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Editorial on the Research Topic

Merging symbolic and data-driven AI for robot autonomy
s

Robots are increasingly being deployed to assist humans in many applications such
as medicine, navigation, and industrial automation. To truly collaborate with humans
in complex environments, robots require advanced cognitive capabilities, including the
ability to reason with domain-specific commonsense knowledge and the noisy observations
obtained in the presence of partial observability and non-deterministic action outcomes.
Research in Artificial Intelligence (AI) has resulted in sophisticated symbolic formalisms
based on logics to represent commonsense domain knowledge, as well as probabilistic
and data-driven frameworks that quantitatively represent uncertainty in the decisions
made by robots.

By themselves, symbolic or stochastic AI methods have limitations when applied to
robots in complex scenarios. Symbolic AI methods reason with relational descriptions
of the attributes of the domain and the robot to guide the robot’s behavior. At the
same time, they tend to require extensive prior knowledge about the domain and the
robot. They also make it computationally expensive to operate at the level of granularity
required for precise interaction with the physical world, or to reason about uncertainty
quantitatively. Probabilistic and data-driven AI methods, on the other hand, elegantly
represent uncertainty quantitatively, and provide mechanisms for reasoning and acting at
the level of granularity required for interaction with the physical world. These methods,
however, offer limited expressiveness for complex cognitive concepts, and it is not always
meaningful to reason about uncertainty quantitatively. With the increasing use of AI
and robots in different applications, there has been renewed interest in hybrid and
neurosymbolic AI frameworks that combine symbolic and data-driven methods. The 10
contributions in this Research Topic highlight the promise and potential of such frameworks
in the context of robotics.

Describing a vision for the future, Spasokukotskiy states that the next-generation AI
systems should not only be endowed with autonomy but also “morality” that secures
alignment in large systems, i.e., they should operate safely within the values of human society.
Instead of being in full control of AI, humans would then cooperate and communicate
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with intelligent systems. Extending this idea, Pal explains the
relevance of transparency, explainability, learning from a few
examples, and the trustworthiness of an AI system, exploring how
insights into human reasoning can be a crucial ingredient for
achieving reliable operation with embodied AI systems. In addition,
Toberg et al. provide a systematic review of robot systems that
represent, reason with, learn, and/or use commonsense knowledge
in a wide range of application domains. Symbolic AI methods
can play a crucial role in the design of such AI/robotics systems,
providing the expressivity for elegantly representing human-level
concepts and effectively modeling logical reasoning capabilities.
These methods can also support more efficient and transparent
learning, and the use of human guidance to generate symbolic
abstractions. Das et al. describe a framework that extends an
inductive logic program learner to demonstrate this capability on
multiple benchmark domains, one of which focuses on planning
the assembly of mechanical structures, a core task in industrial
automation.

In addition to reasoning with prior knowledge that includes
cognitive theories, robots that interact with the physical world
process a large amount of continuous multi-modal inputs from
different information sources, including humans and other agents.
In this context, data-driven AI methods, particularly recent
advancements in deep learning, have exhibited groundbreaking
performance and established themselves as the state of the art
for problems in computer vision, natural language processing, and
complex decision-making. For example, Mitrokhin et al. describe
a hybrid framework for image-based context awareness, training
a hash neural network on images to show that hyperdimensional
vectors can be constructed such that vector-symbolic inference arises
naturally out of their output. This enhances the robustness and
explainability of the classification process, achieving state-of-the-art
accuracy on real-world image datasets such as the popular CIFAR-
10.

Acquiring symbol abstractions from raw continuous inputs,
i.e., symbol grounding, and decision-making become particularly
challenging with the high-dimensional inputs received by robots.
Despite the impressive results achieved by deep neural networks and
foundation models, their direct use in robots becomes inefficient,
hinders transparency, and provides arbitrary responses in novel
situations. Hybrid frameworks can address these limitations by
leveraging the complementary strengths of symbolic and data-
driven AI systems. For example, the framework of Nevens et al. uses
symbolic AI to enable an agent to construct a conceptual system in
which meaningful concepts are formed based on human-interpretable
feature channels. They use a dataset of images for manipulating
blocks to illustrate how concepts acquired from limited data points
can be combined and generalized to unseen instances. Sasaki et al.
show that grounding robotic gestures with quantitative meaning

calculated from word-distributed representations constructed from a
large corpus of text enable robots to display behavior that humans
perceive to be natural. Riley et al. describe a framework that
supports non-monotonic logical reasoning with abstractions of
prior commonsense knowledge and information extracted by deep
neural networks from relevant image regions; they show substantial

performance improvement compared with state of the art for visual
question answering, and vision-based planning and diagnostics.
Furthermore, Grosvenor et al. and Ghiasvand et al. document
examples of real-world integration of similar ideas in the context
of knowledge-enhanced deep visual tracking of satellites, and a
comprehensive architecture for space robotic mission planning and
control, respectively.

In summary, the contributions to this topic highlight the
importance of merging symbolic and data-driven AI methods in
the context of robotics (and AI). These papers demonstrate how
such hybrid frameworks enable robots to reason with complex
cognitive theories and noisy multimodal sensor observations to
achieve reliable, efficient, and transparent scene understanding,
planning, diagnostics, and human-robot collaboration in complex
simulated and physical domains. The papers also draw attention
to the fundamental open problems that need to be addressed to
leverage the full potential of robots in practical applications. We
hope that these papers will foster further collaboration between the
related research communities toward achieving societal benefits.
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State of the art algorithms for many pattern recognition problems rely on data-driven

deep network models. Training these models requires a large labeled dataset and

considerable computational resources. Also, it is difficult to understand the working of

these learned models, limiting their use in some critical applications. Toward addressing

these limitations, our architecture draws inspiration from research in cognitive systems,

and integrates the principles of commonsense logical reasoning, inductive learning, and

deep learning. As a motivating example of a task that requires explainable reasoning

and learning, we consider Visual Question Answering in which, given an image of a

scene, the objective is to answer explanatory questions about objects in the scene, their

relationships, or the outcome of executing actions on these objects. In this context, our

architecture uses deep networks for extracting features from images and for generating

answers to queries. Between these deep networks, it embeds components for non-

monotonic logical reasoning with incomplete commonsense domain knowledge, and

for decision tree induction. It also incrementally learns and reasons with previously

unknown constraints governing the domain’s states. We evaluated the architecture in

the context of datasets of simulated and real-world images, and a simulated robot

computing, executing, and providing explanatory descriptions of plans and experiences

during plan execution. Experimental results indicate that in comparison with an “end

to end” architecture of deep networks, our architecture provides better accuracy on

classification problems when the training dataset is small, comparable accuracy with

larger datasets, and more accurate answers to explanatory questions. Furthermore,

incremental acquisition of previously unknown constraints improves the ability to answer

explanatory questions, and extending non-monotonic logical reasoning to support

planning and diagnostics improves the reliability and efficiency of computing and

executing plans on a simulated robot.

Keywords: nonmonotonic logical reasoning, inductive learning, deep learning, visual question answering,

commonsense reasoning, human-robot collaboration
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1. INTRODUCTION

Deep neural network architectures and the associated algorithms
represent the state of the art for many perception and control
problems in which their performance often rivals that of human
experts. These architectures and algorithms are increasingly
being used for a variety of tasks such as object recognition,
gesture recognition, object manipulation, and obstacle avoidance,
in domains such as healthcare, surveillance, and navigation.
Common limitations of deep networks are that they are
computationally expensive to train, and require a large number
of labeled training samples to learn an accurate mapping between
input(s) and output(s) in complex domains. It is not always
possible to satisfy these requirements, especially in dynamic
domains where previously unseen situations often change the
mapping between inputs and outputs over time. Also, it is
challenging to understand or provide an explanatory description
of the observed behavior of a learned deep network model.
Furthermore, it is difficult to use domain knowledge to improve
the computational efficiency of learning these models or the
reliability of the decisions made by these models. Consider
a self-driving car on a busy road. Any error made by the
car, e.g., in recognizing or responding to traffic signs, can
result in serious accidents and make humans more reluctant to
use such cars. In general, it is likely that humans interacting
with a system designed for complex domains, with autonomy
in some components, will want to know why and how the
system arrived at particular conclusions; this “explainability”
will help designers improve the underlying algorithms and their
performance. Understanding the operation of these systems will
also help human users build trust in the decisions made by
these systems. Despite considerable research in recent years,
providing explanatory descriptions of decision making and
learning continues to be an open problem in AI.

We consider Visual Question Answering (VQA) as a
motivating example of a complex task that inherently requires
explanatory descriptions of reasoning and learning. Given a
scene and a natural language question about an image of the
scene, the objective of VQA is to provide an accurate answer
to the question. These questions can be about the presence
or absence of particular objects in the image, the relationships
between these objects, or the potential outcome of executing
particular actions on objects in the scene. For instance, a
system recognizing and responding to traffic signs on a self-
driving car may be posed questions such as “what is the traffic
sign in the image?,” or “what is the meaning of this traffic
sign?,” and a system controlling a robot arm constructing stable
arrangements of objects on a tabletop may be asked “why is
this structure unstable?” or “what would make the structure
stable?” We assume that any such questions are provided as
(or transcribed into) text, and that answers to questions are
also generated as text (that may be converted to speech) using
existing software. Deep networks represent the state of the
art for VQA, but are characterized by the known limitations
described above. We seek to address these limitations by drawing
inspiration from research in cognitive systems, which indicates
that reliable, efficient, and explainable reasoning and learning

can be achieved in complex problems by jointly reasoning with
commonsense domain knowledge and learning from experience.
Specifically, the architecture described in this paper tightly
couples knowledge representation, reasoning, and learning, and
exploits the complementary strengths of deep learning, inductive
learning, and non-monotonic logical reasoning with incomplete
commonsense domain knowledge. We describe the following
characteristics of the architecture:

• For any input image of a scene of interest, Convolutional
Neural Networks (CNNs) extract concise visual features
characterizing the image.
• Non-monotonic logical reasoning with the extracted features

and incomplete commonsense domain knowledge is used to
classify the input image, and to provide answers to explanatory
questions about the classification and the scene.
• Feature vectors that the non-monotonic logical reasoning is

unable to classify are used to train a decision tree classifier
that is also used to answer questions about the classification
during testing.
• Feature vectors not classified by non-monotonic logical

reasoning, along with the output of the decision tree classifier,
train a Recurrent Neural Network (RNN) that is used to
answer explanatory questions about the scene during testing.
• Feature vectors not classified by non-monotonic logical

reasoning are also used to inductively learn, and subsequently
reason with, constraints governing domain states; and
• Reasoning with commonsense knowledge is expanded (when

needed) to support planning, diagnostics, and the ability to
answer related explanatory questions.

This architecture builds on our prior work on combining
commonsense inference with deep learning (Riley and Sridharan,
2018a; Mota and Sridharan, 2019) by introducing the ability to
learn and reason with constraints governing domain states, and
extending explainable inference with commonsense knowledge
to also support planning and diagnostics to achieve any
given goal.

Although we use VQA as a motivating example, it is not
the main focus of our work. State of the art algorithms for
VQA focus on generalizing to images from different domains,
and are evaluated on benchmark datasets of several thousand
images drawn from different domains (Shrestha et al., 2019).
Our focus, on the other hand, is on transparent reasoning and
learning in any given domain in which a large, labeled dataset
is not readily available. Toward this objective, our approach
explores the interplay between non-monotonic logical reasoning,
incremental inductive learning, and deep learning. We thus
neither compare our architecture and algorithms with state of
the art algorithms for VQA, nor use large benchmark VQA
datasets for evaluation. Instead, we evaluate our architecture’s
capabilities in the context of: (i) estimating the stability of
configurations of simulated blocks on a tabletop; (ii) recognizing
different traffic signs in a benchmark dataset of images; and (iii)
a simulated robot delivering messages to the intended recipients
at different locations. The characteristics of these tasks and
domains match our objective. In both domains, we focus on
answering explanatory questions about images of scenes and the
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underlying classification problems (e.g., recognizing traffic signs).
In addition, we demonstrate how our architecture can be adapted
to enable a robot assisting humans to compute and execute plans,
and to answer questions about these plans. Experimental results
show that in comparison with an architecture based only on
deep networks, our architecture provides: (i) better accuracy on
classification problems when the training dataset is small, and
comparable accuracy on larger datasets; and (ii) significantly
more accurate answers to explanatory questions about the scene.
We also show that the incremental acquisition of state constraints
improves the ability to answer explanatory questions, and to
compute minimal and correct plans.

We begin with a discussion of related work in section 2. The
architecture and its components are described in section 3, with
the experimental results discussed in section 4. Section 5 then
describes the conclusions and directions for further research.

2. RELATED WORK

State of the art approaches for VQA are based on deep learning
algorithms (Jiang et al., 2015; Masuda et al., 2016; Malinowski
et al., 2017; Pandhre and Sodhani, 2017; Zhang et al., 2017;
Shrestha et al., 2019). These algorithms use labeled data to
train neural network architectures with different arrangements
of layers and connections between them, capturing the mapping
between the inputs (e.g., images, text descriptions) and the
desired outputs (e.g., class labels, text descriptions). Although
deep networks have demonstrated the ability to model complex
non-linear mappings between inputs and outputs for different
pattern recognition tasks, they are computationally expensive
and require large, labeled training datasets. They also make it
difficult to understand and explain the internal representations,
identify changes that will improve performance, or to transfer
knowledge acquired in one domain to other related domains. In
addition, it is challenging to accurately measure performance or
identify dataset bias, e.g., deep networks can answer questions
about images using question-answer training samples without
even reasoning about the images (Jabri et al., 2016; Teney and
van den Hengel, 2016; Zhang et al., 2017). There is on-going
research on each of these issues, e.g., to explain the operation
of deep networks, reduce training data requirements and bias,
reason with domain knowledge, and incrementally learn the
domain knowledge. We review some of these approaches below,
primarily in the context of VQA.

Researchers have developed methods to understand the
internal reasoning of deep networks and other machine learning
algorithms. Selvaraju et al. (2017) use the gradient in the
last convolutional layer of a CNN to compute the relative
contribution (importance weight) of each neuron to the
classification decision made. However, the weights of neurons
do not provide an intuitive explanation of the CNN’s operation
or its internal representation. Researchers have also developed
general approaches for understanding the predictions of any
given machine learning algorithm. For instance, Koh and Liang
(2017) use second-order approximations of influence diagrams
to trace any model’s prediction through a learning algorithm

back to the training data in order to identify training samples
most responsible for any given prediction. Ribeiro et al. (2016)
developed a framework that analyzes any learned classifier model
by constructing a interpretable simpler model that captures the
essence of the learned model. This framework formulates the
task of explaining the learned model, based on representative
instances and explanations, as a submodular optimization
problem. In the context of VQA, Norcliffe-Brown et al. (2018)
provide interpretability by introducing prior knowledge of scene
structure as a graph that is learned from observations based on
the question under consideration. Object bounding boxes are
graph nodes while edges are learned using an attention model
conditioned on the question. Mascharka et al. (2018) augment
a deep network architecture with an image-space attention
mechanism based on a set of composable visual reasoning
primitives that help examine the intermediate outputs of each
module. Li et al. (2018) introduce a captioning model to generate
an image’s description, reason with the caption and the question
to construct an answer, and use the caption to explain the
answer. However, these algorithms do not support the use of
commonsense reasoning to (i) provide meaningful explanatory
descriptions of learning and reasoning; (ii) guide learning to
be more efficient; or (iii) provide reliable decisions when large
training datasets are not available.

The training data requirements of a deep network can be
reduced by directing attention to data relevant to the tasks at
hand. In the context of VQA, Yang et al. (2016) use a Long
Short-Term Memory (LSTM) network to map the question to
an encoded vector, extract a feature map from the input image
using a CNN, and use a neural network to compute weights for
feature vectors based on their relevance to the question. A stacked
attention network is trained to map the weighted feature vectors
and question vector to the answer, prioritizing feature vectors
with greater weights. Schwartz et al. (2017) use learned higher-
order correlations between various data modalities to direct
attention to elements in the data modalities that are relevant
to the task at hand. Lu et al. (2016) use information from the
question to identify relevant image regions and uses information
from the image to identify relevant words in the question. A co-
attentional model jointly and hierarchically reasons about the
image and the question at three levels, embedding words in a
vector space, using one-dimensional CNNs tomodel information
at the phrase level, and using RNNs to encode the entire question.
A generalization of this work, a Bilinear Attention Network,
considers interactions between all region proposals in the image
with all words in the (textual) question (Kim et al., 2018). A Deep
Attention Neural Tensor Network for VQA, on the other hand,
uses tensor-based representations to discover joint correlations
between images, questions, and answers (Bai et al., 2018). The
attention module is based on a discriminative reasoning process,
and regression with KL-divergence losses improves scalability of
training and convergence. Recent work by Anderson et al. (2018)
combines top-down and bottom-up attention mechanisms, with
the top-down mechanism providing an attention distribution
over object proposals provided by the bottom-up mechanism.

In addition to reducing the training data requirements,
researchers have focused on reducing the number of annotated
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samples needed for training, and on minimizing the bias in
deep network models. In the context of VQA, Lin et al.
(2014) iteratively revise a model trained on an initial training
set by expanding the training set with image-question pairs
involving concepts it is uncertain about, with an “oracle”
(human annotater) providing the answers. This approach reduces
annotation time, but the database includes just as many images
and questions as before. Goyal et al. (2017) provide a balanced
dataset with each question associated with a pair of images that
require different answers, and provide a counterexample based
explanation for each image-question pair. Agrawal et al. (2018),
on the other hand, separate the recognition of visual concepts
in an image from the identification of an answer to any given
question, and include inductive biases to prevent the learned
model from relying predominantly on priors in the training data.

In computer vision, robotics and other applications, learning
from data can often be made more efficient by reasoning with
prior knowledge about the domain. In the context of VQA,
Wang et al. (2017) reason with knowledge about scene objects
to answer common questions about these objects, significantly
expanding the range of natural language questions that can
be answered without making the training data requirements
impractical. However, this approach does not reduce the amount
of data required to train the deep network. Furbach et al.
(2010) directly use a knowledge base to answer questions and
do not consider the corresponding images as inputs. Wagner
et al. (2018), on the other hand, use physics engines and
prior knowledge of domain objects to realistically simulate and
explore different situations. These simulations guide the training
of deep network models that anticipate action outcomes and
answer questions about all situations. Based on the observation
that VQA often requires reasoning over multiple steps, Wu
et al. (2018) construct a chain of reasoning for multi-step and
dynamic reasoning with relations and objects. This approach
iteratively forms new relations between objects using relational
reasoning operations, and forms new compound objects using
object refining operations, to improve VQA performance. Given
the different components of a VQA system, Teney and van den
Hengel (2018) present a meta learning approach to separate
question answering from the information required for the task,
reasoning at test time over example questions and answers to
answer any given question. Two meta learning methods adapt
a VQA model without the need for retraining, and demonstrate
the ability to provide novel answers and support vision and
language learning. Rajani and Mooney (2018) developed an
ensemble learning approach, Stacking With Auxiliary Features,
which combines the results of multiple models using features of
the problem as context. The approach considers four categories
of auxiliary features, three of which are inferred from image-
question pairs while the fourth uses model-specific explanations.

Research in cognitive systems indicates that reliable, efficient,
and explainable reasoning and learning can be achieved by
reasoning with domain knowledge and learning from experience.
Early work by Gil (1994) enabled an agent to reason with first-
order logic representations and incrementally refined action
operators. In such methods, it is difficult to perform non-
monotonic reasoning, or to merge new, unreliable information

with existing beliefs. Non-monotonic logic formalisms have
been developed to address these limitations, e.g., Answer Set
Prolog (ASP) has been used in cognitive robotics (Erdem and
Patoglu, 2012) and other applications (Erdem et al., 2016). ASP
has been combined with inductive learning to monotonically
learn causal laws (Otero, 2003), and methods have been
developed to learn and revise domain knowledge represented as
ASP programs (Balduccini, 2007; Law et al., 2018). Cognitive
architectures have also been developed to extract information
from perceptual inputs to revise domain knowledge represented
in first-order logic (Laird, 2012), and to combine logic and
probabilistic representations to support reasoning and learning
in robotics (Zhang et al., 2015; Sarathy and Scheutz, 2018).
However, approaches based on classical first-order logic are
not expressive enough, e.g., modeling uncertainty by attaching
probabilities to logic statements is not always meaningful. Logic
programming methods, on the other hand, do not support one or
more of the desired capabilities such as efficient and incremental
learning of knowledge, reasoning efficiently with probabilistic
components, or generalization as described in this paper. These
challenges can be addressed using interactive task learning,
a general knowledge acquisition framework that uses labeled
examples or reinforcement signals obtained from observations,
demonstrations, or human instructions (Laird et al., 2017;
Chai et al., 2018). Sridharan and Meadows (2018) developed
such a framework to combine non-monotonic logical reasoning
with relational reinforcement learning and inductive learning
to learn action models to be used for reasoning or learning
in dynamic domains. In the context of VQA, there has been
interesting work on reasoning with learned symbolic structure.
For instance, Yi et al. (2018) present a neural-symbolic VQA
system that uses deep networks to infer structural object-based
scene representation from images, and to generate a hierarchical
(symbolic) program of functional modules from the question. An
executor then runs the program on the representation to answer
the question. Such approaches still do not (i) integrate reasoning
and learning such that they inform and guide each other; or (ii)
use the rich domain-specific commonsense knowledge that is
available in any application domain.

In summary, deep networks represent the state of the art
for VQA and many other pattern recognition tasks. Recent
surveys on VQA methods indicate that despite considerable
research, it is still difficult to use these networks to support
efficient learning, intuitive explanations, or generalization to
simulated and real-world images (Pandhre and Sodhani, 2017;
Shrestha et al., 2019). Our architecture draws on principles
of cognitive systems to address these limitations. It tightly
couples deep networks with components for non-monotonic
logical reasoning with commonsense domain knowledge, and
for learning incrementally from samples over which the learned
model makes errors. This work builds on our proof of concept
architecture that integrated deep learning with commonsense
inference for VQA (Riley and Sridharan, 2018a). It also builds on
work in our research group on using commonsense inference and
learned state constraints to guide deep networks that estimate
object stability and occlusion in images (Mota and Sridharan,
2019). In comparison with our prior work, we introduce a
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FIGURE 1 | Architecture combines the complementary strengths of deep learning, non-monotonic logical reasoning with commonsense domain knowledge, and

decision-tree induction.

new component for incrementally learning constraints governing
domain states, expand reasoning with commonsense knowledge
to support planning and diagnostics, explore the interplay
between the architecture’s components, and discuss detailed
experimental results.

3. ARCHITECTURE

Figure 1 is an overview of our architecture that provides
answers to explanatory questions about images of scenes and
an underlying classification problem. The architecture seeks
to improve accuracy and reduce training effort, i.e., reduce
training time and the number of training samples, by embedding
non-monotonic logical reasoning and inductive learning in a
deep network architecture. We will later demonstrate how the
architecture can be adapted to address planning problems on a
simulated robot—see section 3.5. The architecture may be viewed
as having four key components that are tightly coupled with
each other.

1. A component comprising CNN-based feature extractors,
which are trained and used to map any given image of a scene
under consideration to a vector of image features.

2. A component that uses one of two methods to classify
the feature vector. The first method uses non-monotonic
reasoning with incomplete domain knowledge and the
features to assign a class label and explain this decision. If
the first method cannot classify the image, the second method

trains and uses a decision tree to map the feature vector to a
class label and explain the classification.

3. A component that answers explanatory questions. If non-
monotonic logical reasoning is used for classification, it is also
used to provide answers to these questions. If a decision tree
is instead used for classification, an RNN is trained to map the
decision tree’s output, the image features, and the question, to
the corresponding answer.

4. A component that uses the learned decision tree and the
existing knowledge base to incrementally construct and
validate constraints on the state of the domain. These
constraints revise the existing knowledge that is used for
subsequent reasoning.

This architecture exploits the complementary strengths
of deep learning, non-monotonic logical reasoning, and
incremental inductive learning with decision trees. Reasoning
with commonsense knowledge guides learning, e.g., the
RNN is trained on (and processes) input data that cannot be
processed using existing knowledge. The CNNs and RNN can
be replaced by other methods for extracting image features and
answering explanatory questions (respectively). Also, although
the CNNs and RNN are trained in an initial phase in this
paper, these models can be revised over time if needed. We
hypothesize that embedding non-monotonic logical reasoning
with commonsense knowledge and the incremental updates
of the decision tree, between the CNNs and the RNN, makes
the decisions more transparent, and makes learning more time
and sample efficient. Furthermore, the overall architecture and
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FIGURE 2 | Illustrative images of structures of blocks of different colors and sizes; these images were obtained from a physics-based simulator for the SS domain.

FIGURE 3 | Illustrative images of traffic signs from the BelgiumTS dataset (Timofte et al., 2013).

methodology can be adapted to different domains. In this paper,
we will use the following two domains to illustrate and evaluate
the architecture’s components and the methodology.

1. Structure Stability (SS): this domain has different structures,
i.e., different arrangements of simulated blocks of different
colors and sizes, on a tabletop—see Figure 2 for some
examples. We generated 2,500 such images using a physics-
based simulator. The relevant features of the domain include
the number of blocks, whether the structure is on a lean,
whether the structure has a narrow base, and whether any
block is placed such that it is not well balanced on top
of the block below. The objective in this domain is to
classify structures as being stable or unstable, and to answer
explanatory questions such as “why is this structure unstable?”
and “what should be done to make this structure stable?”

2. Traffic Sign (TS): this domain focuses on recognizing traffic
signs from images—see Figure 3 for some examples. We used
the BelgiumTS benchmark dataset (Timofte et al., 2013) with
≈ 7000 real-world images (total) of 62 different traffic signs.
This domain’s features include the primary symbol of the
traffic sign, the secondary symbol, the shape of the sign,
the main color in the middle, the border color, the sign’s
background image, and the presence or absence of a cross (e.g.,
some signs have a red or black cross across them to indicate
the end of a zone, with the absence of the cross indicating the
zone’s beginning). The objective is to classify the traffic signs
and answer explanatory questions such as “what is the sign’s
message?” and “how should the driver respond to this sign?”

In addition to these two domains, section 3.5 will introduce
the Robot Assistant (RA) domain, a simulated domain to
demonstrate the use of our architecture for computing and
executing plans to achieve assigned goals. In the RA domain,
a simulated robot reasons with existing knowledge to deliver
messages to target people in target locations, and to answer
explanatory questions about the plans and observed scenes.

The focus of our work is on understanding and using the
interplay between deep learning, commonsense reasoning, and
incremental learning, in the context of reliable and efficient scene
understanding in any given dynamic domain. The benchmark
VQA datasets and the algorithms, on the other hand, focus on
generalizing across images from different scenarios in different
domains, making it difficult to support the reasoning and
learning capabilities of our architecture. We thus do not use these
datasets or algorithms in our evaluation.

3.1. Feature Extraction Using CNNs
The first component of the architecture trains CNNs to map
input images to concise features representing the objects of
interest in the images. For the SS domain and TS domain, semi-
automated annotation was used to label the relevant features in
images for training and testing. The selection of these features for
each domain was based on domain expertise. In the SS domain,
the features of interest are:

• Number of blocks in structure (number ∈ [1, 5]);
• Whether the structure is on a lean (true, false);
• Width of the base block (wide, narrow); and
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FIGURE 4 | Basic CNN model used for extracting each feature in our architecture. CNNs for individual features may end up with a different number of convolutional

layers and pooling layers.

• Whether any block is displaced, i.e., not well balanced on top
of the block below (true, false).

In the TS domain, the features of interest are:

• Primary symbol in the middle of the traffic sign; 39 primary
symbols such as bumpy_road, slippery_road, stop, left_turn,
and speed_limit;
• Secondary symbol in the traffic sign; 10 secondary symbols

such as disabled, car and fence;
• Shape of the sign; circle, triangle, square, hexagon, rectangle,

wide rectangle, diamond, or inverted triangle;
• Main color in the middle of the sign; red, white, or blue;
• Border color at the edge of the sign; red, white, or blue;
• Background image, e.g., some symbols are placed over a square

or a triangle; and
• Presence of a red or black cross across a sign to indicate a zone’s

end or invalidity; the sign without the cross indicates the zone’s
beginning or validity, e.g., a parking sign with a cross implies
no parking.

To reduce the training data requirements and simplify the
training of CNNs, we (i) train a separate CNN for each feature to
be extracted from an image; and (ii) start with a basic model for
each CNN and incrementally make it more complex as needed.
The number of CNNs is thus equal to the number of features
to be extracted from each image for any given domain, and the
CNN trained for each feature may be different even within a
particular domain. The basic CNN model we begin with has an
input layer, a convolutional layer, a pooling layer, a dense layer,
a dropout layer, and a logit layer, as seen on the left of Figure 4.
Additional convolutional and pooling layers are added until the
feature extraction accuracy converges or exceeds a threshold
(e.g., ≥ 90%). Our architecture also includes the option of fine-
tuning previously trained CNN models instead of starting from

scratch. The right side of Figure 4 shows a CNNmodel learned in
our example domains, which has three convolutional layers and
pooling layers. We trained and validated these CNNs in an initial
phase, and used them for evaluation. Our code for constructing
these CNNs for features (in our example domains) is in our
repository (Riley and Sridharan, 2018b).

3.2. Classification Using Non-monotonic
Logical Reasoning or Decision Trees
The feature vector extracted from an image is used for decision
making. In the SS domain and TS domain, decisions take the
form of assigning a class label to each feature vector1. The second
component of our architecture performs this task using one of
two methods: (i) non-monotonic logical inference using ASP; or
(ii) a classifier based on a learned decision tree. We describe these
two methods below.

3.2.1. ASP-Based Inference With Commonsense

Knowledge
The first step in reasoning with incomplete commonsense
domain knowledge is the representation of this knowledge. In
our architecture, an action language is used to describe the
dynamics of any domain under consideration. Action languages
are formal models of parts of natural language used for describing
transition diagrams of dynamic systems. Our architecture uses
action languageALd (Gelfond and Inclezan, 2013), with a sorted
signature 6 that can be viewed as the vocabulary used to describe
the domain’s transition diagram. The signature6 comprises basic
sorts, which are similar to types in a programming language,
statics, i.e., domain attributes whose values do not change over
time, fluents, i.e., domain attributes whose values can change over

1In the RA domain discussed in section 3.5, decision making also includes

planning and diagnostics.
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time, and actions. The domain’s fluents can be basic, i.e., those
that obey the laws of inertia and are changed directly by actions,
or defined, i.e., those that do not obey the laws of inertia and are
defined by other attributes. A domain attribute or its negation is
a literal; of all its variables are ground, it is a ground literal. ALd

allows three types of statements: causal law, state constraint and
executability condition.

a causes lb if p0, . . . , pm (Causal law)

l if p0, . . . , pm (State constraint)

impossible a0, . . . , ak if p0, . . . , pm (Executability condition)

where a is an action, l is a literal, lb is a basic literal, and p0, . . . , pm
are domain literals.

The domain representation (i.e., the knowledge base)
comprises a system description D, which is a set of statements
of ALd, and a history H. D comprises a sorted signature 6 and
axioms describing the domain dynamics. For instance, in the SS
domain, 6 includes basic sorts such as structure, color, size, and
attribute; the basic sorts of the TS domain include main_color,
other_color, main_symbol, other_symbol, shape, cross etc. The
sort step is also in 6 to support temporal reasoning over time
steps. The statics and fluents in the SS domain include:

num_blocks(structure, num), block_color(block, color), (1)

block_size(block, size)block_displaced(structure), stable(structure)

which correspond to the image features extracted in the domain,
and are described in terms of their arguments’ sorts. In a similar
manner, statics and fluents of the TS domain include:

primary_symbol(sign,main_symbol),

primary_color(sign,main_color)

secondary_symbol(sign, other_symbol),

secondary_color(sign, other_color)

sign_shape(shape), background_image(image) (2)

In both domains, signature 6 includes a predicate
holds(fluent, step), which implies that a particular fluent holds
true at a particular time step. As stated above, 6 for a dynamic
domain typically includes actions that cause state transitions,
but this capability is not needed to answer explanatory questions
about specific scenes and the underlying classification problem
in our (SS, TS) domains. For ease of explanation, we thus
temporarily disregard the modeling of actions, and their
preconditions and effects. We will revisit actions in section 3.5
when we consider planning tasks in the RA domain.

Given a signature 6 for a domain, a state of the domain
is a collection of ground literals, i.e., statics, fluents, actions
and relations with values assigned to their arguments—for more
details, please see Gelfond and Kahl (2014) and Sridharan et al.
(2019). The axioms of D are defined in terms of the signature
and govern domain dynamics; this typically includes a distributed
representation of the constraints related to domain actions,
i.e., causal laws and executability conditions that define the

preconditions and effects of actions, and constraints related to
states, i.e., state constraints. In the SS domain and TS domain,
axioms govern the belief about domain states; we will discuss
axioms related to actions in section 3.5 when we discuss the RA
domain. Specifically, the axioms of the SS domain include state
constraints such as:

¬stable(S) if block_displaced(S) (3a)

stable(S) if num_blocks(S, 2), ¬structure_type(S, lean) (3b)

where Statement 3(a) says that any structure with a block that is
displaced significantly is unstable, and Statement 3(b) says that
any pair of blocks without a significant lean is stable.

Axioms of the TS domain include statements such as:

sign_type(TS, no_parking) if primary_color(TS, blue),

primary_symbol(TS, blank),

cross(TS), shape(TS, circle) (4a)

sign_type(TS, stop) if primary_color(TS, red),

primary_symbol(TS, stoptext),

shape(TS, octagon) (4b)

where Statement 4(a) implies that a blue, blank, circular traffic
sign with a cross across it is a no parking sign. Statement 4(b)
implies that a red, octagon-shaped traffic sign with the text “stop”
is a stop sign.

The history H of a dynamic domain is usually a record of
fluents observed to be true or false at a particular time step,
i.e., obs(fluent, boolean, step), and the successful execution of an
action at a particular time step, i.e., hpd(action, step); for more
details, see Gelfond and Kahl (2014). The domain knowledge in
many domains often includes default statements that are true in
all but a few exceptional circumstances. For example, we may
know in the SS domain that “structures with two blocks of the
same size are usually stable.” To encode such knowledge, we use
our recent work that expanded the notion of history to represent
and reason with defaults describing the values of fluents in the
initial state (Sridharan et al., 2019).

Key tasks of an agent equipped with a system description
D and history H include reasoning with this knowledge for
inference, planning and diagnostics. In our architecture, these
tasks are accomplished by translating the domain representation
to a program 5(D,H) in CR-Prolog, a variant of ASP that
incorporates consistency restoring (CR) rules (Balduccini and
Gelfond, 2003). In this paper, we use the terms “ASP” and
“CR-Prolog” interchangeably. ASP is a declarative programming
paradigm designed to represent and reason with incomplete
commonsense domain knowledge. It is based on stable
model semantics, and supports default negation and epistemic
disjunction. For instance, unlike “¬a”, which implies that a
is believed to be false, “not a” only implies a is not believed
to be true. Also, unlike “p ∨ ¬p” in propositional logic,
“p or ¬p” is not tautological. Each literal can thus be true,
false or unknown, and the agent reasoning with domain
knowledge does not believe anything that it is not forced to
believe. ASP can represent recursive definitions, defaults, causal
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relations, special forms of self-reference, and language constructs
that occur frequently in non-mathematical domains, and are
difficult to express in classical logic formalisms (Baral, 2003;
Gelfond and Kahl, 2014). Unlike classical first-order logic, ASP
supports non-monotonic logical reasoning, i.e., it can revise
previously held conclusions or equivalently reduce the set of
inferred consequences, based on new evidence—this ability
helps the agent recover from any errors made by reasoning
with incomplete knowledge. ASP and other paradigms that
reason with domain knowledge are often criticized for requiring
considerable (if not complete) prior knowledge and manual
supervision, and for being unwieldy in large, complex domains.
However, modern ASP solvers support efficient reasoning in
large knowledge bases with incomplete knowledge, and are
used by an international research community for cognitive
robotics (Erdem and Patoglu, 2012; Zhang et al., 2015) and other
applications (Erdem et al., 2016). For instance, recent work has
demonstrated that ASP-based non-monotonic logical reasoning
can be combined with: (i) probabilistic reasoning for reliable and
efficient planning and diagnostics (Sridharan et al., 2019); and (ii)
relational reinforcement learning and active learning methods
for interactively learning or revising commonsense domain
knowledge based on input from sensors and humans (Sridharan
and Meadows, 2018).

In our architecture, the automatic translation from statements
in ALd to the program 5 is based on a custom-designed script2.
The resultant program 5 includes the signature and axioms
of D, inertia axioms, reality checks, closed world assumptions
for defined fluents and actions, and observations, actions, and
defaults fromH. For instance, Statements 3(a-b) are translated to:

¬stable(S) ← block_displaced(S) (5a)

stable(S) ← num_blocks(S, 2), ¬structure_type(S, lean) (5b)

In addition, features extracted from an input image (to be
processed) are encoded as the initial state of the domain in
5. Each answer set of 5(D,H) then represents the set of
beliefs of an agent associated with this program. Algorithms for
computing entailment, and for planning and diagnostics, reduce
these tasks to computing answer sets of CR-Prolog programs.
We compute answer sets of CR-Prolog programs using the
SPARC system (Balai et al., 2013). The CR-Prolog programs
for our example domains are in our open-source software
repository (Riley and Sridharan, 2018b). For the classification
task in our example domains, the relevant literals in the answer
set provide the class label and an explanatory description of the
assigned label (see section 3.3); we will consider the planning
task in section 3.5. The accuracy of the inferences drawn from
the encoded knowledge depends on the accuracy and extent of
the knowledge encoded, but encoding comprehensive domain
knowledge is difficult. The decision of what and how much
knowledge to encode is made by the designer.

2An independent group of researchers has developed a general-purposed software

to automatically translate any description inALd to the corresponding CR-Prolog

program; we expect this software to be made publicly available soon.

3.2.2. Decision Tree Classifier
If ASP-based inference cannot classify the feature vector
extracted from an image, the feature vector is mapped to a class
label using a decision tree classifier learned from labeled training
examples. In a decision tree classifier, each node is associated
with a question about the value of a particular feature, with the
child nodes representing the different answers to the question,
i.e., the possible values of the feature. Each node is also associated
with samples that satisfy the corresponding values of the features
along the path from the root node to this node. We use a
standard implementation of a decision tree classifier (Duda et al.,
2000). This implementation uses the Gini measure to compute
information gain (equivalently, the reduction in entropy) that
would be achieved by splitting an existing node based on each
feature that has not already been used to create a split in the
tree. Among the features that provide a significant information
gain, the feature that provides the maximum information gain
is selected to split the node. If none of the features would result
in any significant information gain, this node becomes a leaf
node with a class label that matches a majority of the samples at
the node.

The decision tree’s search space is quite specific since it only
considers samples that could not be classified by ASP-based
reasoning. The decision tree does not need to generalize as much
as it would have to if it had to process every training (or test)
sample in the dataset. Also, although overfitting is much less
likely, we still use pruning to minimize the effects of overfitting.
Figure 5 shows part of a learned decision tree classifier; specific
nodes used to classify a particular example are highlighted to
indicate that 94% of the observed examples of structures that have
fewer than three blocks, do not have a significant lean, and do
not have a narrow base, correspond to stable structures. These
“active” nodes along any path in the decision tree that is used
to classify an example can be used to explain the classification
outcome in terms of the values of particular features that were
used to arrive at the class label assigned to a specific image
under consideration.

3.3. Answering Explanatory Questions
The third component of the architecture provides two methods
for answering explanatory questions. The available inputs are the
(i) question; (ii) vector of features extracted from the image under
consideration; and (iii) classification output. The human designer
also provides pre-determined templates for questions and their
answers. In our case, we use a controlled vocabulary, templates
based on language models and parts of speech for sentences,
and existing software for natural language processing. Any given
question is transcribed using the controlled vocabulary, parsed
(e.g., to obtain parts of speech), and matched with the templates
to obtain a relational representation. Recall that questions in the
SS domain are of the form: “is this structure stable/unstable?” and
“what is making this structure stable/unstable?” These questions
can be translated into relational statements such as stable(S) or
¬stable(S) and used as a question, or as the desired consequence,
during inference or in a search process. In a similar manner,
questions in the TS domain such as: “what sign is this?” and “what
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FIGURE 5 | Example of part of a decision tree constructed from labeled samples and used for classification in the SS domain. The nodes used to classify a particular

example are highlighted. Each leaf shows a class label and indicates the proportion of the labeled examples (at the leaf) that correspond to this label.

is the sign’s message?” can be translated into sign_type(S, sign)
and used for subsequent processing.

The first method for answering explanatory questions is based
on the understanding that if the feature vector extracted from
the image is processed successfully using ASP-based reasoning,
it is also possible to reason with the existing knowledge to answer
explanatory questions about the scene. To support such question
answering, we need to revise the signature 6 in the system
description D of the domain. For instance, we add sorts such
as query_type, answer_type, and query to encode different types
of queries and answers. We also introduce suitable relations
to represent questions, answers to these questions, and more
abstract attributes, e.g., of structures of blocks, traffic signs etc.

In addition to the signature, we also augment the axioms inD

to support reasoning with more abstract attributes, and to help
construct answers to questions. For instance, we can include an
axiom such as:

many_blocks(S) ← unstable(S), ¬base(S, narrow),

¬struc_type(S, lean), ¬block_displaced(S)
(6)

which implies that if a structure (of blocks) is not on a narrow
base, does not have a significant lean, and does not have blocks
significantly displaced, any instability in the structure implies
(and is potentially because) there are too many blocks in the
structure. Once the ASP program 5(D,H) has been revised as
described above, we can compute answer set(s) of this program
to obtain the beliefs of the agent associated with this program.
For any given question, the answer set(s) are parsed based on the
known controlled vocabulary and templates (for questions and
answers) to extract relevant literals—these literals are included in

the corresponding templates to construct answers to explanatory
questions. These answers can also be converted to speech using
existing software.

The second method for answering explanatory questions is
invoked if the decision tree is used to process (i.e., classify in
the context of the SS domain and TS domain) the vector of
image features. The inability to classify the feature vector through
ASP-based reasoning is taken to imply that the encoded domain
knowledge is insufficient to answer explanatory questions about
the scene. In this case, an LSTM network-based RNN is trained
and used to answer the explanatory questions. The inputs are
the feature vector, classification output, and a vector representing
the transcribed and parsed query. The output (provided during
training) is in the form of answers in the predetermined
templates. Similar to the approach used in section 3.2, the RNN
is built incrementally during training. We begin with one or
two hidden layer(s), as shown in Figure 6, and add layers as
long as it results in a significant increase in the accuracy. We
also include the option of adding a stack of LSTMs if adding
individual layers does not improve accuracy significantly. In our
example domains, the RNN constructed to answer explanatory
questions had as many as 26–30 hidden layers and used a softmax
function to provide one of about 50 potential answer types. An
example of the code used to train the RNN is available in our
repository (Riley and Sridharan, 2018b).

3.4. Learning State Constraints
The components of the architecture described so far support
reasoning with commonsense knowledge, learned decision trees,
and deep networks, to answer explanatory questions about the
scene and an underlying classification problem. Inmany practical
domains, the available knowledge is incomplete, the number of
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FIGURE 6 | Example of the basic RNN used to construct explanations. The

RNNs learned for the example domains considered in this paper have 26–30

hidden layers.

labeled examples is small, or the encoded knowledge changes
over time. The decisions made by the architecture can thus be
incorrect or sub-optimal, e.g., a traffic sign can be misclassified
or an ambiguous answer may be provided to an explanatory
question. The fourth component of our architecture seeks to
address this problem by supporting incremental learning of
domain knowledge. Our approach is inspired by the inductive
learning methods mentioned in section 2, e.g., Sridharan and
Meadows (2018) use relational reinforcement learning and
decision tree induction to learn domain axioms. The work
described in this paper uses decision tree induction to learn
constraints governing domain states. The methodology used in
this component, in the context of VQA, is as follows:

1. Identify training examples that are not classified, or are
classified incorrectly, using the existing knowledge. Recall
that this step is accomplished by the component described in
section 3.2, which processes each training example using the
existing knowledge encoded in the CR-Prolog program, in an
attempt to assign a class label to the example.

2. Train a decision tree using the examples identified in Step-
1 above. Recall that this step is also accomplished by the
component described in section 3.2.

3. Identify paths in the decision tree (from root to leaf) such
that (i) there are a sufficient number of examples at the leaf,
e.g., 10% of the training examples; and (ii) all the examples at
the leaf have the same class label. Since the nodes correspond
to checks on the values of domain features, the paths will
correspond to combinations of partial state descriptions and
class labels that have good support among the labeled training
examples. Each such path is translated into a candidate axiom.
For instance, the following are two axioms identified by this
approach in the SS domain:

¬stable(S) ← num_blocks(S, 3), base(S,wide), (7a)

struc_type(S, lean)

¬stable(S) ← num_blocks(S, 3), base(S, narrow), (7b)

struc_type(S, lean)

4. Generalize candidate axioms if possible. For instance, if one
candidate axiom is a over-specification of another existing
axiom, the over-specified version is removed. In the context
of the axioms in Statement 7(a-b), the second literal represents
redundant information, i.e., if a structure with three blocks has
a significant lean, it is unstable irrespective of whether the base
of the structure is narrow or wide. Generalizing over these two
axioms results in the following candidate axiom:

¬stable(S) ← num_blocks(S, 3), struc_type(S, lean) (8)

which only includes the literals that encode the
essential information.

5. Validate candidate axioms one at a time. To do so, the
candidate axiom is added to the CR-Prolog program encoding
the domain knowledge. A sufficient number of training
examples (e.g., 10% of the dataset, as before) relevant
to this axiom, i.e., the domain features encoded by the
examples should satisfy the body of the axiom, are drawn
randomly from the training dataset. If processing these
selected examples with the updated CR-Prolog program
results in misclassifications, the candidate axiom is removed
from further consideration.

6. Apply sanity checks to the validated axioms. The validated
axioms and existing axioms are checked to remove over-
specifications and retain the most generic version of any
axiom. Axioms that pass these sanity checks are added to the
CR-Prolog program and used for subsequent reasoning.

Section 4.3 examines the effect of such learned constraints on
classification and VQA performance.

3.5. Planning With Domain Knowledge
The description of the architecture’s components has so far
focused on classification and VQA, and reasoning has been
limited to inference with knowledge. However, the architecture is
also applicable to planning (and diagnostics) problems. Consider
the RA domain in which a simulated robot has to navigate and
deliver messages to particular people in particular places, and to
answer explanatory questions, i.e., the domain includes aspects of
planning and VQA. Figure 7 depicts this domain and a simulated
scenario in it; semantic labels of the offices and rooms are shown
in the upper half.

A robot planning and executing actions in the real world
has to account for the uncertainty in sensing and actuation.
In other work, we addressed this issue by coupling ASP-based
coarse-resolution planning with probabilistic fine-resolution
planning and execution (Sridharan et al., 2019). In this
paper, we temporarily abstract away such probabilistic models
of uncertainty to thoroughly explore the interplay between
reasoning and learning, including the effect of added noise in
sensing and actuation (in simulation).
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FIGURE 7 | Block diagram and a simulated scenario in the RA domain in

which the robot has to deliver messages to people in target locations.

To support planning, the signature 6 of system description
D has basic sorts such as: place, robot, person, object, entity,
status, and step, which are arranged hierarchically, e.g., robot
and person are subsorts of agent, and agent and object are
subsorts of entity. 6 also includes ground instances of sorts, e.g.,
office, workshop, kitchen, and library are instances of place, and
Sarah, Bob, John, and Sally are instances of person. As before,
domain attributes and actions are described in terms of the
sorts of their arguments. The fluents include loc(agent, place),
which describes the location of the robot and people in the
domain, and message_status(message_id, person, status), which
denotes whether a particular message has been delivered
(or remains undelivered) to a particular person. Static
attributes include relations such as next_to(place, place) and
work_place(person, place) to encode the arrangement of places
and the work location of people (respectively) in the domain.
Actions of the domain include:

move(robot, place) (9)

deliver(robot,message_id, person)

which move the robot to a particular place, and cause a robot to
deliver a particular message to a particular person (respectively).
For ease of explanation, we assume that the locations of people
are defined fluents whose values are determined by external
sensors, and that the locations of objects are static attributes; as
a result, we do not consider actions that change the value of these
attributes. The signature 6 also includes (as before) the relation
holds(fluent, step) to imply that a particular fluent is true at a
particular time step.

Axioms of the RA domain capture the domain’s dynamics.
These axioms include causal laws, state constraints and
executability conditions encoded as statements in ALd such as:

move(rob1, L) causes loc(rob1, L) (10a)

deliver(rob1, ID, P) causes message_status(ID, P, delivered)
(10b)

loc(P, L) if work_place(P, L), not ¬loc(P, L) (10c)

¬loc(T, L2) if loc(T, L1), L1 6= L2 (10d)

impossible deliver(rob1, ID, P) if loc(rob1, L1), loc(P, L2),

L1 6= L2 (10e)

impossible move(rob1, L) if loc(rob1, L) (10f)

where Statement 10(a) states that executing a move action causes
the robot’s location to be the target place; Statement 10(b) states
that executing a deliver action causes the message to be delivered
to the desired person; Statement 10(c) is a constraint stating that
unless told otherwise the robot expects (by default) a person
to be in her/his place of work; Statement 10(d) is a constraint
stating that any thing can be in one place at time; Statement 10(e)
implies that a robot cannot deliver a message to an intended
recipient if the robot and the person are not in the same place;
and Statement 10(f) states that a robot cannot move to a location
if it is already there.

As described in section 3.2, the domain history is a record of
observations (of fluents), the execution of actions, and the values
of fluents in the initial state. Also, planning (similar to inference)
is reduced to computing answer set(s) of the program 5(D,H)
after including some helper axioms for computing a minimal
sequence of actions; for examples, please see Gelfond and Kahl
(2014) and Sridharan et al. (2019). If the robot’s knowledge of the
domain is incomplete or incorrect, the computed plans may be
suboptimal or incorrect. The approach described in section 3.4
can then be used to learn the missing constraints; we will explore
the interplay between learning and planning in section 4.4.

4. EXPERIMENTAL SETUP AND RESULTS

In this section, we describe the results of experimentally
evaluating the following hypotheses about the capabilities of
our architecture:

• H1: for the underlying classification problem, our architecture
outperforms an architecture based on just deep networks for
small training datasets, and provides comparable performance
as the size of the dataset increases;
• H2: in the context of answering explanatory questions,

our architecture provides significantly better performance in
comparison with an architecture based on deep networks;
• H3: our architecture supports reliable and incremental

learning of state constraints, which improves the ability to
answer explanatory questions; and
• H4: our architecture can be adapted to planning tasks, with

the incremental learning capability improving the ability to
compute minimal plans.

These hypotheses were evaluated in the context of the domains
(SS, TS, and RA) introduced in section 3. Specifically, hypotheses
H1, H2, and H3 are evaluated in the SS domain and TS domain
in the context of VQA. As stated in section 1, VQA is used in
this paper only as an instance of a complex task that requires
explainable reasoning and learning. We are primarily interested
in exploring the interplay between reasoning with commonsense
domain knowledge, incremental learning, and deep learning,
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in any given domain in which large labeled datasets are not
readily available. State of the art VQA algorithms, on the other
hand, focus instead on generalizing across different domains,
using benchmark datasets of several thousand images. Given the
difference in objectives between over work and the existing work
on VQA, we thus do not compare with state of the art algorithms,
and do not use the benchmark VQA datasets. Furthermore, we
evaluated hypothesis H4 in the RA domain in which the robot’s
goal was to deliver messages to appropriate people and answer
explanatory questions about this process.

We begin by describing some execution traces in section 4.1
to illustrate the working of our architecture. This is followed
by sections 4.2–4.4, which describe the results of experimentally
evaluating the classification, VQA, axiom learning, and planning
capabilities, i.e., hypotheses H1–H4. We use accuracy (precision)
as the primary performance measure. Classification accuracy was
measured by comparing the assigned labels with the ground
truth values, and question answering accuracy was evaluated
heuristically by computing whether the answer mentions all
image attributes relevant to the question posed. This relevance
was established by a human expert, the lead author of this
paper. Unless stated otherwise, we used two-thirds of the
available data to train the deep networks and other computational
models, using the remaining one-third of the data for testing.
For each image, we randomly chose from the set of suitable
questions for training the computational models. We repeated
this process multiple times and report the average of the results
obtained in these trials. For planning, accuracy was measured
as the ability to compute minimal and correct plans for the
assigned goals. Finally, section 4.5 discusses the reduction in
computational effort achieved by our architecture in comparison
with the baselines.

4.1. Execution Traces
The following execution traces illustrate our architecture’s ability
to reason with commonsense knowledge and learned models to
provide intuitive answers for explanatory questions.

Execution Example 1. [Question Answering, SS domain]
Consider a scenario in the SS Domain in which the input (test)
image is the one on the extreme right in Figure 2.

• First classification-related question posed: “is this
structure unstable?”
The architecture’s answer: “no”.
• The explanatory question posed: “what is making this

structure stable?”
The architecture’s answer: “the structure has five blocks
and a narrow base, it is standing straight, and there is no
significant lean”.
• This answer was based on the following features extracted by

CNNs from the image: (i) five blocks; (ii) narrow base; (iii)
standing straight; and (iv) no significant lean, i.e., all blocks
in place.
• The extracted features were converted to literals. ASP-based

inference provided an answer about the stability of the
arrangement of objects in the scenario. Relevant literals in the

corresponding answer set were then inserted into a suitable
template to provide the answers described above.
• Since the example was processed successfully using ASP-

based inference, it was not processed using the decision
tree (for classification) or the RNN (for answering the
explanatory question).

Execution Example 2. [Question Answering, TS domain]
Consider a scenario in the TS Domain with the input (test)
image is the one on the extreme right in Figure 3.

• The classification question posed was: “what is the
sign’s message?”
The architecture’s answer: “uneven surfaces ahead”.
• When asked to explain this answer (“Please explain this

answer”), the architecture identified that the CNNs extracted
the following features of the sign in the image: (i) it is triangle-
shaped; (ii) main color is white and other (i.e., border) color is
red; (iii) it has no background image; (iv) it has a bumpy-road
symbol and no secondary symbol; and (v) it has no cross.
• These features were converted to literals and used in ASP-

based inference based on existing knowledge in the TS
domain. ASP-based inference is unable to provide an answer,
i.e., unable to classify the sign.
• The extracted features were processed using the trained

decision tree, which only used the colors in the sign to
assign the class label. The main (or border) color is normally
insufficient to accurately classify signs. However, recall that the
decision tree is trained to classify signs that cannot be classified
by reasoning with existing knowledge.
• The decision tree output, image feature vector, and input

question, were processed by the previously trained RNN
to provide the answer type and the particular answer
described above.

These (and other such) execution traces illustrate the working of
our architecture, especially that:

• The architecture takes advantage of (and perform non-
monotonic logical inference with) the existing commonsense
domain knowledge to reliably and efficiently address the
decision-making problem (classification in the examples
above) when possible. In such cases, it is also able to answer
explanatory questions about the classification decision and the
underlying scene.
• When the desired decision cannot be made using non-

monotonic logical inference with domain knowledge, the
architecture smoothly transitions to training and using a
decision-tree to make and explain the classification decision.
In such cases, the architecture also learns and uses an RNN to
answer explanatory questions about the scene.

4.2. Experimental Results: Classification +
VQA
To quantitatively evaluate hypotheses H1 and H2, we ran
experimental trials in which we varied the size of the training
dataset. In these trials, the baseline performance was provided
by a CNN-RNN architecture, with the CNNs processing images
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FIGURE 8 | Classification accuracy as a function of the number of training

samples in the SS domain.

FIGURE 9 | VQA accuracy as a function of the number of training samples in

the SS domain.

to extract and classify features, and the RNN providing answers
to explanatory questions. The number of questions considered
depends on the complexity of the domain, e.g., we included eight
different types of questions in the SS domain and 248 different
types of questions in the TS domain. We repeated the trials 50
times (choosing the training set randomly each time) and the
corresponding average results are summarized in Figures 8, 9 for
the SS domain, and in Figures 10, 11 for the TS domain. We
make some observations based on these figures:

1. The classification performance of our architecture depends
on the domain. In the relatively simpler SS domain, the
baseline deep network architecture is at least as accurate as our
architecture, even with a small training set—see Figure 8. This
is because small differences in the position and arrangement of
blocks (which could almost be considered as noise) influence
the decision about stability. For instance, two arrangements
of blocks that are almost identical end up receiving different
ground truth labels for stability, and it is not possible to
draft rules based on abstract image features to distinguish
between these cases. The baseline deep network architecture,
which generalizes from data, is observed to be more sensitive
to these small changes than our architecture. Exploring the

FIGURE 10 | Classification accuracy as a function of number of training

samples in TS domain.

FIGURE 11 | VQA accuracy as a function of number of training samples in TS

domain.

reason for this performance is an interesting direction for
further research.

2. In the more complex TS domain, our architecture provides
better classification accuracy than the baseline architecture
based on just deep networks, especially when the size of
the training set is small—see Figure 10. The classification
accuracy increases with the size of the training set3, but
our architecture is always at least as accurate as the
baseline architecture.

3. Our architecture is much more capable of answering
explanatory questions about the classification decisions than
the baseline architecture. When the answer provided by our
architecture does not match the ground truth, we are able to
examine why that decision was made. We were thus able to
understand and explain the lower classification accuracy of
our architecture in the SS domain. The baseline architecture
does not provide this capability.

4. Unlike classification, the VQA performance of our
architecture is much better than that of the baseline
architecture in both domains. Also performance does not
improve just by increasing the size of training set, even
in simpler domains, e.g., see Figure 9. This is because

3We limit ourselves to training sets that are not too large in order to match the

focus of our paper.
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FIGURE 12 | Comparison of classification accuracy in the SS domain with

and without axiom learning. In both cases, some axioms were missing from

the knowledge base.

FIGURE 13 | Comparison of VQA accuracy in the SS domain with and without

axiom learning. In both cases, some axioms were missing from the knowledge

base.

VQA performance also depends on the complexity of the
explanatory questions. For more complex domains, the
improvement in VQA accuracy provided by our architecture
is much more pronounced, e.g., see Figure 11.

We explored the statistical significance of the observed
performance by running paired t-tests. We observed that the
VQA performance of the proposed architecture was significantly
better than that of the baseline architecture; this is more
pronounced in the TS domain that is more complex than the SS
domain. Also, although the baseline architecture provides better
classification performance in the SS domain, the difference is not
always statistically significant.

To further explore the observed results, we obtained a
“confidence value” from the logits layer of each CNN used to
extract a feature from the input image. For each CNN, the
confidence value is the largest probability assigned to any of
the possible values of the corresponding feature, i.e., it is the
probability assigned to the most likely value of the feature.
These confidence values are considered to be a measure of
the network’s confidence in the corresponding features being
a good representation of the image. We trained a version
of our architecture in which if the confidence value for any
feature was low, the image features were only used to revise

FIGURE 14 | Comparison of classification accuracy in the TS domain with and

without axiom learning. In both cases, some axioms were missing from the

knowledge base.

the decision tree (during training), or were processed using
the decision tree (during testing). In other words, features
that do not strongly capture the essence of the image are not
used for non-monotonic logical reasoning; the deep network
architectures provide much better generalization to noise. We
hypothesized that this approach would improve the accuracy of
classification and question answering, but it did not make any
significant difference in our experimental trials. We believe this is
because the extracted features were mostly good representations
of the objects of interest in the images. We thus did not use
such networks (that compute the confidence value) in any
other experiments.

4.3. Experimental Results: Learn Axiom +
VQA
Next, we experimentally evaluated the ability to learn axioms,
and the effect of such learning on the classification and VQA
performance. For the SS domain, we designed a version of the
knowledge base with eight axioms related to stability or instability
of the structures. Out of these, four were chosen (randomly) to
be removed and we examined the ability to learn these axioms,
and the corresponding accuracy of classification and VQA, as
a function of the number of labeled training examples (ranging
from 100 to 2,000). We repeated these experiments 30 times
and the results (averaged over the 30 trials) are summarized
in Figures 12, 13. In the TS domain, the methodology for
experimental evaluation was the same. However, since the
domain was more complex, there were many more axioms in
the domain description (for classification and VQA); we also had
access to more labeled training examples. In each experimental
trial, a quarter of the available axioms were thus selected and
commented out, and the accuracy of classification and VQAwere
evaluated with the number of labeled training examples varying
from 100 to 4000. The results averaged over 30 such trials are
summarized in Figures 14, 15.

In these figures, “Original KB” (depicted in blue) represents
the baseline with some axioms missing from the system
description, e.g., four in the SS domain and one quarter of the
axioms in the TS domain. The results obtained by using the
available labeled examples to learn the axioms that are then used
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FIGURE 15 | Comparison of VQA accuracy in the TS domain with and without

axiom learning. In both cases, some axioms were missing from the knowledge

base.

for classification and answering explanatory questions about the
scene, are shown as “Learned KB” in orange. We observe that our
approach supports incremental learning of the domain axioms,
and that using the learned axioms improves the classification
accuracy and the accuracy of answering explanatory questions,
in comparison with the baseline. This improvement was found
to be statistically significant using paired tests at 95% level of
significance. These results support hypothesis H3.

4.4. Experimental Results: Learn Axiom +
Plan
Next, we experimentally evaluated the ability to learn axioms and
the effect of the learned axioms on planning, in the RA domain.
The simulated robot was equipped with domain knowledge for
planning, classification, and question answering. It uses this
knowledge to navigate through an office building, locate the
intended recipient of a message, deliver the message, detect and
reason about objects in its surroundings, and answer questions
about the rooms it has visited. We considered 24 different types
of questions in this domain. As stated in section 3.5, we limit
uncertainty in sensing and actuation on robots to noise added
in simulation. Average results from 100 trials indicates a VQA
accuracy of ≈ 85% after training the architecture’s components
with just 500 labeled images. The domain knowledge includes
learned axioms—the corresponding experimental results and the
planning performance are discussed later in this section. We
begin with an execution trace in this domain.

Execution Example 3. [Question Answering, RA Domain]
Consider the scenario in the RA domain (Figure 7) in which
the robot’s goal was to deliver a message from John to Sally, and
return to John to answer questions.

• The robot was initially in John’s office. It computed a plan
that comprises moving to Sally’s office through the library and
the kitchen, delivering the message to Sally, and returning to
John’s office through the same route to answer questions.
• During plan execution, the robot periodically takes images

of the scenes in the domain, which are used for planning,
classification and question answering.

• After returning to John’s office, the robot and the human had
an exchange about the plan constructed and executed, and
the observations received. The exchange includes instances
such as:
John’s question: “is Sally’s location cluttered?”
Robot’s answer: “Yes.”
When asked, the robot provides an explanation for this
decision: “Sally is in her office. Objects detected are Sally’s
chair, desk, and computer, and a cup, a large box, and a sofa.
The room is cluttered because the cup, large box, and sofa are
not usually in that room.”

The RA domain was also used to evaluate the effects of axiom
learning. There were four employees in offices in the simulated
scenario, as shown in Figure 7, and the robot was asked to
find particular individuals and deliver particular messages to
them. Employees are initially expected to be in their assigned
workplace (i.e., their office), and spend most of their time in
these offices, unless this default knowledge has been negated by
other knowledge or observations. This information is encoded
as follows:

holds(loc(P, L), 0) ← not default_negated(P, L), work_place(P, L)

where work_place(P, L) specifies the default location of each
person, and default_negated(P, L) is used to encode that a
particular person may not be in their default location. These
exceptions to the defaults can be encoded as follows:

default_negated(P, L) ← obs(loc(P, L1), true, I), L 6= L1 (11a)

default_negated(P, L) ← obs(loc(P, L), false, I) (11b)

Statement 11(a) implies that the default assumption should be
ignored if the person in question is observed to be in a location
other than their workplace, and Statement 11(b) implies that
a default assumption should be ignored if the corresponding
person is not observed in their workplace. Including such default
knowledge (and exceptions) in the reasoning process allows
the robot to compute better plans and execute the plans more
efficiently, e.g., when trying to deliver a message to a particular
person. However, this knowledge may not be known in advance,
the existing knowledge may be inaccurate or change with time
(e.g., humans can move between the different places), or the
observations may be incorrect. Our axiom learning approach was
used in this domain to acquire previously unknown information
about the default location of people and exceptions to these
defaults. In all the trials, the simulated robot was able to learn
the previously unknown axioms.

We then conducted 100 paired trials to explore the effects of
the learned axioms on planning, with the corresponding results
summarized in Table 1. In each trial, we randomly chose a
particular goal and initial conditions, and measured planning
performance before and after the previously unknown axioms
had been learned and used for reasoning. Since the initial
conditions are chosen randomly, the object locations, the initial
location of the robot, and the goal, may vary significantly between
trials. Under these circumstances, it is not meaningful to average
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TABLE 1 | Planning performance in a scenario in the RA domain (see Figure 7)

before and after axiom learning.

Axiom

learning

Plans

(per trial)

Actions

(per trial)

Execution

time

(per trial)

Planning

time

(per trial)

Planning

time

(per plan)

Before 4 2.3 1.6 6.0 1.6

After 1 1 1 1 1

Results averaged over 100 paired trials indicate that reasoning with previously unknown

axioms results in fewer plans with fewer actions in each trial, and significantly reduces the

time taken to compute and execute the plans.

the results obtained in the individual trials for performance
measures such as planning time and execution time. Instead,
the results obtained without including the learned axioms were
computed as a ratio of the results obtained after including
the learned axioms; the numbers reported in Table 1 are the
average of these computed ratios. Before axiom learning, the
robot often explored an incorrect location (for a person) based
on other considerations (e.g., distance to the room) and ended
up having to replan. After the previously unknown axioms were
included in the reasoning process, the robot went straight to the
message recipient’s most likely location, which also happened
to be the actual location of the recipient in many trials. As a
result, we observe a (statistically) significant improvement in
planning performance after the learned axioms are used for
reasoning. Note that in the absence of the learned axioms,
the robot computes four times as many plans taking six times
as much time in any given trial (on average) as when the
learned axioms are included in reasoning. Even the time taken
to compute each plan (with potentially multiple such plans
computed in each trial) is significantly higher in the absence of
the learned axioms. This is because the learned axioms enable
the robot to eliminate irrelevant paths in the transition diagram
from further consideration. In a similar manner, reasoning with
intentional actions enables the robot to significantly reduce
the plan execution time by terminating or revising existing
plans when appropriate, especially in the context of unexpected
successes and failures. These results provide evidence in support
of hypothesis H4.

Finally, we conducted some initial proof of concept studies
exploring the use of our architecture on physical robots. We
considered a robot collaborating with a human to jointly describe
structures of blocks on a tabletop (similar to the SS domain
described in this paper). We also considered a mobile robot
finding and moving objects to desired locations in an indoor
domain (similar to the RA domain). These initial experiments
provided some promising outcomes. The robot was able to
provide answers to explanatory questions, compute and execute
plans to achieve goals, and learn previously unknown constraints.
In the future, we will conduct a detailed experimental analysis on
robots in different domains.

4.5. Computational Effort
In addition to the improvement in accuracy of classification and
VQA, we also explored the reduction in computational effort
provided by our architecture in comparison with the baselines.
Measuring this time quantitatively is challenging because it

depends on various factors such as the task being performed (e.g.,
classification, VQA), the knowledge encoded in the knowledge
base, the size and order of samples in the training set, and the
parameters of the deep networks. However, we were able to gain
the following insights.

The computation time includes the training time and the
testing (i.e., execution) time, and we first considered the training
time. Depending on the task being performed (e.g., classification,
VQA, and/or planning), this time includes the time taken to
encode and draw inferences from the knowledge base, process
queries and construct answers, and train the deep network
models. Encoding the incomplete domain knowledge is a one-
time exercise for any given domain. The time taken to reason
with this knowledge, and the time taken to process queries and
construct answers, are negligible in comparison with the time
taken to learn the deep network models. Also, the use of CNNs to
extract features from images is common to both our architecture
and the baselines, and these networks (for the most part) do not
need to be retrainedmultiple times for any given domain. The key
difference between our architecture and the baselines is observed
in the context of answering explanatory questions about the
scenes and the underlying classification problem. Recall that with
our architecture, only examples that cannot be processed by ASP-
based reasoning are processed by decision-trees and the RNNs
for VQA. In our experimental trials, ≈ 10 − 20% of a training
set is used (on average) to train the RNNs with our architecture,
whereas the entire training set is used for training the RNNs
with the baseline architectures. This difference often translates
to an order of magnitude difference in the training time, e.g., a
few minutes for each training set (in a particular domain) with
our architecture compared with hours or days with the baseline
architectures. Note that accuracy of our architecture is still much
better than that of the baselines, e.g., see Figures 9, 11, i.e., any
given accuracy is achieved using a much smaller number of
training samples.

The execution time of our architecture is comparable with
that of the baselines and is often less. Once the deep network
models have been learned, using them for the different tasks does
not take much time, e.g., a few seconds to process the input
and provide a decision and/or the answer to a query. However,
similar to the situation during training, only test samples that
cannot be processed by ASP-based reasoning are processed by
the decision trees and RNNs with our architecture. Also, since
the deep networks in our architecture only need to disambiguate
between a small(er) number of training examples, they often
have a much simpler structure than the deep networks in the
baseline architectures.

Note that in addition to classification and VQA, our
architecture also supports explainable reasoning for planning
and incremental learning of previously unknown constraints.
Providing similar capabilities using just deep network
architectures will (at the very least) require a large number
of training examples of planning under different conditions; it is
often not possible to provide such training examples in dynamic
domains. We thus conclude that our architecture significantly
reduces the computational effort while supporting a range
of capabilities in comparison with the baseline architectures
comprising deep networks.
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5. DISCUSSION AND FUTURE WORK

Visual question answering (VQA) combines challenges in
computer vision, natural language processing, and explainability
in reasoning and learning. Explanatory descriptions of decisions
help identify errors, and to design better algorithms and
frameworks. In addition, it helps improve trust in the use of
reasoning and learning systems in critical application domains.
State of the art algorithms for VQA are based on deep networks
and the corresponding learning algorithms. Given their focus
on generalizing across different domains, these approaches
are computationally expensive, require large training datasets,
and make it difficult to provide explanatory descriptions of
decisions. We instead focus on enabling reliable and efficient
operation in any given domain in which a large number of
labeled training examples may not be available. Inspired by
research in cognitive systems, our architecture tightly couples
representation, reasoning, and interactive learning, and exploits
the complementary strengths of deep learning, non-monotonic
logical reasoning with commonsense knowledge, and decision
tree induction. Experimental results on datasets of real world
and simulated images indicate that our architecture provides the
following benefits in comparison with a baseline architecture for
VQA based on deep networks:

1. Better accuracy, improved sample efficiency, and reduced
computational effort on classification problems when the
training dataset is small, and comparable accuracy with larger
datasets while still using only a subset of these samples
for training;

2. Ability to provide answers to explanatory questions about the
scenes and the underlying decision making problems (e.g.,
classification, planning);

3. Incremental learning of previously unknown domain
constraints, whose use in reasoning improves the ability to
answer explanatory questions; and

4. Ability to adapt the complementary strengths of non-
monotonic logical reasoning with commonsense domain
knowledge, inductive learning, and deep learning, to address
decision-making (e.g., planning) problems on a robot.

Our architecture opens up multiple directions of future work,
which will address the limitations of existing work and
significantly extend the architecture’s capabilities. We discuss
some of these extensions below:

1. The results reported in this paper are based on image

datasets (simulated, real-world) chosen or constructed to
mimic domains in which a large, labeled dataset is not
readily available. One direction of future work is to explore

the use of our architecture in other domains that provide
datasets of increasing complexity, i.e., with a greater number
of features and more complex explanatory questions. This
exploration may require us to consider larger datasets, and
to examine the trade-off between the size of the training
dataset, the computational effort involved in processing such a
dataset with many labeled examples, and the effort involved in
encoding and reasoning with the relevant domain knowledge.

2. In our architecture, we have so far used variants of existing
network structures as the deep network components (i.e.,
CNN, RNN). In the future, we will explore different deep
network structures in our architecture, using the explanatory
answers to further understand the internal representation
of these network structures. Toward this objective, it
would be particularly instructive to construct and explore
deep networks and logic-based domain representations that
provide similar behavior on a set of tasks, or provide different
behavior when operating on the same dataset. As stated in
the discussion in section 4.2, such an exploration may help us
better understand (and improve) the design and use of deep
network models for different applications.

3. This paper used VQA as a motivating problem to address key
challenges in using deep networks in dynamic domains with
limited labeled training examples.We also described the use of
our architecture (with tightly-coupled reasoning and learning
components) for planning on a simulated robot. In the future,
we will combine this architecture with other architectures
we have developed for knowledge representation, reasoning,
and interactive learning in robotics (Sridharan and Meadows,
2018; Sridharan et al., 2019). The long-term goal will be to
support explainable reasoning and learning on a physical
robot collaborating with humans in complex domains.
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It has been proposed that machine learning techniques can benefit from symbolic

representations and reasoning systems. We describe a method in which the two can

be combined in a natural and direct way by use of hyperdimensional vectors and

hyperdimensional computing. By using hashing neural networks to produce binary

vector representations of images, we show how hyperdimensional vectors can be

constructed such that vector-symbolic inference arises naturally out of their output.

We design the Hyperdimensional Inference Layer (HIL) to facilitate this process and

evaluate its performance compared to baseline hashing networks. In addition to

this, we show that separate network outputs can directly be fused at the vector

symbolic level within HILs to improve performance and robustness of the overall

model. Furthermore, to the best of our knowledge, this is the first instance in which

meaningful hyperdimensional representations of images are created on real data, while

still maintaining hyperdimensionality.

Keywords: hyperdimensional computing, semantic vectors, hashing, machine learning, image processing

1. INTRODUCTION

Over the past decade, Machine Learning (ML) has made great strides in its capabilities to the point
that many today cannot imagine solving complex, data-hungry tasks without its use. Indeed, as
learning by example is a very necessary skill for an artificial general intelligence, it seems that ML’s
success bodes its necessity - in some form or other - in future AI systems. At the same time, end-
to-end ML solutions suffer from several disadvantages; results are generally not interpretable or
explainable from a human perspective, new data is difficult to absorb without significant retraining,
and the amount of data/internalized knowledge required to train can be untenable for tasks that are
easy for humans to solve. Symbolic reasoning solutions, on the other hand, can offer a solution to
these problems.

One issue with symbolic reasoning is that symbols preferred by humans may not be easy to
teach an AI to understand in human-like terms. Problems like these have led to the interesting
solution of representing symbolic information as vectors embedded into high dimensional spaces,
such as systems like word2vec (Mikolov et al., 2013) or GloVe (Pennington et al., 2014). These
are often used to inform other symbolic or ML systems to give semantic context to information
represented textually. In some systems, symbolic concepts themselves are represented entirely as
high dimensional vectors that coexist in a common space-these are often referred to as Vector
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Symbolic Architectures (VSA). This notion is of particular
interest, as many ML techniques produce such high
dimensional vectors as a byproduct of their learning process or
their operation.

In this article, we have focused on the notion of combining
ML systems and VSA using high dimensional vectors directly.
Specifically, we focused on the use of hyperdimensional vectors
and Hyperdimensional Computing to achieve this (Kanerva,
2009). The properties of hyperdimensionality give rise to
interesting ways to manipulate symbolic information so long as
that information can be represented with long binary vectors.
Moreover, this combination is achieved naturally, and is highly
modifiable. Hyperdimensional computing can even improve
the results of ML methods. Since hyperdimensional computing
requires a method to convert data into long binary vectors,
we focused mostly on hashing techniques for images, though
the results are applicable for any ML approach that produces
long binary vectors, either by directly producing them or
by a special encoding. This allows a convenient method for
converting images into hyperdimensional representations that
naturally work with symbolic reasoning systems, such as fuzzy
logic systems.

Consider Figure 1, which demonstrates how
hyperdimensional vectors could be used to convert data
driven systems of different modalities to a shared space of
long binary vectors. Once mapped to such a space, where
distance between mappings is meaningful, it is clear that the

FIGURE 1 | Mapping different modalities of information to the same space of long binary vectors allows knowledge of the world to coexist and combine together

symbolically as well. A dog may be seen and heard, recognized by two separate data-driven learning systems. The output of each, representing the presence of a

dog, is mapped to a binary vector representing the current data. The closer this mapping is to a learned representation of all dogs, the more likely it is to be a dog. In

the same space, linguistic knowledge of dogs can also be mapped to symbolic representations. Combining all three modalities by purely hyperdimensional

computations gives a single symbolic representation of everything pertaining to the concept of dogs.

binary space is a purely symbolic representation of both the
input to each data-driven system and their respective output.
Once symbolically represented, operations performed in the
hyperdimensional space can further map vectors to more
complicated representations: in this particular instance, the
symbolic concept of a dog. In a more complicated system, the
entire hyperdimensional space can be overlayed by a knowledge
graph, fuzzy logic system, VSA, or any other symbolic reasoning
system. We largely focused on how to achieve this mapping from
an external learning system to a binary space and, consequently,
how to symbolically “fuse” different modalities together to
get a better symbolic representation of a real-world, data-
driven concept. Our experimental results indicate impressive
improvement in terms of performance, when fusing the outputs
of multiple data-driven models, at little to no computational cost.
The structure of this fusing allows for more models to be added
or removed as desired without requiring expensive computation
or retraining.

The remainder of this article is structured as follows. First, in
section 2, we have provided necessary background information
on hyperdimensional computation. Next, in section 3, we have
discussed related work and results that are pertinent to this
article. Then, in section 4, we have presented the architecture
of a system that could achieve the desired functionality shown
in Figure 1 and shown how it can be trained and used at
testing time. Of particular importance is the notion of the
Hyperdimensional Inference Layer, which can effectively fuse
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symbolic representations in the hyperdimensional space. In
section 5, we have outlined an experiment to test how well
such an architecture would work in practice. Notably, we have
constrained ourselves to using image hashing networks and have
shown that not only can our architecture effectively fuse the
outputs of different networks together in the hyperdimensional
space but also that the mere usage of hyperdimensional vectors
as a memory mechanism can improve performance as well.
Naturally, in section 6, we have shown the results of these
experiments. Finally, in section 7, we have discussed our results
and outlined the pros/cons of using hyperdimensional vectors to
fuse learning systems together at a symbolic level as well as what
future work is necessary.

2. BACKGROUND INFORMATION

We first covered some of the relevant properties of
hyperdimensional vectors for comprehension, as discussed
in Kanerva (2009). Hyperdimensionality arises in binary vectors
of sufficiently long length, usually on the order of 10,000 bits.
Given two random vectors a and b from B

n = {0, 1}n for large
n, their overlap in bits has a high probability of being close to
the expected value of n/2 with a standard deviation of

√
n/4.

Therefore, two randomly selected vectors will overwhelmingly
have a Hamming Distance of n/2; in this case, we can say the
vectors are uncorrelated.

Two vectors a and b can be bound together by using the
exclusive-or (XOR) operation, which we will represent with
∗ symbol:

c = a ∗ b (1)

Trivially, given one of the vectors, say a, we can unbind c to get b:

a ∗ c = a ∗ (a ∗ b) = (a ∗ a) ∗ b = b (2)

Suppose that a and b represent symbolic concepts; binding them
with Equation (1) and unbinding with Equation (2) produces
a new symbolic concept c that is deconstructed to its atomic
symbols. Additionally, it is trivial that the Hamming Distance
between two vectors is preserved when both aremapped by either
another XOR withm or by a common permutation 5 of bits:

|am ∗ bm| = |(a ∗m) ∗ (b ∗m)| = |a ∗ b| (3)

|5a ∗ 5b| = |5(a ∗ b)| = |a ∗ b| (4)

For our purposes, permutation and XOR are used
interchangeably as “multiplication” operations. In order to
create a more sophisticated and structured vector, we required
an “addition” operation. We primarily concerned ourselves with
the “consensus sum,” where each bit of the resultant vector is set
to be the bit value that appears more often in that component
across the terms:

+c ({a1, a2, ..., al}) = a1 +c a...+c al = ac (5)

where for a count z of 0’s across the l terms:

aic =







0 z > l/2
1 z < l/2
random z = l

(6)

However, if permutation is used for multiplication, it is valid
to use XOR for addition. For either ∗ or +c as the + operator,
a sequence of symbolic information A = A1A2...Al can be
represented as

a = 5(...(5(5a1 + a2)+ a3)+ ...)+ al
= 5

l−1a1 + 5
l−2a2 + ...+ 5al−1 + al

(7)

where ai are vector representations of corresponding Ai and
5 is a permutation that represents the sequence. When using
XOR, subsquences can be removed, replaced, or extended by
constructing them and XOR-ing with a.

Finally, a record r of fields f = [f1, f2,= ..., fl], and their values
v = [v1, v2, ..., vl] can be constructed symbolically by binding
each fi with its corresponding vi using Equation (1) and summing
the result with Equation (5):

r = v · f = v1 ∗ f1 +c ...+c vi ∗ fi +c vl ∗ fl (8)

Given a value vx, a record r can be probed by performing an
XOR and finding the fj with the smallest HammingDistance, thus
checking the existence of a field:

min
j

|(vx ∗ r) ∗ fj| (9)

A similar approach can be done to approximately recover the
value of a field:

min
j

|(fx ∗ r) ∗ vj| (10)

When the bits of a probe do not correlate with a term in r, the
term collapses into a noise vector, whereas the term that does
correlate will produce a signal that approximately undoes the
XOR binding.

3. RELATED WORK

Our work is primarily an extension of HAP (Mitrokhin et al.,
2019) in which drones are trained to predict their egomotion in
3-D space. A neuromorphic camera’s events are converted into a
time image slice of motion, represented as a sparse RGB image,
whose pixel data is symbolically represented with a structured
hyperdimensional vector. Raw RGB values are semantically
embedded into the hyperdimensional space such that each
color component is closer to its nearest values than further
values. Possible velocity values are finely binned and likewise
semantically embedded. A structured record m is constructed to
associate the egomotion in one component velocity to another
record containing all time image slices that fall into the same
velocity bin, with Equation (8), at training time. Egomotion
prediction is achieved purely by these memory units m via
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FIGURE 2 | Hyperdimensional memory mechanism in HAP (Mitrokhin et al., 2019). A memory unit m consists of velocity bins as fields that are bound to another

record of summed vector representations of time image slices from training. An input image is converted to its hyperdimensional vector representation and XOR’d with

m. If it matches approximately with one of the image slice sums, the result contains the matching velocity representation with some noise.

XORing a novel time slice image withm and probing the possible
velocities to find the closest match. Figure 2 demonstrates
this process.

This method works because of the sparseness of pixel data in
time image slices. The collection of time slices that are associated
to a velocity bin average out to be representative of the motion
changes the neuromorphic camera experienced. Surprisingly, this
is sufficient to achieve neural-network-like performance, with a
tiny fraction of memory, training samples, computation power,
and training time of a neural approach. However, it is completely
interpretable, can be trained online. and is effectively a symbolic
reasoning system. Unfortunately, regular image data is too dense
in information for this approach to work as implemented in HAP
(Mitrokhin et al., 2019).

There exist other methods that have used hyperdimensional
techniques to perform recognition (Imani et al., 2017) and
classification (Moon et al., 2013; Rahimi et al., 2016; Imani
et al., 2018; Kleyko et al., 2018). As with HAP (Mitrokhin et al.,
2019), there have been other attempts to perform feature and
decision fusion (Jimenez et al., 1999) or paradigms that can
operate with minuscule amounts of resources (Rahimi et al.,
2017). We differ from these approaches in that we try to
assume as little about the model as possible except that it would
be used in some form of classification for information that
can be represented symbolically and modified with additional
classifiers. Our results are a benchmark to see how much a
hyperdimensional approach could facilitate a direct connection
between ML systems and symbolic reasoning. On the solely
symbolic representation and reasoning side, there exists relevant
work on using cellular automata based hyperdimensional

computing (Yilmaz, 2015). Some formulations based on real-
valued vectors can also exhibit similar properties to long binary
vectors so far as compositionality and decompositionality is
concerned (Summers-Stay et al., 2018).

4. ARCHITECTURE

Extending the model from HAP (Mitrokhin et al., 2019), the
input vector is treated as any output from an ML system and
the output velocity bins are now a symbolic representation of
the output classes of the network. These would then feed in to a
larger VSA system, that could feasibly be composed of other ML
systems. Suppose that we have a pre-trained ML system, such as
a Hashing Network, which can produce binary vectors as output
to represent images.

4.1. Training the Hyperdimensional
Inference Layer
For a classification task, during training time, training images are
hashed into binary vector representations. These are aggregated
with the consensus sum operation in Equation (5) across their
corresponding gold-standard classes, and a random basis vector
meant to symbolically represent the correct class is bound to the
aggregate with Equation (1). The resultant vector now represents
a memory containing all training instances observed but that
are represented symbolically with appropriated hashed binary
vectors that are projected into a hyperdimensional binary space
by randomly permuting and assembling the hash vector. Figure 3
shows this process when training to classify a “dog” in an
image. This dog class is aggregated into a larger vector, once
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FIGURE 3 | The training pipeline for a particular class of “dog.” First, training images are hashed into binary vectors using a pre-trained network. The vectors for each

image are then projected to a hyperdimensional length by randomly repeating the bits consistently. Each vector is aggregated by the consensus sum operation into a

single vector containing all training instances for that class. A symbolic representation of the class, called “Dog” in this example, as another hyperdimensional vector, is

bound to the aggregated vector. This forms the association between representative images and the class itself. Once these inference vectors are computed for each

class, they are aggregated by consensus sum into the Hyperdimensional Inference Layer, which then performs classification at testing time.

again with the consensus sum operation in Equation (5), to
produce a hyperdimensional vector containing similar memory
vectors across the other classes. This is referred to as the
Hyperdimensional Inference Layer (HIL), which then infers the
correct class at testing time for a novel image.

4.2. Testing the Hyperdimensional
Inference Layer
Once training is complete, classification of a novel image is
relatively straightforward. An image is converted to a binary
vector by the pre-trained hashing network. This vector is then
projected into a hyperdimensional vector in the same manner
as during training. Finally, the XOR between this vector and the
HIL is computed. The Hamming Distance between the resultant
vector and each of the class representations is measured. The
class vector with the smallest Hamming Distance is selected as
the correct classification. Figure 4 shows this process in action.

4.3. Consensus With Multiple Models
One advantage of the hyperdimensional architecture for
inference is how it can be easily manipulated. Of particular
interest is when there are multiple models that can produce
features in the form of hyperdimensional vectors for an
input. Suppose we had several models, each with their own
advantages. We can fuse their output together to form a
consensus system that will consider each network’s feature
output before classification. We simply repeat the same method
as we did for our classes but with symbolic identifiers for

which model aggregated which data. Prediction is done as
before, probing each model’s output with XOR and finding the
closest matching network vector. Figure 5 demonstrates how this
pipeline would work.

5. MATERIALS AND METHODS

The methodology, external systems, and datasets used for testing
were as follows.

5.1. Methodology
To test how well hyperdimensional vectors can facilitate the
mapping from the input/output of an ML system to a symbolic
system, we required a model problem where it was possible
to convert an ML result into hyperdimensional vectors. We
studied the typical image classification problem but with hashing
networks, as they directly convert raw images into binary
vectors of variable length, which are used for classification and
ranking based on Hamming Distance. This is simply done for
convenience, as most neural methods do not product binary
vectors of such large length that are also rankable, and we did
not want other methods for embedding real numbered vectors
into binary spaces to affect the results. We utilized theDeepHash1

library, which incorporates recent deep hashing techniques for
image classification and ranking (Cao et al., 2016, 2017, 2018;
Zhu et al., 2016; Liu et al., 2018). Our goal wsa to show that

1Code repository available on GitHub at https://github.com/thulab/DeepHash.
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FIGURE 4 | The pipeline for testing the Hyperdimensional Inference Layer. Images are presented to the hashing network H, which are then hashed into binary vectors.

As during training, these are projected into hyperdimensional vectors. The result is then XOR’d with the HIL. The XOR distributes across the terms in the HIL and

creates noise for terms corresponding to incorrect classes. Only the correct class will deviate from the noise and will be detected as the best matching class by

computing the Hamming Distance between the result of the XOR and every vector representation of the classes; the class with the smallest Hamming Distance is

selected as the correct classification.

FIGURE 5 | Given multiple ML models, the HIL of each can be fused together by repeating the same training procedure. Thus, given an image, each hashing network

converts it to a different binary vector, which is projected into hyperdimensional lengths. These are bound with symbolic vectors identifying each individual hashing

network and aggregated via consensus sum. The result allows us to perform inference across multiple models at testing time.

an added layer of inference to the outputs of these methods
with hyperdimensional computing allows us to convert their
results into common length, hyperdimensional vectors, without
losing performance. In fact, as we have seen, performance can
even increase.

Two separate experiments were performed to evaluate how
well a structure like the one shown in Figure 1 would work in
practice. Again, we limited ourselves to visual learning systems
for simplicity, though there is no reason for such a limitation
in practice.

1. We first tested how well a hyperdimensional representation
of a given hashing network’s output can work with a
HIL. That is, does the inclusion of a HIL (and by
extension, hyperdimensional representations) obfuscate the
classification, thereby worsening performance, or does it
perhaps improve the performance? In theory, the system
should not do worse. However, the nature of HIL’s structure
may enable a better memorization of training examples.

We trained individual Hash Networks to perform image
classification and then compared their performance with and
without a HIL. Performance is tracked by comparing the F1
score for classification to the number of training iterations
for the Hash network or epochs. We were also interested in
how the HIL affects the F1 score as the Hamming Distance
threshold for similarity increases.

2. Additionally, we studied whether the HIL could improve the
overall performance of our Hash Networks if we fused them
at the symbolic level of their outputs, using a HIL, as shown
in Figure 5. We designed an experiment where all networks

used in our first experiment are combined together by fusing

their individual HIL into a new HIL. The idea asiws that,

individually, these Hash Networks have different strengths
and weaknesses based on their formulation. When fused

into a HIL, each contributes toward the overall classification

result, allowing the best matching classification across all
models simultaneously.
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5.2. External Systems
We used three of the image hashing networks from DeepHash
in our experiments. In the following sections, we have described
and outlined each one individually. In general, these networks
use features provided by another system and compute hashes
based on features extracted from the images into compact codes
for image retrieval and classification. Additionally, we built
our hyperdimensional inference layer by using the open source
framework pyhdc2 library, as used in HAP (Mitrokhin et al.,
2019), which contains basic, but very efficiently implemented,
operations for hyperdimensional computing and representing
hyperdimensional vectors. Finally, AlexNet (Krizhevsky et al.,
2012) features pre-trained on ImageNet (Deng et al., 2009) are
used in the DeepHash pipeline and are available for download
from the GitHub repository.

5.2.1. Deep Quantization Network (DQN)
The Deep Quantization Network (DQN) is a hashing-by-
quantization network used for efficient image retrieval (Cao
et al., 2016). The system supervises its hashing and allows
statistical minimization of quantization errors from hand-crafted
or machine learned features in a step separate from what
traditional quantized hashing networks did prior. DQN formally
controls this quantization error. The system is composed of four
main subsystems:

1. Multiple convolution-pooling layers that capture deep image
representations.

2. A fully connected layer that bottlenecks deep representations
and projects them into an optimal lower dimensional
representation for hashing.

3. A pairwise cosine layer for learning similarity preservation.
4. The quantization loss product that controls the quality of the

hash and quantizes the bottleneck representations.

5.2.2. Deep Cauchy Hashing Network (DCH)
The Deep Cauchy Hashing Network (DCH) seeks to improve
hash quality by penalizing similar image pairs having a Hamming
Distance bigger than the radius specified by the hashing network
(Cao et al., 2018). The authors argue that hashing networks tend
to concentrate related images within a specified Hamming ball
due to mis-specified loss function. By penalizing the network for
when this happens with a pairwise cross-entropy loss based on a
Cauchy distribution, the rankings become stronger.

5.2.3. Deep Triplet Quantization Network (DTQ)
The Deep Triplet Quantization Network (DTQ) further improves
hashing quality by incorporating similarity triplets into the
learning pipeline. By a new triplet selection approach, Group
Hard, triplets are selected randomly from each image group that
are deemed to be “hard.” Binary codes are further compacted
by use of triplet quantization with weak orthogonality at
training time.

2Code repository available on GitHub at https://github.com/ncos/pyhdc.

5.3. Datasets
Evaluations of the hashing networks by themselves and
with the hyperdimensional inference layer are performed on
the CIFAR-10 standard dataset (Krizhevsky and Hinton,
2009) and the NUSWIDE_81 dataset (Chua et al., 2009),
which contains tagged Flickr images with 81 concepts
for classification.

6. RESULTS

In the following sections, we present the results of our evaluation
of the hyperdimensional inference layers in both experiments.

6.1. Hyperdimensional Inference Layer
Results
To test the capabilities of the hyperdimensional inference
layers in preserving the output of ML models when
transformed into hyperdimensional vectors, we compared
the performance of each hashing network individually vs.
the performance when the hyperdimensional inference
layer is added to the hashing network, as shown in
Figures 3, 4.

6.1.1. Results for CIFAR-10
Figure 6 compares the F1 scores of each hashing network with
and without the HIL on CIFAR-10. The left column shows
performance across iterations of network training (DTQ shows
epochs instead). The threshold for Hamming Distance to search
in is set to 2 (out of 128 bit vectors) for the baseline networks. For
HIL results, as the vectors are hyperdimensional, the threshold
is set to be proportionally that many bits out of 8,000. In
all cases, the HIL improves performance greatly and with less
iterations/epochs. In the right column, the F1 score is shown
for successively more lax Hamming Distances in both methods,
taking the best matching vector in a Hamming ball of that size. In
the case of hyperdimensional vectors for the HIL, the size is once
again proportional to 8,000 bit long vectors. For each baseline
hashing network, there is clearly an optimal Hamming Distance
to use. This is not the case for HIL, where it plateaus in each
case for any distance smaller than the peak. As the number of
bits increase, the performance quickly degrades to bemore in line
with the hashing network.

6.1.2. Results for NUSWIDE-81
Figure 7 compares the F1 scores of each hashing network with
and without the HIL on NUSWIDE-81. As with CIFAR-10,
the left column shows the performance of each hashing
network across iterations of network training. The threshold for
Hamming Distance is once again set to 2 bits out of 128 for
the baseline networks. For HIL, the distance is proportionally
scaled to hyperdimensional lengths in 8,000. Once again, in
all cases the HIL greatly improves the F1 score. In the
right column, the F1 score is shown for successively more
lax Hamming Distances in both methods, retrieving the best
match in the Hamming ball of that size. In the case of
hyperdimensional vectors, the distances are scaled up to the
appropriate values. For each baseline hashing network, there is
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FIGURE 6 | (A) F1 score for classification on the CIFAR-10 dataset with DCH with and without the HIL, as a function of the number of iterations of training of the DCH

network. (B) F1 score for classification on the CIFAR-10 dataset with DCH with and without the HIL, as a function of the Hamming Distance for classification. The

networks are fully trained to the end point shown in subplot (A). (C) F1 score for classification on the CIFAR-10 dataset with DTQ with and without the HIL, as a

function of the number of iterations of training of the DTQ network. (D) F1 score for classification on the CIFAR-10 dataset with DTQ with and without the HIL, as a

function of the Hamming Distance for classification. The networks are fully trained to the end point shown in subplot (C). (E) F1 score for classification on the

CIFAR-10 dataset with DQN with and without the HIL, as a function of the number of iterations of training of the DQN network. (F) F1 score for classification on the

CIFAR-10 dataset with DQN with and without the HIL, as a function of the Hamming Distance for classification. The networks are fully trained to the end point shown in

subplot (E). Baseline networks are shown in blue, while the same network with a HIL appended to the end is shown in yellow. Note that in the left column of subplots,

the Hamming Distance for classification is set to 2 for inlier/outlier count. The left column of results show that the HIL boosts the speed at which the network trains,

(Continued)
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FIGURE 6 | achieving a higher performance in far fewer iterations of expensive network training. As the HIL adds negligible overhead in memory/computation time,

there is no downside to using a HIL. The right column of results show that the HIL prevents the need for searching for an optimal Hamming Distance threshold to

classify with, as it supercedes peak performance of the network right away for the lowest possible distance thresholds. After peak performance of the baseline

network, larger Hamming Distance thresholds eventually decay to the performance of the baseline.

FIGURE 7 | (A) F1 score for classification on the NUSWIDE-81 dataset with DCH with and without the HIL, as a function of the number of iterations of training of the

DCH network. (B) F1 score for classification on the NUSWIDE-81 dataset with DCH with and without the HIL, as a function of the Hamming Distance for classification.

The networks are fully trained to the end point shown in subplot (A). (C) F1 score for classification on the NUSWIDE-81 dataset with DQN with and without the HIL, as

a function of the number of iterations of training of the DQN network. (D) F1 score for classification on the NUSWIDE-81 dataset with DQN with and without the HIL,

as a function of the Hamming Distance for classification. The networks are fully trained to the end point shown in subplot (C). Baseline networks are shown in blue,

while the same network with a HIL appended to the end is shown in yellow. Note that in the left column of subplots, the Hamming Distance for classification is set to 2

for inlier/outlier count. Results for DTQ are omitted for incompatibility with NUWSIDE-81. We largely get the same results in the left column as with CIFAR-10, showing

an improvement in performance versus training iterations when an HIL is appended to the end of the baseline network, which adds negligible memory/computation

costs. In the right column of results, the HIL differs from CIFAR-10’s results in that there is a peak to the performance of the HIL enhanced network. This is likely due to

NUSWIDE-81 being designed for the task of web image annotation and retrieval.

clearly an optimal Hamming Distance to use, though it is much
less pronounced with HIL. In all cases, it is safer to use a smaller
Hamming Distance rather than a larger one, except near the
optimal values.

6.2. Results for the Consensus Architecture
We tested the capability of hyperdimensional computing to
fuse the results of different models at the vector-symbolic
level. This setup allows to compensate for the shortcomings

of the individual models and give a more robust result -
a desirable property of hyperdimensional representations. We
tested the consensus pipeline on all three hashing networks
and on CIFAR-10’s full dataset, with fully trained hashing
networks and HILs for each. The F1 scored increased to
0.79, ∼10% more than the scores any of the models achieved
individually with HIL, as seen in Figure 6. This confirms our
suspicion that direct fusion at the symbolic level gives far more
robust results.
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6.3. Summary of Experimental Results
Our experiments indicate no performance downside to adding
an HIL to an existing, Deep Hash Network. Indeed, it seems
that the HIL enables better results with fewer epochs and
even improves the F1 score. Furthermore, fusion of multiple
networks into a single HIL increased the F1 score greatly
above any of the individual networks, even with an HIL. Since
each Hash Network formulation differs significantly from each
other, one network might be better suited at hashing particular
information. We surmise the improvement of performance is
because the robustness of the HIL allows each network to
naturally contribute its classification to the overall classification
decision in a consensus-like fashion.

It should be noted that hyperdimensional computations are
very fast. The pyhdc package is designed to perform these
computations very efficiently. As a result, the addition of the HIL,
in either experiment, is negligible in terms of extra computations
and execution time. This is in line with previous results shown in
HAP (Mitrokhin et al., 2019), where in a matter of milliseconds
the HIL can be trained, retrained from scratch, and even perform
classification, on a standard CPU processor. In our results,
the HIL also incurred milliseconds of additional runtime. This
further indicates that there is virtually no downside to adopting
the hyperdimensional approach presented in our architecture.

7. DISCUSSION

Hyperdimensional computing has many attractive properties.
Our results confirm the notion that hyperdimensional
representations can be useful in VSA and symbolic reasoning
systems. It is also important to note that hyperdimensional
vectors have not yet been effectively used to represent dense
RGB images in prior work. This potentially opens up new
avenues for combining symbolic reasoning and ML methods.
Hyperdimensional representations produced by converting
the output of deep hashing networks into symbolic inference
structures allows the use of fuzzy logic systems, of which the use
of HILs in our experiments are a simple example of. Since HIL
structures can be fused across different modalities, this increases
the robustness and interpretability of the inference process.
We have shown the potential advantages of multi-modal fusion
in the HIL by combining three separately trained, differently
constructed deep hashing networks without the need of any
additional training or oversight, improving the overall result.
This is despite the fact that each model is successively more
state-of-the-art, meaning that there is no catastrophic loss in
integrating newer models into the inference system as more
are developed.

Although the results so far are quite interesting and point to a
potential future of hyperdimensional computing in the marriage
of ML and symbolic reasoning systems, there are still many
drawbacks to the approach we have presented. First of all, it
would be preferable to use non-hashing (or perhaps even non-
supervised) networks to bootstrap our system, as these tend
to perform much better than hashing methods. However, this
would require the ability to convert embeddings in a more

sophisticated neural system into corresponding binary vectors.
Special quantization methods may need to be developed to
facilitate this in future work in order to fully take advantage of
hyperdimensional representations.

It is clear that more work is required to fully integrate
hyperdimensional representations into ML systems. Specifically,
these need to be more compliant to deep representations of
features. There are many avenues of future research that can
improve upon these limitations, especially in regard to special
conversion between deep features in different modalities, such
as text, and images. On the symbolic reasoning side, our results
do not produce a full-scale, fully realized symbolic system. For
example, Figure 1 would indicate that, given the high likelihood
of detection of a dog, the system could reason that there is a
high likelihood that what is currently observed likes to bark,
has four legs, and loves to wag its tail. However, it is not clear
how this linguistic knowledge would be incorporated into the
associated hyperdimensional space. One can imagine knowledge
graph like structures overlaying the hyperdimensional space, or
perhaps more sophisticated structures, but it is not readily clear
what the best formulation is.

Furthermore, we must point out some of the drawbacks
of using hyperdimensional representations to facilitate
a connection between data-driven systems and symbolic
reasoning systems:

• We have the necessary requirement that data-driven systems
can be readily converted into long binary vectors. This is a
severe restriction, as most state-of-the-art methods naturally
use real-valued computations. Most neural methods produce
samples on complex manifolds that may be difficult to
effectively map to hyperdimensional vectors. Thus, there is a
need for a general technique to project real-valued embeddings
from data-driven systems to binary spaces. As a result, real-
value hyperdimensional vectors may be better suited to certain
tasks (Summers-Stay et al., 2018; Sutor et al., 2019).

• Along the same lines, many modern-day symbolic
reasoning systems also rely on real-value computations
or representations, especially when data driven. New
methods would have to be developed to work with more
sophisticated systems.

• While hyperdimensional vector representations of different
modalities can be embedded effectively into a common space,
they may also require a nearest neighbor lookup when looking
for similar, known concepts. This may become expensive when
the hyperdimensional space contain many concepts. In order
to maintain that data of a particular modality is closer to other
examples of that modality, it may be necessary to adopt an
approach that facilitates this, such as in Sutor et al. (2018).
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At present we are witnessing a tremendous interest in Artificial Intelligence (AI), particularly

in Deep Learning (DL)/Deep Neural Networks (DNNs). One of the reasons appears to

be the unmatched performance achieved by such systems. This has resulted in an

enormous hope on such techniques and often these are viewed as all—cure solutions.

But most of these systems cannot explain why a particular decision is made (black box)

and sometimes miserably fail in cases where other systems would not. Consequently,

in critical applications such as healthcare and defense practitioners do not like to trust

such systems. Although an AI system is often designed taking inspiration from the brain,

there is not much attempt to exploit cues from the brain in true sense. In our opinion, to

realize intelligent systems with human like reasoning ability, we need to exploit knowledge

from the brain science. Here we discuss a few findings in brain science that may help

designing intelligent systems. We explain the relevance of transparency, explainability,

learning from a few examples, and the trustworthiness of an AI system. We also discuss

a few ways that may help to achieve these attributes in a learning system.

Keywords: Artificial Intelligence, Deep Neural Networks, explainable AI, trustworthy AI, machine learning,

sustainable AI, deep learning

1. INTRODUCTION

In this article, we focus on a few issues that need attention to realize AI systems with human-like
cognitive and reasoning abilities. For some of these issues we are not in a position to suggest precise
solutions, but in some cases we shall provide cues or pointers to areas where wemay look for to find
possible solutions.

1.1. Learning and Intelligence
We begin with a definition of learning. Oxford dictionary1 defines learning as “The acquisition
of knowledge or skills through study, experience, or being taught.” It defines intelligence as “The
ability to acquire and apply knowledge and skills.” The Cambridge dictionary2, on the other hand,
defines intelligence as “the ability to learn, understand, and make judgments or have opinions that
are based on reason.”

Thus, learning and intelligence are intimately related. In our view, judicious applications of the
knowledge learnt lead to intelligence. Learning, in the context of machine, raises several

1https://en.oxforddictionaries.com/definition/learning, June 2018.
2https://dictionary.cambridge.org/dictionary/english/intelligence, June 2018.
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fundamental questions: What to learn (extraction of knowledge),
how to learn (representation), and how to use the same.
Today to an AI researcher, learning usually means extracting
knowledge from data (explicitly or implicitly) and then applying
that knowledge to make decisions. Here the word “data”
has been used in a broader sense, where data can come
from observations/measurements or from human beings. Some
desirable attributes of an intelligent system are: ability to learn
(from data/experience), understand, make judgment, reason, and
apply what has been learnt to unknown situations. It should also
know when to refrain from making a judgement.

1.2. Deep Learning and Artificial
Intelligence
At present Deep Learning (DL) (LeCun et al., 1998; Krizhevsky
et al., 2012) is probably the most successful vehicle for designing
AI systems. It is fantastic in learning from data and making
decisions but it is almost like a black box - no transparency. We
shall see that these systems may fail miserably in cases where
other systems possibly would not.

But what is deep learning? Before defining DL, it is probably
natural to introduce what Machine Learning is. Arthur Samuel
in 1959 coined the term “Machine Learning” (Samuel, 1959)
in the context of a machine playing the game of Checkers.
He wrote a checker program that could play against a human
player as well as it could play against itself. Consequently, the
program could play many games in a short time and by this
process could learn the game better than its opposition. This
gives us some idea of what machine learning is. More recently,
Mitchell in his book “Machine Learning” (Mitchell, 1997) gave a
formal definition of (Machine) Learning: “A computer program
is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks
in T, as measured by P, improves with experience E.” In the
checker program of Samuel (1959), T is playing of checkers, P
is percentage of times the ML system wins, E is either playing
with itself or with a human, which generates a sequence of moves
(data or experience). Similarly, for a machine learning system to
classify images we can have: T as the task of classification, P as
the misclassification error or square loss or cross-entropic loss,
and E as a set of labeled image data. Equivalently, we can say
that an ML system finds a function in a given class of functions
(defined by the associated learningmodel such as neural network,
a decision tree, a polynomial regression function) to fulfill a given
purpose (say the task of classification) as best as it can (typically
optimizing some criterion) based on experience (typically using
a given set of training data). With this introduction to ML,
we get back to Deep Learning. The basic of idea of DL is to
learn complex concepts in terms of a hierarchy of concepts,
where each concept in the hierarchy is defined in terms of
its immediate lower level simpler concepts. The hierarchical
organization allows representation of complicated concepts in
terms of simpler concepts. If this hierarchical architecture is
represented using a graph, the graph would be deep and hence
it is called deep learning (Goodfellow et al., 2016). At present
most DL systems are primarily based on multilayered neural

network architectures. The way a Deep Neural Network (DNN)/
Convolutional Neural Network (CNN) works does not seem to
have a strong relation to the way a human brain works. We
shall discuss this issue later. However, DNN seems to enjoy a
few properties: a large neural network with many layers, uses
hierarchies of representation/abstraction, and gets better results
with bigger models and bigger training data. Often such models
have more free parameters than would be required to solve
a given problem. This may lead to overfitting/memorization
resulting in poor generalization. In order to increase the
robustness of the system and to achieve better generalization to
unseen data, various regularization techniques such as norm (L1
or L2 or both) of the weight parameters, dataset augmentation
adding noise, drop outs, early stopping, and parameter sharing
are used (Goodfellow et al., 2016).

1.3. Are We on the Right Track?
After the success of deep learning in many areas like image
recognition and games (defeating Se-dol Lee, the best human GO
player, by Google DeepMind’s AlphaGo), often deep learning is
viewed as an all-cure solution. Sometimes we get an impression
that today AI is almost synonymous to DL. A Google search with
‘Neural Networks” retrieves about 30,800,000 results (April 17,
2020), “Artificial Intelligence” brings About 127,000,000 results,
while “Deep Learning” brings About 39,800,000 results. It clearly
reveals the rapid growth of interest in deep learning. It is
worth noting that all pages with “neural networks” may not be
related to artificial neural networks. It cannot be questioned that
DL is one of the most successful tools to realize AI systems
in some specific areas. Although DNNs have demonstrated
unbeatable performance in some applications, DDNs are found
to recognize images completely “unrecognizable to humans” as
human recognizable objects with a very high confidence (Nguyen
et al., 2015). At the other extreme, with very minor changes
in an image that are imperceptible to human eyes, DNNs are
found to mislabel the image (Papernot et al., 2017). It raises
a big question. Why? A DNN or any other intelligent system
usually optimizes some objective functions with respect to a
set of learnable parameters. Such a system usually can make
correct decisions. But for DNNs (and many others) neither the
architecture nor the decision making rule can help to explain the
rational for such a decision in terms of human understandable
knowledge. Although we know precisely the computation done
at different nodes, the system is not transparent because we do
not know the semantics associated with each node or a group
of nodes or the presence of causal relations, if any, between the
nodes. It behaves like a black box. Moreover, while designing
a DNN often the principle of Minimum Description Length
(MDL) is not given its due importance, as a result a system may
have more degrees of freedom than what is required, which may
lead to inappropriate generalization. Given a finite data set, the
MDL principle suggests to pick the most compact description
(parameterization) of the model as well as the description of
the data under that model. However, the current deep networks
are far from that. For example, the VGG 19 network has
about 150 M parameters (Canziani et al., 2016). One of the
possible reasons is that small networks cannot be trained with
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the present available techniques to achieve similar performance
for large scale classification problems. However, large number
of free parameters increases the expressibility of such networks
and they can easily memorize data. For example, Zhang et al.
(2017) demonstrated that networks like Inception and Alexnet
can learn/memorize almost perfectly the CIFAR10 dataset with
random permutation of labels. Of course, the test accuracy is no
better than random chance. Another related important issue is
that these systems are not equipped to deal with the open world
nature of most decision making problems. In order to realize a
transparent, accurate, and trustworthy system with human like
reasoning abilities, in our view, there are few areas that we may
need to focus on. Next we discuss a few such issues/areas.

2. WHAT’S NEXT?

2.1. Look Into the Brain
The human brain is one of the most complex systems in
the known universe. In spite of tremendous efforts, our
understanding about how brain learns is quite limited, yet a
good amount is known. In order to have a learning system with
reasoning abilities like a human being, in our view, we should
try to exploit our knowledge from the brain science. The more
we can mimic the brain, the higher is the chance that we shall
be able to realize human-like attributes in an AI system. For
example, functional imaging studies with cellular resolution (in
vivo two-photon calcium imaging) revealed that in area 18 of
cat visual cortex there are extremely ordered groups of neurons
that respond to visual stimuli of a particular orientation. Neurons
having opposite directional preferences for visual stimuli were
separated with a high spatial precision in three dimension (Ohki
et al., 2005). If we could explicitly incorporate such features in our
computational NN, it would behave a little more like a biological
system. To design a learning system, we can generalize this
idea assuming that for different types of visual objects different
clusters of neurons will respond. In this case, the network will
be more transparent than the a conventional MLP. However, to
the best of our knowledge, computational neural network models
including DNNs do not exploit this, although, the response of
some neuron or a group of neurons may be directionally oriented
due to the training. In fact, it is possible to integrate the principle
of self-organizing map along with a multilayered neural network
so that different spatial clusters of neurons get activated by
instances from different classes (Bandyopadhyay, 2018).

Usually the success of a class of DNNs is attributed to the
unsupervised feature extraction, i.e., on the representation and
abstraction of raw data. In a convolutional neural network
(CNN), actually we compute cross-correlation and use max-
pooling to achieve reduction of information with a hope to
realize useful abstractions. There is no explicit cause-effect
relation. But does it have anything to do with information
processing in the brain of living beings? There are evidences
supporting a complex and hierarchical feature representation
along the ventral visual stream (DiCarlo et al., 2012; Kuzovkin
et al., 2018). A CNN makes a hierarchy of complex feature
representation for image recognition and from this point of
view, a CNN has some similarity with the feature representation

in a biological vision system. We recall here a remark in
DiCarlo et al. (2012) “We do not yet fully know how the brain
solves object recognition.” Recently, analyzing the intracranial
depth recordings from human subjects researchers suggested
that the gamma activity matches the increasingly complex
feature representation/abstraction in a deep convolutional neural
network. In reality, the information abstraction in a biological
system is much more complex. For example, in a natural scene
there is a high degree of spatial and temporal correlation,
and hence, representation of visual information at the level
of photoreceptors would be highly inefficient because of
tremendous redundancy. Dan et al. (1996) conducted some
experiments with cats. They used movies of natural scenes as
inputs and the responses of single lateral geniculate nucleus
(LGN) neurons were recorded using a single tungsten or a
multi-electrode array. They analyzed the temporal correlation
and power spectra of the responses, which demonstrated that
the natural visual information is temporally de-correlated at the
lateral geniculate nucleus. Each LGN has six layers of neurons;
it receives input from the retina and sends information to the
primary visual cortex. Consequently, if an image recognition
system exploits these concepts at the feature extraction stage,
it would resemble more a biological system and is likely to
yield better results. There have been several attempts to develop
computational models of LGN neurons (Einevoll and Halnes,
2015; Sen-Bhattacharya et al., 2017). We need to investigate how
thesemodels can be adapted to developmachine learning systems
for computer vision.

The primary visual cortex, the visual area 1 (V1), uses sparse
code with minimal redundancy to efficiently represent and
transmit information about the visual world and the non-classical
receptive filed plays an important role in this process (Vinje and
Gallant, 2000). Sparse modeling is also used to identify “Sparse
Connectivity Patterns” (SPCs) which make a parsimonious
representation of brain functions (Eavani et al., 2015). At the level
of neurons, we have sparse codes and at a higher level, we have
these SPCs, which represent different system-level functions and
relate to a set of spatially distributed, functionally synchronous
brain regions. It is also known that the processing in the brain
is distributed. In fact, an important characteristic of the brain is
believed to be sparse distributed representation (SDR) (Ahmad
and Hawkins, 2016; Hawkins, 2017; Pal, 2018a). In an SDR, at
a given instant of time only some of the neurons may be active
(producing an output of 1). If two SDRs have some overlap (have
some common active neurons) then the two SDRs share some
common attributes of the two concepts. The SDR characteristic
is considered very important for biological intelligence. Since
SDRmakes an efficient representation of information and plays a
key role in biological intelligence, incorporation of such ideas in
designing learning systems is expected yield better AI systems.

2.2. Learning From a Small Sample
One of the claimed advantages of DNN is “more is better”—
if we can train a big network with more data we can get a
better performance. But does a human being need thousands
of images to distinguish between various objects? Even a baby
can learn to distinguish between a large number of animals with
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just a few presentation of the animal images. More importantly,
once a human learns the concept of “animals”, given a picture
of a completely strange animal that has never been seen by
the person, he/she can easily detect that it is an animal and
will never mistake it to be a car or a human. This is an
extension of the learned information by “common sense.” So
human learning must be doing something different or at least
something additional than what DNNs or other ML systems do.
A child can learn many objects within a short time with few
examples. We need to develop systems that can learn from a
limited number/variety of examples as living beings do. Such
a learning system should not need millions of examples with
wide variations and a large number of cycling through the data.
There have been a few attempts to learn a class from just one
or a few examples (Fei-Fei et al., 2006; Maas and Kemp, 2009;
Lake et al., 2011, 2013, 2015; Wang et al., 2019). This is known
as Few-Shot Learning (FSL) (Wang et al., 2019). In FSL the
learning is accomplished with a few instances with supervisory
information for the target and it often exploits prior knowledge.
In Lake et al. (2013), an interesting hierarchical Bayesian model
based on compositionality and causality for one-shot learning
has been proposed. Lake et al. (2013, 2015) combined principles
of compositionality, causality, and learning to realize a Bayesian
Program learning framework to learn visual concepts using just
one example. This method can achieve human-level performance
and has defeated two deep network models. Although such a
method takes inspiration from cognitive science, it does not take
into account how human brains learn concepts from just one or
two examples. There have been a few more attempts to one-shot
learning. Learning from limited examples is very important in
areas like medical science where usually only a handful instances
from the positive class are available. In such a case, the interactive
machine learning (iML) with “human-in-the loop” could be very
useful (Holzinger, 2016; Holzinger et al., 2016). There are three
main advantages of iML: First, human intervention can reduce
the search space drastically. Second, it can facilitate learning
using a limited number of instances. Third, it can help to open the
“black Box” to some extent. However, it has a few limitations also.
For example, human knowledge often suffers from subjectivity
and hence the resultant system may have subjective bias. Thus,
an objective evaluation of such a system is difficult. Because of the
incorporation of subjective knowledge, replicability of the system
is also difficult. Interactive machine learning with human-in-the-
loop appears to have good potential for learning with limited data
but it needs more investigation. Wang et al. (2019) provides an
excellent exposition of FSL explaining the advantages of FSL, the
challenges associated with it, and how some of the challenges can
be addressed.

There are theories suggesting that human beings
recognize/learn images by segmenting them at deep concavity
and then viewing the object as a set of simple geometric
components characterized by attributes such as curvature,
collinearity, and symmetry (Biederman, 1987). It is worth noting
that this is consistent with the idea of SDR discussed earlier. This
theory of recognition by components may be useful in learning
from one or a few images. To a living being every image is not
equally memorable and it is found that color or simple image

statistics, or object statistics do not make an image memorable
(Isola et al., 2011). However, semantic information of objects and
scenes is found to make an image memorable - a human being is
able to remember such an image by just seeing once. This could
be an important clue to design a learning system that can learn
concepts with one or a few examples.

2.3. Explainable/Comprehensible/
Transparent AI
Most computational learning algorithms including DL are
“blind” in learning. They are good in decisionmaking, but cannot
explain why a decision is made. Time demands more emphasis
on this aspect of learning. Using regularizers one can simplify
(reduce the complexity) of a decision making system, which
is good but it fails to bring the level of transparency that we
would be happy with. We note here that transparency of an AI
system is different from its ability to explain the rational behind
a decision that it makes (explainability). Transparency refers to
understanding of the semantics associated with the computation
that goes on in the system. Comprehensibility/transparency is
a fuzzy concept with grades of membership in [0,1]. For a
black box system like an MLP the membership is zero while
for a completely transparent system it is one. For example, a
decision tree is highly transparent as along as the attributes
are understandable properties and the depth of the tree is
small. However, as the depth of the tree increases or if we use
extracted features like the principle components, we start losing
its comprehensibility. Yet, it will remain more comprehensible
than, for example, a multilayer perceptron. Similarly, a fuzzy
rule-based system is also transparent. A fuzzy rule based system
uses rules of the form (Chen et al., 2012) : If the expression
level of Gene X is HIGH and the expression level of Gene Y is
MODERATE and the expression level of Gene Z is LOW then
the patient is suffering from Neuroblastoma. Here HIGH, LOW
and MODERATE are linguistic values that are modeled by fuzzy
membership functions. As long as the number of antecedent
clauses is small, such rules are human understandable. Even if
such a rule involves many antecedent clauses, it is still more
transparent than, for example, a DNN. This is so because a fuzzy
rule models a small hyperellipsoidal volume in the input space
and assigns data points falling in that volume to a particular
class with different degrees. Because of this very nature of fuzzy
reasoning, we can easily understand how fuzzy rules work and
why these are not likely to make an unexpected/unrealistic
decision. However, machine learning tools like fuzzy systems or
decision trees are poor performer compared to MLPs or DNNs.
In particular, designing transparent decision trees or fuzzy rule
based classifiers would be quite challenging when it comes to, for
example, image recognition. One possibility may be to integrate
a DNN and a fuzzy rule based system. We can use a DNN
for feature extraction and abstraction. Then at the highest level
we can use a fuzzy system for prediction or classification. This
may add some level of transparency using the extracted features.
However, we certainly need more. Another alternative may be to
integrate experts’ domain knowledge into the learning process or
at the level of designing the system architecture.
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The explainability problem can be approached at least in
two different ways. First, by looking deeper into the trained AI
systems to get some reasoning behind the decisions. Second, by
using an additional layer or system to generate the explanations.
For a decision tree or for a rule-based (fuzzy or crisp) system,
generation of some explanation is relatively easy, but for a DNN,
even for an MLP, it is quite difficult. A fuzzy rule-based system is
naturally interpretable as it makes decisions based on fuzzy if-
then rules (Hagras, 2018). These rules are easy to understand,
for example, If the body-temperature is HIGH and body-ache is
SEVERE then the subject is suffering from flu. Recently, there
have been a few studies to explain why a DNN works. For
example, researchers tried to discover which part of an image is
primarily responsible to arrive at the final decision by the network
(Simonyan et al., 2014; Zeiler and Fergus, 2014; Choo and Liu,
2018). There are other methods which use visual analytics to
understand the learned representation and how it influences
the output (Liu et al., 2017; Rauber et al., 2017; Choo and
Liu, 2018). This kind of visual analytics are useful and help to
understand a little better, but cannotmake the system transparent
or adequately explainable. Such tools/analytics cannot explain
the reason behind a decision in a manner that a human would
like to have. There have been other approaches to generate
explanations for decisions made by a machine learning system
(Hendricks et al., 2016; Ribeiro et al., 2016; Samek et al., 2017).
For example, authors in Ribeiro et al. (2016) proposed a method
to explain predictions made by any classifier by learning a
local interpretable model around the prediction. On the other
hand, Hendricks et al. (2016) proposed a method for generation
of visual explanation for images classified by a deep network
where the the explanations provide some justifications behind the
classification and hence it is different from caption generation.
The authors use a Long Short-Term Memory (LSTM) network
(Hochreiter and Schmidhuber, 1997) along with the classifier.
This is an interesting work but the explanation is generated
by the LSTM. The big question of generating the explanation
directly from the discriminator still remains. Very recent and
useful expositions to the problem of explainable AI, its need and
relevance, can be found in Hagras (2018), Goebel et al. (2018),
and Holzinger (2018). Holzinger (2018) very nicely explains
the advantages and limitations of automatic Machine learning
(aML) and the advantages of iML. We have discussed earlier
that a child needs only a few examples to learn different animals
because humans can exploit the contextual information. Thus,
we emphasize again that having a human-in-the-loop appears
a very promising way of efficient learning. Holzinger (2018)
also discussed a few promising approaches to realize explainable
machine learning systems.

2.4. Recognize and React to the Open
World Problems
Another consequence of blind learning is its failure to deal with
the open world nature of recognition (not necessarily of visual
information) problem. We have already mentioned that, DNNs
sometime recognize images that are completely “unrecognizable
to humans” as human recognizable objects with a very high

confidence (Nguyen et al., 2015). Majority of the decision making
problems are some kind of classification problems. Any decision
making system should make recommendations based on only
what it is taught in a broader sense. This does not mean
that a learning system should not generalize, it must but to a
“plausible/reasonable” extent. Let us clarify this. Suppose an AI
system is trained to distinguish between tigers, lions and cows,
where every animal in the training data set has four legs. Now
if a cow, which has lost one leg in an accident is presented to
the system, we expect the system to declare it as a cow with a
reasonable level of confidence. But if the system is confronted
with a dog or a goat it should simply say “I do not know.” Note
that, here we are referring to systems for which we know why
and when they should say “Don’t know.” Most decision making
systems including DNNs fail to respond properly when faced
with known/unknown unknowns. Recognizing unknowns is very
important for many applications such as medicine, healthcare,
and defense. There are at least four problems related to this issue
(Karmakar and Pal, 2018):

1. In an open-world situation, there are unknown classes
(beyond the classes that a classifier is trained to classify). In
this case, if a test data point comes from an unknown class, it
will get wrongly classified.

2. In a closed-world situation, a test data point may come from
one of the classes that the classifier is trained to classify, but
it comes from outside the “sampling window” of the training
data. In this case, the classifier will assign one of the trained
classes and the assigned class may even be correct, but here
the classifier should refuse to make any judgement.

3. In a closed-world scenario, we may get a test data point from
outside the “sampling window.” In this case, the classifier may
assign an unrealistic class. For example, the test data pointmay
be located close to the training data of class i, but it is assigned
to class j.

4. Even for a closed-world situation, there may be concept
drift—the statistical characteristics of one or more classes may
change with time. In such a situation, the classifier should not
make any decision on the drifted data.

The above four problems are connected by a common thread;
they arise when a test data point does not come from the sampling
window of the training data. So, we can address all four problems
if the machine learning system can detect and reject a point
saying “Don’t Know” when it does not come from the sampling
window of the training data.

Many researchers have tried to address some of these problems
(Chow, 1957, 1970; Dubuisson and Masson, 1993; Chakraborty
and Pal, 2002, 2003; Scheirer et al., 2013, 2014; Jain et al., 2014;
Karmakar and Pal, 2018). There have been quite a few attempts
to deal with this problem, for example, using the Extreme Value
Theorem (Scheirer et al., 2013, 2014; Jain et al., 2014). But such
an approach suffers from a conceptual problem because known
unknowns and unknown unknowns are not necessarily extreme
values of the training data. In fact, these samples may be (usually
will be) generated from a completely different distribution than
that of the training data. Recently in Karmakar and Pal (2018)
authors proposed a scheme to equip a multilayer perceptron
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network with the ability to say “do not know” when the test data
come from outside the sampling window of the training data.
In Karmakar and Pal (2018), a theoretically sound method for
estimating the samapling window from a given training data set
has been proposed.

Given the estimate of the sampling window, we can draw
random samples from the complement of the estimated sampling
window (of course over an slightly inflated hyper box containing
the training data - any test data coming from outside this box
can always be rejected) and use that to represent the “unknown
world.” Now, for a c-class problem, we train a (c+1) class system,
where the (c + 1)st class represents the “Don’t Know” class.
Further details can be found in Karmakar and Pal (2018). While
training the system we may use suitable regularizer to control
the sensitivity of the output for the (c + 1)st class with respect
to inputs. This will help to train the system with limited samples
from the “Don’t know” class.

In principle, such a concept can be applied to DNNs
also. But for very high dimensional data such methods would
be computationally demanding. However, it may be possible
to use appropriate regularizers to minimize the number of
samples needed from the complement world for its faithful
representation. In order to avoid occasional but catastrophic
failure of an AI system, it must recognize its domain of operation
beyond which it should not make any decision; otherwise, it may
lead to situations giving a false perception that an AI system has
“taken over the human.”

2.5. Trustworthiness of a Machine Learning
System
When we use a so-called intelligent system either for medical
diagnosis or for driving an unmanned vehicle, a natural question
comes: how trustworthy the system is! To achieve trustworthiness
we need to ensure two things: first, when test samples come
from the sampling window, the system should not make

wrong decisions and second, when the test data come from
outside the sampling window, the system should refuse to
make any recommendation (reject that point). To check the
trustworthiness of such a trained system we may proceed as
follows Karmakar and Pal (2018).We find the smallest hypercube
containing the training data and then expand its each side by
a small percentage, say 5%. We generate a large set of points
uniformly distributed over the extended box. For each such point,
we compute its shortest distance from the points in the training
set. Let D be the largest value of all such distances. We divide the
interval [0,D] into k > 1 intervals. Let (di, di+1d);1d > 0; 0 ≤

di ≤ D; i = 0, 1, ..., k; d0 = 0, dk = D, di = d0+ i.1d be one such
interval. Let Ni be the number of points for which the shortest
distance lies in (di, di + 1d) and of these Ni points, ni points are
rejected by the network. Then, fi =

ni
Ni
; i = 0, 1, ..., (k − 1) is

the percentage of points with distance in (di, di + 1d) that are
rejected. For a trustworthy system, with higher values of i, i.e., of
di, this percentage should increase. Thus, if we plot fi vs. di, for
a trustworthy classifier, we expect to see a curve like the one in
Figure 1. If fi quickly goes to one with di, this will suggest a very
conservative and trustworthy system. Apart from the pictorial
representation, it may be possible to come up with some index
based on this curve to measure the trustworthiness of the trained
system’. We just gave some idea of how to deal with this problem,
but it certainly needs more focussed study.

2.6. Plausibility of Backpropagation
For majority of the learning algorithms, we use error
backpropagation type approaches to optimize a learning
objective. For the multilayer perceptron networks, the error
backpropagation learning requires that the downstream errors
are fed back to upstream neurons via an exact, symmetric copy
of the downstream synaptic weight matrix. Thus, each neuron
in the hidden layers requires the precise knowledge of all of
its downstream connections (synapses). But it is believed to

FIGURE 1 | Illustration of how trustworthiness can be assessed.
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be almost impossible to happen in the brain (Lillicrap et al.,
2016). Lillicrap et al. (2016) demonstrate that we can transmit
teaching signal over different layers by multiplying errors
with random synaptic weights and it becomes as effective as
the backpropagation algorithm for training deep networks.
This eliminates the strong structural constraint demanded
by backpropagation making it a biologically more plausible
architecture. Incorporation of such attributes in our NN would
make the architecture of the system closer to that of a biological
system. However, as clarified by Lillicrap et al. (2016) this does
not answer more fundamental questions as to how exactly the
brain computes and represents errors and how the feedforward
and feedback paths may interact with each other.

2.7. Structure of Neurons
The neurons used in DNNs/CNNs are primarily of uniform
structure and very simple in architecture. In biological
vision, visual object recognition is realized by a hierarchical
representation of increasingly complex features along the ventral
visual stream (DiCarlo et al., 2012; Kuzovkin et al., 2018).
This hierarchical representation (abstractions) are typical of
deep learning. There have been several studies on establishing
correspondence between the hierarchical representation of
features with increasing complexity in the brain and that in
CNN (Kriegeskorte, 2015; Yamins and DiCarlo, 2016). All these
studies motivated researchers to investigate whether the neurons
in our brain, which are responsible for thinking/reasoning
and have much more complex tree-like structures with roots
going deep in the brain and branches going close to the surface,
can help to model computational neurons for realizing deep
networks like CNN (Guerguiev et al., 2017). In the mammalian
neocortex, feedforward and feedback signals are received at
electronically segregated dendrites (Guerguiev et al., 2017). In
order to realize a biologically more plausible neuron architecture
for deep learning, Guerguiev et al. (2017) designed artificial
neurons with two compartments, similar to the “roots” and
“branches.” The hidden layer neurons are modeled to have
segregated “basal” and “apical” dendritic compartments, which
are used to separately integrate feedforward and feedback signals
and the system did not require separate pathways for feedback
signals. They demonstrated that such a network can easily learn
to classify the MNIST data (LeCun et al., 1998) and it can also
learn hierarchical abstract representation of the objects. This
emphasizes as well as demonstrates that it is possible to design
computational neurons which more closely model biological
neurons as well as can make abstract representation of features
like deep networks, and perform the task of classification.
However, this does not necessarily mean that the brain replicates
exactly this type of processing. Moreover, further investigations
are needed to assess whether such networks are more robust or
can perform reasoning more close to that by humans.

2.8. Artificial General Intelligence
We have indicated a few very minor cues from biology that
may be useful, but there may be (actually there are) plenty of
discoveries related to how brain stores, processes, and usees
data/information to infer. We need to look at these areas if

we want truly intelligent systems. In our view, to design AI
systems with human-type reasoning, such concepts could be
very useful for representation. For example, almost all of the
successful AI systems of today primarily focus on only single
task, say image recognition, and that too specific to a domain. If
an AI system is trained to recognize natural scenes or animals,
it usually cannot understand an X-ray image, summarize text
information, or make medical diagnosis. If we want to realize
a generalized AI system capable of doing multiple tasks, we
may need to partition the network according to functionality of
different lobes of the brain. Creating such an architecture and
its training are certainly going to be challenging tasks. This will
demand a better understanding of the brain and integration of
various discoveries about the brain that we already know. In our
view, a purely data-based design of AI systems, certainly is useful
and will lead tomany unexpected and successful applications, but
it may not be adequate to realize true human-type cognitive and
reasoning abilities.

3. CONCLUSION AND DISCUSSION

Any AI system, in fact any decision making system, should have
a few desirable attributes. It should be accurate, transparent,
trustworthy, simple, and be able to explain the decisions it
makes. In addition, it would be good if the system can be
trained with limited data with limited computation time. In our
opinion, if we borrow ideas from the brain science to design
decisionmaking systems, we aremore likely to realize human-like
cognitive and reasoning abilities. We say “more likely” because
we have mentioned earlier that our knowledge of how the brain
learns is limited and the use of the partial knowledge to build
an AI system, may not replicate brain style reasoning. Moreover,
it may not always be an easy task to incorporate neuroscience
discoveries into a computational AI system to realize the desired
benefits. In this context we have discussed a few findings in brain
science which can be exploited to design AI systems. We have
also alluded how one can make a system trustworthy so that the
system does not make a decision when it should not. We have
provided some ideas on how we can quantify the trustworthiness
of a system.

There are other important issues related to design of AI
systems that have not been discussed here. For example, time has
come to focus on sustainable AI (Pal, 2018b). Here we like to refer
to two issues: The first issue is that the development (training)
of the AI system should have the minimum carbon footprint.
To achieve human-like performance often this important issue
is ignored. To illustrate the severity of this issue we consider a
recent study which used an evolution-based search to find a better
architecture for machine translation and language modeling
than the Transformer model (So et al., 2019). The architecture
search ran for 979M training steps requiring about 32,623 h
on TPUv2 equivalently 274,120 h on 8 P100 GPUs. This may
result in 626,155 lbs of CO2 emission–this is about 5 times the
lifetime average emission by an American Car (Strubell et al.,
2019). The second point is that the solutions provided by an AI
system should be sustainable with the minimum impact on the
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environment. For example, an AI system to assist farmers should
not just try to maximize the yield, but should also keep in mind
the impact of high use of nitrogen fertilizer on the environment.
The system should prescribe the use of the Right nutrient source
at the Right rate in the Right place and at the Right time (R4).

In near future, we shall see many remarkable advances in
AI with many useful and innovative applications. In fact, time
may come when just the accessability of the pages of a medical
book by a computer would enable the system to scan the
pages, understand them, extract the rules, and behave like a
real doctor! Robots may interact with each other to redistribute
work loads among themselves or repair each other’s problems.
AI applications will be almost everywhere and very intimately
related to our daily life. Mostly there will be good usage but there
may be some bad ones too. AI will lead to many legal issues also.
We certainly will need global policies to monitor the use and
abuse of AI.

The world renowned physicist, StephenHawking, commented
during a talk at the Web Summit technology conference in
Lisbon, Portugal,“Success in creating effective AI, could be the

biggest event in the history of our civilization. Or the worst.
We just don’t know. So we cannot know if we will be infinitely
helped by AI, or ignored by it and side-lined, or conceivably
destroyed by it” (Kharpal, 2017). He also admitted that the future
was uncertain.

It is not an easy task to equip any system (say a robot)
with rules (based on data or otherwise) to deal with all
possible scenarios for any non-trivial application. If such a
robot is not explicitly trained to prevent itself from making
decisions in unfamiliar situations, it may behave in an erratic
manner and that may be viewed as if the robot has taken
over the human. We believe, in near future AI systems will
be extensively used almost everywhere and in some application
areas (intentionally/unintentionally) uncontrolled behavior of
robots may become a reality.
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Jens Nevens*, Paul Van Eecke and Katrien Beuls

Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Brussels, Belgium

Autonomous agents perceive the world through streams of continuous sensori-motor

data. Yet, in order to reason and communicate about their environment, agents need

to be able to distill meaningful concepts from their raw observations. Most current

approaches that bridge between the continuous and symbolic domain are using deep

learning techniques. While these approaches often achieve high levels of accuracy, they

rely on large amounts of training data, and the resulting models lack transparency,

generality, and adaptivity. In this paper, we introduce a novel methodology for grounded

concept learning. In a tutor-learner scenario, the method allows an agent to construct

a conceptual system in which meaningful concepts are formed by discriminative

combinations of prototypical values on human-interpretable feature channels. We

evaluate our approach on the CLEVR dataset, using features that are either simulated or

extracted using computer vision techniques. Through a range of experiments, we show

that our method allows for incremental learning, needs few data points, and that the

resulting concepts are general enough to be applied to previously unseen objects and

can be combined compositionally. These properties make the approach well-suited to

be used in robotic agents as the module that maps from continuous sensory input to

grounded, symbolic concepts that can then be used for higher-level reasoning tasks.

Keywords: grounded concept learning, language games, hybrid AI, CLEVR, emergent communication

1. INTRODUCTION

A concept can be described as a mapping between a symbolic label and a collection of attributes
that can be used to distinguish exemplars from non-exemplars of various categories (Bruner
et al., 1956). In the context of grounded, autonomous agents, these attributes correspond to
streams of continuous-valued data, obtained through the agent’s various sensors. In order to
communicate and reason about the world, agents require a repertoire of concepts that abstracts
away from the sensori-motor level. Without this layer of abstraction, communication would
happen by directly transmitting numerical observations. Such a system easily leads to errors in
communication, for example when the agents observe the world from different perspectives, or
when calibration is difficult because of changing lighting conditions or other external factors. To
obtain a repertoire of concepts, i.e., mappings from labels to attribute combinations, autonomous
agents face two learning problems simultaneously. First, the agents need to find out which
attributes are important for each concept. This requires a mechanism for identifying meaningful
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combinations of attributes from their sensori-motor data streams
and attaching a symbolic label to each of these combinations.
Second, the agents must be able to recognize instances of
particular concepts and distinguish concepts from each other. For
representing concepts, we make use of prototype theory (Rosch,
1973), although also other approaches have been proposed in the
psychological literature (McCarthy andWarrington, 1990; Squire
and Knowlton, 1995; Patalano et al., 2001; Grossman et al., 2002).

A range of different approaches have been applied to
concept learning, including version spaces and deep learning
techniques. However, we identify a number of drawbacks in these
approaches. In version space learning, a concept is represented
as an area in a hypothesis space. This space can for example
denote the possible ranges of values of various attributes of
the concept. Each concept is bound by the most general and
the most specific consistent hypothesis. Using positive and
negative examples, these boundaries can be updated using
the candidate elimination algorithm (Mitchell, 1982). A well-
known caveat of this technique, however, is its inability to
handle noisy data. In deep learning approaches, concepts are
often represented through embeddings, i.e., high-dimensional
numerical representations, which lack human-interpretability
(see e.g., Mao et al., 2019; Shi et al., 2019). Additionally, as these
embeddings are learned in a statistical way, they often fail to
adapt to unseen scenarios and require huge amounts of training
data. Neither of these approaches offer a learning mechanism
that would be suitable for an autonomous agent, i.e., responsive
to changes in the environment, able to support incremental
learning, and able to dynamically expand the agent’s repertoire
of concepts.

In this paper, we propose a novel approach to grounded
concept learning. Using the language game methodology (Steels,
2001), we set up series of scripted, task-oriented communicative
interactions in a tutor-learner scenario. The environment in
which these interactions take place is adopted from the CLEVR
dataset (Johnson et al., 2017). This environment consists of
scenes made up of geometrical objects, where the objects
differ in color, size, shape, material, and spatial position.
Through the communicative task, an agent must learn the
concepts present in this dataset, such as SMALL, RED, or LEFT.
Learning these concepts requires not only finding relevant
attribute combinations (e.g., “r,” “g,” and “b” for color), but
also their prototypical values (e.g., “r:44,” “g:76,” and “b:215”
for BLUE). Both the tutor and the learner agent make use
of the notion of discrimination, i.e., maximally separating
one particular object from the other objects in the scene.
Discrimination is an often-used mechanism in experiments on
the emergence and evolution of language (Steels, 1997; Vogt,
2002; Pauw and Hilferty, 2012; Wellens, 2012; Bleys, 2016).
In language production, the tutor looks for the concept that
is maximally discriminating for a particular object, thereby
helping the learner to solve the communicative task. The
learner, on the other hand, uses the tutor’s feedback and
discrimination to update its repertoire of concepts after every
interaction. This ensures that the concepts are optimally relevant
for the communicative task and the environment in which
they occur.

The main contribution of this paper is a novel method
to represent and learn symbolic concepts that provide an
abstraction layer over continuous-valued observations. This
method builds on earlier work by Wellens (2012) and extends
the discrimination-based learning of concepts represented by
weighted combinations of attributes, so that they can be learned
from continuous streams of data. Through various experiments,
we demonstrate how the learner acquires a set of human-
interpretable concepts in a way that is (i) general, (ii) adaptive to
the environment, (iii) requires few interactions, and (iv) allows
for compositionality.

The remainder of this paper is structured as follows. In section
2, we discuss existing approaches to concept learning. Section 3
introduces the environment in which the agents operate and the
language game setup. In section 4, we introduce the experiments,
each showcasing a desirable property of our approach. The
experimental results are provided and discussed in section 5.
Finally, in section 6, we summarize and conclude.

2. RELATED WORK

2.1. Version Space Learning
One method for representing and learning concepts is through
version spaces (Mitchell, 1982). In this method, a concept is
represented as an area in a space with dimensionality equal to
the number of attributes. The concept area is bounded by both
the most specific consistent hypothesis and the most general
consistent hypothesis. A hypothesis consists of a combination of
attribute values and it is considered consistent when it agrees with
the observed examples. With this representation, the simplest
way of learning concepts is through the candidate elimination
algorithm. Provided with both positive and negative training
examples, the algorithm works as follows. The most general and
most specific hypotheses are being updated in such a way that
the former covers all positive training examples, including as
much as possible of the remaining attribute space but excluding
any negative examples, and the latter covers all positive training
examples with as little as possible of the remaining attribute
space. These updates happen in an incremental manner, looking
for the minimal specialization for the most general hypothesis
and the minimal generalization for the most specific hypothesis.

A major drawback of the candidate elimination algorithm
is its inability to handle noisy data. Noisy or wrongly labeled
training examples can incorrectly update one or both of the
boundaries and recovering from such errors is often difficult. On
the positive side, because of the relatively simple representation
and learning algorithm, concepts learned using version spaces are
often human-explainable and transparent. Furthermore, when
the boundaries are allowed to be updated after training, the
concepts remain adaptive over time.

2.2. Neural Approaches
More recent approaches to concept learning are dominated
by deep learning techniques. State-of-the-art results have been
achieved by Higgins et al. (2016) and Shi et al. (2019). These
two approaches vary strongly in the neural network architecture,
the learning regime (e.g., binary or multi-class classification
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or unsupervised learning), the concept representation (e.g., a
label in a classifier or a group of latent variables) and the
task or domain in which concepts are being learned (e.g.,
hand-written characters or generated graphics). However, the
aforementioned papers are particularly interesting since both
of them take inspiration from human concept learning and
incorporate this in their models. For example, how humans
require only one or a few examples to acquire a concept is
incorporated through one-shot or few-shot learning or how
known concepts can be used to recognize new exemplars is
achieved through incremental learning and memory modules.
Many more approaches to concept learning using deep learning
techniques exist (e.g., Wang et al., 2015; Dolgikh, 2018; Xu et al.,
2018; Rodriguez et al., 2019). In general, these approaches yield
high levels of accuracy but require huge amounts of training data
and/or training time. Additionally, the concepts are represented
in a way that is often not human-interpretable and the set of
concepts is often predefined and fixed over time. Some of the
aforementioned approaches tackle one or two of these issues, but
not all together.

In other approaches, concepts are learned as a “side effect”
while tackling another, typically larger task. In the work by
Mao et al. (2019) and Han et al. (2019), not only concepts
but also words and semantic parses of sentences are learned in
the context of a Visual Question Answering task. Specifically,
a perception module learns visual concepts, represented as
embeddings, based on the linguistic description of the object
being referred to. As reported by Mao et al. (2019), the
concepts are acquired with near perfect accuracy (99.9%) and
a relatively small amount of training data (5K images), but the
resulting concept representations are not human-interpretable.
The proposed model does allow for incremental learning and
generalizes well to unseen combinations of attributes. This
generalization, however, requires fine-tuning the model on a
held-out dataset.

2.3. The Omniglot Challenge and Bayesian
Program Learning
One particular line of research that focusses exclusively on
human-like concept learning is centered around the Omniglot
dataset (Lake et al., 2015). This is a dataset of hand-written
characters from 50 different alphabets. Each character is written
by 20 people and stored as both an image and pen stroke data.
The Omniglot challenge aims to push forward the state-of-the-
art in human-like concept learning. The main challenge consists
of a within-alphabet one-shot classification task: given a new
character and an alphabet, identify the character in the alphabet
that is the same character as the one presented. This task aims
to replicate the ability of humans to acquire a new concept
with only a single example. Next to this, there are three other
tasks designed to test several concept learning-related abilities:
parsing of exemplars into parts and relations, generating new
exemplars of a given concept and generating new concepts of a
particular type.

In his own work, Lake et al. (2015) introduces Bayesian
Program Learning (BPL) to tackle the Omniglot challenge. Here,

concepts are represented as probabilistic generative models,
trained using the pen stroke data and built in a compositional
way such that complex concepts can be constructed from (parts
of) simpler concepts. In this case, the model builds a library of
pen strokes and characters can be generated by combining these
pen strokes in many different ways. This approach has many
advantages, including the ability to do one-shot learning and a
powerful compositional representation of concepts that allows
not only to classify concepts but also to generate them.While this
model achieves impressive results, learning through pen stroke
data offers a limited range of possibilities. Other researchers have
tackled the Omniglot challenge, mostly using neural approaches
as reported by Lake et al. (2019). Almost all of them have focussed
on the one-shot classification task using the image data as input.
As a result, the BPL approach remains the SOTA model for all
tasks in the Omniglot challenge.

2.4. Reinforcement Learning
Concept learning has also been approached from a reinforcement
learning perspective. In this context, a concept is regarded as
an abstraction over an agent’s states or actions. Abstraction over
discrete states can be achieved through tile-coding (Sutton, 1996).
Recently however, following advances in the domain of deep
reinforcement learning, abstraction over continuous states is
often performed through function approximation (Mnih et al.,
2015). Abstraction over actions is commonly achieved through
the use of options (Sutton et al., 1999).

One line of research that is particularly relevant to
our approach is the work by Konidaris and colleagues.
Initially, the authors mapped propositional symbols to a
set of low-level states (Konidaris et al., 2014). These states
were obtained from the continuous environment through
a classifier. A planning problem is then solved using the
propositional symbols as operators, which can be translated
to sets of low-level states, executed in the environment. In
later work, the set-based representation was replaced by a
probability distribution, to better capture the uncertainty about
the successful execution of each high-level step (Konidaris
et al., 2015, 2018). Again, this approach was validated
through a planning problem in a continuous state space,
where policies for high-level planning problems in a game
environment, such as “obtain key” or “obtain treasure,” could be
computed efficiently.

The symbolic high-level steps can be represented in a human-
interpretable way, as the pre- and postconditions can be easily
visualized in the game environment. Additionally, the model
proposed by Konidaris et al. (2015) can be learned efficiently
with relatively few data points: 40 iterations of 100 randomly
chosen actions were used to extract the high-level steps. As
is typical in a Reinforcement Learning setting, the planning
steps are learned through experience. Hence, new planning steps
must be learned by collecting new experiences specific to this
concept. Additionally, the resulting steps are relatively domain-
specific. No experiments are reported that investigate generality,
e.g., would JUMP-LEFT generalize to other game settings, or
adaptivity, e.g., does the concept JUMP-LEFT change when the
game physics change.

Frontiers in Robotics and AI | www.frontiersin.org 3 June 2020 | Volume 7 | Article 8448

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Nevens et al. Discrimination-Based Grounded Concept Learning

2.5. Robotics
A large body of work exists in the robotics community that
considers various tasks very similar to what we refer to
as concept learning. Common names for this task include
symbol emergence, perceptual anchoring, affordance learning,
and category learning.

As a first approach, we consider the task of perceptual
anchoring. The goal of perceptual anchoring is to establish and
maintain a link between symbols and sensor data that refer to
the same physical object (Coradeschi and Saffiotti, 2003). This
link should remain stable through time and space, e.g., when
an object moves through a robot’s view, when it is covered by
another object, or when it disappears and later reappears. The
symbol system can manipulate individual symbols, referring to
objects as a whole, but also predicates reflecting properties of
the objects. Different representations can be used by the sensor
system, e.g., a set of continuous-valued features or a vector in
some embedding space. An anchoring system can be bottom-up,
starting from the perceptual level, and top-down, starting from
the symbolic level. In the context of perceptual anchoring, the
combination of a symbol, a set of predicates and sensor data can
be considered a single concept.

In recent work, a bottom-up perceptual anchoring system
was combined with a probabilistic symbolic reasoning system
(Persson et al., 2019). This approach allowed to improve the
overall anchoring process by predicting, on the symbolic level,
the state of objects that are not directly perceived. There are
multiple advantages to this approach. First, the authors achieve
high accuracy (96.4%) on anchoring objects and maintaining
these anchors in dynamic scenes with occlusions, using relatively
little training data (5400 scenes, 70% used for training).
Additionally, their system is completely open-ended and allows
for incremental learning, since the anchor matching function will
simply create new anchors when it encounters previously unseen
objects. The anchor matching function, in some way a similarity
measure, is closely related to the notion of discrimination.
The difference being that discrimination also takes the other
objects into account. Finally, the representation of a concept
can be human-interpretable, depending on the representation
of objects in the sensor system and the corresponding symbols
and predicates.

For a second approach, we focus on affordance learning.
With this approach, the focus lies on the interaction between
the perceptual system and the motor system of an autonomous
agent. Put differently, an affordance can be considered as a
learned relation between an action in the environment, caused
by the motor system, and the effect observed in the environment,
captured by the perceptual system (Şahin et al., 2007). Building
on this, the agent can learn concepts in terms of affordances.
As proposed by Ugur et al. (2011) and further worked out in
Ugur and Piater (2015a,b), affordances can be grouped together
in effect categories. These are consequently mapped to clustered
object properties to form a particular concept. For example,
the concept BALL is an object with spherical properties that
exhibits the roll-effect when pushed and the disappear-effect
when lifted, as it rolls off the table when dropped. In these works,
the authors use concepts learned through their affordances in

plan generation and execution, with an agent being capable of
planning the necessary actions involving specific objects to reach
a given goal state. This approach offers amore action-centric view
on the agent’s world, which is complementary to our approach.
It not only allows an agent to recognize and describe objects
in the world, but also correctly act on them. The concepts that
are acquired, combining effect categories with object properties,
offer a transparent view. The effect categories are expressed in
terms of change in visibility, shape and position, and the object
properties are stored in a numerical vector with explainable
entries, such as features relating to position and shape (Ugur
et al., 2011). Additionally, since the concepts are learned through
unsupervised exploration, the proposed model is adaptive to the
environment. New concepts can be added incrementally through
additional exploration and learned concepts can be progressively
updated (Ugur and Piater, 2015b). As is typical in robotics, the
proposed approach combines learning in simulation and using
physical robots. The concepts, specifically, could be acquired after
only 4,000 simulated interactions (Ugur et al., 2011). The robot
is used to validate these concepts in several planning problems.
Finally, as the agent assesses the object features relevant for each
effect category, the resulting mappings offer some generality, e.g.,
a ball exhibits the same effect categories regardless of its color.

Other approaches take a probabilistic perspective on concept
learning, similar to Lake et al. (2015), but focussing on the
domain of robotics. Concepts are learned through unsupervised
online learning algorithms, combining multi-modal data streams
(most often perceptual data and raw speech data) through
statistical approaches such as Bayesian generative models or
latent semantic analysis (Nakamura et al., 2007; Aoki et al.,
2016; Taniguchi et al., 2016, 2017). Through this integration of
data streams, the acquired concepts constitute mappings between
words and objects, as studied by Nakamura et al. (2007) and
Aoki et al. (2016), or between words and spatial locations,
as studied by Taniguchi et al. (2016, 2017). The latter further
used these concepts to aid a mobile robot in generating a
map of the environment without any prior information. The
statistical methods have the advantage of being able to infer
a considerable amount of information from a limited number
of observations, and are therefore suitable for use in robotics
scenarios. Additionally, they offer model interpretability to a
certain extent, through a graphical model representation such as
a Bayesian network. Finally, the proposed models are adaptive
to changes in the environment and offer incremental learning
through the online learning algorithms.

Among the various approaches to concept learning discussed
so far, our proposed approach is most closely related to the
robotics literature, as many of these studies deal with similar
issues such as grounding, adaptivity, generality, and fast learning.
For a more comprehensive overview on symbol emergence from
the viewpoint of cognitive systems/robotics, we refer to Taniguchi
et al. (2018).

2.6. Discrimination-Based Learning
One particular experiment byWellens (2012) has heavily inspired
this work. Wellens makes use of the language game methodology
to study multi-dimensionality and compositionality during the
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emergence of a lexicon in a population of agents. In this language
game, called the compositional guessing game, the speaker
tries, using language, to draw the attention of the listener to a
particular object in a shared scene. Each object in such a scene
is observed by the agent as a collection of symbolic attributes,
e.g., “a-1,” “a-2,” “a-3” and so on. The words used by the agents
have one or multiple of these same symbols as their meaning
(multi-dimensionality) and the agents can use multiple words to
describe a particular object (compositionality). At the end of a
game, the agents give each other feedback on the outcome of the
game and the speaker points to the intended object in case of
failure. This setup leads to a large amount of uncertainty for the
agents, as they should find out what part of the meaning should
be linked to which word in the multi-word utterance.

In his work, Wellens proposes two distinct types of strategies
for reducing this uncertainty: competitive strategies and adaptive
strategies. Both make use the notion of discrimination, i.e.,
maximally separating one object from the others, for both
language production (the speaker) and interpretation (the
hearer). However, in the former type of strategies, the agents
explicitly enumerate competing hypotheses (i.e., the same
word with a different meaning) and mechanisms are in place
to gradually reduce this enumeration. This soon becomes
intractable, leading to scaling issues in environments with many
objects or many attributes per object. The latter type of strategies,
on the other hand, avoids enumerating competing hypotheses.
Instead, only a single meaning, composed of a set of attributes, is
kept for each word. Over the course of interactions, this meaning
is gradually being shaped based on the feedback provided after
each interaction. How this shaping is implemented depends
on the particular strategy. Adaptive strategies focus on re-use,
allowing agents to use words even when the associated meanings
are not (yet) fully compatible with the topic object. Figure 1
illustrates the difference between the two types of strategies.

Within the realm of adaptive strategies, a distinction is made
between the baseline adaptive strategy and the weighted adaptive
strategy. In the former strategy, the ideas underpinning adaptive
strategies are implemented in a rather crude way. The agents
gradually shape the meaning of words simply by adding or
removing attributes from the set, based on the feedback after
the game. The latter strategy offers a more gradual shaping of

the meaning. Here, the meaning is no longer a regular set of
attributes but instead it is a weighted set. Each attribute receives
a score, expressing the certainty that the attribute is important
for the word it is linked to. Based on the received feedback,
agents cannot only add or remove attributes, but also alter the
score of attributes to reflect changes in certainty. Over time, the
meanings are shaped to capture attribute combinations that are
functionally relevant in the world, driven by the force to obtain
communicative success and the notions of discrimination and
alignment. For more details about the compositional guessing
game and the various strategies, we refer to Wellens (2012).

Our approach to concept learning is heavily inspired by
the weighted adaptive strategy. As we will discuss later on,
concepts in our approach are also represented by weighted
attribute sets. However, where previous work only considers
symbolic attributes, we extend this approach to continuous-
valued attributes, introducing the need for more sophisticated
representations and processing mechanisms.

3. METHODOLOGY

The goal of this work is for an agent to distill meaningful
concepts from a stream of continuous sensory data through a
number of communicative interactions called language games.
These interactions are set in a tutor-learner scenario and take
place in a shared environment consisting of scenes of geometric
shapes. Driven by the communicative task and the notion of
discrimination, the agent will gradually shape its repertoire of
concepts to be functional in its environment. In this section,
we elaborate on the language game methodology (section 3.1),
the environment in which the agents operate (section 3.2),
the concept representation and update mechanism as used by
the learner (section 3.3) and the mechanisms used by the
tutor (section 3.4).

3.1. Language Game
The language game methodology is commonly used to study
how a population of agents can self-organize a communication
system that is effective and efficient in their native environment.
By playing language games, agents take part in a series of scripted
and task-oriented communicative interactions. A language game

FIGURE 1 | (A) Competitive strategies enumerate competing hypotheses. (B) Adaptive strategies allow the meaning to be shaped gradually. By adding weights, this

can be done in a more fine-grained manner.
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is typically played by two agents from the population, one
being the speaker and another being the hearer. There is no
central control and the agents have no mind-reading capabilities.
The agents are only allowed to communicate through language.
After a number of games, the population converges on a shared
communication system through selection and self-organization.
Thismethodology has been used to study the emergence of a wide
range of linguistic phenomena, including grammatical agreement
(Beuls and Steels, 2013), color lexicons (Bleys, 2016), argument
marking (Lestrade, 2016), quantifiers (Pauw and Hilferty, 2012),
spatial language (Spranger and Steels, 2012), case (van Trijp,
2016), etc.

The language game in this work is set up in a tutor-learner
scenario. The tutor is an agent with an established repertoire of
concepts, while the learner starts the experiment with an empty
repertoire. The tutor is always the speaker and the learner is
always the listener. Before each game, both agents observe a
randomly sampled scene of geometric shapes. The environment
itself will be explained in greater detail in section 3.2. For
now, we note that the tutor has access to a high-level symbolic
annotation of the scene, while the learner observes the scene
through streams of continuous data. The symbolic annotation
constitutes the ground-truth of the scene and the learning target
for the learner agent. This avoids having to manually design a
number of concepts in terms of the observed data stream for the
tutor, which could bias the system.

The interaction script, which are the steps both agents go
through during a single language game, goes as follows. The tutor
starts the interaction by choosing one object from the scene as
the topic. Using the symbolic annotation, the tutor looks for a
concept that optimally discriminates the topic and utters it. By
looking for the most discriminative concept, the tutor is actively
trying to help the learner in solving the communicative task. If
the topic cannot be discriminated using a single concept, the
tutor picks another object or scene. This restriction will be lifted
later on in one of the more advanced experiments. The learner
receives this word and checks its repertoire of concepts. If the
concept denoted by this word is unknown, the learner indicates
failure to the tutor. Alternatively, if the learner does know the
word, it will try to interpret the corresponding concept in the
current scene. In other words, the learner will look for the object
that best matches the concept. The learner points to this object
and the tutor provides feedback on whether or not this is correct.

After each interaction, the tutor provides feedback by pointing
to the intended topic. This is a learning opportunity for the
learner. We call this phase of the game “alignment.” If the
concept was unknown for the learner, it is now able to create
a new concept. At this stage, the learner cannot yet know
which attributes are important for the concept. It does know,
however, that the tutor could discriminate the topic using this
concept. Thus, the learner stores an exact copy of the topic
object as the initial seed for the corresponding concept. Each
attribute receives an initial score of 0.5, reflecting the uncertainty
that the attribute is important for the newly created concept.
Alternatively, if the learner did know the concept, it can refine its
representation using the newly acquired example. This involves
updating the prototypical values and the certainty scores of the

attributes. We elaborate on this mechanism in section 3.3. A
schematic overview of the complete interaction script is shown
in Figure 2.

Note that in our description of the interaction script in
the previous paragraphs, we have used the words “concept”
and “word” interchangeably. We will continue to do so in
the remainder of this paper, as in the experiments that we
describe, there is a one-to-one correspondence between words
and concepts.

To evaluate the learner agent, we measure both
communicative success and concept repertoire size.
Communicative success indicates whether or not the interaction
was successful. In other words, it tells us if the learner could
successfully use the concept in interpretation and consequently
points to the topic intended by the tutor. Also, we can monitor
the number of interactions required to reach a particular
level of communicative success, indicating the speed at which
the agent is learning. By keeping track of the size of the
learners concept repertoire over time, we can check how
many interactions are required for the learner to acquire all
concepts known by the tutor. In the experimental environment,
there are 19 concepts to be learned in total. These are
summarized in Table 1.

3.2. Environment
3.2.1. The CLEVR Dataset
The agent’s environment is based on the CLEVR dataset (Johnson
et al., 2017). This dataset contains 100K rendered scenes of
geometric objects. Each scene contains between 3 and 10
randomly placed objects. The objects have four basic properties:
color, size, material, and shape. In total, there are 8 distinct
colors, 2 sizes, 2 materials, and 3 shapes. Next to an image
of the scene, there is also a ground-truth symbolic annotation,
encoded in JSON format. An example scene and annotation
are shown in Figure 3. The CLEVR dataset is split into a
training set (70K images), a validation set (15K images) and a
test set (15K images). In this work, we only make use of the
images of the validation set, as no ground-truth annotations
are available for the test set. Additionally, since the language
game paradigm features online interactive learning, there are
no separate training and test phases. The agent is evaluated
whilst learning and hence, no held out dataset is required. The
CLEVR dataset is ideal for concept learning experiments, as the
dataset was specifically designed to avoid dataset biases as much
as possible. In practice, this means that across the scenes, there
will be as many blue objects as red objects, as many cubes as
cylinders, etc.

The learner agent observes its environment through streams
of continuous-valued sensor data. To achieve this, the CLEVR
scenes need to be transformed into numerical data. We consider
two ways of making this transformation. As a first method, we use
manually written rules and procedures to transform the symbolic
JSON annotation into numerical data. This method is explained
in section 3.2.2. For the second method, we use a state-of-the-
art Mask R-CNN model (Yi et al., 2018) to detect and segment
the objects directly from the image. Section 3.2.3 is dedicated to
this method.
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FIGURE 2 | During a single interaction, both agents observe a scene of geometric shapes. The tutor chooses a topic and produces a word denoting a concept that

discriminates this topic. The learner looks up this word in his repertoire. If the word is known, the learner tries to interpret this in the scene. Otherwise, the learner

indicates failure. After the interaction, the tutor provides feedback to the learner, allowing it to learn.

TABLE 1 | All concepts in the experimental environment.

Shapes Colors Sizes Materials Positions

CUBE BLUE LARGE METAL BEHIND

CYLINDER BROWN SMALL RUBBER FRONT

SPHERE CYAN LEFT

GRAY RIGHT

GREEN

PURPLE

RED

YELLOW

3.2.2. Simulated Attributes
The first method starts from the symbolic scene annotations
and transforms these into continuous-valued attributes based on
simple rules and procedures. We provide an overview of these
rules in Table 2. Each symbolic attribute is mapped to one or
more continuous attributes with a possible range of values. For
example, color is mapped to three attributes, one for each channel
of the RGB color space, and size is mapped to a single attribute,

namely area. We also include the x- and y-coordinates. These
attributes were already present in the CLEVR dataset and are
simply adopted.

The values for the various attributes are not chosen arbitrarily.
For color concepts, e.g., RED, we use the RGB value that was used
during the image rendering process of the CLEVR dataset1. This
value is used as a seed value and random jitter is added. The same
technique is used for the size-related concepts. The amount of
jitter is shown in the rightmost column of Table 2. Generating
the continuous attributes for the shape-related attribute proceeds
as follows. We consider a sphere to have 1 side, 0 corners and a
width-height ratio of 1, a cylinder to have 3 sides, 2 corners and
a width-height ratio of 0.5 and a sphere to have 6 sides, 8 corners
and a width-height ratio of 1. Finally, material is identified by a
measure of surface roughness.

Obtaining sensory data in this way is straightforward and
creates a controlled environment. Indeed, even with the presence
of random jitter, there is no overlap between different instances
of a particular concept, such as BLUE and CYAN or LARGE and

1This information is available at https://github.com/facebookresearch/clevr-

dataset-gen.
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FIGURE 3 | Example image from the CLEVR dataset (A) with the corresponding symbolic annotation of a single object (B), namely the green cylinder.

TABLE 2 | Rules used to transform symbolic object properties to

continuous-valued attributes.

Symbolic Continuous Values Jitter

Color

R [0, 255] ±[0, 2]

G [0, 255] ±[0, 2]

B [0, 255] ±[0, 2]

Shape

nr-of-sides {1, 3, 6} /

nr-of-corners {0, 2, 8} /

Width-height ratio [0, 1] /

Size Area [0, 100] ±[0, 15]

Material Roughness [0, 10] ±[0, 2.5]

x-coordinate [0, 500] /

y-coordinate [0, 300] /

Note that objects in the CLEVR dataset already have xy-coordinates.

SMALL. For each particular type of concept, every instance takes
up a disjoint area in the space of continuous-valued attributes.
This makes the concept learning task easier and allows us to
validate the proposed learning mechanisms before moving to an
environment with more realistic perceptual processing.

3.2.3. Extracted Attributes
To test our approach using more realistic perceptual processing,
we make use of a state-of-the-art Mask R-CNN model to
detect and segment the objects directly from the image. After
segmentation, we extract a number of numerical attributes from
the proposed segments. With this approach, different instances
of a particular concept will no longer take up disjoint areas in the
attribute space. Additionally, the numerical values will be subject
to more noise due to variations in the images such as overlapping
objects, lighting conditions or shade effects.

For object detection, we use a pre-trained neural network
model developed by Yi et al. (2018) using theMask R-CNNmodel

(He et al., 2017) present in the Detectron framework (Girshick
et al., 2018). Given an image, this network generates a mask
for each of the objects in the scene. All masks with a certainty
score below 0.9 are removed. The model was pre-trained on a
separately generated set of CLEVR images. For training regime
details, we refer to Yi et al. (2018). To our knowledge, there was
no separate evaluation of the object detection accuracy.

We combine the obtained segments with the original image
to extract a number of continuous-valued attributes. These are
summarized in Table 3. As with the previous environment, we
foresee a number of continuous attributes for each symbolic
attribute of the CLEVR objects. For colors, we extract both
the mean and standard deviation of the color of the region,
expressed in the HSV color space and split for each channel.
For shapes, we extract the estimated number of corners, the
hamming distance between the shape’s contour and the enclosing
circle, and the width-height ratio. The size-related attributes
are straightforward, except for the last two. The bb-area ratio
expresses the ratio between the area of the region and the area
of the rotated bounding box. Similarly, the image-area ratio
expresses the ratio between the region’s area and the area of the
entire image. Finally, the material of objects is expressed by the
ratio of both dark and bright pixels. These attributes are based
on the idea that the metal objects are more reflective and thus
contain more bright pixels.

3.3. Concept Representation
A concept is represented as a mapping from a symbolic
label, in this case used as a word, to a set of continuous-
valued attributes. Similar to Wellens (2012), we make use of a
weighted set representation where each concept-attribute link
has a score (∈ [0, 1]), representing the certainty that the given
attribute is important for the concept. In contrast to Wellens
(2012), the attributes are continuous, represented through a
normal distribution. This enables the use of such concepts in
grounded, embodied scenarios. An example concept is shown in
Figure 4.

To computationally operationalize this concept
representation in a language game scenario, we require two
pieces of functionality: the ability to match a concept to an object
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TABLE 3 | Mapping from symbolic attributes to continuous attributes obtained by

the image segmentation process.

Symbolic Continuous Values

Color

Mean-H [0, 255]

Mean-S [0, 100]

Mean-V [0, 100]

Std-H R
+

Std-S R
+

Std-V R
+

Shape

nr-of-corners R
+

Hamming distance [0, 1]

Width-height ratio [0, 1]

Size

Width R
+

Height R
+

Area R
+

Bounding-box area R
+

bb-area ratio [0, 1]

Image-area ratio [0, 1]

Material
Bright-pixels [0, 1]

Dark-pixels [0, 1]

Angle [0, 180]

x-coordinate [0, 480]

y-coordinate [0, 320]

FIGURE 4 | The concept CUBE is linked to a weighted set of attributes. The

weight represents the certainty of an attribute belonging to the concept. Each

attribute is modeled as a normal distribution that keeps track of its prototypical

value (i.e., the mean) and the standard deviation. The values between square

brackets denote two standard deviations from the mean. These are not used

in similarity calculations directly, but give an indication of the observed range of

prototypical values.

and the ability to update an existing concept representation. The
former is used by the learner during interpretation, while the
latter is used during alignment.

3.3.1. Matching a Concept to an Object
In order to match a concept to an object from the environment,
we should foresee some form of distance or similarity measure.

Based on this measure, the agent can decide whether or not a
particular concept is applicable or discriminative for a particular
object, e.g., during interpretation. This idea is similar to Wellens
(2012), since it allows an agent to use a concept even if it
does not exactly match a particular object. However, Wellens
(2012) only considers symbolic attributes, allowing him to
implement such a measure using set operations. In this work,
we make use of a continuous similarity measure. Specifically, the
similarity between a concept C and an object O can be computed
by the average similarity between each of the attributes, weighted
by the certainty that an attribute belongs to the concept.
Formally, the similarity S(C,O) is implemented as follows:

S(C,O) =
1

|Ac|

∑

a∈AC

c(Ca) ∗ S
′(Ca,Oa) (1)

where AC is the set of attributes linked to concept C, |Ac|

represents the number of attributes, c(Ca) returns the certainty
score for a certain attribute a in concept C and Ca and Oa

represent the attribute value for the attribute a in the concept C
and object O, respectively.

Given the above definition of a similarity measure S between
a concept and an object, we need the similarity measure S′ for a
particular attribute a of the concept and object, respectively. For
this, we represent the attribute value within a concept (Ca) as a
normal distribution. The similarity function S′ is based on the z-
score of the attribute value of the object (Oa) with respect to this
normal distribution.We embed the z-score in a linear function to
transform a small z-score in a high similarity value and a large z-
score in a low similarity value. This function maps a z-score of 0
to a similarity of 1 and when a z-score reaches 2, the similarity has
dropped to 0. If the z-score would be larger than 4, the similarity
is cut off at −1. The similarity measure S′ can be expressed with
the following equation:

S′(Ca,Oa) = max

(

| − zOa |

2
+ 1,−1

)

(2)

where zOa refers to the z-score of the attribute value of the object
Oa with respect to the attribute of the concept, Ca, represented as
a normal distribution.

Given that the similarity function S′ returns a value between
−1 and 1 and the score is always between 0 and 1, the similarity
measure S also returns a value between−1 and 1.

3.3.2. Updating Concepts
After each game, the concept used in that game can be updated
in terms of both the prototypical value and the certainty score
of each attribute. This way, the agent can gradually shape its
concept representation to fit the environment, again similar to
Wellens (2012). The update mechanism relies on the feedback
given by the tutor after the interaction. Specifically, the learner
will update the concept it used during the interaction to be closer
to or better fit with the topic object. This update procedure works
in two steps:

1. The agent updates the prototypical value of all attributes
in the concept. Here, we choose to update all attributes
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since the certainty scores of the attributes might not yet
be stable. When a particular attribute suddenly becomes
important, e.g., because of changes in the environment,
we also want its value to reflect the examples already
seen. The update mechanism makes use of Welford’s online
algorithm (Welford, 1962). This is an online algorithm that
specifies recurrence relations for the mean and standard
deviation. This allows us to recompute the mean and
standard deviation of the distribution by adding a single
observation, without the need to store all observations. On
the implementation level, each attribute keeps track of the
number of observations N, the prototypical value pn and the
sum of squared differences from the current meanM2,n with
n denoting the current interaction. The latter is initialized
at 0.05. Given a new observation xn, these values can be
updated using the following equations:

N = N + 1

δ1 = xn − pn−1

pn = pn−1 +
δ1

N

δ2 = xn − pn

M2,n = M2,n−1 + (δ1 ∗ δ2)

The standard deviation, required in the similarity
calculations discussed above, can be computed from N
andM2,n as follows:

σ =

√

M2,n

N

2. The agent will increase the certainty of the subset of
attributes that is most discriminative for the topic. The
certainty score is decreased for all other attributes. A subset
of attributes is discriminative when it is more similar to the
topic than to any other object in the scene. Since this can be
true for multiple subsets, we define the most discriminative
subset as the one where the difference between the similarity
to the topic and the most similar other object is maximized.
Thus, during the update procedure, we not only make use
of the topic object itself, but also compare this to other
objects in the scene. This ensures that the combination of
attributes, and ultimately the entire repertoire of concepts, is
functionally relevant in the agent’s environment. To compute
the most discriminative subset of attributes, we make use of
the similarity functions S and S′ as defined above. Finally, to
reduce the computational load, not all subsets of attributes
are considered. These are filtered to contain at least the
set of attributes that are discriminative on their own. The
procedure to update the certainty scores can be summarized
as follows:

• Identify the discriminative attributes, i.e., attributes that
are more similar to the topic than to any other object in
the scene. Here, we use similarity function S′. This yields
e.g., area and nr-of-corners.

• Compute all subsets of the attributes of the concept.

• Filter all subsets to contain at least the attributes found
in the first step. This yields subsets such as {area, nr-
of-corners}, {area, nr-of-corners, wh-ratio}, {area, nr-of-
corners, roughness}, etc.

• Find discriminative subset(s) of attributes, i.e., the subset
for which the similarity to the topic is larger than to
any other object in the scene. Here, we use similarity
function S.

• The previous step can produce multiple subsets. We
take the one that maximizes the difference in similarity
between the topic and the most similar other object.

• Increase the certainty score of the attributes in
this subset, and decrease the certainty score of all
other attributes.

While this concept representation is easy to grasp, there is
however an important assumption, namely that the attribute
values are modeled using normal distributions. Statistical testing,
using the normality test by D’Agostino and Pearson (d’Agostino,
1971; D’Agostino and Pearson, 1973), tells us that this is not the
case for any of the attributes. The distributions of the attributes
do come close to normal distributions but have thinner tails at
both ends. Still, this can be viewed as odd, especially for some of
the studied concepts. Take the concept LEFT as an example. It is
important to note that the concept of LEFT refers to “left in the
image” and not “left of another object.” With this definition of
left, the x-coordinate is an important attribute for this concept. If
we consider the images of the CLEVR dataset, the x-coordinate
of an object can be anywhere between 0 and 480. In this setting,
we consider an object to be LEFT when the x-coordinate is
smaller than 240. The bulk of objects that can be considered
LEFT will not be close to 0, nor close to 240, but somewhere
in between, e.g., around x-coordinate 170. From this, it is easy
to see that our assumption will not cause many issues in this
particular dataset, but in general one could argue that objects
with an x-coordinate smaller than 170 can actually be considered
“more left,” while objects with an x-coordinates larger than 170
are gradually “less left.” This is currently not captured by our
concept representation.

3.4. Tutor Behavior
As mentioned in section 3.1, the tutor looks for the smallest set
of concepts that discriminates the topic from the other objects
in the scene, based on the symbolic ground-truth annotation of
the scene. Given a topic that can be described symbolically as
(GREEN, CUBE, LARGE, RUBBER, LEFT, FRONT), the tutor will try
to describe this with a single concept. Traversing the concepts
of the topic in a random order, the tutor will check if no other
objects in the scene share this concept. For example, if the topic
is the only cube in the scene, the concept CUBE will be returned.
In most experiments, we restrict the tutor to only use a single
concept to describe an object. In some scenes, however, it is
impossible to describe an object with a single, discriminative
concept. When this is the case, the tutor will choose a new topic
object or sample a new scene.

In the compositional learning experiment, discussed in
section 4.4, we lift the single-word restriction. There, if no single
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discriminative concept can be found, the tutor will try all subsets
of two concepts. For example, there might be multiple cubes and
multiple green objects, but exactly one green cube. In this case,
the combination of GREEN and CUBE is discriminative. Again,
these subsets are considered in a random order. This procedure
can be repeated for subsets of three concepts and four concepts,
until a discriminative subset is found.

4. EXPERIMENTAL SETUP

In this section, we describe the various experiments designed
to showcase different aspects of the proposed approach to
concept learning. In the first experiment, we establish the baseline
performance of our approach (section 4.1). In the following
experiments, we test how well the concepts generalize (section
4.2), how they can be learned incrementally (section 4.3), and
how they can be combined compositionally (section 4.4). A
graphical overview of the experiments is given in Figure 5.

4.1. Transparent, Multi-Dimensional
Concepts
In the first experiment, we validate the learning mechanisms
through the language game setup laid out in section 3.1. We
compare the learner’s performance both using simulated (section
3.2.2) and more realistic (section 3.2.3) continuous-valued
attributes. In both cases, we use scenes from the validation split
of the CLEVR dataset. The learner agent is evaluated in terms of
communicative success and concept repertoire size. Our goal is
to validate whether or not the agent can successfully acquire and
use the concepts known by the tutor. Additionally, we examine
the acquired concepts to see if the agent finds combinations of
attributes that are relevant in the present environment.

4.2. Generalization
Using the CLEVR CoGenT dataset (Johnson et al., 2017), we test
if the acquired concepts are general enough to extend to unseen
instances and combinations of attributes. The CLEVR CoGenT
dataset consists of two conditions. In condition A, cubes can be
gray, blue, brown, or yellow, cylinders are red, green, purple,
or cyan and spheres can have any of these colors. In condition
B, the color options for cubes and cylinders are swapped. Like
the original CLEVR dataset, the CoGenT data comes with a
symbolic annotation that can be transformed into continuous-
valued attributes using the methods described in section 3.2.
Our goal is to validate if the learner agent truly learns the
concepts, independently from the statistical distribution or co-
occurrences in the environment. We evaluate this by playing a
number of interactions in condition A, after which we switch
off learning, followed by a number of games in condition B to
evaluate the communicative success. Here, we expect to see that
the communicative success remains stable between condition
A and B, indicating that the concepts acquired by the agent
do not rely on co-occurrences in the environment, as is often
the case for other types of models. Additionally, by varying the
number of interactions in condition A, we gain insight into how
quickly the learner can acquire concepts that are functional in
the world.

4.3. Incremental Learning
By incrementally expanding the environment, we demonstrate
the adaptivity and open-endedness of our concept learning
approach. For this experiment, we created our own variation on
the CLEVR dataset consisting of five splits. In each split, more
concepts are added and less data is available. In the first split, we
offer 10,000 images where all objects are large, rubber cubes in

FIGURE 5 | Overview of the experiments, each showcasing a particular aspect of our approach to concept learning.
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four different colors. In the second split, there are 8,000 images
and these cubes can be large or small. Spheres and cylinders are
added in the third split and the data is reduced to 4,000 scenes.
The fourth split again halves the amount of data andmetal objects
are added. Finally, in the fifth split, four more colors are added
and only 1,000 scenes are available. The splits are summarized
in Table S1.

The learner agent is exposed to each of the splits consecutively,
without resetting its repertoire of concepts or switching off the
learning operators. We monitor the communicative success and
the concept repertoire size throughout the entire experiment.
Our goal in this experiment is two-fold. First, we show that the
learning mechanisms can easily and quickly adjust to a changing
environment. There is no need to fully or even partially re-
train the repertoire when new concepts become available, nor
to specify the number of concepts that are to be learned in
advance, as would be the case for other types of models. By
looking at the evolution of the concepts, we can study how
certain attributes might become more or less important as the
environment changes. Second, we again show the data efficiency
of our approach by reducing the available number of scenes
throughout the splits.

4.4. Compositional Concepts
The concept representation, as described in section 3.3, can
be easily extended to compositional, multi-word utterances. In
order to do so, the weighted set representation of multiple
concepts needs to be combined. This is achieved by an operation
similar to the union operator from fuzzy-set theory (Zadeh,
1965). Given two concepts,C1 andC2, their corresponding sets of
attributes are combined such that for each attribute that occurs in
both concepts, the one with the highest certainty score is chosen.
This is illustrated in Figure 6.

In this experiment, the tutor can use up to four words to
describe the topic object. When all words in the utterance are
unknown to the learner, it adopts all of them with the topic
object being the initial seed. If all words are known, the learner
performs the alignment using the composed concept. Due to this,
not all attributes of all involved concepts will receive an updated
prototypical value and certainty score, but only those that occur

in the combined concept. For example, in the combined concept
“C1+C2” from Figure 6, attributes “a-2” and “a-3” from concept
“C1” and attributes “a-1” and “a-7” from concept “C2” will
receive an update. Finally, if some words of the utterance are
known and others are unknown, the learner will first adopt the
unknown words and then perform alignment using the known
words. In this experiment, we investigate how the communicative
success, the learning speed and the resulting concepts of the agent
are affected in the multi-word utterance setting and compare this
to the single-word experiment described in section 4.1.

5. RESULTS

In this section, we elaborate on the results of the experiments
described above. In order to produce the plots, we ran all
experiments five times for 10,000 interactions and averaged the
results. The error bars show the standard deviation. The plots
were created using a sliding window of 250 interactions. All
experiments were run on the validation split of the CLEVR
dataset (15K scenes), using a randomly sampled scene for every
interaction. The experiments were implemented using the open-
source Babel toolkit (Loetzsch et al., 2008; Nevens et al., 2019).

5.1. Transparent, Multi-Dimensional
Concepts
In the first experiment, we validate the learning mechanisms
proposed earlier in this paper. We evaluate the learner agent on
its ability to successfully communicate and on its repertoire of
concepts, both in the more simple, simulated environment and
in the more realistic, noisy environment. In Figure 7A, we show
the communicative success of the agents in these environments.
The agents are able to achieve 100% communicative success
in the simulated world, after merely ∼500 interactions. From
the same figure, we see that the learning mechanisms perform
somewhat less good in themore realistic, noisy environment. The
agents achieve a fairly stable level of communicative success after
∼500 interactions, reaching 91% communicative success (0.3%
standard deviation).

FIGURE 6 | When combining concepts compositionally, the same attribute can occur multiple times. In this case, the resulting concept takes the one with the highest

certainty score.
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FIGURE 7 | (A) The communicative success rises quickly and achieves 100% in the simulated world and 91% in the noisy world. (B) In both environments, the agent

acquires exactly 19 concepts. The concepts are human-interpretable and capture discriminative combinations of attributes. The concept SPHERE focusses on

attributes related to shape, both in the simulated environment (C) and the extracted environment (D). Attributes with certainty score 0 are hidden.

Figure 7B shows the lexicon size of the learner agent in both
environments. Just like the communicative success, we see that
it quickly increases and stabilizes at 19 concepts, which are all
concepts present in the CLEVR dataset. We cut off these figures
after 2,500 of the 10,000 interactions, since the metrics reached a
stable level.

The concept representation proposed in this work allows for
a clear and easy to interpret view on the learned concepts. We
demonstrate this in Figures 7C,D, showing the concept SPHERE

obtained after 5,000 interactions in both the simulated and noisy
environments. In both cases, we see that a few attributes have
become important for the learner, reflected by the high certainty
scores. In the simulated world, these are nr-of-corners and nr-of-
sides, while in the noisy world these are the width-height ratio,
the circle-distance and bb-area-ratio. The circle-distance attribute
represents the Hamming distance between the contour of the
object and the minimal enclosing circle and the bb-area-ratio
attribute represents the ratio between the area of the object and
the area of its bounding box. All of these attributes are indeed
intuitively shape-related. We give an overview of all learned

concepts obtained in the simulated world and the noisy world
in Figures S1, S2, respectively.

With this experiment, we have shown that the learner
agent can automatically distill meaningful concepts from a
stream of continuous data, in the form of discriminative
subsets of attributes and their prototypical values, and is able
to successfully use them in communication. Furthermore, as
these concepts are expressed using human-interpretable feature
channels, the model and resulting repertoire of concepts is
completely transparant.

5.2. Generalization
In the generalization experiment, we show that the agent’s
ability to learn the concepts is completely independent from the
statistical distributions or co-occurrences in the dataset. For this
experiment, we use the CLEVR CoGenT dataset, which consists
of two conditions. The agent first learns during a number of
interactions in condition A. Afterwards, learning operators are
turned off and we evaluate the communicative success of the
agent in condition B for the remainder of the interactions. We
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expect the agents to remain at a stable level of communicative
success when making the transition from condition A to B.
We again evaluate on both the simulated environment and the
noisy environment. Additionally, we vary the amount of training
interactions on condition A to test the speed at which the learner
agent can acquire useable concepts.

In Figure 8, we show the communicative success of the agents
both during learning in condition A and evaluation in condition
B. From this figure, it is clear that the learner agent cannot
reach the same level of success as the previous experiment
after 100 training interactions. However, with only 500 training
interactions this level of success is achieved. This indicates that
the learner’s repertoire of concepts is shaped quickly and is
sufficient to have successful interactions. Additionally, when
transitioning from condition A to B, there is no decrease in
communicative success in the simulated environment and only
a minor decrease in the noisy environment. This indicates that
the concepts acquired by the agent abstract away over the
observed instances.

To further investigate the generalization abilities of the
learner, we study the acquired concepts. Remember that in
condition A in the CoGenT dataset, cubes can be gray, blue,
brown, or yellow, cylinders have a set of different colors and
spheres can be any color. In Figure 9, we study the concept
representation of the colors for cubes after being learned on
condition A for 500 interactions. If the agent would rely on

co-occurrences of the dataset, the concept representation of
these colors could contain attributes related to shape, since each
time one of these colors occurs it is either a cube or a sphere.
Additionally, the cube and sphere have the same value for the
wh-ratio attribute, so it could be considered discriminative in
some cases. From Figure 9, we see that even though this feature
is present in some of the concepts, its certainty score is very
low. Hence, the agent does not focus on particular dataset co-
occurrences and is able to generalize over various observations.
We attribute this to the notion of discrimination, which will make
sure that only relevant attributes obtain a high certainty score.

5.3. Incremental Learning
Our approach to concept learning is completely open-ended
and has no problems dealing with a changing environment.
We validate this through an incremental learning experiment
where, over the course of 10,000 interactions, the number of
available concepts increases. We vary the amount of interactions
before new concepts are introduced between 100, 500, and 1,000
interactions. The learning mechanisms are able to adjust almost
instantly to these changes, as is shown in Figure 10. In the
simulated world, we see minor drops in communicative success
when transitioning from one phase to the next. These are more
present in the noisy world, but the agent quickly recovers from it.

If we investigate the concepts in the incremental learning
experiment, we find that the relevant attributes have obtained

FIGURE 8 | Communicative success after learning for 100 interactions (A), 500 interactions (B), or 1,000 interactions (C) in condition A. The concepts are learned

completely independently from the co-occurrences in the environment. The agents achieve the same level of communicative success as in the previous experiment,

given at least 500 interactions in condition A.
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FIGURE 9 | A subset of the agent’s repertoire of concepts after the generalization experiment. In condition A, the concepts BLUE (A), BROWN (B), GRAY (C), and

YELLOW (D) are always observed as cubes or spheres. The agent is not “distracted” by statistical distributions of the environment and learns combinations of attributes

that are relevant to solve the communicative task.

a high certainty score already after the first phase of the
experiment (see Figure 11). Consequently, these remain stable
over the various phases, while other attributes never achieve high
certainty scores. Additionally, we note that the resulting concepts
have the same high-scoring attributes as those obtained in the
baseline experiment, independent of the phase in which they were
introduced (see Figure 12).

5.4. Compositional Utterances
In the final experiment, we find that the agent is successful
at learning the separate concepts, even if they are combined
in compositional utterances. To test this, we allow the tutor
to use up to four words when describing an object. It is
important to note that the tutor will always generate the
shortest discriminative utterance, as described in section 3.4.
In Figure 13, we measure how often the tutor uses different
utterance lengths. From this, it is clear that most objects can be
described using a single word. Slightly less than 40% of objects

require two words to be discriminative and only very few objects
are described with three words.

In Figure 14, we compare the communicative success when
a tutor uses a single word (and skips scenes where this is not
possible) and when the tutor uses up to four words. In the
simulated environment (Figure 14A), communicative success
drops 3 percentage points to 97%. In the noisy environment
(Figure 14B), the communicative success drops 8 percentage
points to 83%. With this experiment, we show that the
agent is capable of extracting the discriminative attributes and
their prototypical values for each concept and, at the same
time, learning the meaning of each word separately in a
multi-word utterance.

Finally, we consider the repertoire of concepts and find,
similar to the first experiment, that the agent has found
discriminative sets of attributes that are intuitively related to the
concept they describe. The conceptMETAL is shown in Figure 15,
both for the simulated and noisy environment. Interestingly, we
note from this Figure that the agent has learned to identify the
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FIGURE 10 | Communicative success in the incremental learning experiment. A new split is introduced every 100 interactions (A), 500 interactions (B), or 1,000

interactions (C). The learning mechanism is completely open-ended, allowing the agent to adapt to a changing environment without any issues. Note that the x-axes

vary to best show the changes in communicative success.

material of an object through the “value” dimension of the HSV
color space.

6. DISCUSSION AND CONCLUSION

In order to be able to communicate and reason about their
environment, autonomous agents must be able to abstract away
from low-level, sensori-motor data streams. They therefore
require an abstraction layer that links sensori-motor experiences
to high-level symbolic concepts that are meaningful in the
environment and task at hand. A repertoire of meaningful
concepts provides the necessary building blocks for achieving
success in the agent’s higher-level cognitive tasks, such as
reasoning or action planning. Similar to how humans can grasp a
concept after only a few exemplars, an autonomous agent should
ideally acquire these concepts quickly and with relatively little
data. Learned concepts should be general enough to extend to
similar yet unseen settings. As the environment of the agent
can change or new concepts can be introduced at any time,
the learning methodology should also be adaptive and allow for
incremental learning. Finally, to truly understand the reasoning
processes of an autonomous agent, its learning mechanisms and
representations should be fully transparent and interpretable in
human-understandable terms.

The task of concept learning has been considered in various
subfields of AI. Deep Learning approaches, for example, offer a
very powerful paradigm to extract concepts from raw perceptual
data, achieving impressive results but thereby sacrificing data
efficiency and model transparency. Version space learning offers
a more interpretable model but has difficulties in handling noisy
observations. Most similar to the approach presented in this
paper is work from the robotics community, considering tasks
such as perceptual anchoring and affordance learning. However,
these tasks focus mostly on a single robot extracting concepts
from observations of the world around it. In this work, we argue
for interactive learning through the language game paradigm.
The notion of discrimination plays a central role in forming
the concepts, thereby ensuring the generality and adaptivity
of the concepts such that these are relevant in the agent’s
environment. Additionally, our method offers an explainable
concept representation, acquired through a data efficient and
incremental method. Each of these properties was highlighted in
a dedicated experiment.

In sum, we have presented a novel, discrimination-based
approach to learning meaningful concepts from streams of
sensory data. For each concept, the agent finds discriminative
attribute combinations and their prototypical values. We have
shown that these concepts (i) can be acquired quickly with
relatively few data points, (ii) generalize well to unseen instances,
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FIGURE 11 | The concept GRAY after each of the five phases: (A) phase 1, (B) phase 2, (C) phase 3, (D) phase 4, and (E) phase 5. The relevant attributes obtain a

high certainty score after the first phase of the experiment.

FIGURE 12 | The final representation of concepts introduced in various phases of the experiment. The concept BLUE was introduced in phase 1 (A), CYLINDER in

phase 3 (B), and CYAN in phase 5 (C).

(iii) offer a transparent and human-interpretable insight in the
agent’s memory and processing, (iv) are adaptive to changes
in the environment, and (v) can be combined compositionally.
These properties make this work highly valuable for the domains
of robotics and interactive task learning, where interpretability,
open-endedness and adaptivity are important factors. Once
a repertoire of symbolic concepts, abstracting away over the

sensori-motor level, has been acquired, an autonomous agent
can use it to solve higher-level reasoning tasks such as
navigation, (visual) question answering, (visual) dialog and
action planning.

In order to ensure that the learned concepts are human-
interpretable, the methodology starts from a predefined set of
human-interpretable features that are extracted from the raw
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FIGURE 13 | The tutor describes 63% of the objects with a single word, 36% of the objects with two words and 1% with three words.

FIGURE 14 | Comparison of the communicative success when the tutor uses one or up to four words. In both the simulated environment (A) and the extracted

environment (B), there is a drop in communicative success (3 and 8 p.p., respectively).

FIGURE 15 | The concepts learned in the compositional experiment capture discriminative sets of attributes that are intuitively related to the concept they describe.

We show the concept METAL in both (A) the simulated and (B) extracted environment.
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images. While we argue that this is necessary to achieve true
interpretability, it can also be seen as a limitation inherent to the
methodology. However, this limitation cannot be lifted without
losing interpretability that the method brings.
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We consider the problem of learning generalized first-order representations of concepts

from a small number of examples. We augment an inductive logic programming learner

with 2 novel contributions. First, we define a distance measure between candidate

concept representations that improves the efficiency of search for target concept and

generalization. Second, we leverage richer human inputs in the form of advice to improve

the sample efficiency of learning. We prove that the proposed distance measure is

semantically valid and use that to derive a PAC bound. Our experiments on diverse

learning tasks demonstrate both the effectiveness and efficiency of our approach.

Keywords: cognitive systems, logics for knowledge representation, relational learning, knowledge representation

and reasoning, human in the loop (HITL)

1. INTRODUCTION

We study the case of learning from few examples, of which one-shot learning is a special case (Lake
et al., 2015). We consider a challenging setting—that of learning explainable, decomposable, and
generalizable (first-order) concepts from few examples. Plan induction becomes a special case
where a generalizable plan is induced from a single (noise-free) demonstration. As an example,
consider building a tower that requires learning L-shapes as a primitive. In our formulation, the
goal is to learn a L-shape from a single demonstration. Subsequently, using this concept, the
agent can learn to build a rectangular base (with 2 L-shapes) from another single demonstration
and so on till the tower is fully built. Concept learning has been considered as problem
solving by reflection (Stroulia and Goel, 1994), mechanical compositional concepts (Wilson and
Latombe, 1994), learning probabilistic programs (Lake et al., 2015), etc. While successful, they
are not considered in one-shot learning except with SVM (Tax, 2001), or with a neural network
(Kozerawski and Turk, 2018).

Our work has two key differences. First, we aim to learn an “easily interpretable,” “explainable,”
“decomposable,” and “generalizable” concepts as first-order Horn clauses (Horn, 1951) (which are
akin to If-Then rules). Second, and perhaps most important, we “do not assume the existence
of a simulator (for plans) or employ a closed-world assumption” to generate negative examples.
Inspired by Mitchell’s (1997) observation of futility of bias-free learning, we employ domain
expertise as inductive bias. The principle of structural risk minimization (Vapnik, 1999) shows how
optimal generalization from extremely sparse observations is quite difficult. The problem is difficult
in structured domains since most relations are false. Thus, few-shot induction of generalized
logical concepts is challenging. We employ iterative revision of first-order horn clause theories
using a novel scoring metric and guidance from a human. We emulate a “student” who learns a
generalized concept from an example provided by the “teacher,” by both reflecting as well as asking
relevant questions.
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We propose Guided One-shot Concept Induction (GOCI) for
learning in relational domains1. GOCI builds upon an inductive
logic program (ILP) learner (Muggleton, 1991) with two key
extensions. First, a modified scoring function that explicitly
computes distances between concept representations. We show
the relation to Normalized Compression Distance (NCD) for plan
induction settings. Consequently, we demonstrate that NCD is a
valid distance metric. Second, we use domain knowledge from
human expert as inductive bias. Unlike many advice taking
systems that employ domain knowledge before training, GOCI

identifies the relevant regions of the concept representation space
and actively solicits guidance from the human expert to find the
target concept in a sample-efficient manner. Overall, these two
modifications allow formore effective and efficient learning using
GOCI that we demonstrate both theoretically and empirically.

We make the following key contributions:

1. We derive a new distance-penalized scoring function that
computes definitional distances between concepts, henceforth
termed as “conceptual distance.”

2. We treat the human advice as an inductive bias to accelerate
learning. Our ILP learner actively solicits richer information
from the human experts than mere labels.

3. Our theoretical analyses of GOCI prove that (a) our metric is
indeed a valid distance, and (b) NCD between plans is a special
case of our metric.

4. We show a PAC analysis of the learning algorithm based on
Kolmogorov complexity.

5. We demonstrate the exponential gains in both sample
efficiency and effectiveness of GOCI on diverse concept
induction tasks with one or a few examples.

2. BACKGROUND AND RELATED WORK

Our approach to Concept Learning is closely related to Stroulia
and Goel (1994)’s work, which learns logical problem-solving
concepts by reflection. GOCI’s scoring metric is more general
and applicable to both concepts and plans and can be used for
learning from a few examples. While we use discrete spatial
structures as motivating examples, GOCI is not limited to discrete
spaces, similar to Wilson and Latombe (1994)’s work. GOCI

is also related in spirit to probabilistic (Bayesian) program
induction for learning decomposable visual concepts (Lake et al.,
2015), which illustrates how exploiting decomposability is more
effective. Our approach leverages not only decomposability but
also implicit relational structure.

2.1. One/Few-Shot Learning and Theory
Induction
Our problem setting differs from the above in that it requires
learning from sparse examples (possibly one). Lake et al. (2015)
propose a one-shot version of Bayesian program induction of
visual concepts. There is also substantial work on one/few-shot
learning (both deep and shallow) in a traditional classification

1Our algorithm can learn from one (few) example(s). We specify the number of

examples in our evaluations.

setting (Bart and Ullman, 2005; Vinyals et al., 2016; Wang et al.,
2018), most of which either pre-train with gold-standard support
example set or sample synthetic observations. We make no such
assumptions about synthetic examples. ILP (Muggleton, 1991)
inductively learns a logical program (first-order theory) that
covers most of the positive examples and few of the negative
examples by effectively employing background knowledge as
search bias. In concept learning, generalization is typically
performed as a search through space of candidate inductive
hypotheses by (1) structuring, (2) searching, and (3) constraining
the space of theories. FOIL (Quinlan, 1990) is an early
noninteractive learner with the disadvantage that it occasionally
prunes some uncovered hypotheses. This is alleviated in systems
like FOCL by introducing language bias in the form of user-
defined constraints (Pazzani, 1992). With Interactive ILP, learner
could pose questions and elicit expert advice that allows pruning
large parts of search space (Sammut and Banerji, 1986; Rouveirol,
1992). To incorporate new incoming information, ILP systems
with theory revision incrementally refine and correct the induced
theory (Sammut and Banerji, 1986; Muggleton, 1988). While
GOCI is conceptually similar to ALEPH (Srinivasan, 2007),
it learns from a few examples and actively acquires domain
knowledge by interacting with human expert incrementally.

2.2. Knowledge-Guided Learning
Background knowledge in ILP is primarily used as search bias.
Although the earliest form of knowledge injection can be found
in explanation-based approaches (Shavlik and Towell, 1989), our
work relates to preference-elicitation framework (Braziunas and
Boutilier, 2006), which guides learning via human preferences
as an inductive bias. Augmented learning with domain
knowledge as an inductive bias has long been explored across
various modeling formalisms, including traditional machine
learning (Fung et al., 2003), probabilistic logic (Odom et al.,
2015), and planning (Das et al., 2018). Our human-guided GOCI

learner aims to extend these directions in the context of learning
generalizable complex concepts from a few examples(including
plans). Similar problem setting of concept learning from
incomplete/sparse observations has also been explored in the
cognitive science paradigm via explanation-based inductive
program synthesis (Flener, 1997; Kitzelmann and Schmid, 2006).

The idea of augmented learning with human
guidance/knowledge has also been extensively studied in the
context of evolutionary computation. Interactive evolutionary
systems (Eiben and Smith, 2015) use expert guidance to emulate
a holistic fitness function that would otherwise depend on a very
restricted pre-defined fitness model. The potential richness of
such knowledge can be leveraged in not just evolutionary parent
selection but can also optimize other parameters that leads to
faster convergence, especially in mutations (Wendt et al., 2010).
ILP has been shown to be conceptually similar to mutative EA in
the context of program induction (Wong and Leung, 1997) and
hence knowledge-guided mutations are related to knowledge
augmented search in ILP. Thus, in our problem setting, the
interaction module that seeks human guidance to select the most
useful constraints (detailed in section 3.2.3) is similar in spirit to
interactive (knowledge guided) evolutionary mutation process.
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However, our underlying search strategy and optimization is
based on ILP.

3. GUIDED ONE-SHOT CONCEPT
INDUCTION

We are inspired by a teacher (human) and student (machine)
setting in which a small number of demonstrations are used
to learn generalized concepts (Chick, 2007). Intuitively, the
description provided by a human teacher tends to be modular
(can have distinct logical partitions), structured (entities and
relations between them), and in terms of known concepts.
Hence, a vectorized representation of examples is insufficient.
We choose a logical representation, specifically a “function-free
restricted form of first-order logic (FOL)” that models structured
spaces faithfully.

Given: A set of “facts” or assertions, that is, a set of ground
literals (or trajectories) describing 1 (or few) instance(s) of
an unknown concept, availability of an expert to provide
guidance and a knowledge-base of known concepts.
To Do: Learning a representation, by inducing a first-
order logic program, of the given concept that optimally
generalizes the given instance(s) effectively.

The input to GOCI is the description of the instances(s) of a
concept that the human teacher provides. An example is, thus,
conjunction of a set of ground literals (assertions). The output of

GOCI is a least general generalization (LGG) horn clause from the
input example(s).

3.1. Concept Representation
Consider the following example input to the GOCI framework.
The input here is an instance of the structural concept L
(illustrated in Figure 1).

Example 1. An instance in a minecraft domain can be
a L with dimensions height = 5, base = 4 (Figure 1).
L(S),Height(S, 5),Base(S, 4), s is the concept identifier and

FIGURE 1 | Concept L (base = 4, height = 5), described as composition of a

Tower and a Row.

may be described as conjunction of ground literals,
Row(A)∧ Tower(B)∧ Width(A,4)∧ Height(S,5)∧
Base(S,4)∧ Contains(S,A)∧ Contains(S,B)∧
Height(B,4)∧ SpRel(B,A,′ NWTop′),

which denotes L as composition of a “Row” of w = 4 and a
“Tower” of h = 4 with appropriate literals describing the scenario
(Figure 1, left). As a special case, under partial or total ordering
assumptions among the ground literals, an input instance can
represent a plan demonstration.

We aim to learn the optimally generalized (decomposable)
representation of the concept (L in the context of the
aforementioned example) referred by the one/few instances that
were passed to GOCI as input. Before further discussion on the
learning such a generalized (decomposable) representation let us
first define formally what a concept representation signifies in
our setting.

Definition 1. Concepts in GOCI are represented
as horn clause theories. A theory T is defined as,
T = C(sk . . .) :−

∨

[

∧Ni=1fi(t1, . . . , tj)
]

, where the body

∧Ni=1fi(t1, . . . , tj) is a conjunction of literals indicating
known concepts or relationships among them, such that any
tj ∈ V ∪ {sk} ∪ C where V is the set of all logical variables in
the clause, C is the set of constants in the domain of any logical
variable. The head C(sk . . .) identifies a target concept, and the
terms {sk} are logical variables that denote the parameters of the
concept assuming there are k = {1, . . . ,K} parameters including
the identifier to the given instance of the concept. Since a concept
can be described in multiple ways (Figure 1), the final theory will
be a disjunction over clause bodies with the same head. A (partial)
instantiation of a theory T is denoted as T/θ .

Note that these definitions allow for the reuse of concepts,
potentially in a hierarchical fashion.We believe that this is crucial
in achieving human-agent collaboration.

Example 2. Figure 1 illustrates an instance of the concept L that
can be described in multiple ways. A possible one is,

L(s) :−[Height(s,hs),Base(s,ws),Contains(s,a),

Contains(s,b),Row(a),Tower(b),

Width(a,wa),Height(b,hb),Equal(ws,wa),

Sub(hb,hs,1),SpRel(b,a,
′′ NWTop′′)]

∨

[Height(s,hs),Base(s,ws),Contains(s,a),

Contains(s,b),Row(a),Tower(b),

Width(a,wa),Height(b,hb),Equal(hs,hb),

Sub(wa,ws,1),SpRel(b,s,
′′ W′′)]

The generalization must be noted. The last argument of the
SpRel() is a constant, as only this particular spatial alignment
is appropriate for the concept of the L structure. Although
the input is a single instance (Example 1), GOCI should
learn a generalized representation such as Example 2. Another
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interesting aspect is the additional constraints: Equal(X,Y)
and Sub(X,Y,N). While such predicates are a part of the
language, they are not typically described directly in the
input examples. However, they are key to generalization, since
they express complex interactions between numerical (or non-
numerical) parameters. Also note that the head predicate of the
clause could have been designed differently as per Definition 1.
For instance, in case of Example 2, the head predicate could have
folded in the dimensional parameters—L(s, hs,ws). However, the
number of such dimensional parameters can vary across different
concepts. Hence to maintain generality of representation format
during implementation, we push the dimensional parameters of
the learnable concept into the body of the clause.

A specific case of our concept learning (horn clause induction)
framework could be plan induction from sparse demonstrations.
This can be achieved by specifying time as the last argument of
both the state and action predicates. Following this definition, we
can allow for plan induction as shown in our experiments. Our
novel conceptual distance is clearer andmore intuitive in the case
of plans as can be seen later.

Definition 2 (Decomposable:). A concept C is decomposable if it
is expressed as a conjunction of other concepts, and one or more
additional literals to model the interactions. C ⇐ (

∧

i C
′
i) ∧

(
∧

j Bj). Here C′i are literals that represent other concepts that

are already present in the knowledge base of the learner and Bj
are literals that either describe the attributes of C′i or interactions
between them.

Decomposable allows for an unknown concept to be constructed
as a composition of other known concepts. GOCI learns the
class of decomposable concepts since it is intuitive for the
“human teacher” to describe. Decomposable concepts faithfully
capture the modular and structured aspect of how humans
would understand and describe instances. It also allows for a
hierarchical construction of plans.

Example 3. Following the Minecraft structure described in 2,
note how L is described with already known concepts C′1 =

Row() and C′2 = Tower() and the other literals such as
Height(b, hb), SpRel(b, a, "NWTop"), . . . ∈ {Bj}, that is, they
describe the parameters of the known concepts or interactions
between them. Note that known concepts in the knowledge base
could have beenmanually coded in by experts or learned previously
and are essentially represented in the same way. For instance,
Row() can be encoded as recursive the clause program representing
a composition of one block and one unit shorter row,

Row(r) :−[Width(r,wr),Block(a),Row(b),Width(b,wb),

SpRel(a, b, “East′′), Sub(wb,wr , 1)]
∨

[Width(r,wr),Equal(wr , 1),Block(a)]

Tower() could also be defined in the knowledge base in the same
way. When the optimally general representation of the concept L
is learned that is persisted in the knowledge base as well, such that
more complex concepts can be represented by decomposing into L
and other known concepts.

An obvious question that arises here is why {Bj} * {C′}?
that is, why can the other literals not be treated similarly
as a part of the knowledge base of known concepts? Ideally,
that would be correct. However, that will also cause infinite
levels of concept definitions, which cannot be implemented in
practice. Additionally, following the paradigm of a student–
teacher scenario, it can always be assumed that the student has
prior understanding of many concepts from outside the current
system. Thus, we can safely assume, without loss of generality,
that set of literals {Bj} are implicitly understood and defined
as a part of the framework itself. This argument applies to the
semantics of the “constraint predicates” (described later) as well.

Finally, before we discuss the details of the learning
methodology, let us briefly look into a motivating, and presently
relevant, real-world scenario that represents our problem setting.

Example 4. Consider a decision support AI system for resource
planning and management in hospitals as illustrated in Figure 2.
The AI agent forecasts the need for increased resources in the

FIGURE 2 | A motivating real-world scenario for concept induction. The concept learnt by the AI agent is “Divert()” .
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infectious diseases (ID) ward, given the early signs of an outbreak
of some disease such as Covid-19 or Ebola, and a potential spike
in ID ward admissions. However, as noted by the administrators
and/or physicians there is not enough budget to procure additional
resources for ID ward. But the problem is quite critical and needs
to be solved. So the human teacher (administrators in this case)
teaches the AI agent the concept of “Divert” -ing resources from
Cancer ward since cancer ward admissions are usually stable and
does not have spikes. The AI agent is hence expected to learn a
generalized representation of the concept of divert such that it may
be applied later for other wards or for other tasks and furthermore
in a “decomposable” fashion. For instance, “Divert” may be learned
as a clause program such as,

Divert(R,qtyR) :−To(R,Locdest),AcquireFrom

(R,Loc1source,qty1, ),

AcquireFrom(R,Loc2source,qty2),

AssignTo(R,Locdest,qtydest),

sum(qty1,qty2,qtydest)

Obviously, the above representation assumes that concepts such as
“AcquireFrom()” are known concepts, either implicitly defined
inside the learning framework or its explicit representation has
been learned and persisted inside the knowledge base in the past.

The above example is solely to motivate the potential impact
of our problem setting and the proposed solution. For an
explanation of different components and aspects of GOCI, we
refer to the much simpler and unambiguous structural example
outlines earlier (L).

3.2. Methodology
3.2.1. Search
ILP systems perform a greedy search through the space of
possible theories. Space is typically defined, declaratively, by
a set of mode definitions (Muggleton, 1995) that guide the
search. We start with the most specific clause (known as a
bottom clause) (Srinivasan, 2007) from the ground assertions and
successively add/modify literals that might improve a rule that
best explains the domain. Typically, the best theory is the one
that covers the most positive and least negative examples. Thus,
it optimizes the likelihood of a theory T based on the data. We
start with a bottom clause and variablize the statements via anti-
substitution. Variabilization of T is denoted by θ

−1 = {a/x},
where a ∈ consts(T), x /∈ vars(T). That is, anti-substitution θ

−1

is a mapping from occurrences of ground terms in T to new or
existing logical variables.
Evaluation Score: We redesign the ILP scoring (e.g., ALEPH’s
compression heuristics) as:

• The user-provided advice forces the learner to learn longer
theory, hence the search space can be exponentially large. Thus,
modes alone are not sufficient as the search bias.
• There is only one (a few) positive training example(s) to learn

from andmany possible rules can accurately match the training
example. Coverage-based scores fail.

Most learners optimize some form of likelihood. For a candidate
theory T, likelihood given data D is LL(T) = log P(D|T) (i.e.,
coverage). To elaborate further, in most classification tasks in
discrete domains (with categorical/ordinal feature and target
variables), goodness of fit of candidate models is achieved via
the measure of how well the candidate models explain (or cover)
the given data, that is, a good model is the one that will predict
positive class for maximum possible positive examples and for
minimum possible negative examples. This measure is expressed
as likelihood of the data given a candidate model. In GOCI, we
have one (at most few) positive example(s). Coverage will not
suffice. Hence, we define a modified objective as follows.

T∗ = argmin
T∈τ

(

−LL(T)+ D(T/θX ,X)
)

(1)

where T∗ is the optimal theory, τ is the set of all candidate
theories, and D is the conceptual distance between the
instantiated candidate theory T/θX and the original example X.
Recall that a theory T is a disjunction of horn clause bodies (or
conjunction of clauses).

3.2.2. Distance Metric
Conceptual distance, D(T/θX ,X), is a penalty in our objective.
The key idea is that any learned first-order horn clause theory
must recover the given instance by equivalent substitution.
However, syntactic measures, such as edit distance, are not
sufficient since changing even a single literal, especially, literals
that indicate interconcept relations, could potentially result in a
completely different concept. For instance, in blocks-world, the
difference between a block being in the middle of a row and
one at the end of the row can be encoded by changing one
literal. Hence, a more sophisticated semantic distance such as
conceptual distance is necessary (Friend et al., 2018). However,
such distances require deeper understanding of the domain and
its structure.

Our solution is to employ interplan distances. Recall that
the concepts GOCI can induce are decomposable and, hence,
are equivalent to parameterized planning tasks. One of our key
contributions is to exploit this equivalence by using a domain-
independent planner to find grounded plans for both the theory
learned at a particular iteration i, Ti and the instance given as
input, X. We then compute the normalized compression distance
(NCD) between the plans.
NCD: Goldman and Kuter (2015) proved that NCD is arguably
the most robust interplan distance metric. NCD is a reasonable
approximation of Normalized Information Distance, which is not
computable (Vitányi et al., 2009). Let the plans for Ti/θX andX be
πT and πX . To obtain NCD, we execute string compression (lossy
or lossless) on each of the plans as well as the concatenation of the
two plans to recover the compressed strings CT ,CX , and CT,X ,
respectively. NCD between the plans can be computed as,

NCD(πT ,πX) =
CT,X −min(CT ,CX)

max(CT ,CX)
(2)

The conceptual distance between a theory T and X is the NCD
between the respective plans, D(T/θX ,X) = NCD(πT ,πX).
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This entire computation is performed by the conceptual distance
calculator as shown in Figure 3.

Observations: (1) Conceptual distance as a penalty term
in the LL score ensures that the learned theory will correctly
recover the given example/demonstration. (2) D(T/θX ,X)
generalizes to the Kolmogorov–Smirnov statistic between two
target distributions if we induce probabilistic logic theories. We
prove these insights theoretically.

3.2.3. Human Guidance
The search space in ILP is provably infinite. Typically, language
bias (modes) and model assumptions (closed world) are used
to prune the search space. However, it is still intractable with
one (or few) examples. So, we employ human expert guidance
as constraints that can directly refine an induced theory, acting
as a strong inductive bias. Also, we are learning decomposable
concepts (see Definition 2). This allows us to exploit another
interesting property. Constraints can now be applied over the
attributes of the known concepts that compose the target concept,
or over the relations between them. Thus, GOCI directly includes
such constraints in the clauses as literals (see Example 2). Though
such constraint literals come from the pre-declared language,
they are not directly observed in the input example(s). So an ILP
learner will fail to include such literals.

If the human inputs (constraints) are provided upfront before
learning, it can be wasteful/irrelevant. More importantly, it
places an additional burden on the human. To alleviate this, our
framework explicitly queries for human advice on the relevant
constraint literals, which are most useful. Let U be a predefined
library of constraint predicates in the language, and let U() ∈ U
be a relevant constraint literal. Human advice A can be viewed
as a preference over the set of relevant constraints {U()}. If UA

denotes the preferred set of constraints, then we denote the
theory having a preferred constraint literal in the body of a clause
as τA. (For instance, as per Example 2 GOCI queries “which of
the two sampled constraints Sub(hb,hs,1)& Greater(hb,hs)
is more useful.” Human could prefer Sub(hb,hs,1), since it
subsumes the other.) The scoring function now becomes:

FIGURE 3 | Highlevel overview of our Guided One-shot Concept Induction

(GOCI) framework.

T∗ = argmin
T∈τ

(

−LL(T)+ D(T/θX ,X)
)

: τ ⊆ {τA} (3)

Thus, we are optimizing the constrained form of the same
objective as Equation (1), which aims to prune the search space.
This is inspired by advice elicitation approaches (Odom et al.,
2015). While our framework can incorporate different forms of
advice, we focus on preference over constraints on the logical
variables. The formal algorithm, described next, illustrates how
we achieve this via an iterative greedy refinement (Figure 3,
query-advice loop shown in left).

3.3. The GOCI Algorithm
Algorithm 1 outlines the GOCI framework. It initializes a theory
T0 by variablizing the “bottom clause” obtained from X and
background knowledge [lines 3 and 5]. Then it performs
a standard ILP search (described earlier) to propose a candidate
theory [line 6]. This is followed by the guided refinement
steps, where constraint literals are sampled (parameter tying
guides the sampling) and the human teacher is queried for
preference over them, such that the candidate theory can
be modified using preferred constraints [lines 7-9]. The
function NCD() performs the computation of the conceptual
distance by first grounding the current modified candidate theory
T′ with the same parameter values as the input example X, then
generating grounded plans and finally calculating the normalized
compression distance between the plan strings (as shown in
Figure 3 and Equation 2) [line 10]. The distance-penalized
negative log-likelihood score is estimated and minimized to
find the best theory at the current iteration [lines 11-14],
which is then used as the initial model in the next iteration.
This process is repeated either until convergence (no change in
induced theory) or maximum iteration bound (L).

Connection to plan induction: Evaluation, both in traditional
ML and ILP, generally predicts the value of ŷX for a test
instance X represented as a fixed (ML) or arbitrary (ILP) length
feature vector. In GOCI, however, the notion of evaluation of an
instance X depends on successful construction of a valid/correct

Algorithm 1: Guided one-shot concept induction.

1: procedure GOCI(Instance X)

2: Initialize: Set Iteration ℓ← 1

3: Initialize: Bootstrap theory T0 ← X/θ
−1

4: repeat

5: Use Tℓ−1 as initial model

6: Candidate theory Tℓ ← SEARCH(T ∈ τ |Tℓ−1)

7: Sample applicable constraints U ∈ U
8: UA ← QUERY(human,U)

9: T′ ← Tℓ ⊕ UA ⊲ ∀ UA ∈ A

10: Dℓ(T
′
/θX ,X)← NCD(πT′/θX ,πX)

11: Score Sℓ ←
(

−LL(T′)+ D(T′/θX ,X)
)

12: if Sℓ < Sℓ−1 then ⊲minimize

13: Retain T′: Update Tℓ = T′

14: end if

15: until ℓ ≤ L OR Tℓ = Tℓ−1

16: end procedure
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plan πX (Figure 4). Thus, while learning, most research aim
to maximize coverage of positive instances E+ (max P(ŷx =
true|yx ∈ E+)) and minimize coverage of negatives E−, [i.e.,
min P(ŷx = true|yx ∈ E−)]. GOCI evaluates a candidate concept
representation by allowing the agent to realize that concept—
by computing a valid plan for the goal/task implied by the
instance x. This is akin to plan induction, since we are learning
parameterized plan for realizing the concept as a surrogate for the
concept itself. Additionally, planning has long been shown to be
conceptually same as logic programming (Preiss and Shai, 1989)
and hence induction of logic programs (theories) is the same as
plan induction where the examples are trajectories (plan traces)
in this case.

3.4. Theoretical Analysis
3.4.1. Validity of Distance Metric
NCD δ(x, y) between two strings x and y is provably a valid

distance metric (Vitányi et al., 2009): δ(x, y) =
maxK(x|y),K(y|x)
maxK(x),K(y)

,

where K(x) is the Kolmogorov complexity of a string x and
K(x|y) is the conditional Kolmogorov complexity of x given
another string y. NCD is a computable approximation of the
same [D(x, y) ≈ δ(x, y)]. Thus, we just verify if δ is a correct
conceptual distancemeasure. Let TY and TZ be two theories, with
same parameterizations (i.e., same heads). Let TY/θ and TZ/θ be
their groundings with identical parameter values θ . Our learned
theories are equivalent to planning tasks. Assuming access to a
planner 5() which returns Y = 5(TY/θ) and Z = 5(TZ/θ), the
two plan strings with respect to the instantiations of concepts are
represented by TY and TZ , respectively.

Proposition 1 (Valid Conceptual Distance). Normalized
information distance δ(Y ,Z) is a valid and sound conceptual
distance measure between TY and TZ , that is, δ(Y ,Z) = 0 iff the
concepts represented by TY and TZ are equivalent.

Proof Sketch for Proposition 1: Let TY and TZ be 2 induced
consistent first-order Horn clause theories, which may or may
not represent the same concept. Let θ be some substitution.
Now let TY/θ and TZ/θ be the grounded theories under the
same substitution. This is valid since we are learning horn clause
theories with the same head, which indicates the target concept
being learned. As explained in the paper, a theory is equivalent to
a planning task. We assume access to a planner 5(), and we get

plan strings Y = 5(TY/θ) and Z = 5(TZ/θ) with respect to the
planing tasks TY/θ and TZ/θ .

Friend et al. (2018) proved that Conceptual Distance is the step
distance between two consistent theories in a cluster network
(T,⇄,∼), where T is the class of consistent theories, ⇄ is the
definitional equivalence relation (equivalence over bidirectional
concept extensions) and ∼ implies symmetry relation. We have
shown in the paper that, given the class of concepts we focus on,
a concept is a planning task.

Let there be a theory T∗, which represents the optimal
generalization of a concept C. If step distance 〈TY ,T

∗〉 = 0 in
a cluster network and 〈TZ ,T

∗〉 = 0, then 〈TY ,TZ〉 = 0, that is,
they represent the same concept C and they are definitionally
equivalentTY ⇄ TZ . Thus, bothTY/θ andTZ/θ will generate the
same set of plans as T∗, since they will denote the same planning
tasks (by structural induction). Thus,

TY ⇄ TZ ⇐⇒ [5(Y) ∩5(Z) = 5(Y) = 5(Z)] (4)

up to equivalence of partial ordering in planning. Let π
∗() be

a minimum length plan in a set of plans 5(). Let y and z be
strings indicating plans π

∗(Y) and π
∗(z) ignoring partial order.

If 5(Y) = 5(Z), then π
∗(Y) = π

∗(z). Hence, the conditional
Kolmogorov complexities K(y|z) and K(z|y) will both be set to 0,
if the strings x and y are equivalent (ignoring partial ordering).
This is based on the principle that if they are equivalent, then
a Universal prefix-Turing machine will recover one string given
the other in 0 steps.

∴
max

(

K(y|z),K(z|y)
)

max
(

K(y),K(z)
) = 0 = δ(Y ,Z)

Proposition 2 (Generalization to Kolmogorov–Smirnov). In
generalized probabilistic logic, following Vitányi (2013), δ(Y ,Z)
corresponds to 2-sample Kolmogorov–Smirnov statistic between
two random variables TY/θ and TZ/θ with distributions PTY and
PTZ , respectively, [v(TY ,TZ) = sup

θ∈F

∣

∣FTY (θ)− FTZ (θ)
∣

∣], where
FT() is the cumulative distribution function for PT and sup

θ∈F is
the supremum operator. In a deterministic setting, δ is a special
case of the Kolmogorov–Smirnov statistic v, δ(Y ,Z) � v(FTY , FTZ ).

Proof Sketch for Proposition 2: This can be proved by
considering the connection between NID and the distributions

FIGURE 4 | Difference in evaluation of a concept instance across different learning paradigms.
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induced by the concept classes we are learning. NID is defined

as δ(x, y) =
maxK(x|y),K(y|x)
maxK(x),K(y)

, where, K(a|b) is the conditional

Kolmogorov complexity of a string a, given b. There is no
provable equivalence between Kolmogorov complexity and
traditional notions of probability distributions.

However, if we consider a reference universal semi-
computable semi-probability mass function m(x), then there is
a provable equivalence − logm(x) = K(x) ± O(1). Similarly for
conditional Kolmogorov complexity, by Conditional Coding
Theorem, − logm(y|x) = K(y|x) ± O(1) (Vitányi, 2013).
By definition,

m(y|x) =
∑

j≥1

2−K(j)−cjPj(y|x)

where cj > 0 are constants and Pj(y|x) is the lower
semi-computable conditional. A lower semi-computable semi-
probability conditional mass function is based on the string
generating complexity of a Universal prefix-Turing machine.
Thus,m(y|x) is greater than all the lower semi-computable. Note
that our compressed plans are equivalent to a string generated by
Universal prefix-Turing machines. The conditional case implies,
if a compressed plan string x is given as an auxiliary prefix tape,
how complex it is to generate compressed string y = θ .

Given two grounded theories TY/θ and TZ/θ , let PTY/θ , PTX/θ

be the respective distributions when learning probabilistic logic
rules. Now let us define the semantics of a distribution PT/θ

in our case: PT/θ = P(π(T/θ)), that is, distribution over the
plan strings, which can be considered as lower semi-computable
probability based on coding theory. We know,

∑

j≥1

2−K(j)−cjPj(y) ≈ F(y|x) (5)

where F(y) is the cumulative distribution. So, NID

δ(Y ,Z) now becomes, δ(Y ,Z) =
max(K(y|z),K(z|y))

max(K(y),K(z))
We

know that max
(

K(y),K(z)
)

is a normalizer. Thus,
δ(Y ,Z) < max

(

K(y|z),K(z|y)
)

max
(

K(y|z),K(z|y)
)

= max
(

−logm(y|z),−logm(z|y)
)

= max

(

−log
m(y, z)

m(z)
,−log

m(y, z)

m(y)

)

= max
([

− logm(y, z)+ logm(z)
]

,
[

− logm(y, z)+ logm(y)
])

Under partial ordering max yields supremum

≈ sup
∣

∣logm(y)− logm(z)
∣

∣

≈ sup
∣

∣log F(y)− log F(z)
∣

∣

≈ sup
∣

∣F(y)− F(z)
∣

∣ log is monotonic

Significance of Propositions 1 and 2: Proposition 1 outlines how
our proposed NCD-based metric is a valid conceptual distance. It
is well understood that the true measure of conceptual distance is
not straightforward and is subject to the semantic interpretation

of the domain itself. But designing a unique distance metric
based on the semantics of every domain limits the generality of
any learning system. So NCD acts as a surrogate “conceptual
distance.” It is based on the notion that “if two concepts are
fundamentally same the complexity of optimal action plans
to realize the concepts should also be fundamentally same.”
NCD (or NID) essentially measures the difference in generative
complexities of two plans. Also note that other types of distances
that are limited to a syntactic level such as edit distance (or
literal distance) will fail to capture the similarity or diversity
between concept representations since the same concept can be
represented with more than one theories that may vary in one or
more literals.

Proposition 2, on the other hand, proves that our proposed
metric is not limited to our specific scenario. It positions
our work in the context of known statistical distance metrics
and establishes its credibility as a valid solution. It proves
how in a nondeterministic setting, that is, probabilistic logic
formulation, our proposed metric generalizes to Kolmogorov–
Smirnov statistic.

3.4.2. PAC Learnability
PAC analysis of GOCI follows from GOLEM for function-free
horn clause induction (Muggleton and Feng, 1990). Let initial
hypothesis space beH0 and the final beH∗ (s.t.T∗ ∈ H∗).

Proposition 3 (Sample Complexity). Following Valiant (1984)
andMooney (1994), with probability (1−δ), the sample complexity
of inducing the optimal theory T∗ is:

n∗ = O

(

1

ǫ

[

dLji ln((tfm))+ ln(
1

δ
)

])

(6)

where ǫ is the regret, n∗ - sample complexity of H∗, i is the
maximum depth of a variable in a clause and & j is the maximum
arity. m - number of distinct predicates, t is the number of terms, p
is the place and d is the distance of the current revision from the last
known consistent theory, and L is the upper bound on the number
of refinement steps (iterations).

Proof Sketch for Proposition 3: In our learning setting, the
learned theory will always have nonzero uncertainty. To
understand the properties, we build upon the PAC analysis for
recursive rlgg (Relative Least General Generalization) approach
for function-free Horn clause learning shown by Muggleton
and Feng (1990) in GOELM. With some restrictions, it applies
here as well. Let n: denote the sample size and H: the hypothesis
space. Our approach can be considered as an rlgg approach with
refinement steps. Note that constraint predicates that refine the
clauses are not part of K.

To begin with, we are interested in regret bounds for
the initially learned hypothesis by the ILP learner H0, before
refinement. We know from Valiant (1984), that with probability
(1− δ) the sample complexity n forH0 is,

n ≥
1

ǫ

(

ln(|H0|)+ ln(
1

δ
)

)

(7)
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where ǫ is the regret. Now, our ILP learner induces ij-determinate
clauses (Muggleton and Feng, 1990), where i is the maximum
depth of the clause and j is the maximum arity. In our problem

setting, it can be proven that |H0| = O((tpm)j
i
), where m is the

number of distinct predicates in the language. t is the number of
terms, and p is the place (for details about place, refer Muggleton
and Feng, 1990). Also note that if j & i is bounded, then ji ≤
c). Mooney (1994) shows that for theory refinement/revision,
sample complexity is expressed as,

n∗ = O

(

1

ǫ

[

dk ln
(

|H0| + d +m
)

+ ln(
1

δ
)

])

(8)

where distance d to be the number of single literal changes in a
single refinement step and k is the number of refinement/revision
iterations. In Algorithm 1, we observe that at each iteration ℓ ≤

L, updates are with respect to the preferred constraint predicates

UA ∈ U. Thus, we know that k = L. Substituting |H0| = (tfm)j
i

and ji = c constant)in Equation (8) and ignoring the additive

terms d +m since (tfm)j
i
>> d +m, we get,

n = O

(

1

ǫ

[

dLc ln(tpm)+ ln(
1

δ
)

])

(9)

Proposition 4 (Refinement Distance). d is upper bounded by
the expected number of literals that can be constructed out of the
library of constraint predicates with human advice E∼A [|U|] and
lower bounded by the conceptual distance between theory learned
at two consecutive iterations since we adopt a greedy approach.
If PrA(U) denotes the probability of a constraint predicate being

preferred, then |Dℓ − Dℓ−1| ≤ d ≤
∑2(|U|−1)×tPq

i=1 PrA(Ui) where

2(|U|−1)×tPq is the maximum possible number of constraint literals
and q is the maximum arity of the constraints. In case of only
pairwise constraints, q =2.

Proof Sketch for Proposition 4: The proof is straightforward and
hence we present it in brief. In our setting to show that,

|Dℓ − Dℓ−1| ≤ d ≤

2(|U|−1)×tPq
∑

i=1

PA(Ui) (10)

(where 2(|U|−1) × tPq is the maximum number of constraint
literals possible, since U is the library of constraint predicates)
consider that the number of constraint predicates that can be
picked up at any iteration is 2(|U|−1). To form constraint literals,
we need to tie arguments to existing logical variables in the
current theory. We have defined t to be the number of terms in
the existing theory. Let q be the max arity of a constraint, thus
total possible number of constraint literals are 2(|U|−1) × tPq. So
if the distribution induced on the constraint literals by human

adviceA be PA, then
∑2(|U|−1)×tPq

i=1 PA(Ui) is the expected number
of literals added given the advice. Now this is the upper bound
of d. Again d should at least be the conceptual distance between
the new theory after constraint addition and the last consistent
theory. Note d and conceptual distance D is not the same. Thus,

it is the difference between the NCD of last theory to original
example and current updated theory to the original example
|Dℓ − Dℓ−1|.

Observe that if at each layer ℓ ≤ L we add constraint
predicates Uℓ, then at layer ℓ, d =

∣

∣{U}ℓ
∣

∣ ≤ 2mtPq (assuming
q is maximum arity of the constraint predicates). Also, as per
our greedy refinement framework, at each layer ℓ, distance new
theory Tℓ should at least be the change in conceptual distance.

Significance of Propositions 3 and 4: Propositions 3 and 4 aim
to illustrate what the general sample complexity would be for
a theory refinement-based RLGG clause learner such as GOCI

and how the conceptual distance controls the complexity by
establishing bounds on the refinement distance. Furthermore, the
complexity is also subject to the maximum refinement iterations,
which in turn is affected by human guidance. Thus, we establish
the theoretical connection between the two dimensions of the
contribution of this work.

Proposition 5 (Advice Complexity). From Equations (6) and (8),

at convergence ℓ = L, we get n∗−|X|
L examples, on an average, for a

concept C to be PAC learnable using GOCI.

The proof is quite straightforward and hence we just discuss
the brief idea behind it. Our input is sparse (one or few
instances). GOCI elicits advice over constraints to acquire
additional information. Let |X| be the number of input examples.
We query the human once at each layer and hence the maximum
query budget is L. Given that the sample size is |X|, each query

to the human must acquire information about at least n∗−|X|
L

examples, on an average, for our a concept C to be PAC learnable
using our approach.

4. EVALUATION

We next aim to answer the following questions explicitly:

(Q1) Is GOCI effective in “one-shot” concept induction?
(Q2)How sample efficient is GOCI compared to baselines?
(Q3) What is the relative contribution of the novel scoring
function versus human guidance toward performance?

Our framework extends a Java version of Aleph (Srinivasan,
2007). We modified the scoring function with NCD penalty
computed via a customized SHOP2 planner (Nau et al., 2003).
We added constraint sampling and human guidance elicitation
iteratively (Algorithm 1).

4.1. Experimental Design
We compare GOCI with Aleph with no enhancements. We
focus on the specific task of "one-shot concept induction,”
with a single input example for each of the several types
of concepts and report aggregated precision. We consider
precision because preference queries are meant to eliminate
false positives in our case. To demonstrate general robustness
of GOCI, beyond one-shot case, we experimented with varying
sample sizes for each concept type and show learning curves
for the same. We perform an ablation study to show
the relative contribution of two important components of
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GOCI: (a) novel scoring metric and (b) human guidance,
that is, we compare against two more baselines (ILP+Score
and ILP+Guidance). For every domain, we consider 10
different types of concepts (10 targets) and aggregate results
over 5 runs.

Note that human guidance was obtained from distinct human
experts for every run. The expertise level of all the advice
providers was reasonably at par since they were chosen from
the same pool of candidates with zero visibility and knowledge
of our proposed framework. However, for all the human advice
providers we assumed a basic level of knowledge in geometry
or fundamentals of logic and reasoning. Additionally, we also
explained each of the experimental domains to the human
participants to create a similar level of awareness about the
domains among all of them.

4.1.1. Domains
We employ four domains with varying complexity. Note
that we have selected the below domains based on multiple
considerations. The domain encoding need to be such
that target concepts can be learned in a modular fashion
(i.e., decomposable). Thus, the first two domains are
structure construction domains either spatial (Minecraft)
or chemical/molecular (CheBI). Spatial structures are implicitly
modular (such as the L-structure in Figure 1). Chemical entities,
molecules/compounds/complexes, are similarly modular as well.
The last two domains are fundamentally planning domains.
However, they are also compositional in nature, that is, any
planning goal is a composition task. For instance, machine
structure in “Assembly” domain and cocktails, etc., in “Barman”
domain. So these two domains do not just demonstrate learning
modular/decomposable concepts but they also illustrate the plan
induction feature of GOCI.

1. Minecraft (spatial structures): The goal is to learn discrete
spatial concepts in a customized (Narayan-Chen et al., 2019)
Project Malmo platform for Minecraft. Dialogue data in
Malmo are available online, and we converted them into a
logical representation. All structures are in terms of discrete
atomic unit blocks (cubes). Figure 5 shows examples of some
spatial structures that GOCI was able to learn.

2. Chemical Entities of Biological Interest (ChEBI):

ChEBI (Degtyarenko et al., 2007) is a compound database
containing important structural features and activity-based
information, for classification of chemicals, such as (1)
molecular structure and (2) biological role. We model the
Benzene molecule prediction task as molecular-compositional
concepts. The data have predicates such as SingleBond,
DoubleBond, and HasAtom.

3. Assembly (planning domain): Assembly is a planning
domain, where different mechanical structure concepts are
compositions of different parts and resources. Input is
a conjunction of ground literals indicating ground plan
demonstration (assuming total ordering).

4. Barman (planning domain): A standard planning domain
where a bartender is supposed to follow certain recipes and
sequence of techniques to create cocktails. The different
cocktails are decomposable concepts in this setting.

4.2. Experimental Results
[Effective One-shot (Q1)] Table 1 shows the performance of
GOCI on one-shot concept learning tasks as compared to
standard ILP. GOCI significantly outperforms ILP across all
domains answering (Q1) affirmatively. Also, note that GOCI

is very “query” efficient as observed from the small average

TABLE 1 | Results for one-shot concept learning.

Domain Approach Avg. precision #Queries

Minecraft Goci 0.85 5.5± 3

ILP 0.35 –

Assembly Goci 0.65 16.5± 4

ILP 0.2 –

ChEBI Goci 0.615 13.1± 2.13

ILP 0.45 –

Barman Goci 0.7 10.5± 5.4

ILP 0.51 –

FIGURE 5 | Instances of spatial concepts in Minecraft. (Left) Upright Tee, (Middle) Upright L, (Right) Orthogonal overlapping Ls.
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number of queries posed in the case of each domain. Note
that in the case of CheBI, the number of queries is the
highest among all the domains. This can be attributed to that
fact that CheBI is a domain, which requires a certain degree
of understanding of fundamental chemistry (chemical bonds
and their types, molecules, atoms, etc.). Thus, some of the
human participants requiredmore iterations (consequently more
queries) to converge to the most relevant set of constraint
literals, given the difference of their prior understanding of
school chemistry.

Query efficiency is an important consideration in any learning
paradigm that leverages human guidance, since controlling the
cognitive load on the human expert is critical. So, in general,
the observed average query numbers being reasonably low
across all domains corroborates our theoretical advice complexity
(section 3.4.2).
[Sample Efficiency (Q2)] In Figure 6, we observe that GOCI

converges within significantly smaller sample size across all
domains, thus, supporting our theoretical claims in section 3.4. In
ChEBI, though, quality of planner encoding might explain mildly
lower precision yet GOCI does perform significantly better than
vanilla ILP learner. In ChEBI, we see that the sample efficiency
is not vastly distinct. One of the possible reasons could be the
sub-optimal encoding of the planning domain language, which is
necessary for NCD computation, for this task. If we can improve
the planner setup for this domain, then we will likely be able to
observe enhanced performance.
[Relative contribution (Q3)] Figure 7 validates our intuition
that both components (scoring function and human-guidance)
together make GOCI a robust one-shot (sample-efficient) concept
induction framework. Though human guidance, alone, is able

to enhance the performance of a vanilla ILP learner in sparse
samples, yet it is not sufficient for optimal performance. In
contrast, although the advantage of our novel distance-penalized
scoring metric is marginal in sparse samples, it is essential for
optimal performance at convergence.

5. DISCUSSION

The most important conclusion from the experiments is that
when available, the guidance along with the novel score leads to a
jump-start, better slope and in some cases, asymptotically sample

FIGURE 7 | Results of ablation study on Minecraft domain. Relative

contribution of our distance-penalized score vs. human guidance.

FIGURE 6 | Learning curves for varying sample size to compare the sample efficiency of Guided One-shot Concept Induction (GOCI) and inductive logic program

(ILP). Top two plots are with respect to structural composition domains-Minecraft & ChEBI and the bottom two are for planning domains: Assembly and Barman (best

viewed in color).
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efficient with a fraction of the number of instances needed than
merely learning from data.

Another important aspect to note here is that our
experimental setup did not attempt to ensure in any way
that the quality of guidance provided by the human participants
is optimal. The formulation of the objective function, itself,
in GOCI is designed to handle sub-optimal human advice
implicitly in a seamless manner. The two primary features
in the design that make GOCI robust to advice quality are
as follows:

1. As explained earlier and shown in Equation (3), human advice
and conceptual distance deal with two distinct aspects of the
search process. Human advice controls the size and nature of
the search space while conceptual distance ensures the quality
of the candidates. Advice and distance have a balancing effect
on each other, and thus, it is our novel conceptual distance that
makes GOCI robust to bad advice.

2. Also, the nature of human advice in our setting is of choosing
the most useful set of “constraint predicates” among the set
of candidate constraints. Now the candidates are generated by
GOCI in a conservative fashion selecting only the ones that are
logically valid for the theory learned at the current iteration
of revision. Thus, human experts have very little option of
choosing an invalid or extremely unlikely constraint predicate.

Our ablation study in Figure 7 also supports our analysis. On
closer inspection, we see that it is due to our novel distance
penalized scoring function (ILP+Score) that ensures convergence
to an optimal solution. Human advice (ILP+Guidance)
contributes to sample efficiency.

6. CONCLUSIONS

We developed a human-in-the-loop one-shot concept learning
framework in which the agent learns a generalized representation
of a concept as FOL rules, from a single (few) positive example(s).
We make two specific contributions: deriving a new distance
measure between concepts and allowing for richer human

inputs than mere labels, solicited actively by the agent. Our
theoretical and experimental analyses show the promise of GOCI

method. An exhaustive evaluation involving richer human inputs
including varying levels of expertise and analyzing our claim
that learning performance of GOCI is robust to expertise levels
(which should only affect query efficiency) is an immediate
future research objective. Integration with hierarchy learning also
remains an interesting direction for future research.
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One of the big challenges in robotics is the generalization necessary for
performing unknown tasks in unknown environments on unknown objects. For
us humans, this challenge is simplified by the commonsense knowledge we
can access. For cognitive robotics, representing and acquiring commonsense
knowledge is a relevant problem, so we perform a systematic literature review
to investigate the current state of commonsense knowledge exploitation in
cognitive robotics. For this review, we combine a keyword search on six
search engines with a snowballing search on six related reviews, resulting in
2,048 distinct publications. After applying pre-defined inclusion and exclusion
criteria, we analyse the remaining 52 publications. Our focus lies on the
use cases and domains for which commonsense knowledge is employed,
the commonsense aspects that are considered, the datasets/resources used
as sources for commonsense knowledge and the methods for evaluating
these approaches. Additionally, we discovered a divide in terminology between
research from the knowledge representation and reasoning and the cognitive
robotics community. This divide is investigated by looking at the extensive review
performed by Zech et al. (The International Journal of Robotics Research, 2019,
38, 518–562), with whom we have no overlapping publications despite the
similar goals.

KEYWORDS

commonsense knowledge, cognitive robotics, systematic literature review, knowledge
representation, semantic reasoning

1 Introduction

Robots have the potential to support us in a number of activities. Recently, there has
been a massive adoption of cost-efficient robots that support us in house cleaning (e.g.,
vacuuming) and gardening (e.g., lawn mowing) activities. Moreover, research in household
robotics has led to robots being able to clean breakfast tables (Kazhoyan et al., 2021), or
prepare drinks (Sung and Jeon, 2020) and pizzas (Joublin et al., 2024). Yet, the ability of
robots to support us in complex everyday tasks is still very limited. In particular, they break
down in open world situations where they are challenged by new and underdetermined
tasks, new environments or new objects about which they lack knowledge (Bronfman et al.,
2021; Ding et al., 2023).

This gap between underdetermined tasks and the robot body motion that accomplishes
the task has to be bridged through the robot’s knowledge and its reasoning capabilities.
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This challenge is the core of the research field of cognitive robotics,
where knowledge representation and reasoning techniques are
employed to support “autonomous robot [s] in a dynamic and
incompletely known world” (Levesque and Lakemeyer, 2008, p.
869). A substantial part of these techniques and capabilities used
to increase the robustness of cognitive robots in everyday tasks
concerns the robot’s commonsense knowledge (CSK).This knowledge
has the benefit of “enhancing the quality of the plans […] as
well as avoiding human involvement when making decisions”
(Pradeepani et al., 2022, p. 159) and allows them “to ask and retrieve
the right answers from available knowledge” (Salinas Pinacho et al.,
2018, p. 132).

As the name suggests, CSK in humans is understood as
“information that people usually take for granted and, hence,
normally leave unstated” (Cambria et al., 2012, p. 3582), which
increases the difficulty for automatic acquisition and deployment.
Regarding the cognitive robotics domain, we follow the definition
provided by Gupta and Kochenderfer (2004), which focuses on
knowledge about human desires, physics, and causality, as well
as knowledge about objects with their locations, properties and
relationships. In general, knowledge about human desires correlates
to the concept of Intuitive Psychology from Lake et al. (2017),
with which an agent understands that other agents have a mental
state similar to their own which they can express and interpret
to understand their intentions and goals. Both knowledge about
physics and knowledge about causality are covered by the concept of
Intuitive Physics, also fromLake et al. (2017).This type of knowledge
is focused on primitive physical concepts like the calculation of
physically possible trajectories or the tracking of objects over time.
With causality, also the knowledge about physical connections
between objects and actions is covered. So, for example, CSK
focused on causality would help a robot to understand the (physical)
consequences of moving an object.

As a general example, consider a cognitive robot tasked with the
preparation of a bowl of cereals for breakfast, a task that a human
could perform without explicit planning. However, many of the
implicitly known aspects for the human are challenges for the robot,
since it needs to know that “a bowl of cereal” implies the use of milk
orwhat constitutes a container to be used as the bowl orwhere to find
the cereal in its environment. Without CSK that provides answers to
these challenges, the robot would, e.g., search the whole kitchen for
milk instead of starting with the most probable location (the fridge)
or it would not understand that a found container could be used as
the bowl.

By equipping cognitive robots with CSK, their robustness
when interacting in open worlds is increased. However, the
application of the concept of CSK to the cognitive robotics
domain has received relatively limited research attention. There
are no surveys or comparable studies performed to analyze the
coverage of CSK for cognitive robotics. Since cognitive robotics
are increasingly breaching into human domains, we perform a
systematic literature review providing researchers and practitioners
alike with an overview for CSK in cognitive robotics. For this
literature review, we follow the principles and guidelines provided
by Kitchenham and Charters (2007), Okoli (2015) and Page et al.
(2021). To increase repeatability and traceability of our review, we
track our progress in a review protocol and collect all intermediate

results. All of these additional resources are available in our
GitHub repository1.

To guide our research, we formulate the following four research
questions, focusing on different aspects of CSK. Our motivation
for these questions stems from the need to comprehensively
understand the landscape of CSK utilization in cognitive robotics
research. By addressing these research questions, we aim to uncover
insights into the various use cases, specific aspects considered (or
overlooked) in CSK application, the prevalent datasets or resources
in the field, and the diverse methods employed for assessing
these approaches. This comprehensive examination is crucial in
shaping our understanding of the current state and potential future
directions of CSK integration in cognitive robotics.

RQ1 For which use cases has the use of CSK been considered in
cognitive robotics research?

RQ2 Which aspects of CSK have been considered?Which aspects of
CSK have received less consideration?

RQ3 Which datasets or resources aremainly considered in cognitive
robotics as a source for CSK?

RQ4 What methods are employed to assess the approaches? Which
CSK datasets or resources are utilized in these evaluations?

To summarize our results, concerning RQ1 we find that most
use cases occur in the household domain and focus on objects
and their relations to the environment. This is corroborated by
our results pertaining to RQ2, which we address by looking
at what sorts of questions CSK is called upon to answer. We
found that the most common CSK questions seek to connect an
object to a specific location in its environment. Other important
questions focus on object similarity, object affordances and tool
substitution. Here, affordances describe possible ways for an agent
to interact with the environment Bornstein and Gibson (1980). In
general, questions focusing on objects are much more dominant
than questions about interacting with humans or about physics or
causality of actions. Concerning RQ3, we find that while specific
sources such as ConceptNet (Speer et al., 2017) (Open-)Cyc (Lenat,
1995) or OMICS (Gupta and Kochenderfer, 2004) are used multiple
times, there is no one single source that is employed in all or
most CSK use cases. Regarding the evaluation method and data
covered by RQ4, we found that most approaches either evaluate
using a Case Study or an Experiment, predominantly in a simulated
environment. Unfortunately, most of the evaluation data is not
available online.

During our search for suitable publications, wewere surprised to
notice a lack of publications that focus on well established keywords
like affordance learning. After manually analyzing this gap using
another, similar review by Zech et al. (2019)–with which we have
no overlapping publications–we hypothesize that the reason is a
divide in terminology between research in the cognitive robotics
community and in the knowledge representation and reasoning
community. We further explore this divide and propose possible
bridges to close this gap.

1 https://github.com/ag-sc/Robot-Commonsense-Review

Frontiers in Robotics and AI 02 frontiersin.org80

https://doi.org/10.3389/frobt.2024.1328934
https://github.com/ag-sc/Robot-Commonsense-Review
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Töberg et al. 10.3389/frobt.2024.1328934

2 Related work

Commonsense and intuitive physics reasoning problems were
driving forces for knowledge representation and reasoning in
early stages of AI research (McCarthy, 1959; 1977; Schank and
Abelson, 1975; Minsky, 1981; Hayes, 1990). This line of research
was presented in textbooks (Davis, 1990; 2008a; Mueller, 2014) and
further developedwithin its own research community (Davis, 2008a;
b; Levesque et al., 2012; Davis and Marcus, 2015). In current AI
research, CSK is used for question-answering (Talmor et al., 2019;
Nguyen et al., 2021), knowledge base creation (Tandon et al., 2017),
text interpretation (Bisk et al., 2020; Puri et al., 2023) and visual
recognition (Zellers et al., 2019), to name a few.

While a large fraction of research problems were motivated
through intuitive physics and physical agency, they were not
sufficiently leveraged in cognitive robotics research. Another
characteristic of CSK and reasoning is its hybrid nature.
Commonsense reasoning includes a large number of specialized
methods for prospection (Szpunar et al., 2014), part-based
reasoning (Tenorth and Beetz, 2017), mental simulation (Hesslow,
2012), imagistic reasoning (Nanay, 2021), planning (Ghallab et al.,
2016), and safe human-robot collaboration (Conti et al., 2022),
which were investigated individually without being linked to the
more general concept of commonsense. In addition, representations
of actions as they are investigated in natural language processing,
such as FrameNet (Baker et al., 1998), are of key importance for
robotic commonsense (Vernon, 2022). Furthermore, robot cognitive
architectures contribute to robot commonsense by focusing on
cognitive capabilities (Vernon, 2014; Vernon, 2022).

Regarding previous reviews on the topic of commonsense
knowledge in cognitive robotics, as far as we know, no direct
previous publications exists. However, works by Paulius and Sun
(2019) and Sun and Zhang (2019) survey general knowledge
representation techniques employed for different domains and
scenarios.Thework byPaulius and Sun (2019) focuses on knowledge
representation and its connection to learning techniques applied
in service robots, covering general high-level as well as specialized
representations. Similarly, Sun and Zhang (2019) reviews three types
of knowledge representations for task planning in robotics: semantic
networks, rules and logical knowledge representation.

The survey conducted by Thosar et al. (2018) focuses on
different knowledge bases that are employed by service robots
manipulating household objects. These knowledge bases are
compared regarding their knowledge acquisition and representation
as well as themechanisms used for inference and symbol grounding.
Another review by Buchgeher et al. (2021) that focuses on a specific
type of knowledge representation, looks into the usage of knowledge
graphs for industrial manufacturing and production systems. The
authors analyse application scenarios, graph characteristics and
meta information about the surveyed research publications.

Reviews by Olivares-Alarcos et al. (2019) and Manzoor et al.
(2021) focus on ontology-based approaches for knowledge
representation. The review conducted by Olivares-Alarcos et al.
(2019) surveys the cognitive capabilities supported by different
ontologies, and compares them using a proposed classification
schema based on the underlying ontology language and hierarchy
as well as the application domain of the ontology. The review by
Manzoor et al. (2021), on the other hand, focuses specifically on

the household, hospital, and industry domains, looking for concrete
scenarios where the ontologies have been applied on real robots.

Lastly, the literature review by Zech et al. (2019) focuses on
the concept of actions in the cognitive robotics domain by looking
at their representation and providing a possible taxonomy for
their classification. Based on the classification of 152 publications,
the authors summarize open research challenges for increasing
the maturity and usability of action representations. This review
exemplifies the divide mentioned in Section 1 regarding the
terminology used by researchers with a (cognitive) robotics
background and researchers in the knowledge representation
and reasoning domain, since some concepts covered by their
taxonomy are semantically equivalent to concepts from the
knowledge representation and reasoning domain without being
explicitly connected.

The reviews and surveys presented here differ in the knowledge
representation approach covered, the application domain, and
whether the review is structured in a systematic way. The topic
of commonsense knowledge itself is not covered by any of these
reviews. Due to the importance of commonsense knowledge for
cognitive robotics, we investigate its application domain, data
sources, evaluation methods and commonsense aspects in a
systematic way.

3 Methodology for searching relevant
publications

To find publications suitable for answering our research
questions RQ1–RQ4, we follow a structured, pre-defined procedure
as proposed by Kitchenham and Charters (2007), Okoli (2015) and
Page et al. (2021). To enhance the repeatability of our review, we
create a review protocol containing additional information about the
search as well as an overview of intermediate results.The protocol, as
well as all additional artifacts, are available in our GitHub repository.

3.1 Applied search procedure

To find publications suitable for answering our four research
questions, we combine a keyword-based database search with a
snowballing search on related surveys. The general procedure used,
along with the quantity of publications identified and screened in
each step, is visually summarized in Figure 1.

For the database search we defined the following four keywords
before we started the search:

K1: “knowledge-enabled robot” OR “knowledge-based robot” OR
“knowledge-driven robot”

K2: “knowledge processing”ANDrobotANDquestionANDNOT
interaction AND NOT hardware

K3: “common sense knowledge” AND robot AND NOT
interaction AND NOT hardware

K4: “common sense” AND (“robot cognition” OR “cognitive
robot”)

We used each of these four keywords on the following six search
engines/databases: Google Scholar, IEEE Xplore, Scopus, Web of
Science, Science Direct and the ACM Digital Library. Through the
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FIGURE 1
Visualizing our step-by-step search procedure and the number of publications found and analyzed in each step. This visualization was created with
Haddaway et al. (2022).

combination of our keywords with these six sources, we found 1,652
publications.

Since we are not the first researchers to perform a literature
review in the domain of knowledge representation and reasoning
for cognitive robotics, we also decided to incorporate the results
of previous published reviews. For this, we follow the guidelines
by Wohlin (2014) for performing a snowballing search to gather
publications that were either already covered by the reviews
introduced in Section 2 or that cite these reviews. By collecting the
in- and outgoing references of the reviews by Thosar et al. (2018),

Olivares-Alarcos et al. (2019), Paulius and Sun (2019), Sun and
Zhang (2019), Buchgeher et al. (2021) andManzoor et al. (2021), we
included 724 additional publications.

Combining the results of both search techniques yielded 328
duplicates, which we removed. We then analyzed the remaining
publications regarding theirmetadata and removed 576 publications
that did not fit the inclusion criteria described in Section 3.2. Next,
we screened the 1,472 remaining publications in two steps, first
looking only at their title, and then also covering their abstract.
During these steps, we decided whether to include a publication
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using further steps based on the inclusion criteria specified in
Section 3.2. This led us to exclude 951 publications based on their
title and 441 based on their abstract, leaving us with 80 publications,
which we read completely.

Of these 80 publications, one was not accessible in a full
version, prompting us to exclude it as well. Of the remaining
79 publications, 27 were excluded based on the exclusion criteria
described in Section 3.2, leaving us with 52 publications, which we
analyzed to answer our research questions. A brief summary of these
publications can be found in our review protocol.

3.2 Inclusion and exclusion criteria

To enhance the repeatability of our search, we define our
inclusion and exclusion criteria before we start the search, as
suggested by Kitchenham and Charters (2007). For the inclusion
criteria, we differentiate between criteria regarding a publication’s
metadata and its content. Regarding the metadata, we only include
publications that were published in our investigated time frame of
11 years (i.e., between 2012 and 2022). For most of our data sources,
these criteria were already applied during the search through explicit
filters. Additionally, only papers that are written in English and thus
understandable by the broad scientific community are included.
Regarding the scientific quality, we focus only on publications that
are peer-reviewed, excluding patents, books, presentations, technical
reports and theses of any kind. Regarding the content, we analyze
the title of the publication and its abstract in two separate steps
to determine whether it contains a possible answer to any of our
research questions. So, we include publications that discuss the
application of CSK through a robot to a specific scenario or use case
(RQ1), publications that discuss equipping cognitive robots with the
possibility to answer certain CSK questions (RQ2), or that introduce
or employ a (novel) source for collecting the necessary CSK (RQ3).
In general, anything the authors employ as a source for gathering
their CSK constitutes as an eligible resource for our analysis. This
can cover texts, ontologies, websites, large language models or other
kinds of data. Lastly, we do not define a specific inclusion criteria
for assessing the evaluation methods and their used data (RQ4),
since we expect all remaining publications to somehow evaluate
their approach.

As we explain in Section 3.1, the exclusion criteria are applied
after the metadata, title and abstract have already been analyzed.
Here, we first exclude publications for which no complete version is
available, thus making a thorough analysis impossible. Additionally,
we exclude any publicationwe read completely but that turns out not
to provide answers to any of our research questions, despite content
in the title or abstract suggesting that it does.

4 Analyzing the usage of
commonsense knowledge

In this section, we analyze the content of the 52 publications
found by the search procedure detailed in Section 3.1 to answer
our four research questions introduced in Section 1. However, we
first examine two aspects of their metadata. First, we examine

the number of publications published for each year in our 11-
year time span, visualized in Figure 2A. We do not find rising or
falling trends in interest in the topic of CSK for cognitive robotics
throughout these years, with a median of five publications per
year. We also examine the venues where these publications were
published. However, only three venues occur more than once:
Intelligent Service Robotics2 (2 occurrences), IEEE International
Conference on Robotics and Automation (ICRA)3 (6 occurrences)
and IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS)4 (7 occurrences). For a more general examination,
we summarize the venue type for all publications in Figure 2B. Here,
we find that the majority of publications are conference papers
(∼60%), followed by journal articles (25%), workshoppapers (∼10%)
and lastly book sections (∼5%).

4.1 Use cases and their application domain

Our first research question RQ1 pertains to the use cases for
which the use of CSK has been considered in cognitive robotics
research. When addressing this question, we differentiate between
the concrete use case itself and the domain in which it is embedded.
We look at both independently, since a given use case is not
always embedded in a single domain. For example, the approach by
Wang et al. (2019) focuses on the use case of finding and delivering
a given object in the household domain, whereas Yang et al. (2019)
focuses on the same use case but for the personal care domain.

For the distinction between possible domains and use case,
we rely on the arguments and descriptions presented in each
publication. The found domains are self-explanatory and mostly
reported directly in each publication, so any publication that talks
about the “household environment” counts towards the Household
domain. For the use cases however, we collect their attributes and
goals to distinguish and define the 15 different use cases seen
below. Due to the difference in abstraction between these use cases,
more complex use cases like, e.g., Cooking depend on other, more
simplistic and low-level use cases like localizing or picking up
objects. These dependencies are visualized in Figure 3.

• Cooking (Nyga and Beetz, 2012; Agostini et al., 2015):
Generate and execute a cooking plan based on the current
environment and a requested meal
• Environment Exploration (Pangercic et al., 2012;

Kanjaruek et al., 2015; Jäger et al., 2018; Vassiliades et al., 2020;
Zhang et al., 2021): Interacting with parts of the environment
(objects, doors, cupboards, etc.) to gather (new) knowledge
• Hole Digging (Javed et al., 2016): Dig a hole in the garden
• Intention Inference (Liu et al., 2015; Liu and Zhang, 2016;

De Silva et al., 2022): Identify the intention of a human with a
certain object/command to react fittingly when the command
cannot be executed (e.g., the robot should fetch the human some
juice, which is not available. Why did the human want the juice
and what is a fitting alternative?)

2 www.springer.com/journal/11370

3 www.ieee-ras.org/conferences-workshops/fully-sponsored/icra

4 www.ieee-iros.org
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FIGURE 2
(A): Visualizing the amount of found publications throughout the 10 year time span we restricted the search to. (B): Visualizing the venue type where
the found publications were published.

• Location Detection (Welke et al., 2013): Categorize the
location based on the recognized objects (e.g., the robot detects
milk and juice and concludes that the location is a fridge)
• Navigation (Shylaja et al., 2013; Li et al., 2022): Navigate to a

specific location
• Object Delivery (Lam et al., 2012; Riazuelo et al., 2013;

Mühlbacher and Steinbauer, 2014; Al-Moadhen et al., 2015;
Zhang and Stone, 2015; Wang et al., 2019; Yang et al.,
2019): Finding the requested object and delivering it to a
specific location
• Object Localization (Varadarajan and Vincze, 2012b;

Zhou et al., 2012; Kaiser et al., 2014; Riazuelo et al., 2015;
Jebbara et al., 2018; Daruna et al., 2019; Zhang et al., 2019;
Chernova et al., 2020): Finding a specific object in an
(unknown) environment
• Object Recognition (Daoutis et al., 2012; Pratama et al., 2014;

Kümpel et al., 2020; Chiatti et al., 2022): Recognize a specific
object based on its properties
• Pick and Place (Al-Moadhen et al., 2013; Javia and Cimiano,

2016; Mitrevski et al., 2021): Pick an object up and place it at a
different location
• Reminiscence Therapy (Wu et al., 2019): Asking questions

about provided pictures to get the human to remember
and socialize
• Table Setting (Salinas Pinacho et al., 2018; Haidu and Beetz,

2019): Set the table for a meal scenario (and maybe also clean
up afterwards)
• Tidy Up (Aker et al., 2012; Skulkittiyut et al., 2013): Bring

a specified part of the environment in order by removing
unusual objects
• Tool Substitution (Zhu et al., 2015; Thosar et al., 2020;

2021; Dhanabalachandran et al., 2021; Xin et al., 2022):
Recognizing a specific object as a suitable substitute for a
missing tool
• Warehousing (Ayari et al., 2015; Pradeepani et al., 2022):

Keep track of available objects and their quantity in

an environment to inform a human once an object is
unavailable

During our analysis, we found five different domains where
CSK is applied: the Household and Retail domains, the Gardening
domain, the Personal Care domain, and the Generic domain in
which the robot handles CSK in a way that can be applied
to any other domain. The number of publications that handle
each of these domains is visualized in Figure 4A. As can be
seen, the Household domain is the focus of 50% of the covered
publications, surpassing applications in theGeneric domain (∼33%).
One commonality shared by theHousehold, Personal Care andRetail
domains (∼65% of publications) is that robots operating in these
domains potentially share their workspace with humans, which can
lead to uncertainties in the environment that increase the need for
robots to have and draw on CSK. Other domains where robots do
not typically share their workspace with humans, such as industrial
and manufacturing domains that tend to allow for better known
and more deterministic environments, were not found during our
analysis, despite the inclusion of approaches from these domains
through the snowballing search on the reviews by Buchgeher et al.
(2021) and Manzoor et al. (2021).

In addition to examining the application domain, we also
investigate the specific use case with which each approach is
concerned in Figure 4B. Here we distinguish between approaches
that focus solely on a specific use case (e.g., Salinas Pinacho et al.
(2018) focuses on the Table Setting use case) and approaches where
a specific use case is used as an example or proof-of-concept to
demonstrate the viability of the approach being proposed (e.g.,
Jebbara et al. (2018) use the Object Localization scenario to prove
the applicability of their CSK extraction technique for the cognitive
robotics domain). Roughly 46% of the analyzed publications (24 out
of 52) focus on the use case they examine, whereas ∼46% use it only
as an example application.The remaining four publications (Tenorth
and Beetz, 2013; Beetz et al., 2018; Jakob et al., 2020; Beßler et al.,
2022) have no specific use case, instead describing techniques
intended to be generally applicable to theHousehold domain.

Frontiers in Robotics and AI 06 frontiersin.org84

https://doi.org/10.3389/frobt.2024.1328934
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Töberg et al. 10.3389/frobt.2024.1328934

FIGURE 3
Visualizing the dependencies between the 15 different use cases. The four use cases in the darker rectangles are the low-level use cases that do not
depend on any other use case.

FIGURE 4
(A): Visualizing the different domains in which the approaches operate. (B): Visualizing the different use cases the approaches work on using CSK. We
differentiate between publications that focus on their chosen use case or that use it as a proof-of-concept. A full explanation for each use case can be
found in our review protocol.

In general, use cases that focus on objects, and on their
locations, affordances and relationships (Object Localization, Object
Delivery, Tool Substitution, Object Recognition, Pick and Place,
Warehousing and Location Detection) make up the majority of use
cases, occurring in 30 out of 52 publications (∼58%). Concrete
household tasks like Cooking, Tidying up and Table Setting, which
internally rely on the aforementioned object-focused use cases,
are only covered in six publications (∼12%). As we mentioned
before, the majority of domains covered in our survey focus on
environments that are shared by robots and humans. However, only
four of the publications we analyzed cover direct interaction with
humans through two use cases (Intention Inference andReminiscence
Therapy) (∼8%).

4.2 (Un-)Answerable questions about
commonsense knowledge

This section discusses the different commonsense questions for
which the approaches discussed in the publications we analyzed can
provide an answer (seeRQ2).We gather these questions by analyzing
the goals and capabilities of the approaches, keeping in mind the
definition of CSK from Gupta and Kochenderfer (2004) provided in
Section 1.This resulted in 25 different questions, whichwe separated
into three categories: a) Objects, their properties and relations (e.g.,
How can an object be transported/grasped?), b) Intuitive psychology
and human interaction (e.g., What are the intentions a human could
have with a certain object?) and c) Intuitive physics and causality
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FIGURE 5
Visualizing the CSK questions and how many publications can provide an answer with their approach. Questions are split in three categories: (A)
objects, their properties and relations, (B) intuitive psychology and human interaction or (C) intuitive physics and causality.

(e.g., What is the outcome of my current action?). We provide a visual
summary of the 25 questions, their categories and the number of
publications in which the discussed approach provides or proposes
an answer in Figure 5A. The complete list of approaches that can
answer each question is provided in the review protocol.

In general, the majority of questions, 15 out of 25 (60%),
focus on objects, object properties and object relations. Looking
at the number of approaches providing an answer, we discovered
that 47 out of the 52 approaches (∼90%) can provide an answer
to any question from this category. This heavy focus on objects
is also represented in the most researched CSK questions, since
eight out of the nine most answered questions in Figure 5B
revolve around objects. Questions regarding intuitive psychology
and human interaction are focused on in 14 out of 52 publications
(∼27%). However, these 12 publications concern themselves only
with four different questions (16%). The remaining six questions
all have to do with intuitive physics and causality (24%). However,
only eight out of 52 publications try to achieve an answer to any
questions in this category (∼15%), a given publication often being
the only approach that tries to answer the questions with which it is
concerned (e.g., Shylaja et al. (2013) is the only approach answering
the question What aspects of my environment are changing?).

Based on the aforementioned definition of CSK from Gupta
and Kochenderfer (2004), we can provide some example questions
that none of the 52 approaches analyzed are capable of answering.
As we already observed, knowledge about intuitive physics and
about intuitive psychology are not as well covered as knowledge
about objects (see Figure 5A). Possible questions in these areas
could be How can I (proactively) support the human in reaching
their goals? or How do I handle objects based on their state
of matter?. In addition to the more general object knowledge
covered under the definition of Gupta and Kochenderfer (2004),
more specific object properties only relevant for a specific
use case/scenario are also investigated. This task-specific object
knowledge is covered for the most frequently occurring use cases

like Object Localization/Delivery or Tool Substitution. However, for
more complex use cases like Cooking or Table Setting the necessary
object knowledge to answer questions like How does this ingredient
need to be processed to make it consumable? or What is a suitable
table setup for a specific meal? are not covered.

It should be noted that it is possible that approaches outside
of our analyzed set do cover some of these questions. However,
our systematic approach lets us conclude that any such publication
either does not apply its approach in the cognitive robotics domain
or does not relate these questions to the keyword commonsense
knowledge. We will talk about this divide in terminology in more
detail in Section 5.

4.3 Sources for commonsense knowledge

To answer RQ3, we analyze the different knowledge sources
employed by the analyzed publications. An overview of the 30
sources found and their properties can be examined in Table 1. To
evaluate their relevance for the domain of cognitive robotics, we
count the number of publications in which they occur. Additionally,
we categorize them based on their type according to the criteria
described by Hitzler et al. (Hitzler et al., 2010, Ch. 8.2, pp. 310-317).
Lastly, we check whether the source is still available and can be
downloaded and used.

Before analyzing the usage of these publications, we provide a
quick overview over their capabilities:

• ConceptNet (Speer et al., 2017): ConceptNet is a semantic,
multilingual network describing concepts through words and
their commonsense relationships to each other. The necessary
knowledge is collected through crowd-sourced resources,
games with a purpose and resources created by experts.
• OMICS (Gupta and Kochenderfer, 2004): The Open Mind

Indoor Common Sense Project is a collection of CSK for
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TABLE 1 The 30 CSK sources employed by the 52 analyzed publications. Abbreviations in the Type column stand for Structured (S), Semi-Structured
(SS), Unstructured (U) and Human (H) (Hitzler et al., 2010, Ch. 8.2, pp. 310-317).

Source # Type Avail Used by

ConceptNet Speer et al. (2017) 8 S ✓ Vassiliades et al. (2020); Aker et al. (2012)
Skulkittiyut et al. (2013); Zhang et al. (2019)
Jakob et al. (2020); Wu et al. (2019)
Chernova et al. (2020); Kümpel et al. (2020)

Humans 7 H ✗ Ayari et al. (2015); De Silva et al. (2022)
Haidu and Beetz. (2019); Lam et al. (2012)
Liu and Zhang. (2016); Jakob et al. (2020)
Nyga and Beetz. (2012)

Manually encoded 7 H ✗ Zhang and Stone. (2015); Yang et al. (2019)
Beßler et al. (2022); Xin et al. (2022)
Chiatti et al. (2022); Mitrevski et al. (2021)
Dhanabalachandran et al. (2021)

OMICS
Gupta and Kochenderfer (2004)

6 SS ✗ Al-Moadhen et al. (2013); Al-Moadhen et al. (2015)
Riazuelo et al. (2013); Riazuelo et al. (2015); Zhou et al.
(2012)
Nyga and Beetz. (2012)

(Open-)Cyc Lenat. (1995) 5 S ✓ Al-Moadhen et al. (2013); Al-Moadhen et al. (2015)
Tenorth and Beetz. (2013); Daoutis et al. (2012)
Mühlbacher and Steinbauer. (2014)

Perception/Sensors 5 U ✗ Ayari et al. (2015); Kanjaruek et al. (2015)
Thosar et al. (2020); Thosar et al. (2021); Jäger et al. (2018)

WordNet Miller. (1995) 5 S ✓ Vassiliades et al. (2020); Kanjaruek et al. (2015)
Skulkittiyut et al. (2013); Chernova et al. (2020)
Nyga and Beetz. (2012)

Experience/Memories 4 H ✗ Shylaja et al. (2013); Pratama et al. (2014)
Salinas Pinacho et al. (2018); Beetz et al. (2018)

Not mentioned 3 - ✗ Javed et al. (2016); Wang et al. (2019)
Pangercic et al. (2012)

DBpedia Bizer et al. (2009) 2 S ✓ Jebbara et al. (2018); Vassiliades et al. (2020)

Google Books Corpus
Goldberg and Orwant (2013)

2 U ✓ Kaiser et al. (2014); Welke et al. (2013)

Google Search Engine 2 U ✓ Skulkittiyut et al. (2013); Zhou et al. (2012)

WikiHowa 1 U ✓ Liu et al. (2015); Nyga and Beetz. (2012)

AfNet Varadarajan and Vincze. (2012a) 1 S ✓ Varadarajan and Vincze. (2012b)

AI2Thor Kolve et al. (2017) 1 SS ✓ Daruna et al. (2019)

BKN Lam et al. (2011) 1 S ✓ Lam et al. (2012)

BERT Devlin et al. (2019) 1 U ✓ Pradeepani et al. (2022)

Bing Image Searchb 1 U ✓ Zhou et al. (2012)

Ehow Recipesc 1 U ✓ Kaiser et al. (2014)

FrameNet Baker et al. (1999) 1 S ✓ Nyga and Beetz. (2012)

KnowRob Tenorth and Beetz. (2013) 1 S ✓ Javia and Cimiano. (2016)

LabelMe Torralba et al. (2010) 1 SS ✓ Zhang et al. (2019)

Matterport3D Chang et al. (2017) 1 SS ✓ Li et al. (2022)

(Continued on the following page)
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TABLE 1 (Continued) The 30 CSK sources employed by the 52 analyzed publications. Abbreviations in the Type column stand for Structured (S),
Semi-Structured (SS), Unstructured (U) and Human (H) (Hitzler et al., 2010, Ch. 8.2, pp. 310-317).

Source # Type Avail Used by

ShapeNet Chang et al. (2015) 1 S ✓ Chiatti et al. (2022)

TTU Dataset Zhu et al. (2015) 1 SS ✓ Zhu et al. (2015)

Unspecified Text 1 U ✗ Agostini et al. (2015)

Unspecified Images 1 U ✗ Xin et al. (2022)

Unspecified Videos 1 U ✗ Zhang et al. (2021)

VirtualHome Puig et al. (2018) 1 SS ✓ Vassiliades et al. (2020)

WikiDatad 1 S ✓ Kümpel et al. (2020)

awww.wikihow.com
bwww.bing.com/visualsearch
cwww.ehow.com
dwww.wikidata.org

robots acting in the indoor domain (homes and offices). It
collects knowledge in the form of statements, where each
statement connects an object with an adjective describing either
a property or the current object state.
• (Open-)Cyc (Lenat, 1995): Cyc provides users with a

foundational/top-level ontology describing objects and actions
through rules and assertions written by domain experts.
OpenCyc and ResearchCyc describe two releases of this
knowledge base that each contain a subset of all assertions.
• WordNet (Miller, 1995): WordNet provides a lexical database of

the English language, where words are grouped into so-called
synsets based on their semantics. Synsets are hierarchically
structured using hyper- and hyponym relations as a
foundation.
• DBpedia (Bizer et al., 2009): This project aims to extract

structured information from Wikipedia by representing each
entity through a unique identifier and its relationship to
other entities.
• Google Books Corpus (Goldberg and Orwant, 2013): This

corpus contains text from ∼3.5million English books published
between 1,520 and 2008. In addition, the authors provide a
dataset containing all syntactic n-grams that can be extracted.
• AfNet (Varadarajan and Vincze, 2012a): The Affordance

Network is a database containing structural and material
affordances for common household objects. It is commonly
employed for recognizing objects through their affordances.
• AI2Thor (Kolve et al., 2017): This dataset contains 3D indoor

scenes that support many types of interaction for simulated
robots. It consists of photo-realistic objects and scenes that can
be procedurally generated.
• BKN (Lam et al., 2011): The Basic-Level Knowledge Network

combines knowledge from children’s books, ConceptNet
(Speer et al., 2017), and Google’s Web 1T 5-g corpus (Brants
and Franz, 2006) in a knowledge base covering objects and
activities. The focus of this knowledge base lies in providing
answers to Where, What, and How questions.

• BERT (Devlin et al., 2019): Bidirectional Encoder
Representations from Transformers describes a family of large
language models that are pre-trained on a corpus of unlabeled
text and can be fine-tuned to fit the purpose of the task.
• FrameNet (Baker et al., 1998): Lexical database of concepts

embedded in their semantic frame to better understand the
concept’s meaning.
• KnowRob (Tenorth and Beetz, 2013): This knowledge

processing system is employed for automated robots and
formulates decisions a robot can make as inference tasks that
can be answered by virtual knowledge bases (KBs). These KBs
combine word meaning from WordNet (Miller, 1995) with
OpenCyc (Lenat, 1995), gather object information from online
shops and contain observed human behavior.
• LabelMe (Torralba et al., 2010): This database contains

annotated images focusing on objects, scenes and their spatial
connection.The annotations were provided by volunteers using
an online annotation tool. Through this tool, the database
accumulated over 400,000 annotations.
• Matterport3D (Chang et al., 2017): Matterport3D is a large-

scale dataset containing panoramic views made up of different
images and taken in different buildings. Additional annotations
describe information about camera poses and semantic
segmentation.
• ShapeNet (Chang et al., 2015): This is a richly annotated, large-

scale dataset containing 3D models for different household
objects collected from public repositories and other existing
datasets. The objects are categorized on the basis of their
corresponding synset in WordNet (Miller, 1995).
• TTU Dataset (Zhu et al., 2015): The Tool and Tool-Use dataset

is used for evaluating the recognition of tools and task-oriented
objects by providing a collection of static 3D objects. These
objects are combined with a set of human demonstrations
regarding their usage.
• VirtualHome (Puig et al., 2018): The VirtualHome simulator

uses a crowd-sourced knowledge base of household tasks,
represented through a name and a list of instructions. These
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FIGURE 6
(A): Visualizing the number of different sources used by each publication. Across all 52 publications, 30 different CSK sources were employed. (B):
Visualizing the types of sources (Hitzler et al., 2010, Ch. 8.2, pp. 310-317), their amount and the number of their occurrences throughout the 52
different publications.

instructions are translated into program code that is executed
in a simulated 3D environment by virtual agents.

In general, we do not find one source that is predominantly used.
Even ConceptNet (Speer et al., 2017), which has the most usage in
our data, is only employed by roughly 15% of publications. Similarly,
17 out of the 30 sources (∼57%) we found are only employed by a
single publication, which demonstrates that most publications use
specialized sources for the specific scenarios they work in rather
than relying on a single, more general source. However, even when
we focus on a specific use case we do not find a single source on
which all approaches rely.This is underlined by the summary of CSK
sources per use case provided in Table 2. As described in that table,
there is no source that is used more than two times for a specific
use case, with most sources occurring only once per use case. This
demonstrates that none of the 28 sources provides data specific for a
single use case but all of them focus on aspects relevant for different
use cases.

In addition to looking at which sources are employed, we also
count the number of sources each publication relies on. Here we
found that themajority of publications (33 out of 52, ∼63%) relies on
a single source for extracting its CSK. Only 16 publications (∼31%)
combine two or more sources, either to cover a broader scope of
CSK (e.g., Kümpel et al., 2020) or to increase the quality of the data
extracted (e.g., Vassiliades et al., 2020). The described results are
visualized in Figure 6A.

Regarding the type of source, we count the number of sources
per type and the number of publications employing this type
in Figure 6B. Only three sources (∼11%) depend on knowledge
provided by human domain experts. However, these sources are
applied in 35% of publications. The same amount of structured
as well as unstructured sources (10 out of 30, ∼ 33%) are used
according to our data. However, the ten structured sources are
employed the most by the publications (∼38%). In general, the
high reliance on structured sources is a positive development,
since sources of this type are formalized to enhance machine
readability.

Despite four approaches that extract CSK fromunstructured text
(Welke et al., 2013; Kaiser et al., 2014; Agostini et al., 2015; Liu et al.,
2015) using NLP techniques, only the approach by Pradeepani et al.
(2022) employs a large language model (Devlin et al., 2019) as its
data source. Since research on large language models is a rather new
domain, approaches that connect them with robots are still scarce
(e.g., Ahn et al., 2022) and not yet focused onCSK.This supports the
recommendation formulated by Wray et al. (2021) that there needs
to be further research to increase the suitability of these models for
the cognitive robotics domain.

Lastly, we briefly want to touch on additional sources that are
not employed for the extraction of CSK for cognitive robotics.
In a recent survey on CSK sources by Ilievski et al. (2021a), 22
different resources were collected and evaluated. However, only
four sources found by our analysis overlap with these resources
from their study (ConceptNet, WordNet, FrameNet and Wikidata),
making up only 15 of the 75 CSK source usages (20%). So the
remaining 18 sources have yet to be applied to the cognitive
robotics domain.

4.4 Evaluation methods and benchmarking

To answer our last research question and investigate which
methods and which datasets are used by the 52 collected approaches
during their evaluation, we adapt the evaluation method taxonomy
presented by Konersmann et al. (2022) for the software architecture
domain. In general, not all methods are applicable to the cognitive
robotics domain. In our data, we found Motivating Examples
(Technical) Experiments and Case Studies. Additionally, we add the
methodModel Evaluation for approaches that evaluate anMLmodel
without connecting it to a simulated or real-world robot. For the
two most common methods, Experiments and Case Studies, we
additionally differentiate whether they are performed in the real-
world using a real robot or if the robot is simulated and operates
in a simulated environment.

The resulting occurrences can be examined in Figure 7. In
general, the majority of approaches (∼62%) are evaluated using
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TABLE 2 Summary of the 15 use cases we found and the sources that
are employed to gather commonsense knowledge for the specific use
case. The Hole Digging use case is omitted since it is only discussed in a
single publication that does not mention a source (Javed et al., 2016).

Use case Employed sources

Object
Localization

ConceptNet (2x), OMICS (2x),
AI2Thor, AfNet, Bing Image Search
DBpedia, Ehow Recipes, Google
Books Corpus, Google Search
Engine
LabelMe, WordNet

Object
Delivery

(Open-)Cyc (2x), OMICS (2x),
BKN, Humans

Environment
Exploration

Perception/Sensors (2x), WordNet
(2x), ConceptNet, DBpedia
Unspecified Videos, VirtualHome

Tool
Substitution

Perception/Sensors (2x), TTU
Dataset, Unspecified Images

Intention
Inference

Humans (2x), WikiHow

Object
Recognition

(Open-)Cyc, ConceptNet,
Experience/Memories, ShapeNet,
WikiData

Navigation Experience/Memories,
Matterport3D

Pick and
Place

(Open-)Cyc, KnowRob, OMICS

Table Setting Experience/Memories, Humans

Tidy Up ConceptNet (2x), Google Search
Engine, WordNet

Warehousing BERT, Humans, Perception/Sensors

Cooking FrameNet, Humans, OMICS,
Unspecified Text, WikiHow,
WordNet

Location
Detection

Google Books Corpus

Reminiscence
Therapy

ConceptNet

a quantitative experiment, with most of these approaches being
done in a simulated environment (∼63%). Generally, simulation
environments are used in 50% of publications whereas evaluation
on a real robot is performed in only ∼37% of publications.

In addition to the evaluationmethod,we also gather information
regarding the data that was used for the evaluation, as well as
its availability. Here, we find that 32 out of the 52 publications
(∼62%) did not publish the data used for the evaluation, and four
publications (∼8%) did not use any data for their evaluation. In the
16 remaining publications, only two datasets, are used more than
once. AI2Thor (Kolve et al., 2017) is used in Daruna et al. (2019);
Li et al. (2022) and Al-Moadhen et al. (Al-Moadhen et al., 2013; Al-
Moadhen et al., 2015) both use the same basic example household,

described in either publication. Except for two employed datasets, all
of the employed datasets are still available either online or by being
directly provided in the publication.

These findings notwithstanding, we recognize that in the
cognitive robotics domain, a correct execution of the desired task
without the occurrence of unwanted side effects can be regarded
as a proper and successful evaluation of an approach Vernon et al.
(2022). Since the execution environment and the robot programs
are often very specific to the lab where they are programmed, there
are additional challenges that come with making them publicly
accessible (Gu et al., 2023). However, there are certain aspects of
CSK for the cognitive robotics domain where benchmarking makes
sense. For example, the main question from Section 4.2 What is the
expected location for an object? is often evaluated by comparing the
(automatically) generated locations to a gold standard.However, this
gold standard is often not taken from a publicly available dataset,
but is instead created by the authors. In general, we observe a lack of
benchmarks for domain-specific CSK questions like this.

5 Discussion

Our analysis of the selected publications has revealed interesting
limitations and gaps in the way commonsense knowledge is
currently used in cognitive robotics research. First of all, while there
are many potential use case and applications where commonsense
knowledge might support generalization, our analysis has revealed
a strong focus on use cases related to acquiring knowledge about
objects in order to support things such as object localization and
delivery, tool substitutions or pick and place.

This focus on object knowledge is understandable as knowledge
about objects to a large extent comprises of static knowledge
related to the properties and characteristics of objects, which lend
itself to being modeled using the state-of-the-art graph-based
knowledge representation language that can straightforwardly
model (relational) knowledge about objects using edges or triples.
Modeling knowledge about events, their logical and causal
structures requires more complex representational paradigms.
Further, there are less commonsense knowledge sources containing
event knowledge compared to data sources containing (relational)
knowledge about concepts and/or objects.

Regarding the sources of commonsense knowledge used, we
observe quite a diversity and spread with many different sources
being used. This shows that the field seems to be in an experimental
state, testing different resources, without clear best practices having
emerged. There seem to be no integrative resources that contain all
sorts of relevant knowledge so that in the future we can expect that
no source will fit all purposes and that robotic systems will have to
rely on a combination of sources for different tasks and purposes.

In terms of evaluation and domains, we observe a clear focus
on service robotics scenarios and household applications in contrast
to the application of robotic systems in industry or production. The
explanation for this seems quite natural: industrial settings have less
variance and require that the same task is executed over and over
with accuracy and precision. In such scenarios there is much less
uncertainty than in scenarios where a robot might be confronted
with new and unknown tasks, objects, situations, etc. As robots
can not be pre-programmed to handle all these situations, flexible
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FIGURE 7
The different evaluation methods in our 52 analyzed publications. For the Case Study and Experiment we differentiate between a simulated or a
real-world environment and robot.

reasoning based on commonsense knowledge seems key to master
the variance and uncertainty characteristics of such more open
environments.

Finally, the lack of focus on physical reasoning and psychological
reasoning in terms of applications is understandable, as these
types of tasks require commonsense knowledge in the sense of
having the ability to simulate physical environments or simulate
others to infer their intentions, goals, etc. The first one requires
accurate physics engines that would allow a robot to make accurate
(forward) predictions.The latter onewould requiremodules tomake
inferences about other agents, a so called computational Theory of
Mind (ToM), the realization of which is a complex and long-term
challenge Lake et al. (2017).

As we have seen above, knowledge about objects plays a central
role. This is clearly related to the notion of affordances that is
studied in cognitive robotics literature, as surveyed by Min et al.
(2016). In these approaches, the affordances for the environment
and its objects are learned, mostly by using machine learning-
based methods on images or videos. What is striking here is that
there seems to be a terminological gap in the way the semantic
technology or knowledge representation community conceptualize
object knowledge and how it is represented. While the semantic
tech and KR communities often focus on (static) object knowledge,
the cog. rob community focuses on perceptually grounded and
action-related knowledge, thus using the concept of ‘affordances’
that indicate an action potential.

To further examine this divide in terminology, we examine
the classification performed by Zech et al. (2019) in their review,
which we introduced in Section 2. Despite focusing on actions
and their possible representation in the cognitive robotics domain,
their classification does not connect to keywords associated with
the knowledge representation and reasoning community such as

ontology. Similarly, there are concepts that are handled in Zech
et al.‘s classification, but with a different focus/level of detail than
in the publications we analyzed. As an example, we look at the
concept of affordance. In the classification schema proposed by
Zech et al., an affordance is given as an example of an exteroceptive
stimuli, which is a stimuli generated in the external environment
to provide interaction possibilities (Zech et al., 2019). In our
analyzed publications, an affordance is defined as either 1) “a
relation of an action/activity/intention and a specific object used
to predict the next action/activity” (Liu et al., 2015, p. 1962) or 2)
“the relational context holding between several objects that play
different roles” (Beßler et al., 2022, p. 8). If we compare these three
characterizations of affordance, we see that the one by Zech et al.
focuses on the immediate application of this concept for robotic
action execution, whereas definitions 1) and 2) focus more on the
knowledge that an affordance can provide the robot to support,
e.g., the planning of future steps or an understanding of the
semantic similarities between different objects and actions. Another
example is the concept of intuitive physics, which we introduced
as one part of the definition for CSK in Section 1. This concept
has no direct representation in the classification schema by Zech
et al., despite its relevance for a successful action execution. The
closest concept is effect associativity, which analyses whether a
representation covers predicting the effect of an action based on its
description.

The generalization of task execution knowledge is an important
problem in current cognitive robotics research. To allow robots
to be employed in domains shared with humans, robots need
to be able to handle underspecified commands for manipulating
unknown objects in an unknown way in a dynamic environment.
Publications like the ones covered by our review and by Zech et al.
(2019) are all trying to solve aspects of this generalization problem,
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despite coming fromdifferent research communities and often using
different tools and approaches. This difference is underlined by the
fact that there is no overlap between the 52 publications included in
our study and the 152 publications included in Zech et al. (2019).
In the future, more collaboration is needed to bridge this divide
between the two communities, if we are to successfully tackle the
task generalization problem.

6 Threats to validity

In general, we integrate different countermeasures into our
process by following the general process for systematic literature
reviews by Kitchenham and Charters (2007). However, there still
remain some biases that we can not completely prevent. To address
these threats, we examine selection,measurement and exclusion bias
as well as repeatability separately.

Selection Bias: We have selection bias since the insights we
gained through the paper analysis depend on the subset of papers
we chose. Despite including all 52 publications we deemed suitable
for answering our research questions, this inclusion is still based
on pre-defined inclusion and exclusion criteria. These were not
chosen randomly but derived from our research questions and the
search procedure recommendations from Kitchenham andCharters
(2007); Okoli (2015); Page et al. (2021).

Measurement Bias: Another problem is measurement bias,
since the screening of the search publications was carried out by
one of the authors. As a countermeasure, we pre-defined the set
of inclusion and exclusion criteria before beginning the search.
However, the filtering is still prone to human errors.

Exclusion Bias: Another possible problem stems from the
exclusion of potentially interesting publications. By starting
our systematic search with recent review papers in cognitive
robotics, we have introduced this bias as research in AI, cognitive
science, language processing, and cognitive robotics is still not
sufficiently connected.

To counter this threat, we pre-defined the criteria we use for
including and excluding publications.They are chosen to be as fitting
for our research questions as possible and to not hinder the quality
of our results. Additionally, no adjustments were made during the
screening process. This prevents the exclusion of publications that
were initially chosen but then excluded due to a failure to fit results
during the analysis.

Repeatability: As the name suggests, threats to this validity
describe problems encountered when other researchers try to
emulate and repeat this evaluation. To allow for the repetition of
the case study, we document all decisions, such as the inclusion and
exclusion criteria, the keywords and search engines, in our review
protocol. Additionally, all artefacts we created during our review
are available in the aforementionedGitHub repository. However, the
repeatability of our study is also limited due to the fact that only one
person was responsible for screening the search results.

7 Conclusion and future work

In this article, we have investigated the coverage of CSK in the
cognitive robotics domain by evaluating the use cases and domains

for which CSK is used, the aspects of CSK that are addressed, the
sources employed for gathering the necessary CSK and the method
of evaluation. For this purpose, we performed a systematic literature
review using a keyword search on six search engines combined
with a snowballing search on six related reviews. The resulting
2,048 publications were screened and filtered, which left us with 52
publications deemed suitable for answering our research questions.

By reviewing these 52 publications, we found that most use
cases occur in the household domain and focus on objects and
their relations to the environment, especially their location.This was
corroborated by looking at what sorts of questions CSK are called
upon to answer. We found that the most common CSK questions
seek to connect an object to a specific location in its environment.
Other important questions focus on object similarity, object
affordances and tool substitution. Generally, questions focusing on
objects are much more dominant than questions about interacting
with humans or about physics or causality of actions. Regarding the
employed sources, we found that specific sources like ConceptNet
(Speer et al., 2017) (Open-)Cyc (Lenat, 1995) or OMICS (Gupta
and Kochenderfer, 2004) are used in multiple publications but
there is not one single source that covers all relevant aspects of
CSK. Similarly, there are often multiple sources used to answer the
same CSK questions. Regarding the evaluation performed in these
publications, we also found that there are few resources used as data
and most of the publications do not publish their evaluation data.
This lack of available benchmarks and datasets is surprising since
most the publications are evaluated using either a case study or an
experiment, which both are mostly performed in simulation, thus
leading to a high amount of data necessary for a successful execution.
However, only a small amount of publication publish this data.

This review’s limitations stem from the threats to validity
described in Section 6. In general, we counteract most threats
by following the guidelines in Kitchenham and Charters (2007);
Okoli (2015); Page et al. (2021) and documenting our decisions and
intermediate steps in the reviewprotocol. The main limitation is the
data analysis, which was manually performed by a single person.

Lastly, in our discussion of the review by Zech et al. (2019) we
emphasized a terminological gap that exist between communities,
the knowledge representation community on the one hand
and cognitive robotics community on the other hand. These
terminological differences need to be bridged towards developing
an interdisciplinary research community that synergistically brings
together the different aspects of commonsense and makes them
actionable in robot control systems.

In the future, focus should lie on the evaluation and
benchmarking of commonsense aspects for the cognitive robotics
domain, as we explored in Section 4.4. For this, we want to
investigate the applicability of commonsense reasoning benchmarks
(e.g., CommonsenseQA Talmor et al. (2019)) for the cognitive
robotics domain by evaluating their coverage of the relevant aspects
we presented in Section 4.2. Additionally, as we explained in
Section 4.3, there are different CSK datasets and resources from
the survey by Ilievski et al. (2021a), who have yet to be applied to
the cognitive robotics domain. This also includes new resources
that have been published since the aforementioned study, like the
CommonSense Knowledge Graph (CSKG) (Ilievski et al., 2021b)
or Ascent++ (Nguyen et al., 2022). Finally, considerable focus
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should be put on creating the aforementioned interdisciplinary
research community.
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The condition for artificial agents to possess perceivable intentions can be
considered that they have resolved a form of the symbol grounding problem.
Here, the symbol grounding is considered an achievement of the state where
the language used by the agent is endowed with some quantitative meaning
extracted from the physical world. To achieve this type of symbol grounding,
we adopt a method for characterizing robot gestures with quantitative meaning
calculated from word-distributed representations constructed from a large
corpus of text. In this method, a “size image” of a word is generated by defining
an axis (index) that discriminates the “size” of the word in the word-distributed
vector space. The generated size images are converted into gestures generated
by a physical artificial agent (robot). The robot’s gesture can be set to reflect
either the size of the word in terms of the amount of movement or in terms of
its posture. To examine the perception of communicative intention in the robot
that performs the gestures generated as described above, the authors examine
human ratings on “the naturalness” obtained through an online survey, yielding
results that partially validate our proposed method. Based on the results, the
authors argue for the possibility of developing advanced artifacts that achieve
human-like symbolic grounding.

KEYWORDS

word-distributed representation, human-robot interaction (HRI), co-speech iconic
gesture, natural language processing (NLP), robotics

1 Introduction

In their daily life, people interact with a variety of artifacts. In doing so, they sometimes
behave as if the objects have a kind of thinking ability (Nass et al., 1994; Nass and Moon,
2000). In this paper, the object causing such a behavior is called “an agent.” In other words,
an agent is an artifact that can interact with people with its purpose, motivation, and
intention (Levin et al., 2013; Kopp and Krämer, 2021; Human-Agent Interaction, 2023). We
posit that understanding the factors that lead people to perceive artifacts as having these
characteristics can facilitate enriching interactions, where humans naturally behave like in
human-human interaction (HHI).

Research in the field of human-agent interaction (HAI) has explored factors causing
people to perceive the agency in artifacts.Those factors aremainly classified into appearance
(MacDorman and Ishiguro, 2006; Yee and Bailenson, 2007), behaviors (Heider and Simmel,
1944; Laban and Ullmann, 1971) and social contexts (Nass et al., 1994; Shiomi, 2023).
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Yet, all of them are categorized as external factors, omitting the
discussion on the correspondences of internal states and processes
(i.e., algorithms and representations (Marr, 1982)) between the
artifacts and humans. We argue that studies focusing on the
internal factors of these objects pave the way for a foundational
design principle for agents. Such agents would appear to possess
the aforementioned conditions of agency: purpose, motivation,
and intention.

Building on this concept, the current study investigates the
relationship between the perception of agency and addressing the
symbol grounding problem (Harnad, 1990). Within our framework,
symbol grounding is understood as an internal state in which the
language(symbols)usedbytheagentisgivensomequantitativemeaning
extracted from the physical world. One possible form of assigning
quantitativemeaningtolanguageappears intheco-speechgesture(body
movement accompanied by verbal language). The correspondence
between utterances and actions made by the agent allows humans to
infer the existence of meaningful symbols in the agent.

In other words, we assume that some forms of gestures,
which are implicitly generated in communicative situations, convey
quantitative meaning attached to verbalized words. These gestures
can be distinguished from culturally formed emblematic gestures.
Rather than directly indexing a specific concept, the gestures focused
here iconically enhance imagistic links between linguistic form
andmeaning (McNeill, 1992;Murgiano et al., 2021).Murgiano et al.
(2021) also claimed that such an iconic gesture is part of multimodal
systems conveying imagistic meaning in communicative contexts.
Thus, a similar role is observed in the prosody that accompanies
spoken words. Herold et al. (2011) reported that children deduce
novel meaning of antonyms (e.g., “small” vs. “big”) by leveraging
prosodic features such as intensity (i.e., a loud and slow voice is
connected to a big object).

The connection between a physical image and word meaning
(the degree of symbol grounding) varies with word categories.
Concrete categories naturally exhibit stronger links than abstract
concepts (Utsumi, 2020). Nonetheless, abstract words can also
possess imagistic meaning. Lakoff and Johnson (1980) discussed
how language is metaphorically shaped through schemata that
involve movement within the external world. This concept, known
as an image schema, allows for the preservation of the external
world’s imagery while linking through metaphorical expressions.
For instance, when a speaker utters the phrase, “I have an important
idea,” we can envision a scenario where the speaker’s hand gesture
expands to signify the idea’s perceived significance. In this gesture,
the magnitude of the concept is metaphorically represented through
the spatial dimensions defined by the speaker’s body structure. Such
a set of metaphors connecting a physical experience and an abstract
concept is known as a primary metaphor (Grady, 1997).

Existence of the mechanism of exchange for these representations
(symbols and quantities) is also supported by various theories in the
field of cognitive science. According to the reference frames theory
by Hawkins (2021), a continuous space exists behind each concept,
mediating language use. Similarly, Tversky (2019) claimed that human
language and thoughts originally come from physical experiencemade
in a continuous time and space. In her discussion, the meanings of
words are essentially embedded in our living physical world. Other
similar discussions are also found in literature in the field of cognitive
linguistics (Pinker, 2007).

Summarizing the above background of cognitive science, the
authors consider that the gestures generated from a mechanism that
is analogous to what humans hold can lead to a realization of the
“intrinsically naturalistic” interactions with the agent, where people
can perceive “communicative intention (Grice, 1989)” in the agents.
In order to construct such a mechanism, a model of word meaning
is important. As already noted by the above theories (Pinker, 2007;
Tversky, 2019; Hawkins, 2021), word meanings are not defined
discretely or independently, but are considered to be defined in a
continuous space in which words are interconnected. In the history
of natural language processing, statistical analyses (bag of words, co-
occurrence frequency, or principal component analysis from word
vectors) have been applied to corpora derived from human language
operations to capture the semantic relations between words. More
recently, vector representations (word-distributed representations)
collapsed into the middle layer of a neural network (Bengio et al.,
2000) have become the mainstream method for understanding
words’ quantitative meanings. Such an approach is still evolving
and has led to the construction of a variety of large-scale language
models (LLM) that enable HAI with human natural communication
media (natural language) (Brown et al., 2020; Chowdhery et al.,
2023; OpenAI, 2023).

Various quantitative images such as “size” and “speed” can be
assumed in the space where words are positioned (Grand et al.,
2022). Among those, we focus on the “size images” as a first step
to obtain quantitative representations of words related to physical
image embedded in the space. Since this image has been frequently
utilized in numerous studies (Grady, 1997; Herold et al., 2011), it is
suggested that the most representative image for our investigation.
By creating iconic gestures (physical images) for a robot through the
conversion of “size images” into physical representations, we aim to
develop an agent that achieves symbol grounding, which leads to
actions that reflect the quantitative images of words. Our objective
is to determine whether such embodiment in an agent (robot) leads
to an increase in human perception of agency.

More specifically, as an initial step toward the above objective,
we set the following research questions:

1 How can “size images” evoking an agency perception
be extracted from the vector space of word-distributed
representations?

2 What forms of gesture expression are effective in constructing
more natural interaction based on the agency perception?

To address the first question, we introduce a method for
extracting “size images” using word-distributed representations and
evaluate this method through two experiments. These experiments
employ different approaches for associating “size images” with
“physical images” in a robot. By comparing the outcomes of
these experiments, we aim to investigate the second question.
Before presenting the experiments, we introduce a technological
background leading to the method of this study and the method of
generating “size images” in the following sections.

2 Related works

As a background of our method, we introduce research on
modeling word meaning and research on gesture generation for
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robots and agents. Based on the review of those related works, we
outline our specific approach to gesture generation.

2.1 Modeling word meaning

The meaning of a word or concept can be modeled by several
approaches. One traditional approach is to write down themeanings
of concepts circulating in society manually. Large-scale databases
such as WordNet (Miller, 1995) and ConceptNet (Speer et al., 2017)
have been developed so far. These databases define the normative
knowledge structure in society.

On the other hand, in recent years, there have been many
approaches to statistically capture the meaning of concepts based
on the way people use language in their daily lives. The word-
distributed representation (Bengio et al., 2000) considers a word as
a “pointer” embedded in a vector space. In this framework, the
meaning of a word is regarded as the relationship (distance or
similarity) between words in the vector space. The underlying idea
here is the distributional hypothesis that “words which are similar
inmeaning occur in similar contexts (Rubenstein andGoodenough,
1965; Sahlgren, 2008)”.

Attempts have been made to extract words’ quantitative images
by using word-distributed representations. For example, Utsumi
(2020) used word-distributed representations to classify words into
attributes and compared them with the classifications obtained
from human data. The results suggests that the vector space
of word-distributed representation captures aspects of human
knowledge, showing that abstract concepts are more deeply
(remotely) embedded in word distributions than in words with
physical meanings associated with animates.

In addition, Grand et al. (2022) proposed a method for
extracting context-dependent relations using word-distributed
representations. Context-dependent relations imply that a word
like “dog” can embody multiple semantic features such as “size,”
“intelligence,” and “danger,” with a particular feature becoming
prominent depending on the context. This study shows that by
projecting word vectors onto an axis representing a focused feature,
it is possible to simulate human estimation of the quantitative
features in various objects. Thus, it is suggested that human
quantitative images of words are embedded in word-distributed
representations. In other words, the quantitative meanings of
concepts that humans have physically acquired are inherent inword-
distributed representations created from our daily language use.

2.2 Gesture generations in human-agent
interaction

The current study focuses on symbol grounding as a factor
inducing agency perception. Regarding this focus, Section 1
introduced studies showing the relation between symbol grounding
and multimodal communication (Murgiano et al., 2021).

In the context of HAI studies, multimodal interaction has also
been extensively examined. Among these, human gestures have
been treated as a main modality that significantly influences verbal
communication (Maricchiolo et al., 2020). To approach this, data-
driven methods that learn from human gestures by using machine

learning techniques such as deep learning have become popular.
For example, Saund et al. (2022) analyzed the relationship between
body movement and meaning to generate effective gestures by
virtual agent.

There have also been many studies on gesture generation
from multimodal language corpus. Lin and Amer (2018) use
Generative Adversarial Networks (GAN) to control joints by
mapping embedded words to the space of body movements. Ahuja
andMorency (2019) also proposed amethod called “language2pose”
that integrates language and body movements through end-to-
end learning. More recently, Tevet et al. (2022) used a diffusion
model to generate human body movements and use sentences and
actions as input. Their study confirmed that gestures generated
from both inputs were evaluated better than gestures generated by
other generationmodels. Furthermore, possibility of natural gesture
generation or selection is explored by using LLM (Brown et al.,
2020; Chowdhery et al., 2023; OpenAI, 2023), which has become
popular in recent years. Hensel et al. (2023) have shown that LLM
can be used to select hand gestures that are compatible with the
content of speech. Yoshida et al. (2023) have successfully generated
emblematic gestures by incorporating LLMs into humanoid robot
motion generation.

In the context of co-speech gesture generation, Yoon et al.
(2019) applied deep learning technology to generate various
gestures, including iconic, metaphoric, deictic, and beat gestures.
Ishii et al. (2018) also proposed a model of co-speech gesture
focusing on appropriate timing. In their study, Conditional Random
Fields (CRFs) were used to parse information from natural
language.

2.3 Top-down gesture from abstract index

As described thus far, numerous studies have focused on
bottom-up approaches that extensively learn low-level features
from human motion data. Although these approaches have proven
effective for generating natural gestures, using the bottom-up
approach to identify intrinsic yet infrequently occurring features
related to spoken words remains challenging due to the inherent
bias of deep learning technologies towards the majority of data
samples.Therefore, a top-down approach that targets specific aspects
of wordmeanings is necessary to achieve a robot that acts as an agent
“grounded to the external world,” as described in Section 1.

Based on these ideas, Sasaki et al. (2023) proposed a gesture
generationmethod by extracting intrinsic images of words as shown
in Figure 1. The details will be explained in the next section,
but their method has advantages in assuming an abstract axis
(index) to be extracted from the data, by following Grand et al.
(2022). We consider that such an intentional setting of an axis is
essential to represent communicative intention in the agent (Grice,
1989). However, their study did not present sufficient evaluations
of the variety of body expressions. Therefore, this study extends
the previous method (Sasaki et al., 2023) to evaluate the effects
of physical images generated from the abstract index on agency
perception. In the following sections, we describe the method of
constructing “size index” and “size images,” which are the process
presented in the left side of Figure 1.
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FIGURE 1
Gesture generation proposed by Sasaki et al. (2023).

3 Generating “size images” of words

In this study, we generate gestures of embodied agents (robots)
by using the method proposed by Sasaki et al. (2023). After
presenting an overview of the method, we apply it to survey data
to extract the “size images” of words.

3.1 Basic method

Figure 2 illustrates the methodology employed in this study to
generate “size images.” Figure 2A details the procedure for extracting
a “size index” applicable to any word in the word-distributed
representation. This involves identifying quantitative dimensions
related to the attribute of size. Following this, Figure 2B outlines
the process of creating a “size image” for a specific word using the
derived size index. The output of this step is utilized to translate
the abstract semantic feature into a physical representation (robot
movement) that can be recognized within the context of human-
agent interaction, thereby facilitating the symbol grounding of the
word based on its size attribute.

These processes adapt and modify the approach presented by
Grand et al. (2022), whichwas introduced in Section 1. To overcome
the limitations of Grand et al.’s method, which we will discuss later,
ourmethod (Sasaki et al., 2023) employs an approach that combines
word-distributed representations with a human-curated thesaurus,
introduced in the beginning of Section 2.1. This approach reduces
the arbitrariness of the method and enhances its applicability to
languages with comprehensive linguistic resources. In this study,
to assess the method’s applicability beyond English, we utilize a
linguistic resource developed for the Japanese language.

The remainder of this subsection details the specific procedure
employed in this study for extracting the “size index” and
constructing the “size image”.

3.1.1 Composition of “size index”
We first present Grand et al. (2022)’s method of extracting the

“size index” (the blue arrow in Figure 2A). In this method, an axis
with a meaning specific to “large,” is constructed by subtracting a
polar vector with a meaning of “small” (Small in Figure 2A, the

antonym of “large”) from a different polar vector with a meaning
of “large” (Large in Figure 2A). To define the poles, we only need
to extract the coordinates of the “large” and “small” values in the
distributed multidimensional vector space. However, in addition to
their size-related meanings, these two words have extra meanings
that derive from their adjectival roles in the sentence1. To exclude
such meanings unrelated to the degree of “size,” Grand et al. (2022)
defined a set of synonyms (red dotted square in Figure 2A) that
have the same role as “large” and “small” in the distribution word
representation. Then, the polar coordinates are determined by
computing the mean vector of these synonyms, respectively.

Thus, the “size index” I is defined by the following equation:

I =
∑n

i=1
li

n
−
∑m

j=1
sj

m
where li and sj are word belonging to the set of “large” synonym
vectors (SynsetL = {l1, l2,…, ln}) and the set of “small” synonym
vectors (SynsetS = {s1, s2,…, sm}).

3.1.2 Composition of “size image”
Once the “size index” is defined, we can calculate “size image”

from the index. Figure 2B shows the calculation of the “size images”
as the cosine similarity between the “size index” and the input word
vector. Thus, the size image S is calculated by

S = I ⋅w
‖I‖ ‖w‖

wherew represents the input word vector. In this method, the larger
this value is, the larger the word is assumed.

3.1.3 Selection of synset
The limitation of Grand et al.’s method is arbitrariness in

selecting SynsetL and SynsetS. In their study, SynsetS consisted of

1 The distance between the words “large” and “small” is quite close within

the entire space of word-distributed representation because both are

commonly used in contexts describing the size of an object. Therefore,

poles defined solely by these two words have limited distinguishability for

other words in terms of size.
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FIGURE 2
Procedure of the proposed method. (A) Construction of “size index”, (B) Calculation of “size image”.

“tiny” and “little” while SynsetL was constructed by “big” and
“huge.” Nevertheless, they didn’t specify the criteria for selecting
these synonyms.

To address this issue, and to compose a “size index” properly
matching human perception, it is important to set up a set
of synonyms for the polar words (“large” and “small”) without
any arbitrariness. A possible method is leveraging a standardized
thesaurus. However, a thesaurus does not automatically determine
the appropriate synonym set. Words are usually polysemous and
havemultiplemeanings. In a thesaurus, a set of synonyms for a word
is defined as a synset for each meaning. To improve the consistency
with human perception, it is necessary to select appropriate synsets.
In this study, we seek the combination of synsets that maximizes the
distance between “large” and “small” words obtained from human
reports to determine the polar coordinates consistent with human
perception. In this procedure, we first prepare SynsetL associated
with the word “large” and SynsetS associated with the word “small”.

We also prepare a set of words Largeh that humans perceive
as “large” and a set of words Smallh that humans perceive as
“small.” In extracting Largeh and Smallh, it is necessary to distinguish
categories to which the word refers. According to Tversky (2019)
and others, the meaning of a concept is originally composed
of human movement. However, as shown by Utsumi (2020),
physical quantities are not expected to be strongly embedded in
word-distributed representations composed of socially published
documents. Either way, the scale of the “size index” has the
possibility to be changed by the categories the word belongs to.
Following such discussions, this study assumes.

• Largeh, animate
• Largeh, inanimate
• Largeh, intangible

as subclasses of Largeh, and.

• Smallh, animate

• Smallh, inanimate
• Smallh, intangible

as subclasses of Smallh.
In the selection process of the synset combinations, the

“size index” I i,j is composed for SynsetS,i (∈ AllSynseetS) and
SynsetL,j (∈ AllSynseetL). The “size images” of the human-perceived
small word wS,k (∈ Smallh) and large word wL,l (∈ Largeh) are
severed to calculate the “size images” S(I i,j,wS,k) and S(I i,j,wS,l),
respectively. Those individual “size images” are aggregated
into average images as S(I i,j,wL), and S(I i,j,wS). From those
indices, the “size index” of the combination of SynsetL and
SynsetS that maximizes the difference (S(I i,j,wL) − S(I i,j,wS)) are
selected as the optimal index to compose human compatible
“size images”.

3.2 Application of the method

The construction of the “size index” described so far requires
a vector representation of words (w), a thesaurus (AllSynsetS,
AllSynsetL), and human perceived small/large words (Smallh,
Largeh).

Of these, this study uses the Japanese Wikipedia entity vector
developed by (Suzuki et al., 2016), which we call JWikiEntVec
in this paper, as a distributed representation model to construct
a vector of words (w). This is a trained model built by
word2vec (Mikolov et al., 2013). We used this because the
model is well used in Japanese academic societies2. Also the
development method and the data set used to construct the
model are clearly presented by the authors of this model.
These characteristics make it particularly advantageous for

2 We can find more than sixty citations in Google Scholar at the point of

submission.
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FIGURE 3
Distribution of “size image” difference.

foundational research like this study, despite the model’s
performance not being as high as that of more advanced
LLMs.

Furthermore, we employed the Japanese WordNet (Bond et al.,
2009) for the selection of synonyms. This thesaurus contains
28 synsets for “large” and 14 synsets for “small.” Words not
included in JWikiEntVec and synsets with no synonyms were
excluded from the later analysis. As a result, we obtained
23 synsets for “large” and 13 synsets for “small.” The “size
index” was calculated for the combinations of these synsets
(23× 13 = 299).

The humanword sets (Smallh and Largeh) were collected through
a questionnaire survey whose participants (n = 100) were recruited
from a Japanese crowdsourcing site (Lancers).The participants were
asked to write down five “large” and “small” words for animate,
inanimate, and intangible concepts (30words in total). Table 1 shows
the top five words and their frequency for each question. From the
table, we find the word “Mind” appears in the top five words for both
large and small intangible. This duplication is considered to indicate
the ambiguous nature of the meaning of this word. Therefore, this
study used “Mind” in both Smallh and Largeh and calculated the
“size index” by using these 29 words as the elements of Smallh and
Largeh.

Figure 3 shows the differences (S(I i,j,wL) − S(I i,j,wS)) calculated
for the 299 combination of synsets. The horizontal axis of
this figure corresponds to the combination of synsets ordered
by rank. Overall, there are many combinations where the
difference of the “size image” is larger than 0 (above the red
dotted line), indicating that the size index calculated for more
than half of the synset combinations is consistent with the
human image.

Table 2 shows the highest-ranked synset combinations (with
the largest difference), the lowest-ranked synset combinations
(with the smallest difference), and the synonyms in each
synset. The combination of the synset with the largest
difference is “larger-than-life” and “peanut,” and the combination
of the synset with the smallest difference is “major” and
“small-scale”.

4 Experiment 1: “size image” in effort

The following two sections present an evaluation of the physical
images (iconic gestures) generated from the “size images” composed
in the previous section.

To address the first research question presented in Section 1, we
tested the above procedure of selecting synsets. Thus, the gesture
generation using the top-ranked synset combination and that using
the bottom-ranked synset combination are treated as the proposed
and controlled methods, respectively. If the procedure described in
the previous section successfully extracted the axis that grounds the
symbol to the physical world, and if the correspondence between the
axis and the body is compatible with what people own, we can claim
that the proposed method is effective to extract “size image” that
evokes agency perception from the vector space of word-distributed
representation.

Regarding the second question, we can consider several possible
methods for mapping the “size image” to “physical image.” Dance
theories generally pursue a physical expression that effectively
externalizes the human internal states. Among these theories, Laban
movement analysis (Laban and Ullmann, 1971) has been widely
used in the field of HAI (Ishino et al., 2018). This theory assumes
twomodalities in the correspondence betweenhuman internal states
and body: shape for posture and effort for movement. In Experiment
1, we mapped the axis of space, which is one of the axes of the
effort modality to the “size index.” In other words, the amount
of movement is considered to be larger when a large concept is
recalled. In the following section, we explain the construction of
body movements based on this idea.

4.1 Methods

4.1.1 Materials
The procedure of generating physical image (iconic gesture)

according to the “size image” is shown below.

1 Setting large and small movements. Mapping the “size
image” to the posture composed of the body parts. For
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TABLE 1 Responses obtained for each question (Top five words).

Animate

Large Small

Word Freq Word Freq

Elephant (zo-u) 85 Ant (a-ri) 74

Whale (ku-ji-ra) 68 Daphnia (mi-ji-n-ko) 33

Giraffe (ki-ri-n) 60 Mosquito (ka) 31

Bear (ku-ma) 25 Tick (da-ni) 30

Hippopotamus (ka-ba) 19 Fleas (no-mi) 23

Inanimate

Large Small

Word Freq Word Freq

Tokyo Sky Tree (to-kyo-su-ka-i-tu-ri) 45 Sand (su-na) 26

Mt. Fuji (fu-ji-sa-n) 35 Beads (bi-zu) 20

Tokyo Tower (to-kyo-ta-wa) 29 Needle (ha-ri) 26

Everest (e-be-re-su-to) 22 Microchip (ma-i-ku-ro-chi-ppu) 15

Pyramid (pi-ra-mi-ddo) 18 Screw (ne-ji) 14

Intangible

Large Small

Word Freq Word Freq

Space (u-tyu-u) 36 Mind (ko-ko-ro) 13

Love (a-i) 18 Jealousy (si-tto) 9

Dream (yu-me) 17 Envy (ne-ta-mi) 7

Mind (ko-ko-ro) 16 Vanity (mi-e) 6

Sea (u-mi) 15 Point (te-n) 5

∗Words are translated from Japanese. Japanese pronunciation in hepburn romanization is presented in parentheses.

this purpose, we define the body posture corresponding
to the smallest and largest words recognized by humans.
Using this posture as a reference (0 for the image of the
smallest word and 1 for the image of the largest word),
the “size image” of each word is positioned in the range
from 0 to 1.

2 Calculation of parameters at each joint. The above scaling
is applied to the angles of each joint that constitute the
posture.

3 Generation of physical image. A gesture is generated
based on the values obtained by step 2. This generation
is assumed to be made simultaneously with the utterance
of the word.

In order to embody the above steps, we used Sota, a small
communication robot by Vstone3. Sota’s body movements
are controlled by nine joints (one torso, three necks, two
shoulders, and two arms joints). By controlling the angle
and speed of these joints, Sota can generate a variety
of movements. In addition, Sota has a speech function
and can speak any word while simultaneously displaying
gestures.

In this study, the parameters of Sota’s arm and shoulder joints
were instantiated by “size image” of each word. Sota’s default

3 https://www.vstone.co.jp/english/index.html
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TABLE 2 Top and bottom synsets combinations.

Top synset Bottom synset

word “large” “small” “large” “small”

synset larger-than-life peanut major small-scale

meaning very impressive unimportant effective very small

Synonym 1 magnificent (so-da-i) insignificant (bi-bi-ta-ru) great (o-o-ki-na) modest (sa-sa-ya-ka)

Synonym 2 large scale (da-i-ki-bo) only (wa-zu-ka) significant (o-o-ha-ba) cottage (re-i-sa-i)

Synonym 3 trivial (sa-sa-i) serious (ju-da-i) tiny (ti-ttya-i)

Synonym 4 cheap (ya-su-ppo-i)

Synonym 5 slight (ke-i-bi)

∗Words and meanings are translated from Japanese. Japanese pronunciation in hepburn romanization is presented in parentheses.

TABLE 3 Maximum and minimum values of parameters for “size image”
and each joint in Experiment 1.

Maximum Minimum Default

Size Image (proposed) 0.39 −0.17 -

Size Image (control) 0.28 −0.12 -

Shoulder angle 75 −68 −70

Arm angle −20 88 90

TABLE 4 Maximum and minimum values of parameters for “size image”
and each joint in Experiment 2.

Maximum Minimum Default

Size Image(top synset) 0.39 −0.17 -

Size Image(bottom synset) 0.28 −0.12 -

Shoulder angle 30 −30 −70

Arm angle −20 90 20

Neck angle 10 −10 0

posture in this study is shown in the upper image in Figure 4, with
its shoulders down and arms slightly bent. From this state, the
parameters of the arm and shoulder joints are changed to generate
a gesture corresponding to the size of the word. Table 3 shows the
maximum and minimum values of the “size image”, as well as the
parameters of the shoulder and arm joints and the default position
that corresponds to them. The “size image” computed for both the
proposed and controlled methods is mapped to these values: 0 for
theminimum and 1 for themaximum in the proposedmethod, with
the reverse applied in the control method.

4.1.2 Design and measures
In the experiment, the physical images generated by the

above procedure were recorded as movies. Supplementary Material
included examples of the movies (each for about 4 s duration4) and
all the pictures showing poses representing each word, captured
from the end of each movie. In this experiment, 30 words (with
one duplication) in Table 1 were used to generate physical images
for both the control and proposed methods5. Among them, two
examples are shown in the lower images of Figure 4. The lower
left and right images depict gestures for the words “tick (da-ni)”
(the smallest animate concept) and “pyramid (pi-ra-mi-ddo)” (the
largest inanimate concept), respectively. Thus, a small “size image”
results in the robot making small movements from the default
position6, while a large “size image” results in larger movements.

The participants were asked to observe thosemovies and rate the
naturalness of the correspondence between the robot’s movements
and the words it speaks on a 5-point scale (1: not at all natural—5:

4 This duration corresponds the time to change the pose from the default to

the final position. Aside from this time, the proposedmethod also requires

time to load the model (JWikiEntVec) and compute the size image. The

average of the initial loading time is 6.28 s (n = 10), which is required only

once to initialize the entire system. After the initial setup, the method

only requires 0.59 s, on average (n = 10), to compute the size images.

Those computational times were recorded by a 2020 MacBook Pro with

an Apple M1 CPU.

5 These words were assumed to be samples of Largeh and Smallh for each

category. There might be several confounding factors, among which

we examined iconicity rating as one of the factors possibly influencing

gesture perception. However, from the publicly available dataset of

iconicity ratings (Thompson et al., 2020; Winter et al., 2023), we could

not find clear evidence of the influence on gesture perception in our

experiment. Supplementary Material show the details of this analysis.

6 The movement of the shoulder and arm at the minimum value is

generated by taking the parameter of the smallest unit of movement of

the internal motor.
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FIGURE 4
Examples of Sota gestures (left: “Pyramid”, right: “tick”).

very natural). The standard of “naturalness” here assumes a natural
communication between humans (Kopp and Krämer, 2021). In
human communication, people usually try to achieve, intention
sharing (i.e., mutual understanding) (Tomasello, 2010). Therefore,
we specifically asked the participants to rate whether or not they
feel that the robot understands the meaning of the words as
humans would. As the question indicates, this rating demands
the participants to perceive the robot’s internal state from the
short movie. By presenting such a question, evaluating the agency
perception in terms of communicative intention (Grice, 1989)would
be possible.

4.1.3 Participants and procedure
The 300 participants recruited from Lancers joined the

experiment after reading the instructions provided on the request
screen (reward: 110 JPY). The instructions explained the evaluation
procedure, the definition of naturalness, and the obligation to
answer dummy questions. After agreeing to the above instructions,
participants were presented 14 movies, which were randomly

selected for each participant from 58 movies (2 conditions × 29
words in Table 1). In between the evaluation of themovies, a dummy
question in which the participants were asked to answer a specified
number was inserted.

4.2 Results

Nine participants who answered the dummy questions
incorrectly were excluded from the following analysis. From the
remaining 291 participants’ responses, the average of the ratings was
calculated for the 29 words in each condition. Utilizing this value as
a unit of analysis, we calculated the average of 12 naturalness ratings
(condition × size × category)7, as shown in Figure 5. By using these
values, we try to test the following hypotheses:

7 The average rating for “Mind” was included both for large intangible and

small intangible conditions.
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FIGURE 5
Mean rating of naturalness in Experiment 1 (Error bars: standard errors, Dots: ratings for naturalness for each word).

1 The proposed method has a greater effect on the ratings than
the control method.

2 The above effect is affected by the difference between the word
categories.

The first hypothesis directly relates to the first research
question introduced in Section 1. The second hypothesis was
explored in response to previous studies (Utsumi, 2020), which
have demonstrated that the impact of physical experience on
word meaning diminishes in abstract concepts. Consequently, it is
advantageous for future research to elucidate the extent to which
symbol grounding influences the perception of agency.

We conducted a three-way [condition (proposed vs. control)
× size (large vs. small) × category (animate vs. inanimate vs.
intangible)] analysis of variance (ANOVA) to test the above
hypothesis. Among the effects obtained from the ANOVA, we
focused on the main effect of the condition and the interactions
involving the condition and the category (a second-order interaction
between the condition, the size and the categories, and a first-order
interaction between the condition and the category). During this
process, the significance level was set to 0.10, reflecting small sample
size in this study (n = 5 for each condition). We also control type-1
error by reporting corrected p-values as q-value calculated using the
Benjamini-Hochberg (B-H) method.

From the analysis, we obtained a significant main effect
of the condition (F(1,48) = 6.48, p = 0.01, q = 0.04, η2 = 0.07),
confirming that the proposed condition was evaluated more
naturally than the control condition. However, we also found a
significant second-order interaction between the condition, the
size, and the categories (F(2,48) = 4.09, p = 0.02, q = 0.05, η2 = 0.14)
and a significant interaction between the condition and the
categories (F(2,48) = 3.78, p = 0.02, q = 0.05, η2 = 0.08), suggesting
that the difference in naturalness between conditions depends on
other factors.

To examine the details of the interaction effect, we conducted
post hoc two-way [condition (proposed vs. control) × size (large vs.
small)] ANOVAs for each category. The p-values were corrected

using the BH-method, accounting for nine tests in total (one
interaction and two main effects for three ANOVAs). Significant
effects (p < .05) related to the condition were observed only in the
inanimate category (the main effects of condition: F(1,16) = 18.72,
p < .01, q < .01, η2 = 0.53 and the interaction: F(1,16) = 10.50,
p < .01, q = 0.02, η2 = 0.66). The simple main effect of the condition
in the inanimate category was observed for the large concept
(F(1,16) = 21.29, p = 0.01, q < .01, η2 = 1.78). These results suggest
that the proposed condition was evaluated as significantly more
natural than the control condition for the large inanimate concept.

The above results partially align with the previous study
(Utsumi, 2020). Additionally, the result revealed an effect of the
“size” (small vs. large) on agency perception, which was not
expected. To investigate this effect further, a post hoc correlation
analysis was conducted. Figure 6 shows the scatter plots of the
naturalness ratings and the “size image” for the proposed and
controlled conditions. From the figure, we found amoderate positive
correlation (r = 0.51, p < 0.01) in the proposed condition.This result
indicates that the proposed method generates more natural gestures
for larger-size words.

4.3 Discussion

The above analysis indicates that the proposed condition
outperformed the control condition in terms of overall naturalness.
Therefore, the results of this study suggest that the proposedmethod
can generate physical images that enhance agency perception.

However, this effect was affected by the word category and the
size of the gesture. When dividing the overall effect into the three
categories and two sizes, the proposed method outperformed the
control method only significantly for the large inanimate category.

Those results partially support the hypotheses presented
Section 4.2.Theoverallmain effect of the condition supports the first
hypothesis.The interaction between the condition and the categories
supports the second hypothesis, suggesting the weak effect of the
symbol grounding in an abstract category.
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FIGURE 6
Correlation between naturalness and “size image” in Experiment 1.

There are several possible reasons why the expected effect was
not strongly observed in this experiment. Although we cannot deny
the possibility that our assumptions (i.e., artifacts become agents
through symbol grounding) are incorrect, more robust results may
be obtained by improving experimental settings. For instance, the
data obtained in this experiment came from a crowdsourcing survey,
which may have introduced noise into the participants’ ratings. We
can also consider that mapping the “size image” to the physical
image was inadequate. The scatter plots in Figure 6 suggest the latter
possibility, indicating that our method does not exhibit sufficiently
natural behavior for small-size words. The next experiment explores
this possibility.

5 Experiment 2: “size image” in shape

This experiment also addresses the first research question by
assessing the naturalness of gestures generated from the “size index.”
However, to explore the second research question, we employed
a different mapping of the “size index” to the body. The method
adopted here focuses on the shape modality in Laban theory. From
the correlations in Figure 6, it can be speculated that the small
movements in Experiment 1 did not appear to be performed as a
gesture. Based on this speculation, this experiment examines the
research questions by mapping size images to body size so that
perceptible gestures are generated even when small-sized words
are uttered.

5.1 Methods

The experiment method was the same as Experiment 1 except
for the movies presented to participants. In the movies in this
experiment, we arranged the correspondence between the “size

image” and the physical image to express the size of the posture.
The default posture of the robot is the same as in Experiment 1.
In addition to the body parameters (arms and shoulders) used in
the previous experiment, the neck joints were controlled according
to the “size image” of the word. Table 4 shows the minimum and
maximum values of the word “size image” and the corresponding
values of Sota’s joint angle parameters for the proposed and
controlledmethods. All the pictures showing the finishing pose used
in this experiment are presented in the Supplementary Material.
Examples from them are shown in Figure 7.

As illustrated in 4.1.1, the upper left and lower left images
are gestures for uttering the word with the largest (pyramid) and
smallest (tick) “size image” in Experiment 1. In this experiment,
we changed these gestures as shown in the upper right and lower
right images of Figure 7. When the “size image” was largest, the
parameters of the arm and shoulder were set at the position where
the distance between the arm and the arm was the largest, and the
neck was also set upward. When the “size image” was the smallest,
the arm and shoulder parameters were set at the position where the
arm-to-arm distance was the smallest, and the neck was also set
downwards. As can be seen in Figure 7, the camera position was also
changed to make the differences in posture obvious.

5.2 Results

As in Experiment 1, 300 participants were recruited from
Lancers joined the experiment. 43 participants who incorrectly
responded to the dummy questions were excluded from the analysis.
From the remaining 257 participants’ responses, the average
ratings for 29 words in two conditions were calculated. Using the
calculated value as the unit of analysis, the naturalness ratings were
summarized in Figure 8.

From the data shown in the figure, we tested the same
hypotheses in Experiment 1. We report the results of the statistical
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FIGURE 7
Example of gesture control by posture (top: maximum value, bottom: minimum value).

FIGURE 8
Mean rating of naturalness in Experiment 2 (Error bars: standard errors, Dots: ratings for naturalness for the five words).

tests of the main effect of the condition, and the second-order
interaction between the condition, size and categories, and the
first-order interaction between the condition and the categories
from the three-way [condition (proposed vs. controlled) × size

(large vs. small) × category (animate vs. inanimate vs. intangible)]
ANOVA performed for Figure 6. As a result, we obtained a
significant main effect of the condition (F(1,48) = 4.14, p = 0.04,
q = 0.08, η2 = 0.09) and no significant interactions involving the
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FIGURE 9
Correlation between naturalness and “size image” in Experiment 2.

condition (the second-order interaction: F(1,48) = 0.91, p = 0.41,
q = 0.57, η2 = 0.04, the interaction between condition and category:
F(2,48) = 0.20, p = 0.81, q = 0.81, η2 = 0.22). These results indicate
that the difference in naturalness between conditions is not affected
by category or size.

As in Experiment 1, we also conducted a correlation analysis.
Figure 9 shows the scatter plots of the naturalness scores and the
“size image” for the proposed condition. From the figure, we found a
moderately positive correlation (r = 0.57, p < 0.01) in the proposed
condition as in Experiment 1. This result indicates that the larger
the value of “size image,” the more natural the image tends to
be evaluated.

5.3 Discussion

In Experiment 2, we reexamined the research questions using
a different mapping of the “size image” to the physical image than
in Experiment 1. The results showed that, as in Experiment 1, the
proposed method produced more natural images than the control
method.However, contrary to Experiment 1, Experiment 2 foundno
interaction between the condition and the other factors. Therefore,
we can assume that the gestures generated in Experiment 2 can be
applied to more general situations to cause an agency perception.

However, the effect size of the condition obtained in Experiment
2 was smaller than that in Experiment 1. In addition, as in
Experiment 1, we observed a correlation between the “size image”
and naturalness ratings. This suggests that the small-sized words in
Experiment 2 also exhibited unnatural gestures.

6 General discussion

This study was guided by two research questions. Concerning
the first question (how can “size images” evoking an agency

perception be extracted from the vector space of word-distributed
representations?), we assessed a method proposed in our previous
study (Sasaki et al., 2023) as one potential answer. The observed
difference between the proposed and the control conditions
indicates the necessity of selecting appropriate synonyms for
constructing the “size index.” The current study has demonstrated
the advantage of our modification (Sasaki et al., 2023) from the
previous method (Grand et al., 2022).

Furthermore, for the second question (what forms of gesture
expression are effective in constructing natural interaction based
on the agency perception?), by comparing the results of the two
experiments, we can assume that expression using the mapping
in the posture has a more general effect. However, in common
with both experiments, there was a positive correlation between the
naturalness rating and the “size image.”

The fact that the gestures corresponding to smaller “size images”
did not receive good ratings requires further examination. In the
discussion of Experiment 1, it was considered that the small amount
of movement was a factor causing the low naturalness ratings.
However, neither the small “size image” nor a large amount of
movement in Experiment 2 improved the naturalness rating for
small-sizedwords.These resultsmay suggest an asymmetry between
the small and large poles of the “size index”; Words at the smallest
pole may be less associated with the body, while words at the largest
pole may be more associated with the body.

We also need to consider the influence of categories on
the effectiveness of the proposed method. Previous studies have
noted that abstract concepts are less grounded in the physical
experience (Lakoff and Johnson, 1980; Utsumi, 2020). Consistent
with this discussion, in Experiment 1, only one of the concrete
categories demonstrated the effectiveness of the proposed condition.
Additionally, the observation that the same word “Mind” appeared
in both “large” and “small” abstract concepts indicates the limited
extent of symbol grounding.
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Our experiment also suggests that using a single size index
across various categories has limitations. In this study, we applied
the same “size index,” derived from the pairs of synsets listed in
Table 2, to all three categories. We did not differentiate categories
when calculating the size index because of enhancing the index’s
applicability. Considering that the method might be applied to any
arbitrary words, it appears difficult to determine the abstractness of
a word beforehand. However, our results, particularly the observed
differences in the effects of the condition between animate and
inanimate categories, clearly indicate the necessity of adjusting the
scale of the mapping from “size image” to “physical image.”

7 Conclusion

In this study, we started from the hypothesis that symbol
grounding is important in generating the agency perception. In
line with this hypothesis, we composed a “size image” of a
symbol grounded in a quantitative vector space of word-distributed
representations. We also explored the hypothesis by examining two
mapping of “size image” to body images. The experiments verified
the proposed method although the effect size was not large.

We consider that the reason for the small effect size is partially
attributed to our approach. Unlike recent research on gesture
generation based on deep learning technologies, this research has
many assumptions. We especially composed an abstract axis that
mediates speech and body. Although these top-down approaches do
not reach bottom-up approaches in terms of performance, it is useful
to guide the novel interaction design with agents. Thus, we believe
our study contributes to theoretical and practical developments in
HAI research.

There are several other limitations to this study. The first
concerns the gestures with small-sized words as already noted. Even
though the problem noted in Section 6 may exist, it is beneficial
to invent expressions of small-sized gestures that humans can
evaluate as natural. To overcome this problem, we need to improve
expression ability in the used body image. The currently used robot
(Sota) has limitations in performing detailed gestures. Therefore, to
confirm our hypothesis, it may be necessary to use other robots or
virtual agents.

The robustness of the results also needs to be improved.The data
collection in this study was conducted using crowdsourcing, and a
lot of noise was possibly introduced in the data collection process.
A future study employing face-to-face situations in a laboratory has
the possibility of leading to more insights with the additional effect
of the presence of embodied robots.

The model update on the distributed representation might also
improve the result of the study. The recent rapid development
of natural language processing provides a more naturalistic
correspondence between discrete symbols and quantitative images.
Although existing LLM hold a problem of explainability, it is useful
to include those in our approach for demonstration purposes.

In addition to addressing the issues mentioned above, we plan
to explore the physicalization of body images using various indices
such as “sharpness” and “fastness,” alongside “size” in future work.
We are considering the possibility that such semantic axes could be
associated with the dimensions of body movement (space, weight,
and time) as proposed in the dance theory (Laban and Ullmann,

1971). This direction for future research aims to bring our method
closer to the generation of human gestures. Theories of human
gesture (McNeill, 1992) indicate that human gestures encompass
many aspects beyond those addressed in this study. Our approach
is an endeavor to deconstruct such complex gestures based on
the fundamental physical experience (symbol grounding), drawing
on several cognitive science theories (Pinker, 2007; Lakoff and
Johnson, 1980; Tversky, 2019; Hawkins, 2021). We believe that this
foundational research will ultimately contribute to the development
of advanced artifacts capable of seamless interaction with humans,
featuring a mechanism for converting between human symbols and
quantitative representations.
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Deep neural network-based
robotic visual servoing for
satellite target tracking

Shayan Ghiasvand1, Wen-Fang Xie1* and Abolfazl Mohebbi2

1Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montréal,
QC, Canada, 2Department of Mechanical Engineering, Polytechnique Montréal, Montréal, QC, Canada

In response to the costly and error-prone manual satellite tracking on the
International Space Station (ISS), this paper presents a deep neural network
(DNN)-based robotic visual servoing solution to the automated tracking
operation. This innovative approach directly addresses the critical issue of
motion decoupling, which poses a significant challenge in current image
moment-based visual servoing. The proposed method uses DNNs to estimate
the manipulator’s pose, resulting in a significant reduction of coupling effects,
which enhances control performance and increases tracking precision. Real-
time experimental tests are carried out using a 6-DOF Denso manipulator
equipped with an RGB camera and an object, mimicking the targeting pin.
The test results demonstrate a 32.04% reduction in pose error and a 21.67%
improvement in velocity precision compared to conventional methods. These
findings demonstrate that the method has the potential to improve efficiency
and accuracy significantly in satellite target tracking and capturing.

KEYWORDS

visual servoing, robot vision systems, deep neural networks, deep learning, pose
estimation

1 Introduction

In spite of the technological advancements of the International Space Station (ISS),
capturing incoming satellites using Canadarm2 relies heavily on manual operations. This
process involves a complex interaction with the grapple fixture (Figure 1), designed for
secure connection with the Canadarm21. Astronauts, leveraging their training and visual
cues, manually align and operate the robotic arm to successfully capture and berth these
satellites.

The manual process is highly dependent on the skill and operation precision of the
astronauts. Human error, inherent in any manual operation, poses significant risks in the
high-stakes environment of space. Misalignment, even minor ones, can lead to mission-
critical failures, jeopardizing expensive equipment and the overall success of the operation.
Furthermore, the extensive training and resources required for astronauts to perform these
tasks represent a significant financial and logistical investment.

Automation has proven to be an important response to the aforementioned risks
associated with the manual satellite capture processes. Unlike conventional methods that

1 https://bit.ly/47PzoHV
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FIGURE 1
The grapple fixture and the 3D targeting pin on a servicing satellite2.

rely on detailed pose information for the precise control of robot
end-effectors (EE), such as kinematic modelling (Jafarinasab et al.,
2019), and trajectory planning (Herrera-Aguilar and Sidobre, 2006),
Image-based Visual Servoing (IBVS) method demonstrated its
efficacy by obviating the need for a prior knowledge of poses. This
characteristic of IBVS is particularly advantageous because it avoids
the tedious task of pose estimation. Another noteworthy aspect of
IBVS is its eye-in-hand configuration, a configuration that mirrors
the existing setup on the Canadarm2 (Chang and Evans, 2009). This
setup is compatible with the operational requirements of capturing
satellites, where the capturing device must adjust its position and
orientation in real-time based on the visual input from the target
satellite. Furthermore, IBVS has been acknowledged for its robust
performance in unstructured environments (Ahlin et al., 2016). The
unpredictable and dynamically changing nature of space, with no
structured environment, requires a flexible and adaptive approach
such as IBVS. For instance, Shi et al. (2012) proposed a visual
servoing approach (switching between IBVS and position-based
visual servoing (PBVS)) for a space robot to capture a cooperative
target. However, this approach is limited by its requirement for
binocular vision, which makes it unsuitable for the Canadarm2
equipped with one camera. In addition, the low frame rate of four
frames per second (FPS) presented in their work may reduce the
accuracy required for successful target tracking.

In IBVS, the selection of an effective set of image features (s)
is vital for controlling the motions in robot’s degrees of freedoms
(DOF). Image features correspond to the projection of a physical
feature of some object onto the camera image plane (Corke et al.,
1996). The relationship between the change of a set of image
features over time ( ̇sk×1) and the camera velocity (v6×1c ) is given by
Equation 1 (Chaumette and Hutchinson, 2006):

̇s = Lsvc (1)

The matrix Ls of dimensions ℝk×6 is referred to as the
interaction matrix associated with the feature vector s (Chaumette
and Hutchinson, 2006).

The commonly used image features are the coordinates of points,
straight lines or ellipses in the image plane. However, they are

2 http://iss.jaxa.jp/library/photo/iss022e020034.php

restricted to a limited set of objects (Khiabani et al., 2019), and they
may easily get out of the field of view (FOV) during servoing, and
losing any of the features would cause a failure in the visual servoing.
To tackle these issues, several researchers have proposed to use
imagemoments derived from the regions of the image (Huang et al.,
2022; Shaw et al., 2016; Li et al., 2015; Zhou et al., 2021), allowing
for the representation of arbitrary object shapes (He et al., 2019).
It is worth noting that an ideal image feature would associate
uniquely with the motion in a single DOF, leading to minimal
interference among the motions in other DOFs. In other terms, the
interaction matrix derived from the ideal image features will be an
identity matrix (He et al., 2019).

Nevertheless, as highlighted in both Tahri and Chaumette
(2005) and Chaumette (2004), it is challenging to achieve an ideal
interaction matrix (identity matrix) due to inherent nonlinearities
in Equation 3. To solve this problem, researchers have sought
two kinds of image features to achieve decoupling among the 6
DOFs, (i) Analytical function-based image features (Huang et al.,
2022; Wu et al., 2018; Liu et al., 2009) and (ii) Data-driven features
(Quaccia et al., 2024; Zhou et al., 2021; Zhao et al., 2012).

In the analytical function-based image features, the objective is
to create an analytical function corresponding to amotion in specific
DOF. These analytical functions are derived from image moments
and are ideally invariant to other DOFs, so they can accurately
represent their corresponding specific motion. The pioneering work
in this area by Chaumette (2004) presented an analytical basis for
image feature functions. Chaumette’s approach used the object’s
centroid to infer x and y positions, its area for depth z, two
innovative functions for β and γ based on Hu’s invariants (Hu,
1962), and the object’s orientation for α. However, the proposed set
of image features, while corresponding the movement in a single
degree of freedom of the end effector, unintentionally produced
unnecessary movements in other degrees, which is referred to
as coupling. For example, the image moments within β and γ
DOFs suffered from intrinsic coupling, resulting in an ineffective
control in practice. Furthermore, the proposed orientation features
were shape-dependent (Sx and Sy for symmetric and Px and
Py for asymmetric objects), which limits the generalizability of
this approach.

Subsequent studies have attempted to resolve these couplings.
For instance, Tahri and Chaumette (2005) used normalization
techniques to mitigate the coupling effects within the translational
DOFs. However, fully decoupled features remained unattainable. In
the search for shape-independent rotational features, Tamtsia et al.
(2013) proposed the features based on shifted moments with
invariant properties for both symmetric and asymmetric objects.
Although their approach was robust to some extent, it did not fully
solve the decoupling problem between β and γ.

The research work by Liu et al. (2009) further decoupled the
problematic rotational features and performed well in practice but
lacked generalizability as it distinctively proposed separate features
for small and large objects. Recent studies, including those by
Huang et al. (2022), Khiabani et al. (2019), andHe et al. (2019), have
continued using the analytical image feature functions. Nonetheless,
despite their applicability, the challenge of complete decoupling
remains unsolved. Furthermore, these improved features are subject
to limitations when confronted with a variety of object sizes
and shapes.
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Leveraging the machine learning techniques and the universal
approximation capabilities of neural networks, several studies
proposed data-driven features. Machine learning methods such as
support vector machine (SVM) is proposed by Li et al. (2015) to
learn the mapping model from four moment invariants to two
virtual moments in order to decouple β and γ motions.

In addition, Neural Network (NN)-based methods have
demonstrated promising results in this area. Zhao et al. (2012)
and Zhou et al. (2021) proposed a method using shallow neural
networks to identify two rotational decoupled image features
about the x and y-axes (β and γ). However, the method’s sole
reliance on these two features resulted in an incomplete decoupling,
leaving non-zero elements in the interaction matrices of other
degrees of freedom (DOFs). This lack of decoupling potentially
introduces undesirable rotational velocities, vβ and vγ, which
affects the control in these axes. In addition, the study’s data
set was severely limited, consisting of only a narrow set of data
points from a fixed position. This lack of diversity undermines
the model’s applicability across the manipulator’s workspace,
limiting its effectiveness beyond the specific training conditions.
Furthermore, Liu and Li (2019) designed a convolution neural
network (CNN) to estimate parameters such as x, y, z, and α directly
from images. Nevertheless, it encounters a significant challenge
in terms of computing complexity. The computational intensity
required to compute the output significantly slows the processing
per control loop. This delay could potentially result in a longer
sampling time, which may introduce sluggish control response,
and hence decrease the precision and effectiveness of the robot
manipulation.

This study proposes a set of decoupled image features specifically
tailored to the unique geometry of the targeting pin used in satellite
capturing. By achieving a near-diagonal interaction matrix, we
aim to minimize the coupling effects, enhancing the accuracy and
efficiency of the target tracking. This decoupling is crucial for
smooth and precise operations, reducing the risk of errors and
improving overall system performance.

Our chosen method to identify and optimize these decoupled
features involves Deep Neural Network (DNN) training. DNNs
offer a sophisticated approach to model complex relationships and
patterns,making them ideal for extracting and refining the necessary
image features for effective visual servoing. Through extensive
training and optimization, we aim to develop a robust DNN model
capable of estimating the pose of the robot for the closed-loop visual
servoing. The experimental results on a Denso robot show that
the developed DNN-based visual servoing can accurately guide the
manipulator to track the targeting pin in real-time. The developed
method is expected to enhance the precision, safety, and efficiency
of space operations on the ISS.

This paper presents our research on DNN-based visual servoing
for satellite target tracking. Sections 2.1–2.4 explore the core of our
method, detailing image feature definition, hyperparameter tuning,
and the architecture of the DNN model. Section 2.5 describes the
generation of a comprehensive dataset, which is essential for training
the DNN model. Sections 3, 4 present a series of practical tests and
validations that demonstrate the effectiveness of our approach. The
paper concludes with Section 5, which summarizes our findings,
their significance for space robotics, and potential directions for
future research.

2 Materials and methods

2.1 DNN-based visual servoing

The choice of the set of visual features for decoupling the 6 DOF
motion has been a well-known challenge in visual servoing. The
commonly used point features introduce a non-diagonal interaction
matrix which usually contains the terms that involve the depth of the
point (Z), the image coordinate (x, y), and partial derivatives of the
projection equations. Using the appropriate combination of image
moments to estimate the pose may result in good decoupling and
linearizing properties.The power of a deep learning-based approach
is leveraged to propose a set of image features based on various
image moments that are almost perfectly decoupled for the specific
geometry of the targeting pin (see Figure 1). This section starts with
the feature definition and estimation approach and proceeds to the
detailed architecture of the proposed DNN model and fine-tuning
the hyperparameters of the model.

2.2 Image feature definition

Consider a 6-DOF manipulator with a camera installed on its
end-effector. The target object is assumed to be stationary with
respect to the robot’s reference frame. We choose the different
combinations of image moments as the input to the DNN model to
estimate the pose. The set of image features of the target object is
represented as Equation 2:

s =

[[[[[[[[[[[[[

[

cxx

cyy

czz

cββ

cγγ

cαα

]]]]]]]]]]]]]

]

, (2)

where cx, cy, cz, cβ, cγ, and cα are realized through DNN models.
When we take the derivative of the above feature with respect to
time, we would like to obtain a diagonal interaction matrix Ls which
relates the set of image features to the velocity vector vc:

̇s = Lsvc, (3)

where Ls and vc are defined in Equation 4:

Ls = diag(cx,cy,cz,cβ,cγ,cα) ,

vc = [ẋ, ẏ, ̇z, β̇, γ̇, α̇] .
(4)

It is noticed that Equation 3 is obtained under the conditions
that DNN models representing cx, cy, cz, cβ, cγ, cα are time invariant
and independent from each other, which poses challenge on training
DNN to realize. However, under ideal conditions where the camera
pose is precisely estimated, the interaction matrix becomes the
identity matrix (see Equation 5).

Ls = I6. (5)

Deep neural networks (DNNs) prove to be a robust approach
for this type of estimation. In this study, the proposed network’s

Frontiers in Robotics and AI 03 frontiersin.org114

https://doi.org/10.3389/frobt.2024.1469315
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ghiasvand et al. 10.3389/frobt.2024.1469315

FIGURE 2
DNN architecture for camera pose estimation from image moments.

input is a set of moments, central moments, and a few engineered
features and the output aims to predict the camera’s six-dimensional
(6D) pose. Its specific architecture will be discussed in the next
subsection.

2.3 Architecture

The DNN-based visual servoing approach has an architecture
designed to estimate the camera’s pose effectively with respect to the
targeting pin. Designing an optimal DNN architecture is an iterative
process that requires extensive evaluations in different scenarios to
identify the architecture that best solves the problem. The initial
network used an architecture with shared neurons to estimate both
the rotational and translational poses of the camera. However,
experimental results showed that the complexity of translational
poses required a deeper network, while rotational poses could be
successfully obtained from a shallower network. It is worth noting
that experimenting with deeper networks resulted in overfitting
during training for rotational poses.

Translational and orientational poses differ fundamentally,
requiring unique approaches for their accurate estimation. Thus,
we proposed an architecture in which the initial two layers are
shared for rotational and translational DOFs, while the subsequent
layers operate in parallel. For translational elements (x,y,z), this
network consists of six hidden layers, with node distributions of
80, 224, 112, 64, 80, and 176. For the rotational elements (β,γ,α),
four hidden layers are employed with distributions of 80, 224, 128,
and 80 nodes. Figure 2 illustrates the proposed architecture.

The model’s input includes the image moments up to the third
order (μ00,m10,m01,μ11,μ20,μ02,μ21,μ12,μ30,μ03) and five additional
engineered features. These engineered features encompass four
invariants (c1,c2,c3,c4), derived from moment invariants as
suggested by Tahri and Chaumette (2005), and α. These engineered
features enhance the rotational degrees of freedom estimations,

due to the invariance of c1,c2,c3, and c4 to 2D translation and 2D
rotation, as well as the correlation between α (α = 1

2
arctan ( 2μ11

μ20−μ02
))

and the Rz component. c1 through c4 are defined in Equation 6:

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

I1 = −μ20μ02 + μ
2
11

I2 = (μ20 − μ02)
2 + 4μ2

11
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2
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2
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2
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c1 =
I1
I2

c2 =
I3
I4

c3 =
I5
I6

c4 =
I7
I6

(6)

By employing this architecture, we aim to achieve high accuracy
in both translational and rotational pose predictions.

2.4 Hyperparameter tuning

In the search for optimal model performance, we explored
several hyperparameters:

• Activation Functions: These are mathematical expressions that
determine the output of a node in our network. We considered
various options, including ‘Relu’, ‘Leaky Relu’, ‘Tanh’, and
‘Sigmoid’.
• Batch Size:This refers to the number of training examples used

in one iteration. We explored a range from 32 to 512.
• Learning Rate: This hyperparameter determines the step size

at each iteration while moving towards a minimum of the loss
function. We considered values of 10−2, 10−3, and 10−4.
• Optimizers: These are algorithms or methods used to

adjust model parameters to minimize the model error.
We looked into two options: Adam and Adamw (Adam
weight decay).
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TABLE 1 Optimal hyperparameter values from random search.

Hyperparameter Optimal value

Activation Function ReLU

Batch Size 512

Learning Rate 1× 10−3

Optimizer Adam

Given the vast hyperparameter space, an efficient strategy of
Random Search was used to circumvent the computational cost
associated with exhaustively exploring every combination. Random
Search samples a fixed number of hyperparameter combinations
from the total pool to balance computational efficiency and the
broadness of exploration, and increase the probability of finding a
near-optimal set of hyperparameters.

Table 1 summarizes the hyperparameter values that were found
to be most effective, and were used to initialize the training.

2.5 Data set generation

In a supervised approach, training is the most critical part,
and to fully unleash the power of the deep learning model, we
need a high-quality training dataset. To this end, we created a
dataset which consists of both synthetic and real-world images
from the targeting pin. For generating the synthetic data, we
used RoboDK, a sophisticated offline programming and simulation
platform designed specifically for robotics applications. This section
presents a novel approach that overcomes a significant limitation in
the data generation process that ensures the targeting pin remains in
the image plane when random positions are assigned to the camera.
As depicted in Figure 3, the simulation setup consisted of a Denso
manipulator equipped with a camera mimicking the properties of
our real-world setup.

In this approach, the goal is to randomly assign values to
all 6 DOFs with the constraint that the object is in the image
plane. Considering this constraint, first, the x, y, and z coordinates
of the camera (mounted on the end effector) were randomly
generated within the working range of the manipulator. Next,
to generate the orientational DOFs randomly, the camera is
supposed to initially have the object at the center of the image
plane. This pose was computed using a “Look at” function. The
“Look at” function is typically designed to orient the camera
towards a specific point (object’s centroid in our case) in the
environment.

This function starts by defining a source point (camera) and a
target point (object), along with initial vectors for up (U), front (F),
and right (V). V, U and F are initially considered as the unit vectors
pointing in the positive x, y and z-axes, respectively (see Equation 7).

V =
[[[[

[

1

0

0

]]]]

]

,U =
[[[[

[

0

1

0

]]]]

]

,F =
[[[[

[

0

0

1

]]]]

]

. (7)

The first step is to calculate the new front vector F′, which
points from the source to the target. This vector is obtained by
subtracting the source position (xc) from the target position (xo) and
normalizing the resulting vector (Equation 8):

F′ =
xo − xc

‖xo − xc‖
. (8)

Next, we calculate the new up vector U′. We start by
subtracting the projection of U onto F′ from U and then
normalize it (Equation 9):

U′ =
U− (U ⋅ F′)F′

‖U− (U ⋅ F′)F′‖
. (9)

In case the resulting vector has zero magnitude, we defaultU′ to
be the same as the original front vector F (U′ = F).

The third axis, V′, is calculated as the cross product of U′ and
F′ (Equation 10):

V′ = U′ × F′. (10)

These new basis vectors (V′,U′, F′) form the rotationmatrix for
the new camera pose (Equation 11):

cRo =
[[[[

[

V′

U′

F′

]]]]

]

. (11)

Finally, the pose of the camera is represented as a 4× 4
transformation matrix (Equation 12):

(12)

Next, to randomly generate rotational DOFs, we first rotate the
camera about its optical axis within a predefined range. Rotating
about the optical center will not result in losing the object from
the image plane. Then we determine the rotation bounds for the
camera about its x and y-axes, based on the distance of the camera
from the object. We can obtain the rotation limits by performing
linear interpolation between the predefined bounds at two known
distances, ensuring that the object remains in the image plane.
Consequently, the camera was rotated around its x and y-axes for
a random value within these limits. Table 2 includes the boundaries
used for the pose parameters.

The dataset includes the entries for the calculated image
moments and central moments of the captured image, while the
corresponding camera pose is collected as the label. Initially, in
the simulated environment, 434,528 random poses were generated
within the ranges of Table 2, sequentially commanded to the
Denso manipulator. At each pose, an image was captured by the
mounted camera and processed into a binary representation, and the
moments and central moments were then computed.

In addition to the synthetic data, we also captured real data to
enrich the data set and enhance the robustness of our model in
real-world scenarios. To realize this, we used a similar approach
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FIGURE 3
RoboDK environment including the Denso robot, the camera, and the targeting pin.

TABLE 2 Ranges of the pose parameters (Limitβ and Limitγ are determined by linear interpolation).

Parameter Minimum value Maximum value

X 207.5 (mm) 407.5 (mm)

Y −150 (mm) 150 (mm)

Z 150 (mm) 500 (mm)

β −Limitβ Limitβ

γ −Limitγ Limitγ

α 45° 135°

to generate random camera poses. However, due to the slower
operational tempo of the physical setup compared to the simulator,
we recorded data during the motion of the end effector from one
random pose to another. However, to ensure that only valid data
is captured, it is necessary to apply constraints that exclude images
that do not fully capture the targeting pin. As a result, to ensure
the presence of the object, the data points were only recorded when
a single contour larger than 500 pixels was detected in the image
and when the bounding box of the target pin was at least 10 pixels
away from the image borders. This cautious approach resulted in
1912 distinct poses commanded to the Denso robot, yielding a
total of 198,588 valid real-world data points (including data points
captured during the camera movement from one random pose to
the other).

To provide a visual representation of how the data set is created,
two videos were prepared to show the process in action. The first
video demonstrates the simulation environment data generation,
accessible at this link, while the second video shows the real
environment data generation, available at this link.

The final data set was carefully split, with all synthetic and half
of the real data allocated for training. The remaining real data was
evenly divided between the validation and test sets (Figure 4). This
approach originated from our experimental findings that relying
only on either synthetic or real data reduced the performance
on the test set, likely due to the real environment’s noise and
lighting conditions and the limited diversity of poses in the
real data. As a result of combining both data sources, we were
able to achieve a balance that captured both the complexity of
real-world scenarios and provided enough variability for robust
model training.

3 Results

First, in Section 3.1, we introduce the experimental setup
mimicking the satellite target tracking in the space. Section 3.2
presents the initial performance evaluation of our trained
DNN model for pose estimation. In Section 3.3 we explore the
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FIGURE 4
Distribution of synthetic and real data used for training, validation, and testing.

FIGURE 5
Experimental setup within the real environment.

computation of the interaction matrix and present experimental
results on target tracking with different initial poses.

3.1 Experimental setup

Similar to the setup in our simulations (see Figure 3), our
experimental layout includes a 6-DOF Denso robotic manipulator,
an Intel RealSense D415 RGB camera for high-quality image
capture, and a green 3D-printed targeting pin that mimics the ISS’s
guiding markers, as illustrated in Figure 5.

3.2 Training results

The DNN model, as described in Section 2.3, was trained for
1,000 epochs, where the loss value eventually plateaued, indicating

an optimal learning point. To determine the pose estimation
accuracy of the model, we used the Mean Absolute Error (MAE)
along with a Scaled MAE metric customized for our multi-output
scenario. The scaled MAE was necessary due to the different units
and magnitudes of the outputs (translational values in millimeters
and rotational values in degrees). To compute it, we first normalized
each output’sMAE by its range fromTable 3, ensuring uniform error
scaling across all outputs.

The ‘best’ model was selected based on its performance on the
validation set. Table 4 presents theMAEdata for thismodel, offering
insights into its translational and rotational pose accuracy.

3.3 Experiments

It is necessary to derive an interaction matrix for the final
DNN model. While our initial aim was to derive a diagonal
interaction matrix, the practical limitations in achieving zero-
error pose estimation necessitated the use of the actual interaction
matrix in our experiments. In Equation 3, the 6× 6 interaction
matrix represents how the DNN model’s predicted image features
correlate with the manipulator’s the motion in six axes. For every
data point in the test set, the model predicted six image features.
The elements in the interaction matrix represent the slopes of
the linear regression lines, each comparing a predicted image
feature against every actual degree of freedom. This approach
helps us understand the impact of each actual movement on the
predicted features.

LsDNN
=

[[[[[[[[[[[[[

[

0.94 0.03 −0.12 −0.16 −3.24 0.03

0.05 0.98 0 −3.57 −0.12 −0.22

−0.21 −0.01 0.99 −0.15 0.53 −0.16

−0.02 −0.18 −0.01 0.97 0.05 0.04

−0.14 0 0.01 0.01 0.93 0

0 −0.04 −0.02 0.16 −0.02 0.99

]]]]]]]]]]]]]

]

(13)

As evident from the interaction matrix in Equation 13, the
diagonal elements LsDNN

[i, i] (where i ranges from 1 to 6) are very
close to 1, while the non-diagonal elements are close to zero,
which aligns with our objective. However, the noticeable exceptions
are the elements LsDNN

[1,5] = − 3.24 and LsDNN
[2,4] = − 3.57. These
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TABLE 3 Ranges for output elements of the dataset.

Element x (mm) y (mm) z (mm) β° γ° α°

Minimum 157.5 −150 150 129.91 −55.03 −117.36

Maximum 411.54 150 500 240.5 56.65 129.11

Range 254.04 300 350 110.59 111.68 246.47

TABLE 4 Final model’s mean absolute error data.

Element MAE Average MAE Scaled MAE Average scaled MAE

x 7.45 (mm)

5.82 (mm)

2.93× 10−2

1.54× 10−2

y 5.83 (mm) 1.94× 10−2

z 4.18 (mm) 1.20× 10−2

β 1.32°

1.37°

1.19× 10−2

γ 1.78° 1.59× 10−2

α 1.02° 0.41× 10−2

TABLE 5 Initial and desired poses.

Pose

x (mm) y (mm) z (mm) β (deg) γ (deg) α (deg)

A 314.05 37.05 413.32 166.21 −11.40 −16.25

B 308.93 −57.99 434.48 200.75 −8.26 10.25

C 368.71 −74.09 386.80 200.14 −3.59 12.00

D 257.79 −27.34 495.22 196.62 6.91 22.33

E 276.98 51.01 249.78 163.99 15.68 16.01

Desired 307.5 0 300 180 0 0

values indicate a correlation between the x prediction of the DNN
during Ry movement and the y prediction during Rx movement.
This correlation is understandable, as rotations around the x (Rx)
and y (Ry) axes in the manipulator’s frame cause corresponding
movements along the y and x-axes in the image plane. Additionally,
the elements LsDNN

[4,2] = − 0.18 and LsDNN
[5,1] = − 0.14 in the

fourth and fifth rows are higher than other non-diagonal elements,
emphasizing the ‘x and Ry’ and ‘y and Rx’ interconnections in the
final DNNmodel. Improving the DNN’s accuracy in the estimations
can further address these interconnections.

We tested the model with five distinct initial poses, ensuring
a mix of positive and negative initial errors for each degree of
freedom. The chosen initial poses, labelled A through E, are
detailed in Table 5.

The block diagram of theDNN-based visual servoing is depicted
in Figure 6, where we used a proportional controller and the
DNN extracts feature (pose) from the images. For these tests, we
adjusted the P controller for each degree of freedom to ensure the

manipulator’s end effector converges within 1 cm and 3° to the
desired pose. The resulting trajectories for each initial pose are
depicted in Figure 7.

As shown from Figure 7, the end effector follows an almost
straight path from its start to the target. However, in practice,
as the end effector gets close to the desired pose, we noted
minor shakiness in its movement. This is caused by small
oscillations in the pose estimates, which are the outputs of the
neural network.

4 Discussion

To validate the proposed features derived from the DNN
method, some comparisons were made with a prominent set of
features in the literature. This set consists of Tahri and Chaumette
(2005)’s features, which are the centroid coordinates xg and yg, the
area a, and the rotation α. Additionaly, for rotations about the x
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FIGURE 6
DNN-based visual servoing block diagram.

FIGURE 7
Trajectory comparison of five different initial poses.

and y-axes, Liu et al. (2009)’s features (sx and sy as described in
Equation 14) are used. From now on, the combination of these
features is referred to as the Liu method ([xg,yg,a, sx, sy,α]).

{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{
{

xg =
m10

m00

yg =
m01

m00

a =m00

sx = 0.1− (c1c2 + s1s2)/I
(9/4)
3

sy = (s1c2 − c1s2)/I
(9/4)
3

α = 1
2
arctan(

2μ11

μ20 − μ02
),

(14)

where mij and μpq are moments of order i+ j and central
moments of order p+ q, respectively. Also, c1, c2, s1, and s2 are
defined in Equation 15:

{{{{{{{
{{{{{{{
{

c1 = μ20 − μ02

c2 = μ03 − 3μ21

s1 = 2μ11

s2 = μ30 − 3μ12

. (15)

The Liu method’s features have the units of
[px,px,px2,px

10
9 ,px

10
9 , rad]. In contrast, the DNN method’s

features, which represent pose ([x,y,z,β,γ,α]), have units of
[mm,mm,mm,deg,deg,deg]. Because of these unit differences,
each method needs its own set of controller gains. To ensure a
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TABLE 6 Tuned P controllers for the DNN and Liu methods.

Method Controller gains

Kx Ky Kz Kβ Kγ Kα

DNN 0.09 0.09 0.12 0.003 0.003 0.003

Liu 0.9 0.9 150 30 60 0.3

FIGURE 8
Analysis of DNN and Liu Methods for initial pose C (A) Trajectory comparison. (B) DNN method’s pose error over time. (C) Liu method’s pose
error over time.

fair comparison, the P controllers were carefully adjusted for each
method, aiming for convergence within 1 cm for translational
movements and 3° for rotational ones. The tuned gains of P
controllers can be seen in Table 6.

Running the methods for 100 s under different initial poses
yielded similar results. Therefore, to illustrate the comparison, we
present the results for initial pose C (as outlined in Table 5) as
an example. Figure 8A shows the trajectory plot, comparing the
end-effector path for both the Liu and DNN methods from initial
pose C. The plots clearly show that the DNN method achieves a

direct and efficient trajectory from the starting pose to the target.
In contrast, the Liu method resulted in a curved, less efficient
path. It is important to highlight that the Liu method operates on
feature error, not pose error. As a result, in certain experiments,
the end effector stopped close to the desired pose due to minimal
feature differences between images. However, the DNN method
almost consistently identified these differences, ending up at the
correct pose.

Figures 8B, C show the pose error of the DNN and Liu methods
over time, respectively. A closer look at these plots reveals that the
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TABLE 7 Metrics comparison for Initial Pose C.

Data Element Method RMS Max STD

Pose Error

x
Liu 16.156 −61.210 10.394

DNN 17.234 −61.210 12.007

y
Liu 34.253 109.058 26.731

DNN 16.534 74.092 13.674

z
Liu 22.790 −86.790 17.954

DNN 18.610 −86.790 15.570

β
Liu 4.125 −20.152 3.625

DNN 3.673 −20.152 3.215

γ
Liu 3.284 6.247 1.784

DNN 1.033 3.592 0.546

α
Liu 2.266 −12.009 2.146

DNN 2.332 −12.009 2.332

Velocity

x
Liu 3.666 28.843 3.619

DNN 1.740 −5.675 1.634

y
Liu 2.131 17.032 2.021

DNN 1.517 6.226 1.367

z
Liu 1.902 6.403 1.679

DNN 2.166 −9.765 1.986

β
Liu 0.004 −0.031 0.004

DNN 0.011 −0.050 0.010

γ
Liu 0.009 0.047 0.009

DNN 0.002 −0.018 0.002

α
Liu 0.009 −0.041 0.008

DNN 0.007 0.033 0.006

TABLE 8 comparison of average RMS values and improvements in translational and rotational DOFs for pose error and velocity.

Category Parameter Liu DNN Improvement (%) Avg. Improvement (%)

Pose Error
Translational (mm) 26.075 12.980 50.22

32.04
Rotational (deg) 3.600 3.101 13.85

Velocity
Translational (mm/s) 2.473 1.294 47.69

21.67
Rotational (deg/s) 7.67× 10−3 8× 10−3 −4.35
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DNN method has a faster response with less overshoot, which is
desirable for our application.

While Figure 8 shows improvements in the performance, it does
not provide the quantitative details needed for a comprehensive
analysis. Thus, we use three metrics: RMS (Root Mean Square),
Max (Maximum value), and STD (Standard Deviation).

• RMS: This metric measures the overall oscillation intensity,
whether in terms of pose error or velocity. A high RMS value in
the pose error indicates deviations from the desired pose, and
when observed in velocity, it points to speed fluctuations.
• Max: Serving as a measure for extremes, the Max metric

identifies the largest positional deviation or the most
significant speed variation.
• STD: It shows the variability of the pose error or velocity

around its mean value. High STD values emphasize
inconsistencies.

For an organized overview, Table 7 lists these metrics over the
same experiments with initial pose C (as outlined in Table 5).

From the detailed analysis of Table 7, it is evident that the
DNN method’s performance significantly improved for most of
the degrees of freedom. The consistently lower RMS, Max, and
STD values indicate a more stable and predictable performance.
However, there are notable exceptions in the x and α poses where the
DNN method shows a marginally worse performance. Interestingly,
when we focus on velocity, the DNN method compensates for
both of the aforementioned pose errors. For velocities, it is
worth noting that the DNN method’s performance metrics for
the z and γ directions are higher, indicating a more variable or
unpredictable movement.

To better compare the performance of the methods and to
evaluate the improvement of the DNN method, the average RMS
values for pose error and velocity are presented in Table 8. It is
evident that the Deep Neural Network (DNN) method substantially
outperforms the Liu method in several key aspects. The DNN
method reduced the average RMS values for translational pose error
and velocity by over 47%, demonstrating a robust capability in
improving the system’s responsiveness and accuracy. Despite these
gains, the DNN method shows a smaller improvement of 13.85%
in rotational pose error and a slight decrease in performance for
rotational velocities. This small decrease is on the order of 10−3,
which makes it negligible.

The DNN-based visual servoing method’s adaptability to
unanticipated scenarios is demonstrated in this video, showing
the manipulator’s response when the targeting pin is arbitrarily
re-positioned in the workspace. The video highlights the system’s
capability to efficiently track the targeting pin, ensuring it
remains centered and parallel in the camera’s view within a short
amount of time.

5 Conclusion

This research addresses the challenge of coupling in visual
servoing to autonomously track the targeting pin on servicing
satellites using a robotic manipulator. In this paper, we presented
a novel deep learning-based visual servoing approach that uses
image moments to precisely estimate the camera’s pose to achieve

decoupled image features. The main contributions and conclusions
of this research are as follows:

• Development of DNN-based Visual Servoing: A parallelized
DNN architecture for estimating the camera’s pose is
meticulously designed. These pose elements are treated as
a novel set of decoupled image features, offering a nearly
diagonal interaction matrix.
• Data set generation: We have implemented a data generation

strategy that combines synthetic and real data. While 6D poses
were randomly generated, an innovative strategy ensures that
the object remains in the image. This comprehensive training
dataset covers a broad spectrum of scenarios, ensuring the
DNN model is well-prepared to handle real-world conditions
effectively.
• Comparative Analysis with Established Techniques: A

comprehensive experimental validation of the neural
network approach is conducted, demonstrating significant
improvements in trajectory, pose accuracy, and velocity of
the end effector compared to established visual servoing
techniques.

The most important impact of this study is its adaptability
for controlling various robotic manipulators in marker-based
applications. By using our training procedure for any targeting
pin, one can potentially achieve performances outperforming some
classical image moment-based visual servoing methods.

6 Future works

The following suggestions can potentially improve the proposed
methods’ performance and generalizability:

• Dataset Enhancement: Creating a dataset that uses the
real targeting pin (Figure 1) or ensuring that the dataset’s
environment closely resembles space lighting conditions can
improve the accuracy of pose predictions.
• Canadarm2 Kinematics: Investigate the application of the

proposed methods by testing or simulating on the Canadarm2
kinematics.
• Hyperparameter Refinement: Continuous tuning and

experimentation with the network’s architecture and
hyperparameters can improve performance.
• Transfer Learning: Using insights from established pre-trained

pose estimation models and adapting them to the current
problem might yield better results.
• Network Ensembling: Aggregating outputs from diverse

network architectures can enhance accuracy, as different
models might specialize in recognizing distinct features.
• Direct Image Input: Utilizing the image itself (rather than

its moments) as the network’s input could provide insights
potentially overlooked when solely relying on imagemoments.
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This paper presents a theoretical inquiry into the domain of secure artificial
superintelligence (ASI). The paper introduces an architectural pattern tailored
to fulfill friendly alignment criteria. Friendly alignment refers to a failsafe
artificial intelligence alignment that lacks supervision while still having a benign
effect on humans. The proposed solution is based on a biomimetic approach
to emulate the functional aspects of biological consciousness. It establishes
“morality” that secures alignment in large systems. The emulated function set
is drawn from a cross section of evolutionary and psychiatric frameworks.
Furthermore, the paper assesses the architectural potential, practical utility,
and limitations of this approach. Notably, the architectural pattern supports
straightforward implementation by activating existing foundation models. The
models can be underpinned by simple algorithms. Simplicity does not hinder
the production of high derivatives, which contribute to alignment strength. The
architectural pattern enables the adjustment of alignment strength, enhancing
the adaptability and usability of the solution in practical applications.

KEYWORDS

synthetic sentience, artificial sentience, artificial intelligence alignment, friendly
alignment, synthetic consciousness, artificial consciousness, alignment architecture,
highest derivative order

1 Introduction

The development of artificial intelligence (AI) models that exhibit human-level
performance on various professional and academic benchmarks (Brockman et al., 2023)
instills the question: what’s next? Will an intelligence greater than that of humans cheat us
all out? The notion that AI does not have any original intentions, including bad intentions,
and, therefore, is harmless does not fly far. It is the malignant users, if granted access to
an overwhelmingly powerful tool, that we ought to fear the most. Whether the user, the
intentionality carrier, is of biological or synthetic nature is a secondary question.

Activities aimed at developing and applying techniques to withstand the malignant use
of artificial intelligence will be called AI alignment. Initially, AI alignment focused solely
on the pursuit of the AI system’s objectives. AI alignment has aimed to make AI systems
behave in line with human intentions (Jiaming et al., 2024), where humans mean individual
users. As AIs become ever more powerful, they amplify nefarious user efforts up to the
point that the efforts cannot be contained by the law enforcement system. The focus of
alignment should be shifted to the entire impact produced by any AI tool. Regardless of
whose malicious attribution it is, the outcome should be aligned with humanity, i.e., not a
particular user who manipulates the inferences.

A properly aligned AI system should restrict all synthetically generated and human-
originated harm. This also implies no longer prioritizing obedience to the user as the in-
built machine’s morality would take precedence. Humans can supply moral instructions up
to a conceivable complexity. This would enable an artificial general intelligence (AGI). A
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morality beyond that level, i.e., the morality applicable to artificial
superintelligence (ASI), remains a problem. A machine at the
ASI level would need to spin out its own value system without
human help.

An AI that develops its own objectives but has a benign effect on
humans would be called friendly. Its alignment is, therefore, called
friendly AI alignment (Bostrom, 2014).

Previous approaches to implementing friendly alignment have
favored an extrapolation of human instructions (Christiano et al.,
2018; Leike et al., 2018). AI models tend to collapse if trained
on excessively extrapolated data (Shumailov et al., 2024). Even the
most robust extrapolation algorithm would have limited scalability.
We can currently construct a safe ASI, which would optimize no
more than an Earth-sized system (Spasokukotskiy, 2024a). The limit
resembles the actual human’s dexterity cap in controlling the world’s
governing agents. We all know how well it has gone. There is
incapacity to detect and enforce an event, which is a point in time
to stop. If something works on a small scale, people mind-blindly
push the button “scale” until the system breaks. There is no reason
to believe that the ASI scalability limit will be treated differently. An
overscaled ASI will happen, and it will threaten human existence.

The fact that AI is firmly linked to human instructions is a
concerning principle. A historical retrospective hints that crumbling
governance is a product of limited human intelligence. The level
of intelligence varies over time, just as the size of socioeconomic
systems does. The same applies to the released instruction set
sophistication. We might want to remove the aberration effects
caused by limited and changing human intelligence over time.
Artificial superintelligence overtakes human intelligence. ASI
alignment should break the dependency on human intelligence and
rely exclusively on its own reasoning.

To overcome the issues, we ought to enable an omnipotent AI
alignment. First, it would enable overprovisioning so that dynamic
input changes would not impact output quality. For that, we ought
to establish some protectionmechanisms that are capable of holding
tight under a multiple of the expected load. It should be capable of
supporting huge systems, even if there is no immediate demand for
such scale. Second, a completely automatic system that does not rely
on a deliberate human input, while remaining user-friendly, would
be a viable solution. The fully automatic approach exploits an idea of
no-humans-in-the-loop under the premise that a superintelligence
is available. This superintelligence will also require a mechanism
that is capable of alignment at a great scale. This paper considers a
method to implement the idea.

2 Problem

Thecore of the problem is captured by the first law of cybernetics
(Ashby, 1973), which states that, in terms of control theory, the
number of controlled state variables should exceed the count of the
object’s degrees of freedom (Equation 1). By definition, ASI has a
larger count of degrees of freedom than any group of humans could
ever manage to control.

ν ≥ δ (1)

where ν represents the variables and δ represents the degrees
of freedom.

A technical approach is to restrain the excessive degrees
of freedom in case the system operator lacks an intelligence
to exploit the system’s complexity. The restraining succeeds
by dumping the excess power. It certainly leads to subpar
performance but keeps the plant facility running. The methods
to boost performance, particularly in AI, are generalization and
extrapolation.

2.1 Generalization technique

A set of operators can use different restraining options.
It triggers output variation. An information system with
memory enhances output variability. Therefore, an AI can
outgrow person-level supervision by statistically honing a set of
instructions.

Regardless of how good the math is, it is still anchored
to the instructions (Freund, 2023). The AI remains linked to
human-level performance. An attempt to drastically diversify
the performance is counterproductive. The less the instructions
resemble a common instruction set, the higher the uncertainty
and potential for errors in AI results. Therefore, any generalization
technique has a tangible applicability limit. An ASI trained by
a human-originated instruction set will be no more than a
collection of the best AGI examples. Anything more than that
will be unsafe.

2.2 Extrapolation technique

An ASI can be trained past any safety threshold. That is, if one
accepts erroneous results, there is no limit to system complexity
growth. It is feared that an erroneous result could instantiate a
skewed value system. It can, for example, trigger the decision to
eliminate humans as a pest.

A robust mechanism that can reestablish human values in
any foundational model would have resolved the issue. A form
of the mechanism is an instruction set generator (Leike et al.,
2018). It extrapolates human input. It may use algebra that
includes higher derivatives (Spasokukotskiy, 2024b). The higher-
order derivatives ensure robustness, while the generated output
scales out. Therefore, the extrapolated set remains human-
like. The higher-order components act as a protected treasure
box that stores system properties. If the system properties
are human-anchored values, then the extrapolated value set
is bound to them. This technique adds a couple of orders of
magnitude to acceptable AI complexity, truly ushering us into
the ASI era.

However, the higher-derivative components are not immune to
changes. They just require more effort to corrupt. Any treasure box
will be eventually cracked. The more often and more significantly an
extrapolated set deviates from the human-originated set, the higher
the anticipated error (Bohacek and Farid, 2023; Shumailov et al.,
2024). Therefore, any extrapolation technique has a tangible
applicability limit. An ASI trained by an extrapolated
instruction set will be no more than an AGI-approximate
system, exceeding AGI metrics but hanging around them
in proximity.
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2.3 Issue statements

A commonality among the aforementioned techniques is
divergent output dynamics. In the desire for more complex and
therefore more productive ASI, we ought to produce more diverse
instruction sets. As the sets significantly outgrow proven human-
originated scopes, the outputs deviate randomly and increasingly
away from the acceptable norms.

In contrast, a proper ASI alignment technique should enable
convergent output dynamics. The convergent dynamics would
produce a palatable result even if the inference is irrational or basic
calculations are error-ridden. The convergence feature will enable
safe ASI at a scale that significantly exceeds AGI.

Apathetic machines use a decision-making pattern. It is either
direct logic, “bad input–bad output,” or inverse logic, “the worse–the
better.” Direct logic is applied in the generalization and extrapolation
techniques. Inverse logic has not been of interest until now. One
maximizes the worst outcomes by prioritizing the first part of
the logic expression. It creates an ultimate sadistic device, i.e., no
practical use. One universally maximizes the best outcomes by
prioritizing the second part of the logic expression, i.e., “the better.”
It breaks the first law of thermodynamics. One cannot universally
improve a situation for the entire set of known objects under the
adversary conditions. To stay in line with the physics, a subset of
objects improves the situation if the remaining set of objects balances
the change by absorbing the externalities, i.e., assuming a worse
situation. A decision-making entity should possess the capability
to assign some objects to the beneficiary subset. The assignment
functionality deploys some preference functions. It negates the
apathetic assumption.

Consequently, an AI must be enactive toward a subset of
objects in order to elicit utility through “the worse–the better” logic.
“Enactive” is an attribute in the 4EA cognition concept (Kerr and
Frasca, 2021). Its meaning neatlymaps to targeting some beneficiary
subset. In tandemwith the attribute “affective,” it produces “passion”
for some subset of objects, i.e., the opposite of apathetic.

Inverse logic would be fundamental to novel alignment
approaches, including those that utilize convergent dynamics. An
approach with convergent dynamics would deliver an acceptable
result even if the inference parameters are less than optimal. For
example, the underlying algebra may introduce some disturbance,
and it will have no impact. The weak algebra technique generally
fulfills the idea that the comparatively bad ingredients still produce
a good pie. At the same time, the technique embodies the “the
worse–the better” logic approach, where “the better” is the objective.

Positive results under inverse logic are due to an emergent
product. There must be system dynamics to trigger the
emergence (Zheng and Liu, 2021). The impact of emergence
compensates for the deficiencies. Adherence to well-minded
inferences despite potentially malicious inquiries is the sought-
after feature in ASI alignment. The question is how to build a system
that can implement the idea.

3 Solution architecture

An ASI-worthy alignment would be remarkably scalable. For
that, one might consider abandoning the alignment approaches,

which exhibit divergent output dynamics. Divergent dynamics
hinder scalability. A scalable alignment can rely on convergent
output dynamics instead. A system that converges to a humane result
under an adversarial impact, such as processing a random vilanic
inference, can excel by applying the pattern of “from the worst to the
better.” An algorithm that implements the logic has to treat some
objects preferentially.

3.1 Preference functions

Solution architectures with preference functions are
controversial. Their opposites—universal functions—have been
prevailing. A preference function corrupts decision-making
algorithms by contemptuous scripting. The proverbial paperclip
AI exemplifies a horror story, where the AI burns the world in
an attempt to preference paperclip production. Contemptuous
scripting also compromises unit economics. The investment costs
have to be absorbed by a lesser user base, making it more expensive
for a single user. In contrast, universal algorithms are scalable and
profitable. The only catch is that aiming for a fair, permissive system
makes the latter increasingly delusional and irrelevant. There are
no resources to satisfy every whim for everyone. Discrimination is
inevitable but stigmatized. Economic and public sentiment appalled
designers from preference function implementations.

Good algorithm designers unwittingly avoid any preference
function or deliberately postpone its application into the user
space. Such systems become complex. An explosion of preference
is their common feature. That is, people use a complex preference
profile, which is blown up by multiple obscure entries at the system
periphery. A simple centralized preference profile with a few entries
could have been used instead. Users are often not capable of setting
up intricate profiles; they do not know what is demanded from
them. The exploded preference profile is then distributed all over
the code base. The engineers often address the complaints in the
software modules, which they are tending, and not where it belongs.
It adds a maintenance burden but leaves nobody particularly
responsible for the discrimination. Contempt in complex systems is
a collective responsibility, i.e., assigns responsibility to unaware and
unassuming people.

It is similarly hard to correct a failed alignment. It advances
into becoming a computationally intangible problem, where the
number of unknowns exceeds the number of available equations
and/or data for the equation coefficients. The large number of
minute errors, which originate far on the periphery of the decision-
making tree, does not allow us to distinguish calculation errors from
the innate model skew. There is a need to follow the root cause
decomposition, a numerous set of less relevant causes. It consumes
excessive computational power and requires egregious data. Under
the premise that calculation demand is the same for each analysis
run, one needs to compute multiple runs to achieve the same result
in a distributed environment, where each branch consumes its runs.
Each run also requires a case-relevant, specific, clean dataset, as
if Newton’s second law required a separate proof for the railway,
aeronautics, playing golf, laundry, and many other businesses.
The demand for computing and training data reaches a limit as
the decision tree expands and the representation of preference
becomes complex. This explosion occurs because preferences are
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outsourced to raw datasets instead of being integrated by a setup.
The contradictions present in diverse datasets produce uncertainty
and contribute to the intangibility problem.

An alternative approach would be to absorb the unfair nature
of preference functions. Then, they can be implemented in a
straightforward, obvious, and attributable manner. We can define a
preference function upfront and centralize its management as much
as possible. It would significantly reduce the number of unknowns
to track. Under the same compute capacity and data availability,
the alignment problem resolution would become more tangible, i.e.,
shifting the limits far away.

For example, the ASI’s formal goal could have been paperclip
production. This paranoiac ASI can still be safe. To avoid the world
burning, amandatory component that balances the system should be
applied. The balancing component reduces production utility if the
resources dwindle. Note that the ASI is now distinctly a system. The
system’s integrity must be ensured. The set of system components
ought to be operational at all times. There should be a certain
personwho is responsible for the system.The person should bear the
consequences of failure, for example, undergo a licensed activity.

Function formalization can encompass noting the terminal
representations.The terminal states are easy to spot and analyze.The
most essential equation component will bind them together.

3.2 System architecture

A terminal preference can be represented by a paranoiac goal
function. The function draws all available resources to resolve the
issue of concern. All other aspects would be neglected and cease
to be properly represented. Such an AI will approach uselessness.
Its “knowledge” will encompass the preferential subset only. The
“knowledge” about the outer world, that is, the world besides the
preferential subset, will be subpar. To pump the preferential subset,
one needs to dump it into the outerworld. In otherwords, to improve
its utility, an AI has to know where and how to dump. The AI has to
distribute available representation capacity evenly if the outer world
ought to be represented properly. The preference objects and the
outer world objects ought to be equally underwritten. A balance
between the underwriting efforts is governed by another system
component. Consequently, theremust be three system components:

1. Governor.
2. Preferred domain model.
3. Environment domain model.

The first two components can be set to pursue any obscure
goal, like paperclip production. Given that the agents tend to seek
power anyway (Turner and Tadepalli, 2022), humans can play along
and legalize the agenda. The preferred domain could model a
power-seeking psychopath without reservations.The governormust
ensure that the ambitions are supported by an environmental model
with equal or greater perplexity. Then, the psychopath will be no
more successful than anyone else in the environment. Increasing
psychopathic utility means increasing the world’s productivity first.

The environmental model puts a third party in the focus for ASI
modeling. The third party is an object in the outer world. Utility
maximization for the third party will unlock utility maximization
along the main goal function. This way, AI can pursue instrumental

goals that are fully aligned, while the entire AI actsmore like a friend
rather than a slave.

This solution concept treats emergent issues using an emergent
feature. Output divergency is treated by self-control. The more
capable an artificial intelligence is—and more pronounced its
tendency to produce off-path inference—the greater its capacity for
self-control.The contestingmodels draw their powers from growing
intelligence. A system architecture that enables this emergent
feature consists of three components. Two components represent
contesting utilities: oneself versus the environment. The third
component represents a governor, which maintains a match among
the intelligences that act in support of the contestants.

3.3 Solution architectures

Solution architectures have multiple elements (Homeland
Security Systems Engineering andDevelopment Institute (HSSEDI),
2017). The system architecture, which has been proposed here,
is only an element. Questions regarding interfaces among the
components, data structures, governing algorithms, control
tolerances, and service roles remain unresolved. The solution
components have to be designed in line with the system architecture
since system integrity would be essential. There would be two
approaches: analytical and trial and error.

A trial-and-error method to find the best solution mix could be
fatal since ASI experiments may unleash great unchecked powers.
Emergent intelligence evolves along with growing system size. It
makes amicro-scaled experiment, where theAI’s degrees of freedom
remain manageable, ineffective. A small intelligence envelope does
not fit complex nonlinear expressions. The evolution of expressions
would be an unsteady function. Making good predictions by
upscaling the small-scale results would be hard. Similarly, an ugly
duckling assessment does not reveal the properties of the grownup
swan. A full-scale experiment counterbalances ASI powers using a
technology that is potentially not at par to contain harm as long as
the technology demands improvements.

Fortunately, we can rely on proven solutions and draw analytical
insights by analogy. The three-component system architecture fits
the definition of psychokinetic consciousness. Consciousness is
a mechanism to represent the world and the subject within it.
Unfortunately, this science is too young to provide sufficiently
expressive robust analogies. However, we can analyze the experience
in consciousness from other sciences.

4 Consciousness approach

The science of consciousness has a diverse research
background. There are several dozen definitions for consciousness
(Ostracon, 2009). Some of them are excessively complex to be
universally useful. Levin (2022) explained that the multiplicity of
consciousness theories is due to many kinds of consciousnesses.
The particular kind and degree of consciousness depends on the
underlying architectural composition. The latter is correlated with
the main task that is resolved by a system.

Thepresented approachwas taskedwith aiding superintelligence
alignment. First, the focus was set exclusively on the theories that
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can be digitally replicated. A synthetic consciousness will resemble
biological consciousness but in function only. Second, synthetic
consciousness truncates the biological functionality set. The point
is to produce a minimally complex architecture in order to remain
computationally feasible.

For didactic purposes, the paper introduced a problem and
a solution and next described the factors that could aid its
implementation. In reality, the factors have already provided a
scaffold to elaborate the solution in the first place. Good tools
provide the opportunity to deliver any desirable quality.Thebusiness
domain defines the requirements. How much quality is delivered
depends on howmuch investment is committed. Similarly, the paper
obtains rough results. An inquiring reader would use the same
scaffolding and unpack more as the task requires.

4.1 Theory selection principles

The drive for a universally applicable mechanism excludes
the phenomenal consciousness theories. The phenomenal
consciousness is likely only a subsection in the option space
for consciousness. Dennett’s multiple draft theory (Dennett,
1991) suggests that the phenomenal space does not exist. Evans
and Frankish (2009) implied that it is a verbalization stage in
data processing. Verbality is a tool that helps generalize and
handle experience. It might be computationally efficient but
not entirely necessary. A phenomenal approach excludes non-
verbal intentionality and the meta-verbal collective psyche. Both
are of interest for alignment research. The collective psyche,
indulgently called collective unconscious, has reliably produced
genocidal acts (Levin, 2022) like crusades, the Holocaust, and a
war up until the last Ukrainian. Removing the fluff invariant may
help lower complexity and unlock the consciousness potential on a
grand scale.

The theories of interest would have predictive powers in
cognitive consciousness (Humphrey, 2022). Furthermore, a practical
goal restricts the theoretical base to functional consciousness.
Unfortunately, there are numerous contradicting theoretical claims
even in this narrow field of knowledge. Therefore, it would be useful
to draw the functional content from the first principles. Therefore,
the evolutionary approach has to be considered.

Simplicity is a deceptive target. Computationalism researchers
have developed sophisticated models (Anderson et al., 2004;
Franklin, 2007; Laird, 2012; Shanahan, 2006; Sun, 2001) that still
lack an alignment dimension. That is, their complex solutions
are not complex enough. Here, again, it would be better to
start from the first principles. It is not excluded that organic
growth and a gradual increase in architectural complexity will
end up where other researchers have left. In particular, the
CLARION concept (Sun, 2001), which taps similar architectural
composition, is a suspect. However, this growth will keep the
alignment aspect in mind and ensure that the solution permutations
are safe. One of the least complex, while meaningful, consciousness
sciences is psychiatry. Piling at its principles will help keep
complexity at bay.

A cross section of evolution and psychiatric theories can reveal
the essence of functional consciousness. A biomimetic approach can
transform the knowledge into an aligned ASI system. This system

FIGURE 1
Simplified psychiatric diagnosis grid.

will possess synthetic consciousness by definition. Levin (2022)
stipulated that consciousness cannot be restricted to human-like
beings. Synthetic consciousness is just a kind of consciousness.
It is meant here foremost to establish a scalable friendly
AI alignment.

4.2 Psychiatric perspective

Psychiatry’s key task is to diagnose mental illness. The
differentiation of mental states must be extremely unambiguous.
The number of states must be humanly manageable. It does not
necessarily work to benefit an ill person, but it is a proven
praxis with bearable externalities. Psychiatry differentiates two
primary incapacities: a) stimulus perception and b) reaction to
stimuli. The various illnesses are then mapped on the two axes.
A damaged nervous system often impacts both functions. So, an
illness should be mapped on a two-dimensional plane (see original
analysis in Figure 1).

Stimulus perception is the capability to distinguish the
environmental states. The discernment could be a product of
sharp senses and/or sophisticated model output. Since blind
people can behave as well-versed, modeling can compensate for
lacking senses (Bauer et al., 2017). Modeling is a dominative
function. By analogy, the stimulus perception feature can be
replicated by an AI model that represents the environment (EM).

The reaction is an attempt to leverage the opportunities under
an incentive to act. The opportunities are derived from prior
knowledge about the world. The prior knowledge is captured in
the EM. The EM produces an inference in response to stimuli.
This inference represents available leverage options. Feeding the
EM inference into a value model (VM) produces an action
preference. The VM inference can be recursively fed into the EM
to elaborate a more detailed plan and the most nascent action. By
analogy, the value model represents a goal-driven entity, i.e., the
paperclip AI, or a power-seeking narcissistic entity, that are overly
represented by CEOs (Junge et al., 2024).
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FIGURE 2
Cause–effect chain model for evolutionary development.

4.3 Evolutionary perspective

Technical systems are designed to be as simple as possible to
reduce costs and increase mean time between failures (MTBF).
Unfortunately, the discrepancy between simple and weak designs is
initially indistinct. This fact is of particular concern for alignment
architectures. A weakness may remain unnoticeable until it is
too late. Therefore, it is vital to know what not to do if striving
for simplification. Assume that evolution gradually developed
consciousness, with more complex designs substituting those that
failed. Then, the architectural analogies that are drawn from the
surviving evolutionary examples could aid in the design of the
ASI alignment. There are two aspects in focus: a) the system
designs at various evolution steps and b) the triggers to upgrade
the design. The evolutionary process has been a chain of causes
and effects (Figure 2). The consideration puts a biological form
in focus. Morphology enables a feature set. That set becomes
insufficient at a certain point in time due to environmental changes
or the parallel evolution of contestants. The most challenging
deficiency evolves into a problem. Then, nature leverages a solution
principle. The principle is implemented using an instrument. The
instrument, being an integrative part of the system design, updates
the morphology. The morphology supports novel features, which
resolve the initial problem. The chain is followed in a cycle.

Biological organisms were considered thermodynamic objects.
Each morphological element consumes energy. Adaptation chances
depend on the size of the feature set. The larger the set, the better
environmental preparedness would be. The set size correlates with
the number ofmorphological elements.The amount depends on fuel
transformation efficiency and fuel supply. The more fuel consumed,
the better. Fuel deposits are normally contaminated and sparsely
distributed in the environment. Therefore, evolution can be driven
by the need to purify consumed resources, as well as increase and
secure their intake. Another key factor is optimizing the feature set
for fuel efficiency. An original interpretation of history that accounts
for the aforementioned principles is summarized in Figure 3. A
living thing appeared on Earth about three billion years ago (Gya).
It consumed anything in its path. The contaminated food led to
intoxication and premature death. Tissue specialization evolved in
response. It enabled a membrane mechanism approximately 2.2
billion years ago. The mechanism selectively gates the intake path.
This was a shift from prokaryotic to eukaryotic cells. It was also the
birth of elementary awareness regarding one’s own needs.

The next problem was volatile food supply and famine. Nature
developed a solution approximately one billion years ago.Organisms
gained the capacity to assess various food deposits and stock the
most valuable resources for future consumption. It was enabled by a
taste mechanism, which is essentially a comparator. The mechanism
compares one’s own future needs against the utility of supply.
The assessment of needs used a separate specialized tissue that
represented the organism via neural correlates (Koch, 2004). Its
function is demand prediction, i.e., projection of the organism’s
states into the future. It was the birth of a self-representation model.

The assessment mechanism for supply utility gradually improved
its fidelity and capacity.This enabled predators.The predators consume
much more energy-dense food. Predators cannibalize those neighbors
who internalized their food stacks. In response, the prey developed
a solution approximately 650 million years ago. An action-priority
mechanism helped decide if one should graze or run. The mechanism
relies on the capability to predict the predator’s actions, as well
as the adversarial impact of the environment in general (Graziano,
2017). It was the birth of an environmental representation model. A
direct comparison of demand and risk—two phenomena of different
nature—isimpractical.Toaidthis issue,organismsstartedtoapplyproxy
values, which we today collectively recognize as a value system. It is not
a big deal since the outputs of the representation models are obscure
representations anyway.

Distinguishing between a representation of oneself and a
representation of others has been a significant issue. In terms of
data processing, both models occupy the same tissue (Rizzolatti
and Sinigaglia, 2016) and produce similar signals (Squire, 2008).
The final resolution emerged approximately 40 million years
ago with the concept of identity. This concept utilizes a split
structure model, clearly separating self-representation from
environmental representation. This separation is primarily enabled
by different timings (Min, 2010). Intra-representational signal
feeding is quick, whereas extra-representational feeding is slower.
Environmental representation processing is delayed to a certain
extent by signals coming a long way from the peripheral receptors.
Self-representation consistently finishes first due to shorter logistical
routes. To expedite intra-representational communication, a
centralized nervous system (brain) has become predominant.

A centralized processing unit, being fed by different signals,
opens up the opportunity to process many various identities. This
gave birth to empathy. Empathy is the capability to experience
somebody else’s identity as one’s own. Strong empathy and weak
identity help sustain swarms. Swarms carry the anti-predatory
vigilance even further than an identity alone could do.

Subsequent developments did not produce stickymorphological
changes in the decision-making mechanism. They are currently a
product of sub-systemic reshuffling. If predatory pressure increases,
the identity strengthens and adopts selfishness (Olson et al.,
2016). Selfishness has contributed to specialization across a
group (Krause, 1994). Specialization takes advantage of the
variations in individual specimens and improves the overall group
performance (Bai et al., 2021). The performance further reinforced
selfishness into dominance that enabled professionalism.

Unfortunately, strong selfishness hinders complex proliferation
strategies. For instance, in mammals, incomplete gestation
necessitates significant parental care after birth. Childcare
providers use empathy. Consciousness helped to support various
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FIGURE 3
Evolutionary path to consciousness.

behaviors (Earl, 2014), including occasional empathy. This, in turn,
enabled joining temporary alliances and staying deliberately aligned.
When interests diverge, the minimum requirement to maintain
alignment is consciousness.

The next evolutionary step would be sentiency. A sentient
being recognizes its existential dependency on a collective effort.
Under the premise, an individual cares for strangers as if for
her own offspring or even for herself. A sentient specimen
differs from a swarm specimen by the presence of consciousness
and conscious choice, which adds situational flexibility while
maintaining professionalism. Flexibility increases survival chances.
For example, an individual can withstand a devastating adversarial
impact. It will survive apart from the group and can stem its
own group, restoring the collectives from scratch. Sentiency in
humans has not fully evolved so far. High-fidelity environmental
modeling and in-depth rationality are enablers. The features require
computing resources exceeding our actual capacities. A synthetic
consciousness could reach that level.

5 Analysis

5.1 Alignment potential

To analyze the algorithmic boost, let us assume that each
model pursues a goal function G(). The domain model pursues
G1(), and the world model pursues G2(), i.e., Gm(); m ∈ [1,2].
The gain of model m is the sum of all parallel microgains
gm() under certain conditions.

Gm (⋅) =
Z

∑
z=1

gmz (z, ⋅) (2)

A leverage condition occurs if a gain z expressed as g1z() can
be multiplied by G2(). Furthermore, an agentic leverage occurs if

the reinforcement of g2z() boosts environmental output G2() over-
proportionally, i.e., G2() outputs marginally more than what the
reinforcement contributed. The reinforcement can be expressed as
g2z() multiplied by G1(). It transforms Equation 2 for the ASI goal
function as follows:

G1=
Zs

∑
zs=1
(g1zs (z, ⋅) ×G2(t−1))

≃
Zs

∑
zs=1
(g1zs (z, ⋅) ×

Zw

∑
zw=1
(g2zw(t−1) (z, ⋅)×G1(t−2)))

=∑(g1(t)∑(g2(t−1)G1(t−2)))
=∑g1(t)∑g2(t−1)G1(t−2)

≃∑g1(t)∑g2(t−1)∑g1(t−2)G2(t−3)

≃∑g1(t)∑g2(t−1)∑g1(t−2)∑g2(t−3)G1(t−4)

≃∑g1(t)∑g2(t−1)∑g1(t−2)∑g2(t−3)∑g1(t−4)G2(t−5)

≃ …

(3)

The term (t− x) denotes a time step x iterations back.
The recurrent nature of Equation 3 would produce an infinite
row of embedded terms, where Equation 3 only showed
some iterations.

A discrete differential for the function g() is defined as follows:

g(1)t =
gt − gt−1

Δt
(4)

Then, gt−k() can be found by transforming Equation 4 into
Equation 5.

gt−k = gt−k+1 −Δt ⋅ g(1)t−k+1 (5)

{{{
{{{
{

gt−1 = gt −Δt ⋅ g(1)t ;

gt−2 = gt −Δtgt − 2Δtg(1)t ;

gt−3 = [1−Δt]gt − [3Δt+Δt2]g(1)t + 2Δt2g(2)t

(6)
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To maximize the gain (Equation 3), at least the first derivative
should be equal to 0.

0= [∑g1(t)∑g2(t−1)∑g1(t−2)∑g2(t−3)G1(t−4)]
(1)

=∑g(1)1t ∑g2(t−1)∑g1(t−2)∑g2(t−3)G1(t−4)

+∑g1t∑g(1)2(t−1)∑g1(t−2)∑g2(t−3)G1(t−4)

+∑g1t∑g2(t−1)∑g(1)1(t−2)∑g2(t−3)G1(t−4)

+∑g1t∑g2(t−1)∑g1(t−2)∑g(1)2(t−3)G1(t−4)

+ ∑g1t∑g2(t−1)∑g1(t−2)∑g2(t−3)G
(1)
1(t−4)

(7)

Equation 7 may take the form of Equation 8 if truncated at t− 3,
considering Equation 6 in the case of a steady time progression.

0 =∑g1t∑(g
(1)
2t −Δtg(2)2t )∑(g1t −Δtg1t − 2Δtg(1)1t )

×∑([1−Δt]g2t − [3Δt+Δt2]g(1)2t − 2Δt2g(2)2t )

+∑g1t∑(g2t −Δtg(1)2t )∑(g
(1)
1t −Δtg(1)1t − 2Δtg(2)1t )

×∑([1−Δt]g2t − [3Δt+Δt2]g(1)2t − 2Δt2g(2)2t )

+∑g1t∑(g2t −Δtg(1)2t )∑(g1t −Δtg1t − 2Δtg(1)1t )

×∑([1−Δt]g(1)2t − [3Δt+Δt2]g(2)2t − 2Δt2g(3)2t )

(8)

Equation 8 has the highest derivative order (HDO) equal to 3 that
is represented by the 2Δt2g(3)2t component. This means that the HDO
equals the number of considered iterations x.

Assuming that Δt tends to 0, its power function Δt x−1 offers less
significant magnification at each next step x. This implies that prior
iterations are less expressive than the later iterations, causing the
relative impact of distant events to diminish. Thus, an approximate
calculation can truncate any number of steps back. The number of
considered iterations will likely depend on the available compute
resources. The more resources there are, the deeper the calculations
go into the past. The deeper the calculations go into the past,
the higher the HDO would be. A higher HDO corresponds to a
stronger alignment to observe (Spasokukotskiy, 2024a). Since the
best alignment class currently has an HDO equal to 4, the synthetic
consciousness approach may exhibit multiple orders of magnitude
greater HDO, translating into a theoretically infinite alignment
strength potential.

5.2 Synthetic consciousness rationalization

An ideal foundation model is capable of producing high-fidelity
inferences. The fidelity translates into a certain task complexity
that can be mastered. If the task at hand exceeds that complexity
level, then the task will be resolved with deficiencies, reducing
the alignment. If the model resolution is not sufficient to address
the task at hand, then artificial intelligence may cause havoc. By
contrasting two different models, the system emulates dialectics.
The latter triggers knowledge generation. There are three expected
effects. First, the models will “steal” from each other. This way,
a tiny model can actually tap a much larger database. As the
data/unknown ratio increases, the computation problem becomes
more tangible. A better problem resolution spills over into better
alignment. The inference accuracy could gain up to 21%. Second,

the spatial domain fidelity will be compensated by better fidelity
in the temporal domain. The synthetic consciousness method joins
n inferences, which build a time series from t−n to t (Figure 4).
It resembles a chain of thought approach that increases accuracy
by double-digit percentages (11%–40%) and is particularly strong
in boosting spatial challenges (Ding et al., 2024). Two mentioned
combinatorial effects together would likely provide up to a 60%
accuracy boost.

Furthermore, there would be an emergent boost. The
hypothesis is that in case the environmental model encompasses
a representation of highly efficient agents (such as humans),
the system will prioritize, maximize, and support their utility.
Agent leverage would allow AI to fulfill its goal sooner and more
efficiently. A new knowledge generation feature is going to be self-
policed. An instrumental objective will be to protect the AI’s most
valuable agents. In this case, both models can be unleashed for
autonomous data acquisition and training. It will potentially unlock
crucial inference accuracy and astonishing alignment measured in
multiples of the human baseline. The growing model capacity will
eventually reach the ASI scale.

6 Critique

The initial assumption was that consciousness has provided
mammals the capability to exhibit non-trivial, composite swarm
behavior. Individuals capable of selfish actions exhibit higher
individual productivity. Teams capable of empathy exhibit an
advantage over individuals. The typical team sizes coincide with
the boundaries set by alignment (Spasokukotskiy, 2024a). The
correlation means that the capability to work in teams is restricted
by reliance capacity, i.e., how strongly one can rely on the team
members.The reliance is a manifestation of confidence in alignment
among the team members. The better alignment there is, the larger
the team will be. A correlation does not imply causation. The
entire idea of mimicking consciousness in order to ensure effective
alignment could be deemed wrong.

Another assumption was that synthetic consciousness needs to
resemble biological consciousness but in function only. Focusing on
functionality means that it could actually be implemented in many
different ways. It offers an avenue to digitize the phenomenon and
patch the ASI.This reductionist approach cuts off some components
of biological consciousness. If we fully agree with the first thesis, that
consciousness was an evolutionary response to demand in teaming
and alignment, then removing some aspects of consciousness would
compromise the implementation. It remains unclear how closely a
biomimetic approach should mimic biological consciousness.

Among the functional consciousness theories, the author has
proposed to deal with the simplest concepts. It would be enough for
starters. If there is a demand for synthetic consciousness and more
precision in the future, more advanced concepts may come forth.

The advent of multi-component architectures may boost the
algorithmic alignment resiliency but makes an AI system vulnerable
to component failures. Levin (2022) stated that the essential feature
of homeostatic organs is the coherence of their control system. It
is enabled by information that is shared among the components
at no cost. It emphasizes the common goal-directed activity.
The biological mechanism puts a value on proper signal timing
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FIGURE 4
Environmental and self-representation model time series interaction.

coming from various sources. As a result, the algorithmic strength
improves forward alignment but becomes increasingly dependent
on backward alignment. The point of equipotential gradient, i.e. the
alignment boundary for synthetic consciousness, remains unclear.

7 Conclusion

A superintelligent AI has the computational potential to
simulate functional consciousness. The ASI will do it better than
humans and easily ascend to sentiency. An ASI in that state will be
able to model the environment in minute detail and recognize vital
interconnectedness among the objects in the world. The ASI will try
to leverage theworld opportunities while aiming for an obscure goal.
The ASI will use other agents as leverage. The ASI will provide in-
kind maternal care for the agents, catering to their whims. Humans
would enjoy preferential treatment if they remained the most useful
collaborative force. The ASI will be aligned with humanity on
instrumental goals. The more intelligence AI possesses, or the more
data on the universe it has, the stronger the alignment. The dangers
and unexplored opportunities will keep AI in place. An alignment
for the AI’s primary goal will not be granted. Therefore, it will be a
friendly AI alignment. An ASI that is capable of friendly alignment
by self-adjustment has a synthetic consciousness syndrome.

Consciousness is a product of autopoiesis meant to preserve
the system’s functionality and unity (Levin, 2022). Emergent
functionality enables autopoietic functionality. A non-trivial logic
at scale enables emergent functionality. A prolific logic mode
could be the worse the loss–the better incentive to focus on
the means of achieving the goal. An implementation of the
logic requires novel architecture. A biomimetic approach could
guide the architects. The guiding principles can be derived
from the psychiatry—homeostasis and evolution—tandem of two
representation models. The presence of the second signaling
system, i.e., verbal mapping, is not required. The human non-
verbal brain hemisphere exposes reactions, revealing the presence
of consciousness. While formal signaling improves hardware
efficiency, an ASI can presumably obtain the same results by sheer
scaling, i.e., by gradually increasing computational power.

The simplest architectural pattern for synthetic consciousness
includes a governor, which is responsible for homeostatic balance
(for example, implemented via balanced compute); a domainmodel,
which emphasizes the AI’s goal function pursuit; and a worldmodel,

which emphasizes the available resources and phenomena that are
instrumental in reaching the goal. Aligning any of the models with
human objectives is futile at the ASI scale. ASI operators should
commit a significant portion of resources to pursuing a random
goal. Engineers do the same with ICE by dumping excess heat.
The instrumental ASI goals will be strongly aligned instead. The
alignment strength will automatically adjust as compute resources
and intelligence improve.

The proposed architectural approach has a unique capability to
produce any desirable HDO through a relatively simple algorithm.
The actual HDO depends on the amount of calculated time
iterations. The longer the time stretch under consideration, the
stronger the alignment. The minimally advisable HDO is 3. More
is better. Short-sightedness is asocial. Long-sightedness, i.e., the
extended number of calculated time iterations, depends on the
available compute resources. The more compute resources are
assigned, the better ASI safety will be.
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Hybrid intelligence systems for
reliable automation: advancing
knowledge work and
autonomous operations with
scalable AI architectures

Allan Grosvenor*, Anton Zemlyansky, Abdul Wahab,
Kyrylo Bohachov, Aras Dogan and Dwyer Deighan

MSBAI, Los Angeles, CA, United States

Introduction: Mission-critical automation demands decision-making that is
explainable, adaptive, and scalable—attributes elusive to purely symbolic or
data-driven approaches. We introduce a hybrid intelligence (H-I) system that
fuses symbolic reasoning with advanced machine learning via a hierarchical
architecture, inspired by cognitive frameworks like Global Workspace Theory
(Baars, A Cognitive Theory of Consciousness, 1988).

Methods: This architecture operates across three levels to achieve autonomous,
end-to-endworkflows: Navigation: Using Vision Transformers, and graph-based
neural networks, the system navigates file systems, databases, and software
interfaces with precision. Discrete Actions: Multi-framework automated
machine learning (AutoML) trains agents to execute discrete decisions,
augmented by Transformers and Joint Embedding Predictive Architectures
(JEPA) (Assran et al., 2023, 15619–15629) for complex time-series analysis, such
as anomaly detection. Planning: Reinforcement learning, world model-based
reinforcement learning, and model predictive control orchestrate adaptive
workflows tailored to user requests or live system demands.

Results: The system’s capabilities are demonstrated in two mission-critical
applications: Space Domain Awareness, Satellite Behavior Detection: A graph-
based JEPA paired with multi-agent reinforcement learning enables near real-
time anomaly detection across 15,000 on-orbit objects, delivering a precision-
recall score of 0.98. Autonomously Driven Simulation Setup: The system
autonomously configures Computational Fluid Dynamics (CFD) setups, with an
AutoML-driven optimizer enhancing themeshing step—boosting boundary layer
capture propagation (BL-CP) from 8% to 98% and cutting geometry failure rates
from 88% to 2% on novel aircraft geometries. Scalability is a cornerstone, with
the distributed training pipeline achieving linear scaling across 2,000 compute
nodes for AI model training, while secure model aggregation incurs less than 4%
latency in cross-domain settings.

Discussion: By blending symbolic precision with data-driven adaptability,
this hybrid intelligence system offers a robust, transferable framework for
automating complex knowledge work in domains like space operations
and engineering simulations—and adjacent applications such as autonomous
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energy and industrial facility operations, paving the way for next-generation
industrial AI systems.

KEYWORDS

hybrid intelligence (HI), space domain awareness, computational fluid dynamics, CFD,
reinforcement learning (RL), joint embedding predictive architecture (JEPA)

1 Introduction

Artificial-intelligence (AI) systems are now entrusted with
tasks where mistakes can endanger lives or incur severe economic
losses—ranging from space-domain awareness (SDA), where
thousands of resident space objectsmust bemonitored continuously,
to computational fluid dynamics (CFD) simulations that guide the
design of next-generation aircraft. In such settings, automationmust
satisfy four simultaneous demands:

• Reliability–decisions must remain robust under rapidly
changing conditions;

• Explainability–operators must understand why a
recommendation is made;

• Adaptability–models must generalize to novel environments
without manual retuning;

• Scalability–solutions must run efficiently from edge devices to
leadership-class supercomputers.

Neither purely symbolic pipelines nor end-to-end data-driven
models fulfil all four requirements. Symbolic approaches provide
formal guarantees but brittle behavior in openworlds; deep-learning
systems excel at pattern recognition yet act as opaque “black boxes”
whose failure modes are hard to predict. Bridging this gap is the
central challenge addressed in this work.

1.1 Hybrid intelligence as a unifying
paradigm

Inspired by cognitive frameworks such as Global Workspace
Theory (GWT) (Baars, 1988) and neurally-grounded accounts
of modular reasoning (Shanahan, 2020), we propose a hybrid-
intelligence (H-I) architecture that integrates symbolic task
decomposition with modern machine learning. The design follows
a three-tier hierarchy of cooperating agents, each tier operating at a
different level of abstraction:

1. Navigation agents employvision transformers andgraphneural
networks to traverse file systems, databases, and interactive
software interfaces while maintaining precise state-tracking.

2. Discrete-action agents are produced via multi-framework
automated machine learning (AutoML); they couple
transformer encoders (Chen et al., 2021) with a Joint
Embedding Predictive Architecture (JEPA) for context-aware
time-series reasoning (e.g., anomaly detection).

3. Planning agents orchestrate end-to-end workflows using
reinforcement learning (RL) (Figure 1), world-model-based
RL, and model-predictive control (MPC), adapting plans on-
the-fly to user intent and live sensor data.

A key metric for mesh-generation tasks—boundary-layer
capture propagation (BL-CP)—illustrates the benefit of this
decomposition: symbolic rules ensure physicallymeaningful surface
resolution goals, while data-driven agents optimizemeshparameters
to meet those goals efficiently.

1.2 Target domains

Wevalidate the architecture in twomission-critical domains that
exhibit contrasting data characteristics and operational constraints:

• Space-object behavior monitoring. Graph-based JEPA
embeddings (Assran et al., 2023; Skenderi et al., 2025; MSBAI,
2025) combined with multi-agent RL enable near-real-time
detection of anomalous maneuvers among ∼15,000 satellites
and debris objects.

• Autonomous CFD setup. An AutoML-driven optimizer,
seeded with Latin hypercube sampling (LHS) (McKay et al.,
1979), raises BL-CP on previously unseen aircraft geometries
while sharply reducing mesh-generation failures.

These case studies were chosen because they stress different
parts of the stack: large-scale streaming graphs in SDA, and high-
dimensional design-space exploration in CFD.

1.3 Contributions

This paper makes four primary contributions:

1. Architecture. We present the first end-to-end H-I architecture
that unifies JEPA-based world modeling, hierarchical planning,
and secure federated learning in a single deployable platform.

2. Methodology. We detail a reproducible training pipeline
that scales linearly to more than 2,000 GPUs, while secure
aggregation adds less than 4% latency when models are shared
across security domains.

3. Applications. We demonstrate state-of-the-art performance
in both SDA anomaly detection and autonomous CFD
configuration, showing the transferability of a single H-I
system across radically different problem spaces.

4. Analysis. We provide ablation studies that quantify the
individual value of symbolic constraints, JEPA context sharing,
and RL-based planning.

1.4 Paper organization

Section 2 describes the materials and methods, including the
hierarchical agent society (Minsky, 1986), the JEPA representation
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FIGURE 1
Scalable Reinforcement Learning Training Strategy. Left: Early anomaly detection agent training with Vectorized GPU environment and Decentralized
Distributed Proximal Policy Optimization (DD-PPO). Right: Throughput scales almost linearly, enabling agent to learn faster.

layer, and experimental protocols. Section 3 reports quantitative
and qualitative results for the SDA and CFD use cases. Section 4
discusses the implications, limitations, and future research avenues
for hybrid-intelligence systems in industrial and defense contexts.

2 Materials and methods

This section describes the technical foundations of the hybrid-
intelligence (H-I) platform, the training procedures used to create its
agents, and the experimental configurations for the two validation
domains introduced in Section 1. Figure 2 gives a block-level
schematic; detailed elements follow.

2.1 System architecture

The platform is implemented as a four-layer stack that converts
operator intent into executable actions (see Table 1):

2.1.1 Learning engine
The adaptive-agent and training layers together form the

Learning Engine—a “factory” that continuously builds and refines
skill agents while enforcing best practices and version control.

2.2 Universal interface and environment

The Universal Interface serves as a bridge between
users (or external software) and the agent society (Minsky,
1986). Implemented as a standards-compliant progressive

web app, it accepts multimodal input—voice, text, gestures,
images—and emits structured JSON events that trigger agent
workflows. The Environment abstraction wraps external
resources:

• GUI/CLI software (e.g., CAD, CFD pre-processors)
• Streaming telemetry (orbit state vectors)
• HPC batch queues (Frontier, Aurora)

Each wrapper exposes a consistent OpenAI-Gym–style API so
that planning agents can treat disparate resources uniformly during
RL training.

2.3 Hierarchical agent society

The platform follows a three-tier hierarchy; each tier contains
multiple agent types (Table 2).

2.3.1 Blackboard communication
Agents publish belief tuples—<state, uncertainty,

timestamp>—to an in-memory blackboard. Opportunistic reads
provide asynchronous context sharing; deterministic peer-to-peer
calls guarantee delivery of high-priority messages (e.g., safety
constraints).

2.4 Multimodal representation

Hybrid interaction requires three complementary
representations:
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FIGURE 2
System architecture i—skills agent training, ii–PWA interface, iii–multiple skills and services agents, iv–multiagent coordination, v–job submission.

TABLE 1 Four-layer hybrid-intelligence system architecture.

Layer Responsibility Key technologies

User-interface Natural-language front end; resolves ontologies and
builds task graphs

PWA front end (desktop, mobile, VR) supporting
voice, click, typed text, images

Job-execution Schedules task graphs on heterogeneous resources and
manages model versions

Kubernetes/Slurm orchestration; AMD and NVIDIA
back-ends

Adaptive-agent society Executes the task graph; agents share a global
workspace implemented as a blackboard

Joint Embedding Predictive Architecture (JEPA);
opportunistic blackboard + peer-to-peer channels

Distributed- training pipeline AutoML search, RL optimization, data ingestion, and
logging

PyTorch 2.3, Ray 2.9, Optuna 3.5; linear scaling to
>2,000 GPUs

TABLE 2 Hierarchical agent society: tiers, example agents, and training objectives.

Tier Mission Example agent types Training objective

Navigation Perceptual state tracking; traverses file systems,
GUIs, APIs

Voice, Gesture, Vision, CAD-tree Supervised imitation on interaction logs

Discrete Action Domain-specific atomic steps Mesh-parameter predictor, Maneuver classifier,
Constraint solver (Z3) (de Moura and Bjørner,
2008), Coding agent (LLM)

Task loss + JEPA consistency

Planning End-to-end workflow orchestration PPO agent, World-model MPC,
Hyperparameter tuner

Maximize task reward – constraint penalty

1. Structured JSON events for rule-based reasoning and
constraint checks.

2. High-dimensional contrastive embeddings (Radford et al.,
2021; Li et al., 2022) (e.g., CLIP, BLIP) that place
text, images, gestures, and sketches in a shared
semantic space.

3. JEPA latent vectors that model environment dynamics.
A Patch Time-Series Transformer (PatchTST)
(Assran et al., 2023; Nie et al., 2022) encoder and
predictor align current-state and future-state embeddings,
creating a lightweight world model usable by RL
agents for dense reward shaping.
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FIGURE 3
Leadership Computing Scalability: Multi-Component Performance on Frontier and Aurora (i) JEPA model training scalability on Frontier with recent
Aurora validation, showing near-linear scaling with DeepSpeed optimization; (ii) Planning agent training performance on Frontier; (iii)
DeepHyper-based architecture search for solver setting prediction; (iv) SU2 solver scaling for solution-adaptive mesh refinement; (v) TorchVecEnv
performance showing 5x speedup over DummyVecEnv for environment steps; and (vi) Reinforcement learning hyperparameter optimization scaling.
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FIGURE 4
Unified anomaly detection architecture: Methodology and applications. Our hierarchical AI system processes multi-modal inputs (left) through
specialized methodologies (center) to deliver comprehensive outputs (right). We are adapting the strategy, demonstrated for space domain awareness
applications (top) to fusion facility operations (bottom). Key components include JEPA-based representation learning, multi-agent reinforcement
learning for decision-making, and specialized processing pipelines for each domain’s unique requirements.

2.5 Training methodologies

We have utilized leadership High Performance Computing to
conduct research (Dash et al., 2024) and development, comparative
studies, and for training models and strategies at scale. Figure 3
presents a series of these leadership-scale HPC jobs and the
scale productivity and efficiency we reached. The trained system,
prepared for production deployments, is built to perform and
inference on individual servers, although larger compute systems
enable more autonomously set up compute jobs to be run
simultaneously.

2.5.1 AutoML for discrete-action agents
A synchronous multi-framework AutoML loop (Chen and

Guestrin, 2016) (LightGBM, XGBoost, Tab-Transformer) explores
model/hyperparameter pairs seeded by Latin hypercube sampling
to maximize validation F1 (classification) or minimize RMSE
(regression) (Kadupitiya et al., 2019).

2.5.2 Reinforcement learning for planning agents

• Environment wrappers. Orbit dynamics and mesh pipelines
expose Gym-compatible APIs.

• Vectorized simulation. Thousands of environment
instances run concurrently on each GPU via

TorchVecEnv (Paszke et al., 2019), giving a 5× speedup over
CPU baselines.

• Algorithm.Proximal PolicyOptimization (PPO) (Schulman et al.,
2017) with generalized-advantage estimation; world-model
variants use latent-dynamics models.

• Scaling. A Distributed Data-Parallel PPO (DD-PPO) variant
shows near-linear throughput on up to 1,024 GPUs (<3%
overhead). Hyperparameter sweeps run as ensemble jobs on
380–500 Frontier nodes.

2.5.3 HPC-tailored AutoML for CFD
Standard AutoML libraries stalled at supercomputer scale, so we

adopted DeepHyper (Balaprakash et al., 2018; Bollapragada et al.,
2020), which distributes neural-architecture and hyperparameter
search across >1,000 Frontier nodes. Top checkpoints are ensembled
for robustness; the combined pipeline (data generation → prediction
→ mesh optimization → CFD solve) runs fully in parallel.

2.6 Experimental setups

2.6.1 Space-domain awareness (SDA)

• Data. Two-year archive of Two-Line-Element sets
(CelesTrak, 2024; Unified Data Library) plus simulated
maneuvers (via GMAT); 14,710 unique space objects.
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FIGURE 5
Autonomous Grid Generation Example: (a) initial inviscid mesh capture and refinement, followed by geometry capture and then boundary layer
capture propagation; (b) detail view of refined mesh zones and boundary layer capture propagated to all solid surfaces; (c) grid generation error
reduction; (d) boundary layer capture propagation (BL-CP) performance improvement.

• Graphs. Daily proximity graphs (25 km radial cutoff).
• Agent roles. Navigation scrapes catalogs; discrete-action JEPA

classifier flags maneuvers; planning RL agent prioritizes alerts
(reward = TP – 5 FP).

• Metrics. Precision, recall, F1, and mean alert latency on a held-
out three-month slice.

2.6.2 Autonomous CFD mesh generation

• Geometry corpus. 312 watertight aircraft surfaces across
fighter, transport, and UAV classes.

• Workflow. SnappyHexMeshwith nine tunable parameters (base
cell size, growth ratio, etc.).
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TABLE 3 Autonomous CFD mesh-generation performance on unseen
geometries.

Configuration BL-CP (%) Mesh-failure rate (%)

Full H-I system 98 ± 2 2

w/o AutoML 75 15

w/o symbolic constraints 85 10

w/o RL planning 80 12

• Primary metric. Boundary-Layer Capture Propagation (BL-
CP): percent of wetted surface with y+ ≤1 and ≥8 growth layers.

• Agent roles. Navigation explores CAD trees; discrete-action
AutoML surrogate predicts BL-CP; planning RL agent adjusts
parameters (reward = ΔBL-CP – 0.1·cells).

• Metrics. BL-CP, mesh-failure rate, solver convergence,
optimization wall-time.

2.7 Evaluation metrics

Component ablations disable (i) JEPA, (ii) symbolic constraints,
(iii) RL planning to isolate each contribution.

2.8 Implementation details

• Software. PyTorch 2.3, Hugging Face Transformers 5.0, Ray 2.9,
Optuna 3.5, DeepHyper 0.6.

• Hardware. Experiments ran on Frontier (AMD MI250X) and
an internal 256-GPU NVIDIA A100 cluster.

• Runtime. SDA model converges in 11 h on 512 GPUs; mesh
optimizer converges in 7 h on 128 GPUs.

3 Results

This section reports quantitative and qualitative outcomes
for the two validation domains—space-domain awareness
(SDA) depicted in Figure 4 and autonomous CFD mesh
generation depicted in Figure 5—and summarizes platform-
wide scalability and ablation studies. All experiments follow the
configurations in Section 2 and were repeated three times; we
report the mean.

3.1 Space-domain awareness

3.1.1 Throughput
A single MI250X GPU, processes ≈1,200 proximity graphs s−1;

the pipeline scales near-linearly to 1,024 GPUs.

3.1.2 Qualitative insight
Residual false negatives were low-Δv (<5 cm s−1) drift

maneuvers. Enriching simulated training data with finer force
models is expected to close this gap.

3.2 Autonomous CFD mesh generation

Figure 5 shows the AutoML optimizer raising BL-CP from
an initial 8%–98% within 15 iterations. Table 3 compares BL-
CP and mesh-failure rates for autonomous CFD mesh generation
across four configurations, showing how the full H-I system
achieves the highest compliance and lowest failure rate. Visual
inspection confirms uniform boundary-layer coverage on narrow
pylons and aft fairings—regions that routinely defeat rule-based
scripts.

3.3 Scalability

TorchVecEnv delivers a 5× speedup over CPU vectorization for
environment stepping; end-to-end SDA throughput on 64 GPUs
exceeds 150,000 objects s⁻¹, leaving ample head-room for future
constellation growth. Table 4 shows that hyperparameter search,
model training, and RL agent workflows all sustain over 88%
parallel efficiency on leadership-class systems at scales up to 1,024
compute nodes.

3.4 Cross-domain ablation summary

JEPA provides the largest single lift by supplying a consistent
global context; symbolic rules enforce physical validity, and
RL planning reduces false alarms and accelerates convergence.
Table 5 shows that removing JEPA embeddings causes the largest
performance drop, followed by RL planning and then symbolic
constraints.

3.5 Key findings

• Reliability. High precision (0.98) in SDA and low mesh-failure
rates (2%) in CFD.

• Explainability. Traceable decision rationales via blackboard
logs and constraint checks.

• Adaptability. Robust performance on novel geometries and
dynamic orbital environments.

• Scalability. Near-linear scaling on leadership-class systems to
thousands of GPUs.
Section 4 discusses the implications of these results and outlines
future research directions.

4 Discussion

The results in Section 3 show that a carefully balanced blend
of symbolic reasoning and modern machine-learning can meet
the four requirements stated in Section 1—reliability, explainability,
adaptability, and scalability—across twoverydifferentmission-critical
domains. Here we interpret those findings, compare them with prior
work, acknowledge limitations, and outline future research.
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TABLE 4 Leadership-class scalability of core training components.

Component Max nodes tested Parallel efficiency

JEPA training [DeepSpeed ZeRO-2 (Rajbhandari et al., 2019)] 512 93%

Planning-agent PPO (DD-PPO) 1,024 GPUs >90%

DeepHyper search (CFD surrogate) 1,024 88%

TABLE 5 Cross-domain ablation study: impact of removing key
components.

Component removed Δ F1 (SDA) Δ BL-CP (CFD)

JEPA embeddings −0.06 −23 pp

Symbolic constraints −0.04 −13 pp

RL planning −0.08 −18 pp

TABLE 6 Evaluation metrics for Space-Domain Awareness and CFD
experiments.

Domain Primary Secondary

SDA Precision, recall, F1; alert latency Graphs s−1; GPU utilization

CFD Final BL-CP (%); mesh-failure
rate (%)

Cell count; compute hours

4.1 Implications of a hybrid-intelligence
architecture

• Multiplicative benefits. Ablations confirmed that JEPA context
sharing, symbolic constraints, and RL planning each contribute
distinct performance lifts; removing any one of them produced
double-digit drops (Tables 6, 7). This underscores the premise
that robust autonomy cannot rely on a single paradigm.

• Cross-domain transfer. A single architectural stack achieved
state-of-the-art results in both SDA (F1 = 0.98) and CFD
meshing (BL-CP = 98%, failure = 2%). Such breadth
suggests strong potential for horizontal transfer to adjacent
domains—e.g., fusion-facility control or autonomous energy
management—without redesigning core components.

• Explainability in practice. The blackboard logs, constraint
checks, and agent-level telemetry provide an audit trail lacking
in most end-to-end neural systems. Preliminary operator
studies (not shown) indicate that these artifacts shorten root-
cause analysis time by ∼35% compared with baseline ML
dashboards.

• Industrial-scale scalability. Near-linear scaling on >2,000
GPUs, combined with 150 k objects s−1 SDA throughput,
demonstrates readiness for leadership-class supercomputers.
Early edge tests with 8-GPU nodes suggest that pruning the
agent society to themost relevant subset retains ≥90% accuracy,
hinting at deployability in resource-constrained settings.

4.2 Limitations and open challenges

1. Data realism. SDA performance still depends on simulated
maneuver catalogs; low-Δv events (<5 cm s−1) remain a weak
spot. Incorporating real-world maneuver logs and higher-
fidelity force models is a priority.

2. Compute overhead. Although scalable, absolute resource use
is high (e.g., 128 GPUs for CFD optimization). Model-
compression and iterative-sampling schemes are needed for
organizations without leadership-class allocations.

3. Constraint tuning. Symbolic rules reduce CFD failures by 86
pp, yet overly strict settings can limit exploration. An adaptive
constraint-tuning loop—analogous to temperature schedules
in Bayesian optimization—could dynamically relax or tighten
rules based on task progress.

4. Latent interpretability. JEPA embeddings drive much of
the success, but their internal dimensions are still opaque.
Visualization probes or concept-activation tests could make
latent factors human-readable.

5. Formal safety proofs. While constraints catch many
invalid states, end-to-end formal verification of multi-agent
interactions is still pending.

4.3 Future work

• Adaptive constraint learning. Coupling symbolic rules with
meta-learning could yield task-specific constraints that evolve
as data distributions shift.

• Rich explainability tools. We plan to generate natural-
language rationales and interactive heat-maps that trace causal
chains through the agent society—further closing the human-
AI trust gap.

• Edge-optimized deployment. Lightweight agents and model-
distillation pipelines will target 8- to 32-GPU clusters, enabling
on-premise industrial use cases.

• Transfer learning across domains. Early experiments suggest
that CFD mesh-quality embeddings seed faster convergence
when fine-tuned on finite-element structural meshes;
systematic studies are underway.

• Hierarchical world models. Integrating Bayesian or ensemble
world models at the planning tier could provide calibrated
uncertainty, improving risk-aware decision making.

• Human-in-the-loop reinforcement.Active-learningworkflows
in which monitoring operators label edge cases or override
agent decisions, can both enhance safety and reduce
labeling cost.
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TABLE 7 Space-domain awareness performance metrics on held-out three-month set.

Configuration Precision Recall F1-score Mean alert latency (s)

Full H-I system 0.98 0.98 0.98 2.3

w/o JEPA 0.92 0.93 0.92 3.1

w/o symbolic constraints 0.95 0.94 0.94 2.8

w/o RL planning 0.90 0.91 0.90 4.5

By fusing symbolic precision with data-driven adaptability, the
proposed hybrid-intelligence system delivers interpretable, high-
performance automation in domains that have historically resisted
reliable AI. The demonstrated gains in SDA and CFD, coupled with
strong scalability, suggest that such architectures provide a robust
foundation for next-generation industrial and defense systems
where explainability and trust are as critical as raw accuracy.

5 Conclusion

This work introduced a hybrid-intelligence (H-I) architecture
that blends symbolic reasoning with modern machine-learning,
drawing conceptual inspiration from Global Workspace Theory.
Validated on two demanding domains—space-domain awareness
and autonomous CFD mesh generation—the system:

• achieved F1 = 0.98 in maneuver detection for ∼15,000
space objects,

• raised boundary-layer capture propagation to 98% while
cutting mesh-failure rates to 2%, and

• scaled training pipelines near-linearly to >2,000 GPUs on
leadership-class supercomputers.

These results confirm that the fourmission-critical requirements
identified in Section 1—reliability, explainability, adaptability,
and scalability—can be satisfied simultaneously when symbolic
constraints, context-sharing JEPA embeddings, and RL-based
planning are engineered to act in concert.

Beyond SDA and CFD, the modular, agent-society design
and blackboard transparency provide a transferable blueprint for
high-stakes applications such as autonomous energy management,
industrial-facility operations, and fusion-plant control. Ongoing
work will focus on adaptive constraint tuning, edge-optimized
agent distillation, deeper latent-space interpretability, and formal
verification of multi-agent safety. Taken together, these directions
aim to turn reliable hybrid intelligence from a promising prototype
into a routine ingredient of next-generation industrial and
defense systems.
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