach develops measurement
instruments that can be used as an alternative to classical IQ
tests, as something that goes “beyond IQ”. The MicroDYN
approach (Wüstenberg et al., 2012) is representative for this

line of research that presents an alternative to reasoning
tests (like Raven matrices). These authors demonstrated
that a small improvement in predicting school grade point
average beyond reasoning is possible with MicroDYN tests.

(e) The experimental approach explores CPS under different
experimental conditions. This approach uses CPS
assessment instruments to test hypotheses derived
from psychological theories and is sometimes used in
research about cognitive processes (see above). Exemplary
for this line of research is the work by Rohe et al. (2016),
who test the usefulness of “motto goals” in the context
of complex problems compared to more traditional
learning and performance goals. Motto goals differ from
pure performance goals by activating positive affect and
should lead to better goal attainment especially in complex
situations (the mentioned study found no effect).

To be clear: these five approaches are not mutually exclusive
and do overlap. But the differentiation helps to identify
different research communities and different traditions. These
communities had different opinions about scaling complexity.

THE RACE FOR COMPLEXITY: USE OF
MORE AND MORE COMPLEX SYSTEMS

In the early years of CPS research, microworlds started with
systems containing about 20 variables (“Tailorshop”), soon
reached 60 variables (“Moro”), and culminated in systems with
about 2000 variables (“Lohhausen”). This race for complexity
ended with the introduction of the concept of “minimal complex
systems” (MCS; Greiff and Funke, 2009; Funke and Greiff, 2017),
which ushered in a search for the lower bound of complexity
instead of the higher bound, which could not be defined as
easily. The idea behind this concept was that whereas the upper
limits of complexity are unbound, the lower limits might be
identifiable. Imagine starting with a simple system containing two
variables with a simple linear connection between them; then,
step by step, increase the number of variables and/or the type of
connections. One soon reaches a point where the system can no
longer be considered simple and has become a “complex system”.
This point represents a minimal complex system. Despite some
research having been conducted in this direction, the point of
transition from simple to complex has not been identified clearly
as of yet.

Some years later, the original “minimal complex systems”
approach (Greiff and Funke, 2009) shifted to the “multiple
complex systems” approach (Greiff et al., 2013a). This shift is
more than a slight change in wording: it is important because it
taps into the issue of validity directly. Minimal complex systems
have been introduced in the context of challenges from large-
scale assessments like PISA 2012 that measure new aspects
of problem solving, namely interactive problems besides static
problem solving (Greiff and Funke, 2017). PISA 2012 required
test developers to remain within testing time constraints (given
by the school class schedule). Also, test developers needed a
large item pool for the construction of a broad class of problem
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solving items. It was clear from the beginning that MCS deal with
simple dynamic situations that require controlled interaction: the
exploration and control of simple ticket machines, simple mobile
phones, or simple MP3 players (all of these example domains
were developed within PISA 2012) – rather than really complex
situations like managerial or political decision making.

As a consequence of this subtle but important shift in
interpreting the letters MCS, the definition of CPS became a
subject of debate recently (Funke, 2014a; Greiff and Martin, 2014;
Funke et al., 2017). In the words of Funke (2014b, p. 495):

It is funny that problems that nowadays come under the term
‘CPS’, are less complex (in terms of the previously described
attributes of complex situations) than at the beginning of
this new research tradition. The emphasis on psychometric
qualities has led to a loss of variety. Systems thinking
requires more than analyzing models with two or three
linear equations – nonlinearity, cyclicity, rebound effects,
etc. are inherent features of complex problems and should
show up at least in some of the problems used for research
and assessment purposes. Minimal complex systems run the
danger of becoming minimal valid systems.

Searching for minimal complex systems is not the same as
gaining insight into the way how humans deal with complexity
and uncertainty. For psychometric purposes, it is appropriate to
reduce complexity to a minimum; for understanding problem
solving under conditions of overload, intransparency, and
dynamics, it is necessary to realize those attributes with
reasonable strength. This aspect is illustrated in the next section.

IMPORTANCE OF THE VALIDITY ISSUE

The most important reason for discussing the question of
what complex problem solving is and what it is not stems
from its phenomenology: if we lose sight of our phenomena,
we are no longer doing good psychology. The relevant
phenomena in the context of complex problems encompass
many important aspects. In this section, we discuss four
phenomena that are specific to complex problems. We consider
these phenomena as critical for theory development and for
the construction of assessment instruments (i.e., microworlds).
These phenomena require theories for explaining them and
they require assessment instruments eliciting them in a reliable
way.

The first phenomenon is the emergency reaction of the
intellectual system (Dörner, 1980): When dealing with complex
systems, actors tend to (a) reduce their intellectual level by
decreasing self-reflections, by decreasing their intentions, by
stereotyping, and by reducing their realization of intentions, (b)
they show a tendency for fast action with increased readiness
for risk, with increased violations of rules, and with increased
tendency to escape the situation, and (c) they degenerate their
hypotheses formation by construction of more global hypotheses
and reduced tests of hypotheses, by increasing entrenchment, and
by decontextualizing their goals. This phenomenon illustrates
the strong connection between cognition, emotion, and motivation

that has been emphasized by Dörner (see, e.g., Dörner and Güss,
2013) from the beginning of his research tradition; the emergency
reaction reveals a shift in the mode of information processing
under the pressure of complexity.

The second phenomenon comprises cross-cultural differences
with respect to strategy use (Strohschneider and Güss, 1999;
Güss and Wiley, 2007; Güss et al., 2015). Results from complex
task environments illustrate the strong influence of context
and background knowledge to an extent that cannot be found
for knowledge-poor problems. For example, in a comparison
between Brazilian and German participants, it turned out that
Brazilians accept the given problem descriptions and are more
optimistic about the results of their efforts, whereas Germans
tend to inquire more about the background of the problems and
take a more active approach but are less optimistic (according to
Strohschneider and Güss, 1998, p. 695).

The third phenomenon relates to failures that occur during
the planning and acting stages (Jansson, 1994; Ramnarayan et al.,
1997), illustrating that rational procedures seem to be unlikely to
be used in complex situations. The potential for failures (Dörner,
1996) rises with the complexity of the problem. Jansson (1994)
presents seven major areas for failures with complex situations:
acting directly on current feedback; insufficient systematization;
insufficient control of hypotheses and strategies; lack of self-
reflection; selective information gathering; selective decision
making; and thematic vagabonding.

The fourth phenomenon describes (a lack of) training and
transfer effects (Kretzschmar and Süß, 2015), which again
illustrates the context dependency of strategies and knowledge
(i.e., there is no strategy that is so universal that it can
be used in many different problem situations). In their own
experiment, the authors could show training effects only for
knowledge acquisition, not for knowledge application. Only with
specific feedback, performance in complex environments can be
increased (Engelhart et al., 2017).

These four phenomena illustrate why the type of complexity
(or degree of simplicity) used in research really matters.
Furthermore, they demonstrate effects that are specific for
complex problems, but not for toy problems. These phenomena
direct the attention to the important question: does the stimulus
material used (i.e., the computer-simulated microworld) tap and
elicit the manifold of phenomena described above?

Dealing with partly unknown complex systems requires
courage, wisdom, knowledge, grit, and creativity. In creativity
research, “little c” and “BIG C” are used to differentiate
between everyday creativity and eminent creativity (Beghetto
and Kaufman, 2007; Kaufman and Beghetto, 2009). Everyday
creativity is important for solving everyday problems (e.g.,
finding a clever fix for a broken spoke on my bicycle), eminent
creativity changes the world (e.g., inventing solar cells for energy
production). Maybe problem solving research should use a
similar differentiation between “little p” and “BIG P” to mark
toy problems on the one side and big societal challenges on
the other. The question then remains: what can we learn about
BIG P by studying little p? What phenomena are present in
both types, and what phenomena are unique to each of the two
extremes?
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ON METHODS

Discussing research on CPS requires reflecting on the field’s
research methods. Even if the experimental approach has been
successful for testing hypotheses (for an overview of older work,
see Funke, 1995), other methods might provide additional and
novel insights. Complex phenomena require complex approaches
to understand them. The complex nature of complex systems
imposes limitations on psychological experiments: The more
complex the environments, the more difficult is it to keep
conditions under experimental control. And if experiments have
to be run in labs one should bring enough complexity into
the lab to establish the phenomena mentioned, at least in
part.

There are interesting options to be explored (again): think-
aloud protocols, which have been discredited for many years
(Nisbett and Wilson, 1977) and yet are a valuable source
for theory testing (Ericsson and Simon, 1983); introspection
(Jäkel and Schreiber, 2013), which seems to be banned from
psychological methods but nevertheless offers insights into
thought processes; the use of life-streaming (Wendt, 2017),
a medium in which streamers generate a video stream of
think-aloud data in computer-gaming; political decision-making
(Dhami et al., 2015) that demonstrates error-proneness in groups;
historical case studies (Dörner and Güss, 2011) that give insights
into the thinking styles of political leaders; the use of the critical
incident technique (Reuschenbach, 2008) to construct complex
scenarios; and simulations with different degrees of fidelity (Gray,
2002).

The methods tool box is full of instruments that have to
be explored more carefully before any individual instrument
receives a ban or research narrows its focus to only one paradigm
for data collection. Brehmer and Dörner (1993) discussed the
tensions between “research in the laboratory and research in the
field”, optimistically concluding “that the new methodology of
computer-simulated microworlds will provide us with the means
to bridge the gap between the laboratory and the field” (p. 183).
The idea behind this optimism was that computer-simulated
scenarios would bring more complexity from the outside world
into the controlled lab environment. But this is not true for all
simulated scenarios. In his paper on simulated environments,
Gray (2002) differentiated computer-simulated environments
with respect to three dimensions: (1) tractability (“the more
training subjects require before they can use a simulated task
environment, the less tractable it is”, p. 211), correspondence
(“High correspondence simulated task environments simulate
many aspects of one task environment. Low correspondence
simulated task environments simulate one aspect of many task
environments”, p. 214), and engagement (“A simulated task
environment is engaging to the degree to which it involves and
occupies the participants; that is, the degree to which they agree
to take it seriously”, p. 217). But the mere fact that a task is called a
“computer-simulated task environment” does not mean anything
specific in terms of these three dimensions. This is one of several
reasons why we should differentiate between those studies that do
not address the core features of CPS and those that do.

WHAT IS NOT CPS?

Even though a growing number of references claiming to deal
with complex problems exist (e.g., Greiff and Wüstenberg,
2015; Greiff et al., 2016), it would be better to label the
requirements within these tasks “dynamic problem solving,” as
it has been done adequately in earlier work (Greiff et al., 2012).
The dynamics behind on-off-switches (Thimbleby, 2007) are
remarkable but not really complex. Small nonlinear systems that
exhibit stunningly complex and unstable behavior do exist –
but they are not used in psychometric assessments of so-
called CPS. There are other small systems (like MicroDYN
scenarios: Greiff and Wüstenberg, 2014) that exhibit simple
forms of system behavior that are completely predictable and
stable. This type of simple systems is used frequently. It is
even offered commercially as a complex problem-solving test
called COMPRO (Greiff and Wüstenberg, 2015) for business
applications. But a closer look reveals that the label is not used
correctly; within COMPRO, the used linear equations are far
from being complex and the system can be handled properly
by using only one strategy (see for more details Funke et al.,
2017).

Why do simple linear systems not fall within CPS? At the
surface, nonlinear and linear systems might appear similar
because both only include 3–5 variables. But the difference
is in terms of systems behavior as well as strategies and
learning. If the behavior is simple (as in linear systems
where more input is related to more output and vice versa),
the system can be easily understood (participants in the
MicroDYN world have 3 minutes to explore a complex
system). If the behavior is complex (as in systems that
contain strange attractors or negative feedback loops), things
become more complicated and much more observation is
needed to identify the hidden structure of the unknown
system (Berry and Broadbent, 1984; Hundertmark et al.,
2015).

Another issue is learning. If tasks can be solved using
a single (and not so complicated) strategy, steep learning
curves are to be expected. The shift from problem solving to
learned routine behavior occurs rapidly, as was demonstrated
by Luchins (1942). In his water jar experiments, participants
quickly acquired a specific strategy (a mental set) for solving
certain measurement problems that they later continued applying
to problems that would have allowed for easier approaches.
In the case of complex systems, learning can occur only on
very general, abstract levels because it is difficult for human
observers to make specific predictions. Routines dealing with
complex systems are quite different from routines relating to
linear systems.

What should not be studied under the label of CPS are pure
learning effects, multiple-cue probability learning, or tasks that
can be solved using a single strategy. This last issue is a problem
for MicroDYN tasks that rely strongly on the VOTAT strategy
(“vary one thing at a time”; see Tschirgi, 1980). In real-life, it is
hard to imagine a business manager trying to solve her or his
problems by means of VOTAT.
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WHAT IS CPS?

In the early days of CPS research, planet Earth’s dynamics and
complexities gained attention through such books as “The limits
to growth” (Meadows et al., 1972) and “Beyond the limits”
(Meadows et al., 1992). In the current decade, for example,
the World Economic Forum (2016) attempts to identify the
complexities and risks of our modern world. In order to
understand the meaning of complexity and uncertainty, taking
a look at the worlds’ most pressing issues is helpful. Searching
for strategies to cope with these problems is a difficult task:
surely there is no place for the simple principle of “vary-one-
thing-at-a-time” (VOTAT) when it comes to global problems.
The VOTAT strategy is helpful in the context of simple problems
(Wüstenberg et al., 2014); therefore, whether or not VOTAT is
helpful in a given problem situation helps us distinguish simple
from complex problems.

Because there exist no clear-cut strategies for complex
problems, typical failures occur when dealing with uncertainty
(Dörner, 1996; Güss et al., 2015). Ramnarayan et al. (1997)
put together a list of generic errors (e.g., not developing
adequate action plans; lack of background control; learning from
experience blocked by stereotype knowledge; reactive instead
of proactive action) that are typical of knowledge-rich complex
systems but cannot be found in simple problems.

Complex problem solving is not a one-dimensional, low-level
construct. On the contrary, CPS is a multi-dimensional bundle
of competencies existing at a high level of abstraction, similar
to intelligence (but going beyond IQ). As Funke et al. (2018)
state: “Assessment of transversal (in educational contexts: cross-
curricular) competencies cannot be done with one or two types
of assessment. The plurality of skills and competencies requires a
plurality of assessment instruments.”

There are at least three different aspects of complex systems
that are part of our understanding of a complex system: (1) a
complex system can be described at different levels of abstraction;
(2) a complex system develops over time, has a history, a current
state, and a (potentially unpredictable) future; (3) a complex
system is knowledge-rich and activates a large semantic network,
together with a broad list of potential strategies (domain-specific
as well as domain-general).

Complex problem solving is not only a cognitive process but
is also an emotional one (Spering et al., 2005; Barth and Funke,
2010) and strongly dependent on motivation (low-stakes versus
high-stakes testing; see Hermes and Stelling, 2016).

Furthermore, CPS is a dynamic process unfolding over time,
with different phases and with more differentiation than simply
knowledge acquisition and knowledge application. Ideally, the
process should entail identifying problems (see Dillon, 1982;
Lee and Cho, 2007), even if in experimental settings, problems
are provided to participants a priori. The more complex and
open a given situation, the more options can be generated (T. S.
Schweizer et al., 2016). In closed problems, these processes do not
occur in the same way.

In analogy to the difference between formative (process-
oriented) and summative (result-oriented) assessment (Wiliam
and Black, 1996; Bennett, 2011), CPS should not be reduced to the

mere outcome of a solution process. The process leading up to the
solution, including detours and errors made along the way, might
provide a more differentiated impression of a person’s problem-
solving abilities and competencies than the final result of such
a process. This is one of the reasons why CPS environments are
not, in fact, complex intelligence tests: research on CPS is not only
about the outcome of the decision process, but it is also about the
problem-solving process itself.

Complex problem solving is part of our daily life: finding the
right person to share one’s life with, choosing a career that not
only makes money, but that also makes us happy. Of course,
CPS is not restricted to personal problems – life on Earth gives
us many hard nuts to crack: climate change, population growth,
the threat of war, the use and distribution of natural resources. In
sum, many societal challenges can be seen as complex problems.
To reduce that complexity to a one-hour lab activity on a random
Friday afternoon puts it out of context and does not address CPS
issues.

Theories about CPS should specify which populations they
apply to. Across populations, one thing to consider is prior
knowledge. CPS research with experts (e.g., Dew et al., 2009) is
quite different from problem solving research using tasks that
intentionally do not require any specific prior knowledge (see,
e.g., Beckmann and Goode, 2014).

More than 20 years ago, Frensch and Funke (1995b) defined
CPS as follows:

CPS occurs to overcome barriers between a given state and
a desired goal state by means of behavioral and/or cognitive,
multi-step activities. The given state, goal state, and barriers
between given state and goal state are complex, change
dynamically during problem solving, and are intransparent.
The exact properties of the given state, goal state, and barriers
are unknown to the solver at the outset. CPS implies the
efficient interaction between a solver and the situational
requirements of the task, and involves a solver’s cognitive,
emotional, personal, and social abilities and knowledge. (p. 18)

The above definition is rather formal and does not account
for content or relations between the simulation and the real
world. In a sense, we need a new definition of CPS that addresses
these issues. Based on our previous arguments, we propose the
following working definition:

Complex problem solving is a collection of self-regulated
psychological processes and activities necessary in dynamic
environments to achieve ill-defined goals that cannot
be reached by routine actions. Creative combinations of
knowledge and a broad set of strategies are needed. Solutions
are often more bricolage than perfect or optimal. The
problem-solving process combines cognitive, emotional,
and motivational aspects, particularly in high-stakes
situations. Complex problems usually involve knowledge-rich
requirements and collaboration among different persons.

The main differences to the older definition lie in the emphasis
on (a) the self-regulation of processes, (b) creativity (as opposed
to routine behavior), (c) the bricolage type of solution, and (d) the
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role of high-stakes challenges. Our new definition incorporates
some aspects that have been discussed in this review but were not
reflected in the 1995 definition, which focused on attributes of
complex problems like dynamics or intransparency.

This leads us to the final reflection about the role of CPS
for dealing with uncertainty and complexity in real life. We will
distinguish thinking from reasoning and introduce the sense of
possibility as an important aspect of validity.

CPS AS COMBINING REASONING AND
THINKING IN AN UNCERTAIN REALITY

Leading up to the Battle of Borodino in Leo Tolstoy’s novel “War
and Peace”, Prince Andrei Bolkonsky explains the concept of
war to his friend Pierre. Pierre expects war to resemble a game
of chess: You position the troops and attempt to defeat your
opponent by moving them in different directions.

“Far from it!”, Andrei responds. “In chess, you know the
knight and his moves, you know the pawn and his combat
strength. While in war, a battalion is sometimes stronger than a
division and sometimes weaker than a company; it all depends
on circumstances that can never be known. In war, you do not
know the position of your enemy; some things you might be able
to observe, some things you have to divine (but that depends on
your ability to do so!) and many things cannot even be guessed
at. In chess, you can see all of your opponent’s possible moves. In
war, that is impossible. If you decide to attack, you cannot know
whether the necessary conditions are met for you to succeed.
Many a time, you cannot even know whether your troops will
follow your orders. . .”

In essence, war is characterized by a high degree of
uncertainty. A good commander (or politician) can add to that
what he or she sees, tentatively fill in the blanks – and not just
by means of logical deduction but also by intelligently bridging
missing links. A bad commander extrapolates from what he sees
and thus arrives at improper conclusions.

Many languages differentiate between two modes of
mentalizing; for instance, the English language distinguishes
between ‘thinking’ and ‘reasoning’. Reasoning denotes acute
and exact mentalizing involving logical deductions. Such
deductions are usually based on evidence and counterevidence.
Thinking, however, is what is required to write novels. It is
the construction of an initially unknown reality. But it is not
a pipe dream, an unfounded process of fabrication. Rather,
thinking asks us to imagine reality (“Wirklichkeitsfantasie”). In
other words, a novelist has to possess a “sense of possibility”
(“Möglichkeitssinn”, Robert Musil; in German, sense of
possibility is often used synonymously with imagination even
though imagination is not the same as sense of possibility, for
imagination also encapsulates the impossible). This sense of
possibility entails knowing the whole (or several wholes) or being
able to construe an unknown whole that could accommodate
a known part. The whole has to align with sociological and
geographical givens, with the mentality of certain peoples or
groups, and with the laws of physics and chemistry. Otherwise,
the entire venture is ill-founded. A sense of possibility does not

aim for the moon but imagines something that might be possible
but has not been considered possible or even potentially possible
so far.

Thinking is a means to eliminate uncertainty. This process
requires both of the modes of thinking we have discussed thus
far. Economic, political, or ecological decisions require us to
first consider the situation at hand. Though certain situational
aspects can be known, but many cannot. In fact, von Clausewitz
(1832) posits that only about 25% of the necessary information
is available when a military decision needs to be made. Even
then, there is no way to guarantee that whatever information
is available is also correct: Even if a piece of information was
completely accurate yesterday, it might no longer apply today.

Once our sense of possibility has helped grasping a situation,
problem solvers need to call on their reasoning skills. Not every
situation requires the same action, and we may want to act
this way or another to reach this or that goal. This appears
logical, but it is a logic based on constantly shifting grounds: We
cannot know whether necessary conditions are met, sometimes
the assumptions we have made later turn out to be incorrect, and
sometimes we have to revise our assumptions or make completely
new ones. It is necessary to constantly switch between our sense
of possibility and our sense of reality, that is, to switch between
thinking and reasoning. It is an arduous process, and some people
handle it well, while others do not.

If we are to believe Tuchman’s (1984) book, “The March of
Folly”, most politicians and commanders are fools. According
to Tuchman, not much has changed in the 3300 years that
have elapsed since the misguided Trojans decided to welcome
the left-behind wooden horse into their city that would end up
dismantling Troy’s defensive walls. The Trojans, too, had been
warned, but decided not to heed the warning. Although Laocoön
had revealed the horse’s true nature to them by attacking it with
a spear, making the weapons inside the horse ring, the Trojans
refused to see the forest for the trees. They did not want to listen,
they wanted the war to be over, and this desire ended up shaping
their perception.

The objective of psychology is to predict and explain human
actions and behavior as accurately as possible. However, thinking
cannot be investigated by limiting its study to neatly confined
fractions of reality such as the realms of propositional logic,
chess, Go tasks, the Tower of Hanoi, and so forth. Within
these systems, there is little need for a sense of possibility. But
a sense of possibility – the ability to divine and construe an
unknown reality – is at least as important as logical reasoning
skills. Not researching the sense of possibility limits the validity
of psychological research. All economic and political decision
making draws upon this sense of possibility. By not exploring
it, psychological research dedicated to the study of thinking
cannot further the understanding of politicians’ competence and
the reasons that underlie political mistakes. Christopher Clark
identifies European diplomats’, politicians’, and commanders’
inability to form an accurate representation of reality as a reason
for the outbreak of World War I. According to Clark’s (2012)
book, “The Sleepwalkers”, the politicians of the time lived in their
own make-believe world, wrongfully assuming that it was the
same world everyone else inhabited. If CPS research wants to
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make significant contributions to the world, it has to acknowledge
complexity and uncertainty as important aspects of it.

CONCLUSION

For more than 40 years, CPS has been a new subject of
psychological research. During this time period, the initial
emphasis on analyzing how humans deal with complex, dynamic,
and uncertain situations has been lost. What is subsumed under
the heading of CPS in modern research has lost the original
complexities of real-life problems. From our point of view, the
challenges of the 21st century require a return to the origins of
this research tradition. We would encourage researchers in the
field of problem solving to come back to the original ideas. There
is enough complexity and uncertainty in the world to be studied.
Improving our understanding of how humans deal with these
global and pressing problems would be a worthwhile enterprise.
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THE ROLE OF MOTIVATION IN COMPLEX PROBLEM SOLVING

Previous research on Complex Problem Solving (CPS) has primarily focused on cognitive factors
as outlined below. The current paper discusses the role of motivation during CPS and argues
that motivation, emotion, and cognition interact and cannot be studied in an isolated manner.
Motivation is the process that determines the energization and direction of behavior (Heckhausen,
1991).

Three motivation theories and their relation to CPS are examined: McClelland’s achievement
motivation, Maslow’s hierarchy of needs, and Dörner’s needs as outlined in PSI-theory. We chose
these three theories for several reasons. First, space forces us to be selective. Second, the three
theories are among the most prominent motivational theories. Finally, they are need theories
postulating several motivations and not just one. A thinking-aloud protocol is provided to illustrate
the role of motivational and cognitive dynamics in CPS.

Problems are part of all the domains of human life. The field of CPS investigates problems that
are complex, dynamic, and non-transparent (Dörner, 1996). Complex problems consist of many
interactively interrelated variables. Dynamic ones change and develop further over time, regardless
of whether the involved people take action. And non-transparent problems have many aspects of
the problem situation that are unclear or unknown to the involved people.

CPS researchers focus exactly on such kinds of problems. Under a narrow perspective, CPS
can be defined as thinking that aims to overcome barriers and to reach goals in situations that
are complex, dynamic, and non-transparent (Frensch and Funke, 1995). Indeed, past research has
shown the influential role of task properties (Berry and Broadbent, 1984; Funke, 1985) and of
cognitive factors on CPS strategies and performance, such as intelligence (e.g., Süß, 2001; Stadler
et al., 2015), domain-specific knowledge (e.g., Wenke et al., 2005), cognitive biases and errors (e.g.,
Dörner, 1996; Güss et al., 2015), or self-reflection (e.g., Donovan et al., 2015).

Under a broader perspective, CPS can be defined as the study of cognitive, emotional,
motivational, and social processes when people are confronted with such complex, dynamic and
non-transparent problem situations (Schoppek and Putz-Osterloh, 2003; Dörner and Güss, 2011,
2013; Funke, 2012). The assumption here is that focusing solely on cognitive processes reveals an
incomplete picture or an inaccurate one.

To study CPS, researchers have often used computer-simulated problem scenarios also
called microworlds or virtual environments or strategy games. In these situations, participants
are confronted with a complex problem simulated on the computer from which they gather
information, and identify solutions. These decisions are then implemented into the system and
result in changes to the problem situation.

PREVIOUS RESEARCH ON MOTIVATION AND CPS

The idea to study the interaction of motivation, emotion, and cognition is not new (Simon, 1967).
However, in practice this has been rarely examined in the field of CPS. One study assessed the need
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for cognition (i.e., the tendency to engage in thinking and
reflecting) and showed how high need of cognition was related
to broader information collection and better performance in a
management simulation (Nair and Ramnarayan, 2000).

Vollmeyer and Rheinberg (1999, 2000) explored in two studies
the role of motivational factors in CPS. They assessed mastery
confidence (similar to self-efficacy), incompetence fear, interest,
and challenge as motivational factors. Their results demonstrated
that mastery confidence and incompetence fear were good
predictors for learning and for knowledge acquisition.

CPS ASSESSMENT

Before we describe three theories of motivation and how they
might be related and applicable to CPS, we will briefly describe
the WINFIRE computer simulation (Gerdes et al., 1993; Schaub,
2009) and provide a part of a thinking-aloud protocol of
one participant while working on WINFIRE. WINFIRE is the
simulation of small cities surrounded by forests. Participants take
the role of fire-fighting commanders who try to protect cities and
forests from approaching fires. Participants can give a series of
commands to several fire trucks and helicopters. In WINFIRE
quick decisions and multitasking are required in order to avoid
fires spreading. In one study, participants were also instructed
to think aloud, i.e., to say aloud everything that went through
their minds while working on WINFIRE. These thinking-aloud
protocols, also called verbal protocols, were audiotaped and
transcribed in five countries and compared (see Güss et al., 2010).

The following is a verbatim WINFIRE thinking-aloud
protocol of a US participant (Güss et al., 2010):

Ok, I don’t see any fires yet. I’m trying to figure out how the

helicopters pick up the water from the ponds. I put helicopters on

patrol mode. Not really sure what that does. It doesn’t seem to be

moving. Oh, there it goes, it’s moving... I guess you have to wait

till there’s a fire showing... Ok, fire just started in the middle, so I

have to get some people to extinguish it. Ok, now I have another fire

going here. I’m in trouble here. Ok. Ok, when I click extinguish, it

don’t seem to respond. Guess I’m not clear how to get trucks right to

the fire. Ok, one fire has been extinguished, but a new one started

in the same area. I’m getting more trucks out there trying to figure

out, how to get helicopters to the pond. I still haven’t figured that

out, because they have to pick up the water. Ok, got a pretty good

fire going here, so I’m going to put all the trucks on action, ok, water

thing is making memad. Ok. I’m not sure how it goes? Ok, the forest

is burning up now—extinguish! Ok, ok, I’m in big trouble here...

PSYCHOLOGICAL THEORIES OF

MOTIVATION AND THEIR APPLICATION TO

CPS

McClelland’s Human Motivation Theory
In his HumanMotivation theory, McClelland distinguishes three
needs (power, affiliation, and achievement) and argues that
human motivation is a response to changes in affective states. A
specific situation will cause a change in the affective state through
the non-specific response of the autonomic nervous system.

This response will motivate a person toward a goal to reach a
different affective state (McClelland et al., 1953). An affective state
may either be positive or negative, determining the direction of
motivated behavior as either approach oriented, i.e., to maintain
the state, or avoidance oriented, i.e., to avoid or discontinue the
state (McClelland et al., 1953).

Motivation intensity varies among individuals based on
perception of the stimulus and the adaptive abilities of
the individual. Hence, when a discrepancy exists between
expectation and perception, then a person will be motivated
to eliminate this discrepancy (McClelland et al., 1953). In the
statement from the thinking-aloud protocol we can infer the
participant’s achievement motivation, “Guess I’m not clear how to
get trucks right to the fire. Ok, one fire has been extinguished, but a
new one started in the same area.” The participant at first begins
to give up and reduce effort, but then achieves a step toward the
goal. This achievement causes the reevaluation of the discrepancy
between ability and the goal as not too large to overcome.
This realization motivates the participant to continue working
through the scenario. Whereas, the need for achievement seems
to guide CPS, the needs for power and affiliation cannot be
observed in the current thinking-aloud protocol.

Based on the previous discussion we can derive the following
predictions:

Prediction 1: Approach-orientation will lead to greater
engagement in CPS compared to avoidance-orientation.

Prediction 2: Based on an individual’s experience either power,
affiliation, or achievement will become dominant and guide
the strategic approach in CPS.

Maslow’s Hierarchy of Needs
Maslow’s Hierarchy of Needs (Maslow, 1943, 1954) suggests that
everyone has five basic needs that act as motivating forces in a
person’s life. Maslow’s hierarchy takes the form of a pyramid in
which needs lower in the pyramid are primary motivators. They
have to bemet before higher needs can becomemotivating forces.
At the bottom of the pyramid are the most basic needs beginning
with physiological needs, such as hunger, and followed by safety
needs. Then follow the psychological needs of belongingness and
love, and then esteem. Once these four groups of needs have
been met, a person may reach the self-fulfillment stage of self-
actualization at which time a person can be motivated to achieve
ones full potential (Maslow, 1943).

The first four groups of needs are external motivators because
theymotivate through both deficiency and fulfillment. In essence,
a person fulfills a need which then releases the next unsatisfied
need to be the dominant motivator (Maslow, 1943, 1954). The
safety need is often understood as seeking shelter, but Maslow
also understands safety also as wanting “a predictable, orderly
world” (Maslow, 1943, p. 377), “an organized world rather than
an unorganized or unstructured one” (Maslow, 1943, p. 377).
Safety refers to the “common preference for familiar rather than
unfamiliar things” (Maslow, 1943, p. 379).

In this sense the safety need becomes active when the person
does not understand what is happening in the microworld, as
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the following passage of the thinking-aloud protocol illustrates.
“I put helicopters on patrol mode. Not really sure what that does. It
doesn’t seem to bemoving.” The safety need is demonstrated in the
person’s desire for organization, since unknown and unexpected
events are seen as threats to safety.

The esteem need as a motivator becomes evident through the
statement, “Guess I’m not clear how to get trucks right to the
fire.” The participant becomes aware of his inability to control
the situation which affects his self-esteem. The esteem need
is never fulfilled in the described situation and remains the
primary motivator. The following statements show how affected
the participant’s esteem need is by the inability to control the
burning fires. “Ok. I’m not sure how it goes? Ok, the forest is
burning up now—extinguish! Ok, ok, I’m in big trouble.”

Prediction 3: A strong safety need will be related to elaborate
and detailed information collection in CPS compared to low
safety need.

Prediction 4: People with high esteem needs will be affected
more by difficulties in CPS and engagemore often in behaviors
to protect their esteem compared to people with low esteem
needs.

Dörner’s Theory of Motivation as Part of

PSI-Theory
PSI-theory described the interaction of cognitive, emotional, and
motivational processes (Dörner, 2003; Dörner and Güss, 2011).
Only a small part of the theory is examined here. Briefly, the
theory encompasses five basic human needs: the existential needs
(thirst, hunger, and pain avoidance), the sexuality need, and the
social need for affiliation (group binding), the need for certainty
(predictability), and the need for competence (mastery). If the
environment is unpredictable, the certainty need becomes active.
If we are not able to cope with problems, the competence need
becomes active. The need for competence also becomes active
when any other need becomes activated. With an increase in
needs, the arousal increases.

The first three needs cannot be observed or inferred from the
thinking-aloud protocol provided. Statements like, “I’m trying to
figure out how the helicopters pick up the water from the ponds.”
and “Guess I’m not clear how to get trucks right to the fire,”
demonstrate the needs for certainty and competence, i.e., to make
the environment predictable and controllable.

The following statements reflect the participant’s need for
competence, i.e., the inefficacy or incapability of coping with
problems. “I’m in trouble here... ok, water thing is making me
mad.” Not being able to extinguish the fires that are approaching
cities and are destroying forests is experienced as anger. The
arousal rises as the resolution level of thinking decreases. So,
the participant does not think about different options in an
elaborate manner. Yet, the participant becomes aware of his
failure. The competence need then causes the participant to
search for possible solutions, “I still haven’t figured that out
because they have to pick up the water...” The need for competence
is satisfied when the problem solver is able to change either the
environment or ones views of the environment.

Prediction 5: A strong certainty need is positively related to a
strong competence need.

Prediction 6: High need for certainty paired with high need
for competence can lead to safeguarding behavior, i.e.,
background monitoring.

Prediction 7: An increase in the competence and uncertainty
needs leads to increased arousal and a lower resolution level
of thinking. CPS becomes one-dimensional and possible long-
term and side-effects are not considered adequately.

Summary and Evaluation
We have briefly discussed three motivation theories and their
relation to CPS referring to one thinking-aloud protocol:
McClelland’s achievement motivation, Maslow’s hierarchy of
needs, and Dörner’s needs as outlined in PSI-theory.

A Comparison of Three Need Theories in the Context of CPS.

McClelland’s

achievement

motivation

Maslow’s

hierarchy of

need

Dörner’s theory

of motivation as

part of

PSI-theory

Scope/ Breadth + ++ ++

Applicability to
CPS

+ + ++

Adaptability of
needs

− − +

Incorporation of
emotion

++ − ++

Individual
differences

++ − ++

Evaluation criteria: very small/very low−, small/low−,
much/high+, very much/very high++.

Comparing the scope of the three theories and referring to
the scope and different needs covered in the three theories,
McClelland’s theory describes three needs (power, affiliation,
and achievement), Maslow’s theory describes five groups of
needs (physiological, safety, love and belonging, esteem, self-
actualization), and Dörner’s theory describes five different needs
(existential, sexuality, affiliation, certainty, and competence).

All three theories can be applied to CPS. McClelland’s need for
achievement, Maslow’s needs for esteem and safety, and Dörner’s
needs for certainty and competence could be inferred from the
thinking–aloud passage. The need for affiliation which is a part
of each of the three theories could play an important role when
groups solve complex problems.

The existential needs and the need for affiliation outlined in
PSI-theory can also be found in Maslow’s hierarchy of needs.
These two theories differ in the adaptability of the needs.
However, Maslow’s esteem needs are only activated as the
primary motivator as the physiological needs, belongingness,
and love needs are met. The needs are more fluidly described
as motivators in PSI-theory. One need becomes the dominant
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motive according to the expectancy–value principle. Expectancy
stands for the estimated likelihood of success. The value of
a motive stands for the strength of the need. According to
McClelland’s theory, the role of three motivations develops
through life experience in a specific culture; and often times,
one of the three becomes the main driving force for a person,
almost like a personality trait. In that sense, there is not much
flexibility.

Motivation and emotion are closely related as became partially
clear in the discussion of McClelland’s theory. Emotions are
discussed in detail in PSI-theory, but space does not allow us to
discuss those in detail here (see Dörner, 2003). Emotions are not
described in detail in Maslow’s Hierarchy of Needs.

Individual differences in motivation and needs are discussed
in two of the three theories. According to McClelland, a person
develops an individual achievement motive by learning one’s
own abilities from past achievements and failures. Based on
different learning histories, different persons will have a different
dominant motivation guiding behavior in a given situation.
Learning history also influences the competence need in PSI-
theory. Additionally PSI-theory assumes individual differences
that are simulated through different individual motivational
parameters in the theory. The certainty need, for example,
becomes active when there is a deviation from a given set point.
Individual differences are related to different set points and how
sensitive the deviations are (e.g., deviation starts quickly vs.
deviation starts slowly).

CONCLUSION

The thinking-aloud example from the WINFIRE microworld
described earlier demonstrates that a person’s CPS process
is influenced by the person’s needs. We have focused in
our discussion on motivational processes that are considered
in the framework of need theories. Beyond that, other
motivational theories exist that focus on the importance of
motivation for learning and achievement (e.g., expectancy,
reasons for engagement, see Eccles andWigfield, 2002). Thus, the
applicability of these theories to CPS could be explored in future
studies as well.

We discussed the three motivational theories of McClelland’s
Achievement Motivation, Maslow’s Hierarchy of Need, and
Dörner’s Theory of Motivation as part of PSI-Theory. Although,
the theories differ our discussion has shown that the three
theories can be applied to CPS. Problem solving is a
motivated process and determined by human motivations and
needs.
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Much of human decision making occurs in dynamic situations where decision makers
have to control a number of interrelated elements (dynamic systems control). Although
in recent years progress has been made toward assessing individual differences in
control performance, the cognitive processes underlying exploration and control of
dynamic systems are not yet well understood. In this perspectives article we examine the
contribution of different approaches to modeling cognition in dynamic systems control,
including instance-based learning, heuristic models, complex knowledge-based models
and models of causal learning. We conclude that each approach has particular strengths
in modeling certain aspects of cognition in dynamic systems control. In particular,
Bayesian models of causal learning and hybrid models combining heuristic strategies
with reinforcement learning appear to be promising avenues for further work in this field.

Keywords: dynamic decision making, complex problem solving, cognitive modeling, instance-based learning,
heuristics, causal learning

INTRODUCTION

Handling dynamic systems is a common requirement in everyday life, ranging from operating
a novel technical device, to managing a company or understanding the dynamics of social
relationships. Considerable progress has been made toward assessing dynamic systems control
(DSC) as a cognitive skill, particularly in educational contexts (OECD, 2014; Schoppek and Fischer,
2015). However, the development of cognitive theories which describe and explain the mental
processes underlying this skill seems to lag behind. In this perspectives article we therefore examine
what computational models of cognition can contribute toward an improved understanding
of different cognitive processes involved in DSC. For this purpose, we briefly review several
approaches to cognitive modeling in DSC, summarize their relative strengths and weaknesses, and
conclude with what we perceive as promising routes for future research.

Dynamic systems control can be defined as a form of dynamic decision making that requires
(1) a series of interrelated decisions (2) in interaction with a dynamic system inducing states
of subjective uncertainty (3) with the aim of attaining (and maintaining) a goal state and/or to
explore the system and possible courses of action (also see Edwards, 1962; Osman, 2010). Subjective
uncertainty may be caused by random fluctuations of the system but also by limited knowledge
of the system’s structure and its dynamics (Osman, 2010). In cognitive research DSC is typically
investigated using computer-simulated microworlds, which are the focus of the present paper (but
see Klein et al., 1993, for a different approach). Microworlds emulate cognitively relevant features of
DSC situations (e.g., limited information, delayed feedback, time pressure) framed in a semantically
plausible setting such as managing a company or fighting a forest fire (Brehmer and Dörner, 1993;
Gonzalez et al., 2005).
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In this article, the terms cognitive model or computational
model (of cognition) refer to any mechanistic account of cognitive
processes that is sufficiently specified to allow a computer-based
implementation yielding quantitative predictions of behavior,
cognitive processing steps, or neural activity (Lewandowsky
and Farrell, 2011). Computational models enforce conceptual
completeness, as all functionally relevant properties of a theory
have to be made explicit for its computational implementation.
Furthermore, computational models generate precise predictions
of data patterns that can be empirically tested, which most
verbally expressed theories are unable to do with the same
level of precision. Models implemented as computer programs
can also be used for simulation-based exploration to investigate
how varying parameter settings, assumptions about cognitive
processes, or simulated task demands affect model behavior.
For a comprehensive treatment of computational modeling in
cognition − including its challenges and problems − please refer
to Lewandowsky and Farrell (2011).

We will now consider the contribution of different approaches
to modeling cognition in DSC with selected examples. Our brief
review begins with comparatively simple and knowledge-lean
modeling paradigms, moving toward approaches involving more
complex strategies and knowledge structures (see Table 1 for an
overview).

INSTANCE-BASED LEARNING

Instance-based learning (IBL) models have arguably been among
the most successful approaches to cognitive modeling in DSC.
They are based on a simple principle analogous to reinforcement
learning: control actions that lead to a successful outcome
become reinforced in memory and will therefore more likely be
remembered and enacted when a similar situation is encountered
in the future (Gonzalez et al., 2003). The application of this
learning principle in DSC can be traced back to Berry and
Broadbent’s (1984) semi work on knowledge acquisition in
dynamic systems. In their deceptively simple task, the production
of a simulated sugar factory had to be kept in a target range by
adjusting the number of workers. Surprisingly, most participants
were unable to verbally describe the system’s structure despite
being able to control it above chance level. As an explanation,
Broadbent et al. (1986) suggested that people might store
instances of situation-action combinations they have experienced
in memory (e.g., hiring X workers when the current number
of workers is Y and the current production is Z). Subsequent
decision making in turn is based on retrieving instance memories
similar to the situation encountered. Those instances repeatedly
associated with successful outcomes (e.g., reaching the target
production) become reinforced in memory and gradually start
to dominate behavior, although no verbalizable representation of
the system’s structure has been formed.

A computational IBL model of the sugar factory task has
been implemented by Taatgen and Wallach (2002; also see
Dienes and Fahey, 1995) using the ACT-R cognitive architecture
(Anderson et al., 2004). Each instance was modeled as a
unit in declarative memory encoding current state, action

and outcome. On encountering a given system state, the
model searches for instance memories that are similar to
the current state and have led to the target outcome in the
past, taking into account how often the instance memory
has been retrieved before. The model requires only two
production rules and closely fits human behavior. A model
of the sugar factory relying on a similar associative learning
mechanism was implemented by Gibson et al. (1997) using an
artificial neural network. This illustrates that the basic learning
principle is independent of any specific modeling architecture.
IBL has also been applied to modeling more complex tasks
such as controlling an array of pumps in a simulated water
purification plant where the system state changes in real
time (Gonzalez et al., 2003). The model included a blending
mechanism to interpolate information across related instances
and relied on a simple decision heuristic as fallback when
instance memories were insufficient. A generic implementation
of the IBL framework has been made available by Dutt and
Gonzalez (2012) to make IBL modeling accessible to non-expert
modelers.

An approach similar to IBL was used by Glass and Osman
(2017; also Osman et al., 2015) to model learning in a simple
dynamic system with continuous input and output variables.
Instead of relying on a cognitive architecture, the authors adapted
a general-purpose reinforcement learning algorithm to this task
(Sutton and Barto, 1998). The model updated the reinforcement
history of input variables after each trial depending on how
much the last action reduced goal distance. This results in
model behavior broadly similar to IBL. Glass and Osman (2017)
specifically focused on modeling group differences between
young and old adults in terms of exploration vs. exploitation
behavior. They mapped this behavioral preference on the noise
parameter affecting the choice of input values. Reinforcement
learning has also been used to model conflicts between short- and
long-term goals and how unreliable information affects learning
in dynamic control (Gureckis and Love, 2009).

In sum, IBL and reinforcement learning models have been
successfully used to explain different aspects of exploration and
control in DSC. The basic mechanism is simple, cognitively
plausible and requires only few task-specific assumptions.
However, IBL models critically depend on the availability of
immediate outcome feedback and the frequent repetition of
similar decision situations to facilitate learning, which limits the
type of task they can be applied to (see Table 1). Furthermore,
IBL models cannot easily explain how people acquire explicit
knowledge of the causal structure of a system, which is a central
element of some DSC tasks (e.g., Kluge, 2008; Wüstenberg et al.,
2012).

HEURISTIC MODELS

Heuristics-based approaches to DSC assume that people rely
on simple rule-of-thumb-type decision strategies for controlling
dynamic systems. These strategies do not guarantee an optimal
result, but allow to achieve reasonable outcomes across a range
of conditions with limited cognitive effort (Brehmer, 2005; Shah
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and Oppenheimer, 2008). Characteristically, heuristic strategies
do neither involve complex reasoning nor a detailed mental
representation of the problem structure. Empirical research has
shown that heuristics can explain adaptive behavior in many
decision making situations as well as common errors and
biases (Gilovich et al., 2002; Gigerenzer and Brighton, 2009).
Furthermore, due to their simplicity heuristics are relatively easy
to implement as cognitive models (e.g., Marewski and Mehlhorn,
2011).

The use of heuristics has also been proposed as an explanation
for decision making behavior in DSC (e.g., Brehmer and
Elg, 2005; Cronin et al., 2009). One of the best known
examples of a computational heuristic model in DSC is
Sterman’s (1989) model of decision making in a supply chain
management task. The model is based on the anchoring-and-
adjustment heuristic (Tversky and Kahneman, 1974), which
involves substituting an unknown quantity (supplies ordered)
with a related known quantity (sales forecast), adjusting for
further influences (current stock level). Data simulated using
this heuristic closely match human behavior and reproduce
the characteristic oscillation between over- and undersupply
that arises from ignoring system delays (Sterman, 1989).
The cold store temperature regulation task (Reichert and
Dörner, 1988) poses a similar challenge to participants, as
the system responds with delay to changed inputs. Reichert
and Dörner’s (1988) model captures how participants gradually
learn to control the system by applying incremental changes
to a proportional-control heuristic after unsuccessful control
attempts. A conceptually related adaptive heuristic strategy
is directional learning: if increasing an input improves the
outcome then continue to increase it, otherwise decrease
it. Computational models of directional learning have for
example been used to model behavior in dynamic economic

games, such as the multiple-round prisoner’s dilemma or
the ultimatum game (Selten and Stoecker, 1986; Grosskopf,
2003).

Heuristic models can also be combined with reinforcement
learning to simulate how people learn to choose among
competing heuristic strategies. The probability of selecting a
strategy depends on the outcomes that this strategy has produced
in the past (Erev and Barron, 2005). For example, Gonzalez
et al. (2009) used this approach to model response times in a
dynamic radar detection and decision making task. The model
fitted human data about as well as an alternative IBL model,
although it transferred less well to changed task conditions.
In contrast, Fum and Stocco (2003) found that a strategy-
based learning model of the sugar factory task performed
better under changed conditions than the corresponding IBL
model of Taatgen and Wallach (2002). It appears that the
transfer across situations depends on the details of the task,
the type of training, and the strategies implemented. Strategy-
based learning can also be applied to highly complex tasks such
as fighting a simulated forest fire (De Obeso Orendain and
Wood, 2012). In this model four high-level heuristic strategies
competed (e.g., dropping water on the fire or creating a barrier
to contain the fire), which were modeled in great detail. The
model successfully reproduced how varying the conditions in
the training phase affected preferences for particular strategies in
later transfer.

In sum, there are several good examples of heuristics-based
and hybrid models that address pertinent theoretical questions
in DSC (e.g., handling delays, transfer of learning). Although
incorporating more task-specific knowledge than pure learning
models, models of this type typically still have a relatively
simple basic structure. When heuristic models are extended
with more complex strategies and abstract knowledge structures

TABLE 1 | Basic approaches to cognitive modeling in dynamic systems control (DSC).

Approach Requirements Strengths Limitations Examples

Instance-based
learning: Acquisition of
situation-response
associations guided by
outcome feedback.

Frequent exposure to
similar states of the
DSC task.
Prior knowledge can
be minimal.

Simple formalism
Universal applicability
across different domains
High neural and cognitive
plausibility

No representation of
causal knowledge
Requires direct
outcome feedback

Taatgen and Wallach, 2002;
Gonzalez et al., 2003

Heuristic models:
Simple “rules of thumb”
with low cognitive
requirements.

Situations for which
control heuristics based
on prior knowledge are
available.

Structurally simple models
Role of heuristics in
decision making well
supported
Can be extended with
reinforcement learning

No representation of
causal knowledge
Need to establish
suitable heuristics for
each domain

Reichert and Dörner, 1988;
Sterman, 1989

Complex
knowledge-based
models: Complex
cognitive strategies and
abstract mental
representations.

Typically requires
considerable
task-specific prior
knowledge.

Modeling of complex
knowledge structures and
reasoning strategies

Can be very complex
Often highly
task-specific, limited
transfer

Schunn and Anderson, 1998;
Schoppek, 2002

Causal learning:
Bayesian induction of
causal relations from
observing system
behavior.

Task sufficiently simple
to allow causal
attribution. Prior
knowledge can be
minimal.

Comprehensive formalism
for representing causal
knowledge, uncertainty and
knowledge updating

Have not yet been
directly applied to
system control tasks

Steyvers et al., 2003;
Meder et al., 2010
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they gradually transform into complex knowledge-based models,
which we will consider next.

COMPLEX KNOWLEDGE-BASED
MODELS

Complex knowledge-based models involve the creation and
transformation of abstract knowledge structures combined with
complex cognitive strategies. This corresponds to the notion
of mental models guiding reasoning and actions in DSC (e.g.,
Brehmer, 1992). Models of this type are often implemented
as production systems, i.e., sets of if-then-rules that act on
knowledge objects or initiate external behaviors (Newell and
Simon, 1972). This flexible mechanism allows to express a wide
range of strategies up to expert performance at the expense of
resulting in very complex and task-specific models in many cases.

Anzai (1984) presented one of the first models of this type in
the context of navigating a simulated large ship which responded
with considerable delay. Based on the analysis of verbal
protocols, Anzai (1984) designed a production system model
that qualitatively captured the acquisition of control knowledge
in novices and experts. Later studies showed how production
system approaches can be extended to model performance even
in complex real-time decision making tasks such as that of a
radar operator or flying a commercial jet plane (Schoelles and
Gray, 2000; Schoppek and Boehm-Davis, 2004). In modeling real-
time control tasks the emphasis usually lies on modeling the time
course of control performance and typical errors.

A different class of DSC task that requires scientific reasoning
to explore the causal structure of unknown systems has
been particularly relevant in the recent educationally oriented
wave of DSC research (Herde et al., 2016). Schoppek (2002)
proposed a fine-grained cognitive model that was able to
systematically explore and control a small dynamic system based
on linear equations. The model incorporated an explicit mental
representation of the system’s structure and mental calculation
steps to derive input values. This strategy is sufficiently
general to control any simple dynamic system based on linear
equations (Funke, 2001). The model was able to simulate the
effects of different degrees of system knowledge and strategic
sophistication and compared favorably to results from human
data (Schoppek, 2002). Similarly, Schunn and Anderson (1998)
applied a production system approach to model the task of
designing scientific experiments (given a restricted set of design
options) and drawing conclusions about causal relations from
the simulated results. This model was able to successfully
capture performance differences between experts and novices by
modeling their respective domain knowledge and exploration
strategies.

An apparent advantage of complex knowledge-based models
is their ability to explain how causal system knowledge combined
with reasoning strategies informs the actions that people take.
It seems difficult to imagine how some forms of DSC could be
explained without recourse to reasoning and abstract knowledge
representation, for example, extrapolating system behavior in
new situations or hypothesis testing and rule-deduction in

discovery learning. However, models of this type are often neither
simple nor elegant and require the inclusion of considerable
task-specific knowledge (Taatgen and Anderson, 2010).

BAYESIAN CAUSAL LEARNING

Another modeling approach with a focus on structural
knowledge is the use of Bayesian networks to model causal
learning (Meder et al., 2010; Osman, 2017). Bayesian networks
represent a formalism to express the strength of belief in
causal hypotheses and provide a principled mechanism based
on Bayesian inference for updating beliefs as new evidence
becomes available (Holyoak and Cheng, 2011). For instance,
Steyvers et al. (2003) used Bayesian networks to model
human causal learning either by passive observation of a
causal system or through direct interaction with it. This
addresses a central aspect of DSC, system exploration and
the formation of structural knowledge, although the approach
has yet to be applied to DSC tasks requiring goal-directed
control.

From a DSC perspective, the strength of Bayesian models
of causal learning lies in the nuanced representation of causal
structures and probabilistic dependencies combined with a
mechanism for updating this knowledge from experience.
This makes them a strong contender for explaining structural
knowledge acquisition in DSC tasks with an exploration focus
(e.g., Kluge, 2008; Wüstenberg et al., 2012). A Bayesian approach
provides a formal account of the causal environment from which
it is possible to deduce a suitable course of action, given the state
of knowledge (including the level of uncertainty) a person has of
the world at that time (Osman, 2010, 2017).

SYNTHESIS AND CONCLUDING
REMARKS

In pursuit of answering the question what cognitive modeling
can contribute to DSC research we have considered several
approaches (see Table 1). In terms of knowledge-lean modeling
approaches, IBL strikes a good balance between simplicity,
cognitive plausibility and explanatory power for a range of DSC
tasks. On the downside, IBL has strict task requirements (e.g.,
availability of feedback, repeated decisions) and cannot easily
explain the acquisition of causal knowledge or extrapolation to
unfamiliar conditions. Heuristic models have no universal task
requirements and can be combined with learning mechanisms
to achieve a similar adaptivity as IBL models. However, since
effective heuristics rely on exploiting the structure of the
environment, finding suitable candidate heuristics for a given
task can be a considerable challenge and any specific heuristics-
based model is only applicable to a particular niche (Marewski
and Schooler, 2011).

Complex knowledge-based models are probably the most
domain-specific type of model. They require strong assumptions
about knowledge structures and cognitive procedures used by
decision makers. If this information is available, it is possible to
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model skilled expert performance, elaborate reasoning strategies,
and the acquisition of explicit structural knowledge, e.g., through
active hypothesis testing. With respect to modeling causal
knowledge, Bayesian models of causal learning provide an
interesting alternative.

They offer an integrated account for representing and
updating causal knowledge in a coherent framework, including
the representation of epistemic uncertainty. However, these
models have so far not been directly applied to model control in
microworld DSC tasks.

As our discussion shows, each modeling approach has its
particular strengths and weaknesses, which render it suitable
for particular modeling tasks. For researchers it therefore seems
important to select a modeling approach that matches the
research question and that suits the task to be modeled. For
example, modeling the process of acquiring explicit causal
knowledge in simple dynamic systems through hypothesis testing
(e.g., Wüstenberg et al., 2012) naturally maps on complex
knowledge-based models or Bayesian models of causal learning
but is likely to run into difficulties when approached with an IBL
framework.

In general, we think that the rapidly advancing theories
in causal learning and hybrid models combining heuristic
strategies with reinforcement learning offer considerable
untapped potential for cognitive modeling in DSC. Causal
learning directly addresses the core issue of DSC tasks focusing
on causal exploration (e.g., Steyvers et al., 2003). However,
in order to simulate full task performance models of this
type would need to be extended by including interaction
with the task. Hybrid models in turn may be most suitable
to model behavior in complex decision making tasks (e.g.,
Danner et al., 2011), where (heuristically guided) information
reduction and gradual strategy adaptation are central for task
performance.

We furthermore propose that computational models based
on cognitively plausible process assumptions (e.g., reinforcement

learning, use of simple heuristics, Bayesian knowledge updating)
could be used as a yardstick for evaluating human performance
in DSC (see Brehmer, 2005). This stands in contrast to using
mathematical optimization or optimal rational strategies as a
benchmark for performance (e.g., Sager et al., 2011). Defining
rationally optimal strategies in DSC does have its place, for
example when designing decision support systems. However,
from a behavioral perspective the question of “what is maximally
possible” is often less relevant than “what is humanly possible,”
given the realities of incomplete information and limited
cognitive capacity (Klein, 2002).

In conclusion, computational models of cognition appear
to offer a promising path for advancing research and
theory development in DSC. Computational approaches
have successfully been used to model a range of cognitive
phenomena in different domains of DSC. Promising starting
points for further developments include, for example, recent
advances in causal learning and hybrid models which combine
simple heuristics with reinforcement learning mechanisms.
Computational modeling of cognitive processes in DSC remains
a constructive challenge that probes – and ideally enhances –
our understanding of human behavior in complex dynamic
environments.
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This paper treats the effect of the evaluation of outcomes on the representation in a decision
process. I assume that how the outcomes are evaluated up to a specific step affects the representation
in this step. Thus, representation and evaluation in the process are intermingled.

Research in the tradition of Psychological decision theory investigates risky decisions in
experiments generally using gambles as alternatives, or alternatives that are designed like gambles
by the experimenter. A gamble is characterized by its outcomes (gains, losses) and their
probabilities, all these are known to the decision maker. The fundamental influences determining
decision behavior in such experiments are the subjective values (utilities) of the outcomes and
frequently their subjective probability. The most prominent decision theories founded in the
gambling paradigm are Subjectively Expected Utility theory and its descendants, e.g., Prospect
theory Kahneman and Tversky (1979), Baron (2008) gives an overview. Also, decision heuristics
are based on one or more of these components (Shah and Oppenheimer, 2008). Most papers in this
review paper are based on process tracing methods (e.g., alternatives × dimensions-matrix, verbal
protocols).

If in experiments realistic scenarios are used instead of gambles, decision behavior differs in two
respects: First, decision makers are often content with knowing whether a certain outcome occurs
with certainty or is possible, and are not actively interested in more precise probabilities. Second,
decision makers often actively seek a risk defusing operator which reduces the risk.

A risk-defusing operator (RDO) is an action that is anticipated to remove or reduce the risk. This
action is planned by the decision maker to be carried out in addition to an existing alternative.
Consider, for example, the situation of a person who thinks about the action alternative to travel
into a country where a contagious illness endures (Huber, 2012). This person may inquire, for
example, whether a vaccination exists. Getting vaccinated is an RDO preventing the negative
outcome (infection). If a satisfactory RDO is found with an otherwise attractive alternative, this
alternative is usually chosen (e.g., Bär and Huber, 2008). An overview about the decision process
and experimental results concerning RDOs is presented in Huber (2007, 2012).

There are various types of RDOs (e.g., Huber, 2007): one type prevents a negative outcome
(e.g., vaccination, drinking bottled water only), for example, or another compensates for a negative
outcome (e.g., insurance). Search for an RDO often involves a price (money, time, effort, etc.), and
at the start it is unclear whether the search turns out to be effective. Understandably, search is more
likely if the expectation of success is higher (Huber and Huber, 2008). Search is also more likely
under time pressure (Huber and Kunz, 2007) and under justification pressure (Huber et al., 2009).
Moreover, the type of risk influences the search (Wilke et al., 2008). An RDO is not automatically
satisfactory: The higher the cost, the less likely is the RDO accepted (Williamson et al., 2000; Huber
and Huber, 2003). In a multistage investment task too, people are willing to purchase an RDO, if
they are given the opportunity (Huber, 1996).

The conception of RDOs is overlooked in classical decision research. This disregard seems
to result from the belief that all risky decisions involve gambles, where RDOs are not relevant.
Gambles can be considered to form only a subclass of risky decision tasks.
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DYNAMIC MENTAL REPRESENTATION OF

ALTERNATIVES

Classical descriptive decision theory is based on Subjective
Expected Utility Theory and its modifications. In these theories,
the representation of alternatives is rarely addressed explicitly.
Prospect theory (Kahneman and Tversky, 1979) is an exception.
The authors suppose that representation is a distinct first phase
of the decision process, and then—in a second phase—the
alternatives are evaluated.

In the risk-defusing context, a different approach is taken.
Decision makers in non-routine situations are assumed to
construct a mental representation by sequentially incorporating
new information they consider as relevant (outcomes,
probabilities, RDOs, ...) into a causal mental model of the
alternatives (Huber, 2011). The representation is dynamic,
not only because it is constructed in time, but also because
in may be changed (by introducing an RDO) in the course of
elaboration. These mental models usually do include a different
amount of elements for different alternatives: more information
is represented for some alternatives, less for others. I assume
that normally items like outcomes are evaluated immediately
when they are introduced into the representation as more or
less desirable or undesirable. How much is represented for each
alternative, depends on this evaluation, as described in the next
section. Thus, elaboration and evaluative processes are closely
intermingled (in contrast to, e.g., Prospect theory).

ADVANTAGES FIRST PRINCIPLE

We have shown in three experiments that the great majority of
decision makers follow the Advantages first Principle (Huber
et al., 2011). This principle describes, how information search is
guided by the evaluation up to now:

1. Decision makers consider mainly outcomes evaluated as
positive, and based on this evaluation, promising alternatives
are distinguished from not promising ones.

2. They then inspect the promising alternatives further
and deliberately search—among others—for undesirable
outcomes1. Of course, when they detect a negative outcome
they may search for an RDO.

Thus, the Advantages first Principle is not a choice heuristic
(selecting the subjectively best alternative) but a heuristic to select
promising problem solving paths. The situation is similar to
chess, where expert players do not examine every possible move.
Instead, they center on few moves that seem worth pursuing
founded on a preliminary evaluation (Holding, 1992). The early
search for positive or negative outcomes when decision makers
have no previous information has not been studied systematically
in decision research, to the best of my knowledge.

The decision maker concentrates on positive outcomes and
attractive alternatives because elaboration is expensive in time,
effort, etc., and he or she wants to reduce these cost. (1) If an
alternative has an attractive positive outcome, time and effort

1This result speaks against Montgomery and Willén (1999) dominance structuring

model. For a more detailed discussion, see Huber (2011).

can be invested into this alternative to examine it in more
detail. A negative outcome may be defused with an acceptable
RDO. (2) If, however, the positive outcome of an alternative is
only mediocre, then it remains only mediocre, even though no
negative outcome should turn up. (3) Concentrating initially on
the negative outcomes would not be an economical heuristic
to decide which alternatives to inspect more. An exception is
an alternative with a very negative outcome which cannot be
defused. In this case, it can be ignored and no information has to
be searched for. In all other situations, it would always be essential
to also check the positive outcomes. Otherwise, one might invest
much time and effort in an alternative that later turns out to be
inferior.

To recapitulate, the Advantages first Principle defines a
rational heuristic for selecting alternatives deserving a more
careful inspection. The decision maker can generally at all times
return to an alternative that he or she thinks should have been
examined deeper.

As mentioned above, the majority of decision makers uses
the Advances first Principle (more than 80%), but a minority
investigated negative outcomes first. Huber et al. (2011) presume
that the principle is applied, when (a) decision makers are free
to acquire the information in the order they prefer, (b) they do
not already have exhaustive knowledge about the alternatives
(they are no experts), (c) they do not assume that the set
of available alternatives is a (positive) pre-selection with good
positive outcomes for all alternatives, and (d) there is no
acceptance criterion that all alternatives have to fulfill (like the
maximum rent). Furthermore, in time pressure conditions, most
people start with a negative outcome, but without time pressure,
they start with a positive one (Huber and Kunz, 2007). Time
pressure here means that there is a kind of (external or internal)
deadline and the decision maker realizes that the available time
may be too short to make a decision (e.g., Benson and Beach,
1996).

The Advantages first Principle is, as stated above, a heuristic
for selecting a promising problem solving path. So possibly an
alternative picked out first is not chosen, e.g., because a negative
outcome cannot be defused. This is not a falsifying instance
for Advantages first, because it does not predict choices. There
should, though, be a correlation between selecting a promising
alternative and the chosen one, albeit we do not know at present
how big this correlation is. Therefore, it will be essential to
investigate the research that found negative outcomes to have
a more pronounced effect, as, for example, the framing effect
for gains (Tversky and Kahneman, 1981), or Priority heuristic
(Brandstätter et al., 2006).

REPRESENTATION—POSITIVE AND

NEGATIVE OUTCOMES

Up to now, we have only considered RDOs defusing a negative
outcome (negative RDOs). An RDO may, however, improve
the chance to receive a positive outcome (positive RDOs). An
example is doping in sports, which increases the chances of
winning. The question I want to address here is whether positive
RDOs are searched for equally often as negative ones.
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We investigated this question by embedding the decisions in a
framing context, see Huber et al. (2014) for details. Otherwise we
are confronted with the problem that frames causing search for
either positive or for negative RDOs often involve outcomes with
distinct attractiveness, and—as the previous section clarified—
attractiveness is one of the central factors influencing RDO
search. The result was clear: Much more people (83%) searched
for a negative RDO, whereas only 39% searched for a positive one.
We attribute this result to a general readiness for negative stimuli
and for starting adequate reactions (Taylor, 1991; Öhman et al.,
2000; Woody and Szechtman, 2013). Such readiness is favorable
because if somebody is provoked with a possible danger (e.g., a
person aiming a pistol on me, or a snake), it is frequently vital to
react fast. Positive stimuli are not connected with an analogous
general readiness, at least nothing comparable is reported in the
literature. Searching for an RDO preventing or compensating
the negative stimulus clearly is such an adequate reaction when
confronted with a possible negative outcome.

Thus, negative RDOs are activated or investigated more often
when otherwise a negative alteration is possible than positive
ones when a positive alteration is possible. So, in this case
too, evaluation of the alternatives is a factor determining the
construction of a representation.

CONCLUSION

The previous sections have demonstrated that how the outcomes
are evaluated is a central aspect in the process of constructing

a representation. I want to empathize I expect the Advantages
First Principle to hold in what we could call non-routine
situations, as described in the relevant section. The Advantages
first Principle is explicitly not a choice heuristic, and does not
predict that choice is based solely on positive outcomes. It is,
to repeat, a heuristic selecting a path that is worthwhile to be
followed.

I could not go into details of theories that would be
useful to be investigated, for example, Naturalistic decision
making and Query theory. Naturalistic decision making
(Klein, 1999) deals with realistic decision situations. It is,
however, concerned mainly with non-experimental research
in decisions of experts, and experts are explicitly not the
topic of my paper. Query theory (e.g., Johnson et al.,
2007) proposes people to construct their values. The used
method is interesting and seems to be a variant of thinking
aloud.

By concentrating on evaluation I did of course not want
to exclude other influences on risk defusing. Such effects are,
for example: justification pressure, the expectation of search
success, the type of risk involved, or the expectation to get useful
probability information. However, an inclusion of these topics is
beyond the scope of this paper.
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The original aim of complex problem solving (CPS) research was to bring the cognitive
demands of complex real-life problems into the lab in order to investigate problem
solving behavior and performance under controlled conditions. Up until now, the
validity of psychometric intelligence constructs has been scrutinized with regard to
its importance for CPS performance. At the same time, different CPS measurement
approaches competing for the title of the best way to assess CPS have been developed.
In the first part of the paper, we investigate the predictability of CPS performance on
the basis of the Berlin Intelligence Structure Model and Cattell’s investment theory as
well as an elaborated knowledge taxonomy. In the first study, 137 students managed
a simulated shirt factory (Tailorshop; i.e., a complex real life-oriented system) twice,
while in the second study, 152 students completed a forestry scenario (FSYS; i.e.,
a complex artificial world system). The results indicate that reasoning – specifically
numerical reasoning (Studies 1 and 2) and figural reasoning (Study 2) – are the only
relevant predictors among the intelligence constructs. We discuss the results with
reference to the Brunswik symmetry principle. Path models suggest that reasoning
and prior knowledge influence problem solving performance in the Tailorshop scenario
mainly indirectly. In addition, different types of system-specific knowledge independently
contribute to predicting CPS performance. The results of Study 2 indicate that working
memory capacity, assessed as an additional predictor, has no incremental validity
beyond reasoning. We conclude that (1) cognitive abilities and prior knowledge are
substantial predictors of CPS performance, and (2) in contrast to former and recent
interpretations, there is insufficient evidence to consider CPS a unique ability construct.
In the second part of the paper, we discuss our results in light of recent CPS research,
which predominantly utilizes the minimally complex systems (MCS) measurement
approach. We suggest ecologically valid microworlds as an indispensable tool for future
CPS research and applications.

Keywords: complex problem solving, microworlds, minimally complex systems, intelligence, investment theory,
knowledge assessment, working memory, Brunswik symmetry
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INTRODUCTION

People are frequently confronted with problems in their daily
lives that can be characterized as complex in many aspects.
A subset of these problems can be described as interactions
between a person and a dynamic system of interconnected
variables. By manipulating some of these variables, the person can
try to move the system from its present state to a goal state or keep
certain critical variables within tolerable ranges. Problems of this
kind can be simulated using computer models (aka microworlds),
offering an opportunity to observe human behavior in realistic
problem environments under controlled conditions.

The study of human interaction with complex computer-
simulated problem scenarios has become an increasingly popular
field of research in numerous areas of psychology over the past
four decades. For example, computer models have been built to
simulate the job of a small-town mayor (Dörner et al., 1983), a
production plant operator (Bainbridge, 1974; Morris and Rouse,
1985), a business manager (Putz-Osterloh, 1981; Wolfe and
Roberts, 1986), a coal-fired power plant operator (Wallach, 1997),
and a water distribution system operator (Gonzalez et al., 2003).
Real-time simulations have put users in the role of the head of
a firefighting crew (Brehmer, 1986; Rigas et al., 2002) or an air
traffic controller (Ackerman and Kanfer, 1993). In experimental
psychology, research on complex problem solving (CPS) has
sought to formally describe simulations (e.g., Buchner and
Funke, 1993; Funke, 1993), the effects of system features on
task difficulty (e.g., Funke, 1985; Gonzalez and Dutt, 2011), the
role of emotions (e.g., Spering et al., 2005; Barth and Funke,
2010), and the effects of practice and training programs (e.g.,
Kluge, 2008b; Kretzschmar and Süß, 2015; Goode and Beckmann,
2016; Engelhart et al., 2017; see also Funke, 1995, 1998).
Differential and cognitive psychology research has investigated
the psychometrical features of CPS assessments (e.g., Rigas et al.,
2002), the utility of computational models for explaining CPS
performance (e.g., Dutt and Gonzalez, 2015), the relationship
between CPS performance and cognitive abilities (e.g., Wittmann
and Süß, 1999), and its ability to predict real-life success criteria
(e.g., Kersting, 2001). For detailed summaries of different areas
of CPS research, see Frensch and Funke (1995) and Funke
(2006).

Meanwhile, many researchers have moved away from complex
real life-oriented systems (CRS) to complex artificial world
systems (CAS) in order to increase the psychometric quality of
measures and to control for the effects of preexisting knowledge
(e.g., Funke, 1992; Wagener, 2001; Kröner et al., 2005). This
development ultimately culminated in the minimally complex
systems (MCS) approach (Greiff et al., 2012), also known as the
multiple complex systems approach (e.g., Greiff et al., 2015a).
This approach has recently become prominent in educational
psychology (e.g., Greiff et al., 2013b; Sonnleitner et al., 2013;
Kretzschmar et al., 2014; OECD, 2014; Csapó and Molnár, 2017).
In addition, this shift has led to the question of what are and are
not complex problems, with some researchers questioning the
relevance of MCS as a tool for CPS research and the validity of
the conclusions drawn from them (e.g., Funke, 2014; Dörner and
Funke, 2017; Funke et al., 2017; Kretzschmar, 2017).

Originally, simulated dynamic task environments were used
to reproduce the cognitive demands associated with real-life
problems in the laboratory (Dörner et al., 1983; Dörner, 1986).
These environments have several features: (1) Complexity: Many
aspects of a situation must be taken into account at the same
time. (2) Interconnectivity: The different aspects of a situation
are not independent of one another and therefore cannot be
controlled separately. (3) Intransparency: Only some of the
relevant information is made available to the problem solver.
(4) Dynamics: Changes in the system occur without intervention
from the agent. (5) Polytely: The problem solver must sometimes
pursue multiple and even contradictory goals simultaneously.
(6) Vagueness: Goals are only vaguely formulated and must be
defined more precisely by the problem solver. Whereas older
microworlds featured all of these characteristics to a considerable
extent, more recent approaches such as MCS have substituted
complexity and ecological validity (i.e., the simulation’s validity as
a realistic problem-solving environment allowing psychological
statements to be made about the real world; see Fahrenberg, 2017)
for highly reliable assessment instruments by simulating tiny
artificial world relationships (e.g., Greiff et al., 2012; Sonnleitner
et al., 2012).

The present paper is divided into two parts. In the first part, we
deal with one of the oldest but still an ongoing issue in the area
of CPS research: the cognitive prerequisites of CPS performance.
In two different studies, we used microworlds (CRS and CAS)
to empirically investigate the impact of cognitive abilities (i.e.,
intelligence and working memory capacity) and prior knowledge
on CPS performance. In doing so, we considered the impact of
the Brunswik symmetry principle, which effects the empirical
correlations between hierarchical constructs (e.g., Wittmann,
1988). Integrating our results with previous CPS research, we
review the basis and empirical evidence for ‘complex problem
solving ability’ as a distinct cognitive construct. In the second part
of the paper, we discuss our approach and results in light of recent
problem solving research, which predominantly utilizes the MCS
approach. Finally, we conclude with some recommendations
for future research on CPS and suggest ecologically valid
microworlds as tools for research and applications.

PART I: EMPIRICAL INVESTIGATION OF
THE COGNITIVE PREREQUISITES OF
COMPLEX PROBLEM SOLVING
PERFORMANCE

Intelligence and Complex Problem
Solving
At the beginning of complex problem solving (CPS) research,
CPS pioneers raised sharp criticisms of the validity of
psychometric intelligence tests (Putz-Osterloh, 1981; Dörner
et al., 1983; Dörner and Kreuzig, 1983). These measures,
derisively referred to as “test intelligence,” are argued to be
bad predictors of performance on partially intransparent, ill-
defined complex problems. In contrast to simulated scenarios,
intelligence test tasks are less complex, static, transparent,
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and well-defined problems that do not resemble most real-
life demands in any relevant way. Zero correlations between
intelligence measures and CPS performance were interpreted as
evidence of the discriminant validity of CPS assessments, leading
to the development of a new ability construct labeled complex
problem solving ability or operative intelligence (Dörner, 1986).
However, no evidence of the convergent validity of CPS
assessments or empirical evidence for their predictive validity
with regard to relevant external criteria or even incremental
validity beyond psychometric intelligence tests have been
presented.

By now, numerous studies have investigated the relationship
between control performance on computer-simulated complex
systems and intelligence. Whereas Kluwe et al. (1991) found
no evidence of a relationship in an older review, more recent
studies have found correlations that are substantial but still
modest enough to argue in favor of a distinct CPS construct
(e.g., Wüstenberg et al., 2012; Greiff et al., 2013b; Sonnleitner
et al., 2013). In a more recent meta-analysis, Stadler et al.
(2015) calculated the overall average effect size between general
intelligence (g) and CPS performance to be r = 0.43 (excluding
outliers, r = 0.40), with a 95% confidence interval ranging from
0.37 to 0.49. The mean correlation between CPS performance
and reasoning was r = 0.47 (95% CI: 0.40 to 0.54). The
relationship with g was stronger for MCS (r = 0.58) than CRSs
(r = 0.34)1. From our point of view, this difference results from
the higher reliability of MCS but also a difference in cognitive
demands. MCS are tiny artificial world simulations in which
domain-specific prior knowledge is irrelevant. Complex real life-
oriented tasks, however, activate preexisting knowledge about the
simulated domain. This knowledge facilitates problem solving;
in some cases, the problems are so complex that they cannot be
solved at all without prior knowledge (e.g., Hesse, 1982).

The main issues with many complex real life-oriented
studies that investigated the relation between intelligence
and CPS performance concern the ecological validity of the
simulations and the psychometric quality of the problem-solving
performance criteria. This often leads to much larger confidence
intervals in their correlations with intelligence compared to
minimal complex tasks (Stadler et al., 2015). When the goals of
a simulation are multiple and vaguely defined, the validity of any
objective criterion is questionable since it might not correspond
to the problem solver’s subjective goal. However, people are
unlikely to face a single, well-defined goal in real-life problems,
limiting the ecological validity of such systems – despite
the fact that a well-defined goal is a necessary precondition
for assessing problem solving success in a standardized way,
which is necessary in order to compare subjects’ performance.
Moreover, single problem solving trials produce only “single
act criteria” (Fishbein and Ajzen, 1974), criticized as “one-item-
testing” (e.g., Wüstenberg et al., 2012), the reliability of which
is severely limited. Performance scores must be aggregated via
repeated measurements to increase the proportion of reliable

1The correlation between complex real life-oriented systems and reasoning was not
reported, nor was the effect of outliers on relationships other than that between
CPS and g.

variance that can be predicted (e.g., Wittmann and Süß,
1999; Rigas et al., 2002). The MCS has implemented these steps,
resulting in strong reliability estimates (e.g., Greiff et al., 2012;
Sonnleitner et al., 2012).

Another crucial issue with regard to the relation between
intelligence and CPS performance is the operationalization of
intelligence. Numerous prior studies have used a measure of
general intelligence (g) to predict problem solving success. Since g
is a compound of several more specific abilities, g scores comprise
variance in abilities relevant to complex problem solving as
well as variance in irrelevant abilities. According to Wittmann’s
(1988) multivariate reliability theory and the Brunswik symmetry
principle (see also Wittmann and Süß, 1999), this results in
an asymmetric relationship between predictor and criterion,
attenuating their correlation. More specific subconstructs of
intelligence might be more symmetrical predictors because they
exclude irrelevant variance. In our view, controlling complex
systems requires a great deal of reasoning ability (e.g., Süß, 1996;
Wittmann and Süß, 1999; Kröner et al., 2005; Sonnleitner et al.,
2013; Kretzschmar et al., 2016, 2017). Inductive reasoning is
required to detect systematic patterns within the ever-changing
system states and develop viable hypotheses about the system’s
causal structure. Deductive reasoning is necessary to infer
expectations about future developments from knowledge of
causal connections and deduce more specific goals from higher-
order goals. Abilities such as perceptual speed (except in real-time
simulations), memory, and verbal fluency, meanwhile, should
be less relevant for success in complex problem solving. In this
sense, it is an open question in CPS research whether WMC, as a
more basic ability construct (e.g., Süß et al., 2002; Oberauer et al.,
2008), is a more symmetrical predictor of CPS performance than
reasoning (for an overview of previous findings, see Zech et al.,
2017).

In summary, a substantial correlation between intelligence
and CPS performance measured with real life-oriented
microworlds can be expected if (1) sufficient reliability of
the CPS measures is ensured (e.g., aggregation via repeated
measures), and (2) the best symmetrical intelligence construct is
used (e.g., reasoning instead of general intelligence or perceptual
speed).

Knowledge and Complex Problem
Solving
In addition to the debate about intelligence’s contribution to
complex problem solving, many researchers have pointed out
the significance of knowledge for the successful control of
complex systems (e.g., Bainbridge, 1974; Dörner et al., 1983;
Chi et al., 1988; Goode and Beckmann, 2010; Beckmann and
Goode, 2014). Expert knowledge is sometimes claimed to be
the only important predictor of real-life problem solving success
(Ceci and Liker, 1986), while others point out that both
intelligence and knowledge contribute substantially to predicting
job performance (Schmidt, 1992), which certainly includes
complex problem solving.

Scenarios that accurately simulate real-world relationships
provide an opportunity to draw on preexisting knowledge
about the part of reality being simulated. That being said, a
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simulation never is exactly equivalent to what the problem
solver has experienced before. Experts in a domain can make
use of their knowledge to operate a simulation within that
domain, but they are not automatically experts in the simulated
scenario. The application of domain knowledge to the simulation
requires a considerable amount of transfer. Following Cattell’s
investment theory (Cattell, 1987), we assume that intelligence,
and particularly reasoning, plays an important role in mediating
this transfer. Therefore both, intellectual abilities, particularly
reasoning and prior knowledge of the simulated domain, should
be powerful predictors of complex problem solving success,
although the effect of intelligence has been found to be mainly
indirect, mediated through knowledge (Schmidt et al., 1986;
Schmidt, 1992).

The knowledge relevant for successfully controlling a complex
system can be differentiated conceptually on two dimensions.
First, knowledge about the system can be distinguished from
knowledge about appropriate actions. System knowledge is
knowledge about the features and structure of a system, such as
what variables it consists of, how these variables are related, and
what kind of behaviors the system tends to exhibit. Action-related
knowledge is knowledge about what to do in order to pursue a
given goal. In contrast to system knowledge, action knowledge
is always bound to a specific goal. Studies by Vollmeyer et al.
(1996) provided evidence for the distinction between system
knowledge and action knowledge: Participants who acquired
knowledge about a system during an exploration phase with or
without a given goal performed equally well on a subsequent
test trial with the same goal. However, the group which had
not been given a specific goal during the exploration phase
outperformed the group with the specific goal on a test with
a new goal. Presumably, the specific goal group had learned
mainly action knowledge, whereas the other group had acquired
more system knowledge, which was then transferable to new
goals.

A second distinction, independent of the first, exists between
declarative and procedural knowledge. Declarative knowledge
is knowledge that a person can represent symbolically in some
way – verbally, graphically or otherwise. Declarative knowledge
can be expressed as accurate answers to questions. Procedural
knowledge, on the other hand, can be expressed only through
accurate performance. The distinction between declarative and
procedural knowledge is based on the conceptual difference
between “knowing that” and “knowing how” (Ryle, 1949).

While system knowledge and action knowledge differ in
content, declarative and procedural knowledge are different
forms of knowledge. Therefore, the two dimensions can be
conceived of as orthogonal. System knowledge and action
knowledge can both be declarative: A person can talk about
which variables are causally related to which other variables,
but also about what to do in order to keep the system stable.
Similarly, both system knowledge and action knowledge can also
be procedural: Knowing how to stabilize a system without being
able to express it is procedural action knowledge. Being able to
mentally simulate a system or diagnose what variable is causing
a disturbance without being able to give a full verbal account of
the reasons is indicative of procedural system knowledge. Several

studies have found that people do not improve their problem-
solving performance in controlling or repairing complex systems
after receiving instructions in the form of declarative system
knowledge (e.g., Morris and Rouse, 1985; Kluge, 2008b; but
see Goode and Beckmann, 2010), and declarative knowledge
sometimes is not correlated with problem solving performance
(e.g., Berry and Dienes, 1993). Therefore, we must consider the
possibility that procedural knowledge is part of the relevant
knowledge base that guides a person’s actions within complex
dynamic environments.

In summary, prior domain knowledge must be considered
as an additional substantial predictor of CPS performance.
However, differentiating between different types of knowledge
is necessary in order to explain CPS performance. In addition,
different semantic embeddings (i.e., CRS vs. CAS) have different
demands with regard to preexisting knowledge.

The Present Study
The first goal of the two studies presented in this paper
was to test the hypothesized criterion validity of reasoning in
predicting problem solving performance in complex dynamic
tasks. In addition, considering the Brunswik symmetry principle
(Wittmann, 1988), we explored the predictive validity of
additional more specific or more general intelligence constructs.
Our investigation was based on the Berlin Intelligence Structure
Model (BIS), a hierarchical and faceted model of intelligence
(Jäger, 1982, 1984; for a detailed description in English, see
Süß and Beauducel, 2015). The BIS differentiates intellectual
abilities along two facets. The operation facet comprises four
abilities: Reasoning (R) includes inductive, deductive and spatial
reasoning and is equivalent to fluid intelligence (Gf). Creativity
(C) refers to the ability to fluently produce many different
ideas. Memory (M) refers to the ability to recall lists and
configurations of items a few minutes after having learned
them (episodic memory), whereas speed (S) refers to the ability
to perform simple tasks quickly and accurately (perceptual
speed). The second facet is postulated to include three content-
related abilities: verbal (V), numerical (N) and figural-spatial
(F) intelligence. Cross-classifying the four operational and three
content abilities results in 12 lower-order cells. In addition,
general intelligence is conceptualized as an overarching factor
(Figure 1). For summaries of the validity and scope of the BIS,
see the handbook for the BIS Test (Jäger et al., 1997) as well as
Süß and Beauducel (2005, 2015).

In the second study, we included WMC as an additional
predictor. Working memory is considered the most important
cognitive resource for complex information processing, which
includes reasoning (e.g., Kyllonen and Christal, 1990; Süß et al.,
2002; Conway et al., 2003), language comprehension (e.g., King
and Just, 1991), and math performance (e.g., Swanson and Kim,
2007). Consequently, previous research has found a significant
relation between WMC and CPS (e.g., Wittmann and Süß, 1999;
Bühner et al., 2008; Schweizer et al., 2013; Greiff et al., 2016).
However, whether the more basic construct (i.e., WMC) is a
stronger symmetrical predictor of CPS than reasoning from
the perspective of the Brunswik symmetry principle (Wittmann,
1988) is not clear (for an overview, see Zech et al., 2017).
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FIGURE 1 | The Berlin Intelligence Structure Model (BIS), and the number of tasks for each cell applied in Study 1 (in brackets, Study 2). In the BIS, four operation
ability constructs are crossed with three content constructs, yielding twelve cells. On a higher level of aggregation, general intelligence integrates the primary factors
for each facet.

For example, Wittmann and Süß, 1999 demonstrated that WMC
has incremental validity in predicting CPS performance beyond
intelligence. Bühner et al. (2008) could not confirm this result,
but their study relied upon narrow operationalizations.

The second goal of the two studies presented in this
paper was to investigate the relation between knowledge and
complex problem solving performance. We attempted to measure
knowledge about complex systems in several categories. We
focused on declarative knowledge in the form of both system
knowledge and action knowledge because assessing declarative
knowledge is straightforward. We also attempted to measure
procedural knowledge, despite the fact that no evidence has ever
been put forward that responses to complex problem-solving
tests exclusively reflect procedural knowledge and not declarative
knowledge. Based on Cattell’s investment theory (Cattell, 1987),
we assumed that knowledge represents invested intelligence and
examined whether the predictive effect of intelligence on CPS
performance is completely mediated by prior knowledge.

We applied a CRS (i.e., a microworld with a realistic semantic
embedding) in the first study, whereas we used a CAS (i.e., a
microworld with an artificial semantic embedding) in the second
study. Hence, the importance of preexisting knowledge with
regard to CPS performance should differ between the two studies.

STUDY 1

In the first study, we used a complex real life-oriented simulation
to examine the criterion validity of intelligence, particularly
reasoning, and prior knowledge for control performance in
a simulated shirt factory (Tailorshop). As we used a very
comprehensive assessment of intelligence and knowledge, we

were also interested in exploring the predictive validity of
additional, more specific constructs in order to investigate
the influence of the Brunswik symmetry principle (Wittmann,
1988) on the relation between intelligence, knowledge and CPS
performance.

Method
Participants
One hundred and thirty-seven students from 13 high schools in
Berlin took part in the experimental study in 1990 (Süß et al.,
1991). They had all participated in a similar study 1 year before
in which they had taken prior versions of the BIS Test and the
knowledge tests and had explored the Tailorshop system (Süß
et al., 1993a,b). Their mean age was 17.6 years (SD = 0.67),
and 40.9% were female. The participants were fully informed
about the study and the voluntary nature of their participation,
and anonymity was guaranteed. Written informed consent was
obtained from school principals and the state school board.
Subjects who withdrew from the study were required to attend
other school lessons. Both Berlin studies were published in
German only; a full report including the longitudinal results can
be found in Süß (1996). In this paper, we report the results of
the second Berlin study (here labeled Study 1) to make the results
available for international readers and to discuss the two studies
in the light of recent developments in CPS research.

Materials
Problem solving
An extended version of the Tailorshop system (Funke, 1983;
Danner et al., 2011), originally designed by D. Dörner and
first used in a published study by Putz-Osterloh (1981), was
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applied as a CRS (Süß and Faulhaber, 1990). Additional minor
modifications were made in the system to resolve issues with the
validity of the problem-solving score that had become apparent in
the study conducted 1 year before (Süß et al., 1993a,b). Tailorshop
is a computer simulation of a shirt factory. The system has 27
variables: 10 are exogenous variables that can be manipulated
directly, and 17 are endogenous variables computed by the
simulation. Figure 2 provides a screenshot of the system, and
Figure 3 an overview of the variables and their interconnections.

The system was run on a personal computer. All variables
were presented in a single menu, and the values of exogenous
variables could be selected via a pull-down menu. After
planning all decisions, the operator ran the simulation for
one virtual month. A complete trial consisted of twelve
simulation cycles corresponding to 1 year of management. To
obtain two independent indicators of problem solving success,
participants worked on two versions of Tailorshop with different
starting values corresponding to different shirt factories and
different economic conditions. Problem solving performance was
measured by participants’ total assets after 12 simulated months.
Since the distribution of raw scores deviated considerably from a
normal distribution, we transformed them into rank scores and
aggregated participants’ ranks from the two simulation runs into
one total score.

Intelligence test
To assess intellectual abilities, we used a prior version of the
BIS Test (Jäger et al., 1997; for a full English description see
Süß and Beauducel, 2015; for prior test versions see Süß, 1996).
This test consists of three to five different tasks for each of the
12 cells in the matrix structure of the BIS. Each task assigned
to a cell in the model is used to measure one operation ability
as well as one content ability. The four operation abilities
are thus measured with scales consisting of 9–15 tasks each
and balanced over the three content categories. Analogously,
content abilities are measured with scales consisting of 15
tasks across the four different operation abilities. Thus, the
same variables are used in different ways for different scales.
The scales for one facet are built by aggregating variables
that are distributed in a balanced way over the other facet.
This suppresses unwanted variance, i.e., the variance associated
with factors from the other facet (Wittmann, 1988). However,
the scores for operation abilities and content abilities are not
statistically independent. An indicator of general intelligence
is built by aggregating either the operation scores or content
scores.

Knowledge tests
Preexisting general economics knowledge was assessed with
an age-normed economics test (Deutsche Gesellschaft für
Personalwesen [DGP], 1986, with a few questions added from
the economics test from Krumm and Seidel, 1970)2. The
questionnaire consisted of 25 multiple-choice items on the
meaning of technical terms from the domain of economics.

2Participants only took the economics test in the first Berlin study, i.e., these data
were assessed 1 year before all others reported here.

A new test was developed to assess system-specific knowledge
about Tailorshop (Kersting and Süß, 1995). This test had two
parts, one for system knowledge and one for action knowledge.

System knowledge refers to knowledge about features of
individual variables (e.g., development over time, degree of
connectedness with other variables) and about relationships
between variables in a system. The system knowledge part of
the test was developed in accordance with test construction
principles for optimizing content validity (Klauer, 1984; Haynes
et al., 1995). It consisted of three scales:

(1) Multiple choice questions about the connections between
two variables. One out of six statements in the following
form had to be selected as correct:

(a) An increase in variable X increases variable Y.
(b) An increase in variable X decreases variable Y.
(c) An increase in variable Y increases variable X.
(d) An increase in variable Y decreases variable X.
(e) Variable X and variable Y interact, that is, they both

depend on one another.
(f) (a) through (e) are false.

There were 20 questions of this type.

(2) Questions about hypotheses concerning single variables:
Participants had to evaluate statements about the regular
behavior of individual system variables, e.g., “The price
of shirts rises and falls by chance” (which is false) or
“Production depends – among other factors – on my
workers’ motivation, which in turn depends on the level
of wages” (which is true). The scale consisted of 25
independent items.

(3) Arrow test for connections among multiple variables: Sets
of four variables were represented by labeled boxes in a
diamond-shaped arrangement. Participants had to draw
arrows connecting the variables that had a direct causal
connection in the system, and designate the direction of
correlation with a plus or minus sign (as in Figure 3).
Each of the six possible pairings in a set was counted as
an independent item that was marked as either correct or
incorrect, yielding a total of 42 items.

Action knowledge refers to knowledge about appropriate
actions in a certain situation, given a certain goal. It was assessed
in this study via two subtests. The test of declarative action
knowledge presented “rules of thumb” for successfully managing
the Tailorshop simulation, which had to be evaluated as correct or
incorrect. Half of the 12 rules were correct, i.e., they were helpful
in obtaining high total assets within 12 months, while the other
half were incorrect.

In the second subtest, participants were given a system
state in the form of a screen display. They were given the
goal of maximizing or minimizing a certain system variable,
for example, minimizing the number of shirts in the store.
They had to select which one out of six alternative decision
patterns would be best-suited to reaching this goal in the next
simulation cycle. This subtest consisted of six items with different
system states, goals, and decision options. In contrast to the
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FIGURE 2 | Screenshot of the exploration phase of the Tailorshop system as applied in Study 1.

declarative questions, this task did not require participants to
explicit declare rules for action. Instead, the rules governing
their decision-making remained implicit, providing a good
opportunity to capture task relevant procedural knowledge.
Thus, we will refer to this subscale as procedural action
knowledge.

Sum scores were built for each subtest and a total score was
calculated by aggregating the subtest scores, weighted equally.

Each type of question was introduced by the experimenter
with one or two examples. There was no time limit, but
participants were instructed not to spend too much time on any
single question.

Procedure
The students took tests on 2 days for 5–6 h each. On the first
day, they worked on the BIS Test and the general economics
test as well as some further questionnaires. Testing was done
in groups of 20–30 in school classrooms. On the second day,
participants were first introduced to the Tailorshop system
via detailed instructions, including two standardized practice
cycles guided by the experimenter. Afterward, the students
in the sample were randomly divided into three groups, and
two groups were given additional opportunities to acquire
system-specific knowledge.3 Next, system-specific knowledge
was assessed (time T1) by instructing participants to build
hypotheses about Tailorshop on basis of their (superficial)

3The first group could explore the system for 30 min on their own (exploration
group), while the second group could study the system’s causal model for
30 min following standardized instructions (instructions group). The third group
had no opportunity to acquire additional system-specific knowledge (control
group). In this paper, we use the results for the full sample without considering
the experimental variations. Experimental results and group-specific results are
reported in Süß (1996).

experience with the system. Participants then tried to manage
the Tailorshop twice for 12 simulated months. Finally, system-
specific knowledge was tested again (time T2). The knowledge
test took about 80 min the first time and about 60 min the
second time. Each problem solving trial lasted about 50 min. The
participants took these tests in smaller groups at the university’s
computer lab.

Results
We will first present the results of separate analyses of the
relationship between problem solving performance and different
groups of predictors. Then, we integrate all the variables into a
path model. Ten participants had missing data for the economics
knowledge test. Thus, we applied the full information maximum
likelihood (FIML) procedure to account for the missing data.
See Table 1 for descriptive statistics and the full correlation
matrix.

Complex Problem Solving and Intelligence
The parallel-test reliability of problem solving performance was
r = 0.67 (p < 0.01). This indicates that the criterion measures had
satisfactory reliability and justifies their aggregation into a single
score. Two multivariate regressions were computed with the
aggregated performance criterion, first with the four operation
scales and then with the three content scales of the BIS as
predictors. The results are summarized in Table 2 (upper half,
correlations in brackets).

Among the operation scales, reasoning (r = 0.34, p < 0.01)
was as expected significantly correlated with problem-solving
success, furthermore, creativity (r = 0.22, p = 0.01) as well. In
the regression model, however, only reasoning had a significant
beta weight (β = 0.43, p < 0.01). Among the content scales, only
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FIGURE 3 | The causal structure of the Tailorshop system.
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TABLE 1 | Study 1: Means, standard deviations, and correlations.

Variable M SD 1 2 3 4 5 6 7 8 9 10

(1) BIS: g −0.03 6.76

(2) BIS: Speed −0.02 2.30 0.77∗∗

(3) BIS: Memory −0.02 2.36 0.66∗∗ 0.31∗∗

(4) BIS: Creativity 0.00 2.22 0.66∗∗ 0.38∗∗ 0.21∗

(5) BIS: Reasoning 0.00 2.51 0.79∗∗ 0.53∗∗ 0.35∗∗ 0.35∗∗

(6) BIS: Verbal 0.00 2.60 0.78∗∗ 0.57∗∗ 0.52∗∗ 0.57∗∗ 0.59∗∗

(7) BIS: Figural −0.03 2.55 0.83∗∗ 0.62∗∗ 0.52∗∗ 0.61∗∗ 0.64∗∗ 0.52∗∗

(8) BIS: Numerical −0.00 3.12 0.84∗∗ 0.69∗∗ 0.56∗∗ 0.46∗∗ 0.69∗∗ 0.44∗∗ 0.55∗∗

(9) Know: General 0.02 1.77 0.10 −0.12 −0.01 0.20∗ 0.21∗ 0.11 0.14 0.01

(10) Know: Dec. Sys. t1 1.81 0.44 0.24∗∗ 0.08 0.06 0.07 0.46∗∗ 0.18∗ 0.18∗ 0.23∗∗ 0.25∗∗

(11) Know: Dec. Act. t1 5.69 1.73 −0.00 0.04 −0.18∗ 0.07 0.06 −0.08 0.01 0.05 0.21∗ 0.11

(12) Know: Pro. Act. t1 11.15 3.47 0.10 0.07 0.08 0.00 0.13 0.04 0.04 0.16 0.12 0.15

(13) Know: Spec. Tot. t1 72.75 13.07 0.25∗∗ 0.10 0.04 0.10 0.46∗∗ 0.18∗ 0.18∗ 0.24∗∗ 0.30∗∗ 0.93∗∗

(14) Know: Dec. Sys. t2 1.87 0.40 0.30∗∗ 0.13 0.13 0.06 0.53∗∗ 0.21∗ 0.21∗ 0.31∗∗ 0.25∗∗ 0.83∗∗

(15) Know: Dec. Act. t2 6.94 1.82 0.16 0.15 −0.01 0.03 0.29∗∗ 0.06 0.15 0.18∗ 0.15 0.27∗∗

(16) Know: Pro. Act. t2 11.83 3.41 0.07 0.06 0.08 −0.07 0.13 −0.05 0.08 0.13 0.14 0.17∗

(17) Know: Spec. Tot. t2 76.84 12.37 0.32∗∗ 0.18∗ 0.12 0.05 0.55∗∗ 0.19∗ 0.24∗∗ 0.35∗∗ 0.28∗∗ 0.80∗∗

(18) CPS 138.00 72.58 0.22∗ 0.08 −0.03 0.22∗ 0.34∗∗ 0.11 0.16 0.25∗∗ 0.36∗∗ 0.43∗∗

(19) Gender 1.41 0.49 −0.04 0.04 0.08 −0.05 −0.17 0.15 −0.04 −0.17 −0.42∗∗
−0.32∗∗

(20) Age 17.55 0.67 −0.21∗
−0.20∗

−0.12 −0.08 −0.19∗
−0.18∗

−0.16 −0.17 0.09 −0.25∗∗

TABLE 1 | Continued

Variable M SD 11 12 13 14 15 16 17 18 19

(11) Know: Dec. Act. t1 5.69 1.73

(12) Know: Pro. Act. t1 11.15 3.47 0.16

(13) Know: Spec. Tot. t1 72.75 13.07 0.28∗∗ 0.41∗∗

(14) Know: Dec. Sys. t2 1.87 0.40 0.07 0.07 0.75∗∗

(15) Know: Dec. Act. t2 6.94 1.82 0.49∗∗ 0.18∗ 0.34∗∗ 0.24∗∗

(16) Know: Pro. Act. t2 11.83 3.41 0.17∗ 0.54∗∗ 0.30∗∗ 0.17∗ 0.14

(17) Know: Spec. Tot. t2 76.84 12.37 0.18∗ 0.22∗ 0.79∗∗ 0.94∗∗ 0.38∗∗ 0.41∗∗

(18) CPS 138.00 72.58 0.36∗∗ 0.24∗∗ 0.51∗∗ 0.37∗∗ 0.28∗∗ 0.29∗∗ 0.46∗∗

(19) Gender 1.41 0.49 −0.15 −0.06 −0.33∗∗
−0.38∗∗

−0.14 −0.11 −0.38∗∗
−0.35∗∗

(20) Age 17.55 0.67 −0.06 0.05 −0.21∗
−0.19∗

−0.22∗∗
−0.02 −0.19∗

−0.24∗∗
−0.02

∗ Indicates p < 0.05; ∗∗ indicates p < 0.01. M and SD are used to represent mean and standard deviation, respectively. BIS, Berlin Intelligence Structure Test; Know:
General, general knowledge (economics); Know: Dec. Sys, declarative system knowledge; Know: Dec. Act., declarative action knowledge; Know: Pro. Act., procedural
action knowledge; Know: Spec. Tot., total problem-specific knowledge; CPS, complex problem solving (Tailorshop); t1, measurement at the Time 1; t2, measurement at
the Time 2.

TABLE 2 | Multiple regression of problem solving performance on the operation, content, and total scales of the BIS.

Speed Mem. Creat. Reas. R2
adj Verb. Fig. Num. R2

adj g R2

Study 1: Tailorshop −0.16
(0.08)

−0.16
(−0.03)

0.16
(0.22∗)

0.43∗

(0.34∗)
0.15∗ 0.04

(0.16)
−0.01

(0.11)
0.22∗

(0.25∗)
0.04∗ 0.22

(0.22)
0.05

Study 2: FSYS 0.02
(0.19∗)

– – 0.33∗

(0.34∗)
0.10∗

−0.18
(0.07)

0.38∗

(0.37∗)
0.17
(0.27∗)

0.16∗ 0.33∗

(0.33∗)
0.10∗

Beta weights in the first line; bivariate Pearson correlations in brackets in the second line. Speed, perceptual speed; Mem., memory; Creat., creativity; Reas., reasoning;
Verb, verbal intelligence; Fig., figural intelligence; Num, numerical intelligence. Values with ∗ are significant at the 5% level.

numerical intelligence had a significant beta weight (β = 0.22,
p = 0.03). The proportion of variance accounted for by the
operation scales was much higher than that accounted for by the
content scales, despite the fact that the two groups of predictors
consisted of the same items that had merely been aggregated in
different ways. Building an overall aggregate for all BIS scales

(BIS-g) only accounted for five percent of the criterion variance
(r = 0.22, p = 0.01)4, compared to 15 percent with the four

4The correlation with CPS was slightly higher (r = 0.27) for a conventional g-score
based on the factor scores of the first unrotated factor (Jensen and Wang, 1994),
i.e., 7.3% of CPS variance was explained.
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operation scales. In line with the Brunswik symmetry principle
(Wittmann, 1988; Wittmann and Süß, 1999), this comparison
shows the benefit of differentiating intellectual abilities into
multiple components using a multi-faceted model. Taking the
cell level of the BIS5 into account, numerical reasoning was the
best and thus likely the most symmetrical predictor of Tailorshop
performance (r = 0.36, p < 0.01).6 While the correlation
between the numerical reasoning cell and the criterion was
nearly the same as the correlation for reasoning, numerical
reasoning was the better predictor given the substantially lower
reliability of the cell score for numerical reasoning (Cronbach’s
α = 0.77) compared to reasoning (1-year stability, r = 0.90,
p < 0.01). Corrected for unreliability, the true correlation
was r = 0.43. In summary, aggregating repeated measures
increases the reliability and thus also the validity of the CPS
performance score. However, the correlations are lower than
for minimally complex tasks even on the most symmetrical
level (r = 0.58), as reported in Stadler et al.’s (2015) meta-
analysis.

Complex Problem Solving and Knowledge
Four scales representing prior knowledge (time T1) were used as
predictors of problem solving success in the regression analysis.
These were the general economics test and the three categories
of knowledge represented in the system-specific knowledge test:
declarative system knowledge (measured with three subtests),
declarative action knowledge (measured with the rules of thumb),
and procedural action knowledge (measured using the system-
states task). General economics knowledge (β = 0.21, p < 0.01;
rzero−order = 0.36, p < 0.01), declarative system knowledge
(β = 0.33, p < 0.01; rzero−order = 0.43, p < 0.01), and declarative
action knowledge (β = 0.26, p < 0.01; rzero−order = 0.36, p < 0.01)
were significantly associated with problem solving performance,
whereas procedural action knowledge was not (β = 0.13, p = 0.07;
rzero−order = 0.24, p < 0.01). The latter might be in part due to
the low reliability of the test, which consisted of only six items.
Together, general and system-specific knowledge accounted for
34 percent of the variance in CPS performance.

A significant increase in domain-specific knowledge from pre-
to post-test was observed for every subscale. The strongest effect
was for declarative action knowledge (t = 8.16, p < 0.01, d = 0.70),
with smaller effects observed for declarative system knowledge
(t = 2.86, p < 0.01, d = 0.25) and procedural action knowledge
(t = 2.33, p < 0.05, d = 0.20). Pre-post correlations were 0.83
(p < 0.01) for declarative system knowledge, 0.49 (p < 0.01) for
declarative action knowledge, and 0.54 (p < 0.01) for procedural
action knowledge.

An Integrative Path Model
In a second step, we tested our theoretical model via path
analysis. Reasoning and general economics knowledge were
assumed to be correlated exogenous variables influencing the
generation of hypotheses and the acquisition of system-specific

5According to the BIS, numerical reasoning is not a more specific ability but a
performance based on reasoning and numerical intelligence (Jäger, 1982).
6The correlation of CPS performance with figural reasoning was 0.26, and 0.24 with
verbal reasoning.

knowledge during instruction and exploration, and thus also
the amount of system-specific (prior) knowledge measured at
time T1. We also assumed direct paths from reasoning, general
economics knowledge and system-specific prior knowledge (T1)
to control performance, and tested whether reasoning, domain-
specific prior knowledge (T1) and problem-solving performance
influence system-specific knowledge measured after controlling
the system (T2). The resulting model is presented in Figure 4.

The path model reflects and extends the results above. System-
specific prior knowledge (T1) was significantly influenced by the
two correlated exogenous variables, indicating the importance
of general domain knowledge, and especially of reasoning, for
generating and testing hypotheses in the Tailorshop simulation.
System-specific prior knowledge (T1) was influenced by learning
processes during the instructions and, for a part of the sample,
during system exploration. A total of 25.4% of the variance was
explained by the two exogenous variables. General economics
knowledge (β = 0.22, p < 0.01) and system-specific prior
knowledge (T1; β = 0.40, p < 0.01) also had direct effects on
control performance. Reasoning ability, meanwhile, had no direct
effect (β = 0.12, p = 0.12), but a strong indirect effect on problem
solving performance as mediated by prior knowledge. The total
amount of explained variance in problem solving performance
was 32%. Finally, system-specific knowledge after controlling
the system (T2) primarily depended on system-specific prior
knowledge (T1; β = 0.65, p < 0.01) as well as reasoning
(β = 0.25, p < 0.01). Remarkably, while control performance and
acquired system knowledge (T2) were substantially correlated
(r = 0.46, p < 0.01), the direct path from control performance
to acquired system-specific knowledge (T2) was not significant
(β = 0.05, p = 0.35). Overall, 68.6% of the variance was
explained.

Discussion
Both intelligence and prior knowledge were shown to be
important predictors of performance controlling a complex
system. Some qualifications, however, must be made to this
conclusion. First, it is not general intelligence that has predictive
power for problem solving success in Tailorshop; instead and as
expected, it is the primary factor reasoning, and more specifically
numerical reasoning. This underscores the importance of finding
the right level of symmetry between predictor and criterion
in order to estimate their true relationship (Wittmann, 1988).
Second, the correlation between reasoning and problem solving
performance was mediated through prior knowledge; reasoning
had no direct influence on problem solving performance.
This finding is in line with the results of the meta-analysis
by Schmidt et al. (1986; Schmidt, 1992), which showed that
the relationship between intelligence and job performance is
nearly completely mediated by task-related knowledge. This may
indicate that persons with higher reasoning ability have used their
ability to accumulate more domain knowledge in the past. The
strong relationship between reasoning and general economics
knowledge supports this account. An alternative explanation is
that high reasoning ability helps people transfer their general
domain knowledge to the specific situation, i.e., by deriving
good hypotheses about the unknown system from their general
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FIGURE 4 | Study 1: Path model for problem solving performance in Tailorshop with knowledge and reasoning as predictors. χ2(1) = 0.347, p = 0.556, Comparative
Fit Index (CFI) = 1.000. Values with ∗ are significant at the 5% level.

theoretical knowledge about the corresponding domain. System-
specific knowledge measured after controlling the system (T2)
depends primarily on prior knowledge and reasoning. Therefore,
controlling a complex system can be described as a knowledge
acquisition process, providing evidence for Cattel’s investment
theory (Cattell, 1987). Assuming that the system has ecologically
validity, this finding also indicates that system-specific knowledge
measured after controlling a complex system is a powerful
predictor of external criteria.

The study was limited to the computer-simulated system
Tailorshop, a microworld mainly developed by psychologists.
The scenario is realistic in that it captures many psychologically
relevant features of complex real-life problems, but its ecological
validity as a model for a real business environment is limited. For
example, real company executives spend more than 80% of their
time communicating orally (e.g., Mintzberg, 1973; Kotter, 1982),
a demand which was not implemented in the simulation (see Süß,
1996).

A final but important qualification to the study’s results
concerns reasoning in the context of knowledge. System-specific
knowledge was consistently the best single predictor of problem
solving success in Tailorshop, while general domain knowledge
in economics significantly predicted additional variance. System-
specific knowledge was made up of two independent predictors,
declarative system knowledge and declarative action knowledge.
Our study found no evidence of the dissociation between
verbalized knowledge and control performance repeatedly
reported by Broadbent and colleagues (Broadbent et al., 1986;
Berry and Broadbent, 1988; see Berry and Dienes, 1993).
Tailorshop is a more complex and realistic system than those used
by Broadbent and colleagues. Both factors might have strongly
motivated people to make use of their preexisting knowledge, i.e.,
to formulate explicit hypotheses for controlling the system rather
than following a trial-and-error approach that would result in the
acquisition of implicit knowledge.

STUDY 2

The aim of the second study was to replicate and extend the
findings presented so far. Study 2 differed from Study 1 in two
important ways. First, we used the artificial world simulation
FSYS (Wagener, 2001), which simulated a forestry company.
Although FSYS has a rich semantic embedding and all the
characteristics of complex problems, FSYS was developed with
the aim of reducing the impact of previous knowledge of the
simulated domain (i.e., general forestry knowledge) on problem
solving performance. Therefore, FSYS can be classified as a CAS.
Second, we included WMC as a further predictor. WMC is a
more basic construct than reasoning and whether it is a better
(i.e., more symmetrical) predictor of CPS performance than
reasoning is an open question (see Zech et al., 2017). Thus,
we were interested in whether one of the two constructs had
incremental validity in predicting CPS performance beyond the
other construct.

Method
Participants
One hundred fifty-nine students from the University of
Magdeburg participated in the second study, which was originally
conducted to evaluate a complex problem solving training (for
details, see Kretzschmar and Süß, 2015), in 2010/2011.7 In
the present analyses, we used the full sample but excluded
all non-native German speakers (n = 7) due to the high
language requirements of the intelligence test. The mean age
was 23.99 years (SD = 4.43), and 50% were female. Participants
received course credit for their participation or took part in a
book raffle. Participants were informed about the content of the

7A subsample was used in Kretzschmar and Süß (2015) to evaluate a CPS training.
However, none of the relations between CPS and the variables used in the present
study have been previously examined (for details, see the data transparency table at
https://osf.io/n2jvy). Therefore, all analyses and findings presented here are novel.
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study, the voluntary nature of participation and their ability to
withdraw at any point, and that anonymity was guaranteed. All
subjects provided informed consent.

Materials
Problem solving
We used version 2.0 of the microworld FSYS (Wagener, 2001).
FSYS was developed on the basis of Dörner et al.’s (1983)
theoretical framework for complex problem solving (Dörner,
1986). It is a microworld with 85 variables connected via
linear, exponential, or logistic relations. The goal was to
manage five independent forests in order to increase the
company’s value (i.e., planting and felling trees, fertilizing,
pest control, etc.). Participants were first given an introduction
to the program and had an opportunity to explore the
system. They then managed the forest company for 50
simulated months. We used the company’s total capital (i.e.,
an aggregated score of the five independent forests) at the end
of the simulation as the performance indicator (SKAPKOR;
see Wagener, 2001). Although FSYS simulates a forestry
enterprise, the impact of prior knowledge was reduced by
using abstract names for tree species, pests, fertilizer etc., and
providing essential information about the artificial foresting
world via an integrated information system. Previous studies
have shown that FSYS has incremental predictive validity beyond
general intelligence with regard to occupational (Wagener
and Wittmann, 2002) and educational (Stadler et al., 2016)
performance indicators. Figure 5 provides a screenshot of
FSYS.

Intelligence
A short version of the BIS Test was used to assess intellectual
abilities (Jäger et al., 1997). We specifically focused on
reasoning and perceptual speed. Nine tasks were applied for
each operation, balanced over the three content areas (i.e.,
figural, verbal, numerical; see Figure 1). These 18 tasks were
administered according to the test manual. As in Study 1,
the tasks were aggregated in order to build scales for each
operation (i.e., reasoning, perceptual speed) or content (i.e.,
figural intelligence, verbal intelligence, numerical intelligence).
An indicator for general intelligence was built by aggregating
the 18 tasks in a balanced way, as described in the test
handbook. Please note that the reliability of the two operative
scales was lower than in Study 1; the construct validity
of the three content scales and the measure of general
intelligence were also reduced because no memory or creativity
tasks were used. This limits the interpretability of the BIS
content scales and the comparability of the results of the two
studies.

Working memory
Working memory capacity was assessed with three tasks from
the computerized test battery by Oberauer et al. (2003).
The numerical memory updating (adaptive) and reading span
(non-adaptive) tasks measured the simultaneous storage and
processing functions of working memory, whereas the dot
span task (also named spatial coordination; adaptive) primarily
measured the coordination function. Moreover, each content

category (i.e., figural, verbal, numerical) was represented by one
task. A global score for WMC was calculated by aggregating the
three equally weighted total task scores.

Knowledge
A questionnaire to assess general forestry knowledge as a measure
of preexisting domain knowledge was developed for the purpose
of this study8. It covered forestry knowledge in the subdomains of
tree species, soils, nutrients, damage to a forest, and silviculture.
An example question was: “Which tree is not a conifer?” The
22 multiple-choice items were scored dichotomously. Four items
were excluded due to poor psychometric properties (i.e., a low
item-total correlation). The remaining 18 items were aggregated
to form a global sum score.

To assess system-specific knowledge about FSYS, we used
Wagener’s (2001) knowledge test about the microworld. The 11
multiple-choice items addressed system and action knowledge
across all relevant areas of FSYS. For example: “A forest is infested
by vermin XY. Which procedure would you apply?” In order to
limit the number of questions, we did not differentiate between
different types of knowledge. Therefore, we used a sum score as a
global indicator of system-specific knowledge.

Procedure
Participants took part in two sessions each lasting about
2.5 h. All testing was done in groups of up to 20 persons
at the university computer lab. The first session comprised
tests of intelligence and WMC. In the second session,
participants completed tests of general forestry knowledge,
complex problem solving, and system-specific knowledge. In
contrast to Study 1, system-specific knowledge was assessed
only once, after participants had worked with the CPS scenario
(similar to Wagener, 2001). As the study was originally
designed as an experimental training study (see Kretzschmar
and Süß, 2015), the procedure differed slightly between the
two experimental groups. About half of the participants
completed the second session the day after the first session.
The other half participated in a CPS training in between and
completed the second session about 1 week after the first
session.

Results
We will first present results for individual groups of predictors of
CPS performance before integrating the results into a combined
path model. Due to the original study design (i.e., exclusion
criteria for the training, dropout from the first session to the
second), up to 24% of the data for the knowledge tests and
the CPS scenario were missing. We used the full information
maximum likelihood (FIML) procedure to account for missing
data. The smallest sample size in the analyses of individual groups
of predictors was 116. The data are publicly available via the Open
Science Framework9. See Table 3 for descriptive statistics and the
full correlation matrix.

8We would like to thank Clemens Leutner for professional advice in developing
the questionnaire.
9https://osf.io/n2jvy
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FIGURE 5 | Screenshot of the exploration phase of FSYS system as applied in Study 2.

TABLE 3 | Study 2: Means, standard deviations, and correlations.

Variable M SD 1 2 3 4 5 6 7 8 9 10 11

(1) BIS: g 0.04 0.50

(2) BIS: Speed 0.04 0.60 0.82∗∗

(3) BIS: Reasoning 0.04 0.57 0.88∗∗ 0.47∗∗

(4) BIS: Verbal 0.08 0.60 0.71∗∗ 0.69∗∗ 0.60∗∗

(5) BIS: Figural 0.02 0.62 0.84∗∗ 0.69∗∗ 0.71∗∗ 0.47∗∗

(6) BIS: Numerical 0.01 0.69 0.78∗∗ 0.67∗∗ 0.68∗∗ 0.35∗∗ 0.46∗∗

(7) WMC 0.12 2.10 0.55∗∗ 0.41∗∗ 0.52∗∗ 0.33∗∗ 0.45∗∗ 0.48∗∗

(8) Know: General 8.35 2.74 0.08 0.00 0.13 0.04 0.03 0.09 0.02

(9) Know: Specific 5.32 1.94 0.36∗∗ 0.17 0.41∗∗ 0.20∗ 0.35∗∗ 0.23∗ 0.22∗ 0.19∗

(10) CPS 57.59 22.51 0.33∗∗ 0.19∗ 0.34∗∗ 0.07 0.37∗∗ 0.27∗∗ 0.32∗∗ 0.16 0.51∗∗

(11) Age 23.99 4.43 −0.34∗∗
−0.21∗∗

−0.34∗∗
−0.23∗∗

−0.36∗∗
−0.17∗

−0.31∗∗ 0.24∗
−0.17 −0.21∗

(12) Gender 0.50 0.50 −0.17∗
−0.05 −0.20∗ 0.13 −0.09 −0.35∗∗

−0.06 −0.18 −0.20∗
−0.10 −0.08

∗ Indicates p < 0.05; ∗∗ indicates p < 0.01. M and SD are used to represent mean and standard deviation, respectively. BIS, Berlin Intelligence Structure Test; WMC,
working memory capacity; Know: General, general forestry knowledge; Know: Specific, system-specific knowledge; CPS, complex problem solving performance (FSYS).

Complex Problem Solving, Intelligence, and Working
Memory
The results of two multivariate regressions of FSYS performance
scores on the BIS operative and content scales, respectively, are
summarized in Table 2 (lower half, correlations in brackets).

The results for operation abilities are similar to those from
the first study, with reasoning the only significant predictor
(β = 0.33, p < 0.01). However, figural intelligence was
the only statistically significant predictor among the content
scales (β = 0.38, p < 0.01). This seems plausible given that
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FSYS displays important information graphically rather than
numerically (e.g., diagrams showing the forestry company’s
development). However, a large amount of information is
also presented numerically, meaning that numerical reasoning
should exert an influence as well. Taking the cell level of
the BIS into consideration: Numerical reasoning (Cronbach’s
α = 0.66) became similarly strongly associated with FSYS
control performance (r = 0.37, p < 0.01; corrected for
unreliability r = 0.46) as figural reasoning (Cronbach’s α = 0.72;
r = 0.36, p < 0.01; corrected for unreliability r = 0.42). Verbal
reasoning (Cronbach’s α = 0.51) remained unassociated with
FSYS performance (r = 0.02, p = 0.82). In contrast to Study 1,
the content scales accounted for a slightly larger share of the
variance in FSYS (16%) than the operation scales (10%). General
intelligence (BIS-g) had a.33 (p < 0.01) correlation with problem
solving performance.

Next, we compared the impact of reasoning and WMC as
predictors of success in FSYS. Both predictors exhibited an
almost equal and statistically significant zero-order correlation
(rBIS−R.FSYS = 0.34, p < 0.01; rWMC.FSYS = 0.32, p < 0.01).
In hierarchical regressions, each explained a similar but non-
significant amount of incremental variance over and above the
other predictor (1R2

BIS.K = 0.02; 1R2
WMC = 0.02). The total

explained variance was 12.2% (adjusted). In summary, working
memory did not increase the statistical significance of the
multiple correlation when entered as a second predictor.

Complex Problem Solving and Knowledge
General forestry knowledge was not significantly correlated with
FSYS performance (r = 0.16, p = 0.09). Thus, the (non-)impact
of prior domain knowledge in FSYS was similar as in previous
studies (r = 0.13; Wagener, 2001), emphasizing how the impact
of prior knowledge depends on the specific type of microworld
(i.e., CRS in Study 1 vs. CAS in Study 2). The correlation between
system-specific knowledge (measured after working on FSYS)
and FSYS performance was r = 0.51 (p < 0.01).

An Integrative Path Model
In line with our assumptions about the relations among the
predictor and criterion variables and building upon the results
of the first study, we constructed a path model to integrate
our findings. Perceptual speed from the BIS Test was excluded
from the analyses because it was not significantly associated with
any endogenous variable when controlling for reasoning. Prior
general forestry knowledge was also omitted from the path model
for the same reason.

In the first model (Figure 6, Model A), working memory
had a direct influence on reasoning but not on FSYS control
performance and system-specific knowledge. In this model
[χ2(2) = 4.538, p = 0.10, CFI = 0.977, SRMR = 0.038], control
performance (β = 0.34, p < 0.01) and acquired system-specific
knowledge about the microworld FSYS (β = 0.26, p < 0.01)
were significantly influenced by reasoning. The total amount of
explained variance for control performance and system-specific
knowledge were 11% and 32%, respectively.

In a second (fully saturated) model (Figure 6, Model B: dashed
lines and coefficients in brackets), direct paths from working

memory to FSYS control performance and system-specific
knowledge were added. In this model, working memory had a
small but non-significant direct effect on control performance
(β = 0.20, p = 0.09), i.e., the effect of working memory is primarily
based on its shared variance with reasoning. Furthermore, WMC
functioned as a suppressor when it came to predicting system-
specific knowledge. In other words, despite the positive zero
order correlation between the two variables (see above), the direct
path from WMC to system-specific knowledge was negative
(β = −0.13, p = 0.19), while the impact of reasoning on system-
specific knowledge slightly increased (β = 0.33, p < 0.01). On the
other hand, the path from working memory to system-specific
knowledge was statistically non-significant, and the explained
variance in system-specific knowledge did not significantly
increase [1R2 = 0.012, F(1,148) = 2.663, p = 0.46].

Discussion
The general findings of Study 1 with regard to the impact of
intelligence on CPS performance could be replicated in Study 2.
However, as Study 2 was conducted with a different microworld
with different cognitive demands (e.g., less relevance of prior
knowledge), the results differed somewhat compared to those of
Study 1.

With regard to intelligence, reasoning was again the strongest
and sole predictor of CPS performance. Because general
intelligence (g) was operationalized substantially more narrowly
than in Study 1, the results for reasoning and g were
comparable. These findings highlight the effect of the specific
operationalization of intelligence selected. If intelligence is
broadly operationalized, as proposed in the BIS (see Study 1),
the general intelligence factor is not equivalent to reasoning
(aka fluid intelligence; see also Carroll, 1993; McGrew, 2005;
Horn, 2008) and different results for g and for reasoning in
predicting CPS performance can be expected (see e.g., Süß,
1996). With regard to the content facet, FSYS shared the most
variance with figural intelligence. However, the cell level of the
BIS provided a more fine-grained picture: figural reasoning was
just as highly correlated with FSYS performance as numerical
reasoning. Although Study 1 and Study 2 must be compared
with caution (i.e., due to different operationalizations of the
BIS scales, see Figure 1, and limited BIS reliability on the
cell level), it is clear that different CPS tests demand different
cognitive abilities. At the same time, these findings highlight
the importance of the Brunswik symmetry principle (Wittmann,
1988; Wittmann and Süß, 1999). A mismatch between predictor
and criterion (e.g., figural reasoning and Tailorshop performance
in Study 1; or numerical intelligence and FSYS performance
in Study 2) substantially reduces the observed correlation (for
another empirical demonstration in the context of CPS, see
Kretzschmar et al., 2017). Ensuring that the operationalizations of
the constructs are correctly matched provides an unbiased picture
of the association across studies (Zech et al., 2017).

Working memory capacity was strongly related to reasoning
and largely accounted for the same portion of variance in
problem solving success as reasoning; it did not explain
substantial variance over and above reasoning. These results
complement the mixed pattern of previous findings, in which
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FIGURE 6 | Study 2: Path Model A for problem solving performance and system-specific knowledge in FSYS, predicted by reasoning and working memory capacity
(WMC). Fit for model A (without dashed lines): χ2(2) = 4.538, p = 0.10, Comparative Fit Index (CFI) = 0.977. Path model B (saturated) with dashed lines and values in
brackets. Values with ∗ are significant at the 5% level.

working memory explained CPS variance above and beyond
intelligence (Wittmann and Süß, 1999), was the only predictor of
CPS variance when simultaneously considering figural reasoning
(Bühner et al., 2008), but did not explain CPS variance above
and beyond reasoning (Greiff et al., 2016). In our view, there is
little unique criterion variance to explain because the predictors
are highly correlated. Even small differences in operationalization
or random fluctuations can make one or the other predictor
dominate (for a different view, see Zech et al., 2017).

Preexisting knowledge (i.e., general forestry knowledge) did
not contribute to problem solving success. This finding highlights
the importance of the CPS measurement approach selected.
Whereas Tailorshop was developed as a complex real life-
oriented simulation in which prior domain knowledge plays a
substantial role, FSYS was developed with the aim of reducing
the influence of prior knowledge (Wagener, 2001). Therefore,
in addition to the distinction between microworlds and MCS,
the differential impact of prior knowledge in terms of semantic
embedding has to be considered when examining the validity
of CPS (e.g., the effects might differ for CRS vs. CAS, as in
the present study). It should be noted that in Stadler et al.’s
(2015) meta-analysis, a study featuring FSYS (in which prior
knowledge has no impact) and a study involving a virtual
chemistry laboratory (in which prior knowledge has an effect;
see Scherer and Tiemann, 2014) were both classified as single
complex system studies. As a substantial portion of the variance
in CPS performance in semantically embedded microworlds
can be attributed to prior knowledge, the question arises as to
whether a more fine-grained classification of the CPS measures
in Stadler et al.’s (2015) meta-analysis would have resulted in
different findings. In summary, the heterogeneity of different CPS
measurements makes it difficult to compare studies or conduct
meta-analyses (some would say impossible, see Kluwe et al.,
1991).

GENERAL DISCUSSION

The presented studies had two main goals. First, we wanted
to investigate the predictive validity of differentiated cognitive

constructs for control performance in complex systems. Second,
we were interested in how preexisting general knowledge and
system-specific prior knowledge contribute to successful system
control.

Both studies clearly demonstrate that intelligence plays an
important role in control performance in complex systems.
This is in contrast to former claims in early CPS research
that problem solving success in complex, dynamic, partially
intransparent systems is not at all correlated with intelligence
test scores (e.g., Kluwe et al., 1991). Our results point to several
explanations for prior failures to find positive correlations.
First, previous studies used only a single problem solving trial,
meaning that the performance criterion presumably was not
satisfactorily reliable. Second, several previous studies did not
differentiate between different aspects of intelligence, but used
a measure of general intelligence. In our studies, however,
general intelligence (g) as conceptualized in the BIS and
operationalized with the BIS Test was not a good predictor
of control performance. Instead and as was expected, the
second-order construct of reasoning, and more specifically
numerical reasoning, had the strongest relationship with success
in the complex real-world oriented system (Tailorshop), while
figural and numerical reasoning had the strongest relationship
with success in the complex artificial world problem (FSYS).
However, whether g and reasoning are distinguishable from
each other (Carroll, 1993), and thus also whether the two
differ in predicting CPS performance, depends on the level
of generality, i.e., the broadness of the operationalization of
g.

Our results are in line with the first Berlin study (Süß et al.,
1993a,b) and several other studies using the Tailorshop system
and other CRSs focusing on ecological validity (e.g., Wittmann
and Süß, 1999; Kersting, 2001; Leutner, 2002; Rigas et al., 2002;
Ryan, 2006; Danner et al., 2011), and were confirmed in Stadler
et al.’s (2015) meta-analysis.

Is There Evidence for a New Construct
‘Complex Problem Solving Ability’?
The two presented studies, however, are limited to one
microworld each, and do not answer broader questions
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regarding generalizability. In particular, the convergent validity
of microworlds was not addressed, but this question is essential
for postulating complex problem solving ability as a new ability
construct.

The following criteria must be considered in justifying a
new ability construct (cf., Süß, 1996, 1999): (1) temporal
stability, (2) a high degree of generality (i.e., the construct can
be operationalized across different tasks, showing convergent
validity), (3) partial autonomy in the nomological network of
established constructs (i.e., the shared performance variance
in different tasks cannot be explained by well-established
constructs), and (4) evidence for incremental criterion validity
compared to established constructs. In this section, we briefly
review the empirical results regarding the existence of a unique
CPS construct. We focus on CPS research utilizing CRS (i.e.,
microworlds with semantic embeddings)10.

The 1-year stability of CRS performance in the Berlin study
(see Süß, 1996) was r = 0.49, which is substantial, but much
lower than that for the intelligence constructs. The temporal
stability of the BIS scales ranged from 0.65 for creativity to
0.90 for reasoning. In addition, the time-stable performance
variance was explained completely by intelligence and prior
knowledge (Süß, 1996). To the best of our knowledge, no
results on temporal stability for other CRS and temporal stability
for aggregated scores based on different CRS are currently
available.

Wittmann et al., (1996; Wittmann and Süß, 1999; Wittmann
and Hattrup, 2004) investigated the convergent validity of CRS.
Wittmann et al. (1996) applied three different CRS (PowerPlant,
Tailorshop, and Learn!), the BIS Test and domain-specific
knowledge tests for each system to a sample of university
students. The correlations of the CRS were significant but rather
small (0.22–0.38), indicating low convergent validity11. However,
because the reliability of each CRS was substantially higher than
their intercorrelations, substantial system-specific variance has
to be assumed. Performance on each of the three systems was
predicted by reasoning and domain-specific prior knowledge to a
substantial degree. In a structural equation model with a nested-
factor BIS model (Schmid and Leiman, 1957; Gustafsson and
Balke, 1993) as predictor, the CPS g-factor with two performance
indicators for each of the three systems (i.e., the CPS ability
construct) was predicted by general intelligence (β = 0.54),
creativity (0.25) and reasoning (0.76), whereas perceptual speed
and memory did not contribute to prediction (Süß, 2001)12. In
this model, reasoning, though orthogonal to general intelligence,

10For a review focusing on CPS research applying the minimally complex systems
(MCS) approach, see Kretzschmar and Süß (2015).
11In the study of Ryan (2006) with 298 University students the intercorrelations
of three scenarios, Furniture Factory (FF), Taylorshop (T) and FSYS (F), were also
rather small but significant (rFF,T = 0.30, rFF,F = 0.27, rT,F = 0.10; Stankov, 2017).
12The structural equation model by Süß (2001) is copied in Wittmann and Hattrup
(2004) as Figure 6. This model was built in two steps: First, BIS and CPS-g were
modeled separately. Specific CPS factors for the three systems were not modeled
because only two indicators were available for each system. Instead, the errors of
the two indicators in each system were allowed to correlated as system-specific
variance. Second, the five BIS factors (g and the four operative abilities) were used
to predict CPS-g. Fit statistics for the final model are not valid because the loadings
of both measurement models were optimized in the first step.

was the strongest predictor of the complex problem solving
ability factor. Almost all of the variance could be explained
by the BIS, putting the autonomy of the CPS construct into
question.

In sum, there is no evidence for a new ability construct based
on CRSs. This, however, does not mean that this kind of research
cannot provide important new insights into CPS processes (see
Süß, 1999), and that CPS performance cannot predict real-life
performance beyond psychometric intelligence measures to a
certain extent (e.g., Kersting, 2001; Danner et al., 2011).

Kersting (2001) predicted police officers’ job performance
over 20 months on the basis of intelligence (short scales
for reasoning and general intelligence from the BIS Test),
CPS performance (two simulations, including Tailorshop), and
acquired system-specific knowledge (measured after controlling
the system). In a commonality analysis (Kerlinger and Pedhazur,
1973), 24.9% of job performance variance was explained. The
strongest specific predictor was intelligence (7.3%; reasoning and
general intelligence at about the same level); CPS performance
and system-specific knowledge explained 3.9 and 3.0% of
the overall criterion, respectively. The largest share of the
variance was confounded variance between intelligence and
system-specific knowledge (24.9%). In comparison to our
first study, both intelligence scales had reduced predictive
validity due to lower reliabilities. However, this study shows
that exploring and controlling CRS must be considered
a learning process. Acquired system knowledge represents
invested intelligence (i.e., crystallized intelligence) and was
a small but additional predictor of real-life performance
beyond intelligence. This provides that ecological-valid complex
systems can additionally predict external criteria, and are
useful learning and training tools for acquiring domain-specific
knowledge.

PART II: REVIEW AND CRITIQUE OF THE
MINIMALLY COMPLEX SYSTEM (MCS)
APPROACH

The research presented and discussed in the first part of the
paper focuses on CRSs. From the beginning, CRS research was
criticized for numerous reasons, including the lack of a formal
description of the system, the lack of an optimal solution as
an evaluation criterion for subjects’ behavior and performance,
the uncontrolled influence of prior knowledge, low or unknown
reliability of the scores, and low or even non-existent convergent
validity and predictive validity with respect to relevant external
criteria (for summaries, see e.g., Funke, 1995; Süß, 1996; Kluge,
2008a). Therefore, the MCS approach (Greiff et al., 2012) was
developed to overcome the limitations of former microworlds.
The MCS approach is remarkably prominent in recent CPS
research, which may be a consequence of the higher reliability and
validity such systems are assumed to have in comparison to CRS
(e.g., Greiff et al., 2015b). Consequently, some might argue that
research on CPS performance based on CRS, as presented in the
first part of the paper, is less reliable and informative. However,
whether the MCS approach is really a superior alternative to
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studying problem solving in complex situations remains up for
debate.

The MCS approach updates and further develops ideas that
have been present since the beginning of CPS research. Funke
(1993) suggested artificial dynamic systems as a research tool
based on systems of linear equations. Buchner and Funke (1993)
proposed the theory of finite state automata as a tool for
developing CPS tasks. Applying this, Kröner (2001; Kröner et al.,
2005), for example, implemented MultiFlux, which simulates a
fictitious machine, within the finite-state framework. This idea
was further developed into MCS, e.g., Genetics lab (Sonnleitner
et al., 2012) and MicroDYN (Greiff et al., 2012). Generally,
about 9–12 artificial world tasks, tiny systems with up to three
exogeneous and three endogenous variables each, are applied
in three phases: (1) free system exploration, (2) knowledge
acquisition (i.e., assessment of acquired system knowledge), and
(3) knowledge application (i.e., assessment of action knowledge).
The required testing time is less than 5 min for each minimal
system. Each system provides three scores, one for each of the
above-mentioned phases, which are then used to form three
corresponding knowledge scales. According to our knowledge
taxonomy, Phase 2 measures declarative system knowledge (i.e.,
relations between variables), while Phase 3 measures procedural
action knowledge (i.e., system interventions in order to achieve
a given goal). The items in these two subtests are similar
to the items in the arrows task and the system-states task
of the Tailorshop knowledge test. Whereas each item in the
MCS scales refers to a different minimal system, all items
in the Tailorshop knowledge test refer to the same system.
Nevertheless, the MCS tasks are very similar to each other and
implement only a small number of CPS characteristics, giving
the subtests high internal consistencies. Specifically, all minimal
systems can be fully explored with the simple strategy “vary
one thing at a time” (VOTAT; e.g., Vollmeyer et al., 1996)
or the closely related strategy “vary one or none at a time”
(Beckmann and Goode, 2014; for additional distinctions see
Lotz et al., 2017). No special training is necessary to learn
these strategies. Instead, they can be learned by instruction or
examples of correct and incorrect applications. On the other
hand, these strategies are clearly not sufficient for exploring
CRS, i.e., systems with many exogeneous variables, indirect and
side effects, delayed effects, and eigendynamics, especially if the
time for the task is limited or in real-time simulations (e.g.,
Bremer’s fire-fighter; Rigas et al., 2002). For the latter, the quality
of one’s hypotheses, which is based on domain knowledge, is
a necessary prerequisite for successfully exploring the system.
In summary, the features of MCS measurements outlined here,
along with further criticisms of this approach (e.g., Funke,
2014; Scherer, 2015; Schoppek and Fischer, 2015; Dörner and
Funke, 2017; Funke et al., 2017; Kretzschmar, 2017), substantially
narrow the validity of the MCS approach as an indicator of
CPS.

On the other hand, the relevance of the MCS approach
is shown by many studies that have modeled the internal
structure of MCS tasks (e.g., Greiff et al., 2012; Sonnleitner
et al., 2012), provided evidence that performance variance cannot
be sufficiently explained by reasoning (e.g., Wüstenberg et al.,

2012; Sonnleitner et al., 2013; Kretzschmar et al., 2016), found
strong convergent validity as well as a lower correlation with
a CRS (i.e., Tailorshop; Greiff et al., 2015b; for a different
view, see Kretzschmar, 2017), and demonstrated incremental
validity in predicting school grades beyond reasoning (e.g.,
Greiff et al., 2013b; Sonnleitner et al., 2013; for different
results, see Kretzschmar et al., 2016; Lotz et al., 2016) and
beyond a CRS task (Greiff et al., 2015b). MCS have been
proposed as a tool for assessing 21st Century skills (Greiff
et al., 2014) and were applied in the international large-scale
study PISA to assess general problem-solving skills (OECD,
2014). They have further been proposed as training tools and
evaluation instruments for these skills (e.g., Greiff et al., 2013a;
Herde et al., 2016). This begs the question: how strong is
the empirical evidence? Are these far-reaching conclusions and
recommendations justified?

Studies provide support for the psychometric quality,
especially the reliability, of the MCS approach, although scale
building and some statistics have been criticized (Funke et al.,
2017; Kretzschmar, 2017). Only one study so far has attempted
to compare MCS and CRS. In it, Greiff et al. (2015b) argued
that MCS had a higher validity than Tailorshop in predicting
school grades. The knowledge scales assessed after exploring the
system were used as predictors for the MCS. However, system-
specific knowledge for Tailorshop after controlling the system was
not assessed (Kretzschmar, 2017). Instead, control performance
was used as a predictor of school grades. Control performance,
however, is not a valid measure of acquired knowledge, as
demonstrated in our first study. For this, additional tests are
needed after controlling the system, conducted in both studies in
this paper.

Minimally complex systems research also only sparingly
addresses questions of construct validity related to the measures
and the conclusions (i.e., generalizability; see Kretzschmar, 2015).
This concerns the operationalization of CPS characteristics (i.e.,
the construct validity of the MCS), which was addressed in
more detail above. However, limitations also exist concerning the
choice of the additional instruments applied in validation studies.
The construct validity of many instruments is considerably
limited, causing results to be overgeneralized (cf., Shadish
et al., 2002). For example, operationalizing reasoning (i.e.,
fluid intelligence) with a single task (e.g., the Raven matrices;
Wüstenberg et al., 2012; Greiff and Fischer, 2013) is not
sufficient. Construct validity is also restricted if only one
task is used to measure WMC (e.g., Bühner et al., 2008;
Schweizer et al., 2013). Since Spearman’s (1904), work we
know that task-specific variance can be reduced only through
heterogeneous operationalizations of the intended constructs.
The two studies reported in this paper show how strongly
the relationship between intelligence and CPS performance
varies depending on the generality level of the intelligence
construct (see also Kretzschmar et al., 2017). The symmetry
problem was demonstrated here for the BIS, but is also evident
with regard to other hierarchical intelligence models, e.g., the
Three Stratum theory (Carroll, 1993, 2005), the extended Gf-
Gc theory (Horn and Blankson, 2005; Horn, 2008), and the
Cattell-Horn-Carroll theory (CHC theory; McGrew, 2005, 2009).
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Süß and Beauducel (2011), therefore, classified every task of
the most frequently used tests into the BIS, the three stratum
theory, and the CHC theory to give a framework for this
problem.

According to the BIS (Jäger, 1982), every intelligence task
depends on at least two abilities (an operative and a content
ability), i.e., every task relates to two different constructs. By
extension, the interpretation in terms of only one ability is
of limited validity due to unintended but reliable task-specific
variance. It is either necessary to have several tasks for every
construct and theory-based aggregation (Jäger, 1982, 1984) to
reduce unintended variance, or the interpretation must be limited
to a more specific conclusion (e.g., to numerical reasoning in
our first study). The two studies presented here and many
others show that these kinds of problems substantially influence
the validity of conclusions in intelligence and problem solving
research as well as in many other fields (Shadish et al., 2002).

In summary, the MCS approach provides solutions to
psychometrics problems in CPS research, especially the reliability
problem, but its validity as an indicator of CPS performance
is substantially restricted. In our view, MCS are an interesting
new class of problem-solving tasks, but provide few insights into
complex real-world problem solving. Modifications of the MCS
approach toward increased complexity (e.g., MicroFIN; Neubert
et al., 2015; Kretzschmar et al., 2017) are a promising step in the
right direction.

Conclusion and Outlook
The primary aim of CPS research with CRSs (e.g., Lohhausen;
Dörner et al., 1983) is ecological validity, i.e., “the validity of
the empirical results as psychological statements for the real
world” (Fahrenberg, 2017). In the past, many systems were
“ad hoc” constructions by psychologists that had not been
sufficiently validated, but this need not be the case. What is
needed is interdisciplinary research in the form of collaboration
with experts in the simulated domains. For example, Dörner
collaborated with a business expert to develop Tailorshop.
Powerplant was developed by Wallach (1997) together with
engineers from a coal-fired power plant near Saarbrücken
(Germany). LEARN!, a complex management simulator with
more than 2000 connected variables, was originally developed
by an economics research group at the University of Mannheim
(Germany) as a tool for testing economic theories (Milling,
1996; Größler et al., 2000; Maier and Größler, 2000). In the
version applied by Wittmann et al. (1996), participants have
to manage a high-technology company competing with three
others simulated by the computer. ATC (Air Traffic Controller
Test; Ackerman and Kanfer, 1993) and TRACON (Terminal
Radar Air Control; Ackerman, 1992) are simplified versions
of vocational training simulators for professional air traffic
controllers. The Situational Awareness Real Time Assessment
Tool (SARA-T) was developed to measure the situational
awareness of air traffic controllers working in the NLR ATM
Research Simulator (NARSIM; ten Have, 1993), a system also
used in expert studies (Kraemer and Süß, 2015; Kraemer,
2018). Finally, technological developments (e.g., video clips,
virtual worlds; Funke, 1998) have enabled the development of

complex systems that are much more similar to real-world
demands than ever before, an opportunity that should be
capitalized upon in psychological research (see Dörner and
Funke, 2017).

In this line of research, the ecological validity of the simulated
real-world relationships is essential and must be ensured.
In addition, domain-specific prior knowledge is necessary to
generate hypotheses for system exploration and system control.
Valid measures of the amount, type, and structure of domain-
specific prior knowledge, the knowledge acquisition processes,
and the acquired knowledge are necessary for understanding
and measuring CPS behavior and performance. In light of all
this, this line of research can help us to understand how people
face the challenge of dealing with complexity and uncertainty,
identify causes of failure, and detect successful strategies for
reducing complexity during problem solving (e.g., Dörner, 1996;
Dörner and Funke, 2017), a laborious and time-consuming
but important field of research in complex decision making
(cf., Gigerenzer and Gaissmaier, 2011). The research strategy of
restricting complex problem solving tasks to MCS, however, leads
into a cul-de-sac.
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The purpose of this study was to examine the role of exploration strategies students used

in the first phase of problem solving. The sample for the study was drawn from 3rd- to

12th-grade students (aged 9–18) in Hungarian schools (n = 4,371). Problems designed

in the MicroDYN approach with different levels of complexity were administered to the

students via the eDia online platform. Logfile analyses were performed to ascertain the

impact of strategy use on the efficacy of problem solving. Students’ exploration behavior

was coded and clustered through Latent Class Analyses. Several theoretically effective

strategies were identified, including the vary-one-thing-at-a-time (VOTAT) strategy and

its sub-strategies. The results of the analyses indicate that the use of a theoretically

effective strategy, which extract all information required to solve the problem, did not

always lead to high performance. Conscious VOTAT strategy users proved to be the

best problem solvers followed by non-conscious VOTAT strategy users and non-VOTAT

strategy users. In the primary school sub-sample, six qualitatively different strategy class

profiles were distinguished. The results shed new light on and provide a new interpretation

of previous analyses of the processes involved in complex problem solving. They also

highlight the importance of explicit enhancement of problem-solving skills and problem-

solving strategies as a tool for knowledge acquisition in new contexts during and beyond

school lessons.

Keywords: complex problem solving, logfile analyses, exploration strategies, VOTAT strategies, latent class

profiles

INTRODUCTION

Computer-based assessment has presented new challenges and opportunities in educational
research. A large number of studies have highlighted the importance and advantages of
technology-based assessment over traditional paper-based testing (Csapó et al., 2012). Three main
factors support and motivate the use of technology in educational assessment: (1) the improved
efficiency and greater measurement precision in the already established assessment domains (e.g.,
Csapó et al., 2014); (2) the possibility of measuring constructs that would be impossible to
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measure by other means (e.g., Complex Problem Solving (CPS)1;
see Greiff et al., 2012, 2013); and (3) the opportunity of logging
and analyzing not only observed variables, but metadata as
well (Lotz et al., 2017; Tóth et al., 2017; Zoanetti and Griffin,
2017). Analyzing logfiles may contribute to a deeper and
better understanding of the phenomenon under examination.
Logfile analyses can provide answers to research questions
which could not be answered with traditional assessment
techniques.

This study focuses on problem solving, especially on complex
problem solving (CPS), which reflects higher-order cognitive
processes. Previous research identified three different ways to
measure CPS competencies: (1) Microworlds (e.g., Gardner and
Berry, 1995), (2) formal frameworks (Funke, 2001, 2010) and
(3) minimal complex systems (Funke, 2014). In this paper,
the focus is on the MicroDYN approach, which is a specific
form of complex problem solving (CPS) in interactive situations
using minimal complex systems (Funke, 2014). Recent analyses
provide both a new theory and data-based evidence for a
global understanding of different problem-solving strategies
students employ or could employ in a complex problem-solving
environment based on minimal complex systems.

The problem scenarios within the MicroDYN approach
consist of a small number of variables and causal relations.
From the perspective of the problem solver, solving a MicroDYN
problem requires a sequence of continuous activities, in which
the outcome of one activity is the input for the next. First,
students interact with the simulated system, set values for the
input variables, and observe the impacts of these settings on
the target (dependent) variable. Then, they plot their conclusion
about the causal relationships between the input and output
variables on a graph (Phase 1). Next, they manipulate the
independent variables again to set their values so that they result
in the required values for the target variables (Phase 2).

When it comes to gathering information about a complex
problem, as in the MicroDYN scenarios, there may be differences
between the exploration strategies in terms of efficacy. Some of
them may be more useful for generating knowledge about the
system. Tschirgi (1980) identified different exploration strategies.
When control of variables strategies (Greiff et al., 2014) were
explored, findings showed that the vary-one-thing-at-a-time
(VOTAT, Tschirgi, 1980; Funke, 2014) was the most effective
strategy for identifying causal relations between the input and
output variables in a minimal complex system (Fischer et al.,
2012). Participants who employed this strategy tended to acquire
more structural knowledge than those who used other strategies
(Vollmeyer et al., 1996; Kröner et al., 2005). With the VOTAT
strategy, the problem solver systematically varies only one input
variable, while the others remain unchanged. This way, the effect
of the variable that has just been changed can be observed directly
by monitoring the changes in the output variables. There exist
several types of VOTAT strategies.

1With regard to terminology, please note that different terms are used for

the subject at hand (e.g., complex problem solving, dynamic problem solving,

interactive problem solving and creative problem solving). In this paper, we use

the modifier “complex” (see Csapó and Funke, 2017; Dörner and Funke, 2017).

Using this approach—defining the effectiveness of a strategy
on a conceptual level, independently of empirical effectiveness—
we developed a labeling system and a mathematical model based
on all theoretically effective strategies. Thus, effectiveness was
defined and linked to the amount of information extracted.
An exploration strategy was defined as theoretically effective
if the problem solver was able to extract all the information
needed to solve the problem, independently of the application
level of the information extracted and of the final achievement.
We split the effectiveness of the exploration strategy and the
usage and application of the information extracted to be able
to solve the problem and control the system with respect
to the target values based on the causal knowledge acquired.
Systematicity was defined on the level of effectiveness based
on the amount of information extracted and on the level of
awareness based on the implementation of systematicity in
time.

Students’ actions were logged and coded according to our
input behavior model and then clustered for comparison. We
were able to distinguish three different VOTAT strategies and two
successful non-VOTAT ones. We empirically tested awareness
of the input behavior used in time. Awareness of strategy usage
was analyzed by the sequence of the trials used, that is, by
the systematicity of the trials used in time. We investigated
the effectiveness of and differences in problem-solving behavior
between three age groups by conducting latent class analyses
to explore and define patterns in qualitatively different VOTAT
strategy uses.

Although the assessment of problem solving within the
MicroDYN approach is a relatively new area of research, its
processes have already been studied in a number of different
contexts, including a variety of educational settings with several
age groups. Our cross-sectional design allows us to describe
differences between age groups and outline the developmental
tendencies of input behavior and strategy use among children in
the age range covered by our data collection.

REASONING STRATEGIES IN COMPLEX

PROBLEM SOLVING

Problem-solving skills have been among the most extensively
studied transversal skills over the last decade; they have been
investigated in the most prominent comprehensive international
large-scale assessments today (e.g., OECD, 2014). The common
aspects in the different theoretical models are that a problem is
characterized by a gap between the current state and the goal
state with no immediate solution available (Mayer and Wittrock,
1996).

Parallel to the definition of the so-called twenty first-century
skills (Griffin et al., 2012), recent research on problem solving
disregards content knowledge and domain-specific processes.
The reason for this is that understanding the structure of
unfamiliar problems is more effective when it relies on
abstract representation schemas and metacognitive strategies
than on specifically relevant example problems (Klahr et al.,
2007). That is, the focus is more on assessing domain-general
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problem-solving strategies (Molnár et al., 2017), such as complex
problem solving, which can be used to solve novel problems, even
those arising in interactive situations (Molnár et al., 2013).

Logfile analyses make it possible to divide the continuum
of a problem-solving process into several scoreable phases
by extracting information from the logfile that documents
students’ problem-solving behavior. In our case, latent class
analysis extracts information from the file that logs students’
interaction with the simulated system at the beginning of the
problem-solving process. The way students manipulate the input
(independent) variables represents their reasoning strategy. Log
data, on the one hand, make it possible to analyze qualitative
differences in these strategies and then their efficiency in terms
of how they generate knowledge resulting in the correct plotting
of the causal relationship in Phase 1 and then the proper setting
to reach the required target value in Phase 2. On the other hand,
qualitative strategy data can be quantified, and an alternative
scoring system can be devised.

From the perspective of the traditional psychometric
approach and method of scoring, these problems form a test task
consisting of two scoreable items. The first phase is a knowledge
acquisition process, where scores are assigned based on how
accurately the causal relationship was plotted. The second phase
is knowledge application, where the correctness of the value for
the target variable is scored. Such scoring based on two phases
of solving MicroDYN problems has been used in a number of
previous studies (e.g., Greiff et al., 2013, 2015; Wüstenberg et al.,
2014; Csapó and Molnár, 2017; Greiff and Funke, 2017).

To sum up, there is great potential to investigate and cluster
the problem-solving behavior and exploration strategy usage
of the participants at the beginning of the problem-solving
process and correlate the use of a successful exploration strategy
with the model-building solution (achievement in Phase 1)
observed directly in these simulated problem scenarios. Using
logfile analyses (Greiff et al., 2015), the current article wishes to
contribute insights into students’ approaches to explore and solve
problems related to minimal complex systems. By addressing
research questions on the problem-solving strategies used, the
study aims to understand students’ exploration behavior in
a complex problem-solving environment and the underlying
causal relations. In this study, we show that such scoring can be
developed through latent class analysis and that this alternative
method of scoring may produce more reliable tests. Furthermore,
such scoring can be automated and then employed in a large-
scale assessment.

There are two major theoretical approaches to cognition
relevant to our study; both offer general principles to interpret
cognitive development beyond the narrower domain of problem
solving. Piaget proposed the first comprehensive theory to
explain the development of children’s thinking as a sequence
of four qualitatively different stages, the formal operational
stage being the last one (Inhelder and Piaget, 1958), while the
information processing approach describes human cognition by
using terms and analogies borrowed from computer science.
The information processing paradigm was not developed into
an original developmental theory; it was rather aimed at
reinterpreting and extending Piaget’s theory (creating several

Neo-Piagetian models) and synthesizing the main ideas of the
two theoretical frameworks (Demetriou et al., 1993; Siegler,
1999). One of the focal points of these models is to explain the
development of children’s scientific reasoning, or, more closely,
the way children understand how scientific experiments can
be designed and how causal relationships can be explored by
systematically changing the values of (independent) variables and
observing their impact on other (target) variables.

From the perspective of the present study, the essential
common element of cognitive developmental research is
the control of variables strategy. Klahr and Dunbar (1988)
distinguished two related skills in scientific thinking, hypothesis
formation and experimental design, and they integrated these
skills into a coherent model for a process of scientific discovery.
The underlying assumption is that knowledge acquisition
requires an iterative process involving both. System control
as knowledge application tends to include both processes,
especially when acquired knowledge turns out to be insufficient
or dysfunctional (J. F. Beckmann, personal communication,
August 16, 2017). Furthermore, they separated the processes of
rule induction and problem solving, defining the latter as a search
in a space of rules (Klahr and Dunbar, 1988, p. 5).

de Jong and van Joolingen (1998) provided an overview
of studies in scientific discovery learning with computer
simulations. They concluded that a number of specific skills
are needed for successful discovery, like systematic variation
of variable values, which is in a focus of the present paper,
and the use of high-quality heuristics for experimentation. They
identified several characteristic problems in the discovery process
and stressed that learners often have trouble interpreting data.

In one of the earliest systematic studies of students’
problem-solving strategies, Vollmeyer et al. (1996) explored the
impact of strategy systematicity and effectiveness on complex
problem-solving performance. Based on previous studies, they
distinguished the VOTAT strategy from other possible strategies
[Change All (CA) and Heterogeneous (HT) other strategies], as
VOTAT allows systematic exploration of the behavior of a system
and a disconfirmation of hypotheses. In one of their experiments,
they examined the hypothesis that VOTAT was more effective for
acquiring knowledge than less systematic strategies. According
to the results, the 36 undergraduate students had clearly shown
strategy development. After interacting with the simulated
system in several rounds, they tended to use the VOTAT
strategy more frequently. In a second experiment, it was also
demonstrated that goal specificity influences strategy use as well
(Vollmeyer et al., 1996).

Beckmann and Goode (2014) analyzed the systematicity
in exploration behavior in a study involving 80 first-year
psychology students and focusing on the semantic context of
a problem and its effect on the problem solvers’ behavior in
complex and dynamic systems. According to the results, a
semantically familiar problem context invited a high number
of a priori assumptions on the interdependency of system
variables. These assumptions were less likely tested during the
knowledge acquisition phase, this proving to be the main barrier
to the acquisition of new knowledge. Unsystematic exploration
behavior tended to produce non-informative system states that
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complicated the extraction of knowledge. A lack of knowledge
ultimately led to poor control competency.

Beckmann et al. (2017) confirmed research results by
Beckmann and Goode (2014) and demonstrated how a
differentiation between complexity and difficulty leads to a
better understanding of the cognitive mechanism behind CPS.
According to findings from a study with 240 university
students, the performance differences observed in the context
of the semantic effect were associated with differences in the
systematicity of the exploration behavior, and the systematicity
of the exploration behavior was reflected in a specific sequence
of interventions. They argued that it is only the VOTAT
strategy—supplemented with the vary-none-at-a-time strategy in
the case of noting autonomous changes—that creates informative
system state transitions which enable problem solvers to derive
knowledge of the causal structure of a complex, dynamic system.

Schoppek and Fischer (2017) also investigated VOTAT and
the related “PULSE” strategy (all input variables to zero), which
enables the problem solver to observe the eigendynamics of the
system in a transfer experiment. They proposed that besides
VOTAT and PULSE, other comprehensive knowledge elements
and strategies, which contribute to successful CPS, should be
investigated.

In a study with 2nd- to 4th-grade students, Chen and Klahr
found little spontaneous development when children interacted
with physical objects (in situations similar to that of Piaget’s
experiments), while more direct teaching of the control of
variables strategy resulted in good effect sizes and older children
were able to transfer the knowledge they had acquired (improved
control of variable strategy) to remote contexts (Chen and
Klahr, 1999). In a more recent study, Kuhn et al. (2008)
further extended the scope of studies on scientific thinking,
identifying three further aspects beyond the control of variables
strategy, including coordinating effects of multiple influences,
understanding the epistemological foundations of science and
engaging in argumentation. In their experiment with 91 6th-
grade students, they explored how students were able to estimate
the impact of five independent variables simultaneously on a
particular phenomenon, and they found that most students
considered only one or two variables as possible causes.

AIMS

In this paper, we explore several research questions on effective
and less effective problem-solving strategies used in a complex
problem-solving environment and detected by logfile analyses.
We use logfile analyses to empirically test the success of different
input behavior and strategy usage in CPS tasks within the
MicroDYN framework. After constructing a mathematical model
based on all theoretically effective strategies, which provide the
problem solver with all the information needed to solve the
problem, and defining several sub-strategies within the VOTAT
strategy based on the amount of effort expended to extract
the necessary information, we empirically distinguish different
VOTAT and non-VOTAT strategies, which can result in good
CPS performance and which go beyond the isolated variation
strategy as an effective strategy for rule induction (Vollmeyer

et al., 1996). We highlight the most and least effective VOTAT
strategies used in solving MicroDYN problems and empirically
investigate the awareness of the strategy used based on the
sequence of the sub-strategies used. Based on these results, we
conduct latent class analyses to explore and define patterns in
qualitatively different VOTAT strategy uses.

We thus intend to answer five research questions:

RQ1: Does the use of a theoretically effective strategy occur prior
to high performance? In other words, does the use of a
theoretically effective strategy result in high performance?

RQ2: Do all VOTAT strategies result in a high CPS
performance? What is the most effective VOTAT
strategy?

RQ3: How does awareness of the exploration strategy used
influence overall performance on CPS tasks?

RQ4: What profiles characterize the various problem solvers and
explorers?

RQ5: Do exploration strategy profiles differ across grade
levels, which represent different educational stages during
compulsory schooling?

HYPOTHESES

In this study, we investigated qualitatively different classes of
students’ exploration behavior in CPS environments. We used
latent class analysis (LCA) to study effective and non-effective
input behavior and strategy use, especially the principle of
isolated variation, across several CPS tasks. We compared the
effectiveness of students’ exploration behavior based on the
amount of information they extracted with their problem-solving
achievement. We posed five separate hypotheses.

Hypothesis 1: We expect that high problem-solving achievement

is not closely related to expert exploration behavior.

Vollmeyer et al. (1996) explored the impact of strategy
effectiveness on problem-solving performance and reported that
effectiveness correlated negatively and weakly to moderately with
solution error (r = −0.32 and r = −0.54, p < 0.05). They
reported that “most participants eventually adopted the most
systematic strategy, VOTAT, and the more they used it, the
better they tended to perform. However, even those using the
VOTAT strategy generally did not solve the problem completely”
(p. 88). Greiff et al. (2015) confirmed that different exploration
behaviors are relevant to CPS and that the number of sub-
strategies implemented was related to overall problem-solving
achievement.

Hypothesis 2: We expect that students who use the isolated

variation strategy in exploring CPS problems have a significantly

better overall performance than those who use a theoretically

effective, but different strategy.

Sonnleiter et al. (2017) noted that “A more effective exploration
strategy leads to a higher system knowledge score and the higher
the gathered knowledge, the better the ability to achieve the
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target values. Thus, system knowledge can be seen as a reliable
and valid measure of students’ mental problem representations”
(p. 169). According to Wüstenberg et al. (2012), students who
consistently apply the principle of isolated variation—the most
systematic VOTAT strategy—in CPS environments show better
overall CPS performance, compared to those who use different
exploration strategies. Kröner et al. (2005) reported a positive
correlation between using the principle of isolated variation and
the likelihood of solving the overall problem.

Hypothesis 3: We expected that more aware CPS exploration

behavior would be more effective than exploration behavior that

generally results in extracting all the necessary information from

the system to solve the problem, but within which the steps have

no logically built structure and no systematicity in time.

Vollmeyer et al. (1996) explored the impact of strategy
systematicity on problem-solving performance. They
emphasized that “the systematicity of participants’ spontaneous
hypothesis-testing strategies predicted their success on learning
the structure of the biology lab problem space” (p. 88). Vollmeyer
and her colleagues restricted systematic strategy users to isolated
variation strategy users; this corresponds to our terminology
usage of aware isolated variation strategy users.

Hypothesis 4: We expected to find a distinct number of classes

with statistically distinguishable profiles of CPS exploration

behavior. Specifically, we expected to find classes of proficient,

intermediate and low-performing explorers.

Several studies (Osman and Speekenbrink, 2011; Wüstenberg
et al., 2012; Greiff et al., 2015) have indicated that there
exist quantitative differences between different exploration
strategies, which are relevant to a CPS environment. The current
study is the first to investigate whether a relatively small
number of qualitatively different profiles of students’ exploration
proficiency can be derived from their behavior detected in a CPS
environment in a broad age range.

Hypothesis 5: We expected that more proficient CPS exploration

behavior would be more dominant at later grade levels as an

indication of cognitive maturation and of increasing abilities to

explore CPS environments.

The cognitive development in children between Grades 3 and
12 is immense. According to Piaget’s stage theory, they move
from concrete operations to formal operations and they will
be able to think logically and abstractly. According to Galotti
(2011) and Molnár et al. (2013), the ability to solve problems
effectively and to make decisions in CPS environments increases
in this period of time; Grades 6–8 seem especially crucial for
development. Thus, we expect that cognitive maturation will also
be reflected in more proficient exploration behavior.

METHODS

Participants
The sample was drawn from 3rd- to 12th-grade students
(aged 9–18) in Hungarian primary and secondary schools

(N = 4,371; Table 1). School classes formed the sampling unit.
180 classes from 50 schools in different regions were involved
in the study, resulting in a wide-ranging distribution of students’
background variables. The proportion of boys and girls was about
the same.

Materials
The MicroDYN approach was employed to develop a
measurement device for CPS. CPS tasks within the MicroDYN
approach are based on linear structural equations (Funke, 2001),
in which up to three input variables and up to three output
variables are related (Greiff et al., 2013). Because of the small
set of input and output variables, the MicroDYN problems
could be understood completely with precise causal analyses
(Funke, 2014). The relations are not presented to the problem
solver in the scenario. To explore these relations, the problem
solver must interact directly with the problem situation by
manipulating the input variables (Greiff and Funke, 2010), an
action that can influence the output variables (direct effects),
and they must use the feedback provided by the computer to
acquire and employ new knowledge (Fischer et al., 2012). Output
variables can change spontaneously and can consist of internal
dynamics, meaning they can change without changing the input
variables (indirect effects; Greiff et al., 2013). Both direct and
indirect effects can be detected with an adequate problem-
solving strategy (Greiff et al., 2012). The interactions between the
problem situation and the test taker play an important role, but
they can only be identified in a computerized environment based
on log data collected during test administration.

In this study, different versions with different levels of item
complexity were used (Greiff et al., 2013), which varied by school
grade (Table 2; six MicroDYN scenarios were administered in
total in Grades 3–4; eight in Grade 5: nine in Grades 6–8;
and twelve in Grades 9–12); however, we only involved those
six tasks where the principle of isolated variation was the
optimal exploration strategy. That is, we excluded problems
with an external manipulation-independent, internal dynamic
effect or multiple dependence effect from the analyses, and there
were no delayed or accumulating effects used in the problem
environments created. Complexity was defined by the number
of input and output variables and the number of relations based
on Cognitive Load Theory (Sweller, 1994). “Findings show that

TABLE 1 | Composition of samples.

Grade Sample size Gender, % female Mean age (sd)

3 584 – –

4 679 – –

5 608 – –

6 677 49 11.92 (0.53)

7 607 51 12.94 (0.53)

8 942 49 13.89 (0.56)

9 30 48 15.00 (0.59)

10 84 51 16.79 (0.49)

11 102 68 17.02 (0.79)

12 58 64 17.93 (0.57)
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TABLE 2 | The design of the whole study: the complexity of the systems administered and the structure and anchoring of the tests applied in different grades.

Complexity of the systems (number of

input and output variables and

connections without internal dynamics)

Presence of autoregressive

dependencies

Grade

3 4 5 6 7 8 9–12

2-1-2 + + + + + + +

2-2-2 + + + + + + +

2-2-2 + + + + + + +

2-2-2 + + +

3-2-3 + + + + + + +

3-3-3 + + + + + + +

3-3-4 +

3-2-1 + + + + + +

3-3-4 + + + + +

3-2-2 + + + + +

3-3-3 + + + + +

3-3-3 + +

3-3-3 + +

increases in the number of relations that must be processed in
parallel in reasoning tasks consistently lead to increases in task
difficulty” (Beckmann and Goode, 2017).

The tasks were designed so that all causal relations could be
identified with systematic manipulation of the inputs. The tasks
contained up to three input variables and up to three output
variables with different fictitious cover stories. The values of the
input variables were changed by clicking on a button with a
+ or – sign or by using a slider connected to the respective
variable (see Figure 1). The controllers of the input variables
range from “– –” (value = −2) to “++” (value = +2). The
history of the values of the input variables within the same
scenario was presented on a graph connected to each input
variable. Beyond the input and output variables, each scenario
contained a Help, Reset, Apply and Next button. The Reset
button set the system back to its original status. The Apply
button made it possible to test the effect of the currently set
values of the input variables on the output variables, which
appeared in the form of a diagram of each output variable.
According to the user interface, within the same phase of
each of the problem scenarios, the input values remained at
the level at which they were set for the previous input until
the Reset button was pressed or they were changed manually.
The Next button implemented the navigation between the
different MicroDYN scenarios and the different phases within a
MicroDYN scenario.

In the knowledge acquisition phase, participants were freely
able to change the values of the input variables and attempt as
many trials for each MicroDYN scenario as they liked within
180 s. During this 180 s, they had to draw the concept map
(or causal diagram; Beckmann et al., 2017); that is, they had
to draw the arrows between the variables presented on the
concept map under the MicroDYN scenario on screen. In
the knowledge application phase, students had to check their
respective system using the right concept map presented on
screen by reaching the given target values within a given time
frame (90 s) in no more than four trials, that is, with a maximum

of four clicks on the Apply button. This applied equally to all
participants.

Procedures
All of the CPS problems were administered online via the eDia
platform. At the beginning, participants were provided with
instructions about the usage of the user interface, including
a warm-up task. Subsequently, participants had to explore,
describe and operate unfamiliar systems. The assessment took
place in the schools’ ICT labs using the available school
infrastructure. The whole CPS test took approximately 45min
to complete. Testing sessions were supervised by teachers
who had been thoroughly trained in test administration.
Students’ problem-solving performance in the knowledge
acquisition and application phases was automatically scored
as CPS performance indicators; thus, problem solvers received
immediate performance feedback at the end of the testing session.
We split the sample into three age groups, whose achievement
differed significantly (Grades 3–5, N = 1,871; Grades 6–7,
N = 1,284; Grades 8–12, N = 1,216; F = 122.56, p < 0.001;
tlevel_1_2 = −6.22, p < 0.001; tlevel_2_3 = −8.92, p < 0.001).
This grouping corresponds to the changes in the developmental
curve relevant to complex problem solving. The most intensive
development takes place in Grades 6–7 (see Molnár et al., 2013).
Measurement invariance, that is, the issue of structural stability,
has been demonstrated with regard to complex problem solving
in the MicroDYN approach already (e.g., Greiff et al., 2013) and
was confirmed in the present study (Table 3). Between group
differences can be interpreted as true and not as psychometric
differences in latent ability. The comparisons across grade levels
are valid.

The latent class analysis (Collins and Lanza, 2010) employed
in this study seeks students whose problem-solving strategies
show similar patterns. It is a probabilistic or model-based
technique, which is a variant of the traditional cluster analysis
(Tein et al., 2013). The indicator variables observed were re-
coded strategy scores. Robust maximum likelihood estimation

Frontiers in Psychology | www.frontiersin.org March 2018 | Volume 9 | Article 30261

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Molnár and Csapó Problem-Solving Strategies: Logfile Analyses

FIGURE 1 | Exploration in phase 1 of the MicroDYN problems (two input variables and two output variables).

TABLE 3 | Goodness of fit indices for measurement invariance of MicroDYN problems.

Model χ2 df 1χ2 1df p CFI TLI RMSEA

Configural invariance 119.71 42 – – – 0.980 0.987 0.039

Strong factorial invariance 126.33 45 7.37 3 >0.05 0.986 0.980 0.038

Strict factorial invariance 145.49 52 15.02 8 >0.05 0.980 0.976 0.042

χ2 and df were estimated by the weighted least squares mean and variance adjusted estimator (WLSMV). 1χ2 and 1df were estimated by the Difference Test procedure in MPlus.

Chi-square differences between models cannot be compared by subtracting χ2s and dfs if WLSMV estimators are used. CFI, comparative fit index; TLI, Tucker Lewis index; RMSEA,

root mean square error of approximation.

was used and two to seven cluster solutions were examined.
The process of latent class analysis is similar to that of cluster
analysis. Information theory methods, likelihood ratio statistical
test methods and entropy-based criteria were used in reducing
the number of latent classes. As a measure of the relative model
fit, AIC (Akaike Information Criterion), which considers the
number of model parameters, and BIC (Bayesian Information
Criterion), which considers the number of parameters and the
number of observations, are the two original andmost commonly
used information theory methods for model selection. The
adjusted Bayesian Information Criterion (aBIC) is the sample
size-adjusted BIC. Lower values indicated a better model fit for
each criterion (see Dziak et al., 2012). Entropy represents the
precision of the classification for individual cases. MPlus reports
the relative entropy index of the model, which is a re-scaled
version of entropy on a [0,1] scale. Values near one, indicating
high certainty in classification, and values near zero, indicating
low certainty, both point to a low level of homogeneity of the

clusters. Finally, the Lo–Mendell–Rubin Adjusted Likelihood
Ratio Test (Lo et al., 2001) was employed to compare the model
containing n latent classes with that containing n−1 latent
classes. A significant p-value (p < 0.05) indicates that the n−1
model is rejected in favor of a model with n classes, as it fits better
than the previous one (Muthén and Muthén, 2012).

Scoring
As previous research has found (Greiff et al., 2013), achievement
in the first and second phases of the problem-solving process
can be directly linked to the concept of knowledge acquisition
(representation) and knowledge application (generating a
solution) and was scored dichotomously. For knowledge
acquisition, students’ responses were scored as correct (“1”) if
the connections between the variables were accurately indicated
on the concept map (students’ drawings fully matched the
underlying problem structure); otherwise, the response was
scored as incorrect (“0”). For knowledge application, students’
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responses were scored as correct (“1”) if students reached the
given target values within a given time frame and in nomore than
four steps, that is, with a maximum of four clicks on the Apply
button; otherwise, the response was scored as incorrect (“0”).

We developed a labeling procedure to divide the continuum
of the problem-solving process into more scoreable phases
and to score students’ activity and behavior in the exploration
phase at the beginning of the problem-solving process. For the
different analyses and the most effective clustering, we applied
a categorization, distinguishing students’ use of the full, basic
and minimal input behavior within a single CPS task (detailed
description see later). The unit of this labeling process was a trial,
a setting of the input variables, which was tested by clicking on
the Apply button during the exploration phase of a problem, thus
between receiving the problem and clicking on the Next button
to reach the second part, the application part of the problem.
The sum of these trials, within the same problem environment is
called the input behavior. The input behavior was called a strategy
if it followed meaningful regularities.

By our definition, the full input behavior model describes
what exactly was done throughout the exploration phase and
what kinds of trials were employed in the problem-solving
process. It consists of all the activities with the sliders and
Apply buttons in the order they were executed during the first
phase, the exploration phase of the problem-solving process. The
basic input behavior is part of the full input behavior model
by definition, when the order of the trials attempted was still
being taken into account, but it only consists of activities where
students were able to acquire new information on the system.
This means that the following activities and trials were not
included in the basic input behavior model (they were deleted
from the full input behavior model to obtain the basic behavior
model):

- where the same scenario, the same slider adjustment, was
employed earlier within the task (that is, we excluded the role
of ad hoc control behavior from the analyses),

- where the value (position) of more than one input variable
(slider) was changed and where the effect of the input variable
on the operation of the system was still theoretically unknown
to the problem solver,

- where a new setting or new slider adjustment was employed,
though the effect of the input variables used was known from
previous settings.

- As the basic input behavior involves timing, that is, the order
of the trials used, it is suitable for the analyses with regard to
the awareness of the input behavior employed.

Finally, we generated the students’ minimal input behaviormodel
from the full input behavior model. By our definition, the
minimal input behavior focuses on those untimed activities (a
simple list, without the real order of the trials), where students
were able to obtain new information from the system and were
able to do so by employing the most effective trials.

Each of the activities in which the students engaged and
each of the trials which they used were labeled according to the
following labeling system to be able to define students’ full input

behavior in a systematic format (please note that the numerical
labels are neither scores nor ordinal or metric information):

• Only one single input variable was manipulated, whose
relationship to the output variables was unknown (we
considered a relationship unknown if its effect cannot be
known from previous settings), while the other variables were
set at a neutral value like zero. We labeled this trial+1.

• One single input variable was changed, whose relationship to
the output variables was unknown. The others were not at
zero, but at a setting used earlier. We labeled this trial+2.

• One single input variable was changed, whose relationship to
the output variables was unknown, and the others were not
at zero; however, the effect of the other input variable(s) was
known from earlier settings. Even so, this combination was not
attempted earlier. We labeled this trial+3.

• Everything was maintained in a neutral (zero) position. This
trial is especially important for CPS problems with their own
internal dynamics. We labeled this+A.

• The value of more than one input variable, whose relationship
to the output variables was unknown, was changed at the same
time, resulting in no additional information on the system. It
was labeled –X.

• The same trial, the slider adjustment, had already been
employed earlier within the task, resulting in no additional
information on the system. It was labeled−0.

• A new slider adjustment was employed; however, the effect
of the manipulated input variables was known from previous
settings. This trial offered no additional information on the
system and was labeled+0.

Although several input variables were changed by the scenario,
it was theoretically possible to count the effect of the input
variables on the output variables based on the information from
the previous and present settings by using and solving linear
equations. It was labeled+4.

An extra code (+5) was employed in the labeling process,
but only for the basic input behavior, when the problem solver
was able to figure out the structure of the problem based on the
information obtained in the last trial used. This labeling has no
meaning in the case of the minimal input behavior.

The full, basic and minimal input behavior models as well as
the labeling procedure can be employed by analyzing problem
solvers’ exploration behavior and strategies for problems that
are based on minimal complex systems. The user interface can
preserve previous input values, and the values are not reset to
zero after each exploration input. According to Fischer et al.
(2012), VOTAT strategies are best for identifying causal relations
between variables and they maximize the successful strategic
behavior in minimal complex systems, such as CPS. By using a
VOTAT strategy, the problem solver systematically varies only
one input variable, while the others remain unchanged. This
way, the effect of the changed variable can be found in the
system by monitoring the changes in the output variables. There
exist several types of VOTAT strategies based on the different
combinations of VOTAT-centered trials +1, +2, and +3. The
most obvious systematic strategy is when only one input variable
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is different from the neutral level in each trial and all the
other input variables are systematically maintained at the neutral
level. Thus, the strategy is a combination of so-called +1 trials,
where it is employed for every input variable. Known as the
isolated variation strategy (Müller et al., 2013), this strategy
has been covered extensively in the literature. It must be noted
that the isolated variation strategy is not appropriate to detect
multiple dependence effects within the MicroDYN approach.
We hypothesize that there are more and less successful input
behaviors and strategies. We expect that theoretically effective,
non-VOTAT strategies do not work as successfully as VOTAT
strategies and that the most effective VOTAT strategy will be the
isolated variation strategy.

We will illustrate the labeling and coding process and
the course of generating a minimal input behavior out of
a basic or full input behavior through the following two
examples.

Figure 1 shows an example with two input variables and two
output variables. (The word problem reads as follows: “When you
get home in the evening, there is a cat lying on your doorstep.
It is exhausted and can barely move. You decide to feed it,
and a neighbor gives you two kinds of cat food, Miaow and
Catnip. Figure out how Miaow and Catnip impact activity and
purring.”). The student who mapped the operation of the system
as demonstrated in the figure pressed the Apply button six times
in all, using the various settings for the Miaow and Catnip input
variables.

In mapping the system, the problem solver kept the value of
both the input variables at 0 in the first two steps (making no
changes to the base values of the input variables), as a result of
which the values of the output variables remained unchanged.
In steps 3 and 4, he set the value of the Miaow input variable
at 2, while the value of the Catnip variable remained at 0 (the
bar chart by the name of each variable shows the history of these
settings). Even making this change had no effect on the values
of the output variables; that is, the values in each graph by the
purring and activity variables are constantly horizontal. In steps
5 and 6, the student left the value of theMiaow input variable at 2,
but a value of 2 was added to this for the Catnip input variable. As
a result, the values of both output variables (purring and activity)
began to grow by the same amount. The coding containing all the
information (the full input behavior) for this sequence of steps
was as follows: +A, −0, +1, −0, +2, −0. The reason for this is
since steps 2, 4, and 6 were repetitions of previous combinations,
we coded them as−0. Step 3 involved the purest use of a VOTAT
strategy [changing the value of one input variable at a time, while
keeping the values of the other input values at a neutral level
(+1)], while the trial used in step 5 was also a VOTAT strategy.
After all, only the value of one input variable changed compared
to step 4. This is therefore not the same trial as we described
in step 3 (+2). After step 5, all the necessary information was
available to the problem solver. The basic input behavior for the
same sequence of steps was+A,+1,+2, since the rest of the steps
did not lead the problem solver to acquire unknown information.
Independently of the time factor, the minimal input behavior in
this case was also +A, +1, +2. The test taker was able to access
new information on the operation of the system through these

steps. From the point of view of awareness, this +1+2 strategy
falls under aware strategy usage, as the +1 and +2 sub-strategies
were not applied far apart (excluding the simple repetition of the
executed trials next to each other) from each other in time. A
good indicator of aware strategy usage is if there is no difference
between minimal and basic input behavior.

In the second example (Figure 2), we demonstrate the
sequence of steps taken in mapping another problem as well as
the coding we used. Here the students needed to solve a problem
consisting of two input variables and one output variable. The
word problem reads as follows: “Your mother has bought two
new kinds of fruit drink mix. You want to make yourself a fruit
drink with them. Figure out how the green and blue powders
impact the sweetness of the drink. Plot your assumptions in the
model.” The test taker attempted eight different trials in solving
this problem, which were coded as follows: +1, +2, +0, +0, +0,
+0, −0, −0. After step 2, the student had access to practically
all the information required to plot the causal diagram. (In step
1, the problem solver checked the impact of one scoop of green
powder and left the quantity of blue powder at zero. Once mixed,
the resultant fruit drink became sweeter. In step 2, the problem
solver likewise measured out one scoop of green powder for the
drink but also added a scoop of blue powder. The sweetness of
the drink changed as much as it had in step 1. After that, the
student measured out various quantities of blue and then green
powder, and looked at the impact.) The basic input behavior
coded from the full input behavior used by the problem solver
was +1+2, and the minimal input behavior was +1+1 because
the purest VOTAT strategy was used in steps 1 and 6. (Thus,
both variables separately confirmed the effects of the blue and
the green powder on the sweetness of the drink.) From the point
of view of awareness, this +1+1 strategy falls under non-aware
strategy usage, as the two applications of the+1 trial occurred far
apart from each other in time.

Based on students’ minimal input behavior we executed
latent class analyses. We narrowed the focus to the principle of
isolated variation, especially to the extent to which this special
strategy was employed in the exploration phase as an indicator of
students’ ability to proficiently explore the problem environment.
We added an extra variable to each of the problems, describing
students’ exploration behavior based on the following three
categories: (1) no isolated variation at all (e.g., isolated variation
was employed for none of the input variables – 0 points); (2)
partially isolated variation (e.g., isolated variation was employed
for some but not all the input variables – 1 point); and (3) fully
isolated variation (e.g., isolated variation was employed for all
the input variables – 2 points). Thus, depending on the level of
optimal exploration strategy used, all the students received new
categorical scores based on their input exploration behavior, one
for each of the CPS tasks. Let us return to the example provided
in Figures 1, 2. In the first example, a partially isolated strategy
was applied, since the problem solver only used this strategy to
test the effect of the Miaow input variables (in trials 3 and 4). In
the second example, a full isolated strategy was applied, as the
problem solver used this isolated variation strategy for both the
input variables during the exploration phase in the first and sixth
trials.
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RESULTS

The Reliability of the Test Improved When

Scoring Was Based on the Log Data
The reliability of the MicroDYN problems as a measure of
knowledge acquisition and knowledge application, the traditional
CPS indicators for phases 1 and 2, were acceptable at α = 0.72–
0.86 in all grades (Table 4). After we re-scored the problem
solvers’ behavior at the beginning of the problem-solving process,

coded the log data and assigned new variables for the effectiveness
of strategy usage during the exploration phase of the task for
each task and person, the overall reliability of the test scores
improved. This phenomenon was noted in all grades and in both
coding procedures, when the amount of information obtained
was examined (Cronbach’s α ranged from 0.86 to 0.96) and
when the level of optimal exploration strategy used was analyzed
(Cronbach’s α ranged from 0.83 to 0.98; the answers to the
warm-up tasks were excluded from these analyses).

FIGURE 2 | Exploration in phase 1 of the problems based on minimal complex systems (two input variables and one output variable).

TABLE 4 | Internal consistencies in scoring the MicroDYN problems: analyses based on both traditional CPS indicators and re-coded log data based on student behavior

at the beginning of the problem-solving process.

Grade Reliabilities of the

test by traditional

scoring (phases 1

and 2)

Reliabilities of the test consisting of

the new dichotomously scored

variables in terms of the effectiveness

of strategy usage at the beginning of

the problem-solving process

Reliabilities of the test consisting

of traditional scored items and the

new dichotomously scored

variables describing the

effectiveness of strategy usage

Reliabilities of the test consisting of

the new categorically scored variables

describing the level of isolated

variation strategy usage

3 0.83 0.87 0.80 0.83

4 0.77 0.86 0.85 0.86

5 0.78 0.90 0.88 0.90

6 0.72 0.91 0.88 0.93

7 0.74 0.92 0.89 0.94

8 0.80 0.92 0.90 0.95

9 0.83 0.96 0.93 0.97

10 0.85 0.94 0.93 0.96

11 0.86 0.94 0.93 0.98

12 0.83 0.93 0.92 0.97
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Use of a Theoretically Effective Strategy

Does Not Result in High Performance

(RQ1)
Use of a theoretically effective strategy did not always result
in high performance. The percentage of effective strategy use
and high CPS performance varied from 20 to 80%, depending
on the complexity of the CPS tasks and the age group.
The percentage of theoretically effective strategy use in each
cohort increased by 20% for age when problems with the
same complexity were compared (Table 5) and decreased about
20% for the increasing number of input variables in the
problems.

The percentage of theoretically effective strategy use was the
same for the less complex problems in Grades 3–5 and for the
most complex tasks in Grades 8–12 (58%). More than 80% of
these students solved the problem correctly in the first case, but
only 60% had the correct solution in the second case. There
was a 50% probability of effective and non-effective strategy
use for problems with two input and two output variables in
Grades 3–5 and for problems with three input and three output
variables in Grades 6–7. In Grades 8–12, the use of a theoretically
effective strategy was always higher than 50%, independently
of the complexity of the problems (with no internal dynamic).
The guessing factor, that is, the ad hoc optimization (use of
a theoretically non-effective strategy with the correct solution)
also changed, mostly based on the complexity and position of
the tasks in the test. The results confirmed our hypothesis that
the use of a theoretically effective strategy does not necessary
represent the correct solution and that the correct solution does
not always represent the use of an even theoretically effective
problem-solving strategy.

Not All the VOTAT Strategies Result in High

CPS Performance (RQ2)
On average, only 15% of the theoretically effective strategy
uses involved non-VOTAT strategies. The isolated variation
strategy comprised 45% of the VOTAT strategies employed.
It was the only theoretically effective strategy which always
resulted in the correct solution to the problem with higher
probability independently of problem complexity or the grade
of the students. The real advantage of this strategy was most
remarkable in the case of the third cohort, where an average
of 80% of the students who employed this strategy solved the
problems correctly (Figures 3, 4).

The second most frequently employed and successful VOTAT
strategy was the +1+2 type or the +1+2+2 type, depending on
the number of input variables. In the+1+2 type, only one single
input variable was manipulated in the first step, while the other
variable remained at a neutral value; in the second step, only
the other input variable was changed and the first retained the
setting used previously. This proved to be relatively successful on
problems with a low level of complexity independently of age,
but it generally resulted in a good solution with a low level of
probability on more complex problems.

VOTAT strategies of the +1+3 type (in the case of two
input variables) and of the +1+1+2 type (in the case of
three input variables) were employed even less frequently and
with a lower level of efficacy than all the other VOTAT
strategies (+1+1+3, +1+2+1, +1+2+2, +1+2+3, +1+3+1,
+1+3+2 and +1+3+3 in the case of three input variables) and
theoretically effective, non-VOTAT strategies (e.g.,+4 in the case
of two input variables or +1+4, +4+2 and +4+3 in the case of
three input variables). In the following, we provide an example

TABLE 5 | Percentage of theoretically effective and non-effective strategy use and high CPS performance.

Complexity of problem

(number of input and output

variables and connections)

Frequency (%)

Theoretically effective strategy use Theoretically non-effective strategy use

Low achievement

(%; in proportion to

whole sample)

High achievement

(%; in proportion to

whole sample)

Sum Low achievement

(%; in proportion to

whole sample)

High achievement

(%; in proportion to

whole sample)

Sum

GRADES 3–5

2-1 (2) 19.9 (11.6) 80.1 (46.6) 58.2 28.2 (11.8) 71.8 (30.0) 41.8

2-2 (2) 81.5 (39.8) 18.5 (9.0) 50.2 97.2 (46.8) 2.8 (1.4) 49.8

3-2 (3) 65.9 (21.5) 34.1 (11.1) 32.6 89.3 (60.2) 10.7 (7.2) 67.4

3-3 (3) 60.2 (21.9) 39.8 (14.5) 36.4 77.1 (49.0) 22.9 (14.6) 63.6

GRADES 6–7

2-1 (2) 28.3 (18.7) 71.6 (47.2) 65.9 26.9 (9.2) 73.1 (24.9) 34.1

2-2 (2) 72.4 (47.0) 27.5 (18.0) 59.0 98.2 (34.4) 1.8 (0.6) 41.0

3-2 (3) 50.8 (22.9) 49.2 (22.2) 45.0 85.9 (47.2) 14.1 (7.8) 54.9

3-3 (3) 52.6 (25.7) 47.4 (23.2) 49.0 77.3 (39.5) 22.7 (11.6) 51.0

GRADES 8–12

2-1 (2) 28.7 (21.9) 71.3 (54.5) 76.4 25.5 (6.0) 74.5 (17.6) 23.6

2-2 (2) 59.4 (43.2) 40.6 (29.5) 72.7 98.2 (26.8) 1.8 (0.5) 27.3

3-2 (3) 42.0 (22.8) 58.0 (31.4) 54.2 81.9 (37.5) 18.1 (8.3) 45.8

3-3 (3) 39.4 (22.8) 60.6 (35.2) 58.0 74.1 (31.2) 25.8 (10.9) 42.0
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FIGURE 3 | Efficacy of the most frequently employed VOTAT strategies on problems with two input variables and one or two output variables in Grades 3–5, 6–7, and

8–12.

FIGURE 4 | Efficacy of the most frequently employed VOTAT strategies on problems with three input variables and one or two output variables in Grades 3–5, 6–7,

and 8–12.

of the +4+2 type, where the MicroDyn problem has three input
variables (A, B, and C) and three output variables. In the first
trial, the problem solver set the input variables to the following
values: 0 (for variable A), 1 (for variable B), and 1 (for variable
C); that is, he or she changed two input variables at the same
time. In the second trial, he or she changed the value of two input
variables at the same time again and applied the following setting:
0 (for variable A), −2 (for variable B), and −1 (for variable C).
In the third trial, he set variable A to 1, and left variables B and
C unchanged. That is, the problem solver’s input behavior can

be described with the following trials: –X +4 +2. Based on this
strategy, it was possible to map the relationships between the
input and output variables without using any VOTAT strategy
in the exploration phase.

Aware Explorers Perform Significantly

Higher on the CPS Tasks (RQ3)
We compared the achievement of the aware, isolated strategy
users with that of the non-aware explorers (Table 6). The
percentage of high achievers among the non-aware explorers
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seemed to be almost independent of age, but strongly influenced
by the complexity of the problem and the learning effect we
noted in the testing procedure (see RQ5). Results for problems
with two input variables and one output variable confirmed our
previous results, which showed that the probability of providing
the correct solution is very high even without aware use of a
theoretically effective strategy (60–70%). With more complex
problems, the difference between the percentages of aware and
non-aware explorers was huge. Generally, 85% of the non-aware
explorers failed on the problems, while at least 80% of the aware,
isolated strategy users were able to solve the problems correctly.

Six Qualitatively Different Explorer Class

Profiles Can Be Distinguished at the End of

the Elementary Level and Five at the End of

the Secondary Level (RQ4 and RQ5)
In all three cohorts, each of the information theory criteria used
(AIC, BIC, and aBIC) indicated a continuous decrease in an
increasing number of latent classes. The likelihood ratio statistical
test (Lo–Mendell Rubin Adjusted Likelihood Ratio Test) showed
the best model fit in Grades 3–5 for the 4-class model, in Grades
6–7 for the 6-class model and in Grades 8–12 for the 5-class
model. The entropy-based criterion reached themaximum values
for the 2- and 3-class solutions, but it was also high for the best-
fitting models based on the information theory and likelihood
ratio criteria. Thus, the entropy index for the 4-class model
showed that 80% of the 3rd- to 5th-graders, 82% of the 6th- to
7th-graders and 85% of the 8th- to 12th-graders were accurately
categorized based on their class membership (Table 7).

We distinguished four latent classes in the lower grades
based on the exploration strategy employed and the level of
isolated variation strategy used (Table 8): 40.5% of the students
proved to be non-performing explorers on the basis of their
strategic patterns in the CPS environments. They did not use
any isolated or partially isolated variation at all; 23.6% of the
students were among the low-performing explorers who only
rarely employed a fully or partially isolated variation strategy
(with 0–20% probability on the less complex problems and 0–
5% probability on the more complex problems). 24.7% of the
3rd- to 5th-graders were categorized as slow learners who were
intermediate performers with regard to the efficiency of the
exploration strategy they used on the easiest problems with a slow
learning effect, but low-performing explorers on the complex
ones. In addition, 11.1% of the students proved to be proficient
explorers, who used the isolated or partially isolated variation
strategy with 80–100% probability on all the proposed CPS
problems.

In Grades 6–7, in which achievement proved to be
significantly higher on average, 10% fewer students were
observed in each of the first two classes (non-performing
explorers and low-performing explorers). The percentage of
intermediate explorers remained almost the same (26%), and
we noted two more classes with the analyses: the class of
rapid learners (4.4%) and that of slow learners, who are almost
proficient explorers on the easiest problems, employing the fully
or partially isolated variation strategy with 60–80% probability,
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TABLE 7 | Information theory, likelihood ratio and entropy-based fit indices for

latent class analyses.

Number of latent

classes

AIC BIC aBIC Entropy L–M–R test p

GRADES 3–5

2 13,383 13,512 13,433 0.854 2,301 0.001

3 12,687 12,883 12,763 0.870 714 0.001

4 12,563 12,826 12,664 0.800 149 0.006

5 12,448 12,778 12,574 0.766 139 0.051

6 12,362 12,758 12,514 0.782 110 0.100

GRADES 6–7

2 13,383 13,512 13,433 0.854 2,301 0.001

3 12,751 12,947 12,826 0.873 1,068 0.001

4 12,576 12,840 12,678 0.819 198 0.001

5 12,497 12,827 12,624 0.814 104 0.004

6 12,427 12,824 12,580 0.823 95 0.022

7 12,402 12,866 12,580 0.828 50 0.498

GRADES 8–12

2 8,232 8,319 8,265 0.941 2,197 0.001

3 7,718 7,850 7,768 0.856 524 0.001

4 7,690 7,869 7,757 0.829 44 0.002

5 7,686 7,911 7,771 0.853 21 0.003

6 7,705 7,976 7,807 0.770 4 0.561

AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion; aBIC, adjusted

Bayesian Information Criterion; L–M–R test, Lo–Mendell–Rubin Adjusted Likelihood Ratio

Test. The best fitting model solution is in italics.

but low-performing explorers on the complex ones (10.3%). The
frequency of proficient strategy users was also increased (to
14.2%) compared to students in the lower grades. Finally, there
was almost no change detected in the low-performing explorers’
classes in Grades 8–12. We did not detect anyone in the class
of intermediate explorers; they must have developed further and
become (1) rapid learners (7.7%), (2) slow learners with almost
high achievement with regard to the exploration strategy they
used on the easiest problems, but low achievers on the complex
ones (17.6%), or (3) proficient strategy users (26.3%), whose
achievement was high both on the simplest and themost complex
problems.

Based on these results, the percentage of non- and low
explorers, who have very low exploration skills and do not
learn during testing, decreased from almost 65 to 50% between
the lower and higher primary school levels and then remained
constant at the secondary level. There was a slight increase in
respect of the percentage of students among the rapid learners.
The students in that group used the fully or partially isolated
strategy at very low levels at the beginning of the test, but they
learned very quickly and detected these effective exploration
strategies; thus, by the end of the test, their proficiency level
with regard to exploration was equal to the top performers’
achievement. However, we were unable to detect the class of rapid
learners among 3rd- to 5th-graders.

Generally, students’ level of exploration expertise with regard
to fully and partially isolated variation improved significantly
with age (F = 70.376, p < 0.001). According to our expectations

based on the achievement differences among students in Grades
3–5, 6–8 and 9–12, there were also significant differences in the
level of expertise in fully or partially isolated strategy use during
problem exploration between 3rd- to 5th- and 6th- to 7th-grade
students (t = −6.833, p < 0.001, d = 0.03) and between 6th-
to 7th- and 8th- to 12th-grade students (t = −6.993, p < 0.001,
d = 0.03).

DISCUSSION

In this study, we examined 3rd- to 12th-grade (aged 9–
18) students’ problem-solving behavior by means of a logfile
analysis to identify qualitatively different exploration strategies.
Students’ activity in the first phase of the problem-solving
process was coded according to a mathematical model that was
developed based on strategy effectiveness and then clustered
for comparison. Reliability analyses of students’ strategy use
indicated that strategies used in the knowledge acquisition
phase described students’ development (ability level) better than
traditional quantitative psychometric indicators, including the
goodness of the model. The high reliability indices indicate
that there are untapped possibilities in analyzing log data. Our
analyses of logfiles extracted from a simulation-based assessment
of problem solving have expanded the scope of previous studies
and made it possible to identify a central component of children’s
scientific reasoning: the way students understand how scientific
experiments can be designed and how causal relationships can be
explored by systematically changing the values of (independent)
variables and observing their impact on other (target) variables.

In this way, we have introduced a new labeling and scoring
method that can be employed in addition to the two scores
that have already been used in previous studies. We have found
that using this scoring method (based on student strategy use)
improves the reliability of the test. Further studies are needed
to examine the validity of the scale based on this method and
to determine what this scale really measures. We may assume
that the general idea of varying the values of the independent
variables and connecting them to the resultant changes in the
target variable is the essence of scientific reasoning and that the
systematic manipulation of variables is related to combinatorial
reasoning, while summarizing one’s observations and plotting a
model is linked to rule induction. Such further studies have to
place CPS testing in the context of other cognitive tests and may
contribute to efforts to determine the place of CPS in a system of
cognitive abilities (see e.g., Wüstenberg et al., 2012).

We have found that the use of a theoretically effective strategy
does not always result in high performance. This is not surprising,
and it confirms research results by de Jong and van Joolingen
(1998), who argue that learners often have trouble interpreting
data. As we observed earlier, using a systematic strategy requires
combinatorial thinking, while drawing a conclusion from one’s
observations requires rule induction (inductive reasoning).
Students showing systematic strategies but failing to solve the
problem may possess combinatorial skills but lack the necessary
level of inductive reasoning. It is more difficult to find an
explanation for the other direction of discrepancy, when students
actually solve the problem without an effective (complete)
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TABLE 8 | Relative frequencies and average latent class probabilities across grade levels 3–5, 6–7, and 8–12.

Profiles Grades 3–5 Grades 6–7 Grades 8–12

Frequency Average latent class

probabilities

Frequency Average latent class

probabilities

Frequency Average latent class

probabilities

Non-performers 40.5 0.94 30.9 0.92 32.2 0.92

Low performers 23.6 0.86 14.0 0.84 16.2 0.87

Intermediate performers on easiest

problems, but low performers on complex

ones with a very slow learning effect

24.7 0.82 26.2 0.86 – –

Rapid learners – – 4.4 0.86 7.7 0.96

Almost high performers on easiest

problems, but low performers on complex

ones with a slow learning effect

– – 10.3 0.82 17.6 0.79

Proficient strategy users 11.1 0.97 14.2 0.96 26.3 0.97

strategy. Thus, solving the problem does not require the use
of a strategy which provides the problem solver with sufficient
information about the problem environment to be able to form
the correct solution. This finding is similar to results from
previous research (e.g., Vollmeyer et al., 1996; Greiff et al., 2015).
Goode and Beckmann (2010) reported two qualitatively different,
but equally effective approaches: knowledge- based and ad hoc
control.

In the present study, the contents of the problems were
not based on real knowledge, and the causal relationships
between the variables were artificial. Content knowledge was
therefore no help to the students in filling the gap between
the insufficient information acquired from interaction and the
successful solution to the problem. We may assume that students
guessed intuitively in such a case. Further studies may ascertain
how students guess in such situations.

The percentage of success is influenced by the complexity of
the CPS tasks, the type of theoretically effective strategy used,
the age group and, finally, the degree to which the strategy was
consciously employed.

The most frequently employed effective strategies fell within
the class of VOTAT strategies. Almost half the VOTAT strategies
were of the isolated variation strategy type, which resulted with
higher probability in the correct solution independently of the
complexity of the problem or the grade of the students. As
noted earlier, not all the VOTAT strategies resulted in high CPS
performance; moreover, all the other VOTAT strategies proved
to be significantly less successful. Some of them worked with
relative success on problems with a low level of complexity, but
failed with a high level of probability on more complex problems
independently of age group. Generally, the advantage of the
isolated variation strategy (Wüstenberg et al., 2014) compared
to the other VOTAT and non-VOTAT, theoretically effective
strategies is clearly evident from the outcome. The use of the
isolated variation strategy, where students examined the effect
of the input variables on the output variables independently,
resulted in a good solution with the highest probability and
proved to be the most effective VOTAT strategy independently
of student age or problem complexity.

Besides the type of strategy used, awareness also played an
influential role. Aware VOTAT strategy users proved to be the
most successful explorers. They were followed in effectiveness
by non-aware VOTAT strategy users and theoretically effective,
but non-VOTAT strategy users. They managed to represent
the information that they had obtained from the system more
effectively and made good decisions in the problem-solving
process compared to their peers.

We noted both qualitative and quantitative changes of
problem-solving behavior in the age range under examination.
Using latent class analyses, we identified six qualitatively different
class profiles during compulsory schooling. (1) Non-performing
and (2) low-performing students who usually employed no fully
or partially isolated variation strategy at all or, if so, then rarely.
They basically demonstrated unsystematic exploration behavior.
(3) Proficient strategy users who consistently employed optimal
exploration strategies from the very first problem as well as the
isolated variation strategy and the partially isolated variation, but
only seldom. They must have more elaborated schemas available.
(4) Slow learners who are intermediate performers on the easiest
problems, but low performers on the complex ones or (5) high
performers on the easiest problems, but low performers on the
complex ones. Most members of this group managed to employ
the principle of isolated or partially isolated variation and had
an understanding of it, but they were only able to use it on the
easiest task and then showed a rapid decline on themore complex
CPS problems. They might have been cognitively overloaded
by the increasingly difficult problem-solving environments they
faced. (6) Rapid learners, a very small group from an educational
point of view. These students started out as non-performers
in their exploration behavior on the first CPS tasks, showed a
rapid learning curve afterwards and began to use the partially
isolated variation strategy increasingly and then the fully isolated
variation strategy. By the end of the test, they reached the same
high level of exploration behavior as the proficient explorers. We
observed no so-called intermediate strategy users, i.e., those who
used the partially isolated variation strategy almost exclusively on
the test. As we expected, class membership increased significantly
in the more proficient classes at the higher grade levels due to the
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effects of cognitive maturation and schooling, but this did not
change noticeably in the two lowest-level classes.

Limitations of the study include the low sample size for
secondary school students; further, repetition is required for
validation. The generalizability of the results is also limited by
the effects of semantic embedding (i.e., cover stories and variable
labels), that is, the usage of different fictitious cover stories
“with the intention of minimizing the uncontrollable effects of
prior knowledge, beliefs or suppositions” (Beckmann and Goode,
2017). An assumption triggered by semantic contexts has an
impact on exploration behavior (e.g., the range of interventions,
or strategies employed by the problem solver; Beckmann and
Goode, 2014), that is, how the problem solver interacts with
the system. Limitations also include the characteristics of the
interface used. In our view, analyses with regard to VOTAT
strategies are only meaningful in systems with an interface
where inputs do not automatically reset to zero from one
input to the next (Beckmann and Goode, 2017). That is, we
excluded problem environments from the study where the inputs
automatically reset to zero from one input to the next. A
further limitation of the generalizability of the results is that
we have omitted problems with autonomic changes from the
analyses.

The main reason why we have excluded systems that contain
autoregressive dependencies from the analyses is that different
strategy usage is required on problems which also involve the use
of trial +A (according to our coding of sub-strategies), which
is not among the effective sub-strategies for problems without
autonomic changes. Analyses of students’ behavior on problems
with autonomic changes will form part of further studies, as
well as a refinement of the definition of what makes a problem
complex and difficult. We plan to adapt the Person, Task and
Situation framework published by Beckmann and Goode (2017).
The role of ad hoc control behavior was excluded from the
analyses; further studies are required to ascertain the importance
of the repetitive control behavior. Another limitation of the study

could be the interpretation of the differences across age group
clusters as indicators of development and not as a lack of stability
of the model employed.

These results shed new light on and provide a new
interpretation of previous analyses of complex problem solving
in the MicroDYN approach. They also highlight the importance
of explicit enhancement of problem-solving skills and problem-
solving strategies as a tool for applying knowledge in a new
context during school lessons.
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There is a growing demand for assessment instruments which can be used in higher

education, which cover a broader area of competencies than the traditional tests for

disciplinary knowledge and domain-specific skills, and which measure students’ most

important general cognitive capabilities. Around the age of the transition from secondary

to tertiary education, such assessments may serve several functions, including selecting

the best-prepared candidates for certain fields of study. Dynamic problem-solving (DPS)

is a good candidate for such a role, as tasks that assess it involve knowledge acquisition

and knowledge utilization as well. The purpose of this study is to validate an online DPS

test and to explore its potential for assessing students’ DPS skills at the beginning of

their higher education studies. Participants in the study were first-year students at a

major Hungarian university (n = 1468). They took five tests that measured knowledge

from their previous studies: Hungarian language and literature, mathematics, history,

science and English as a Foreign Language (EFL). A further, sixth test based on the

MicroDYN approach, assessed students’ DPS skills. A brief questionnaire explored

learning strategies and collected data on students’ background. The testing took place

at the beginning of the first semester in three 2-h sessions. Problem-solving showed

relatively strong correlations with mathematics (r = 0.492) and science (r = 0.401), and

moderate correlations with EFL (r= 0.227), history (r= 0.192), and Hungarian (r= 0.125).

Weak but still significant correlations were found with certain learning strategies, positive

correlations with elaboration strategies, and a negative correlation with memorization

strategies. Significant differences were observed between male and female students;

men performed significantly better in DPS than women. Results indicated the dominant

role of the first phase of solving dynamic problems, as knowledge acquisition correlated

more strongly with any other variable than knowledge utilization.

Keywords: dynamic problem-solving, technology-based assessment, predictive validity, university admissions,

learning strategies

INTRODUCTION

The social and economic developments of the past decades have re-launched the debate on the
mission of schooling, more specifically, on the types of skills schools are expected to develop in
their students in order to prepare them for an unknown future. One of the most characteristic
features of these debates is a search for a new conception of the knowledge and skills students
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are expected to master (see e.g., Adey et al., 2007; Binkley et al.,
2012; Greiff et al., 2014). These developments and expectations
have reached higher education as well, and novel assessment
needs have emerged to reflect the changes. Tests in higher
education have traditionally been used as a part of the selection
processes (entrance examinations) and to assess students’ level
of mastery, mostly in the form of summative tests based on
the disciplinary content of courses. Recently, the functions of
assessments have significantly expanded, thus requiring a renewal
of assessment processes in a number of dimensions.

This study lies at the intersection of three rapidly developing
fields of research on higher education. The context of the research
is set by the practical needs of (1) developing new assessment
methods for higher education, including innovative and efficient
selection processes for choosing students for higher education
studies, and assessing university outcomes beyond disciplinary
knowledge and domain-specific skills. These demands have
directed the attention of researchers to (2) the twenty-first-
century skills as desired outcomes of higher education. Rapidly
developing technology-based assessment has made it possible to
measure several twenty-first-century skills and to include them
in large-scale assessments. (3) Dynamic problem-solving (DPS)
is one of those skills which by now has an established research
background and may satisfy the needs of higher education.
Solving problems in the process of being assessed in DPS based
on computer-simulated scenarios involves the component skills
of scientific reasoning, knowledge acquisition and knowledge
utilization, all necessary for successful higher education studies
(see e.g., Buchner and Funke, 1993; Funke, 2001; Greiff et al.,
2012; Csapó and Funke, 2017a; Funke and Greiff, 2017). The
processes of solving problems in computer-simulated scenarios
involve the component skills of scientific reasoning, knowledge
acquisition and knowledge utilization, all necessary for learning
effectively in higher education (see e.g., Buchner and Funke,
1993; Funke, 2001; Greiff et al., 2012; Csapó and Funke, 2017a;
Funke and Greiff, 2017).

As the main construct explored in the present study, DPS has
already been defined and assessed in several previous studies. The
problems are built on formal models represented by a finite-state
automaton, where the output signals are determined by the input
signal (Buchner and Funke, 1993). “In contrast to static problems,
computer-simulated scenarios provide the unique opportunity
to study human problem-solving and decision-making behavior
when the task environment changes concurrently to subjects’
actions. Subjects can manipulate a specific scenario via a number
of input variables [. . . ] and they observe the system’s state changes
in a number of output variables. In exploring and/or controlling a
system, subjects have to continuously acquire and use knowledge
about the internal structure of the system” (Blech and Funke,
2005, p. 3).

In the present study, DPS was assessed with a computerized
solution based on the MicroDYN approach (Greiff and Funke,
2009; Funke and Greiff, 2017) similar to that employed in
delivering most interactive items in the innovative domain
in PISA 2012. That assessment framework defined problem-
solving in a more general way: “Problem-solving competency
is an individual’s capacity to engage in cognitive processing to

understand and resolve problem situations where a method of
solution is not immediately obvious. It includes the willingness to
engage with such situations in order to achieve one’s potential as
a constructive and reflective citizen.” (OECD, 2013a, p. 122). An
interpretation of this definition follows: “What distinguishes the
2012 assessment of problem-solving from the 2003 assessment is
not so much the definition of problem-solving competency, but
the mode of delivery of the 2012 assessment (computer-based)
and the inclusion of problems that cannot be solved without the
solver interacting with the problem situation” (OECD, 2013a,
p. 122). The PISA 2012 problem-solving assessment included
both static and interactive tasks, and in this context interactivity
is defined as “Interactive: not all information is disclosed; some
information has to be uncovered by exploring the problem
situation” (OECD, 2014, p. 31, Fig. V.1.2). In the present study, all
items are interactive, so the construct we assess is identical with
the one PISA assessed in 2012 with its interactive items.

THEORETICAL FRAMEWORK

Context of the Study: Need for New
Assessments in Higher Education
The need to develop new assessment instruments for higher
education has emerged both at international and national levels
in a number of countries. There is a general intention to
adapt the content of the assessments to changed expectations
of the outcomes of higher education. The altered content may
then require new assessment methods (see e.g., Bryan and
Clegg, 2006). There is a change in the purpose of assessments
as well as a visible intention to introduce the principles of
evidence-based decision-making and accountability processes to
higher education (Hutchings et al., 2015; Ikenberry and Kuh,
2015; Zlatkin-Troitschanskaia et al., 2015). The new functions
of assessment go beyond the usual applications of summative
tests to measure the mastery level of courses and include
estimating educational added value of particular phases of
studies, or entire training programs. As there is a great variety
of competencies that are outcomes of higher education, thus
limiting inter-institutional comparisons in terms of domain-
specific competencies, we see a growing need to measure and
compare domain-general competencies.

These intentions are clearly marked by feasibility studies
launched by the OECD to compare the achievement of college
and university students in a number of countries (Assessment of
Higher Education Learning Outcomes, AHELO). The AHELO
program included assessment of domain-specific competencies
as well as of generic cognitive skills, for which the test
tasks were adapted from the Collegiate Learning Assessment
instrument (Tremblay et al., 2012). Another international
initiative, the TUNING CALOHEE project (Measuring and
Comparing Achievements of Learning Outcomes in Higher
Education in Europe), intends to create an assessment system to
compare the outcomes of universities in Europe (Coates, 2016).

In the United States, as the century-long history of successfully
administering the Scholastic Aptitude Test (SAT) indicates,
admissions processes have always been based on assessing generic
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cognitive skills (Atkinson and Geiser, 2009). As studies show, the
SAT tests predict achievement in higher education beyond the
high school grade point average. They comprise mathematical
and verbal components (factor analysis with a recent version
of it confirmed the two-factor model, see Wiley et al., 2014),
while university admissions in many countries have usually
been based on assessing domain-specific competencies (Zlatkin-
Troitschanskaia et al., 2015).

A closer context of the study is Hungarian higher education
and the admissions process used by its institutions. As
there is no specific entrance examination, admissions are
based on matriculation examination results. The matriculation
examination, like so many other European countries, was
introduced in Hungary in the mid-nineteenth century, and it
has changed relatively little during its long history. At present,
there are three mandatory subjects: (1) Hungarian language
and literature, (2) mathematics, and (3) history. Beyond these,
students must choose a further subject out of a large number
of electives. An examination can be taken at two levels in
any subject; there is an intermediate and an advanced exam.
There is no exact (measurable) definition for the differences
between the two levels. Intermediate exams are taken at students’
schools before committees formed from teachers in their own
schools, while the advanced exams are centralized and are
taken before (independent) committees formed from teachers in
other schools. The admissions scores are computed by complex
formulas; for advanced exams, extra scores are awarded, and
other factors may also be taken into account.

The inadequacy of such a selection criterion is widely
discussed, but few research results are available tomake evidence-
based judgments about the validity of the current practice
and about potential alternative solutions. It seems possible that
a reformed matriculation examination could serve to certify
completion of secondary studies and at the same time could act
as a major component of the admissions process (Csapó, 2009).
Such a matriculation examination should measure students’
knowledge at one level but on a scale which represents a broad
range of achievement, should be a technology-based assessment
(possibly using item banks and adaptive testing), and should
include a few (probably five) compulsory subjects without
electives.

The new admissions processes are expected to provide a better
prediction of students’ success in a changed world of higher
education than those of the traditional methods introduced
so many decades ago. Assessment of generic cognitive skills,
possibly a representative member of the twenty-first-century
skills, could also be a component of a new admissions process.
To explore the feasibility and validity of such an admissions
model, we have measured five domain-specific competencies
plus dynamic problem-solving, and we report the results in the
present study.

Definition and Technology-Based
Assessment of Twenty-First-Century Skills
in Educational Settings
A number of studies have analyzed the requirements of
the knowledge-based economy and concluded that science,

technology, engineering, and mathematics (STEM) education
should be strengthened and that skills relevant to a dynamically
changing technology-rich environment should be developed. In
this context, societies today and in the foreseeable future are
characterized by a new group of skills, which are often called
the twenty-first-century skills, or, in other contexts, transversal
skills (Greiff et al., 2014). This loosely defined set of skills includes
problem-solving, information and communication skills, critical
thinking, creativity, entrepreneurship and collaboration. The
topic of twenty-first-century skills has become popular in the
literature on the future of education (Trilling and Fadel, 2009;
National Research Council, 2013; Kong et al., 2014), and a
number of projects have been launched to define, assess, and
develop these skills.

Although most skills identified under this label are not new in
the sense that they have not been studied before or that they have
not been relevant in everyday life, the way they are utilized in this
century may be novel. The main novelty is that these skills today
are mostly used in a technology-rich environment. Therefore,
they should be measured by means of technology. This approach
is demonstrated by the Assessment and Teaching of twenty-
first-Century Skills (ATC21S) project, among other studies. The
first phase of the ATC21S project dealt with definitions and
psychometric, technological and policy issues (Griffin et al.,
2012), while the second phase focused on the assessment of
collaborative problem-solving (Griffin and Care, 2015).

Technology-based assessment has a number of advantages
over traditional paper-and-pencil tests in a number of respects.
Computerized tests, especially assessments delivered online, may
make the entire assessment process more reliable and valid,
faster, easier, and less expensive. Beyond these general benefits,
there are some constructs which could not be measured without
computers. There are domains where technology use is central to
the definition of the domain (e.g., information-communication
literacy and digital reading), while in other cases it would not be
possible to implement the assessment process without technology
(Csapó et al., 2012). DPS is such a construct, as students interact
with computer-simulated systems during the testing process.
Technology is the best means not only to assess these skills, but
to develop them as well; for example, simulation- and game-
based learning may provide an authentic learning environment
to practice these skills (see Qian and Clark, 2016).

Those projects whose aim it was to precisely identify the
twenty-first-century skills were able to define only a few of
them in a measurable format (Binkley et al., 2012). Even fewer
of those skills have an established research background that
makes it possible to use them in a large-scale project. Of
these, problem-solving, both dynamic (Greiff et al., 2014) and
collaborative (OECD, 2013b; Griffin and Care, 2015; Neubert
et al., 2015), is sufficiently developed for broader practical use.
Beyond these strengths, DPS is a good representative of the
twenty-first-century skills because, through its component skills,
it may overlap with several other complex skills in this group.

Assessment of Dynamic Problem-Solving
Problem-solving is one of the most commonly noted constructs
among the “new” twenty-first-century skills; it also has a long
history in cognitive research (see Fischer et al., 2017). By now,
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cognitive research has identified a number of different types
of problem-solving which can be classified by several aspects.
Domain-specific problem-solving can be distinguished from the
domain-general kind, analytical from complex, and static from
interactive. In the present study, we deal with the assessment
of dynamic problem-solving, which is interactive and can be
considered as a specific form of complex problem-solving.
Dynamic problem-solving, as was shown in the previous section,
can only be measured by means of technology.

Complex problem-solving has already been studied in a
number of contexts; previous research shows that it is a generic
cognitive skill, but is different from general intelligence (Funke,
2010; Wüstenberg et al., 2012; Greiff et al., 2013a). Using
computers to assess problem-solving has allowed a migration
of previous paper-based tests to an electronic platform, thus
improving the efficiency and usability of the tests as well as
opening up a range of new prospects (Wirth and Klieme, 2003).
These new possibilities include constructing more real life-like
scenarios, using simulations, offering interactive activities, and in
this way improving the ecological validity of the assessments in
general.

Using simulation to study problem-solving was already
proposed long ago (Funke, 1988), but the broad availability
of computers launched a new wave of research based on
computer-simulated systems (Funke, 1993, 1998; Greiff et al.,
2013a). The difficulty level of tasks based on simulation is
easily scalable; even simulated minimal complex systems offer
outstanding opportunities to study the processes of problem-
solving (Sonnleitner et al., 2012; Funke, 2014; Funke and Greiff,
2017; Greiff and Funke, 2017).

DPS as a specific category of complex, interactive problem-
solving offers outstanding potential both to create tests for
laboratory studies and for large-scale assessment (Buchner and
Funke, 1993; Funke, 2001; Greiff et al., 2012). When students
solve dynamic problems on a computer, their activities can be
logged and fine mechanisms of their cognition can be explored
by analyzing log files (Tóth et al., 2017).

Several types of problem-solving have already been assessed
three times within the framework of PISA. First, static problem-
solving was assessed in 2003 with paper-based tests (OECD,
2004; Fleischer et al., 2017). Then, in 2012, problem-solving was
measured with computerized tests comprising two types of tasks,
static (15 items) and interactive (27 items). The static items
were similar to those of the PISA 2003 assessment; they were
computerized versions of items that would be possible tomeasure
with paper-and-pencil tests as well, while the interactive items
were novel in large-scale assessments and measured the same
construct (DPS) as the present study, based on the MicroDYN
approach, too (Greiff and Funke, 2009; Funke and Greiff, 2017).

The 2012 PISA assessment was the first large-scale assessment
of DPS in international context and demonstrated that there
were large differences between the participating countries in
the problem-solving performance of their students, even if
the achievement on the main literacy domains was similar
(OECD, 2014). The successful completion of the 2012 PISA
DPS assessment has accelerated research in this field and
inspired a number of further studies (see Csapó and Funke,

2017a). In PISA 2015, collaborative problem-solving was the
innovative domain; collaboration was simulated by human–agent
interactions (OECD, 2013b).

Assessments of problem-solving have already proved
useful in higher education, but the vast majority of them
covered domain-specific problem-solving (e.g., Lopez et al.,
2014; Zlatkin-Troitschanskaia et al., 2015). As technology-
based assessment instruments become more widely available,
such skills have been measured more often, capitalizing on
experiences from the computer-based assessment of problem-
solving. These assessments may be especially useful when the
cognitive outcomes of some innovative instructional methods
are measured, such as project methods, problem-based learning
and inquiry-based learning.

In the present study, we go further when we explore the
possibilities for assessing domain-general problem-solving. Our
test is based on theMicroDYN approach (Greiff and Funke, 2009;
Funke and Greiff, 2017), which measures the same construct
that was measured with several dynamic items in the PISA 2012
assessment (OECD, 2014) and in several other studies (Abele
et al., 2012; Molnár et al., 2013, 2017; Frischkorn et al., 2014).

DPS tasks have the same general characteristics. Simulated
systems are presented which are based on practical contexts and
situations that are easy for the problem-solver to comprehend.
The simulated systems show a well-defined behavior, the
problem-solver has to manipulate some input variables, and
the system responds with changes in output variables. This
represents a major difference over paper-based tests, as this
sort of a realistic interaction with a responding system cannot
be created on paper. The purpose of the interaction is to
comprehend the rules that determine the behavior of the
system.

In the first phase of completing a DPS test task, students
interact with the simulated system, manipulate the values of
independent variables, and observe how the changes impact
the values of dependent variables. This interactive observation
is the knowledge acquisition phase (also referred to as the rule
identification phase), after which students depict the results
of their observations on a concept map. Then, they have to
manipulate the variables so that they reach a goal state; this is
the knowledge utilization phase (or rule application phase). The
results from the two phases are scored separately, and as previous
research (e.g., Wüstenberg et al., 2012) has shown, there may be
significant differences in performance in the two phases. These
dynamic tasks are easily scalable, as the number of input and
output variables as well as the relationships between them can
be changed.

Aims and Research Questions
In the present study, we explore the prospects and value of
assessing DPS in higher education. Such a test could later be a
useful component of university admissions processes, especially
in STEM disciplines, where studies require problem-solving in
a technology-rich environment. The context of the study allows
for an examination of the relationships between subject matter
knowledge and problem-solving.
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RQ1: How do matriculation examination results predict
problem-solving test performance assessed at the
beginning of higher education studies? We assume that
the knowledge students possessed at the end of their
high school studies (assessed by the matriculation exams)
correlates with problem-solving, but the strengths of the
relationships with the different domains is still open.

RQ2: What are the relationships between subject matter
tests and problem-solving performance measured at the
beginning of higher education studies? We assume that
although the disciplinary knowledge tests correlate well
with problem-solving, problem-solving measures other
aspects of knowledge; therefore, it has considerable added
value over subject matter tests.

RQ3: Are there differences between students in different
disciplines? We assume that those who study within
different divisions at the university also differ in their
problem-solving skills and in the relationships between
problem-solving and other tests.

RQ4: How do students’ characteristics and background variables
influence their problem-solving performance? We may
assume that students’ family background, mother’s level
of education, students’ intention to learn and students’
learning strategies influence how their problem-solving
skills develop.

We expect that the results from these analyses may contribute
to improving matriculation examinations as well as to devising
better admissions processes.

METHODS

Participants
Participants in the study were students admitted to a large
Hungarian university and starting their studies. The university
has 12 divisions (arts, science, medicine, etc.), but they vary in
size (number of students). All of the divisions participated in
the study, but because of the differences between them, not all
analyses are equally relevant for every division.

The population for the study was formed exclusively of
students who had just finished their high school studies and
immediately applied for admission to the university. They took
their matriculation examinations in May, and the assessment for
this study was carried out in September of the same year.

The target population was 2,319 students, of whom 1,468
(63.3%) participated in the assessment; 57.7% of them were
female. The participation rate by division varied from 28.18 to
74.16%.

Student participation was voluntary; students were notified of
their option to take part in the assessment prior to commencing
their studies. As an incentive, they received credits for successful
completion of the tests.

Instruments
Problem-Solving Test
Students completed a DPS test based on the MicroDYN
approach. Several tests composed of similar tasks based on this

model have already been used in other studies in Hungary
(Molnár et al., 2013, 2017) but only with younger participants.
The test prepared for this study consisted of 20 items with varying
difficulty levels.

For example, in the knowledge acquisition phase of an easy
item, students had to observe how changing the values of
two independent variables (e.g., two different kinds of syrup)
impacted the value of one dependent (target) variable (sweetness
of the lemonade). They moved sliders on the screen to set the
current value for the blue and for the green syrup. The system
responded by indicating the resultant sweetness level. Students
observed what happened and attempted a new setting, observing
the sweetness level with such a setting. They had 180 s for the
knowledge acquisition phase in each task. In the knowledge
utilization phase, they had to reach the required value of the
dependent variable (sweetness) by setting the proper values of
the independent variables in no more than 180 s. In a difficult
item, students had to comprehend more complex relationships
between three independent variables (three different training
methods used by basketball players) and three dependent
variables (motivation, power of the throw and exhaustion).
(For more examples of similar DPS items, see Greiff et al.,
2013b; OECD, 2014). The two phases of problem-solving were
scored separately. The score for the first (knowledge acquisition)
phase was based on how accurately the relationships between
the variables were depicted, while the score for the second
(knowledge utilization) phase reflected the success with which the
dependent variables reached the target state.

The difficulty level of the test was close to the optimal for the
whole sample with a 45% mean (SD = 21.74). The reliability
(Cronbach’s alpha) of the entire test was 0.88. The reliabilities
of the two problem-solving phases were also high (knowledge
acquisition: 0.84; knowledge utilization: 0.83).

Disciplinary Knowledge Tests
Five disciplinary knowledge tests were prepared for the
assessment: Hungarian language and literature (Hungarian,
for short, with a strong reading comprehension component),
mathematics, history, science, and English as a Foreign
Language (EFL). Test content was based on the students’
high school studies. The tests covered the major topics of
the particular disciplines. Difficulty levels for the tests were
adjusted approximately to the intermediate-level standards of
the matriculation examination. These tests were prepared by
experts practiced in preparing matriculation examination tests.
The tests made use of the options made available by computer-
based testing; using a variety of stimuli (e.g., texts, images,
and animation) and response capture (e.g., entering texts and
numbers, clicking, and moving objects on the screen by drag-
and-drop). The descriptive statistics for the entire sample and
the reliability of the instruments are summarized in Table 1. The
reliability coefficients for the tests were good, ranging from 0.88
to 0.96.

Background Questionnaire
A background questionnaire was administered to participating
students via the same platform as the tests. Data were collected
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in this way about their matriculation examination results
and their learning strategies and SES. To minimize the time
devoted to administering the questionnaire, only the most
relevant variables were explored, where strong relationships were
expected. Family background was represented by mothers’ level
of education (from primary school to master’s degree). Students’
commitment to study (intention to learn) was measured with
the highest degree they intend to earn (bachelor’s, master’s or
PhD). Two scales for learning strategies that use self-reported
Likert scales were adapted from the PISA 2000 assessment
(elaboration strategies and memorization strategies, see Artelt
et al., 2003).

Procedures
The assessments were carried out in a large computer room
at the university learning and information center. Three
2-h sessions (1 h per test) were offered to the students
in the first 2 weeks of the semester. The tests and the
questionnaire were administered using the eDia online
platform.

Students received detailed feedback on their performance a
week after the testing period ended. The feedback contained
detailed analyses of their performance in the context of normative
comparative data.

Data from the achievement tests were analyzed with IRT
models. Plausible values were computed to compare the
achievements of the age groups, and Weighted Likelihood
Estimates (WLE) were used to compute person parameters.
The analyses were performed with the ACER ConQuest
program package (Wu et al., 1998). Person parameters were
transformed to a 500(100) scale so that the university means
were set to 500. MPlus software was used to conduct
the structural equation modeling (Muthén and Muthén,
2012).

RESULTS

In this section, we first answer the research questions
by examining the details of the correlations between
subject matter knowledge represented in the matriculation
examination results and in the test scores from the
beginning of studies in higher education. Then, we
synthesize the relationships in a path model based on these
findings.

TABLE 1 | Disciplinary knowledge test: descriptive statistics and reliability

coefficients.

Test Number of Mean (%) Standard Cronbach’s

items deviation alpha

Hungarian 126 34.30 9.38 0.90

Mathematics 63 59.79 14.27 0.89

History 161 58.60 11.91 0.93

Science 163 45.31 9.01 0.88

EFL 80 55.70 19.11 0.96

Matriculation Examination Results as
Predictors of Problem-Solving
Performance
Performance in two phases of problem-solving (knowledge
acquisition and knowledge utilization) correlated at themoderate
level (r = 0.432, p < 0.001); therefore, it is worth examining
the correlations between the matriculation examination results
and the phases of problem-solving separately. Here, we only
deal systematically with the three mandatory matriculation
examination subjects, as these data are available for all
participants, while only a small proportion of students took the
exams in a science discipline or EFL as an elective. As few
students took the matriculation examinations at the advanced
level, this analysis involves the results from the intermediate
exams. For a comparison, we have computed the correlations
between matriculation examination results and those from the
knowledge tests (see Table 2).

Two major observations stand out from Table 2. First, the
mathematics matriculation result (which is based on a paper-
and-pencil test with constructed responses) predicts problem-
solving much more strongly than those in the two other subjects.
Second, knowledge acquisition has a stronger correlation with
the matriculation examination results than knowledge utilization
does. The mathematics and history matriculation results predict
the test results for the same respective subjects well; they are
lower for Hungarian, which has no significant correlation with
problem-solving. We note that when comparing the correlations,
ca.0.05 differences are significant at p < 0.05, while ca.0.1
differences are significant at p < 0.001 (one-tailed, calculated
by the Fisher r-to-z transformation). When we note differences
between correlations, they are statistically significant.

Relationships between Subject Matter
Tests and Problem-Solving
Correlations for the six tests are summarized in Table 3. The
correlations between disciplinary knowledge test results are
moderate (Hungarian and history with science and EFL) or large,
and as expected from the similarities between these subjects,
the Hungarian–history and mathematics–science pairs correlate
more strongly than other pairs. Mathematics has the strongest
correlation with problem-solving, followed by science.

These correlations confirm once again that knowledge
acquisition is a more decisive component of problem-solving
items than knowledge utilization. To examine the details of this

TABLE 2 | Correlations between the matriculation examination results and those

from the tests administered at the beginning of higher education studies.

Matriculation

examination

Tests

Hungarian Mathe- History Knowledge Knowledge Problem-

matics acquisition utilization solving

Hungarian 0.378*** 0.071* 0.220*** n.s. n.s. n.s.

Mathematics 0.291*** 0.656*** 0.233*** 0.426*** 0.273** 0.414***

History 0.395*** 0.219*** 0.503*** 0.133*** n.s. 0.109**

*p < 0.05, **p < 0.01, ***p < 0.001.
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relationship, we performed regression analyses with problem-
solving and its two phases as dependent variables, using the
disciplinary knowledge test results as independent variables
(Table 4).

The differences between these analyses confirm previous
observations on the role of knowledge acquisition and indicate
that it is only mathematics and science whose contribution to
the variance explained is significant and positive. Furthermore,
even in the cases of knowledge acquisition,∼70% of the variance
remained unexplained.

Differences between Students Studying
within Different Divisions
As can be expected, there are large differences between the
divisions at the university, both in performance on knowledge
tests and on problem-solving. Therefore, it is anticipated that
problem-solving has different relationships with disciplinary
knowledge. To examine these differences, we have chosen two
divisions with a large number of students participating in the
assessments and with different study profiles. The division that
deals with the humanities, known as the Faculty of Arts (Arts, for
short), participated with 212 students (65.2% of the population,
71.7% female), and the division that deals mainly with the
natural sciences, known as the Faculty of Science and Informatics
(Science, for short), was represented with 380 students (64.0%

TABLE 3 | Correlations for the tests taken at the beginning of higher education

studies.

Subject Hungari-an Mathematics History Science EFL

Mathematics 0.434***

History 0.598*** 0.409***

Science 0.375*** 0.529*** 0.395***

EFL 0.307*** 0.341*** 0.337*** 0.399***

Knowledge

acquisition

0.156** 0.515*** 0.228*** 0.422*** 0.262***

Knowledge

utilization

n.s. 0.315*** 0.095** 0.254*** 0.121**

Problem-

solving

0.125** 0.492*** 0.192*** 0.401*** 0.227***

**p < 0.01, ***p < 0.001.

of the population, 32.8% female). They performed differently on
each test (Table 5), including problem-solving.

Achievement differed according to the expectations for the
different study profiles. Students at the Arts Faculty performed
better in Hungarian, history and EFL, while Science Faculty
students performed better in mathematics, science and problem-
solving.

To examine the details of the relations between disciplinary
knowledge and problem-solving, we performed the regression
analyses separately for the two divisions. Taking into account the
decisive role of knowledge acquisition, we present only the results
for this phase of problem-solving in Table 6. For comparison,
the R2 were 0.203 (Arts) and 0.217 (Science) for the entire
problem-solving test when the same analyses were performed.

Although the same amount of variance of knowledge
acquisition was explained by the same set of independent
variables, the contributions of the individual variables are
different. Mathematics and science play an important role at both
divisions, and the contribution of EFL is also significant at the
Faculty of Science.

Relationships between Students’
Background Variables and
Problem-Solving Performance
Previous studies (e.g., OECD, 2014) have indicated large
difference in problem-solving in a number of dimensions.
Here, we explore the differences according to some available
background variables.

TABLE 5 | Differences in achievement among students in the two divisions with

different study profiles.

Division Hunga- Mathe- History Science EFL Problem-

rian matics solving

Mean Mean Mean Mean Mean Mean

(SD) (SD) (SD) (SD) (SD) (SD)

Arts 539 (98) 466 (92) 529 (99) 481 (78) 526 (108) 464 (94)

Science 486 (89) 546 (103) 495 (94) 525 (91) 506 (94) 542 (93)

t 6.28 −9.59 3.87 −5.87 2.02 −9.38

Sig p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.05 p < 0.001

TABLE 4 | Regression analyses of problem-solving and its two phases as dependent variables with disciplinary knowledge tests as independent variables.

Independent variables Problem-solving Knowledge acquisition Knowledge utilization

R2
= 0.286 R2

= 0.309 R2
= 0.121

Beta t Sig Beta t Sig Beta t Sig

Hungarian −0.151 −4.896 0.000 −0.141 −4.628 0.000 −0.115 −3.351 0.001

Mathematics 0.420 14.056 0.000 0.423 14.424 0.000 0.284 8.585 0.000

History 0.013 0.429 0.668 0.035 1.145 0.252 −0.013 −0.380 0.704

Science 0.218 7.257 0.000 0.214 7.238 0.000 0.154 4.622 0.000

EFL 0.036 1.329 0.184 0.060 2.265 0.024 0.000 −0.010 0.992
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TABLE 6 | Regression analyses of knowledge acquisition as a dependent variable

with disciplinary knowledge tests as independent variables for the two divisions.

Independent

variables

Faculty of Arts Faculty of Science

R2
= 0.237 (p < 0.001) R2

= 0.237 (p < 0.001)

Beta t Sig Beta t Sig

Hungarian 0.109 1.343 0.181 −0.143 −2.242 0.026

Mathematics 0.252 3.057 0.003 0.379 6.444 0.000

History 0.065 0.806 0.421 −0.035 −0.577 0.564

Science 0.187 2.340 0.020 0.154 2.789 0.006

EFL 0.006 0.087 0.931 0.165 3.072 0.002

Gender Differences
Gender differences are routinely analyzed on large-scale national
and international assessments. The PISA studies indicated that
Hungarian girls’ reading comprehension was significantly better
than that of boys, while boys’ performance was better in
mathematics and there were no significant gender differences
in science (OECD, 2016). Female and male students performed
differently on problem-solving in this study as well. To provide
context to interpret the size of gender difference in problem-
solving, the differences on other tests are also indicated in
Table 7.

The only test where women outperform men was Hungarian
language (in line with the better reading performance of the
female students); on all other tests, men performed better.
The largest difference was found in favor of men in problem-
solving. Here again, knowledge acquisition shows a much larger
difference, indicating that this is the more sensitive phase of
problem-solving.

Mothers’ Education and Intention to Learn
The relationship of test performance with students’ socio-
economic status is a well-known phenomenon, although there
are large differences in this respect between countries and
also between domains of assessment. International assessment
programs (e.g., the PISA studies) usually involve complex indices
for this purpose, but we have only one variable to represent
students’ family background, mothers’ education. A further
variable that may be interesting in this context is what degree
students want to earn (intention to learn). We have found a
small (Spearman’s rho = 0.182, p < 0.001) correlation between
these two variables. The correlations of test results with mother’s
educational level and intention to learn are summarized in
Table 8.

There are no large differences between the correlations; all are
rather small. Mothers’ education has little impact on problem-
solving. The correlation of problem-solving with intention to
learn is small but still significant; the correlation with knowledge
utilization here is also smaller than with knowledge acquisition.

Learning Strategies
As there are only a few questions in the learning strategies
questionnaire, we present the texts and the correlations with

TABLE 7 | Gender differences in test performance.

Test Gender Mean SD Difference t

Hungarian M 489 106 −26 −4.54

F 515 94

Mathematics M 534 102 49 8.75

F 485 94

History M 524 105 39 7.03

F 485 92

Science M 518 95 29 5.18

F 489 101

EFL M 513 102 23 3.93

F 490 97

Knowledge acquisition M 597 108 93 14.86

F 503 111

Knowledge utilization M 492 126 62 9.40

F 430 100

Problem-solving M 545 98 78 14.6

F 467 88

All differences are significant at p < 0.01.

TABLE 8 | Correlations of performance on the tests with mother’s education and

intention to learn.

Test Mother’s education Intention to learn

Hungarian 0.153*** 0.189***

Mathematics 0.145*** 0.167***

History 0.134*** 0.190***

Science 0.161*** 0.242***

EFL 0.192*** 0.157***

Knowledge acquisition 0.084** 0.116***

Knowledge utilization n.s. 0.064**

Problem-solving n.s. 0.105***

**p < 0.01, ***p < 0.001.

the problem-solving achievement for each question. Students’
answers to these questions show small but significant correlations
with problem-solving (Table 9).

The elaboration strategies questions correlate positively with
problem-solving, while the memorization strategy questions
correlate negatively with it. It is quite clear from the content of
the questions that students who prefer conceptual meaningful
learning over rote learning are better problem-solvers.

An Integrated Model of the Relations of
Knowledge Acquisition in Dynamic
Problem-Solving
We synthesized the results using structural equation modeling
(SEM). Taking into account the observations reported in the
previous sections, here we deal only with the knowledge
acquisition phase. As the main aim of the present study is
to validate the DPS test and to explore its usefulness at the
beginning of university studies, we conceived a model by using
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TABLE 9 | Correlations of the learning strategies questions with problem-solving

performance.

Question DPS1 DPS2 DPS

ELABORATION STRATEGIES

When I study, I try to relate new material to

things I have learned in other subjects.

0.129*** 0.075** 0.121***

When I study, I figure out how the

information might be useful in the real

world.

n.s. n.s. n.s.

When I study, I try to understand the

material better by relating it to things I

already know.

0.080** 0.104*** 0.109***

When I study, I figure out how the material

fits in with what I have learned.

n.s. 0.070* 0.069*

MEMORIZATION STRATEGIES

When I study, I try to memorize everything

that might be covered.

−0.153*** −0.091** −0.144**

When I study, I memorize as much as

possible.

−0.097** n.s. −0.074**

When I study, I memorize all new material

so that I can recite it.

−0.183*** −0.128*** −0.185**

When I study, I practice by saying the

material to myself over and over.

−0.263*** −0.135*** −0.236**

DPS1, Knowledge acquisition; DPS2, Knowledge utilization; DPS, dynamic problem-

solving. *p < 0.05; **p < 0.01; ***p < 0.001.

variables with significant correlations. We assume that students’
gender and learning strategies influence their disciplinary test
results, while these results (students’ actual knowledge) influence
achievement in DPS.

A model that adequately fits the data (RMSEA = 0.046,
CFI = 0.986, TLI = 0.949) is presented in Figure 1. Gender
influences mathematics test results, while learning strategies have
a remarkable impact on mathematics and science. These two
disciplines and history have a significant relationship with the
first phase of problem-solving.

In this model, positive impacts of elaboration strategies on
mathematics and science were found, while success in the
knowledge acquisition phase of DPS was positively influenced by
science and mathematics. Gender and memorization strategy as
well as history have a negative relationship.

DISCUSSION

Our results confirmed or extended several findings from previous
research (e.g., different relationships of the phases of problem-
solving) and identified some new relationships as well (e.g., the
relationships with learning strategies).

Determinants of Problem-Solving
Achievement at the Beginning of Higher
Education Studies
Previous research has already identified several characteristics
of DPS at different ages, including primary and secondary
school students (Molnár et al., 2013), 15-year-old students in the

FIGURE 1 | A path model of the relationships with the first phase of

problem-solving (knowledge acquisition).

PISA 2012 assessment (which used tests partially built on the
MicroDYN approach in a large-scale international comparative
survey, OECD, 2014), and university students (Wüstenberg et al.,
2012). The present study has shown the feasibility and usefulness
of such an assessment in higher education, indicating that DPS
is an easily applicable test with several characteristics of the
twenty-first-century skills.

Based on the available data, the impact of previous learning
was represented by the disciplinary knowledge test results
of three matriculation examination subjects. Mathematics had
the strongest correlation with problem-solving, which can be
explained by the fact that mathematics is studied throughout
the 12 years of primary and secondary schooling and by the
nature of cognitive processes required by problem-solving (Greiff
et al., 2013b; Csapó and Funke, 2017b). The important role
of mathematics was also noticed when the correlations with
the subject tests were analyzed, and the integrating path model
mirrored the same exceptional impact as well.

The first phase of solving dynamic items (knowledge
acquisition or rule identification in other studies) has a stronger
relationship with any other observed variable than the second
phase (knowledge utilization or rule application). Other studies
have found similar differences, although the dominance of
knowledge acquisition was not so obvious (Wüstenberg et al.,
2012). The important role of the first phase, indicated by
larger correlations, may be attributed to the kind of reasoning
this phase requires. Students have to combine the different
values of the independent variables they manipulate in this
phase (combinatorial reasoning), judge certain probabilities
(probabilistic reasoning) and abstract rules from the observed
behavior of the simulated system (inductive reasoning). This may
also explain the strong connection (especially of the first phase)
to mathematics, as this kind of reasoning is mostly applied when
learning mathematics. Rule induction connects DPS to general
intelligence as well, as most intelligence tests use inductive
reasoning items. Nevertheless, previous research has indicated
that problem-solving explains added variance of students’ school
achievement (GPA) beyond intelligence tests (Wüstenberg et al.,
2012), and moderate to large correlation (r = 0.44, 0.52, and 0.47
in Grades 5, 7, and 11) has been found between problem-solving
and inductive reasoning (Molnár et al., 2013).

Our analyses showed that there were differences between the
students preparing for studies in different disciplines both on
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the level of problem-solving achievement and in the strengths
of correlations with domain-specific knowledge. However, some
main tendencies, e.g., the dominant role of mathematics and
science and the role of the knowledge acquisition phase, may be
generalized.

Large gender differences were found on all the tests we used in
this study, but the largest one was observed in problem-solving
(78 points), mathematics being the second largest one with a
much lower difference (49 points). The difference in knowledge
acquisition is especially high (93 points). In PISA 2012, gender
differences in problem-solving varied from country to country.
The OECD mean was 7 points, and in Hungary it was below
average, though it was not significant, only 3 points (OECD,
2014). To interpret this discrepancy between the PISA results and
the present study, it is worth noting that the Hungarian PISA
problem-solving results were below average (459 points) and that
not all items were dynamic. Furthermore, in our study, women
are overrepresented in the Arts Faculty and in humanities studies
in general, while they are underrepresented in STEM studies.

Although there are large differences between students
according to the socio-economic status (SES) of their family—
and Hungary belongs to a group of countries where the impact
of SES is especially strong—there was no large effect found in
problem-solving in the PISA 2012 survey. In our study, we also
found amodest impact of mothers’ level of education on students’
problem-solving performance. The fact that problem-solving
is less determined by social background than domain-specific
competencies indicates a potential opportunity for disadvantaged
students as they may show their strengths on these kinds of
assessments.

Previous studies have indicated a strong relationship between
low- and high-achieving high school students and the different
learning strategies they use (Yip, 2013). Our results confirm
this notion, as there are clear links between learning strategies
and knowledge acquisition in problem-solving. A positive
effect of elaboration strategies may have been predictable, but
a measurable negative impact of memorization strategies is
somewhat unexpected. These results suggest the conclusion that
problem-solving is learnable and point to one of the directions
in the search for proper training methods. In general, there
are two main directions for facilitating the development of this
kind of general cognitive skill in a school context. The first is a
holistic approach, when developmental impacts are embedded
in other educational activities, in this case in learning science
and mathematics through meaningful elaborative strategies.
Discovery learning and inquiry-based teaching methods may
have an impact on the development of problem-solving as well.
The second method improves problem-solving by developing
component skills (Csapó and Funke, 2017b). We have identified
potential component skills; providing training in them may also
influence the development of problem-solving.

The results of the SEM indicate the complex nature of
the relationships between the variables being explored. The
DPS tasks are constructed so that completing them requires
no preliminary knowledge within any discipline. Therefore, we
may assume that if there are relationships between disciplinary
knowledge tests and DPS tests, these relationships are established

by factors other than the factual knowledge represented in the
knowledge tests. Such factors may be learning strategies (we
have variables for representing them) and certain cognitive skills
needed both for completing the disciplinary tests and the DPS
tests (in this study, we have no variables to represent them in
the SEM). In this model, gender as a variable (most probably)
mediates women’s better reading and poorer mathematics
achievement (shown by other studies, e.g., PISA). In sum, this
model indicates that men outperform women, and this impact
is mediated by the higher mathematics performance among
men. The negative impact of memorization is transmitted via
mathematics and science.

Limitations of the Present Study
As the PISA 2012 assessments also indicated, there are large
differences between countries not only on the level of problem-
solving performance, but also in the strengths of the relationships
between several relevant variables as well; therefore, some
particular results found in one country cannot be generalized
over countries and cultures. Although some general tendencies
were found, we have seen that the strength of the relationships
we have examined in this study differs by division. Therefore, the
generalizability of the strengths of these relationships is limited;
nevertheless, the method we applied in this study is generalizable
and may be useful to explore the actual relationships in any
higher educational context. Participation was voluntary in the
study; the actual samples are thus not representative of the
divisions. Nevertheless, the analyses revealed some generalizable
tendencies as well.

Conclusions: Further Research and
Prospects for Assessment Supporting
High School–University Transition
The results from the present study have raised several further
questions worth researching. The dominant role of knowledge
acquisition indicates a promising line of inquiry to explore
this phase in more detail. One promising direction is to
identify students’ knowledge acquisition strategies, e.g., the way
they manipulate the independent variables when they attempt
to discover how these manipulations impact changes in the
dependent variable. Students’ activities are logged, and their
strategies may be ascertained with log file analyses. Latent
class analysis may be an effective method to identify students’
exploring strategies.

The knowledge acquisition phase also deserves further
study from the perspective of its relationships to learning
strategies as well, for example, examining if poor problem-
solving performance can be an indicator of inadequate learning
strategies. If such a connection can be proven, problem-solving
assessment could be a diagnostic tool for identifying poor
leaning strategies, possibly more reliable than self-reported
questionnaires. Further insights into the nature of cognition in
the knowledge acquisition phase could be expected from studying
it in relation to the learning to learn assessments (Greiff et al.,
2013b; Vainikainen et al., 2015).
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Several skills may be identified which are needed to
successfully complete phases of problem-solving. A systematic
examination of the role of some supposed component skills (e.g.,
combinatorial reasoning, probabilistic reasoning, correlational
reasoning and inductive reasoning) would provide foundations
for the development of problem-solving by strengthening its
component skills as well.

The results from this study indicated that technology-based
assessment of problem-solving may be a useful instrument
to moderate the secondary–tertiary education transition. To
improve its usefulness, the scoring system may be further
developed, extending it with an automated log file analysis.
Such an instrument would be especially helpful in selection
processes (admissions tests) for the STEM disciplines. More
detailed analyses of the relationship between problem-solving
and the study profile would be needed to improve the test. In
the present study, we compared divisions of study within the
university, but a division is still not homogeneous; for example,
students in biology training may be different from those in
mathematics.

We have found significant positive relationships with the
questions on elaboration learning strategies and negative
relationships with the questions on memorization strategies.
In the present study, there were not enough questions to use
sophisticated scales for representing these learning strategies,

but the findings indicate the relevance of exploring the role
learning strategies play in the development of problem-solving.
This seems a promising area both for research and practice not
only for higher education but also for earlier phases of school
education.

The predictive power of DPS can be explored later when
data is available on the university achievement of the students
participating in the present assessment. The test may have a
diagnostic value (indicating poor study strategies or insufficient
problem-solving skills) and can also be used to aid students
in selecting a study track better suited to their cognitive
skills.
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Self-regulated learning (SRL) skills are essential for learning during school years,
particularly in complex problem-solving domains, such as biology and math. Although
a lot of studies have focused on the cognitive resources that are needed for learning
to solve problems in a self-regulated way, affective and motivational resources have
received much less research attention. The current study investigated the relation
between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e.,
autonomous and controlled motivation), mental effort, SRL skills, and problem-solving
performance when learning to solve biology problems in a self-regulated online learning
environment. In the learning phase, secondary education students studied video-
modeling examples of how to solve hereditary problems, solved hereditary problems
which they chose themselves from a set of problems with different complexity levels
(i.e., five levels). In the posttest, students solved hereditary problems, self-assessed
their performance, and chose a next problem from the set of problems but did not solve
these problems. The results from this study showed that negative affect, inaccurate
self-assessments during the posttest, and higher perceptions of mental effort during the
posttest were negatively associated with problem-solving performance after learning in
a self-regulated way.

Keywords: affect, motivation, mental effort, self-regulated learning, problem-solving performance

INTRODUCTION

Problem-solving is an important cognitive process, be it in everyday life, at work or at school.
Problem-solving is the process in which people put effort into closing the gap between an initial or
current state (also called givens) and the goal state (Mayer, 1992; Jonassen, 2011; Schunk, 2014).
Research has shown that self-regulated learning (SRL) skills are important for effective problem-
solving (e.g., Ackerman and Thompson, 2015). Self-regulated learning can be defined as “the degree
to which learners are metacognitively, motivationally, and behaviorally active participants in their
own learning process” (Zimmerman, 2008, p. 167). Not surprisingly, SRL skills like monitoring
and regulating learning processes are important for learning during school years and in working
life (Winne and Hadwin, 1998; Zimmerman, 2008; Bjork et al., 2013; for a meta-analysis see,
Dent and Koenka, 2016). The process by which learners use SRL skills such as monitoring and
control in reasoning tasks, problem-solving, and decision-making processes is also called meta-
reasoning (Ackerman and Thompson, 2015). Monitoring judgments about problem-solving tasks
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and decision-making processes could be related to the effort
learners put into finding and using different types of strategies
to solve the problem or make a decision.

Self-regulated learning skills are especially important in
learner-controlled, online learning environments in which
students need to be able to accurately keep track of their own
learning process (i.e., monitoring) and have to make complex
decisions about what problem-solving task to choose next during
their learning process (i.e., regulation choices). Apart from the
high cognitive demands imposed by SRL, which have been
investigated frequently in previous research (e.g., Dunlosky and
Thiede, 2004; Griffin et al., 2008; Van Gog et al., 2011), learning to
solve problems in a self-regulated way also imposes demands on
affective and motivational resources (Winne and Hadwin, 1998;
Pekrun et al., 2002; Spering et al., 2005; Efklides, 2011; Mega
et al., 2014). The current study investigated the role of affect
and motivation in learning problem-solving tasks in a complex
learner-controlled online learning environment for secondary
education students.

Learning to Solve Problems
There are many different kinds of problem-solving tasks,
varying from well-structured transformation problems that
have a clearly defined goal and solution procedure, to ill-
structured problems that do not have a well-defined goal or
solution procedure (Jonassen, 2011). In educational settings
like schools, universities, or trainings, students usually solve
well-structured problems, especially in the domains of science,
technology, engineering, and mathematics (STEM domains).
Although, well-structured problems, such as math and biology
problems encountered in primary and secondary education, can
typically be solved by applying a limited and known set of
concepts, rules, and principles, they are considered complex in
terms of the high number of interacting elements that needs
to be considered simultaneously in working memory (WM)
during the problem-solving process (e.g., Kalyuga and Singh,
2016).

For learning to solve such complex problems, it is efficient
to “borrow” and “reorganize” knowledge of others (Sweller
and Sweller, 2006) by learning from examples, such as worked
examples and modeling examples (Van Gog and Rummel, 2010).
A worked example is a step-by-step worked-out solution to
a problem-solving task that students can study. Research in
the context of cognitive load theory (CLT; Paas et al., 2003a;
Sweller et al., 2011) has shown that for novices, studying
worked examples of how the problem should be solved, is
a more effective strategy for learning to solve problems than
solving equivalent conventional problems (i.e., the worked
example effect; Sweller and Cooper, 1985; Paas, 1992; for
reviews see, Sweller et al., 1998). According to CLT, having
learners study worked examples is an effective way to reduce
the extraneous load that is imposed by conventional problem-
solving, because the learner can devote all available WM capacity
to studying the worked-out solution and constructing a schema
for solving such problems in long-term memory (Paas and Van
Gog, 2006). In a modeling example, an adult or peer model
performing a task can be observed, either face to face, on

video, via a screen recording made by the modeling person,
or as an animation (Van Gog and Rummel, 2010). According
to social-cognitive theory (Bandura, 1986), the learner can
construct a mental representation of the task that is being
modeled, and use it to perform the task at a later point in
time.

According to the resource-allocation framework by Kanfer
and Ackerman (1989) and CLT (Sweller et al., 1998) it can
be assumed that the competition for WM resources between
learning to solve a problem and self-regulation processes can
have negative effects on either or both of these processes. For
example, a student working on a complex problem-solving
task needs most cognitive resources to perform the task itself,
which leaves little resources to monitor and regulate learning.
During the learning process, it could therefore be beneficial to
study worked examples. Studying the step-by-step explanation
on how to solve the problem leaves more WM resources for the
construction of cognitive schemas (i.e., learning) than solving
problems (i.e., worked example effect; Sweller, 1988; for reviews
see, Sweller et al., 1998; Van Gog and Rummel, 2010). Therefore,
it can be expected that the surplus cognitive capacity that
becomes available by the reduction of extraneous cognitive load
can be devoted to activities that further contribute to learning
performance, such as self-regulation processes (Paas and Van
Gog, 2006).

Despite this expectation, SRL skills, such as monitoring one’s
own learning processes, have been found to be suboptimal
when studying worked examples (Baars et al., 2014a,b, 2016).
A possible reason for this finding is that students’ monitoring
process when learning from worked examples can be prone
to an illusion of competence. Students overestimate their
competence to solve a problem when information about the
problem solution is present during studying (Koriat and
Bjork, 2005, 2006; Bjork et al., 2013). Similarly, studies
with primary and secondary education students have found
that students who learned to solve problems by studying
worked examples showed inaccurate monitoring performance,
because they overestimated their future test performance (Baars
et al., 2013, 2014a,b, 2016; García et al., 2015). Yet, accurate
monitoring is a prerequisite for effective self-regulation (cf.
Thiede et al., 2003), and plays an important role in learning
to solve problems (Mayer, 1992; Zimmerman and Campillo,
2003).

In a previous study by Kostons et al. (2012) video models were
used to explain to secondary education students how to solve
hereditary problems and additionally used the video-modeling
examples to train students to self-assess their performance and
make regulation choices in a learner-controlled environment.
In the study, problem-solving performance, self-assessment, and
task selection accuracy improved. These results are promising.
However, large standard deviations in self-assessment accuracy
and task selection were found, suggesting large individual
differences in these SRL skills (Kostons et al., 2012), indicating
that some students benefitted more from the video-modeling
examples than others. Among others, Kostons et al. (2012) have
suggested that these differences might be explained by motivation
and affect.
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Problem-Solving, Affect, and Motivation
Students’ affect and motivation can facilitate or hinder students
when learning to solve problems in a self-regulated way.
Affect was found to influence the use of different strategies
(e.g., organization of study time, summarizing materials), SRL
activities (e.g., reflecting on learning), and motivation; all factors
that can impact academic achievement (Pekrun et al., 2002;
Efklides, 2011; Mega et al., 2014). Moreover, in the domain
of problem-solving, positive and negative affect were found to
influence the problem-solving strategies (e.g., seeking and use of
information) that students used (Spering et al., 2005).

According to theories on SRL both affect and motivation
play an important role in SRL (e.g., Winne and Hadwin, 1998;
Pintrich, 2004; Efklides, 2011). According to Efklides (2011), the
interaction between metacognition, motivation, and affect is the
basis of students’ SRL. In Efklides’ Metacognitive and Affective
model of SRL (MASRL model), SRL is not only determined by a
person’s goal, but also by an interaction between metacognitive
experiences, motivation, and affect during task performance. In
line with the MASRL model, a study by Mega et al. (2014)
showed that both negative and positive affect influence different
aspects of SRL. For instance, positive affect was positively related
to the evaluation of learning performance and metacognitive
reflection during studying. In addition, both negative and positive
affect were also shown to influence students’ motivation. For
example, positive affect enhanced students’ beliefs on incremental
theory of intelligence and their academic self-efficacy. Positive
affect was found to have a greater impact on both SRL abilities
and motivation compared to negative affect. SRL abilities and
motivation in turn were predictive of academic achievement.
However, the effect of motivation on academic achievement was
larger than the effect of SRL abilities on academic achievement.
Mega et al. (2014) further showed that the relation between affect
and academic achievement was mediated by motivation and SRL
abilities.

Although the study by Mega et al. (2014) showed the
influence of affect on motivation and SRL abilities and subsequent
academic performance, the implications for learning a variety
of subjects during school years are still not clear. In the
study by Mega et al. (2014), two general academic achievement
indicators were used with undergraduate students from different
disciplines. These general indicators of academic achievement
were productivity (i.e., number of exams passed) and ability (i.e.,
GPA). These indicators are domain general and therefore, it is
unclear whether these results would also apply to the domain
of problem-solving or to task-specific performance within a
domain.

The Role of Affect in Problem-Solving
In the domains of problem-solving and decision-making, it was
found that positive affect facilitates flexible and creative thinking,
and decision-making in complex environments such as medical
decision-making (Fiedler, 2001; Isen, 2001). In a review by
Isen (2001), it was shown that if the situation is important or
interesting to a person, positive affect will enhance systematic,
cognitive processing and thereby make this process more efficient
and innovative. Positive affect was found to improve generosity,

creativity, variety seeking, negotiation, and decision-making in a
range of different domain and contexts such as problem-solving
(e.g., Duncker’s problem), consumer decision-making, coping
with stressful life-events, bargaining when buying and selling
appliances, car choice, and medical diagnosis. For example,
physicians with positive affect induced by a small gift (i.e., a
box of candy), scored higher on creativity as measured by the
Remote Associates Test (Estrada et al., 1994). Also, in a study
by Politis and Houtz (2015) it was found that middle school
students who watched a positive video program to induce positive
affect generated a greater number of ideas compared to students
who watched a neutral video program. More closely related to
problem-solving tasks that can be solved in a stepwise manner,
Brand et al. (2007) demonstrated that affect influenced solving the
Tower of Hanoi (ToH) problem in adult students. After inducing
negative affect, participants needed more repetitions to learn to
solve the ToH problem and performed worse on the transfer tasks
compared to participants with an induced positive mood.

In contrast to the findings showing that positive affect can
facilitate problem-solving performance (e.g., Isen, 2001), some
studies found that positive affect does not facilitate problems
solving. In a study by Kaufmann and Vosburg (1997) high school
students rated their affect at the beginning of the experiment
and then engaged in solving insight problems which were
unstructured and high in novelty and analytical tasks from
an intelligence test. It was found that positive affect reduced
problem-solving performance on the insight problems but not
on the analytical tasks. These results were replicated in a second
experiment with college students whose affect was induced
using positive, negative, and neutral videotapes. The authors
suggest that because students in their study did not receive any
feedback and had to judge their solution for themselves, students
with positive affect probably stopped searching for task-relevant
information earlier than students with a negative mood. In line
with this hypothesis, Spering et al. (2005) found that negative
affect led to more detailed information search during complex
problem-solving. In the study by Spering et al. (2005) with 74
undergraduate and graduate students, positive and negative affect
were induced and the effect on complex problem-solving (CPS)
was investigated. In CPS the situation is complex, variables are
connected, there is a dynamic development of the situation, the
situation is non-transparent, and people can pursue multiple
goals (Funke, 2001). Positive and negative affect were induced
by positive and negative performance feedback (Spering et al.,
2005). Although, positive or negative affect increased as was
intended, the results showed that positive and negative affect
did not influence performance (Spering et al., 2005). However,
negative affect did lead to more detailed information search and
a more systematic approach (Spering et al., 2005).

To sum up, positive affect could facilitate problem-solving
and decision-making. Yet, this seems to be dependent on the
type of problems used in the different studies. The problem-
solving tasks in the review by Isen (2001) were more structured
or transparent than the ones used in the studies by Kaufmann
and Vosburg (1997) and by Spering et al. (2005). For more
structured problems, positive affect could facilitate problem-
solving. If applied on learning to solve well-structured, stepwise
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hereditary problems in secondary education, one would expect
positive affect to facilitate self-regulation of the learning process
and problem-solving performance. The role of motivation, as
described in the MASRL model by Efklides (2011) could interact
with this process.

The Role of Motivation
Self-determination theory (SDT; Deci and Ryan, 2000; Ryan
and Deci, 2000a,b) predicts that students use more effort
and process the materials more deeply when they find the
learning materials interesting. There are several types of
motivation which can be placed on a continuum of the degree
of experienced autonomy. Students with a high degree of
autonomous motivation experience volition and psychological
freedom. They study because the subject is interesting to them
or it brings them satisfaction (i.e., intrinsic motivation). Also,
doing the task could be valuable for attaining personal goals or
development (i.e., identified motivation). However, students who
score high on controlled motivation experience a low degree of
autonomy and experience pressure. This pressure can come from
within the student (i.e., introjected motivation). For example,
students feel pressure to avoid feelings of shame, or pressure can
come from an external source, such as demands from a teacher or
a parent (i.e., external motivation).

Autonomous motivation types are associated with better
learning outcomes, persistence, and psychological well-being
relative to controlled motivation types. Autonomous motivation
types were found to be related to better text comprehension
(e.g., Vansteenkiste et al., 2004) and self-reported academic
achievement (e.g., Vansteenkiste et al., 2009). Furthermore,
motivation based on interest has been associated with better
problem-solving performance (for a review see Mayer, 1998) and
better SRL abilities such as effort regulation (i.e., controlling effort
and attention) and metacognitive strategy use (i.e., checking
and correcting one’s own learning behavior; Vansteenkiste et al.,
2009). Moreover, it was found that students who indicated higher
levels of interest for a course (i.e., an autonomous reason for
studying), were more likely to use strategies to monitor and
regulate their learning (Pintrich, 1999).

In summary, next to enhancing learning and problem-solving
performance, autonomous motivation could also facilitate the use
of SRL skills during learning. Furthermore, in multiple studies
by Pekrun et al. (2002) intrinsic motivation was found to be
related to positive affect such as enjoyment, hope, and pride. Also,
negative affect such as boredom and hopelessness were found to
be negatively related to intrinsic motivation and effort.

Present Study and Hypotheses
The relation between affect, self-assessment accuracy, making
complex decisions about the learning process (i.e., regulation
choice complexity), perceived mental effect and motivation was
investigated in a learner-controlled, online environment, in
which students could monitor and regulate their own learning.
In this environment students first received video-modeling
examples teaching them how to solve stepwise, hereditary
problem-solving tasks, how to make a self-assessment (i.e.,
monitoring), and how to select the next task (i.e., regulation

choice). In each video-modeling example, after solving the
problem, the model rated the perceived amount of invested
mental effort (Paas, 1992), made a self-assessment of his/her
performance over the five steps, made a regulation choice, and
explained these actions (cf., Kostons et al., 2012; Raaijmakers
et al., unpublished). After the video-modeling examples, students
were asked to select and practice four problems from an overview
with 75 problem-solving tasks. Affect was measured at the start of
the study. Mental effort, self-assessment accuracy, and regulation
choice complexity were measured during the posttest. Motivation
was measured at the end or study.

Although the problems in the learning phase were well-
structured, the online learning environment in which students
had to learn to solve them could be considered a complex
problem-solving environment that required cognitive activities
such as monitoring and planning with problem-solving tasks
of different complexity levels (Osman, 2010). That is, during
the learning phase students had to choose the problem-solving
task they wanted to work on next from a task database with
75 tasks arranged by five complexity levels (see Figure 1). Task
complexity of the well-structured problems was defined in terms
of element interactivity: the higher the number of interacting
information elements that a learner has to relate and keep active
in WM when performing a task, the higher the complexity of
that task and the higher the cognitive load it imposes (Sweller
et al., 1998; Sweller, 2010). The easier problems consisted of
less interacting information elements (e.g., two generations, one
unknown, and deductive reasoning) compared to the more
difficult problems (e.g., three generations, two unknowns, and
both deductive and inductive reasoning). In addition, monitoring
the learning process and choosing the next task at a certain
complexity level based on monitoring processes also adds to
the complexity of the learning process and imposes cognitive
load upon the learner (e.g., Griffin et al., 2008; Van Gog et al.,
2011). Taken together, monitoring learning and choosing tasks
with different levels of interacting elements, created a complex
problem-solving environment in which the current study took
place.

We expected positive and negative affect, self-assessment
accuracy, regulation choice complexity, perceived mental effort,
and autonomous and controlled motivation to be predictors
of problem-solving performance. More specifically, we expected
positive affect measured at the beginning of the study to be
a positive predictor of problem-solving performance (cf., Isen,
2001, Hypothesis 1a), whereas negative affect measured at the
beginning of the study was expected to be a negative predictor
of problem-solving performance (Hypothesis 1b).

According to theories of SRL (e.g., Winne and Hadwin,
1998; Zimmerman, 2008), we expected self-assessment accuracy
during the posttest to be positively associated with problem-
solving performance at the posttest (Hypothesis 2a). We further
hypothesized that regulation choice complexity during the
posttest would be positively associated with problem-solving
performance at the posttest (Hypothesis 2b). Based on theories
of SRL one would expect students to make regulation choices
based on monitoring processes. Therefore, the more complex
students’ regulation choices were, the better they think they
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FIGURE 1 | Task database containing the 75 problem-solving tasks showing the different levels of complexity, different levels of support, and the different surface
features of the learning tasks (Raaijmakers et al., unpublished).

performed (assuming that monitoring and regulation processes
would approach actual performance and are more or less
accurate).

Competition for WM resources between learning to solve a
problem and self-regulation processes can have negative effects
on either or both of these processes (Kanfer and Ackerman, 1989;
Sweller et al., 1998). Based on the efficiency account of Paas and
Van Merriënboer (1993; see also Van Gog and Paas, 2008) we
assumed that the combination of perceived mental effort during
the posttest and posttest performance would be indicative for
the quality of learning (i.e., problem-solving) during the learning
phase. Therefore, we hypothesized that students who managed
to gain more knowledge during the learning phase, would
experience lower mental effort during the posttest and obtain
higher posttest performance than students who experience higher
mental effort during the posttest. Therefore, perceived mental
effort during the posttest was expected to be a negative predictor
of problem-solving performance (Hypothesis 3a) and show a
negative relation with SRL skills such as monitoring (Hypothesis
3b) and regulation choices (Hypothesis 3c) as measured during
the posttest.

According to SDT, autonomous motivation is associated with
better learning outcomes and SRL when compared to controlled
motivation (Deci and Ryan, 2000). In line with the findings by
Vansteenkiste et al. (2009), we expected autonomous motivation
to be positively related to problem-solving performance
(Hypothesis 4a), whereas controlled motivation was expected

to be negatively related to problem-solving performance
(Hypothesis 4b).

MATERIALS AND METHODS

Participants
Participants were 136 secondary school students (Mage = 13.73,
SD= 0.58, 74 girls) from the second year in the higher education
track. All students gave their consent to participate in this study.
Students’ parents received a letter in which information about the
study was provided and parents were asked for their consent.

Materials
Students participated in the computer rooms at their schools.
They entered an online learning environment1 of which the
content was created by the researchers for the purpose of this
study. All measures were assessed online.

Affect Questionnaire
At the beginning of the study, all students filled out the 20-
item Positive Affect and Negative Affect Scale (i.e., PANAS)
on a 5-point scale (Watson et al., 1988). For both the positive
affect scale (10-items) and the negative affect scale (10-items) an
average score was calculated per participant. The reliability for the

1www.qualtrics.com
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positive affect scale measured with Cronbach’s alpha was α= 0.76
and α= 0.76 for the negative affect scale.

Pretest and Posttest
The pretest and posttest consisted of three well-structured
problem-solving tasks about hereditary problems based on the
laws of Mendel which differed in complexity in terms of
element interactivity (cf. Kostons et al., 2012). All problem-
solving tasks consisted of five steps: (1) determining genotypes
from phenotypes, (2) constructing a family tree, (3) determining
whether the reasoning should be deductive or inductive, (4)
filling out the crosstabs, (5) distracting the answer from the
crosstabs (see Appendix A for an example). Problem-solving
tasks 1 and 2 could both be solved by deducting the genotype
of the child based on information about the parents. Task 2
was more difficult because the genotype of the parents was
heterozygote vs. homozygote in task 1, which means that more
interacting information elements needed to be taken into account
during the problem-solving process. Problem-solving task 3 was
the most complex problem-solving task because the genotype
of one of the parents had to be induced based on information
about the other parent and the child (i.e., inductive). This added
more interactive information elements, and therefore complexity
to the problem-solving process. The pretest and posttest were
isomorphic to each other (i.e., different surface features were
used). On both tests, students could score 1-point per correctly
solved step adding up to 5-points per problem-solving tasks and
15-points in total.

Video-Modeling Examples
Two video-modeling examples showed how to solve a hereditary
problem step by step. The hereditary problems explained in
the videos had a similar solution procedure because in both
videos the goal was to find the genotype of the child based
on information about the parents (i.e., deductive). The surface
features were different between the problems explained in the
videos (i.e., nose bridge and tongue folding). In the videos, a
model was thinking aloud about how to solve the problem and
wrote down the solution step by step. One video had a female
model and the other video had a male model explaining how
to solve a problem (see Appendix B for an example). In each
video after solving the problem, the model rated their mental
effort on a 9-point scale (Paas, 1992), made a self-assessment of
their performance over the five steps, made a regulation choice,
and explained these actions (cf. Raaijmakers et al., unpublished).
The regulation choice was based on a heuristic which uses
performance and effort to choose the next task. The heuristic
states that when one has a high performance combined with low
mental effort one needs to choose a more difficult task, whereas
with low performance and high effort one should choose an easier
task (see Paas and Van Merriënboer, 1993; Van Gog and Paas,
2008).

Mental Effort Rating
After each posttest question, mental effort invested in solving the
posttest problems was measured by asking: ‘How much effort did
you invest in solving this problem?’ Students could respond on a

9-point scale, ranging from 1 (very, very low mental effort) to 9
(very, very high mental effort, Paas, 1992; Paas et al., 2003b; Van
Gog et al., 2012). The mean mental effort rating for the pretest
and the posttest was calculated. Unfortunately, six students did
not fill out all the mental effort ratings and were left out of the
analysis of the mental effort data (n= 130).

Self-assessment
Students made a self-assessment of their performance as a
measure of self-monitoring after each posttest problem-solving
task (cf. Baars et al., 2014a). Students rated which steps of the
problem they thought they had solved correctly (0 indicating
every step was wrong and 5 indicating every step was correct).
Self-assessment accuracy was measured as absolute deviation
(Schraw, 2009). Thus, absolute accuracy was calculated as the
square root of the squared difference between actual performance
and rated self-assessment per problem-solving task. The lower
absolute deviation is, the smaller the distance between the
self-assessment and the actual performance is and therefore,
the more accurate self-monitoring (i.e., self-assessment) was.
Unfortunately, six students did not fill out all the self-assessments
and were left out of the analysis of the self-assessment data
(n= 130).

Regulation Choice Complexity
During the posttest, the complexity of the regulation choices of
students was measured. Students could choose problem-solving
tasks to study next from a database with 75 problem-solving
tasks at five complexity levels (see Figure 1, cf. Kostons et al.,
2012; Raaijmakers et al., unpublished). They choose a task after
solving each of the three posttest problems. The complexity of
the regulation choice was measured with 1 being the easiest task
to choose and 5 being the most difficult task to choose. The
simplest problems consisted of 2 generations, 1 unknown, single
answer, and deductive solution procedures. The most complex
problems consisted of 3 generations, 2 unknowns, multiple
answers, and deductive and inductive solutions procedures (for
an overview see Figure 1). The level of support was not
included in the level of complexity. Note, during the posttest
students did not actually study the tasks they choose and
they were made aware of that. The mean regulation choice
complexity score for the posttest was calculated. There were 33
students who did not make a regulation choice and therefore
they were left out of the analysis of regulation choice data
(n= 103).

Motivation Questionnaire
At the end of the study, all students filled out a 16-
item task-specific version of the academic self-regulation scale
(Vansteenkiste et al., 2004). In four subscales, they had to indicate
why they worked on solving the hereditary problem-solving
tasks: (1) external (e.g., “. . . because I am supposed to do so”),
(2) introjected (e.g., “. . . because I would feel guilty if I did not
do it”), (3) identified (e.g., “. . . because I could learn something
from it”), and (4) intrinsic motivation (e.g., “. . . because I found
it interesting”). Items were measured on a 5-point Likert-type
scale ranging from 1 (not at all true) to 5 (totally true). The
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four subscales were combined into an autonomous motivation
composite (intrinsic and identified motivation) and a controlled
motivation composite (introjected and external motivation; cf.
Vansteenkiste et al., 2004). There were 10 students who did not
complete the motivation questionnaire and therefore they were
left out of the analysis of the motivation data. For the autonomous
motivation composite (n = 126) Cronbach’s alpha was α = 0.89.
For the controlled motivation composite (n = 126) Cronbach’s
alpha was α= 0.65.

Procedure
In 50-min sessions in the computer room at their schools,
students participated in the current study using an online
learning environment2. In Figure 2, the procedure of the
study is depicted. First, all students filled out the affect
questionnaire. Then they took the pretest which was followed
by two video-modeling examples. Then students entered the
SRL phase in which they practiced with four problem-solving
tasks of their choice from a database with 75 problem-
solving tasks at five complexity levels (see the database in
Figure 1). Students also practiced with rating their perceived
mental effort, self-assessment, and regulation choices. Then
after practicing four problem-solving tasks, students took
a posttest with three problem-solving tasks of different
complexity. Students’ perceived mental effort, self-assessments,
regulation choices, and problem-solving performance were
measured. Finally, all students filled out the motivation
questionnaire.

RESULTS

In Table 1, the descriptive statistics of the pretest, posttest,
perceived mental effort, self-assessments during the posttest
(raw score, bias, and absolute accuracy), positive and negative
affect scale, and autonomous and controlled motivation can
be found. In Table 2, the correlations between these variables
are shown. Pretest performance was significantly positively
related to posttest performance. Positive affect was significantly
positively associated with negative affect, indicating that students
who scored higher on positive feelings also scored higher

2www.qualtrics.com

on negative feelings. Positive affect was significantly positively
related to autonomous motivation. In line with Hypothesis 1b,
negative affect was significantly negatively related to performance
on the pretest and posttest, which indicated that students
who reported more negative feelings scored lower on the
tests.

In line with Hypothesis 2a, both self-assessment bias and
absolute accuracy of self-assessments during the posttest were
significantly negatively related to posttest performance. That
is, the larger the difference between self-assessment and actual
performance was, the lower posttest performance was. It seemed
that students who are less accurate in their self-assessment also
score lower on the posttest.

In support of Hypotheses 3b and c, the ratings of perceived
mental effort showed a significant negative relation with the
self-assessment raw score, bias, and complexity of regulation
choices. This means that students who experienced a higher
mental effort showed lower self-assessment and bias values, and
choose less complex tasks to restudy. Both self-assessment raw
scores and bias were positively correlated to the complexity of
regulation choices. That is, the higher self-assessment raw scores
and bias were, the more complex regulation choices were. In
line with theories of SRL, this shows the sensitivity of regulation
choices in relation to self-assessments (control sensitivity; Koriat
and Goldsmith, 1996). Also, in line with Hypothesis 3a, perceived
mental effort was significantly negatively related to posttest
performance.

Autonomous motivation was significantly positively related to
controlled motivation. It seems that students who scored higher
on autonomous motivation also scored higher on the controlled
motivation. Autonomous motivation also showed a significant
negative relation with self-assessment absolute accuracy during
the posttest. That is, students who scored higher on autonomous
motivation had lower absolute accuracy scores which means that
the deviation between their self-assessment and actual posttest
performance was smaller. In other words, students with higher
autonomous motivation also had more accurate self-assessments
during the posttest. In support of Hypothesis 4b, autonomous
motivation also showed a significant positive relation with
posttest performance. This indicates that students who scored
higher on autonomous motivation also scored higher on the
posttest.

FIGURE 2 | Procedure of the study.
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TABLE 1 | Means and Standard Deviations for performance, affect, motivation,
and self-regulation variables.

Variable (Range) n Mean (SD)

Pretest score (0–15) 136 2.05 (1.59)

Perceived mental effort pretest (1–9) 136 7.74 (1.88)

Posttest score (0–15) 136 4.82 (2.85)

Perceived mental effort posttest (1–9) 130 5.60 (2.33)

Self-assessment rating (0–5) 130 2.71 (1.46)

Self-assessment bias (−5 to +5) 130 1.11 (1.60)

Self-assessment absolute accuracy (0–5) 130 1.74 (1.14)

Regulation complexity (1–5) 103 2.30 (1.26)

Positive affect scale (1–5) 136 2.64 (0.64)

Negative affect scale (1–5) 136 1.42 (0.44)

Autonomous motivation scale (1–5) 126 2.25 (0.84)

Controlled motivation scale (1–5) 126 2.70 (0.62)

Regulation Choices and Problem
Complexity
The complexity level at which students selected a task for restudy
and how they performed on the different complexity levels in
the posttest were explored. Regulation choice complexity was not
normally distributed. The mode of all three selection moments
was regulation choice complexity 1. Therefore, a Friedman’s
ANOVA was conducted for regulation choice complexity at all
three selection moments during the posttest. The regulation
choice complexity differed significantly over the three moments,
χ2(2) = 8.59, p = 0.014. Wilcoxon tests were used to follow
up this finding. It appeared that regulation choice complexity
differed significantly between moments 1 (Mean rank = 2.14)
and 3 (Mean rank = 1.83), T = 0.30, r = 0.21 (small effect size).
Yet, no significant differences between selection moments 1 and
2 (Mean rank= 2.03) or 2 and 3 were found.

Furthermore, as a check on the complexity of the problem-
solving tasks in terms of element interactivity, a repeated
measures ANOVA with complexity levels as a within-subjects
variable was performed. It showed that problem-solving
performance on the posttest differed significantly between the

complexity levels of the problem-solving tasks, F(1,135)= 56.13,
p < 0.001, η2

p = 0.30. Performance on the least complex problem-
solving task 1 (M = 2.45, SD = 1.68) was significantly higher
compared to task 2 (M = 1.23, SD = 1.40), p < 0.001, and
compared to task 3 (M = 1.14, SD = 0.71), p < 0.001. There was
no significant difference between performance on tasks 2 and 3.

Affect, SRL Skills, and Motivation As
Predictors for Problem-Solving
Performance
We performed stepwise regression with pretest performance
in Model 1 and positive affect, negative affect, self-assessment
accuracy during the posttest, regulation choice complexity,
perceived mental effort, autonomous, and controlled motivation
in Model 2. We assessed multicollinearity in accordance
with the guidelines by Field (2009) by checking the VIF
and tolerance values. The VIF provides an indication of
whether a predictor has a strong relationship with the other
predictor(s) and the tolerance statistic is defined as 1/VIF. VIF
values were well below 10 and tolerance was well above 0.2.
Thus, collinearity was not a problem for our model (Field,
2009).

As shown in Table 3, Model 1 with pretest performance
as a predictor of posttest problem-solving performance was
significant, F(1,100) = 8.80, p = 0.004, R2

= 0.08. Pretest
performance was a significant positive predictor of posttest
problem-solving performance.

In Model 2, positive affect, negative affect, posttest self-
assessment accuracy, posttest regulation choice complexity,
posttest perceived mental effort, autonomous and controlled
motivation were added as predictors, F(8,93) = 4.89, p < 0.001,
R2
= 0.30. Model 2 explained more variance compared to

Model 1, 1R2
= 0.22, p = 0.001. Pretest performance was

again a significant positive predictor or posttest problem-
solving performance in Model 2. In line with Hypothesis 1b,
negative affect was a significant negative predictor of posttest
problem-solving performance. That is, the more negative
affect students reported, the lower their posttest performance
was. Also, in support of Hypothesis 2a, self-assessment

TABLE 2 | Summary of intercorrelations between measures.

Measures 1 2 3 4 5 6 7 8 9 10 11

(1) Positive affect −

(2) Negative affect 0.20∗ −

(3) Pretest performance −0.07 −0.26∗∗ −

(4) Autonomous motivation 0.32∗∗ −0.05 0.13 −

(5) Controlled motivation 0.12 0.02 0.02 0.23∗∗ −

(6) Mental effort (posttest) −0.03 0.11 −0.01 −0.09 0.16 −

(7) Self-assessment raw score 0.07 −0.01 0.07 0.12 −0.08 −0.53∗∗ −

(8) Self-assessment bias 0.03 0.16 −0.12 −0.07 −0.10 −0.32∗∗ 0.81∗∗ −

(9) Self-assessment absolute accuracy −0.04 0.15 −0.11 −0.18∗ −0.03 −0.12 0.63∗∗ 0.81∗∗ −

(10) Regulation choice complexity −0.07 −0.00 −0.01 0.06 −0.12 −0.30∗∗ 0.27∗∗ 0.23∗ 0.16 −

(11) Posttest performance 0.06 −0.22∗∗ 0.29∗∗ 0.30∗∗ 0.05 −0.27∗∗ 0.17 −0.44∗∗ −0.40∗∗ 0.04 −

∗Correlation is significant at the 0.05 level (2-tailed). ∗∗Correlation is significant at the 0.01 level (2-tailed). High values for self-assessment absolute accuracy indicate low
accuracy.
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TABLE 3 | Stepwise regression with predictors of problem-solving performance.

b SE β p

Step 1

Constant 3.85 0.44 <0.001

Pretest performance 0.50 0.17 0.28 0.004

Step 2

Constant 6.05 1.89 0.002

Pretest performance 0.34 0.16 0.19 0.035

Positive affect 0.49 0.42 0.11 0.252

Negative affect −1.54 0.76 −0.19 0.046

Self-assessment accuracy −0.83 0.24 −0.31 0.001

Regulation choice complexity 0.06 0.21 0.03 0.768

Mental effort posttest −0.29 0.12 −0.24 0.013

Autonomous motivation 0.41 0.34 0.12 0.232

Controlled motivation 0.34 0.46 0.07 0.464

R2
= 0.08 for Step 1; 1R2

= 0.30 for Step 2 (p = 0.001).

accuracy was a significant negative predictor of posttest
problem-solving performance. Self-assessment accuracy
during the posttest was measured as absolute accuracy. The
lower this measure is the more accurate self-assessments
were. Thus, the negative relation with posttest performance
means that the less accurate students’ self-assessments
were, the lower posttest performance was. Furthermore,
in line with Hypothesis 3, perceived mental effort was a
significant negative predictor of posttest problem-solving
performance. That is, the higher perceived mental effort during
the posttest was, the lower posttest problem-solving performance
was.

CONCLUSION AND DISCUSSION

The current study investigated the relation between affect
(i.e., positive affect and negative affect), SRL skills (i.e.,
monitoring and regulation), perceived mental effort,
motivation (i.e., autonomous and controlled motivation),
and performance when learning to solve problems in a
complex learner-controlled, online learning environment
with secondary education students. Students performed
worse on the more complex problems during the posttest.
Also, regulation choice complexity was lower after the most
difficult problem-solving task when compared to the least
complex problem-solving task at the posttest. Interestingly, the
results showed that students’ negative affect, SRL skills, and
perceived mental effort play a crucial role in learning to solve
problems in a self-regulated way in a learner-controlled study
environment.

In contrast to Hypothesis 1a, positive affect was not
a significant predictor of problem-solving performance in
the current study using well-structured problem-solving tasks
with high element interactivity. This result does not fit
previous findings showing that positive affect improves cognitive
processing (e.g., Estrada et al., 1994; Isen, 2001; Brand et al.,
2007; Politis and Houtz, 2015) and academic achievement
(Mega et al., 2014). Possibly, this difference can be explained

by the way affect was measured and whether it was induced
or not. Many of the studies reviewed by Isen (2001), in the
studies by Estrada et al. (1994), Brand et al. (2007), and
Politis and Houtz (2015) induced positive affect was found
to improve different aspects of problem-solving performance.
In the current study, positive affect was measured using a
questionnaire at the beginning of the study. Therefore, it
could be that positive affect measured by a rating provided
by students does not have the same effect as induced positive
affect on problem-solving performance. The effect of positive
affect without inducement might be more prominent on more
general measures of achievement made over a period of time
(e.g., Mega et al., 2014). Interestingly, in the study by Kaufmann
and Vosburg (1997) high school students also rated their affect
and it was found that positive affect reduced performance on
insight problems but not on analytical tasks. Yet, in our study we
did not find a positive or negative association of positive affect
with problem-solving performance on well-structured stepwise
problems in high school. Furthermore, in our study students
learned to solve problems in a self-regulated way and had
to make decisions about which tasks to practice which made
the learning process as a whole quite complex for students.
Spering et al. (2005) found that in CPS, performance was
not affected by positive or negative affect which would be
partially in line with our findings (i.e., no relation between
positive affect and problem-solving performance). Yet, in
line with earlier results (e.g., Pekrun et al., 2002; Mega
et al., 2014) and our hypothesis, we found that negative
affect influenced problem-solving performance. Specifically, in
support of Hypothesis 1b, negative affect negatively predicted
problem-solving performance. The difference between the results
found by Kaufmann and Vosburg (1997) and the current
study might be explained by the difference in the type of
problem-solving tasks used in both studies. Although, element
interactivity made the problems complex for students, the
stepwise solving procedure also made the problem-solving tasks
well-structured. Possibly, our problem-solving tasks were more
transparent and therefore less complex than the insight problems
used by Kaufmann and Vosburg (1997). Because of different
dimension on which complexity can be defined (e.g., structure,
element interactivity, and transparency), future research should
investigate the relation of positive and negative affect with
these different dimensions of complexity in problem-solving
tasks.

In line with Hypothesis 2a and theories of SRL (e.g.,
Winne and Hadwin, 1998; Zimmerman, 2008), self-assessment
accuracy was positively related to problem-solving performance.
Students who were less accurate in their self-assessments,
showed lower posttest problem-solving performance. Hence,
monitoring seems an important prerequisite for successful
learning to solve problems in a self-regulated way. However,
there is a possibility that students who were high performers,
were also better able to monitor their own learning. The
results of the current study cannot establish the causality
of this relation. Future research could use an experiment
to investigate the effect of monitoring on problem-solving
performance.
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In contrast to Hypothesis 2b, the regulation choice complexity
was not related to problem-solving performance. This might
be explained by the way we operationalized regulation choices.
That is, students had to choose what task they wanted to work
on next. According to the discrepancy-reduction framework of
regulation (e.g., Nelson et al., 1994) students would choose tasks
in between their current state of learning and the goal state.
Within this perspective on regulation of learning, choosing more
difficult tasks would contribute to successful SRL. Yet, students
might have chosen to select a task they were almost able to solve,
which would be in line with the region of proximal learning to
explain regulation of learning (e.g., Kornell and Metcalfe, 2006).
Also, students might have chosen the task because they were
curious about or just wanted to solve based on an agenda they
might have had for themselves (i.e., agenda-based regulation,
Ariel et al., 2009). For example, students could have been curious
about the most complex problems or they wanted to finish as
fast as possible and therefore choose the easiest problems. Also,
regulation choices might have been inaccurate (i.e., deviate from
actual performance). If students were not able to accurately
monitor and/or regulate their own learning, regulation choice
complexity would not be related to performance (cf. Baars et al.,
2014a, 2016). This could also be caused by the fact that the
regulation choices made during the posttest were not granted
(i.e., students did not actually work on the problem they chose
again). Future research could investigate the reasons students
have to choose certain tasks to regulate their learning and if these
choices are accurate in relation to their performance. In addition,
future research could grant students their regulation choices and
investigate how that would affect subsequent problem-solving
performance.

Perceived mental effort during the posttest was significantly
related to problem-solving performance which was in line
with Hypothesis 3. That is, the more mental effort students
experienced during the posttest, the lower their posttest
performance was. This finding is in line with CLT (e.g., Sweller
et al., 1998) and the efficiency account introduced by Paas and
Van Merriënboer (1993; see also Van Gog and Paas, 2008). Yet,
it would be interesting to follow up on this finding by including
measures of perceived mental effort and performance during
the learning phase in future research. That way the learning
process and the relation to perceived mental effort could be
investigated more elaborately. Furthermore, in the current study
perceived mental effort was also related to the complexity of
regulation choices during the posttest. That is, students who
experienced higher mental effort during the posttest, chose less
complex problems when making regulation choices during the
posttest. Possibly, students used their perceived mental effort
as an indicator to regulate their learning. This is in line with
earlier research showing that students use their study effort to
regulate their learning when regulation is data-driven (i.e., based
on the ease of learning, Koriat et al., 2014). This seems sensible
because mental effort was a significant predictor of problem-
solving performance. This result provides support for studies
showing that training students to use their perceived mental
effort to regulate their learning when learning to solve problems
can be effective (e.g., Kostons et al., 2012; Raaijmakers et al.,

unpublished). Future research could also include measures of
perceived difficulty and self-efficacy to investigate the relation
between perceived mental effort, task difficulty, self-efficacy, and
performance during SRL.

Contrary to our expectations (Hypotheses 4a and 4b),
motivation was not a significant predictor of problem-solving
performance. Based on earlier studies (e.g., Vansteenkiste et al.,
2009) autonomous motivation was expected to be a positive
predictor of problem-solving performance. Yet, in the current
study we did not investigate the different types of motivation
(i.e., profiles: autonomous, identified, introjected, and external
motivation, Vansteenkiste et al., 2009). Perhaps when taking into
account the differences between motivational profiles, the effect
of motivation on performance would be more pronounced. In
addition, motivation was measured at the end of the experiment
because students needed to be familiar with the materials used in
the study. Yet, perhaps because of fatigue or boredom, students
rated their motivation lower at the end of study compared
to a measurement that would have been earlier on in the
study. Future research could investigate this by placing the
motivation questionnaire right after the pretest which would
give students an idea of the materials without being mentally
exhausted.

Limitations of the current study are the small number of
secondary education students who could take part in the study.
Future research could replicate the current study with more
participants. This would also enable researchers to take into
account different motivational profiles and their relation to
positive and negative affect as predictors of problem-solving
performance. Also, problem-solving performance was quite
low and measured using a limited set of tasks during the
posttest. It would be interesting to use more tasks for a
longer period of time covering the SRL phase and posttest
to investigate the effect of motivation and affect. We found
positive and negative affect to be positively related which could
have been caused by the intensity of affect (Diener et al.,
1985). Future research could measure this dimension of affect
to control for it. In addition, for both motivation and affect
questionnaires were used as a measurement. The motivation
questionnaire was task specific and therefore placed at the
end of the study, which could have caused students to use
their experience of success or failure during the posttest when
filling out the motivation questionnaire. Future research could
design experiments in which affect is induced and motivation
is measured earlier during the study or through the learning
behaviors of students.

In conclusion, the current study showed that negative affect,
monitoring accuracy, and perceived mental effort are predictors
of problem-solving performance of secondary education students
learning to solve problems in a learner-controlled, online
environment. The fact that these predictors were all negatively
related to performance is an important indication that students
need more support when learning to solve problems in a self-
regulated way. Interventions to support SRL processes (e.g.,
training, cf. Kostons et al., 2012) and reduce mental effort
involved in learning to solve problems (e.g., worked-examples,
Sweller, 1988), could potentially prevent negative effects of
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inaccurate monitoring and too high cognitive load during
learning. Future research could investigate the role of support
during learning to solve problems in a self-regulated way.
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Complex problem solving is challenging and a high-level cognitive process for individuals.

When analyzing complex problem solving in teams, an additional, new dimension has

to be considered, as teamwork processes increase the requirements already put on

individual team members. After introducing an idealized teamwork process model, that

complex problem solving teams pass through, and integrating the relevant teamwork

skills for interdependently working teams into the model and combining it with the four

kinds of team processes (transition, action, interpersonal, and learning processes), the

paper demonstrates the importance of fulfilling team process demands for successful

complex problem solving within teams. Therefore, results from a controlled team

study within complex situations are presented. The study focused on factors that

influence action processes, like coordination, such as emergent states like collective

orientation, cohesion, and trust and that dynamically enable effective teamwork in

complex situations. Before conducting the experiments, participants were divided by

median split into two-person teams with either high (n = 58) or low (n = 58) collective

orientation values. The study was conducted with the microworld C3Fire, simulating

dynamic decision making, and acting in complex situations within a teamwork context.

The microworld includes interdependent tasks such as extinguishing forest fires or

protecting houses. Two firefighting scenarios had been developed, which takes a

maximum of 15min each. All teams worked on these two scenarios. Coordination

within the team and the resulting team performance were calculated based on a log-file

analysis. The results show that no relationships between trust and action processes

and team performance exist. Likewise, no relationships were found for cohesion.

Only collective orientation of team members positively influences team performance in

complex environments mediated by action processes such as coordination within the

team. The results are discussed in relation to previous empirical findings and to learning

processes within the team with a focus on feedback strategies.

Keywords: interdependence, team processes, complex problem solving, collective orientation, trust, cohesion,

C3Fire, microworld
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INTRODUCTION

Complex problems in organizational contexts are seldom solved
by individuals. Generally, interdependently working teams of
experts deal with complex problems (Fiore et al., 2010), which
are characterized by element interactivity/ interconnectedness,
dynamic developments, non-transparency and multiple, and/or
conflicting goals (Dörner et al., 1983; Brehmer, 1992; Funke,
1995). Complex problem solving “takes place for reducing the
barrier between a given start state and an intended goal state
with the help of cognitive activities and behavior. Start state,
intended goal state, and barriers prove complexity, change
dynamically over time, and can be partially intransparent”
(Funke, 2012, p. 682). Teams dealing with complex problems
in interdependent work contexts, for example in disaster,
crisis or accident management, are called High Responsibility
Teams. They are named High Responsibility Teams (HRTs;
Hagemann, 2011; Hagemann et al., 2011) due to their dynamic
and often unpredictable working conditions and demanding
work contexts, in which technical faults and slips have severe
consequences for human beings and the environment if they
are not identified and resolved within the team immediately
(Kluge et al., 2009). HRTs bear responsibility regarding lives of
third parties and their own lives based on their actions and
consequences.

The context of interdependently working HRTs, dealing with
complex problems, is described as follows (Zsambok, 1997):
Members of interdependently working teams have to reach ill-
defined or competing goals in common in poor structured,
non-transparent and dynamically changing situations under the
consideration of rules of engagement and based on several
cycles of joint action. Some or all goals are critical in terms
of time and the consequences of actions result in decision-
based outcomes with high importance for the culture (e.g.,
human life). In HRT contexts, added to the features of the
complexity of the problem, is the complexity of relationships,
which is called social complexity (Dörner, 1989/2003) or
crew coordination complexity (Kluge, 2014), which results
from the interconnectedness between multiple agents through
coordination requirements. The dynamic control aspect of the
continuous process is coupled with the need to coordinate
multiple highly interactive processes imposing high coordination
demands (Roth and Woods, 1988; Waller et al., 2004; Hagemann
et al., 2012).

Within this article, it is important to us to describe the

theoretical background of complex problem solving in teams

in depth and to combine different but compatible theoretical

approaches, in order to demonstrate their theoretical and
practical use in the context of the analysis of complex problem
solving in teams. In Industrial and Organizational Psychology, a
detailed description of tasks and work contexts that are in the
focus of the analysis is essential. The individual or team task is
the point of intersection between organization and individual as
a “psychologically most relevant part” of the working conditions
(Ulich, 1995).Thus, the tasks and the teamwork context of teams
that deal with complex problems is of high relevance in the
present paper. We will comprehensively describe the context of

complex problem solving in teams by introducing a model of an
idealized teamwork process that complex problem solving teams
pass through and extensively integrate the relevant teamwork
skills for these interdependently working teams into the idealized
teamwork process model.

Furthermore, we will highlight the episodic aspect concerning
complex problem solving in teams and combine the agreed
on transition, action, interpersonal and learning processes of
teamwork with the idealized teamwork process model. Because
we are interested in investigating teamwork competencies and
action processes of complex problem solving teams, we will
analyze the indirect effect of collective orientation on team
performance through the teams’ coordination behavior. The
focusing of the study will be owed to its validity. Even though that
we know that more aspects of the theoretical frameworkmight be
of interest and could be analyzed, we will focus on a detail within
the laboratory experiment for getting reliable and valid results.

Goal, Task, and Outcome Interdependence

in Teamwork
Concerning interdependence, teamwork research focuses on
three designated features, which are in accordance with general
process models of human action (Hertel et al., 2004). One type
is goal interdependence, which refers to the degree to which
teams have distinct goals as well as a linkage between individual
members and team goals (Campion et al., 1993; Wageman,
1995). A second type is task interdependence, which refers to the
interaction between team members. The team members depend
on each other for work accomplishment, and the actions of one
member have strong implications for the work process of all
members (Shea and Guzzo, 1987; Campion et al., 1993; Hertel
et al., 2004). The third type is outcome interdependence, which
is defined as the extent to which one team member’s outcomes
depend on the performance of other members (Wageman, 1995).
Accordingly, the rewards for each member are based on the
total team performance (Hertel et al., 2004). This can occur,
for instance, if a team receives a reward based on specific
performance criteria. Although interdependence is often the
reason why teams are formed in the first place, and it is stated as
a defining attribute of teams (Salas et al., 2008), different levels of
task interdependence exist (Van de Ven et al., 1976; Arthur et al.,
2005).

The workflow pattern of teams can be

(1) Independent or pooled (activities are performed separately),
(2) Sequential (activities flow from one member to another in a

unidirectional manner),
(3) Reciprocal (activities flow between team members in a back

and forth manner) or
(4) Intensive (team members must simultaneously diagnose,

problem-solve, and coordinate as a team to accomplish a
task).

Teams that deal with complex problems work within intensive
interdependence, which requires greater coordination patterns
compared to lower levels of interdependence (Van de Ven et al.,
1976; Wageman, 1995) and necessitates mutual adjustments as
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well as frequent interaction and information integration within
the team (Gibson, 1999; Stajkovic et al., 2009).

Thus, in addition to the cognitive requirements related to
information processing (e.g., encoding, storage and retrieval
processes (Hinsz et al., 1997), simultaneously representing and
anticipating the dynamic elements and predicting future states
of the problem, balancing contradictory objectives and decide
on the right timing for actions to execute) of individual team
members, the interconnectedness between the experts in the team
imposes high team process demands on the teammembers. These
team process demands follow from the required interdependent
actions of all team members for effectively using all resources,
such as equipment, money, time, and expertise, to reach high
team performance (Marks et al., 2001). Examples for team
process demands are the communication for building a shared
situation awareness, negotiating conflicting perspectives on how
to proceed or coordinating and orchestrating actions of all team
members.

A Comprehensive Model of the Idealized

Teamwork Process
The cognitive requirements, that complex problem solving teams
face, and the team process demands are consolidated within our
model of an idealized teamwork process in Figure 1 (Hagemann,
2011; Kluge et al., 2014). Individual and team processes converge
sequential and in parallel and influencing factors as well as
process demands concerning complex problem solving in teams
can be extracted. The core elements of the model are situation
awareness, information transfer, individual and shared mental
models, coordination and leadership, and decision making.

Complex problem solving teams are responsible for finding
solutions and reaching specified goals. Based on the overall
goals various sub goals will be identified at the beginning of
the teamwork process in the course of mission analysis, strategy
formulation and planning, all aspects of the transition phase
(Marks et al., 2001). The transition phase processes occur during
periods of time when teams focus predominantly on evaluation
and/or planning activities. The identified and communicated
goals within the team represent relevant input variables for each
teammember in order to build up a Situation Awareness (SA). SA
contains three steps and is the foundation for an ideal and goal
directed collaboration within a team (Endsley, 1999; Flin et al.,
2008). The individual SA is the start and end within the idealized
teamwork process model. SA means the assessment of a situation
which is important for complex problem solving teams, as they
work based on the division of labor as well as interdependently
and each team member needs to achieve a correct SA and
to share it within the team. Each single team member needs
to utilize all technical and interpersonal resources in order to
collect and interpret up-to-date goal directed information and to
share this information with other teammembers via “closed-loop
communication.”

This information transfer focuses on sending and receiving
single SA between team members in order to build up a Shared
Situation Awareness (SSA). Overlapping cuts of individual SA
are synchronized within the team and a bigger picture of the

situation is developed. Creating a SSA means sharing a common
perspective of the members concerning current events within
their environment, their meaning and their future development.
This shared perspective enables problem-solving teams to attain
high performance standards through corresponding and goal
directed actions (Cannon-Bowers et al., 1993).

Expectations of each team member based on briefings,
individual mental models and interpositional knowledge influence
the SA, the information transfer and the consolidation process.
Mental models are internal and cognitive representations of
relations and processes (e.g., execution of tactics) between
various aspects or elements of a situation. They help team
members to describe, explain and predict circumstances
(Mathieu et al., 2000). Mental models possess knowledge
elements required by team members in order to assess a current
situation in terms of SA. Interpositional knowledge refers to
an individual understanding concerning the tasks and duties
of all team members, in order to develop an understanding
about the impact of own actions on the actions of other team
members and vice versa. It supports the team in identifying the
information needs and the amount of required help of other
members and in avoiding team conflicts (Smith-Jentsch et al.,
2001). This knowledge is the foundation for anticipating the team
members’ needs for information and it is important for matching
information within the team.

Based on the information matching process within the team,
a common understanding of the problem, the goals and the
current situation is developed in terms of a Shared Mental Model
(SMM), which is important for the subsequent decisions. SMM
are commonly shared mental models within a team and refer
to the organized knowledge structures of all team members,
that are shared with each other and which enable the team to
interact goal-oriented (Mathieu et al., 2000). SMM help complex
problem solving teams during high workload to adapt fast and
efficiently to changing situations (Waller et al., 2004). They also
enhance the teams’ performance and communication processes
(Cannon-Bowers et al., 1993; Mathieu et al., 2000). Especially
under time pressure and in crucial situations when overt verbal
communication and explicit coordination is not applicable,
SMM are fundamental in order to coordinate implicitly. This
information matching process fosters the building of a shared
understanding of the current situation and the required actions.
In order to do so teamwork skills (see Wilson et al., 2010) such
as communication, coordination, and cooperation within the team
are vitally important. Figure 1 incorporates the teamwork skills
into the model of an idealized teamwork process.

Depending on the shared knowledge and SA within the
team, the coordination can be based either on well-known
procedures or shared expectations within the team or on explicit
communication based on task specific phraseology or closed-
loop communication. Cooperation needs mutual performance
monitoring within the team, for example, in order to apply
task strategies to accurately monitor teammate performance and
prevent errors (Salas et al., 2005). Cooperation also needs backup
behavior of each team member, for example, and continuous
actions in reference to the collective events. The anticipation of
other team members’ needs under high workload maintains the
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FIGURE 1 | Relevant teamwork skills (orange color) for interdependently working teams (see Wilson et al., 2010) integrated into the model of an idealized teamwork

process.

teams’ performance and the well-being of each team member
(Badke-Schaub, 2008). A successful pass through the teamwork
process model also depends e.g., on the trust and the cohesion
within the team and the collective orientation of each team
member.

Collective orientation (CO) is defined “as the propensity to
work in a collectivemanner in team settings” (Driskell et al., 2010,
p. 317). Highly collectively oriented people work with others on
a task-activity and team-activity track (Morgan et al., 1993) in
a goal-oriented manner, seek others’ input, contribute to team
outcomes, enjoy team membership, and value cooperativeness
more than power (Driskell et al., 2010). Thus, teams with
collectively oriented members perform better than teams with
non-collectively oriented members (Driskell and Salas, 1992).
CO, trust and cohesion as well as other coordination and
cooperation skills are so called emergent sates that represent
cognitive, affective, and motivational states, and not traits, of
teams and teammembers, and which are influenced, for example,
by team experience, so that emergent states can be considered as
team inputs but also as team outcomes (Marks et al., 2001).

Based on the information matching process the complex
problem solving team or the team leader needs to make
decisions in order to execute actions. The task prioritization and
distribution is an integrated part of this step (Waller et al., 2004).
Depending on the progress of the dynamic, non-transparent

and heavily foreseeable situation tasks have to be re-prioritized
during episodes of teamwork. Episodes are “temporal cycles of
goal-directed activity” in which teams perform (Marks et al.,
2001, p. 359). Thus, the team acts adaptive and is able to react
flexible to situation changes. The team coordinates implicitly
when each team member knows what he/she has to do in
his/her job, what the others expect from him/her and how he/she
interacts with the others. In contrast, when abnormal events
occur and they are recognized during SA processes, the team
starts coordinating explicitly via communication, for example.
Via closed-loop communication and based on interpositional
knowledge new strategies are communicated within the team and
tasks are re-prioritized.

The result of the decisionmaking and action taking flows back
into the individual SA and the as-is state will be compared with
the original goals. This model of an idealized teamwork process
(Figure 1) is a regulator circuit with feedback loops, which
enables a team to adapt flexible to changing environments and
goals. The foundation of this model is the classic Input-Process-
Outcome (IPO) framework (Hackman, 1987) with a strong focus
on the process part. IPO models view processes as mechanisms
linking variables such as member, team, or organizational
features with outcomes such as performance quality and quantity
or members’ reactions. This mediating mechanism, the team
process, can be defined as “members’ interdependent acts that
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convert inputs to outcomes through cognitive, verbal, and
behavioral activities directed toward organizing taskwork to
achieve collective goals” (Marks et al., 2001, p. 357). That means
team members interact interdependently with other members
as well as with their environment. These cognitive, verbal,
and behavioral activities directed toward taskwork and goal
attainment are represented as gathering situation awareness,
communication, coordination, cooperation, the consolidation
of information, and task prioritization within our model of
an idealized teamwork process. Within the context of complex
problem solving, teams have to face team process demands in
addition to cognitive challenges related to individual information
processing. That means teamwork processes and taskwork to
solve complex problems co-occur, the processes guide the
execution of taskwork.

The dynamic nature of teamwork and temporal influences on
complex problem solving teams are considered within adapted
versions (Marks et al., 2001; Ilgen et al., 2005) of the original IPO
framework. These adaptations propose that teams experience
cycles of joint action, so called episodes, in which teams
perform and also receive feedback for further actions. The IPO
cycles occur sequentially and simultaneously and are nested in
transition and action phases within episodes in which outcomes
from initial episodes serve as inputs for the next cycle (see
Figure 2). These repetitive IPO cycles are a vital element of our
idealized teamwork process model, as it incorporates feedback
loops in such a way, that the outcomes, e.g., changes within
the as-is state, are continuously compared with the original
goals. Detected discrepancies within the step of updating SA
motivate the team members to consider further actions for goal
accomplishment.

When applying this episodic framework to complex problem
solving teams it becomes obvious that teams handle different
types of taskwork at different phases of task accomplishment
(Marks et al., 2001). That means episodes consist of two phases,
so-called action and transition phases, in which teams are engaged
in activities related to goal attainment and in other time in
reflecting on past performance and planning for further common
actions. The addition of the social complexity to the complexity
of the problem within collaborative complex problem solving
comes to the fore here. During transition phases teams evaluate
their performance, compare the as-is state against goals, reflect
on their strategies and plan future activities to guide their goal
accomplishment. For example, teammembers discuss alternative
courses of action, if their activities for simulated firefighting,
such as splitting team members in order to cover more space of
the map, are not successful. During action phases, teams focus

directly on the taskwork and are engaged in activities such as
exchanging information about the development of the dynamic
situation or supporting each other. For example, a team member
recognizes high workload of another team member and supports
him/her in collecting information or in taking over the required
communication with other involved parties.

Transition and Action Phases
The idealized teamwork process model covers these transition
and action phases as well as the processes occurring during
these two phases of team functioning, which can be clustered
into transition, action, and interpersonal processes. That means
during complex problem solving the relevant or activated
teamwork processes in the transition and action phases change
as teams move back and forth between these phases. As this
taxonomy of team processes from Marks et al. (2001) states
that a team process is multidimensional and teams use different
processes simultaneously, some processes can occur either during
transition periods or during action periods or during both
periods. Transition processes especially occur during transition
phases and enable the team to understand their tasks, guide their
attention, specify goals and develop courses of action for task
accomplishment. Thus, transition processes include (see Marks
et al., 2001) mission analysis, formulation and planning (Prince
and Salas, 1993), e.g., fighting a forest fire, goal specification
(Prussia and Kinicki, 1996), e.g., saving as much houses and
vegetation as possible, and strategy formulation (Prince and
Salas, 1993; Cannon-Bowers et al., 1995), e.g., spreading team
members into different geographic directions. Action processes
predominantly occur during action phases and support the team
in conducting activities directly related to goal accomplishment.
Thus, action processes are monitoring progress toward goals
(Cannon-Bowers et al., 1995), e.g., collecting information how
many cells in a firefighting simulation are still burning, systems
monitoring (Fleishman and Zaccaro, 1992), e.g., tracking team
resources such as water for firefighting, team monitoring and
backup behavior (Stevens and Campion, 1994; Salas et al.,
2005), e.g., helping a team member and completing a task
for him/her, and coordination (Fleishman and Zaccaro, 1992;
Serfaty et al., 1998), e.g., orchestrating the interdependent actions
of the team members such as exchanging information during
firefighting about positions of team members for meeting at the
right time at the right place in order to refill the firefighters
water tanks. Especially the coordination process is influenced by
the amount of task interdependence as coordination becomes
more and more important for effective team functioning when
interdependence increases (Marks et al., 2001). Interpersonal

FIGURE 2 | Teamwork episodes with repetitive IPO cycles (Marks et al., 2001).
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processes occur during transition and action phases equally
and lay the foundation for the effectiveness of other processes
and govern interpersonal activities (Marks et al., 2001). Thus,
interpersonal processes include conflict management (Cannon-
Bowers et al., 1995), like the development of team rules,
motivation and confidence building (Fleishman and Zaccaro,
1992), like encourage team members to perform better, and
affect management (Cannon-Bowers et al., 1995), e.g., regulating
member emotions during complex problem solving.

Summing up, process demands such as transition processes
that complex problem solving teams pass through, are mission
analysis, planning, briefing and goal specification, visualized
on the left side of the idealized teamwork process model (see
Figure 3). The results of these IPO cycles lay the foundation
for gathering a good SA and initiating activities directed toward
taskwork and goal accomplishment and therefore initiating
action processes. The effective execution of action processes
depends on the communication, coordination, cooperation,
matching of information, and task prioritization as well as
emergent team cognition variables (SSA and SMM) within
the team. The results, like decisions, of these IPO cycles flow
back into the next episode and may initiate further transition
processes. In addition, interpersonal processes play a crucial

role for complex problem solving teams. That means, conflict
management, motivating and confidence building, and affect
management are permanently important, no matter whether
a team runs through transition or action phases and these
interpersonal processes frame the whole idealized teamwork
process model. Therefore, interpersonal processes are also able
to impede successful teamwork at any point as breakdowns
in conflict or affect management can lead to coordination
breakdowns (Wilson et al., 2010) or problems with monitoring
or backing up teammates (Marks et al., 2001). Thus, complex
problem solving teams have to face these multidimensional
team process demands in addition to cognitive challenges, e.g.,
information storage or retrieval (Hinsz et al., 1997), related to
individual information processing.

Team Learning Opportunities for Handling

Complex Problems
In order to support teams in handling complex situations or
problems, learning opportunities seem to be very important
for successful task accomplishment and for reducing possible
negative effects of team process demands. Learning means any
kind of relative outlasted changes in potential of human behavior
that cannot be traced back to age-related changes (Bower and

FIGURE 3 | The integration of transition, action, interpersonal, and learning processes into the model of an idealized teamwork process.
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Hilgard, 1981; Bredenkamp, 1998). Therefore, Schmutz et al.
(2016) amended the taxonomy of team processes developed by
Marks et al. (2001) and added learning processes as a fourth
category of processes, which occur during transition and action
phases and contribute to overall team effectiveness. Learning
processes (see also Edmondson, 1999) include observation,
e.g., observing own and other team members’ actions such
as the teammate’s positioning of firewalls in order to protect
houses in case of firefighting, feedback, like giving a teammate
information about the wind direction for effective positioning
of firewalls, and reflection, e.g., talking about procedures
for firefighting or refilling water tanks, for example, within
the team. Learning from success and failure and identifying
future problems is crucial for the effectiveness of complex
problem solving teams and therefore possibilities for learning
based on repetitive cycles of joint action or episodes and
reflection of team members’ activities during action and
transition phases should be used effectively (Edmondson,
1999; Marks et al., 2001). The processes of the idealized
teamwork model are embedded into these learning processes (see
Figure 3).

The fulfillment of transition, action, interpersonal and
learning processes contribute significantly to successful team
performance in complex problem solving. For clustering these
processes, transition and action processes could be seen as
operational processes and interpersonal and learning process as
support processes. When dealing with complex and dynamic
situations teams have to face these team process demands
more strongly than in non-complex situations. For example,
goal specification and prioritization or strategy formulation,
both aspects of transition processes, are strongly influenced by
multiple goals, interconnectedness or dynamically and constantly
changing conditions. The same is true for action processes,
such as monitoring progress toward goals, team monitoring
and backup behavior or coordination of interdependent
actions. Interpersonal processes, such as conflict and affect
management or confidence building enhance the demands
put on team members compared to individuals working on
complex problems. Interpersonal processes are essential for
effective teamwork and need to be cultivated during episodes
of team working, because breakdowns in confidence building
or affect management can lead to coordination breakdowns or
problems with monitoring or backing up teammates (Marks
et al., 2001). Especially within complex situations aspects such as
interdependence, delayed feedback, multiple goals and dynamic
changes put high demands on interpersonal processes within
teams. Learning processes, supporting interpersonal processes
and the result of effective teamwork are e.g., observation of
others’ as well as own actions and receiving feedback by
others or the system and are strongly influenced by situational
characteristics such as non-transparency or delayed feedback
concerning actions. It is assumed that amongst others team
learning happens through repetitive cycles of joint action within
the action phases and reflection of team members within the
transition phases (Edmondson, 1999; Gabelica et al., 2014;
Schmutz et al., 2016). The repetitive cycles help to generate
SMM (Cannon-Bowers et al., 1993; Mathieu et al., 2000), SSA

(Endsley and Robertson, 2000) or transactive memory systems
(Hollingshead et al., 2012) within the team.

Emergent States in Complex Team Work

and the Role of Collective Orientation
IPO models propose that input variables and emergent states
are able to influence team processes and therefore outcomes
such as team performance positively. Emergent states represent
team members’ attitudes or motivations and are “properties
of the team that are typically dynamic in nature and vary as
a function of team context, inputs, processes, and outcomes”
(Marks et al., 2001, p. 357). Both emergent states and interaction
processes are relevant for team effectiveness (Kozlowski and
Ilgen, 2006).

Emergent states refer to conditions that underlie and
dynamically enable effective teamwork (DeChurch and Mesmer-
Magnus, 2010) and can be differentiated from team process,
which refers to interdependent actions of team members that
transform inputs into outcomes based on activities directed
toward task accomplishment (Marks et al., 2001). Emergent
states mainly support the execution of behavioral processes
(e.g., planning, coordination, backup behavior) during the action
phase, meaning during episodes when members are engaged
in acts that focus on task work and goal accomplishment.
Emergent states like trust, cohesion and CO are “products of
team experiences (including team processes) and become new
inputs to subsequent processes and outcomes” (Marks et al., 2001,
p. 358). Trust between team members and cohesion within the
team are emergent states that develop over time and only while
experiencing teamwork in a specific team. CO is an emergent
state that a team member brings along with him/her into the
teamwork, is assumed to be more persistent than trust and
cohesion, and can, but does not have to, be positively and
negatively influenced by experiencing teamwork in a specific
team for a while or by means of training (Eby and Dobbins,
1997; Driskell et al., 2010). Thus, viewing emergent states on
a continuum, trust and cohesion are assumed more fluctuating
than CO, but CO is much more sensitive to change and direct
experience than a stable trait such as a personality trait.

CO of team members is one of the teamwork-relevant
competencies that facilitates team processes, such as collecting
and sharing information between team members, and positively
affects the success of teams, as people who are high in CO
work with others in a goal-oriented manner, seek others’ input
and contribute to team outcomes (Driskell et al., 2010). CO is
an emergent state, as it can be an input variable as well as a
teamwork outcome. CO is context-dependent, becomes visible
in reactions to situations and people, and can be influenced
by experience (e.g., individual learning experiences with various
types of teamwork) or knowledge or training (Eby and Dobbins,
1997; Bell, 2007). CO enhances team performance through
activating transition and action processes such as coordination,
evaluation and consideration of task inputs from other team
members while performing a team task (Driskell and Salas, 1992;
Salas et al., 2005). Collectively oriented people effectively use
available resources in due consideration of the team’s goals,
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participate actively and adapt teamwork processes adequately to
the situation.

Driskell et al. (2010) and Hagemann (2017) provide a
sound overview of the evidence of discriminant and convergent
validity of CO compared to other teamwork-relevant constructs,
such as cohesion, also an emergent state, or cooperative
interdependence or preference for solitude. Studies analyzing
collectively and non-collectively oriented persons’ decision-
making in an interdependent task demonstrated that teams
with non-collectively oriented members performed poorly in
problem solving and that members with CO judged inputs from
teammates as more valuable and considered these inputs more
frequently (Driskell and Salas, 1992). Eby and Dobbins (1997)
also showed that CO results in increased coordination among
team members, which may enhance team performance through
information sharing, goal setting and strategizing (Salas et al.,
2005). Driskell et al. (2010) and Hagemann (2017) analyzed
CO in relation to team performance and showed that the
effect of CO on team performance depends on the task type
(see McGrath, 1984). Significant positive relationships between
team members’ CO and performance were found in relation
to the task types choosing/decision making and negotiating
(Driskell et al., 2010) respectively choosing/decision making
(Hagemann, 2017). These kinds of tasks are characterized by
much more interdependence than task types such as executing
or generating tasks. As research shows that the positive influence
of CO on team performance unfolds especially in interdependent
teamwork contexts (Driskell et al., 2010), which require more
team processes such as coordination patterns (Van de Ven et al.,
1976; Wageman, 1995) and necessitate mutual adjustments as
well as frequent information integrationwithin the team (Gibson,
1999; Stajkovic et al., 2009), CO might be vitally important
for complex problem solving teams. Thus, CO as an emergent
state of single team members might be a valuable resource
for enhancing the team’s performance when exposed to solving
complex problems. Therefore, it will be of interest to analyze the
influence of CO on team process demands such as coordination
processes and performance within complex problem solving
teams. We predict that the positive effect of CO on team
performance is an indirect effect through coordination processes
within the team, which are vitally important for teams working
in intensive interdependent work contexts.

Hypothesis 1: CO leads to a better coordination behavior,
which in turn leads to a higher team performance.

As has been shown in team research that emergent states like
trust and cohesion (see also Figure 1) affect team performance,
these two constructs are analyzed in conjunction with CO
concerning action processes, such as coordination behavior
and team performance. Trust between team members supports
information sharing and the willingness to accept feedback, and
therefore positively influences teamwork processes (McAllister,
1995; Salas et al., 2005). Cohesion within a team facilitates
motivational factors and group processes like coordination and
enhances team performance (Beal et al., 2003; Kozlowski and
Ilgen, 2006).

Hypothesis 2: Trust shows a positive relationship with (a)
action processes (team coordination) and with (b) team
performance.
Hypothesis 3: Cohesion shows a positive relationship with
(a) action processes (team coordination) and with (b) team
performance.

MATERIALS AND METHODS

In order to demonstrate the importance of team process
demands for complex problem solving in teams, we used
a computer-based microworld in a laboratory study. We
analyzed the effectiveness of complex problem solving
teams while considering the influence of input variables,
like collective orientation of team members and trust and
cohesion within the team, on action processes within teams, like
coordination.

The Microworld for Investigating Teams

Process Demands
We used the simulation-based team task C3Fire (Granlund et al.,
2001; Granlund and Johansson, 2004), which is described as
an intensive interdependence team task for complex problem
solving (Arthur et al., 2005). C3Fire is a command, control
and communications simulation environment that allows teams’
coordination and communication in complex and dynamic
environments to be analyzed. C3Fire is a microworld, as
important characteristics of the real world are transferred
to a small and well-controlled simulation system. The task
environment in C3Fire is complex, dynamic and opaque (see
Table 1) and therefore similar to the cognitive tasks people
usually encounter in real-life settings, in and outside their
work place (Brehmer and Dörner, 1993; Funke, 2001). Figure 4
demonstrates how the complexity characteristics mentioned in
Table 1 are realized in C3Fire. The screenshot represents the
simulation manager’s point of view, who is able to observe
all units and actions and the scenario development. For more
information about the units and scenarios, please (see the text
below and the Supplementary Material). Complexity requires
people to consider a number of facts. Because executed actions
in C3Fire influence the ongoing process, the sequencing of
actions is free and not stringent, such as a fixed (if X then
Y) or parallel (if X then Y and Z) sequence (Ormerod
et al., 1998). This can lead to stressful situations. Taking
these characteristics of microworlds into consideration, team
processes during complex problem solving can be analyzed
within laboratories under controlled conditions. Simulated
microworlds such as C3Fire allow the gap to be bridged between
laboratory studies, which might show deficiencies regarding
ecological validity, and field studies, which have been criticized
due to their small amount of control (see Brehmer and Dörner,
1993).

In C3Fire, the teams’ task is to coordinate their actions to
extinguish a forest fire whilst protecting houses and saving lives.
The team members’ actions are interdependent. The simulation
includes, e.g., forest fires, houses, tents, gas tanks, different
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TABLE 1 | Overview of complexity characteristics of microworlds in general and in C3Fire (cf. Funke, 2001).

Complexity General C3Fire examples Representation in Figure 4

Goals People try to reach many goals, some of

which may be contradictory, and therefore

they have to make trade-offs.

Extinguish a forest fire and/or protect houses

simultaneously.

Two fires are spreading out. Brown cells are

extinguished, black cells are burned down. A

house and a school are blocked with

fire-breaks (gray cells).

Side-effects Side effects of a given course of action exist

due to coupled processes and force people

to choose between many possible courses of

action.

If the participant decides to refill his/her water

tank on his/her back, he/she is not able to

fight a fire during this refill process.

Unit 2, one firefighting unit, stands on the

local water tank for refilling its water supply.

Dynamic Microworlds are dynamic, because “their

current state is a function of the history of the

interaction between the subject and the

system” and “they change, both as a

consequence of the subject’s actions and

autonomously” (Brehmer and Dörner, 1993,

p. 173). People have to act in real time and

directly influence the system’s state even

though they do not know exactly when they

have to make decisions.

If the participant does nothing, the fire

spreads in all directions. If the participant

extinguishes burning fields, the fire spreads in

the directions where no firefighting occurs. If

the wind direction changes, the direction of

fire spreading also changes and the

participant needs to recognize this for his/her

further actions.

Two fires are spreading out into all directions.

The fire stops bevor a placed fire-break. The

fire spreads out predominantly in a westward

direction, because the wind is coming from

the East.

Opaque Opaque means that the people do not have

all relevant information. Thus, people have to

form hypotheses and test them

autonomously during activity.

Restricted visibility field. Not everything within

the simulation environment is visible for the

participants without exploring the

environment. All units see the houses, trees,

bushes and so on, but they can only see the

fire if they are close to it.

The restricted visibility field is represented by

the yellow squares. e.g., unit 5 only sees five

burning cells and four non-burning cells and

has an intersection of two cells with unit 4.

Unit 1 only sees eight burning cells and one

burned-out cell and has an intersection of

one cell with unit 4.

kinds of vegetation and computer-simulated agents such as
firefighting units (Granlund, 2003). It is possible, for example,
that the direction of wind will change during firefighting and
the time until different kinds of vegetation are burned down
varies between those. In the present study, two simulation
scenarios were developed for two-person teams and consisted of
two firefighting units, one mobile water tank unit (responsible
for re-filling the firefighting units’ water tanks that contain a
predefined amount of water) and one fire-break unit (a field
defended with a fire-break cannot be ignited; the fire spreads
around its ends). The two developed scenarios lasted for 15min
maximum. Each team member was responsible for two units in
each scenario; person one for firefighting and water tank unit
and person two for firefighting and fire-break unit. The user
interface was a map system (40× 40 square grid) with all relevant
geographic information and positions of all symbols representing
houses, water tank units and so on. All parts of the map with
houses and vegetation were visible for the subjects, but not the
fire itself or the other units; instead, the subjects were close
to them with their own units (restricted visibility field; 3 × 3
square grid). The simulation was run on computers networked
in a client-server configuration. The subjects used a chat system
for communication that was logged. For each scenario, C3Fire
creates a detailed log file containing all events that occurred over
the course of the simulation. Examples of the C3Fire scenarios
are provided in the Figures S1–3 and a short introduction into
the microworld is given in the video. Detailed information
regarding the scenario characteristics are given in Table S1.
From scenario one to two, the complexity and interdependence
increased.

Participants
The study was conducted from Mai 2014 until March 2015.
Undergraduate and graduate students (N = 116) studying
applied cognitive sciences participated in the study (68.1%
female). Their mean age was 21.17 years (SD= 3.11). Participants
were assigned to 58 two-person teams, with team assignments
being based on the pre-measured CO values (see procedure).
They received 2 hourly credits as a trial subject and giveaways
such as pencils and non-alcoholic canned drinks. The study was
approved by the university’s ethics committee in February 2014.

Procedure
The study was conducted within a laboratory setting at a
university department for business psychology. Prior to the
experiment, the participants filled in the CO instrument online
and gave written informed consent (see Figure 5). The median
was calculated subsequently (Md = 3.12; range: 1.69–4.06; scale
range: 1–5) relating to the variable CO and two individuals with
either high (n = 58) or low (n = 58) CO values were randomly
matched as teammates. The matching process was random in
part, as those two subjects were matched to form a team,
whose preferred indicated time for participation in a specific
week during data collection were identical. The participants
were invited to the experimental study by e-mail 1–2 weeks
after filling in the CO instrument. The study began with an
introduction to the experimental procedure and the teams’
task. The individuals received time to familiarize themselves
with the simulation, received 20min of training and completed
two practice trials. After the training, participants answered a
questionnaire collecting demographic data. Following this, a
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FIGURE 4 | Examples for the complexity characteristics in Table 1 represented within a simulation scenario in C3Fire.

FIGURE 5 | Overview about the procedure and measures.

simulation scenario started and the participants had a maximum
of 15min to coordinate their actions to extinguish a forest fire
whilst protecting houses and saving lives. After that, at measuring
time T1, participants answered questionnaires assessing trust
and cohesion within the team. Again, the teams worked on the
following scenario 2 followed by a last round of questionnaires
assessing trust and cohesion at T2.

Measures
Demographic data such as age, sex, and study course were
assessed after the training at the beginning of the experiment.

Collective Orientation was measured at an individual level
with 16 items rated on a 5-point Likert scale (1= strongly disagree
to 5 = strongly agree) developed by the authors (Hagemann,
2017) based on the work of Driskell et al. (2010). The factorial
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structure concerning the German-language CO scale was proven
prior to this study (χ2

= 162.25, df = 92, p = 0.000, χ
2/df =

1.76, CFI =0.97, TLI = 0.96, RMSEA = 0.040, CI = 0.030-0.051,
SRMR = 0.043) and correlations for testing convergent and
discriminant evidence of validity were satisfying. For example,
CO correlated r = 0.09 (p > 0.10) with cohesion, r = 0.34 (p
< 0.01) with cooperative interdependence and r = −0.28 (p <

0.01) with preference for solitude (Hagemann, 2017). An example
item is “I find working on team projects to be very satisfying”.
Coefficient alpha for this scale was 0.81.

Trust in team members’ integrity, trust in members’ task
abilities and trust in members’ work-related attitudes (Geister
et al., 2006) was measured with seven items rated on a 5-point
Likert scale (1 = strongly disagree to 5 = strongly agree). An
example item is “I can trust that I will have no additional demands
due to lack of motivation of my team member.” Coefficient alpha
for this scale was 0.83 (T1) and 0.87 (T2).

Cohesion was measured with a six-item scale from Riordan
andWeatherly (1999) rated on a 5-point Likert scale (1= strongly
disagree to 5 = strongly agree). An example item is “In this team,
there is a lot of team spirit among the members.” Coefficient alpha
for this scale was 0.87 (T1) and 0.87 (T2).

Action Process: Coordination

Successful coordination requires mechanisms that serve to
manage dependencies between the teams’ activities and their
resources. Coordination effectiveness was assessed based on the
time the firefighting units spent without water in the field
in relation to the total scenario time. This measure is an
indicator of the effectiveness of resource-oriented coordination,
as it reflects an efficient performance regarding the water refill
process in C3Fire, which requires coordinated actions between
the two firefighting units and one water tank unit (Lafond et al.,
2011). The underlying assumption is that a more successful
coordination process leads to fewer delays in conducting the refill
process. Coordination was calculated by a formula and values
ranged between 0 and 1, with lower values indicating better
coordination in the team (see Jobidon et al., 2012).

Coordination = time spent without water

/total time spent in scenario

Team Performance

This measure related to the teams’ goals (limiting the number of
burned out cells and saving asmany houses/buildings as possible)
and was quantified as the number of protected houses and the
number of protected fields and bushes/trees in relation to the
number of houses, fields, and bushes/trees, respectively, which
would burn in a worst case scenario. This formula takes into
account that teams needing more time for firefighting also have
more burning cells and show a less successful performance than
teams that are quick in firefighting. To determine the worst case
scenario, both 15-min scenarios were run with no firefighting
action taken. Thus, the particularities (e.g., how many houses
would burn down if no action was taken) of each scenario were
considered. Furthermore, the houses, bushes/trees and fields
were weighted according to their differing importance, mirroring

the teams’ goals. Houses should be protected and were most
important. Bushes/trees (middle importance) burn faster than
fields (lowest importance) and foster the expansion of the fire.
Values regarding team performance ranged between 0 and 7.99,
with higher values indicating a better overall performance. Team
performance was calculated as follows (see Table 2):

TeamPerformance = ((a/max a)∗5)+ ((b/max b)∗2)

+ ((c/maxc)∗1)

RESULTS

Means, standard deviations, internal consistencies, and
correlations for all study variables are provided in Table 3.

Team complex problem solving in scenario 1 correlated
significantly negative with time without water in scenario 1,
indicating that a high team performance is attended by the
coordination behavior (as a team process). The same was
true for scenario 2. In addition, time without water as an
indicator for team coordination correlated significantly negative
with the team members’ CO, indicating that team members
with high CO values experience less time without water
in the microworld than teams with members with low CO
values.

In order to analyze the influence of CO on team process
demands such as coordination processes and thereby
performance within complex problem solving teams we
tested whether CO would show an indirect effect on team
performance through the teams’ coordination processes. To
analyze this assumption, indirect effects in simple mediation
models were estimated for both scenarios (see Preacher and
Hayes, 2004). The mean for CO was 3.44 (SD = 0.32) for teams
with high CO values and it was 2.79 (SD = 0.35) for teams with
low CO values. The mean concerning team performance in
scenario 1 for teams with high CO values was 6.30 (SD = 1.64)
and with low CO values 5.35 (SD = 2.30). The mean concerning
time without water (coordination behavior) for teams with high
CO values was 0.16 (SD = 0.08) and with low CO values 0.20
(SD = 0.09). In scenario 2 the mean for team performance was

TABLE 2 | Explanation of formula for calculating team performance in both

scenarios.

Symbol Explanation

a = number of protected houses (those that were not touched by fire)

b = number of protected bushes/trees

c = number of protected fields

max a = number of affected houses in the worst case (those that are

burned out, extinguished or still on fire)

max b = number of affected bushes/trees in the worst case

max c = number of affected fields in the worst case

5 = weighting of houses (highest priority)

2 = weighting of bushes/trees (middle priority)

1 = weighting of fields (lowest priority)
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TABLE 3 | Means, standard deviations, internal consistencies, and correlations for all study variables.

M SD α 1 2 3 4 5 6 7 8

1 Performance scenario 1 5.82 2.03 1

2 Performance scenario 2 5.31 2.53 0.31** 1

3 Time without water scenario 1 0.177 0.09 −0.48** −0.24** 1

4 Time without water scenario 2 0.214 0.10 −0.02 −0.30** 0.25** 1

5 Collective Orientation 3.12 0.46 0.81 0.14 0.20* −0.20* −0.42** 1

6 Trust T1 4.43 0.51 0.83 0.18 0.06 −0.11 −0.08 0.05 1

7 Trust T2 4.47 0.50 0.87 −0.02 0.06 −0.00 −0.12 −0.03 0.83** 1

8 Cohesion T1 4.02 0.64 0.87 0.00 −0.09 −0.22* −0.06 −0.17 0.47** 0.51** 1

9 Cohesion T2 4.01 0.65 0.87 0.01 −0.07 −0.17 −0.08 −0.18 0.39** 0.47** 0.87**

Performance range from 0 to 7.99; Time without Water range from 0 to 1 (lower values indicate a more effective handling of water); CO range from 1 to 5. *p < 0.05, **p < 0.01.

6.26 (SD = 2.51) for teams with high CO values and it was 4.36
(SD= 2.24) for teams with low CO values. The mean concerning
time without water for teams with high CO values was 0.18 (SD
= 0.08) and with low CO values 0.25 (SD= 0.11).

For analyzing indirect effects, CO was the independent

variable, time without water the mediator and team performance

the dependent variable. The findings indicated that CO has an

indirect effect on team performance mediated by time without
water for scenario 1 (Table 4) and scenario 2 (Table 5). In
scenario 1, CO had no direct effect on team performance (b(YX)),
but CO significantly predicted time without water (b(MX)).
A significant total effect (b(YX)) is not an assumption in the
assessment of indirect effects, and therefore the non-significance
of this relationship does not violate the analysis (see Preacher
and Hayes, 2004, p. 719). Furthermore, time without water
significantly predicted team performance when controlling for
CO (b(YM.X)), whereas the effect of CO on team performance
was not significant when controlling for time without water
(b(YX.M)). The indirect effect was 0.40 and significant when
using normal distribution and estimated with the Sobel test (z
= 1.97, p < 0.05). The bootstrap procedure was applied to
estimate the effect size not based on the assumption of normal
distribution. As displayed in Table 4, the bootstrapped estimate
of the indirect effect was 0.41 and the true indirect effect was
estimated to lie between 0.0084 and 0.9215 with a 95% confidence
interval. As zero is not in the 95% confidence interval, it can be
concluded that the indirect effect is indeed significantly different
from zero at p < 0.05 (two-tailed).

Regarding scenario 2, CO had a direct effect on team
performance (b(YX)) and on time without water (b(MX)). Again,
time without water significantly predicted team performance
when controlling for CO (b(YM.X)), whereas the effect of CO
on team performance was not significant when controlling for
time without water (b(YX.M)). This time, the indirect effect was
0.60 (Sobel test, z = 2.31, p < 0.05). As displayed in Table 5, the
bootstrapped estimate of the indirect effect was 0.61 and the true
indirect effect was estimated to lie between 0.1876 and 1.1014
with a 95% confidence interval and between 0.0340 and 1.2578
with a 99% confidence interval. Because zero is not in the 99%
confidence interval, it can be concluded that the indirect effect is
indeed significantly different from zero at p < 0.01 (two-tailed).

TABLE 4 | Indirect Effect for Coordination and Team Performance in Scenario 1.

Effects Coefficient SE T-ratio

b (YX) 00.5921 0.4047 1.4630

b (MX) −00.0365 0.0171 −2.1329*

b (YM.X) −10.9712 1.9735 −5.5592**

b (YX.M) 00.1920 0.3673 0.5228

Indirect Effect and Significance Using Normal Distribution

Value SE LL 95 CI UL 95 CI Z

Sobel 0.4000 0.2037 0.0008 0.7993 1.9693*

Bootstrap Results for Indirect Effect

Mean SE LL 95 CI UL 95 CI LL 99 CI UL 99 CI

Effect 0.4134 0.2346 0.0084 0.9215 −0.0924 1.0999

Y= Team Performance Scenario 1; X= Collective Orientation T0; M= Coordination (time

without water in scenario 1); Number of Bootstrap Resamples 5000.*p< 0.05, **p< 0.01.

The indirect effects for both scenarios are visualized in
Figure 6. Summing up, the results support hypothesis 1 and
indicate that CO has an indirect effect on team performance
mediated by the teams’ coordination behavior, an action process.
That means, fulfilling team process demands affect the dynamic
decision making quality of teams acting in complex situations
and input variables such as CO influence the action processes
within teams positively.

Trust between team members assessed after scenario 1 (T1)
and after scenario 2 (T2) did not show any significant correlation
with the coordination behavior or with team complex problem
solving in scenarios 1 and 2 (Table 3). Thus, hypotheses 2a and
2b are not supported. Cohesion at T1 showed no significant
relationship with team performance in both scenarios, one
significant negative correlation (r = −0.22, p < 0.05) with the
coordination behavior in scenario 1 and no correlation with the
coordination behavior in scenario 2. Cohesion at T2 did not show
any significant correlation with the coordination behavior or with
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TABLE 5 | Indirect Effect for Coordination and Team Performance in Scenario 2.

Effects Coefficient SE T-ratio

b (YX) 1.1086 0.4999 2.2176*

b (MX) −0.0915 0.0185 −4.9419**

b (YM.X) −6.5735 2.4634 −2.6685**

b (YX.M) 0.5071 0.5366 0.9450

Indirect Effect and Significance Using Normal Distribution

Value SE LL 95 CI UL 95 CI Z

Sobel 0.6015 0.2602 0.0915 1.1115 2.3117*

Bootstrap Results for Indirect Effect

Mean SE LL 95 CI UL 95 CI LL 99 CI UL 99 CI

Effect 0.6055 0.2324 0.1876 1.1014 0.0340 1.2578

Y = Team Performance Scenario 2; X = Collective Orientation T0; M = Coordination

(time without water in scenario 2); Number of Bootstrap Resamples 5000. *p < 0.05, **p

< 0.01.

team performance in both scenarios. Thus, hypotheses 3a and
3b could also not be supported. Furthermore, the results showed
no significant relations between CO and trust and cohesion. The
correlations between trust and cohesion ranged between r = 0.39
and r = 0.51 (p < 0.01).

DISCUSSION

The purpose of our paper was first to give a sound theoretical
overview and to combine theoretical approaches about team
competencies and team process demands in collaborative
complex problem solving and second to demonstrate the
importance of selected team competencies and processes on
team performance in complex problem solving by means of
results from a laboratory study. We introduced the model of
an idealized teamwork process that complex problem solving
team pass through and integrated the relevant teamwork skills
for interdependently working teams into it. Moreover, we
highlighted the episodic aspect concerning complex problem
solving in teams and combined the well-known transition, action,
interpersonal and learning processes of teamwork with the
idealized teamwork process model. Finally, we investigated the
influence of trust, cohesion, and CO on action processes, such as
coordination behavior of complex problem solving teams and on
team performance.

Regarding hypothesis 1, studies have indicated that teams
whose members have high CO values are more successful in
their coordination processes and task accomplishment (Eby and
Dobbins, 1997; Driskell et al., 2010; Hagemann, 2017), which
may enhance team performance through considering task inputs
from other team members, information sharing and strategizing
(Salas et al., 2005). Thus, we had a close look on CO as an
emergent state in the present study, because emergent states
support the execution of behavioral processes. In order to analyze
this indirect effect of CO on team performance via coordination

processes, we used the time, which firefighters spent without
water in a scenario, as an indicator for high-quality coordination
within the team. A small amount of timewithout water represents
sharing information and resources between team members in
a reciprocal manner, which are essential qualities of effective
coordination (Ellington and Dierdorff, 2014). One of the two
team members was in charge of the mobile water tank unit and
therefore responsible for filling up the water tanks of his/her
own firefighting unit and that of the other team member on
time. In order to avoid running out of water for firefighting,
the team members had to exchange information about, for
example, their firefighting units’ current and future positions
in the field, their water levels, their strategies for extinguishing
one or two fires, and the water tank unit’s current and future
position in the field. The simple mediation models showed
that CO has an indirect effect on team performance mediated
by time without water, supporting hypothesis 1. Thus, CO
facilitates high-quality coordination within complex problem
solving teams and this in turn influences decision-making and
team performance positively (cf. Figure 1). These results support
previous findings concerning the relationships between emergent
states, such as CO, and the team process, such as action processes
like coordination (Cannon-Bowers et al., 1995; Driskell et al.,
2010) and between the team process and the team performance
(Stevens and Campion, 1994; Dierdorff et al., 2011).

Hypotheses 2 and 3 analyzed the relationships between trust
and cohesion and coordination and team performance. Because
no correlations between trust and cohesion and the coordination
behavior and team complex problem solving existed, further
analyses, like mediation analyses, were unnecessary. In contrast
to other studies (McAllister, 1995; Beal et al., 2003; Salas
et al., 2005; Kozlowski and Ilgen, 2006), the present study
was not able to detect effects of trust and cohesion on team
processes, like action processes, or on team performance. This
can be attributed to the restricted sample composition or the
rather small sample size. Nevertheless, effect sizes were small
to medium, so that they would have become significant with
an increased sample sizes. The prerequisite, mentioned by the
authors, that interdependence of the teamwork is important
for identifying those effects, was given in the present study.
Therefore, this aspect could not have been the reason for finding
no effects concerning trust and cohesion. Trust and cohesion
within the teams developed during working on the simulation
scenarios while fighting fires, showed significant correlations
with each other, and were unrelated to CO, which showed an
effect on the coordination behavior and the team performance
indeed. The results seem to implicate, that the influence of CO
on action processes and team performance might be much more
stronger than those of trust and cohesion. If these results can be
replicated should be analyzed in future studies.

As the interdependent complex problem-solving task was a
computer-based simulation, the results might have been affected
by the participants’ attitudes to using a computer. For example,
computer affinity seems to be able to minimize potential fear
of working with a simulation environment and might therefore,
be able to contribute to successful performance in a computer-
based team task. Although computers and other electronic
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FIGURE 6 | Indirect effect of collective orientation on team performance via coordination within the teams for scenario 1 and 2, *p < 0.05, **p < 0.01, ***p < 0.001,

numbers in italic represent results from scenario 2, non-italic numbers are from scenario 1.

devices are pervasive in present-day life, computer aversion has
to be considered in future studies within complex problem-
solving research when applying computer-based simulation
team tasks. As all of the participants were studying applied
cognitive science, which is a mix of psychology and computer
science, this problem might not have been influenced the
present results. However, the specific composition of the
sample reduces the external validity of the study and the
generalizability of the results. A further limitation is the small
sample size, so that moderate to small effects are difficult to
detect.

Furthermore, laboratory research of teamwork might have
certain limitations. Teamwork as demonstrated in this study
fails to account for the fact that teams are not simple, static
and isolated entities (McGrath et al., 2000). The validity of the
results could be reduced insofar as the complex relationships
in teams were not represented, the teamwork context was not
considered, not all teammates and teams were comparable, and
the characteristic as a dynamic system with a team history and
future was not given in the present study. This could be a possible
explanation why no effects of trust and cohesion were found in
the present study. Maybe, the teams need more time working
together on the simulation scenarios in order to show that trust
and cohesion influence the coordination with the team and the
team performance. Furthermore, Bell (2007) demonstrated in
her meta-analysis that the relationship between team members’
attitudes and the team’s performance was proven more strongly
in the field compared to the laboratory. In consideration of
this fact, the findings of the present study concerning CO
are remarkable and the simulation based microworld C3Fire
(Granlund et al., 2001; Granlund, 2003) seems to be appropriate
for analyzing complex problem solving in interdependently
working teams.

An asset of the present study is, that the teams’ action
processes, the coordination performance, was assessed
objectively based on logged data and was not a subjective
measure, as is often the case in group and team research studies
(cf. Van de Ven et al., 1976; Antoni and Hertel, 2009; Dierdorff
et al., 2011; Ellington and Dierdorff, 2014). As coordination
was the mediator in the analysis, this objective measurement
supports the validity of the results.

Outlook
As no transition processes such as mission analysis, formulation,
and planning (Prince and Salas, 1993), goal specification (Prussia
and Kinicki, 1996), and strategy formulation (Prince and Salas,
1993; Cannon-Bowers et al., 1995) as well as action processes
such as monitoring progress toward goals (Cannon-Bowers et al.,
1995) and systems monitoring (Fleishman and Zaccaro, 1992)
were analyzed within the present study, future studies should
collect data concerning these processes in order to show their
importance on performance within complex problem solving
teams. Because these processes are difficult to observe, subjective
measurements are needed, for example asking the participants
after each scenario how they have prioritized various tasks, if
and when they have changed their strategy concerning protecting
houses or fighting fires, and on which data within the scenarios
they focused for collecting information for goal and systems
monitoring. Another possibility could be using eye-tracking
methods in order to collect data about collecting information
for monitoring progress toward goals, e.g., collecting information
how many cells are still burning, and systems monitoring, e.g.,
tracking team resources like water for firefighting.

CO is an emergent state and emergent states can be influenced
by experience or learning, for example (Kozlowski and Ilgen,
2006). Learning processes (Edmondson, 1999), that Schmutz
et al. (2016) added to the taxonomy of team processes developed
by Marks et al. (2001) and which occur during transition
and action phases and contribute to team effectiveness include
e.g., feedback. Feedback can be useful for team learning when
team learning is seen as a form of information processing
(Hinsz et al., 1997). Because CO supports action processes,
such as coordination and it can be influenced by learning,
learning opportunities, such as feedback, seem to be important
for successful task accomplishment and for supporting teams
in handling complex situations or problems. If the team is
temporarily and interpersonally unstable, as it is the case for most
of the disaster or crisis management teams dealing with complex
problems, there might be less opportunities for generating shared
mental models by experiencing repetitive cycles of joint action
(cf. Figure 2) and strategies such as cross training (Salas et al.,
2007) or feedback might become more and more important for
successful complex problem solving in teams. Thus, for future
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research it would be of interest to analyze what kind of feedback
is able to influence CO positively and therefore is able to enhance
coordination and performance within complex problem-solving
teams.

Depending on the type of feedback, different main points
will be focused during the feedback (see Gabelica et al.,
2012). Feedback can be differentiated into performance and
process feedback. Process feedback can be further divided into
task-related and interpersonal feedback. Besides these aspects,
feedback can be given on a team-level or an individual-level.
Combinations of the various kinds of feedback are possible and
are analyzed in research concerning their influence on e.g., self-
and team-regulatory processes and team performance (Prussia
and Kinicki, 1996; Hinsz et al., 1997; Jung and Sosik, 2003;
Gabelica et al., 2012). For future studies it would be relevant
to analyze, whether it is possible to positively influence the
CO of team members and therefore action processes such as
coordination and team performance or not. A focus could be on
the learning processes, especially on feedback, and its influence
on CO in complex problem solving teams. So far, no studies exist
that analyzed the relationship between feedback and a change in
CO, even though researchers already discuss the possibility that
team-level process feedback shifts attention processes on team
actions and team learning (McLeod et al., 1992; Hinsz et al.,
1997). These results would be very helpful for training programs
for fire service or police or medical teams working in complex
environments and solving problems collaboratively, in order to
support their team working and their performance.

In summary, the idealized teamwork process model is in
combination with the transition, action, interpersonal and
learning processes a good framework for analyzing the impact
of teamwork competencies and teamwork processes in detail
on team performance in complex environments. Overall, the
framework offers further possibilities for investigating the

influence of teamwork competencies on diverse processes
and teamwork outcomes in complex problem solving teams
than demonstrated here. The results of our study provide
evidence of how CO influences complex problem solving
teams and their performance. Accordingly, future researchers
and practitioners would be well advised to find interventions
how to influence CO and support interdependently working
teams.
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In this paper we argue that a synthesis of findings across the various sub-areas of
research in complex problem solving and consequently progress in theory building is
hampered by an insufficient differentiation of complexity and difficulty. In the proposed
framework of person, task, and situation (PTS), complexity is conceptualized as a quality
that is determined by the cognitive demands that the characteristics of the task and
the situation impose. Difficulty represents the quantifiable level of a person’s success
in dealing with such demands. We use the well-documented “semantic effect” as
an exemplar for testing some of the conceptual assumptions derived from the PTS
framework. We demonstrate how a differentiation between complexity and difficulty
can help take beyond a potentially too narrowly defined psychometric perspective
and subsequently gain a better understanding of the cognitive mechanisms behind
this effect. In an empirical study a total of 240 university students were randomly
allocated to one of four conditions. The four conditions resulted from contrasting the
semanticity level of the variable labels used in the CPS system (high vs. low) and two
instruction conditions for how to explore the CPS system’s causal structure (starting
with the assumption that all relationships between variables existed vs. starting with
the assumption that none of the relationships existed). The variation in the instruction
aimed at inducing knowledge acquisition processes of either (1) systematic elimination
of presumptions, or (2) systematic compilation of a mental representation of the causal
structure underpinning the system. Results indicate that (a) it is more complex to adopt
a “blank slate” perspective under high semanticity as it requires processes of inhibiting
prior assumptions, and (b) it seems more difficult to employ a systematic heuristic
when testing against presumptions. In combination, situational characteristics, such
as the semanticity of variable labels, have the potential to trigger qualitatively different
tasks. Failing to differentiate between ‘task’ and ‘situation’ as independent sources of
complexity and treating complexity and difficulty synonymously threaten the validity of
performance scores obtained in CPS research.

Keywords: complex problem solving, semantic effect, complexity vs. difficulty, systematicity, person–task–
situation
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INTRODUCTION

Complex problem solving (CPS) is an umbrella term for
a diverse range of approaches to research, learning and
assessment. A common denominator of all these approaches
is the use of a computerized simulation of some abstract or
contextualized system. This is where the main commonality
ends. However, when considering the various different ways
problem solvers can interact with these simulations and the
wide variety of different purposes of their use, it becomes
apparent that the term CPS has many different meanings.
One meaning refers to a research paradigm that aims to study
“complex” cognition in the context of information processing,
decision-making, causal reasoning, or learning (Beckmann, 1994;
Beckmann and Guthke, 1995; Frensch and Funke, 1995; Guthke
et al., 1995). In other domains (e.g., Greiff et al., 2015),
CPS has been considered as an ability-related construct (or
set of constructs). One example is the ability to deal with
uncertainty (e.g., Osman, 2010) with its conceptual – yet not
always empirically aligned – links to reasoning and (fluid)
intelligence (Funke and Frensch, 2007; Stadler et al., 2015).
CPS has also started to establish its use in relation to an
assessment approach, be it in smaller-scale studies in relation
to personnel decisions (Wood et al., 2009) or in relation
to larger-scale educational attainment assessment exercises
such as PISA (OECD, 2013; Funke et al., 2017). Within
an assessment context, CPS is often discussed as a skill or
competency (rather than ability). On the one hand, the shared
use of the term CPS in these contexts tends to belie the
conceptual, and concomitantly, methodological diversity in this
field of research; on the other hand, such diversity in meaning
raises the suspicion of an insufficient conceptual foundation
of CPS.

As a look beyond CPS and at scientific theory building
paradigms generally reminds us, a lack of conceptual
grounding tends to result in definitions for the respective
target constructs that are predominantly operational (rather
than conceptual). This is evident in the CPS literature, as
CPS has often been used as a descriptor of the kind of
behavior observable when individuals are confronted with a
specific kind of challenge (i.e., CPS is what problem solvers
do when dealing with complex problems). As a corollary
of a preponderance of operational definitions, research
and subsequent publications seem to be heavily focussing
on psychometric characteristics of CPS simulations as
measurement tools. In its extreme, such a situation might
be perceived as delegating conceptual decisions to statistical
procedures.

With this paper, we aim to go beyond the psychometrically
driven approach to CPS and to contribute to a more
theory-based positioning of it within a nomological network
of cognition. Our argumentation leads to an empirical
investigation that explicitly differentiates manipulations of
complexity (the conceptual) from experiences of difficulty (the
psychometric) and in so doing, demonstrate the importance of
separating statistical and conceptual issues in the investigation
of CPS.

COMPLEXITY vs. DIFFICULTY

One symptom of a predominantly psychometric view on CPS
is the lack of a distinction between complexity and difficulty
(Beckmann and Goode, 2017). Difficulty is a psychometric
concept with rather limited explanatory value. In general terms,
difficulty provides a descriptive account of some items being
answered correctly by a smaller proportion of individuals than
other items, thus creating the basis for them being labeled as
more difficult. When interested in the reasons for their higher
levels of difficulty, one is confronted with a tautological reference
(common to classical-test-theory) to the lower proportion of
correct responses these items tend to attract. Actual explanations
as to why this might be the case, however, need to go beyond
such circularity. An analysis of the cognitive behavior required
to tackle the problem posed by an item, as well as a reflection
of the circumstances under which the item is expected to be
solved, feeds into the notion of complexity. In this regard,
complexity reflects ex ante considerations of the cognitive
demands imposed by the task and the circumstances under which
the task is to be performed (i.e., predictions), which makes
complexity a primarily cognitive concept. Difficulty is experiential,
person-bound and by definition, statistical. It is a reflection of
how well individuals (with their individual differences in ability,
knowledge, skills, motivation, etc.) deal with complexity, which
makes it a psychometric concept.

At a first and rather pragmatic glance, such distinction may
seem pedantic. After all, so it could be claimed, the presumptions
linking difficulty (statistics) with complexity (theory) are built on
a wealth of replicable scientific evidence. Therefore, so one might
argue, our criticism would be considered not only unfounded in
practice, but even counterproductive to the pursuit of knowledge.
However, it is very easy to demonstrate this is not the case,
and that when considered through person–task–situation (PTS)
interactions, the broader CPS paradigm proves to be particularly
in need of such a distinction. In the following we present a
framework that allows for a conceptual differentiation between
complexity and difficulty in the context of CPS. We then
empirically test core arguments derived from this framework.

We start by taking the perspective of CPS as a research
paradigm that utilizes computerized scenarios as task
stimuli. These computerized scenarios or microworlds can
be conceptualized as systems (e.g., Funke, 1985, 1992). In
their simplest form, such systems comprise two kinds of
variables that are causally linked, input variables and output
variables and the interconnectedness of these system variables
can be algorithmically described through linear structural
equations. Such systems are considered “dynamic” if output
variables change both as an effect of problem solvers inputs and
independently over time.

In the contexts of research, assessment and learning, problem
solvers are usually asked to first explore the unknown causal
structure of these systems. In general, such an exploration phase
serves the purpose of knowledge acquisition. In a subsequent
control phase, problem solvers are then asked to reach and
maintain pre-defined goal states in the output variables. The
objective here is the application or utilization of the knowledge
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acquired during the exploration phase. In the terminology of
generic problem solving, the typical CPS constellation is where
a particular set of operations has to be identified (i.e., knowledge
acquired) that will bring the system from a given initial state to a
set target one (i.e., system control).

CPS IN THE THREE DIMENSIONAL
SPACE OF PERSON, TASK, AND
SITUATION (PTS)

As has been discussed previously (Beckmann, 2010; Birney
et al., 2016; Beckmann and Goode, 2017), psychological research
takes place in the three dimensional space of Person, Task, and
Situation variables. The definition of task has two sub-facets, the
task qua task and the task as behavior requirement (McGrath
and Altman, 1966; Hackman, 1969; Wood, 1986). The task qua
task facet refers to the physical characteristics of the stimuli the
problem solver is confronted with. In the context of CPS, these
are the characteristics of the CPS scenario which include, but are
not limited to, the number of variables or the density of their
interconnectedness. The task as behavior requirement refers to
what the problem solver is instructed to do. In the context of
CPS, this could be, for example, to either freely interact with
the given system to uncover its causal structure, or to control
this system, i.e., to reach and maintain a set of target states in
the output variables. Both, task qua task and task as behavior
requirements contribute interactively to the complexity of the
CPS task. That is, being confronted with the same system (task
qua task) but with different instructions – as communicated task
as behavior requirement – results in different tasks with different
levels of complexity. In short, different tasks require different
sets of expected1 (cognitive) behavior and therefore contribute
differently to complexity.

The definition of situation refers to the environment or the
circumstances in which a given task is to be performed (“task
environment” as described by Newell and Simon, 1972, p. 55).
In the context of CPS this includes situational characteristics
such as whether a causal diagram (i.e., a graphical representation
of the causal structure) is available or not when being asked
to control the system. Knowing or being able to anticipate the
target states during the exploration phase (or not) would be
another situational characteristic. As these and other variations
in circumstantial characteristics are also expected to result in
differing sets of cognitive behaviors (despite being confronted
with the same system and the same instruction), the situation is
conceptualized as another contributor to complexity.

So far we have identified that both the task (with its two facets
task qua task and task as behavior requirement) and the situation
contribute to complexity. The third category of variables is
linked to Person and includes, inter alia, individual differences in
reasoning ability, information processing capacity, motivation,
working memory, experience, and knowledge. Observed

1We emphasize expected here because it highlights that complexity is based on ex
ante developed expectations regarding the set of cognitive behaviors necessary to
deal with the challenge posed by the task in conjunction with the situation.

performance is the resultant of the difficulty individuals’
experience in dealing with the complexity imposed by the task
and the situation. In short, difficulty is the observable, subjective
reflection of complexity.

Experimental research in psychology, irrespective of its
focus, builds on observing variation in one component of this
tripartite system of variables (i.e., Person, Task, and Situation)
whilst the variation in the other two is either controlled for
or, more or less systematically manipulated. The dominant
experimental paradigms can be defined by their focus on one
of these three components. For instance, in an assessment
context, test takers are confronted with a standardized set
of tasks under standardized instructions (e.g., to control a
particular microworld) and in standardized situations (e.g., after
a knowledge acquisition phase that resulted in a causal diagram,
which is made available on the computer screen). Standardization
ensures that all test takers are dealing with the same level of
complexity (as it is defined by the system, the instructed task
and the situation), so that observed variability in performance
scores between (and occasionally within) individuals can be
attributed to individual differences in conceptually relevant
person characteristics (e.g., reasoning ability).

In comparison, in the context of cognition research,
participants are confronted with systems (task qua task) or
situations that differ systematically as part of experimental
manipulations. Randomization in the allocation of participants
to conditions aims at controlling for potential effects of
individual differences. This allows for observed variability in
average performances scores across conditions to be attributed to
differences in complexity caused by the variation in task and/or
situation characteristics.

In the context of instructional design research, as another
example, the situational features of a (learning) task are
systematically varied (e.g., availability and location of
information – say, 0, 1, or more mouse-clicks away) whilst
the task as behavior requirements (e.g., to acquire structural
knowledge) and the task qua task (i.e., the system) are kept
the same across learners. Observed performance differences
are then interpreted as indications of how various situational
variables (e.g., interface features) make a learning task more or
less complex.

In sum, complexity and difficulty are different concepts.
Failing to differentiate between the two is problematic in
at least two ways. First, equating (observation-based and
psychometrically derived) difficulty with complexity serves to
perpetuate the circular argument of that what is difficult must
be complex, and what makes something complex is its difficulty.
Second, equating (task and situation analysis based) complexity
with difficulty creates the dilemma of not being able to “explain”
why the same level of complexity (as set by the task and the
situation) results in different individuals experiencing varying
levels of difficulty (as observed via differences in performance
scores). The first problem creates the risk of a tautological trap
that is often associated with operational definitions of constructs;
the second problem seems to negate the role of the individual
or person and therefore promotes a rather “un-psychological”
perspective per se. For CPS to be taken beyond a predominantly
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psychometric approach, the differentiation between complexity
and difficulty is a necessary precondition. Otherwise, by
remaining too narrowly focussed at a psychometric level, CPS
could just as appropriately be labeled Difficult Problem Solving
(i.e., DPS) – a term which can be readily recognized as data driven
and theoretically vacuous.

Projecting CPS-related research and its findings onto the
tripartite system of Person, Task, and Situation as briefly outlined
above provides a framework for the necessary differentiation
between complexity and difficulty. In the following we use the
semantic effect (Beckmann, 1994; Beckmann and Guthke, 1995;
Beckmann and Goode, 2014), as an exemplar for how the PTS-
based differentiation between complexity and difficulty can help
take CPS beyond a psychometric perspective and subsequently
gain a better understanding of the cognitive mechanisms behind
this effect.

VARIABLE LABELS AS SITUATIONAL
CHARACTERISTIC – A SOURCE OF
COMPLEXITY OR DIFFICULTY?

Previous research has repeatedly shown that seemingly minor
changes of situational characteristics such as using semantically
laden labels for system variables in comparison to semantically
neutral labels have profound effects on performance (Beckmann,
1994; Beckmann and Guthke, 1995; Beckmann and Goode, 2014).
In these studies, problem solvers tend to acquire less knowledge
and subsequently control the system rather poorly when the same
system is presented as a ‘Cherry Tree’ with input variables labeled
‘Light,’ ‘Water,’ and ‘Temperature’ linked to output variables
labeled ‘Cherries,’ ‘Leaves,’ and ‘Beetles’ in comparison to a
‘Machine’ with input variables labeled as control dials ‘A,’ ‘B,’ ‘C’
and output variables labeled display ‘X,’ ‘Y,’ ‘Z.’ This phenomenon
was initially described as the ‘Semantic Effect’ (e.g., Beckmann,
1994).

Projecting the semantic effect onto the tripartite framework of
Person, Task, and Situation (PTS) implies that whilst presenting
problem solvers with the same system (i.e., keeping the task qua
task constant) and instructing them to execute the same tasks
(i.e., keeping tasks as behavior requirements constant) still creates
systematic variability in performance (i.e., indicating differences
in difficulty) when a situational characteristic (e.g., the semantic
meaning of variable labels) is varied.

As previous research has suggested, problem solvers
confronted with system labels high in semanticity tend to
approach the task of exploring a complex, dynamic system
with a set of presumptions regarding the interrelatedness of
system variables, whilst problem solvers working with variable
labels low in semanticity tend to start with a “blank slate”
concerning the causal structure of the system (Beckmann and
Goode, 2014). In the former situation, knowledge acquisition
would require a process of systematically eliminating presumed,
yet not existing relationships and therefore reducing the
complexity of the internal representation of the system’s
causal structure. In the latter situation, knowledge acquisition
from a “blank slate” perspective would require a process of

systematically compiling knowledge and therefore building up
the complexity of the internal representation of the system’s
causal structure. Predicting whether the cognitive processes
involved in eliminating presumptions are more complex than
those in relation to compiling knowledge would be challenging
from a purely psychometric perspective.

Concomitantly, the observed performance differences in the
context of the semantic effect are associated with differences
in the systematicity of the exploration behavior (Beckmann
and Goode, 2014). Systematicity in exploration behavior is
reflected in a specific sequence of interventions. First, all
inputs are left at zero. Any changes in the outputs can then
be interpreted as autonomic changes (i.e., eigendynamics).
Subsequent interventions should then focus on the effects
of each input variable on any of the output variables in
isolation, i.e., changing only one input at a time. Only
such “Vary-One-or-None-At-a-Time” heuristic (VONAT, see
Beckmann and Goode, 2014; p. 279; Beckmann and Goode, 2017)
creates informative system state transitions that allow problem
solvers to derive knowledge regarding the causal structure of the
system. In contrast, changing more than one variable at a time or
to miss the zero change intervention creates what de Jong and van
Joolingen (1998, p. 185) describe as “inconclusive experiments,”
which impedes successful knowledge acquisition.

AIMS AND HYPOTHESES

We use the phenomenon of the semantic effect as an exemplary
case for testing the conceptual assumption derived from the
PTS framework that situational variables – in addition to task
variables – present a potential source of complexity.

First, and based on findings from previous research (e.g.,
Beckmann and Goode, 2014) we expect problem solvers working
with variable labels high in semanticity to be less systematic in
their exploration behavior (Systematicity Hypothesis). We then
address the question whether the inferior CPS performance
observed under semantically rich conditions (i.e., the semantic
effect) can be explained by (1) supposedly higher cognitive
demands associated with a process of reducing the complexity of
an internal representation of the causal structure of the explored
system, or by (2) problem solvers “simply” not employing the
appropriate heuristic (i.e., systematically testing against a priori
assumptions). In the context of the PTS framework, results in
accordance to (1) would recommend situational variables as
contributors to complexity; results in accordance to (2) would
suggest that situational variables contribute to the difficulty of
dealing with a complex dynamic system.

The validity of a conceptual distinction between complexity
and difficulty, which is based on the PTS framework, can be
tested by observing the effect of explicitly instructing problem
solvers to systematically explore the system by either starting with
the presumption that all relationships exist (thus requiring to
eliminate non-existing relationships and to reduce the complexity
of the mental representation of the causal structure) or by starting
with the presumption that no relationships exist (thus requiring
to compile the set of relationships that exist and to build up the
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complexity of the mental representation of the causal structure).
If eliminating presumptions to arrive at the correct model of
the system is more complex (via imposing greater demands
on cognitive behavior) than starting with a blank slate then
performance scores should worsen (both knowledge and control
performance). Should, however, performance scores improve,
this would suggest that problem solvers fail to engage in cognitive
behavior that they are in fact capable of (Complexity–Difficulty
Hypothesis). In psychometric terminology, the latter outcome
would suggest that semanticity has the potential of introducing
“construct-irrelevant difficulty” (Messick, 1995), and therefore
represents a threat to validity.

METHODS

Participants
The sample comprised of 240 students from two Australian
universities across a wide range of subjects, including
engineering, business studies, science related subjects and
medicine (60% female, mean age 22.7 years).

Materials
To test both the Semanticity-Hypothesis and the
Complexity–Difficulty Hypothesis four different versions of
a CPS scenario with three input and three output variables
were created (Figure A1 shows the causal diagram and the
underpinning equations that govern this system). These four
versions were embedded in a 2 (semanticity: high vs. low) by 2
(instruction: compile vs. eliminate) between subject design. In
the two high semanticity versions, variable labels related to a
Cherry Tree were used (i.e., ‘HEAT,’ ‘LIGHT,’ and ‘WATER’ for
the input variables and ‘CHERRIES,’ ‘LEAVES,’ and ‘BEETLES’
for the output variables). In the two low semanticity versions,
variables low in semantic value were used (i.e., ‘INPUT A,’
‘INPUT B,’ and ‘INPUT C’ and ‘OUTPUT U,’ ‘OUTPUT V,’
and ‘OUTPUT W,’ respectively), referring to a ‘BLACK BOX.’
For each of the two semanticity conditions two instruction
conditions were created. In the compile conditions problem
solvers were instructed to explore the causal structure of the
given system by starting with ‘. . . the assumption that no
relationship existed, and to systematically find out which of
the possible links do, in fact, exist.’ In the eliminate conditions
problem solvers were instructed to explore the causal structure
of the system by starting with ‘. . . the assumption that all the
relationships existed, and to systematically find out which of the
possible links do, in fact, not exist.’

Procedure
After completing a demographics questionnaire participants
were randomly allocated to one of the four CPS conditions.
The CPS systems were presented in a non-numerical, graphical
format on the computer screen (see Figure 1). Prior to being
instructed to start exploring the system under the assumption
that either all or none of the relationships existed, participants
allocated to the high semanticity condition (i.e., Cherry Tree)
were asked to indicate their expectations regarding the causal

FIGURE 1 | Partial screen captures of two of the four experimental conditions
(top: compile condition for high semanticity; bottom: eliminate condition for
low semanticity).

structure that might underpin the system. This information was
used to test whether the actual implemented causal structure
could be perceived as counterfactual to “common” expectations.

Phase 1 – Knowledge Acquisition: Participants were first
instructed to acquire knowledge of the system variables’
interconnectedness. To do so they were given two cycles with
seven trials each where they could freely change the values of
the three input variables in their respective system and observe
the subsequent changes in the output variables. After each
exploration trial participants were asked to record their insights
regarding the causal structure of the system in form of a causal
diagram presented on screen. After the first cycle of seven trials
the values for the output variables were reset, the causal diagram,
however, remained on the screen.

In the compile conditions, the initial causal diagram consisted
of dotted arrows representing possible links (see left panel in
Figure 1 for the Cherry Tree version). Over the course of the
knowledge acquisition phase these arrows had to be changed into
either solid arrows (indicating assumed links) or deleted arrows
(indicating assumed non-links).

In the eliminate conditions, the initial causal diagram
comprised solid arrows for all possible relationships (see right
panel in Figure 1 for the Black Box version). During the
process of knowledge acquisition in this condition, arrows linking
variables that were in fact identified as being unrelated were
expected to be deleted from the diagram leaving only those
arrows in the causal diagram for which a link is assumed to
exist.

Phase 2 – Control: In the second phase, participants were
asked to control their respective system using their developed
causal diagram, which represented their previously acquired
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causal knowledge. Participants had two control cycles with seven
intervention trials each to reach and maintain two different
target states, which were indicated as red horizontal lines in the
respective panels of the output variables (Figure 2). After the first
control cycle, the values for the output variables were reset and a
different set of target values were given. Problem solvers were not
informed about these target states prior to the respective control
phase.

Operationalizations
Systematicity of exploration behavior is operationalized via three
ordinal categories. The intervention sequence necessary for being
able to identify the underlying causal structure of the explored
system comprises one exploration intervention where all inputs
were left at zero followed by three exploration interventions
where only one input was changed. Problem solvers who
executed this sequence in this order at least once across their 14
exploration trials received a systematicity score of 2 (VONAT).
Those who either failed to employ the zero intervention or
where it did not precede the three single change interventions
(i.e., traditional VOTAT) received a systematicity score of 1,
otherwise a score of 0 was given. The rationale is that in
systems with autoregressive dependencies an all preceding zero
intervention is a necessary precondition to have the chance to
correctly identifying direct effects using subsequent single change
interventions.

Knowledge acquisition. The task of exploring a system to
find out its underlying causal structure can be conceptualized
as a “relationship detection task.” Taking CPS beyond a
mere psychometric approach (i.e., by looking at more than
the percentage of correctly identified relationships) should be
reflected in the performance score used. We therefore based
the operationalization of knowledge acquisition performance on
a signal detection model that Snodgrass and Corwin (1988)
introduced in the context of recognition memory. In this model
the combined probability of correctly identifying existing and
non-existing relationships (i.e., hits and correct rejections, resp.)
form the sensitivity index Pr (Formula 1). Knowledge scores
based on this operationalization have a theoretical range from
−0.98 to 0.98, where a score below zero indicates inaccurate
knowledge, whilst a score above zero indicates more accurate
knowledge.

Pr = (Hit rate)−(False Alarm rate) (1)

In this model a Bias Index (Br) can also be derived, which
reflects a problem solver’s tendency to either “see” or “not to see”
relationships when in fact they are uncertain. Bias scores (Br,
Formula 2) range from 0 to 1, where values below 0.5 indicate a
conservative response tendency (i.e., “guessing that relationships
do not exist”) and values above 0.5 indicate a liberal response
tendency (i.e., “guessing that relationships exist”).

Br =
False Alarm rate

1− (Hit rate)− (False Alarm rate)
(2)

Control performance. An operationalization of control
performance by means of a simple metric of the distance between

actual and target state after the final control intervention with
limited reflection of the process, resembles the psychometric
notion of a criterion-based assessment. That is, it does not
differentiate between problem solvers who have reached the
target state earlier and having to spend most of the time
stabilizing the system, and problem solvers who reached the
target closer to the end of the control cycle. As discussed
in the context of measuring knowledge acquisition, given
our aim to take CPS beyond a psychometric approach, the
operationalization of control performance needs to better reflect
how problem solvers cope with the cognitive demands (i.e.,
complexity) imposed by the start-target state discrepancy and the
system characteristics (e.g., the dependency structure of output
variables).

Finding the correct control intervention (i.e., set of inputs)
that brings the system at or closest to the target state can
be conceptualized as navigating the problem space. Different
systems differ in their size and navigability as a function of
(a) system characteristics such as the number and kind of
dependencies, and/or (b) situational characteristics, such as
the start-target discrepancy problem solvers must bridge. In
order to allow for comparisons of performance scores across
different studies, using different systems and/or different start-
target discrepancies, performance scores need to be standardized
against the size of the problem space of the respective system
and start-target discrepancy. To achieve this standardization, we
propose to operationalize control performance via the Euclidean
distance between the intervention vector (i.e., values entered for
the input variables) used by the participant and the vector of
optimal interventions (i.e., inputs that would have brought the
outputs at or closest to the target states2) for each trial of a control
cycle (i.e., at each decision-input point). A standardization
against the size of the problem space can be achieved by dividing
the trial specific deviation scores by the trial specific difference
between the vectors of pessimal and optimal intervention inputs
[see formula (3)]. Consequently, control performance scores
represent the averaged (across the seven control trials) deviation
of the actual from the optimal intervention relative to maximal
possible deviation for each and every trial. Their theoretical
range is from 0 (worst possible, i.e., pessimal) to 1 (i.e.,
optimal).

avEuXr =
1
m

m∑
t=1

{1− [

√∑k
i=1(optimalti − actualti)2√∑k

i=1(pessimalti − optimalti)2
]} (3)

m: number of trials across control cycles (14 in this study),
k: number of input variables (three in this study).

2The vector of ideal inputs would bring the system exactly to (or would maintain)
the target state. Restrictions of the range of possible input variables (e.g.,
introduced for practical reasons) might prevent reaching the target state in any
one single intervention. In such cases (i.e., the ideal values fall outside this range),
the values were adjusted to the nearest possible values, and these then constituted
the vector of optimal inputs. In cases when the ideal values are within the range of
possible inputs, the ideal values were used as the optimal input.
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FIGURE 2 | Screen capture from the control phase in the high semanticity condition.

RESULTS

The analyses are presented in two parts. First, we test two
prerequisites, (1) the potential incompatibility of the underlying
causal structure with the common expectation associated with a
“real” cherry tree, and (2) the effectiveness of the instructions to
start with the assumption that either all relationships existed or
none of the relationships existed (manipulation check). In the
second set of analyses we focus on the Systematicity-Hypothesis
and the Complexity–Difficulty Hypothesis. Table 1 provides an
overview of the descriptive statistics in study-related variables
across the experimental groups.

As a first step, we tested whether a potential semanticity
effect might simply be explained by the causal structure that
underpins the CPS system being counterfactual to what one
would expect in a “real” cherry tree. To this end we analyzed
the problem solvers’ expectations regarding the causal structure
of the Cherry Tree prior to being instructed to explore the
system (i.e., using the Sensitivity Index Pr to operationalize
prior expectations as prior knowledge). The resulting average
Pr(0) of−0.03 (SD = 0.21 based on NCT = 124) indicates

no systematic misalignment of common expectations with the
actual causal structure (see Figure A1). In the case where the
implemented system structure stood in contrast to common
expectations (i.e., being “counterfactual”) the sensitivity index
would have been substantially closer to −1.00. In cases where
the implemented system structure would agree with a commonly
held set of expectations – if such consensus existed in the
first place – the resulting sensitivity index would be closer to
+1.00. In the latter case, problem solvers would have already
possessed knowledge that they were expected to acquire during
the subsequent exploration phase. Both the average
hboxtextitPr value of around zero and the fact that expectations
regarding the existence of relationships are equally distributed
across the 12 possible variable links replicates what was found
in earlier studies contrasting CPS scenarios with high and low
semanticity (Beckmann, 1994; Beckmann and Goode, 2014,
2017). A counterfactual causal structure can therefore be ruled
out as an alternative explanation for a potential semantic effect.

Instruction Manipulation: In a next step, we checked
whether the instruction to start with the assumption that
either all relationships existed (eliminate condition) or none
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TABLE 1 | Descriptive statistics.

Conditions Variables

Semanticity Instruction N Bias Br [1] M
(SD)

Systematicity
[No,VOTAT,VONAT]

frequencies

Knowledge
acquisition

Pr [14] M (SD)

System
control

avEuXr M
(SD)

Low (Black Box) Compile 57 0.17 (0.19) [3,28,26] 0.57 (0.30) 0.65 (0.12)

Eliminate 59 0.89 (0.19) [15,25,19] 0.41 (0.35) 0.60 (0.12)

High (Cherry Tree) Compile 63 0.35 (0.27) [18,33,12] 0.20 (0.25) 0.55 (0.09)

Eliminate 61 0.87 (0.20) [14,34,13] 0.33 (0.36) 0.59 (0.13)

of the relationships existed (compile condition) was reflected
in problem solvers’ response behavior during the knowledge
acquisition phase. Problem solvers’ ability to follow these
instructions should be identifiable in the trajectories of the bias
scores (Br) over the course of the two exploration cycles with
their seven trials each. We expect problem solvers in the eliminate
condition to start with a bias score greater than 0.5 and close
to 1.00 as this would indicate an instruction-induced tendency
“to guess that there is” a relationship when in fact (still) in a
state of not knowing. Problem solvers in the compile condition,
however, were expected to start with a conservative bias (i.e., a
Br score below 0.5 and close to zero), which would indicate a
response tendency of “guessing that there is not” a relationship
when in the state of (yet) not knowing. In both conditions, we
expected bias scores to become more neutral (i.e., Br ≈ 0.5)
over the course of the exploration trials and when progressing
in acquiring knowledge. The left panel in Figure 3 depicts the
differing bias trajectories for the “Black Box” conditions; the
right panel shows them for the “Cherry Tree” conditions. It
is interesting to note that the final convergence occurs at a
level of around 0.75 for all conditions. This seems to indicate a
general propensity to slightly err on the positive, i.e., to rather
assume that there are relationships than running the risk of
missing one.

The trajectories seem to suggest that the instruction has led
to the expected differences in response behavior, confirming
the effectiveness of the instruction manipulation, in general.
Two further suggestions seem to emerge. First, the slopes for
the eliminate conditions are markedly less steep than the ones
for the compile conditions (F4.1,968.5 = 76.455, p < 0.001,
η2
= 0.224)3, which seems to suggest that reducing complexity

is more challenging than increasing it, regardless of semanticity.
Second, the starting point of the compile condition for “Cherry
Tree” is not as low as it is for “Black Box” (Br[1]: t118 = 4.13,
p < 0.001, dcompile−BBvsCT = 0.76), which seems to suggest that
adopting a “blank slate” perspective is more challenging in a
system with high semanticity.

Systematicity
To test the Systematicity-Hypothesis we conducted an ordinal
logistic regression analysis where problem solvers’ VONAT score

3Greenhouse-Geisser correction of df s for the F-test was applied due to sphericity
(χ2

90 = 2201.984, p < 0.001).

was regressed on the semanticity condition and the instruction
condition they have been allocated to. The results indicate
(see Table 2) that problem solvers who were asked to explore
a system with low semanticity (i.e., Black Box) were 2.24
time more likely to employ a systematic exploration heuristic
(i.e., using VOTAT or VONAT) than problem solvers working
on a system that used variables labels high in semanticity
(i.e., Cherry Tree). Being instructed to either systematically
eliminate erroneously presumed relationships or to identify
existing relationships in the causal model of the respective
system did not, however, make a substantial difference in the
level of systematicity with which problem solvers explored the
system.

Complexity – Difficulty
To address the Complexity–Difficulty Hypothesis we tested
in a final step whether the effect of the instruction differs
between the two levels of semanticity in terms of the
knowledge acquisition performance and control performance
metrics. Given both metrics produced comparable effects and
interpretations, we report them together. As expected, the
ANOVAs resulted in a main effect of the situational factor
“semanticity,” with overall lower performance scores (knowledge
acquisition: F1,236 = 29.863, p < 0.001, η2

= 0.11; control
performance: F1,236 = 14.048, p < 0.001, η2

= 0.06) for
the high semanticity condition (i.e., Cherry Tree) relative to
the low semanticity condition (“Black Box”). This replicates
the semantic effect once more (Beckmann, 1994; Beckmann
and Guthke, 1995; Beckmann and Goode, 2014). Across the
two semanticity conditions, the task factor “instruction” seems
to have no effect on performance scores overall (knowledge
acquisition: F1,236 = 0.119, p = 0.730, η2

≈ 0.00, control
performance: F1,236 = 0.027, p = 0.870, η2

≈ 0.00). However,
the presence of an interaction effect (knowledge acquisition:
F1,236 = 13.235, p < 0.001, η2

= 0.05, control performance:
F1,236 = 7.544, p = 0.006, η2

= 0.03), indicates that when being
instructed to start with the assumption that all relationships
existed and consequently systematically eliminate unjustified
presumptions showed a positive effect on both knowledge
acquisition and control performance in conditions of high
semanticity (i.e., Cherry Tree), but it resulted in systematically
lower performance scores in the condition where problem solvers
were working with low levels of semanticity (i.e., Black Box, see
Figure 4).
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FIGURE 3 | Comparison of bias (Br ) trajectories between the two instruction conditions for each of the two semanticity conditions.

TABLE 2 | Ordinal logistic regression of systematicity (VONAT) on semanticity and
instruction.

Estimate SE Wald χ2 df p Odds ratio

Semanticity
(Black Box vs. Cherry Tree)

0.804 0.251 10.256 1 0.001 2.24

Instruction
(compile vs. eliminate)

−0.307 0.246 1.557 1 0.212 0.74

Summary
Knowledge acquisition, especially in systems with high levels of
semanticity, can be conceptualized as a process of transforming
a presumption structure into a knowledge structure. The
instruction to start with the assumption that all possible
relationships between system variables existed aimed at creating a
presumption structure with high levels of complexity. If we were
to use the number of relationships in a system (NoR) as a crude
quantifier of complexity (see Beckmann and Goode, 2017 for a
more detailed discussion) the process of knowledge acquisition
under this instruction requires the reduction of complexity from
a NoRpresumed = 12 to NoRactual = 6. In contrast, the instruction
to start with a “blank slate” (i.e., assuming that no relationship
exists) aimed at creating a situation where complexity needed to
be increased from NoRpresumed = 0 to NoRactual = 6. The slope
differences in bias scores between the two instruction conditions
suggest that decreasing the complexity of a presumption structure
is more challenging than is building up the complexity of a
knowledge structure, regardless of the semanticity of the explored
system.

If we were to interpret the difference in the initial Bias-scores
between the two instruction conditions as an indicator of
how well problem solvers were able to adopt a “full slate”
or “blank slate” perspective then the significant interaction
effect between semanticity and instruction would indicate that
the instruction–adoption differs between the two semanticity
conditions. Problem solvers tend to struggle adopting a “blank
slate” perspective under the high semanticity condition. From

a cognitive task analysis point of view, we could surmise that
adopting a “blank slate” perspective under high semanticity
conditions requires the suppression of preconceived expectations
regarding the causal structure of the system as they are
triggered by the semanticity of the variable labels. The process
of suppression or decontextualization seems to add to the
complexity of the task of knowledge acquisition in CPS-systems
high in semanticity. In short, semanticity, as a situational
characteristic of CPS, has the potential of being a source of
complexity.

We have also argued that systematicity (i.e., the creation of
informative mini-experiments that help to identify the existence
or non-existence of relationships between system variables) is
a necessary precondition for successful knowledge acquisition,
independent of instruction conditions or semantic embedment
of the system. Our findings, however, suggest that problem
solvers working under high semanticity conditions are on average
less likely to engage in systematic exploration behavior. At
this stage, it is difficult to conceive of a “cognitive argument”
that would predict that the heuristic of systematically testing
against presumptions (as required in the eliminate conditions)
is cognitively more demanding than testing for evidence of the
existence of relationships (as would be required in the compile
conditions). This, in conjunction with the fact that problem
solvers in the compile condition with low semanticity were able
to be more systematic, leads to the conjecture of seeing the failing
to employ a suitable or necessary heuristic as an indication of
the greater difficulties problem solvers seem to have. In short,
semanticity as a situational characteristic of CPS might also be
a potential source of (unnecessary) difficulty.

In switching the focus from the bias score (indicating the
adoption of the instructed behavior) and systematicity score
(indicating the level of engaging in planned and coordinated
behavior) onto performance (i.e., knowledge acquisition as
well as control), the data suggest that in conditions of high
semanticity, it is more effective to start with the presumption
that all relationships might exist (“full slate”) rather than to
start pretending that none exist. This requires systematic testing
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FIGURE 4 | Disordinal interaction effects of semanticity and instruction on knowledge acquisition (left) and system control (right).

against a priori assumptions regarding the system’s underlying
causal structure, with the emphasis on “systematic.” In conditions
with low semanticity, however, it seems less effective to start with
presumptions of existing relationships (it is safe to assume that
such presumptions would likely be a result of conscious efforts
to guess). The more “natural” starting position here would be
something more akin to a “blank slate” (or, knowing that one
does not know), which then would require a systematic testing
for evidence regarding the system’s underlying causal structure.

The fact that knowledge acquisition and control performances
in the high semanticity conditions still fall short of those shown
in low semanticity conditions (i.e., replicating the “semantic
effect”) can be explained via two factors. First a complexity factor,
which reflects the additional cognitive demands associated with
suppressing presumptions when trying to adopt a “blank slate”
starting position under high semanticity conditions, and second
a difficulty factor, which reflects the tendency of problem solvers
to not adopt a systematic approach to exploration behavior.

GENERAL DISCUSSION

These reflections should not be misunderstood as an
unconditional plea against the use of semantically laden
variable labels in CPS. The answer to the question of what
kind of systems should be used is once more the infamous: it
depends. It depends on the purpose of the use of CPS scenarios.
If, for instance, we aim to measure problem solvers’ ability to
draw inferences based on observed outcomes of systematic
experimentation, we need to consider that arguably minor
changes in situational characteristics, such as the semanticity of
variable labels, have the potential to prevent the spontaneous
employment of systematic experimentation (see also Beckmann
and Goode, 2014). Under these circumstances, it would be
inappropriate to interpret performance scores as indicators of
problem solvers’ reasoning ability or to expect them to correlate
highly with reasoning measures. If, however, the aim was to
predict “real life decision making” and given that “real life

problems” are always semantically anchored, then using systems
with high semanticity might be appropriate. The “construct
purity” (or uni-dimensionality, in psychometric terms) of the
measure, however, is likely to be compromised, which needs to
be reflected (a) in expectations regarding inter-test correlations
and (b) in the way performance scores are interpreted. Schoppek
and Fischer (2015) make a convincing case for conceptualizing
CPS performance scores as indicators of a competency, whereby
a competency is a conglomerate of knowledge, reasoning ability,
thinking skills and motivational variables. The PTS framework
proposed here can help draw attention to the often-overlooked
potential impact that situational characteristics might have on
the composition of knowledge, reasoning ability, thinking skills
and motivational variables in performance scores obtained
from dealing with supposedly homomorphous CPS systems.
For instance, the practice of aggregating performance scores
obtained in multiple minimal complex systems (e.g., Funke,
2014; Stadler et al., 2016) with various levels of semanticity might
be psychometrically desirable (e.g., maximizing reliability). At
the same time, however, this very practice could (inadvertently)
turn out to be a threat to construct validity if performance scores
are underpinned by qualitatively different cognitive processes
(e.g., compiling vs. eliminating), varying levels of functional or
dysfunctional prior knowledge, and/or differences in perceived
personal relevance of the semantic context these systems are
embedded in. The PTS framework might also be (in-)formative
for on-going discussions as to whether CPS performance scores
are more than g or not (e.g., Gonzales et al., 2005; Wüstenberg
et al., 2012; Hundertmark et al., 2015; Schoppek and Fischer,
2015; Stadler et al., 2015).

The use of semantically laden cover stories or variable labels
to induce a stronger sense of “real life” relevance of the CPS
experience for the participants in our laboratory studies or
large scale assessment exercises should also not be mistaken
as a shortcut to what some might call ecological validity. If
we were to define ecological validity as the meaningfulness,
appropriateness and usefulness of inferences drawn based on
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performance scores obtained using an assessment tool, one would
have to convincingly demonstrate that the problems posed in
the assessment situation have triggered the same cognitive or
affective processes as they are expected to be involved when
dealing with complexity, uncertainty and dynamics in the “real
world.” Otherwise we run the risk of simply falling prey to
our own make-believe. Proper validation requires an ex ante
specification of the cognitive or affective processes expected
to be involved when dealing with complexity, uncertainty and
dynamics in the “real world.” The distinction between complexity
and difficulty, as being proposed here, can help moving beyond
psychometrics-driven post hoc interpretations of mean scores and
correlation patterns.

The differentiation between complexity and difficulty can
also help improving the conceptual and psychometric quality
of the assessment or research tools we use in the context of
CPS. For instance, result patterns indicating that problem solvers
overall experienced fewer difficulties (i.e., better performance)
than the ex ante specifications of complexity would have led us
to expect, could suggest that problem solvers might not have had
to engage in the sequences of cognitive processes anticipated.
Certain task-independent situational features could have enabled
the use of prior knowledge or chunked information cues (Wood,
1986) and consequently created “construct-irrelevant easiness”
(Messick, 1995). Conversely, “construct-irrelevant difficulty”
(Messick, 1995) could result from a misalignment between
(empirically observed) performance scores and (theoretically
pre-determined) complexity specifications, where the former is
systematically lower than the latter would have suggested. This
could have been triggered by situational variables (inadvertently)
preventing problem solvers from engaging in the anticipated
sequence of cognitive behaviors. Both instances present a threat
to validity that might be overlooked if complexity and difficulty
are treated synonymously.

The main intent of this paper was to contribute to the
discussion around taking CPS beyond a narrowly defined
psychometric approach. We are of the view that a predominantly
psychometric perspective tends to fall short in appropriately
capturing the essence of CPS, namely complexity. We identified
the lack of a differentiation between complexity and difficulty as
a major barrier to achieving conceptual progress in CPS research.
To redress this, we introduced the Person–Task–Situation
(PTS) framework which, through the theoretical distinction it
makes between its constituent factors, enables a conceptual
differentiation of complexity and difficulty. The differentiation
provides a theory-based platform for studying cognition (e.g.,
information processing, learning, decision making, reasoning)
beyond an atheoretical psychometric lens.

Complexity as a concept also includes a qualitative dimension,
whilst difficulty is exclusively quantitative. Complexity is
a cognitive concept that reflects the interactive effects of
information processing demands imposed upon the cognitive
system by task and situation characteristics (i.e., the T and the S
in the PTS framework). Difficulty is a psychometric concept that
reflects the level of success problem solvers have in dealing with
complexity. The integration of the person (i.e., the P in the PTS
framework) introduces individual differences in ability, memory,

knowledge and attitudinal variables as potential explanatory
factors for observed performance differences. Cognition research
in general, and CPS research in particular, focuses on studying
the links between complexity and difficulty. By ignoring their
conceptual differences and treating them synonymously, CPS
research runs the risk of loosing sight of its cognition-based
origins and failing to utilize its potential.

As a case in point, we used the “semantic effect” to
test these conceptualizations. We were able to show that
by using the same system (i.e., keeping the task qua task
constant) and asking problem solvers to freely explore the
system to find out its underlying causal structure (i.e., keeping
the task as behavior requirement constant), but varying the
system’s semantic embedment via using different variable labels
(i.e., varying a situational variable) systematic differences in
exploration behavior occurred. Failing to differentiate task
and situation as independent sources of complexity and by
treating complexity and difficulty synonymously the resulting
performance differences would erroneously be attributed to
individual differences in person-related variables.

The conceptual distinction between complexity and difficulty
paves the path for taking CPS beyond a psychometric approach.
In fact, it is instrumental to bringing the “psycho-” back into
psychometric. Otherwise one tends to operate with a “metric”
that is agnostic to theory, and can therefore not be scrutinized
for validity. The validity question is the core element of empirical
research in psychology that relies on a strong conceptual
underpinning. Psychometrics is a tool for linking the theoretical
and the empirical and should not be used as a substitute for either.

The study presented here is not intended as a
comprehensive test of the PTS framework that underpins
the complexity–difficulty distinction. Instead, the paper should
be considered as an invitation and orientation for future work.
The theoretical analyses and empirical outcomes we report
support the proposed complexity framework in demonstrating
that it is both specific enough to allow for testable hypotheses,
yet broad enough to allow modifications and refinements.
Our work also contributes to efforts to better understand
the person–task–situation tripartite. Future conceptual and
empirical contributions will be necessary to further develop
and refine a common framework that considers the interplay of
the person, the task and the situation and has complexity at its
conceptual core. This, so we have argued, is particularly pertinent
to a research paradigm such as CPS that carries complexity in
its label. Efforts to this end will support the better integration of
research findings from existing and future studies on CPS.

ETHICS STATEMENT

This study has been reviewed by, and received ethics clearance
through, the Human Research Ethics Committee (HREC),
University of New South Wales, Australia (Approval No: 09616
and 06294). After being informed (a) what participation in
the study entails, (b) that participation was voluntary and (c)
withdrawal from participation was possible at any time without
negative consequences, and (d) that anonymity was guaranteed,

Frontiers in Psychology | www.frontiersin.org October 2017 | Volume 8 | Article 1739124

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-08-01739 October 7, 2017 Time: 19:36 # 12

Beckmann et al. Difficult vs. Complex Problem Solving

participants were asked to sign an informed consent form prior
to participation.

AUTHOR CONTRIBUTIONS

JB, DB, and NG certify that they have participated sufficiently
in the work to take responsibility for the content, including
participation in the conception, design, analysis, drafting
the work, writing, and final approval of the manuscript.
Each author agrees to be accountable for all aspects of the
work.

FUNDING

This research was supported under Australian Research Council’s
Linkage Projects funding scheme (project LP0669552). The views
expressed herein are those of the authors and are not necessarily
those of the Australian Research Council.

ACKNOWLEDGMENT

We would like to thank Anissa Müller, Myvan Bui, and Lisa
Reinecke for their support with the data collection.

REFERENCES
Beckmann, J. F. (1994). Lernen und Komplexes Problemlösen. [Learning and

Complex Problem Solving]. Bonn: Holos.
Beckmann, J. F. (2010). Taming a beast of burden – on some issues

with the conceptualisation and operationalisation of cognitive
load. Learn. Instr. 20, 250–264. doi: 10.1016/j.learninstruc.2009.
02.024

Beckmann, J. F., and Goode, N. (2014). The benefit of being naïve and knowing it:
the unfavourable impact of perceived context familiarity on learning in complex
problem solving tasks. Instr. Sci. 42, 271–290. doi: 10.1007/s11251-013-
9280-7

Beckmann, J. F., and Goode, N. (2017). Missing the wood for the wrong trees: on
the difficulty of defining the complexity of complex problem solving scenarios.
J. Intell. 5:15. doi: 10.3390/jintelligence5020015

Beckmann, J. F., and Guthke, J. (1995). “Complex problem solving, intelligence,
and learning ability,” in Complex Problem Solving. The European Perspective,
eds P. A. Frensch and J. Funke (Hillsdale, NJ: Erlbaum), 177–200.

Birney, D. P., Beckmann, J. F., and Seah, Y.-Z. (2016). More than the eye of
the beholder: the interplay of person, task, and situation factors in evaluative
judgements of creativity. Learn. Individ. Differ. 51, 400–408. doi: 10.1016/j.
lindif.2015.07.007

de Jong, T., and van Joolingen, W. R. (1998). Scientific discovery learning with
computer simulations of conceptual domains. Rev. Educ. Res. 68, 179–201.
doi: 10.3102/00346543068002179

Frensch, P. A., and Funke, J. (eds) (1995). Complex Problem Solving: The European
Perspective. Hillsdale, NJ: Erlbaum.

Funke, J. (1985). Steuerung dynamischer systeme durch aufbau und anwendung
subjektiver Kausalmodelle [Control of dynamic systems by building up and
using subjective causal models]. Z. Psychol. 193, 435–457.

Funke, J. (1992). Dealing with dynamic systems: research strategy, diagnostic
approach and experimental results. German J. Psychol. 16, 24–43.

Funke, J. (2014). Analysis of minimal complex systems and complex problem
solving require different forms of causal cognition. Front. Psychol. 5:739.
doi: 10.3389/fpsyg.2014.00739

Funke, J., Fischer, A., and Holt, D. (2017). When less is less: solving multiple simple
problems is not complex problem solving—A comment on Greiff et al. (2015).
J. Intell. 5, 1–11. doi: 10.1111/desc.12216

Funke, J., and Frensch, P. A. (2007). “Complex problem solving: the European
perspective — 10 years after,” in Learning to Solve Complex Scientific Problems,
ed. D. H. Jonassen (New York, NY: Lawrence Erlbaum), 22–47.

Gonzales, C., Thomas, R. P., and Vanyukov, P. (2005). The relationships between
cognitive ability and dynamic decision making. Intelligence 33, 169–186.
doi: 10.1016/j.cub.2016.09.015

Greiff, S., Stadler, M., Sonnleitner, P., Wolff, C., and Martin, R. (2015). Sometimes
less is more: comparing the validity of complex problem solving measures.
Intelligence 50, 100–113. doi: 10.1016/j.intell.2015.02.007

Guthke, J., Beckmann, J. F., and Stein, H. (1995). “Recent research evidence on the
validity of learning tests,” in Advances in Cognition and Educational Practice.

European Contributions to the Dynamic Assessment, Vol. 3, ed. J. S. Carlson
(Greenwich, CT: JAI Press), 117–143.

Hackman, J. R. (1969). Towards understanding the role of tasks in behavioural
research. Acta Psychol. 31, 97–128. doi: 10.1016/0001-6918(69)90073-0

Hundertmark, J., Holt, D. V., Fischer, A., Said, N., and Fischer, H. (2015). System
structure and cognitive ability as predictors of performance in dynamic system
control tasks. J. Dyn. Decis. Mak. 1, 1–10. doi: 10.11588/jddm.2015.1.26416

McGrath, J. E., and Altman, I. (1966). Small Group Research: A Synthesis and
Critique of the Field. New York: Holt, Rinehart, & Winston.

Messick, S. (1995). Validity of psychological assessment: validation of inferences
from persons’ responses and performances as scientific inquiry into score
meaning. Am. Psychol. 50, 741–749. doi: 10.1037/0003-066X.50.9.741

Newell, A., and Simon, H. A. (1972). Human Information Processing. Englewood
Cliffs, NJ: Prentice-Hall.

OECD (2013). PISA 2012 Assessment and Analytical Framework: Mathematics,
Reading, Science, Problem Solving and Financial Literacy. Paris: OECD
Publishing.

Osman, M. (2010). Controlling uncertainty: a review of human behavior in
complex dynamic environments. Psychol. Bull. 136, 65–86. doi: 10.1037/
a0017815

Schoppek, W., and Fischer, A. (2015). Complex problem solving – single ability or
complex phenomenon? Front. Psychol. 6:1669. doi: 10.3389/fpsyg.2015.01669

Snodgrass, J. G., and Corwin, J. (1988). Pragmatics of measuring recognition
memory: applications to dementia and amnesia. J. Exp. Psychol. Gen. 117,
34–50. doi: 10.1037/0096-3445.117.1.34

Stadler, M., Becker, N., Gödker, M., Leutner, D., and Greiff, S. (2015). Complex
problem solving and intelligence: a meta-analysis. Intelligence 53, 92–101.
doi: 10.1016/j.intell.2015.09.005

Stadler, M., Niepel, C., and Greiff, S. (2016). Easily too difficult: estimating
item difficulty in computer simulated microworlds. Comput. Hum. Behav. 65,
100–106. doi: 10.1016/j.chb.2016.08.025

Wood, R. E. (1986). Task complexity: definition of the construct. Organ. Behav.
Hum. Decis. Process. 37, 60–82. doi: 10.1016/0749-5978(86)90044-0

Wood, R. E., Beckmann, J. F., and Birney, D. P. (2009). Simulations,
learning and real world capabilities. Educ. Train. 51, 491–510. doi: 10.1108/
00400910910987273

Wüstenberg, S., Greiff, S., and Funke, J. (2012). Complex problem solving — More
than reasoning? Intelligence 40, 1–14. doi: 10.1016/j.intell.2011.11.003

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Beckmann, Birney and Goode. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org October 2017 | Volume 8 | Article 1739125

https://doi.org/10.1016/j.learninstruc.2009.02.024
https://doi.org/10.1016/j.learninstruc.2009.02.024
https://doi.org/10.1007/s11251-013-9280-7
https://doi.org/10.1007/s11251-013-9280-7
https://doi.org/10.3390/jintelligence5020015
https://doi.org/10.1016/j.lindif.2015.07.007
https://doi.org/10.1016/j.lindif.2015.07.007
https://doi.org/10.3102/00346543068002179
https://doi.org/10.3389/fpsyg.2014.00739
https://doi.org/10.1111/desc.12216
https://doi.org/10.1016/j.cub.2016.09.015
https://doi.org/10.1016/j.intell.2015.02.007
https://doi.org/10.1016/0001-6918(69)90073-0
https://doi.org/10.11588/jddm.2015.1.26416
https://doi.org/10.1037/0003-066X.50.9.741
https://doi.org/10.1037/a0017815
https://doi.org/10.1037/a0017815
https://doi.org/10.3389/fpsyg.2015.01669
https://doi.org/10.1037/0096-3445.117.1.34
https://doi.org/10.1016/j.intell.2015.09.005
https://doi.org/10.1016/j.chb.2016.08.025
https://doi.org/10.1016/0749-5978(86)90044-0
https://doi.org/10.1108/00400910910987273
https://doi.org/10.1108/00400910910987273
https://doi.org/10.1016/j.intell.2011.11.003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-08-01739 October 7, 2017 Time: 19:36 # 13

Beckmann et al. Difficult vs. Complex Problem Solving

APPENDIX

FIGURE A1 | Diagram and set of equations for the causal structure of the CPS system used in this study.
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Although individual differences in complex problem solving (CPS) are well–established,

relatively little is known about the process demands that are common to different dynamic

control (CDC) tasks. A prominent example is the VOTAT strategy that describes the

separate variation of input variables (“Vary One Thing At a Time”) for analyzing the causal

structure of a system. To investigate such comprehensive knowledge elements and

strategies, we devised the real-time driven CDC environment Dynamis2 and compared it

with the widely used CPS test MicroDYN in a transfer experiment. One hundred sixty

five subjects participated in the experiment, which completely combined the role of

MicroDYN and Dynamis2 as source or target problem. Figural reasoning was assessed

using a variant of the Raven Test. We found the expected substantial correlations

among figural reasoning and performance in both CDC tasks. Moreover, MicroDYN

and Dynamis2 share 15.4% unique variance controlling for figural reasoning. We found

positive transfer from MicroDYN to Dynamis2, but no transfer in the opposite direction.

Contrary to our expectation, transfer was not mediated by VOTAT but by an approach

that is characterized by setting all input variables to zero after an intervention andwaiting a

certain time. This strategy (called PULSE strategy) enables the problem solver to observe

the eigendynamics of the system. We conclude that for the study of complex problem

solving it is important to employ a range of different CDC tasks in order to identify

components of CPS. We propose that besides VOTAT and PULSE other comprehensive

knowledge elements and strategies, which contribute to successful CPS, should be

investigated. The positive transfer from MicroDYN to the more complex and dynamic

Dynamis2 suggests an application of MicroDYN as training device.

Keywords: complex problem solving, complex dynamic control, dynamic decision making, strategies, knowledge

acquisition

INTRODUCTION

Complex problem solving (CPS) is a phenomenon that is investigated in many domains, ranging
from scientific discovery learning over industrial process control to decision making in dynamic
economical environments. At the heart of the scientific investigation of the phenomenon are
complex dynamic control (CDC) tasks (Osman, 2010) that are simulated in the laboratory.
Simulated CDC tasks provide the opportunity to study human deciding and acting in complex
situations under controlled and safe conditions.
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Currently, research on CPS is dominated by attempts to
construe it as one-dimensional ability construct, which means
that a single measure represents a person’s ability to solve
complex problems. To this end, Greiff and Funke (2010) and
Greiff et al. (2012) have developed the minimal complex systems
test MicroDYN. This CPS environment consists of a number of
linear systems with mostly three input and three output variables.
The systems are presented with various cover stories (e.g.,
how do different training schedules affect aspects of handball
performance?). The subjects have to explore each system, enter
their insights into a causal diagram (knowledge acquisition
phase) and subsequently steer the system to a given array of
target values by entering input values (knowledge application
phase). Each system is attended to for about 5min. MicroDYN
yields reliable measures of knowledge acquisition and knowledge
application (Fischer et al., 2015a). As both variables are highly
correlated, they are often combined to obtain a measure of
CPS ability (e.g., Greiff and Fischer, 2013). MicroDYN has been
validated using various criteria—predominantly school grades.
The typical result of these studies is that the combined CPS
measure accounts for 5% variance in school grades incremental
to figural reasoning (Schoppek and Fischer, 2015).

Consistent with our view of CPS as a multifaceted
phenomenon (Schoppek and Fischer, 2015), we claim to
use the denomination “complex problem solving” in a
broader sense. We adhere to the conception of Dörner
(1997), who characterizes complex problems as being complex
(many variables), interrelated (with many relations among
the variables), dynamic (with autonomous state changes),
intransparent (with not all information being available at the
outset), and polytelic (more than one goal has to be considered;
often goals are contradicting). As these characteristics are
not defined precisely, and can take shape to varying degrees,
CPS refers to a broad range of problems, which can differ
considerably in their requirements for being solved (Fischer
and Neubert, 2015). This could be considered a conceptual
weakness. However, for the labeling of broad phenomena
this is common practice. For example, the established label
“problem solving” has an even larger domain. Therefore,
assuming a one-dimensional construct “CPS” does not do
justice to the heterogeneity of the domain (Fischer and Neubert,
2015).

In order to make progress toward a deeper understanding of
CPS we propose a preliminary process model (see Figure 1). The
model is composed of assumptions that are established in the
CPS literature. We classify these assumptions as pertaining to
processes and structures.

One coarse process assumption divides CPS in the phases
(or sub-processes) of knowledge acquisition and knowledge
application (Fischer et al., 2012). Knowledge acquisition refers to
the requirement of detecting the causal structure of the system
by means of appropriate exploration strategies1. Knowledge

1Although we would prefer to distinguish between tactics (= concrete methods for

accomplishing goals), and strategies (= abstract plans), we use the more general

term “strategy” for both, because the distinction has not become widely accepted

in cognitive science.

application means using the acquired knowledge to plan and
implement interventions in order to reach given target states.
This assumption of Fischer et al. (2012) originates in the
Dynamis approach by Funke (1991, 1993) and underlies the
MicroDYN paradigm (Greiff and Funke, 2009). In view of
the widely spread use of this model, we call it the “standard
model of CPS.” A second classification, proposed by Osman
(2008, 2010), distinguishes between monitoring, which “refers
to online awareness and self-evaluation of one’s goal-directed
actions” (Osman, 2008, p. 97), and control, which refers to
“the generation and selection of goal-directed actions” (ibid.,
p. 97). As Osman (2008) operationalized monitoring through
observation of exploration behavior of oneself or others,
the kinship between monitoring and knowledge acquisition
becomes obvious. However, control pertains to knowledge
application and exploratory manipulations (which are part
of the knowledge acquisition sub-process of the standard
model).

With respect to structure, Schoppek (2002) has proposed a
classification of knowledge types that are learned during and/or
applied to CPS: Structural knowledge is knowledge about the
causal relations among the variables that constitute a dynamic
system. I-O knowledge (shorthand for “input-output knowledge”)
represents instances of interventions together with the system’s
responses. Strategy knowledge represents abstract plans of how to
cope with the CDC problem. An example is the awareness of the
control of variables strategy (Chen and Klahr, 1999), also known
as VOTAT (Vary One Thing At a Time, Tschirgi, 1980).

VOTATwas first described in the context of testing hypotheses
in multivariate stories (Tschirgi, 1980). In the context of CDC
tasks, it means varying a single input variable in order to observe
its effects on the output variables. The extent of using this
strategy predicts better structural knowledge and better control
performance (Vollmeyer et al., 1996; Wüstenberg et al., 2014).

A related strategy is to apply an impulse to an input variable:
The problem solver sets one or more input variables to certain
values greater than zero, then sets the values back to zero again. In
the following simulation steps where all input variables are zero,
the course of the output variables informs the problem solver
about side effects and eigendynamics of the output variables2.
Schoppek (2002) instructed this strategy to participants in an
experiment that involved a CDC task of the Dynamis type and
found better structural knowledge in the trained group (see also
Beckmann, 1994 and Schoppek and Fischer, 2015). Evidence
about the usefulness of this strategy for controlling MicroDYN
has recently been reported by Greiff et al. (2016) and Lotz et al.
(2017). These authors refer to the strategy as non-interfering
observation or NOTAT. We use the label PULSE, following
Schoppek’s (2002) characterization as setting an impulse.

Back to the process model: Processual and structural
assumptions are different perspectives rather than alternative
conceptions. For example, in the knowledge acquisition phase the

2A side effect is an effect of one output variable on another; eigendynamic is the

effect of an output variable on itself (Funke, 1992). Considerations about how to

deal with eigendynamic can be traced back to the early days of CPS (Dörner, 1980;

Beckmann, 1994; Dörner and Schaub, 1994).
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FIGURE 1 | Visualization of the preliminary process model. Brown arrows denote processes that require much working memory capacity; yellow arrows denote

processes that require little working memory capacity. The arrows originating from “strategy knowledge” indicate that this knowledge determines most of the

displayed processes. Gray arrows indicate that the processes can iterate within the same problem.

goal is to gain structural knowledge about a system by application
of appropriate strategies such as VOTAT, which are part of
the strategy knowledge of the problem solver. The execution of
VOTAT in turn is a process.

Our process model includes assumptions about the transfer
distance of the different knowledge types (Schoppek, 2002).
Structural knowledge about one specific System A cannot be
transferred to another System B with a different structure (far
transfer, see Paas, 1992). However, it can be transferred to the
problem of reaching a different goal state in System A (near
transfer). In contrast, strategy knowledge acquired in the context
of System A can likely be transferred to System B. This is
particularly plausible when the strategy refers to the acquisition
of structural knowledge. For example, if participants learn to
apply the VOTAT strategy to System A successfully, we expect
them to try it also when confronted with a new System B. Such
cross-situational relevance has been shown repeatedly for the
VOTAT strategy (Müller et al., 2013; Wüstenberg et al., 2014).
We indicate the fact that VOTAT can be applied to a wide range
of problems by referring to it as a comprehensive strategy.

Further assumptions of our preliminary processmodel pertain
to the role of working memory (WM). We assume that the
various strategies that serve knowledge acquisition are differing
with respect to WM requirements. A simple trial and error
strategy, associated with lowWM load, is not efficient for learning
the causal structure of a system, but may be suitable for acquiring
I-O knowledge—which is probably often memorized implicitly
(Dienes and Fahey, 1998; Hundertmark et al., 2015). The VOTAT
strategy on the other hand puts a heavy load on WM and
is suitable for acquiring structural knowledge. To substantiate

such assumptions, we adopt the terminology of cognitive load
theory (Sweller, 1988; Sweller and Chandler, 1994). Solving a
new complex problem yields intrinsic cognitive load. Corbalan
et al. (2006) describe this to the point: “In terms of cognitive load
theory the difficulty of a task yields intrinsic cognitive load, which
is a direct result of the complex nature of the learning material.
That is, intrinsic cognitive load is higher when the elements of the
learning material are highly interconnected (. . . ) and lower when
they are less interconnected” (p. 404). Cognitive load associated
with learning is called “germane load.” As the capacity of WM
is limited, high intrinsic load leaves little capacity for germane
load, thus leading to poor learning. Together, these assumptions
predict that the difficulty and complexity of a source problem
restrain the learning of generalizable knowledge about structures
or strategies, leading to poor transfer. This prediction has been
confirmed by Vollmeyer et al. (1996) in the context of CPS.

In summary, to learn comprehensive strategies such as
VOTAT, learning opportunities should not be too complex.
We suppose that transfer experiments are particularly useful
for investigating the reach or comprehensiveness of knowledge
elements and strategies.

To test some of the predictions of our preliminary process
model, we have developed Dynamis2, a new CPS environment
that accentuates the aspect of dynamics, which has been central
in early work on CPS (e.g., Dörner and Schaub, 1994). Like
MicroDYN, it is based on Funke’s (1991, 1993) Dynamis
approach, which uses linear equations for calculating state
changes of the system’s variables. Unlike the traditional approach,
Dynamis2 simulates system dynamics in real time, which means
that the state of the system is mandatorily updated every second.
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The user can apply inputs at any time. A typical run with
Dynamis2 comprises 250 simulation steps. As much of the
research with CDC tasks has been done with systems whose states
are updated in less than 9 time steps—triggered by the user—
we regard Dynamis2 as an important step toward investigating
dynamic decision making that deserves this label (cf. Fischer
et al., 2015b; Schoppek and Fischer, 2015).

The primary goal of the present study was to test assumptions
about the transfer of knowledge elements, in particular strategic
knowledge, from one CDC task to another. We did this with
a transfer experiment where the source function and the target
function of two CPS environments were completely combined3.
This enabled us to estimate transfer effects in both directions.
Secondary goals were to explore the psychometric properties of
Dynamis2, and to use it as validation criterion for the more
established MicroDYN (Greiff et al., 2012). MicroDYN has not
been validated extensively with other standardized CPS tasks (but
see Greiff et al., 2013, 2015; Neubert et al., 2015). Therefore,
it appears worthwhile to test the expectation that MicroDYN
predicts performance in Dynamis2 over and above intelligence.
In a fashion that was common at the time when we planned
the experiment, we used figural reasoning as a proxy for general
intelligence. We will discuss the implication of this decision and
its relation to recent findings about broader operationalizations
of intelligence in the discussion section (Kretzschmar et al., 2016;
Lotz et al., 2016).

We expected (1) positive transfer from MicroDYN to
Dynamis2, mediated by the VOTAT strategy. As demonstrated
by Wüstenberg et al. (2014), the extent of using this strategy
predicts performance in MicroDYN. As VOTAT was in the
focus of discussion about strategies in CDC tasks at the
time when we designed the experiment, we did not explicitly
expect PULSE as a mediator. However, we investigated the
role of that strategy in post-hoc analyses. We expected (2)
less to no transfer from Dynamis2 to MicroDYN, because the
former is more difficult than the latter. Due to the quick
time lapse of Dynamis2, the learner has to coordinate several
concurrent subtasks in real time: Observing the course of the
system, analyzing the effects of their actions, and planning
new interventions. In terms of cognitive load theory (Sweller,
1988; Sweller and Chandler, 1994), this results in much more
intrinsic cognitive load than MicroDYN, where the environment
guides the course of action. Therefore, controlling Dynamis2
leaves less WM capacity open for germane load, which is
necessary for conscious learning (Rey and Fischer, 2013).
Based on recent evidence on the relation between CPS and
intelligence (Wüstenberg et al., 2012; Greiff et al., 2013), we
expected (3) that figural reasoning andMicroDYN should predict
performance in Dynamis2. MicroDYN should explain unique
variance in Dynamis2 (beyond figural reasoning) due to similar
requirements (linear equation systems, knowledge acquisition,
knowledge application).

3Problems that are used for learning in a transfer design are called source problems;

problems in the transfer phase are called target problems. Combining refers to

the fact that all levels of the factors “CPS environment” and “Function (source vs.

target)” were combined.

METHODS

We first introduce the instruments and the tasks we used in
the experiment, including the measures for performance and
proceeding, followed by the description of the design, the
participants, and the procedure. Although some of the measures
were only subject to exploratory analyses, which we conducted
after testing the hypotheses, we report their operationalization
here.

Figural reasoning was measured with a modified version of
theWMT (“WienerMatrizentest”, Formann et al., 2011). Because
the original test was constructed for adolescents, we replaced two
items of the original test by four more difficult items from the
original APM (Raven et al., 1994). The highest possible score was
20 points. Although matrix tests load high on general intelligence
assessed with broader batteries (Johnson and Bouchard, 2005),
we refer to our measure as “figural reasoning”.

Wason task: This task requires interactive hypothesis testing
(Wason, 1960). Participants are shown a list of three numbers
and are asked to find out the rule that underlies the list. For
example, if the list is “2 4 6,” the rule might be “three ascending
even numbers” or simply “three different numbers.” To test their
hypotheses, participants enter new lists and are given feedback
whether the lists conform to the rule or not. To solve problems
of this kind, it is important to try to falsify one’s hypotheses.
Many subjects fail the task because they focus on confirming
their hypotheses (Gorman and Gorman, 1984). We presented the
task with three different rules. (The first was the original rule
used by (Wason, 1960): “any ascending sequence”. AF devised
the other two rules in the style of the first rule). As a performance
measure (“Wason score”) we used the number of correctly
identified rules.

Complex Dynamic Control Tasks
Both CDC tasks we used in the experiment are based on linear
equation systems with up to three input variables and up to three
output variables (cf. Fischer et al., 2015a). The state of the system
is calculated in discrete time steps as a function of the current
state of the input variables and the state of the output variables
from the preceding time step. We refer to these time steps as
cycles. Figure 2 shows an overview of the terminology we used
to describe the CDC tasks. Details about the individual systems
are reported in the Appendix.

MicroDYN: This CDC is constructed in the style of a test,
consisting of several scenarios. Each scenario is defined by a
specific equation system and a corresponding cover story. The
process of working on the task is the same for each scenario: First,
the problem solver has to explore the system’s causal structure by
repeatedly varying the input variables and monitoring the effects
(knowledge acquisition). To complete a cycle and see the effect
of their actions the problem solver has to click a button (labeled
“apply”). The problem solvers enter their insights about the
systems as arrows in a causal diagram. There is a time restriction
of 180 s for the exploration phase of each item. After this, the
problem solvers are given goal states for each output variable that
they must achieve within 90 s by manipulating the input variables
up to four cycles in a row.

Frontiers in Psychology | www.frontiersin.org December 2017 | Volume 8 | Article 2145130

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Schoppek and Fischer Process Demands of Complex Problems

FIGURE 2 | Delineation of the design and the terminology used to describe the CDC tasks. KA stands for “knowledge acquisition.”

To assess structural knowledge, we had participants draw
arrows in a causal diagram at the bottom of the screen. An arrow
represented an assumed causal relation. A causal diagram was
rated correct if it contained all causal relations of the system
and no relation that was not simulated. Structural knowledge in
the knowledge acquisition phase was scored by summing up the
ternary graded degree of correctness over all causal diagrams (0:
more than one error, 1: one error, 2: no errors).

Performance in the knowledge application phase was scored
by summing up the ternary graded degree of target achievement
across the six items (0: targets missed, 1: targets partially
met, 2: targets totally met; a single target was coded as met
when the deviation was no larger than ±1). As an overall
performance measure, we added the knowledge acquisition score
and the knowledge application score and divided the sum by
two.

To determine the problem solvers’ strategies, we analyzed the
log files. For each cycle we observed if all input-variables were
set back to zero (PULSE strategy, see below). If only one variable
was set to a value different from zero at least once (VOTAT
strategy), it was determined for which variable this was the case.
Over all cycles of the exploration phase, we scored the proportion
of input variables for which the VOTAT strategy was applied,
and whether or not the PULSE strategy was applied at least
once (0–1). These values were averaged across the scenarios to
represent the extent of using each strategy. For example, when
there are three input variables in a system and the participant

used VOTAT for two of them at least once, the VOTAT measure
is 0.66.

Dynamis2 was developed in order to emphasize the dynamic
aspect of complex problem solving (Schoppek and Fischer, 2015).
Like in the original Dynamis approach (Funke, 1991, 1993),
the systems are simulated using sets of linear equations. The
crucial difference is that Dynamis2 is real-time driven, which
means that the simulation is updated every second, regardless if
the subject manipulates the input variables or not. This makes
the dynamics of the simulated systems more tangible than
in extant CPS environments such as the business microworld
Tailorshop, MicroDYN, Genetics Lab, Cherry Tree (Beckmann
and Goode, 2014), etc. In addition, genuine time pressure results
for the subjects. Figure 3 shows the causal diagram of one of
the systems used in the experiment. Subjects can manipulate the
three medicines Med A, Med B, and Med C (input variables) in
order to control the blood values of three fictitious substances
Muron, Fontin, and Sugon (output variables). Interventions can
be entered for one or more input variables and applied at any
time by clicking the “apply” button. Each scenario of Dynamis2
consists of a run (250 cycles) of free exploration, followed by two
runs where subjects are asked to reach and maintain a given goal
state (e.g., Muron = 100, Fontin = 1,000). Performance in the
goal runs is measured by goal deviation according to Equation 1,
where n is the number of cycles (here 250), k is the number of
goal variables, xij is the value of variable j in cycle i, gj is the goal
value of variable j, and s is the cycle when the learners entered
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FIGURE 3 | Diagram of the causal structure of one of the Dynamis2 systems used in the experiment. The numbers denote coefficients in the linear equations that

determine the state of each output variable. For example, the state of Muron at time t is given by Muront = 0.1*Muront−1 + 2.0*MedAt.

their first input.

dev = ln

(

n
∑

i=s

∑k
j=1

∣

∣xij − gj
∣

∣

∑k
j=1 gj

)

(1)

Because this measure is hard to interpret, we centered it on the
grand mean and reversed the scale. The resulting score thus has
the same orientation as the other performance measures: Higher
values represent better performance.

After completion of the exploration phase, we had participants
draw arrows in diagrams on paper. As a measure of structural
knowledge, we subtracted the number of wrongly drawn relations
from the number of correctly drawn relations and divided the
difference by the number of all possible relations.

As a measure of strategy, we assessed VOTAT analogously to
MicroDYN. A VOTAT event in Dynamis2 was defined by the
manipulation of a single input variable, followed by at least five
cycles (i.e., seconds) with no interventions. For a comprehensive
measure of using the strategy, we calculated the proportion of
input variables for which the VOTAT strategy was applied at least
once in the exploration phases of each of the three scenarios.
We averaged these proportions across the scenarios. Likewise,
we defined a PULSE event by setting all input variables (back)
to zero for at least five cycles and counted these events over
all exploration runs. The reason why the operationalizations of
PULSE differ between the two CDC tasks is that the scenarios in
Dynamis2 are much longer than inMicroDYN. Due to the higher
difficulty of Dynamis2 scenarios (longer runs, more dynamics),
it can be quite reasonable to repeat PULSE interventions, for
example to test hypotheses or to help memorizing certain effects.

Design
We used a transfer design that allowed estimating transfer effects
in both directions. As can be seen in Figure 2, there were
four experimental conditions. In two conditions, subjects had
two blocks of either MicroDYN (condition MM) or Dynamis2

(condition DD). Block 1 in these conditions consisted of separate
Items that were not incorporated into the calculation of transfer
effects. A third condition had one block of MicroDYN, followed
by one block of Dynamis2 (condition MD). The fourth condition
started with one block of Dynamis2, followed by one block
of MicroDYN (condition DM). Participants were randomly
assigned to one of the four conditions.

In MD, DM, and the second block in MM we applied six
MicroDYN scenarios. In the first block of MM, the first scenario
was declared as practice scenario. All blocks of Dynamis2
consisted of three scenarios (with a different set of scenarios in
the first block of DD).

Participants
One hundred-sixty-five subjects participated in the experiment.
Students of diverse majors were recruited from the University
of Heidelberg (n = 83) and from the University of Bayreuth
(n = 82). Ethical approval was not required for this study
in accordance with the national and institutional guidelines.
Participation was in full freedom using informed consent.

We excluded three cases from the dataset due to dubious
behavior during the experiment (not complying with the
instructions; aborting the experiment). In other three cases,
we imputed missing values of the variables Dynamis2 score or
MicroDYN score. We applied multiple regression imputation
based on the cases in the respective condition. The resulting
dataset comprised N = 162 cases, 40 in the DD condition, 41
in DM, 42 in MD, and 39 in MM. The four conditions did not
differ in figural reasoning, age and sex (all Fs < 1).

Procedure
The experiment took place in two sessions. Session 1 began
with a short introduction and the administration of the figural
reasoning test with paper and pencil. Next, subjects worked on
the three items of the Wason task. Session 1 ended with the first
block of complex problem solving tasks, according to the design:
either six items MicroDYN or three scenarios Dynamis2 (with
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two performance scores each). In Session 2, which took place 2
days after Session 1, we administered the second block of complex
problem solving tasks, followed by two other tasks that are not
reported in the present paper (a computerized in-basket task and
an item from the wisdom questionnaire by Staudinger and Baltes,
1996). Each session lasted about 90min.

RESULTS

For the statistical analyses, we used an alpha level of 0.05. In
addition to the significance levels, we report Cohen’s (1988) effect
sizes or partial η

2. The sample size was adequate for detecting
at least medium-sized effects (d = 0.5) with a power of 0.72
for simple mean comparisons and a power of 0.68 for one-way
ANOVA (Faul et al., 2007). Descriptive statistics of the most
important variables are shown in Table 2.

To assess the reliability of the CPS measures, we calculated
Cronbach’s alpha values using the results of individual scenarios
as items.We obtained α= 0.70 for theMicroDYN score (6 items),
and α = 0.64 for the Dynamis2 score (6 items). The measure
for figural reasoning, assessed with the extended WMT, yielded
α = 0.75.

Figure 4A shows the means of the Dynamis2 scores in the
three conditions that involved Dynamis2 (error bars denote
95% confidence intervals). The value in the DD group denotes
performance in Block 2. We found an overall effect of condition
[F(2, 121) = 9.11, p< 0.001, partial η2

= 0.132], with performance
linearly increasing from the DM group to the DD group. A
planned comparison between the DM and the MD group yielded
a significant advantage of the MD group [t(81) = 1.82, one-sided
p < 0.05, d = 0.40]. This indicates that practicing MicroDYN
in Block 1 is beneficial for Dynamis2. We calculated the amount
of transfer using Katona’s (1940) formula (Equation 2, cited after
Singley and Anderson, 1989).

%transfer =
CB1 − EB1

CB1 − CB2
× 100 (2)

The denominator of Equation (2) describes the amount of
improvement when the same type of problem is solved a second
time (C stands for control group, E for experimental group,
B for the first and second occasion). The numerator describes
the difference between the baseline performance (CB1) and the
performance of the experimental group in the target problem
(where the experimental group has solved a different type of
problem before). To estimate the transfer from MicroDYN to
Dynamis, we used the mean performance in the first block of
the DM group as baseline performance CB1, performance in
the second block of the DD group as CB2, and performance
in the second block of the MD group as EB1. The calculation
results in an estimate of 40% transfer from MicroDYN to
Dynamis2. Hence, the part of Hypothesis 1 that assumed transfer
is supported by the data.

A different picture emerges with the MicroDYN scores
(Figure 4B). We found significant differences between the
conditions [F(2, 120) = 4.14, p < 0.05, partial η

2
= 0.065], but

no difference between the DM and the MD group [planned
comparison, t(81) = 0.32, two-sided p = 0.75, d = 0.07]. This
means that as expected in Hypothesis 2, there is much less
transfer from Dynamis2 to MicroDYN. Stating no transfer is
not warranted because of the limited statistical power of our
experiment.

Prediction of Dynamis2 Performance
Table 1 shows the bivariate correlations between the
performance measures, based on pairwise deletion (i.e., the
largest possible part of the sample, respectively). For example,
only three fourths of the sample have worked on MicroDYN
(the MD, DM, and MM groups; other three fourths have worked
on Dynamis2—the MD, DM, and DD groups). We found the
expected significant correlations among figural reasoning and
the two CPS tasks. Performance in MicroDYN and Dynamis2
are more closely related to each other than to figural reasoning.
Performance in the Wason task, which is interactive like the

FIGURE 4 | Means and 95% confidence intervals of the performance scores in Dynamis2 (A) and MicroDYN (B). In the MM and DD conditions, the results of the

second block are displayed.
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CDC tasks, but not dynamic, correlates slightly, but mostly
still significant with all other measures. The partial correlation
between MicroDYN and Dynamis2 performance when figural
reasoning is controlled for, is r = 0.422∗∗.

To analyze how MicroDYN and figural reasoning predict
performance in Dynamis2 we conducted a regression analysis
and a commonality analysis (see Fischer et al., 2015a). These
analyses are based on the part of the sample who worked on
bothMicroDYN and Dynamis2 (n= 83). Therefore, the bivariate
correlation coefficients can differ from those shown in Table 1.
The multiple regression coefficient is R = 0.54. Both predictors
explain significant proportions of variance. The MicroDYN
score explains a unique share of 15.4% variance (β = 0.402,
p < 0.001); figural reasoning explains a unique share of 7.4%
(β = 0.279, p < 0.01). The confounded variance explains 6.2%
in the criterion. Altogether, these results support Hypothesis
3 that figural reasoning and MicroDYN predict performance
in Dynamis2 (and that MicroDYN explains unique variance in
Dynamis2, which suggests similar requirements).

Mediation of Transfer
To test our hypothesis that transfer from MicroDYN to
Dynamis2 is mediated by use of the VOTAT strategy we checked
three indicators. If all three indicators are positive, the hypothesis
is confirmed.

Indicator 0 is a significant correlation between the amount of
using the strategy and performance in Dynamis2. This is a basic
requirement that is necessary but not sufficient for demonstrating
a mediation. When there is no advantage of using a certain
strategy, the strategy cannot be considered to explain a transfer
effect.

Indicator 1 is a significant difference of the amount of using
the strategy between the MD and the DM group. When the MD

TABLE 1 | Bivariate correlation coefficients between various performance scores

(*p < 0.05, **p < 0.01).

Fig. reasoning Wason MicroDYN

Wason 0.196* (n = 160)

MicroDYN 0.356** (n = 122) 0.215* (n = 121)

Dynamis2 0.342** (n = 123) 0.171 (n = 122) 0.465** (n = 83)

group has learned to use VOTAT in MicroDYN, then this group
should use this strategy more often in Dynamis2 than the DM
group who lacks this experience.

Indicator 2 provides a more challenging test of the hypothesis.
It requires that there is a significant correlation between the use
of the strategy in MicroDYN and performance in Dynamis2,
particularly in the MD group.

As the correlation between use of VOTAT in Dynamis2 and
performance in Dynamis2 is significant, but not substantial
(r = 0.28∗∗), Indicator 0 can be viewed as ambiguous and
further tests will probably fail, because this indicator is essential.
Indicator 1 is positive: There is a small, but significant difference
in the use of the VOTAT strategy between the DM group
(M = 0.82, s = 0.19) and the MD group [M = 0.89,
s = 0.16, t(81) = 1.88, one-sided p = 0.032, d = 0.46].
However, Indicator 2, the correlation between use of VOTAT
in MicroDYN and performance in Dynamis2, r = 0.27 (MD
group), does not support the hypothesis that transfer from
MicroDYN to Dynamis2 is mediated through VOTAT. Hence,
the part of Hypothesis 1 that refers to attributing the transfer
to the use of VOTAT is not convincingly supported by
the data.

To find an explanation of the transfer effect we searched for
further strategic behaviors post-hoc. One of them is to set one
or more input variables to values greater than zero, then setting
all input variables back to zero for a specified number of time
steps (one in MicroDYN, five in Dynamis2). This is a useful
strategy for analyzing the momentum of the output variables. We
dubbed this strategy “PULSE.” For quantifying this behavior, we
counted how often PULSE occurred in all exploration rounds.
For that variable, all indicators to mediation were positive:
The correlation between PULSE and control performance in
Dynamis2 is r = 0.40∗∗ (Indicator 0); there are significant
differences in the use of the strategy between the relevant groups
[Indicator 1: DMgroup:M= 1.85, s= 2.47,MD group:M= 5.24,
s = 3.88; t(80) = 4.70, p < 0.001, d = 1.04]; and also the use of
PULSE in MicroDYN correlates substantially with performance
in Dynamis2 (Indicator 2: r = 0.46∗∗ in the MD group). So the
transfer fromMicroDYN to Dynamis2 can partially be explained
by the fact that many subjects have learned the strategy of
deploying pulses in MicroDYN and applied it successfully to
Dynamis2.

TABLE 2 | Descriptive statistics of important variables of the experiment in the four experimental conditions (Rt: theoretical range; Re: empirical range; MDyn: MicroDYN;

Dyn2: Dynamis2).

MD DM MM DD

Rt M (s) n Re M (s) n Re M (s) n Re M (s) n Re

Performance MDyn 0.0–12.0 6.90 (2.06) 42 0.0–11.0 6.75 (2.36) 41 0.5–10.5 8.17 (2.81) 39 1.5–12.0

Performance Dyn2 – −0.03 (0.43) 42 −0.83–1.0 −0.21 (0.48) 41 −0.96–1.1 0.24 (0.52) 40 −1.47–1.26

VOTAT MDyn 0.0–1.0 0.85 (0.21) 42 0.12–1.0 0.91 (0.16) 41 0.35–1.0 0.85 (0.24) 39 0.12–1.0

VOTAT Dyn2 0.0–1.0 0.89 (0.16) 42 0.44–1.0 0.82 (0.19) 41 0.33–1.0 0.94 (0.11) 40 0.56–1.0

PULSE MDyn 0.0–1.0 0.70 (0.35) 42 0.0–1.0 0.61 (0.35) 41 0.0–1.0 0.70 (0.38) 39 0.0–1.0

PULSE Dyn2 0–20+ 5.24 (3.88) 42 0–14 1.85 (2.47) 40 0–8 4.02 (3.91) 40 0–15

Figural Reasoning 0–20 14.7 (3.1) 42 6–20 14.2 (2.8) 41 8–19 14.1 (4.2) 39 3–20 14.7 (3.3) 40 6–20
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Exploratory Analyses
So far, the reported results largely support our hypotheses.
As we also assessed structural knowledge in Dynamis2, using
structural diagrams like those inMicroDYN, we could test further
predictions of the preliminary process model4. If VOTAT or
PULSE are important strategies for the acquisition of structural
knowledge in Dynamis2, their use should correlate with the
knowledge scores in each problem.

When we aggregated the scores across the three problems,
the measures are correlated in the range of r = 0.35∗∗

(PULSE—knowledge) to r = 0.41∗∗ (knowledge—performance).
When controlling for figural reasoning, the correlations
are still significant (PULSE—knowledge: r = 0.35∗∗,
knowledge—performance: r = 0.39∗∗).

Whenwe look at the individual problems, the pattern becomes
more ambiguous: The correlations between the number of
PULSE events and the structural knowledge scores in three
Dynamis2 problems are r1 = 0.11, r2 = 0.34∗∗, and r3 = 0.12.
The correlations between structural knowledge scores and
performance in these problems are r1 = 0.25∗∗, r2 = 0.48∗∗,
and r3 = 0.16. So the expected role of knowledge acquisition is
corroborated only in Problem 2.

This pattern of results may indicate that the low correlations in
the single problems might have been due to reliability problems.
However, overall this is not convincing evidence for an essential
function of complete structural knowledge for performance in
controlling dynamic systems. Correlations around r = 0.40
involve a noticeable number of cases that do not conform to the
relation suggested by the coefficient. As an example, we depict

4We report this “under exploratory analyses”, because we had not put forward this

hypothesis ex ante. In view of the current debate about false-positive results in

psychological research (Pashler and Wagenmakers, 2012; Ulrich et al., 2016), we

attach much importance to clearly distinguishing between the context of discovery

and the context of justification.

in Figure 5 the progress of the system’s variables of a participant
with low structural knowledge (standard score z = −1.10) who
nonetheless was successful in goal convergence (z = 1.68). The
goals were Fontin= 1,000 and Muron= 100.

To compare our results with studies that were published after
our experiment was run (e.g., Greiff et al., 2016), we report
another post-hoc analysis of the correlations between strategy
measures and performance in both CDC tasks. VOTAT and
PULSE are more closely related in MicroDYN (r = 0.524∗∗)
than in Dynamis2 (r = 0.330∗∗). The notion that using PULSE
is more significant for successful problem solving in Dynamis2
than in MicroDYN is supported by the fact that the partial
correlation between PULSE and performance in Dynamis2
controlling for VOTAT is only slightly lower (r = 0.344∗∗)
than the corresponding bivariate correlation (r = 0.401∗∗). In
MicroDYN, controlling for VOTAT changes the correlation from
r = 0.615∗∗ to r = 0.410∗∗.

DISCUSSION

By and large, our hypotheses are supported by the data:
Performance in MicroDYN explains a unique proportion
of variance in Dynamis2. We found positive transfer from
MicroDYN to Dynamis2, but not in the opposite direction.
This null result has to be interpreted with the reservation
that the statistical power of the respective test was rather low
(0.72). It may be that studies with larger samples could detect
transfer effects from Dynamis2 to MicroDYN. However, the
asymmetry of the transfer effects is obvious in our experiment.
The assumption that transfer was mediated by using VOTAT was
not clearly supported; instead, it was a different strategy called
PULSE that could explain the transfer effect. PULSE is defined
by setting input variables to zero and observing the system for a
number of time steps (≥1 in MicroDYN and ≥5 in Dynamis2).

FIGURE 5 | Course of output variables produced by a participant with low structural knowledge. Note that the participant still approached the goals well

(Fontin = 1,000, Muron = 100). There were also participants with an inverted constellation: good structural knowledge and poor control performance.
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This strategy—Greiff et al. (2016) refer to it as “non-interfering
observation behavior”—is helpful for identifying eigendynamics
(Schoppek and Fischer, 2015).

Exploratory analyses have shown that the relationships
between using PULSE and the resulting structural knowledge,
as well as between the latter and control performance are not as
close as one might expect. Only when the respective scores were
aggregated, we found substantial correlations.

With regard to aggregated results, our findings can be
interpreted as supporting the standard model of CPS (Fischer
et al., 2012), which assigns a critical role to knowledge
acquisition (and strategies for acquiring knowledge) for the
control of complex dynamic systems. As this has been shown
before repeatedly (Funke, 1992; Osman, 2008; Greiff et al.,
2012; Wüstenberg et al., 2012), we also want to discuss the
controversial details and limitations of our findings later on.
Another positive statement is that MicroDYN was successfully
validated. Explaining a unique proportion of 15.4% variance
in Dynamis2 performance is a considerable accomplishment,
given the differences between these two classes of problems:
More dynamics and momentum in Dynamis2, real-time vs. user-
controlled course of events, 250 vs. on average 8 time steps
(median). Also, consider the fact that the measures in the present
study are manifest variables, whereas many comparable studies
report proportions based on latent variables, which raises the
amount of explained variance. For example, with regard to
latent variables Greiff et al. (2015) report a variance overlap
of 24% between MicroDYN and MicroFIN after partialling
out figural reasoning (MicroFIN is another class of minimal
complex systems, based on finite automata, but administered
in a way similar to MicroDYN, cf. Greiff et al., 2013). Between
MicroDYN and Tailorshop, they report an overlap of 7%.
However, the respective study has been criticized for several
methodological shortcomings, such as having administered
the Tailorshop inadequately, namely in one round without a
separate exploration phase (Funke et al., 2017; Kretzschmar,
2017). Altogether, the variance overlap between MicroDYN and
Dynamis2 (on top of the variance that both tasks share with
figural reasoning) fits neatly within the range of values from
comparable studies.

In recent studies, it turned out that the established finding
that MicroDYN explains variance in school grades over and
above figural reasoning, cannot be replicated when intelligence
is operationalized broadly (Kretzschmar et al., 2016; Lotz et al.,
2016). This casts doubt on the distinctiveness perspective that
construes CPS as an ability separate from general intelligence
(Kretzschmar et al., 2016). However, Kretzschmar et al. (2016)
still found unique covariance between MicroDYN andMicroFIN
not attributable to intelligence, which can be viewed as
supporting the distinctiveness view. Consistent with this, we
also found considerable unique covariance between the two
different CDC tasks. Irrespective of the difficult question if CPS
should be construed as an ability construct in its own right, our
results clearly confirm the notion that figural reasoning facilitates
complex problem solving.

From a practical perspective, our results suggest that
MicroDYN can be used as training device for more dynamic

task environments. However, as there are numerous instances
of rather ineffective CPS training (e.g., Schoppek, 2002, 2004;
Kretzschmar and Süß, 2015) this prediction needs to be
confirmed in further studies. We shall discuss the question
what kind of real life situations are modeled by MicroDYN or
Dynamis2 below.

The finding that not VOTAT could explain the transfer
effect from MicroDYN to Dynamis2 but the related PULSE
tactic points to the plurality of potentially relevant tactics or
strategies. Post-hoc analyses showed that our findings correspond
with recent analyses by Greiff et al. (2016), who found that
controlling for VOTAT substantially reduces the relation between
PULSE and knowledge acquisition in MicroDYN. However, we
did not find this pattern of results in Dynamis2, where PULSE
plays a discrete role. We consider two possible explanations
for this difference: First, whereas all Dynamis2 scenarios
involved eigendynamics, this was the case for only half of the
MicroDYN scenarios (which is common practice in research with
MicroDYN). Second, the real-time character of Dynamis2 makes
it more obvious to vary only one variable at a time (even though
it was possible to vary more variables, because the input values
were transferred to the running simulation only when an apply
button was pressed). Maybe a certain proportion of VOTAT
events in Dynamis2 was not actually analyzed by the participants,
but rather happened as a byproduct of their way of handling the
CDC environment.

Findings like these raise questions about the generality of
problem solving strategies: If the viability of strategies such as
VOTAT and PULSE differs between certain problem classes,
they could be used for classifying complex problems. Many
studies have confirmed the significance of VOTAT for scientific
reasoning as well as for CDC tasks from the Dynamis family
(Vollmeyer et al., 1996; Chen and Klahr, 1999; Wüstenberg
et al., 2014). Our results are an exception to this series, as they
highlight the importance of PULSE. However, on a conceptual
level the PULSE strategy is closely related to VOTAT and could
be considered an extension to that strategy. On the other hand,
there are many CDC tasks in- and outside the laboratory that
obviously cannot be accomplished using experimental tactics like
VOTAT. For example, when pilots have to handle an in-flight
emergency, they are not well advised to adopt a VOTAT strategy.
Generally, VOTAT is not an option in situations that forbid free
exploration. In the discussion about the relationship between
strategies and complex problems we should keep in mind that
there are good arguments that most problem solving strategies
are domain-specific to some extent (for a discussion see Tricot
and Sweller, 2014; Fischer and Neubert, 2015).

Although correlations around r = 0.41 (e.g., between
knowledge and performance) are usually interpreted as
supporting an assumed causal relation, they leave a large amount
of unexplained variance, and the number of cases that differ from
the general rule is not negligible. In our context, this means that
there are subjects who do control our systems successfully with
merely rudimentary structural knowledge. To date, most authors
have taken a stand on the question about the significance of
structural knowledge for performance in system control—either
approving (Funke, 1992; Osman, 2008; Greiff et al., 2012;
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Wüstenberg et al., 2012) or disapproving (Broadbent et al., 1986;
Berry and Broadbent, 1988; Dienes and Fahey, 1998; Fum and
Stocco, 2003). In our opinion, the evidence on this question is so
ambiguous that an all-or-none answer is not appropriate. Some
subjects seem to rely on structural knowledge, some don’t (see
Figure 5). Therefore, future research and theorizing should be
aimed at specifying situational and individual conditions that
predict the use (or usefulness) of structural knowledge5. As
mentioned in the introduction, we believe that available working
memory capacity—either varied individually or situationally
(concurrent tasks, fatigue) could be such a predictor: The lower
the capacity, the less promising a WM-intensive strategy is. For
an excellent example of this idea applied to a static problem, see
Jongman and Taatgen (1999). Although our results are consistent
with these WM-related assumptions, they are not adequate for
testing them directly. We plan to do this in future experiments.

If structural knowledge is not the exclusive necessary
condition for successful system control, what other forms of
knowledge are relevant? At this point, we can only speculate,
based on our experience in the domain: Knowledge about and
experience with growth and decay processes, saturation, and time
delays are in our view concepts that are worth investigating.
Relatedly, concepts such as wisdom may foster an appropriate
way of controlling complex and dynamic systems (Fischer, 2015;
Fischer and Funke, 2016).

In real life, situations where problem solvers have to find out
the causal structure of a system through systematic exploration
are rare. Comparable settings can be found in scientific discovery,
pharmaceutical efficacy studies, organizational troubleshooting
(Reed, 1997), or psychotherapy. On the other hand, there are
quite a lot of situations where dynamically changing variables
have to be controlled: driving a car, heating a house economically,
controlling combustion processes, or monitoring vital functions
in intensive care. Therefore, we consider it worthwhile to
investigate how humans handle dynamic systems. However,
to make our research more applicable, we—the scientific

5This endeavor could well be tackled in the spirit of the early studies of

Broadbent and colleagues. However, we suspect that the “salience” concept these

authors focused on is closely tied to the very special characteristic of oscillatory

eigendynamics, rather than a generalizable determinant of structural knowledge

(see also Hundertmark et al., 2015).

community—should shift the focus away from questions about
the acquisition of structural knowledge about simple artificial
systems to questions about how humans approach more realistic
CDC tasks with existing knowledge that may be limited or
simplified. For example, Beckmann and Goode (2014) found
that participants overly relied on their previous knowledge when
dealing with a system that was embedded in a familiar context.

At last, we should not forget that although Dynamis2 exceeds
MicroDYN in complexity and dynamics, both environments
share some family resemblance. Therefore, we cannot generalize
our results to CPS in general. Future research is necessary to
investigate the common requirements of systems of the Dynamis
type and more semantically rich systems such as the Tailorshop,
where knowledge acquisition does not play the same role as in

MicroDYN (Funke, 2014). We believe that transfer experiments
could play an important role in answering these questions, too.
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Research shows that people’s wait-and-see preferences for actions against climate
change are a result of several factors, including cognitive misconceptions. The use of
simulation tools could help reduce these misconceptions concerning Earth’s climate.
However, it is still unclear whether the learning in these tools is of the problem’s surface
features (dimensions of emissions and absorptions and cover-story used) or of the
problem’s structural features (how emissions and absorptions cause a change in CO2

concentration under different CO2 concentration scenarios). Also, little is known on how
problem’s difficulty in these tools (the shape of CO2 concentration trajectory), as well as
the use of these tools as a decision aid influences performance. The primary objective
of this paper was to investigate how learning about Earth’s climate via simulation
tools is influenced by problem’s surface and structural features, problem’s difficulty,
and decision aids. In experiment 1, we tested the influence of problem’s surface and
structural features in a simulation called Dynamic Climate Change Simulator (DCCS) on
subsequent performance in a paper-and-pencil Climate Stabilization (CS) task (N = 100
across four between-subject conditions). In experiment 2, we tested the effects of
problem’s difficulty in DCCS on subsequent performance in the CS task (N = 90 across
three between-subject conditions). In experiment 3, we tested the influence of DCCS as
a decision aid on subsequent performance in the CS task (N = 60 across two between-
subject conditions). Results revealed a significant reduction in people’s misconceptions
in the CS task after performing in DCCS compared to when performing in CS task in the
absence of DCCS. The decrease in misconceptions in the CS task was similar for both
problems’ surface and structural features, showing both structure and surface learning
in DCCS. However, the proportion of misconceptions was similar across both simple
and difficult problems, indicating the role of cognitive load to hamper learning. Finally,
misconceptions were reduced when DCCS was used as a decision aid. Overall, these
results highlight the role of simulation tools in alleviating climate misconceptions. We
discuss the implication of using simulation tools for climate education and policymaking.

Keywords: stock-and-flow simulations, correlation heuristic, violation of mass balance, experience, problem
structure, decision aids, heterogeneity, Dynamic Climate Change Simulator
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INTRODUCTION

Understanding stocks and flows is a fundamental process in
the real world (Dörner, 1996; Sterman, 2008, 2011; Cronin
et al., 2009; Fischer et al., 2015). For example, we maintain our
bank accounts (a stock) as a result of our incomes (inflows)
and expenses (outflows); we support our body weight (a stock)
by managing our diet (inflow) and exercise (outflow); and,
we maintain carbon-dioxide levels in the atmosphere (a stock)
by emissions (inflow) and absorption (outflow) (Cronin et al.,
2009; Dutt, 2011). Different stock-flow problems share the same
underlying structure: A stock or level accumulates the inflows to
it less the outflows from it (Sweeney and Sterman, 2000).

It is a well-known phenomenon that people have difficulties
in understanding the dynamics of stock-flow problems (Dörner,
1996; Sterman, 2008, 2011; Cronin et al., 2009; Dutt, 2011).
Stock-flow problems, even simple ones involving one stock and
two flows (inflow and outflow), are difficult, even for highly
educated people with strong mathematics backgrounds (Sweeney
and Sterman, 2000; Sterman and Sweeney, 2002; Sterman, 2008,
2011; Cronin et al., 2009; Dutt, 2011). For example, Sweeney and
Sterman (2000) presented graduate students at Massachusetts
Institute of Technology with a picture of a bathtub and graphs
showing the inflow and outflow of water, then asked them
to sketch the trajectory of the stock of water in the tub.
Although the patterns were simple, fewer than half responded
correctly. We denote such difficulties in responding to stock-flow
failure.

Stock-flow failure has also been documented in problems
concerning Earth’s climate system (Dutt, 2011). Here, people
find it difficult to sketch the shape of emissions and absorptions
corresponding to a carbon-dioxide (CO2) concentration
trajectory. Two of the prevalent misconceptions in climate
stock-flow problems are the correlation heuristic and violation
of mass balance (Dutt and Gonzalez, 2012a,b). According
to the correlation heuristic, people incorrectly infer that an
accumulation (CO2 concentration) follows the same path as
the inflow (CO2 emissions). This misconception assumes that
stabilizing emissions would rapidly stabilize the concentration;
and, emission cuts would quickly reduce the concentration
and damages from climate change. This reasoning is incorrect
because reliance on the correlation heuristic significantly
underestimates the time delays existent between reductions
in CO2 emissions and their effect on the CO2 concentration
(Sterman, 2008; Dutt and Gonzalez, 2012a, 2013a,b; Kumar and
Dutt, unpublished).

According to the second misconception in climate stock-
flow problems, violation of mass balance, people incorrectly
infer that atmospheric CO2 concentration can be stabilized even
when emissions exceed absorptions. According to mass balance
violation, people think that the current state of the Earth’s climate,
where emissions are about double that of absorptions, would not
pose a problem to future stabilization (Sterman, 2008; Dutt and
Gonzalez, 2012a; Kumar and Dutt, unpublished).

Although people’s wait-and-see preferences for actions against
climate change are a result of several factors like social identities,
party-affiliations, and denial (McCright and Dunlap, 2011),

recent research has shown that climate misconceptions are also
likely to influence such preferences (Dutt, 2011). Specifically,
correlation heuristic thinking leads to wait-and-see preferences
because people believe that stabilizing CO2 emissions is sufficient
to stabilize the CO2 concentration. Similarly, violation of mass
balance thinking leads to wait-and-see choices because people
believe that CO2 concentration can be stabilized even when CO2
emissions are double that of absorptions (Sterman, 2008; Dutt
and Gonzalez, 2012a; Kumar and Dutt, unpublished).

Prior research has used a Climate Stabilization (CS) task
to test for correlation heuristic and violation of mass balance
misconceptions (Sterman and Sweeney, 2007; Sterman, 2008;
Dutt and Gonzalez, 2012a,b). In the CS task, participants are
given the concentration’s starting value in the year 2000 and its
historical trend between 1900 and 2000 on paper. Participants are
asked to sketch the CO2 emissions and absorptions shapes that
would correspond to the projected scenario of CO2 concentration
between 2001 and 2100. Irrespective of educational backgrounds,
people show widespread reliance on correlation heuristic and
committing of violation of mass balance in their sketches in
the CS task (Sterman and Sweeney, 2007; Sterman, 2008; Dutt
and Gonzalez, 2012a). Overall, the CS task has been used
as a measure for assessing people’s stock-flow misconceptions
concerning climate change (Sterman, 2008; Fischer et al., 2015).

Furthermore, recent research has documented the role that
repeated feedback about cause-and-effect relationships plays
on human understanding of dynamic systems, particularly
for Earth’s climate system (Moxnes and Saysel, 2009; Dutt
and Gonzalez, 2012a). Researchers have used computer-
based simulation tools and decision-making games (called
microworlds) to provide repeated feedback, where a reduction
in people’s correlation heuristic and violation of mass balance
misconceptions has been demonstrated regarding Earth’s climate
system (Dutt and Gonzalez, 2012a, 2013b; Kumar and Dutt,
unpublished) and, dynamic systems more generally (Gonzalez
et al., 2005; Gonzalez and Dutt, 2011; Dutt and Gonzalez,
2012b). For example, Dutt and Gonzalez (2012a) made
participants perform in a Dynamic Climate Change Simulator
(DCCS) microworld and then transferred them to the CS task
immediately. Participants controlled CO2 concentration to a goal
level in DCCS by deciding the CO2 emissions and absorptions.
Next, in the CS task, participants sketched the CO2 emissions and
absorptions corresponding to a CO2 concentration stabilization
trajectory. Results revealed that exposure to DCCS before CS
task reduced correlation heuristic and violation of mass balance
misconceptions.

Although prior research has documented a reduction in
correlation heuristic and violation of mass balance due to
exposure to simulation tools, little is known on how people
improve their stock-flow misconceptions when they interact
with these tools. For example, Dutt and Gonzalez (2012a) gave
their participants the same problem in DCCS as well as the
following CS task. As the problem did not change between DCCS
and CS task, it is unclear whether people learnt the structural
features (how emissions and absorptions cause a change in CO2
concentration under different CO2 concentration scenarios) or
the surface features (dimensions of emissions, absorptions, and
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concentration; and, the cover-story used) of the problem in
DCCS before attempting the CS task.

While performing in DCCS, one possibility is that people
may learn the problem’s structural features. For example, recent
research has shown that structural knowledge helps people
reduce their correlation heuristic and violation of mass balance
misconceptions in both cases when problems encountered in the
CS task are structurally similar or different compared to those
presented in DCCS (Kumar and Dutt, unpublished). However,
while performing in DCCS, another possibility is that people
learn the surface features of the climate problem (Chi et al., 1981;
Gonzalez and Wong, 2012).

In literature, procedural reinstatement principle states that
performance would be better at transfer when the problems
encountered during transfer are similar to those encountered
during training (Healy et al., 2005). Also, heterogeneity of
practice hypothesis states that training on heterogeneous
(diverse) problems improves performance during transfer
(Gonzalez and Madhavan, 2011). Because of the procedural
reinstatement principle (Healy et al., 2005), we expect better
performance when problems in the CS task (transfer) are similar
in structural features or surface features to those that are learned
during DCCS training (before the CS task). Also, because of
heterogeneity of practice hypothesis (Gonzalez and Madhavan,
2011), we expect problems with surface or structural training
during DCCS would likely produce a more efficient transfer of
knowledge and improved performance in the CS task.

Moreover, as per the difficulty hypothesis, people’s transfer
of learning is improved when they train on difficult problems
compared to easy problems (Schneider et al., 2002; Healy et al.,
2005; Young et al., 2011). Thus, if people are subjected to
difficult problems in DCCS, then they would likely be able to
reduce their correlation heuristic and violation of mass balance
misconceptions in the CS task due to the effects stated in the
difficulty hypothesis. One way to create difficulty of problems in
DCCS is by changing the shape of the CO2 concentration curve
presented: If the shape of the concentration curve is curvilinear,
then this curvilinear shape would create more perceived difficulty
among participants compared to when the concentration curve is
straighter.

However, it is also possible that a difficult curve in DCCS
may not help reduce correlation heuristic and violation of
mass balance misconceptions in the CS task because of the
predictions of the cognitive load theory (Sweller, 1994; De
Jong, 2010). According to cognitive load theory, people possess
bounded working memory capacity (Simon, 1959). Thus, if
a learning task requires too much-working memory capacity,
learning may get hampered (De Jong, 2010). In the DCCS
task, it is possible that the processing of different elements
like emission, absorption, and concentration requires certain
working memory capacity. Also, the processing of the curvilinear
CO2 concentration curve shape may further need additional
working memory capacity. Due to the overload of working
memory capacity, participants may not be able to learn the
stock-flow relationships in DCCS and reduce their correlation
heuristic and violation of mass balance misconceptions in the CS
task.

Finally, simulation tools could also be used as a side-by-side
decision aid that helps people understand relationships between
emissions, absorptions, and concentration by a trial-and-error
procedure. There is evidence that even in simple descriptive
binary-choice decision tasks, when participants are provided with
experiential decision aids, they tend to rely on the experience
gained in these aids in making descriptive decisions and improve
their decision making (Jessup et al., 2008; Camilleri and Newell,
2011; Lejarraga and Gonzalez, 2011). When DCCS is given as
aid, people are likely to get a chance to try different emissions
and absorptions and see their effect on concentration. Thus,
misconceptions are possible to reduce significantly when people
are given an opportunity to try different values of emissions and
absorptions in DCCS and to test their effect on the shape of the
concentration trajectory.

The primary goal of this research is to investigate via lab-
based experiments people’s stock-flow misconceptions about
climate change and the role that different factors like surface
and structural features, problem difficulty, and decision aids play
in reducing people’s stock-flow misconceptions. Such research
may help policymakers formulate appropriate policies for climate
education in schools and colleges that make use of simulation
tools to supplement conventional teaching (Meadows et al.,
2016). Furthermore, this research would help provide theoretical
and practical advancements in understanding the effectiveness of
repeated feedback through simulation tools as an intervention in
reducing misconceptions.

In what follows, we first present the background where we
highlight prior research and motivate our hypotheses. Next, we
report three experiments where we test how problem’s surface
and structural features, problem’s difficulty, and decision aids
help reduce misconceptions about climate change. In the first
experiment, we present how problems with surface or structural
training during DCCS help reduce misconceptions in the CS
task. In the second experiment, we investigate how problem
difficulty during DCCS training help reduce misconceptions in
the CS task. In the final experiment, we study how DCCS as a
decision aid helps in lowering correlation heuristic and violation
of mass balance misconceptions by allowing participants to test
different values of emissions and absorptions in a trial-and-
error procedure. We close the paper by discussing our results
and highlighting the implications of using simulation tools (like
DCCS) in education and policymaking against climate change.

BACKGROUND SECTION

Prior research in stock-flow problems concerning Earth’s climate
has analyzed reliance on correlation heuristic and violation of
mass balance in the CS task (Sterman and Sweeney, 2007;
Sterman, 2008; Dutt and Gonzalez, 2012a) (see Figure 1). In
the CS task, participants are asked to sketch CO2 emissions and
absorptions that would stabilize the CO2 concentration according
to a given scenario by the year 2100 (given in Figure 1A).
Participants are given the concentration’s starting value in the
year 2000 (Figure 1B), and its historic trends and emissions
between the years 1900 and 2000. Participants are asked to sketch
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FIGURE 1 | The Climate Stabilization (CS) task. Participants are given CO2

concentration stabilization scenario, and they are required to sketch the CO2

emissions and absorptions corresponding to the scenario. (A) The problem
presented shows increasing trajectory where CO2 increases and stabilizes by
2100. (B) Values of emission and absorption between year 1900 and 2000.
(C) A typical sketch by participants in the CS task relying on correlation
heuristic and violation of mass balance for the increasing trajectory (Source:
Dutt and Gonzalez, 2012a).

the CO2 emissions and absorptions shapes that would correspond
to the projected scenario of CO2 concentration between 2001 and
2100. Figure 1C shows an example of a participant that relied on
correlation heuristic, whereby he inferred that the shapes of the
CO2 emissions and concentration should look alike. Moreover,
as seen in Figure 1C, the participant commits violation of mass
balance in her response as she fails to make emissions equal to
absorption when the concentration reaches 2100. This paper uses

the CS task with different CO2 concentration trajectories and
cover stories to evaluate people’s reliance on correlation heuristic
and violation of mass balance misconceptions.

Furthermore, recent research has evaluated how repeated
feedback in DCCS helps reduce correlation heuristic and
violation of mass balance misconceptions (Moxnes and
Saysel, 2009; Dutt and Gonzalez, 2012a,b; Kumar and Dutt,
unpublished). As shown in Figure 2, DCCS is a dynamic replica
of the CS task, it is based on a simplified and adapted climate
model (Dutt and Gonzalez, 2012b), and it has been inspired by
generic dynamic stocks-and-flows tasks (Gonzalez et al., 2005;
Gonzalez and Dutt, 2011). In DCCS participants set yearly CO2
emissions and absorptions and press “Make Decision” button.
Upon pressing the “Make Decision” button, the system moves
forward a certain number of years. Participants need to maintain
their CO2 concentration at the red goal line in the tank (which
represents the atmosphere) and follow the CO2 concentration
trajectory shown in the bottom left panel.

Although DCCS helps reduce people’s misconceptions
compared to a no-DCCS intervention (Dutt and Gonzalez,
2012a); however, little is currently known on how this reduction
is influenced by problem’s surface and structural features,
problem’s difficulty, and use of decision aids. The goal of this
paper is to investigate the role of these factors in reducing
people’s misconceptions concerning the climate system.

First, we propose to create heterogeneous problems during
DCCS training and transfer participants from DCCS training
to similar/different problems in the CS task. The similarity
or differences in problems between training and transfer will
allow us to test participants’ surface or structural learning.
According to the heterogeneity of practice hypothesis (Gonzalez
and Madhavan, 2011), we expect problems with surface or
structural training during DCCS training to likely produce more
effective transfer of knowledge and improved performance in the
following CS task. Also, because of the procedural reinstatement
principle (Healy et al., 2005), we expect better performance when
problems in the CS task are similar in structure or surface features
to those that are learned during DCCS training.

Moreover, if people are subjected to difficult problems in
DCCS, then they would likely be able to reduce their correlation
heuristic and violation of mass balance misconceptions in the
CS task due to the difficulty hypothesis (Schneider et al., 2002;
Healy et al., 2005; Young et al., 2011). However, on account of
cognitive load theory and people’s bounded working memory
capacity (Simon, 1959; Sweller, 1994; De Jong, 2010), it is also
likely that if people are subjected to difficult problems in DCCS,
then they would not be able to reduce their correlation heuristic
and violation of mass balance misconceptions in the CS task.

Another factor that is likely to influence people’s
misconceptions about climate system is the use of simulation
tools as decision aids (Jessup et al., 2008; Camilleri and Newell,
2011; Lejarraga and Gonzalez, 2011). Thus, providing an
experiential DCCS decision aid side-by-side to the CS task is
likely to improve decision making in the CS task compared to
a condition without the decision aid. In the next section, we
detail experiments where we evaluated the influence of problem’s
surface and structural features, problem’s difficulty, and use of
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FIGURE 2 | The Dynamic Climate Change Simulator (DCCS) task. DCCS is a dynamic replica of the CS task. (1) Participants set yearly CO2 emissions and
absorptions and press “Make Decision” button. (2) The system now moves forward a certain number of years. (3) Participants need to maintain their CO2

concentration at the red goal line in the tank (which represents the atmosphere) and follow the CO2 concentration trajectory shown in the bottom left panel (Source:
Dutt and Gonzalez, 2012a).

decision aids on people correlation heuristic and violation of
mass balance misconceptions.

EXPERIMENT 1: INFLUENCE OF
SURFACE AND STRUCTURAL
FEATURES IN REDUCING STOCK-FLOW
MISCONCEPTIONS

In the first experiment, we test the influence of learning of
surface and structural features in DCCS for reducing people’s
misconceptions against climate change. Here, we will train people
on heterogeneous problems in DCCS, which are diverse in
surface and structural features. According to the heterogeneity of
practice hypothesis (Gonzalez and Madhavan, 2011), one expects
problems with surface or structural training during DCCS would
likely produce more effective transfer of knowledge and improved
performance in the CS task.

Methods
Participants
Participants were recruited through an email advertisement
for a climate study at Indian Institute of Technology Mandi,
India. This study was carried out in accordance with the
recommendations of Ethics Committee at Indian Institute of
Technology Mandi with a written informed consent from all

participants. Participation was voluntary and all participants
gave written informed consent before starting their study.
There were 100 participants in all (74 males and 26 females).
Ages ranged from 18 to 26 years (average = 21 years;
SD = 1.5 years). All participants were students from Science,
Technology, Engineering, and Mathematics backgrounds (73%
undergraduate, 19% masters, and 8% doctoral). They were
randomly assigned to one of the experimental conditions
involving DCCS and CS tasks. Participants were paid a flat fee
of INR 50 (approximately 0.9 USD) for their participation after
they completed the study.

Experimental Design
Participants were randomly assigned to one of four between-
subjects conditions (N = 251 in each condition): CS-Surface,
CS-Structure, DCCS-Surface, and DCCS-Structure. In both
DCCS-Surface and DCCS-Structure conditions, participants
played 2-rounds of DCCS repeatedly with heterogeneous
problems that were either based upon surface features or
structural features and were then transferred to the CS task
immediately. In the CS-Surface and CS-Structure conditions,
participants played an unrelated task for the average time it took
to complete 2-rounds in DCCS and they were then transferred to

1A power calculation with alpha level 0.05 and beta level 0.20 revealed a minimum
sample size of 22. Thus, sample sizes of more than 22 were adequate for analyses
reported in this paper (Faul et al., 2007)
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the CS task immediately. Heterogeneity in problems was either
based upon surface features or structural features.

Surface features refer to the dimensions of emissions,
absorptions, and concentration; and, the cover-story used in
DCCS. In the DCCS-Surface condition, participants first tackled
Figure 1’s problem in each of the two rounds repeatedly in
DCCS, however, the problem presented in each round differed
randomly in the cover story and units used (i.e., in surface
features). As shown in Figure 3, we used a glucose cover
story (DCCS-Gluc; see Figure 3A; inflow = glucose intake,
outflow = glucose metabolized, and accumulation = glucose
concentration in blood over 100 time periods) and a temperature
cover story (DCCS-Temp; see Figure 3B; inflow = heating,
outflow = cooling and accumulation = temperature in a
room over 100 time periods). In each of these two problems,
participants controlled their accumulation trajectory in DCCS
along a stabilization trajectory by making inflow and outflow
decisions every 5 time periods repeatedly. After finishing two
rounds in DCCS, participants were transferred to the CS task
where they attempted two problems that were presented in a
random order. Both these problems corresponded to Figure 1’s
problem, where one of the problems was presented with the
climate cover story (CS-Climate; i.e., just like Figure 1’s problem
and different from problems presented during DCCS training),
while the other problem was presented with the temperature
cover story (CS-Temp; i.e., similar to one of the problems during
the DCCS training). In both problems, participants needed to
sketch the shape of inflow and outflow that corresponded to the
accumulation stabilization scenario. The CS-Surface condition
contained the same two problems as part of the CS task in the
DCCS-Surface condition; however, the CS-Surface condition did
not include DCCS training prior to the CS task. In the CS-Surface
condition, participants played an unrelated Tetris game before
performing in CS tasks for a duration that equaled the time taken
to finish 2-rounds of DCCS performance in the DCCS-Surface
condition.

Structural features refer to how emissions and absorptions
cause a change in CO2 concentration under different CO2
concentration scenarios in DCCS. In the DCCS-Structure
condition, participants first performed in two different climate
problems presented randomly in DCCS. Each problem provided
a different CO2 stabilization trajectory, where CO2 concentration
increased from 765GtC in 2000 to stabilize at 936GtC by 2100 or
a year before. In one of these DCCS problems, the stabilization
occurred in year 2100 (Figure 1’s problem; DCCS-2100). In
the other problem, the stabilization at 936GtC occurred much
earlier in years 2070 (DCCS-2070), respectively, and the 936GtC
value was maintained till the end year 2100 (see Figure 4A
for the shape of the CO2 concentration curve). In each of the
two DCCS problems, participants were asked to control the
CO2 concentration to the stabilization trajectory over a 100-
year period by making emission and absorption decisions every
5 years, repeatedly. Once participants completed 2-rounds in
DCCS, they were transferred to the CS task immediately where
participants attempted two problems presented in a random
order. One of these two problems were Figure 1’s climate
problem (CS-2100-Inc; i.e., like one of the problems in the

DCCS training), and the other problem was Figure 4B’s climate
problem (CS-2100-Dec; i.e., different from all problems in the
DCCS training). In both CS problems, participants needed
to sketch the shape of CO2 emissions and absorptions that
corresponded to the CO2 concentration stabilization scenario.
The CS-Structure condition contained the same two problems
in the CS task of the DCCS-Structure condition and did
not include training in DCCS. In the CS-Structure condition,
participants played an unrelated Tetris game before performing
the CS task for a duration that equaled the time taken to
finish 2-rounds of DCCS performance in the DCCS-Structure
condition.

The CS-2100-Inc, CS-2100-Dec, CS-Temp, and CS-Climate
conditions formed the control groups in the experiment.
The DCCS-2070, DCCS-2100, DCCS-Temp, and DCCS-Gluc
formed the training groups in the experiment. The CS-2100-
Inc (DCCS), CS-2100-Dec (DCCS), CS-Temp (DCCS), and
CS-Climate (DCCS) formed the test groups in the experiment.

The dependent variables were the proportion of participants
relying on correlation heuristic and the proportion of participants
committing violation of mass balance. A participant relied on
correlation heuristic when the correlation coefficient between
CO2 emissions and CO2 concentration during the period
2000–2100 was greater than or equal to 0.8. A participant
committed violation of mass balance for the increasing trajectory
stabilizing in 2100 (2070), if CO2 emissions were less than CO2
absorptions before year 2100 (2070) or CO2 emissions were
not within ± 0.5GtC of CO2 absorptions in 2100 (2070 and
beyond). A participant committed violation of mass balance for
the decreasing trajectory stabilizing in 2100, if CO2 emissions
were greater than CO2 absorptions before year 2100 or CO2
emissions were not within ± 0.5GtC of CO2 absorptions in
2100. Because of heterogeneity in surface or structural features
in DCCS, we expected participants to possess fewer correlation
heuristic and violation of mass balance misconceptions in
CS conditions following DCCS compared to CS conditions
without DCCS exposure. We used an alpha level of 0.05 and
a power of 0.80 for our statistical analyses. The dataset for the
experiment has been provided as part of Supplementary Data
Sheet S1.

Procedure
Participants were randomly assigned to different conditions and
given instructions about the study. Participants were told about
the goal that they had to achieve and they could ask clarification
questions, if any, before beginning their experiment. In the
DCCS-Surface and DCCS-Structure conditions, participants first
performed 2-rounds in DCCS on a desktop computer and then
they were transferred to CS tasks, where the CS tasks were given
using a pencil-and-paper format. However, in the CS-Surface
and CS-Structure conditions, participants first performed an
unrelated Tetris task and then they were immediately transferred
to CS tasks, which were given using a pencil-and-paper format.
In the CS task, participants had to sketch CO2 emissions
and absorptions corresponding to the given CO2 concentration
trajectory. On completion of the CS task, participants were
thanked and paid for their participation.
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FIGURE 3 | Dynamic Climate Change Simulator tasks in the DCCS-Surface condition where participants need to decide the inflow and outflow values every 5 time
periods such that the accumulation (Glucose Concentration or Temperature) followed the red trajectory in the bottom-left Figure. (A) DCCS with the glucose cover
story (DCCS-Gluc). (B) DCCS with the temperature cover story (DCCS-Temp).

Results
Correlation Heuristic
We compared the correlation heuristic reliance between control
groups and test groups in the structure conditions. Figure 5

shows the proportion of participants relying on correlation
heuristic in CS tasks and DCCS in the DCCS-Structure
and CS-Structure conditions. Furthermore, Table 1 shows the
comparison of different conditions and the associated inferential
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FIGURE 4 | The CO2 concentration trajectory given to participants in the
DCCS-Structure condition. (A) The increasing CO2 concentration trajectory,
where stabilization occurs in year 2070 (DCCS-2070; CS-2100-Inc). (B) The
decreasing CO2 concentration trajectory, where stabilization occurs in the
year 2100 (CS-2100-Dec).

statistics for correlation heuristic reliance. As seen in Table 1,
the reliance on correlation heuristic was statistically smaller
in CS-2100-Dec (DCCS) condition compared to CS-2100-Dec
condition. Likewise, the reliance on correlation heuristic was
statistically smaller in CS-2100-Inc (DCCS) condition compared
to CS-2100-Inc condition. Furthermore, the reliance was similar
in CS-2100-Dec and CS-2100-Inc conditions. Similarly, the
reliance on correlation heuristic was similar in CS-2100-Dec
(DCCS) task and CS-2100-Inc (DCCS) condition.

Next, we compared the correlation heuristic reliance between
the control group and the test group in the surface conditions.
Figure 6 shows the proportion of participants relying on
correlation heuristic in CS tasks and DCCS in the DCCS-Surface
and CS-Surface conditions. As seen in Table 1, the reliance
on correlation heuristic was statistically smaller in CS-Temp
(DCCS) condition compared to CS-Temp condition. Likewise,
reliance was statistically smaller in CS-Climate (DCCS) condition
compared to CS-Climate condition. Furthermore, the reliance on
correlation heuristic was similar in CS-Temp condition and CS-
Climate condition. Similarly, reliance on correlation heuristic was
similar in CS-Climate (DCCS) condition and CS-Temp (DCCS)
condition.

Last, we compared the correlation heuristic reliance between
control groups and test groups across the surface and structure

conditions. The reliance on correlation heuristic was statistically
smaller in CS-2100-Inc condition compared to CS-Climate
condition. However, the reliance on correlation heuristic was
similar in CS-2100-Inc (DCCS) condition compared to CS-
Climate (DCCS) condition.

Overall, in agreement with our expectations, the proportion
of participants relying on correlation heuristic was statistically
smaller in DCCS-Structure and DCCS-Surface conditions
compared to CS-Structure and CS-Surface conditions,
respectively. Also, the correlation heuristic proportions were
similar in the CS-2100-Inc (DCCS) and CS-Climate (DCCS)
conditions. This latter finding suggested that both the structure
and surface features were similar in their ability to reduce people’s
correlation heuristic misconceptions.

Violation of Mass Balance
We compared the proportion of participants commiting violation
of mass balance between control groups and test groups
across the structure conditions. Figure 7 shows the proportion
of participants committing violation of mass balance in CS
tasks and DCCS in the DCCS-Structure and CS-Structure
conditions. Furthermore, Table 2 shows the comparison of
different conditions and the associated inferential statistics for
mass balance violation. As seen in Table 2, the proportion
of violation of mass balance was statistically smaller in
the CS-2100-Dec (DCCS) condition compared to the CS-
2100-Dec condition. Furthermore, the proportion of violation
of mass balance was statistically smaller in CS-2100-Inc
(DCCS) condition compared to CS-2100-Inc condition. The
proportion of violation of mass balance was similar in
CS-2100-Inc (DCCS) condition and CS-2100-Dec (DCCS)
condition. Similarly, the proportion of violation of mass
balance was similar in CS-2100-Inc condition and CS-2100-Dec
condition.

Next, we compared the violation of mass balance between
control groups and test groups across the surface conditions.
Figure 8 shows the proportion of participants committing
violation of mass balance in CS tasks and DCCS in the
DCCS-Surface and CS-Surface conditions. As seen in Table 2,
the proportion of violation of mass balance was statistically
smaller in CS-Temp (DCCS) condition compared to CS-
Temp condition. Likewise, the proportion of violation of mass
balance was statistically smaller in CS-Climate (DCCS) condition
compared to CS-Climate condition. Furthermore, the proportion
of violation of mass balance was similar in the CS-Temp
condition and CS-Climate condition. Similarly, the proportion
of violation of mass balance was similar in CS-Climate (DCCS)
condition and CS-Temp (DCCS) condition.

Last, we compared the violation of mass balance across the
surface and structure conditions. The proportion of violation of
mass balance was similar in CS-2100-Inc condition compared
to CS-Climate condition. Similarly, the proportion of violation
of mass balance was similar in CS-2100-Inc (DCCS) condition
compared to CS-Climate (DCCS) condition. This latter finding
suggested that both the structure and surface features were
similar in their ability to reduce people’s violation of mass balance
misconceptions.
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FIGURE 5 | Proportion of participants relying on correlation heuristic in CS tasks and DCCS in CS-Structure and DCCS-Structure conditions. The CS-2100-Dec
(DCCS) task and CS-2100-Inc (DCCS) task refer to CS tasks following the DCCS performance in the DCCS-Structure condition. The error bars represent 95%
confidence interval around the point estimate.

TABLE 1 | Comparison of different conditions involving correlation heuristic
reliance among participants.

Condition comparisons Statistical inference

χ2 (1) p ϕ

CS-2100-Dec (DCCS) (0.32) <

CS-2100-Dec (0.76)
9.74 <0.001 0.44

CS-2100-Inc (DCCS) (0.28) <

CS-2100-Inc (0.56)
4.02 0.04 0.28

CS-2100-Dec (0.76) ∼

CS-2100-Inc (0.56)
2.23 0.14 0.21

CS-2100-Dec (DCCS) (0.28) ∼

CS-2100-Inc (DCCS) (0.32)
0.09 0.76 0.04

CS-Temp (DCCS) (0.24) <

CS-Temp (0.96)
27.00 <0.001 0.73

CS-Climate (DCCS) (0.44) <

CS-Climate (0.92)
13.24 <0.001 0.51

CS-Temp (0.96) ∼ CS-Climate
(0.92)

0.36 0.55 0.08

CS-Temp (DCCS) (0.24) ∼

CS-Climate (DCCS) (0.44)
2.23 0.14 0.21

CS-2100-Inc (0.56) <

CS-Climate (0.92)
8.42 <0.001 0.41

CS-2100-Inc (DCCS) (0.28) ∼

CS-Climate (DCCS) (0.44)
1.39 0.24 0.17

The number in the bracket represents the proportion of participants relying on
correlation heuristic. The symbol ∼ indicates that the proportions in two conditions
were similar to each other.

Thus, overall, the experience gained in DCCS helped
participants to reduce mass balance violations. Furthermore,
the violation of mass balance reduction helped participants to

perform better in the following CS task in the DCCS conditions
compared to that in the CS conditions in both structure and
surface condition.

Discussion
The comparison of the problems in the CS tasks of DCCS
condition and CS condition allowed us to measure the
effectiveness of the surface or structural heterogeneity
in reducing correlation heuristic and violation of mass
balance misconceptions. In both the surface and structure
conditions, misconceptions related to correlation heuristic and
violation of mass balance reduced significantly in the CS tasks
following DCCS compared to CS tasks without exposure in
DCCS.

First, we found that when we changed the problem’s
structural features between DCCS and the following CS task (i.e.,
change the way CO2 emissions and absorptions affect the CO2
concentration), misconceptions reduce significantly in the CS
task post DCCS performance. This finding agrees with recent
research that showed that structural knowledge helped people
reduce their correlation heuristic and violation of mass balance
misconceptions in both cases when problems encountered in
the CS task are structurally similar or different compared to
those presented in DCCS (Kumar and Dutt, unpublished). In our
study, when people attempt to follow different trajectories of CO2
concentration in DCCS, then this exposure to heterogeneous
system dynamics likely enables them to learn that the CO2
concentration increases when CO2 emissions are greater than
CO2 absorptions, decreases when CO2 emissions are smaller than
CO2 absorptions, and stabilizes when CO2 emissions equal CO2
absorptions.
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FIGURE 6 | Proportion of participants relying on correlation heuristic in surface conditions. The CS-Temp (DCCS) and CS-Climate (DCCS) refer to CS tasks following
the DCCS performance in the DCCS-Surface condition. The error bars represent 95% confidence interval around the point estimate.

FIGURE 7 | Proportion of participants committing violation of mass balance in CS tasks and DCCS in CS-Structure and DCCS-Structure conditions. The
CS-2100-Dec (DCCS) task and CS-2100-Inc (DCCS) task refer to CS tasks following the DCCS performance in the DCCS-Structure condition. The error bars
represent 95% confidence interval around the point estimate.

Second, we found that when we changed the problem’s surface
features in DCCS, then misconceptions also reduced significantly
in the CS task post DCCS performance. One likely reason for this
finding is that people get to learn via DCCS that the same system
dynamics applies across different dimensions and cover stories.
Thus, they could transfer this learning in CS tasks post DCCS
performance.

Overall, our results agree with the procedural reinstatement
principle (Healy et al., 2005), where we found improved
performance when problems in the CS task were similar in

structure or surface features to those that were learned during
DCCS training (prior to the CS task). Also, our results agree
with the heterogeneity of practice hypothesis (Gonzalez and
Madhavan, 2011), where we found that problems with surface
or structural training during DCCS were able to produce more
effective transfer of knowledge and improved performance in the
CS task.

There were some differences in the curve shapes and
cover stories used between tasks across surface and structure
conditions. Thus, we could not compare all tasks across these
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TABLE 2 | Comparison of different conditions involving violation of mass balance
among participants.

Condition comparisons Statistical inference

χ2 (1) p ϕ

CS-2100-Dec (DCCS) (0.40) <

CS-2100-Dec (0.76)
6.65 <0.001 0.36

CS-2100-Inc (DCCS) (0.48) <

CS-2100-Inc (0.84)
7.22 <0.001 0.38

CS-2100-Dec (0.76) ∼

CS-2100-Inc (0.84)
0.50 0.48 0.10

CS-2100-Dec (DCCS) (0.40) ∼

CS-2100-Inc (DCCS) (0.48)
0.33 0.57 0.08

CS-Temp (DCCS) (0.20) <

CS-Temp (0.92)
26.30 <0.001 0.72

CS-Climate (DCCS) (0.24) <

CS-Climate (0.88)
20.78 <0.001 0.64

CS-Temp (0.92) ∼ CS-Climate
(0.88)

0.22 0.64 0.07

CS-Temp (DCCS) (0.20) ∼

CS-Climate (DCCS) (0.24)
0.12 0.74 0.05

CS-2100-Inc (0.84) ∼

CS-Climate (0.88)
0.17 0.68 0.06

CS-2100-Inc (DCCS) (0.48) ∼

CS-Climate (DCCS) (0.24)
3.13 0.07 0.25

The number in the bracket represents the proportion of participants committing
violation of mass balance. The symbol ∼ indicates that the proportions in two
conditions were similar to each other.

conditions. However, upon comparing tasks that were similar in
their curve shapes and cover stories used, we did find a similar
reduction in correlation heuristic and violation of mass balance
misconceptions across the surface and structure conditions.

Overall, these results indicate that both surface and structural
heterogeneity is equally powerful in reducing people’s stock-flow
misconceptions.

Although the problems used in the current experiment created
learning of structural and surface features for participants, there
may be other ways of creating effective training conditions.
However, as part of future work we would like to compare
structure and surface heterogeneity with homogenous
conditions. For example, one other way learning could be
influenced during DCCS training is by varying the difficulty
level of problems in DCCS. The problem difficulty could be
varied in DCCS based upon the shape of CO2 concentration
trajectory that participants are asked to follow in DCCS. The
next experiment explores the effects of problem difficulty in
reducing correlation heuristic and violation of mass balance
misconceptions.

EXPERIMENT 2: EFFECT OF DIFFICULTY
OF PROBLEMS IN REDUCING
STOCK-FLOW MISCONCEPTIONS

Another way in which training conditions might differ is by the
difficulty of problems encountered. For example, school children
may be trained on simple and difficult problems in the classroom
to prepare them for different problems in their exam. According
to the difficulty hypothesis (Schneider et al., 2002; Young et al.,
2011), transfer performance in the CS task should improve when
training is conducted using difficult climate problems in DCCS
compared to simple problems. However, it is also possible that
due to the predictions from cognitive load theory (Sweller, 1994;
De Jong, 2010), difficult training problems in DCCS may not lead

FIGURE 8 | Proportion of participants committing violation of mass balance in surface conditions. The CS-Temp (DCCS) and CS-Climate (DCCS) refer to CS tasks
following the DCCS performance in the DCCS-Surface condition. The error bars represent 95% confidence interval around the point estimate.
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to reductions in stock-flow misconceptions compared to simple
training problems.

Methods
Participants
Participants were recruited through an email advertisement
for a climate-study at Indian Institute of Technology, Mandi,
India. This study was carried out in accordance with the
recommendations of Ethics Committee at Indian Institute of
Technology Mandi with a written informed consent from all
participants. Participation was voluntary and all participants gave
written informed consent before starting their study. There were
90 participants in all (78 males and 12 females). Ages ranged
from 18 to 25 years (average = 23 years; SD = 1.4 years).
All participants were from Science, Technology, Engineering,
and Mathematics backgrounds (88% undergraduate, 9% masters,
and 3% doctoral). They were randomly assigned to one of
the experimental conditions involving DCCS and CS tasks.
Participants were paid a flat fee of INR 50 (approximately 0.9
USD) for their participation after they completed the study.

Experimental Design
Participants were randomly assigned to one of the following
three between-subjects conditions (N = 30 in each condition):
DCCS-Difficult, DCCS-Easy and CS. In the DCCS-Difficult and
DCCS-Easy conditions, participants first performed 1-round
in DCCS and were immediately transferred to the CS task.
In the DCCS-Easy and DCCS-Difficult conditions, in DCCS,
participants controlled the CO2 concentration to the stabilization
trajectory in each round by making inflow and outflow decisions
every 5 time periods repeatedly. In the DCCS-Easy condition,
the DCCS used Figure 1’s problem. However, in the DCCS-
Difficult condition, the DCCS used Figure 9’s problem. The
shape of CO2 concentration scenario in Figure 9’s problem was
more complex compared to that in Figure 1’s problem (although
the CO2 concentration in both problems had about the same
values and direction of movement over time). The complexity of
the concentration curve made Figure 9’s problem more difficult
compared to Figure 1’s problem. After participants finished

FIGURE 9 | The CO2 concentration stabilization trajectory to be used as the
difficult problem.

performing in DCCS, they were transferred to a different problem
in the CS task. In the CS condition, however, participants
played an unrelated Tetris task for the average time it took to
complete 1-round in the DCCS task (in the conditions involving
DCCS) and were transferred to the CS task immediately. In CS
tasks across all conditions, participants attempted the problem
shown in Figure 4B, where they sketched the shape of CO2
emissions and absorptions that corresponded to a decreasing
CO2 concentration stabilization trajectory between 2001 and
2100. In this experiment, the CS condition formed the control
group, the DCCS-Easy and DCCS-Difficult conditions formed
the training groups, and the CS (DCCS-Easy) and CS (DCCS-
Difficult) formed the test groups.

The dependent variables were the proportion of participants
relying on correlation heuristic and the proportion of participants
committing violation of mass balance. The coding used to classify
participants as relying on correlation heuristic and committing
violation of mass balance across the control, training, and test
groups was the same as that used in Experiment 1. The alpha and
power levels were same as reported in experiment 1. The dataset
for the experiment has been provided as part of Supplementary
Data Sheet S1.

Procedure
Participants were randomly assigned to different conditions
and given instructions about the study. Participants were told
about the goal that they had to achieve and they could ask
clarification questions, if any, before beginning their experiment.
In the DCCS-Easy and DCCS-Difficult conditions, participants
performed 1-round in DCCS on a desktop computer and
then they were transferred to CS tasks, where the CS tasks
were given using a pencil-and-paper format. However, in the
CS condition, participants first performed an unrelated Tetris
task and then they were immediately transferred to the CS
task, which was given using a pencil-and-paper format. In
the CS task, participants had to sketch CO2 emissions and
absorptions corresponding to the CO2 concentration trajectory.
On completion of the CS task, participants were thanked and paid
for their participation.

Results
Correlation Heuristic
We compared the correlation heuristic reliance between the
control group and the test groups across the easy and difficult
conditions. Figure 10 shows the proportion of participants
relying on correlation heuristic in CS tasks and DCCS in the
DCCS-Easy, DCCS-Difficult, and CS conditions. Furthermore,
Table 3 shows the comparison of different conditions and the
associated inferential statistics for correlation heuristic reliance.
As seen in Table 3, the reliance on correlation heuristic was
similar across the CS tasks in the CS condition and the
DCCS-Difficult condition. Similarly, the reliance on correlation
heuristic was similar across the CS tasks in the CS condition
and the DCCS-Easy condition. Furthermore, the proportion of
participants relying on correlation heuristic was similar across
the CS tasks in the DCCS-Easy condition and the DCCS-Difficult
condition.
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FIGURE 10 | Proportion of participants relying on correlation heuristic in three conditions: DCCS-Easy, DCCS-Difficult, and CS conditions. The CS (DCCS-Easy) task
and CS (DCCS-Difficult) task refer to CS tasks following the DCCS performance in the DCCS-Easy and DCCS-Difficult conditions. The error bars represent 95%
confidence interval around the point estimate.

TABLE 3 | Comparison of different conditions involving correlation heuristic
reliance among participants.

Condition comparisons Statistical inference

χ2 (1) p ϕ

CS (0.60) ∼ CS (DCCS-Difficult) (0.50) 0.61 0.44 0.10

CS (0.60) ∼ CS (DCCS-Easy) (0.63) 0.07 0.79 0.03

CS (DCCS-Easy) (0.63) ∼ CS (DCCS-Difficult) (0.50) 1.09 0.29 0.13

The number in the bracket represents the proportion of participants relying on
correlation heuristic. The symbol ∼ indicates that the proportions in two conditions
were similar to each other.

Violation of Mass Balance
We compared the committing of violation of mass balance
between the control group and the test groups across the easy
and difficult conditions. Figure 11 shows the proportion of
participants committing violation of mass balance in CS tasks
and DCCS in DCCS-Easy, DCCS-Difficult, and CS conditions.
Table 4 shows the comparison of different conditions and the
associated inferential statistics for mass balance violation. As seen
in Table 4, results indicated that the proportion of violation of
mass balance was similar across the CS tasks in the CS condition
and the DCCS-Difficult condition. Furthermore, the proportion
of violation of mass balance was similar across the CS tasks in
the CS condition and the DCCS-Easy condition. Likewise, the
proportion of violation of mass balance was similar across the
CS tasks of the DCCS-Easy condition and the DCCS-Difficult
conditions.

Overall, in agreement with the expectations from cognitive
load theory, the proportion of participants relying on CH and
committing violation of mass balance were similar in the CS tasks
of the DCCS-Difficult condition and the DCCS-Easy condition.

Discussion
Variation in problem difficulty could be another way of
enabling learning among people that reduces their stock-flow
misconceptions. In this experiment, we varied problem difficulty
in terms of the shape of the CO2 concentration trajectory: smooth
(simple) or curvilinear (difficult). We found that people could not
reduce their correlation heuristic misconceptions after exposure
to difficult climate problems in DCCS compared to those who
were either not provided DCCS training or were only exposed to
easy climate problems in DCCS. Similarly, the same intervention
did not reduce the violation of mass balance misconceptions: The
committing of violation of mass balance remained the same after
DCCS training (among both easy and difficult problems) in the
CS task compared to conditions where the CS task was given
without exposure in DCCS. The lack of reduction in correlation
heuristic and violation of mass balance misconceptions could be
attributed to cognitive load theory (Simon, 1991; Sweller, 1994;
De Jong, 2010). As per cognitive load theory, it is possible that
the processing of different elements like emission, absorption,
and the curvilinear concentration in the DCCS task required too
much working memory capacity. Due to the cognitive overload
and bounded memory capacity, participants were not able to
reduce their correlation heuristic and violation of mass balance
misconceptions.
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FIGURE 11 | Proportion of participants committing violation of mass balance in three conditions: DCCS-Easy, DCCS-Difficult, and CS conditions. The CS
(DCCS-Easy) task and CS (DCCS-Difficult) task refer to CS tasks following the DCCS performance in the DCCS-Easy and DCCS-Difficult conditions. The error bars
represent 95% confidence interval around the point estimate.

TABLE 4 | Comparison of different conditions involving violation of mass balance
among participants.

Condition comparisons Statistical inference

χ2 (1) p ϕ

CS (0.90) ∼ CS (DCCS-Difficult) (0.83) 0.58 0.45 0.10

CS (0.90) ∼ CS (DCCS-Easy) (0.83) 0.58 0.45 0.10

CS (DCCS-Easy) (0.83) ∼ CS (DCCS-Difficult) (0.83) 0.00 1.00 0.00

The number in the bracket represents the proportion of participants committing
violation of mass balance. The symbol ∼ indicates that the proportions in two
conditions were similar to each other.

Our results in this experiment did not agree with the
expectations from the difficulty hypothesis (Schneider et al.,
2002; Young et al., 2011). Perhaps, the shape of the difficult
CO2 concentration trajectory was not difficult enough in making
people learn reduce their stock-flow misconceptions. Although
we can only speculate currently, a more challenging CO2
concentration trajectory in DCCS that gives exposure to people
about increase, decrease, and stabilization of accumulation may
help reduce people’s misconceptions.

Beyond testing the difficulty of problems and their
effectiveness in DCCS, another way for reducing correlation
heuristic and violation of mass balance misconceptions could
be by using simulation tools as side-by-side decision aids (e.g., a
computer or calculator). The focus of the next experiment is to
evaluate how DCCS could be used as a side-by-side decision aid
in reducing stock-flow misconceptions.

EXPERIMENT 3: EFFECT OF DECISION
AIDS IN REDUCING STOCK-FLOW
MISCONCEPTIONS

There are numerous situations in life like during schooling
when students make use of decision aids (e.g., computers and
calculators) to assist them in solving complex mathematical
problems. Similarly, climate-scientists and climate-policymakers
are likely to use decision aids (e.g., simulation tools) while
formulating future greenhouse gas emission policies. For
example, to evaluate the effects of future emission policies on
the CO2 concentrations and global temperatures we may need
to rely upon decision aids. In simple descriptive binary-choice
decision tasks, when participants are provided with experiential
decision aids, they tend to rely on the experience gained in
these aids in making descriptive decisions and improving their
decision making (Jessup et al., 2008; Camilleri and Newell, 2011;
Lejarraga and Gonzalez, 2011). The aim of this experiment is to
evaluate the effectiveness of decision aids in reducing people’s
misconceptions when they have at their disposal an aid that
simulates future CO2 concentrations by assuming different CO2
emission policies.

Methods
Participants
Participants were recruited through an email advertisement
for a climate-study at Indian Institute of Technology Mandi,
India. This study was carried out in accordance with the
recommendations of Ethics Committee at Indian Institute of
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Technology Mandi with a written informed consent from all
participants. Participation was voluntary and all participants
gave written informed consent before starting their study. There
were 60 participants in all (52 males and 08 females). Ages
ranged from 18 to 26 years (average = 22 years; SD = 1.5 years).
All participants were from Science, Technology, Engineering,
and Mathematics backgrounds (85% undergraduate, 12%
masters, and 3% doctoral). They were randomly assigned
to one of the conditions involving DCCS and CS tasks.
Participants were paid a flat fee of INR 50 (approximately
0.9 USD) for their participation after they completed the
study.

Experimental Design
Participants were randomly assigned to one of two between-
subjects conditions (N = 30 in each condition): Aid and No-
aid. In the Aid condition, participants could use DCCS side-
by-side as a decision aid while sketching the CO2 emissions
and absorptions in the CS task; however, in the No-aid
condition, participants only sketched the CO2 emissions and
absorptions in the CS task and they did not use DCCS. In
the Aid condition, participants could use DCCS anytime to
enter 10-yearly emission and absorption values over a period
of 100 years (i.e., a total of 10 values for each of the emissions
and absorptions) and simulate the resulting CO2 concentration.
The DCCS simulated the entered emissions and absorptions
rapidly within 1 to 2 seconds. Participants could then reset
DCCS to the year 2000 and simulate a different set of emission
and absorption values. In the Aid condition, participants could
use DCCS as many times as they wanted to before they
sketched the CO2 emissions and absorptions in the CS task.
Also, the number of times participants used the DCCS as a
decision aid was recorded in the Aid condition. In the No-
aid condition, participants were asked to play a Tetris game
for an amount time that equaled the time that participants
took to use DCCS in the Aid condition. The No-aid condition
formed the control group and the Aid condition formed the test
group.

The dependent variables were the proportion of participants
relying on correlation heuristic and the proportion of
participants committing violation of mass balance. In the
Aid condition, the correlation heuristic and violation of mass
balance misconceptions were analyzed in DCCS by using the
averaged emission and absorption trajectory, where the average
was computed across the number of times DCCS was used as a
decision aid. In both Aid and No-aid conditions, participants
attempted a single problem in the CS task and that was the one
shown in Figure 4B. The coding used to classify participants
as relying on correlation heuristic and committing violation
of mass balance across the control and test groups was the
same as that used in Experiment 1. Because of the presence of
DCCS, we expected smaller proportions of correlation heuristic
and violation of mass balance in the CS task in Aid condition
compared to the No-aid condition. The alpha and power levels
were the same as reported in experiment 1. The dataset for the
experiment has been provided as part of Supplementary Data
Sheet S1.

Procedure
Participants were randomly assigned to different conditions and
given instructions about the study. Participants were told about
the goal in the CS task: to sketch the CO2 emission and absorption
trajectories that would correspond to the CO2 concentration
trajectory. Participants could ask clarification questions, if any,
before starting their study. In the Aid condition, participants
were encouraged to use DCCS as a decision aid side-by-side
the CS task. However, in the No-aid condition, participants
first performed in the unrelated Tetris task and then they were
immediately transferred to the CS task. On completion of the CS
task, participants were paid for their participation.

Results
First, we analyzed the number of times DCCS was used as
a decision aid in the Aid condition. Results revealed that
participants used DCCS between 1 time and 7 times in the Aid
condition (average = 3 times, SD = 1.4 times).

Correlation Heuristic
We compared the correlation heuristic reliance between the CS
tasks across the Aid and No-aid conditions. Figure 12 shows
the proportion of participants relying on correlation heuristic
in the Aid and No-aid conditions. Results revealed that reliance
on correlation heuristic was statistically smaller in the CS task
of Aid condition compared to the CS task of No-aid condition
[0.30 < 0.60, χ2 (1) = 5.46, p = 0.02, ϕ = 0.30]. The proportion of
participants relying on correlation heuristic in DCCS was close
to 0.30. The correlation between the number of times DCCS was
used and reliance on correlation heuristic in the CS task was small
and insignificant (r = 0.14, p = 0.41).

Violation of Mass Balance
We compared the committing of violation of mass balance
between the CS tasks across the Aid and No-aid conditions.
Figure 13 shows the proportion of participants committing
violation of mass balance in the Aid and No-aid conditions.
Results indicated that violation of mass balance was statistically
smaller in the CS task of Aid condition compared to the CS task of
No-aid condition [0.43 < 0.90, χ2 (1) = 14.70, p = 0.00, ϕ = 0.49].
The proportion of participants committing violation of mass
balance in DCCS was close to 0.85. The correlation between the
number of times DCCS was used and committing of violation of
mass balance in the CS task was small and insignificant (r = 0.08,
p = 0.62).

Overall, in agreement with our expectations, the proportion
of participants relying on correlation heuristic and committing
violation of mass balance was statistically smaller in Aid
condition compared to No-aid condition.

Discussion
Simulations tools may provide effective side-by-side decision aids
that enable people to reduce their stock-flow misconceptions.
Results revealed that DCCS served as an effective side-by-side
decision aid and enabled people to reduce their correlation
heuristic and violation of mass balance misconceptions compared
to those conditions where DCCS was not present.
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FIGURE 12 | Proportion of participants relying on correlation heuristic in the Aid and No-aid conditions. The error bars represent 95% confidence interval around the
point estimate.

FIGURE 13 | Proportion of participants committing violation of mass balance in the Aid and No-Aid conditions. The error bar represents the 95% confidence interval
around the point estimate.

One likely reason for the effectiveness of DCCS as a decision
aid could be that DCCS enables people to try different scenarios
related to how CO2 emissions and absorptions influence the
trajectory of CO2 concentration (Dörner, 1996; Cronin et al.,
2009; Dutt, 2011). Thus, people could use DCCS to try different
CO2 emissions and absorptions values and observe their effect on
the resulting CO2 concentration trajectories. This trial-and-error
learning in DCCS is consistent with literature on experienced-
based decisions (Jessup et al., 2008; Camilleri and Newell, 2011;
Lejarraga and Gonzalez, 2011). For example, according to Jessup
et al. (2008), when participants are provided with experiential
decision problems, they tend to rely on the experience gained in
these problems in making decisions and improve their decision
making. Similarly, the experience gained in DCCS enables
participants to improve their decision-making in the CS task.

Furthermore, in our results, participants used DCCS between
1 time and 7 times before while attempting the CS task. This use
of DCCS agrees with that reported in literature (Hertwig et al.,
2004; Cronin et al., 2009). For example, Cronin et al. (2009) gave
a stock-flow problem where participants needed to determine the
maximum and minimum stock levels across multiple attempts. In
each attempt, participants wrote answers to stock questions and
they were given feedback on whether their answers were correct
or incorrect. According to Cronin et al. (2009), due to the correct-
incorrect feedback, more than 70% of the participants were able
to answer the stock questions correctly by the fifth attempt (i.e.,
between one and nine attempts). Similarly, in agreement with
our results, Hertwig et al. (2004) have shown that people explore
different options presented to them about 7 times before choosing
an option for real.
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GENERAL DISCUSSION

In this paper, we started with the general hypothesis that
heterogeneity in surface, structure, and problem difficulty in
simulation tools as well as the use of the simulation tools
as decision aids will be helpful in reducing public stock-
flow misconception about Earth’s climate. Across the first two
experiments, we evaluated how the DCCS enables people to
reduce their climate misconceptions because of heterogeneity due
to surface and structural features as well as problem difficulty.
Also, in a third experiment, we evaluated how DCCS as a
side-by-side decision aid helps people to reduce their climate
misconceptions. Overall, our results could be explained based
upon theoretical arguments concerning the heterogeneity of
practice hypothesis (Gonzalez and Madhavan, 2011), procedural
reinstatement principle (Schneider et al., 2002; Healy et al., 2005;
Young et al., 2011), cognitive load theory (Sweller, 1994; De
Jong, 2010), and decisions from experience (Jessup et al., 2008;
Camilleri and Newell, 2011; Lejarraga and Gonzalez, 2011).

First, our findings suggest that simulation tools for Earth’s
climate (like DCCS) are effective in causing learning of
both structural features and surface features in problems.
In our experiment, people were not given full-information
on the formulations connecting emission, absorption, and
concentration (Dörner, 1996). These relationships were
something that participants had to learn over time while
performing in DCCS (Dörner, 1996). Based upon our results,
simulation tools like DCCS not only enable people to learn
the generality of problems across units and dimensions but
also the generality of problems across how inputs and outputs
influence the accumulation (Dörner, 1996; Sutton and Barto,
1998; Gonzalez et al., 2003; Dutt and Gonzalez, 2015).

Dutt and Gonzalez (2015) have provided a cognitive account
based upon Instance-based Learning Theory (IBLT) on how
learning occurs as a dynamic task (like DCCS) due to the
focus on process measures and outcome measures. In agreement
with Dutt and Gonzalez (2015)’s account, when people come
across elements like emission, absorption, and concentration in
DCCS, they create instances (or experiences) in their memory.
Several experiences get created due to the repeated interaction
in DCCS concerning emission, absorption, and concentration
values. However, among these instances those instances that
allow people to make their CO2 concentration come closer to
the goal are the ones that likely get reinforced over time. While
performing the CS task, people retrieve these reinforced instances
from memory to make improved decisions. Thus, people likely
use their reinforced knowledge acquired in DCCS to draw correct
trajectories of emissions and absorptions corresponding to the
different concentration curves.

Furthermore, our results revealed that the use of complex
curve shapes in simulation tools (i.e., problem difficulty),
however, did not help participants to reduce their stock-
flow misconceptions. This result could be explained based
upon the additional working memory capacity requirements to
process complex interaction of different elements like emissions,
absorptions, and concentrations (Dörner, 1996). In agreement
with cognitive load theory, as our working memory is bounded

(Simon, 1959), people may not be able to process the complex
interactions, especially when the concentration curve shapes are
complex.

We found that the difficulty hypothesis was unable to account
for the findings in the second experiment. One likely reason for
this observation could be that the tasks used in our study are
different from those that were used for showcasing the difficulty
hypothesis (Healy et al., 2005). In literature, the difficulty
hypothesis has been showcased using a duration production
task in which the dependent measure was reaction time and
not the inflow, outflow, and stock. In DCCS, however, the
main dependent variables of interest were the inflow, outflow,
and stock. Still, another likely reason for the inability of the
difficulty hypothesis could be the trajectory of the stock curve
used in the difficult condition. It is likely that the stock shapes
used in the difficult condition were not difficult enough to
cause learning of the underlying relationship between emissions,
absorptions, and concentration. Future research should test
the learning from complex concentration curves in simulation
tools by trying scenarios with concentration curves of different
difficulty (Dörner, 1996). Perhaps, stock-flow problems with
more challenging CO2 accumulation curves would be more likely
to help reduce correlation heuristic and violation of mass balance
misconceptions.

We also found that the stock-flow misconceptions did not
reduce when the concentration curve shape in DCCS was simple
compared to when people were not exposed to DCCS at all.
Thus, overall, this result disagrees with those reported in the
first and second experiment, where performance in DCCS caused
people to reduce their stock-flow misconceptions compared to
conditions where participants were not exposed to DCCS. One
likely reason for the disagreement could be the number of
repetitions of DCCS given in the second experiment (equal to
one) compared to other experiment (multiple). Although we can
only speculate currently, but, perhaps, more repetitions of DCCS
in simple and difficult conditions could lead people to reduce
their stock-flow misconceptions. This hypothesis needs to be
tested as part of future research.

Our findings have important implications for real-world
climate education as well as climate policymaking. First, as
simulation tools like DCCS likely create both surface and
structure learning, they are ideal for educating students from
kindergarten to standard 12th about stock-flow problems
(Gonzalez and Wong, 2012; Meadows et al., 2016). Thus, the use
of simulation tools should be encouraged in schools for learning
about Earth’s climate, especially when students are exposed to
concepts like the carbon-cycle and climate change.

Third, the use of simulation tools as decision aids should be
encouraged for both climate education and policy analyses. Here,
simulation tools can be used as a side-by-side decision aid that
provides people the ability to test different hypotheses concerning
emissions, absorptions, and concentrations. Also, policymakers
could use simulation tools like DCCS for climate policy analyses
and to evaluate how different CO2 emission and absorption
trajectories impacts CO2 concentrations and global temperatures.
One expects improved policy analyses with repeated iterations in
simulation tools.
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The current investigation on the use of simulation tools has
revealed promising results. However, there are several research
questions to pursue as part of research in the immediate
future. Although different structural and surface training was
taken into account, comparison with homogenous condition
was not made. As part of future research, we would like
to compare different structural and surface heterogeneous
condition with homogeneous conditions. For example, it would
be interesting to analyze how heterogeneity in structure,
surface, and problem difficulty interacts with people’s science
education and other demographic variables. Also, how a
group of decision-makers (in contrast to single decision-
makers) may improve their correlation heuristic and violation
of mass balance misconceptions via simulation tools as well
as how these groups show learning of structure, surface, and
difficulty? Still, how people who improve their understanding
of Earth’s climate in problems with a single accumulation (CO2
concentration) improve their decision-making in problems with
two or more accumulations (e.g., CO2 concentration and global
temperatures)? It would be interesting to investigate whether it
is people’s conscious or unconscious learning that improves due
to the use of simulation tools? And, whether people are really
learning something about climate change or just learning to use
the DCCS tool to complete the CS task?

Prior research has also reported that a part of the stock-
flow misconceptions in the CS task could be because of
the format of presentation of material concerning emissions,
absorptions, and concentration (Fischer et al., 2015). As per
Fischer et al. (2015), the use of verbal formats of presentation
of stock-flow problems may help reduce some of the stock-
flow misconceptions concerning reasoning about stocks. Thus,
as part of future research, it would be interesting to test the
effectiveness of the heterogeneity in structure, surface, and
problem difficulty as well as the extent of learning (conscious
or unconscious) in different verbal and non-verbal stock-flow
problem formats.

As part of our future work, we would like to answer some
of these open-ended questions by involving complex stock-flow
problems that vary in their complexity in terms of the number
of stock and flows and nature of stock and flows (Frensch and

Funke, 2014). Also, how the increasing complexity of stock-
flow problems may interact with the format of presentation of
stock-flow problems to influence people’s reduction in stock-
flow misconceptions (Fischer et al., 2015). Furthermore, one
also needs to go deeper to understand the memory processes
underlying the learning of structure and surface features in DCCS
(Dörner, 1996). Thus, one also needs to evaluate how certain
computational models based upon theories of cognition are likely
to provide an account of the changes in memory processes in
simulation tools (Gonzalez et al., 2003; Gonzalez and Dutt, 2011).
We plan to undertake some of these research questions as part of
our immediate research on the theme of learning via simulation
tools.
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Decision-making is a high-level cognitive process based on cognitive processes like

perception, attention, and memory. Real-life situations require series of decisions to be

made, with each decision depending on previous feedback from a potentially changing

environment. To gain a better understanding of the underlying processes of dynamic

decision-making, we applied the method of cognitive modeling on a complex rule-based

category learning task. Here, participants first needed to identify the conjunction of

two rules that defined a target category and later adapt to a reversal of feedback

contingencies. We developed an ACT-R model for the core aspects of this dynamic

decision-making task. An important aim of our model was that it provides a general

account of how such tasks are solved and, with minor changes, is applicable to other

stimulus materials. The model was implemented as a mixture of an exemplar-based and

a rule-based approach which incorporates perceptual-motor and metacognitive aspects

as well. The model solves the categorization task by first trying out one-feature strategies

and then, as a result of repeated negative feedback, switching to two-feature strategies.

Overall, this model solves the task in a similar way as participants do, including generally

successful initial learning as well as reversal learning after the change of feedback

contingencies. Moreover, the fact that not all participants were successful in the two

learning phases is also reflected in the modeling data. However, we found a larger

variance and a lower overall performance of the modeling data as compared to the

human data which may relate to perceptual preferences or additional knowledge and

rules applied by the participants. In a next step, these aspects could be implemented in

the model for a better overall fit. In view of the large interindividual differences in decision

performance between participants, additional information about the underlying cognitive

processes from behavioral, psychobiological and neurophysiological data may help to

optimize future applications of this model such that it can be transferred to other domains

of comparable dynamic decision tasks.

Keywords: dynamic decision making, category learning, ACT-R, strategy formation, reversal learning, cognitive

modeling, auditory cognition
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INTRODUCTION

Backcountry skiers (and snowboarders) strive for the unique
thrill of skiing or snowboarding down powder covered
mountains, drawing the first line into freshly fallen snow. Before
deciding to go down a particular mountain slope, they check the
snowpack, the temperature and wind conditions to avoid setting
off an avalanche. Often not a single snow characteristic is crucial
but conjunctions of them can change the conditions of safe
skiing. The decision to continue on a slope is re-evaluated often,
depending on the feedback from the snow (e.g., collapsing snow,
snow-brakes vs. nice powder snow) and previous experience.

The described scenario gives a good example of complex
cognition. Complex cognition (Knauff and Wolf, 2010)
investigates how different mental processes influence action
planning, problem solving and decision-making. The term
“mental processes in complex cognition” includes not only
cognitive but also motivational aspects. Naturalistic decision-
making research investigates how decisions are made “in
the wild.” Real-life decisions made by people with some
kind of expertise are investigated in the context of limited
time, conflicting goals, dynamically changing conditions, and
information sources of varying reliability.

Such complex situations involve further aspects that
cannot all be covered in combination when studying complex
cognition. Nevertheless, researchers should aim at describing,
understanding and predicting human behavior in its complexity.

A model situated within cognitive architectures can simulate
multiple parallel processes, thereby capturing multifaceted
psychological phenomena and making predictions, sometimes
even for complex tasks. Nevertheless, developing such models
requires a stepwise procedure to distinguish different influencing
factors. For our skiing example, first a model of the core
decision-making process (e.g., based on category learning from
snow characteristics and feedback) of a backcountry skier needs
to be developed and tested. Afterwards this approach can be
extended withmodeling approaches of other decision influencing
processes (e.g., motivation) to predict decision-making in the
wild.

To come closer to the overall goal of understanding cognition

as a whole, studying dynamic decision-making with cognitive

architectures constitutes a step in the right direction. In dynamic

decision-making, decisions are not seen as fixed but can be

modified by incoming information. So, not only singular aspects
of decision-making are considered, such as attentional influence,
but also environmental factors that give feedback about an
action or lead to major changes requiring an adaptation to new
conditions.

In real-life decisions, however, our future choices and our
processing of decision outcomes are influenced by feedback
from the environment. This is the interactive view on decision-
making, called dynamic decision-making (Gonzalez, 2017), of
which the scenario presented above is an example. According to
Edwards (1962), three aspects define dynamic decision-making.
First, a series of actions are taken over time to achieve a certain
goal. Second, the actions depend on each other. Thus, decisions
are influenced by earlier actions. Third, and most difficult to

investigate, changes in the environment occur as a result of these
actions but also spontaneously (Edwards, 1962). According to
Gonzalez (2017), dynamic decision-making is a process where
decisions are motivated by goals and external events. They are
dependent on previous decisions and outcomes. Thus, decisions
are made based on experience and are dependent on feedback.
Most of the time, these kinds of decisions are made under time
constraints. Therefore, long mental elaborations are not possible.
To sum up, dynamic decision-making research investigates a
series of decisions which are dependent on previous decisions
and are made under time constraints in a changing environment.

Another view on dynamic decision-making as a continuous
cycle of mental model updating is introduced by Li and
Maani (2011). They describe this process using the CER Cycle.
CER stands for Conceptualization–Experimentation–Reflection.
Conceptualization is obtaining an understanding of the situation
and mentally simulating the outcome of potential decisions and
related actions. Thus, the decision maker compares the given
situation with related information in his or her mental model and
integrates new information obtained from the environment to
develop a set of decisions. During experimentation, the decisions
and interventions devised from the decision-maker’s mental
model are tested in the dynamics of the real world. In the
reflection phase, the outcome of the experimentation phase is
reflected on, e.g., feedback is processed. If the expected outcome
is achieved (e.g., positive feedback), the initial decisions are
sustained. If, however, the outcome is unexpected (e.g., negative
feedback) or if obtained results differ from the expected outcome,
the decision maker updates his or her mental model. To do this,
he or she decides for alternative actions such as searching for new
sources of information for making better decisions.

These kinds of decision-making procedures have been
suggested to share many processes with the procedure of category
formation (Seger and Peterson, 2013). Categorization is a mental
operation that groups objects based on their similar features.
When new categories are formed from a given set of items
without explicit instruction, the features distinguishing the
different items must first be extracted. Then hypotheses about
the relevant features must be formed and tested by making serial
decisions.

Category learning experiments in cognitive science often
require participants to establish explicit rules that identify the
members of a target category. The serial categorization decisions
are reinforced by feedback indicating whether a decision
was correct or not. The success in such rule-based category
learning experiments critically depends on working memory and
executive attention (Ashby and Maddox, 2011). The fact that
real world decisions critically depend on success and failure in
previous trials qualifies category learning as a model for dynamic
decision-making.

There are numerous advanced computational models of
categorization which explain behavioral performance of subjects
in various categorization tasks (e.g., Nosofsky, 1984; Anderson,
1991; Ashby, 1992; Kruschke, 1992; Nosofsky et al., 1994;
Erickson and Kruschke, 1998; Love et al., 2004; Sanborn
et al., 2010). These competing models differ in their theoretical
assumptions (Lewandowsky et al., 2012) and there is currently no
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consensus on how different models can be compared and tested
against each other (Wills and Pothos, 2012).

Another requirement for dynamic decision-making is the
occurrence of changes in the environment. A well-known
categorization task using such changes is implemented in the
Wisconsin Card Sorting Test (WCST; Berg, 1948). In this test,
participants must first select a one-feature rule (color, shape,
number of symbols) and are then required to switch to a
different one-feature rule. This task tests for the ability to display
behavioral flexibility. Another experimental approach to test for
behavioral flexibility in humans and animals is reversal learning
(e.g., Clark et al., 2004; Jarvers et al., 2016). Here, subjects need to
adapt their choice behavior according to reversed reinforcement
contingencies.

Thus, category learning experiments with changing rules can
serve as suitable paradigms to study dynamic decision-making in
the laboratory, albeit with limited complexity as compared to real
world scenarios.

The majority of rule-based category learning experiments are
simple and only use one relevant stimulus feature specification
(e.g., a certain color of the item) as categorization basis. In
principle, however, such a restriction is not required and rule-
based category learning experiments can become more complex
by using conjunction rules. These can still be easily described
verbally (e.g., respond A if the stimulus is small on dimension
x and small on dimension y). It has been shown that conjunction
rules can be learned (e.g., Salatas and Bourne, 1974) but are much
less salient and are not routinely applied (Ashby et al., 1998).

In the following, the main points mentioned above are
integrated in our backcountry skiing example: Since feedback
from the environment plays a central role in building a correct
mental model, feedback in the form of great powder snow
indicates that the current strategy is correct. By contrast,
negative feedback, for example breaking snow, indicates that one
should change the strategy, perhaps search for different feature
specifications or even for a different combination of features that
might promise a better outcome for skiing. Furthermore, sudden
changes of environmental conditions can result in a change of
which feature combinations are indicative of a positive outcome.
In our example, a change could be a different hill side with more
exposure to the sun or a rise in temperature, requiring that other
feature combinations should be taken as an indication for a safe
descent. There are a lot of possibilities which features and feature
combinations could indicate safe or unsafe conditions, making
such a task complex.

Thus, to study dynamic decision-making in a category
learning experiment requires a task with the above-mentioned
characteristics (successive decisions with feedback, multiple
feature stimuli, and switching of category assignments). To
determine how humans learn feature affiliation in a dynamic
environment and to investigate how strategies with rising
complexity emerge, a modeling approach addressing these
aspects first needs to be developed. If this model is useful
and plausible it should match average behavioral data. This is
an important milestone toward a more precise model which
in turn should predict more detailed empirical data (e.g.,
individual behavioral or neural data). If this step is achieved, then

models can be used as decision aiding systems at an individual
level.

In this paper, we use the behavioral data of an experiment,
described in the following, to develop an initial cognitive
model as described above. In the experiment, a large variety
of multi-feature auditory stimuli were presented to participants
in multiple trials. The participants were then required to learn
by trial and error which combinations of feature specifications
predict a positive or negative outcome. Since perceptual learning
of stimulus features is not the focus of our research, we used
salient and easy-to-recognize auditory features. To meet all of
the above-mentioned criteria for dynamic decision-making, we
further introduced a spontaneous change in the environment
such that previous decisions on feature combinations suddenly
needed to be re-evaluated to obtain positive feedback.

In particular, we would like to demonstrate how different
aspects that influence dynamic decision-making can be
addressed through a combination of existing and validated
cognitive mechanisms within an architecture. These are: learning
to distinguish positive and negative feature combinations
depending on feedback; successive testing of simple one-feature
rules first and switching to more complex two-feature rules later,
and using metacognition to re-evaluate feature combinations
following environment changes. Other modeling approaches are
also able to replicate such data, what distinguishes our approach
is that it has a theory grounded interpretation of plausible
cognitive mechanisms.

Why Use Cognitive Modeling?
The method of cognitive modeling forces precision of vague
theories. For scientific theories to be precise, these verbal theories
should be formally modeled (Dimov et al., 2013). Thus, theories
should be constrained by describable processes and scientifically
established mechanisms. As Simon and Newell (1971) claim,
“the programmability of the theories is a guarantee of their
operationality and iron-clad insurance against admitting magical
entities in the head” (p. 148).

Cognitive models can make predictions of how multiple
aspects or variables interact and produce behavior observed
in empirical studies. In real-life situations, multiple influences
produce behavior. Cognitive models are helpful to understand
which interrelated cognitive processes lead to the observed
behavioral outcome. Cognitive models can perform the same task
as human participants by simulating multiple ongoing cognitive
processes. Thereby, models can provide insight into tasks that
are too complex to be analyzed by controlled experiments.
Nevertheless, studying such a task with participants is mandatory
to compare the outcomes of models and participants. However,
understanding the process leading to an outcome is more
important than perfectly fitting a model to a given set of
experimental results. Our goal in this regard is to understand
the processes underlying human decision-making, not least to
aid humans in becoming better at decision-making (Wolff and
Brechmann, 2015).

Predictions made by cognitive models cannot only be
compared to average outcome data (such as reaction times, or
percentage of correct decisions) but also to process data. Process
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data represent patterns of information search, e.g., neural data.
In this regard, cognitive models can be informed by EEG and
fMRI data to achieve an empirical validation of such processes
(Forstmann et al., 2011; Borst and Anderson, 2015).

The development of neurobiologically plausible models is
specifically the focus of reinforcement learning (e.g., Sutton and
Barto, 1998). The aim of such computational models is to better
understand the mechanisms involved on the neural network
level as studied using invasive electrophysiological measures in
different brain regions in animals (e.g., sensory andmotor cortex,
basal ganglia, and prefrontal cortex). Such neural networkmodels
have recently been applied to learning tasks requiring flexible
behavior (e.g., contingency reversal tasks). The reader is referred
to a recent paper by Jarvers et al. (2016) that gives an overview
of the literature on reversal learning and describes a recurrent
neural network model for an auditory category learning task
such as the one applied in the current paper. This probabilistic
learning model resulted in a good fit to the empirical learning
behavior, but does not interpret the cognitive processes that
lead to this behavior. It postulates an unspecified metacognitive
mechanism that controls the selection of the appropriate strategy.
This is where the strength of our approach comes into play; It is
specific about the metacognitive mechanisms that drive behavior
in such tasks. An example would be processes which assure that
after a number of negative results, a change in strategy will be
initiated.

To summarize, cognitivemodeling is a falsifiablemethodology
for the study of cognition. In scientific practice, this implies
that precise hypotheses are implemented in executable cognitive
models. The output of these models (process as well as product)
is then compared to empirical data. Fit-Indices such as r2 and
RSME as well as qualitative trends provide information on the
predictive power of the cognitive models.

More specific, the central goals of cognitive modeling are
to (a) describe (b) predict, and (c) prescribe human behavior
(Marewski and Link, 2014). A model that describes behavior
can replicate the behavior of human participants. If the model,
however, reproduces the exact behavior found in the human data,
this is an indication of overfitting. In this case, the model has
parameters that also fit the noise found in the empirical data. To
address such issues of over specified models, it is important to
test the model on a new data set and thereby evaluate how well it
can predict novel data. Prescribemeans that the model should be
a generalizable model so that it can predict behavior in different
situations. Moreover, robust models are preferable this implies
that the output of the model is not easily influenced by specific
parameter settings.

The term cognitive model includes all kinds of models
of cognition—from very specific, isolated cognitive aspects
only applicable in specific situations to more comprehensive
and generalizable ones. The latter candidates are cognitive
architectures that consider cognition as a whole. They aim at
explaining not only human behavior but also the underlying
structures and mechanisms. Cognitive models written on the
basis of cognitive architectures therefore generally do not focus
on singular cognitive processes, such as some specific learning
process. By contrast, interaction of different cognitive processes

and the context of cognitive processes are modeled together.
Modeling the relations between different subsystems is especially
relevant for applied research questions. The structures and
mechanism for this are provided by the cognitive architecture
and should be psychologically and neurally plausible (Thomson
et al., 2015).

The most commonly used cognitive architectures, such as
ACT-R, predict processes at a fine-grain level in the range of
50 ms. These processes can be implemented computationally.
However, they are embedded in cognitive theories—this is what
distinguishes cognitive models built with cognitive architectures
from mathematical models such as neural networks. The latter
models formally explain behavior in terms of computational
processes. Thus, their explanation of behavior can be seen in
terms of computational processes but do not aim at cognitive
interpretations (Bowers and Davis, 2012).

The Cognitive Architecture ACT-R
The cognitive architecture ACT-R (Adaptive Control of
Thought—Rational) has been used to successfully model
different dynamic decision-making tasks and is a very useful
architecture for modeling learning (Anderson, 2007; Gonzalez,
2017). In the following, a technical overview of the main
structures and mechanisms that govern cognitive models in
ACT-R is given. We will focus only on those aspects that are
important to understand our modeling approach. For a more
detailed insight into ACT-R, we recommend exploring the
ACT-R website1.

ACT-R’s main goal is to model cognition as a whole using
different modules that interact with each other to simulate
cognitive processes. These modules communicate via interfaces
called buffers. ACT-R is a hybrid architecture, thus symbolic and
subsymbolic mechanisms are implemented in the modules of
ACT-R.

Our model uses the motor, the declarative, the imaginal, the
goal, the aural2, and the procedural module. The motor module
represents the motor output of ACT-R. The declarative module
is the long-term memory of ACT-R in which all information
units (chunks) are stored and retrieved. The imaginal module is
the working memory of ACT-R in which the current problem
state (an intermediate representation important for performing
a task) is held and modified. Thus, the imaginal module plays an
important role for learning. The goal module holds the control
states. These are the subgoals that have to be achieved for the
major goal. The aural module is the perceptual module for
hearing. The procedural module plays a central role in ACT-R.
It is the interface of the other processing units, since it selects
production rules (see below) based on the current state of the
modules.

Writing a model requires the modeler to specify the symbolic
parts of ACT-R. These are (a) the production rules, and (b)
the chunks. Chunks are the smallest units of information. All
information in ACT-R is stored in chunks. Production rules

1http://act-r.psy.cmu.edu/
2Please note that the aural module has two buffers. A tone is first encoded in the

aural-location buffer and its content can then be accessed using the aural buffer.
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(e.g., productions) consist of a condition and an action part.
Productions are selected sequentially, and only one production
can be selected at a given time. A production can only
be selected if the condition part of the production matches
the state of the modules. Then, the action part modifies
the chunks in the modules. If more than one production
matches the state of the modules then a subsymbolic production
selection process chooses which of the matching productions is
selected.

A further subsymbolic process in ACT-R is the activation of a
chunk. It determines if a chunk can be retrieved from memory
and how long this retrieval takes. The past usefulness of a
chunk (base-level activation), the chunk’s relevance in the current
context (associative activation) and a noise parameter sum up
to the chunk’s activation value. Modifying the subsymbolic
mechanisms of ACT-R is also part of the modeling procedure.
This can be done using specific parameters—however, most
parameters have default values derived from previous studies
(Wong et al., 2010) which should be used.

How Can Decision-Making and Category

Learning Be Modeled in ACT-R?
Many different styles for writing models in ACT-R exist (Taatgen
et al., 2006). The following modeling approaches have been used
for decision-making: (a) strategy or rule-based, (b) exemplar
or instance-based, and (c) approaches that mix strategies and
exemplars. These approaches will be compared to motivate our
chosen modeling approach.

In strategy or rule-based models, different problem solving
strategies are implemented with different production rules
and successful strategies are rewarded. Rule-based theories in
category learning postulate that the categorizer must identify the
category of an object by testing it against different rules. So, to
find a solution for a problem, strategies in the form of rules are
used.

Exemplar or instance-based models rely on previous
experience stored in declarative memory to solve decision-
making problems. The content and structure of the exemplars
depend on individual framing. It is not a complete representation
of the event, but represents the feature specifications the problem
solver is focused on, together with experienced feedback.
Exemplar theories of category learning postulate that category
instances are remembered. To decide if an instance belongs to
a category, a new instance is compared to an existing instance.
Instance-Based Learning (IBL) builds upon instances in the
context of dynamic decision processes and involves learning
mechanisms such as recognition-based retrieval. The retrieval
of instances depends upon the similarity between the current
situation and instances stored in memory. In IBL situations,
outcome observations are stored in chunks and retrieved from
memory to make decisions. The subsymbolic activation of the
retrieved instances determines which instances are likely to be
retrieved in a given situation. Instance Based Learning requires
some amount of previous learning of relevant instances. Then,
decision makers are able to retrieve and generalize from these
instances (Gonzalez et al., 2003).

Mixed approach models use both rules and instances to solve
decision-making problems.

Several authors implemented the described approaches in
category learning and decision-making environments. In a
strategy-based ACT-R model, Orendain and Wood (2012)
implemented different strategies for complex problem solving in
a microworld3 game called “Firechief.” Their model mirrored the
behavior of participants in the game. Moreover, different training
conditions and resulting behavior of the participants could be
modeled. The model performed more or less flexibly, just as
the participants, according to different training conditions. This
demonstrates that success in strategy learning depends on the
succession of stimuli in training conditions. Peebles and Banks
(2010) used a strategy-based model of the dynamic-stocks and
flows task (DSF). In this task, water level must be held constant
but the inflow and outflow of the water changes at varying rates.
An ACT-R model of strategies for accomplishing this task was
implemented in form of production rules. The model replicated
the given data accurately, but was less successful in predicting
new data. The authors proposed that by simply extending the
model so it contains more strategies and hypotheses, it would be
able to predict such new data as well. Thus, specifying adequate
rules is crucial for rule-based models.

Gonzalez et al. (2009) compared the performance of two ACT-
R models, an instance-based model and a strategy-based model,
in a RADAR task. In this task, participants and the model had
to visually discriminate moving targets (aircrafts) among moving
distractors and then eliminate the targets. Both models achieved
about the same overall fit to the participants’ data, but IBL
performed better in a transfer task.

Lebiere et al. (1998) tested two exemplar models that captured
learning during a complex problem-solving task, called the sugar
factory (Berry and Broadbent, 1988). The sugar factory task
investigates how subjects learn to operate complex systems with
an underlying unknown dynamic behavior. The task requires
subjects to produce a specific amount of sugar products. Thus,
in each trial the workforce needs to be adjusted accordingly.
The two exemplar models produced adequate learning behavior
similar to that of the subjects. In a subsequent study, Fum and
Stocco (2003) investigated how well these original models could
predict participants’ behavior in case of a much lower target
amount of the sugar product than in the original experiment.
Furthermore, they investigated if the models could reproduce
behavior in case of switching from a high product target
amount to a low product target amount and vice versa during
the experiment. The performance of the participants increased
significantly in the first case. The original IBL models were not
able to capture this behavior. The authors therefore developed a
rule based model that captured the subjects, switching behavior.

Rutledge-Taylor et al. (2012) compared a rule-based and
an exemplar-based model for an intelligence categorization
task where learned characteristics had to be studied and
assigned. Both models performed equally well in predicting the
participants’ data. No model was superior to the other.

3Microworlds are computer simulations of specific problems. They are applied to

study real-world problem solving in dynamic and highly complex settings.

Frontiers in Psychology | www.frontiersin.org August 2017 | Volume 8 | Article 1335163

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Prezenski et al. Strategy Formation in Decision Making

In a different categorization study, Anderson and Betz (2001)
studied three category-learning tasks with three different ACT-
R models, an exemplar-based model, a rule-based model and a
mixed model. The mixed model fitted best, reproducing learning
and latency effects found in the empirical data.

In summary, there is no clear evidence that one or the
other modeling approach is superior. In their paper, Anderson
and Betz (2001) state that the mixed approach is probably the
closest to how humans categorize, because the assumption that
categorization is either exclusively exemplar-based or exclusively
rule-based is probably too close-minded. Furthermore, stimulus
succession and adequate rule specification are important for
dynamic decision-making and category learning tasks.

In addition, models of complex tasks should incorporate
metacognitive processes such as reflecting and evaluating the
progress of the selected approach (Roll et al., 2004; Reitter, 2010;
Anderson and Fincham, 2014). Reitter’s (2010) model of the
dynamic stocks and flow tasks investigated how subjects manage
competing task strategies. The subject-to-subject analysis of the
empirical data showed that participants exhibited suddenmarked
changes in behavior. Learning mechanisms which are purely
subsymbolic cannot explain such behavior, because changes in
model behavior would take too long. Furthermore, the strategies
of the participants seemed to vary with the complexity of the
water flow. Thus, a model of this task must address switches in
strategy and not only gradual learning. Reitter (2010) assumes
that humans’ solutions to real-world problems emerge from a
combination of general mechanisms (core learning mechanisms)
and decision-making strategies common to many cognitive
modeling tasks. His model implements several strategies to deal
with the basic control task as well as a mechanism to rank and
select those strategies according to their appropriateness in a
given situation. This represents the metacognitive aspect of his
model.

Our Aim
Our aim is to develop an ACT-R modeling approach for dynamic
decision-making in a category learning task. A suitable task for
such a modeling approach needs to fulfill several requirements.
First, it should use complex multi-feature stimuli for themodel to
build categories from combined features. Second, the task needs
to provide feedback, thereby allowing the model to learn. Third,
changes in the environment should occur during the task forcing
the model to act on them by refining once learned category
assemblies.

To model performance in such a task, the modeling approach
will need to incorporate mechanisms for strategy learning and
strategy switching. It should precisely specify how hypotheses
about category learning can be implemented with ACT-R. A
mixed modeling approach of rules and exemplars should be used
since previous work indicates that such models are most suitable
for dynamic decision-making tasks. Furthermore, since switches
in category assignments as well as monitoring of the learning
progress need to be addressed, metacognitive aspects should be
incorporated in the modeling approach.

Our modeling approach should provide information on
the actual cognitive processes underlying human dynamic

decision-making. Hence, it should be able to predict human
behavior and show roughly the same performance effects that
can be found in empirical data reflecting decision-making, e.g.,
response rates. Even more importantly, we aim at developing a
general model of dynamic decision-making. For the model to
be general (e.g., not fit exclusively to one specific experimental
setting or dataset), it needs to be simple. Thus, only few
assumptions should be used and unnecessary ones avoided. As
a result, the modeling approach should be capable to predict
behavior with other stimulus materials and be transferable to
other similar tasks.

To summarize the scope of this article, our proposedmodeling
approach aims to depict the core processes of human decision-
making, such as incorporating feedback, strategy updating, and
metacognition. Building a model with a cognitive architecture
ensures that evaluated cognitive processes are used. The quest is
to see whether these cognitive aspects including the processes of
the architecture can produce empirical learning behavior:

First, performance improvement through feedback should be
included in the model. In the case of feature learning and strategy
updating, improvements in one’s strategy are only considered in
the case of negative feedback (Li and Maani, 2011). If feedback
signals a positive decision, people consider their chosen strategy
for later use. Thus, people update their mental model during
dynamic decision-making only if they receive negative feedback
(Li andMaani, 2011). For our feature learningmodel, this implies
that once a successful strategy has been chosen over alternatives,
revisions to this strategy will require negative feedback on that
strategy rather than positive experience with others, as these are
no longer explored.

Second, the model should include transitions from simple
to complex strategies. Findings suggest that people initially
use simple solutions and then switch to more complex ones
(Johansen and Palmeri, 2002). The modeling approach under
discussion should be constructed in a similar fashion. In the
beginning, it should follow simple one-feature categorization
strategies and later switch to more complex two-feature
strategies.

Third, the model needs to use metacognitive mechanisms. For
example, it needs specifications for which conditions switching
from a single-feature strategy to a multi-feature strategy is
required. The metacognitive aspects should furthermore reflect
previous learning successes. Thus, keeping track of which
approaches were helpful and which were not, or of how often a
strategy has been successful in the past, should be implemented
in the model. Moreover, such mechanisms should ensure that
if a strategy was successful in the past and fails for the first
time, it is not discarded directly, but tested again. Furthermore,
metacognitive mechanisms should not only address the issue of
switching from single-feature to multi-feature strategies but also
incorporate responses to changes in the environment.

MATERIALS AND METHODS

In the following, an experiment of dynamic decision-making and
our model performing the same task are presented. The model
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includesmechanisms to integrate feedback, to switch from simple
to complex strategies and to address metacognition. The model
was built after the experimental data were obtained.

This section is subdivided in the following manner: First, the
participant sample, setup and stimuli of the empirical experiment
are described. Then, themodeling approach is explained in detail.
Afterwards, the model setup and stimuli are presented. Finally,
the analytical methods to evaluate the fit between the model and
the empirical results are outlined.

Experiment Participants
55 subjects participated in the experiment that took place inside
a 3 Tesla MR scanner4 (27 female, 28 male, age range between
21 and 30 years, all right handed, with normal hearing). All
subjects gave written informed consent to the study, which
was approved by the ethics committee of the University of
Magdeburg, Germany.

Experimental Stimuli
A set of frequency-modulated different tones served as stimuli
for the categorization task. The tones differed in duration (short,
400 ms, vs. long, 800 ms), direction of frequency modulation
(rising vs. falling), intensity (low intensity, 76–81 dB, vs. high
intensity, 86–91 dB), frequency range (five low frequencies, 500–
831 Hz, vs. five high frequencies, 1630–2639 Hz), and speed
of modulation (slow, 0.25 octaves/s, vs. fast, 0.5 octaves/s),
resulting in 2 × 2 × 2 × 10 × 2 (160) different tones. The
task relevant stimulus properties were the direction of frequency
modulation and sound duration, resulting in four tone categories:
short/rising, short/falling, long/rising, and long/falling. For each
participant, one of these categories constituted the target sounds
(25%), while the other three categories served as non-targets
(75%).

As feedback stimuli, we used naturally spoken utterances (e.g.,
ja, “yes”; nein, “no”) as well as one time-out utterance (zu spät,
“too late”) taken from the evaluated prosodic corpus MOTI
(Wolff and Brechmann, 2012, 2015).

Experimental Paradigm
The experiment lasted about 33 min in which a large variety
of frequency-modulated tones (see Section Experimental Stimuli
above) were presented in 240 trials in pseudo-randomized order
and with a jittered inter-trial interval of 6, 8, or 10 s. The
participants were instructed to indicate via button-press whether
they considered the tone in each trial to be a target (right index
finger) or a non-target (right middle finger). They were not
informed about the target category but had to learn by trial
and error. Correct responses were followed by positive feedback,
incorrect responses by negative feedback. If participants failed to
respond within 2 s following the onset of the tone, the time-out
feedback was presented.

After 120 trials, a break of 20 s was introduced. From the
next trial on the contingencies were reversed such that the target
stimulus required a push of the right instead of the left button.

4The experiments were performed inside an MR scanner to study the specific

neural correlates of strategy formation which is the subject of another paper.

The participants were informed in advance about a resting period
after finishing the first half of the experiment but they were not
told about the contingency reversal.

Model in Detail
In the following, the model is presented in detail. First, a
description of the main declarative representations (chunks)
is provided. They reflect strategy representations and
metacognitive processes. This is followed by a description
of how the model runs through a trial. Finally, the rules that
govern strategy learning are summarized.

Chunks and Production Rules Used in the Model
The chunks implemented in the model are shown in Figure 1.
“Strategy chunks” hold the strategies in form of examples
of feature-value pairs and responses. They are stored in and
retrieved from long-term memory (declarative module). The
current strategy is held in working memory (imaginal module).
Strategy chunks contain the following information about the
strategy: which feature(s) and what corresponding value(s) are
relevant (e.g., the sound is loud or the sound is loud and
its frequency range is high), what the proposed response is
(categorization, 1 or 0), and the degree of complexity of the
strategy (e.g., one or two-feature strategy). Furthermore, an
evaluation mechanism is part of this chunk. This includes noting
if a strategy was unsuccessful and keeping track of how often a
strategy was successful. This tracking mechanism notices if the
first attempt to use this strategy is successful. It then counts
the number of successful strategy uses; this explicit count is
continued until a certain value is reached. We implemented such
a threshold count mechanism to reflect the subjective feeling
that a strategy was often useful. We implemented different
threshold values for the model. We also differentiated between
the threshold for one-feature strategies (first count) and for
two-feature strategies (second count). The tracking mechanism
can be seen as a metacognitive aspect of our model. Other
metacognitive aspects are implemented in the “control chunk”
which is kept in the goal buffer of the model. These metacognitive
aspects include: first, the level of feature-complexity of the
strategy, i.e., if the model attempts to solve the task with a
one-feature or with a two-feature strategy; second, whether
or not a long-time successful strategy caused an error, this
signifies the model’s uncertainty about the accuracy of the
current strategy; third, whether changes in the environment
occurred that require to renew the search for an adequate
strategy.

Trial Structure
Production rules govern how the model runs through the task.
The flow of the model via its production rules is illustrated
in Figure 2. The following section describes how the model
runs through a trial, the specific production rules are noted in
parentheses.

A tone is presented to the model and enters the aural-location
buffer (listen). After the tone has finished, it is encoded in the
aural buffer (encode). Thus, a chunk with all audio information
necessary (duration, direction of pitch change, intensity, and
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FIGURE 1 | Schematic build-up of the structure of the control and the strategy chunk. Nil indicates that the variable has no value.

FIGURE 2 | Schematic overview of how the model runs through a trial. The

dark-gray boxes on the left represent the production rules, the light-gray ovals

on the right the main buffers involved.

frequency range—see Section Modeling Paradigm and Stimuli
below) is in the aural buffer and all four characteristics of the tone
are accessible to the model. The audio chunk in the aural buffer is
then compared to the strategy chunk held in the imaginal buffer
(compare). If the specific features (e.g., intensity is high) of the
strategy chunks are the same as in the audio chunk, the response
is according to the strategy proposed by the model (react-same),
if not, the opposite response is chosen (react-different). The
presented feedback is listened to and held in the aural-location
buffer (listen-feedback) and then encoded in the aural buffer
(encode-feedback). If the feedback is positive, the current strategy
is kept in the imaginal buffer and the count-slot is updated
(feedback-correct). If the feedback is negative, the strategy is
updated depending on previous experiences (feedback-wrong).
Thus, a different strategy chunk is retrieved from declarative
memory and copied to the imaginal buffer.

Finding an Adequate Strategy
All possible strategies are already available in the model’s long-
term memory. The currently pursued strategy is maintained
in working memory and evaluated regarding the feedback. For
positive feedback, the strategy is retained and it is counted how
often it is successful. If feedback is negative, the strategy is usually
altered. The following subsection is a summary of how strategy
updating is implemented. For more information see Figure 3.

The model always begins with a one-feature strategy (which
strategy it begins with is random) and then switches to another
one-feature strategy. The nature of the switch depends on how
often a particular strategy was successful. When the model
searches for different one-feature strategies, it retrieves only
strategies which were not used recently. In case of immediate
failure of a one-feature strategy, a different response is used for
the feature-value pair. In other cases, the feature-value pair is
changed, but the response is retained. If a one-feature strategy
has been successful often and then fails once, the strategy is not
directly exchanged, but re-evaluated. However, it is also noted
that the strategy has caused an error. Two possibilities explain
why switches from a one-feature to a two-feature strategy occur:
Such a switch can happen either because no one-feature strategy
that was not negatively evaluated can be retrieved or because an
often successful one-feature strategy failed repeatedly. Switches
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FIGURE 3 | Rules governing when and to what degree the strategies are

changed after negative feedback is received.

within the two-feature strategy are modeled the following way: If
a two-feature strategy was unsuccessful at the first attempt, any
other two-feature strategy is used (which one exactly is random).
If a two-feature strategy was initially successful and then fails,
then a new strategy which retains one of the feature-value pairs
and the response will be selected. This strategy only differs in
the other feature-value pair. When the environment changes, a

previously often successful two-feature strategy (and also a one-
feature strategy) will fail. Then a retrieval of another two-feature
strategy is attempted. If at the time the environment changes,
the model has not found a successful two-feature strategy, it will
continue looking for a useful two-feature strategy, and thus not
notice the change.

Modeling Paradigm and Stimuli
The following section briefly describes how the experiment was
implemented for the model. This includes a short overview of
how the stimulus presentation was modified for the model.

The task of the participants was implemented for the model
in ACT-R 7.3 with some minor modifications. The same four
pseudo-randomizations used for the participants were also used
for the model. Thus, 25% of the stimuli were target stimuli. A
trial began with a tone, which lasted for 400 ms. To model the
two stimulus durations, we used two different features in the
new-other-sound command. As soon as the model responded via
button press, auditory feedback was presented. Overall, a trial
lasted for a randomized period of 6, 8, or 10 s, similar to the
original experiment. There was no break for the model after 120
trials, but the targets switched after 120 trials, too.

Instead of employing all 160 different tones, sixteen different
tones were presented to the model. Each of the tones is a
composition of four characteristics of the four binary features:
duration (long vs. short), direction of frequency modulation
(rising vs. falling), intensity (low intensity, vs. high intensity),
and frequency range (low vs. high). Only binary features were
used for the model because the perceptual difference between
the two classes of each selected feature was high, except for
speed of modulation, which was therefore not implemented in
the model. For the participants, more feature variations were
used to ensure categorical decisions and to prevent them from
memorizing individual tone-feedback pairs. This is not an issue
for the model, since no mechanism allowing such memorizing
was implemented. As for the participants, auditory feedback was
presented to the model.

The modeling approach is a mixed modeling approach,
the strategies are encoded as instances, but which instance is
retrieved is mainly governed by rules.

To test if the model is a generalizable model, different
variations were implemented. The learning curves found in the
empirical data should still be found under different plausible
parameter settings. However, specific parameter settings should
influence the predictive quality of the model. The approach
typically chosen by cognitive modelers is to search for specific
parameter settings that result in an optimal fit and then report
this fit. The objective behind such an approach is to show that
the model resembles the ongoing cognitive processes in humans.
We have chosen a different approach. Our objective is to show
that our modeling approach can map the general behavior such
as learning and reversal learning as well as variance found in the
data. By varying parameter settings, we want to optimize the fit of
the model and examine the robustness of the model mechanisms
to parameter variations.

Regarding the choice of varying parameters, we use an
extended parameter term which includes not only subsymbolic
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ACT-R parameters (which are typically regarded as parameters)
but also certain (production) rules (Stewart and West, 2010).
In the case of this model, productions that control the tracking
mechanism of successful strategies are varied. The tracking
mechanism keeps track of how often a strategy is successful.
However, the model does not increase the count throughout
the entire experiment. After it reaches a threshold, a successful
strategy is marked as “successful often.” Thereafter, it is not
discharged directly in case of negative feedback but instead
reevaluated. So, to answer the question what the most suitable
values for the threshold of the first and second count are, these
values were varied. Another implemented model assumption
is that this threshold is different for single-feature vs. two-
feature strategies. We assumed that the threshold for two-feature
strategies should be double the value for one-feature strategies,
as if the model was counting for each feature separately. The first
count was varied for three, four and five and the second count for
six, eight, and ten.

Besides the parameters that control the tracking mechanism,
we also investigated a parameter-controlled memorymechanism.
The latter controls for how long the model can remember
if it had already used a previous strategy. This is the
declarative-finst-span5 parameter of ACT-R. We assumed that
participants remember which strategy they previously used for
around 10 trials back. We therefore tested two different values
(80 and 100 s) for this parameter, determining whether the model
can remember if this chunk has been retrieved in the last 80 (or
100) s. The combination of the declarative-finst-span (80, 100),
three values for the first count (3, 4, 5) and three values for the
second count (6, 8, 10) resulted in 18 modeling versions (see
Table 1).

Analyses
Each of the models was run 160 times, 40 times for each pseudo-
randomized order, using ACT-R 7.3. The data were preprocessed
with custom Lisp files and then analyzed with Microsoft Excel.

The model data and the empirical data were divided into 12
blocks, with 20 trials per block. The average proportion of correct
responses and the standard deviation per block was computed for
the experiment as well as for each of the 18 models.

One aim of this study was to predict average learning curves of
the participants. Thus, the proportion of correct responses of the
participants was compared to the proportion of correct responses
of each of the models. Visual graphs comparing the modeled to
the empirical data were analyzed with regard to increases and
decreases in correct responses.

As an indication of relative fit, the correlation coefficient
(r) and the determination coefficient (r2) were computed. They
represent how well trends in the empirical data are captured by
the model.

As an indication of absolute fit, the root-mean-square error
(RMSE) was calculated. RMSE represents how accurately the

5The declarative-finst-span parameter controls how long a finst (fingers of

instantiation) can indicate that a chunk was recently retrieved. The number of

items and the time for which an item can be tagged as attended is limited. These

attentional markers are based on the work of Zenon Pylyshyn.

TABLE 1 | Resulting modeling versions from combining the different parameter

settings for the first and second count and the declarative-finst-span.

First count 3 First count 4 First count 5

:declarative-

finst-span

80

Second count 6 3_06 _080 4_06 _080 5_06 _080

Second count 8 3_08 _080 4_08 _080 5_08 _080

Second count 10 3_10 _080 4_10 _080 5_10 _080

:declarative-

finst-span

100

Second count 6 3_06 _100 4_06 _100 5_06 _100

Second count 8 3_08 _100 4_08 _100 5_08 _100

Second count 10 3_10 _100 4_10 _100 5_10 _100

FIGURE 4 | Average performance and standard deviations of the human

participants, the best fitting model (3_06_100), and the worst fitting model

(5_10_100) in the 12 blocks of the experiment.

model predicts the empirical data. RMSE is interpreted as the
standard deviation of the variance of the empirical data that is
not explained by the model.

To compare the participant-based variance found in the
empirical data with the variance produced by the 160 individual
model runs, a Levene’s test (a robust test for testing the equality
of variances) was calculated for each block of the experiment.

RESULTS

In the following sections, the empirical data, the modeled
learning curves, and the results regarding the general fit of the
different model versions to the data are presented.

Empirical Learning Curves
The descriptive analysis of the empirical data (see Figure 4 and
Table 2) shows that on average, in the first block the participants
respond correctly in 64.3% (±13.5%) of the trials. The response
rate of the participants increases until the sixth block to 90.4%
(±12.2%) of correct trials. In the seventh block, the block in
which targets and non-targets switch, it drops to 56.5% (±17.7%)
of correct trials. It then increases again and reaches 81.0%
(±18.5%) of correct trials in the eighth block and 89.7% (±13.9%)
of correct trials in the last block. Across all 12 blocks, the standard
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deviation of the empirical data ranges from 10.7% minimum to
18.9% maximum, with an average standard deviation of 15.1%.
The standard deviation of the participants derives from the fact
that different participants showed different learning curves, and
not all participants reported to have found the correct strategy
in a post interview. Correspondingly, eleven participants (20.0%)
showed a performance below 85% by the end of the first part
of the experiment (Block 6), and 12 participants (21.8%) stayed
below 85% correct responses at the end of the second part
(Block 12).

Modeled Learning Curves
Figure 4 further shows the means and standard deviations of
the proportion of correct responses of the best (3_06_100) and
worst fitting (5_10_100) model (see below, Section Model Fit).
In addition, Table 2 lists the model performance means and
standard deviations for each of the twelve blocks for all 18
models, and Figure 5 shows the learning curves of all 18 models.

Both the best and the worst fitting model (as do all others)
capture the overall shape of the learning curve found in the
data. They both show an increase in the learning rate in the
first six blocks. Similarly, all models show a drop in performance
in the seventh block, which is followed by another increase in
performance. Even in the best fitting 3_06_100 model, however,
the proportion of correct responses is underestimated by the
model, especially in the first blocks. Also, the participants show a
more severe setback after the switch but then recover faster, while
the model takes longer until its performance increases again.
Nevertheless, for the best fitting model, the modeled data are
always within the range of the standard deviation of the empirical
data.

As Table 2 shows, each of the models shows a large degree
of variance across its 160 runs. The standard deviation averaged
across all 12 blocks ranges from 18.9 to 20.4%, depending on
the model’s parameter settings. For the best-fitting model, the
standard deviation in the individual blocks ranges from 11.6
to 23.4% and is significantly larger than the standard deviation

found in the empirical data, except for the first two blocks of the
experiment and the first two blocks after the switch (for all blocks
except Block 1, 2, 7, and 8: all Fs > 6.79, all ps < 0.010). This
high variation of the individual model runs indicates that the
same underlying rule-set with the same parameter settings can
still result in very different learning curves, depending on which
exact strategies are chosen at each point when a new strategy is
selected (e.g., initial strategy, alteration of one-feature strategy,
alteration of two-feature strategy). Furthermore, similarly to the
non-learners among the participants described above (see Section
Empirical Learning Curves), not every model run was successful,
resulting (for the best fitting model) in a performance below 85%
in 35.6% of the runs for Block 6 and in 30.0% of the runs for
Block 12.

Model Fit
The average correlation of the model and the empirical data
is 0.754. Between 43.9% and 67.1% of the variance in the
data is explained by the different models. The average standard
deviation of the unexplained variance is 0.136. All r, r2, and
RMSE values for the 18 model versions are presented in Table 3.

As Table 3 and Figure 5 show, the model shows relative
robustness to the influence of varying parameter settings. For the
first count, a lower value is somewhat better for the fit—there is
a stronger increase in the first part of the experiment (until Block
6) for a lower than for a higher first count value. For the second
count, a lower value results in a better fit as well. The influence
of the declarative-finst-span parameter on the fit-indices is very
small, resulting in a slightly better fit either for a declarative-finst-
span of 80 s or of 100 s, depending on the settings of first and
second count.

The best fit in terms of correlation was achieved for the model
with the declarative-finst-span value set to 100 (i.e., the model
was able to remember if it had already used a previous strategy
for 100 s), a first count of three (i.e., a one-feature strategy needed
to be successful at least three times to be considered as “often
successful”) and a second count of six (i.e., a two-feature strategy

FIGURE 5 | Average performance of the 18 versions of the model in the 12 blocks of the experiment, (A) models with a declarative-finst-span of 80 s, (B) models with

a declarative-finst-span of 100 s.
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TABLE 3 | Values of r, r2, and RMSE of the 18 versions of the model.

r r2 RMSE

3_06_080 0.812 0.659 0.124

3_06_100 0.820 0.672 0.109

3_08_080 0.745 0.555 0.134

3_08_100 0.803 0.645 0.119

3_10_080 0.785 0.616 0.132

3_10_100 0.798 0.636 0.114

4_06_080 0.805 0.649 0.128

4_06_100 0.794 0.631 0.124

4_08_080 0.726 0.527 0.138

4_08_100 0.743 0.552 0.135

4_10_080 0.745 0.555 0.146

4_10_100 0.741 0.549 0.133

5_06_080 0.733 0.537 0.146

5_06_100 0.722 0.521 0.152

5_08_080 0.697 0.485 0.164

5_08_100 0.718 0.516 0.158

5_10_080 0.721 0.520 0.144

5_10_100 0.663 0.439 0.156

OVERALL

MEAN 0.754 0.570 0.136

MIN 0.663 0.439 0.109

MAX 0.820 0.671 0.164

needed to be successful at least six times to be considered as
“often successful”). The worst fit was observed for the model with
the declarative-finst-span value set to 100, a first count of five and
a second count of ten.

The RMSE varies from a minimum of 0.106 (3_06_100) to a
maximum of 0.164 (5_08_100). Thus, themodel with a first count
of three, a second count of six and a declarative-finst-span set to
100 performs best, both in terms of correlation (r) and absolute
prediction (RMSE).

Summary
In general, the models predict the data well. The modeled
learning curves resemble the form of the average empirical
learning curve, with an increase in the first half of the experiment,
a short decrease at the beginning of the second half, followed by
another increase in performance. The correlation indices of the
best fitting model show a good fit, with 67.2% of the variance
of the data being explained by the model with a declarative-finst
span of 100 s, a first count threshold of three and second count
threshold of six. Note that this is also the model with the closest
absolute fit (RSME is 0.109).

However, in absolute percentages of correct responses, all of
the models perform below the participants in all blocks (except
Block 7). Also, the models show greater overall variance than the
empirical data. Furthermore, the models are initially less affected
by the switch in strategies but take longer to “recover” from the
switch in strategies.

In summary, the model replicates the average learning curves
and large parts of the variance. It does so with a limited set of

rules and the given exemplars, covering learning and relearning
processes which take place in dynamic environments. Moreover,
we found differences in model fit depending on the exact
specification of the parameters, with the best fit if the model
remembers previously employed strategies for 100 s, marks a
one-feature strategy as “often successful” after three successful
uses and a two-feature after six successful uses. However, all
of the 18 different parameter settings we tested resembled
the main course of the empirical data, thereby indicating
that the mechanisms of the model are robust to parameter
variations.

DISCUSSION

The discussion covers three main chapters. First, the fit of the
model is discussed and suggestions for possible improvements
are given. Second, the broader implications of our approach are
elaborated. Finally, future work is outlined.

Discussion of the Modeling Approach
Our modeling account covers relevant behavioral data of a
dynamic decision-making task in which category learning is
required. To solve the task, two features have to be combined,
and the relevant feature combination needs to be learned by trial
and error using feedback. The model uses feedback from the
environment to find correct categories and to enable a switch in
the assignment of response buttons to the target and non-target
categories. Metacognition is built into the model via processes
that govern under what conditions strategic changes, such as
transitions from one-feature to two-feature strategies, occur.

Overall, the fit indices indicate that this model solves the
task in a similar way as participants do. This includes successful
initial learning as well as the successful learning of the reversal
of category assignment. Moreover, the observation was made
that not all participants are able to solve the task, and the
same is observed in the behavior of the modeling approach.
Thus, the model is able to generate output data that, on a
phenomenological level, resemble those of subjects performing
a dynamic decision-making task that includes complex rule
learning and reversal processes. Although the overall learning
trends found in the data can be replicated well with the general
rules implemented in our model, there are two limitations: The
variance of the model is larger than that of the participants,
and the overall performance of the model is lower than the
performance of the participants.

It is likely that the participants have a different and perhaps
more specific set of rules than the model. For example, the
participants were told which of the two keys to press for the
target sound. However, it is unclear if they used this knowledge
to solve the task. To keep the model simple, it was not given
this extra information, so there was no meaning assigned to
the buttons. This is one possibility to explain the model’s lower
performance, especially in the first block. Another example for
more task specific rules used by the participants compared to
the model is that the four different features of the stimuli may
not be equally salient to the subjects, which may have led to
a higher performance compared to the model. For example,
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it is conceivable that the target-feature direction of frequency
modulation (up vs. down) was chosen earlier in the experiment
than the non-target feature frequency range, while the model
treated all features equally to keep the model as simple as
possible. Finally, after the change of the button press rule,
some participants might have followed a rule which states to
press the opposite key if a strategy was correct for many times
and then suddenly is not, instead of trying out a different
one- or two-feature strategy, whereas the model went the
latter way.

Adding such additional rules and premises to themodel would
possibly reduce the discrepancy between the performance of
the model and the behavioral data. However, the aim of this
paper was to develop a modeling approach that incorporates
general processes important for all kinds of dynamic decision-
making. This implies using only assumptions that are absolutely
essential (meta-cognition, switching from one-feature to two-
feature strategies, learning via feedback) and keeping the model
as simple as possible in other regards. As a consequence,
adding extra rules would not produce a better general model
of dynamic decision-making, but would only lead to a better fit
of the model for a specific experiment while making it prone
to overfitting. As mentioned earlier, good descriptive models
capture the behavioral data as closely as possible and therefore
always aim at maximizing the fit to the data they describe. Good
predictive models, on the other hand, should be generalizable
to also predict behavior in different, but structurally similar
situations and not just for one specific situation with one set of
subjects. In our view, this constitutes a more desirable quest with
more potential to understand the underlying processes of human
dynamic decision-making. This is supported by Gigerenzer and
Brighton (2009), who argue that models that focus on the core
aspects of decision-making, e.g., considering only few aspects,
are closer to how humans make decisions. They also argue that
such simplified assumptions make decisions more efficient and
also more effective (Gigerenzer and Brighton, 2009).

As stated earlier, one way to model dynamic decision-
making in ACT-R using only few assumptions is instance
based learning (IBL). This approach uses situation-outcome
pairs and subsymbolic strengthening mechanisms for learning.
However, IBL is insufficient to model tasks which involve
switches in the environment (Fum and Stocco, 2003). Such
tasks require adding explicit switching rules. Besides these
rules, our task needed mechanisms that control when to switch
from simple one-feature strategies to more complex strategies.
Since meta-cognitive reflections are not part of IBL, we used
a mixed modeling approach which incorporates explicit rules
and metacognitive reflection. IBL is insofar part of our approach
as the strategies are encoded as situation-outcome pairs and
subsymbolic strengthening mechanisms of ACT-R are utilized.

To evaluate if our modeling approach of strategy formation
and rule switching is in line with how participants perform in
such tasks, data reflecting learning success need to be considered.
Such data are the learning curves reported in this paper. We
believe that an IBL model alone cannot produce the strong
increase in performance after the environmental change in the
empirical data.

For a further understanding of complex decision-making,
other behavioral data, such as reaction times, could also be
modeled. However, not all processes that probably have an
impact on reaction time are part of our general modeling
approach. This is especially the case for modeling detailed aspects
of auditory encoding with ACT-R; for example, the precise
encoding of the auditory events can be expected to comprise a
different gain in reaction time for short compared with longer
tones. However, our modeling approach is expandable, allowing
the incorporation of other cognitive processes such as more
specific auditory encoding or attention. This extensibility is one
of the strengths of cognitive architectures and is particularly
relevant for naturalistic decision-making, where many additional
processes eventually need to be considered.

Scope of the Model
A formal model was built with ACT-R, it specifies the
assumptions of dynamic decision-making in category learning.
This model was tested on empirical data and showed similar
learning behavior. Assumptions about how dynamic decisions
in category learning occur, e.g., by learning from feedback
and switching from simple to more complex strategies, and
metacognitive mechanisms were modeled together. ACT-R aims
at modeling cognition as a whole, thus addressing different
cognitive processes simultaneously, an important aspect for
modeling realistic cognitive tasks.Moreover, themodel is flexible.
Thus, the model chooses from the available strategies according
to previous experience and random influences.

Ourmodeling approach is simple in the sense that it comprises
only few plausible assumptions, does not rely on extra parameters
and is nevertheless flexible enough to cope with dynamically
changing environments.

To test the predictive power of the model, it needs to
be further tested and compared to new empirical data that
are obtained using slightly different task settings. Our aim
was to develop a first model of dynamic decision-making
in category learning. Thus, relevant cognitive processes that
occur between stimulus presentation and the actual choice
response are included in the model. Furthermore, we wanted
to show how a series of decisions emerge in the pursuit of an
ultimate goal. Thus, as a first step we needed a decision task
that shows characteristics similar to natural dynamic settings.
Such aspects include complex multi-feature stimuli, feedback
from the environment, and changing conditions. Since explicit
hints on category membership are usually not present in non-
experimental situations, it is furthermore reasonable to use a
task without explicit instructions regarding which features (or
stimuli) attention should be focused on. The downside of using
unspecific instructions as done in our study is that from the
behavioral data, it will remain unclear how exactly individual
participants process such a task, since aspects such as which
exact rules are followed or which features are considered at the
beginning of a task, are uncertain.

As a next step we aim at modeling and predicting the dynamic
decision-making course of individual participants. In general,
a big advantage of cognitive modeling approaches is that they
can predict ongoing cognitive processes at any point in time. To
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evaluate the validity of such predictions, different approaches can
be followed.

One approach to constructing models in accordance with
the cognitive processes of participants is the train-to-constrain
paradigm (Dimov et al., 2013). This paradigm requires
instructing participants in a detailed step-by-step procedure on
how to apply specific strategies in decision tasks. This approach
gives the modeler insight into the strategies that participants are
using at a given time point. This again can be used to constrain
ACT-R models in the implementation of these strategies. In
future studies, we plan to adopt this paradigm by (a) instructing
the participants and (b) adjusting our model accordingly. To
ensure that the train-to-constrain paradigm was successfully
implemented, self-reports of the participants should be used.

Another approach is to conduct interviews while the
participant is performing the task. To confirm the model’s
predictions about the prospective behavior of participants,
subjects of future empirical studies should thus be asked about
their decisions during the course of the experiment. The first few
participant decisions can be expected to be strongly influenced
by random aspects (e.g., which feature is attended to first), but
after some trials, the modeling approach should be able to predict
the next steps of the participants. Thus, it should allow precise
predictions of the subsequent cognitive processes. To make such
predictions, a revised model would need to use the first couple of
trials as information about the strategy an individual participant
initially follows.

In a further step, the exact cognitive processes proposed by
the model should be tested on an individual level on more
fine grain data (e.g., fMRI) and then be readjusted accordingly.
Currently, different methods to map cognitive models to finer
grain data such as fMRI or EEG data have been proposed
(Borst and Anderson, 2015; Borst et al., 2015; Prezenski and
Russwinkel, 2016a). These methods are currently investigated
and have been applied for basic research questions. Nevertheless,
mapping cognitive models to neuronal data is a challenge. More
research is needed especially for applied tasks. To supplement
neuronal data, additional behavioral data, such as button press
dynamics (e.g., intensity of button press), can be added as an
immediate measurement of how certain an individual participant
is about a decision (Kohrs et al., 2014).

Besides using cognitive models to predict individual behavior,
we aim to develop more general cognitive mechanisms to model
learning, relearning and metacognition that are valid in a broad
range of situations. To test the applicability of our modeling
approach in a broader context and different situations, variations
of the experiment should be tested with different tasks and
materials. For example, the model proposed here should be able
to predict data from categorization experiments using visual
stimuli such as different types of lamps (Zeller and Schmid,
2016) with some modifications to the sensory processing of our
model. Furthermore, the model should be capable of predicting
data from different types of categorization tasks, for example a
task using a different number of categorization features, more
switches or different sequences. Such a task would be a predictive
challenge for our model; if it succeeds, it can be considered as a
predictive model.

The developed general mechanisms can also be used in
sensemaking tasks. Such tasks require “an active process to
construct a meaningful and functional representation of some
aspects of the world” (Lebiere et al., 2013, p. 1). Sensemaking
is an act of finding and interpreting relevant facts amongst the
sea of incoming information, including hypothesis updating.
Performance in our task comes close to how people make sense
in the real world because it involves a large number of different
stimuli, each carrying different specifications of various features.
Thus, “making sense of the stimuli” requires the participants
to validate each stimulus in a categorical manner and use the
extracted stimulus category in combination with the selected
button-press and the feedback that follows as information for
future decisions.

To conclude, such a cognitive model which includes general
mechanism for learning, relearning andmetacognition can prove
extremely useful for predicting individual behavior in a broad
range of tasks. However, uncertainty remains regarding whether
this captures the actual processes of human cognition. This is not
only due to the fact that human behavior is subject to manifold
random influences, but also to the limitation that a model
always corresponds to a reduced representation of reality. The
modeler decides which aspects of reality are characterized in the
model. Marewski andMehlhorn (2011) tested different modeling
approaches for the same decision-making task. While they found
that their models differed in terms of how well they predicted
the data, they ultimately could not show that the best fitting
model definitely resembles the cognitive processes of humans. To
our knowledge, no scientific method is ever able to answer how
human cognition definitely works. In general, models can only
be compared in terms of their predictive quality (e.g., explained
variance, number of free parameters, generalizability). Which
model ultimately corresponds to human reality, on the other
hand, cannot be ascertained.

Outlook
One reason for modeling in cognitive architectures is to
implement cognitive mechanisms in support systems for
complex scenarios. Such support systems mainly use machine
learning algorithms. Unfortunately, those algorithms depend on
many trials to learn from before they succeed in categorization
or in learning in general. Cognitive architecture inspired
approaches, on the other hand, can also learn from few samples.
In addition, approaches that rely on cognitive architectures are
informed models that provide information about the processes
involved and the reasons that lead to success and failure.

Cognitive models can be applied to a variety of real-world
tasks, for example to predict usability in smartphone interaction
(Prezenski and Russwinkel, 2014, 2016b), air traffic control
(Taatgen, 2001; Smieszek et al., 2015), or driving behavior
(Salvucci, 2006). Moreover, cognitive modeling approaches can
also be used in microworld scenarios (Halbrügge, 2010; Peebles
and Banks, 2010; Reitter, 2010). Not only can microworld
scenarios simulate the complexity of the real world, they also have
the advantage of being able to control variables. This implies that
specific variations can be induced to test the theoretical approach
ormodel in question (as demonstrated in Russwinkel et al., 2011).
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Many applied cognitive models are quite specific task models.
Our model, in contrast, aims at capturing core mechanisms
found in a variety of real world tasks. As a consequence, it
has the potential to be applied in many domains. So, our
model of dynamic decision-making in a category learning task
makes predictions about the cognitive state of humans during
such a task. This involves predictions about strategies (e.g.,
one-feature or two-feature strategies), conceptual understanding
(e.g., assumptions about relevant feature combinations) and
metacognitive aspects (e.g., information on the success of the
decision maker’s current assumption), all of which are aspects of
cognition in a multitude of tasks and application domains.

Our general modeling approach therefore has the potential to
support users in many domains and in the long run could be
used to aid decision-making. For this, the decisions of individual
users during the course of a task could be compared to the
cognitive processes currently active in the model. If for example
a user sticks to a one-feature strategy for too long or switches
rules in an unsystematic manner, a system could provide the
user with a supportive hint. Other than regular assistant systems,
such a support system based on our model would simulate the
cognitive state of the user. For example, this online support
system would be able to predict the influence of reoccurring
negative feedback on the user, e.g., leading him to attempt a
strategy change. If, however, the negative feedback was caused by
an external source such as a technical connection error, opting
for the strategy change would result in frustration of the user.
The proposed support system would be able to intervene here.
Depending on the internal state of the user, the support system
would consider what kind of information is most supportive or
if giving no information at all is appropriate (e.g., in case of
mental overload of the user). As long as no support is needed,
systems like this would silently follow the decisions made by a
person.

Moreover, if the goal of the user is known, and the decisions
made by the user have been followed by the system, it would
be possible to predict the user’s next decisions and also to
evaluate whether those decisions are still reasonable to reach
the goal. Many avalanches have been caused by repeated wrong

decisions by backcountry skiers stuck in their wrong idea about
a situation (Atkins, 2000). A support system that is able to
understand when and why a person is making unreasonable
decisions in safety critical situations would also be able to present
the right information to overcome the misunderstanding. A
technical support system for backcountry skiers would need
information about current avalanche danger, potential safe routes
and other factors. Such information is already provided by
smartphone applications that use GPS in combination with
weather forecasts and slope-steepness measures. In the future,
when this information is made available to a cognitive model-
based companion system that predicts the decisions of the users,
it could potentially aid backcountry skiers. Cognitive model-
based support systems designed in a similar manner could
equally well be employed in other safety-critical domains, as well
as to assist cyclist, drivers or pilots.
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