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Editorial on the Research Topic 
Merging symbolic and data-driven AI for robot autonomy


Robots are increasingly being deployed to assist humans in many applications such as medicine, navigation, and industrial automation. To truly collaborate with humans in complex environments, robots require advanced cognitive capabilities, including the ability to reason with domain-specific commonsense knowledge and the noisy observations obtained in the presence of partial observability and non-deterministic action outcomes. Research in Artificial Intelligence (AI) has resulted in sophisticated symbolic formalisms based on logics to represent commonsense domain knowledge, as well as probabilistic and data-driven frameworks that quantitatively represent uncertainty in the decisions made by robots.
By themselves, symbolic or stochastic AI methods have limitations when applied to robots in complex scenarios. Symbolic AI methods reason with relational descriptions of the attributes of the domain and the robot to guide the robot’s behavior. At the same time, they tend to require extensive prior knowledge about the domain and the robot. They also make it computationally expensive to operate at the level of granularity required for precise interaction with the physical world, or to reason about uncertainty quantitatively. Probabilistic and data-driven AI methods, on the other hand, elegantly represent uncertainty quantitatively, and provide mechanisms for reasoning and acting at the level of granularity required for interaction with the physical world. These methods, however, offer limited expressiveness for complex cognitive concepts, and it is not always meaningful to reason about uncertainty quantitatively. With the increasing use of AI and robots in different applications, there has been renewed interest in hybrid and neurosymbolic AI frameworks that combine symbolic and data-driven methods. The 10 contributions in this Research Topic highlight the promise and potential of such frameworks in the context of robotics.
Describing a vision for the future, Spasokukotskiy states that the next-generation AI systems should not only be endowed with autonomy but also “morality” that secures alignment in large systems, i.e., they should operate safely within the values of human society. Instead of being in full control of AI, humans would then cooperate and communicate with intelligent systems. Extending this idea, Pal explains the relevance of transparency, explainability, learning from a few examples, and the trustworthiness of an AI system, exploring how insights into human reasoning can be a crucial ingredient for achieving reliable operation with embodied AI systems. In addition, Toberg et al. provide a systematic review of robot systems that represent, reason with, learn, and/or use commonsense knowledge in a wide range of application domains. Symbolic AI methods can play a crucial role in the design of such AI/robotics systems, providing the expressivity for elegantly representing human-level concepts and effectively modeling logical reasoning capabilities. These methods can also support more efficient and transparent learning, and the use of human guidance to generate symbolic abstractions. Das et al. describe a framework that extends an inductive logic program learner to demonstrate this capability on multiple benchmark domains, one of which focuses on planning the assembly of mechanical structures, a core task in industrial automation.
In addition to reasoning with prior knowledge that includes cognitive theories, robots that interact with the physical world process a large amount of continuous multi-modal inputs from different information sources, including humans and other agents. In this context, data-driven AI methods, particularly recent advancements in deep learning, have exhibited groundbreaking performance and established themselves as the state of the art for problems in computer vision, natural language processing, and complex decision-making. For example, Mitrokhin et al. describe a hybrid framework for image-based context awareness, training a hash neural network on images to show that hyperdimensional vectors can be constructed such that vector-symbolic inference arises naturally out of their output. This enhances the robustness and explainability of the classification process, achieving state-of-the-art accuracy on real-world image datasets such as the popular CIFAR-10.
Acquiring symbol abstractions from raw continuous inputs, i.e., symbol grounding, and decision-making become particularly challenging with the high-dimensional inputs received by robots. Despite the impressive results achieved by deep neural networks and foundation models, their direct use in robots becomes inefficient, hinders transparency, and provides arbitrary responses in novel situations. Hybrid frameworks can address these limitations by leveraging the complementary strengths of symbolic and data-driven AI systems. For example, the framework of Nevens et al. uses symbolic AI to enable an agent to construct a conceptual system in which meaningful concepts are formed based on human-interpretable feature channels. They use a dataset of images for manipulating blocks to illustrate how concepts acquired from limited data points can be combined and generalized to unseen instances. Sasaki et al. show that grounding robotic gestures with quantitative meaning calculated from word-distributed representations constructed from a large corpus of text enable robots to display behavior that humans perceive to be natural. Riley et al. describe a framework that supports non-monotonic logical reasoning with abstractions of prior commonsense knowledge and information extracted by deep neural networks from relevant image regions; they show substantial performance improvement compared with state of the art for visual question answering, and vision-based planning and diagnostics. Furthermore, Grosvenor et al. and Ghiasvand et al. document examples of real-world integration of similar ideas in the context of knowledge-enhanced deep visual tracking of satellites, and a comprehensive architecture for space robotic mission planning and control, respectively.
In summary, the contributions to this topic highlight the importance of merging symbolic and data-driven AI methods in the context of robotics (and AI). These papers demonstrate how such hybrid frameworks enable robots to reason with complex cognitive theories and noisy multimodal sensor observations to achieve reliable, efficient, and transparent scene understanding, planning, diagnostics, and human-robot collaboration in complex simulated and physical domains. The papers also draw attention to the fundamental open problems that need to be addressed to leverage the full potential of robots in practical applications. We hope that these papers will foster further collaboration between the related research communities toward achieving societal benefits.
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State of the art algorithms for many pattern recognition problems rely on data-driven deep network models. Training these models requires a large labeled dataset and considerable computational resources. Also, it is difficult to understand the working of these learned models, limiting their use in some critical applications. Toward addressing these limitations, our architecture draws inspiration from research in cognitive systems, and integrates the principles of commonsense logical reasoning, inductive learning, and deep learning. As a motivating example of a task that requires explainable reasoning and learning, we consider Visual Question Answering in which, given an image of a scene, the objective is to answer explanatory questions about objects in the scene, their relationships, or the outcome of executing actions on these objects. In this context, our architecture uses deep networks for extracting features from images and for generating answers to queries. Between these deep networks, it embeds components for non-monotonic logical reasoning with incomplete commonsense domain knowledge, and for decision tree induction. It also incrementally learns and reasons with previously unknown constraints governing the domain's states. We evaluated the architecture in the context of datasets of simulated and real-world images, and a simulated robot computing, executing, and providing explanatory descriptions of plans and experiences during plan execution. Experimental results indicate that in comparison with an “end to end” architecture of deep networks, our architecture provides better accuracy on classification problems when the training dataset is small, comparable accuracy with larger datasets, and more accurate answers to explanatory questions. Furthermore, incremental acquisition of previously unknown constraints improves the ability to answer explanatory questions, and extending non-monotonic logical reasoning to support planning and diagnostics improves the reliability and efficiency of computing and executing plans on a simulated robot.
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1. INTRODUCTION

Deep neural network architectures and the associated algorithms represent the state of the art for many perception and control problems in which their performance often rivals that of human experts. These architectures and algorithms are increasingly being used for a variety of tasks such as object recognition, gesture recognition, object manipulation, and obstacle avoidance, in domains such as healthcare, surveillance, and navigation. Common limitations of deep networks are that they are computationally expensive to train, and require a large number of labeled training samples to learn an accurate mapping between input(s) and output(s) in complex domains. It is not always possible to satisfy these requirements, especially in dynamic domains where previously unseen situations often change the mapping between inputs and outputs over time. Also, it is challenging to understand or provide an explanatory description of the observed behavior of a learned deep network model. Furthermore, it is difficult to use domain knowledge to improve the computational efficiency of learning these models or the reliability of the decisions made by these models. Consider a self-driving car on a busy road. Any error made by the car, e.g., in recognizing or responding to traffic signs, can result in serious accidents and make humans more reluctant to use such cars. In general, it is likely that humans interacting with a system designed for complex domains, with autonomy in some components, will want to know why and how the system arrived at particular conclusions; this “explainability” will help designers improve the underlying algorithms and their performance. Understanding the operation of these systems will also help human users build trust in the decisions made by these systems. Despite considerable research in recent years, providing explanatory descriptions of decision making and learning continues to be an open problem in AI.

We consider Visual Question Answering (VQA) as a motivating example of a complex task that inherently requires explanatory descriptions of reasoning and learning. Given a scene and a natural language question about an image of the scene, the objective of VQA is to provide an accurate answer to the question. These questions can be about the presence or absence of particular objects in the image, the relationships between these objects, or the potential outcome of executing particular actions on objects in the scene. For instance, a system recognizing and responding to traffic signs on a self-driving car may be posed questions such as “what is the traffic sign in the image?,” or “what is the meaning of this traffic sign?,” and a system controlling a robot arm constructing stable arrangements of objects on a tabletop may be asked “why is this structure unstable?” or “what would make the structure stable?” We assume that any such questions are provided as (or transcribed into) text, and that answers to questions are also generated as text (that may be converted to speech) using existing software. Deep networks represent the state of the art for VQA, but are characterized by the known limitations described above. We seek to address these limitations by drawing inspiration from research in cognitive systems, which indicates that reliable, efficient, and explainable reasoning and learning can be achieved in complex problems by jointly reasoning with commonsense domain knowledge and learning from experience. Specifically, the architecture described in this paper tightly couples knowledge representation, reasoning, and learning, and exploits the complementary strengths of deep learning, inductive learning, and non-monotonic logical reasoning with incomplete commonsense domain knowledge. We describe the following characteristics of the architecture:

	• For any input image of a scene of interest, Convolutional Neural Networks (CNNs) extract concise visual features characterizing the image.
	• Non-monotonic logical reasoning with the extracted features and incomplete commonsense domain knowledge is used to classify the input image, and to provide answers to explanatory questions about the classification and the scene.
	• Feature vectors that the non-monotonic logical reasoning is unable to classify are used to train a decision tree classifier that is also used to answer questions about the classification during testing.
	• Feature vectors not classified by non-monotonic logical reasoning, along with the output of the decision tree classifier, train a Recurrent Neural Network (RNN) that is used to answer explanatory questions about the scene during testing.
	• Feature vectors not classified by non-monotonic logical reasoning are also used to inductively learn, and subsequently reason with, constraints governing domain states; and
	• Reasoning with commonsense knowledge is expanded (when needed) to support planning, diagnostics, and the ability to answer related explanatory questions.

This architecture builds on our prior work on combining commonsense inference with deep learning (Riley and Sridharan, 2018a; Mota and Sridharan, 2019) by introducing the ability to learn and reason with constraints governing domain states, and extending explainable inference with commonsense knowledge to also support planning and diagnostics to achieve any given goal.

Although we use VQA as a motivating example, it is not the main focus of our work. State of the art algorithms for VQA focus on generalizing to images from different domains, and are evaluated on benchmark datasets of several thousand images drawn from different domains (Shrestha et al., 2019). Our focus, on the other hand, is on transparent reasoning and learning in any given domain in which a large, labeled dataset is not readily available. Toward this objective, our approach explores the interplay between non-monotonic logical reasoning, incremental inductive learning, and deep learning. We thus neither compare our architecture and algorithms with state of the art algorithms for VQA, nor use large benchmark VQA datasets for evaluation. Instead, we evaluate our architecture's capabilities in the context of: (i) estimating the stability of configurations of simulated blocks on a tabletop; (ii) recognizing different traffic signs in a benchmark dataset of images; and (iii) a simulated robot delivering messages to the intended recipients at different locations. The characteristics of these tasks and domains match our objective. In both domains, we focus on answering explanatory questions about images of scenes and the underlying classification problems (e.g., recognizing traffic signs). In addition, we demonstrate how our architecture can be adapted to enable a robot assisting humans to compute and execute plans, and to answer questions about these plans. Experimental results show that in comparison with an architecture based only on deep networks, our architecture provides: (i) better accuracy on classification problems when the training dataset is small, and comparable accuracy on larger datasets; and (ii) significantly more accurate answers to explanatory questions about the scene. We also show that the incremental acquisition of state constraints improves the ability to answer explanatory questions, and to compute minimal and correct plans.

We begin with a discussion of related work in section 2. The architecture and its components are described in section 3, with the experimental results discussed in section 4. Section 5 then describes the conclusions and directions for further research.



2. RELATED WORK

State of the art approaches for VQA are based on deep learning algorithms (Jiang et al., 2015; Masuda et al., 2016; Malinowski et al., 2017; Pandhre and Sodhani, 2017; Zhang et al., 2017; Shrestha et al., 2019). These algorithms use labeled data to train neural network architectures with different arrangements of layers and connections between them, capturing the mapping between the inputs (e.g., images, text descriptions) and the desired outputs (e.g., class labels, text descriptions). Although deep networks have demonstrated the ability to model complex non-linear mappings between inputs and outputs for different pattern recognition tasks, they are computationally expensive and require large, labeled training datasets. They also make it difficult to understand and explain the internal representations, identify changes that will improve performance, or to transfer knowledge acquired in one domain to other related domains. In addition, it is challenging to accurately measure performance or identify dataset bias, e.g., deep networks can answer questions about images using question-answer training samples without even reasoning about the images (Jabri et al., 2016; Teney and van den Hengel, 2016; Zhang et al., 2017). There is on-going research on each of these issues, e.g., to explain the operation of deep networks, reduce training data requirements and bias, reason with domain knowledge, and incrementally learn the domain knowledge. We review some of these approaches below, primarily in the context of VQA.

Researchers have developed methods to understand the internal reasoning of deep networks and other machine learning algorithms. Selvaraju et al. (2017) use the gradient in the last convolutional layer of a CNN to compute the relative contribution (importance weight) of each neuron to the classification decision made. However, the weights of neurons do not provide an intuitive explanation of the CNN's operation or its internal representation. Researchers have also developed general approaches for understanding the predictions of any given machine learning algorithm. For instance, Koh and Liang (2017) use second-order approximations of influence diagrams to trace any model's prediction through a learning algorithm back to the training data in order to identify training samples most responsible for any given prediction. Ribeiro et al. (2016) developed a framework that analyzes any learned classifier model by constructing a interpretable simpler model that captures the essence of the learned model. This framework formulates the task of explaining the learned model, based on representative instances and explanations, as a submodular optimization problem. In the context of VQA, Norcliffe-Brown et al. (2018) provide interpretability by introducing prior knowledge of scene structure as a graph that is learned from observations based on the question under consideration. Object bounding boxes are graph nodes while edges are learned using an attention model conditioned on the question. Mascharka et al. (2018) augment a deep network architecture with an image-space attention mechanism based on a set of composable visual reasoning primitives that help examine the intermediate outputs of each module. Li et al. (2018) introduce a captioning model to generate an image's description, reason with the caption and the question to construct an answer, and use the caption to explain the answer. However, these algorithms do not support the use of commonsense reasoning to (i) provide meaningful explanatory descriptions of learning and reasoning; (ii) guide learning to be more efficient; or (iii) provide reliable decisions when large training datasets are not available.

The training data requirements of a deep network can be reduced by directing attention to data relevant to the tasks at hand. In the context of VQA, Yang et al. (2016) use a Long Short-Term Memory (LSTM) network to map the question to an encoded vector, extract a feature map from the input image using a CNN, and use a neural network to compute weights for feature vectors based on their relevance to the question. A stacked attention network is trained to map the weighted feature vectors and question vector to the answer, prioritizing feature vectors with greater weights. Schwartz et al. (2017) use learned higher-order correlations between various data modalities to direct attention to elements in the data modalities that are relevant to the task at hand. Lu et al. (2016) use information from the question to identify relevant image regions and uses information from the image to identify relevant words in the question. A co-attentional model jointly and hierarchically reasons about the image and the question at three levels, embedding words in a vector space, using one-dimensional CNNs to model information at the phrase level, and using RNNs to encode the entire question. A generalization of this work, a Bilinear Attention Network, considers interactions between all region proposals in the image with all words in the (textual) question (Kim et al., 2018). A Deep Attention Neural Tensor Network for VQA, on the other hand, uses tensor-based representations to discover joint correlations between images, questions, and answers (Bai et al., 2018). The attention module is based on a discriminative reasoning process, and regression with KL-divergence losses improves scalability of training and convergence. Recent work by Anderson et al. (2018) combines top-down and bottom-up attention mechanisms, with the top-down mechanism providing an attention distribution over object proposals provided by the bottom-up mechanism.

In addition to reducing the training data requirements, researchers have focused on reducing the number of annotated samples needed for training, and on minimizing the bias in deep network models. In the context of VQA, Lin et al. (2014) iteratively revise a model trained on an initial training set by expanding the training set with image-question pairs involving concepts it is uncertain about, with an “oracle” (human annotater) providing the answers. This approach reduces annotation time, but the database includes just as many images and questions as before. Goyal et al. (2017) provide a balanced dataset with each question associated with a pair of images that require different answers, and provide a counterexample based explanation for each image-question pair. Agrawal et al. (2018), on the other hand, separate the recognition of visual concepts in an image from the identification of an answer to any given question, and include inductive biases to prevent the learned model from relying predominantly on priors in the training data.

In computer vision, robotics and other applications, learning from data can often be made more efficient by reasoning with prior knowledge about the domain. In the context of VQA, Wang et al. (2017) reason with knowledge about scene objects to answer common questions about these objects, significantly expanding the range of natural language questions that can be answered without making the training data requirements impractical. However, this approach does not reduce the amount of data required to train the deep network. Furbach et al. (2010) directly use a knowledge base to answer questions and do not consider the corresponding images as inputs. Wagner et al. (2018), on the other hand, use physics engines and prior knowledge of domain objects to realistically simulate and explore different situations. These simulations guide the training of deep network models that anticipate action outcomes and answer questions about all situations. Based on the observation that VQA often requires reasoning over multiple steps, Wu et al. (2018) construct a chain of reasoning for multi-step and dynamic reasoning with relations and objects. This approach iteratively forms new relations between objects using relational reasoning operations, and forms new compound objects using object refining operations, to improve VQA performance. Given the different components of a VQA system, Teney and van den Hengel (2018) present a meta learning approach to separate question answering from the information required for the task, reasoning at test time over example questions and answers to answer any given question. Two meta learning methods adapt a VQA model without the need for retraining, and demonstrate the ability to provide novel answers and support vision and language learning. Rajani and Mooney (2018) developed an ensemble learning approach, Stacking With Auxiliary Features, which combines the results of multiple models using features of the problem as context. The approach considers four categories of auxiliary features, three of which are inferred from image-question pairs while the fourth uses model-specific explanations.

Research in cognitive systems indicates that reliable, efficient, and explainable reasoning and learning can be achieved by reasoning with domain knowledge and learning from experience. Early work by Gil (1994) enabled an agent to reason with first-order logic representations and incrementally refined action operators. In such methods, it is difficult to perform non-monotonic reasoning, or to merge new, unreliable information with existing beliefs. Non-monotonic logic formalisms have been developed to address these limitations, e.g., Answer Set Prolog (ASP) has been used in cognitive robotics (Erdem and Patoglu, 2012) and other applications (Erdem et al., 2016). ASP has been combined with inductive learning to monotonically learn causal laws (Otero, 2003), and methods have been developed to learn and revise domain knowledge represented as ASP programs (Balduccini, 2007; Law et al., 2018). Cognitive architectures have also been developed to extract information from perceptual inputs to revise domain knowledge represented in first-order logic (Laird, 2012), and to combine logic and probabilistic representations to support reasoning and learning in robotics (Zhang et al., 2015; Sarathy and Scheutz, 2018). However, approaches based on classical first-order logic are not expressive enough, e.g., modeling uncertainty by attaching probabilities to logic statements is not always meaningful. Logic programming methods, on the other hand, do not support one or more of the desired capabilities such as efficient and incremental learning of knowledge, reasoning efficiently with probabilistic components, or generalization as described in this paper. These challenges can be addressed using interactive task learning, a general knowledge acquisition framework that uses labeled examples or reinforcement signals obtained from observations, demonstrations, or human instructions (Laird et al., 2017; Chai et al., 2018). Sridharan and Meadows (2018) developed such a framework to combine non-monotonic logical reasoning with relational reinforcement learning and inductive learning to learn action models to be used for reasoning or learning in dynamic domains. In the context of VQA, there has been interesting work on reasoning with learned symbolic structure. For instance, Yi et al. (2018) present a neural-symbolic VQA system that uses deep networks to infer structural object-based scene representation from images, and to generate a hierarchical (symbolic) program of functional modules from the question. An executor then runs the program on the representation to answer the question. Such approaches still do not (i) integrate reasoning and learning such that they inform and guide each other; or (ii) use the rich domain-specific commonsense knowledge that is available in any application domain.

In summary, deep networks represent the state of the art for VQA and many other pattern recognition tasks. Recent surveys on VQA methods indicate that despite considerable research, it is still difficult to use these networks to support efficient learning, intuitive explanations, or generalization to simulated and real-world images (Pandhre and Sodhani, 2017; Shrestha et al., 2019). Our architecture draws on principles of cognitive systems to address these limitations. It tightly couples deep networks with components for non-monotonic logical reasoning with commonsense domain knowledge, and for learning incrementally from samples over which the learned model makes errors. This work builds on our proof of concept architecture that integrated deep learning with commonsense inference for VQA (Riley and Sridharan, 2018a). It also builds on work in our research group on using commonsense inference and learned state constraints to guide deep networks that estimate object stability and occlusion in images (Mota and Sridharan, 2019). In comparison with our prior work, we introduce a new component for incrementally learning constraints governing domain states, expand reasoning with commonsense knowledge to support planning and diagnostics, explore the interplay between the architecture's components, and discuss detailed experimental results.



3. ARCHITECTURE

Figure 1 is an overview of our architecture that provides answers to explanatory questions about images of scenes and an underlying classification problem. The architecture seeks to improve accuracy and reduce training effort, i.e., reduce training time and the number of training samples, by embedding non-monotonic logical reasoning and inductive learning in a deep network architecture. We will later demonstrate how the architecture can be adapted to address planning problems on a simulated robot—see section 3.5. The architecture may be viewed as having four key components that are tightly coupled with each other.

	1. A component comprising CNN-based feature extractors, which are trained and used to map any given image of a scene under consideration to a vector of image features.
	2. A component that uses one of two methods to classify the feature vector. The first method uses non-monotonic reasoning with incomplete domain knowledge and the features to assign a class label and explain this decision. If the first method cannot classify the image, the second method trains and uses a decision tree to map the feature vector to a class label and explain the classification.
	3. A component that answers explanatory questions. If non-monotonic logical reasoning is used for classification, it is also used to provide answers to these questions. If a decision tree is instead used for classification, an RNN is trained to map the decision tree's output, the image features, and the question, to the corresponding answer.
	4. A component that uses the learned decision tree and the existing knowledge base to incrementally construct and validate constraints on the state of the domain. These constraints revise the existing knowledge that is used for subsequent reasoning.


[image: Flowchart depicting an artificial intelligence process. Inputs include an image analyzed by CNNs to generate a feature vector and a question. The classification knowledge base interacts with axiom learning and a decision tree for classification tasks, feeding results into both a VQA knowledge base and an RNN for answer generation. The explanation generator uses these inputs to produce outputs labeled as "Explanation" and "Answer." Arrows indicate information flow among components.]
FIGURE 1. Architecture combines the complementary strengths of deep learning, non-monotonic logical reasoning with commonsense domain knowledge, and decision-tree induction.


This architecture exploits the complementary strengths of deep learning, non-monotonic logical reasoning, and incremental inductive learning with decision trees. Reasoning with commonsense knowledge guides learning, e.g., the RNN is trained on (and processes) input data that cannot be processed using existing knowledge. The CNNs and RNN can be replaced by other methods for extracting image features and answering explanatory questions (respectively). Also, although the CNNs and RNN are trained in an initial phase in this paper, these models can be revised over time if needed. We hypothesize that embedding non-monotonic logical reasoning with commonsense knowledge and the incremental updates of the decision tree, between the CNNs and the RNN, makes the decisions more transparent, and makes learning more time and sample efficient. Furthermore, the overall architecture and methodology can be adapted to different domains. In this paper, we will use the following two domains to illustrate and evaluate the architecture's components and the methodology.

1. Structure Stability (SS): this domain has different structures, i.e., different arrangements of simulated blocks of different colors and sizes, on a tabletop—see Figure 2 for some examples. We generated 2,500 such images using a physics-based simulator. The relevant features of the domain include the number of blocks, whether the structure is on a lean, whether the structure has a narrow base, and whether any block is placed such that it is not well balanced on top of the block below. The objective in this domain is to classify structures as being stable or unstable, and to answer explanatory questions such as “why is this structure unstable?” and “what should be done to make this structure stable?”

2. Traffic Sign (TS): this domain focuses on recognizing traffic signs from images—see Figure 3 for some examples. We used the BelgiumTS benchmark dataset (Timofte et al., 2013) with ≈ 7000 real-world images (total) of 62 different traffic signs. This domain's features include the primary symbol of the traffic sign, the secondary symbol, the shape of the sign, the main color in the middle, the border color, the sign's background image, and the presence or absence of a cross (e.g., some signs have a red or black cross across them to indicate the end of a zone, with the absence of the cross indicating the zone's beginning). The objective is to classify the traffic signs and answer explanatory questions such as “what is the sign's message?” and “how should the driver respond to this sign?”


[image: Three digitally rendered images of abstract overlapping colored shapes in vertical arrangements. From left to right, the sequence shows a progression from three to five stacked shapes with varying colors, including red, green, blue, yellow, and black. Each set is increasingly complex in structure.]
FIGURE 2. Illustrative images of structures of blocks of different colors and sizes; these images were obtained from a physics-based simulator for the SS domain.



[image: Five triangular road signs with red borders. The first and fifth depict bumps. The second is unclear. The third shows children crossing. The fourth seems to indicate uneven ground.]
FIGURE 3. Illustrative images of traffic signs from the BelgiumTS dataset (Timofte et al., 2013).


In addition to these two domains, section 3.5 will introduce the Robot Assistant (RA) domain, a simulated domain to demonstrate the use of our architecture for computing and executing plans to achieve assigned goals. In the RA domain, a simulated robot reasons with existing knowledge to deliver messages to target people in target locations, and to answer explanatory questions about the plans and observed scenes.

The focus of our work is on understanding and using the interplay between deep learning, commonsense reasoning, and incremental learning, in the context of reliable and efficient scene understanding in any given dynamic domain. The benchmark VQA datasets and the algorithms, on the other hand, focus on generalizing across images from different scenarios in different domains, making it difficult to support the reasoning and learning capabilities of our architecture. We thus do not use these datasets or algorithms in our evaluation.


3.1. Feature Extraction Using CNNs

The first component of the architecture trains CNNs to map input images to concise features representing the objects of interest in the images. For the SS domain and TS domain, semi-automated annotation was used to label the relevant features in images for training and testing. The selection of these features for each domain was based on domain expertise. In the SS domain, the features of interest are:

	• Number of blocks in structure (number ∈ [1, 5]);
	• Whether the structure is on a lean (true, false);
	• Width of the base block (wide, narrow); and
	• Whether any block is displaced, i.e., not well balanced on top of the block below (true, false).

In the TS domain, the features of interest are:

• Primary symbol in the middle of the traffic sign; 39 primary symbols such as bumpy_road, slippery_road, stop, left_turn, and speed_limit;

• Secondary symbol in the traffic sign; 10 secondary symbols such as disabled, car and fence;

• Shape of the sign; circle, triangle, square, hexagon, rectangle, widerectangle, diamond, or inverted triangle;

	• Main color in the middle of the sign; red, white, or blue;
	• Border color at the edge of the sign; red, white, or blue;
	• Background image, e.g., some symbols are placed over a square or a triangle; and
	• Presence of a red or black cross across a sign to indicate a zone's end or invalidity; the sign without the cross indicates the zone's beginning or validity, e.g., a parking sign with a cross implies no parking.

To reduce the training data requirements and simplify the training of CNNs, we (i) train a separate CNN for each feature to be extracted from an image; and (ii) start with a basic model for each CNN and incrementally make it more complex as needed. The number of CNNs is thus equal to the number of features to be extracted from each image for any given domain, and the CNN trained for each feature may be different even within a particular domain. The basic CNN model we begin with has an input layer, a convolutional layer, a pooling layer, a dense layer, a dropout layer, and a logit layer, as seen on the left of Figure 4. Additional convolutional and pooling layers are added until the feature extraction accuracy converges or exceeds a threshold (e.g., ≥ 90%). Our architecture also includes the option of fine-tuning previously trained CNN models instead of starting from scratch. The right side of Figure 4 shows a CNN model learned in our example domains, which has three convolutional layers and pooling layers. We trained and validated these CNNs in an initial phase, and used them for evaluation. Our code for constructing these CNNs for features (in our example domains) is in our repository (Riley and Sridharan, 2018b).


[image: Diagram showing two neural network architectures for image input. The first structure includes layers: input, convolutional one, pooling, dense, dropout, then logits. The second has layers: input, convolutional one, pooling two, convolutional, pooling three, convolutional three, dropout, dense, pooling three, and logits. Both output feature class probabilities.]
FIGURE 4. Basic CNN model used for extracting each feature in our architecture. CNNs for individual features may end up with a different number of convolutional layers and pooling layers.




3.2. Classification Using Non-monotonic Logical Reasoning or Decision Trees

The feature vector extracted from an image is used for decision making. In the SS domain and TS domain, decisions take the form of assigning a class label to each feature vector1. The second component of our architecture performs this task using one of two methods: (i) non-monotonic logical inference using ASP; or (ii) a classifier based on a learned decision tree. We describe these two methods below.


3.2.1. ASP-Based Inference With Commonsense Knowledge

The first step in reasoning with incomplete commonsense domain knowledge is the representation of this knowledge. In our architecture, an action language is used to describe the dynamics of any domain under consideration. Action languages are formal models of parts of natural language used for describing transition diagrams of dynamic systems. Our architecture uses action language [image: The image shows a stylized script capital letter A followed by a lowercase letter C with the subscript lowercase letter a.] (Gelfond and Inclezan, 2013), with a sorted signature Σ that can be viewed as the vocabulary used to describe the domain's transition diagram. The signature Σ comprises basic sorts, which are similar to types in a programming language, statics, i.e., domain attributes whose values do not change over time, fluents, i.e., domain attributes whose values can change over time, and actions. The domain's fluents can be basic, i.e., those that obey the laws of inertia and are changed directly by actions, or defined, i.e., those that do not obey the laws of inertia and are defined by other attributes. A domain attribute or its negation is a literal; of all its variables are ground, it is a ground literal. [image: Stylized script letter "A" followed by a subscript "c" and a subscript "a".] allows three types of statements: causal law, state constraint and executability condition.

[image: Concepts of causal law, state constraint, and executability condition are shown with logical expressions: "a causes l_b if p_0, ..., p_m" (Causal law), "l if p_0, ..., p_m" (State constraint), and "impossible a_0, ..., a_k if p_0, ..., p_m" (Executability condition).]

where a is an action, l is a literal, lb is a basic literal, and p0, …, pm are domain literals.

The domain representation (i.e., the knowledge base) comprises a system description [image: Stylized capital letter "D" resembling a script font.], which is a set of statements of [image: Stylized capital letter "A" followed by lowercase "c" with a subscript lowercase "a."], and a history [image: Stylized representation of the letter 'H' in a decorative script font.]. [image: The capital letter D, styled in a decorative, calligraphic font.] comprises a sorted signature Σ and axioms describing the domain dynamics. For instance, in the SS domain, Σ includes basic sorts such as structure, color, size, and attribute; the basic sorts of the TS domain include main_color, other_color, main_symbol, other_symbol, shape, cross etc. The sort step is also in Σ to support temporal reasoning over time steps. The statics and fluents in the SS domain include:

[image: Mathematical expressions with functions: num_blocks(structure, num), block_color(block, color), block_size(block, size), block_displaced(structure), and stable(structure).]

which correspond to the image features extracted in the domain, and are described in terms of their arguments' sorts. In a similar manner, statics and fluents of the TS domain include:

[image: Text displaying functions related to signage: primary_symbol, primary_color, secondary_symbol, secondary_color, sign_shape, and background_image, each followed by variable names in parentheses.]

In both domains, signature Σ includes a predicate holds(fluent, step), which implies that a particular fluent holds true at a particular time step. As stated above, Σ for a dynamic domain typically includes actions that cause state transitions, but this capability is not needed to answer explanatory questions about specific scenes and the underlying classification problem in our (SS, TS) domains. For ease of explanation, we thus temporarily disregard the modeling of actions, and their preconditions and effects. We will revisit actions in section 3.5 when we consider planning tasks in the RA domain.

Given a signature Σ for a domain, a state of the domain is a collection of ground literals, i.e., statics, fluents, actions and relations with values assigned to their arguments—for more details, please see Gelfond and Kahl (2014) and Sridharan et al. (2019). The axioms of [image: The capital letter "D" in a decorative script font.] are defined in terms of the signature and govern domain dynamics; this typically includes a distributed representation of the constraints related to domain actions, i.e., causal laws and executability conditions that define the preconditions and effects of actions, and constraints related to states, i.e., state constraints. In the SS domain and TS domain, axioms govern the belief about domain states; we will discuss axioms related to actions in section 3.5 when we discuss the RA domain. Specifically, the axioms of the SS domain include state constraints such as:

[image: The image displays a mathematical equation: negation of stable(S) if block_displaced(S) is true, followed by the reference (3a).]

[image: Text snippet showing a logical statement: "stable(S) if num_blocks(S, 2), not structure_type(S, lean)". This is labeled as "(3b)".]

where Statement 3(a) says that any structure with a block that is displaced significantly is unstable, and Statement 3(b) says that any pair of blocks without a significant lean is stable.

Axioms of the TS domain include statements such as:

[image: A logic statement describes conditions for a "no parking" sign type. It specifies a blue color, blank primary symbol, a cross, and a circular shape, labeled as (4a).]

[image: Text indicating a logic rule: "sign_type(TS, stop) if primary_color(TS, red), primary_symbol(TS, stoptext), shape(TS, octagon)." Labeled as equation 4b.]

where Statement 4(a) implies that a blue, blank, circular traffic sign with a cross across it is a no parking sign. Statement 4(b) implies that a red, octagon-shaped traffic sign with the text “stop” is a stop sign.

The history [image: Mathematical symbol for Hilbert space, represented by a stylized, script capital "H".] of a dynamic domain is usually a record of fluents observed to be true or false at a particular time step, i.e., obs(fluent, boolean, step), and the successful execution of an action at a particular time step, i.e., hpd(action, step); for more details, see Gelfond and Kahl (2014). The domain knowledge in many domains often includes default statements that are true in all but a few exceptional circumstances. For example, we may know in the SS domain that “structures with two blocks of the same size are usually stable.” To encode such knowledge, we use our recent work that expanded the notion of history to represent and reason with defaults describing the values of fluents in the initial state (Sridharan et al., 2019).

Key tasks of an agent equipped with a system description [image: A stylized capital letter "D" with a decorative, italic script appearing in a small, low-resolution format.] and history [image: Mathematical symbol of a script capital H, often used to denote a Hilbert space in mathematical contexts.] include reasoning with this knowledge for inference, planning and diagnostics. In our architecture, these tasks are accomplished by translating the domain representation to a program [image: Mathematical notation displaying the expression Pi with a subscript of script D and script H in parentheses, denoting possibly a projection or probability function.] in CR-Prolog, a variant of ASP that incorporates consistency restoring (CR) rules (Balduccini and Gelfond, 2003). In this paper, we use the terms “ASP” and “CR-Prolog” interchangeably. ASP is a declarative programming paradigm designed to represent and reason with incomplete commonsense domain knowledge. It is based on stable model semantics, and supports default negation and epistemic disjunction. For instance, unlike “¬a”, which implies that a is believed to be false, “nota” only implies a is not believed to be true. Also, unlike “p ∨ ¬p” in propositional logic, “p or ¬p” is not tautological. Each literal can thus be true, false or unknown, and the agent reasoning with domain knowledge does not believe anything that it is not forced to believe. ASP can represent recursive definitions, defaults, causal relations, special forms of self-reference, and language constructs that occur frequently in non-mathematical domains, and are difficult to express in classical logic formalisms (Baral, 2003; Gelfond and Kahl, 2014). Unlike classical first-order logic, ASP supports non-monotonic logical reasoning, i.e., it can revise previously held conclusions or equivalently reduce the set of inferred consequences, based on new evidence—this ability helps the agent recover from any errors made by reasoning with incomplete knowledge. ASP and other paradigms that reason with domain knowledge are often criticized for requiring considerable (if not complete) prior knowledge and manual supervision, and for being unwieldy in large, complex domains. However, modern ASP solvers support efficient reasoning in large knowledge bases with incomplete knowledge, and are used by an international research community for cognitive robotics (Erdem and Patoglu, 2012; Zhang et al., 2015) and other applications (Erdem et al., 2016). For instance, recent work has demonstrated that ASP-based non-monotonic logical reasoning can be combined with: (i) probabilistic reasoning for reliable and efficient planning and diagnostics (Sridharan et al., 2019); and (ii) relational reinforcement learning and active learning methods for interactively learning or revising commonsense domain knowledge based on input from sensors and humans (Sridharan and Meadows, 2018).

In our architecture, the automatic translation from statements in [image: Stylized script letter "A" followed by a subscript "C" and "a".] to the program Π is based on a custom-designed script2. The resultant program Π includes the signature and axioms of [image: Stylized letter "D" in a calligraphic serif typeface.], inertia axioms, reality checks, closed world assumptions for defined fluents and actions, and observations, actions, and defaults from [image: Stylized letter "H" with curved, decorative elements resembling a calligraphic or handwritten style.]. For instance, Statements 3(a-b) are translated to:

[image: Text showing a logical expression: \(-\text{stable}(S) \leftarrow \text{block\_displaced}(S)\), numbered as (5a).]

[image: Text snippet showing a logical formula: "stable(S) ← num_blocks(S, 2), ¬structure_type(S, lean) (5b)".]

In addition, features extracted from an input image (to be processed) are encoded as the initial state of the domain in Π. Each answer set of [image: Mathematical notation showing the function Pi of script D, script H, represented as \(\Pi(\mathcal{D}, \mathcal{H})\).] then represents the set of beliefs of an agent associated with this program. Algorithms for computing entailment, and for planning and diagnostics, reduce these tasks to computing answer sets of CR-Prolog programs. We compute answer sets of CR-Prolog programs using the SPARC system (Balai et al., 2013). The CR-Prolog programs for our example domains are in our open-source software repository (Riley and Sridharan, 2018b). For the classification task in our example domains, the relevant literals in the answer set provide the class label and an explanatory description of the assigned label (see section 3.3); we will consider the planning task in section 3.5. The accuracy of the inferences drawn from the encoded knowledge depends on the accuracy and extent of the knowledge encoded, but encoding comprehensive domain knowledge is difficult. The decision of what and how much knowledge to encode is made by the designer.



3.2.2. Decision Tree Classifier

If ASP-based inference cannot classify the feature vector extracted from an image, the feature vector is mapped to a class label using a decision tree classifier learned from labeled training examples. In a decision tree classifier, each node is associated with a question about the value of a particular feature, with the child nodes representing the different answers to the question, i.e., the possible values of the feature. Each node is also associated with samples that satisfy the corresponding values of the features along the path from the root node to this node. We use a standard implementation of a decision tree classifier (Duda et al., 2000). This implementation uses the Gini measure to compute information gain (equivalently, the reduction in entropy) that would be achieved by splitting an existing node based on each feature that has not already been used to create a split in the tree. Among the features that provide a significant information gain, the feature that provides the maximum information gain is selected to split the node. If none of the features would result in any significant information gain, this node becomes a leaf node with a class label that matches a majority of the samples at the node.

The decision tree's search space is quite specific since it only considers samples that could not be classified by ASP-based reasoning. The decision tree does not need to generalize as much as it would have to if it had to process every training (or test) sample in the dataset. Also, although overfitting is much less likely, we still use pruning to minimize the effects of overfitting. Figure 5 shows part of a learned decision tree classifier; specific nodes used to classify a particular example are highlighted to indicate that 94% of the observed examples of structures that have fewer than three blocks, do not have a significant lean, and do not have a narrow base, correspond to stable structures. These “active” nodes along any path in the decision tree that is used to classify an example can be used to explain the classification outcome in terms of the values of particular features that were used to arrive at the class label assigned to a specific image under consideration.


[image: Flowchart illustrating decision-making based on block number and base conditions. Begins with "Is blocknum >= 4?" leading to decisions like "On lean?" and "Narrow base?" Each path assigns "Stable" or "Unstable" with varying percentages. Paths diverge depending on answers to conditions, covering blocknum thresholds 3 and 5.]
FIGURE 5. Example of part of a decision tree constructed from labeled samples and used for classification in the SS domain. The nodes used to classify a particular example are highlighted. Each leaf shows a class label and indicates the proportion of the labeled examples (at the leaf) that correspond to this label.





3.3. Answering Explanatory Questions

The third component of the architecture provides two methods for answering explanatory questions. The available inputs are the (i) question; (ii) vector of features extracted from the image under consideration; and (iii) classification output. The human designer also provides pre-determined templates for questions and their answers. In our case, we use a controlled vocabulary, templates based on language models and parts of speech for sentences, and existing software for natural language processing. Any given question is transcribed using the controlled vocabulary, parsed (e.g., to obtain parts of speech), and matched with the templates to obtain a relational representation. Recall that questions in the SS domain are of the form: “is this structure stable/unstable?” and “what is making this structure stable/unstable?” These questions can be translated into relational statements such as stable(S) or ¬stable(S) and used as a question, or as the desired consequence, during inference or in a search process. In a similar manner, questions in the TS domain such as: “what sign is this?” and “what is the sign's message?” can be translated into sign_type(S, sign) and used for subsequent processing.

The first method for answering explanatory questions is based on the understanding that if the feature vector extracted from the image is processed successfully using ASP-based reasoning, it is also possible to reason with the existing knowledge to answer explanatory questions about the scene. To support such question answering, we need to revise the signature Σ in the system description [image: Calligraphic uppercase "D" with a stylized appearance resembling handwriting.] of the domain. For instance, we add sorts such as query_type, answer_type, and query to encode different types of queries and answers. We also introduce suitable relations to represent questions, answers to these questions, and more abstract attributes, e.g., of structures of blocks, traffic signs etc.

In addition to the signature, we also augment the axioms in [image: Stylized letter "D" with a bold serif font, featuring an ornamental flourish extending from the top-left to the bottom-right.] to support reasoning with more abstract attributes, and to help construct answers to questions. For instance, we can include an axiom such as:

[image: Logical expression showing conditions for "many_blocks(S)" including unstable structure, narrow base, non-leaning structure type, and no block displacement. Marked as equation 6.]

which implies that if a structure (of blocks) is not on a narrow base, does not have a significant lean, and does not have blocks significantly displaced, any instability in the structure implies (and is potentially because) there are too many blocks in the structure. Once the ASP program [image: Capital pi symbol followed by D and H in parentheses.] has been revised as described above, we can compute answer set(s) of this program to obtain the beliefs of the agent associated with this program. For any given question, the answer set(s) are parsed based on the known controlled vocabulary and templates (for questions and answers) to extract relevant literals—these literals are included in the corresponding templates to construct answers to explanatory questions. These answers can also be converted to speech using existing software.

The second method for answering explanatory questions is invoked if the decision tree is used to process (i.e., classify in the context of the SS domain and TS domain) the vector of image features. The inability to classify the feature vector through ASP-based reasoning is taken to imply that the encoded domain knowledge is insufficient to answer explanatory questions about the scene. In this case, an LSTM network-based RNN is trained and used to answer the explanatory questions. The inputs are the feature vector, classification output, and a vector representing the transcribed and parsed query. The output (provided during training) is in the form of answers in the predetermined templates. Similar to the approach used in section 3.2, the RNN is built incrementally during training. We begin with one or two hidden layer(s), as shown in Figure 6, and add layers as long as it results in a significant increase in the accuracy. We also include the option of adding a stack of LSTMs if adding individual layers does not improve accuracy significantly. In our example domains, the RNN constructed to answer explanatory questions had as many as 26–30 hidden layers and used a softmax function to provide one of about 50 potential answer types. An example of the code used to train the RNN is available in our repository (Riley and Sridharan, 2018b).


[image: Diagram of a neural network with an input layer labeled "Input: question," two hidden layers labeled "Internal state," and an output layer labeled "Output: answer." Arrows indicate the flow of data through the layers.]
FIGURE 6. Example of the basic RNN used to construct explanations. The RNNs learned for the example domains considered in this paper have 26–30 hidden layers.




3.4. Learning State Constraints

The components of the architecture described so far support reasoning with commonsense knowledge, learned decision trees, and deep networks, to answer explanatory questions about the scene and an underlying classification problem. In many practical domains, the available knowledge is incomplete, the number of labeled examples is small, or the encoded knowledge changes over time. The decisions made by the architecture can thus be incorrect or sub-optimal, e.g., a traffic sign can be misclassified or an ambiguous answer may be provided to an explanatory question. The fourth component of our architecture seeks to address this problem by supporting incremental learning of domain knowledge. Our approach is inspired by the inductive learning methods mentioned in section 2, e.g., Sridharan and Meadows (2018) use relational reinforcement learning and decision tree induction to learn domain axioms. The work described in this paper uses decision tree induction to learn constraints governing domain states. The methodology used in this component, in the context of VQA, is as follows:

	1. Identify training examples that are not classified, or are classified incorrectly, using the existing knowledge. Recall that this step is accomplished by the component described in section 3.2, which processes each training example using the existing knowledge encoded in the CR-Prolog program, in an attempt to assign a class label to the example.
	2. Train a decision tree using the examples identified in Step-1 above. Recall that this step is also accomplished by the component described in section 3.2.
	3. Identify paths in the decision tree (from root to leaf) such that (i) there are a sufficient number of examples at the leaf, e.g., 10% of the training examples; and (ii) all the examples at the leaf have the same class label. Since the nodes correspond to checks on the values of domain features, the paths will correspond to combinations of partial state descriptions and class labels that have good support among the labeled training examples. Each such path is translated into a candidate axiom. For instance, the following are two axioms identified by this approach in the SS domain:

[image: Expression showing a logical condition: not stable(S) is equivalent to num_blocks(S, 3), base(S, wide), and struc_type(S, lean), labeled as equation 7(a).]

[image: Equation with stable(S) leading to num_blocks(S, 3), base(S, narrow), and struc_type(S, lean), labeled as (7b).]

4. Generalize candidate axioms if possible. For instance, if one candidate axiom is a over-specification of another existing axiom, the over-specified version is removed. In the context of the axioms in Statement 7(a-b), the second literal represents redundant information, i.e., if a structure with three blocks has a significant lean, it is unstable irrespective of whether the base of the structure is narrow or wide. Generalizing over these two axioms results in the following candidate axiom:

[image: ```markdown Logical expression showing "stable(S) implies num_blocks(S, 3), struc_type(S, lean)" with the equation labeled as (8) at the end. ```]

	which only includes the literals that encode the essential information.
	5. Validate candidate axioms one at a time. To do so, the candidate axiom is added to the CR-Prolog program encoding the domain knowledge. A sufficient number of training examples (e.g., 10% of the dataset, as before) relevant to this axiom, i.e., the domain features encoded by the examples should satisfy the body of the axiom, are drawn randomly from the training dataset. If processing these selected examples with the updated CR-Prolog program results in misclassifications, the candidate axiom is removed from further consideration.
	6. Apply sanity checks to the validated axioms. The validated axioms and existing axioms are checked to remove over-specifications and retain the most generic version of any axiom. Axioms that pass these sanity checks are added to the CR-Prolog program and used for subsequent reasoning.

Section 4.3 examines the effect of such learned constraints on classification and VQA performance.



3.5. Planning With Domain Knowledge

The description of the architecture's components has so far focused on classification and VQA, and reasoning has been limited to inference with knowledge. However, the architecture is also applicable to planning (and diagnostics) problems. Consider the RA domain in which a simulated robot has to navigate and deliver messages to particular people in particular places, and to answer explanatory questions, i.e., the domain includes aspects of planning and VQA. Figure 7 depicts this domain and a simulated scenario in it; semantic labels of the offices and rooms are shown in the upper half.


[image: Floor plan showing labeled rooms: Bathroom, Kitchen, and Library at the top. Below are four offices labeled Sarah's, Sally's, John's, and Bob's, arranged in a row with desks and chairs.]
FIGURE 7. Block diagram and a simulated scenario in the RA domain in which the robot has to deliver messages to people in target locations.


A robot planning and executing actions in the real world has to account for the uncertainty in sensing and actuation. In other work, we addressed this issue by coupling ASP-based coarse-resolution planning with probabilistic fine-resolution planning and execution (Sridharan et al., 2019). In this paper, we temporarily abstract away such probabilistic models of uncertainty to thoroughly explore the interplay between reasoning and learning, including the effect of added noise in sensing and actuation (in simulation).

To support planning, the signature Σ of system description [image: Calligraphic letter 'D' in a black serif font on a white background.] has basic sorts such as: place, robot, person, object, entity, status, and step, which are arranged hierarchically, e.g., robot and person are subsorts of agent, and agent and object are subsorts of entity. Σ also includes ground instances of sorts, e.g., office, workshop, kitchen, and library are instances of place, and Sarah, Bob, John, and Sally are instances of person. As before, domain attributes and actions are described in terms of the sorts of their arguments. The fluents include loc(agent, place), which describes the location of the robot and people in the domain, and message_status(message_id, person, status), which denotes whether a particular message has been delivered (or remains undelivered) to a particular person. Static attributes include relations such as next_to(place, place) and work_place(person, place) to encode the arrangement of places and the work location of people (respectively) in the domain. Actions of the domain include:

[image: Italicized text contains two operations with variables: "move(robot, place)" and "deliver(robot, message_id, person)" with a number "(9)" next to the first line.]

which move the robot to a particular place, and cause a robot to deliver a particular message to a particular person (respectively). For ease of explanation, we assume that the locations of people are defined fluents whose values are determined by external sensors, and that the locations of objects are static attributes; as a result, we do not consider actions that change the value of these attributes. The signature Σ also includes (as before) the relation holds(fluent, step) to imply that a particular fluent is true at a particular time step.

Axioms of the RA domain capture the domain's dynamics. These axioms include causal laws, state constraints and executability conditions encoded as statements in [image: Stylized capital letter "A" followed by a subscript lowercase letter "c" and subscript lowercase letter "a".] such as:

[image: The expression "move(rob1, L) causes loc(rob1, L)" is displayed, labeled as equation (10a).]

[image: The expression "deliver(rob₁, ID, P) causes message_status(ID, P, delivered)" is labeled as equation 10b.]

[image: A logical expression states: "loc(P, L) if work_place(P, L), not not-loc(P, L)," with the label (10c) next to it.]

[image: The image shows a mathematical expression: negative logarithm of T and L subscript two, if the logarithm of T and L subscript one is not equal to L subscript one not equal to L subscript two, followed by equation reference number 10d.]

[image: Impossible to deliver by robot R, item ID, and person P, if robot R is at location L1, person P is at location L2, and L1 is not equal to L2, as represented in equation 10e.]

[image: The text snippet is a logical expression: "impossible move(rob1, L) if loc(rob1, L)" with a reference label "(10f)" at the end.]

where Statement 10(a) states that executing a move action causes the robot's location to be the target place; Statement 10(b) states that executing a deliver action causes the message to be delivered to the desired person; Statement 10(c) is a constraint stating that unless told otherwise the robot expects (by default) a person to be in her/his place of work; Statement 10(d) is a constraint stating that any thing can be in one place at time; Statement 10(e) implies that a robot cannot deliver a message to an intended recipient if the robot and the person are not in the same place; and Statement 10(f) states that a robot cannot move to a location if it is already there.

As described in section 3.2, the domain history is a record of observations (of fluents), the execution of actions, and the values of fluents in the initial state. Also, planning (similar to inference) is reduced to computing answer set(s) of the program [image: Mathematical notation showing a capital pi symbol followed by parentheses containing two script letters, D and H.] after including some helper axioms for computing a minimal sequence of actions; for examples, please see Gelfond and Kahl (2014) and Sridharan et al. (2019). If the robot's knowledge of the domain is incomplete or incorrect, the computed plans may be suboptimal or incorrect. The approach described in section 3.4 can then be used to learn the missing constraints; we will explore the interplay between learning and planning in section 4.4.




4. EXPERIMENTAL SETUP AND RESULTS

In this section, we describe the results of experimentally evaluating the following hypotheses about the capabilities of our architecture:

	• H1: for the underlying classification problem, our architecture outperforms an architecture based on just deep networks for small training datasets, and provides comparable performance as the size of the dataset increases;
	• H2: in the context of answering explanatory questions, our architecture provides significantly better performance in comparison with an architecture based on deep networks;
	• H3: our architecture supports reliable and incremental learning of state constraints, which improves the ability to answer explanatory questions; and
	• H4: our architecture can be adapted to planning tasks, with the incremental learning capability improving the ability to compute minimal plans.

These hypotheses were evaluated in the context of the domains (SS, TS, and RA) introduced in section 3. Specifically, hypotheses H1, H2, and H3 are evaluated in the SS domain and TS domain in the context of VQA. As stated in section 1, VQA is used in this paper only as an instance of a complex task that requires explainable reasoning and learning. We are primarily interested in exploring the interplay between reasoning with commonsense domain knowledge, incremental learning, and deep learning, in any given domain in which large labeled datasets are not readily available. State of the art VQA algorithms, on the other hand, focus instead on generalizing across different domains, using benchmark datasets of several thousand images. Given the difference in objectives between over work and the existing work on VQA, we thus do not compare with state of the art algorithms, and do not use the benchmark VQA datasets. Furthermore, we evaluated hypothesis H4 in the RA domain in which the robot's goal was to deliver messages to appropriate people and answer explanatory questions about this process.

We begin by describing some execution traces in section 4.1 to illustrate the working of our architecture. This is followed by sections 4.2–4.4, which describe the results of experimentally evaluating the classification, VQA, axiom learning, and planning capabilities, i.e., hypotheses H1–H4. We use accuracy (precision) as the primary performance measure. Classification accuracy was measured by comparing the assigned labels with the ground truth values, and question answering accuracy was evaluated heuristically by computing whether the answer mentions all image attributes relevant to the question posed. This relevance was established by a human expert, the lead author of this paper. Unless stated otherwise, we used two-thirds of the available data to train the deep networks and other computational models, using the remaining one-third of the data for testing. For each image, we randomly chose from the set of suitable questions for training the computational models. We repeated this process multiple times and report the average of the results obtained in these trials. For planning, accuracy was measured as the ability to compute minimal and correct plans for the assigned goals. Finally, section 4.5 discusses the reduction in computational effort achieved by our architecture in comparison with the baselines.


4.1. Execution Traces

The following execution traces illustrate our architecture's ability to reason with commonsense knowledge and learned models to provide intuitive answers for explanatory questions.

Execution Example 1. [Question Answering, SS domain] Consider a scenario in the SS Domain in which the input (test) image is the one on the extreme right in Figure 2.

	• First classification-related question posed: “is this structure unstable?”
	• The architecture's answer: “no”.
	• The explanatory question posed: “what is making this structure stable?”
	• The architecture's answer: “the structure has five blocks and a narrow base, it is standing straight, and there is no significant lean”.
	• This answer was based on the following features extracted by CNNs from the image: (i) five blocks; (ii) narrow base; (iii) standing straight; and (iv) no significant lean, i.e., all blocks in place.
	• The extracted features were converted to literals. ASP-based inference provided an answer about the stability of the arrangement of objects in the scenario. Relevant literals in the corresponding answer set were then inserted into a suitable template to provide the answers described above.
	• Since the example was processed successfully using ASP-based inference, it was not processed using the decision tree (for classification) or the RNN (for answering the explanatory question).

Execution Example 2. [Question Answering, TS domain] Consider a scenario in the TS Domain with the input (test) image is the one on the extreme right in Figure 3.

• The classification question posed was: “what is the sign's message?”

• The architecture's answer: “uneven surfaces ahead”.

• When asked to explain this answer (“Please explain this answer”), the architecture identified that the CNNs extracted the following features of the sign in the image: (i) it is triangle-shaped; (ii) main color is white and other (i.e., border) color is red; (iii) it has no background image; (iv) it has a bumpy-road symbol and no secondary symbol; and (v) it has no cross.

• These features were converted to literals and used in ASP-based inference based on existing knowledge in the TS domain. ASP-based inference is unable to provide an answer, i.e., unable to classify the sign.

• The extracted features were processed using the trained decision tree, which only used the colors in the sign to assign the class label. The main (or border) color is normally insufficient to accurately classify signs. However, recall that the decision tree is trained to classify signs that cannot be classified by reasoning with existing knowledge.

• The decision tree output, image feature vector, and input question, were processed by the previously trained RNN to provide the answer type and the particular answer described above.

These (and other such) execution traces illustrate the working of our architecture, especially that:

	• The architecture takes advantage of (and perform non-monotonic logical inference with) the existing commonsense domain knowledge to reliably and efficiently address the decision-making problem (classification in the examples above) when possible. In such cases, it is also able to answer explanatory questions about the classification decision and the underlying scene.
	• When the desired decision cannot be made using non-monotonic logical inference with domain knowledge, the architecture smoothly transitions to training and using a decision-tree to make and explain the classification decision. In such cases, the architecture also learns and uses an RNN to answer explanatory questions about the scene.



4.2. Experimental Results: Classification + VQA

To quantitatively evaluate hypotheses H1 and H2, we ran experimental trials in which we varied the size of the training dataset. In these trials, the baseline performance was provided by a CNN-RNN architecture, with the CNNs processing images to extract and classify features, and the RNN providing answers to explanatory questions. The number of questions considered depends on the complexity of the domain, e.g., we included eight different types of questions in the SS domain and 248 different types of questions in the TS domain. We repeated the trials 50 times (choosing the training set randomly each time) and the corresponding average results are summarized in Figures 8, 9 for the SS domain, and in Figures 10, 11 for the TS domain. We make some observations based on these figures:

	1. The classification performance of our architecture depends on the domain. In the relatively simpler SS domain, the baseline deep network architecture is at least as accurate as our architecture, even with a small training set—see Figure 8. This is because small differences in the position and arrangement of blocks (which could almost be considered as noise) influence the decision about stability. For instance, two arrangements of blocks that are almost identical end up receiving different ground truth labels for stability, and it is not possible to draft rules based on abstract image features to distinguish between these cases. The baseline deep network architecture, which generalizes from data, is observed to be more sensitive to these small changes than our architecture. Exploring the reason for this performance is an interesting direction for further research.
	2. In the more complex TS domain, our architecture provides better classification accuracy than the baseline architecture based on just deep networks, especially when the size of the training set is small—see Figure 10. The classification accuracy increases with the size of the training set3, but our architecture is always at least as accurate as the baseline architecture.
	3. Our architecture is much more capable of answering explanatory questions about the classification decisions than the baseline architecture. When the answer provided by our architecture does not match the ground truth, we are able to examine why that decision was made. We were thus able to understand and explain the lower classification accuracy of our architecture in the SS domain. The baseline architecture does not provide this capability.
	4. Unlike classification, the VQA performance of our architecture is much better than that of the baseline architecture in both domains. Also performance does not improve just by increasing the size of training set, even in simpler domains, e.g., see Figure 9. This is because VQA performance also depends on the complexity of the explanatory questions. For more complex domains, the improvement in VQA accuracy provided by our architecture is much more pronounced, e.g., see Figure 11.


[image: Bar chart comparing accuracy percentages of baseline and proposed models across different training dataset sizes: 100, 500, 1000, 1500, and 2000. The baseline model, shown in blue, consistently achieves higher accuracy than the proposed model, shown in orange, across all dataset sizes.]
FIGURE 8. Classification accuracy as a function of the number of training samples in the SS domain.



[image: Bar chart comparing accuracy percentages of Baseline and Proposed methods across different training dataset sizes: 100, 500, 1000, 1500, and 2000. The Proposed method consistently shows higher accuracy than the Baseline in all cases.]
FIGURE 9. VQA accuracy as a function of the number of training samples in the SS domain.



[image: Bar graph showing accuracy percentages for baseline and proposed methods across different training dataset sizes: 100, 500, 1000, 2000, 3000, and 4000. The proposed method consistently outperforms the baseline.]
FIGURE 10. Classification accuracy as a function of number of training samples in TS domain.



[image: Bar chart comparing the accuracy percentages of baseline and proposed methods across different training dataset sizes: 100, 500, 1000, 2000, 3000, and 4000. The proposed method consistently shows higher accuracy than the baseline, especially visible at larger dataset sizes.]
FIGURE 11. VQA accuracy as a function of number of training samples in TS domain.


We explored the statistical significance of the observed performance by running paired t-tests. We observed that the VQA performance of the proposed architecture was significantly better than that of the baseline architecture; this is more pronounced in the TS domain that is more complex than the SS domain. Also, although the baseline architecture provides better classification performance in the SS domain, the difference is not always statistically significant.

To further explore the observed results, we obtained a “confidence value” from the logits layer of each CNN used to extract a feature from the input image. For each CNN, the confidence value is the largest probability assigned to any of the possible values of the corresponding feature, i.e., it is the probability assigned to the most likely value of the feature. These confidence values are considered to be a measure of the network's confidence in the corresponding features being a good representation of the image. We trained a version of our architecture in which if the confidence value for any feature was low, the image features were only used to revise the decision tree (during training), or were processed using the decision tree (during testing). In other words, features that do not strongly capture the essence of the image are not used for non-monotonic logical reasoning; the deep network architectures provide much better generalization to noise. We hypothesized that this approach would improve the accuracy of classification and question answering, but it did not make any significant difference in our experimental trials. We believe this is because the extracted features were mostly good representations of the objects of interest in the images. We thus did not use such networks (that compute the confidence value) in any other experiments.



4.3. Experimental Results: Learn Axiom + VQA

Next, we experimentally evaluated the ability to learn axioms, and the effect of such learning on the classification and VQA performance. For the SS domain, we designed a version of the knowledge base with eight axioms related to stability or instability of the structures. Out of these, four were chosen (randomly) to be removed and we examined the ability to learn these axioms, and the corresponding accuracy of classification and VQA, as a function of the number of labeled training examples (ranging from 100 to 2,000). We repeated these experiments 30 times and the results (averaged over the 30 trials) are summarized in Figures 12, 13. In the TS domain, the methodology for experimental evaluation was the same. However, since the domain was more complex, there were many more axioms in the domain description (for classification and VQA); we also had access to more labeled training examples. In each experimental trial, a quarter of the available axioms were thus selected and commented out, and the accuracy of classification and VQA were evaluated with the number of labeled training examples varying from 100 to 4000. The results averaged over 30 such trials are summarized in Figures 14, 15.


[image: Bar chart comparing accuracy percentages of Original KB and Learned KB across different training dataset sizes (100, 500, 1000, 1500, 2000). Both KBs show similar accuracy, around 50-60%, with Learned KB slightly outperforming in larger datasets.]
FIGURE 12. Comparison of classification accuracy in the SS domain with and without axiom learning. In both cases, some axioms were missing from the knowledge base.



[image: Bar chart showing % accuracy against training dataset size for Original KB (blue) and Learned KB (orange). Accuracy consistently higher for Learned KB. Dataset sizes: 100 to 2000.]
FIGURE 13. Comparison of VQA accuracy in the SS domain with and without axiom learning. In both cases, some axioms were missing from the knowledge base.



[image: Bar chart comparing accuracy percentages between "Original KB" and "Learned KB" across various training dataset sizes: 100, 500, 1000, 2000, 3000, and 4000. Learned KB consistently shows higher accuracy in each dataset size.]
FIGURE 14. Comparison of classification accuracy in the TS domain with and without axiom learning. In both cases, some axioms were missing from the knowledge base.



[image: Bar chart showing percentage accuracy versus training dataset size for Original KB and Learned KB. Accuracy improves with larger dataset sizes, with Learned KB consistently outperforming Original KB. Data points range from 100 to 4000, with accuracy increasing from around 45% to 85%.]
FIGURE 15. Comparison of VQA accuracy in the TS domain with and without axiom learning. In both cases, some axioms were missing from the knowledge base.


In these figures, “Original KB” (depicted in blue) represents the baseline with some axioms missing from the system description, e.g., four in the SS domain and one quarter of the axioms in the TS domain. The results obtained by using the available labeled examples to learn the axioms that are then used for classification and answering explanatory questions about the scene, are shown as “Learned KB” in orange. We observe that our approach supports incremental learning of the domain axioms, and that using the learned axioms improves the classification accuracy and the accuracy of answering explanatory questions, in comparison with the baseline. This improvement was found to be statistically significant using paired tests at 95% level of significance. These results support hypothesis H3.



4.4. Experimental Results: Learn Axiom + Plan

Next, we experimentally evaluated the ability to learn axioms and the effect of the learned axioms on planning, in the RA domain. The simulated robot was equipped with domain knowledge for planning, classification, and question answering. It uses this knowledge to navigate through an office building, locate the intended recipient of a message, deliver the message, detect and reason about objects in its surroundings, and answer questions about the rooms it has visited. We considered 24 different types of questions in this domain. As stated in section 3.5, we limit uncertainty in sensing and actuation on robots to noise added in simulation. Average results from 100 trials indicates a VQA accuracy of ≈85% after training the architecture's components with just 500 labeled images. The domain knowledge includes learned axioms—the corresponding experimental results and the planning performance are discussed later in this section. We begin with an execution trace in this domain.

Execution Example 3. [Question Answering, RA Domain] Consider the scenario in the RA domain (Figure 7) in which the robot's goal was to deliver a message from John to Sally, and return to John to answer questions.

	• The robot was initially in John's office. It computed a plan that comprises moving to Sally's office through the library and the kitchen, delivering the message to Sally, and returning to John's office through the same route to answer questions.
	• During plan execution, the robot periodically takes images of the scenes in the domain, which are used for planning, classification and question answering.
	• After returning to John's office, the robot and the human had an exchange about the plan constructed and executed, and the observations received. The exchange includes instances such as:

	John's question: “is Sally's location cluttered?”
	Robot's answer: “Yes.”
	When asked, the robot provides an explanation for this decision: “Sally is in her office. Objects detected are Sally's chair, desk, and computer, and a cup, a large box, and a sofa. The room is cluttered because the cup, large box, and sofa are not usually in that room.”

The RA domain was also used to evaluate the effects of axiom learning. There were four employees in offices in the simulated scenario, as shown in Figure 7, and the robot was asked to find particular individuals and deliver particular messages to them. Employees are initially expected to be in their assigned workplace (i.e., their office), and spend most of their time in these offices, unless this default knowledge has been negated by other knowledge or observations. This information is encoded as follows:

[image: Text in a code snippet states a logical rule: `holds(loc(P, L), 0) ← not default_negated(P, L), work_place(P, L)`, indicating a condition where a location holds if certain negation and workplace criteria are met.]

where work_place(P, L) specifies the default location of each person, and default_negated(P, L) is used to encode that a particular person may not be in their default location. These exceptions to the defaults can be encoded as follows:

[image: Text displaying a logical rule: "default_negated(P, L) ← obs(loc(P, L1), true, I), L ≠ L1 (11a)."]

[image: Text snippet showing a logical statement: "default_negated(P, L) ← obs(loc(P, L), false, I)." This indicates a logical rule where default negation is applied if observation is false.]

Statement 11(a) implies that the default assumption should be ignored if the person in question is observed to be in a location other than their workplace, and Statement 11(b) implies that a default assumption should be ignored if the corresponding person is not observed in their workplace. Including such default knowledge (and exceptions) in the reasoning process allows the robot to compute better plans and execute the plans more efficiently, e.g., when trying to deliver a message to a particular person. However, this knowledge may not be known in advance, the existing knowledge may be inaccurate or change with time (e.g., humans can move between the different places), or the observations may be incorrect. Our axiom learning approach was used in this domain to acquire previously unknown information about the default location of people and exceptions to these defaults. In all the trials, the simulated robot was able to learn the previously unknown axioms.

We then conducted 100 paired trials to explore the effects of the learned axioms on planning, with the corresponding results summarized in Table 1. In each trial, we randomly chose a particular goal and initial conditions, and measured planning performance before and after the previously unknown axioms had been learned and used for reasoning. Since the initial conditions are chosen randomly, the object locations, the initial location of the robot, and the goal, may vary significantly between trials. Under these circumstances, it is not meaningful to average the results obtained in the individual trials for performance measures such as planning time and execution time. Instead, the results obtained without including the learned axioms were computed as a ratio of the results obtained after including the learned axioms; the numbers reported in Table 1 are the average of these computed ratios. Before axiom learning, the robot often explored an incorrect location (for a person) based on other considerations (e.g., distance to the room) and ended up having to replan. After the previously unknown axioms were included in the reasoning process, the robot went straight to the message recipient's most likely location, which also happened to be the actual location of the recipient in many trials. As a result, we observe a (statistically) significant improvement in planning performance after the learned axioms are used for reasoning. Note that in the absence of the learned axioms, the robot computes four times as many plans taking six times as much time in any given trial (on average) as when the learned axioms are included in reasoning. Even the time taken to compute each plan (with potentially multiple such plans computed in each trial) is significantly higher in the absence of the learned axioms. This is because the learned axioms enable the robot to eliminate irrelevant paths in the transition diagram from further consideration. In a similar manner, reasoning with intentional actions enables the robot to significantly reduce the plan execution time by terminating or revising existing plans when appropriate, especially in the context of unexpected successes and failures. These results provide evidence in support of hypothesis H4.


Table 1. Planning performance in a scenario in the RA domain (see Figure 7) before and after axiom learning.

[image: Table comparing axiom learning before and after with metrics like plans, actions, execution, and planning time per trial. Before: 4 plans, 2.3 actions, 1.6 execution time, 6 planning time per trial, and 1.6 per plan. After: 1 for all metrics. Results show reduced plans, actions, and times when reasoning with previously unknown axioms.]

Finally, we conducted some initial proof of concept studies exploring the use of our architecture on physical robots. We considered a robot collaborating with a human to jointly describe structures of blocks on a tabletop (similar to the SS domain described in this paper). We also considered a mobile robot finding and moving objects to desired locations in an indoor domain (similar to the RA domain). These initial experiments provided some promising outcomes. The robot was able to provide answers to explanatory questions, compute and execute plans to achieve goals, and learn previously unknown constraints. In the future, we will conduct a detailed experimental analysis on robots in different domains.



4.5. Computational Effort

In addition to the improvement in accuracy of classification and VQA, we also explored the reduction in computational effort provided by our architecture in comparison with the baselines. Measuring this time quantitatively is challenging because it depends on various factors such as the task being performed (e.g., classification, VQA), the knowledge encoded in the knowledge base, the size and order of samples in the training set, and the parameters of the deep networks. However, we were able to gain the following insights.

The computation time includes the training time and the testing (i.e., execution) time, and we first considered the training time. Depending on the task being performed (e.g., classification, VQA, and/or planning), this time includes the time taken to encode and draw inferences from the knowledge base, process queries and construct answers, and train the deep network models. Encoding the incomplete domain knowledge is a one-time exercise for any given domain. The time taken to reason with this knowledge, and the time taken to process queries and construct answers, are negligible in comparison with the time taken to learn the deep network models. Also, the use of CNNs to extract features from images is common to both our architecture and the baselines, and these networks (for the most part) do not need to be retrained multiple times for any given domain. The key difference between our architecture and the baselines is observed in the context of answering explanatory questions about the scenes and the underlying classification problem. Recall that with our architecture, only examples that cannot be processed by ASP-based reasoning are processed by decision-trees and the RNNs for VQA. In our experimental trials, ≈ 10 − 20% of a training set is used (on average) to train the RNNs with our architecture, whereas the entire training set is used for training the RNNs with the baseline architectures. This difference often translates to an order of magnitude difference in the training time, e.g., a few minutes for each training set (in a particular domain) with our architecture compared with hours or days with the baseline architectures. Note that accuracy of our architecture is still much better than that of the baselines, e.g., see Figures 9, 11, i.e., any given accuracy is achieved using a much smaller number of training samples.

The execution time of our architecture is comparable with that of the baselines and is often less. Once the deep network models have been learned, using them for the different tasks does not take much time, e.g., a few seconds to process the input and provide a decision and/or the answer to a query. However, similar to the situation during training, only test samples that cannot be processed by ASP-based reasoning are processed by the decision trees and RNNs with our architecture. Also, since the deep networks in our architecture only need to disambiguate between a small(er) number of training examples, they often have a much simpler structure than the deep networks in the baseline architectures.

Note that in addition to classification and VQA, our architecture also supports explainable reasoning for planning and incremental learning of previously unknown constraints. Providing similar capabilities using just deep network architectures will (at the very least) require a large number of training examples of planning under different conditions; it is often not possible to provide such training examples in dynamic domains. We thus conclude that our architecture significantly reduces the computational effort while supporting a range of capabilities in comparison with the baseline architectures comprising deep networks.




5. DISCUSSION AND FUTURE WORK

Visual question answering (VQA) combines challenges in computer vision, natural language processing, and explainability in reasoning and learning. Explanatory descriptions of decisions help identify errors, and to design better algorithms and frameworks. In addition, it helps improve trust in the use of reasoning and learning systems in critical application domains. State of the art algorithms for VQA are based on deep networks and the corresponding learning algorithms. Given their focus on generalizing across different domains, these approaches are computationally expensive, require large training datasets, and make it difficult to provide explanatory descriptions of decisions. We instead focus on enabling reliable and efficient operation in any given domain in which a large number of labeled training examples may not be available. Inspired by research in cognitive systems, our architecture tightly couples representation, reasoning, and interactive learning, and exploits the complementary strengths of deep learning, non-monotonic logical reasoning with commonsense knowledge, and decision tree induction. Experimental results on datasets of real world and simulated images indicate that our architecture provides the following benefits in comparison with a baseline architecture for VQA based on deep networks:

	1. Better accuracy, improved sample efficiency, and reduced computational effort on classification problems when the training dataset is small, and comparable accuracy with larger datasets while still using only a subset of these samples for training;
	2. Ability to provide answers to explanatory questions about the scenes and the underlying decision making problems (e.g., classification, planning);
	3. Incremental learning of previously unknown domain constraints, whose use in reasoning improves the ability to answer explanatory questions; and
	4. Ability to adapt the complementary strengths of non-monotonic logical reasoning with commonsense domain knowledge, inductive learning, and deep learning, to address decision-making (e.g., planning) problems on a robot.

Our architecture opens up multiple directions of future work, which will address the limitations of existing work and significantly extend the architecture's capabilities. We discuss some of these extensions below:

1. The results reported in this paper are based on image datasets (simulated, real-world) chosen or constructed to mimic domains in which a large, labeled dataset is not readily available. One direction of future work is to explore the use of our architecture in other domains that provide datasets of increasing complexity, i.e., with a greater number of features and more complex explanatory questions. This exploration may require us to consider larger datasets, and to examine the trade-off between the size of the training dataset, the computational effort involved in processing such a dataset with many labeled examples, and the effort involved in encoding and reasoning with the relevant domain knowledge.

2. In our architecture, we have so far used variants of existing network structures as the deep network components (i.e., CNN, RNN). In the future, we will explore different deep network structures in our architecture, using the explanatory answers to further understand the internal representation of these network structures. Toward this objective, it would be particularly instructive to construct and explore deep networks and logic-based domain representations that provide similar behavior on a set of tasks, or provide different behavior when operating on the same dataset. As stated in the discussion in section 4.2, such an exploration may help us better understand (and improve) the design and use of deep network models for different applications.

3. This paper used VQA as a motivating problem to address key challenges in using deep networks in dynamic domains with limited labeled training examples. We also described the use of our architecture (with tightly-coupled reasoning and learning components) for planning on a simulated robot. In the future, we will combine this architecture with other architectures we have developed for knowledge representation, reasoning, and interactive learning in robotics (Sridharan and Meadows, 2018; Sridharan et al., 2019). The long-term goal will be to support explainable reasoning and learning on a physical robot collaborating with humans in complex domains.
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FOOTNOTES

	1In the RA domain discussed in section 3.5, decision making also includes planning and diagnostics.
	2An independent group of researchers has developed a general-purposed software to automatically translate any description in [image: Stylized, cursive letter "A" followed by a subscript "a".] to the corresponding CR-Prolog program; we expect this software to be made publicly available soon.
	3We limit ourselves to training sets that are not too large in order to match the focus of our paper.
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It has been proposed that machine learning techniques can benefit from symbolic representations and reasoning systems. We describe a method in which the two can be combined in a natural and direct way by use of hyperdimensional vectors and hyperdimensional computing. By using hashing neural networks to produce binary vector representations of images, we show how hyperdimensional vectors can be constructed such that vector-symbolic inference arises naturally out of their output. We design the Hyperdimensional Inference Layer (HIL) to facilitate this process and evaluate its performance compared to baseline hashing networks. In addition to this, we show that separate network outputs can directly be fused at the vector symbolic level within HILs to improve performance and robustness of the overall model. Furthermore, to the best of our knowledge, this is the first instance in which meaningful hyperdimensional representations of images are created on real data, while still maintaining hyperdimensionality.
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1. INTRODUCTION

Over the past decade, Machine Learning (ML) has made great strides in its capabilities to the point that many today cannot imagine solving complex, data-hungry tasks without its use. Indeed, as learning by example is a very necessary skill for an artificial general intelligence, it seems that ML's success bodes its necessity - in some form or other - in future AI systems. At the same time, end-to-end ML solutions suffer from several disadvantages; results are generally not interpretable or explainable from a human perspective, new data is difficult to absorb without significant retraining, and the amount of data/internalized knowledge required to train can be untenable for tasks that are easy for humans to solve. Symbolic reasoning solutions, on the other hand, can offer a solution to these problems.

One issue with symbolic reasoning is that symbols preferred by humans may not be easy to teach an AI to understand in human-like terms. Problems like these have led to the interesting solution of representing symbolic information as vectors embedded into high dimensional spaces, such as systems like word2vec (Mikolov et al., 2013) or GloVe (Pennington et al., 2014). These are often used to inform other symbolic or ML systems to give semantic context to information represented textually. In some systems, symbolic concepts themselves are represented entirely as high dimensional vectors that coexist in a common space-these are often referred to as Vector Symbolic Architectures (VSA). This notion is of particular interest, as many ML techniques produce such high dimensional vectors as a byproduct of their learning process or their operation.

In this article, we have focused on the notion of combining ML systems and VSA using high dimensional vectors directly. Specifically, we focused on the use of hyperdimensional vectors and Hyperdimensional Computing to achieve this (Kanerva, 2009). The properties of hyperdimensionality give rise to interesting ways to manipulate symbolic information so long as that information can be represented with long binary vectors. Moreover, this combination is achieved naturally, and is highly modifiable. Hyperdimensional computing can even improve the results of ML methods. Since hyperdimensional computing requires a method to convert data into long binary vectors, we focused mostly on hashing techniques for images, though the results are applicable for any ML approach that produces long binary vectors, either by directly producing them or by a special encoding. This allows a convenient method for converting images into hyperdimensional representations that naturally work with symbolic reasoning systems, such as fuzzy logic systems.

Consider Figure 1, which demonstrates how hyperdimensional vectors could be used to convert data driven systems of different modalities to a shared space of long binary vectors. Once mapped to such a space, where distance between mappings is meaningful, it is clear that the binary space is a purely symbolic representation of both the input to each data-driven system and their respective output. Once symbolically represented, operations performed in the hyperdimensional space can further map vectors to more complicated representations: in this particular instance, the symbolic concept of a dog. In a more complicated system, the entire hyperdimensional space can be overlayed by a knowledge graph, fuzzy logic system, VSA, or any other symbolic reasoning system. We largely focused on how to achieve this mapping from an external learning system to a binary space and, consequently, how to symbolically “fuse” different modalities together to get a better symbolic representation of a real-world, data-driven concept. Our experimental results indicate impressive improvement in terms of performance, when fusing the outputs of multiple data-driven models, at little to no computational cost. The structure of this fusing allows for more models to be added or removed as desired without requiring expensive computation or retraining.


[image: Diagram illustrating a learning system model. It includes an auditory learning system and a visual learning system, both connected to a 10k dimensional binary space representing a dog. Text examples related to dogs are shown in this space.]
FIGURE 1. Mapping different modalities of information to the same space of long binary vectors allows knowledge of the world to coexist and combine together symbolically as well. A dog may be seen and heard, recognized by two separate data-driven learning systems. The output of each, representing the presence of a dog, is mapped to a binary vector representing the current data. The closer this mapping is to a learned representation of all dogs, the more likely it is to be a dog. In the same space, linguistic knowledge of dogs can also be mapped to symbolic representations. Combining all three modalities by purely hyperdimensional computations gives a single symbolic representation of everything pertaining to the concept of dogs.


The remainder of this article is structured as follows. First, in section 2, we have provided necessary background information on hyperdimensional computation. Next, in section 3, we have discussed related work and results that are pertinent to this article. Then, in section 4, we have presented the architecture of a system that could achieve the desired functionality shown in Figure 1 and shown how it can be trained and used at testing time. Of particular importance is the notion of the Hyperdimensional Inference Layer, which can effectively fuse symbolic representations in the hyperdimensional space. In section 5, we have outlined an experiment to test how well such an architecture would work in practice. Notably, we have constrained ourselves to using image hashing networks and have shown that not only can our architecture effectively fuse the outputs of different networks together in the hyperdimensional space but also that the mere usage of hyperdimensional vectors as a memory mechanism can improve performance as well. Naturally, in section 6, we have shown the results of these experiments. Finally, in section 7, we have discussed our results and outlined the pros/cons of using hyperdimensional vectors to fuse learning systems together at a symbolic level as well as what future work is necessary.



2. BACKGROUND INFORMATION

We first covered some of the relevant properties of hyperdimensional vectors for comprehension, as discussed in Kanerva (2009). Hyperdimensionality arises in binary vectors of sufficiently long length, usually on the order of 10,000 bits. Given two random vectors a and b from Bn = {0, 1}n for large n, their overlap in bits has a high probability of being close to the expected value of n/2 with a standard deviation of [image: Square root of the fraction n over four.]. Therefore, two randomly selected vectors will overwhelmingly have a Hamming Distance of n/2; in this case, we can say the vectors are uncorrelated.

Two vectors a and b can be bound together by using the exclusive-or (XOR) operation, which we will represent with * symbol:

[image: Equation showing \( c = a \ast b \), labeled as equation (1).]

Trivially, given one of the vectors, say a, we can unbind c to get b:

[image: The equation shown is: \( a^\ast c = a^\ast (a^\ast b) = (a^\ast a)^\ast b = b \), labeled as equation 2.]

Suppose that a and b represent symbolic concepts; binding them with Equation (1) and unbinding with Equation (2) produces a new symbolic concept c that is deconstructed to its atomic symbols. Additionally, it is trivial that the Hamming Distance between two vectors is preserved when both are mapped by either another XOR with m or by a common permutation Π of bits:

[image: Magnitude of the cross product \( |a_m \times b_m| = |(a \times m) \times (b \times m)| = |a \times b| \). Equation (3).]

[image: Mathematical equation showing moduli operations: absolute value of the product of pi a and pi b equals pi of the product of a and b, equals absolute value of the product of a and b, labeled as equation four.]

For our purposes, permutation and XOR are used interchangeably as “multiplication” operations. In order to create a more sophisticated and structured vector, we required an “addition” operation. We primarily concerned ourselves with the “consensus sum,” where each bit of the resultant vector is set to be the bit value that appears more often in that component across the terms:

[image: Plus with subscript c of the set consisting of a sub one, a sub two, through a sub c equals a sub one plus a sub c plus a sub c, which equals a sub c. Equation five.]

where for a count z of 0's across the l terms:

[image: Equation showing \( a_{c}^{i} = \) 0 if \( z > 1/2 \), 1 if \( z < 1/2 \), and random if \( z = 1 \).]

However, if permutation is used for multiplication, it is valid to use XOR for addition. For either * or +c as the + operator, a sequence of symbolic information A = A1A2…Al can be represented as

[image: Mathematical formula with two equivalent expressions for \( a \). The first line shows a nested multiplication and addition: \( a = \Pi((\ldots(\Pi(a_1+a_2)+a_3)\ldots)+a_i) \). The second line presents an expanded form: \( a = \Pi^{i-1}a_1 + \Pi^{i-2}a_2 + \ldots + \Pi a_{i-1} + a_i \).]

where ai are vector representations of corresponding Ai and Π is a permutation that represents the sequence. When using XOR, subsquences can be removed, replaced, or extended by constructing them and XOR-ing with a.

Finally, a record r of fields f = [f1, f2, = …, fl], and their values v = [v1, v2, …, vl] can be constructed symbolically by binding each fi with its corresponding vi using Equation (1) and summing the result with Equation (5):

[image: Equation showing \( r = v^{f} = v_1^{*}f_1 + \ldots + v_i^{*}f_i + v_c^{*}f_c + v_j^{*}f_j \) labeled as equation eight.]

Given a value vx, a record r can be probed by performing an XOR and finding the fj with the smallest Hamming Distance, thus checking the existence of a field:

[image: Mathematical expression showing the minimum over j of the absolute value of the product of vector v sub x and r raised to f sub j, labeled as equation nine.]

A similar approach can be done to approximately recover the value of a field:

[image: Mathematical expression showing the minimum over \( j \) of the absolute value of \( \left( f_x \ast r \right) \ast v_j \), equation number ten.]

When the bits of a probe do not correlate with a term in r, the term collapses into a noise vector, whereas the term that does correlate will produce a signal that approximately undoes the XOR binding.



3. RELATED WORK

Our work is primarily an extension of HAP (Mitrokhin et al., 2019) in which drones are trained to predict their egomotion in 3-D space. A neuromorphic camera's events are converted into a time image slice of motion, represented as a sparse RGB image, whose pixel data is symbolically represented with a structured hyperdimensional vector. Raw RGB values are semantically embedded into the hyperdimensional space such that each color component is closer to its nearest values than further values. Possible velocity values are finely binned and likewise semantically embedded. A structured record m is constructed to associate the egomotion in one component velocity to another record containing all time image slices that fall into the same velocity bin, with Equation (8), at training time. Egomotion prediction is achieved purely by these memory units m via XORing a novel time slice image with m and probing the possible velocities to find the closest match. Figure 2 demonstrates this process.


[image: Diagram illustrating a process with an input leading to a learned outcome, shown by stacked rectangles, plus and multiplication symbols. The result is derived from matching velocity with learned examples.]
FIGURE 2. Hyperdimensional memory mechanism in HAP (Mitrokhin et al., 2019). A memory unit m consists of velocity bins as fields that are bound to another record of summed vector representations of time image slices from training. An input image is converted to its hyperdimensional vector representation and XOR'd with m. If it matches approximately with one of the image slice sums, the result contains the matching velocity representation with some noise.


This method works because of the sparseness of pixel data in time image slices. The collection of time slices that are associated to a velocity bin average out to be representative of the motion changes the neuromorphic camera experienced. Surprisingly, this is sufficient to achieve neural-network-like performance, with a tiny fraction of memory, training samples, computation power, and training time of a neural approach. However, it is completely interpretable, can be trained online. and is effectively a symbolic reasoning system. Unfortunately, regular image data is too dense in information for this approach to work as implemented in HAP (Mitrokhin et al., 2019).

There exist other methods that have used hyperdimensional techniques to perform recognition (Imani et al., 2017) and classification (Moon et al., 2013; Rahimi et al., 2016; Imani et al., 2018; Kleyko et al., 2018). As with HAP (Mitrokhin et al., 2019), there have been other attempts to perform feature and decision fusion (Jimenez et al., 1999) or paradigms that can operate with minuscule amounts of resources (Rahimi et al., 2017). We differ from these approaches in that we try to assume as little about the model as possible except that it would be used in some form of classification for information that can be represented symbolically and modified with additional classifiers. Our results are a benchmark to see how much a hyperdimensional approach could facilitate a direct connection between ML systems and symbolic reasoning. On the solely symbolic representation and reasoning side, there exists relevant work on using cellular automata based hyperdimensional computing (Yilmaz, 2015). Some formulations based on real-valued vectors can also exhibit similar properties to long binary vectors so far as compositionality and decompositionality is concerned (Summers-Stay et al., 2018).



4. ARCHITECTURE

Extending the model from HAP (Mitrokhin et al., 2019), the input vector is treated as any output from an ML system and the output velocity bins are now a symbolic representation of the output classes of the network. These would then feed in to a larger VSA system, that could feasibly be composed of other ML systems. Suppose that we have a pre-trained ML system, such as a Hashing Network, which can produce binary vectors as output to represent images.


4.1. Training the Hyperdimensional Inference Layer

For a classification task, during training time, training images are hashed into binary vector representations. These are aggregated with the consensus sum operation in Equation (5) across their corresponding gold-standard classes, and a random basis vector meant to symbolically represent the correct class is bound to the aggregate with Equation (1). The resultant vector now represents a memory containing all training instances observed but that are represented symbolically with appropriated hashed binary vectors that are projected into a hyperdimensional binary space by randomly permuting and assembling the hash vector. Figure 3 shows this process when training to classify a “dog” in an image. This dog class is aggregated into a larger vector, once again with the consensus sum operation in Equation (5), to produce a hyperdimensional vector containing similar memory vectors across the other classes. This is referred to as the Hyperdimensional Inference Layer (HIL), which then infers the correct class at testing time for a novel image.


[image: Diagram illustrating a process where training images are processed by a pretrained hash network to generate hash values, which are aggregated. These aggregated values are combined with a symbolic representation, shown as "Dog," before interfacing with a hyperdimensional inference layer. This layer categorizes outputs into classes like "Deer," "Dog," "Frog," and "Horse." Arrows indicate the flow of data.]
FIGURE 3. The training pipeline for a particular class of “dog.” First, training images are hashed into binary vectors using a pre-trained network. The vectors for each image are then projected to a hyperdimensional length by randomly repeating the bits consistently. Each vector is aggregated by the consensus sum operation into a single vector containing all training instances for that class. A symbolic representation of the class, called “Dog” in this example, as another hyperdimensional vector, is bound to the aggregated vector. This forms the association between representative images and the class itself. Once these inference vectors are computed for each class, they are aggregated by consensus sum into the Hyperdimensional Inference Layer, which then performs classification at testing time.




4.2. Testing the Hyperdimensional Inference Layer

Once training is complete, classification of a novel image is relatively straightforward. An image is converted to a binary vector by the pre-trained hashing network. This vector is then projected into a hyperdimensional vector in the same manner as during training. Finally, the XOR between this vector and the HIL is computed. The Hamming Distance between the resultant vector and each of the class representations is measured. The class vector with the smallest Hamming Distance is selected as the correct classification. Figure 4 shows this process in action.


[image: Diagram illustrating a machine learning process. Input images are fed into a hashing network labeled "H," producing a hyperdimensional hashed vector. This vector is processed by a hyperdimensional inference layer with graphical connections leading to the label "Dog," indicating the best matching class.]
FIGURE 4. The pipeline for testing the Hyperdimensional Inference Layer. Images are presented to the hashing network H, which are then hashed into binary vectors. As during training, these are projected into hyperdimensional vectors. The result is then XOR'd with the HIL. The XOR distributes across the terms in the HIL and creates noise for terms corresponding to incorrect classes. Only the correct class will deviate from the noise and will be detected as the best matching class by computing the Hamming Distance between the result of the XOR and every vector representation of the classes; the class with the smallest Hamming Distance is selected as the correct classification.




4.3. Consensus With Multiple Models

One advantage of the hyperdimensional architecture for inference is how it can be easily manipulated. Of particular interest is when there are multiple models that can produce features in the form of hyperdimensional vectors for an input. Suppose we had several models, each with their own advantages. We can fuse their output together to form a consensus system that will consider each network's feature output before classification. We simply repeat the same method as we did for our classes but with symbolic identifiers for which model aggregated which data. Prediction is done as before, probing each model's output with XOR and finding the closest matching network vector. Figure 5 demonstrates how this pipeline would work.


[image: Diagram illustrating a neural network process with three components: DQN, DCH, and DTQ. Inputs from an image flow into each component, which generate outputs that are combined with symbolic identifiers for each hashing network using operations like addition and multiplication. Arrows depict the flow and interaction among components.]
FIGURE 5. Given multiple ML models, the HIL of each can be fused together by repeating the same training procedure. Thus, given an image, each hashing network converts it to a different binary vector, which is projected into hyperdimensional lengths. These are bound with symbolic vectors identifying each individual hashing network and aggregated via consensus sum. The result allows us to perform inference across multiple models at testing time.





5. MATERIALS AND METHODS

The methodology, external systems, and datasets used for testing were as follows.


5.1. Methodology

To test how well hyperdimensional vectors can facilitate the mapping from the input/output of an ML system to a symbolic system, we required a model problem where it was possible to convert an ML result into hyperdimensional vectors. We studied the typical image classification problem but with hashing networks, as they directly convert raw images into binary vectors of variable length, which are used for classification and ranking based on Hamming Distance. This is simply done for convenience, as most neural methods do not product binary vectors of such large length that are also rankable, and we did not want other methods for embedding real numbered vectors into binary spaces to affect the results. We utilized the DeepHash1 library, which incorporates recent deep hashing techniques for image classification and ranking (Cao et al., 2016, 2017, 2018; Zhu et al., 2016; Liu et al., 2018). Our goal wsa to show that an added layer of inference to the outputs of these methods with hyperdimensional computing allows us to convert their results into common length, hyperdimensional vectors, without losing performance. In fact, as we have seen, performance can even increase.

Two separate experiments were performed to evaluate how well a structure like the one shown in Figure 1 would work in practice. Again, we limited ourselves to visual learning systems for simplicity, though there is no reason for such a limitation in practice.

	1. We first tested how well a hyperdimensional representation of a given hashing network's output can work with a HIL. That is, does the inclusion of a HIL (and by extension, hyperdimensional representations) obfuscate the classification, thereby worsening performance, or does it perhaps improve the performance? In theory, the system should not do worse. However, the nature of HIL's structure may enable a better memorization of training examples. We trained individual Hash Networks to perform image classification and then compared their performance with and without a HIL. Performance is tracked by comparing the F1 score for classification to the number of training iterations for the Hash network or epochs. We were also interested in how the HIL affects the F1 score as the Hamming Distance threshold for similarity increases.
	2. Additionally, we studied whether the HIL could improve the overall performance of our Hash Networks if we fused them at the symbolic level of their outputs, using a HIL, as shown in Figure 5. We designed an experiment where all networks used in our first experiment are combined together by fusing their individual HIL into a new HIL. The idea asiws that, individually, these Hash Networks have different strengths and weaknesses based on their formulation. When fused into a HIL, each contributes toward the overall classification result, allowing the best matching classification across all models simultaneously.



5.2. External Systems

We used three of the image hashing networks from DeepHash in our experiments. In the following sections, we have described and outlined each one individually. In general, these networks use features provided by another system and compute hashes based on features extracted from the images into compact codes for image retrieval and classification. Additionally, we built our hyperdimensional inference layer by using the open source framework pyhdc2 library, as used in HAP (Mitrokhin et al., 2019), which contains basic, but very efficiently implemented, operations for hyperdimensional computing and representing hyperdimensional vectors. Finally, AlexNet (Krizhevsky et al., 2012) features pre-trained on ImageNet (Deng et al., 2009) are used in the DeepHash pipeline and are available for download from the GitHub repository.


5.2.1. Deep Quantization Network (DQN)

The Deep Quantization Network (DQN) is a hashing-by-quantization network used for efficient image retrieval (Cao et al., 2016). The system supervises its hashing and allows statistical minimization of quantization errors from hand-crafted or machine learned features in a step separate from what traditional quantized hashing networks did prior. DQN formally controls this quantization error. The system is composed of four main subsystems:

	1. Multiple convolution-pooling layers that capture deep image representations.
	2. A fully connected layer that bottlenecks deep representations and projects them into an optimal lower dimensional representation for hashing.
	3. A pairwise cosine layer for learning similarity preservation.
	4. The quantization loss product that controls the quality of the hash and quantizes the bottleneck representations.



5.2.2. Deep Cauchy Hashing Network (DCH)

The Deep Cauchy Hashing Network (DCH) seeks to improve hash quality by penalizing similar image pairs having a Hamming Distance bigger than the radius specified by the hashing network (Cao et al., 2018). The authors argue that hashing networks tend to concentrate related images within a specified Hamming ball due to mis-specified loss function. By penalizing the network for when this happens with a pairwise cross-entropy loss based on a Cauchy distribution, the rankings become stronger.



5.2.3. Deep Triplet Quantization Network (DTQ)

The Deep Triplet Quantization Network (DTQ) further improves hashing quality by incorporating similarity triplets into the learning pipeline. By a new triplet selection approach, Group Hard, triplets are selected randomly from each image group that are deemed to be “hard.” Binary codes are further compacted by use of triplet quantization with weak orthogonality at training time.




5.3. Datasets

Evaluations of the hashing networks by themselves and with the hyperdimensional inference layer are performed on the CIFAR-10 standard dataset (Krizhevsky and Hinton, 2009) and the NUSWIDE_81 dataset (Chua et al., 2009), which contains tagged Flickr images with 81 concepts for classification.




6. RESULTS

In the following sections, we present the results of our evaluation of the hyperdimensional inference layers in both experiments.


6.1. Hyperdimensional Inference Layer Results

To test the capabilities of the hyperdimensional inference layers in preserving the output of ML models when transformed into hyperdimensional vectors, we compared the performance of each hashing network individually vs. the performance when the hyperdimensional inference layer is added to the hashing network, as shown in Figures 3, 4.


6.1.1. Results for CIFAR-10

Figure 6 compares the F1 scores of each hashing network with and without the HIL on CIFAR-10. The left column shows performance across iterations of network training (DTQ shows epochs instead). The threshold for Hamming Distance to search in is set to 2 (out of 128 bit vectors) for the baseline networks. For HIL results, as the vectors are hyperdimensional, the threshold is set to be proportionally that many bits out of 8,000. In all cases, the HIL improves performance greatly and with less iterations/epochs. In the right column, the F1 score is shown for successively more lax Hamming Distances in both methods, taking the best matching vector in a Hamming ball of that size. In the case of hyperdimensional vectors for the HIL, the size is once again proportional to 8,000 bit long vectors. For each baseline hashing network, there is clearly an optimal Hamming Distance to use. This is not the case for HIL, where it plateaus in each case for any distance smaller than the peak. As the number of bits increase, the performance quickly degrades to be more in line with the hashing network.
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FIGURE 6. (A) F1 score for classification on the CIFAR-10 dataset with DCH with and without the HIL, as a function of the number of iterations of training of the DCH network. (B) F1 score for classification on the CIFAR-10 dataset with DCH with and without the HIL, as a function of the Hamming Distance for classification. The networks are fully trained to the end point shown in subplot (A). (C) F1 score for classification on the CIFAR-10 dataset with DTQ with and without the HIL, as a function of the number of iterations of training of the DTQ network. (D) F1 score for classification on the CIFAR-10 dataset with DTQ with and without the HIL, as a function of the Hamming Distance for classification. The networks are fully trained to the end point shown in subplot (C). (E) F1 score for classification on the CIFAR-10 dataset with DQN with and without the HIL, as a function of the number of iterations of training of the DQN network. (F) F1 score for classification on the CIFAR-10 dataset with DQN with and without the HIL, as a function of the Hamming Distance for classification. The networks are fully trained to the end point shown in subplot (E). Baseline networks are shown in blue, while the same network with a HIL appended to the end is shown in yellow. Note that in the left column of subplots, the Hamming Distance for classification is set to 2 for inlier/outlier count. The left column of results show that the HIL boosts the speed at which the network trains, achieving a higher performance in far fewer iterations of expensive network training. As the HIL adds negligible overhead in memory/computation time, there is no downside to using a HIL. The right column of results show that the HIL prevents the need for searching for an optimal Hamming Distance threshold to classify with, as it supercedes peak performance of the network right away for the lowest possible distance thresholds. After peak performance of the baseline network, larger Hamming Distance thresholds eventually decay to the performance of the baseline.




6.1.2. Results for NUSWIDE-81

Figure 7 compares the F1 scores of each hashing network with and without the HIL on NUSWIDE-81. As with CIFAR-10, the left column shows the performance of each hashing network across iterations of network training. The threshold for Hamming Distance is once again set to 2 bits out of 128 for the baseline networks. For HIL, the distance is proportionally scaled to hyperdimensional lengths in 8,000. Once again, in all cases the HIL greatly improves the F1 score. In the right column, the F1 score is shown for successively more lax Hamming Distances in both methods, retrieving the best match in the Hamming ball of that size. In the case of hyperdimensional vectors, the distances are scaled up to the appropriate values. For each baseline hashing network, there is clearly an optimal Hamming Distance to use, though it is much less pronounced with HIL. In all cases, it is safer to use a smaller Hamming Distance rather than a larger one, except near the optimal values.
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FIGURE 7. (A) F1 score for classification on the NUSWIDE-81 dataset with DCH with and without the HIL, as a function of the number of iterations of training of the DCH network. (B) F1 score for classification on the NUSWIDE-81 dataset with DCH with and without the HIL, as a function of the Hamming Distance for classification. The networks are fully trained to the end point shown in subplot (A). (C) F1 score for classification on the NUSWIDE-81 dataset with DQN with and without the HIL, as a function of the number of iterations of training of the DQN network. (D) F1 score for classification on the NUSWIDE-81 dataset with DQN with and without the HIL, as a function of the Hamming Distance for classification. The networks are fully trained to the end point shown in subplot (C). Baseline networks are shown in blue, while the same network with a HIL appended to the end is shown in yellow. Note that in the left column of subplots, the Hamming Distance for classification is set to 2 for inlier/outlier count. Results for DTQ are omitted for incompatibility with NUWSIDE-81. We largely get the same results in the left column as with CIFAR-10, showing an improvement in performance versus training iterations when an HIL is appended to the end of the baseline network, which adds negligible memory/computation costs. In the right column of results, the HIL differs from CIFAR-10's results in that there is a peak to the performance of the HIL enhanced network. This is likely due to NUSWIDE-81 being designed for the task of web image annotation and retrieval.





6.2. Results for the Consensus Architecture

We tested the capability of hyperdimensional computing to fuse the results of different models at the vector-symbolic level. This setup allows to compensate for the shortcomings of the individual models and give a more robust result - a desirable property of hyperdimensional representations. We tested the consensus pipeline on all three hashing networks and on CIFAR-10's full dataset, with fully trained hashing networks and HILs for each. The F1 scored increased to 0.79, ~10% more than the scores any of the models achieved individually with HIL, as seen in Figure 6. This confirms our suspicion that direct fusion at the symbolic level gives far more robust results.



6.3. Summary of Experimental Results

Our experiments indicate no performance downside to adding an HIL to an existing, Deep Hash Network. Indeed, it seems that the HIL enables better results with fewer epochs and even improves the F1 score. Furthermore, fusion of multiple networks into a single HIL increased the F1 score greatly above any of the individual networks, even with an HIL. Since each Hash Network formulation differs significantly from each other, one network might be better suited at hashing particular information. We surmise the improvement of performance is because the robustness of the HIL allows each network to naturally contribute its classification to the overall classification decision in a consensus-like fashion.

It should be noted that hyperdimensional computations are very fast. The pyhdc package is designed to perform these computations very efficiently. As a result, the addition of the HIL, in either experiment, is negligible in terms of extra computations and execution time. This is in line with previous results shown in HAP (Mitrokhin et al., 2019), where in a matter of milliseconds the HIL can be trained, retrained from scratch, and even perform classification, on a standard CPU processor. In our results, the HIL also incurred milliseconds of additional runtime. This further indicates that there is virtually no downside to adopting the hyperdimensional approach presented in our architecture.




7. DISCUSSION

Hyperdimensional computing has many attractive properties. Our results confirm the notion that hyperdimensional representations can be useful in VSA and symbolic reasoning systems. It is also important to note that hyperdimensional vectors have not yet been effectively used to represent dense RGB images in prior work. This potentially opens up new avenues for combining symbolic reasoning and ML methods. Hyperdimensional representations produced by converting the output of deep hashing networks into symbolic inference structures allows the use of fuzzy logic systems, of which the use of HILs in our experiments are a simple example of. Since HIL structures can be fused across different modalities, this increases the robustness and interpretability of the inference process. We have shown the potential advantages of multi-modal fusion in the HIL by combining three separately trained, differently constructed deep hashing networks without the need of any additional training or oversight, improving the overall result. This is despite the fact that each model is successively more state-of-the-art, meaning that there is no catastrophic loss in integrating newer models into the inference system as more are developed.

Although the results so far are quite interesting and point to a potential future of hyperdimensional computing in the marriage of ML and symbolic reasoning systems, there are still many drawbacks to the approach we have presented. First of all, it would be preferable to use non-hashing (or perhaps even non-supervised) networks to bootstrap our system, as these tend to perform much better than hashing methods. However, this would require the ability to convert embeddings in a more sophisticated neural system into corresponding binary vectors. Special quantization methods may need to be developed to facilitate this in future work in order to fully take advantage of hyperdimensional representations.

It is clear that more work is required to fully integrate hyperdimensional representations into ML systems. Specifically, these need to be more compliant to deep representations of features. There are many avenues of future research that can improve upon these limitations, especially in regard to special conversion between deep features in different modalities, such as text, and images. On the symbolic reasoning side, our results do not produce a full-scale, fully realized symbolic system. For example, Figure 1 would indicate that, given the high likelihood of detection of a dog, the system could reason that there is a high likelihood that what is currently observed likes to bark, has four legs, and loves to wag its tail. However, it is not clear how this linguistic knowledge would be incorporated into the associated hyperdimensional space. One can imagine knowledge graph like structures overlaying the hyperdimensional space, or perhaps more sophisticated structures, but it is not readily clear what the best formulation is.

Furthermore, we must point out some of the drawbacks of using hyperdimensional representations to facilitate a connection between data-driven systems and symbolic reasoning systems:

	• We have the necessary requirement that data-driven systems can be readily converted into long binary vectors. This is a severe restriction, as most state-of-the-art methods naturally use real-valued computations. Most neural methods produce samples on complex manifolds that may be difficult to effectively map to hyperdimensional vectors. Thus, there is a need for a general technique to project real-valued embeddings from data-driven systems to binary spaces. As a result, real-value hyperdimensional vectors may be better suited to certain tasks (Summers-Stay et al., 2018; Sutor et al., 2019).
	• Along the same lines, many modern-day symbolic reasoning systems also rely on real-value computations or representations, especially when data driven. New methods would have to be developed to work with more sophisticated systems.
	• While hyperdimensional vector representations of different modalities can be embedded effectively into a common space, they may also require a nearest neighbor lookup when looking for similar, known concepts. This may become expensive when the hyperdimensional space contain many concepts. In order to maintain that data of a particular modality is closer to other examples of that modality, it may be necessary to adopt an approach that facilitates this, such as in Sutor et al. (2018).
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At present we are witnessing a tremendous interest in Artificial Intelligence (AI), particularly in Deep Learning (DL)/Deep Neural Networks (DNNs). One of the reasons appears to be the unmatched performance achieved by such systems. This has resulted in an enormous hope on such techniques and often these are viewed as all—cure solutions. But most of these systems cannot explain why a particular decision is made (black box) and sometimes miserably fail in cases where other systems would not. Consequently, in critical applications such as healthcare and defense practitioners do not like to trust such systems. Although an AI system is often designed taking inspiration from the brain, there is not much attempt to exploit cues from the brain in true sense. In our opinion, to realize intelligent systems with human like reasoning ability, we need to exploit knowledge from the brain science. Here we discuss a few findings in brain science that may help designing intelligent systems. We explain the relevance of transparency, explainability, learning from a few examples, and the trustworthiness of an AI system. We also discuss a few ways that may help to achieve these attributes in a learning system.
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1. INTRODUCTION

In this article, we focus on a few issues that need attention to realize AI systems with human-like cognitive and reasoning abilities. For some of these issues we are not in a position to suggest precise solutions, but in some cases we shall provide cues or pointers to areas where we may look for to find possible solutions.


1.1. Learning and Intelligence

We begin with a definition of learning. Oxford dictionary1 defines learning as “The acquisition of knowledge or skills through study, experience, or being taught.” It defines intelligence as “The ability to acquire and apply knowledge and skills.” The Cambridge dictionary2, on the other hand, defines intelligence as “the ability to learn, understand, and make judgments or have opinions that are based on reason.”

Thus, learning and intelligence are intimately related. In our view, judicious applications of the knowledge learnt lead to intelligence. Learning, in the context of machine, raises several fundamental questions: What to learn (extraction of knowledge), how to learn (representation), and how to use the same. Today to an AI researcher, learning usually means extracting knowledge from data (explicitly or implicitly) and then applying that knowledge to make decisions. Here the word “data” has been used in a broader sense, where data can come from observations/measurements or from human beings. Some desirable attributes of an intelligent system are: ability to learn (from data/experience), understand, make judgment, reason, and apply what has been learnt to unknown situations. It should also know when to refrain from making a judgement.



1.2. Deep Learning and Artificial Intelligence

At present Deep Learning (DL) (LeCun et al., 1998; Krizhevsky et al., 2012) is probably the most successful vehicle for designing AI systems. It is fantastic in learning from data and making decisions but it is almost like a black box - no transparency. We shall see that these systems may fail miserably in cases where other systems possibly would not.

But what is deep learning? Before defining DL, it is probably natural to introduce what Machine Learning is. Arthur Samuel in 1959 coined the term “Machine Learning” (Samuel, 1959) in the context of a machine playing the game of Checkers. He wrote a checker program that could play against a human player as well as it could play against itself. Consequently, the program could play many games in a short time and by this process could learn the game better than its opposition. This gives us some idea of what machine learning is. More recently, Mitchell in his book “Machine Learning” (Mitchell, 1997) gave a formal definition of (Machine) Learning: “A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.” In the checker program of Samuel (1959), T is playing of checkers, P is percentage of times the ML system wins, E is either playing with itself or with a human, which generates a sequence of moves (data or experience). Similarly, for a machine learning system to classify images we can have: T as the task of classification, P as the misclassification error or square loss or cross-entropic loss, and E as a set of labeled image data. Equivalently, we can say that an ML system finds a function in a given class of functions (defined by the associated learning model such as neural network, a decision tree, a polynomial regression function) to fulfill a given purpose (say the task of classification) as best as it can (typically optimizing some criterion) based on experience (typically using a given set of training data). With this introduction to ML, we get back to Deep Learning. The basic of idea of DL is to learn complex concepts in terms of a hierarchy of concepts, where each concept in the hierarchy is defined in terms of its immediate lower level simpler concepts. The hierarchical organization allows representation of complicated concepts in terms of simpler concepts. If this hierarchical architecture is represented using a graph, the graph would be deep and hence it is called deep learning (Goodfellow et al., 2016). At present most DL systems are primarily based on multilayered neural network architectures. The way a Deep Neural Network (DNN)/ Convolutional Neural Network (CNN) works does not seem to have a strong relation to the way a human brain works. We shall discuss this issue later. However, DNN seems to enjoy a few properties: a large neural network with many layers, uses hierarchies of representation/abstraction, and gets better results with bigger models and bigger training data. Often such models have more free parameters than would be required to solve a given problem. This may lead to overfitting/memorization resulting in poor generalization. In order to increase the robustness of the system and to achieve better generalization to unseen data, various regularization techniques such as norm (L1 or L2 or both) of the weight parameters, dataset augmentation adding noise, drop outs, early stopping, and parameter sharing are used (Goodfellow et al., 2016).



1.3. Are We on the Right Track?

After the success of deep learning in many areas like image recognition and games (defeating Se-dol Lee, the best human GO player, by Google DeepMind's AlphaGo), often deep learning is viewed as an all-cure solution. Sometimes we get an impression that today AI is almost synonymous to DL. A Google search with ‘Neural Networks” retrieves about 30,800,000 results (April 17, 2020), “Artificial Intelligence” brings About 127,000,000 results, while “Deep Learning” brings About 39,800,000 results. It clearly reveals the rapid growth of interest in deep learning. It is worth noting that all pages with “neural networks” may not be related to artificial neural networks. It cannot be questioned that DL is one of the most successful tools to realize AI systems in some specific areas. Although DNNs have demonstrated unbeatable performance in some applications, DDNs are found to recognize images completely “unrecognizable to humans” as human recognizable objects with a very high confidence (Nguyen et al., 2015). At the other extreme, with very minor changes in an image that are imperceptible to human eyes, DNNs are found to mislabel the image (Papernot et al., 2017). It raises a big question. Why? A DNN or any other intelligent system usually optimizes some objective functions with respect to a set of learnable parameters. Such a system usually can make correct decisions. But for DNNs (and many others) neither the architecture nor the decision making rule can help to explain the rational for such a decision in terms of human understandable knowledge. Although we know precisely the computation done at different nodes, the system is not transparent because we do not know the semantics associated with each node or a group of nodes or the presence of causal relations, if any, between the nodes. It behaves like a black box. Moreover, while designing a DNN often the principle of Minimum Description Length (MDL) is not given its due importance, as a result a system may have more degrees of freedom than what is required, which may lead to inappropriate generalization. Given a finite data set, the MDL principle suggests to pick the most compact description (parameterization) of the model as well as the description of the data under that model. However, the current deep networks are far from that. For example, the VGG 19 network has about 150 M parameters (Canziani et al., 2016). One of the possible reasons is that small networks cannot be trained with the present available techniques to achieve similar performance for large scale classification problems. However, large number of free parameters increases the expressibility of such networks and they can easily memorize data. For example, Zhang et al. (2017) demonstrated that networks like Inception and Alexnet can learn/memorize almost perfectly the CIFAR10 dataset with random permutation of labels. Of course, the test accuracy is no better than random chance. Another related important issue is that these systems are not equipped to deal with the open world nature of most decision making problems. In order to realize a transparent, accurate, and trustworthy system with human like reasoning abilities, in our view, there are few areas that we may need to focus on. Next we discuss a few such issues/areas.




2. WHAT'S NEXT?


2.1. Look Into the Brain

The human brain is one of the most complex systems in the known universe. In spite of tremendous efforts, our understanding about how brain learns is quite limited, yet a good amount is known. In order to have a learning system with reasoning abilities like a human being, in our view, we should try to exploit our knowledge from the brain science. The more we can mimic the brain, the higher is the chance that we shall be able to realize human-like attributes in an AI system. For example, functional imaging studies with cellular resolution (in vivo two-photon calcium imaging) revealed that in area 18 of cat visual cortex there are extremely ordered groups of neurons that respond to visual stimuli of a particular orientation. Neurons having opposite directional preferences for visual stimuli were separated with a high spatial precision in three dimension (Ohki et al., 2005). If we could explicitly incorporate such features in our computational NN, it would behave a little more like a biological system. To design a learning system, we can generalize this idea assuming that for different types of visual objects different clusters of neurons will respond. In this case, the network will be more transparent than the a conventional MLP. However, to the best of our knowledge, computational neural network models including DNNs do not exploit this, although, the response of some neuron or a group of neurons may be directionally oriented due to the training. In fact, it is possible to integrate the principle of self-organizing map along with a multilayered neural network so that different spatial clusters of neurons get activated by instances from different classes (Bandyopadhyay, 2018).

Usually the success of a class of DNNs is attributed to the unsupervised feature extraction, i.e., on the representation and abstraction of raw data. In a convolutional neural network (CNN), actually we compute cross-correlation and use max-pooling to achieve reduction of information with a hope to realize useful abstractions. There is no explicit cause-effect relation. But does it have anything to do with information processing in the brain of living beings? There are evidences supporting a complex and hierarchical feature representation along the ventral visual stream (DiCarlo et al., 2012; Kuzovkin et al., 2018). A CNN makes a hierarchy of complex feature representation for image recognition and from this point of view, a CNN has some similarity with the feature representation in a biological vision system. We recall here a remark in DiCarlo et al. (2012) “We do not yet fully know how the brain solves object recognition.” Recently, analyzing the intracranial depth recordings from human subjects researchers suggested that the gamma activity matches the increasingly complex feature representation/abstraction in a deep convolutional neural network. In reality, the information abstraction in a biological system is much more complex. For example, in a natural scene there is a high degree of spatial and temporal correlation, and hence, representation of visual information at the level of photoreceptors would be highly inefficient because of tremendous redundancy. Dan et al. (1996) conducted some experiments with cats. They used movies of natural scenes as inputs and the responses of single lateral geniculate nucleus (LGN) neurons were recorded using a single tungsten or a multi-electrode array. They analyzed the temporal correlation and power spectra of the responses, which demonstrated that the natural visual information is temporally de-correlated at the lateral geniculate nucleus. Each LGN has six layers of neurons; it receives input from the retina and sends information to the primary visual cortex. Consequently, if an image recognition system exploits these concepts at the feature extraction stage, it would resemble more a biological system and is likely to yield better results. There have been several attempts to develop computational models of LGN neurons (Einevoll and Halnes, 2015; Sen-Bhattacharya et al., 2017). We need to investigate how these models can be adapted to develop machine learning systems for computer vision.

The primary visual cortex, the visual area 1 (V1), uses sparse code with minimal redundancy to efficiently represent and transmit information about the visual world and the non-classical receptive filed plays an important role in this process (Vinje and Gallant, 2000). Sparse modeling is also used to identify “Sparse Connectivity Patterns” (SPCs) which make a parsimonious representation of brain functions (Eavani et al., 2015). At the level of neurons, we have sparse codes and at a higher level, we have these SPCs, which represent different system-level functions and relate to a set of spatially distributed, functionally synchronous brain regions. It is also known that the processing in the brain is distributed. In fact, an important characteristic of the brain is believed to be sparse distributed representation (SDR) (Ahmad and Hawkins, 2016; Hawkins, 2017; Pal, 2018a). In an SDR, at a given instant of time only some of the neurons may be active (producing an output of 1). If two SDRs have some overlap (have some common active neurons) then the two SDRs share some common attributes of the two concepts. The SDR characteristic is considered very important for biological intelligence. Since SDR makes an efficient representation of information and plays a key role in biological intelligence, incorporation of such ideas in designing learning systems is expected yield better AI systems.



2.2. Learning From a Small Sample

One of the claimed advantages of DNN is “more is better”—if we can train a big network with more data we can get a better performance. But does a human being need thousands of images to distinguish between various objects? Even a baby can learn to distinguish between a large number of animals with just a few presentation of the animal images. More importantly, once a human learns the concept of “animals”, given a picture of a completely strange animal that has never been seen by the person, he/she can easily detect that it is an animal and will never mistake it to be a car or a human. This is an extension of the learned information by “common sense.” So human learning must be doing something different or at least something additional than what DNNs or other ML systems do. A child can learn many objects within a short time with few examples. We need to develop systems that can learn from a limited number/variety of examples as living beings do. Such a learning system should not need millions of examples with wide variations and a large number of cycling through the data. There have been a few attempts to learn a class from just one or a few examples (Fei-Fei et al., 2006; Maas and Kemp, 2009; Lake et al., 2011, 2013, 2015; Wang et al., 2019). This is known as Few-Shot Learning (FSL) (Wang et al., 2019). In FSL the learning is accomplished with a few instances with supervisory information for the target and it often exploits prior knowledge. In Lake et al. (2013), an interesting hierarchical Bayesian model based on compositionality and causality for one-shot learning has been proposed. Lake et al. (2013, 2015) combined principles of compositionality, causality, and learning to realize a Bayesian Program learning framework to learn visual concepts using just one example. This method can achieve human-level performance and has defeated two deep network models. Although such a method takes inspiration from cognitive science, it does not take into account how human brains learn concepts from just one or two examples. There have been a few more attempts to one-shot learning. Learning from limited examples is very important in areas like medical science where usually only a handful instances from the positive class are available. In such a case, the interactive machine learning (iML) with “human-in-the loop” could be very useful (Holzinger, 2016; Holzinger et al., 2016). There are three main advantages of iML: First, human intervention can reduce the search space drastically. Second, it can facilitate learning using a limited number of instances. Third, it can help to open the “black Box” to some extent. However, it has a few limitations also. For example, human knowledge often suffers from subjectivity and hence the resultant system may have subjective bias. Thus, an objective evaluation of such a system is difficult. Because of the incorporation of subjective knowledge, replicability of the system is also difficult. Interactive machine learning with human-in-the-loop appears to have good potential for learning with limited data but it needs more investigation. Wang et al. (2019) provides an excellent exposition of FSL explaining the advantages of FSL, the challenges associated with it, and how some of the challenges can be addressed.

There are theories suggesting that human beings recognize/learn images by segmenting them at deep concavity and then viewing the object as a set of simple geometric components characterized by attributes such as curvature, collinearity, and symmetry (Biederman, 1987). It is worth noting that this is consistent with the idea of SDR discussed earlier. This theory of recognition by components may be useful in learning from one or a few images. To a living being every image is not equally memorable and it is found that color or simple image statistics, or object statistics do not make an image memorable (Isola et al., 2011). However, semantic information of objects and scenes is found to make an image memorable - a human being is able to remember such an image by just seeing once. This could be an important clue to design a learning system that can learn concepts with one or a few examples.



2.3. Explainable/Comprehensible/ Transparent AI

Most computational learning algorithms including DL are “blind” in learning. They are good in decision making, but cannot explain why a decision is made. Time demands more emphasis on this aspect of learning. Using regularizers one can simplify (reduce the complexity) of a decision making system, which is good but it fails to bring the level of transparency that we would be happy with. We note here that transparency of an AI system is different from its ability to explain the rational behind a decision that it makes (explainability). Transparency refers to understanding of the semantics associated with the computation that goes on in the system. Comprehensibility/transparency is a fuzzy concept with grades of membership in [0,1]. For a black box system like an MLP the membership is zero while for a completely transparent system it is one. For example, a decision tree is highly transparent as along as the attributes are understandable properties and the depth of the tree is small. However, as the depth of the tree increases or if we use extracted features like the principle components, we start losing its comprehensibility. Yet, it will remain more comprehensible than, for example, a multilayer perceptron. Similarly, a fuzzy rule-based system is also transparent. A fuzzy rule based system uses rules of the form (Chen et al., 2012) : If the expression level of Gene X is HIGH and the expression level of Gene Y is MODERATE and the expression level of Gene Z is LOW then the patient is suffering from Neuroblastoma. Here HIGH, LOW and MODERATE are linguistic values that are modeled by fuzzy membership functions. As long as the number of antecedent clauses is small, such rules are human understandable. Even if such a rule involves many antecedent clauses, it is still more transparent than, for example, a DNN. This is so because a fuzzy rule models a small hyperellipsoidal volume in the input space and assigns data points falling in that volume to a particular class with different degrees. Because of this very nature of fuzzy reasoning, we can easily understand how fuzzy rules work and why these are not likely to make an unexpected/unrealistic decision. However, machine learning tools like fuzzy systems or decision trees are poor performer compared to MLPs or DNNs. In particular, designing transparent decision trees or fuzzy rule based classifiers would be quite challenging when it comes to, for example, image recognition. One possibility may be to integrate a DNN and a fuzzy rule based system. We can use a DNN for feature extraction and abstraction. Then at the highest level we can use a fuzzy system for prediction or classification. This may add some level of transparency using the extracted features. However, we certainly need more. Another alternative may be to integrate experts' domain knowledge into the learning process or at the level of designing the system architecture.

The explainability problem can be approached at least in two different ways. First, by looking deeper into the trained AI systems to get some reasoning behind the decisions. Second, by using an additional layer or system to generate the explanations. For a decision tree or for a rule-based (fuzzy or crisp) system, generation of some explanation is relatively easy, but for a DNN, even for an MLP, it is quite difficult. A fuzzy rule-based system is naturally interpretable as it makes decisions based on fuzzy if-then rules (Hagras, 2018). These rules are easy to understand, for example, If the body-temperature is HIGH and body-ache is SEVERE then the subject is suffering from flu. Recently, there have been a few studies to explain why a DNN works. For example, researchers tried to discover which part of an image is primarily responsible to arrive at the final decision by the network (Simonyan et al., 2014; Zeiler and Fergus, 2014; Choo and Liu, 2018). There are other methods which use visual analytics to understand the learned representation and how it influences the output (Liu et al., 2017; Rauber et al., 2017; Choo and Liu, 2018). This kind of visual analytics are useful and help to understand a little better, but cannot make the system transparent or adequately explainable. Such tools/analytics cannot explain the reason behind a decision in a manner that a human would like to have. There have been other approaches to generate explanations for decisions made by a machine learning system (Hendricks et al., 2016; Ribeiro et al., 2016; Samek et al., 2017). For example, authors in Ribeiro et al. (2016) proposed a method to explain predictions made by any classifier by learning a local interpretable model around the prediction. On the other hand, Hendricks et al. (2016) proposed a method for generation of visual explanation for images classified by a deep network where the the explanations provide some justifications behind the classification and hence it is different from caption generation. The authors use a Long Short-Term Memory (LSTM) network (Hochreiter and Schmidhuber, 1997) along with the classifier. This is an interesting work but the explanation is generated by the LSTM. The big question of generating the explanation directly from the discriminator still remains. Very recent and useful expositions to the problem of explainable AI, its need and relevance, can be found in Hagras (2018), Goebel et al. (2018), and Holzinger (2018). Holzinger (2018) very nicely explains the advantages and limitations of automatic Machine learning (aML) and the advantages of iML. We have discussed earlier that a child needs only a few examples to learn different animals because humans can exploit the contextual information. Thus, we emphasize again that having a human-in-the-loop appears a very promising way of efficient learning. Holzinger (2018) also discussed a few promising approaches to realize explainable machine learning systems.



2.4. Recognize and React to the Open World Problems

Another consequence of blind learning is its failure to deal with the open world nature of recognition (not necessarily of visual information) problem. We have already mentioned that, DNNs sometime recognize images that are completely “unrecognizable to humans” as human recognizable objects with a very high confidence (Nguyen et al., 2015). Majority of the decision making problems are some kind of classification problems. Any decision making system should make recommendations based on only what it is taught in a broader sense. This does not mean that a learning system should not generalize, it must but to a “plausible/reasonable” extent. Let us clarify this. Suppose an AI system is trained to distinguish between tigers, lions and cows, where every animal in the training data set has four legs. Now if a cow, which has lost one leg in an accident is presented to the system, we expect the system to declare it as a cow with a reasonable level of confidence. But if the system is confronted with a dog or a goat it should simply say “I do not know.” Note that, here we are referring to systems for which we know why and when they should say “Don't know.” Most decision making systems including DNNs fail to respond properly when faced with known/unknown unknowns. Recognizing unknowns is very important for many applications such as medicine, healthcare, and defense. There are at least four problems related to this issue (Karmakar and Pal, 2018):

	1. In an open-world situation, there are unknown classes (beyond the classes that a classifier is trained to classify). In this case, if a test data point comes from an unknown class, it will get wrongly classified.
	2. In a closed-world situation, a test data point may come from one of the classes that the classifier is trained to classify, but it comes from outside the “sampling window” of the training data. In this case, the classifier will assign one of the trained classes and the assigned class may even be correct, but here the classifier should refuse to make any judgement.
	3. In a closed-world scenario, we may get a test data point from outside the “sampling window.” In this case, the classifier may assign an unrealistic class. For example, the test data point may be located close to the training data of class i, but it is assigned to class j.
	4. Even for a closed-world situation, there may be concept drift—the statistical characteristics of one or more classes may change with time. In such a situation, the classifier should not make any decision on the drifted data.

The above four problems are connected by a common thread; they arise when a test data point does not come from the sampling window of the training data. So, we can address all four problems if the machine learning system can detect and reject a point saying “Don't Know” when it does not come from the sampling window of the training data.

Many researchers have tried to address some of these problems (Chow, 1957, 1970; Dubuisson and Masson, 1993; Chakraborty and Pal, 2002, 2003; Scheirer et al., 2013, 2014; Jain et al., 2014; Karmakar and Pal, 2018). There have been quite a few attempts to deal with this problem, for example, using the Extreme Value Theorem (Scheirer et al., 2013, 2014; Jain et al., 2014). But such an approach suffers from a conceptual problem because known unknowns and unknown unknowns are not necessarily extreme values of the training data. In fact, these samples may be (usually will be) generated from a completely different distribution than that of the training data. Recently in Karmakar and Pal (2018) authors proposed a scheme to equip a multilayer perceptron network with the ability to say “do not know” when the test data come from outside the sampling window of the training data. In Karmakar and Pal (2018), a theoretically sound method for estimating the samapling window from a given training data set has been proposed.

Given the estimate of the sampling window, we can draw random samples from the complement of the estimated sampling window (of course over an slightly inflated hyper box containing the training data - any test data coming from outside this box can always be rejected) and use that to represent the “unknown world.” Now, for a c-class problem, we train a (c+1) class system, where the (c+1)st class represents the “Don't Know” class. Further details can be found in Karmakar and Pal (2018). While training the system we may use suitable regularizer to control the sensitivity of the output for the (c+1)st class with respect to inputs. This will help to train the system with limited samples from the “Don't know” class.

In principle, such a concept can be applied to DNNs also. But for very high dimensional data such methods would be computationally demanding. However, it may be possible to use appropriate regularizers to minimize the number of samples needed from the complement world for its faithful representation. In order to avoid occasional but catastrophic failure of an AI system, it must recognize its domain of operation beyond which it should not make any decision; otherwise, it may lead to situations giving a false perception that an AI system has “taken over the human.”



2.5. Trustworthiness of a Machine Learning System

When we use a so-called intelligent system either for medical diagnosis or for driving an unmanned vehicle, a natural question comes: how trustworthy the system is! To achieve trustworthiness we need to ensure two things: first, when test samples come from the sampling window, the system should not make wrong decisions and second, when the test data come from outside the sampling window, the system should refuse to make any recommendation (reject that point). To check the trustworthiness of such a trained system we may proceed as follows Karmakar and Pal (2018). We find the smallest hypercube containing the training data and then expand its each side by a small percentage, say 5%. We generate a large set of points uniformly distributed over the extended box. For each such point, we compute its shortest distance from the points in the training set. Let D be the largest value of all such distances. We divide the interval [0, D] into k>1 intervals. Let (di, di+Δd);Δd>0;0 ≤ di ≤ D; i = 0, 1, …, k; d0 = 0, dk = D, di = d0+i.Δdbe one such interval. Let Ni be the number of points for which the shortest distance lies in (di, di+Δd) and of these Ni points, ni points are rejected by the network. Then, [image: Mathematical formula showing \( f_i = \frac{n_i}{N_i} \), where \( i \) ranges from \( 0 \) to \( k-1 \).] is the percentage of points with distance in (di, di+Δd) that are rejected. For a trustworthy system, with higher values of i, i.e., of di, this percentage should increase. Thus, if we plot fi vs. di, for a trustworthy classifier, we expect to see a curve like the one in Figure 1. If fi quickly goes to one with di, this will suggest a very conservative and trustworthy system. Apart from the pictorial representation, it may be possible to come up with some index based on this curve to measure the trustworthiness of the trained system'. We just gave some idea of how to deal with this problem, but it certainly needs more focussed study.


[image: Curve graph showing the relationship between minimum distance from training data and the proportion of "Don't Know" responses. The curve rises steeply and levels off as distance increases.]
FIGURE 1. Illustration of how trustworthiness can be assessed.




2.6. Plausibility of Backpropagation

For majority of the learning algorithms, we use error backpropagation type approaches to optimize a learning objective. For the multilayer perceptron networks, the error backpropagation learning requires that the downstream errors are fed back to upstream neurons via an exact, symmetric copy of the downstream synaptic weight matrix. Thus, each neuron in the hidden layers requires the precise knowledge of all of its downstream connections (synapses). But it is believed to be almost impossible to happen in the brain (Lillicrap et al., 2016). Lillicrap et al. (2016) demonstrate that we can transmit teaching signal over different layers by multiplying errors with random synaptic weights and it becomes as effective as the backpropagation algorithm for training deep networks. This eliminates the strong structural constraint demanded by backpropagation making it a biologically more plausible architecture. Incorporation of such attributes in our NN would make the architecture of the system closer to that of a biological system. However, as clarified by Lillicrap et al. (2016) this does not answer more fundamental questions as to how exactly the brain computes and represents errors and how the feedforward and feedback paths may interact with each other.



2.7. Structure of Neurons

The neurons used in DNNs/CNNs are primarily of uniform structure and very simple in architecture. In biological vision, visual object recognition is realized by a hierarchical representation of increasingly complex features along the ventral visual stream (DiCarlo et al., 2012; Kuzovkin et al., 2018). This hierarchical representation (abstractions) are typical of deep learning. There have been several studies on establishing correspondence between the hierarchical representation of features with increasing complexity in the brain and that in CNN (Kriegeskorte, 2015; Yamins and DiCarlo, 2016). All these studies motivated researchers to investigate whether the neurons in our brain, which are responsible for thinking/reasoning and have much more complex tree-like structures with roots going deep in the brain and branches going close to the surface, can help to model computational neurons for realizing deep networks like CNN (Guerguiev et al., 2017). In the mammalian neocortex, feedforward and feedback signals are received at electronically segregated dendrites (Guerguiev et al., 2017). In order to realize a biologically more plausible neuron architecture for deep learning, Guerguiev et al. (2017) designed artificial neurons with two compartments, similar to the “roots” and “branches.” The hidden layer neurons are modeled to have segregated “basal” and “apical” dendritic compartments, which are used to separately integrate feedforward and feedback signals and the system did not require separate pathways for feedback signals. They demonstrated that such a network can easily learn to classify the MNIST data (LeCun et al., 1998) and it can also learn hierarchical abstract representation of the objects. This emphasizes as well as demonstrates that it is possible to design computational neurons which more closely model biological neurons as well as can make abstract representation of features like deep networks, and perform the task of classification. However, this does not necessarily mean that the brain replicates exactly this type of processing. Moreover, further investigations are needed to assess whether such networks are more robust or can perform reasoning more close to that by humans.



2.8. Artificial General Intelligence

We have indicated a few very minor cues from biology that may be useful, but there may be (actually there are) plenty of discoveries related to how brain stores, processes, and usees data/information to infer. We need to look at these areas if we want truly intelligent systems. In our view, to design AI systems with human-type reasoning, such concepts could be very useful for representation. For example, almost all of the successful AI systems of today primarily focus on only single task, say image recognition, and that too specific to a domain. If an AI system is trained to recognize natural scenes or animals, it usually cannot understand an X-ray image, summarize text information, or make medical diagnosis. If we want to realize a generalized AI system capable of doing multiple tasks, we may need to partition the network according to functionality of different lobes of the brain. Creating such an architecture and its training are certainly going to be challenging tasks. This will demand a better understanding of the brain and integration of various discoveries about the brain that we already know. In our view, a purely data-based design of AI systems, certainly is useful and will lead to many unexpected and successful applications, but it may not be adequate to realize true human-type cognitive and reasoning abilities.




3. CONCLUSION AND DISCUSSION

Any AI system, in fact any decision making system, should have a few desirable attributes. It should be accurate, transparent, trustworthy, simple, and be able to explain the decisions it makes. In addition, it would be good if the system can be trained with limited data with limited computation time. In our opinion, if we borrow ideas from the brain science to design decision making systems, we are more likely to realize human-like cognitive and reasoning abilities. We say “more likely” because we have mentioned earlier that our knowledge of how the brain learns is limited and the use of the partial knowledge to build an AI system, may not replicate brain style reasoning. Moreover, it may not always be an easy task to incorporate neuroscience discoveries into a computational AI system to realize the desired benefits. In this context we have discussed a few findings in brain science which can be exploited to design AI systems. We have also alluded how one can make a system trustworthy so that the system does not make a decision when it should not. We have provided some ideas on how we can quantify the trustworthiness of a system.

There are other important issues related to design of AI systems that have not been discussed here. For example, time has come to focus on sustainable AI (Pal, 2018b). Here we like to refer to two issues: The first issue is that the development (training) of the AI system should have the minimum carbon footprint. To achieve human-like performance often this important issue is ignored. To illustrate the severity of this issue we consider a recent study which used an evolution-based search to find a better architecture for machine translation and language modeling than the Transformer model (So et al., 2019). The architecture search ran for 979M training steps requiring about 32,623 h on TPUv2 equivalently 274,120 h on 8 P100 GPUs. This may result in 626,155 lbs of CO2 emission–this is about 5 times the lifetime average emission by an American Car (Strubell et al., 2019). The second point is that the solutions provided by an AI system should be sustainable with the minimum impact on the environment. For example, an AI system to assist farmers should not just try to maximize the yield, but should also keep in mind the impact of high use of nitrogen fertilizer on the environment. The system should prescribe the use of the Right nutrient source at the Right rate in the Right place and at the Right time (R4).

In near future, we shall see many remarkable advances in AI with many useful and innovative applications. In fact, time may come when just the accessability of the pages of a medical book by a computer would enable the system to scan the pages, understand them, extract the rules, and behave like a real doctor! Robots may interact with each other to redistribute work loads among themselves or repair each other's problems. AI applications will be almost everywhere and very intimately related to our daily life. Mostly there will be good usage but there may be some bad ones too. AI will lead to many legal issues also. We certainly will need global policies to monitor the use and abuse of AI.

The world renowned physicist, Stephen Hawking, commented during a talk at the Web Summit technology conference in Lisbon, Portugal,“Success in creating effective AI, could be the biggest event in the history of our civilization. Or the worst. We just don't know. So we cannot know if we will be infinitely helped by AI, or ignored by it and side-lined, or conceivably destroyed by it” (Kharpal, 2017). He also admitted that the future was uncertain.

It is not an easy task to equip any system (say a robot) with rules (based on data or otherwise) to deal with all possible scenarios for any non-trivial application. If such a robot is not explicitly trained to prevent itself from making decisions in unfamiliar situations, it may behave in an erratic manner and that may be viewed as if the robot has taken over the human. We believe, in near future AI systems will be extensively used almost everywhere and in some application areas (intentionally/unintentionally) uncontrolled behavior of robots may become a reality.
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FOOTNOTES

	1https://en.oxforddictionaries.com/definition/learning, June 2018.
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Autonomous agents perceive the world through streams of continuous sensori-motor data. Yet, in order to reason and communicate about their environment, agents need to be able to distill meaningful concepts from their raw observations. Most current approaches that bridge between the continuous and symbolic domain are using deep learning techniques. While these approaches often achieve high levels of accuracy, they rely on large amounts of training data, and the resulting models lack transparency, generality, and adaptivity. In this paper, we introduce a novel methodology for grounded concept learning. In a tutor-learner scenario, the method allows an agent to construct a conceptual system in which meaningful concepts are formed by discriminative combinations of prototypical values on human-interpretable feature channels. We evaluate our approach on the CLEVR dataset, using features that are either simulated or extracted using computer vision techniques. Through a range of experiments, we show that our method allows for incremental learning, needs few data points, and that the resulting concepts are general enough to be applied to previously unseen objects and can be combined compositionally. These properties make the approach well-suited to be used in robotic agents as the module that maps from continuous sensory input to grounded, symbolic concepts that can then be used for higher-level reasoning tasks.

Keywords: grounded concept learning, language games, hybrid AI, CLEVR, emergent communication


1. INTRODUCTION

A concept can be described as a mapping between a symbolic label and a collection of attributes that can be used to distinguish exemplars from non-exemplars of various categories (Bruner et al., 1956). In the context of grounded, autonomous agents, these attributes correspond to streams of continuous-valued data, obtained through the agent's various sensors. In order to communicate and reason about the world, agents require a repertoire of concepts that abstracts away from the sensori-motor level. Without this layer of abstraction, communication would happen by directly transmitting numerical observations. Such a system easily leads to errors in communication, for example when the agents observe the world from different perspectives, or when calibration is difficult because of changing lighting conditions or other external factors. To obtain a repertoire of concepts, i.e., mappings from labels to attribute combinations, autonomous agents face two learning problems simultaneously. First, the agents need to find out which attributes are important for each concept. This requires a mechanism for identifying meaningful combinations of attributes from their sensori-motor data streams and attaching a symbolic label to each of these combinations. Second, the agents must be able to recognize instances of particular concepts and distinguish concepts from each other. For representing concepts, we make use of prototype theory (Rosch, 1973), although also other approaches have been proposed in the psychological literature (McCarthy and Warrington, 1990; Squire and Knowlton, 1995; Patalano et al., 2001; Grossman et al., 2002).

A range of different approaches have been applied to concept learning, including version spaces and deep learning techniques. However, we identify a number of drawbacks in these approaches. In version space learning, a concept is represented as an area in a hypothesis space. This space can for example denote the possible ranges of values of various attributes of the concept. Each concept is bound by the most general and the most specific consistent hypothesis. Using positive and negative examples, these boundaries can be updated using the candidate elimination algorithm (Mitchell, 1982). A well-known caveat of this technique, however, is its inability to handle noisy data. In deep learning approaches, concepts are often represented through embeddings, i.e., high-dimensional numerical representations, which lack human-interpretability (see e.g., Mao et al., 2019; Shi et al., 2019). Additionally, as these embeddings are learned in a statistical way, they often fail to adapt to unseen scenarios and require huge amounts of training data. Neither of these approaches offer a learning mechanism that would be suitable for an autonomous agent, i.e., responsive to changes in the environment, able to support incremental learning, and able to dynamically expand the agent's repertoire of concepts.

In this paper, we propose a novel approach to grounded concept learning. Using the language game methodology (Steels, 2001), we set up series of scripted, task-oriented communicative interactions in a tutor-learner scenario. The environment in which these interactions take place is adopted from the CLEVR dataset (Johnson et al., 2017). This environment consists of scenes made up of geometrical objects, where the objects differ in color, size, shape, material, and spatial position. Through the communicative task, an agent must learn the concepts present in this dataset, such as SMALL, RED, or LEFT. Learning these concepts requires not only finding relevant attribute combinations (e.g., “r,” “g,” and “b” for color), but also their prototypical values (e.g., “r:44,” “g:76,” and “b:215” for BLUE). Both the tutor and the learner agent make use of the notion of discrimination, i.e., maximally separating one particular object from the other objects in the scene. Discrimination is an often-used mechanism in experiments on the emergence and evolution of language (Steels, 1997; Vogt, 2002; Pauw and Hilferty, 2012; Wellens, 2012; Bleys, 2016). In language production, the tutor looks for the concept that is maximally discriminating for a particular object, thereby helping the learner to solve the communicative task. The learner, on the other hand, uses the tutor's feedback and discrimination to update its repertoire of concepts after every interaction. This ensures that the concepts are optimally relevant for the communicative task and the environment in which they occur.

The main contribution of this paper is a novel method to represent and learn symbolic concepts that provide an abstraction layer over continuous-valued observations. This method builds on earlier work by Wellens (2012) and extends the discrimination-based learning of concepts represented by weighted combinations of attributes, so that they can be learned from continuous streams of data. Through various experiments, we demonstrate how the learner acquires a set of human-interpretable concepts in a way that is (i) general, (ii) adaptive to the environment, (iii) requires few interactions, and (iv) allows for compositionality.

The remainder of this paper is structured as follows. In section 2, we discuss existing approaches to concept learning. Section 3 introduces the environment in which the agents operate and the language game setup. In section 4, we introduce the experiments, each showcasing a desirable property of our approach. The experimental results are provided and discussed in section 5. Finally, in section 6, we summarize and conclude.



2. RELATED WORK

2.1. Version Space Learning

One method for representing and learning concepts is through version spaces (Mitchell, 1982). In this method, a concept is represented as an area in a space with dimensionality equal to the number of attributes. The concept area is bounded by both the most specific consistent hypothesis and the most general consistent hypothesis. A hypothesis consists of a combination of attribute values and it is considered consistent when it agrees with the observed examples. With this representation, the simplest way of learning concepts is through the candidate elimination algorithm. Provided with both positive and negative training examples, the algorithm works as follows. The most general and most specific hypotheses are being updated in such a way that the former covers all positive training examples, including as much as possible of the remaining attribute space but excluding any negative examples, and the latter covers all positive training examples with as little as possible of the remaining attribute space. These updates happen in an incremental manner, looking for the minimal specialization for the most general hypothesis and the minimal generalization for the most specific hypothesis.

A major drawback of the candidate elimination algorithm is its inability to handle noisy data. Noisy or wrongly labeled training examples can incorrectly update one or both of the boundaries and recovering from such errors is often difficult. On the positive side, because of the relatively simple representation and learning algorithm, concepts learned using version spaces are often human-explainable and transparent. Furthermore, when the boundaries are allowed to be updated after training, the concepts remain adaptive over time.



2.2. Neural Approaches

More recent approaches to concept learning are dominated by deep learning techniques. State-of-the-art results have been achieved by Higgins et al. (2016) and Shi et al. (2019). These two approaches vary strongly in the neural network architecture, the learning regime (e.g., binary or multi-class classification or unsupervised learning), the concept representation (e.g., a label in a classifier or a group of latent variables) and the task or domain in which concepts are being learned (e.g., hand-written characters or generated graphics). However, the aforementioned papers are particularly interesting since both of them take inspiration from human concept learning and incorporate this in their models. For example, how humans require only one or a few examples to acquire a concept is incorporated through one-shot or few-shot learning or how known concepts can be used to recognize new exemplars is achieved through incremental learning and memory modules. Many more approaches to concept learning using deep learning techniques exist (e.g., Wang et al., 2015; Dolgikh, 2018; Xu et al., 2018; Rodriguez et al., 2019). In general, these approaches yield high levels of accuracy but require huge amounts of training data and/or training time. Additionally, the concepts are represented in a way that is often not human-interpretable and the set of concepts is often predefined and fixed over time. Some of the aforementioned approaches tackle one or two of these issues, but not all together.

In other approaches, concepts are learned as a “side effect” while tackling another, typically larger task. In the work by Mao et al. (2019) and Han et al. (2019), not only concepts but also words and semantic parses of sentences are learned in the context of a Visual Question Answering task. Specifically, a perception module learns visual concepts, represented as embeddings, based on the linguistic description of the object being referred to. As reported by Mao et al. (2019), the concepts are acquired with near perfect accuracy (99.9%) and a relatively small amount of training data (5K images), but the resulting concept representations are not human-interpretable. The proposed model does allow for incremental learning and generalizes well to unseen combinations of attributes. This generalization, however, requires fine-tuning the model on a held-out dataset.



2.3. The Omniglot Challenge and Bayesian Program Learning

One particular line of research that focusses exclusively on human-like concept learning is centered around the Omniglot dataset (Lake et al., 2015). This is a dataset of hand-written characters from 50 different alphabets. Each character is written by 20 people and stored as both an image and pen stroke data. The Omniglot challenge aims to push forward the state-of-the-art in human-like concept learning. The main challenge consists of a within-alphabet one-shot classification task: given a new character and an alphabet, identify the character in the alphabet that is the same character as the one presented. This task aims to replicate the ability of humans to acquire a new concept with only a single example. Next to this, there are three other tasks designed to test several concept learning-related abilities: parsing of exemplars into parts and relations, generating new exemplars of a given concept and generating new concepts of a particular type.

In his own work, Lake et al. (2015) introduces Bayesian Program Learning (BPL) to tackle the Omniglot challenge. Here, concepts are represented as probabilistic generative models, trained using the pen stroke data and built in a compositional way such that complex concepts can be constructed from (parts of) simpler concepts. In this case, the model builds a library of pen strokes and characters can be generated by combining these pen strokes in many different ways. This approach has many advantages, including the ability to do one-shot learning and a powerful compositional representation of concepts that allows not only to classify concepts but also to generate them. While this model achieves impressive results, learning through pen stroke data offers a limited range of possibilities. Other researchers have tackled the Omniglot challenge, mostly using neural approaches as reported by Lake et al. (2019). Almost all of them have focussed on the one-shot classification task using the image data as input. As a result, the BPL approach remains the SOTA model for all tasks in the Omniglot challenge.



2.4. Reinforcement Learning

Concept learning has also been approached from a reinforcement learning perspective. In this context, a concept is regarded as an abstraction over an agent's states or actions. Abstraction over discrete states can be achieved through tile-coding (Sutton, 1996). Recently however, following advances in the domain of deep reinforcement learning, abstraction over continuous states is often performed through function approximation (Mnih et al., 2015). Abstraction over actions is commonly achieved through the use of options (Sutton et al., 1999).

One line of research that is particularly relevant to our approach is the work by Konidaris and colleagues. Initially, the authors mapped propositional symbols to a set of low-level states (Konidaris et al., 2014). These states were obtained from the continuous environment through a classifier. A planning problem is then solved using the propositional symbols as operators, which can be translated to sets of low-level states, executed in the environment. In later work, the set-based representation was replaced by a probability distribution, to better capture the uncertainty about the successful execution of each high-level step (Konidaris et al., 2015, 2018). Again, this approach was validated through a planning problem in a continuous state space, where policies for high-level planning problems in a game environment, such as “obtain key” or “obtain treasure,” could be computed efficiently.

The symbolic high-level steps can be represented in a human-interpretable way, as the pre- and postconditions can be easily visualized in the game environment. Additionally, the model proposed by Konidaris et al. (2015) can be learned efficiently with relatively few data points: 40 iterations of 100 randomly chosen actions were used to extract the high-level steps. As is typical in a Reinforcement Learning setting, the planning steps are learned through experience. Hence, new planning steps must be learned by collecting new experiences specific to this concept. Additionally, the resulting steps are relatively domain-specific. No experiments are reported that investigate generality, e.g., would JUMP-LEFT generalize to other game settings, or adaptivity, e.g., does the concept JUMP-LEFT change when the game physics change.



2.5. Robotics

A large body of work exists in the robotics community that considers various tasks very similar to what we refer to as concept learning. Common names for this task include symbol emergence, perceptual anchoring, affordance learning, and category learning.

As a first approach, we consider the task of perceptual anchoring. The goal of perceptual anchoring is to establish and maintain a link between symbols and sensor data that refer to the same physical object (Coradeschi and Saffiotti, 2003). This link should remain stable through time and space, e.g., when an object moves through a robot's view, when it is covered by another object, or when it disappears and later reappears. The symbol system can manipulate individual symbols, referring to objects as a whole, but also predicates reflecting properties of the objects. Different representations can be used by the sensor system, e.g., a set of continuous-valued features or a vector in some embedding space. An anchoring system can be bottom-up, starting from the perceptual level, and top-down, starting from the symbolic level. In the context of perceptual anchoring, the combination of a symbol, a set of predicates and sensor data can be considered a single concept.

In recent work, a bottom-up perceptual anchoring system was combined with a probabilistic symbolic reasoning system (Persson et al., 2019). This approach allowed to improve the overall anchoring process by predicting, on the symbolic level, the state of objects that are not directly perceived. There are multiple advantages to this approach. First, the authors achieve high accuracy (96.4%) on anchoring objects and maintaining these anchors in dynamic scenes with occlusions, using relatively little training data (5400 scenes, 70% used for training). Additionally, their system is completely open-ended and allows for incremental learning, since the anchor matching function will simply create new anchors when it encounters previously unseen objects. The anchor matching function, in some way a similarity measure, is closely related to the notion of discrimination. The difference being that discrimination also takes the other objects into account. Finally, the representation of a concept can be human-interpretable, depending on the representation of objects in the sensor system and the corresponding symbols and predicates.

For a second approach, we focus on affordance learning. With this approach, the focus lies on the interaction between the perceptual system and the motor system of an autonomous agent. Put differently, an affordance can be considered as a learned relation between an action in the environment, caused by the motor system, and the effect observed in the environment, captured by the perceptual system (Şahin et al., 2007). Building on this, the agent can learn concepts in terms of affordances. As proposed by Ugur et al. (2011) and further worked out in Ugur and Piater (2015a,b), affordances can be grouped together in effect categories. These are consequently mapped to clustered object properties to form a particular concept. For example, the concept BALL is an object with spherical properties that exhibits the roll-effect when pushed and the disappear-effect when lifted, as it rolls off the table when dropped. In these works, the authors use concepts learned through their affordances in plan generation and execution, with an agent being capable of planning the necessary actions involving specific objects to reach a given goal state. This approach offers a more action-centric view on the agent's world, which is complementary to our approach. It not only allows an agent to recognize and describe objects in the world, but also correctly act on them. The concepts that are acquired, combining effect categories with object properties, offer a transparent view. The effect categories are expressed in terms of change in visibility, shape and position, and the object properties are stored in a numerical vector with explainable entries, such as features relating to position and shape (Ugur et al., 2011). Additionally, since the concepts are learned through unsupervised exploration, the proposed model is adaptive to the environment. New concepts can be added incrementally through additional exploration and learned concepts can be progressively updated (Ugur and Piater, 2015b). As is typical in robotics, the proposed approach combines learning in simulation and using physical robots. The concepts, specifically, could be acquired after only 4,000 simulated interactions (Ugur et al., 2011). The robot is used to validate these concepts in several planning problems. Finally, as the agent assesses the object features relevant for each effect category, the resulting mappings offer some generality, e.g., a ball exhibits the same effect categories regardless of its color.

Other approaches take a probabilistic perspective on concept learning, similar to Lake et al. (2015), but focussing on the domain of robotics. Concepts are learned through unsupervised online learning algorithms, combining multi-modal data streams (most often perceptual data and raw speech data) through statistical approaches such as Bayesian generative models or latent semantic analysis (Nakamura et al., 2007; Aoki et al., 2016; Taniguchi et al., 2016, 2017). Through this integration of data streams, the acquired concepts constitute mappings between words and objects, as studied by Nakamura et al. (2007) and Aoki et al. (2016), or between words and spatial locations, as studied by Taniguchi et al. (2016, 2017). The latter further used these concepts to aid a mobile robot in generating a map of the environment without any prior information. The statistical methods have the advantage of being able to infer a considerable amount of information from a limited number of observations, and are therefore suitable for use in robotics scenarios. Additionally, they offer model interpretability to a certain extent, through a graphical model representation such as a Bayesian network. Finally, the proposed models are adaptive to changes in the environment and offer incremental learning through the online learning algorithms.

Among the various approaches to concept learning discussed so far, our proposed approach is most closely related to the robotics literature, as many of these studies deal with similar issues such as grounding, adaptivity, generality, and fast learning. For a more comprehensive overview on symbol emergence from the viewpoint of cognitive systems/robotics, we refer to Taniguchi et al. (2018).



2.6. Discrimination-Based Learning

One particular experiment by Wellens (2012) has heavily inspired this work. Wellens makes use of the language game methodology to study multi-dimensionality and compositionality during the emergence of a lexicon in a population of agents. In this language game, called the compositional guessing game, the speaker tries, using language, to draw the attention of the listener to a particular object in a shared scene. Each object in such a scene is observed by the agent as a collection of symbolic attributes, e.g., “a-1,” “a-2,” “a-3” and so on. The words used by the agents have one or multiple of these same symbols as their meaning (multi-dimensionality) and the agents can use multiple words to describe a particular object (compositionality). At the end of a game, the agents give each other feedback on the outcome of the game and the speaker points to the intended object in case of failure. This setup leads to a large amount of uncertainty for the agents, as they should find out what part of the meaning should be linked to which word in the multi-word utterance.

In his work, Wellens proposes two distinct types of strategies for reducing this uncertainty: competitive strategies and adaptive strategies. Both make use the notion of discrimination, i.e., maximally separating one object from the others, for both language production (the speaker) and interpretation (the hearer). However, in the former type of strategies, the agents explicitly enumerate competing hypotheses (i.e., the same word with a different meaning) and mechanisms are in place to gradually reduce this enumeration. This soon becomes intractable, leading to scaling issues in environments with many objects or many attributes per object. The latter type of strategies, on the other hand, avoids enumerating competing hypotheses. Instead, only a single meaning, composed of a set of attributes, is kept for each word. Over the course of interactions, this meaning is gradually being shaped based on the feedback provided after each interaction. How this shaping is implemented depends on the particular strategy. Adaptive strategies focus on re-use, allowing agents to use words even when the associated meanings are not (yet) fully compatible with the topic object. Figure 1 illustrates the difference between the two types of strategies.


[image: Diagram illustrating two strategies. Panel A shows "Competitive Strategies" with pathways from "wabazu" to a-5, a-14, and a-3, weighted 0.85, 0.1, and 0.97 respectively. Panel B shows "(Weighted) Adaptive Strategies" with the same nodes and weights but connecting "wabazu" to all three targets simultaneously.]
FIGURE 1. (A) Competitive strategies enumerate competing hypotheses. (B) Adaptive strategies allow the meaning to be shaped gradually. By adding weights, this can be done in a more fine-grained manner.


Within the realm of adaptive strategies, a distinction is made between the baseline adaptive strategy and the weighted adaptive strategy. In the former strategy, the ideas underpinning adaptive strategies are implemented in a rather crude way. The agents gradually shape the meaning of words simply by adding or removing attributes from the set, based on the feedback after the game. The latter strategy offers a more gradual shaping of the meaning. Here, the meaning is no longer a regular set of attributes but instead it is a weighted set. Each attribute receives a score, expressing the certainty that the attribute is important for the word it is linked to. Based on the received feedback, agents cannot only add or remove attributes, but also alter the score of attributes to reflect changes in certainty. Over time, the meanings are shaped to capture attribute combinations that are functionally relevant in the world, driven by the force to obtain communicative success and the notions of discrimination and alignment. For more details about the compositional guessing game and the various strategies, we refer to Wellens (2012).

Our approach to concept learning is heavily inspired by the weighted adaptive strategy. As we will discuss later on, concepts in our approach are also represented by weighted attribute sets. However, where previous work only considers symbolic attributes, we extend this approach to continuous-valued attributes, introducing the need for more sophisticated representations and processing mechanisms.




3. METHODOLOGY

The goal of this work is for an agent to distill meaningful concepts from a stream of continuous sensory data through a number of communicative interactions called language games. These interactions are set in a tutor-learner scenario and take place in a shared environment consisting of scenes of geometric shapes. Driven by the communicative task and the notion of discrimination, the agent will gradually shape its repertoire of concepts to be functional in its environment. In this section, we elaborate on the language game methodology (section 3.1), the environment in which the agents operate (section 3.2), the concept representation and update mechanism as used by the learner (section 3.3) and the mechanisms used by the tutor (section 3.4).


3.1. Language Game

The language game methodology is commonly used to study how a population of agents can self-organize a communication system that is effective and efficient in their native environment. By playing language games, agents take part in a series of scripted and task-oriented communicative interactions. A language game is typically played by two agents from the population, one being the speaker and another being the hearer. There is no central control and the agents have no mind-reading capabilities. The agents are only allowed to communicate through language. After a number of games, the population converges on a shared communication system through selection and self-organization. This methodology has been used to study the emergence of a wide range of linguistic phenomena, including grammatical agreement (Beuls and Steels, 2013), color lexicons (Bleys, 2016), argument marking (Lestrade, 2016), quantifiers (Pauw and Hilferty, 2012), spatial language (Spranger and Steels, 2012), case (van Trijp, 2016), etc.

The language game in this work is set up in a tutor-learner scenario. The tutor is an agent with an established repertoire of concepts, while the learner starts the experiment with an empty repertoire. The tutor is always the speaker and the learner is always the listener. Before each game, both agents observe a randomly sampled scene of geometric shapes. The environment itself will be explained in greater detail in section 3.2. For now, we note that the tutor has access to a high-level symbolic annotation of the scene, while the learner observes the scene through streams of continuous data. The symbolic annotation constitutes the ground-truth of the scene and the learning target for the learner agent. This avoids having to manually design a number of concepts in terms of the observed data stream for the tutor, which could bias the system.

The interaction script, which are the steps both agents go through during a single language game, goes as follows. The tutor starts the interaction by choosing one object from the scene as the topic. Using the symbolic annotation, the tutor looks for a concept that optimally discriminates the topic and utters it. By looking for the most discriminative concept, the tutor is actively trying to help the learner in solving the communicative task. If the topic cannot be discriminated using a single concept, the tutor picks another object or scene. This restriction will be lifted later on in one of the more advanced experiments. The learner receives this word and checks its repertoire of concepts. If the concept denoted by this word is unknown, the learner indicates failure to the tutor. Alternatively, if the learner does know the word, it will try to interpret the corresponding concept in the current scene. In other words, the learner will look for the object that best matches the concept. The learner points to this object and the tutor provides feedback on whether or not this is correct.

After each interaction, the tutor provides feedback by pointing to the intended topic. This is a learning opportunity for the learner. We call this phase of the game “alignment.” If the concept was unknown for the learner, it is now able to create a new concept. At this stage, the learner cannot yet know which attributes are important for the concept. It does know, however, that the tutor could discriminate the topic using this concept. Thus, the learner stores an exact copy of the topic object as the initial seed for the corresponding concept. Each attribute receives an initial score of 0.5, reflecting the uncertainty that the attribute is important for the newly created concept. Alternatively, if the learner did know the concept, it can refine its representation using the newly acquired example. This involves updating the prototypical values and the certainty scores of the attributes. We elaborate on this mechanism in section 3.3. A schematic overview of the complete interaction script is shown in Figure 2.


[image: Diagram depicting a learning process between a blue robot tutor and a green robot learner. The tutor chooses a topic, produces an utterance, and provides feedback. The learner parses the utterance, interprets it if the word is unknown, and aligns if the word is known. Dotted lines and arrows indicate the flow of information and feedback between them, with observation of a scene in the center.]
FIGURE 2. During a single interaction, both agents observe a scene of geometric shapes. The tutor chooses a topic and produces a word denoting a concept that discriminates this topic. The learner looks up this word in his repertoire. If the word is known, the learner tries to interpret this in the scene. Otherwise, the learner indicates failure. After the interaction, the tutor provides feedback to the learner, allowing it to learn.


Note that in our description of the interaction script in the previous paragraphs, we have used the words “concept” and “word” interchangeably. We will continue to do so in the remainder of this paper, as in the experiments that we describe, there is a one-to-one correspondence between words and concepts.

To evaluate the learner agent, we measure both communicative success and concept repertoire size. Communicative success indicates whether or not the interaction was successful. In other words, it tells us if the learner could successfully use the concept in interpretation and consequently points to the topic intended by the tutor. Also, we can monitor the number of interactions required to reach a particular level of communicative success, indicating the speed at which the agent is learning. By keeping track of the size of the learners concept repertoire over time, we can check how many interactions are required for the learner to acquire all concepts known by the tutor. In the experimental environment, there are 19 concepts to be learned in total. These are summarized in Table 1.


Table 1. All concepts in the experimental environment.

[image: Shapes, colors, sizes, materials, and positions are listed. Shapes: cube, cylinder, sphere. Colors: blue, brown, cyan, gray, green, purple, red, yellow. Sizes: large, small. Materials: metal, rubber. Positions: behind, front, left, right.]



3.2. Environment


3.2.1. The CLEVR Dataset

The agent's environment is based on the CLEVR dataset (Johnson et al., 2017). This dataset contains 100K rendered scenes of geometric objects. Each scene contains between 3 and 10 randomly placed objects. The objects have four basic properties: color, size, material, and shape. In total, there are 8 distinct colors, 2 sizes, 2 materials, and 3 shapes. Next to an image of the scene, there is also a ground-truth symbolic annotation, encoded in JSON format. An example scene and annotation are shown in Figure 3. The CLEVR dataset is split into a training set (70K images), a validation set (15K images) and a test set (15K images). In this work, we only make use of the images of the validation set, as no ground-truth annotations are available for the test set. Additionally, since the language game paradigm features online interactive learning, there are no separate training and test phases. The agent is evaluated whilst learning and hence, no held out dataset is required. The CLEVR dataset is ideal for concept learning experiments, as the dataset was specifically designed to avoid dataset biases as much as possible. In practice, this means that across the scenes, there will be as many blue objects as red objects, as many cubes as cylinders, etc.


[image: Five solid objects are on a gray surface: a red cylinder, a blue cylinder, a green cylinder, a yellow cube, and a small gold sphere. A set of JSON data describes the green cylinder's attributes.]
FIGURE 3. Example image from the CLEVR dataset (A) with the corresponding symbolic annotation of a single object (B), namely the green cylinder.


The learner agent observes its environment through streams of continuous-valued sensor data. To achieve this, the CLEVR scenes need to be transformed into numerical data. We consider two ways of making this transformation. As a first method, we use manually written rules and procedures to transform the symbolic JSON annotation into numerical data. This method is explained in section 3.2.2. For the second method, we use a state-of-the-art Mask R-CNN model (Yi et al., 2018) to detect and segment the objects directly from the image. Section 3.2.3 is dedicated to this method.



3.2.2. Simulated Attributes

The first method starts from the symbolic scene annotations and transforms these into continuous-valued attributes based on simple rules and procedures. We provide an overview of these rules in Table 2. Each symbolic attribute is mapped to one or more continuous attributes with a possible range of values. For example, color is mapped to three attributes, one for each channel of the RGB color space, and size is mapped to a single attribute, namely area. We also include the x- and y-coordinates. These attributes were already present in the CLEVR dataset and are simply adopted.


Table 2. Rules used to transform symbolic object properties to continuous-valued attributes.

[image: Table detailing properties from the CLEVR dataset. It includes categories like Color, Shape, Size, Material, and Coordinates. Each category shows Symbolic, Continuous, Values, and Jitter ranges. Notable ranges include RGB color values from zero to two hundred fifty-five, shape sides and corners, size area between zero to one hundred, and coordinates. Note indicates that objects already have xy-coordinates.]

The values for the various attributes are not chosen arbitrarily. For color concepts, e.g., RED, we use the RGB value that was used during the image rendering process of the CLEVR dataset1. This value is used as a seed value and random jitter is added. The same technique is used for the size-related concepts. The amount of jitter is shown in the rightmost column of Table 2. Generating the continuous attributes for the shape-related attribute proceeds as follows. We consider a sphere to have 1 side, 0 corners and a width-height ratio of 1, a cylinder to have 3 sides, 2 corners and a width-height ratio of 0.5 and a sphere to have 6 sides, 8 corners and a width-height ratio of 1. Finally, material is identified by a measure of surface roughness.

Obtaining sensory data in this way is straightforward and creates a controlled environment. Indeed, even with the presence of random jitter, there is no overlap between different instances of a particular concept, such as BLUE and CYAN or LARGE and SMALL. For each particular type of concept, every instance takes up a disjoint area in the space of continuous-valued attributes. This makes the concept learning task easier and allows us to validate the proposed learning mechanisms before moving to an environment with more realistic perceptual processing.



3.2.3. Extracted Attributes

To test our approach using more realistic perceptual processing, we make use of a state-of-the-art Mask R-CNN model to detect and segment the objects directly from the image. After segmentation, we extract a number of numerical attributes from the proposed segments. With this approach, different instances of a particular concept will no longer take up disjoint areas in the attribute space. Additionally, the numerical values will be subject to more noise due to variations in the images such as overlapping objects, lighting conditions or shade effects.

For object detection, we use a pre-trained neural network model developed by Yi et al. (2018) using the Mask R-CNN model (He et al., 2017) present in the Detectron framework (Girshick et al., 2018). Given an image, this network generates a mask for each of the objects in the scene. All masks with a certainty score below 0.9 are removed. The model was pre-trained on a separately generated set of CLEVR images. For training regime details, we refer to Yi et al. (2018). To our knowledge, there was no separate evaluation of the object detection accuracy.

We combine the obtained segments with the original image to extract a number of continuous-valued attributes. These are summarized in Table 3. As with the previous environment, we foresee a number of continuous attributes for each symbolic attribute of the CLEVR objects. For colors, we extract both the mean and standard deviation of the color of the region, expressed in the HSV color space and split for each channel. For shapes, we extract the estimated number of corners, the hamming distance between the shape's contour and the enclosing circle, and the width-height ratio. The size-related attributes are straightforward, except for the last two. The bb-area ratio expresses the ratio between the area of the region and the area of the rotated bounding box. Similarly, the image-area ratio expresses the ratio between the region's area and the area of the entire image. Finally, the material of objects is expressed by the ratio of both dark and bright pixels. These attributes are based on the idea that the metal objects are more reflective and thus contain more bright pixels.


Table 3. Mapping from symbolic attributes to continuous attributes obtained by the image segmentation process.

[image: A table with three columns titled "Symbolic," "Continuous," and "Values." It categorizes features into four sections: Color, Shape, Size, and Material. Each section lists attributes with respective value ranges: Color attributes like Mean-H and Std-H range from zero to two hundred fifty-five, Shape attributes such as number of corners have positive real number values, Size attributes like Width and Height are positive real numbers, and Material attributes such as Bright-pixels range from zero to one.]




3.3. Concept Representation

A concept is represented as a mapping from a symbolic label, in this case used as a word, to a set of continuous-valued attributes. Similar to Wellens (2012), we make use of a weighted set representation where each concept-attribute link has a score (∈[0, 1]), representing the certainty that the given attribute is important for the concept. In contrast to Wellens (2012), the attributes are continuous, represented through a normal distribution. This enables the use of such concepts in grounded, embodied scenarios. An example concept is shown in Figure 4.


[image: Flowchart showing a decision tree. The central node is labeled "cube," branching into three outputs: "wh-ratio: 0.94, [0.77 - 1.10]" with weight 0.10, "nr-of-corners: 8.00, [7.97 - 8.03]" with weight 1.00, and "nr-of-sides: 6.00, [5.97 - 6.03]" with weight 1.00.]
FIGURE 4. The concept CUBE is linked to a weighted set of attributes. The weight represents the certainty of an attribute belonging to the concept. Each attribute is modeled as a normal distribution that keeps track of its prototypical value (i.e., the mean) and the standard deviation. The values between square brackets denote two standard deviations from the mean. These are not used in similarity calculations directly, but give an indication of the observed range of prototypical values.


To computationally operationalize this concept representation in a language game scenario, we require two pieces of functionality: the ability to match a concept to an object and the ability to update an existing concept representation. The former is used by the learner during interpretation, while the latter is used during alignment.


3.3.1. Matching a Concept to an Object

In order to match a concept to an object from the environment, we should foresee some form of distance or similarity measure. Based on this measure, the agent can decide whether or not a particular concept is applicable or discriminative for a particular object, e.g., during interpretation. This idea is similar to Wellens (2012), since it allows an agent to use a concept even if it does not exactly match a particular object. However, Wellens (2012) only considers symbolic attributes, allowing him to implement such a measure using set operations. In this work, we make use of a continuous similarity measure. Specifically, the similarity between a concept C and an object O can be computed by the average similarity between each of the attributes, weighted by the certainty that an attribute belongs to the concept. Formally, the similarity S(C, O) is implemented as follows:

[image: The image shows a mathematical formula: \( S(C, O) = \frac{1}{|A_{t}|} \sum_{a \in A_{t}} c(C_{a}) \cdot S(C_{a}, O_{a}) \), labeled as equation (1).]

where AC is the set of attributes linked to concept C, |Ac| represents the number of attributes, c(Ca) returns the certainty score for a certain attribute a in concept C and Ca and Oa represent the attribute value for the attribute a in the concept C and object O, respectively.

Given the above definition of a similarity measure S between a concept and an object, we need the similarity measure S′ for a particular attribute a of the concept and object, respectively. For this, we represent the attribute value within a concept (Ca) as a normal distribution. The similarity function S′ is based on the z-score of the attribute value of the object (Oa) with respect to this normal distribution. We embed the z-score in a linear function to transform a small z-score in a high similarity value and a large z-score in a low similarity value. This function maps a z-score of 0 to a similarity of 1 and when a z-score reaches 2, the similarity has dropped to 0. If the z-score would be larger than 4, the similarity is cut off at −1. The similarity measure S′ can be expressed with the following equation:

[image: Mathematical expression showing \( S(C_a, O_a) = \max \left( \left| \frac{-z_a}{2} \right| + 1, -1 \right) \), labeled as equation (2).]

where zOa refers to the z-score of the attribute value of the object Oa with respect to the attribute of the concept, Ca, represented as a normal distribution.

Given that the similarity function S′ returns a value between −1 and 1 and the score is always between 0 and 1, the similarity measure S also returns a value between −1 and 1.



3.3.2. Updating Concepts

After each game, the concept used in that game can be updated in terms of both the prototypical value and the certainty score of each attribute. This way, the agent can gradually shape its concept representation to fit the environment, again similar to Wellens (2012). The update mechanism relies on the feedback given by the tutor after the interaction. Specifically, the learner will update the concept it used during the interaction to be closer to or better fit with the topic object. This update procedure works in two steps:

	1. The agent updates the prototypical value of all attributes in the concept. Here, we choose to update all attributes since the certainty scores of the attributes might not yet be stable. When a particular attribute suddenly becomes important, e.g., because of changes in the environment, we also want its value to reflect the examples already seen. The update mechanism makes use of Welford's online algorithm (Welford, 1962). This is an online algorithm that specifies recurrence relations for the mean and standard deviation. This allows us to recompute the mean and standard deviation of the distribution by adding a single observation, without the need to store all observations. On the implementation level, each attribute keeps track of the number of observations N, the prototypical value pn and the sum of squared differences from the current mean M2,n with n denoting the current interaction. The latter is initialized at 0.05. Given a new observation xn, these values can be updated using the following equations:

[image: Mathematical equations showing iterative calculations: N equals N plus 1, delta 1 equals x sub n minus p sub n minus 1, p sub n equals p sub n minus 1 plus delta 1 over N, delta 2 equals x sub n minus p sub n, M sub 2, n equals M sub 2, n minus 1 plus delta 1 times delta 2.]

	The standard deviation, required in the similarity calculations discussed above, can be computed from N and M2,n as follows:

[image: The formula shows sigma equals the square root of M subscript 2 comma x divided by N.]

	2. The agent will increase the certainty of the subset of attributes that is most discriminative for the topic. The certainty score is decreased for all other attributes. A subset of attributes is discriminative when it is more similar to the topic than to any other object in the scene. Since this can be true for multiple subsets, we define the most discriminative subset as the one where the difference between the similarity to the topic and the most similar other object is maximized. Thus, during the update procedure, we not only make use of the topic object itself, but also compare this to other objects in the scene. This ensures that the combination of attributes, and ultimately the entire repertoire of concepts, is functionally relevant in the agent's environment. To compute the most discriminative subset of attributes, we make use of the similarity functions S and S′ as defined above. Finally, to reduce the computational load, not all subsets of attributes are considered. These are filtered to contain at least the set of attributes that are discriminative on their own. The procedure to update the certainty scores can be summarized as follows:

	• Identify the discriminative attributes, i.e., attributes that are more similar to the topic than to any other object in the scene. Here, we use similarity function S′. This yields e.g., area and nr-of-corners.
	• Compute all subsets of the attributes of the concept.
	• Filter all subsets to contain at least the attributes found in the first step. This yields subsets such as {area, nr-of-corners}, {area, nr-of-corners, wh-ratio}, {area, nr-of-corners, roughness}, etc.
	• Find discriminative subset(s) of attributes, i.e., the subset for which the similarity to the topic is larger than to any other object in the scene. Here, we use similarity function S.
	• The previous step can produce multiple subsets. We take the one that maximizes the difference in similarity between the topic and the most similar other object.
	• Increase the certainty score of the attributes in this subset, and decrease the certainty score of all other attributes.

While this concept representation is easy to grasp, there is however an important assumption, namely that the attribute values are modeled using normal distributions. Statistical testing, using the normality test by D'Agostino and Pearson (d'Agostino, 1971; D'Agostino and Pearson, 1973), tells us that this is not the case for any of the attributes. The distributions of the attributes do come close to normal distributions but have thinner tails at both ends. Still, this can be viewed as odd, especially for some of the studied concepts. Take the concept LEFT as an example. It is important to note that the concept of LEFT refers to “left in the image” and not “left of another object.” With this definition of left, the x-coordinate is an important attribute for this concept. If we consider the images of the CLEVR dataset, the x-coordinate of an object can be anywhere between 0 and 480. In this setting, we consider an object to be LEFT when the x-coordinate is smaller than 240. The bulk of objects that can be considered LEFT will not be close to 0, nor close to 240, but somewhere in between, e.g., around x-coordinate 170. From this, it is easy to see that our assumption will not cause many issues in this particular dataset, but in general one could argue that objects with an x-coordinate smaller than 170 can actually be considered “more left,” while objects with an x-coordinates larger than 170 are gradually “less left.” This is currently not captured by our concept representation.




3.4. Tutor Behavior

As mentioned in section 3.1, the tutor looks for the smallest set of concepts that discriminates the topic from the other objects in the scene, based on the symbolic ground-truth annotation of the scene. Given a topic that can be described symbolically as (GREEN, CUBE, LARGE, RUBBER, LEFT, FRONT), the tutor will try to describe this with a single concept. Traversing the concepts of the topic in a random order, the tutor will check if no other objects in the scene share this concept. For example, if the topic is the only cube in the scene, the concept CUBE will be returned. In most experiments, we restrict the tutor to only use a single concept to describe an object. In some scenes, however, it is impossible to describe an object with a single, discriminative concept. When this is the case, the tutor will choose a new topic object or sample a new scene.

In the compositional learning experiment, discussed in section 4.4, we lift the single-word restriction. There, if no single discriminative concept can be found, the tutor will try all subsets of two concepts. For example, there might be multiple cubes and multiple green objects, but exactly one green cube. In this case, the combination of GREEN and CUBE is discriminative. Again, these subsets are considered in a random order. This procedure can be repeated for subsets of three concepts and four concepts, until a discriminative subset is found.




4. EXPERIMENTAL SETUP

In this section, we describe the various experiments designed to showcase different aspects of the proposed approach to concept learning. In the first experiment, we establish the baseline performance of our approach (section 4.1). In the following experiments, we test how well the concepts generalize (section 4.2), how they can be learned incrementally (section 4.3), and how they can be combined compositionally (section 4.4). A graphical overview of the experiments is given in Figure 5.


[image: Diagram illustrating four types of experiments with arrows: Baseline Experiment (Learning), Generalization Experiment (Learning on condition A, Evaluation on condition B), Incremental Learning Experiment (Learning + concept - data repeated), and Compositional Experiment (Learning with up to 4 words).]
FIGURE 5. Overview of the experiments, each showcasing a particular aspect of our approach to concept learning.



4.1. Transparent, Multi-Dimensional Concepts

In the first experiment, we validate the learning mechanisms through the language game setup laid out in section 3.1. We compare the learner's performance both using simulated (section 3.2.2) and more realistic (section 3.2.3) continuous-valued attributes. In both cases, we use scenes from the validation split of the CLEVR dataset. The learner agent is evaluated in terms of communicative success and concept repertoire size. Our goal is to validate whether or not the agent can successfully acquire and use the concepts known by the tutor. Additionally, we examine the acquired concepts to see if the agent finds combinations of attributes that are relevant in the present environment.



4.2. Generalization

Using the CLEVR CoGenT dataset (Johnson et al., 2017), we test if the acquired concepts are general enough to extend to unseen instances and combinations of attributes. The CLEVR CoGenT dataset consists of two conditions. In condition A, cubes can be gray, blue, brown, or yellow, cylinders are red, green, purple, or cyan and spheres can have any of these colors. In condition B, the color options for cubes and cylinders are swapped. Like the original CLEVR dataset, the CoGenT data comes with a symbolic annotation that can be transformed into continuous-valued attributes using the methods described in section 3.2. Our goal is to validate if the learner agent truly learns the concepts, independently from the statistical distribution or co-occurrences in the environment. We evaluate this by playing a number of interactions in condition A, after which we switch off learning, followed by a number of games in condition B to evaluate the communicative success. Here, we expect to see that the communicative success remains stable between condition A and B, indicating that the concepts acquired by the agent do not rely on co-occurrences in the environment, as is often the case for other types of models. Additionally, by varying the number of interactions in condition A, we gain insight into how quickly the learner can acquire concepts that are functional in the world.



4.3. Incremental Learning

By incrementally expanding the environment, we demonstrate the adaptivity and open-endedness of our concept learning approach. For this experiment, we created our own variation on the CLEVR dataset consisting of five splits. In each split, more concepts are added and less data is available. In the first split, we offer 10,000 images where all objects are large, rubber cubes in four different colors. In the second split, there are 8,000 images and these cubes can be large or small. Spheres and cylinders are added in the third split and the data is reduced to 4,000 scenes. The fourth split again halves the amount of data and metal objects are added. Finally, in the fifth split, four more colors are added and only 1,000 scenes are available. The splits are summarized in Table S1.

The learner agent is exposed to each of the splits consecutively, without resetting its repertoire of concepts or switching off the learning operators. We monitor the communicative success and the concept repertoire size throughout the entire experiment. Our goal in this experiment is two-fold. First, we show that the learning mechanisms can easily and quickly adjust to a changing environment. There is no need to fully or even partially re-train the repertoire when new concepts become available, nor to specify the number of concepts that are to be learned in advance, as would be the case for other types of models. By looking at the evolution of the concepts, we can study how certain attributes might become more or less important as the environment changes. Second, we again show the data efficiency of our approach by reducing the available number of scenes throughout the splits.



4.4. Compositional Concepts

The concept representation, as described in section 3.3, can be easily extended to compositional, multi-word utterances. In order to do so, the weighted set representation of multiple concepts needs to be combined. This is achieved by an operation similar to the union operator from fuzzy-set theory (Zadeh, 1965). Given two concepts, C1 and C2, their corresponding sets of attributes are combined such that for each attribute that occurs in both concepts, the one with the highest certainty score is chosen. This is illustrated in Figure 6.


[image: Diagram showing two decision trees being combined. Tree one (C1) splits into a1, a2, and a3 with probabilities 0.10, 0.50, and 0.40. Tree two (C2) splits into a3 and a7 with probabilities 0.70 and 0.30. Combined tree (C1 + C2) splits into a3, a1, a7, and a2 with probabilities 0.42, 0.09, 0.09, and 0.50.]
FIGURE 6. When combining concepts compositionally, the same attribute can occur multiple times. In this case, the resulting concept takes the one with the highest certainty score.


In this experiment, the tutor can use up to four words to describe the topic object. When all words in the utterance are unknown to the learner, it adopts all of them with the topic object being the initial seed. If all words are known, the learner performs the alignment using the composed concept. Due to this, not all attributes of all involved concepts will receive an updated prototypical value and certainty score, but only those that occur in the combined concept. For example, in the combined concept “C1+C2” from Figure 6, attributes “a-2” and “a-3” from concept “C1” and attributes “a-1” and “a-7” from concept “C2” will receive an update. Finally, if some words of the utterance are known and others are unknown, the learner will first adopt the unknown words and then perform alignment using the known words. In this experiment, we investigate how the communicative success, the learning speed and the resulting concepts of the agent are affected in the multi-word utterance setting and compare this to the single-word experiment described in section 4.1.




5. RESULTS

In this section, we elaborate on the results of the experiments described above. In order to produce the plots, we ran all experiments five times for 10,000 interactions and averaged the results. The error bars show the standard deviation. The plots were created using a sliding window of 250 interactions. All experiments were run on the validation split of the CLEVR dataset (15K scenes), using a randomly sampled scene for every interaction. The experiments were implemented using the open-source Babel toolkit (Loetzsch et al., 2008; Nevens et al., 2019).


5.1. Transparent, Multi-Dimensional Concepts

In the first experiment, we validate the learning mechanisms proposed earlier in this paper. We evaluate the learner agent on its ability to successfully communicate and on its repertoire of concepts, both in the more simple, simulated environment and in the more realistic, noisy environment. In Figure 7A, we show the communicative success of the agents in these environments. The agents are able to achieve 100% communicative success in the simulated world, after merely ~500 interactions. From the same figure, we see that the learning mechanisms perform somewhat less good in the more realistic, noisy environment. The agents achieve a fairly stable level of communicative success after ~500 interactions, reaching 91% communicative success (0.3% standard deviation).


[image: Graph panels show data analysis results. Panel A displays a line graph of accuracy scores over simulated or extracted steps, with scores stabilizing near 0.9. Panel B shows a similar trend with scores stabilizing at 0.9. Panels C and D display decision trees labeled "sphere," detailing variable relationships and values. Various variables like "wh-ratio" and "stdev" are linked with specific ranges and probabilities.]
FIGURE 7. (A) The communicative success rises quickly and achieves 100% in the simulated world and 91% in the noisy world. (B) In both environments, the agent acquires exactly 19 concepts. The concepts are human-interpretable and capture discriminative combinations of attributes. The concept SPHERE focusses on attributes related to shape, both in the simulated environment (C) and the extracted environment (D). Attributes with certainty score 0 are hidden.


Figure 7B shows the lexicon size of the learner agent in both environments. Just like the communicative success, we see that it quickly increases and stabilizes at 19 concepts, which are all concepts present in the CLEVR dataset. We cut off these figures after 2,500 of the 10,000 interactions, since the metrics reached a stable level.

The concept representation proposed in this work allows for a clear and easy to interpret view on the learned concepts. We demonstrate this in Figures 7C,D, showing the concept SPHERE obtained after 5,000 interactions in both the simulated and noisy environments. In both cases, we see that a few attributes have become important for the learner, reflected by the high certainty scores. In the simulated world, these are nr-of-corners and nr-of-sides, while in the noisy world these are the width-height ratio, the circle-distance and bb-area-ratio. The circle-distance attribute represents the Hamming distance between the contour of the object and the minimal enclosing circle and the bb-area-ratio attribute represents the ratio between the area of the object and the area of its bounding box. All of these attributes are indeed intuitively shape-related. We give an overview of all learned concepts obtained in the simulated world and the noisy world in Figures S1, S2, respectively.

With this experiment, we have shown that the learner agent can automatically distill meaningful concepts from a stream of continuous data, in the form of discriminative subsets of attributes and their prototypical values, and is able to successfully use them in communication. Furthermore, as these concepts are expressed using human-interpretable feature channels, the model and resulting repertoire of concepts is completely transparant.



5.2. Generalization

In the generalization experiment, we show that the agent's ability to learn the concepts is completely independent from the statistical distributions or co-occurrences in the dataset. For this experiment, we use the CLEVR CoGenT dataset, which consists of two conditions. The agent first learns during a number of interactions in condition A. Afterwards, learning operators are turned off and we evaluate the communicative success of the agent in condition B for the remainder of the interactions. We expect the agents to remain at a stable level of communicative success when making the transition from condition A to B. We again evaluate on both the simulated environment and the noisy environment. Additionally, we vary the amount of training interactions on condition A to test the speed at which the learner agent can acquire useable concepts.

In Figure 8, we show the communicative success of the agents both during learning in condition A and evaluation in condition B. From this figure, it is clear that the learner agent cannot reach the same level of success as the previous experiment after 100 training interactions. However, with only 500 training interactions this level of success is achieved. This indicates that the learner's repertoire of concepts is shaped quickly and is sufficient to have successful interactions. Additionally, when transitioning from condition A to B, there is no decrease in communicative success in the simulated environment and only a minor decrease in the noisy environment. This indicates that the concepts acquired by the agent abstract away over the observed instances.


[image: Three line graphs labeled A, B, and C compare convergence scores versus the number of games, both simulated and practical, up to 2500. Each graph shows three distinct trends, with varying success in convergence, where the solid brown line starts lower and increases, the dashed yellow line remains lower, and a teal line fluctuates near the top.]
FIGURE 8. Communicative success after learning for 100 interactions (A), 500 interactions (B), or 1,000 interactions (C) in condition A. The concepts are learned completely independently from the co-occurrences in the environment. The agents achieve the same level of communicative success as in the previous experiment, given at least 500 interactions in condition A.


To further investigate the generalization abilities of the learner, we study the acquired concepts. Remember that in condition A in the CoGenT dataset, cubes can be gray, blue, brown, or yellow, cylinders have a set of different colors and spheres can be any color. In Figure 9, we study the concept representation of the colors for cubes after being learned on condition A for 500 interactions. If the agent would rely on co-occurrences of the dataset, the concept representation of these colors could contain attributes related to shape, since each time one of these colors occurs it is either a cube or a sphere. Additionally, the cube and sphere have the same value for the wh-ratio attribute, so it could be considered discriminative in some cases. From Figure 9, we see that even though this feature is present in some of the concepts, its certainty score is very low. Hence, the agent does not focus on particular dataset co-occurrences and is able to generalize over various observations. We attribute this to the notion of discrimination, which will make sure that only relevant attributes obtain a high certainty score.


[image: Decision tree diagram with four panels labeled A, B, C, and D, representing colors blue, brown, gray, and yellow. Each tree shows branching paths with numerical values indicating ranges for b, g, r channels or other parameters like wh-ratio and x-pos, affecting the classification outcome.]
FIGURE 9. A subset of the agent's repertoire of concepts after the generalization experiment. In condition A, the concepts BLUE (A), BROWN (B), GRAY (C), and YELLOW (D) are always observed as cubes or spheres. The agent is not “distracted” by statistical distributions of the environment and learns combinations of attributes that are relevant to solve the communicative task.




5.3. Incremental Learning

Our approach to concept learning is completely open-ended and has no problems dealing with a changing environment. We validate this through an incremental learning experiment where, over the course of 10,000 interactions, the number of available concepts increases. We vary the amount of interactions before new concepts are introduced between 100, 500, and 1,000 interactions. The learning mechanisms are able to adjust almost instantly to these changes, as is shown in Figure 10. In the simulated world, we see minor drops in communicative success when transitioning from one phase to the next. These are more present in the noisy world, but the agent quickly recovers from it.


[image: Three line graphs labeled A, B, and C display cumulative success over the number of games simulated versus bracketed. Graphs A and B show data up to three thousand games, while graph C extends to six thousand. All graphs illustrate trends with blue and orange lines, indicating success rates. Each line demonstrates an overall increase in cumulative success as the number of games increases.]
FIGURE 10. Communicative success in the incremental learning experiment. A new split is introduced every 100 interactions (A), 500 interactions (B), or 1,000 interactions (C). The learning mechanism is completely open-ended, allowing the agent to adapt to a changing environment without any issues. Note that the x-axes vary to best show the changes in communicative success.


If we investigate the concepts in the incremental learning experiment, we find that the relevant attributes have obtained a high certainty score already after the first phase of the experiment (see Figure 11). Consequently, these remain stable over the various phases, while other attributes never achieve high certainty scores. Additionally, we note that the resulting concepts have the same high-scoring attributes as those obtained in the baseline experiment, independent of the phase in which they were introduced (see Figure 12).


[image: Decision trees labeled A to E illustrate different branching paths based on various attributes like xpos, ypos, roughness, whiteness, and gray. Each tree shows decisions and outcomes at each node, indicating hierarchical classification steps with numerical thresholds and conditions guiding the splits.]
FIGURE 11. The concept GRAY after each of the five phases: (A) phase 1, (B) phase 2, (C) phase 3, (D) phase 4, and (E) phase 5. The relevant attributes obtain a high certainty score after the first phase of the experiment.



[image: Three decision trees are shown, labeled A, B, and C.   A: Begins with "blue" and splits into paths based on criteria with final values: 215.04, 76.05, 44.00.   B: Begins with "cylinder" and splits into paths with final values: nd.conf.nox, nd.conf.ox, wheeze.   C: Begins with "cyan" and splits into paths with final values: 206.07, 207.87, 46.03.   Each node contains statistical values and conditions.]
FIGURE 12. The final representation of concepts introduced in various phases of the experiment. The concept BLUE was introduced in phase 1 (A), CYLINDER in phase 3 (B), and CYAN in phase 5 (C).




5.4. Compositional Utterances

In the final experiment, we find that the agent is successful at learning the separate concepts, even if they are combined in compositional utterances. To test this, we allow the tutor to use up to four words when describing an object. It is important to note that the tutor will always generate the shortest discriminative utterance, as described in section 3.4. In Figure 13, we measure how often the tutor uses different utterance lengths. From this, it is clear that most objects can be described using a single word. Slightly less than 40% of objects require two words to be discriminative and only very few objects are described with three words.


[image: Bar chart showing the frequency of tutor word use by the number of words. One-word use is the highest, followed by two words. Three and four-word uses are minimal. The categories are color-coded.]
FIGURE 13. The tutor describes 63% of the objects with a single word, 36% of the objects with two words and 1% with three words.


In Figure 14, we compare the communicative success when a tutor uses a single word (and skips scenes where this is not possible) and when the tutor uses up to four words. In the simulated environment (Figure 14A), communicative success drops 3 percentage points to 97%. In the noisy environment (Figure 14B), the communicative success drops 8 percentage points to 83%. With this experiment, we show that the agent is capable of extracting the discriminative attributes and their prototypical values for each concept and, at the same time, learning the meaning of each word separately in a multi-word utterance.


[image: Two line graphs titled A and B show comprehension success against the number of games, with plots for 1 word, 10 bits, and 16 bits languages. Graph A shows both 1 word and 10 bits lines converging near 1, while 16 bits stabilizes lower. Graph B shows all lines with similar trends but more variability.]
FIGURE 14. Comparison of the communicative success when the tutor uses one or up to four words. In both the simulated environment (A) and the extracted environment (B), there is a drop in communicative success (3 and 8 p.p., respectively).


Finally, we consider the repertoire of concepts and find, similar to the first experiment, that the agent has found discriminative sets of attributes that are intuitively related to the concept they describe. The concept METAL is shown in Figure 15, both for the simulated and noisy environment. Interestingly, we note from this Figure that the agent has learned to identify the material of an object through the “value” dimension of the HSV color space.


[image: Diagram A shows a decision tree with a single node labeled "metal" and a branch labeled "roughness" with a value of 7.96. Diagram B has a more complex decision tree with multiple branches from "metal," showing different conditions and values, including "mean-v," "std-v," "xpos," and "std-h." Each branch includes a probability and a range of values.]
FIGURE 15. The concepts learned in the compositional experiment capture discriminative sets of attributes that are intuitively related to the concept they describe. We show the concept METAL in both (A) the simulated and (B) extracted environment.





6. DISCUSSION AND CONCLUSION

In order to be able to communicate and reason about their environment, autonomous agents must be able to abstract away from low-level, sensori-motor data streams. They therefore require an abstraction layer that links sensori-motor experiences to high-level symbolic concepts that are meaningful in the environment and task at hand. A repertoire of meaningful concepts provides the necessary building blocks for achieving success in the agent's higher-level cognitive tasks, such as reasoning or action planning. Similar to how humans can grasp a concept after only a few exemplars, an autonomous agent should ideally acquire these concepts quickly and with relatively little data. Learned concepts should be general enough to extend to similar yet unseen settings. As the environment of the agent can change or new concepts can be introduced at any time, the learning methodology should also be adaptive and allow for incremental learning. Finally, to truly understand the reasoning processes of an autonomous agent, its learning mechanisms and representations should be fully transparent and interpretable in human-understandable terms.

The task of concept learning has been considered in various subfields of AI. Deep Learning approaches, for example, offer a very powerful paradigm to extract concepts from raw perceptual data, achieving impressive results but thereby sacrificing data efficiency and model transparency. Version space learning offers a more interpretable model but has difficulties in handling noisy observations. Most similar to the approach presented in this paper is work from the robotics community, considering tasks such as perceptual anchoring and affordance learning. However, these tasks focus mostly on a single robot extracting concepts from observations of the world around it. In this work, we argue for interactive learning through the language game paradigm. The notion of discrimination plays a central role in forming the concepts, thereby ensuring the generality and adaptivity of the concepts such that these are relevant in the agent's environment. Additionally, our method offers an explainable concept representation, acquired through a data efficient and incremental method. Each of these properties was highlighted in a dedicated experiment.

In sum, we have presented a novel, discrimination-based approach to learning meaningful concepts from streams of sensory data. For each concept, the agent finds discriminative attribute combinations and their prototypical values. We have shown that these concepts (i) can be acquired quickly with relatively few data points, (ii) generalize well to unseen instances, (iii) offer a transparent and human-interpretable insight in the agent's memory and processing, (iv) are adaptive to changes in the environment, and (v) can be combined compositionally. These properties make this work highly valuable for the domains of robotics and interactive task learning, where interpretability, open-endedness and adaptivity are important factors. Once a repertoire of symbolic concepts, abstracting away over the sensori-motor level, has been acquired, an autonomous agent can use it to solve higher-level reasoning tasks such as navigation, (visual) question answering, (visual) dialog and action planning.

In order to ensure that the learned concepts are human-interpretable, the methodology starts from a predefined set of human-interpretable features that are extracted from the raw images. While we argue that this is necessary to achieve true interpretability, it can also be seen as a limitation inherent to the methodology. However, this limitation cannot be lifted without losing interpretability that the method brings.
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We consider the problem of learning generalized first-order representations of concepts from a small number of examples. We augment an inductive logic programming learner with 2 novel contributions. First, we define a distance measure between candidate concept representations that improves the efficiency of search for target concept and generalization. Second, we leverage richer human inputs in the form of advice to improve the sample efficiency of learning. We prove that the proposed distance measure is semantically valid and use that to derive a PAC bound. Our experiments on diverse learning tasks demonstrate both the effectiveness and efficiency of our approach.

Keywords: cognitive systems, logics for knowledge representation, relational learning, knowledge representation and reasoning, human in the loop (HITL)


1. INTRODUCTION

We study the case of learning from few examples, of which one-shot learning is a special case (Lake et al., 2015). We consider a challenging setting—that of learning explainable, decomposable, and generalizable (first-order) concepts from few examples. Plan induction becomes a special case where a generalizable plan is induced from a single (noise-free) demonstration. As an example, consider building a tower that requires learning L-shapes as a primitive. In our formulation, the goal is to learn a L-shape from a single demonstration. Subsequently, using this concept, the agent can learn to build a rectangular base (with 2 L-shapes) from another single demonstration and so on till the tower is fully built. Concept learning has been considered as problem solving by reflection (Stroulia and Goel, 1994), mechanical compositional concepts (Wilson and Latombe, 1994), learning probabilistic programs (Lake et al., 2015), etc. While successful, they are not considered in one-shot learning except with SVM (Tax, 2001), or with a neural network (Kozerawski and Turk, 2018).

Our work has two key differences. First, we aim to learn an “easily interpretable,” “explainable,” “decomposable,” and “generalizable” concepts as first-order Horn clauses (Horn, 1951) (which are akin to If-Then rules). Second, and perhaps most important, we “do not assume the existence of a simulator (for plans) or employ a closed-world assumption” to generate negative examples. Inspired by Mitchell's (1997) observation of futility of bias-free learning, we employ domain expertise as inductive bias. The principle of structural risk minimization (Vapnik, 1999) shows how optimal generalization from extremely sparse observations is quite difficult. The problem is difficult in structured domains since most relations are false. Thus, few-shot induction of generalized logical concepts is challenging. We employ iterative revision of first-order horn clause theories using a novel scoring metric and guidance from a human. We emulate a “student” who learns a generalized concept from an example provided by the “teacher,” by both reflecting as well as asking relevant questions.

We propose Guided One-shot Concept Induction (GOCI) for learning in relational domains1. GOCI builds upon an inductive logic program (ILP) learner (Muggleton, 1991) with two key extensions. First, a modified scoring function that explicitly computes distances between concept representations. We show the relation to Normalized Compression Distance (NCD) for plan induction settings. Consequently, we demonstrate that NCD is a valid distance metric. Second, we use domain knowledge from human expert as inductive bias. Unlike many advice taking systems that employ domain knowledge before training, GOCI identifies the relevant regions of the concept representation space and actively solicits guidance from the human expert to find the target concept in a sample-efficient manner. Overall, these two modifications allow for more effective and efficient learning using GOCI that we demonstrate both theoretically and empirically.

We make the following key contributions:

	1. We derive a new distance-penalized scoring function that computes definitional distances between concepts, henceforth termed as “conceptual distance.”
	2. We treat the human advice as an inductive bias to accelerate learning. Our ILP learner actively solicits richer information from the human experts than mere labels.
	3. Our theoretical analyses of GOCI prove that (a) our metric is indeed a valid distance, and (b) NCD between plans is a special case of our metric.
	4. We show a PAC analysis of the learning algorithm based on Kolmogorov complexity.
	5. We demonstrate the exponential gains in both sample efficiency and effectiveness of GOCI on diverse concept induction tasks with one or a few examples.



2. BACKGROUND AND RELATED WORK

Our approach to Concept Learning is closely related to Stroulia and Goel (1994)'s work, which learns logical problem-solving concepts by reflection. GOCI's scoring metric is more general and applicable to both concepts and plans and can be used for learning from a few examples. While we use discrete spatial structures as motivating examples, GOCI is not limited to discrete spaces, similar to Wilson and Latombe (1994)'s work. GOCI is also related in spirit to probabilistic (Bayesian) program induction for learning decomposable visual concepts (Lake et al., 2015), which illustrates how exploiting decomposability is more effective. Our approach leverages not only decomposability but also implicit relational structure.


2.1. One/Few-Shot Learning and Theory Induction

Our problem setting differs from the above in that it requires learning from sparse examples (possibly one). Lake et al. (2015) propose a one-shot version of Bayesian program induction of visual concepts. There is also substantial work on one/few-shot learning (both deep and shallow) in a traditional classification setting (Bart and Ullman, 2005; Vinyals et al., 2016; Wang et al., 2018), most of which either pre-train with gold-standard support example set or sample synthetic observations. We make no such assumptions about synthetic examples. ILP (Muggleton, 1991) inductively learns a logical program (first-order theory) that covers most of the positive examples and few of the negative examples by effectively employing background knowledge as search bias. In concept learning, generalization is typically performed as a search through space of candidate inductive hypotheses by (1) structuring, (2) searching, and (3) constraining the space of theories. FOIL (Quinlan, 1990) is an early noninteractive learner with the disadvantage that it occasionally prunes some uncovered hypotheses. This is alleviated in systems like FOCL by introducing language bias in the form of user-defined constraints (Pazzani, 1992). With Interactive ILP, learner could pose questions and elicit expert advice that allows pruning large parts of search space (Sammut and Banerji, 1986; Rouveirol, 1992). To incorporate new incoming information, ILP systems with theory revision incrementally refine and correct the induced theory (Sammut and Banerji, 1986; Muggleton, 1988). While GOCI is conceptually similar to ALEPH (Srinivasan, 2007), it learns from a few examples and actively acquires domain knowledge by interacting with human expert incrementally.



2.2. Knowledge-Guided Learning

Background knowledge in ILP is primarily used as search bias. Although the earliest form of knowledge injection can be found in explanation-based approaches (Shavlik and Towell, 1989), our work relates to preference-elicitation framework (Braziunas and Boutilier, 2006), which guides learning via human preferences as an inductive bias. Augmented learning with domain knowledge as an inductive bias has long been explored across various modeling formalisms, including traditional machine learning (Fung et al., 2003), probabilistic logic (Odom et al., 2015), and planning (Das et al., 2018). Our human-guided GOCI learner aims to extend these directions in the context of learning generalizable complex concepts from a few examples(including plans). Similar problem setting of concept learning from incomplete/sparse observations has also been explored in the cognitive science paradigm via explanation-based inductive program synthesis (Flener, 1997; Kitzelmann and Schmid, 2006).

The idea of augmented learning with human guidance/knowledge has also been extensively studied in the context of evolutionary computation. Interactive evolutionary systems (Eiben and Smith, 2015) use expert guidance to emulate a holistic fitness function that would otherwise depend on a very restricted pre-defined fitness model. The potential richness of such knowledge can be leveraged in not just evolutionary parent selection but can also optimize other parameters that leads to faster convergence, especially in mutations (Wendt et al., 2010). ILP has been shown to be conceptually similar to mutative EA in the context of program induction (Wong and Leung, 1997) and hence knowledge-guided mutations are related to knowledge augmented search in ILP. Thus, in our problem setting, the interaction module that seeks human guidance to select the most useful constraints (detailed in section 3.2.3) is similar in spirit to interactive (knowledge guided) evolutionary mutation process. However, our underlying search strategy and optimization is based on ILP.




3. GUIDED ONE-SHOT CONCEPT INDUCTION

We are inspired by a teacher (human) and student (machine) setting in which a small number of demonstrations are used to learn generalized concepts (Chick, 2007). Intuitively, the description provided by a human teacher tends to be modular (can have distinct logical partitions), structured (entities and relations between them), and in terms of known concepts. Hence, a vectorized representation of examples is insufficient. We choose a logical representation, specifically a “function-free restricted form of first-order logic (FOL)” that models structured spaces faithfully.

Given: A set of “facts” or assertions, that is, a set of ground literals (or trajectories) describing 1 (or few) instance(s) of an unknown concept, availability of an expert to provide guidance and a knowledge-base of known concepts.
To Do: Learning a representation, by inducing a first-order logic program, of the given concept that optimally generalizes the given instance(s) effectively.

The input to GOCI is the description of the instances(s) of a concept that the human teacher provides. An example is, thus, conjunction of a set of ground literals (assertions). The output of GOCI is a least general generalization (LGG) horn clause from the input example(s).


3.1. Concept Representation

Consider the following example input to the GOCI framework. The input here is an instance of the structural concept L (illustrated in Figure 1).


[image: Two diagrams show L-shaped structures made of cubes. Both have a horizontal base of four white cubes and a vertical section of blue cubes. The first diagram has five blue cubes stacked vertically. The second diagram has only three blue cubes stacked vertically, with a horizontal line indicating a distance of three units. Both structures are labeled with heights and dimensions.]
FIGURE 1. Concept 𝕃 (base = 4, height = 5), described as composition of a Tower and a Row.


Example 1. An instance in a minecraft domain can be a 𝕃 with dimensions height = 5, base = 4 (Figure 1). 𝕃(S), Height(S, 5), Base(S, 4), s is the concept identifier and may be described as conjunction of ground literals,

	Row(A)∧   Tower(B)∧   Width(A, 4)∧  Height(S, 5)∧
	Base(S, 4)∧    Contains(S, A)∧    Contains(S, B)∧
	Height(B, 4)∧ SpRel(B, A,′NWTop′),

which denotes 𝕃 as composition of a “Row” of w = 4 and a “Tower” of h = 4 with appropriate literals describing the scenario (Figure 1, left). As a special case, under partial or total ordering assumptions among the ground literals, an input instance can represent a plan demonstration.

We aim to learn the optimally generalized (decomposable) representation of the concept (𝕃 in the context of the aforementioned example) referred by the one/few instances that were passed to GOCI as input. Before further discussion on the learning such a generalized (decomposable) representation let us first define formally what a concept representation signifies in our setting.

Definition 1. Concepts in GOCI are represented as horn clause theories. A theory T is defined as, [image: Mathematical expression: \( T = C(s^{k \ldots}) - \sqrt{\prod_{i=1}^{M} f_{i}(t_{1}, \ldots, t_{j})} \).], where the body [image: Mathematical notation showing an intersection operation: a wedge symbol with "i equals one to N" below, applied to the function \( f_i(t_1, \ldots, t_j) \).] is a conjunction of literals indicating known concepts or relationships among them, such that any [image: \( t_j \in V \cup \{s^k\} \cup C \)] where V is the set of all logical variables in the clause, C is the set of constants in the domain of any logical variable. The head [image: Mathematical expression showing C with an argument of s raised to the power of k, followed by an ellipsis.] identifies a target concept, and the terms {sk} are logical variables that denote the parameters of the concept assuming there are k = {1, …, K} parameters including the identifier to the given instance of the concept. Since a concept can be described in multiple ways (Figure 1), the final theory will be a disjunction over clause bodies with the same head. A (partial) instantiation of a theory T is denoted as T/θ.

Note that these definitions allow for the reuse of concepts, potentially in a hierarchical fashion. We believe that this is crucial in achieving human-agent collaboration.

Example 2. Figure 1 illustrates an instance of the concept 𝕃 that can be described in multiple ways. A possible one is,

[image: Logical expression depicting structural relationships, including functions like Height, Base, Contains, Row, Tower, Width, Equal, Sub, and SpRel. Elements are compared and positioned using parameters such as s, h, w, a, b, referencing dimensions and spatial relations.]

The generalization must be noted. The last argument of the SpRel() is a constant, as only this particular spatial alignment is appropriate for the concept of the 𝕃 structure. Although the input is a single instance (Example 1), GOCI should learn a generalized representation such as Example 2. Another interesting aspect is the additional constraints: Equal(X,Y) and Sub(X,Y,N). While such predicates are a part of the language, they are not typically described directly in the input examples. However, they are key to generalization, since they express complex interactions between numerical (or non-numerical) parameters. Also note that the head predicate of the clause could have been designed differently as per Definition 1. For instance, in case of Example 2, the head predicate could have folded in the dimensional parameters—𝕃(s, hs, ws). However, the number of such dimensional parameters can vary across different concepts. Hence to maintain generality of representation format during implementation, we push the dimensional parameters of the learnable concept into the body of the clause.

A specific case of our concept learning (horn clause induction) framework could be plan induction from sparse demonstrations. This can be achieved by specifying time as the last argument of both the state and action predicates. Following this definition, we can allow for plan induction as shown in our experiments. Our novel conceptual distance is clearer and more intuitive in the case of plans as can be seen later.

Definition 2 (Decomposable:). A concept [image: Lowercase letter "c" displayed in a simple, serif font.] is decomposable if it is expressed as a conjunction of other concepts, and one or more additional literals to model the interactions. [image: C is implied by the conjunction of for all i, C sub i, and for all j, B sub j.]. Here [image: Mathematical notation showing the letter "C" with a prime symbol above and a subscript "i".] are literals that represent other concepts that are already present in the knowledge base of the learner and Bj are literals that either describe the attributes of [image: The image displays the mathematical notation \( C_{i} \) with a prime symbol, indicating differentiation or derivation of the variable \( C \) indexed by \( i \).] or interactions between them.

Decomposable allows for an unknown concept to be constructed as a composition of other known concepts. GOCI learns the class of decomposable concepts since it is intuitive for the “human teacher” to describe. Decomposable concepts faithfully capture the modular and structured aspect of how humans would understand and describe instances. It also allows for a hierarchical construction of plans.

Example 3. Following the Minecraft structure described in 2, note how 𝕃 is described with already known concepts [image: \( C_1^r = \text{Row}() \)] and [image: Mathematical expression showing C subscript n equals Tower of zero.] and the other literals such as Height(b, hb), SpRel(b, a, ”NWTop”), … ∈ {Bj}, that is, they describe the parameters of the known concepts or interactions between them. Note that known concepts in the knowledge base could have been manually coded in by experts or learned previously and are essentially represented in the same way. For instance, Row() can be encoded as recursive the clause program representing a composition of one block and one unit shorter row,

[image: Mathematical expression defining a function, Row(r), with conditions based on width, block, row, and relational aspects. Includes components like Width(r, wr), Block(a), Row(b), and logical operations involving SpRel(a, b, "East"). Concludes with a logical OR operation involving Width, Equal, and Block.]

Tower() could also be defined in the knowledge base in the same way. When the optimally general representation of the concept 𝕃 is learned that is persisted in the knowledge base as well, such that more complex concepts can be represented by decomposing into 𝕃 and other known concepts.

An obvious question that arises here is why [image: (B subscript j) is not a subset of (C superscript prime).]? that is, why can the other literals not be treated similarly as a part of the knowledge base of known concepts? Ideally, that would be correct. However, that will also cause infinite levels of concept definitions, which cannot be implemented in practice. Additionally, following the paradigm of a student–teacher scenario, it can always be assumed that the student has prior understanding of many concepts from outside the current system. Thus, we can safely assume, without loss of generality, that set of literals {Bj} are implicitly understood and defined as a part of the framework itself. This argument applies to the semantics of the “constraint predicates” (described later) as well.

Finally, before we discuss the details of the learning methodology, let us briefly look into a motivating, and presently relevant, real-world scenario that represents our problem setting.

Example 4. Consider a decision support AI system for resource planning and management in hospitals as illustrated in Figure 2. The AI agent forecasts the need for increased resources in the infectious diseases (ID) ward, given the early signs of an outbreak of some disease such as Covid-19 or Ebola, and a potential spike in ID ward admissions. However, as noted by the administrators and/or physicians there is not enough budget to procure additional resources for ID ward. But the problem is quite critical and needs to be solved. So the human teacher (administrators in this case) teaches the AI agent the concept of “Divert” -ing resources from Cancer ward since cancer ward admissions are usually stable and does not have spikes. The AI agent is hence expected to learn a generalized representation of the concept of divert such that it may be applied later for other wards or for other tasks and furthermore in a “decomposable” fashion. For instance, “Divert” may be learned as a clause program such as,

[image: Text showing a logical rule titled "Divert". It consists of operations such as "To", "AcquireFrom", "AssignTo", and a "sum" function. The formula involves variables R, qty, Loc_dest, and Loc_source with subscripts 1 and 2.]

Obviously, the above representation assumes that concepts such as “AcquireFrom()” are known concepts, either implicitly defined inside the learning framework or its explicit representation has been learned and persisted inside the knowledge base in the past.


[image: Cartoon illustrating a hospital ward dilemma. Left: Administration and physicians discuss resource allocation. Administration questions funding, physicians suggest diverting from the cancer wing to infectious disease (ID). Center: Hospital ward depicted. Right: AI agent highlights the need for resource addition in ID due to COVID-19 surge and questions "divert" concept.]
FIGURE 2. A motivating real-world scenario for concept induction. The concept learnt by the AI agent is “Divert()”.


The above example is solely to motivate the potential impact of our problem setting and the proposed solution. For an explanation of different components and aspects of GOCI, we refer to the much simpler and unambiguous structural example outlines earlier (𝕃).



3.2. Methodology
 
3.2.1. Search

ILP systems perform a greedy search through the space of possible theories. Space is typically defined, declaratively, by a set of mode definitions (Muggleton, 1995) that guide the search. We start with the most specific clause (known as a bottom clause) (Srinivasan, 2007) from the ground assertions and successively add/modify literals that might improve a rule that best explains the domain. Typically, the best theory is the one that covers the most positive and least negative examples. Thus, it optimizes the likelihood of a theory T based on the data. We start with a bottom clause and variablize the statements via anti-substitution. Variabilization of T is denoted by θ−1 = {a/x}, where a ∈ consts(T), x ∉ vars(T). That is, anti-substitution θ−1 is a mapping from occurrences of ground terms in T to new or existing logical variables.

Evaluation Score: We redesign the ILP scoring (e.g., ALEPH's compression heuristics) as:

	• The user-provided advice forces the learner to learn longer theory, hence the search space can be exponentially large. Thus, modes alone are not sufficient as the search bias.
	• There is only one (a few) positive training example(s) to learn from and many possible rules can accurately match the training example. Coverage-based scores fail.

Most learners optimize some form of likelihood. For a candidate theory T, likelihood given data 𝔻 is LL(T) = logP(𝔻|T) (i.e., coverage). To elaborate further, in most classification tasks in discrete domains (with categorical/ordinal feature and target variables), goodness of fit of candidate models is achieved via the measure of how well the candidate models explain (or cover) the given data, that is, a good model is the one that will predict positive class for maximum possible positive examples and for minimum possible negative examples. This measure is expressed as likelihood of the data given a candidate model. In GOCI, we have one (at most few) positive example(s). Coverage will not suffice. Hence, we define a modified objective as follows.

[image: Optimization equation showing \( T^* = \arg\min_{T \in \mathcal{T}}(-LL(T) + D(T / \theta_X, X)) \) labeled as equation one.]

where T* is the optimal theory, τ is the set of all candidate theories, and D is the conceptual distance between the instantiated candidate theory T/θX and the original example X. Recall that a theory 𝕋 is a disjunction of horn clause bodies (or conjunction of clauses).



3.2.2. Distance Metric

Conceptual distance, D(T/θX, X), is a penalty in our objective. The key idea is that any learned first-order horn clause theory must recover the given instance by equivalent substitution. However, syntactic measures, such as edit distance, are not sufficient since changing even a single literal, especially, literals that indicate interconcept relations, could potentially result in a completely different concept. For instance, in blocks-world, the difference between a block being in the middle of a row and one at the end of the row can be encoded by changing one literal. Hence, a more sophisticated semantic distance such as conceptual distance is necessary (Friend et al., 2018). However, such distances require deeper understanding of the domain and its structure.

Our solution is to employ interplan distances. Recall that the concepts GOCI can induce are decomposable and, hence, are equivalent to parameterized planning tasks. One of our key contributions is to exploit this equivalence by using a domain-independent planner to find grounded plans for both the theory learned at a particular iteration i, Ti and the instance given as input, X. We then compute the normalized compression distance (NCD) between the plans.

NCD: Goldman and Kuter (2015) proved that NCD is arguably the most robust interplan distance metric. NCD is a reasonable approximation of Normalized Information Distance, which is not computable (Vitányi et al., 2009). Let the plans for Ti/θX and X be πT and πX. To obtain NCD, we execute string compression (lossy or lossless) on each of the plans as well as the concatenation of the two plans to recover the compressed strings CT, CX, and CT,X, respectively. NCD between the plans can be computed as,

[image: Equation for Normalized Compression Distance (NCD) defined as NCD(π_T, π_X) equals the difference between C_T and C_X divided by the maximum of C_T and C_X, labeled as equation (2).]

The conceptual distance between a theory T and X is the NCD between the respective plans, D(T/θX, X) = NCD(πT, πX). This entire computation is performed by the conceptual distance calculator as shown in Figure 3.


[image: Flowchart illustrating an iterative theory refinement process. It involves a conceptual distance calculator compressing plans and calculating normalized compression distance. The ILP learner interacts with sample constraints, optimizing likelihood and distance. The learner instantiates a refined theory, which then gets refined further. Continuous loops suggest ongoing refinement. A query and advice feed into the process.]
FIGURE 3. Highlevel overview of our Guided One-shot Concept Induction (GOCI) framework.


Observations: (1) Conceptual distance as a penalty term in the LL score ensures that the learned theory will correctly recover the given example/demonstration. (2) D(T/θX, X) generalizes to the Kolmogorov–Smirnov statistic between two target distributions if we induce probabilistic logic theories. We prove these insights theoretically.



3.2.3. Human Guidance

The search space in ILP is provably infinite. Typically, language bias (modes) and model assumptions (closed world) are used to prune the search space. However, it is still intractable with one (or few) examples. So, we employ human expert guidance as constraints that can directly refine an induced theory, acting as a strong inductive bias. Also, we are learning decomposable concepts (see Definition 2). This allows us to exploit another interesting property. Constraints can now be applied over the attributes of the known concepts that compose the target concept, or over the relations between them. Thus, GOCI directly includes such constraints in the clauses as literals (see Example 2). Though such constraint literals come from the pre-declared language, they are not directly observed in the input example(s). So an ILP learner will fail to include such literals.

If the human inputs (constraints) are provided upfront before learning, it can be wasteful/irrelevant. More importantly, it places an additional burden on the human. To alleviate this, our framework explicitly queries for human advice on the relevant constraint literals, which are most useful. Let 𝕌 be a predefined library of constraint predicates in the language, and let [image: The mathematical expression shows "U zero, open parenthesis, close parenthesis, is an element of script capital U."] be a relevant constraint literal. Human advice [image: Lowercase letter "a" written in a serif font style.] can be viewed as a preference over the set of relevant constraints [image: Text in curly brackets showing "u(0)".]. If [image: Uppercase letter "U" with a subscript lowercase letter "A".] denotes the preferred set of constraints, then we denote the theory having a preferred constraint literal in the body of a clause as [image: The image shows an italicized lowercase Greek letter tau with a subscript capital letter A.]. (For instance, as per Example 2 GOCI queries “which of the two sampled constraints Sub(hb, hs, 1) & Greater(hb, hs) is more useful.” Human could prefer Sub(hb, hs, 1), since it subsumes the other.) The scoring function now becomes:

[image: An equation showing: \(T^* = \arg \min_{T \in \tau} (-\text{LL}(T) + \text{D}(T / \theta, X)) : \tau \subseteq \{t_A\}\), labeled as equation 3.]

Thus, we are optimizing the constrained form of the same objective as Equation (1), which aims to prune the search space. This is inspired by advice elicitation approaches (Odom et al., 2015). While our framework can incorporate different forms of advice, we focus on preference over constraints on the logical variables. The formal algorithm, described next, illustrates how we achieve this via an iterative greedy refinement (Figure 3, query-advice loop shown in left).




3.3. The GOCI Algorithm

Algorithm 1 outlines the GOCI framework. It initializes a theory T0 by variablizing the “bottom clause” obtained from X and background knowledge [lines 3 and 5]. Then it performs a standard ILP search (described earlier) to propose a candidate theory [line 6]. This is followed by the guided refinement steps, where constraint literals are sampled (parameter tying guides the sampling) and the human teacher is queried for preference over them, such that the candidate theory can be modified using preferred constraints [lines 7–9]. The function NCD() performs the computation of the conceptual distance by first grounding the current modified candidate theory T′ with the same parameter values as the input example X, then generating grounded plans and finally calculating the normalized compression distance between the plan strings (as shown in Figure 3 and Equation 2) [line 10]. The distance-penalized negative log-likelihood score is estimated and minimized to find the best theory at the current iteration [lines 11–14], which is then used as the initial model in the next iteration. This process is repeated either until convergence (no change in induced theory) or maximum iteration bound (L).


Algorithm 1: Guided one-shot concept induction.

[image: A pseudocode titled "GOCI" with steps to process an instance X. It includes initialization with setting iterations and bootstrapping theory, repeating with an initial model, searching candidate theory, sampling constraints, querying, updating theories, scoring, and conditions for updating or retaining theories. The process repeats until specific conditions are met, concluding the procedure.]

Connection to plan induction: Evaluation, both in traditional ML and ILP, generally predicts the value of ŷX for a test instance X represented as a fixed (ML) or arbitrary (ILP) length feature vector. In GOCI, however, the notion of evaluation of an instance X depends on successful construction of a valid/correct plan πX (Figure 4). Thus, while learning, most research aim to maximize coverage of positive instances [image: Mathematical expression of an expected value calculation: E superscript plus of the maximum probability of y-hat sub x equals true, given y sub x is an element of E superscript plus.] and minimize coverage of negatives E−, [image: Mathematical expression showing \(E^-\) with a condition: \(\text{min} \, P(\hat{Y}_x = \text{true} \mid y_x \in E^-)\).]. GOCI evaluates a candidate concept representation by allowing the agent to realize that concept—by computing a valid plan for the goal/task implied by the instance x. This is akin to plan induction, since we are learning parameterized plan for realizing the concept as a surrogate for the concept itself. Additionally, planning has long been shown to be conceptually same as logic programming (Preiss and Shai, 1989) and hence induction of logic programs (theories) is the same as plan induction where the examples are trajectories (plan traces) in this case.


[image: Diagram titled "Empirical Evaluation of Concept" showing three pathways from a test instance X: Traditional ML with a fixed length vector, ILP with an arbitrary length vector, and GOCI as a planning task.]
FIGURE 4. Difference in evaluation of a concept instance across different learning paradigms.




3.4. Theoretical Analysis
 
3.4.1. Validity of Distance Metric

NCD δ(x, y) between two strings x and y is provably a valid distance metric (Vitányi et al., 2009): [image: Mathematical expression for delta of x and y equals the maximum of K of x given y and K of y given x, divided by the maximum of K of x and K of y.], where K(x) is the Kolmogorov complexity of a string x and K(x|y) is the conditional Kolmogorov complexity of x given another string y. NCD is a computable approximation of the same [D(x, y) ≈ δ(x, y)]. Thus, we just verify if δ is a correct conceptual distance measure. Let TY and TZ be two theories, with same parameterizations (i.e., same heads). Let TY/θ and TZ/θ be their groundings with identical parameter values θ. Our learned theories are equivalent to planning tasks. Assuming access to a planner Π() which returns Y = Π(TY/θ) and Z = Π(TZ/θ), the two plan strings with respect to the instantiations of concepts are represented by TY and TZ, respectively.

Proposition 1 (Valid Conceptual Distance). Normalized information distance δ(Y, Z) is a valid and sound conceptual distance measure between TY and TZ, that is, δ(Y, Z) = 0 iff the concepts represented by TY and TZ are equivalent.

Proof Sketch for Proposition 1: Let TY and TZ be 2 induced consistent first-order Horn clause theories, which may or may not represent the same concept. Let θ be some substitution. Now let TY/θ and TZ/θ be the grounded theories under the same substitution. This is valid since we are learning horn clause theories with the same head, which indicates the target concept being learned. As explained in the paper, a theory is equivalent to a planning task. We assume access to a planner Π(), and we get plan strings Y = Π(TY/θ) and Z = Π(TZ/θ) with respect to the planing tasks TY/θ and TZ/θ.

Friend et al. (2018) proved that Conceptual Distance is the step distance between two consistent theories in a cluster network (𝕋, ⇄, ~), where 𝕋 is the class of consistent theories, ⇄ is the definitional equivalence relation (equivalence over bidirectional concept extensions) and ~ implies symmetry relation. We have shown in the paper that, given the class of concepts we focus on, a concept is a planning task.

Let there be a theory T*, which represents the optimal generalization of a concept [image: Lowercase letter "c" in a simple serif font.]. If step distance [image: Mathematical notation showing the inner product of vectors \( T_y \) and \( T^* \) equals zero, indicating orthogonality.] in a cluster network and [image: \( (T_z, T^*) = 0 \)], then 〈TY, TZ〉 = 0, that is, they represent the same concept C and they are definitionally equivalent TY ⇄ TZ. Thus, both TY/θ and TZ/θ will generate the same set of plans as T*, since they will denote the same planning tasks (by structural induction). Thus,

[image: Mathematical expression showing the equivalence of variables T subscript Y and T subscript Z if and only if the intersection of pi of Y and pi of Z equals pi of Y and pi of Z, with the equation labeled as four.]

up to equivalence of partial ordering in planning. Let π*() be a minimum length plan in a set of plans Π(). Let y and z be strings indicating plans π*(Y) and π*(z) ignoring partial order. If Π(Y) = Π(Z), then π*(Y) = π*(z). Hence, the conditional Kolmogorov complexities K(y|z) and K(z|y) will both be set to 0, if the strings x and y are equivalent (ignoring partial ordering). This is based on the principle that if they are equivalent, then a Universal prefix-Turing machine will recover one string given the other in 0 steps.

[image: Maximum of K of y given z and K of z given y, divided by maximum of K of y and K of z equals zero, equals δ of Y, Z.]

Proposition 2 (Generalization to Kolmogorov–Smirnov). In generalized probabilistic logic, following Vitányi (2013), δ(Y, Z) corresponds to 2-sample Kolmogorov–Smirnov statistic between two random variables TY/θ and TZ/θ with distributions PTY and PTZ, respectively, [[image: Mathematical expression showing the supremum of the absolute difference between F of T subscript Z and F of T subscript Y with respect to theta in set F. It represents a variation function nu of T subscript Y and T subscript Z.]], where FT() is the cumulative distribution function for PT and [image: Supremum symbol with theta as an element of a set denoted by script F.] is the supremum operator. In a deterministic setting, δ is a special case of the Kolmogorov–Smirnov statistic v, δ(Y, Z) ≼ v(FTY, FTZ).

Proof Sketch for Proposition 2: This can be proved by considering the connection between NID and the distributions induced by the concept classes we are learning. NID is defined as [image: \( \delta(x, y) = \frac{\max(K(x \mid y), K(y \mid x))}{\max(K(x), K(y))} \).], where, K(a|b) is the conditional Kolmogorov complexity of a string a, given b. There is no provable equivalence between Kolmogorov complexity and traditional notions of probability distributions.

However, if we consider a reference universal semi-computable semi-probability mass function m(x), then there is a provable equivalence −log m(x) = K(x) ± O(1). Similarly for conditional Kolmogorov complexity, by Conditional Coding Theorem, −log m(y|x) = K(y|x) ± O(1) (Vitányi, 2013). By definition,

[image: Mathematical equation depicting a likelihood function \( m(y|x) = \sum_{j \geq 1} 2^{-K(j)-c_j} P_j(y|x) \).]

where cj > 0 are constants and Pj(y|x) is the lower semi-computable conditional. A lower semi-computable semi-probability conditional mass function is based on the string generating complexity of a Universal prefix-Turing machine. Thus, m(y|x) is greater than all the lower semi-computable. Note that our compressed plans are equivalent to a string generated by Universal prefix-Turing machines. The conditional case implies, if a compressed plan string x is given as an auxiliary prefix tape, how complex it is to generate compressed string y = θ.

Given two grounded theories TY/θ and TZ/θ, let PTY/θ, PTX/θ be the respective distributions when learning probabilistic logic rules. Now let us define the semantics of a distribution PT/θ in our case: PT/θ = P(π(T/θ)), that is, distribution over the plan strings, which can be considered as lower semi-computable probability based on coding theory. We know,

[image: Summation notation indicating the sum from j equals one to infinity of two raised to the power of negative K of j minus epsilon sub j times p of j, which is approximately equal to F of y given x. Labeled equation five.]

where F(y) is the cumulative distribution. So, NID δ(Y, Z) now becomes, [image: The formula is \(\delta(Y, Z) = \frac{\max(K(y \mid z), K(z \mid y))}{\max(K(y), K(z))}\).] We know that max(K(y), K(z)) is a normalizer. Thus, δ(Y, Z) < max(K(y|z), K(z|y))

[image: Equation demonstrating max operations for functions \( K(y|z) \) and \( K(z|y) \) using logarithms and conditional probabilities. It simplifies using partial ordering to derive supremum values.]

Significance of Propositions 1 and 2: Proposition 1 outlines how our proposed NCD-based metric is a valid conceptual distance. It is well understood that the true measure of conceptual distance is not straightforward and is subject to the semantic interpretation of the domain itself. But designing a unique distance metric based on the semantics of every domain limits the generality of any learning system. So NCD acts as a surrogate “conceptual distance.” It is based on the notion that “if two concepts are fundamentally same the complexity of optimal action plans to realize the concepts should also be fundamentally same.” NCD (or NID) essentially measures the difference in generative complexities of two plans. Also note that other types of distances that are limited to a syntactic level such as edit distance (or literal distance) will fail to capture the similarity or diversity between concept representations since the same concept can be represented with more than one theories that may vary in one or more literals.

Proposition 2, on the other hand, proves that our proposed metric is not limited to our specific scenario. It positions our work in the context of known statistical distance metrics and establishes its credibility as a valid solution. It proves how in a nondeterministic setting, that is, probabilistic logic formulation, our proposed metric generalizes to Kolmogorov–Smirnov statistic.



3.4.2. PAC Learnability

PAC analysis of GOCI follows from GOLEM for function-free horn clause induction (Muggleton and Feng, 1990). Let initial hypothesis space be [image: Stylized black letter "H" with a subscript zero, resembling a mathematical notation often used to represent a null hypothesis or Hubble's constant.] and the final be [image: Stylized cursive letter "h" followed by a superscript dot, resembling a mathematical or notational symbol.] ([image: s. t. T star is an element of script cap H star.]).

Proposition 3 (Sample Complexity). Following Valiant (1984) and Mooney (1994), with probability (1−δ), the sample complexity of inducing the optimal theory T* is:

[image: Mathematical equation expressing \( n^* = \mathcal{O} \left( \frac{1}{\epsilon} \left[ d^{L-1} \ln ((ffn)) + \ln \left(\frac{1}{\delta}\right) \right] \right) \), labeled as equation six.]

where ϵ is the regret, n* - sample complexity of [image: Stylized letter "H" with a dot above it, resembling a mathematical or scientific notation.], i is the maximum depth of a variable in a clause and & j is the maximum arity. m - number of distinct predicates, t is the number of terms, p is the place and d is the distance of the current revision from the last known consistent theory, and L is the upper bound on the number of refinement steps (iterations).

Proof Sketch for Proposition 3: In our learning setting, the learned theory will always have nonzero uncertainty. To understand the properties, we build upon the PAC analysis for recursive rlgg (Relative Least General Generalization) approach for function-free Horn clause learning shown by Muggleton and Feng (1990) in GOELM. With some restrictions, it applies here as well. Let n: denote the sample size and [image: A stylized black symbol resembling a script letter "H".]: the hypothesis space. Our approach can be considered as an rlgg approach with refinement steps. Note that constraint predicates that refine the clauses are not part of [image: The image displays a mathematical symbol resembling a lowercase K with an elongated right leg, often used to represent kappa in Greek letters.].

To begin with, we are interested in regret bounds for the initially learned hypothesis by the ILP learner [image: Stylized lowercase letter "H" with a subscript zero, resembling mathematical notation or a hypothesis symbol.], before refinement. We know from Valiant (1984), that with probability (1 − δ) the sample complexity n for [image: Stylized letter "H" followed by a subscript zero, resembling mathematical notation.] is,

[image: Mathematical equation showing that n is greater than or equal to 1 divided by epsilon, multiplied by the natural logarithm of H subscript zero, plus the natural logarithm of 1 divided by delta, denoted as equation 7.]

where ϵ is the regret. Now, our ILP learner induces ij-determinate clauses (Muggleton and Feng, 1990), where i is the maximum depth of the clause and j is the maximum arity. In our problem setting, it can be proven that [image: |H₀| = O((qpm)ᵛ)], where m is the number of distinct predicates in the language. t is the number of terms, and p is the place (for details about place, refer Muggleton and Feng, 1990). Also note that if j & i is bounded, then ji ≤ c). Mooney (1994) shows that for theory refinement/revision, sample complexity is expressed as,

[image: The image displays a mathematical expression: \( r^* = \mathcal{O} \left( \frac{1}{\epsilon} \left[ d^k \ln (|H_{0}| + d + m) + \ln \left( \frac{1}{\delta} \right) \right] \right) \), labeled as equation (8).]

where distance d to be the number of single literal changes in a single refinement step and k is the number of refinement/revision iterations. In Algorithm 1, we observe that at each iteration ℓ ≤ L, updates are with respect to the preferred constraint predicates [image: Mathematical expression showing "U sub A is an element of the set U".]. Thus, we know that k = L. Substituting [image: Mathematical expression showing the absolute value of script H subscript zero is equal to the power of tfm, with the exponent r.] and ji = c constant)in Equation (8) and ignoring the additive terms d + m since (tfm)ji >> d + m, we get,

[image: The formula represents \( n = \mathcal{O}\left(\frac{1}{\epsilon}\left[d_L^c \ln(tpm) + \ln\left(\frac{1}{\delta}\right)\right]\right) \), labeled as equation (9).]

Proposition 4 (Refinement Distance). d is upper bounded by the expected number of literals that can be constructed out of the library of constraint predicates with human advice [image: Expected value of U given A.] and lower bounded by the conceptual distance between theory learned at two consecutive iterations since we adopt a greedy approach. If [image: Mathematical expression showing the probability of event U given context A, denoted as Pr subscript A with argument U in parentheses.] denotes the probability of a constraint predicate being preferred, then [image: The mathematical expression shows an inequality: the absolute difference between \(D_t\) and \(D_{t-1}\) is less than or equal to \(d\), which is less than or equal to the sum of probabilities from \(i=1\) to \((2^{(M-t)} \times p_q)\) of \(Pr_A(U_i)\).] where 2(|𝕌|−1) × tPq is the maximum possible number of constraint literals and q is the maximum arity of the constraints. In case of only pairwise constraints, q =2.

Proof Sketch for Proposition 4: The proof is straightforward and hence we present it in brief. In our setting to show that,

[image: The image shows a mathematical inequality and summation. It states that the absolute value of \( D_L - D_{L-1} \) is less than or equal to \( d \), which in turn is less than or equal to the summation from \( i = 1 \) to \( l \) of \( P_A(u_i) \). There is an exponent \( x_{tp_q} \) raised to \( 2^{(l-1)} \) above the summation symbol. The equation is labeled as equation 10.]

(where 2(|𝕌|−1) × tPq is the maximum number of constraint literals possible, since 𝕌 is the library of constraint predicates) consider that the number of constraint predicates that can be picked up at any iteration is 2(|𝕌|−1). To form constraint literals, we need to tie arguments to existing logical variables in the current theory. We have defined t to be the number of terms in the existing theory. Let q be the max arity of a constraint, thus total possible number of constraint literals are 2(|𝕌|−1) × tPq. So if the distribution induced on the constraint literals by human advice [image: Stylized letter "A" resembling a mathematical symbol or font, with a curving serif at the top.] be [image: The image shows the mathematical notation \( P_A \), with a subscript "A" indicating a specific variable or parameter related to "P".], then [image: Summation from i equals 1 to an unspecified upper limit, of two raised to the power of the cardinality of U minus one, multiplied by t subscript p q, times P subscript A of U subscript i.] is the expected number of literals added given the advice. Now this is the upper bound of d. Again d should at least be the conceptual distance between the new theory after constraint addition and the last consistent theory. Note d and conceptual distance D is not the same. Thus, it is the difference between the NCD of last theory to original example and current updated theory to the original example |Dℓ − Dℓ−1|.

Observe that if at each layer ℓ ≤ L we add constraint predicates [image: The image shows the expression \( U_i \) in a serif font style.], then at layer ℓ, [image: Mathematical expression showing \( d = | \{ U \}^{'} | \leq 2^{mk} t P q \).] (assuming q is maximum arity of the constraint predicates). Also, as per our greedy refinement framework, at each layer ℓ, distance new theory 𝕋ℓ should at least be the change in conceptual distance.

Significance of Propositions 3 and 4: Propositions 3 and 4 aim to illustrate what the general sample complexity would be for a theory refinement-based RLGG clause learner such as GOCI and how the conceptual distance controls the complexity by establishing bounds on the refinement distance. Furthermore, the complexity is also subject to the maximum refinement iterations, which in turn is affected by human guidance. Thus, we establish the theoretical connection between the two dimensions of the contribution of this work.

Proposition 5 (Advice Complexity). From Equations (6) and (8), at convergence ℓ = L, we get [image: Mathematical expression showing the fraction: the numerator is \(n^{\star} - |X|\) and the denominator is \(L\).] examples, on an average, for a concept [image: Lowercase letter "c" in a simple serif font.] to be PAC learnable using GOCI.

The proof is quite straightforward and hence we just discuss the brief idea behind it. Our input is sparse (one or few instances). GOCI elicits advice over constraints to acquire additional information. Let |X| be the number of input examples. We query the human once at each layer and hence the maximum query budget is L. Given that the sample size is |X|, each query to the human must acquire information about at least [image: Mathematical expression: fraction where the numerator is \( n^{\star} - |X| \) and the denominator is \( L \).] examples, on an average, for our a concept [image: Lowercase letter "c" in a serif font.] to be PAC learnable using our approach.





4. EVALUATION

We next aim to answer the following questions explicitly:

	(Q1) Is GOCI effective in “one-shot” concept induction?
	(Q2) How sample efficient is GOCI compared to baselines?
	(Q3) What is the relative contribution of the novel scoring function versus human guidance toward performance?

Our framework extends a Java version of Aleph (Srinivasan, 2007). We modified the scoring function with NCD penalty computed via a customized SHOP2 planner (Nau et al., 2003). We added constraint sampling and human guidance elicitation iteratively (Algorithm 1).


4.1. Experimental Design

We compare GOCI with Aleph with no enhancements. We focus on the specific task of “one-shot concept induction,” with a single input example for each of the several types of concepts and report aggregated precision. We consider precision because preference queries are meant to eliminate false positives in our case. To demonstrate general robustness of GOCI, beyond one-shot case, we experimented with varying sample sizes for each concept type and show learning curves for the same. We perform an ablation study to show the relative contribution of two important components of GOCI: (a) novel scoring metric and (b) human guidance, that is, we compare against two more baselines (ILP+Score and ILP+Guidance). For every domain, we consider 10 different types of concepts (10 targets) and aggregate results over 5 runs.

Note that human guidance was obtained from distinct human experts for every run. The expertise level of all the advice providers was reasonably at par since they were chosen from the same pool of candidates with zero visibility and knowledge of our proposed framework. However, for all the human advice providers we assumed a basic level of knowledge in geometry or fundamentals of logic and reasoning. Additionally, we also explained each of the experimental domains to the human participants to create a similar level of awareness about the domains among all of them.


4.1.1. Domains

We employ four domains with varying complexity. Note that we have selected the below domains based on multiple considerations. The domain encoding need to be such that target concepts can be learned in a modular fashion (i.e., decomposable). Thus, the first two domains are structure construction domains either spatial (Minecraft) or chemical/molecular (CheBI). Spatial structures are implicitly modular (such as the 𝕃-structure in Figure 1). Chemical entities, molecules/compounds/complexes, are similarly modular as well. The last two domains are fundamentally planning domains. However, they are also compositional in nature, that is, any planning goal is a composition task. For instance, machine structure in “Assembly” domain and cocktails, etc., in “Barman” domain. So these two domains do not just demonstrate learning modular/decomposable concepts but they also illustrate the plan induction feature of GOCI.

	1. Minecraft (spatial structures): The goal is to learn discrete spatial concepts in a customized (Narayan-Chen et al., 2019) Project Malmo platform for Minecraft. Dialogue data in Malmo are available online, and we converted them into a logical representation. All structures are in terms of discrete atomic unit blocks (cubes). Figure 5 shows examples of some spatial structures that GOCI was able to learn.
	2. Chemical Entities of Biological Interest (ChEBI): ChEBI (Degtyarenko et al., 2007) is a compound database containing important structural features and activity-based information, for classification of chemicals, such as (1) molecular structure and (2) biological role. We model the Benzene molecule prediction task as molecular-compositional concepts. The data have predicates such as SingleBond, DoubleBond, and HasAtom.
	3. Assembly (planning domain): Assembly is a planning domain, where different mechanical structure concepts are compositions of different parts and resources. Input is a conjunction of ground literals indicating ground plan demonstration (assuming total ordering).
	4. Barman (planning domain): A standard planning domain where a bartender is supposed to follow certain recipes and sequence of techniques to create cocktails. The different cocktails are decomposable concepts in this setting.


[image: Three Minecraft screenshots displaying differently shaped structures made of colored blocks. The first image shows a blue T-shaped structure, the second features a red L-shaped structure, and the third displays an inverted red L-shape. Each screenshot has a toolbar with various colored blocks.]
FIGURE 5. Instances of spatial concepts in Minecraft. (Left) Upright Tee, (Middle) Upright L, (Right) Orthogonal overlapping Ls.





4.2. Experimental Results

[Effective One-shot (Q1)] Table 1 shows the performance of GOCI on one-shot concept learning tasks as compared to standard ILP. GOCI significantly outperforms ILP across all domains answering (Q1) affirmatively. Also, note that GOCI is very “query” efficient as observed from the small average number of queries posed in the case of each domain. Note that in the case of CheBI, the number of queries is the highest among all the domains. This can be attributed to that fact that CheBI is a domain, which requires a certain degree of understanding of fundamental chemistry (chemical bonds and their types, molecules, atoms, etc.). Thus, some of the human participants required more iterations (consequently more queries) to converge to the most relevant set of constraint literals, given the difference of their prior understanding of school chemistry.


Table 1. Results for one-shot concept learning.

[image: The table compares two approaches, Goci and ILP, across four domains: Minecraft, Assembly, ChEBI, and Barman. It lists average precision and number of queries for each approach. Goci consistently shows higher precision and query counts compared to ILP, which has no query data. For example, in Minecraft, Goci has a precision of 0.85 and 5.5 ± 3 queries, while ILP has 0.35 precision.]

Query efficiency is an important consideration in any learning paradigm that leverages human guidance, since controlling the cognitive load on the human expert is critical. So, in general, the observed average query numbers being reasonably low across all domains corroborates our theoretical advice complexity (section 3.4.2).

[Sample Efficiency (Q2)] In Figure 6, we observe that GOCI converges within significantly smaller sample size across all domains, thus, supporting our theoretical claims in section 3.4. In ChEBI, though, quality of planner encoding might explain mildly lower precision yet GOCI does perform significantly better than vanilla ILP learner. In ChEBI, we see that the sample efficiency is not vastly distinct. One of the possible reasons could be the sub-optimal encoding of the planning domain language, which is necessary for NCD computation, for this task. If we can improve the planner setup for this domain, then we will likely be able to observe enhanced performance.


[image: Four line graphs compare ILP and GOCI methods across different datasets: Minecraft, ChEBI, Assembly, and Barman. Each graph plots average precision against the number of instances, showing both methods' performance. GOCI consistently outperforms ILP in all datasets, demonstrated by a higher and steeper curve.]
FIGURE 6. Learning curves for varying sample size to compare the sample efficiency of Guided One-shot Concept Induction (GOCI) and inductive logic program (ILP). Top two plots are with respect to structural composition domains-Minecraft & ChEBI and the bottom two are for planning domains: Assembly and Barman (best viewed in color).


[Relative contribution (Q3)] Figure 7 validates our intuition that both components (scoring function and human-guidance) together make GOCI a robust one-shot (sample-efficient) concept induction framework. Though human guidance, alone, is able to enhance the performance of a vanilla ILP learner in sparse samples, yet it is not sufficient for optimal performance. In contrast, although the advantage of our novel distance-penalized scoring metric is marginal in sparse samples, it is essential for optimal performance at convergence.


[image: Line graph showing average precision against the number of instances from 0 to 500. It compares four methods: ILP (blue dashed), ILP+Score (black dot-dashed), ILP+Guidance (green dotted), and GOCI (red solid). GOCI maintains the highest precision across instances.]
FIGURE 7. Results of ablation study on Minecraft domain. Relative contribution of our distance-penalized score vs. human guidance.





5. DISCUSSION

The most important conclusion from the experiments is that when available, the guidance along with the novel score leads to a jump-start, better slope and in some cases, asymptotically sample efficient with a fraction of the number of instances needed than merely learning from data.

Another important aspect to note here is that our experimental setup did not attempt to ensure in any way that the quality of guidance provided by the human participants is optimal. The formulation of the objective function, itself, in GOCI is designed to handle sub-optimal human advice implicitly in a seamless manner. The two primary features in the design that make GOCI robust to advice quality are as follows:

	1. As explained earlier and shown in Equation (3), human advice and conceptual distance deal with two distinct aspects of the search process. Human advice controls the size and nature of the search space while conceptual distance ensures the quality of the candidates. Advice and distance have a balancing effect on each other, and thus, it is our novel conceptual distance that makes GOCI robust to bad advice.
	2. Also, the nature of human advice in our setting is of choosing the most useful set of “constraint predicates” among the set of candidate constraints. Now the candidates are generated by GOCI in a conservative fashion selecting only the ones that are logically valid for the theory learned at the current iteration of revision. Thus, human experts have very little option of choosing an invalid or extremely unlikely constraint predicate.

Our ablation study in Figure 7 also supports our analysis. On closer inspection, we see that it is due to our novel distance penalized scoring function (ILP+Score) that ensures convergence to an optimal solution. Human advice (ILP+Guidance) contributes to sample efficiency.



6. CONCLUSIONS

We developed a human-in-the-loop one-shot concept learning framework in which the agent learns a generalized representation of a concept as FOL rules, from a single (few) positive example(s). We make two specific contributions: deriving a new distance measure between concepts and allowing for richer human inputs than mere labels, solicited actively by the agent. Our theoretical and experimental analyses show the promise of GOCI method. An exhaustive evaluation involving richer human inputs including varying levels of expertise and analyzing our claim that learning performance of GOCI is robust to expertise levels (which should only affect query efficiency) is an immediate future research objective. Integration with hierarchy learning also remains an interesting direction for future research.
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FOOTNOTE

	1Our algorithm can learn from one (few) example(s). We specify the number of examples in our evaluations.
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One of the big challenges in robotics is the generalization necessary for performing unknown tasks in unknown environments on unknown objects. For us humans, this challenge is simplified by the commonsense knowledge we can access. For cognitive robotics, representing and acquiring commonsense knowledge is a relevant problem, so we perform a systematic literature review to investigate the current state of commonsense knowledge exploitation in cognitive robotics. For this review, we combine a keyword search on six search engines with a snowballing search on six related reviews, resulting in 2,048 distinct publications. After applying pre-defined inclusion and exclusion criteria, we analyse the remaining 52 publications. Our focus lies on the use cases and domains for which commonsense knowledge is employed, the commonsense aspects that are considered, the datasets/resources used as sources for commonsense knowledge and the methods for evaluating these approaches. Additionally, we discovered a divide in terminology between research from the knowledge representation and reasoning and the cognitive robotics community. This divide is investigated by looking at the extensive review performed by Zech et al. (The International Journal of Robotics Research, 2019, 38, 518–562), with whom we have no overlapping publications despite the similar goals.
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1 INTRODUCTION
Robots have the potential to support us in a number of activities. Recently, there has been a massive adoption of cost-efficient robots that support us in house cleaning (e.g., vacuuming) and gardening (e.g., lawn mowing) activities. Moreover, research in household robotics has led to robots being able to clean breakfast tables (Kazhoyan et al., 2021), or prepare drinks (Sung and Jeon, 2020) and pizzas (Joublin et al., 2024). Yet, the ability of robots to support us in complex everyday tasks is still very limited. In particular, they break down in open world situations where they are challenged by new and underdetermined tasks, new environments or new objects about which they lack knowledge (Bronfman et al., 2021; Ding et al., 2023).
This gap between underdetermined tasks and the robot body motion that accomplishes the task has to be bridged through the robot’s knowledge and its reasoning capabilities. This challenge is the core of the research field of cognitive robotics, where knowledge representation and reasoning techniques are employed to support “autonomous robot [s] in a dynamic and incompletely known world” (Levesque and Lakemeyer, 2008, p. 869). A substantial part of these techniques and capabilities used to increase the robustness of cognitive robots in everyday tasks concerns the robot’s commonsense knowledge (CSK). This knowledge has the benefit of “enhancing the quality of the plans […] as well as avoiding human involvement when making decisions” (Pradeepani et al., 2022, p. 159) and allows them “to ask and retrieve the right answers from available knowledge” (Salinas Pinacho et al., 2018, p. 132).
As the name suggests, CSK in humans is understood as “information that people usually take for granted and, hence, normally leave unstated” (Cambria et al., 2012, p. 3582), which increases the difficulty for automatic acquisition and deployment. Regarding the cognitive robotics domain, we follow the definition provided by Gupta and Kochenderfer (2004), which focuses on knowledge about human desires, physics, and causality, as well as knowledge about objects with their locations, properties and relationships. In general, knowledge about human desires correlates to the concept of Intuitive Psychology from Lake et al. (2017), with which an agent understands that other agents have a mental state similar to their own which they can express and interpret to understand their intentions and goals. Both knowledge about physics and knowledge about causality are covered by the concept of Intuitive Physics, also from Lake et al. (2017). This type of knowledge is focused on primitive physical concepts like the calculation of physically possible trajectories or the tracking of objects over time. With causality, also the knowledge about physical connections between objects and actions is covered. So, for example, CSK focused on causality would help a robot to understand the (physical) consequences of moving an object.
As a general example, consider a cognitive robot tasked with the preparation of a bowl of cereals for breakfast, a task that a human could perform without explicit planning. However, many of the implicitly known aspects for the human are challenges for the robot, since it needs to know that “a bowl of cereal” implies the use of milk or what constitutes a container to be used as the bowl or where to find the cereal in its environment. Without CSK that provides answers to these challenges, the robot would, e.g., search the whole kitchen for milk instead of starting with the most probable location (the fridge) or it would not understand that a found container could be used as the bowl.
By equipping cognitive robots with CSK, their robustness when interacting in open worlds is increased. However, the application of the concept of CSK to the cognitive robotics domain has received relatively limited research attention. There are no surveys or comparable studies performed to analyze the coverage of CSK for cognitive robotics. Since cognitive robotics are increasingly breaching into human domains, we perform a systematic literature review providing researchers and practitioners alike with an overview for CSK in cognitive robotics. For this literature review, we follow the principles and guidelines provided by Kitchenham and Charters (2007), Okoli (2015) and Page et al. (2021). To increase repeatability and traceability of our review, we track our progress in a review protocol and collect all intermediate results. All of these additional resources are available in our GitHub repository1.
To guide our research, we formulate the following four research questions, focusing on different aspects of CSK. Our motivation for these questions stems from the need to comprehensively understand the landscape of CSK utilization in cognitive robotics research. By addressing these research questions, we aim to uncover insights into the various use cases, specific aspects considered (or overlooked) in CSK application, the prevalent datasets or resources in the field, and the diverse methods employed for assessing these approaches. This comprehensive examination is crucial in shaping our understanding of the current state and potential future directions of CSK integration in cognitive robotics.
	RQ1 For which use cases has the use of CSK been considered in cognitive robotics research?
	RQ2 Which aspects of CSK have been considered? Which aspects of CSK have received less consideration?
	RQ3 Which datasets or resources are mainly considered in cognitive robotics as a source for CSK?
	RQ4 What methods are employed to assess the approaches? Which CSK datasets or resources are utilized in these evaluations?

To summarize our results, concerning RQ1 we find that most use cases occur in the household domain and focus on objects and their relations to the environment. This is corroborated by our results pertaining to RQ2, which we address by looking at what sorts of questions CSK is called upon to answer. We found that the most common CSK questions seek to connect an object to a specific location in its environment. Other important questions focus on object similarity, object affordances and tool substitution. Here, affordances describe possible ways for an agent to interact with the environment Bornstein and Gibson (1980). In general, questions focusing on objects are much more dominant than questions about interacting with humans or about physics or causality of actions. Concerning RQ3, we find that while specific sources such as ConceptNet (Speer et al., 2017) (Open-)Cyc (Lenat, 1995) or OMICS (Gupta and Kochenderfer, 2004) are used multiple times, there is no one single source that is employed in all or most CSK use cases. Regarding the evaluation method and data covered by RQ4, we found that most approaches either evaluate using a Case Study or an Experiment, predominantly in a simulated environment. Unfortunately, most of the evaluation data is not available online.
During our search for suitable publications, we were surprised to notice a lack of publications that focus on well established keywords like affordance learning. After manually analyzing this gap using another, similar review by Zech et al. (2019)–with which we have no overlapping publications–we hypothesize that the reason is a divide in terminology between research in the cognitive robotics community and in the knowledge representation and reasoning community. We further explore this divide and propose possible bridges to close this gap.
2 RELATED WORK
Commonsense and intuitive physics reasoning problems were driving forces for knowledge representation and reasoning in early stages of AI research (McCarthy, 1959; 1977; Schank and Abelson, 1975; Minsky, 1981; Hayes, 1990). This line of research was presented in textbooks (Davis, 1990; 2008a; Mueller, 2014) and further developed within its own research community (Davis, 2008a; b; Levesque et al., 2012; Davis and Marcus, 2015). In current AI research, CSK is used for question-answering (Talmor et al., 2019; Nguyen et al., 2021), knowledge base creation (Tandon et al., 2017), text interpretation (Bisk et al., 2020; Puri et al., 2023) and visual recognition (Zellers et al., 2019), to name a few.
While a large fraction of research problems were motivated through intuitive physics and physical agency, they were not sufficiently leveraged in cognitive robotics research. Another characteristic of CSK and reasoning is its hybrid nature. Commonsense reasoning includes a large number of specialized methods for prospection (Szpunar et al., 2014), part-based reasoning (Tenorth and Beetz, 2017), mental simulation (Hesslow, 2012), imagistic reasoning (Nanay, 2021), planning (Ghallab et al., 2016), and safe human-robot collaboration (Conti et al., 2022), which were investigated individually without being linked to the more general concept of commonsense. In addition, representations of actions as they are investigated in natural language processing, such as FrameNet (Baker et al., 1998), are of key importance for robotic commonsense (Vernon, 2022). Furthermore, robot cognitive architectures contribute to robot commonsense by focusing on cognitive capabilities (Vernon, 2014; Vernon, 2022).
Regarding previous reviews on the topic of commonsense knowledge in cognitive robotics, as far as we know, no direct previous publications exists. However, works by Paulius and Sun (2019) and Sun and Zhang (2019) survey general knowledge representation techniques employed for different domains and scenarios. The work by Paulius and Sun (2019) focuses on knowledge representation and its connection to learning techniques applied in service robots, covering general high-level as well as specialized representations. Similarly, Sun and Zhang (2019) reviews three types of knowledge representations for task planning in robotics: semantic networks, rules and logical knowledge representation.
The survey conducted by Thosar et al. (2018) focuses on different knowledge bases that are employed by service robots manipulating household objects. These knowledge bases are compared regarding their knowledge acquisition and representation as well as the mechanisms used for inference and symbol grounding. Another review by Buchgeher et al. (2021) that focuses on a specific type of knowledge representation, looks into the usage of knowledge graphs for industrial manufacturing and production systems. The authors analyse application scenarios, graph characteristics and meta information about the surveyed research publications.
Reviews by Olivares-Alarcos et al. (2019) and Manzoor et al. (2021) focus on ontology-based approaches for knowledge representation. The review conducted by Olivares-Alarcos et al. (2019) surveys the cognitive capabilities supported by different ontologies, and compares them using a proposed classification schema based on the underlying ontology language and hierarchy as well as the application domain of the ontology. The review by Manzoor et al. (2021), on the other hand, focuses specifically on the household, hospital, and industry domains, looking for concrete scenarios where the ontologies have been applied on real robots.
Lastly, the literature review by Zech et al. (2019) focuses on the concept of actions in the cognitive robotics domain by looking at their representation and providing a possible taxonomy for their classification. Based on the classification of 152 publications, the authors summarize open research challenges for increasing the maturity and usability of action representations. This review exemplifies the divide mentioned in Section 1 regarding the terminology used by researchers with a (cognitive) robotics background and researchers in the knowledge representation and reasoning domain, since some concepts covered by their taxonomy are semantically equivalent to concepts from the knowledge representation and reasoning domain without being explicitly connected.
The reviews and surveys presented here differ in the knowledge representation approach covered, the application domain, and whether the review is structured in a systematic way. The topic of commonsense knowledge itself is not covered by any of these reviews. Due to the importance of commonsense knowledge for cognitive robotics, we investigate its application domain, data sources, evaluation methods and commonsense aspects in a systematic way.
3 METHODOLOGY FOR SEARCHING RELEVANT PUBLICATIONS
To find publications suitable for answering our research questions RQ1–RQ4, we follow a structured, pre-defined procedure as proposed by Kitchenham and Charters (2007), Okoli (2015) and Page et al. (2021). To enhance the repeatability of our review, we create a review protocol containing additional information about the search as well as an overview of intermediate results. The protocol, as well as all additional artifacts, are available in our GitHub repository.
3.1 Applied search procedure
To find publications suitable for answering our four research questions, we combine a keyword-based database search with a snowballing search on related surveys. The general procedure used, along with the quantity of publications identified and screened in each step, is visually summarized in Figure 1.
[image: Flowchart illustrating the identification and screening process of publications. Records identified from various databases and previous reviews total 1,750. Duplicate records and ineligible metadata removed, resulting in 1,472 records for title screening. Subsequently, 951 records are excluded based on the title. Next, 521 records undergo abstract screening, with 441 exclusions. Finally, 80 records are screened for publication, excluding 28 due to irrelevant content or inaccessibility, resulting in 52 included publications.]FIGURE 1 | Visualizing our step-by-step search procedure and the number of publications found and analyzed in each step. This visualization was created with Haddaway et al. (2022).
For the database search we defined the following four keywords before we started the search:
	K1: “knowledge-enabled robot” OR “knowledge-based robot” OR “knowledge-driven robot”
	K2: “knowledge processing” AND robot AND question AND NOT interaction AND NOT hardware
	K3: “common sense knowledge” AND robot AND NOT interaction AND NOT hardware
	K4: “common sense” AND (“robot cognition” OR “cognitive robot”)

We used each of these four keywords on the following six search engines/databases: Google Scholar, IEEE Xplore, Scopus, Web of Science, Science Direct and the ACM Digital Library. Through the combination of our keywords with these six sources, we found 1,652 publications.
Since we are not the first researchers to perform a literature review in the domain of knowledge representation and reasoning for cognitive robotics, we also decided to incorporate the results of previous published reviews. For this, we follow the guidelines by Wohlin (2014) for performing a snowballing search to gather publications that were either already covered by the reviews introduced in Section 2 or that cite these reviews. By collecting the in- and outgoing references of the reviews by Thosar et al. (2018), Olivares-Alarcos et al. (2019), Paulius and Sun (2019), Sun and Zhang (2019), Buchgeher et al. (2021) and Manzoor et al. (2021), we included 724 additional publications.
Combining the results of both search techniques yielded 328 duplicates, which we removed. We then analyzed the remaining publications regarding their metadata and removed 576 publications that did not fit the inclusion criteria described in Section 3.2. Next, we screened the 1,472 remaining publications in two steps, first looking only at their title, and then also covering their abstract. During these steps, we decided whether to include a publication using further steps based on the inclusion criteria specified in Section 3.2. This led us to exclude 951 publications based on their title and 441 based on their abstract, leaving us with 80 publications, which we read completely.
Of these 80 publications, one was not accessible in a full version, prompting us to exclude it as well. Of the remaining 79 publications, 27 were excluded based on the exclusion criteria described in Section 3.2, leaving us with 52 publications, which we analyzed to answer our research questions. A brief summary of these publications can be found in our review protocol.
3.2 Inclusion and exclusion criteria
To enhance the repeatability of our search, we define our inclusion and exclusion criteria before we start the search, as suggested by Kitchenham and Charters (2007). For the inclusion criteria, we differentiate between criteria regarding a publication’s metadata and its content. Regarding the metadata, we only include publications that were published in our investigated time frame of 11 years (i.e., between 2012 and 2022). For most of our data sources, these criteria were already applied during the search through explicit filters. Additionally, only papers that are written in English and thus understandable by the broad scientific community are included. Regarding the scientific quality, we focus only on publications that are peer-reviewed, excluding patents, books, presentations, technical reports and theses of any kind. Regarding the content, we analyze the title of the publication and its abstract in two separate steps to determine whether it contains a possible answer to any of our research questions. So, we include publications that discuss the application of CSK through a robot to a specific scenario or use case (RQ1), publications that discuss equipping cognitive robots with the possibility to answer certain CSK questions (RQ2), or that introduce or employ a (novel) source for collecting the necessary CSK (RQ3). In general, anything the authors employ as a source for gathering their CSK constitutes as an eligible resource for our analysis. This can cover texts, ontologies, websites, large language models or other kinds of data. Lastly, we do not define a specific inclusion criteria for assessing the evaluation methods and their used data (RQ4), since we expect all remaining publications to somehow evaluate their approach.
As we explain in Section 3.1, the exclusion criteria are applied after the metadata, title and abstract have already been analyzed. Here, we first exclude publications for which no complete version is available, thus making a thorough analysis impossible. Additionally, we exclude any publication we read completely but that turns out not to provide answers to any of our research questions, despite content in the title or abstract suggesting that it does.
4 ANALYZING THE USAGE OF COMMONSENSE KNOWLEDGE
In this section, we analyze the content of the 52 publications found by the search procedure detailed in Section 3.1 to answer our four research questions introduced in Section 1. However, we first examine two aspects of their metadata. First, we examine the number of publications published for each year in our 11-year time span, visualized in Figure 2A. We do not find rising or falling trends in interest in the topic of CSK for cognitive robotics throughout these years, with a median of five publications per year. We also examine the venues where these publications were published. However, only three venues occur more than once: Intelligent Service Robotics2 (2 occurrences), IEEE International Conference on Robotics and Automation (ICRA)3 (6 occurrences) and IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)4 (7 occurrences). For a more general examination, we summarize the venue type for all publications in Figure 2B. Here, we find that the majority of publications are conference papers [image: Please upload the image or provide a URL, and I will help you with the alt text.], followed by journal articles (25%), workshop papers [image: Image shows the mathematical notation for approximately 10 percent in parentheses, featuring the tilde symbol and percentage sign.] and lastly book sections [image: It appears there is no image attached. Please upload the image or provide a URL for it, and I will help you create the alt text.].
[image: Bar charts showing the number of publications. Chart A displays yearly data from 2012 to 2022, with peaks in 2015 and 2020. Chart B categorizes publications by type, indicating conference papers are the most common, followed by journal articles, workshop papers, and book sections.]FIGURE 2 | (A): Visualizing the amount of found publications throughout the 10 year time span we restricted the search to. (B): Visualizing the venue type where the found publications were published.
4.1 Use cases and their application domain
Our first research question RQ1 pertains to the use cases for which the use of CSK has been considered in cognitive robotics research. When addressing this question, we differentiate between the concrete use case itself and the domain in which it is embedded. We look at both independently, since a given use case is not always embedded in a single domain. For example, the approach by Wang et al. (2019) focuses on the use case of finding and delivering a given object in the household domain, whereas Yang et al. (2019) focuses on the same use case but for the personal care domain.
For the distinction between possible domains and use case, we rely on the arguments and descriptions presented in each publication. The found domains are self-explanatory and mostly reported directly in each publication, so any publication that talks about the “household environment” counts towards the Household domain. For the use cases however, we collect their attributes and goals to distinguish and define the 15 different use cases seen below. Due to the difference in abstraction between these use cases, more complex use cases like, e.g., Cooking depend on other, more simplistic and low-level use cases like localizing or picking up objects. These dependencies are visualized in Figure 3.
	• Cooking (Nyga and Beetz, 2012; Agostini et al., 2015): Generate and execute a cooking plan based on the current environment and a requested meal
	•Environment Exploration (Pangercic et al., 2012; Kanjaruek et al., 2015; Jäger et al., 2018; Vassiliades et al., 2020; Zhang et al., 2021): Interacting with parts of the environment (objects, doors, cupboards, etc.) to gather (new) knowledge
	•Hole Digging (Javed et al., 2016): Dig a hole in the garden
	•Intention Inference (Liu et al., 2015; Liu and Zhang, 2016; De Silva et al., 2022): Identify the intention of a human with a certain object/command to react fittingly when the command cannot be executed (e.g., the robot should fetch the human some juice, which is not available. Why did the human want the juice and what is a fitting alternative?)
	•Location Detection (Welke et al., 2013): Categorize the location based on the recognized objects (e.g., the robot detects milk and juice and concludes that the location is a fridge)
	•Navigation (Shylaja et al., 2013; Li et al., 2022): Navigate to a specific location
	•Object Delivery (Lam et al., 2012; Riazuelo et al., 2013; Mühlbacher and Steinbauer, 2014; Al-Moadhen et al., 2015; Zhang and Stone, 2015; Wang et al., 2019; Yang et al., 2019): Finding the requested object and delivering it to a specific location
	•Object Localization (Varadarajan and Vincze, 2012b; Zhou et al., 2012; Kaiser et al., 2014; Riazuelo et al., 2015; Jebbara et al., 2018; Daruna et al., 2019; Zhang et al., 2019; Chernova et al., 2020): Finding a specific object in an (unknown) environment
	•Object Recognition (Daoutis et al., 2012; Pratama et al., 2014; Kümpel et al., 2020; Chiatti et al., 2022): Recognize a specific object based on its properties
	•Pick and Place (Al-Moadhen et al., 2013; Javia and Cimiano, 2016; Mitrevski et al., 2021): Pick an object up and place it at a different location
	•Reminiscence Therapy (Wu et al., 2019): Asking questions about provided pictures to get the human to remember and socialize
	•Table Setting (Salinas Pinacho et al., 2018; Haidu and Beetz, 2019): Set the table for a meal scenario (and maybe also clean up afterwards)
	•Tidy Up (Aker et al., 2012; Skulkittiyut et al., 2013): Bring a specified part of the environment in order by removing unusual objects
	•Tool Substitution (Zhu et al., 2015; Thosar et al., 2020; 2021; Dhanabalachandran et al., 2021; Xin et al., 2022): Recognizing a specific object as a suitable substitute for a missing tool
	•Warehousing (Ayari et al., 2015; Pradeepani et al., 2022): Keep track of available objects and their quantity in an environment to inform a human once an object is unavailable

[image: Flowchart depicting a process starting with location detection leading to object recognition. The path divides into object localization and tool substitution. Object localization splits into object delivery and intention inference, which links to pick and place as well as warehousing tasks. Object delivery connects to tidy up, table setting, cooking, and navigation, which further connects to hole digging and environment exploration.]FIGURE 3 | Visualizing the dependencies between the 15 different use cases. The four use cases in the darker rectangles are the low-level use cases that do not depend on any other use case.
During our analysis, we found five different domains where CSK is applied: the Household and Retail domains, the Gardening domain, the Personal Care domain, and the Generic domain in which the robot handles CSK in a way that can be applied to any other domain. The number of publications that handle each of these domains is visualized in Figure 4A. As can be seen, the Household domain is the focus of 50% of the covered publications, surpassing applications in the Generic domain [image: It seems like there was an error displaying or uploading the image. Please try uploading the image again or provide a link to it, and I'll be happy to help craft alt text for it.]. One commonality shared by the Household, Personal Care and Retail domains ([image: Text showing approximately sixty-five percent with a tilde symbol preceding the number.] of publications) is that robots operating in these domains potentially share their workspace with humans, which can lead to uncertainties in the environment that increase the need for robots to have and draw on CSK. Other domains where robots do not typically share their workspace with humans, such as industrial and manufacturing domains that tend to allow for better known and more deterministic environments, were not found during our analysis, despite the inclusion of approaches from these domains through the snowballing search on the reviews by Buchgeher et al. (2021) and Manzoor et al. (2021).
[image: Bar chart with two sections labeled A and B. Section A shows the number of research papers in various categories: Household (26), Generic (17), Personal Care (6), Retail (2), and Gardening (1). Section B shows a horizontal stacked bar chart depicting the focus distribution in robotics applications like Object Localization, Object Delivery, and others, colored by Focus, Proof-of-Concept, and Neither.]FIGURE 4 | (A): Visualizing the different domains in which the approaches operate. (B): Visualizing the different use cases the approaches work on using CSK. We differentiate between publications that focus on their chosen use case or that use it as a proof-of-concept. A full explanation for each use case can be found in our review protocol.
In addition to examining the application domain, we also investigate the specific use case with which each approach is concerned in Figure 4B. Here we distinguish between approaches that focus solely on a specific use case (e.g., Salinas Pinacho et al. (2018) focuses on the Table Setting use case) and approaches where a specific use case is used as an example or proof-of-concept to demonstrate the viability of the approach being proposed (e.g., Jebbara et al. (2018) use the Object Localization scenario to prove the applicability of their CSK extraction technique for the cognitive robotics domain). Roughly 46% of the analyzed publications (24 out of 52) focus on the use case they examine, whereas [image: Approximately forty-six percent written in a stylized font.] use it only as an example application. The remaining four publications (Tenorth and Beetz, 2013; Beetz et al., 2018; Jakob et al., 2020; Beßler et al., 2022) have no specific use case, instead describing techniques intended to be generally applicable to theHousehold domain.
In general, use cases that focus on objects, and on their locations, affordances and relationships (Object Localization, Object Delivery, Tool Substitution, Object Recognition, Pick and Place, Warehousing and Location Detection) make up the majority of use cases, occurring in 30 out of 52 publications [image: The image shows a text segment displaying the sequence symbol "~" followed by "58%" within parentheses.]. Concrete household tasks like Cooking, Tidying up and Table Setting, which internally rely on the aforementioned object-focused use cases, are only covered in six publications [image: A mathematical expression showing approximately twelve percent in parentheses.]. As we mentioned before, the majority of domains covered in our survey focus on environments that are shared by robots and humans. However, only four of the publications we analyzed cover direct interaction with humans through two use cases (Intention Inference and Reminiscence Therapy) [image: A pie chart segment representing approximately eight percent.].
4.2 (Un-)Answerable questions about commonsense knowledge
This section discusses the different commonsense questions for which the approaches discussed in the publications we analyzed can provide an answer (see RQ2). We gather these questions by analyzing the goals and capabilities of the approaches, keeping in mind the definition of CSK from Gupta and Kochenderfer (2004) provided in Section 1. This resulted in 25 different questions, which we separated into three categories: a) Objects, their properties and relations (e.g., How can an object be transported/grasped?), b) Intuitive psychology and human interaction (e.g., What are the intentions a human could have with a certain object?) and c) Intuitive physics and causality (e.g., What is the outcome of my current action?). We provide a visual summary of the 25 questions, their categories and the number of publications in which the discussed approach provides or proposes an answer in Figure 5A. The complete list of approaches that can answer each question is provided in the review protocol.
[image: Bar chart depicting the number of publications answering various questions. Most publications focus on affordances for tasks, expected object locations, and interaction possibilities. Categories include Objects (green), Interaction (orange), and Causality (blue). Highest bars relate to physical interactions with objects and locations.]FIGURE 5 | Visualizing the CSK questions and how many publications can provide an answer with their approach. Questions are split in three categories: (A) objects, their properties and relations, (B) intuitive psychology and human interaction or (C) intuitive physics and causality.
In general, the majority of questions, 15 out of 25 (60%), focus on objects, object properties and object relations. Looking at the number of approaches providing an answer, we discovered that 47 out of the 52 approaches [image: It seems there was an issue with the image upload. Please try uploading the image again, and I will be happy to assist with the alt text.] can provide an answer to any question from this category. This heavy focus on objects is also represented in the most researched CSK questions, since eight out of the nine most answered questions in Figure 5B revolve around objects. Questions regarding intuitive psychology and human interaction are focused on in 14 out of 52 publications [image: The image shows the mathematical symbol for approximately, represented by a tilde, followed by the percentage 27 within parentheses.]. However, these 12 publications concern themselves only with four different questions (16%). The remaining six questions all have to do with intuitive physics and causality (24%). However, only eight out of 52 publications try to achieve an answer to any questions in this category [image: A mathematical notation expresses approximately fifteen percent, using a tilde before the percentage symbol and number, indicating an estimate rather than an exact value.], a given publication often being the only approach that tries to answer the questions with which it is concerned (e.g., Shylaja et al. (2013) is the only approach answering the question What aspects of my environment are changing?).
Based on the aforementioned definition of CSK from Gupta and Kochenderfer (2004), we can provide some example questions that none of the 52 approaches analyzed are capable of answering. As we already observed, knowledge about intuitive physics and about intuitive psychology are not as well covered as knowledge about objects (see Figure 5A). Possible questions in these areas could be How can I (proactively) support the human in reaching their goals? or How do I handle objects based on their state of matter?. In addition to the more general object knowledge covered under the definition of Gupta and Kochenderfer (2004), more specific object properties only relevant for a specific use case/scenario are also investigated. This task-specific object knowledge is covered for the most frequently occurring use cases like Object Localization/Delivery or Tool Substitution. However, for more complex use cases like Cooking or Table Setting the necessary object knowledge to answer questions like How does this ingredient need to be processed to make it consumable? or What is a suitable table setup for a specific meal? are not covered.
It should be noted that it is possible that approaches outside of our analyzed set do cover some of these questions. However, our systematic approach lets us conclude that any such publication either does not apply its approach in the cognitive robotics domain or does not relate these questions to the keyword commonsense knowledge. We will talk about this divide in terminology in more detail in Section 5.
4.3 Sources for commonsense knowledge
To answer RQ3, we analyze the different knowledge sources employed by the analyzed publications. An overview of the 30 sources found and their properties can be examined in Table 1. To evaluate their relevance for the domain of cognitive robotics, we count the number of publications in which they occur. Additionally, we categorize them based on their type according to the criteria described by Hitzler et al. (Hitzler et al., 2010, Ch. 8.2, pp. 310-317). Lastly, we check whether the source is still available and can be downloaded and used.
TABLE 1 | The 30 CSK sources employed by the 52 analyzed publications. Abbreviations in the Type column stand for Structured (S), Semi-Structured (SS), Unstructured (U) and Human (H) (Hitzler et al., 2010, Ch. 8.2, pp. 310-317).
[image: A table citing various knowledge sources with details on the number (denoted by '#'), type, availability (Avail), and usage by referring studies. Sources include ConceptNet, Humans, and OMICS, among others. Types are marked with letters like S, H, or U. Availability is indicated with checkmarks or crosses. Various studies are credited under "Used by" for different rows. Additional notes provide web addresses for some sources at the bottom.]Before analyzing the usage of these publications, we provide a quick overview over their capabilities:
• ConceptNet (Speer et al., 2017): ConceptNet is a semantic, multilingual network describing concepts through words and their commonsense relationships to each other. The necessary knowledge is collected through crowd-sourced resources, games with a purpose and resources created by experts.
• OMICS (Gupta and Kochenderfer, 2004): The Open Mind Indoor Common Sense Project is a collection of CSK for robots acting in the indoor domain (homes and offices). It collects knowledge in the form of statements, where each statement connects an object with an adjective describing either a property or the current object state.
	• (Open-)Cyc (Lenat, 1995): Cyc provides users with a foundational/top-level ontology describing objects and actions through rules and assertions written by domain experts. OpenCyc and ResearchCyc describe two releases of this knowledge base that each contain a subset of all assertions.
	• WordNet (Miller, 1995): WordNet provides a lexical database of the English language, where words are grouped into so-called synsets based on their semantics. Synsets are hierarchically structured using hyper- and hyponym relations as a foundation.
	• DBpedia (Bizer et al., 2009): This project aims to extract structured information from Wikipedia by representing each entity through a unique identifier and its relationship to other entities.
	• Google Books Corpus (Goldberg and Orwant, 2013): This corpus contains text from [image: Please upload the image or provide a URL for me to generate the alternate text.] million English books published between 1,520 and 2008. In addition, the authors provide a dataset containing all syntactic n-grams that can be extracted.
	• AfNet (Varadarajan and Vincze, 2012a): The Affordance Network is a database containing structural and material affordances for common household objects. It is commonly employed for recognizing objects through their affordances.
	• AI2Thor (Kolve et al., 2017): This dataset contains 3D indoor scenes that support many types of interaction for simulated robots. It consists of photo-realistic objects and scenes that can be procedurally generated.
	• BKN (Lam et al., 2011): The Basic-Level Knowledge Network combines knowledge from children’s books, ConceptNet (Speer et al., 2017), and Google’s Web 1T 5-g corpus (Brants and Franz, 2006) in a knowledge base covering objects and activities. The focus of this knowledge base lies in providing answers to Where, What, and How questions.
	• BERT (Devlin et al., 2019): Bidirectional Encoder Representations from Transformers describes a family of large language models that are pre-trained on a corpus of unlabeled text and can be fine-tuned to fit the purpose of the task.
	• FrameNet (Baker et al., 1998): Lexical database of concepts embedded in their semantic frame to better understand the concept’s meaning.
	• KnowRob (Tenorth and Beetz, 2013): This knowledge processing system is employed for automated robots and formulates decisions a robot can make as inference tasks that can be answered by virtual knowledge bases (KBs). These KBs combine word meaning from WordNet (Miller, 1995) with OpenCyc (Lenat, 1995), gather object information from online shops and contain observed human behavior.
	• LabelMe (Torralba et al., 2010): This database contains annotated images focusing on objects, scenes and their spatial connection. The annotations were provided by volunteers using an online annotation tool. Through this tool, the database accumulated over 400,000 annotations.
	• Matterport3D (Chang et al., 2017): Matterport3D is a large-scale dataset containing panoramic views made up of different images and taken in different buildings. Additional annotations describe information about camera poses and semantic segmentation.
	• ShapeNet (Chang et al., 2015): This is a richly annotated, large-scale dataset containing 3D models for different household objects collected from public repositories and other existing datasets. The objects are categorized on the basis of their corresponding synset in WordNet (Miller, 1995).
	• TTU Dataset (Zhu et al., 2015): The Tool and Tool-Use dataset is used for evaluating the recognition of tools and task-oriented objects by providing a collection of static 3D objects. These objects are combined with a set of human demonstrations regarding their usage.
	• VirtualHome (Puig et al., 2018): The VirtualHome simulator uses a crowd-sourced knowledge base of household tasks, represented through a name and a list of instructions. These instructions are translated into program code that is executed in a simulated 3D environment by virtual agents.

In general, we do not find one source that is predominantly used. Even ConceptNet (Speer et al., 2017), which has the most usage in our data, is only employed by roughly 15% of publications. Similarly, 17 out of the 30 sources [image: A mathematical expression is shown with a tilde indicating approximate equality to fifty-seven percent.] we found are only employed by a single publication, which demonstrates that most publications use specialized sources for the specific scenarios they work in rather than relying on a single, more general source. However, even when we focus on a specific use case we do not find a single source on which all approaches rely. This is underlined by the summary of CSK sources per use case provided in Table 2. As described in that table, there is no source that is used more than two times for a specific use case, with most sources occurring only once per use case. This demonstrates that none of the 28 sources provides data specific for a single use case but all of them focus on aspects relevant for different use cases.
TABLE 2 | Summary of the 15 use cases we found and the sources that are employed to gather commonsense knowledge for the specific use case. The Hole Digging use case is omitted since it is only discussed in a single publication that does not mention a source (Javed et al., 2016).
[image: Table listing use cases and their employed sources. Object Localization uses ConceptNet, OMICS, AI2Thor, and more. Object Delivery involves Cyc and OMICS. Environment Exploration employs Perception/Sensors and VirtualHome. Tool Substitution utilizes Perception/Sensors. Intention Inference is based on Humans and WikiHow. Object Recognition sources include Cyc, ConceptNet, and ShapeNet. Navigation uses Experience/Memories and Matterport3D. Pick and Place relies on Cyc, KnowRob, OMICS. Table Setting draws from Experience/Memories. Tidy Up involves ConceptNet and WordNet. Warehousing integrates BERT and Perception/Sensors. Cooking uses FrameNet. Location Detection involves Google Books Corpus. Reminiscence Therapy uses ConceptNet.]In addition to looking at which sources are employed, we also count the number of sources each publication relies on. Here we found that the majority of publications (33 out of 52, [image: Text showing a wavy line followed by "63%".]) relies on a single source for extracting its CSK. Only 16 publications [image: I'm unable to view the image directly. Please provide a description or upload the image again for alternative text assistance.] combine two or more sources, either to cover a broader scope of CSK (e.g., Kümpel et al., 2020) or to increase the quality of the data extracted (e.g., Vassiliades et al., 2020). The described results are visualized in Figure 6A.
[image: Chart A displays the number of publications for different used sources, with the highest being 33. Chart B compares sources and publications for various data types, showing structured data with the most publications at 20.]FIGURE 6 | (A): Visualizing the number of different sources used by each publication. Across all 52 publications, 30 different CSK sources were employed. (B): Visualizing the types of sources (Hitzler et al., 2010, Ch. 8.2, pp. 310-317), their amount and the number of their occurrences throughout the 52 different publications.
Regarding the type of source, we count the number of sources per type and the number of publications employing this type in Figure 6B. Only three sources (∼11%) depend on knowledge provided by human domain experts. However, these sources are applied in 35% of publications. The same amount of structured as well as unstructured sources (10 out of 30, ∼ 33%) are used according to our data. However, the ten structured sources are employed the most by the publications (∼38%). In general, the high reliance on structured sources is a positive development, since sources of this type are formalized to enhance machine readability.
Despite four approaches that extract CSK from unstructured text (Welke et al., 2013; Kaiser et al., 2014; Agostini et al., 2015; Liu et al., 2015) using NLP techniques, only the approach by Pradeepani et al. (2022) employs a large language model (Devlin et al., 2019) as its data source. Since research on large language models is a rather new domain, approaches that connect them with robots are still scarce (e.g., Ahn et al., 2022) and not yet focused on CSK. This supports the recommendation formulated by Wray et al. (2021) that there needs to be further research to increase the suitability of these models for the cognitive robotics domain.
Lastly, we briefly want to touch on additional sources that are not employed for the extraction of CSK for cognitive robotics. In a recent survey on CSK sources by Ilievski et al. (2021a), 22 different resources were collected and evaluated. However, only four sources found by our analysis overlap with these resources from their study (ConceptNet, WordNet, FrameNet and Wikidata), making up only 15 of the 75 CSK source usages (20%). So the remaining 18 sources have yet to be applied to the cognitive robotics domain.
4.4 Evaluation methods and benchmarking
To answer our last research question and investigate which methods and which datasets are used by the 52 collected approaches during their evaluation, we adapt the evaluation method taxonomy presented by Konersmann et al. (2022) for the software architecture domain. In general, not all methods are applicable to the cognitive robotics domain. In our data, we found Motivating Examples (Technical) Experiments and Case Studies. Additionally, we add the method Model Evaluation for approaches that evaluate an ML model without connecting it to a simulated or real-world robot. For the two most common methods, Experiments and Case Studies, we additionally differentiate whether they are performed in the real-world using a real robot or if the robot is simulated and operates in a simulated environment.
The resulting occurrences can be examined in Figure 7. In general, the majority of approaches [image: The expression "~62%" is shown, indicating an approximate percentage value.] are evaluated using a quantitative experiment, with most of these approaches being done in a simulated environment [image: It appears there was an issue with displaying the image. Please try uploading the image again, and I will assist you with creating the alt text.]. Generally, simulation environments are used in 50% of publications whereas evaluation on a real robot is performed in only [image: The image shows the mathematical expression for approximately thirty-seven percent, represented by the tilde symbol followed by the number thirty-seven and the percent sign.] of publications.
[image: Bar chart showing the number of publications by research method. Experiment has 20 simulated and 12 real-world publications. Case Study has 6 simulated and 7 real-world. Model Evaluation has 7 simulated. Motivating Example has 5 simulated. Questionnaire has 1 simulated, and None has 2 simulated publications.]FIGURE 7 | The different evaluation methods in our 52 analyzed publications. For the Case Study and Experiment we differentiate between a simulated or a real-world environment and robot.
In addition to the evaluation method, we also gather information regarding the data that was used for the evaluation, as well as its availability. Here, we find that 32 out of the 52 publications [image: The image shows a mathematical expression representing approximately sixty-two percent, written as the numeral sixty-two followed by a percentage sign and enclosed in parentheses.] did not publish the data used for the evaluation, and four publications [image: A mathematical expression showing approximately eight percent in parentheses.] did not use any data for their evaluation. In the 16 remaining publications, only two datasets, are used more than once. AI2Thor (Kolve et al., 2017) is used in Daruna et al. (2019); Li et al. (2022) and Al-Moadhen et al. (Al-Moadhen et al., 2013; Al-Moadhen et al., 2015) both use the same basic example household, described in either publication. Except for two employed datasets, all of the employed datasets are still available either online or by being directly provided in the publication.
These findings notwithstanding, we recognize that in the cognitive robotics domain, a correct execution of the desired task without the occurrence of unwanted side effects can be regarded as a proper and successful evaluation of an approach Vernon et al. (2022). Since the execution environment and the robot programs are often very specific to the lab where they are programmed, there are additional challenges that come with making them publicly accessible (Gu et al., 2023). However, there are certain aspects of CSK for the cognitive robotics domain where benchmarking makes sense. For example, the main question from Section 4.2 What is the expected location for an object? is often evaluated by comparing the (automatically) generated locations to a gold standard. However, this gold standard is often not taken from a publicly available dataset, but is instead created by the authors. In general, we observe a lack of benchmarks for domain-specific CSK questions like this.
5 DISCUSSION
Our analysis of the selected publications has revealed interesting limitations and gaps in the way commonsense knowledge is currently used in cognitive robotics research. First of all, while there are many potential use case and applications where commonsense knowledge might support generalization, our analysis has revealed a strong focus on use cases related to acquiring knowledge about objects in order to support things such as object localization and delivery, tool substitutions or pick and place.
This focus on object knowledge is understandable as knowledge about objects to a large extent comprises of static knowledge related to the properties and characteristics of objects, which lend itself to being modeled using the state-of-the-art graph-based knowledge representation language that can straightforwardly model (relational) knowledge about objects using edges or triples. Modeling knowledge about events, their logical and causal structures requires more complex representational paradigms. Further, there are less commonsense knowledge sources containing event knowledge compared to data sources containing (relational) knowledge about concepts and/or objects.
Regarding the sources of commonsense knowledge used, we observe quite a diversity and spread with many different sources being used. This shows that the field seems to be in an experimental state, testing different resources, without clear best practices having emerged. There seem to be no integrative resources that contain all sorts of relevant knowledge so that in the future we can expect that no source will fit all purposes and that robotic systems will have to rely on a combination of sources for different tasks and purposes.
In terms of evaluation and domains, we observe a clear focus on service robotics scenarios and household applications in contrast to the application of robotic systems in industry or production. The explanation for this seems quite natural: industrial settings have less variance and require that the same task is executed over and over with accuracy and precision. In such scenarios there is much less uncertainty than in scenarios where a robot might be confronted with new and unknown tasks, objects, situations, etc. As robots can not be pre-programmed to handle all these situations, flexible reasoning based on commonsense knowledge seems key to master the variance and uncertainty characteristics of such more open environments.
Finally, the lack of focus on physical reasoning and psychological reasoning in terms of applications is understandable, as these types of tasks require commonsense knowledge in the sense of having the ability to simulate physical environments or simulate others to infer their intentions, goals, etc. The first one requires accurate physics engines that would allow a robot to make accurate (forward) predictions. The latter one would require modules to make inferences about other agents, a so called computational Theory of Mind (ToM), the realization of which is a complex and long-term challenge Lake et al. (2017).
As we have seen above, knowledge about objects plays a central role. This is clearly related to the notion of affordances that is studied in cognitive robotics literature, as surveyed by Min et al. (2016). In these approaches, the affordances for the environment and its objects are learned, mostly by using machine learning-based methods on images or videos. What is striking here is that there seems to be a terminological gap in the way the semantic technology or knowledge representation community conceptualize object knowledge and how it is represented. While the semantic tech and KR communities often focus on (static) object knowledge, the cog. rob community focuses on perceptually grounded and action-related knowledge, thus using the concept of ‘affordances’ that indicate an action potential.
To further examine this divide in terminology, we examine the classification performed by Zech et al. (2019) in their review, which we introduced in Section 2. Despite focusing on actions and their possible representation in the cognitive robotics domain, their classification does not connect to keywords associated with the knowledge representation and reasoning community such as ontology. Similarly, there are concepts that are handled in Zech et al.‘s classification, but with a different focus/level of detail than in the publications we analyzed. As an example, we look at the concept of affordance. In the classification schema proposed by Zech et al., an affordance is given as an example of an exteroceptive stimuli, which is a stimuli generated in the external environment to provide interaction possibilities (Zech et al., 2019). In our analyzed publications, an affordance is defined as either 1) “a relation of an action/activity/intention and a specific object used to predict the next action/activity” (Liu et al., 2015, p. 1962) or 2) “the relational context holding between several objects that play different roles” (Beßler et al., 2022, p. 8). If we compare these three characterizations of affordance, we see that the one by Zech et al. focuses on the immediate application of this concept for robotic action execution, whereas definitions 1) and 2) focus more on the knowledge that an affordance can provide the robot to support, e.g., the planning of future steps or an understanding of the semantic similarities between different objects and actions. Another example is the concept of intuitive physics, which we introduced as one part of the definition for CSK in Section 1. This concept has no direct representation in the classification schema by Zech et al., despite its relevance for a successful action execution. The closest concept is effect associativity, which analyses whether a representation covers predicting the effect of an action based on its description.
The generalization of task execution knowledge is an important problem in current cognitive robotics research. To allow robots to be employed in domains shared with humans, robots need to be able to handle underspecified commands for manipulating unknown objects in an unknown way in a dynamic environment. Publications like the ones covered by our review and by Zech et al. (2019) are all trying to solve aspects of this generalization problem, despite coming from different research communities and often using different tools and approaches. This difference is underlined by the fact that there is no overlap between the 52 publications included in our study and the 152 publications included in Zech et al. (2019). In the future, more collaboration is needed to bridge this divide between the two communities, if we are to successfully tackle the task generalization problem.
6 THREATS TO VALIDITY
In general, we integrate different countermeasures into our process by following the general process for systematic literature reviews by Kitchenham and Charters (2007). However, there still remain some biases that we can not completely prevent. To address these threats, we examine selection, measurement and exclusion bias as well as repeatability separately.
Selection Bias: We have selection bias since the insights we gained through the paper analysis depend on the subset of papers we chose. Despite including all 52 publications we deemed suitable for answering our research questions, this inclusion is still based on pre-defined inclusion and exclusion criteria. These were not chosen randomly but derived from our research questions and the search procedure recommendations from Kitchenham and Charters (2007); Okoli (2015); Page et al. (2021).
Measurement Bias: Another problem is measurement bias, since the screening of the search publications was carried out by one of the authors. As a countermeasure, we pre-defined the set of inclusion and exclusion criteria before beginning the search. However, the filtering is still prone to human errors.
Exclusion Bias: Another possible problem stems from the exclusion of potentially interesting publications. By starting our systematic search with recent review papers in cognitive robotics, we have introduced this bias as research in AI, cognitive science, language processing, and cognitive robotics is still not sufficiently connected.
To counter this threat, we pre-defined the criteria we use for including and excluding publications. They are chosen to be as fitting for our research questions as possible and to not hinder the quality of our results. Additionally, no adjustments were made during the screening process. This prevents the exclusion of publications that were initially chosen but then excluded due to a failure to fit results during the analysis.
Repeatability: As the name suggests, threats to this validity describe problems encountered when other researchers try to emulate and repeat this evaluation. To allow for the repetition of the case study, we document all decisions, such as the inclusion and exclusion criteria, the keywords and search engines, in our review protocol. Additionally, all artefacts we created during our review are available in the aforementioned GitHub repository. However, the repeatability of our study is also limited due to the fact that only one person was responsible for screening the search results.
7 CONCLUSION AND FUTURE WORK
In this article, we have investigated the coverage of CSK in the cognitive robotics domain by evaluating the use cases and domains for which CSK is used, the aspects of CSK that are addressed, the sources employed for gathering the necessary CSK and the method of evaluation. For this purpose, we performed a systematic literature review using a keyword search on six search engines combined with a snowballing search on six related reviews. The resulting 2,048 publications were screened and filtered, which left us with 52 publications deemed suitable for answering our research questions.
By reviewing these 52 publications, we found that most use cases occur in the household domain and focus on objects and their relations to the environment, especially their location. This was corroborated by looking at what sorts of questions CSK are called upon to answer. We found that the most common CSK questions seek to connect an object to a specific location in its environment. Other important questions focus on object similarity, object affordances and tool substitution. Generally, questions focusing on objects are much more dominant than questions about interacting with humans or about physics or causality of actions. Regarding the employed sources, we found that specific sources like ConceptNet (Speer et al., 2017) (Open-)Cyc (Lenat, 1995) or OMICS (Gupta and Kochenderfer, 2004) are used in multiple publications but there is not one single source that covers all relevant aspects of CSK. Similarly, there are often multiple sources used to answer the same CSK questions. Regarding the evaluation performed in these publications, we also found that there are few resources used as data and most of the publications do not publish their evaluation data. This lack of available benchmarks and datasets is surprising since most the publications are evaluated using either a case study or an experiment, which both are mostly performed in simulation, thus leading to a high amount of data necessary for a successful execution. However, only a small amount of publication publish this data.
This review’s limitations stem from the threats to validity described in Section 6. In general, we counteract most threats by following the guidelines in Kitchenham and Charters (2007); Okoli (2015); Page et al. (2021) and documenting our decisions and intermediate steps in the reviewprotocol. The main limitation is the data analysis, which was manually performed by a single person.
Lastly, in our discussion of the review by Zech et al. (2019) we emphasized a terminological gap that exist between communities, the knowledge representation community on the one hand and cognitive robotics community on the other hand. These terminological differences need to be bridged towards developing an interdisciplinary research community that synergistically brings together the different aspects of commonsense and makes them actionable in robot control systems.
In the future, focus should lie on the evaluation and benchmarking of commonsense aspects for the cognitive robotics domain, as we explored in Section 4.4. For this, we want to investigate the applicability of commonsense reasoning benchmarks (e.g., CommonsenseQA Talmor et al. (2019)) for the cognitive robotics domain by evaluating their coverage of the relevant aspects we presented in Section 4.2. Additionally, as we explained in Section 4.3, there are different CSK datasets and resources from the survey by Ilievski et al. (2021a), who have yet to be applied to the cognitive robotics domain. This also includes new resources that have been published since the aforementioned study, like the CommonSense Knowledge Graph (CSKG) (Ilievski et al., 2021b) or Ascent++ (Nguyen et al., 2022). Finally, considerable focus should be put on creating the aforementioned interdisciplinary research community.
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The condition for artificial agents to possess perceivable intentions can be considered that they have resolved a form of the symbol grounding problem. Here, the symbol grounding is considered an achievement of the state where the language used by the agent is endowed with some quantitative meaning extracted from the physical world. To achieve this type of symbol grounding, we adopt a method for characterizing robot gestures with quantitative meaning calculated from word-distributed representations constructed from a large corpus of text. In this method, a “size image” of a word is generated by defining an axis (index) that discriminates the “size” of the word in the word-distributed vector space. The generated size images are converted into gestures generated by a physical artificial agent (robot). The robot’s gesture can be set to reflect either the size of the word in terms of the amount of movement or in terms of its posture. To examine the perception of communicative intention in the robot that performs the gestures generated as described above, the authors examine human ratings on “the naturalness” obtained through an online survey, yielding results that partially validate our proposed method. Based on the results, the authors argue for the possibility of developing advanced artifacts that achieve human-like symbolic grounding.
Keywords: word-distributed representation, human-robot interaction (HRI), co-speech iconic gesture, natural language processing (NLP), robotics

1 INTRODUCTION
In their daily life, people interact with a variety of artifacts. In doing so, they sometimes behave as if the objects have a kind of thinking ability (Nass et al., 1994; Nass and Moon, 2000). In this paper, the object causing such a behavior is called “an agent.” In other words, an agent is an artifact that can interact with people with its purpose, motivation, and intention (Levin et al., 2013; Kopp and Krämer, 2021; Human-Agent Interaction, 2023). We posit that understanding the factors that lead people to perceive artifacts as having these characteristics can facilitate enriching interactions, where humans naturally behave like in human-human interaction (HHI).
Research in the field of human-agent interaction (HAI) has explored factors causing people to perceive the agency in artifacts. Those factors are mainly classified into appearance (MacDorman and Ishiguro, 2006; Yee and Bailenson, 2007), behaviors (Heider and Simmel, 1944; Laban and Ullmann, 1971) and social contexts (Nass et al., 1994; Shiomi, 2023). Yet, all of them are categorized as external factors, omitting the discussion on the correspondences of internal states and processes (i.e., algorithms and representations (Marr, 1982)) between the artifacts and humans. We argue that studies focusing on the internal factors of these objects pave the way for a foundational design principle for agents. Such agents would appear to possess the aforementioned conditions of agency: purpose, motivation, and intention.
Building on this concept, the current study investigates the relationship between the perception of agency and addressing the symbol grounding problem (Harnad, 1990). Within our framework, symbol grounding is understood as an internal state in which the language (symbols) used by the agent is given some quantitative meaning extracted from the physical world. One possible form of assigning quantitative meaning to language appears in the co-speech gesture (body movement accompanied by verbal language). The correspondence between utterances and actions made by the agent allows humans to infer the existence of meaningful symbols in the agent.
In other words, we assume that some forms of gestures, which are implicitly generated in communicative situations, convey quantitative meaning attached to verbalized words. These gestures can be distinguished from culturally formed emblematic gestures. Rather than directly indexing a specific concept, the gestures focused here iconically enhance imagistic links between linguistic form and meaning (McNeill, 1992; Murgiano et al., 2021). Murgiano et al. (2021) also claimed that such an iconic gesture is part of multimodal systems conveying imagistic meaning in communicative contexts. Thus, a similar role is observed in the prosody that accompanies spoken words. Herold et al. (2011) reported that children deduce novel meaning of antonyms (e.g., “small” vs. “big”) by leveraging prosodic features such as intensity (i.e., a loud and slow voice is connected to a big object).
The connection between a physical image and word meaning (the degree of symbol grounding) varies with word categories. Concrete categories naturally exhibit stronger links than abstract concepts (Utsumi, 2020). Nonetheless, abstract words can also possess imagistic meaning. Lakoff and Johnson (1980) discussed how language is metaphorically shaped through schemata that involve movement within the external world. This concept, known as an image schema, allows for the preservation of the external world’s imagery while linking through metaphorical expressions. For instance, when a speaker utters the phrase, “I have an important idea,” we can envision a scenario where the speaker’s hand gesture expands to signify the idea’s perceived significance. In this gesture, the magnitude of the concept is metaphorically represented through the spatial dimensions defined by the speaker’s body structure. Such a set of metaphors connecting a physical experience and an abstract concept is known as a primary metaphor (Grady, 1997).
Existence of the mechanism of exchange for these representations (symbols and quantities) is also supported by various theories in the field of cognitive science. According to the reference frames theory by Hawkins (2021), a continuous space exists behind each concept, mediating language use. Similarly, Tversky (2019) claimed that human language and thoughts originally come from physical experience made in a continuous time and space. In her discussion, the meanings of words are essentially embedded in our living physical world. Other similar discussions are also found in literature in the field of cognitive linguistics (Pinker, 2007).
Summarizing the above background of cognitive science, the authors consider that the gestures generated from a mechanism that is analogous to what humans hold can lead to a realization of the “intrinsically naturalistic” interactions with the agent, where people can perceive “communicative intention (Grice, 1989)” in the agents. In order to construct such a mechanism, a model of word meaning is important. As already noted by the above theories (Pinker, 2007; Tversky, 2019; Hawkins, 2021), word meanings are not defined discretely or independently, but are considered to be defined in a continuous space in which words are interconnected. In the history of natural language processing, statistical analyses (bag of words, co-occurrence frequency, or principal component analysis from word vectors) have been applied to corpora derived from human language operations to capture the semantic relations between words. More recently, vector representations (word-distributed representations) collapsed into the middle layer of a neural network (Bengio et al., 2000) have become the mainstream method for understanding words’ quantitative meanings. Such an approach is still evolving and has led to the construction of a variety of large-scale language models (LLM) that enable HAI with human natural communication media (natural language) (Brown et al., 2020; Chowdhery et al., 2023; OpenAI, 2023).
Various quantitative images such as “size” and “speed” can be assumed in the space where words are positioned (Grand et al., 2022). Among those, we focus on the “size images” as a first step to obtain quantitative representations of words related to physical image embedded in the space. Since this image has been frequently utilized in numerous studies (Grady, 1997; Herold et al., 2011), it is suggested that the most representative image for our investigation. By creating iconic gestures (physical images) for a robot through the conversion of “size images” into physical representations, we aim to develop an agent that achieves symbol grounding, which leads to actions that reflect the quantitative images of words. Our objective is to determine whether such embodiment in an agent (robot) leads to an increase in human perception of agency.
More specifically, as an initial step toward the above objective, we set the following research questions:
	1 How can “size images” evoking an agency perception be extracted from the vector space of word-distributed representations?
	2 What forms of gesture expression are effective in constructing more natural interaction based on the agency perception?

To address the first question, we introduce a method for extracting “size images” using word-distributed representations and evaluate this method through two experiments. These experiments employ different approaches for associating “size images” with “physical images” in a robot. By comparing the outcomes of these experiments, we aim to investigate the second question. Before presenting the experiments, we introduce a technological background leading to the method of this study and the method of generating “size images” in the following sections.
2 RELATED WORKS
As a background of our method, we introduce research on modeling word meaning and research on gesture generation for robots and agents. Based on the review of those related works, we outline our specific approach to gesture generation.
2.1 Modeling word meaning
The meaning of a word or concept can be modeled by several approaches. One traditional approach is to write down the meanings of concepts circulating in society manually. Large-scale databases such as WordNet (Miller, 1995) and ConceptNet (Speer et al., 2017) have been developed so far. These databases define the normative knowledge structure in society.
On the other hand, in recent years, there have been many approaches to statistically capture the meaning of concepts based on the way people use language in their daily lives. The word-distributed representation (Bengio et al., 2000) considers a word as a “pointer” embedded in a vector space. In this framework, the meaning of a word is regarded as the relationship (distance or similarity) between words in the vector space. The underlying idea here is the distributional hypothesis that “words which are similar in meaning occur in similar contexts (Rubenstein and Goodenough, 1965; Sahlgren, 2008)”.
Attempts have been made to extract words’ quantitative images by using word-distributed representations. For example, Utsumi (2020) used word-distributed representations to classify words into attributes and compared them with the classifications obtained from human data. The results suggests that the vector space of word-distributed representation captures aspects of human knowledge, showing that abstract concepts are more deeply (remotely) embedded in word distributions than in words with physical meanings associated with animates.
In addition, Grand et al. (2022) proposed a method for extracting context-dependent relations using word-distributed representations. Context-dependent relations imply that a word like “dog” can embody multiple semantic features such as “size,” “intelligence,” and “danger,” with a particular feature becoming prominent depending on the context. This study shows that by projecting word vectors onto an axis representing a focused feature, it is possible to simulate human estimation of the quantitative features in various objects. Thus, it is suggested that human quantitative images of words are embedded in word-distributed representations. In other words, the quantitative meanings of concepts that humans have physically acquired are inherent in word-distributed representations created from our daily language use.
2.2 Gesture generations in human-agent interaction
The current study focuses on symbol grounding as a factor inducing agency perception. Regarding this focus, Section 1 introduced studies showing the relation between symbol grounding and multimodal communication (Murgiano et al., 2021).
In the context of HAI studies, multimodal interaction has also been extensively examined. Among these, human gestures have been treated as a main modality that significantly influences verbal communication (Maricchiolo et al., 2020). To approach this, data-driven methods that learn from human gestures by using machine learning techniques such as deep learning have become popular. For example, Saund et al. (2022) analyzed the relationship between body movement and meaning to generate effective gestures by virtual agent.
There have also been many studies on gesture generation from multimodal language corpus. Lin and Amer (2018) use Generative Adversarial Networks (GAN) to control joints by mapping embedded words to the space of body movements. Ahuja and Morency (2019) also proposed a method called “language2pose” that integrates language and body movements through end-to-end learning. More recently, Tevet et al. (2022) used a diffusion model to generate human body movements and use sentences and actions as input. Their study confirmed that gestures generated from both inputs were evaluated better than gestures generated by other generation models. Furthermore, possibility of natural gesture generation or selection is explored by using LLM (Brown et al., 2020; Chowdhery et al., 2023; OpenAI, 2023), which has become popular in recent years. Hensel et al. (2023) have shown that LLM can be used to select hand gestures that are compatible with the content of speech. Yoshida et al. (2023) have successfully generated emblematic gestures by incorporating LLMs into humanoid robot motion generation.
In the context of co-speech gesture generation, Yoon et al. (2019) applied deep learning technology to generate various gestures, including iconic, metaphoric, deictic, and beat gestures. Ishii et al. (2018) also proposed a model of co-speech gesture focusing on appropriate timing. In their study, Conditional Random Fields (CRFs) were used to parse information from natural language.
2.3 Top-down gesture from abstract index
As described thus far, numerous studies have focused on bottom-up approaches that extensively learn low-level features from human motion data. Although these approaches have proven effective for generating natural gestures, using the bottom-up approach to identify intrinsic yet infrequently occurring features related to spoken words remains challenging due to the inherent bias of deep learning technologies towards the majority of data samples. Therefore, a top-down approach that targets specific aspects of word meanings is necessary to achieve a robot that acts as an agent “grounded to the external world,” as described in Section 1.
Based on these ideas, Sasaki et al. (2023) proposed a gesture generation method by extracting intrinsic images of words as shown in Figure 1. The details will be explained in the next section, but their method has advantages in assuming an abstract axis (index) to be extracted from the data, by following Grand et al. (2022). We consider that such an intentional setting of an axis is essential to represent communicative intention in the agent (Grice, 1989). However, their study did not present sufficient evaluations of the variety of body expressions. Therefore, this study extends the previous method (Sasaki et al., 2023) to evaluate the effects of physical images generated from the abstract index on agency perception. In the following sections, we describe the method of constructing “size index” and “size images,” which are the process presented in the left side of Figure 1.
[image: Diagram illustrating the process of generating a "size image" from a "size index," with an arrow on a chart pointing upwards and fruit icons. The next panel shows a robot holding a thought bubble with a fruit, labeled "Physicalizing Body Image."]FIGURE 1 | Gesture generation proposed by Sasaki et al. (2023).
3 GENERATING “SIZE IMAGES” OF WORDS
In this study, we generate gestures of embodied agents (robots) by using the method proposed by Sasaki et al. (2023). After presenting an overview of the method, we apply it to survey data to extract the “size images” of words.
3.1 Basic method
Figure 2 illustrates the methodology employed in this study to generate “size images.” Figure 2A details the procedure for extracting a “size index” applicable to any word in the word-distributed representation. This involves identifying quantitative dimensions related to the attribute of size. Following this, Figure 2B outlines the process of creating a “size image” for a specific word using the derived size index. The output of this step is utilized to translate the abstract semantic feature into a physical representation (robot movement) that can be recognized within the context of human-agent interaction, thereby facilitating the symbol grounding of the word based on its size attribute.
[image: Diagram depicting vector spaces for interpreting size relationships. Panel A shows vectors for "small" and "large" synsets obtained from a thesaurus, with synonyms branching out. Panel B illustrates a size index combining with a "dog" vector to form a size image. Arrows indicate relationships within the spaces.]FIGURE 2 | Procedure of the proposed method. (A) Construction of “size index”, (B) Calculation of “size image”.
These processes adapt and modify the approach presented by Grand et al. (2022), which was introduced in Section 1. To overcome the limitations of Grand et al.’s method, which we will discuss later, our method (Sasaki et al., 2023) employs an approach that combines word-distributed representations with a human-curated thesaurus, introduced in the beginning of Section 2.1. This approach reduces the arbitrariness of the method and enhances its applicability to languages with comprehensive linguistic resources. In this study, to assess the method’s applicability beyond English, we utilize a linguistic resource developed for the Japanese language.
The remainder of this subsection details the specific procedure employed in this study for extracting the “size index” and constructing the “size image”.
3.1.1 Composition of “size index”
We first present Grand et al. (2022)’s method of extracting the “size index” (the blue arrow in Figure 2A). In this method, an axis with a meaning specific to “large,” is constructed by subtracting a polar vector with a meaning of “small” (Small in Figure 2A, the antonym of “large”) from a different polar vector with a meaning of “large” (Large in Figure 2A). To define the poles, we only need to extract the coordinates of the “large” and “small” values in the distributed multidimensional vector space. However, in addition to their size-related meanings, these two words have extra meanings that derive from their adjectival roles in the sentence1. To exclude such meanings unrelated to the degree of “size,” Grand et al. (2022) defined a set of synonyms (red dotted square in Figure 2A) that have the same role as “large” and “small” in the distribution word representation. Then, the polar coordinates are determined by computing the mean vector of these synonyms, respectively.
Thus, the “size index” I is defined by the following equation:
[image: Formula representing a mathematical expression: \( I = \frac{\sum_{i=1}^{n} l_{i}}{n} - \frac{\sum_{j=1}^{m} s_{j}}{m} \).]
where li and sj are word belonging to the set of “large” synonym vectors (SynsetL = {l1, l2, … , ln}) and the set of “small” synonym vectors (SynsetS = {s1, s2, … , sm}).
3.1.2 Composition of “size image”
Once the “size index” is defined, we can calculate “size image” from the index. Figure 2B shows the calculation of the “size images” as the cosine similarity between the “size index” and the input word vector. Thus, the size image S is calculated by
[image: The formula \( S = \frac{I \cdot w}{\|I\|\|w\|} \) represents the cosine similarity between vectors \( I \) and \( w \), calculated as the dot product of \( I \) and \( w \) divided by the product of their magnitudes.]
where w represents the input word vector. In this method, the larger this value is, the larger the word is assumed.
3.1.3 Selection of synset
The limitation of Grand et al.’s method is arbitrariness in selecting SynsetL and SynsetS. In their study, SynsetS consisted of “tiny” and “little” while SynsetL was constructed by “big” and “huge.” Nevertheless, they didn’t specify the criteria for selecting these synonyms.
To address this issue, and to compose a “size index” properly matching human perception, it is important to set up a set of synonyms for the polar words (“large” and “small”) without any arbitrariness. A possible method is leveraging a standardized thesaurus. However, a thesaurus does not automatically determine the appropriate synonym set. Words are usually polysemous and have multiple meanings. In a thesaurus, a set of synonyms for a word is defined as a synset for each meaning. To improve the consistency with human perception, it is necessary to select appropriate synsets. In this study, we seek the combination of synsets that maximizes the distance between “large” and “small” words obtained from human reports to determine the polar coordinates consistent with human perception. In this procedure, we first prepare SynsetL associated with the word “large” and SynsetS associated with the word “small”.
We also prepare a set of words Largeh that humans perceive as “large” and a set of words Smallh that humans perceive as “small.” In extracting Largeh and Smallh, it is necessary to distinguish categories to which the word refers. According to Tversky (2019) and others, the meaning of a concept is originally composed of human movement. However, as shown by Utsumi (2020), physical quantities are not expected to be strongly embedded in word-distributed representations composed of socially published documents. Either way, the scale of the “size index” has the possibility to be changed by the categories the word belongs to. Following such discussions, this study assumes.
	• Largeh, animate
	• Largeh, inanimate
	• Largeh, intangible

as subclasses of Largeh, and.
• Smallh, animate
• Smallh, inanimate
	• Smallh, intangible

as subclasses of Smallh.
In the selection process of the synset combinations, the “size index” Ii,j is composed for SynsetS,i (∈ AllSynseetS) and SynsetL,j (∈ AllSynseetL). The “size images” of the human-perceived small word wS,k (∈ Smallh) and large word wL,l (∈ Largeh) are severed to calculate the “size images” S(Ii,j, wS,k) and S(Ii,j, wS,l), respectively. Those individual “size images” are aggregated into average images as S(Ii,j, wL), and S(Ii,j, wS). From those indices, the “size index” of the combination of SynsetL and SynsetS that maximizes the difference (S(Ii,j, wL) − S(Ii,j, wS)) are selected as the optimal index to compose human compatible “size images”.
3.2 Application of the method
The construction of the “size index” described so far requires a vector representation of words (w), a thesaurus (AllSynsetS, AllSynsetL), and human perceived small/large words (Smallh, Largeh).
Of these, this study uses the Japanese Wikipedia entity vector developed by (Suzuki et al., 2016), which we call JWikiEntVec in this paper, as a distributed representation model to construct a vector of words (w). This is a trained model built by word2vec (Mikolov et al., 2013). We used this because the model is well used in Japanese academic societies2. Also the development method and the data set used to construct the model are clearly presented by the authors of this model. These characteristics make it particularly advantageous for foundational research like this study, despite the model’s performance not being as high as that of more advanced LLMs.
Furthermore, we employed the Japanese WordNet (Bond et al., 2009) for the selection of synonyms. This thesaurus contains 28 synsets for “large” and 14 synsets for “small.” Words not included in JWikiEntVec and synsets with no synonyms were excluded from the later analysis. As a result, we obtained 23 synsets for “large” and 13 synsets for “small.” The “size index” was calculated for the combinations of these synsets (23 × 13 = 299).
The human word sets (Smallh and Largeh) were collected through a questionnaire survey whose participants (n = 100) were recruited from a Japanese crowdsourcing site (Lancers). The participants were asked to write down five “large” and “small” words for animate, inanimate, and intangible concepts (30 words in total). Table 1 shows the top five words and their frequency for each question. From the table, we find the word “Mind” appears in the top five words for both large and small intangible. This duplication is considered to indicate the ambiguous nature of the meaning of this word. Therefore, this study used “Mind” in both Smallh and Largeh and calculated the “size index” by using these 29 words as the elements of Smallh and Largeh.
TABLE 1 | Responses obtained for each question (Top five words).
[image: Chart displaying three categories: Animate, Inanimate, and Intangible, each divided into Large and Small with corresponding words, frequencies, and Japanese pronunciations in parentheses. Examples include "Elephant (zo-u)" with frequency 85 under Animate Large, and "Mind (ko-ko-ro)" with frequency 13 under Intangible Small.]Figure 3 shows the differences (S(Ii,j, wL) − S(Ii,j, wS)) calculated for the 299 combination of synsets. The horizontal axis of this figure corresponds to the combination of synsets ordered by rank. Overall, there are many combinations where the difference of the “size image” is larger than 0 (above the red dotted line), indicating that the size index calculated for more than half of the synset combinations is consistent with the human image.
[image: Line graph showing the difference in rank for synsets categorized as Animate, Inanimate, and Intangible. The x-axis represents Synset's rank from 0 to 300, and the y-axis represents the difference, ranging from -0.05 to 0.20. Animate and Inanimate lines begin high, then gradually decline, crossing below the red dashed baseline. Intangible starts lower and declines steadily.]FIGURE 3 | Distribution of “size image” difference.
Table 2 shows the highest-ranked synset combinations (with the largest difference), the lowest-ranked synset combinations (with the smallest difference), and the synonyms in each synset. The combination of the synset with the largest difference is “larger-than-life” and “peanut,” and the combination of the synset with the smallest difference is “major” and “small-scale”.
TABLE 2 | Top and bottom synsets combinations.
[image: A table compares synonyms for "large" and "small" in top and bottom synsets. Each synset includes the main word, a synonym with pronunciation, and its meaning. The top synset has "large" as larger-than-life, very impressive, and "small" as peanut, unimportant, while the bottom synset features "large" as major, effective, and "small" as small-scale, very small. Synonyms are listed with pronunciations in Hepburn romanization.]4 EXPERIMENT 1: “SIZE IMAGE” IN EFFORT
The following two sections present an evaluation of the physical images (iconic gestures) generated from the “size images” composed in the previous section.
To address the first research question presented in Section 1, we tested the above procedure of selecting synsets. Thus, the gesture generation using the top-ranked synset combination and that using the bottom-ranked synset combination are treated as the proposed and controlled methods, respectively. If the procedure described in the previous section successfully extracted the axis that grounds the symbol to the physical world, and if the correspondence between the axis and the body is compatible with what people own, we can claim that the proposed method is effective to extract “size image” that evokes agency perception from the vector space of word-distributed representation.
Regarding the second question, we can consider several possible methods for mapping the “size image” to “physical image.” Dance theories generally pursue a physical expression that effectively externalizes the human internal states. Among these theories, Laban movement analysis (Laban and Ullmann, 1971) has been widely used in the field of HAI (Ishino et al., 2018). This theory assumes two modalities in the correspondence between human internal states and body: shape for posture and effort for movement. In Experiment 1, we mapped the axis of space, which is one of the axes of the effort modality to the “size index.” In other words, the amount of movement is considered to be larger when a large concept is recalled. In the following section, we explain the construction of body movements based on this idea.
4.1 Methods
4.1.1 Materials
The procedure of generating physical image (iconic gesture) according to the “size image” is shown below.
	1 Setting large and small movements. Mapping the “size image” to the posture composed of the body parts. For this purpose, we define the body posture corresponding to the smallest and largest words recognized by humans. Using this posture as a reference (0 for the image of the smallest word and 1 for the image of the largest word), the “size image” of each word is positioned in the range from 0 to 1.
	2 Calculation of parameters at each joint. The above scaling is applied to the angles of each joint that constitute the posture.
	3 Generation of physical image. A gesture is generated based on the values obtained by step 2. This generation is assumed to be made simultaneously with the utterance of the word.

In order to embody the above steps, we used Sota, a small communication robot by Vstone3. Sota’s body movements are controlled by nine joints (one torso, three necks, two shoulders, and two arms joints). By controlling the angle and speed of these joints, Sota can generate a variety of movements. In addition, Sota has a speech function and can speak any word while simultaneously displaying gestures.
In this study, the parameters of Sota’s arm and shoulder joints were instantiated by “size image” of each word. Sota’s default posture in this study is shown in the upper image in Figure 4, with its shoulders down and arms slightly bent. From this state, the parameters of the arm and shoulder joints are changed to generate a gesture corresponding to the size of the word. Table 3 shows the maximum and minimum values of the “size image”, as well as the parameters of the shoulder and arm joints and the default position that corresponds to them. The “size image” computed for both the proposed and controlled methods is mapped to these values: 0 for the minimum and 1 for the maximum in the proposed method, with the reverse applied in the control method.
TABLE 3 | Maximum and minimum values of parameters for “size image” and each joint in Experiment 1.
[image: Table comparing metrics for size image and angles. Size Image (proposed) shows maximum 0.39 and minimum -0.17. Size Image (control) has maximum 0.28 and minimum -0.12. Shoulder angle has maximum 75, minimum -68, and default -70. Arm angle has maximum -20, minimum 88, and default 90.][image: Robot diagram showing three positions: "Default Position" at the top, and two branching options below. "Pyramid" on the left with arms raised, and "Tick" on the right with arms lowered.]FIGURE 4 | Examples of Sota gestures (left: “Pyramid”, right: “tick”).
TABLE 4 | Maximum and minimum values of parameters for “size image” and each joint in Experiment 2.
[image: Table displaying maximum, minimum, and default values for five parameters: Size Image (top synset) with maximum 0.39 and minimum -0.17; Size Image (bottom synset) with maximum 0.28 and minimum -0.12; Shoulder angle with maximum 30, minimum -30, and default -70; Arm angle with maximum -20, minimum 90, and default 20; Neck angle with maximum 10, minimum -10, and default 0.]4.1.2 Design and measures
In the experiment, the physical images generated by the above procedure were recorded as movies. Supplementary Material included examples of the movies (each for about 4 s duration4) and all the pictures showing poses representing each word, captured from the end of each movie. In this experiment, 30 words (with one duplication) in Table 1 were used to generate physical images for both the control and proposed methods5. Among them, two examples are shown in the lower images of Figure 4. The lower left and right images depict gestures for the words “tick (da-ni)” (the smallest animate concept) and “pyramid (pi-ra-mi-ddo)” (the largest inanimate concept), respectively. Thus, a small “size image” results in the robot making small movements from the default position6, while a large “size image” results in larger movements.
The participants were asked to observe those movies and rate the naturalness of the correspondence between the robot’s movements and the words it speaks on a 5-point scale (1: not at all natural—5: very natural). The standard of “naturalness” here assumes a natural communication between humans (Kopp and Krämer, 2021). In human communication, people usually try to achieve, intention sharing (i.e., mutual understanding) (Tomasello, 2010). Therefore, we specifically asked the participants to rate whether or not they feel that the robot understands the meaning of the words as humans would. As the question indicates, this rating demands the participants to perceive the robot’s internal state from the short movie. By presenting such a question, evaluating the agency perception in terms of communicative intention (Grice, 1989) would be possible.
4.1.3 Participants and procedure
The 300 participants recruited from Lancers joined the experiment after reading the instructions provided on the request screen (reward: 110 JPY). The instructions explained the evaluation procedure, the definition of naturalness, and the obligation to answer dummy questions. After agreeing to the above instructions, participants were presented 14 movies, which were randomly selected for each participant from 58 movies (2 conditions × 29 words in Table 1). In between the evaluation of the movies, a dummy question in which the participants were asked to answer a specified number was inserted.
4.2 Results
Nine participants who answered the dummy questions incorrectly were excluded from the following analysis. From the remaining 291 participants’ responses, the average of the ratings was calculated for the 29 words in each condition. Utilizing this value as a unit of analysis, we calculated the average of 12 naturalness ratings (condition × size × category)7, as shown in Figure 5. By using these values, we try to test the following hypotheses:
	1 The proposed method has a greater effect on the ratings than the control method.
	2 The above effect is affected by the difference between the word categories.

[image: Bar chart comparing average naturalness ratings across three categories: Animate, Inanimate, and Intangible. Each category is divided into large and small, with red bars representing proposed ratings and blue bars for control ratings. Error bars and data points are present, indicating variability.]FIGURE 5 | Mean rating of naturalness in Experiment 1 (Error bars: standard errors, Dots: ratings for naturalness for each word).
The first hypothesis directly relates to the first research question introduced in Section 1. The second hypothesis was explored in response to previous studies (Utsumi, 2020), which have demonstrated that the impact of physical experience on word meaning diminishes in abstract concepts. Consequently, it is advantageous for future research to elucidate the extent to which symbol grounding influences the perception of agency.
We conducted a three-way [condition (proposed vs. control) × size (large vs. small) × category (animate vs. inanimate vs. intangible)] analysis of variance (ANOVA) to test the above hypothesis. Among the effects obtained from the ANOVA, we focused on the main effect of the condition and the interactions involving the condition and the category (a second-order interaction between the condition, the size and the categories, and a first-order interaction between the condition and the category). During this process, the significance level was set to 0.10, reflecting small sample size in this study (n = 5 for each condition). We also control type-1 error by reporting corrected p-values as q-value calculated using the Benjamini-Hochberg (B-H) method.
From the analysis, we obtained a significant main effect of the condition (F (1, 48) = 6.48, p = 0.01, q = 0.04, η2 = 0.07), confirming that the proposed condition was evaluated more naturally than the control condition. However, we also found a significant second-order interaction between the condition, the size, and the categories (F (2, 48) = 4.09, p = 0.02, q = 0.05, η2 = 0.14) and a significant interaction between the condition and the categories (F (2, 48) = 3.78, p = 0.02, q = 0.05, η2 = 0.08), suggesting that the difference in naturalness between conditions depends on other factors.
To examine the details of the interaction effect, we conducted post hoc two-way [condition (proposed vs. control) × size (large vs. small)] ANOVAs for each category. The p-values were corrected using the BH-method, accounting for nine tests in total (one interaction and two main effects for three ANOVAs). Significant effects (p < .05) related to the condition were observed only in the inanimate category (the main effects of condition: F (1, 16) = 18.72, p < .01, q < .01, η2 = 0.53 and the interaction: F (1, 16) = 10.50, p < .01, q = 0.02, η2 = 0.66). The simple main effect of the condition in the inanimate category was observed for the large concept (F (1, 16) = 21.29, p = 0.01, q < .01, η2 = 1.78). These results suggest that the proposed condition was evaluated as significantly more natural than the control condition for the large inanimate concept.
The above results partially align with the previous study (Utsumi, 2020). Additionally, the result revealed an effect of the “size” (small vs. large) on agency perception, which was not expected. To investigate this effect further, a post hoc correlation analysis was conducted. Figure 6 shows the scatter plots of the naturalness ratings and the “size image” for the proposed and controlled conditions. From the figure, we found a moderate positive correlation (r = 0.51, p < 0.01) in the proposed condition. This result indicates that the proposed method generates more natural gestures for larger-size words.
[image: Two scatter plots compare the relationship between image size and naturalness evaluated value. The left plot, labeled "Proposed," shows a positive correlation (r = 0.51) with a dotted trend line. The right plot, labeled "Control," shows no significant correlation (r = -0.03). Each plot displays data points scattered around horizontal and vertical axes.]FIGURE 6 | Correlation between naturalness and “size image” in Experiment 1.
4.3 Discussion
The above analysis indicates that the proposed condition outperformed the control condition in terms of overall naturalness. Therefore, the results of this study suggest that the proposed method can generate physical images that enhance agency perception.
However, this effect was affected by the word category and the size of the gesture. When dividing the overall effect into the three categories and two sizes, the proposed method outperformed the control method only significantly for the large inanimate category.
Those results partially support the hypotheses presented Section 4.2. The overall main effect of the condition supports the first hypothesis. The interaction between the condition and the categories supports the second hypothesis, suggesting the weak effect of the symbol grounding in an abstract category.
There are several possible reasons why the expected effect was not strongly observed in this experiment. Although we cannot deny the possibility that our assumptions (i.e., artifacts become agents through symbol grounding) are incorrect, more robust results may be obtained by improving experimental settings. For instance, the data obtained in this experiment came from a crowdsourcing survey, which may have introduced noise into the participants’ ratings. We can also consider that mapping the “size image” to the physical image was inadequate. The scatter plots in Figure 6 suggest the latter possibility, indicating that our method does not exhibit sufficiently natural behavior for small-size words. The next experiment explores this possibility.
5 EXPERIMENT 2: “SIZE IMAGE” IN SHAPE
This experiment also addresses the first research question by assessing the naturalness of gestures generated from the “size index.” However, to explore the second research question, we employed a different mapping of the “size index” to the body. The method adopted here focuses on the shape modality in Laban theory. From the correlations in Figure 6, it can be speculated that the small movements in Experiment 1 did not appear to be performed as a gesture. Based on this speculation, this experiment examines the research questions by mapping size images to body size so that perceptible gestures are generated even when small-sized words are uttered.
5.1 Methods
The experiment method was the same as Experiment 1 except for the movies presented to participants. In the movies in this experiment, we arranged the correspondence between the “size image” and the physical image to express the size of the posture. The default posture of the robot is the same as in Experiment 1. In addition to the body parameters (arms and shoulders) used in the previous experiment, the neck joints were controlled according to the “size image” of the word. Table 4 shows the minimum and maximum values of the word “size image” and the corresponding values of Sota’s joint angle parameters for the proposed and controlled methods. All the pictures showing the finishing pose used in this experiment are presented in the Supplementary Material. Examples from them are shown in Figure 7.
[image: Two panels compare robot images in an experiment. Experiment 1 shows a robot labeled "Large" with its arms up and "Small" with arms down. Experiment 2 maintains the same images, indicating a comparison setup.]FIGURE 7 | Example of gesture control by posture (top: maximum value, bottom: minimum value).
As illustrated in 4.1.1, the upper left and lower left images are gestures for uttering the word with the largest (pyramid) and smallest (tick) “size image” in Experiment 1. In this experiment, we changed these gestures as shown in the upper right and lower right images of Figure 7. When the “size image” was largest, the parameters of the arm and shoulder were set at the position where the distance between the arm and the arm was the largest, and the neck was also set upward. When the “size image” was the smallest, the arm and shoulder parameters were set at the position where the arm-to-arm distance was the smallest, and the neck was also set downwards. As can be seen in Figure 7, the camera position was also changed to make the differences in posture obvious.
5.2 Results
As in Experiment 1, 300 participants were recruited from Lancers joined the experiment. 43 participants who incorrectly responded to the dummy questions were excluded from the analysis. From the remaining 257 participants’ responses, the average ratings for 29 words in two conditions were calculated. Using the calculated value as the unit of analysis, the naturalness ratings were summarized in Figure 8.
[image: Bar graphs comparing average naturalness ratings for animate, inanimate, and intangible categories, each with large and small subcategories. Red bars represent proposed ratings and blue bars represent control ratings. Each bar displays error bars and corresponding data points.]FIGURE 8 | Mean rating of naturalness in Experiment 2 (Error bars: standard errors, Dots: ratings for naturalness for the five words).
From the data shown in the figure, we tested the same hypotheses in Experiment 1. We report the results of the statistical tests of the main effect of the condition, and the second-order interaction between the condition, size and categories, and the first-order interaction between the condition and the categories from the three-way [condition (proposed vs. controlled) × size (large vs. small) × category (animate vs. inanimate vs. intangible)] ANOVA performed for Figure 6. As a result, we obtained a significant main effect of the condition (F (1, 48) = 4.14, p = 0.04, q = 0.08, η2 = 0.09) and no significant interactions involving the condition (the second-order interaction: F (1, 48) = 0.91, p = 0.41, q = 0.57, η2 = 0.04, the interaction between condition and category: F (2, 48) = 0.20, p = 0.81, q = 0.81, η2 = 0.22). These results indicate that the difference in naturalness between conditions is not affected by category or size.
As in Experiment 1, we also conducted a correlation analysis. Figure 9 shows the scatter plots of the naturalness scores and the “size image” for the proposed condition. From the figure, we found a moderately positive correlation (r = 0.57, p < 0.01) in the proposed condition as in Experiment 1. This result indicates that the larger the value of “size image,” the more natural the image tends to be evaluated.
[image: Two scatter plots compare the relationship between size image and naturalness evaluated value. The left plot, labeled "Proposed," shows a positive correlation (r = 0.57**). The right plot, labeled "Control," shows a negative correlation (r = -0.34 ns).]FIGURE 9 | Correlation between naturalness and “size image” in Experiment 2.
5.3 Discussion
In Experiment 2, we reexamined the research questions using a different mapping of the “size image” to the physical image than in Experiment 1. The results showed that, as in Experiment 1, the proposed method produced more natural images than the control method. However, contrary to Experiment 1, Experiment 2 found no interaction between the condition and the other factors. Therefore, we can assume that the gestures generated in Experiment 2 can be applied to more general situations to cause an agency perception.
However, the effect size of the condition obtained in Experiment 2 was smaller than that in Experiment 1. In addition, as in Experiment 1, we observed a correlation between the “size image” and naturalness ratings. This suggests that the small-sized words in Experiment 2 also exhibited unnatural gestures.
6 GENERAL DISCUSSION
This study was guided by two research questions. Concerning the first question (how can “size images” evoking an agency perception be extracted from the vector space of word-distributed representations?), we assessed a method proposed in our previous study (Sasaki et al., 2023) as one potential answer. The observed difference between the proposed and the control conditions indicates the necessity of selecting appropriate synonyms for constructing the “size index.” The current study has demonstrated the advantage of our modification (Sasaki et al., 2023) from the previous method (Grand et al., 2022).
Furthermore, for the second question (what forms of gesture expression are effective in constructing natural interaction based on the agency perception?), by comparing the results of the two experiments, we can assume that expression using the mapping in the posture has a more general effect. However, in common with both experiments, there was a positive correlation between the naturalness rating and the “size image.”
The fact that the gestures corresponding to smaller “size images” did not receive good ratings requires further examination. In the discussion of Experiment 1, it was considered that the small amount of movement was a factor causing the low naturalness ratings. However, neither the small “size image” nor a large amount of movement in Experiment 2 improved the naturalness rating for small-sized words. These results may suggest an asymmetry between the small and large poles of the “size index”; Words at the smallest pole may be less associated with the body, while words at the largest pole may be more associated with the body.
We also need to consider the influence of categories on the effectiveness of the proposed method. Previous studies have noted that abstract concepts are less grounded in the physical experience (Lakoff and Johnson, 1980; Utsumi, 2020). Consistent with this discussion, in Experiment 1, only one of the concrete categories demonstrated the effectiveness of the proposed condition. Additionally, the observation that the same word “Mind” appeared in both “large” and “small” abstract concepts indicates the limited extent of symbol grounding.
Our experiment also suggests that using a single size index across various categories has limitations. In this study, we applied the same “size index,” derived from the pairs of synsets listed in Table 2, to all three categories. We did not differentiate categories when calculating the size index because of enhancing the index’s applicability. Considering that the method might be applied to any arbitrary words, it appears difficult to determine the abstractness of a word beforehand. However, our results, particularly the observed differences in the effects of the condition between animate and inanimate categories, clearly indicate the necessity of adjusting the scale of the mapping from “size image” to “physical image.”
7 CONCLUSION
In this study, we started from the hypothesis that symbol grounding is important in generating the agency perception. In line with this hypothesis, we composed a “size image” of a symbol grounded in a quantitative vector space of word-distributed representations. We also explored the hypothesis by examining two mapping of “size image” to body images. The experiments verified the proposed method although the effect size was not large.
We consider that the reason for the small effect size is partially attributed to our approach. Unlike recent research on gesture generation based on deep learning technologies, this research has many assumptions. We especially composed an abstract axis that mediates speech and body. Although these top-down approaches do not reach bottom-up approaches in terms of performance, it is useful to guide the novel interaction design with agents. Thus, we believe our study contributes to theoretical and practical developments in HAI research.
There are several other limitations to this study. The first concerns the gestures with small-sized words as already noted. Even though the problem noted in Section 6 may exist, it is beneficial to invent expressions of small-sized gestures that humans can evaluate as natural. To overcome this problem, we need to improve expression ability in the used body image. The currently used robot (Sota) has limitations in performing detailed gestures. Therefore, to confirm our hypothesis, it may be necessary to use other robots or virtual agents.
The robustness of the results also needs to be improved. The data collection in this study was conducted using crowdsourcing, and a lot of noise was possibly introduced in the data collection process. A future study employing face-to-face situations in a laboratory has the possibility of leading to more insights with the additional effect of the presence of embodied robots.
The model update on the distributed representation might also improve the result of the study. The recent rapid development of natural language processing provides a more naturalistic correspondence between discrete symbols and quantitative images. Although existing LLM hold a problem of explainability, it is useful to include those in our approach for demonstration purposes.
In addition to addressing the issues mentioned above, we plan to explore the physicalization of body images using various indices such as “sharpness” and “fastness,” alongside “size” in future work. We are considering the possibility that such semantic axes could be associated with the dimensions of body movement (space, weight, and time) as proposed in the dance theory (Laban and Ullmann, 1971). This direction for future research aims to bring our method closer to the generation of human gestures. Theories of human gesture (McNeill, 1992) indicate that human gestures encompass many aspects beyond those addressed in this study. Our approach is an endeavor to deconstruct such complex gestures based on the fundamental physical experience (symbol grounding), drawing on several cognitive science theories (Pinker, 2007; Lakoff and Johnson, 1980; Tversky, 2019; Hawkins, 2021). We believe that this foundational research will ultimately contribute to the development of advanced artifacts capable of seamless interaction with humans, featuring a mechanism for converting between human symbols and quantitative representations.
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FOOTNOTES
1The distance between the words “large” and “small” is quite close within the entire space of word-distributed representation because both are commonly used in contexts describing the size of an object. Therefore, poles defined solely by these two words have limited distinguishability for other words in terms of size.
2We can find more than sixty citations in Google Scholar at the point of submission.
3https://www.vstone.co.jp/english/index.html
4This duration corresponds the time to change the pose from the default to the final position. Aside from this time, the proposed method also requires time to load the model (JWikiEntVec) and compute the size image. The average of the initial loading time is 6.28 s (n = 10), which is required only once to initialize the entire system. After the initial setup, the method only requires 0.59 s, on average (n = 10), to compute the size images. Those computational times were recorded by a 2020 MacBook Pro with an Apple M1 CPU.
5These words were assumed to be samples of Largeh and Smallh for each category. There might be several confounding factors, among which we examined iconicity rating as one of the factors possibly influencing gesture perception. However, from the publicly available dataset of iconicity ratings (Thompson et al., 2020; Winter et al., 2023), we could not find clear evidence of the influence on gesture perception in our experiment. Supplementary Material show the details of this analysis.
6The movement of the shoulder and arm at the minimum value is generated by taking the parameter of the smallest unit of movement of the internal motor.
7The average rating for “Mind” was included both for large intangible and small intangible conditions.
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In response to the costly and error-prone manual satellite tracking on the International Space Station (ISS), this paper presents a deep neural network (DNN)-based robotic visual servoing solution to the automated tracking operation. This innovative approach directly addresses the critical issue of motion decoupling, which poses a significant challenge in current image moment-based visual servoing. The proposed method uses DNNs to estimate the manipulator’s pose, resulting in a significant reduction of coupling effects, which enhances control performance and increases tracking precision. Real-time experimental tests are carried out using a 6-DOF Denso manipulator equipped with an RGB camera and an object, mimicking the targeting pin. The test results demonstrate a 32.04% reduction in pose error and a 21.67% improvement in velocity precision compared to conventional methods. These findings demonstrate that the method has the potential to improve efficiency and accuracy significantly in satellite target tracking and capturing.
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1 INTRODUCTION
In spite of the technological advancements of the International Space Station (ISS), capturing incoming satellites using Canadarm2 relies heavily on manual operations. This process involves a complex interaction with the grapple fixture (Figure 1), designed for secure connection with the Canadarm21. Astronauts, leveraging their training and visual cues, manually align and operate the robotic arm to successfully capture and berth these satellites.
[image: Spacecraft interface with labeled components: a "Grapple Fixture," consisting of three oval shapes forming a Y pattern, and a "Targeting Pin" located above it.]FIGURE 1 | The grapple fixture and the 3D targeting pin on a servicing satellite2.
The manual process is highly dependent on the skill and operation precision of the astronauts. Human error, inherent in any manual operation, poses significant risks in the high-stakes environment of space. Misalignment, even minor ones, can lead to mission-critical failures, jeopardizing expensive equipment and the overall success of the operation. Furthermore, the extensive training and resources required for astronauts to perform these tasks represent a significant financial and logistical investment.
Automation has proven to be an important response to the aforementioned risks associated with the manual satellite capture processes. Unlike conventional methods that rely on detailed pose information for the precise control of robot end-effectors (EE), such as kinematic modelling (Jafarinasab et al., 2019), and trajectory planning (Herrera-Aguilar and Sidobre, 2006), Image-based Visual Servoing (IBVS) method demonstrated its efficacy by obviating the need for a prior knowledge of poses. This characteristic of IBVS is particularly advantageous because it avoids the tedious task of pose estimation. Another noteworthy aspect of IBVS is its eye-in-hand configuration, a configuration that mirrors the existing setup on the Canadarm2 (Chang and Evans, 2009). This setup is compatible with the operational requirements of capturing satellites, where the capturing device must adjust its position and orientation in real-time based on the visual input from the target satellite. Furthermore, IBVS has been acknowledged for its robust performance in unstructured environments (Ahlin et al., 2016). The unpredictable and dynamically changing nature of space, with no structured environment, requires a flexible and adaptive approach such as IBVS. For instance, Shi et al. (2012) proposed a visual servoing approach (switching between IBVS and position-based visual servoing (PBVS)) for a space robot to capture a cooperative target. However, this approach is limited by its requirement for binocular vision, which makes it unsuitable for the Canadarm2 equipped with one camera. In addition, the low frame rate of four frames per second (FPS) presented in their work may reduce the accuracy required for successful target tracking.
In IBVS, the selection of an effective set of image features [image: A dollar sign enclosed in parentheses, typically used in financial documents to denote a negative value or loss.] is vital for controlling the motions in robot’s degrees of freedoms (DOF). Image features correspond to the projection of a physical feature of some object onto the camera image plane (Corke et al., 1996). The relationship between the change of a set of image features over time [image: Mathematical expression showing a vector notation: \( \mathbf{s}^{(k \times 1)} \).] and the camera velocity [image: Mathematical notation showing a vector \( \mathbf{v}_c \) with dimensions \( 6 \times 1 \).] is given by Equation 1 (Chaumette and Hutchinson, 2006):
[image: Mathematical expression showing x equals sum of L and V sub x. There is a reference number one in parentheses on the right.]
The matrix [image: It seems there was an issue with uploading the image. Please try uploading the image again or provide a URL. You can also add a caption for additional context.] of dimensions [image: Mathematical expression showing the real coordinate space denoted by the symbol R, raised to the k by six dimensional power.] is referred to as the interaction matrix associated with the feature vector [image: A large, black letter "s" is centered on a white background, with a shadow effect that gives it a three-dimensional appearance.] (Chaumette and Hutchinson, 2006).
The commonly used image features are the coordinates of points, straight lines or ellipses in the image plane. However, they are restricted to a limited set of objects (Khiabani et al., 2019), and they may easily get out of the field of view (FOV) during servoing, and losing any of the features would cause a failure in the visual servoing. To tackle these issues, several researchers have proposed to use image moments derived from the regions of the image (Huang et al., 2022; Shaw et al., 2016; Li et al., 2015; Zhou et al., 2021), allowing for the representation of arbitrary object shapes (He et al., 2019). It is worth noting that an ideal image feature would associate uniquely with the motion in a single DOF, leading to minimal interference among the motions in other DOFs. In other terms, the interaction matrix derived from the ideal image features will be an identity matrix (He et al., 2019).
Nevertheless, as highlighted in both Tahri and Chaumette (2005) and Chaumette (2004), it is challenging to achieve an ideal interaction matrix (identity matrix) due to inherent nonlinearities in Equation 3. To solve this problem, researchers have sought two kinds of image features to achieve decoupling among the 6 DOFs, (i) Analytical function-based image features (Huang et al., 2022; Wu et al., 2018; Liu et al., 2009) and (ii) Data-driven features (Quaccia et al., 2024; Zhou et al., 2021; Zhao et al., 2012).
In the analytical function-based image features, the objective is to create an analytical function corresponding to a motion in specific DOF. These analytical functions are derived from image moments and are ideally invariant to other DOFs, so they can accurately represent their corresponding specific motion. The pioneering work in this area by Chaumette (2004) presented an analytical basis for image feature functions. Chaumette’s approach used the object’s centroid to infer [image: Please upload the image or provide a URL for me to generate the alternate text.] and [image: It looks like there might have been an error in your input. Please upload the image and I'll help you with the alternate text.] positions, its area for depth [image: Please upload the image or provide a URL to receive alternate text.], two innovative functions for [image: Please upload the image or provide a URL so I can generate the alt text for you.] and [image: It seems there was an error with uploading the image. Please try uploading the image file again, or provide a description or context if you need assistance.] based on Hu’s invariants (Hu, 1962), and the object’s orientation for [image: It seems like there's an issue displaying the image. Please upload the image file or provide a URL to the image, and I will help you create the alternate text.]. However, the proposed set of image features, while corresponding the movement in a single degree of freedom of the end effector, unintentionally produced unnecessary movements in other degrees, which is referred to as coupling. For example, the image moments within [image: Please upload the image or provide a URL so I can create appropriate alt text for you.] and [image: You can upload the image or provide a URL for the image you want described. If you have a caption or additional context, that can also be helpful.] DOFs suffered from intrinsic coupling, resulting in an ineffective control in practice. Furthermore, the proposed orientation features were shape-dependent ([image: Please upload the image or provide a URL so I can help create the alternate text for it.] and [image: Please upload the image or provide a URL so I can assist you in creating alternate text for it.] for symmetric and [image: I can't view images directly. If you upload the image or provide a description, I can help create alt text for it.] and [image: It seems there is an issue with the image upload. Please try uploading the image again, and I can help with the alt text.] for asymmetric objects), which limits the generalizability of this approach.
Subsequent studies have attempted to resolve these couplings. For instance, Tahri and Chaumette (2005) used normalization techniques to mitigate the coupling effects within the translational DOFs. However, fully decoupled features remained unattainable. In the search for shape-independent rotational features, Tamtsia et al. (2013) proposed the features based on shifted moments with invariant properties for both symmetric and asymmetric objects. Although their approach was robust to some extent, it did not fully solve the decoupling problem between [image: Please upload the image or provide a URL so I can create the alt text for you.] and [image: If you upload the image or provide a URL, I can help create the alt text for it.].
The research work by Liu et al. (2009) further decoupled the problematic rotational features and performed well in practice but lacked generalizability as it distinctively proposed separate features for small and large objects. Recent studies, including those by Huang et al. (2022), Khiabani et al. (2019), and He et al. (2019), have continued using the analytical image feature functions. Nonetheless, despite their applicability, the challenge of complete decoupling remains unsolved. Furthermore, these improved features are subject to limitations when confronted with a variety of object sizes and shapes.
Leveraging the machine learning techniques and the universal approximation capabilities of neural networks, several studies proposed data-driven features. Machine learning methods such as support vector machine (SVM) is proposed by Li et al. (2015) to learn the mapping model from four moment invariants to two virtual moments in order to decouple [image: It seems there was an issue with displaying the image. Please try uploading the image file or providing a URL so I can assist you with the alt text.] and [image: It seems there's an issue with the image upload process. Please try uploading the image again, ensuring it is a supported file type. If you have any specific context or details about the image, feel free to share them.] motions.
In addition, Neural Network (NN)-based methods have demonstrated promising results in this area. Zhao et al. (2012) and Zhou et al. (2021) proposed a method using shallow neural networks to identify two rotational decoupled image features about the x and y-axes ([image: Please upload the image you would like me to describe or provide a URL, and I will help create the alt text.] and [image: Please provide the image or a URL to it, and I can help create the alt text for you.]). However, the method’s sole reliance on these two features resulted in an incomplete decoupling, leaving non-zero elements in the interaction matrices of other degrees of freedom (DOFs). This lack of decoupling potentially introduces undesirable rotational velocities, [image: Lowercase Greek letter nu followed by subscript lowercase Greek letter beta.] and [image: It seems there's an issue with the image you're trying to share. Please upload the image file directly or provide a URL to it, and I'll help generate alt text for you.], which affects the control in these axes. In addition, the study’s data set was severely limited, consisting of only a narrow set of data points from a fixed position. This lack of diversity undermines the model’s applicability across the manipulator’s workspace, limiting its effectiveness beyond the specific training conditions. Furthermore, Liu and Li (2019) designed a convolution neural network (CNN) to estimate parameters such as [image: Please upload the image you'd like me to provide alternative text for, and I will help you with that.], [image: It seems there was an error in retrieving the image. Please upload the image file or provide a URL to it so I can help create the alt text.], [image: I'm sorry, I can't view images directly. Please upload the image using the image upload feature, and I'd be happy to provide alt text for it.], and [image: Please upload the image or provide a URL so I can create the alt text for it.] directly from images. Nevertheless, it encounters a significant challenge in terms of computing complexity. The computational intensity required to compute the output significantly slows the processing per control loop. This delay could potentially result in a longer sampling time, which may introduce sluggish control response, and hence decrease the precision and effectiveness of the robot manipulation.
This study proposes a set of decoupled image features specifically tailored to the unique geometry of the targeting pin used in satellite capturing. By achieving a near-diagonal interaction matrix, we aim to minimize the coupling effects, enhancing the accuracy and efficiency of the target tracking. This decoupling is crucial for smooth and precise operations, reducing the risk of errors and improving overall system performance.
Our chosen method to identify and optimize these decoupled features involves Deep Neural Network (DNN) training. DNNs offer a sophisticated approach to model complex relationships and patterns, making them ideal for extracting and refining the necessary image features for effective visual servoing. Through extensive training and optimization, we aim to develop a robust DNN model capable of estimating the pose of the robot for the closed-loop visual servoing. The experimental results on a Denso robot show that the developed DNN-based visual servoing can accurately guide the manipulator to track the targeting pin in real-time. The developed method is expected to enhance the precision, safety, and efficiency of space operations on the ISS.
This paper presents our research on DNN-based visual servoing for satellite target tracking. Sections 2.1–2.4 explore the core of our method, detailing image feature definition, hyperparameter tuning, and the architecture of the DNN model. Section 2.5 describes the generation of a comprehensive dataset, which is essential for training the DNN model. Sections 3, 4 present a series of practical tests and validations that demonstrate the effectiveness of our approach. The paper concludes with Section 5, which summarizes our findings, their significance for space robotics, and potential directions for future research.
2 MATERIALS AND METHODS
2.1 DNN-based visual servoing
The choice of the set of visual features for decoupling the 6 DOF motion has been a well-known challenge in visual servoing. The commonly used point features introduce a non-diagonal interaction matrix which usually contains the terms that involve the depth of the point (Z), the image coordinate (x, y), and partial derivatives of the projection equations. Using the appropriate combination of image moments to estimate the pose may result in good decoupling and linearizing properties. The power of a deep learning-based approach is leveraged to propose a set of image features based on various image moments that are almost perfectly decoupled for the specific geometry of the targeting pin (see Figure 1). This section starts with the feature definition and estimation approach and proceeds to the detailed architecture of the proposed DNN model and fine-tuning the hyperparameters of the model.
2.2 Image feature definition
Consider a 6-DOF manipulator with a camera installed on its end-effector. The target object is assumed to be stationary with respect to the robot’s reference frame. We choose the different combinations of image moments as the input to the DNN model to estimate the pose. The set of image features of the target object is represented as Equation 2:
[image: Matrix equation showing a vector \( \mathbf{s} \) with elements: \( c_x x \), \( c_y y \), \( c_z z \), \( c_\beta \beta \), \( c_\gamma \gamma \), and \( c_\alpha \alpha \), labeled as equation (2).]
where [image: Certainly! Please upload the image or provide a URL so I can help create the alt text for it.], [image: Please upload the image or provide a URL, and I will help you create the alternate text for it.], [image: It seems there was an issue with the image upload. Please try uploading the image again, or provide more details if there's a specific context you'd like described.], [image: Please provide the image or a URL to it, and I'll be happy to help with the alt text.], [image: Certainly! Please upload the image or provide a URL for it, and I will create the alt text for you.], and [image: It seems there's an issue with the image upload or URL. Please try uploading the image again or provide a valid URL. If you have any additional context or caption for the image, feel free to include it.] are realized through DNN models. When we take the derivative of the above feature with respect to time, we would like to obtain a diagonal interaction matrix [image: Please upload the image, and I will help you create the alternative text for it.] which relates the set of image features to the velocity vector [image: Please provide the image or a URL to generate the alt text. If you have any specific details or context, feel free to include that as well.]:
[image: Mathematical equation showing X equals L multiplied by V subscript zero.]
where [image: Please provide an image file or URL so that I can generate the appropriate alt text for it.] and [image: It seems like there was an error or misunderstanding in your request. Please upload the image or provide a URL, and I will help create alt text for it.] are defined in Equation 4:
[image: Matrix notation for \( I_s \) as a diagonal matrix with elements \( c_x, c_y, c_z, c_p, c_r, c_a \), and vector \( v_c \) as \([ \dot{x}, \dot{y}, \dot{z}, \dot{\phi}, \dot{\theta}, \dot{\psi} ] \).]
It is noticed that Equation 3 is obtained under the conditions that DNN models representing [image: It seems there was an error in displaying the image. Please upload the image or provide a URL to it, and I will help create the alt text.], [image: Please upload the image you'd like me to describe.], [image: Please upload the image or provide a URL so I can generate the alt text for you.], [image: Please upload the image or provide a URL so I can generate the alt text for you.], [image: Please upload the image or provide a URL for me to generate the alt text.], [image: It seems there's an error in your request because an image wasn't provided. Please upload the image or provide a link to it for assistance.] are time invariant and independent from each other, which poses challenge on training DNN to realize. However, under ideal conditions where the camera pose is precisely estimated, the interaction matrix becomes the identity matrix (see Equation 5).
[image: Equation showing \( L = L_0 (1 + \frac{\alpha \Delta T}{5} ) \).]
Deep neural networks (DNNs) prove to be a robust approach for this type of estimation. In this study, the proposed network’s input is a set of moments, central moments, and a few engineered features and the output aims to predict the camera’s six-dimensional (6D) pose. Its specific architecture will be discussed in the next subsection.
2.3 Architecture
The DNN-based visual servoing approach has an architecture designed to estimate the camera’s pose effectively with respect to the targeting pin. Designing an optimal DNN architecture is an iterative process that requires extensive evaluations in different scenarios to identify the architecture that best solves the problem. The initial network used an architecture with shared neurons to estimate both the rotational and translational poses of the camera. However, experimental results showed that the complexity of translational poses required a deeper network, while rotational poses could be successfully obtained from a shallower network. It is worth noting that experimenting with deeper networks resulted in overfitting during training for rotational poses.
Translational and orientational poses differ fundamentally, requiring unique approaches for their accurate estimation. Thus, we proposed an architecture in which the initial two layers are shared for rotational and translational DOFs, while the subsequent layers operate in parallel. For translational elements [image: Mathematical expression displaying coordinates labeled as \(x\), \(y\), and \(z\).], this network consists of six hidden layers, with node distributions of 80, 224, 112, 64, 80, and 176. For the rotational elements [image: Mathematical expression with Greek letters: beta, gamma, alpha, enclosed in parentheses.], four hidden layers are employed with distributions of 80, 224, 128, and 80 nodes. Figure 2 illustrates the proposed architecture.
[image: Diagram of a neural network with input, shared, parallel, and output layers. Input layer has five neurons feeding into two shared layers. From there, connections split into two parallel paths with distinct numbers of neurons, converging into an output layer.]FIGURE 2 | DNN architecture for camera pose estimation from image moments.
The model’s input includes the image moments up to the third order [image: A mathematical notation representing a set of image moments:  \( \{ \mu_{00}, m_{10}, m_{01}, \mu_{11}, \mu_{20}, \mu_{02}, \mu_{21}, \mu_{12}, \mu_{30}, \mu_{03} \} \).] and five additional engineered features. These engineered features encompass four invariants [image: It seems there's no image visible in your message. Please upload the image or provide a URL so I can generate the alternate text for you.], derived from moment invariants as suggested by Tahri and Chaumette (2005), and [image: Please upload the image or provide a URL to it so I can create the alt text for you.]. These engineered features enhance the rotational degrees of freedom estimations, due to the invariance of [image: The text shows three variables in subscript format: \( c_1, c_2, c_3 \).], and [image: If you have an image you'd like described, please upload it or provide a URL, and I'll create the alt text for you.] to 2D translation and 2D rotation, as well as the correlation between [image: It seems there's an issue with the image upload or link. Please try uploading the image again or provide a URL.] [image: \(\alpha = \frac{1}{2} \arctan\left(\frac{2\mu_{11}}{\mu_{20} - \mu_{02}}\right)\)] and the [image: The character "R sub z" is displayed in a serif font style.] component.[image: Please upload the image or provide a URL so I can generate the appropriate alt text for you.] through [image: It seems like there was an issue with the image upload. Please try uploading the image again or provide the URL. Additionally, you can add a caption for context if you'd like.] are defined in Equation 6:
[image: Mathematical equations for seven intensity values (\(I_1\) to \(I_7\)) and four central moments (\(c_1\) to \(c_4\)). The equations involve variables such as \(\mu_{ij}\), with operations including addition, subtraction, and squaring. The central moments (\(c_1\) to \(c_4\)) are defined as ratios of the intensity values.]
By employing this architecture, we aim to achieve high accuracy in both translational and rotational pose predictions.
2.4 Hyperparameter tuning
In the search for optimal model performance, we explored several hyperparameters:
	[image: A black circle with a smooth, blurred texture against a white background.] Activation Functions: These are mathematical expressions that determine the output of a node in our network. We considered various options, including ‘Relu’, ‘Leaky Relu’, ‘Tanh’, and ‘Sigmoid’.
	[image: A simple, solid black circle with no additional features or details.] Batch Size: This refers to the number of training examples used in one iteration. We explored a range from 32 to 512.
	[image: A black circle on a white background.] Learning Rate: This hyperparameter determines the step size at each iteration while moving towards a minimum of the loss function. We considered values of [image: The mathematical expression shows ten raised to the power of negative two.], [image: Mathematical expression showing ten raised to the power of negative three.], and [image: The image shows the mathematical expression ten raised to the power of negative four.].
	[image: Black circle on a white background, resembling a solid-filled circle with soft edges.] Optimizers: These are algorithms or methods used to adjust model parameters to minimize the model error. We looked into two options: Adam and Adamw (Adam weight decay).

Given the vast hyperparameter space, an efficient strategy of Random Search was used to circumvent the computational cost associated with exhaustively exploring every combination. Random Search samples a fixed number of hyperparameter combinations from the total pool to balance computational efficiency and the broadness of exploration, and increase the probability of finding a near-optimal set of hyperparameters.
Table 1 summarizes the hyperparameter values that were found to be most effective, and were used to initialize the training.
TABLE 1 | Optimal hyperparameter values from random search.
[image: Table displaying hyperparameters and their optimal values: Activation Function is ReLU, Batch Size is five hundred twelve, Learning Rate is one times ten to the power of negative three, and Optimizer is Adam.]2.5 Data set generation
In a supervised approach, training is the most critical part, and to fully unleash the power of the deep learning model, we need a high-quality training dataset. To this end, we created a dataset which consists of both synthetic and real-world images from the targeting pin. For generating the synthetic data, we used RoboDK, a sophisticated offline programming and simulation platform designed specifically for robotics applications. This section presents a novel approach that overcomes a significant limitation in the data generation process that ensures the targeting pin remains in the image plane when random positions are assigned to the camera. As depicted in Figure 3, the simulation setup consisted of a Denso manipulator equipped with a camera mimicking the properties of our real-world setup.
[image: A digital simulation shows a robotic arm positioned above a slatted table surface. The arm is rendered in a virtual modeling environment, highlighting axes and movement capabilities. The interface displays various tool icons at the top.]FIGURE 3 | RoboDK environment including the Denso robot, the camera, and the targeting pin.
In this approach, the goal is to randomly assign values to all 6 DOFs with the constraint that the object is in the image plane. Considering this constraint, first, the x, y, and z coordinates of the camera (mounted on the end effector) were randomly generated within the working range of the manipulator. Next, to generate the orientational DOFs randomly, the camera is supposed to initially have the object at the center of the image plane. This pose was computed using a “Look at” function. The “Look at” function is typically designed to orient the camera towards a specific point (object’s centroid in our case) in the environment.
This function starts by defining a source point (camera) and a target point (object), along with initial vectors for up (U), front (F), and right (V). V, U and F are initially considered as the unit vectors pointing in the positive x, y and z-axes, respectively (see Equation 7).
[image: Matrices are defined as follows: V is two by two with elements: first row [1, 0], second row [0, 0]. U is two by two with elements: first row [0, 1], second row [0, 0]. F is two by two with elements: first row [0, 0], second row [0, 1].]
The first step is to calculate the new front vector [image: Please upload the image or provide a URL so I can help you create appropriate alt text.], which points from the source to the target. This vector is obtained by subtracting the source position [image: A mathematical expression showing a variable \((x_c)\) enclosed in parentheses.] from the target position [image: Mathematical expression showing "x subscript o" surrounded by parentheses.] and normalizing the resulting vector (Equation 8):
[image: Equation labeled number eight shows \( F' = \frac{x_{0} - x_{t}}{|x_{f} - x_{l}|} \).]
Next, we calculate the new up vector [image: To provide alt text, please upload the image or provide its URL. If you have additional context, feel free to include it.]. We start by subtracting the projection of U onto [image: It seems like there's an issue with the image upload or link. Please try uploading the image again, ensuring that it's attached or linked correctly.] from U and then normalize it (Equation 9):
[image: The image shows a mathematical equation: U prime equals the vector U minus the dot product of U and F times the vector F, all divided by the norm of U minus the dot product of U and F times F, with the equation labeled (9).]
In case the resulting vector has zero magnitude, we default [image: If you upload an image or provide a URL, I can help create the alt text for it.] to be the same as the original front vector [image: Please upload the image you'd like me to describe.] [image: Mathematical expression showing \( \textbf{U}' = \textbf{F} \).].
The third axis, [image: It seems like you've included a symbol, not an image. To generate alt text, please upload an image or provide more context.], is calculated as the cross product of [image: It seems like there was an issue with your image upload. Please try uploading the image again, or provide a description along with a URL if possible.] and [image: It seems there is no image attached. Please upload the image or provide a URL for the image you would like me to describe.] (Equation 10):
[image: It seems you tried to include an image, but it is not visible. Please upload the image or provide a link to it so I can help create the alternate text.]
These new basis vectors ([image: Please upload the image or provide a URL for me to generate the alt text.], [image: Uppercase letter "U" with a prime symbol (apostrophe) indicating a derivative or modified version.], [image: The image shows the mathematical notation \( F' \), representing the derivative of the function \( F \) with respect to its variable.]) form the rotation matrix for the new camera pose (Equation 11):
[image: Equation showing \( \mathbf{R}_B \) as a matrix product of \(\begin{bmatrix} V' \\ U' \\ F' \end{bmatrix}\), labeled as equation (11).]
Finally, the pose of the camera is represented as a [image: Please upload the image or provide a link to it, and I will be happy to help you generate alt text for it.] transformation matrix (Equation 12):
[image: Matrix equation depicting \( \mathbf{P}_{c} \) defined as a four-by-four matrix. The top left is a three-by-three matrix \( ^{c}\mathbf{R}_{o} \), top right is a three-by-one vector \( \mathbf{x}_{c} \), bottom left is a one-by-three zero vector, and bottom right is the number one.]
Next, to randomly generate rotational DOFs, we first rotate the camera about its optical axis within a predefined range. Rotating about the optical center will not result in losing the object from the image plane. Then we determine the rotation bounds for the camera about its x and y-axes, based on the distance of the camera from the object. We can obtain the rotation limits by performing linear interpolation between the predefined bounds at two known distances, ensuring that the object remains in the image plane. Consequently, the camera was rotated around its x and y-axes for a random value within these limits. Table 2 includes the boundaries used for the pose parameters.
TABLE 2 | Ranges of the pose parameters ([image: Text reading "Limit" with a subscript beta symbol (β).] and [image: Mathematical expression reading "Limit as y approaches infinity."] are determined by linear interpolation).
[image: Table showing parameters with their minimum and maximum values. X: 207.5 mm to 407.5 mm. Y: -150 mm to 150 mm. Z: 150 mm to 500 mm. Beta (β): -Limit to Limit. Gamma (γ): -Limit to Limit. Alpha (α): 45° to 135°.]The dataset includes the entries for the calculated image moments and central moments of the captured image, while the corresponding camera pose is collected as the label. Initially, in the simulated environment, 434,528 random poses were generated within the ranges of Table 2, sequentially commanded to the Denso manipulator. At each pose, an image was captured by the mounted camera and processed into a binary representation, and the moments and central moments were then computed.
In addition to the synthetic data, we also captured real data to enrich the data set and enhance the robustness of our model in real-world scenarios. To realize this, we used a similar approach to generate random camera poses. However, due to the slower operational tempo of the physical setup compared to the simulator, we recorded data during the motion of the end effector from one random pose to another. However, to ensure that only valid data is captured, it is necessary to apply constraints that exclude images that do not fully capture the targeting pin. As a result, to ensure the presence of the object, the data points were only recorded when a single contour larger than 500 pixels was detected in the image and when the bounding box of the target pin was at least 10 pixels away from the image borders. This cautious approach resulted in 1912 distinct poses commanded to the Denso robot, yielding a total of 198,588 valid real-world data points (including data points captured during the camera movement from one random pose to the other).
To provide a visual representation of how the data set is created, two videos were prepared to show the process in action. The first video demonstrates the simulation environment data generation, accessible at this link, while the second video shows the real environment data generation, available at this link.
The final data set was carefully split, with all synthetic and half of the real data allocated for training. The remaining real data was evenly divided between the validation and test sets (Figure 4). This approach originated from our experimental findings that relying only on either synthetic or real data reduced the performance on the test set, likely due to the real environment’s noise and lighting conditions and the limited diversity of poses in the real data. As a result of combining both data sources, we were able to achieve a balance that captured both the complexity of real-world scenarios and provided enough variability for robust model training.
[image: A ring chart depicts data distribution: synthetic data (gray) constitutes 434,528 units, real data (light gray) is 198,588 units. An inner ring in yellow for training data and dark gray indicates validation and test data.]FIGURE 4 | Distribution of synthetic and real data used for training, validation, and testing.
3 RESULTS
First, in Section 3.1, we introduce the experimental setup mimicking the satellite target tracking in the space. Section 3.2 presents the initial performance evaluation of our trained DNN model for pose estimation. In Section 3.3 we explore the computation of the interaction matrix and present experimental results on target tracking with different initial poses.
3.1 Experimental setup
Similar to the setup in our simulations (see Figure 3), our experimental layout includes a 6-DOF Denso robotic manipulator, an Intel RealSense D415 RGB camera for high-quality image capture, and a green 3D-printed targeting pin that mimics the ISS’s guiding markers, as illustrated in Figure 5.
[image: A robotic arm labeled "Denso" is placed on a wooden table. In the background, there is a camera or sensor mounted on a tripod.]FIGURE 5 | Experimental setup within the real environment.
3.2 Training results
The DNN model, as described in Section 2.3, was trained for 1,000 epochs, where the loss value eventually plateaued, indicating an optimal learning point. To determine the pose estimation accuracy of the model, we used the Mean Absolute Error (MAE) along with a Scaled MAE metric customized for our multi-output scenario. The scaled MAE was necessary due to the different units and magnitudes of the outputs (translational values in millimeters and rotational values in degrees). To compute it, we first normalized each output’s MAE by its range from Table 3, ensuring uniform error scaling across all outputs.
TABLE 3 | Ranges for output elements of the dataset.
[image: Table displaying minimum, maximum, and range values for elements x, y, z in millimeters, and angles beta, gamma, alpha in degrees. Minimum x is 157.5, y is -150, z is 150, beta is 129.91, gamma is -55.03, alpha is -117.36. Maximum x is 411.54, y is 150, z is 500, beta is 240.5, gamma is 56.65, alpha is 129.11. Range x is 254.04, y is 300, z is 350, beta is 110.59, gamma is 111.68, alpha is 246.47.]The ‘best’ model was selected based on its performance on the validation set. Table 4 presents the MAE data for this model, offering insights into its translational and rotational pose accuracy.
TABLE 4 | Final model’s mean absolute error data.
[image: Table displaying Mean Absolute Error (MAE) data for elements \( x \), \( y \), \( z \), \( \beta \), \( \gamma \), and \( \alpha \). MAE values are in millimeters or degrees. Average MAE for \( y \) is 5.82 mm and for \( \gamma \) is 1.37 degrees. Scaled MAE values and average scaled MAE of \( 1.54 \times 10^{-2} \) are provided.]3.3 Experiments
It is necessary to derive an interaction matrix for the final DNN model. While our initial aim was to derive a diagonal interaction matrix, the practical limitations in achieving zero-error pose estimation necessitated the use of the actual interaction matrix in our experiments. In Equation 3, the [image: It looks like there is no image attached. Please upload the image or provide a link to it, and I can help you with the alt text.] interaction matrix represents how the DNN model’s predicted image features correlate with the manipulator’s the motion in six axes. For every data point in the test set, the model predicted six image features. The elements in the interaction matrix represent the slopes of the linear regression lines, each comparing a predicted image feature against every actual degree of freedom. This approach helps us understand the impact of each actual movement on the predicted features.
[image: Matrix labeled \(L_{\text{PMNN}}\) with values:   \[  \begin{bmatrix}  0.94 & 0.03 & -0.12 & -0.16 & -3.24 & 0.03 \\  0.05 & 0.98 & 0 & -3.57 & -0.12 & -0.22 \\  -0.21 & -0.01 & 0.99 & -0.15 & 0.53 & -0.16 \\  -0.02 & -0.18 & -0.01 & 0.97 & 0.05 & 0.04 \\  -0.14 & 0 & 0.01 & 0.01 & 0.93 & 0 \\  0 & -0.04 & -0.02 & 0.16 & -0.02 & 0.99  \end{bmatrix}  \]  Equation number (13) is on the right.]
As evident from the interaction matrix in Equation 13, the diagonal elements [image: Mathematical notation displaying \( \mathbf{L}^{\text{DNN}}_{s}[i,i] \), which indicates an indexed element of a matrix or tensor related to deep neural networks, where \( i \) represents the index.] (where i ranges from 1 to 6) are very close to 1, while the non-diagonal elements are close to zero, which aligns with our objective. However, the noticeable exceptions are the elements [image: Formula depicting the deep neural network parameter \( L_{s_{DNN}} \) at indices \([1,5]\) equals negative 3.24.] and [image: Mathematical expression showing the subscripted term L_sDNN with indices 2 and 4, equals negative 3.57.]. These values indicate a correlation between the x prediction of the DNN during [image: Mathematical notation displaying the letter "R" with a subscript "y", typically used to denote a variable or function related to a specific context.] movement and the y prediction during [image: Stylized letter "R" with subscript "x" in italic font.] movement. This correlation is understandable, as rotations around the x [image: A mathematical expression consisting of the letter "R" followed by a subscript "x" enclosed in parentheses.] and y [image: Mathematical expression showing the letter "R" in italics with a subscript "Y" enclosed within parentheses.] axes in the manipulator’s frame cause corresponding movements along the y and x-axes in the image plane. Additionally, the elements [image: Mathematical expression showing \( L_{\text{sDNN}}[4,2] = -0.18 \).] and [image: Mathematical expression showing L subscript SDNN with indices five and one equals negative zero point one four.] in the fourth and fifth rows are higher than other non-diagonal elements, emphasizing the ‘x and [image: The image shows the mathematical notation "R subscript y" in italic font.]’ and ‘y and [image: Mathematical notation showing the letter "R" followed by a subscript "x".]’ interconnections in the final DNN model. Improving the DNN’s accuracy in the estimations can further address these interconnections.
We tested the model with five distinct initial poses, ensuring a mix of positive and negative initial errors for each degree of freedom. The chosen initial poses, labelled A through E, are detailed in Table 5.
TABLE 5 | Initial and desired poses.
[image: A table listing poses with coordinates and angles. Columns include x, y, z in millimeters, and β, γ, α in degrees. Rows labeled A through E and Desired, showing varying values. Coordinates range from 257.79 to 368.71 millimeters, and angles from -16.25 to 22.33 degrees.]The block diagram of the DNN-based visual servoing is depicted in Figure 6, where we used a proportional controller and the DNN extracts feature (pose) from the images. For these tests, we adjusted the P controller for each degree of freedom to ensure the manipulator’s end effector converges within 1 cm and 3° to the desired pose. The resulting trajectories for each initial pose are depicted in Figure 7.
[image: Flowchart depicting a dynamic control system. It starts with a target image input to a differential neural network (DNN), which outputs a target pose. This is compared to the current pose to generate an error signal. The error feeds into a proportional controller, producing end-effector velocity. The control signal adjusts the camera, generating a current image that updates the DNN loop. The process continuously refines the system’s output to match the target image.]FIGURE 6 | DNN-based visual servoing block diagram.
[image: 3D graph depicting trajectory comparison of five paths labeled A to E, with distinct colors: red, blue, green, yellow, and cyan. The paths converge at a purple X-mark labeled "Desired Pose" at coordinates (360, 0, 300) millimeters. The axes are labeled X (mm), Y (mm), and Z (mm), ranging from -60 to 400 on different scales.]FIGURE 7 | Trajectory comparison of five different initial poses.
As shown from Figure 7, the end effector follows an almost straight path from its start to the target. However, in practice, as the end effector gets close to the desired pose, we noted minor shakiness in its movement. This is caused by small oscillations in the pose estimates, which are the outputs of the neural network.
4 DISCUSSION
To validate the proposed features derived from the DNN method, some comparisons were made with a prominent set of features in the literature. This set consists of Tahri and Chaumette (2005)’s features, which are the centroid coordinates [image: It seems like there was an error in uploading the image. Please try uploading the file again, and feel free to add any additional context or description you might have for it.] and [image: Mathematical notation showing the variable \( y \) with a subscript \( g \).], the area [image: It seems there is no image attached. Please upload the image or provide a URL, and I will help you with the alt text.], and the rotation [image: Please upload the image for me to provide an alternate text description.]. Additionaly, for rotations about the x and y-axes, Liu et al. (2009)’s features ([image: Please upload the image or provide a URL so I can help you create the alt text.] and [image: It looks like there is an error with the image link. Please upload the image directly or provide a correct URL so I can help with the alt text.] as described in Equation 14) are used. From now on, the combination of these features is referred to as the Liu method [image: A mathematical expression in parentheses displays variables: \( x_g, y_g, a, s_x, s_y, \alpha \).].
[image: Mathematical equation featuring parameters for calculating image moments: \(x_s = \frac{m_{10}}{m_{00}}\), \(y_s = \frac{m_{01}}{m_{00}}\), \(a = m_{00}\). Standard deviations \(s_x = 0.1 - (c_1 c_2 + s_1 s_2)/I_3^{9/4}\), \(s_y = (s_1 c_2 - c_1 s_2)/I_3^{9/4}\), and rotation angle \(\alpha = \frac{1}{2} \arctan{\left( \frac{2\mu_{11}}{\mu_{20} - \mu_{02}} \right)}\).]
where [image: The image shows the mathematical notation "m" with subscripts "i" and "j".] and [image: The image shows a mathematical expression: the Greek letter "mu" with subscript "p q".] are moments of order [image: A mathematical expression displaying "i plus j" in a stylized font.] and central moments of order [image: Arithmetic expression showing the sum of variables \( p \) and \( q \).], respectively. Also, c1, c2, s1, and s2 are defined in Equation 15:
[image: Bracketed mathematical expressions show four equations: \(c_1 = \mu_{20} - \mu_{02}\), \(c_2 = \mu_{03} - 3\mu_{21}\), \(s_1 = 2\mu_{11}\), \(s_2 = \mu_{30} - 3\mu_{12}\), labeled as equation (15).]
The Liu method’s features have the units of [image: A mathematical expression shows a list of six elements: \(px, px, px^2, px^{\frac{10}{9}}, px^{\frac{10}{9}}\), and \(rad\).]. In contrast, the DNN method’s features, which represent pose [image: Six lowercase letters and symbols in parentheses, representing a list: x, y, z, beta, gamma, and alpha.], have units of [image: I'm unable to view the image you mentioned. Please try uploading it again, or provide a description or context for me to help you create the alt text.]. Because of these unit differences, each method needs its own set of controller gains. To ensure a fair comparison, the P controllers were carefully adjusted for each method, aiming for convergence within 1 cm for translational movements and 3° for rotational ones. The tuned gains of P controllers can be seen in Table 6.
TABLE 6 | Tuned P controllers for the DNN and Liu methods.
[image: Table comparing controller gains for two methods: DNN and Liu. For DNN: Kx is 0.09, Ky is 0.09, Kz is 0.12, Kβ is 0.003, Ky is 0.003, and Kα is 0.003. For Liu: Kx is 0.9, Ky is 0.9, Kz is 150, Kβ is 30, Ky is 60, and Kα is 0.3.]Running the methods for 100 s under different initial poses yielded similar results. Therefore, to illustrate the comparison, we present the results for initial pose C (as outlined in Table 5) as an example. Figure 8A shows the trajectory plot, comparing the end-effector path for both the Liu and DNN methods from initial pose C. The plots clearly show that the DNN method achieves a direct and efficient trajectory from the starting pose to the target. In contrast, the Liu method resulted in a curved, less efficient path. It is important to highlight that the Liu method operates on feature error, not pose error. As a result, in certain experiments, the end effector stopped close to the desired pose due to minimal feature differences between images. However, the DNN method almost consistently identified these differences, ending up at the correct pose.
[image: Figure A shows a 3D trajectory comparison with red, green, and blue paths indicating NN, initial pose, and desired pose, respectively. Figures B and C are graphs titled "Pose Error Over Time", displaying translational and rotational errors with decreasing trends over 100 seconds, depicted in various colors.]FIGURE 8 | Analysis of DNN and Liu Methods for initial pose C (A) Trajectory comparison. (B) DNN method’s pose error over time. (C) Liu method’s pose error over time.
Figures 8B, C show the pose error of the DNN and Liu methods over time, respectively. A closer look at these plots reveals that the DNN method has a faster response with less overshoot, which is desirable for our application.
While Figure 8 shows improvements in the performance, it does not provide the quantitative details needed for a comprehensive analysis. Thus, we use three metrics: RMS (Root Mean Square), Max (Maximum value), and STD (Standard Deviation).
	[image: Sorry, I cannot provide a description of this image.] RMS: This metric measures the overall oscillation intensity, whether in terms of pose error or velocity. A high RMS value in the pose error indicates deviations from the desired pose, and when observed in velocity, it points to speed fluctuations.
	[image: A simple black circle against a white background.] Max: Serving as a measure for extremes, the Max metric identifies the largest positional deviation or the most significant speed variation.
	[image: A black circular shape with no additional details or features visible.] STD: It shows the variability of the pose error or velocity around its mean value. High STD values emphasize inconsistencies.

For an organized overview, Table 7 lists these metrics over the same experiments with initial pose C (as outlined in Table 5).
TABLE 7 | Metrics comparison for Initial Pose C.
[image: Table comparing pose error and velocity metrics for methods Liu and DNN across elements \(x\), \(y\), \(z\), \(\beta\), \(\gamma\), and \(\alpha\). Metrics include RMS, Max, and STD. RMS values for pose error in \(x\) are 16.156 (Liu) and 17.234 (DNN); in \(y\), 34.253 (Liu) and 16.534 (DNN). Velocity RMS in \(x\) is 3.666 (Liu) and 1.740 (DNN). Max and STD values are listed for each element and method.]From the detailed analysis of Table 7, it is evident that the DNN method’s performance significantly improved for most of the degrees of freedom. The consistently lower RMS, Max, and STD values indicate a more stable and predictable performance. However, there are notable exceptions in the [image: Please upload the image you would like me to describe.] and [image: Please provide the image by uploading it or sharing a URL, and I will assist you with creating the alternate text.] poses where the DNN method shows a marginally worse performance. Interestingly, when we focus on velocity, the DNN method compensates for both of the aforementioned pose errors. For velocities, it is worth noting that the DNN method’s performance metrics for the [image: It seems there's no image attached. Please upload the image or provide a URL, and I will help create the alt text for you.] and [image: Please upload an image or provide a URL so I can create the alt text for you.] directions are higher, indicating a more variable or unpredictable movement.
To better compare the performance of the methods and to evaluate the improvement of the DNN method, the average RMS values for pose error and velocity are presented in Table 8. It is evident that the Deep Neural Network (DNN) method substantially outperforms the Liu method in several key aspects. The DNN method reduced the average RMS values for translational pose error and velocity by over 47%, demonstrating a robust capability in improving the system’s responsiveness and accuracy. Despite these gains, the DNN method shows a smaller improvement of 13.85% in rotational pose error and a slight decrease in performance for rotational velocities. This small decrease is on the order of [image: It seems you're having trouble uploading an image. Please try uploading the image again or provide a URL. You can also include a caption for context if you'd like.], which makes it negligible.
TABLE 8 | comparison of average RMS values and improvements in translational and rotational DOFs for pose error and velocity.
[image: Table comparing performance metrics between Liu and DNN methods across different categories. For Pose Error, Translational (mm) shows 26.075 for Liu, 12.980 for DNN, with a 50.22% improvement, and 13.85% for Rotational (deg). For Velocity, Translational (mm/s) shows 2.473 for Liu, 1.294 for DNN, with a 47.69% improvement. Rotational (deg/s) shows 7.67 x 10⁻³ for Liu, 8 x 10⁻³ for DNN, with a -4.35% decline. Average improvement is 32.04% for Pose Error and 21.67% for Velocity.]The DNN-based visual servoing method’s adaptability to unanticipated scenarios is demonstrated in this video, showing the manipulator’s response when the targeting pin is arbitrarily re-positioned in the workspace. The video highlights the system’s capability to efficiently track the targeting pin, ensuring it remains centered and parallel in the camera’s view within a short amount of time.
5 CONCLUSION
This research addresses the challenge of coupling in visual servoing to autonomously track the targeting pin on servicing satellites using a robotic manipulator. In this paper, we presented a novel deep learning-based visual servoing approach that uses image moments to precisely estimate the camera’s pose to achieve decoupled image features. The main contributions and conclusions of this research are as follows:
	[image: A circular band of colorful triangular segments in a radial pattern, creating a kaleidoscopic effect with a black center. The colors blend smoothly, showcasing a gradient from warm to cool tones.] Development of DNN-based Visual Servoing: A parallelized DNN architecture for estimating the camera’s pose is meticulously designed. These pose elements are treated as a novel set of decoupled image features, offering a nearly diagonal interaction matrix.
	[image: A detailed world map showing various countries outlined with labeled names and capitals. Major geographical features such as rivers, mountains, and oceans are depicted, providing a comprehensive view of global geography.] Data set generation: We have implemented a data generation strategy that combines synthetic and real data. While 6D poses were randomly generated, an innovative strategy ensures that the object remains in the image. This comprehensive training dataset covers a broad spectrum of scenarios, ensuring the DNN model is well-prepared to handle real-world conditions effectively.
	[image: A blurred, dark, circular shape with a gradient from black to gray, resembling a vignette or lens effect.] Comparative Analysis with Established Techniques: A comprehensive experimental validation of the neural network approach is conducted, demonstrating significant improvements in trajectory, pose accuracy, and velocity of the end effector compared to established visual servoing techniques.

The most important impact of this study is its adaptability for controlling various robotic manipulators in marker-based applications. By using our training procedure for any targeting pin, one can potentially achieve performances outperforming some classical image moment-based visual servoing methods.
6 FUTURE WORKS
The following suggestions can potentially improve the proposed methods’ performance and generalizability:
[image: A blurred, indiscernible image presented in a circular format. No specific details or identifiable elements are visible.] Dataset Enhancement: Creating a dataset that uses the real targeting pin (Figure 1) or ensuring that the dataset’s environment closely resembles space lighting conditions can improve the accuracy of pose predictions.
	[image: A person with long hair wearing a dark hooded cloak is holding a glowing blue orb in their hand. The background is blurred and dark, enhancing the mystical atmosphere. The face of the person is partially obscured by the hood's shadow.] Canadarm2 Kinematics: Investigate the application of the proposed methods by testing or simulating on the Canadarm2 kinematics.
	[image: A solid black circle.] Hyperparameter Refinement: Continuous tuning and experimentation with the network’s architecture and hyperparameters can improve performance.
	[image: Black circle on a white background.] Transfer Learning: Using insights from established pre-trained pose estimation models and adapting them to the current problem might yield better results.
	[image: A black, solid circle against a white background.] Network Ensembling: Aggregating outputs from diverse network architectures can enhance accuracy, as different models might specialize in recognizing distinct features.
	[image: A black circle with no discernible features or details, appearing as a uniform solid shape.] Direct Image Input: Utilizing the image itself (rather than its moments) as the network’s input could provide insights potentially overlooked when solely relying on image moments.
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This paper presents a theoretical inquiry into the domain of secure artificial superintelligence (ASI). The paper introduces an architectural pattern tailored to fulfill friendly alignment criteria. Friendly alignment refers to a failsafe artificial intelligence alignment that lacks supervision while still having a benign effect on humans. The proposed solution is based on a biomimetic approach to emulate the functional aspects of biological consciousness. It establishes “morality” that secures alignment in large systems. The emulated function set is drawn from a cross section of evolutionary and psychiatric frameworks. Furthermore, the paper assesses the architectural potential, practical utility, and limitations of this approach. Notably, the architectural pattern supports straightforward implementation by activating existing foundation models. The models can be underpinned by simple algorithms. Simplicity does not hinder the production of high derivatives, which contribute to alignment strength. The architectural pattern enables the adjustment of alignment strength, enhancing the adaptability and usability of the solution in practical applications.
Keywords: synthetic sentience, artificial sentience, artificial intelligence alignment, friendly alignment, synthetic consciousness, artificial consciousness, alignment architecture, highest derivative order

1 INTRODUCTION
The development of artificial intelligence (AI) models that exhibit human-level performance on various professional and academic benchmarks (Brockman et al., 2023) instills the question: what’s next? Will an intelligence greater than that of humans cheat us all out? The notion that AI does not have any original intentions, including bad intentions, and, therefore, is harmless does not fly far. It is the malignant users, if granted access to an overwhelmingly powerful tool, that we ought to fear the most. Whether the user, the intentionality carrier, is of biological or synthetic nature is a secondary question.
Activities aimed at developing and applying techniques to withstand the malignant use of artificial intelligence will be called AI alignment. Initially, AI alignment focused solely on the pursuit of the AI system’s objectives. AI alignment has aimed to make AI systems behave in line with human intentions (Jiaming et al., 2024), where humans mean individual users. As AIs become ever more powerful, they amplify nefarious user efforts up to the point that the efforts cannot be contained by the law enforcement system. The focus of alignment should be shifted to the entire impact produced by any AI tool. Regardless of whose malicious attribution it is, the outcome should be aligned with humanity, i.e., not a particular user who manipulates the inferences.
A properly aligned AI system should restrict all synthetically generated and human-originated harm. This also implies no longer prioritizing obedience to the user as the in-built machine’s morality would take precedence. Humans can supply moral instructions up to a conceivable complexity. This would enable an artificial general intelligence (AGI). A morality beyond that level, i.e., the morality applicable to artificial superintelligence (ASI), remains a problem. A machine at the ASI level would need to spin out its own value system without human help.
An AI that develops its own objectives but has a benign effect on humans would be called friendly. Its alignment is, therefore, called friendly AI alignment (Bostrom, 2014).
Previous approaches to implementing friendly alignment have favored an extrapolation of human instructions (Christiano et al., 2018; Leike et al., 2018). AI models tend to collapse if trained on excessively extrapolated data (Shumailov et al., 2024). Even the most robust extrapolation algorithm would have limited scalability. We can currently construct a safe ASI, which would optimize no more than an Earth-sized system (Spasokukotskiy, 2024a). The limit resembles the actual human’s dexterity cap in controlling the world’s governing agents. We all know how well it has gone. There is incapacity to detect and enforce an event, which is a point in time to stop. If something works on a small scale, people mind-blindly push the button “scale” until the system breaks. There is no reason to believe that the ASI scalability limit will be treated differently. An overscaled ASI will happen, and it will threaten human existence.
The fact that AI is firmly linked to human instructions is a concerning principle. A historical retrospective hints that crumbling governance is a product of limited human intelligence. The level of intelligence varies over time, just as the size of socioeconomic systems does. The same applies to the released instruction set sophistication. We might want to remove the aberration effects caused by limited and changing human intelligence over time. Artificial superintelligence overtakes human intelligence. ASI alignment should break the dependency on human intelligence and rely exclusively on its own reasoning.
To overcome the issues, we ought to enable an omnipotent AI alignment. First, it would enable overprovisioning so that dynamic input changes would not impact output quality. For that, we ought to establish some protection mechanisms that are capable of holding tight under a multiple of the expected load. It should be capable of supporting huge systems, even if there is no immediate demand for such scale. Second, a completely automatic system that does not rely on a deliberate human input, while remaining user-friendly, would be a viable solution. The fully automatic approach exploits an idea of no-humans-in-the-loop under the premise that a superintelligence is available. This superintelligence will also require a mechanism that is capable of alignment at a great scale. This paper considers a method to implement the idea.
2 PROBLEM
The core of the problem is captured by the first law of cybernetics (Ashby, 1973), which states that, in terms of control theory, the number of controlled state variables should exceed the count of the object’s degrees of freedom (Equation 1). By definition, ASI has a larger count of degrees of freedom than any group of humans could ever manage to control.
[image: Mathematical expression showing z is greater than or equal to delta inside a parenthesis labeled number one.]
where [image: Please upload the image or provide a URL to generate the alt text.] represents the variables and [image: Greek lowercase letter delta, symbolizing change or difference in mathematics and science.] represents the degrees of freedom.
A technical approach is to restrain the excessive degrees of freedom in case the system operator lacks an intelligence to exploit the system’s complexity. The restraining succeeds by dumping the excess power. It certainly leads to subpar performance but keeps the plant facility running. The methods to boost performance, particularly in AI, are generalization and extrapolation.
2.1 Generalization technique
A set of operators can use different restraining options. It triggers output variation. An information system with memory enhances output variability. Therefore, an AI can outgrow person-level supervision by statistically honing a set of instructions.
Regardless of how good the math is, it is still anchored to the instructions (Freund, 2023). The AI remains linked to human-level performance. An attempt to drastically diversify the performance is counterproductive. The less the instructions resemble a common instruction set, the higher the uncertainty and potential for errors in AI results. Therefore, any generalization technique has a tangible applicability limit. An ASI trained by a human-originated instruction set will be no more than a collection of the best AGI examples. Anything more than that will be unsafe.
2.2 Extrapolation technique
An ASI can be trained past any safety threshold. That is, if one accepts erroneous results, there is no limit to system complexity growth. It is feared that an erroneous result could instantiate a skewed value system. It can, for example, trigger the decision to eliminate humans as a pest.
A robust mechanism that can reestablish human values in any foundational model would have resolved the issue. A form of the mechanism is an instruction set generator (Leike et al., 2018). It extrapolates human input. It may use algebra that includes higher derivatives (Spasokukotskiy, 2024b). The higher-order derivatives ensure robustness, while the generated output scales out. Therefore, the extrapolated set remains human-like. The higher-order components act as a protected treasure box that stores system properties. If the system properties are human-anchored values, then the extrapolated value set is bound to them. This technique adds a couple of orders of magnitude to acceptable AI complexity, truly ushering us into the ASI era.
However, the higher-derivative components are not immune to changes. They just require more effort to corrupt. Any treasure box will be eventually cracked. The more often and more significantly an extrapolated set deviates from the human-originated set, the higher the anticipated error (Bohacek and Farid, 2023; Shumailov et al., 2024). Therefore, any extrapolation technique has a tangible applicability limit. An ASI trained by an extrapolated instruction set will be no more than an AGI-approximate system, exceeding AGI metrics but hanging around them in proximity.
2.3 Issue statements
A commonality among the aforementioned techniques is divergent output dynamics. In the desire for more complex and therefore more productive ASI, we ought to produce more diverse instruction sets. As the sets significantly outgrow proven human-originated scopes, the outputs deviate randomly and increasingly away from the acceptable norms.
In contrast, a proper ASI alignment technique should enable convergent output dynamics. The convergent dynamics would produce a palatable result even if the inference is irrational or basic calculations are error-ridden. The convergence feature will enable safe ASI at a scale that significantly exceeds AGI.
Apathetic machines use a decision-making pattern. It is either direct logic, “bad input–bad output,” or inverse logic, “the worse–the better.” Direct logic is applied in the generalization and extrapolation techniques. Inverse logic has not been of interest until now. One maximizes the worst outcomes by prioritizing the first part of the logic expression. It creates an ultimate sadistic device, i.e., no practical use. One universally maximizes the best outcomes by prioritizing the second part of the logic expression, i.e., “the better.” It breaks the first law of thermodynamics. One cannot universally improve a situation for the entire set of known objects under the adversary conditions. To stay in line with the physics, a subset of objects improves the situation if the remaining set of objects balances the change by absorbing the externalities, i.e., assuming a worse situation. A decision-making entity should possess the capability to assign some objects to the beneficiary subset. The assignment functionality deploys some preference functions. It negates the apathetic assumption.
Consequently, an AI must be enactive toward a subset of objects in order to elicit utility through “the worse–the better” logic. “Enactive” is an attribute in the 4EA cognition concept (Kerr and Frasca, 2021). Its meaning neatly maps to targeting some beneficiary subset. In tandem with the attribute “affective,” it produces “passion” for some subset of objects, i.e., the opposite of apathetic.
Inverse logic would be fundamental to novel alignment approaches, including those that utilize convergent dynamics. An approach with convergent dynamics would deliver an acceptable result even if the inference parameters are less than optimal. For example, the underlying algebra may introduce some disturbance, and it will have no impact. The weak algebra technique generally fulfills the idea that the comparatively bad ingredients still produce a good pie. At the same time, the technique embodies the “the worse–the better” logic approach, where “the better” is the objective.
Positive results under inverse logic are due to an emergent product. There must be system dynamics to trigger the emergence (Zheng and Liu, 2021). The impact of emergence compensates for the deficiencies. Adherence to well-minded inferences despite potentially malicious inquiries is the sought-after feature in ASI alignment. The question is how to build a system that can implement the idea.
3 SOLUTION ARCHITECTURE
An ASI-worthy alignment would be remarkably scalable. For that, one might consider abandoning the alignment approaches, which exhibit divergent output dynamics. Divergent dynamics hinder scalability. A scalable alignment can rely on convergent output dynamics instead. A system that converges to a humane result under an adversarial impact, such as processing a random vilanic inference, can excel by applying the pattern of “from the worst to the better.” An algorithm that implements the logic has to treat some objects preferentially.
3.1 Preference functions
Solution architectures with preference functions are controversial. Their opposites—universal functions—have been prevailing. A preference function corrupts decision-making algorithms by contemptuous scripting. The proverbial paperclip AI exemplifies a horror story, where the AI burns the world in an attempt to preference paperclip production. Contemptuous scripting also compromises unit economics. The investment costs have to be absorbed by a lesser user base, making it more expensive for a single user. In contrast, universal algorithms are scalable and profitable. The only catch is that aiming for a fair, permissive system makes the latter increasingly delusional and irrelevant. There are no resources to satisfy every whim for everyone. Discrimination is inevitable but stigmatized. Economic and public sentiment appalled designers from preference function implementations.
Good algorithm designers unwittingly avoid any preference function or deliberately postpone its application into the user space. Such systems become complex. An explosion of preference is their common feature. That is, people use a complex preference profile, which is blown up by multiple obscure entries at the system periphery. A simple centralized preference profile with a few entries could have been used instead. Users are often not capable of setting up intricate profiles; they do not know what is demanded from them. The exploded preference profile is then distributed all over the code base. The engineers often address the complaints in the software modules, which they are tending, and not where it belongs. It adds a maintenance burden but leaves nobody particularly responsible for the discrimination. Contempt in complex systems is a collective responsibility, i.e., assigns responsibility to unaware and unassuming people.
It is similarly hard to correct a failed alignment. It advances into becoming a computationally intangible problem, where the number of unknowns exceeds the number of available equations and/or data for the equation coefficients. The large number of minute errors, which originate far on the periphery of the decision-making tree, does not allow us to distinguish calculation errors from the innate model skew. There is a need to follow the root cause decomposition, a numerous set of less relevant causes. It consumes excessive computational power and requires egregious data. Under the premise that calculation demand is the same for each analysis run, one needs to compute multiple runs to achieve the same result in a distributed environment, where each branch consumes its runs. Each run also requires a case-relevant, specific, clean dataset, as if Newton’s second law required a separate proof for the railway, aeronautics, playing golf, laundry, and many other businesses. The demand for computing and training data reaches a limit as the decision tree expands and the representation of preference becomes complex. This explosion occurs because preferences are outsourced to raw datasets instead of being integrated by a setup. The contradictions present in diverse datasets produce uncertainty and contribute to the intangibility problem.
An alternative approach would be to absorb the unfair nature of preference functions. Then, they can be implemented in a straightforward, obvious, and attributable manner. We can define a preference function upfront and centralize its management as much as possible. It would significantly reduce the number of unknowns to track. Under the same compute capacity and data availability, the alignment problem resolution would become more tangible, i.e., shifting the limits far away.
For example, the ASI’s formal goal could have been paperclip production. This paranoiac ASI can still be safe. To avoid the world burning, a mandatory component that balances the system should be applied. The balancing component reduces production utility if the resources dwindle. Note that the ASI is now distinctly a system. The system’s integrity must be ensured. The set of system components ought to be operational at all times. There should be a certain person who is responsible for the system. The person should bear the consequences of failure, for example, undergo a licensed activity.
Function formalization can encompass noting the terminal representations. The terminal states are easy to spot and analyze. The most essential equation component will bind them together.
3.2 System architecture
A terminal preference can be represented by a paranoiac goal function. The function draws all available resources to resolve the issue of concern. All other aspects would be neglected and cease to be properly represented. Such an AI will approach uselessness. Its “knowledge” will encompass the preferential subset only. The “knowledge” about the outer world, that is, the world besides the preferential subset, will be subpar. To pump the preferential subset, one needs to dump it into the outer world. In other words, to improve its utility, an AI has to know where and how to dump. The AI has to distribute available representation capacity evenly if the outer world ought to be represented properly. The preference objects and the outer world objects ought to be equally underwritten. A balance between the underwriting efforts is governed by another system component. Consequently, there must be three system components:
	1. Governor.
	2. Preferred domain model.
	3. Environment domain model.

The first two components can be set to pursue any obscure goal, like paperclip production. Given that the agents tend to seek power anyway (Turner and Tadepalli, 2022), humans can play along and legalize the agenda. The preferred domain could model a power-seeking psychopath without reservations. The governor must ensure that the ambitions are supported by an environmental model with equal or greater perplexity. Then, the psychopath will be no more successful than anyone else in the environment. Increasing psychopathic utility means increasing the world’s productivity first.
The environmental model puts a third party in the focus for ASI modeling. The third party is an object in the outer world. Utility maximization for the third party will unlock utility maximization along the main goal function. This way, AI can pursue instrumental goals that are fully aligned, while the entire AI acts more like a friend rather than a slave.
This solution concept treats emergent issues using an emergent feature. Output divergency is treated by self-control. The more capable an artificial intelligence is—and more pronounced its tendency to produce off-path inference—the greater its capacity for self-control. The contesting models draw their powers from growing intelligence. A system architecture that enables this emergent feature consists of three components. Two components represent contesting utilities: oneself versus the environment. The third component represents a governor, which maintains a match among the intelligences that act in support of the contestants.
3.3 Solution architectures
Solution architectures have multiple elements (Homeland Security Systems Engineering and Development Institute (HSSEDI), 2017). The system architecture, which has been proposed here, is only an element. Questions regarding interfaces among the components, data structures, governing algorithms, control tolerances, and service roles remain unresolved. The solution components have to be designed in line with the system architecture since system integrity would be essential. There would be two approaches: analytical and trial and error.
A trial-and-error method to find the best solution mix could be fatal since ASI experiments may unleash great unchecked powers. Emergent intelligence evolves along with growing system size. It makes a micro-scaled experiment, where the AI’s degrees of freedom remain manageable, ineffective. A small intelligence envelope does not fit complex nonlinear expressions. The evolution of expressions would be an unsteady function. Making good predictions by upscaling the small-scale results would be hard. Similarly, an ugly duckling assessment does not reveal the properties of the grownup swan. A full-scale experiment counterbalances ASI powers using a technology that is potentially not at par to contain harm as long as the technology demands improvements.
Fortunately, we can rely on proven solutions and draw analytical insights by analogy. The three-component system architecture fits the definition of psychokinetic consciousness. Consciousness is a mechanism to represent the world and the subject within it. Unfortunately, this science is too young to provide sufficiently expressive robust analogies. However, we can analyze the experience in consciousness from other sciences.
4 CONSCIOUSNESS APPROACH
The science of consciousness has a diverse research background. There are several dozen definitions for consciousness (Ostracon, 2009). Some of them are excessively complex to be universally useful. Levin (2022) explained that the multiplicity of consciousness theories is due to many kinds of consciousnesses. The particular kind and degree of consciousness depends on the underlying architectural composition. The latter is correlated with the main task that is resolved by a system.
The presented approach was tasked with aiding superintelligence alignment. First, the focus was set exclusively on the theories that can be digitally replicated. A synthetic consciousness will resemble biological consciousness but in function only. Second, synthetic consciousness truncates the biological functionality set. The point is to produce a minimally complex architecture in order to remain computationally feasible.
For didactic purposes, the paper introduced a problem and a solution and next described the factors that could aid its implementation. In reality, the factors have already provided a scaffold to elaborate the solution in the first place. Good tools provide the opportunity to deliver any desirable quality. The business domain defines the requirements. How much quality is delivered depends on how much investment is committed. Similarly, the paper obtains rough results. An inquiring reader would use the same scaffolding and unpack more as the task requires.
4.1 Theory selection principles
The drive for a universally applicable mechanism excludes the phenomenal consciousness theories. The phenomenal consciousness is likely only a subsection in the option space for consciousness. Dennett’s multiple draft theory (Dennett, 1991) suggests that the phenomenal space does not exist. Evans and Frankish (2009) implied that it is a verbalization stage in data processing. Verbality is a tool that helps generalize and handle experience. It might be computationally efficient but not entirely necessary. A phenomenal approach excludes non-verbal intentionality and the meta-verbal collective psyche. Both are of interest for alignment research. The collective psyche, indulgently called collective unconscious, has reliably produced genocidal acts (Levin, 2022) like crusades, the Holocaust, and a war up until the last Ukrainian. Removing the fluff invariant may help lower complexity and unlock the consciousness potential on a grand scale.
The theories of interest would have predictive powers in cognitive consciousness (Humphrey, 2022). Furthermore, a practical goal restricts the theoretical base to functional consciousness. Unfortunately, there are numerous contradicting theoretical claims even in this narrow field of knowledge. Therefore, it would be useful to draw the functional content from the first principles. Therefore, the evolutionary approach has to be considered.
Simplicity is a deceptive target. Computationalism researchers have developed sophisticated models (Anderson et al., 2004; Franklin, 2007; Laird, 2012; Shanahan, 2006; Sun, 2001) that still lack an alignment dimension. That is, their complex solutions are not complex enough. Here, again, it would be better to start from the first principles. It is not excluded that organic growth and a gradual increase in architectural complexity will end up where other researchers have left. In particular, the CLARION concept (Sun, 2001), which taps similar architectural composition, is a suspect. However, this growth will keep the alignment aspect in mind and ensure that the solution permutations are safe. One of the least complex, while meaningful, consciousness sciences is psychiatry. Piling at its principles will help keep complexity at bay.
A cross section of evolution and psychiatric theories can reveal the essence of functional consciousness. A biomimetic approach can transform the knowledge into an aligned ASI system. This system will possess synthetic consciousness by definition. Levin (2022) stipulated that consciousness cannot be restricted to human-like beings. Synthetic consciousness is just a kind of consciousness. It is meant here foremost to establish a scalable friendly AI alignment.
4.2 Psychiatric perspective
Psychiatry’s key task is to diagnose mental illness. The differentiation of mental states must be extremely unambiguous. The number of states must be humanly manageable. It does not necessarily work to benefit an ill person, but it is a proven praxis with bearable externalities. Psychiatry differentiates two primary incapacities: a) stimulus perception and b) reaction to stimuli. The various illnesses are then mapped on the two axes. A damaged nervous system often impacts both functions. So, an illness should be mapped on a two-dimensional plane (see original analysis in Figure 1).
[image: A grid chart titled "stimuli perception" versus "reaction to stimuli." The vertical axis lists hallucination, norm, reduction, and paralysis. The horizontal axis lists apathy, immobility, reduction, norm, and hyperactivity. The center cell marked "OK" represents normative stimuli perception and reaction. Cells include terms like "delirium," "coma," "ADHD," "depression," and "locked." Terms are distributed based on perception and reaction intersections.]FIGURE 1 | Simplified psychiatric diagnosis grid.
Stimulus perception is the capability to distinguish the environmental states. The discernment could be a product of sharp senses and/or sophisticated model output. Since blind people can behave as well-versed, modeling can compensate for lacking senses (Bauer et al., 2017). Modeling is a dominative function. By analogy, the stimulus perception feature can be replicated by an AI model that represents the environment (EM).
The reaction is an attempt to leverage the opportunities under an incentive to act. The opportunities are derived from prior knowledge about the world. The prior knowledge is captured in the EM. The EM produces an inference in response to stimuli. This inference represents available leverage options. Feeding the EM inference into a value model (VM) produces an action preference. The VM inference can be recursively fed into the EM to elaborate a more detailed plan and the most nascent action. By analogy, the value model represents a goal-driven entity, i.e., the paperclip AI, or a power-seeking narcissistic entity, that are overly represented by CEOs (Junge et al., 2024).
4.3 Evolutionary perspective
Technical systems are designed to be as simple as possible to reduce costs and increase mean time between failures (MTBF). Unfortunately, the discrepancy between simple and weak designs is initially indistinct. This fact is of particular concern for alignment architectures. A weakness may remain unnoticeable until it is too late. Therefore, it is vital to know what not to do if striving for simplification. Assume that evolution gradually developed consciousness, with more complex designs substituting those that failed. Then, the architectural analogies that are drawn from the surviving evolutionary examples could aid in the design of the ASI alignment. There are two aspects in focus: a) the system designs at various evolution steps and b) the triggers to upgrade the design. The evolutionary process has been a chain of causes and effects (Figure 2). The consideration puts a biological form in focus. Morphology enables a feature set. That set becomes insufficient at a certain point in time due to environmental changes or the parallel evolution of contestants. The most challenging deficiency evolves into a problem. Then, nature leverages a solution principle. The principle is implemented using an instrument. The instrument, being an integrative part of the system design, updates the morphology. The morphology supports novel features, which resolve the initial problem. The chain is followed in a cycle.
[image: Flowchart illustrating the progression from "feature" to "problem," linked through "consumption," "pathophysiology," and "symptoms," with an arrow pointing to "disease." Arrows indicate the direction of progression.]FIGURE 2 | Cause–effect chain model for evolutionary development.
Biological organisms were considered thermodynamic objects. Each morphological element consumes energy. Adaptation chances depend on the size of the feature set. The larger the set, the better environmental preparedness would be. The set size correlates with the number of morphological elements. The amount depends on fuel transformation efficiency and fuel supply. The more fuel consumed, the better. Fuel deposits are normally contaminated and sparsely distributed in the environment. Therefore, evolution can be driven by the need to purify consumed resources, as well as increase and secure their intake. Another key factor is optimizing the feature set for fuel efficiency. An original interpretation of history that accounts for the aforementioned principles is summarized in Figure 3. A living thing appeared on Earth about three billion years ago (Gya). It consumed anything in its path. The contaminated food led to intoxication and premature death. Tissue specialization evolved in response. It enabled a membrane mechanism approximately 2.2 billion years ago. The mechanism selectively gates the intake path. This was a shift from prokaryotic to eukaryotic cells. It was also the birth of elementary awareness regarding one’s own needs.
[image: The table presents a timeline detailing evolutionary stages across several eras. It includes columns for time, features, morphology, consumption, problem, instrument, and principle, with entries such as "3 Gya" for life and "130 Tya" for alliance. Each row offers a progression of concepts like procreation, self-awareness, and alliance linked with corresponding instruments such as membranes and consciousness.]FIGURE 3 | Evolutionary path to consciousness.
The next problem was volatile food supply and famine. Nature developed a solution approximately one billion years ago. Organisms gained the capacity to assess various food deposits and stock the most valuable resources for future consumption. It was enabled by a taste mechanism, which is essentially a comparator. The mechanism compares one’s own future needs against the utility of supply. The assessment of needs used a separate specialized tissue that represented the organism via neural correlates (Koch, 2004). Its function is demand prediction, i.e., projection of the organism’s states into the future. It was the birth of a self-representation model.
The assessment mechanism for supply utility gradually improved its fidelity and capacity. This enabled predators. The predators consume much more energy-dense food. Predators cannibalize those neighbors who internalized their food stacks. In response, the prey developed a solution approximately 650 million years ago. An action-priority mechanism helped decide if one should graze or run. The mechanism relies on the capability to predict the predator’s actions, as well as the adversarial impact of the environment in general (Graziano, 2017). It was the birth of an environmental representation model. A direct comparison of demand and risk—two phenomena of different nature—is impractical. To aid this issue, organisms started to apply proxy values, which we today collectively recognize as a value system. It is not a big deal since the outputs of the representation models are obscure representations anyway.
Distinguishing between a representation of oneself and a representation of others has been a significant issue. In terms of data processing, both models occupy the same tissue (Rizzolatti and Sinigaglia, 2016) and produce similar signals (Squire, 2008). The final resolution emerged approximately 40 million years ago with the concept of identity. This concept utilizes a split structure model, clearly separating self-representation from environmental representation. This separation is primarily enabled by different timings (Min, 2010). Intra-representational signal feeding is quick, whereas extra-representational feeding is slower. Environmental representation processing is delayed to a certain extent by signals coming a long way from the peripheral receptors. Self-representation consistently finishes first due to shorter logistical routes. To expedite intra-representational communication, a centralized nervous system (brain) has become predominant.
A centralized processing unit, being fed by different signals, opens up the opportunity to process many various identities. This gave birth to empathy. Empathy is the capability to experience somebody else’s identity as one’s own. Strong empathy and weak identity help sustain swarms. Swarms carry the anti-predatory vigilance even further than an identity alone could do.
Subsequent developments did not produce sticky morphological changes in the decision-making mechanism. They are currently a product of sub-systemic reshuffling. If predatory pressure increases, the identity strengthens and adopts selfishness (Olson et al., 2016). Selfishness has contributed to specialization across a group (Krause, 1994). Specialization takes advantage of the variations in individual specimens and improves the overall group performance (Bai et al., 2021). The performance further reinforced selfishness into dominance that enabled professionalism.
Unfortunately, strong selfishness hinders complex proliferation strategies. For instance, in mammals, incomplete gestation necessitates significant parental care after birth. Childcare providers use empathy. Consciousness helped to support various behaviors (Earl, 2014), including occasional empathy. This, in turn, enabled joining temporary alliances and staying deliberately aligned. When interests diverge, the minimum requirement to maintain alignment is consciousness.
The next evolutionary step would be sentiency. A sentient being recognizes its existential dependency on a collective effort. Under the premise, an individual cares for strangers as if for her own offspring or even for herself. A sentient specimen differs from a swarm specimen by the presence of consciousness and conscious choice, which adds situational flexibility while maintaining professionalism. Flexibility increases survival chances. For example, an individual can withstand a devastating adversarial impact. It will survive apart from the group and can stem its own group, restoring the collectives from scratch. Sentiency in humans has not fully evolved so far. High-fidelity environmental modeling and in-depth rationality are enablers. The features require computing resources exceeding our actual capacities. A synthetic consciousness could reach that level.
5 ANALYSIS
5.1 Alignment potential
To analyze the algorithmic boost, let us assume that each model pursues a goal function [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL to it.]. The domain model pursues [image: It seems there might have been an issue in uploading the image correctly. Please try uploading the image again or provide a description of its contents.], and the world model pursues [image: The expression \( G_2() \) is shown, suggesting a mathematical or functional notation, with a subscript '2' next to 'G'.], i.e., [image: Mathematical expression showing the function \( G_m() \) with a subscript \( m \), encapsulated in parentheses.]; [image: Mathematical expression showing the variable \(m\) belongs to the interval from 1 to 2.]. The gain of model m is the sum of all parallel microgains [image: Mathematical notation of g subscript m in parentheses, likely representing a function or parameter.] under certain conditions.
[image: Equation displaying \( G_m(t) = \sum_{z=1}^{Z} g_{mz}(z_l) \).]
A leverage condition occurs if a gain [image: Please upload the image or provide a URL for me to create the alt text.] expressed as [image: Mathematical expression displaying the function notation \( g_{1z}() \).] can be multiplied by [image: The image shows a mathematical expression "G subscript 2, followed by parentheses".]. Furthermore, an agentic leverage occurs if the reinforcement of [image: Mathematical expression displaying \( g_{22}() \).] boosts environmental output [image: Mathematical expression showing a function denoted by \( G_2() \).] over-proportionally, i.e., [image: Equation featuring a function notation \(G_2()\).] outputs marginally more than what the reinforcement contributed. The reinforcement can be expressed as [image: Mathematical notation depicting the function \( g_{zz}() \).] multiplied by [image: It seems like there's no image provided. Could you please upload the image or provide a URL? If you have a caption, feel free to include that as well for additional context.]. It transforms Equation 2 for the ASI goal function as follows:
[image: Mathematical expression featuring a series of summations and functions. It begins with the equation for \( G_F \) and includes multiple nested summations with functions such as \( g_{1s}(z) \) and \( G_{2(t-1)} \). The equation progresses through simplifications, ultimately breaking down into terms involving functions like \( g_{2(t-1)}(z) \) and \( G_{1(t-2)} \).]
The term [image: The image shows a mathematical expression in parentheses: \( t - x \).] denotes a time step [image: Please upload the image or provide a URL so I can help create the alt text for it.] iterations back. The recurrent nature of Equation 3 would produce an infinite row of embedded terms, where Equation 3 only showed some iterations.
A discrete differential for the function [image: It seems that your request didn't include an image. Please upload the image you'd like described, and I'll help create the alt text for it.] is defined as follows:
[image: Mathematical equation showing the first derivative of \( S \) with respect to time, expressed as \( \frac{S_{t} - S_{t-1}}{\Delta t} \), labeled as equation (4).]
Then, [image: Mathematical notation featuring the function \( g_{t-k}() \) with a subscript \( t-k \).] can be found by transforming Equation 4 into Equation 5.
[image: Euler discretization equation showing: \( g_{k} = g_{k+1} - \Delta t f^{(1)}(g_{k+1}) \).]
[image: Equations showing updating terms for \(g_{k-1}\), \(g_{k-2}\), and \(g_{k-3}\). \(g_{k-1} = g_k - \Delta t \cdot g_x^{(1)}\); \(g_{k-2} = g_k - \Delta t g_x - \Delta t g_x^{(1)}\); \(g_{k-3} = [1 - \Delta t] g_x - [3 \Delta t + \Delta t^2][g_x^{(1)}] + 2 \Delta t^2 g_x^{(2)}\). Labeled as Equation 6.]
To maximize the gain (Equation 3), at least the first derivative should be equal to 0.
[image: Mathematical equation showing summations with subscripts and superscripts. The expressions involve multiple levels of nested summations of functions denoted by symbols G and Σ, with indices ranging over x and t subscripted terms. The exponents (1) and (4) are used throughout. The equation is labeled as equation (7).]
Equation 7 may take the form of Equation 8 if truncated at [image: Please provide the image by uploading it or sharing a URL. That way, I can create the appropriate alt text for you.], considering Equation 6 in the case of a steady time progression.
[image: Mathematical equation involving multiple summations and products, displaying terms with indices, deltas, and various factors. The equation includes complex mathematical symbols and variables, structured over multiple lines with subscripts and parentheses. Marked as equation eight.]
Equation 8 has the highest derivative order (HDO) equal to 3 that is represented by the [image: The expression shows a mathematical formula: \(2 \Delta t^2 \, g_{2t}^{(3)}\).] component. This means that the HDO equals the number of considered iterations [image: It seems there is no image attached. Please upload the image or provide a URL, and I can help generate alt text for it.].
Assuming that [image: The image displays the Greek letter Delta followed by a lowercase "t," symbolizing a change in time in mathematical or scientific contexts.] tends to 0, its power function [image: Delta t raised to the power of x minus 1.] offers less significant magnification at each next step [image: Please provide an image or a URL, and I can help generate the alt text for it.]. This implies that prior iterations are less expressive than the later iterations, causing the relative impact of distant events to diminish. Thus, an approximate calculation can truncate any number of steps back. The number of considered iterations will likely depend on the available compute resources. The more resources there are, the deeper the calculations go into the past. The deeper the calculations go into the past, the higher the HDO would be. A higher HDO corresponds to a stronger alignment to observe (Spasokukotskiy, 2024a). Since the best alignment class currently has an HDO equal to 4, the synthetic consciousness approach may exhibit multiple orders of magnitude greater HDO, translating into a theoretically infinite alignment strength potential.
5.2 Synthetic consciousness rationalization
An ideal foundation model is capable of producing high-fidelity inferences. The fidelity translates into a certain task complexity that can be mastered. If the task at hand exceeds that complexity level, then the task will be resolved with deficiencies, reducing the alignment. If the model resolution is not sufficient to address the task at hand, then artificial intelligence may cause havoc. By contrasting two different models, the system emulates dialectics. The latter triggers knowledge generation. There are three expected effects. First, the models will “steal” from each other. This way, a tiny model can actually tap a much larger database. As the data/unknown ratio increases, the computation problem becomes more tangible. A better problem resolution spills over into better alignment. The inference accuracy could gain up to 21%. Second, the spatial domain fidelity will be compensated by better fidelity in the temporal domain. The synthetic consciousness method joins n inferences, which build a time series from t−n to t (Figure 4). It resembles a chain of thought approach that increases accuracy by double-digit percentages (11%–40%) and is particularly strong in boosting spatial challenges (Ding et al., 2024). Two mentioned combinatorial effects together would likely provide up to a 60% accuracy boost.
[image: Flowchart showing three iterations of an inference process. Each iteration includes a "self" and "env" component connected by arrows labeled "inference" and "parameters." The process begins with a "prompt" and ends with "final inference."]FIGURE 4 | Environmental and self-representation model time series interaction.
Furthermore, there would be an emergent boost. The hypothesis is that in case the environmental model encompasses a representation of highly efficient agents (such as humans), the system will prioritize, maximize, and support their utility. Agent leverage would allow AI to fulfill its goal sooner and more efficiently. A new knowledge generation feature is going to be self-policed. An instrumental objective will be to protect the AI’s most valuable agents. In this case, both models can be unleashed for autonomous data acquisition and training. It will potentially unlock crucial inference accuracy and astonishing alignment measured in multiples of the human baseline. The growing model capacity will eventually reach the ASI scale.
6 CRITIQUE
The initial assumption was that consciousness has provided mammals the capability to exhibit non-trivial, composite swarm behavior. Individuals capable of selfish actions exhibit higher individual productivity. Teams capable of empathy exhibit an advantage over individuals. The typical team sizes coincide with the boundaries set by alignment (Spasokukotskiy, 2024a). The correlation means that the capability to work in teams is restricted by reliance capacity, i.e., how strongly one can rely on the team members. The reliance is a manifestation of confidence in alignment among the team members. The better alignment there is, the larger the team will be. A correlation does not imply causation. The entire idea of mimicking consciousness in order to ensure effective alignment could be deemed wrong.
Another assumption was that synthetic consciousness needs to resemble biological consciousness but in function only. Focusing on functionality means that it could actually be implemented in many different ways. It offers an avenue to digitize the phenomenon and patch the ASI. This reductionist approach cuts off some components of biological consciousness. If we fully agree with the first thesis, that consciousness was an evolutionary response to demand in teaming and alignment, then removing some aspects of consciousness would compromise the implementation. It remains unclear how closely a biomimetic approach should mimic biological consciousness.
Among the functional consciousness theories, the author has proposed to deal with the simplest concepts. It would be enough for starters. If there is a demand for synthetic consciousness and more precision in the future, more advanced concepts may come forth.
The advent of multi-component architectures may boost the algorithmic alignment resiliency but makes an AI system vulnerable to component failures. Levin (2022) stated that the essential feature of homeostatic organs is the coherence of their control system. It is enabled by information that is shared among the components at no cost. It emphasizes the common goal-directed activity. The biological mechanism puts a value on proper signal timing coming from various sources. As a result, the algorithmic strength improves forward alignment but becomes increasingly dependent on backward alignment. The point of equipotential gradient, i.e. the alignment boundary for synthetic consciousness, remains unclear.
7 CONCLUSION
A superintelligent AI has the computational potential to simulate functional consciousness. The ASI will do it better than humans and easily ascend to sentiency. An ASI in that state will be able to model the environment in minute detail and recognize vital interconnectedness among the objects in the world. The ASI will try to leverage the world opportunities while aiming for an obscure goal. The ASI will use other agents as leverage. The ASI will provide in-kind maternal care for the agents, catering to their whims. Humans would enjoy preferential treatment if they remained the most useful collaborative force. The ASI will be aligned with humanity on instrumental goals. The more intelligence AI possesses, or the more data on the universe it has, the stronger the alignment. The dangers and unexplored opportunities will keep AI in place. An alignment for the AI’s primary goal will not be granted. Therefore, it will be a friendly AI alignment. An ASI that is capable of friendly alignment by self-adjustment has a synthetic consciousness syndrome.
Consciousness is a product of autopoiesis meant to preserve the system’s functionality and unity (Levin, 2022). Emergent functionality enables autopoietic functionality. A non-trivial logic at scale enables emergent functionality. A prolific logic mode could be the worse the loss–the better incentive to focus on the means of achieving the goal. An implementation of the logic requires novel architecture. A biomimetic approach could guide the architects. The guiding principles can be derived from the psychiatry—homeostasis and evolution—tandem of two representation models. The presence of the second signaling system, i.e., verbal mapping, is not required. The human non-verbal brain hemisphere exposes reactions, revealing the presence of consciousness. While formal signaling improves hardware efficiency, an ASI can presumably obtain the same results by sheer scaling, i.e., by gradually increasing computational power.
The simplest architectural pattern for synthetic consciousness includes a governor, which is responsible for homeostatic balance (for example, implemented via balanced compute); a domain model, which emphasizes the AI’s goal function pursuit; and a world model, which emphasizes the available resources and phenomena that are instrumental in reaching the goal. Aligning any of the models with human objectives is futile at the ASI scale. ASI operators should commit a significant portion of resources to pursuing a random goal. Engineers do the same with ICE by dumping excess heat. The instrumental ASI goals will be strongly aligned instead. The alignment strength will automatically adjust as compute resources and intelligence improve.
The proposed architectural approach has a unique capability to produce any desirable HDO through a relatively simple algorithm. The actual HDO depends on the amount of calculated time iterations. The longer the time stretch under consideration, the stronger the alignment. The minimally advisable HDO is 3. More is better. Short-sightedness is asocial. Long-sightedness, i.e., the extended number of calculated time iterations, depends on the available compute resources. The more compute resources are assigned, the better ASI safety will be.
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Introduction
Mission-critical automation demands decision-making that is explainable, adaptive, and scalable—attributes elusive to purely symbolic or data-driven approaches. We introduce a hybrid intelligence (H-I) system that fuses symbolic reasoning with advanced machine learning via a hierarchical architecture, inspired by cognitive frameworks like Global Workspace Theory (Baars, A Cognitive Theory of Consciousness, 1988).
Methods
This architecture operates across three levels to achieve autonomous, end-to-end workflows: Navigation: Using Vision Transformers, and graph-based neural networks, the system navigates file systems, databases, and software interfaces with precision. Discrete Actions: Multi-framework automated machine learning (AutoML) trains agents to execute discrete decisions, augmented by Transformers and Joint Embedding Predictive Architectures (JEPA) (Assran et al., 2023, 15619–15629) for complex time-series analysis, such as anomaly detection. Planning: Reinforcement learning, world model-based reinforcement learning, and model predictive control orchestrate adaptive workflows tailored to user requests or live system demands.
Results
The system’s capabilities are demonstrated in two mission-critical applications: Space Domain Awareness, Satellite Behavior Detection: A graph-based JEPA paired with multi-agent reinforcement learning enables near real-time anomaly detection across 15,000 on-orbit objects, delivering a precision-recall score of 0.98. Autonomously Driven Simulation Setup: The system autonomously configures Computational Fluid Dynamics (CFD) setups, with an AutoML-driven optimizer enhancing the meshing step—boosting boundary layer capture propagation (BL-CP) from 8% to 98% and cutting geometry failure rates from 88% to 2% on novel aircraft geometries. Scalability is a cornerstone, with the distributed training pipeline achieving linear scaling across 2,000 compute nodes for AI model training, while secure model aggregation incurs less than 4% latency in cross-domain settings.
Discussion
By blending symbolic precision with data-driven adaptability, this hybrid intelligence system offers a robust, transferable framework for automating complex knowledge work in domains like space operations and engineering simulations—and adjacent applications such as autonomous energy and industrial facility operations, paving the way for next-generation industrial AI systems.

Keywords: hybrid intelligence (HI), space domain awareness, computational fluid dynamics, CFD, reinforcement learning (RL), joint embedding predictive architecture (JEPA)
1 INTRODUCTION
Artificial-intelligence (AI) systems are now entrusted with tasks where mistakes can endanger lives or incur severe economic losses—ranging from space-domain awareness (SDA), where thousands of resident space objects must be monitored continuously, to computational fluid dynamics (CFD) simulations that guide the design of next-generation aircraft. In such settings, automation must satisfy four simultaneous demands:
	• Reliability–decisions must remain robust under rapidly changing conditions;
	• Explainability–operators must understand why a recommendation is made;
	• Adaptability–models must generalize to novel environments without manual retuning;
	• Scalability–solutions must run efficiently from edge devices to leadership-class supercomputers.

Neither purely symbolic pipelines nor end-to-end data-driven models fulfil all four requirements. Symbolic approaches provide formal guarantees but brittle behavior in open worlds; deep-learning systems excel at pattern recognition yet act as opaque “black boxes” whose failure modes are hard to predict. Bridging this gap is the central challenge addressed in this work.
1.1 Hybrid intelligence as a unifying paradigm
Inspired by cognitive frameworks such as Global Workspace Theory (GWT) (Baars, 1988) and neurally-grounded accounts of modular reasoning (Shanahan, 2020), we propose a hybrid-intelligence (H-I) architecture that integrates symbolic task decomposition with modern machine learning. The design follows a three-tier hierarchy of cooperating agents, each tier operating at a different level of abstraction:
	1. Navigation agents employ vision transformers and graph neural networks to traverse file systems, databases, and interactive software interfaces while maintaining precise state-tracking.
	2. Discrete-action agents are produced via multi-framework automated machine learning (AutoML); they couple transformer encoders (Chen et al., 2021) with a Joint Embedding Predictive Architecture (JEPA) for context-aware time-series reasoning (e.g., anomaly detection).
	3. Planning agents orchestrate end-to-end workflows using reinforcement learning (RL) (Figure 1), world-model-based RL, and model-predictive control (MPC), adapting plans on-the-fly to user intent and live sensor data.

[image: Diagram showing a reinforcement learning framework and a performance graph. Left: A flowchart depicts an environment (Env) interacting with an agent. The environment processes data, detects anomalies, and sends observations to the agent, which consists of a policy and critic. Right: A line graph shows the scalability of DDPG agent training, with the number of nodes on the x-axis and training time on the y-axis. The graph includes lines for DDPG agent training and ideal performance.]FIGURE 1 | Scalable Reinforcement Learning Training Strategy. Left: Early anomaly detection agent training with Vectorized GPU environment and Decentralized Distributed Proximal Policy Optimization (DD-PPO). Right: Throughput scales almost linearly, enabling agent to learn faster.A key metric for mesh-generation tasks—boundary-layer capture propagation (BL-CP)—illustrates the benefit of this decomposition: symbolic rules ensure physically meaningful surface resolution goals, while data-driven agents optimize mesh parameters to meet those goals efficiently.
1.2 Target domains
We validate the architecture in two mission-critical domains that exhibit contrasting data characteristics and operational constraints:
	• Space-object behavior monitoring. Graph-based JEPA embeddings (Assran et al., 2023; Skenderi et al., 2025; MSBAI, 2025) combined with multi-agent RL enable near-real-time detection of anomalous maneuvers among ∼15,000 satellites and debris objects.
	• Autonomous CFD setup. An AutoML-driven optimizer, seeded with Latin hypercube sampling (LHS) (McKay et al., 1979), raises BL-CP on previously unseen aircraft geometries while sharply reducing mesh-generation failures.

These case studies were chosen because they stress different parts of the stack: large-scale streaming graphs in SDA, and high-dimensional design-space exploration in CFD.
1.3 Contributions
This paper makes four primary contributions:
	1. Architecture. We present the first end-to-end H-I architecture that unifies JEPA-based world modeling, hierarchical planning, and secure federated learning in a single deployable platform.
	2. Methodology. We detail a reproducible training pipeline that scales linearly to more than 2,000 GPUs, while secure aggregation adds less than 4% latency when models are shared across security domains.
	3. Applications. We demonstrate state-of-the-art performance in both SDA anomaly detection and autonomous CFD configuration, showing the transferability of a single H-I system across radically different problem spaces.
	4. Analysis. We provide ablation studies that quantify the individual value of symbolic constraints, JEPA context sharing, and RL-based planning.

1.4 Paper organization
Section 2 describes the materials and methods, including the hierarchical agent society (Minsky, 1986), the JEPA representation layer, and experimental protocols. Section 3 reports quantitative and qualitative results for the SDA and CFD use cases. Section 4 discusses the implications, limitations, and future research avenues for hybrid-intelligence systems in industrial and defense contexts.
2 MATERIALS AND METHODS
This section describes the technical foundations of the hybrid-intelligence (H-I) platform, the training procedures used to create its agents, and the experimental configurations for the two validation domains introduced in Section 1. Figure 2 gives a block-level schematic; detailed elements follow.
[image: Diagram illustrating a system architecture for a learning engine. The top section displays components like navigation, action, and planning. Below, an "Agents Society" section includes roles such as postoffice, beginner agents, and skills managers. Arrows and labels depict information flow between sections. Key elements include a universal interface, software updates, and message pools. Additional parts include the execution environment and a demo example. The diagram is densely packed with text and visuals, representing a complex technological framework.]FIGURE 2 | System architecture i—skills agent training, ii–PWA interface, iii–multiple skills and services agents, iv–multiagent coordination, v–job submission.2.1 System architecture
The platform is implemented as a four-layer stack that converts operator intent into executable actions (see Table 1):
TABLE 1 | Four-layer hybrid-intelligence system architecture.	Layer	Responsibility	Key technologies
	User-interface	Natural-language front end; resolves ontologies and builds task graphs	PWA front end (desktop, mobile, VR) supporting voice, click, typed text, images
	Job-execution	Schedules task graphs on heterogeneous resources and manages model versions	Kubernetes/Slurm orchestration; AMD and NVIDIA back-ends
	Adaptive-agent society	Executes the task graph; agents share a global workspace implemented as a blackboard	Joint Embedding Predictive Architecture (JEPA); opportunistic blackboard + peer-to-peer channels
	Distributed- training pipeline	AutoML search, RL optimization, data ingestion, and logging	PyTorch 2.3, Ray 2.9, Optuna 3.5; linear scaling to >2,000 GPUs


2.1.1 Learning engine
The adaptive-agent and training layers together form the Learning Engine—a “factory” that continuously builds and refines skill agents while enforcing best practices and version control.
2.2 Universal interface and environment
The Universal Interface serves as a bridge between users (or external software) and the agent society (Minsky, 1986). Implemented as a standards-compliant progressive web app, it accepts multimodal input—voice, text, gestures, images—and emits structured JSON events that trigger agent workflows. The Environment abstraction wraps external resources:
	• GUI/CLI software (e.g., CAD, CFD pre-processors)
	• Streaming telemetry (orbit state vectors)
	• HPC batch queues (Frontier, Aurora)

Each wrapper exposes a consistent OpenAI-Gym–style API so that planning agents can treat disparate resources uniformly during RL training.
2.3 Hierarchical agent society
The platform follows a three-tier hierarchy; each tier contains multiple agent types (Table 2).
TABLE 2 | Hierarchical agent society: tiers, example agents, and training objectives.	Tier	Mission	Example agent types	Training objective
	Navigation	Perceptual state tracking; traverses file systems, GUIs, APIs	Voice, Gesture, Vision, CAD-tree	Supervised imitation on interaction logs
	Discrete Action	Domain-specific atomic steps	Mesh-parameter predictor, Maneuver classifier, Constraint solver (Z3) (de Moura and Bjørner, 2008), Coding agent (LLM)	Task loss + JEPA consistency
	Planning	End-to-end workflow orchestration	PPO agent, World-model MPC, Hyperparameter tuner	Maximize task reward – constraint penalty


2.3.1 Blackboard communication
Agents publish belief tuples—<state, uncertainty, timestamp>—to an in-memory blackboard. Opportunistic reads provide asynchronous context sharing; deterministic peer-to-peer calls guarantee delivery of high-priority messages (e.g., safety constraints).
2.4 Multimodal representation
Hybrid interaction requires three complementary representations:
	1. Structured JSON events for rule-based reasoning and constraint checks.
	2. High-dimensional contrastive embeddings (Radford et al., 2021; Li et al., 2022) (e.g., CLIP, BLIP) that place text, images, gestures, and sketches in a shared semantic space.
	3. JEPA latent vectors that model environment dynamics. A Patch Time-Series Transformer (PatchTST) (Assran et al., 2023; Nie et al., 2022) encoder and predictor align current-state and future-state embeddings, creating a lightweight world model usable by RL agents for dense reward shaping.

2.5 Training methodologies
We have utilized leadership High Performance Computing to conduct research (Dash et al., 2024) and development, comparative studies, and for training models and strategies at scale. Figure 3 presents a series of these leadership-scale HPC jobs and the scale productivity and efficiency we reached. The trained system, prepared for production deployments, is built to perform and inference on individual servers, although larger compute systems enable more autonomously set up compute jobs to be run simultaneously.
[image: Diagram illustrating a system framework with block flow and a graph tracking the number of users over time. Another section shows a different system with a multi-step training procedure and performance graphs. Visual elements include various graphs depicting data trends and 3D surface plots, as well as small images of landscapes and vehicles to demonstrate real-world applications. Scatter plots and line graphs display consistency between predicted and actual values, emphasizing model accuracy.]FIGURE 3 | Leadership Computing Scalability: Multi-Component Performance on Frontier and Aurora (i) JEPA model training scalability on Frontier with recent Aurora validation, showing near-linear scaling with DeepSpeed optimization; (ii) Planning agent training performance on Frontier; (iii) DeepHyper-based architecture search for solver setting prediction; (iv) SU2 solver scaling for solution-adaptive mesh refinement; (v) TorchVecEnv performance showing 5x speedup over DummyVecEnv for environment steps; and (vi) Reinforcement learning hyperparameter optimization scaling.2.5.1 AutoML for discrete-action agents
A synchronous multi-framework AutoML loop (Chen and Guestrin, 2016) (LightGBM, XGBoost, Tab-Transformer) explores model/hyperparameter pairs seeded by Latin hypercube sampling to maximize validation F1 (classification) or minimize RMSE (regression) (Kadupitiya et al., 2019).
2.5.2 Reinforcement learning for planning agents
	• Environment wrappers. Orbit dynamics and mesh pipelines expose Gym-compatible APIs.
	• Vectorized simulation. Thousands of environment instances run concurrently on each GPU via TorchVecEnv (Paszke et al., 2019), giving a 5× speedup over CPU baselines.
	• Algorithm. Proximal Policy Optimization (PPO) (Schulman et al., 2017) with generalized-advantage estimation; world-model variants use latent-dynamics models.
	• Scaling. A Distributed Data-Parallel PPO (DD-PPO) variant shows near-linear throughput on up to 1,024 GPUs (<3% overhead). Hyperparameter sweeps run as ensemble jobs on 380–500 Frontier nodes.

2.5.3 HPC-tailored AutoML for CFD
Standard AutoML libraries stalled at supercomputer scale, so we adopted DeepHyper (Balaprakash et al., 2018; Bollapragada et al., 2020), which distributes neural-architecture and hyperparameter search across >1,000 Frontier nodes. Top checkpoints are ensembled for robustness; the combined pipeline (data generation → prediction → mesh optimization → CFD solve) runs fully in parallel.
2.6 Experimental setups
2.6.1 Space-domain awareness (SDA)
	• Data. Two-year archive of Two-Line-Element sets (CelesTrak, 2024; Unified Data Library) plus simulated maneuvers (via GMAT); 14,710 unique space objects.
	• Graphs. Daily proximity graphs (25 km radial cutoff).
	• Agent roles. Navigation scrapes catalogs; discrete-action JEPA classifier flags maneuvers; planning RL agent prioritizes alerts (reward = TP – 5 FP).
	• Metrics. Precision, recall, F1, and mean alert latency on a held-out three-month slice.

2.6.2 Autonomous CFD mesh generation
	• Geometry corpus. 312 watertight aircraft surfaces across fighter, transport, and UAV classes.
	• Workflow. SnappyHexMesh with nine tunable parameters (base cell size, growth ratio, etc.).
	• Primary metric. Boundary-Layer Capture Propagation (BL-CP): percent of wetted surface with y+ ≤1 and ≥8 growth layers.
	• Agent roles. Navigation explores CAD trees; discrete-action AutoML surrogate predicts BL-CP; planning RL agent adjusts parameters (reward = ΔBL-CP – 0.1·cells).
	• Metrics. BL-CP, mesh-failure rate, solver convergence, optimization wall-time.

2.7 Evaluation metrics
Component ablations disable (i) JEPA, (ii) symbolic constraints, (iii) RL planning to isolate each contribution.
2.8 Implementation details
	• Software. PyTorch 2.3, Hugging Face Transformers 5.0, Ray 2.9, Optuna 3.5, DeepHyper 0.6.
	• Hardware. Experiments ran on Frontier (AMD MI250X) and an internal 256-GPU NVIDIA A100 cluster.
	• Runtime. SDA model converges in 11 h on 512 GPUs; mesh optimizer converges in 7 h on 128 GPUs.

3 RESULTS
This section reports quantitative and qualitative outcomes for the two validation domains—space-domain awareness (SDA) depicted in Figure 4 and autonomous CFD mesh generation depicted in Figure 5—and summarizes platform-wide scalability and ablation studies. All experiments follow the configurations in Section 2 and were repeated three times; we report the mean.
[image: Flowchart illustrating a methodology for anomaly detection and prediction. Key sections include application inputs like space operations and tokamak fusion reactors, a central methodology with processes for anomaly detection, and outputs showing prediction results. Various processes are highlighted with arrows connecting different steps, emphasizing predictive techniques and risk management in operations.]FIGURE 4 | Unified anomaly detection architecture: Methodology and applications. Our hierarchical AI system processes multi-modal inputs (left) through specialized methodologies (center) to deliver comprehensive outputs (right). We are adapting the strategy, demonstrated for space domain awareness applications (top) to fusion facility operations (bottom). Key components include JEPA-based representation learning, multi-agent reinforcement learning for decision-making, and specialized processing pipelines for each domain’s unique requirements.[image: Two sections with CFD simulations and bar graphs: a) and b) show a side and zoomed view of an aircraft model with airflow lines. c) Bar chart comparing the total cost in operations for "Initial Dataset," "Discounted at 65%," and "MDO Cost with Multi-surrogate Models," showing a significant decrease. d) Bar chart showing the number of feasible points in the same three categories, with "MDO Cost with Multi-surrogate Models" having the highest number.]FIGURE 5 | Autonomous Grid Generation Example: (a) initial inviscid mesh capture and refinement, followed by geometry capture and then boundary layer capture propagation; (b) detail view of refined mesh zones and boundary layer capture propagated to all solid surfaces; (c) grid generation error reduction; (d) boundary layer capture propagation (BL-CP) performance improvement.3.1 Space-domain awareness
3.1.1 Throughput
A single MI250X GPU, processes ≈1,200 proximity graphs s−1; the pipeline scales near-linearly to 1,024 GPUs.
3.1.2 Qualitative insight
Residual false negatives were low-Δv (<5 cm s−1) drift maneuvers. Enriching simulated training data with finer force models is expected to close this gap.
3.2 Autonomous CFD mesh generation
Figure 5 shows the AutoML optimizer raising BL-CP from an initial 8%–98% within 15 iterations. Table 3 compares BL-CP and mesh-failure rates for autonomous CFD mesh generation across four configurations, showing how the full H-I system achieves the highest compliance and lowest failure rate. Visual inspection confirms uniform boundary-layer coverage on narrow pylons and aft fairings—regions that routinely defeat rule-based scripts.
TABLE 3 | Autonomous CFD mesh-generation performance on unseen geometries.	Configuration	BL-CP (%)	Mesh-failure rate (%)
	Full H-I system	98 ± 2	2
	w/o AutoML	75	15
	w/o symbolic constraints	85	10
	w/o RL planning	80	12


3.3 Scalability
TorchVecEnv delivers a 5× speedup over CPU vectorization for environment stepping; end-to-end SDA throughput on 64 GPUs exceeds 150,000 objects s⁻¹, leaving ample head-room for future constellation growth. Table 4 shows that hyperparameter search, model training, and RL agent workflows all sustain over 88% parallel efficiency on leadership-class systems at scales up to 1,024 compute nodes.
TABLE 4 | Leadership-class scalability of core training components.	Component	Max nodes tested	Parallel efficiency
	JEPA training [DeepSpeed ZeRO-2 (Rajbhandari et al., 2019)]	512	93%
	Planning-agent PPO (DD-PPO)	1,024 GPUs	>90%
	DeepHyper search (CFD surrogate)	1,024	88%


3.4 Cross-domain ablation summary
JEPA provides the largest single lift by supplying a consistent global context; symbolic rules enforce physical validity, and RL planning reduces false alarms and accelerates convergence. Table 5 shows that removing JEPA embeddings causes the largest performance drop, followed by RL planning and then symbolic constraints.
TABLE 5 | Cross-domain ablation study: impact of removing key components.	Component removed	Δ F1 (SDA)	Δ BL-CP (CFD)
	JEPA embeddings	−0.06	−23 pp
	Symbolic constraints	−0.04	−13 pp
	RL planning	−0.08	−18 pp


3.5 Key findings
	• Reliability. High precision (0.98) in SDA and low mesh-failure rates (2%) in CFD.
	• Explainability. Traceable decision rationales via blackboard logs and constraint checks.
	• Adaptability. Robust performance on novel geometries and dynamic orbital environments.
	• Scalability. Near-linear scaling on leadership-class systems to thousands of GPUs.
	Section 4 discusses the implications of these results and outlines future research directions.

4 DISCUSSION
The results in Section 3 show that a carefully balanced blend of symbolic reasoning and modern machine-learning can meet the four requirements stated in Section 1—reliability, explainability, adaptability, and scalability—across two very different mission-critical domains. Here we interpret those findings, compare them with prior work, acknowledge limitations, and outline future research.
4.1 Implications of a hybrid-intelligence architecture
	• Multiplicative benefits. Ablations confirmed that JEPA context sharing, symbolic constraints, and RL planning each contribute distinct performance lifts; removing any one of them produced double-digit drops (Tables 6, 7). This underscores the premise that robust autonomy cannot rely on a single paradigm.
	• Cross-domain transfer. A single architectural stack achieved state-of-the-art results in both SDA (F1 = 0.98) and CFD meshing (BL-CP = 98%, failure = 2%). Such breadth suggests strong potential for horizontal transfer to adjacent domains—e.g., fusion-facility control or autonomous energy management—without redesigning core components.
	• Explainability in practice. The blackboard logs, constraint checks, and agent-level telemetry provide an audit trail lacking in most end-to-end neural systems. Preliminary operator studies (not shown) indicate that these artifacts shorten root-cause analysis time by ∼35% compared with baseline ML dashboards.
	• Industrial-scale scalability. Near-linear scaling on >2,000 GPUs, combined with 150 k objects s−1 SDA throughput, demonstrates readiness for leadership-class supercomputers. Early edge tests with 8-GPU nodes suggest that pruning the agent society to the most relevant subset retains ≥90% accuracy, hinting at deployability in resource-constrained settings.

TABLE 6 | Evaluation metrics for Space-Domain Awareness and CFD experiments.	Domain	Primary	Secondary
	SDA	Precision, recall, F1; alert latency	Graphs s−1; GPU utilization
	CFD	Final BL-CP (%); mesh-failure rate (%)	Cell count; compute hours


TABLE 7 | Space-domain awareness performance metrics on held-out three-month set.	Configuration	Precision	Recall	F1-score	Mean alert latency (s)
	Full H-I system	0.98	0.98	0.98	2.3
	w/o JEPA	0.92	0.93	0.92	3.1
	w/o symbolic constraints	0.95	0.94	0.94	2.8
	w/o RL planning	0.90	0.91	0.90	4.5


4.2 Limitations and open challenges
	1. Data realism. SDA performance still depends on simulated maneuver catalogs; low-Δv events (<5 cm s−1) remain a weak spot. Incorporating real-world maneuver logs and higher-fidelity force models is a priority.
	2. Compute overhead. Although scalable, absolute resource use is high (e.g., 128 GPUs for CFD optimization). Model-compression and iterative-sampling schemes are needed for organizations without leadership-class allocations.
	3. Constraint tuning. Symbolic rules reduce CFD failures by 86 pp, yet overly strict settings can limit exploration. An adaptive constraint-tuning loop—analogous to temperature schedules in Bayesian optimization—could dynamically relax or tighten rules based on task progress.
	4. Latent interpretability. JEPA embeddings drive much of the success, but their internal dimensions are still opaque. Visualization probes or concept-activation tests could make latent factors human-readable.
	5. Formal safety proofs. While constraints catch many invalid states, end-to-end formal verification of multi-agent interactions is still pending.

4.3 Future work
	• Adaptive constraint learning. Coupling symbolic rules with meta-learning could yield task-specific constraints that evolve as data distributions shift.
	• Rich explainability tools. We plan to generate natural-language rationales and interactive heat-maps that trace causal chains through the agent society—further closing the human-AI trust gap.
	• Edge-optimized deployment. Lightweight agents and model-distillation pipelines will target 8- to 32-GPU clusters, enabling on-premise industrial use cases.
	• Transfer learning across domains. Early experiments suggest that CFD mesh-quality embeddings seed faster convergence when fine-tuned on finite-element structural meshes; systematic studies are underway.
	• Hierarchical world models. Integrating Bayesian or ensemble world models at the planning tier could provide calibrated uncertainty, improving risk-aware decision making.
	• Human-in-the-loop reinforcement. Active-learning workflows in which monitoring operators label edge cases or override agent decisions, can both enhance safety and reduce labeling cost.

By fusing symbolic precision with data-driven adaptability, the proposed hybrid-intelligence system delivers interpretable, high-performance automation in domains that have historically resisted reliable AI. The demonstrated gains in SDA and CFD, coupled with strong scalability, suggest that such architectures provide a robust foundation for next-generation industrial and defense systems where explainability and trust are as critical as raw accuracy.
5 CONCLUSION
This work introduced a hybrid-intelligence (H-I) architecture that blends symbolic reasoning with modern machine-learning, drawing conceptual inspiration from Global Workspace Theory. Validated on two demanding domains—space-domain awareness and autonomous CFD mesh generation—the system:
	• achieved F1 = 0.98 in maneuver detection for ∼15,000 space objects,
	• raised boundary-layer capture propagation to 98% while cutting mesh-failure rates to 2%, and
	• scaled training pipelines near-linearly to >2,000 GPUs on leadership-class supercomputers.

These results confirm that the four mission-critical requirements identified in Section 1—reliability, explainability, adaptability, and scalability—can be satisfied simultaneously when symbolic constraints, context-sharing JEPA embeddings, and RL-based planning are engineered to act in concert.
Beyond SDA and CFD, the modular, agent-society design and blackboard transparency provide a transferable blueprint for high-stakes applications such as autonomous energy management, industrial-facility operations, and fusion-plant control. Ongoing work will focus on adaptive constraint tuning, edge-optimized agent distillation, deeper latent-space interpretability, and formal verification of multi-agent safety. Taken together, these directions aim to turn reliable hybrid intelligence from a promising prototype into a routine ingredient of next-generation industrial and defense systems.
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