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Editorial on the Research Topic

Robust Monitoring, Diagnostic Methods and Tools for Engineered Systems

Complex engineered systems manifest across all engineering fields. Such systems are further
characterized by uncertainties linked to assumptions and limited information on material
constitutive laws, description of loads, the influence of operational and environmental factors,
energy dissipation mechanisms, motion constraints, or large displacements of system components.
The propagation of these uncertainties adversely affects simulation accuracy and, consequently,
the design, operation, and maintenance decisions for meeting desirable system performance and
safety requirements.

Structural Health Monitoring exploits measurements from operating or tested systems for
the development of robust diagnostic tools and procedures, which aim to improve condition
assessment of complicated engineering systems under uncertainty. Researchers are pushing the
boundaries of such uncertainty quantification tools and diagnostic and prognostic methods to
improve the accuracy of the predictions, or for achieving robust results under sensorial information
that is less accurate but better tailored to functionality requirements. The works in this special issue,
deal with the previous directions.

In Mugabo et al. and Mugabo et al. an experimental campaign on a three-story timber building,
the “Albina Yard,” is performed using a set of accelerometers, with the dataset furthermade available
to the scientific community. The authors further demonstrate how Operational Modal Analysis
methods succeed in identifying the modal properties of this hybrid timber building under ambient
excitation. The findings were compared to a finite element representation of the building and led to
the interesting conclusion of how secondary-elements, such as an exterior wall, and non-structural
elements could bear a significant effect in the modal properties, and therefore the dynamics, of
such buildings. Such a fusion with a system model is often critical to the assessment. However, in
practice, engineers need to resort to model assumptions and simplifications, which as discussed
in Song et al. can result in bias. Song et al. account for this bias by identifying not only the
structural parameters of the assumed model but also of the stochastic properties of the modeling
error through a hierarchical Bayesian framework. This allows for removing the effects of the bias
and obtaining more reliable estimates of the modal properties of the simplified model. The method
is demonstrated by identifying the properties of a shear-type building using data from a building
with rocking foundation.

The drive for energy-efficient sensors for continuous monitoring of field applications has
brought forth challenges related to the acquired data. In Horner et al. the authors discuss
the effect of missing observations in estimating the parameters of regression models and
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suggest a novel methodology to efficiently do so. Experimental
data from a two-bay steel frame and simulated data are used
illustrating that the method can operate robustly despite a
significant amount of missing data. In Gkoktsi et al. the
challenges presented by measurements obtained at a lower
sampling frequency, for example resulting from compression
at the wireless nodes of field sensors, are addressed. The
authors suggest two methods to cope with sub-Nyquist and
non-uniformly sampled time histories and demonstrate the
reconstruction of the original signals in the frequency and time
domain. Experimental data from a monitored highway bridge
and an on-shore Wind Turbine are used to demonstrate the
ability of the methods to robustly reconstruct the signals for
output-only identification.

A challenge in the monitoring of field structures often lies in
the influence of the environmental and operational conditions,
which can result in challenging the commonly used assumption
of time-invariance. In Avendaño-Valencia et al. the authors
address this challenge for the effect of variable wind speeds on
Wind Turbines. Using Gaussian processes, the coefficients of
auto-regressive models representing the structure are updated
for variable wind speeds. The authors demonstrate the capacity
of the method in terms of estimating the fatigue life of a
wind turbine. Similarly, in Gislason et al. the authors rely on
the use of autoregressive time series models for identifying
damage in structural buildings. This is achieved via coupling of
ARMAX models with a sensor clustering concept, for use with
ambient vibration sensors, such as accelerometers. The authors
demonstrate that the changes in the properties of such time-
series models would be able to detect damage in structures as
demonstrated in simulated examples of multi-story buildings.

Strain measurements are revealed as a valuable tool for
condition assessment, and estimation of reserve capacity. In this
context Kliewer and Glisic employ a series of long-gauge Fiber
Bragg Grating sensors for damage detection in beam-types of
structures, by means of a so-called normalized curvature ratio.
The method is demonstrated to robustly detect damage along
beam-type structures, or changes in the support conditions in
analytical examples, an experimental test and when used on
field data from a highway bridge. In separate work exploiting
strains, the fatigue life of the Venoge Bridge is the topic of
investigation of Pai et al. relying on deployment of strain sensors
placed on the bridge since 1995. The authors investigate different
methods for updating a Finite Element model of the Bridge. A
modified Bayesian updating scheme is proposed, which explicitly
includes model bias, and a model falsification framework
(EDMF) are implemented and cross-assessed for updating the
model parameters, which in turn allows estimating the remaining
fatigue life of the structure. The authors further suggest that
EDMF offers the additional advantage of compatibility with
engineering practice.

A mechanical engineering application is the focus in
Matthaiou et al. where the authors target condition monitoring
for gas turbines. The method presented by the authors is
data-driven, using a machine-learning approach based on
novelty detection, focusing on the utilization of training data
that correspond to mainly healthy cases. The framework is

demonstrated on experimental vibration data from engines
operating on different types of fuel, proving the diagnostic
capability of themethod. Remaining in the context of diagnostics,
a modification of the Unscented Kalman Filter for the case of
non-smooth systems is presented in Chatzis and Chatzi, termed
the Discontinuous UKF. Non-smooth systems arise from the
mathematical representations of phenomena related to damage
such as sliding, impacts or plasticity. The authors demonstrate
in numerical examples how the Discontinuous modification
allows for detecting the properties of such systems and achieve
damage detection in a robust and online manner. In Abdessalem
et al. the authors present a novel combination of two Bayesian
tools, Gaussian Processes (GPs), and the use of the Approximate
Bayesian Computation (ABC) algorithm for kernel selection
and parameter estimation in machine learning applications. The
method is demonstrated on simulated and actual datasets.

The previously mentioned papers present a series of tools
that deliver information on the condition of an asset and, in
some cases, further allow estimating its remaining lifespan. A
common issue is how such information can be utilized by a
managing authority for the process of decision making. This is
discussed in Aktan et al., where the authors present an overview
of how sensorial information can be exploited by managing
authorities and a roadmap for facilitating such a transition in
asset management through appropriate training. In rendering
further linkage to the practice of construction, Singh and Sadhu
deliver a dynamic Building Information Modeling (BIM) web-
based framework, which incorporates online visualization of
data, real-time system identification, and decision-making. A
steel bridge located in London, Ontario is utilized as a case study,
where both BIM and SHM are integrated in a unified fashion.

Despite the obvious hurdles posed by uncertainties in the
monitoring and diagnostics of engineered systems, the works
featured in this Special Issue clearly demonstrate that adoption
of a data-driven attitude toward structural assessment is not only
the way forward, but also mature enough to be put into practice.
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Fiber Optic Sensors (FOS) offer numerous advantages for structural health monitoring. In
addition to being durable, lightweight, and capable of multiplexing, they offer the ability
to monitor strain in both static and dynamic mode. FOS also allow for instrumentation of
large areas of a structure with long-gage sensors which helps enable global monitoring
of the structure. Drawing upon these benefits, the Normalized Curvature Ratio (NCR), a
curvature based damage detection method, has been developed. This method utilizes
a series of long-gage Fiber Bragg Grating (FBG) strain sensors for damage detection
of a structure through dynamic strain measurements and curvature analysis. The main
assumption is that the ratios between cross-sectional curvature amplitudes under free
vibration remain unchanged given the state of the structure is unchanged. The theoretical
development of this method is presented along with an analytical study of a simply
supported beam with two damage cases: a loss of flexural stiffness in the span and a
change in rotational stiffness of the support. Validation of the method is then performed
through two implementations. First, through a small-scale laboratory test with a simply
supported aluminum beam subjected to a change in the rotational stiffness of the support.
Second, the method is applied to an existing in-service highway overpass with over
5 years of data collection of dynamic strain events. The advantages and limitations of
the method are identified and discussed. This research shows encouraging results and
the potential for the NCR to be used as a simplistic metric for damage detection.

Keywords: structural health monitoring, curvature, dynamic strain, FBG sensor, damage sensitive feature

1. INTRODUCTION

American infrastructure recently received a D+ rating by the American Society of Civil Engineers
in the 2017 Infrastructure Report (ASCE, 2017). In the US, there are over 600,000 bridges and more
than 25% of those bridges are structurally deficient or functionally obsolete, according to theUS fed-
eral highway administration (USDOT, 2015). The average age of these structurally deficient bridges
is over 65 years, which well exceeds the average service life of 50 years for those structures (Davis
et al., 2013). In an effort tomonitor the state of bridges, the federal highway administration currently
mandates periodic inspection of all bridges which typically done through visual inspection (National
Bridge Inspection Standards (NBIS), 1996; Phares et al., 2004). However, this has been found to be
inefficient and unreliable as it is prone to human errors. Phares et al. looked at the accuracy and
reliability of these routine bridge inspections and found that 56% of average condition ratings are
incorrect with a probability of 95% (Phares et al., 2004). Because civil infrastructure, such as bridges,
roads, dams, and buildings plays a crucial role in the socio-economic life and development of a
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country, there is a need for reliable methods to assess the condi-
tion of structures. Structural health monitoring (SHM) provides
the ability to address this challenge and potentially improve the
lifespan and cost of repairs on these structures. However, imple-
mentation of SHM has its own challenges relating to selection of
damage sensitive feature and data analysis. Bridge managers and
engineers are somewhat reluctant in applying SHM in the cases
where damage-sensitive features have little engineering mean-
ing or where the data analysis is complex and complicated. In
addition, in spite of technological advancements during the last
decade, live load monitoring still represents a challenge, and thus,
their correlation with damage sensitive feature is in many cases
impossible.

To address above challenges, the objective of this research is
to create a simplistic dynamic SHM method based on curvature
change under free vibration, through the use of the normalized
curvature ratio (NCR) as a damage sensitive feature. The NCR
is a parameter that was identified as simplistic to implement in
SHM and independent of live loads. It uses the curvature values
at discrete locations measured using strain sensors. The method
is developed through the use of analytical case studies which
demonstrated the potential of the NCR as a damage sensitive
feature. To assess its performance and limitations, this method
has been applied to both a small-scale laboratory specimen and
to an in-service bridge, both instrumented with long-gage Fiber
Bragg-Grating (FBG) strain sensors. With sufficient sensors and
sensitivity, the NCR method has the potential for Level II SHM,
which includes both the determination that damage is present
and the determination of the geometric location of the damage.
However, due to the limited number of sensors available for the
experimental tests presented in this paper, the analysis of the NCR
method in this paper is limited to Level I SHM.

The field of vibration-based structural healthmonitoringmeth-
ods is currently a vast area of research with contributions to
the field beginning in the 1970s. Extensive literature reviews of
vibration-based methods have been performed by Doebling et al.
(1998), which present a review ofmethods published prior to 1996
(Sohn et al., 2003), review vibration-based methods published
between 1996–2001 (Carden and Fanning, 2004), focus on papers
published after 1996 (Fan and Qiao, 2011), and review vibration-
based methods for beam-type structures. A common approach
for vibration-based monitoring methods is to rely upon detecting
structural changes through natural frequency (Doebling et al.,
1996; Salawu, 1997) and mode shape-based analysis (Shi et al.,
2000; Zonta et al., 2003, 2008). However, it was found by Nandan
and Singh (2014) thatmodal frequencies can be heavily effected by
thermal changes in the thermal environment and these tempera-
ture influences can mask the changes in modal frequencies due
to damage. However, Pandey et al. (1991) found that curvature
based methods may be a more sensitive indicator of damage in-
beam like structures. Since this finding, there has been research
focused on curvature-mode shape damage detection methods
(Wahab and De Roeck, 1999; Quaranta et al., 2016; Yang et al.,
2016) and modal strain energy methods (Shi et al., 1998). It was
found that accelerometers are a commonly used sensor for these
vibration-based methods, including curvature-based methods.
However, strain sensors are more optimal sensor for curvature

based methods as curvature can be directly determined from
the strain sensors and curvature as methods using numerically
calculated curvature were found to have unacceptably high errors
(Chance et al., 1994; Wahab and De Roeck, 1999).

Due to ease of instrumentation and their low cost, accelerom-
eters are very common for dynamic structural monitoring with a
wide range of applications from long-span bridges to wind tur-
bines. However, there are limitations associated with traditional
accelerometer technology that include difficulty multiplexing the
sensors, they are limited to point sensors, they are sensitive to
electromagnetic interference, and they have limited application
in hostile environments (Antunes et al., 2012). In addition, deter-
mination of curvature from acceleration requires differentiation,
which is prone to errors. When using strain sensors, because the
curvature is linearly correlated with the strain, the curvature can
be directly calculated from the strain measurements and elimi-
nates the need for numerical differentiation, which reduces errors.
There are many long-gage fiber optic strain sensors currently
available, such as those developed by Pozzi et al. (2008); however,
this research will focus on the use of fiber-Bragg grating (FBG)
strain sensors. FBG sensors overcome many of the disadvantages
associated with traditional accelerometers as they offer long-gage
sensor possibilities as well as static and dynamic monitoring abili-
ties, they are durable and lightweight, immune to electro-magnetic
interference and offer multiplexing capabilities (Glisic and Inaudi,
2007). This research will focus on the use of long-gage sensors as
opposed to point (short-gage) sensors as they are not influenced
by local inhomogeneity of monitored material (e.g., concrete) and
increase the chance of detecting damage due to the larger spatial
coverage.

The theoretical development of the NCR method is briefly
presented in the Section 2 followed by an application of these
methods in two different analytical studies described in Section 3.
Sections 4 and 5 present the application of the method to a
small-scale laboratory specimen using a simply supported beam
and the application of this method to an existing in-service
structure, respectively. Last, the conclusions are presented in
Section 6.

2. METHOD DEVELOPMENT

This research focuses on the creation of a curvature-basedmethod
applicable to beam-like structures under free vibration that can be
approximated as a Bernoulli–Euler beam. The curvature modes
under free vibration are not expected to change unless the struc-
ture experiences unusual behavior. This creates the basis for the
main assumption of the proposed method, that the ratios between
curvature amplitudes at different locations of the beam should
remain constant under free vibration, unless there is a change in
the state of the structure. While the sensors can detect the damage
directly if it occurs at location of sensors, direct damage detection
is not considered in this study, as it is less challenging and already
addressed in the literature (e.g., see Hubbell and Glisic (2013)).
A summary of the derivation of the equations critical for under-
standing the NCR method are presented in the following sections.
Elementary theoretical equations for the vibrations of continuous
structures are only briefly presented, a more explanation of the
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theory and more detailed derivations can be found in Leissa and
Qatu (2011).

2.1. Dynamic Behavior of Bernoulli–Euler
Beam
The equation of motion for a plane Bernoulli–Euler beam under
transverse free vibration with a small amplitude can be described
by the following equation:

∂2

∂x2 EI(x)
∂2y
∂x2 + ρA(x)∂2y

∂t2 = 0 (1)

where EI(x) is the flexural rigidity, ρ is the density per unit
volume,A(x) is the area of the cross-section, x is the coordinate in
longitudinal direction of the beam, and y is the deflection of the
center-line of the beam. In order to solve this equation, a solution
in the following form is assumed:

y(x, t) = Y(x)Φ(t) (2)

which allows for the solution of themodal displacement of a beam.
The solution for the displacement, assuming a uniform beam
where EI(x)=EI = constant and ρ(x)= ρ= constant, is:

Yn(x) = C1sin(αnx) + C2cos(αnx) + C3sinh(αnx)
+ C4cosh(αnx) (3)

where αn is related to the n(th) eigenfrequency of the beam, ωn,
and can be described by the following equation:

ω2
n =

EIα4
n

ρA (4)

C1, . . .,C4 are constants determined by the boundary and con-
tinuity conditions of the beam. Because the curvature of a beam
at a point is equal to the second derivative of deflection at that
point, equation (2) can be used to obtain a generic equation for
the curvature of a beam. This equation is equivalent to:

κn(x) = −C1α
2
nsin(αnx) − C2α

2
ncos(αnx) + C3α

2
nsinh(αnx)

+ C4α
2
ncosh(αnx). (5)

For the purposes of simplification of presentation, in this paper,
the research focuses on the application to a simply supported
beam. However, the method can easily be extended to any beam-
like structure by following the same logic as for a simply supported

beam. In many real-life applications, free vibration of structure is
frequently dominated by the first mode or it may be possible to
filter out the higher modes of vibration. For a simply supported
beam, in order to determine the constants in equation (5), the
following set of equations can be used to describe the boundary
conditions:

y(0, t) = 0 → Y(0) = 0 (6)

∂2y
∂x2 (0, t) = 0 → Y′′(0) = 0 (7)

y(L, t) = 0 → Y(L) = 0 (8)

∂2y
∂x2 (L, t) = 0 → Y′′(L) = 0 (9)

By substituting equations (6)–(9) into equation (3), a solution
for the coefficients C1–C4 can be obtained, and thus the curvature
distribution along the beam can be determined at any moment
in time for an intact, non-damaged simply supported beam.
Derivations for two typical damage scenarios—reduction of the
cross-section and partial fixation of a support (see Figure 1)—are
presented in the following text. These two cases were studied in
order to assess the theoretical sensitivity of the method.

2.1.1. Equations of Motion: Beam Damaged
Mid-Span
A beam with a loss of stiffness due to a reduction in the cross-
section (e.g., due to a crack, corrosion or loss of composite action
between steel and concrete in steel–concrete composite struc-
tures) can be represented as illustrated in Figure 1A. The beam
can be discretized into 3 different segments, where the beginning
and end segments have the full uniform stiffness, EI1. The middle
segment of this beam is the section with reduced stiffness EI2. For
this system, a series of equations based on equation (3) are needed
to describe the equation of motion for the beam. The equation for
the displacement of the beam for each of the three segments is as
follows:

Y(x) =



C1sin(αx) + C2cos(αx)
+C3sinh(αx) + C4cosh(αx), for x < L1,

C5sin(αx) + C6cos(αx)
+C7sinh(αx) + C8cosh(αx), for L1 ≤ x ≤ L2,

C9sin(αx) + C10cos(αx)
+C11sinh(αx) + C12cosh(αx), for x > L2.

(10)

FIGURE 1 | Case studies on Bernoulli–Euler beams: (A) a beam with reduced cross-section occurring at an arbitrary location along the length of the beam and
(B) a beam with partially fixed end at the support.
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A solution to these equations can be determined using both the
continuity equations listed below in equations (11)–(18) and using
the boundary conditions for the beam. For a simply supported
beam under these conditions, the boundary conditions at x= 0
and x= L for this system are equivalent to the boundary condi-
tions provided in equations (6)–(9). The continuity conditions at
the junctions of the beam segments are represented as follows:

Y1(L1) = Y2(L1) (11)

dY1

dx1
(L1) =

dY2

dx2
(L1) (12)

I1
d2Y1

dx2
1

(L1) = I2
d2Y1

dx2
2

(L1) (13)

I1
d3Y1

dx3
1

(L1) = I2
d3Y1

dx3
2

(L1) (14)

Y2(L2) = Y3(L2) (15)
dY2

dx2
(L2) =

dY3

dx3
(L2) (16)

I2
d2Y2

dx2
2

(L2) = I1
d2Y3

dx2
3

(L2) (17)

I2
d3Y2

dx3
2

(L2) = I1
d3Y3

dx3
3

(L2) (18)

From the equations of motion, the resulting curvature of the
beam dependent on the loss of stiffness (I2/I1) can be determined
once the coefficients C1–C12 are determined.

2.1.2. Equations of Motion: Beam Damaged at
Support
Another typical damage or unusual structural behaviormay occur
when there is a change in the boundary conditions of the structure.
A change in the boundary conditions of a structure can be the
result ofmalfunction of supportmechanismdue to various causes,
such as corrosion, dislocation, and fatigue cracks. This damage
may lead to a change in the rotational stiffness of the beam. The
rotational stiffness can be represented by a rotational spring with
a stiffness kθ at the location of the support and an example of
this beam is illustrated in Figure 1B. Using this new boundary
condition, a relationship between the curvature of the beam and
the rotational stiffness of the support can be determined using the
same boundary conditions as equations (6)–(8) in addition to the
following boundary condition:

∂2y
∂x2 (L, t) = −kθθ(L) → Y′′(L)

Y′(L) =
−kθ

EI (19)

Using equations (6), (7), (8), and (19) and substituting them
into equation (3), a solution for the coefficients C1–C4 and α can
be obtained where a relationship between the rotational stiffness,
kθ , and α can be described by the following equation:

0 = −2sin(αL) +
kθ

αEI

[
cos(αL) − sin(αL)cosh(αL)

sinh(αL)

]
. (20)

Using these equations, the curvature mode shape for a beam
with a pin support and a pin support with a rotational stiffness of
kθ can be determined.

2.2. Normalized Curvature Ratio (NCR)
Method
Based on equation (5), for any beam under free-vibration, in a
single mode (inmost cases in real structures, free vibration occurs
primarily in the first mode), the ratio of the curvature of the
beam at one location and the curvature of the beam at another
location should remain a constant value. This is true regardless
of the boundary conditions of the system and is independent of
the amplitude of the motion. We can define this ratio between
curvatures in two cross-sections as normalized curvature ratio
(NCR) by the following equation:

NCRi,j = κi/κj (21)

where κi is the curvature of the beam at sensor location i and
κj is the curvature of the beam at sensor location j. Experimen-
tally, the peak curvature values for each sensor are used, such
as those shown in Figure 2. In order to obtain NCRij, the peak
curvatures at sensor i can be plotted against the peak curvatures
at sensor j. A linear regression can be fit to this relationship
and the slope of this regression provides the NCR for these two
sensor locations. If there is a change occurring in the struc-
ture (e.g., regarding the boundary conditions of the structure
or reduction of cross-section along the span of the beam), this
change is expected to be reflected as a change in the normalized
curvature ratio (NCR). Evaluation of the NCR is particularly
well suited for a structure instrumented with a series of parallel
strain sensors installed at discrete locations along the length of the
beam. Parallel strain sensors can be placed at the desired locations
to calculate the NCRs and, because strain is linearly related to
the curvature in a beam, the curvature at the desired locations
can be obtained while introducing minimal uncertainty into the
results.

An overview of this SHM method based on NCR is schemat-
ically presented in Figure 3. The initial stage of the method
involves the development of a model for the structural system.
Either an analytical or numerical model can be used for the
NCR method; however, in this paper an analytical model will
be used. If there is a preexisting sensor network installed on
the structure, it may be possible to utilize the existing network

FIGURE 2 | Schematic representation of identification of curvature local
extreme values used in NCR Method: (A) Dynamic curvature response and
(B) the associated peak curvature values.
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FIGURE 3 | Schematic representation of SHM method based on NCR.

as opposed to installing a new system. The effectiveness of the
existing networkmay be evaluated using the structural model that
was developed. If there is no sensor network in place, the model
of the structural system can be used to perform an analysis to
determine the optimal sensor placement for the structure. Once
the structural response is obtained, the free vibration response
time seriesmust be determined.An example is provided in Section
5.2 when analyzing the results from the highway overpass. If
reference data for the structure is available, the damage sensitive
parameter, the NCR, can be compared to the parameters from the
reference point. This comparison allows for an evaluation of the

change in structural performance over time. However, a reference
point is not always available for a structure. In these cases, theNCR
can be compared with the theoretical values determined using the
structural model. If there is a statistically significant difference
between the measured value and the reference value, it may be
indication of unusual structural behavior. Since themeasurements
are collected over very short terms, temperature compensation
is not necessary, and thermal strain can be neglected in calculus
(Sigurdardottir and Glisic, 2013). Thus, a benefit of the NCR
method is that it does not require any correction of data related
to temperature changes.
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3. ANALYTICAL STUDY

In order to assess sensitivity of the method presented above, an
analytical study was performed for the two typical damage types
presented in the previous section. Both analysis will use a simply
supported aluminum beam with a length of 2m, a height of 1 cm,
and a width of 25 cm. Additionally, the results presented will focus
on the strain and curvature values calculated at 4 locations on the
beam that are evenly spaced along the length of the structure (0.4,
0.8, 1.2, and 1.6m). This was done so to partially simulate the
beam being instrumented with a series of 4 strain sensors, similar
to themethod used in laboratory tests (see Section 4). An overview
of the application of themethod is presented alongwith the results
from the study.

3.1. Beam with Reduced Stiffness
An analysis of theNCR for a beamwith a reduced flexural stiffness
was performed by modeling an increasing loss of stiffness of the
cross-section of the beam at various locations on the beam. The
height of the cross-section was varied and this occurred at 0.5
and 1m from the left support. The curvature of this beam was
determined using equations (10)–(18).

The effect of the reduced stiffness on the curvature of the beam
can be seen in Figure 4 showing the curvature mode shape for the
two damage locations. The NCR were calculated for each case and
are shown in Figures 4A,B. For the case with the damage located
at 0.5m, a difference in the NCR values is observed as the cross-
section is reduced. However, these changes in the curvature ratios
are not significant, except in the case of very severe damage. It is
important to note that when the damage is located in themiddle of
the beam, there is a minimal impact on the curvature ratios of the
structure as the vibration of the beam is symmetric. This indicates

that a given configuration of sensors is not equally sensitive to
the damages occurring at different locations. In general, problems
with sensitivity to damage at specific locations (e.g., in the middle
of the beam) may be resolved by instrumenting the structure with
sensors at these identified locations (i.e., where the NCR method
is not sensitive to damage), which will allow for direct detection of
damage; however, direct damage detection is out of the scope of
this study. Hence, because not all sensor placements are optimal
or may have regions where they are insensitive to damage, it is
important to perform an analysis on the structure to determine
the optimal sensor placement prior to installation.

3.2. Beam with Change in Support
Conditions
Using the same beam, a case study was performed by modeling
a damaged support as a rotational spring at the right support of
the beam. The rotational stiffness of the beam boundary condi-
tion was varied from a pinned support, which is idealized as a
rotational stiffness of 0 to a fully fixed support idealized as having
infinite stiffness. Using equations (5) and (11), the curvature
mode of the beam under the various support conditions could be
determined. The results for the varying curvature of the beam are
shown inFigure 5. This figure shows that as the rotational stiffness
of the support increases, there is a global change in the curvature
of the beam.Additionally, there is a shift to the left of the inflection
point for the curvature. Knowing the curvature of the beam under
the changing support condition, theNCRswere determined based
on the locations selected for the strain sensors. The results for the
NCRs are shown in Figure 6.

This application of the NCR method to a beam with a damaged
support in an analytical study shows very good results with a clear
change in the NCR values that is dependent on the stiffness of

FIGURE 4 | Results from two analytical beam models with loss of stiffness in the cross-section: the curvature (A) and corresponding NCRs (C) for analytical beam
with damage located at the quarter-span and the curvature (B) and corresponding NCRs (D) for analytical beam with damage located at the mid-span; (E) Damage
classification and corresponding reduction in stiffness (EI).
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FIGURE 5 | Case study: curvature of beam with varying rotational stiffness at support.

FIGURE 6 | Case study: NCRs of beam with varying rotational stiffness at
support.

the support. Therefore, this case is further tested in the laboratory
with a small-scale experiment.

4. LABORATORY TESTS: SIMPLY
SUPPORTED BEAM

Basic laboratory tests were performed and agreed with the find-
ings of the first analytical study, confirming relatively low sensitiv-
ity of NCRmethod to a reduction of stiffness in the span. The tests
were performed on a cantilevered beam to amplify the magnitude
of curvature, while damage is simulated by varying the stiffness
at predetermined location. Since these results simply confirmed
low sensitivity of the method, and given the figure limitations of
this paper, the focus of this section is on a beam with a support
with a varying rotational stiffness, as the analytical study showed
this application more promising. Additionally, preliminary exper-
imental tests and analysis performed on the simply supported
beam demonstrated the potential for this method (Kliewer and
Glisic, 2015).

4.1. Experimental Setup
Small-scale laboratory tests were performed using a simply sup-
ported aluminum beam with a span of 1.71m and dimensions
of 25.4 cm wide by 0.95 cm high, as shown in Figure 7. The
aluminum beam was instrumented with a total of 5 Fiber Bragg-
Grating (FBG) strain sensors that are installed along the top
surface of the beam. The FBG sensors are not placed symmetri-
cally around the center line of the beam as shown in Figure 7.
The sensors have a gage length of 10 cm in order to simulate
long-gage fiber optic sensors on a full scale structure and the
sensors are spaced 10-cm apart. A series of dynamic tests were
performed where the aluminum beam was displaced at the mid-
span and released in order to induce free vibration. A change in
the boundary condition of the beam was simulated by altering
the right roller support. The stiffness of the roller was gradually
increased by placing clamps at the location of the roller support.
A total of 15 trials were run for each of the 4 support conditions:
a normal behaving roller and 3 conditions with increasing rota-
tional stiffness. A sampling rate of 250Hz was used to record the
strain data from the FBG sensors.

4.2. Results
The typical strain response observed in the beam is shown in
Figure 8A, where the initial sensor response is used as the ref-
erence period, followed by the loading of the beam and finally
the free vibration. The NCR method uses only the strain response
from the free vibration time period. Using the strain response
from the sensors on the beam, the curvature can be determined,
such as the example shown in Figure 8B. This is done for each
of the sensor locations and for each time step. The FBG sensors
are installed along the top surface of the aluminum beam and the
height, h, of the beam is known. The strain along the bottom of the
beam can be assumed to have the same magnitude and opposite
sign to the strain along the top of the beam. The curvature is
related to the strain at each location by the following equation
where, where κ, r, εt, εb, and ε are the curvature, the radius of
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FIGURE 7 | Laboratory setup with small scale aluminum beam: (A) image of simply supported beam experimental set up in laboratory (Kliewer and Glisic (2015)) and
(B) schematic of beam dimensions and sensor layout.

FIGURE 8 | Typical strain and curvature response of aluminum beam during testing: (A) strain response of beam with the initial reference period, followed by the
loading of the beam and last the free vibration of the beam; (B) the curvature of the beam during free vibration; (C) the peak curvature values used for analysis of the
beam.

curvature, the strain at the top of the beam, the strain at the bottom
of the beam, and the strain measured by the sensor.

κ =
εt − εb

h =
2ε
h (22)

Once the curvature response is determined, the peak curvature
values are then extracted and used for the remaining analysis
of the results, as shown in Figure 8C. Additionally, using the
dynamic response of the beam from the strain sensors, it is possi-
ble to determine the natural frequency of the beam at each sensor
location.

4.3. Experimental NCR
Using the peak curvature values, shown in Figure 8C, the NCR
was calculated for the beam for each test performed. In order to
obtain NCRij, the curvature at sensor i was plotted against the

curvature at sensor j for each boundary condition of the beam.
A linear regression can be fit to this relationship and the slope of
this regression provides the NCR for these two sensor locations.
The NCR for each support condition was determined along with
the associated uncertainty and are provided in Figure 9.

A Welch’s t-test was used to compare the statistical difference
between the state of the altered support versus the normal roller.
For all cases, there is a p-value significantly lower than 0.001.
This indicates that for all damage states compared to the normal
state, they are statistically different from one another. In Figure 9,
there is a clear progression of each of the NCR values as the
rotational stiffness of the joint is increased. Similar to the obser-
vations made in the analytical case studies, there are some sensor
locations that are significantly more sensitive to changes in the
rotational stiffness of the support compared to other locations.
Again, this highlights the importance of planning the placement
of the sensors.
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4.4. Rotational Stiffness Analysis
In the tests, it was not possible to directly measure the change
in stiffness of the support due to limitations of the testing set-
up. However, the change of the stiffness could be determined
from the measurements. Using the peak curvature values and the
known boundary condition at the left support, where the support
is a pin and the curvature equals zero, a line can be fit to these
points using the general curvature mode provided in equation
(5). When the curvature mode equation is fit to the undamaged
support case, the inflection point is found to be located at the same
location as the roller support on the beam as expected, as seen in
Figure 10A. However, when the curvature mode equation is fit
to one of the beams with an altered support state, there is a clear
shift in the inflection point of the curvature mode shape to the
left of the support, as shown in Figure 10B. This indicates there

FIGURE 9 | NCRs of aluminum beam in laboratory testing.

is a stiffening of the joint and the support now has some moment
carrying capacity.

The theoretical relationship between the inflection point and
the rotational stiffness of the support was determined for this
beam using themethods presented in Section 2.1.2. For the exper-
imental tests, four different support conditions were analyzed:
undamaged condition, case 1 with minor damage to support, case
2withmoderate damage to support, and case 3withmajor damage
to support. For each of the support conditions analyzed, the exper-
imental inflection point was determined through the curvature
fitting process. These inflection points are then used to determine
the quantitative stiffness of support based on the theoreticalmodel
of the beam, as shown in Figure 11. For the undamaged case,
the inflection point is located at approximately the same location
as the support location and has minimal rotational stiffness, as
anticipated. As the stiffness of the support was increased using
clamps located at the beam support, there is an increasing shift of
the location of the curvature inflection point which corresponds
to a higher theoretical rotational stiffness of the support. After
successful laboratory testing, the method was applied to a real
structure previously instrumented with long-gage FBG sensors, as
shown in Section 5.

5. REAL STRUCTURE: HIGHWAY
OVERPASS

5.1. Description of Structure and
Monitoring System
TheNCRMethodwas implemented on a real bridge instrumented
with a SHMsystem in 2011 (within the frame of an earlier project).
Preliminary results of the case study (Kliewer and Glisic, 2017)
were upgraded with more refined data processing and improved
uncertainty calculation, and presented in the following text.

The bridge is located in the United States and the design
of the structure is representative of a typical highway overpass
that is very common in the United States. Because of this, it

FIGURE 10 | Generic curvature mode shape fit to experimental data for normal support condition (A) versus damaged support condition (B) and the resulting
inflection point.
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FIGURE 11 | Quantifying the rotational stiffness of support in laboratory tests based on the inflection point of curvature.

FIGURE 12 | In-service structure utilized in study: (A) View of underside of instrumented bridge span, (B) cross-section of girder with sensor placement, and (C) plan
view of bridge span with structure dimensions and sensor layout (Flanigan (2014)).

provides the opportunity to test SHM methods on a typical
structure.

The bridge containsmultiple spans and consists of built-up steel
girders of varying sizes and concrete deck. The structure is skewed
at the north end, providing a unique structural behavior as all
girders differ in length. In this research, only the southbound span
of the structure was instrumented. Two of the eight girders on the
span, girder 2 and girder 5, were instrumented with sensors. On
both girders, FBG strain sensors were installed in three locations:

themid span and the quarter spans, as shown inFigure 12. At each
location, strain sensors were installed in parallel topology on the
top flange and the bottom flange for a total of 6 sensors on each
girder. Additionally, a temperature sensor was installed with each
strain sensor.

Since the installation of the monitoring system on the struc-
ture, periodic data collection sessions were carried out several
times a year, and have been ongoing for almost 6 years. During
the data collection sessions, the structure remains in-service and
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the measurements consist of the strain response of the structure
caused by the traffic loading. A total of 28 measurement ses-
sion have occurred from June 2011 to January 2017. The strain
response of the structure was recorded for approximately 1 h for
each session and the data are recorded with a sampling rate of
250Hz. In this paper, the research will focus only on girder 5;
however, similar methods were applied to analyze the response
fromgirder 2. A typical strain response for girder 5 of the structure
is shown in Figure 13. The strain response from the sensors was
filtered using a fourth order Butterworth low-pass filter to remove
the higher frequency noise. The figure shows several peak strain
responses on the structure, which are the result of passing heavy
weight vehicles, followed by periods of free vibration. It is these
periods of free vibration that are used in NCR analysis.

FIGURE 13 | Typical strain response of monitored highway overpass.

5.2. Results
From the strain response from the FBG sensors, the curvature at
the locations of the sensors can be calculated using the following
equation:

κ =
εt − εb

h . (23)

where κ is the curvature, εt is the strain measured at the top of the
cross-section, εb is the strain measured at the bottom of the cross-
section, and h is the vertical distance between the sensors. Because
the data measurements are obtained using existing traffic loading
on the overpass, the typical dynamic strain response recorded
does not have pure free vibration due to the high traffic volumes.
Using the strain response of the structure, a time periods of
approximately free vibration can be extracted from the full time
history. As an example, the strain response shown in the red box
in Figure 13 corresponds to approximately free-vibration (high
strain before the box is passage of a heavy vehicle that excites the
bridge to vibrate). The NCRs were calculated for each monitor-
ing session along with the associated uncertainty of the values,
calculated from uncertainty of the linear regression inherent to
NCR method. These NCRs are shown in Figure 14, spanning
from June 2011 to December 2016. Since the sensor were installed
onto the existing structure with an unknown damage condition,
as a means of comparison the theoretical NCRs were determined
assuming perfect conditions. This was done by approximating the
structure as simply supported and using the equations presented
in Section 2.1. These theoretical values are shown in Figure 14.
Overall, the NCRs showed no significant change in the values
over time, which indicates no significant change of the structural
performance could be noticed.

There is a reasonably good agreement between the theoret-
ical NCR and the NCR1,2 calculated using sensors at locations

FIGURE 14 | NCR calculated using data collected from the overpass.
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5.1 and 5.2. Similarly, there is reasonable agreement between the
theoretical NCR and the NCR1,3 (calculated using sensors at
locations 5.1 and 5.3). The final NCR3,2 calculated using sensor
location 5.3 (the last quarter span) and 5.2 (the midspan) does
not have as strong of an agreement with the theoretical value of
NCR, as there are locations where it falls outside of the uncertainty
bounds of the results obtained from the FBG sensors. This may
indicate existence of unusual behavior around or at location 5.2
or 5.3, and it is coherent with indication of unusual behavior
in the structure noted by Sigurdardottir and Glisic (2013) when
observing the behavior of the neutral axis of the structure. An
analysis similar to the analysis presented in Section 4.3 showed
that behavior of the girder 5 is not consistent with themalfunction
of supports. However, it was determined that potential delami-
nation between the steel and concrete would reduce the stiffness
(EI) of the cross section by 61%. The percent loss in stiffness was
determined using the cross-sectional properties of the composite
section provided in the engineering design drawings. The stiffness
of the section with full composite action was compared to loss
of composite action between the concrete deck and steel girder,
i.e., to the simple sum of stiffnesses of the two components.
The 61% reduction in stiffness would correspond to severe to
very severe non-symmetric damage, as per analysis in Section
3.1, which might be theoretically detectable using the NCR (see
Figure 4).

A study was also performed byDomaneschi et al. (2017), where
a damage detection method was implemented using dynamic
curvature data obtained from the same source of data, the series of
FBG strain sensors on the highway overpass that is also explored
in this paper (Domaneschi et al., 2017). The results of that study
reached similar conclusions regarding the condition of the high-
way overpass, which in part validates the NCR method. However,
method presented by Domaneschi et al. needs a finite element
model (FEM), whereas the NCR method does not require the
FEM, which makes the latter easier to implement and more
efficient damage detection method.

6. CONCLUSION

This paper presents a simplistic SHM method based on dynamic
curvature analysis. The method uses the normalized curvature
ratio (NCR) as a damage sensitive feature. The method was ini-
tially presented through an analytical study of a simply supported
beam with two types of damage—reduction of cross-sectional
stiffness and malfunction of support. This study illustrated the
simplicity of the method and its potential for application in a
real structure. However, the study also identified limitations. First,
the sensitivity of the method depends on the layout of the strain
sensors on the structure, and their relative position with respect
to damage. Additionally, the study indicates that the method is
sensitive to malfunction of support, while it features relatively
low sensitivity in detecting a reduced flexural stiffness occurring
in the span of the beam. Finally, the NCR method is based on
determination of curvatures and thus it is limited to applications
for beam-like structures subjected to bending. The method is not
effective for purely axially loaded structures or structures in pure
shear deformation. The analysis was then performed on a small-
scale laboratory specimen subjected to a change in stiffness in a
cross-section (not presented due to space limitations) and in the

support. These results were consistent with analytical study. They
confirmed low sensitivity to reduction of cross-sectional stiffness,
and demonstrated the ability to use the NCRs as a damage sensi-
tive feature for detection of stiffening of the support, and the abil-
ity to quantify the rotational stiffness of the support based on the
dynamic strain measurements. Finally, the method was applied to
a real, in-service highway overpass which was instrumented with
a series of FBG strain sensors and periodically monitored. From
the dynamic strain measurements on the structure, the NCRs
were successfully calculated and compared with the theoretical
NCR values. Comparison indicated existence of unusual behavior
that is consistent with previous works based on analysis of the
neutral axis. Also, it pointed that although the method features
low sensitivity to reduction of cross-sectional stiffness, it can
successfully be applied to composite structures, as delamination
between the steel and concrete actually significantly reduces the
cross-sectional stiffness. An additional advantage of this method
is the use of the free vibration response of a structure. This means
the method is independent of the magnitude of load applied, does
not require temperature compensation, and allows the structure
to remain unperturbed (in-service, with no restriction to traffic)
during the data acquisition.
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The current work introduces a novel combination of two Bayesian tools, Gaussian
Processes (GPs), and the use of the Approximate Bayesian Computation (ABC) algorithm
for kernel selection and parameter estimation for machine learning applications. The
combined methodology that this research article proposes and investigates offers the
possibility to use different metrics and summary statistics of the kernels used for Bayesian
regression. The presented work moves a step toward online, robust, consistent, and
automated mechanism to formulate optimal kernels (or even mean functions) and their
hyperparameters simultaneously offering confidence evaluation when these tools are
used for mathematical or engineering problems such as structural health monitoring
(SHM) and system identification (SI).

Keywords: kernel selection, hyperparameter estimation, approximate Bayesian computation, sequential Monte
Carlo, Gaussian processes

1. INTRODUCTION AND MOTIVATION

Regression analysis or classification using Bayesian formulation and specifically Gaussian Processes
(GPs) or relevance vector machines (RVMs) is becoming very popular and attractive due to
incorporation of uncertainty and the bypassing of unattractive features from methods like neural
networks. Regression using neural networks for example, although they present a very powerful
tool, sometimes canmake it difficult and demanding to achieve the right tuning. The hard questions
that have to be asked while multi-layer perceptrons (MLPs) are implemented are: which is the right
architecture? How many nodes? What transfer functions? What momentum or learning rate? How
many times they should run for different initial conditions?

The use of Gaussian processes is a current research area of increasing interest, not only for
regression but also for classification purposes (Dervilis et al., 2015). Gaussian processes (GPs) are
a stochastic non-parametric Bayesian approach to regression and classification problems. These
Gaussian processes are computationally very efficient, and non-linear learning is relatively easy.
Gaussian process regression takes into account all possible functions that fit to the training data
vector and gives a predictive distribution around a single prediction for a given input vector. A
mean prediction and confidence intervals on this prediction can be calculated from the predictive
distribution. Due to its simplicity and desirable computational performance, GP has been applied in
numerous domains particularly in structural health monitoring (Cross, 2012; Dervilis et al., 2016;
Worden and Cross, 2018) and civil and structural engineering to construct surrogate models, which
can mimic the real behavior of large-scale complex systems/structures and then make predictions.
In Su et al. (2017), GPmodel has been coupled withMonte Carlo simulations to perform a reliability
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analysis of complex engineering structures. An application of
GP to control an existing building can be found in Ahn et al.
(2015). In Wan et al. (2014), a surrogate model based on GP has
been established to deal with uncertainty quantification formodal
frequencies. An interesting application of GP to deal with finite
element model updating for a civil structures is presented in Wan
and Ren (2015).

The initial and basic step in order to apply Gaussian process
regression is to obtain a mean and covariance function. These
functions are specified separately, and consist of a specification of
a functional form and a set of parameters called hyperparameters.
When the mean and covariance functions are specified, then one
can infer model hyperparameters by minimization of the log-
marginal likelihood. The software used for the implementation of
GP regression was provided by Rasmussen and Williams (2006).

However, as mentioned, a covariance or kernel function has to
be defined and the new questions that one has to ask: how one
chooses the kernel function for a GPs? And of course one could
say, well the people running or providing the code are experts on
GPswhy they donot include a defaultmechanism to choose kernel
and it is user oriented and free choice?

The answer is that the choice of any covariance function or
kernel, determines in the authors opinion, almost all the gener-
alization properties of GPs, but here one is talking about a black
box model and the user might not be an expert, or not have a deep
data or physics understanding or the modeling challenge. In turn,
if one is not qualified to choose the proper covariance function
as an expert, then this work is adding an important practical and
sophisticated approach in order to choose a sensible kernel.

The article starts out with an introduction to the GPs and
approximate Bayesian computation based on Sequential Monte
Carlo (ABC-SMC) algorithm and the selection of the differ-
ent hyperparameters required for its implementation. Then, in
Section Simple Demonstration Example, the application of the
ABC algorithm is illustrated and investigated through two illus-
trative examples using simulated and real data and forms the core
of the article. Finally, the article is closed with some conclusions
about the strengths of the method and future discussion.

2. GAUSSIAN PROCESSES (GP)

Rasmussen andWilliams (2006) define a Gaussian process (GP) as
“a collection of random variables, any finite number of which have
a joint Gaussian distribution.” In recent years, GPs are gaining a lot
of attention in the area of regression (or classification) analysis as
they offer fast and simple computation properties (Dervilis, 2013).
The core of the algorithm is coming fromRasmussen andWilliams
(2006).

2.1. Algorithm Theory
The initial step in order to apply Gaussian process regression is
to define a prior meanm({x}) and covariance function k({x},{x′}),
as GPs are completely specified by them, {x} represents the input
vector. For any real process f ({x}) one can define:

m({x}) = E[ f({x})] (1)

k({x}, {x′}) = E[( f({x}) − m({x}))( f({x′} − m({x′})] (2)

where E represents the expectation. Often, for practical reasons,
because of notation purposes (simplicity), and lack of prior knowl-
edge for the overall trend of the data, the prior mean function is
set to zero. The Gaussian processes can then be defined as

f({x}) ∼ GP(0, k({x}, {x′})). (3)

Assuming a zero-mean function, the covariance function could
be described as

cov( f({x}p), f({x}q)) = k({x}p, {x}q)

= σ2exp
(

−1
2

∥∥∥{x}p − {x}q
∥∥∥2
)
. (4)

This is the squared-exponential covariance function (although
not the only option). It is very important to mention an advantage
of the previous equation as the covariance is written as a function
only of the inputs. For the squared-exponential covariance, it can
be noted that it takes nearly unit values between variables where
their inputs are very close and starts to decrease as the variable
distance in the input space increases.

Assuming now that one has a set of training outputs { f } and a
set of test outputs { f}∗ one has the prior:[

{ f}
{ f}∗

]
∼ N

(
0,
[
K(X,X) K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
(5)

where the capital letters represent matrices. A zero-mean prior
has been used for simplicity, and K(X, X) is a matrix whose
i, jth element is equal to k(xi, xj). And K(X, X*) is a column
vector whose ith element is equal to k(xi; x*), and K(X*, X) is the
transpose of the same. The covariancematrixmust be symmetrical
about the main diagonal.

As the prior has been generated by the mean and covariance
functions, in order to specify the posterior distribution over the
functions, one needs to limit the prior distribution in such a way
that it includes only these functions that agree with actual data
points. An obvious way to do that is by generating functions from
the prior and selecting only the ones that agree with the actual
points. Of course, this is not a realistic way of doing it as it would
consume a lot of computational power. In a probabilistic manner,
the operation can be done easily via conditioning the joint prior
on the observations and this will give (for more details see Bishop
(1995), Nabney (2002), and Rasmussen and Williams (2006)):

{ f}∗|[X]∗, [X], { f}

∼ N
(
K([X∗], [X])K([X], [X])−1{ f},K([X∗], [X∗])

−K([X∗], [X])K([X], [X])−1K([X], [X∗])

)
. (6)

Function values { f}∗ can be generated by sampling from the
joint posterior distribution and at the same time evaluating the
mean and covariance matrices from equation (6).

The covariance functions used in this study are usually con-
trolled by some hyperparameters in order to obtain a better
control over the types of functions that are considered for the
inference. One of themost commonly employed kernels for GPs is
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the squared-exponential covariance function, which can take the
following form:

ky(xp, xq) = σ2
f exp

(
− 1

2l2 (xp − xq)2
)

+ σ2
n δpq (7)

where ky is the covariance for the noisy target set y (i.e.,
y= f ({x})+ ε, where {x} is input vector and ε is the noise).
The length scale l (determines how far one needs to move in
input space for the function values to become uncorrelated), the
variance σ2

f of the signal and the noise variance σ2
n are free

parameters that can be varied. These free parameters are called
hyperparameters.

The tool that is usually applied for choosing the optimal hyper-
parameters forGP regression is themaximummarginal likelihood
of the predictions p({y}|[X], {θ}) with respect to the hyperparam-
eters θ:

log p({y}|[X], {θ}) = −1
2
{y}T[K]−1

y {y}

− 1
2

log |[Ky]| − n
2

log 2π (8)

where [Ky] = [Kf] + σ2
nI is the covariance matrix of the noisy test

set {y} and [Kf] is the noise-free covariance matrix. In order
to optimize these hyperparameters through maximizing the
marginal log likelihood, the partial derivatives give the solution,
via gradient descent:

∂

∂θj
log p({y}|[X], {θ}) =

1
2
{y}T[K]−1 ∂[K]

∂θj
[K]−1{y}

− 1
2
tr
(

[K]−1 ∂[K]
∂θj

)
=

1
2
tr
(

(ααT − [K]−1)
∂[K]
∂θj

)
(9)

where {α}= [K]–1{y}. Of course this solution is not a trivial pro-
cedure, and for specific details, readers are referred to Rasmussen
and Williams (2006).

3. APPROXIMATE BAYESIAN
COMPUTATION (ABC)

As stated in the previous section, by default GPs need a selection
of a kernel which for either SI or SHM might be of great interest
as it may affect not only the mean prediction and actual accuracy
but also the confidence bounds of the prediction. This creates a
model selection and comparison problem, especially when several
competing models—kernels in our case (or even expanded to the
mean function)—are consistent with the selection criterion and
could potentially explain the data reasonably well (this will be
expanded later in the section Discussion).

In reality, selecting the most likely model or kernel among a
family of competing models (big or small) may be quite challeng-
ing, especially with black box methods where deep understanding
of the physics is not obvious.

Several methods have been proposed in the literature, and
someone can start fromMarkov chainMonteCarlo (MCMC) vari-
ants to evolutionary algorithms like genetic algorithms or particle

swarm. The reader can refer to the following references: Schwarz
et al. (1978), Bishop (1995),Green (1995), Kullback (1997), Akaike
(1998), Doucet et al. (2000, 2001), Au and Beck (2001), Nabney
(2002), Lawrence (2003), Marjoram et al. (2003), Ching et al.
(2006), Rasmussen and Williams (2006), Skilling (2006), Gretton
et al. (2007), Beaumont et al. (2009), Toni et al. (2009), Toni and
Stumpf (2010), Barnes et al. (2011), Worden et al. (2011), Neath
and Cavanaugh (2012), Turner and Van Zandt (2012), Filippi
et al. (2013), Hensman et al. (2013), Wilson and Adams (2013),
Chiachio et al. (2014), Ben Abdessalem et al. (2016), and the
references therein, where many varied examples illustrating the
use of the Bayesianmethod are investigated. As GPs are an elegant
Bayesian method, it fits very well to adopt a Bayesian approach
for kernel selection and hyperparameter estimation as this shall
give some uncertainty evaluation around the kernel parameters
as well.

In this contribution, the approximate Bayesian computation
(ABC) algorithm is used for the first time in order to deal with
kernel selection and hyperparameter estimation. ABC offers a
series of advantages over MCMC (or reversible jump MCMC
(RJMCMC) in this context (Green, 1995)). ABC is as general as
a Bayesian method can be as there is no need to evaluate any
extra criterion to discriminate between competing kernels and the
inference can be calculated for any different number of suitable
metric regarding the similarity between the observed and mod-
eled data, bypassing issues associated with intractable likelihood
functions and Gaussian assumptions, which are not always valid.

Another major advantage offered by the ABC algorithm is its
independence of the dimensionality of the competing model, as
ABC is able to jump between the different kernel hyperparameter
spaces without any need of a specific mapping function that
assures continuing of dimension; this is a critical advantage when
dealing with large numbers of kernels with different dimensions.
In practice, the ABC algorithm compares the competing models
simultaneously and eliminates progressively the least likely mod-
els, to converge to the most appropriate ones. For much deeper
evaluation of ABC, the reader is referred to Toni et al. (2009) and
Ben Abdessalem et al. (2016, 2017).

3.1. Quick Overview of ABC Algorithm
For a deep and detailed analysis of the algorithm, the reader is
redirected to Schwarz et al. (1978), Bishop (1995), Green (1995),
Kullback (1997), Akaike (1998), Doucet et al. (2000, 2001), Au
and Beck (2001), Nabney (2002), Lawrence (2003), Marjoram
et al. (2003), Ching et al. (2006), Rasmussen and Williams (2006),
Skilling (2006), Gretton et al. (2007), Beaumont et al. (2009), Toni
et al. (2009), Toni and Stumpf (2010), Barnes et al. (2011),Worden
et al. (2011), Neath and Cavanaugh (2012), Turner and Van Zandt
(2012), Filippi et al. (2013), Hensman et al. (2013), Chiachio et al.
(2014), and Ben Abdessalem et al. (2016) as the purpose of this
work is not to repeat the great advantages and theory behind
ABC-SMC, but for the readers’ convenience, a brief introduction
is given.

In the ABC algorithm, the objective is to obtain a “proper” and
computationally efficient approximation to the posterior distribu-
tion:

π(ξ|u∗, M) ∝ f(u∗|ξ, M)π(ξ|M) (10)
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where M is the model based on a set of parameters (or kernel
function) {ξ}, π(ξ|M) denotes the prior distribution over the
parameter space, and f(u∗|ξ, M) is the likelihood of the observed
data u* for a given parameter set {ξ}.

FIGURE 1 | Training data for example 1.

To overcome the issue of intractable likelihood functions, the
ABC algorithm bypasses the problem by utilizing systematic com-
parisons between observed and output data. The main objective
consists of comparing the simulated data,u, with observed datau*,
and accepting simulations if a suitable distance measure between
them, ∆(u, u*), is less than a specified threshold defined by the
user, ε (for more information check Toni and Stumpf (2010) and
Ben Abdessalem et al. (2016, 2017)). The ABC algorithm, as a
result, gives a sample from the approximate posterior of the form

π(ξ|u∗, M) ≈ πε(ξ|u∗, M) ∝
∫

f(u∗|ξ, M)I
(
∆(u, u∗) ≤ ε

)
× π(ξ|M)du (11)

where I(a) is an indicator function returning unity if the condition
a is satisfied and a zero otherwise; when ε is small enough,
πε(ξ|u∗, M) is a good approximation to the true posterior dis-
tribution.

In this work, the ABC-SMC algorithm presented in Toni
and Stumpf (2010) will be used to make Bayesian inference for
kernel selection and parameter estimation. Generally speaking,
the algorithm works as a particle filter (Schwarz et al., 1978;
Bishop, 1995; Green, 1995; Kullback, 1997; Akaike, 1998; Doucet
et al., 2000, 2001; Au and Beck, 2001; Nabney, 2002; Lawrence,

FIGURE 2 | Model posterior probabilities.
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FIGURE 3 | Kernel parameter distributions.

FIGURE 4 | Model 1, SE.
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2003; Marjoram et al., 2003; Ching et al., 2006; Rasmussen and
Williams, 2006; Skilling, 2006; Gretton et al., 2007; Beaumont
et al., 2009; Chatzi and Smyth, 2009, 2013; Toni et al., 2009; Toni
and Stumpf, 2010; Barnes et al., 2011; Worden et al., 2011; Neath
and Cavanaugh, 2012; Turner and Van Zandt, 2012; Filippi et al.,

2013; Hensman et al., 2013; Chiachio et al., 2014; Ben Abdessalem
et al., 2016) and is based on the sequential importance sampling
(SIS) algorithm, which is a Monte Carlo (MC) method that con-
stitutes the basis for most sequential MC filters developed over
the last decades (see Schwarz et al. (1978), Bishop (1995), Green

FIGURE 5 | Model 2, MATERN.

FIGURE 6 | Model 3, RQ.
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(1995), Kullback (1997), Akaike (1998), Doucet et al. (2000, 2001),
Au and Beck (2001), Nabney (2002), Lawrence (2003), Marjoram
et al. (2003), Ching et al. (2006), Rasmussen and Williams (2006),
Skilling (2006), Gretton et al. (2007), Beaumont et al. (2009), Toni
et al. (2009), Toni and Stumpf (2010), Barnes et al. (2011),Worden
et al. (2011), Neath and Cavanaugh (2012), Turner and Van Zandt
(2012), Filippi et al. (2013), Hensman et al. (2013), Chiachio et al.
(2014), and Ben Abdessalem et al. (2016)). The key idea of ABC-
SMC is to provide an approximation of the posterior density
function by a set of random samples with associated weights. The
algorithm converges through a number of intermediate posterior
distributions before converging to the optimal approximate pos-
terior distribution satisfying a convergence criterion defined by
the user. In a nutshell, starting from the first iteration, one can
choose an arbitrarily large tolerance threshold ε1 to avoid a low
acceptance rate and computational inefficacy. One selects directly
from the prior distributions π(m) and π({ξ}), evaluates the dis-
tance ∆(u*, u), and then compares this distance to ε1, in order to
accept or reject the (m, {ξ}) selection. This process is repeated until
N particles distributed over the competing models are accepted.
One then assigns equal weights to the accepted particles for each
model. For the next iterations (t> 1), the tolerance thresholds are
set such that ε1 >ε2 > . . . > εt. The choice of the final tolerance
schedule, denoted here by εt, depends mainly on the goals of the
practitioner.

4. SIMPLE DEMONSTRATION EXAMPLE

In the next two sections, two illustrations of the ABC-SMC algo-
rithm applied to kernel selection for GPs are presented. For ABC-
SMC implementation, one sets the prior probabilities of each
model to be equal. A population of N = 1,000 particles is used

here, and the marginal likelihood given by equation (8) is used
as a metric to measure the level of agreement between the train-
ing and simulated data. Furthermore, the sequence of tolerance
ε1, ε2,. . ., εt is selected in adaptive way instead of having a prede-
fined sequence of tolerances towalk through. For the first iteration
(population in the ABC jargon), one chooses a high value of the
log-marginal likelihood |log p(y, X, θ)| (set to 1,000 in the present
examples). For the subsequent iterations, one selects εt according
to the distribution of {∆= |log p(y, X, θi)|; i= 1,. . .,N}. For the
next iteration, t= 2, the tolerance εt = 2 is set to the 30 percentile
of ∆ values obtained from the previous population. Finally, the
convergence criterion used here is when the difference between
two consecutive tolerance values is less than a threshold value
defined by the user.

Once the required hyperparameters are defined for the ABC-
SMC, one can go forward in order to determine the GP kernel
which best follows the data.

The first example is a simulated numerical example given by
the form:

y = f(x) + ϵ = −2x + x sin(x) + ε, ε ∼ N(0, 1). (12)

The representation of this simple example based on simulated
training data with input x ranging from 0 to 10 as can be seen
in Figure 1 and it is for demonstration purposes. For this study,
the three most common kernels, the Squared-Exponential (SE)
kernel, the Rational Quadratic (RQ) kernel, and Matern (Ma) 5/2
kernel, were used to compete. It has to be clear that the ABC
does not care about the number of competing kernels neither the
number of their hyperparameters. Furthermore, there would be
no value to keep increasing the number of different kernel models
as this offers nothing in terms of the presenting work and the
application of ABC to GPs.

FIGURE 7 | Training data for example 2.
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The kernel models are defined as

M1 : kSE = σ2 exp
(
− r

2ℓ2

)
M2 : kMa = σ2

(
1 +

√
5r
ℓ

+
5r2

3ℓ2

)
exp

(
−

√
5r
ℓ

)
M3 : kRQ = σ2

(
1 +

r2

2αℓ2

)−α

where r =
∥∥x − x′∥∥. (13)

The SE kernel (as stated in the definition of GPs previously) is
the most common and default kernel for GPs or even RVMs. As
a kernel, it has some nice properties. It is universal, with trivial
integration procedure against most functions. It is clear though
that each function in its prior mode has an infinite number of
derivatives. Furthermore, and more realistically, it has only two
parameters, such as the length scale ℓ that controls the length of
the “wiggles” in the function, and as a result it cannot extrapolate
more than ℓ units away from the data, and the variance σ2 that

determines the average distance of a function away from its mean,
and usually it works just as a scale factor.

The RQ kernel can be seen as adding together SE kernels with
different length scales parameter. As a result, in this case, GP
priors of this kernel produce functions, which vary smoothly
across along different length scales. The parameter α controls
the relative weighting of large-scale or small-scale variations. It
is very evident that when α →∞, then the RQ is the same as
the SE.

The reason that the Matern kernel is presented here as well is
that allows to control the smoothness and includes a large variety
of kernels, which can be proven to be very useful for applications
because of this flexibility. For the majority of the people who
put together a GP regression or classification exercise, they use
extensively the SE or RQ kernels. Both these kernels have closed
form solutions (integration) and are a quick and easy solution that
will probably work well when one is assuming smooth functions
when interpolating.

Figure 2 shows the model posterior probabilities over the
different populations and the associated tolerance threshold

FIGURE 8 | Model posterior probabilities, example 2.
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when ABC algorithm is running. One can easily observe that
for high tolerance thresholds, there is no strong evidence that
a kernel model is more favorable, but between populations 9
and 11, the algorithm gives the trend to favor the simplest,
smoothest SE covariance. In a nutshell, the algorithm tries at
first to move toward the simplest model, which is the SE one
(something that is not so trivial in the next example). As a
result, this means that the more complex model is simply penal-
ized. At population 12, the ABC gives a higher evidence to
the SE covariance, which remains the simplest one and ends
up by finding the true model at population 17 with strong
evidence.

From population 12–17, the algorithm refines the model
parameter estimates associated to the selected kernel. Figure 3
shows the histograms of the model hyperparameters from the last
population.

Figures 4–6 show the training data and the model prediction
with the 95% confidence interval for all different kernels. One

observes a good agreement between the observed and predicted
data. In the next real application example, one is able to fol-
low a more interesting and complex behavior on how the ABC
algorithm chooses the right kernel model by favoring the simplest
model at the beginning but choosing the more complex one at the
end.

To summarize so, why it chooses SE kernel against RQ kernel
for example. First of all, one has to notice that both of them
are giving very similar results in Figures 4 and 5. However,
this is the beauty of the methodology followed via ABC-SMC;
it scales that both are similar, so there is no need to choose RQ
as it is more complicated than SE. If simplicity is good, then
keep it as there is no need to add complexity both mathemati-
cally and computationally. Another point that it is noticeable is
that in Figure 6 where Ma kernel is evaluated there are many
“wiggles” and no outliers, but with 95% confidence intervals,
one expects a percent of outliers to be present as it happens in
Figures 4 and 5.

FIGURE 9 | Histograms of the selected model parameters M1.
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5. REAL DATA APPLICATION

All three kernels described and mentioned earlier are very useful
but if and only if the data is all of the same type with simi-
lar feature space. In real applications thought if one wants to
perform regression and construct a kernel, then for all different
feature/data types, one can multiply kernels together. This is the
common standard way to combine kernels together. In simple

probabilistic language kernels, multiplication can be considered
as an “and” operation. At the same spirit, adding kernels can be
considered as an “or” operation.

So the motivation here (as one can do the exact same exercise
with different kernels as before) is that the model/data structure
one needs are not described by some known kernel (indepen-
dently of how many different kernels one uses). And for demon-
stration reasons, the next real data, toy example, is used. One

FIGURE 10 | Comparison between the log-marginal likelihood values using gradient-based optimizer and ABC-SMC.

FIGURE 11 | 95% CI obtained according to Rasmussen and Williams.
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can with different ways to construct kernel combinations with
different properties that would allow to include as much high-
level structure as possible and check at the same time which of
the “modified” models is the best.

For the purposes of this example of composite covariance
matrix, two competing models are considered

M1 : kSE + kPER × kSE + kRQ + kSE

M2 : kSE + kPER × kMa + kMa (14)

where PER is the periodic kernel, which allows one to model
functions that repeat themselves exactly. The period p determines
the distance between repetitions of the function, and the length
scale is identical to SE kernel. The PER kernel is given by

kPER = σ2exp

−
2sin2(πr)

p

ℓ2

. (15)

The data that were used here consist of CO2 concentrations
fromMauna Loa observatory, and the reader can findmore details
in Keeling et al. (1976), Thoning et al. (1989), Etheridge et al.
(1996), and Tans (2012) (see Figure 7).

Keeling and Whorf (Keeling and Whorf, 2005; Rasmussen and
Williams, 2006; Wilson and Adams, 2013) recorded monthly aver-
age atmospheric CO2 concentrations at the Mauna Loa Observa-
tory in Hawaii. The months between around 1960 and 1998 are
used for training (see Figure 7), and the remaining months until
year 2020 (including GPs extrapolation) are used for testing (see
Figure 12).

A very similar dataset was used in Keeling and Whorf (2005),
Rasmussen and Williams (2006), and Wilson and Adams (2013)

and is often utilized in GPs’ tutorials to demonstrate how GPs
are performing as flexible black box modeling tools (even during
extrapolation). This data set is great as a toy example as one can
notice a long-term rising trend including some seasonal variability
and some irregularities. The currentwork goes toward a fully auto-
mated algorithm and investigation for data pattern recognition
and robust GP modeling. In all procedures (as before), Gaussian
noise is assumed, so that marginalization (or in simple terms
integration) over the unknown functions can be performed in a
closed form.

M1 and M2 in this example are composed of 12 and 9 hyper-
parameters {θ} (as seen in Figure 9), respectively, and Figure 11
shows the prediction and the 95% according to Rasmussen, while
Figure 12 shows the prediction and the 95% confidence bounds
by propagating the uncertainty in the hyperparameters.

On running ABC, Figure 8 shows the model posterior proba-
bilities over the different populations and the associated tolerance
threshold. One can easily observe that for high tolerance thresh-
olds, there is no strong evidence that either kernel model is more
favorable. Between populations 2 and 17, the algorithm gives the
trend to favor the simplest covariance. In a nutshell, the algorithm
tries at first to converge toward the most simple model, which is
the Model Two. This means that the complex model with higher
number of parameters (ModelOne) is penalized. For instance, this
is quite obvious at population 9, where the probability associated
with Model Two is much higher than Model One. However, by
further decreasing the tolerance threshold, it seems that theModel
Two is no longer able to give goodmodel predictionwith adequate
accuracy and in turn, the algorithm moves to favor the more
complex Model One. At population 19, the algorithm gives a
higher evidence to the Model One. The algorithm ends up by
finding the best model at population 23 with strong evidence

FIGURE 12 | 95% CI obtained from propagating uncertainty in the hyperparameters.

Frontiers in Built Environment | www.frontiersin.org August 2017 | Volume 3 | Article 521129

http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


Abdessalem et al. Automatic Kernel Selection for Gaussian Processes

and eliminates Model Two, which is no longer able to explain
the data.

In the subsequent iterations, the algorithm refines the model
parameter estimates associated to the best model. Figure 9 shows
the histograms of the Model One kernel parameters. By making a
comparison between the log-marginal likelihood values obtained
with a gradient-based optimizer and ABC-SMC algorithm over
the populations, one clearly sees from Figure 10 how the ABC-
SMC algorithm converges to a better optimum. This proves the
ability of the ABC-SMC algorithm to better explore the input
space mainly when one has to deal with high-dimensional prob-
lems.

Figures 11 and 12 show the training data and the model
prediction with the 95% confidence interval for all different ker-
nels. Figure 11 is obtained according to Rasmussen and Williams
(2006), whileFigure 12 is obtained by propagating the uncertainty
on the hyperparameter estimates, and the kernel was chosen auto-
matically and not by trial and error (important difference). One
can see a good agreement between both predictions.

6. DISCUSSION AND CONCLUSION

It is evident from the last example that it was different at the
beginning to favor one kernel model against the other. This means
that both kernels could be candidates that can explain and fit
the data. As the algorithm progresses though, and the threshold
tightens, the ABC will jump to the more complex model to under-
stand the trend and the behavior of the data, by forgetting the
insufficient properties of the simplest combined kernel. It is clear
that the method presented here gives to the end user a systematic
and consistent way of choosing kernels for machine learning
applications and simultaneously estimating the parameters that
accompany them. Given these distributions of the hyperparame-
ters, one can even give confidence intervals that are estimated from
the obtained posterior distribution of kernel hyperparameters by
generating randomly a large number of samples, simulating the
kernel model responses and a pointwise confidence interval can
be obtained.

One small comment can now generate a huge discussion that
is outside the remit of this paper but can give to the reader food
for thought.Whymight someone need the uncertainty around the
hyperparameters? Are they giving anymore information forGP or
RVM for example?

The answer is yes and no. It is very evident that kernel selec-
tion (or even the mean function) controls all the generalization

properties of the algorithm, but as semi- or non-parametric tools
like GPs, the uncertainty of the hyperparameters might not add
something to the physical mechanism of this Bayesian tool. How-
ever, one can argue that they can potentially be used for the
evaluation of the training set. GPs or RVMs do not over-fit in the
sense of a classical neural network or trapped to local minima as
they are closed formed solutions by integrating out the parameters
and as a result not having an actual classic error or cost function.
But they are “optimized” by giving a specific training set and the
uncertainty arising from fitting the best kernel and the best hyper-
parameters values can be used as “metric” to evaluate if something
is wrong with the defined training set and furthermore to check
that even different kernelmodelsmight struggle to understand the
data, which means that the training set is not representative when
projected to a validation/test set. Also, if one moves to dynamic
models like NARX-GPs, the current work can find not only the
best lags number by treating them as different competing models
but also a beautiful uncertainty evaluation of choosing specific
lags to represent the dynamic regression algorithm.

To summarize, the presentedworkmoves forward to a compact,
consistent, and automatic mechanism via Bayesian formulation
of the ABC to find an optimal kernel and its hyperparameters
simultaneously. As can be seen in example one, the difference
between kernels is not significant and this is the reason that
the simplest kernel is chosen. In the authors’ opinion, this can
generate an argument like a “no free lunch theorem” as for certain
types of engineering problems (non-linear systems for example),
the computational cost of reaching a solution, averaged over all
different models in the same problem, could be simply the same
for any “optimized” solution algorithm or kernel model, leaving
one with the question is there a best model with best solution that
offers a clear “short cut”?
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In this study, condition monitoring strategies are examined for gas turbine engines
using vibration data. The focus is on data-driven approaches, for this reason a novelty
detection framework is considered for the development of reliable data-driven models
that can describe the underlying relationships of the processes taking place during an
engine’s operation. From a data analysis perspective, the high dimensionality of features
extracted and the data complexity are two problems that need to be dealt with throughout
analyses of this type. The latter refers to the fact that the healthy engine state data
can be non-stationary. To address this, the implementation of the wavelet transform is
examined to get a set of features from vibration signals that describe the non-stationary
parts. The problem of high dimensionality of the features is addressed by “compressing”
them using the kernel principal component analysis so that more meaningful, lower-
dimensional features can be used to train the pattern recognition algorithms. For feature
discrimination, a novelty detection scheme that is based on the one-class support
vector machine (OCSVM) algorithm is chosen for investigation. The main advantage,
when compared to other pattern recognition algorithms, is that the learning problem is
being cast as a quadratic program. The developed condition monitoring strategy can
be applied for detecting excessive vibration levels that can lead to engine component
failure. Here, we demonstrate its performance on vibration data from an experimental
gas turbine engine operating on different conditions. Engine vibration data that are
designated as belonging to the engine’s “normal” condition correspond to fuels and air-
to-fuel ratio combinations, in which the engine experienced low levels of vibration. Results
demonstrate that such novelty detection schemes can achieve a satisfactory validation
accuracy through appropriate selection of two parameters of the OCSVM, the kernel
width γ and optimization penalty parameter ν. This selection was made by searching
along a fixed grid space of values and choosing the combination that provided the highest
cross-validation accuracy. Nevertheless, there exist challenges that are discussed along
with suggestions for future work that can be used to enhance similar novelty detection
schemes.

Keywords: engine condition monitoring, vibration analysis, novelty detection, pattern recognition, one-class
support vector machine, wavelets, kernel principal component analysis
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INTRODUCTION

Vibration measurements are commonly considered to be a sound
indicator of a machine’s overall health state (global monitoring).
The general principle behind using vibration data is that when
faults start to develop, the system dynamics change, which results
in different vibration patterns from those observed at the healthy
state of the system monitored. In recent years, gas turbine engine
manufacturers have turned their attention into increasing the reli-
ability and availability of their fleet using data-driven vibration-
based condition monitoring approaches (King et al., 2009). These
methods are generally preferred, for online monitoring strategies,
over a physics-based modeling approach, where a generic the-
oretical model is developed and in which several assumptions
surround its development. In the case of data-driven condition
monitoring approaches, a model based on engine data can be
constructed so that inherent linear and non-linear relationships,
depending on the method, that are specific to the system being
monitored, can be captured. For this reason, engine manufactur-
ers see the need to implement such approaches during pass-off
tests, where it is necessary to identify possible defects at an early
stage, before complete component failure occurs.

Due to the complex processes taking place in a gas turbine
engine, and since modes of failure of such systems are rarely
observed in practice, the novelty detection paradigm is normally
adopted for developing a data-driven model (Tarassenko et al.,
2009), since in this case only data coming from the healthy state
of the system are needed for training. On the other hand, con-
ventional multi-class classification approaches are not as easy to
implement, since it is not possible to have data and/or under-
standing (labels) from all classes of failure. The main concept of
a novelty detection method is described Pimentel et al. (2014):
training data from one class are used to construct a data-driven
model describing the distribution they belong to. Data that do
not belong to this class are novel/outliers. In a gas turbine engine
context, a model of “normal” engine condition (class N ) is devel-
oped, since data are only available from this class. This model
is then used to determine whether new unseen data points are
classed as normal or “novel” (class A), by comparing them with
the distribution learned from class N data. Such a model must be
sensitive enough to identify potential precursors of localized com-
ponent malfunctioning at a very early stage that can lead to total
engine failure. The costs of a run-to-break maintenance strategy
(i.e., decommissioning equipment after failure for replacement)
are exceptionally high, but most importantly safety requirements
are crucial, and thus, robust alarming mechanisms are required in
such systems.

Novelty detection approaches exploit machine learning and
statistics. In this study, we will use a non-parametric approach
that is specific to the engine being monitored and relies solely
on the data for developing the model. The novelty detection field
comprises a large portion of the machine-learning discipline and
therefore, only a few examples of literature, specific to the applica-
tion of engine condition monitoring using machine learning, will
be mentioned here. Some of the earliest works in this field were
made possible through collaboration between Oxford University
and Rolls Royce (Hayton et al., 2000). The authors in that paper

have used data from vibrations to train a one-class support vector
machine (OCSVM). The so-called tracked orders (defined as the
vibration amplitudes centered at the fundamental of engine shaft
speed and its harmonics) were used as training features for the
OCSVM. The OCSVM has also been implemented to detect the
impending combustion instability in industrial combustor sys-
tems using combustion pressure measurements and combustion
high-speed images as input training data (Clifton et al., 2007).
The method has also been extended in Clifton et al. (2014)
to calibrate the novelty scores of the OCSVM into conditional
probabilities.

The choice of the kernel function used in the OCSVM influ-
ences its classification accuracy significantly. Since a kernel
defines the similarity between two points, its choice is mainly
dependent on the data. However, the kernel width is a more
important factor than the particular kernel function choice since it
can be selected in amanner that ensures that the data are described
in the best way possible (Scholkopf and Smola, 2001). Although
kernel methods are considered as a good way of injecting domain
specific knowledge in an algorithm like the OCSVM, the kernel
function choice and its parameters’ tuning is not so straightfor-
ward. In this study, the authors follow a relatively simple approach
to determine both the kernel function parameter and the opti-
mization penalty parameter for the OCSVM. The kernel function
parameter that was varied is the radial basis function (RBF) kernel
width γ, together with the optimization penalty parameter ν.
In general, γ controls the complexity of describing the training
examples, while ν defines the upper bound on the fraction of
training data points that are outside the boundary defined for
class N data. Using these two parameters, a compromise can be
made between good model generalization capability and good
description of the data (training data set) to obtain accurate and
reliable predictions.

The novelty detection scheme that is presented in the following
sections has been developed for a gas turbine engine that operates
on a range of alternative fuels on different air-to-fuel ratios. This
engine is being used to study the influence of such operating
parameters on its performance (e.g., exhaust emissions), and thus,
it is important to enable the early detection of impending faults
that might take place during these tests. Since we apply novelty
detection on a global system basis, the whole frequency spectrum
of vibration must be used for monitoring, rather than specific
frequency bands that correspond to engine components. As will
be shown later, large vibration amplitudes can be expected in any
region along the spectrum.

EXPERIMENTAL SETUP AND DATA
DESCRIPTION

The experimental data used in this work were taken from a
larger project that aimed to characterize different alternative fuels
from an engine performance perspective, e.g., fuel consumption
and exhaust emissions. Alternative fuels that are composed of
conventional kerosene-based fuel Jet-A1 and bio jet fuels have
shown promising results in terms of reducing greenhouse gas
emissions and other performance indicators. Several research
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FIGURE 1 | Gas turbine engine schematic diagram of the experimental unit, depicting salient features.

programs studied alternative fuels for aviation quite extensively,
as reviewed in Blakey et al. (2011). The facility that was used
to test the different alternative fuels under different engine air-
to-fuel ratios, houses a Honeywell GTCP85-129, which is an
auxiliary power unit of turboshaft gas turbine engine type. Thus,
the operating principle of this engine follows a typical Brayton
cycle. As can be shown in the schematic diagram of the engine
in Figure 1, the engine draws ambient air from the inlet (1 atm)
through the centrifugal compressor C1, where it raises its pressure
by accelerating the fluid and passing it through a divergent section.
The fluid pressure is further increased across a second centrifugal
compressor C2, before being mixed with fuel into the combustion
chamber (CC) and ignited to add energy into the system (in the
form of heat) at constant pressure. The high temperature and
pressure gasses are expanded across the turbine, which drives
the two compressors, a 32 kW generator G that provides aircraft
electrical power and the engine accessories (EA), e.g., fuel pumps,
through a speed reduction gearbox.

The bleed valve (BV) of the engine, allows the extraction of
high temperature, compressed air (~232°C at 338 kPa of absolute
pressure) to be passed to the aircraft cabin and to provide pneu-
matic power to start the main engines. This allows the engine
to be tested on different operating modes as the air-to-fuel mass
flow that goes into the CC can be changed with the BV position.
When the BV opens, a decrease in turbine speed will take place
if there is no addition of fuel to compensate for the lost work.
The energy loss arises from the decrease in work done wc2 to the
engine’s working fluid as it passes through the second compression
stage. The amount of lost work is proportional to the extracted
bleed air mass mbleed and can be expressed as wc2 =mbleedcpdT,
with cp representing the heat capacity of the working fluid and dT
the temperature differential across the second compression stage.
Since the shaft speed must remain constant at 4,356± 10.5 rad/s,
the fuel flow controller achieves this by regulating the pres-
sure in the fuel line, by injecting different mass fuel flow into
the CC.

Increasing the fuel mass flow that goes into the CC to maintain
constant shaft speed without a subsequent increase in air mass

TABLE 1 | Averaged engine operating parameters for three operating modes on
Jet-A1 fuel.

Averaged engine operating parameters Engine operating modes

Mode 1 Mode 2 Mode 3

Fuel mass flow rate (kg/s) 17.8 25.9 31.8
Air-to-fuel ratio 135.9 84.4 62.2
Exhaust gas temperature (°C) 323.0 475.8 604.3

flow rate, raises the exhaust gas temperature, as can be shown
in Table 1. This can be explained by the fact that when there is
a deficiency of oxygen required for complete combustion of the
incoming sprayed fuel, more droplets of fuel are carried further
downstream of the CC, until they eventually burn. This gradual
burning of fuel along the combustion section causes the associated
flame to propagate further toward the dilution zone. Hence, inad-
equate cooling of the gas stream takes place, which causes higher
combustor exit and, in turn, exhaust gas temperatures. This also
implies that there is an upper and lower limit for the exhaust gas
temperature, which is monitored and controlled by the electronic
temperature controller.

Three operating modes have been considered by changing the
BV on three positions. These modes are typical for an auxiliary
power unit and correspond to a specific turbine load and air-to-
fuel ratio. The turbine load is thus solely dependent upon the bleed
load,whilst shaft load (amount ofwork required to drive generator
and EA) is kept constant in all three operating modes. Using
the conventional kerosene jet fuel, Jet-A1, the average values of
key engine parameters change on the three operating modes as
shown in Table 1. Regarding Mode 1, the engine BV is fully
closed; no additional load on the turbine, while Mode 2, is a mid-
power setting and is used when the main engines are switched
off and there is a requirement to operate the aircraft’s hydraulic
systems. During Mode 3, the engine BV is fully opened, which
corresponds to the highest level of turbine load and exhaust gas
temperature. This operating mode is selected when pneumatic
power is required to start the aircraft main engines, by providing

Frontiers in Built Environment | www.frontiersin.org September 2017 | Volume 3 | Article 54334

http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


Matthaiou et al. Gas Turbine Engine Vibration-Based Monitoring

sufficient air at high pressure to rotate the turbine blades until
self-sustaining power operation is reached.

A piezoelectric accelerometer with sensitivity of 10mV/g
was placed on the engine support structure, sampling at 2 kHz
(fs = 2 kHz). The time duration for each test took 110 s. The fuels
that were considered are blends of Jet-A1 and a bio jet fuel [hydro
processed esters and fatty acids (HEFA)]. The specific energy
density of HEFA is 44MJ/kg, and thus, it can release the same
amount of energy for a given quantity of fuel as that of Jet-A1.
The mass fractions of bio jet fuel blended with Jet-A1 in this
study are as follows: 0, 2, 10, 15, 25, 30, 50, 75, 85, 95, and 100%.
Additional blends of fuels were also considered for comparison:
50% liquid natural gas (LNG)+ 50% Jet-A1, 100% LNG and 11%
Toluene+ 89% Banner Solvent.

Figures 2 and 3 show examples of the normalized time- and
frequency-domain accelerations, respectively. The normalization
was done by dividing each time- and frequency-domain acceler-
ation amplitude by its corresponding maximum value, i.e., unit
normalized, so that all amplitudes, corresponding to the different
datasets, vary within the same range [0, 1]. In the time domain,
it is shown that there are certain engine conditions, e.g., 85% Jet-
A1+ 15% HEFA, in which the vibration responses of the engine
operating under steady-state display strong non-stationary trends.

Whereas for conditions such as 50% Jet-A1+ 50% HEFA, the
vibration responses contain periodic characteristics, as can be
more clearly seen at the frequency-domain plots. Note that the
actual recorded acceleration time for each engine condition was
110 s, but, for reasons of clarity only 2 s are shown in the plots.
Figure 3 shows that with condition 85% Jet-A1+ 15% HEFA, the
engine experiences the highest overall amplitude level across the
whole spectrum on Modes 1 and 3. While for Mode 2, the engine
operating under condition 50% Jet-A1+ 50% HEFA exhibits the
highest vibration levels throughout the whole frequency spec-
trum. The above demonstrate that the change in air-to-fuel ratio
changes the statistical properties of the datasets and consequently
the frequency-domain response of the engine for the different fuel
blends. For Modes 1 and 3, with condition 50% Jet-A1+ 50%
HEFA, a strong frequency component at 100Hz is present. Strong
periodicity is also present for 100% LNG, at the same frequency.
Therefore, looking at the datawe can distinguish twomain groups,
i.e., those that contain some strong periodic patterns and those
that do not share this characteristic and in this case can be non-
stationary, if appropriate evaluation of their time-domain statistics
confirms that.

It is hard to provide a theoretical explanation of the physi-
cal context behind the vibration responses acquired, without a

FIGURE 2 | Normalized time-domain plots of engine vibration on four different fuel blends at the highest air-to-fuel ratio tested.

FIGURE 3 | Normalized power spectral density plots of engine vibration on five different fuel blends from the lowest (Mode 1) to the highest (Mode 3) air-to-fuel ratio.
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valid physics-based model that can predict the engine’s vibra-
tion response as an output of a system where, apart from the
dynamics context, complex thermochemical, and other physical
processes take place. At the same time, the nature of the mod-
eling/monitoring problem, if approached from a physics-based
perspective, suggests that model validation would be a significant
challenge. Choosing a data-driven strategy overcomes this chal-
lenge, since the system examined (engine in operation) is treated
as a black box.

DATA ANALYSIS METHODS

As mentioned in the Section “INTRODUCTION,” this study fol-
lows a machine-learning framework for the condition monitoring
of engines using vibration data. This means that, to develop a
methodology that can be used to detect novel engine patterns from
vibration data, three subsequent steps should be taken, following
the data acquisition stage. Those are, namely, data preprocessing,
feature extraction, and development of a learningmodel of normal
engine behavior (Tarassenko et al., 2009).

Preprocessing of Raw Vibration Data
To improve the ability of the novelty detection scheme to deter-
mine whether a data point belongs to the class N or A, while
removing absolute values, a preprocessing method was applied
prior to feature extraction. As has been shown in Clifton et al.
(2006), this step has amajor effect for the novelty detection system
since it enables a better discriminating capability between the
two different classes. Scaling and normalization is also important
for most condition monitoring systems for the removal of any
undesirable environmental or operational effects in the analyzed
data (He et al., 2009). As a preprocessing method, it is considered
for improving the performance of one-class classifiers (Juszczak
et al., 2002): it is a very good practise whenworkingwithmachine-
learning algorithms to scale the data being analyzed, since large
absolute value ranges of features will tend to dominate the ones
with smaller value ranges (Hsu et al., 2016). In this study, the aim
is to enhance the difference in vibration amplitude for classes N
and A, and therefore, the data are chosen to be scaled across the
different conditions tested (not across time).

First, a D-dimensional matrix X= {x1, . . ., xN} of class N was
constructed. An index i= 1, . . .,N is used to denote the different
conditions that were included in this matrix, i.e., the various
fuel blends on the three modes of operation. A separate matrix
Z= {z1, . . ., zL} containing data from both classes (25% of engine
conditions are from class A), was also constructed. This prior
labeling of the two classes, was performed by assembling a matrix
with all the raw data (prior to preprocessing) and reducing its
dimensions to 2 using principal component analysis (PCA), for
visualizing it. The observed data points in the two-dimensional
space of PCA that were far from the rest of the data were assigned
the class A label, while all the others they were given the class
N label. For instance, the condition 85% Jet-A1+ 15% HEFA at
Mode 1 was given the former label.

The scaled version of matrix X was obtained as follows:

χi = [xi − x̄] /σx, (1)

where the mean vector is defined as x̄ = 1
N

N∑
i=1

xi and the variance

vector as σx = 1
N

N∑
i=1

(xi − x̄)2. Now, the scaled version of matrix

Z, with an index denoting the different conditions in the matrix
j= 1, . . ., L, containing data from both classes was obtained as
follows:

ζj = [zj − x̄] /σx. (2)

Feature Extraction of Preprocessed Raw
Vibration Data
The process of feature extraction follows after the data preprocess-
ing stage. The wavelet packet transform (WPT) is chosen for this
purpose. All the coefficients from the time-scale transformations
are used as inputs to an algorithm that is suitable for linear or non-
linear dimensionality reduction, the kernel principal component
analysis (KPCA). This procedure of data transformation using
wavelet bases and projection onto a set of lower-dimensional
axes is advantageous in cases when there is no knowledge about
the characteristic frequencies of the mechanical system being
monitored.

Wavelet Coefficients
The objective of this stage is to obtain a set of discriminating
features from the preprocessed raw vibration data, so that the
learning model will then be able to easily separate the two classes
of engine conditions. It was previously shown in Figure 3 that
there is a certain degree of dissimilarity between the engine condi-
tions with regards to their amplitudes in the frequency spectrum.
Hence, to capture both time- and frequency-domain information
from the data, it is necessary to use time–frequency methods. The
wavelet transform allows one to include time information for the
frequency components. Non-stationary events can, therefore, be
analyzed using the wavelet transform. It is expected that the data
can be more effectively described than with Fourier-based meth-
ods, where any non-stationary regions of the stochastic signal
are not localized in time. Choosing a time–frequency approach,
such as the wavelet transform, might be the best option for the
type of data processed in this study. The simplest time–frequency
analysis method, the short-time Fourier Transform, will not be
an optimal option as the window size is fixed. Hence, there exist
resolution limitations, determined by the uncertainty principle,
which could hinder the analysis of potentially non-stationary
parts of the signal.

The wavelet transform solves the problem of fixed window size,
by using short windows to analyze high frequency components
(good time localization) and large windows for low frequency
components (good frequency localization). An example of wavelet
transforms applied for condition monitoring applications was
presented in Fan and Zuo (2006). Several other frequency meth-
ods exist for monitoring applications, e.g., the Empirical Mode
Decomposition, as presented in Antoniadou et al. (2015), which
can offer similar benefits to the wavelet transform. However,
the latter method is chosen in this work because it is very easy
to implement and a proven concept that is mathematically well
grounded. The wavelet transform was originally developed for
constructing a map of dilation and translation parameters. The
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dilation represents the scales s≈ 1/frequency and translation τ

refers to the time-shift operation. Consider the nth engine con-
dition χn(t), with t= {0, . . ., 110} s. The corresponding wavelet
coefficients can be calculated as follows:

c(s, τ) =
∫

χn(t)ψs,τ(t)dt. (3)

The function ψs ,τ represents a family of high frequency short
time-duration and low frequency large time-duration functions
of a prototype function ψ. In mathematical terms, it is defined as
follows:

ψs,τ(t) =
1√
|s|

ψ
( t − τ

s

)
, s > 0, (4)

when s< 1 the prototype function has a shorter duration in
time, while when s> 1 the prototype function becomes larger in
time, corresponding to high and low frequency characteristics,
respectively.

In Mallat (1999), the discrete version of Eq. 3, namely, the
discrete wavelet transform (DWT), was developed as an efficient
alternative to the continuous wavelet transform. In particular, it
was proven that using a scale j and translation k, that take only
values of powers of 2, instead of intermediate ones, a satisfactory
time–frequency resolution can be still obtained. This is called the
dyadic grid of wavelet coefficients, and the function presented in
Eq. 4, becomes a set of orthogonal wavelet functions:

ψj,k(t) = 2j/2
ψ
(
2jt − k

)
, (5)

such that redundancy is eliminated using this set of orthogonal
wavelet bases, as described in more detail in Farrar and Worden
(2012).

In practice, the DWT coefficients are obtained by convolving
χn(t) with a set of half-band (containing half of the frequency
content of the signal) low- and high-pass filters (Mallat, 1989).
This yields the corresponding low- and high-pass sub-bands of
the signal. Subsequently, the low-pass sub-band is further decom-
posed with the same scheme after decimating it by 2 (half the
samples can be eliminated per Nyquist criterion), while the high-
pass sub-band is not analyzed further. The signal after the first
level of decomposition will have twice the frequency resolution
than the original signal, since it has half the number of points. This
iterative procedure is known as two-channel sub-band coding
(Mallat, 1999) and provides one with an efficient way for com-
puting the wavelet coefficients using conjugate quadrature mirror
filters. Because of the poor frequency resolution of the DWT at

high frequencies, theWPTwas chosen for feature transformation.
The difference between DWT and WPT, lies on the fact that the
latter decomposes the higher-frequency sub-band further. The
schematic diagram of the WPT up to 2 levels of decomposition is
shown in Figure 4. First, the signal χn(t) is convolved with a half-
band low-pass filter h(k) and a high-pass filter g(k). This gives, the
wavelet coefficient vector c1,1, which captures the lower-frequency
content [0, fs/4] Hz and the wavelet coefficient vector c2,1 that
captures the higher-frequency content (fs/4, fs/2) Hz. After j levels
of decomposition the coefficients from the output of each filter
are assembled on a matrix cn, corresponding to the nth engine
condition χn. Note that each coefficient has half the number of
samples as χn(t) in the first level of decomposition. In this study,
four levels of decomposition were considered as an intermediate
value. The above process was repeated for the rest of the N− 1
engine conditions to get thematrix of coefficientsC= {c1, . . ., cN}.

Low-Dimensional Features
The wavelet coefficients matrix C is a D-dimensional matrix, i.e.,
it has the same dimensions as the original dataset. Hence, lower-
dimensional features are necessary to prevent overfitting, which
is associated with higher dimensions of features. In this study, the
PCA, was initially used for visualization purposes, e.g., to observe
possible clusters of the data points for matrix X. Its non-linear
equivalent, the KPCA, is used for dimensionality reduction so that
non-linear relationships between the features can be captured.

Principal component analysis is a method that can be used
to obtain a new set of orthogonal axes that show the highest
variance in the data. Hence, C was projected onto 2 orthogonal
axes, from its original dimension D. In PCA, the eigenvalues λk
and eigenvectors uk of the covariance matrix SC of C are obtained
by solving the following eigenvalue problem:

SC uk = λk uk, (6)

where k= 1, . . .,D. The eigenvector u1, corresponding to the
largest eigenvalue λ1 is the first principal component, and so
on. The two-dimensional representation of C, i.e., Y (an N × k
matrix), can be calculated through linear projection, using the first
two eigenvectors:

Y = C uk=1,2. (7)

In Schölkopf et al. (1998), the KPCA was introduced. This
method is the generalized version of the PCA because scalar
products of the covariance matrix SC are replaced by a kernel
function. In KPCA, the mapping ϕ of two data points, e.g., the

FIGURE 4 | Wavelet packet transform schematic diagram up to decomposition level 2. At each level, the frequency spectrum is split into 2j sub-bands.
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nth and themth wavelet coefficient vector cn and cm, respectively,
is obtained with the RBF kernel function as follows:

k(cn, cm) = e
∥cn−cm∥2

2 σ2KPCA . (8)

Using the above mapping, standard PCA can be performed in
this new feature space F , which implicitly corresponds to a non-
linear principal component in the original space. Hence, the scalar
products of the covariancematrix are replacedwith theRBFkernel
as follows:

Sϕ = 1/N
N∑
i

ϕ(ci)Tϕ (ci). (9)

However, the above matrix cannot be used directly to solve an
eigenvalue problem as in Eq. 6, because of its high dimension.
Hence, after some algebraic manipulation, the eigenvalues ℓd and
eigenvectors ud can be computed for the kernel matrix K (of
size N×N), instead of the covariance matrix (of size F ×F).
Therefore, in KPCA, we are required to find a solution to the
following eigenvalue problem instead:

Kud = ℓdud, (10)

where d= {1, . . . ,N}, sinceF >N, the number of non-zero eigen-
values cannot exceed the number of engine operating conditions
N (Bishop, 2006). Using the eigenvectors of the kernel matrix, it is
possible to obtain the new projections Y =

{
y1, . . . , yN

}
of the

mapped data points of wavelet coefficients ϕ(ci) on a non-linear
surface of dimensionality d that can vary from 1 up to N.

Learning Model for Novelty Detection
Support vector machines as a tool for classification offer the
flexibility of an artificial neural network, while overcoming its
pitfalls. Using a kernel function to expand the original input
space into a higher dimensional one to find a linear decision
hyperplane is closely related to adding more layers to an arti-
ficial neural network. Therefore, the algorithm can be adapted
to match the characteristics of our data better, in such a man-
ner that enhances the prediction accuracy. Given that OCSVM
forms a quadratic optimization problem, it guarantees to find
the optimal solution to where the linear decision hyperplane
must be positioned (Schölkopf et al., 2001; Shawe-Taylor and
Cristianini, 2004). On the other hand, it is possible to obtain
a local optimum as a solution to finding the mean squared
error in an artificial neural network using the gradient descend
algorithm.

As training data, we use the matrix obtained from KPCA, i.e.,
Y . Whereas, lower-dimensional representations of testing data
(from the matrix Z) are obtained by following the same feature
transformation, selection, etc. The OCSVM methodology allows
the use of the RBF kernel function, which maps the data points in
Y in a similar way as that in KPCA. However, the formulation in
the LIBSVM toolbox (Chang and Lin, 2011) is slightly different for
the RBF kernel. Given two data points yn and ym, the RBF kernel
implemented in the OCSVM is defined as follows:

k(yn, ym) = e−γ∥yn−ym∥2

. (11)

After the training data are mapped via the RBF kernel, the
origin in this new feature space is treated as the only member of
class A data. Then, a hyperplane is defined such that the mapped
training data are separated from the origin with maximum mar-
gin. The hyperplane in the mapped feature space is located at
ϕ(yi) − ρ = 0, where ρ is the overall margin variable. To separate
all mapped data points from the origin, the following quadratic
program needs to be solved:

min
w,ρ,ξ

0.5wTw +
1

νN
∑
i

ξi − ρ

subject to: (wϕ
(
yi)
)

≥ ρ − ξi, i = 1, . . . ,N, ξi ≥ 0, (12)

where w is the normal vector to the hyperplane and ξ are called
slack variables and are used to quantify the misclassification error
of each data point, separately, according to the distance from
its corresponding boundary. The value ν that was previously
mentioned is responsible for penalizing for misclassifications and
is bounded ν∈ (0, 1]. The decision that determines whether an
unseen data point y∗, i.e., from matrix Z, belongs to either of
the two classes of engine conditions can be made by using the
following function:

g
(
y∗) = sgn

[
wϕ
(
y∗)− ρ

]
. (13)

For a data point from class A, g(y∗) > 0, otherwise, g(y∗) ≤ 0.
Note that for practical reasons, the optimization problem in Eq.
12 is solved by introducing Lagrange multipliers. One of the main
reasons for that is because it enables the optimization to be written
in terms of dot products. This gives rise to the “kernel trick,” which
enables the problem to be generalized to the non-linear case by
using suitable kernel functions, such as the RBF kernel that is used
in this study.

RESULTS AND DISCUSSION

In this work, the RBF kernel was used to map the data points
of the OCSVM to an infinite dimensional feature space, where
linear separation of the two classes can be achieved. By employ-
ing an OCSVM to our problem, we have available a wide range
of kernel function formulations to use. The RBF kernel is one
of the most popular ones, since it implies general smoothness
properties for a dataset, an assumption that is commonly accepted
in many real-world applications, as discussed in more detail in
Scholkopf and Smola (2001). An RBF kernel has two parameters
that need to be determined to adapt the OCSVM algorithm to
the characteristics of the vibration signals expected in this study.
These parameters are called the kernel width γ and optimiza-
tion penalty ν. By observing the variation in validation accuracy
αν of the OCSVM on a fine grid of values of γ and ν, it was
possible to determine the combination of those two values that
maximize αν. The values of γ and ν were chosen in steps of powers
of 2, as suggested from a practical study in Hsu et al. (2016).
The validation accuracy was calculated using a 10-fold cross-
validation scheme to prevent overfitting the data. As discussed
in more detail in Bishop (2006), the cross-validation scheme is
used when the supply of training data is small. In such cases,
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there are not enough data to separate them into training and
validation datasets, to investigate the model robustness and accu-
racy. In our study, the number of engine operating conditions is
relatively small as compared to the number of dimensions in the
feature matrix. Therefore, cross-validation scheme is a possible
solution to the problem of insufficient training data. In more
detail, in this scheme the data are first divided into 10 equal-
sized subsets. Each subset is used to test the model’s (which
was trained on the other nine subsets) classification performance
sequentially. Each data point in the dataset of vibration training
data is predicted once. Hence, the cross-validation accuracy is the
percentage of correct classifications among the dataset of vibration
training data.

In Figure 5, we present two exemplar results of cross-validation
accuracies variation on a grid space of γ and ν parameters. These
results correspond to the cross-validation accuracies obtained by
training the OCSVM with the wavelet coefficients dataset after
being “compressed” with PCA (right plot) and KPCA (left plot).
The cross-validation accuracy was evaluated with ν. in the range
of 0.001 and 0.8 in steps of 0.002, while γ being in the range of
2−25 and 225 in steps of 2. The choice of this grid space for ν was
made on the fact that this parameter is bounded, as it represents
the upper bound of the fraction of training data that lie on the
wrong side of the hyperplane [see more details in Schölkopf et al.
(2001)]. In the case of γ, there was no upper and lower limits,
therefore, a relatively wider range was selected. In both cases, the
steps were determined such that computational costs were kept to
a reasonable amount. Generally, the grid space decision followed
a trial and error procedure for the given vibration dataset, to
determine suitable boundaries and step size. As can be observed
from the contour plots, the grid search allows us to obtain a high
validation accuracywhen an appropriate combination of γ and ν is
chosen. For our dataset, this combination can be found mostly on
relatively low values of γ. As the value of γ decreases, the pairwise
distances between the training data points become less important.
Therefore, the decision boundary of the OCSVM becomes more
constrained, and its shape less flexible due to the fact that it will
give less weight to these distances. Note that the examples in
Figure 5, were produced with a d= 100 for Y and D= 100 for Y
(see Low-Dimensional Features), with the decomposition level of
WPT j= 4 and (for KPCAonly) a kernel width γKPCA = 1. Clearly,

using KPCA with the RBF kernel, a maximum cross-validation
accuracy of around 95% can be obtained, while with the standard
PCA the classification accuracy of the OCSVM is relatively poor,
i.e., around 60%. Hence, there is an advantage of using KPCA over
standard PCA for the specific dataset that is being used in this
study. This is expected since KPCA finds non-linear relationships
that exist between the data features.

The grid search method for finding “suitable” values for γ and
ν, offers an advantage when other parameters, e.g., KCPA kernel
width σKPCA, cannot be determined easily. It can be demonstrated
that αν can be increased significantly, in comparison to a fixed set
of default values. The LIBSVM toolbox suggests the default values
to be ν= d−1 and γ = 0.5. In Figure 6, the validation accuracy is
shown for different values of KPCA kernel width σKPCA and num-
ber of principal components d, for the cases when γ and ν were
selected from grid search and when they were given their fixed
default values. It is clear from those two plots that the OCSVM
parameters γ and ν can be “tuned” such that the validation accu-
racy can be maximized, regardless of the choice of d and σKPCA.
This observation illustrates the strength of kernel-based methods,
in general, since the kernel width can have a great influence in
describing the training data. Most of the times, choosing this
parameter is only necessary to obtain a suitable adaptation of our
algorithms (Shawe-Taylor and Cristianini, 2004). As can be seen
by choosing different ν and γ combinations each time (according
to the grid search procedure), themaximum achievable validation
accuracy is always close to 100%. This is a major improvement
from the corresponding accuracy that can be obtained using the
fixed set of values. Moreover, this demonstrates that it is not so
challenging to “tune” a support vector machine, since there are
only two parameters that need to be found, and this can be done
using the grid search procedure. In contrary, an artificial neural
network requires its architecture, the learning rate of gradient
descent, among other parameters to be specified beforehand,
which makes the problem of “tuning” the algorithm much more
difficult. Nevertheless, the strongest point of a support vector
machine is its ability to obtain a global optimum solution for any
chosen value of γ and ν we specified, such that its generalization
capability is always maximized.

As it was shown previously in Figure 5, the chosen γ value
(from the grid search) was very small. This is true for every case

FIGURE 5 | Cross-validation accuracy variation with γ and ν for the one-class support vector machine-based learned model using features of kernel principal
component analysis (left) and standard principal component analysis.
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FIGURE 6 | Variation in cross-validation accuracy for different d and σKPCA for selected (left) and fixed (right) γ and ν values.

examined, e.g., for different d values. For this reason, it can be said
that the algorithm generalizes better with a less complex decision
boundary. However, the “tuning” of the OCSVM proves to be
challenging because the prediction accuracy (using the test data
set) is lower than expected, i.e., less than 50%. Most of the errors
occurred for data points wrongly accepted as coming from class
A, whereas in reality they belonged to class N . Plausible reasons
for the unsatisfactory performance of the OCSVMon the test data
set are discussed below:

• The validation stage of the OCSVM evaluates only the errors of
wrongly rejecting data from classN . One could assume that the
reason behind this misclassification could be associated with
the errors in the calculation of the parameters γ and ν estimated
with the grid search. In terms of choosing γ and ν, there have
been a few attempts to tackle this problem in different ways
than grid search. For instance, in Xiao et al. (2015), the authors
presentedmethods to choose the kernel width γ of the OCSVM
with what they refer to as “geometrical” calculations.

• Due to the nature of the data, there is a lot of variability
between the engine conditions and within each condition, too.
Therefore, it is difficult to develop a model using class N data
if the characteristics of each condition within the same class
are different. The choice of appropriate training data is an
important factor for the data-driven approaches followed. In
this case, the representation of the data should be chosen to be
in domains with appropriate time resolution and the pattern
recognition algorithms chosen should potentially not depend
on training but work in an adaptive framework.

CONCLUSION

In this study, we have followed a novelty detection scheme for con-
dition monitoring of engines using advanced machine-learning
methods, chosen as appropriate for the kind of data analyzed. This
resulted in a better description of the main challenges that can

be faced when following a data-driven strategy for monitoring
engine vibration data. The novelty detection scheme was chosen
over a classification approach due to the lack of training data for
the various states of an engine’s operation, commonly faced in
real life applications. The following steps were examined as fun-
damental, optimal methods for the analysis of the data. A model
of normality, based on OCSVMs, that was trained to recognize
scenarios of normal and novel engine conditions, was developed
using data from the engine operating under conditions in which
the engine experienced low vibration amplitudes. The choice of
this novelty detection machine-learning method was due to the
fact that the pattern recognition problem is based on building a
kernel that offers a versatility that can support the analysis ofmore
complex data. In this case, according to the analysis presented in
the study, the heavy influence of the penalizing parameter ν and
kernel width γ of the OCSVM can affect the validation accuracy.
Using a fine grid search for selecting the parameters ν and γ, it
is possible to achieve close to 100% in validation accuracy, as
demonstrated in the results. This is a significant advantage when
there is no methodology in place in selecting other parameters,
such as the number of principal components used in KPCA.
This also outlines one of the strengths of kernel-based methods,
which is the adaptability to a given a data set. In particular,
the RBF kernel was proven very effective in describing the data
from the engine, by choosing an appropriate value of its kernel
width γ.

The limitations of the novelty detection approaches in general
and the one discussed in particular in this study include the follow-
ing points: the training vibration data that can be obtained from
engines and the limitations of the specific algorithms examined.
For the latter, the selection of ν and γ was discussed and an inde-
pendent test data set that included 25% of conditions from novel
engine behavior was used to calculate classification accuracies
using the selected ν and γ from the grid search. Even though,
validation results were exceptionally good and the model did not
seem to overfit the data as the decision boundary was smooth and
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the number of support vectors relatively small, the classification
accuracy using the test data set was unsatisfactory. The largest
errors occurred when incorrectly predicting data points from the
healthy engine conditions, as being novel. A few possible reasons
as to why this can happen were mentioned in the previous part of
the study.

To improve the novelty detection scheme presented in this
study, some further work is required to train the OCSVM appro-
priately. For instance, instead of selecting ν and γ using a grid
search approach, it is possible to use methods that calculate those
parameters in a more principled way using simple geometry. Also,
the wavelet transform features extracted from the data, might
have resulted in a large scattering of data points in the feature
space due to the fact that there is a high variability in the signals
from each engine condition. One way to solve this problem is
to examine new set of features needs that can provide better
clustering of the data points from the healthy engine conditions,
so that a smaller and tighter decision boundary can be formed in
the feature space. Another suggestion would be the development
of newmachine-learning algorithms that do not rely on the quality
of the training data but can rather adaptively classify the different
states/operation condition of the engine examined.
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For a number of applications, including real/time damage diagnostics as well as control,
online methods, i.e., methods which may be implemented on-the-fly, are necessary.
Within a system identification context, this implies adoption of filtering algorithms, typically
of the Kalman or Bayesian class. For engineered structures, damage or deterioration
may often manifest in relation to phenomena such as fracture, plasticity, impact, or
friction. Despite the different nature of the previous phenomena, they are described
by a common denominator: switching behavior upon occurrence of discrete events.
Such events include for example, crack initiation, transitions between elastic and plastic
response, or between stick and slide modes. Typically, the state-space equations of
such models are non-differentiable at such events, rendering the corresponding systems
non-smooth. Identification of non-smooth systems poses greater difficulties than smooth
problems of similar computational complexity. Up to a certain extent, this may be
attributed to the varying identifiability of such systems, which violates a basic requirement
of online Bayesian Identification algorithms, thus affecting their convergence for non-
smooth problems. Herein, a treatment to this problem is proposed by the authors, termed
the Discontinuous D– modification, where unidentifiable parameters are acknowledged
and temporarily excluded from the problem formulation. In this work, the D– modification
is illustrated for the case of the Unscented Kalman Filter UKF, resulting in a method
termed DUKF, proving superior performance to the conventional, and widely adopted,
alternative.

Keywords: identifiability, non-smooth systems, Kalman filters, UKF, system identification and structural health
monitoring, Bayesian methods

1. INTRODUCTION

The increasing availability of dense and heterogeneous sensor information has allowed for condition
assessment and robust diagnostics of linear and non-linear engineered systems across diverse
domains, including the civil, mechanical, and aerospace fields (Kumar and Crassidis, 2007; Worden
et al., 2008; Farrar and Worden, 2012). Of particular interest for a number of specialized imple-
mentations, including that of robust diagnostics and control, are systems that extend beyond the
linear range, commonly attained in response to extreme or unusual loads. Such loads may induce
behavior that is non-linear and potentially non-smooth, as in the case of plasticity (Smyth et al.,
1999; Ebrahimian et al., 2017), impact (Wriggers, 1991), fracture (Kakouris and Triantafyllou, 2017),
and sliding (Giannakopoulos, 1989). The adequate modeling of such systems may be achieved by

Frontiers in Built Environment | www.frontiersin.org October 2017 | Volume 3 | Article 56142

http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org/Built_Environment/editorialboard
http://www.frontiersin.org/Built_Environment/editorialboard
https://doi.org/10.3389/fbuil.2017.00056
https://creativecommons.org/licenses/by/4.0/
mailto:manolis.chatzis@eng.ox.ac.uk
https://doi.org/10.3389/fbuil.2017.00056
http://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2017.00056&domain=pdf&date_stamp=2017-10-19
http://www.frontiersin.org/Journal/10.3389/fbuil.2017.00056/abstract
http://www.frontiersin.org/Journal/10.3389/fbuil.2017.00056/abstract
http://www.frontiersin.org/Journal/10.3389/fbuil.2017.00056/abstract
http://loop.frontiersin.org/people/288520
http://loop.frontiersin.org/people/247299
http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


Chatzis and Chatzi DUKF for Non-Smooth Problems

application of offline (Papadimitriou and Papadioti, 2013; Au
and Zhang, 2016; Zhang and Au, 2016) or of (near) “real-time”
identification schemes, the latter typically relying on adoption of
Bayesian-type filters (Kalman, 1963; Ljung and Glad, 1994). The
task of online identification is a non-trivial one, especially when
conjoined with identification of system parameters, which are
often not known a priori or are highly uncertain (Astroza et al.,
2017).

When both unmeasured system states and system parame-
ters are to be estimated, a so-called problem of joint state and
parameter identification is posed, often expressed as a non-linear
system identification case (Chatzi and Smyth, 2014). In previous
years, online non-linear estimation was for themost part achieved
by means of the Extended Kalman Filter (EKF) (Mariani and
Corigliano, 2005; Ding et al., 2014; Ebrahimian et al., 2015).
However, more recently, methods which avoid linearization of
the state equations, such as the Ensemble Kalman Filter (EnKF)
(Huang et al., 2017), the Unscented Kalman Filter (UKF) (Julier
and Uhlmann, 1997; Chatzi et al., 2010; Omrani et al., 2013; Al-
Hussein and Haldar, 2015), and the Particle Filter (Chatzi and
Smyth, 2012; Eftekhar Azam et al., 2012), have gained in popu-
larity due to their flexibility in treating non-linear dynamics. Of
the aforementioned techniques, the UKF in particular employs a
reduced number of particles, termed the Sigma-Points, maintain-
ing a rapid and online estimation. This is the main driver behind
its selection as the method of choice in this paper.

Kalman-type, and Bayesian filters in general, place a funda-
mental assumption on the dynamic states and the time-invariant
parameters of a system being fully observable (Kalman, 1963;
Hermann and Krener, 1977; Diop and Fliess, 1991) and identi-
fiable (Walter, 1982). While this holds true for smooth systems,
the same does not apply for their non-smooth counterpart, which
pertains to systems that are described by non-differentiable state-
space equations (Chatzis et al., 2014; Olivier and Smyth, 2017a).
Nonetheless, the simulation and tracking of non-smooth systems
is essential for numerous engineering problems, since these are by
default tied to manifestations of damage and failure.

Previous work of the authors (Chatzis et al., 2014) overviews
the classification of systems in accordance with their observability
and identifiability properties. Violation of this property forms a
salient obstacle for Bayesian-type online identification algorithms,
which are expected to diverge for unobservable states or param-
eters (Liu et al., 1996), which is naturally amplified for non-
linear systems. The methods presented in Chatzis et al. (2014)
may be implemented to infer the observability and identifiabil-
ity of a system’s states and parameters, and the way in which
these evolve during a system’s response under specific loads.
This information may then be seeded into the online estimators
(filters) in real-time for ensuring convergence, thereby improving
estimation.

In this work, and following original developments introduced
in Chatzis et al. (2017), a modified version of the standardUKF is
proposed. The key to the formulation lies in adoption of amodular
state-space formulation, evaluation of the observability within
each time step of the analysis, and selection of an appropriate sub-
space of the full state vector to be used by the UKF. The method
is termed the Discontinuous D– modification to the UKF, i.e.,

the DUKF. Examples are presented illustrating the performance
of the method for models used in the context of plasticity, which
are however general enough to be applied in several other applica-
tions of non-smooth problems. The examples reveal a consistently
superior performance of theD–modification further highlighting
the effects of the special observability properties of non-smooth
problems. The proposed alternative opens up the way for robust
online tracking and control of a variety of engineered systems
including rocking (Chatzis and Smyth, 2012a,b, 2013; Greenbaum
et al., 2015), energy (Alavi et al., 2015), and biological systems
(Villaverde et al., 2016; Villaverde and Banga, 2017).

2. NON-SMOOTH DYNAMICAL SYSTEMS

A non-linear systemwith state variables xt, time-invariant param-
eters θ, known input vector u, and measurement vector y can in
general be described by the following system of equations:

ẋt = E(xt, θ, u), θ̇ = 0, y = G(xt, θ, u) (1)

where E and G designate the non-linear state-space and measure-
ment functions, respectively. For uncertain systems, i.e., systems
whose time-invariant parameters are uncertain or unknown, the
above problem may be recast into one of joint state and parameter
identification. In this case, the state-space andmeasurement equa-
tions of formulation (1) may be written in an augmented form by
introducing the state vector x= [xt, θ]:

ẋ = e(x, u), y = g(x, u) (2)

In the latter representation, one treats both the dynamic states
and the parameters of the system as states of the augmented
system. A dynamical system is further characterized as analytic
or smooth, when the state-space equation (2) are continuous
and infinitely differentiable. Very often, however, the state-space
equations of physical models may not be analytic, either due to
discontinuities in the state-space equation or in their derivatives.
It should also be highlighted that smoothness requires that the
equations are infinitely differentiable through at least all the real-
izations of the states encountered during the trajectory of the sys-
tem. In this paper, we deal with models for which the state-space
equations are continuous, but not differentiable, and whose state-
space equations can be separated into smooth, i.e., continuous and
infinitely differentiable, branches of the form:

ẋ =



e1(x), x ∈ Rn
1

...
ei(x), x ∈ Rn

i
...

el(x), x ∈ Rn
l

(3)

where ei(x) is an analytic set of functions within Rn
i . It should be

noted that at a specific time instance the state is described by a
given realization, corresponding to a single branch of equation (3).

Very often the study of the behavior of dynamic systems results
in a discretized description of the problem where nodes are
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A

B

FIGURE 1 | Systems described as nodal points connected with components
(A) Discrete masses connected with components providing resistance to
motion (B) nodes connected with finite elements.

connected with each other with components, as can be seen in the
following Figure 1. Often the nodes correspond to point masses
with the components corresponding to elements that resist the
relative displacements and velocities of themasses, or in the case of
Finite Element analysis the nodes are the finite element nodes and
the components correspond to the finite elements (Zienkiewicz
and Taylor, 2005).

The investigated system may be expressed as a combination
of individual components Cj, j= 1 . . .Nc, where Nc is the overall
number of the components. For each component Cj a subset,
xCj = [xCj t, θCj ], of the overall states of the system x, acts as input.
The outputs of Cj, PCj , are connected to the inputs according to a
set of equations of the form:

ṖCj = ECj(xCj , ẋCj) (4)

where ECj are generally non-smooth equations, which can further
be separated into smooth branches, e.g., for the kth branch of
model Cj:

ṖCj = eCk
j
(xCj , ẋCj) (5)

where eCk
j
(xCj) is an analytic set of functions. As the system evolves

dynamically over time, it is expected to shift between the individ-
ual branches of a componentCj. This transition between branches
will be referred to as a dynamic event, and the corresponding time
instance as the time of the event. A set of transition equations
gCk→l

j
(x) = 0 describe the transition from branch Ck

j to Cl
j.

Having determined the active smooth branch of a component the
smooth branch of the overall system from equation (3) can be
easily chosen.

2.1. Observability of Non-Smooth
Dynamical Systems
The observability of non-smooth systems and the points of dif-
ferentiation to their smooth counterparts have been discussed in

Chatzis et al. (2014, 2017). It should be noted that the notions of
observability and identifiability used in these papers and in this
work refer to the ability to distinguish the states and parameters
from their neighbors at a specific time instance. The method
proposed in Chatzis et al. (2014) relies on the study of the
observability of each of the smooth subsystems of equation (3),
resulting into a characterization of each system branch as either
observable, when all associated states are observable, and hence
the parameters are identifiable, or as unobservable, when not all
states are observable, and hence not all parameters are necessarily
identifiable. In general, the separation of an analytic system’s
states into an observable and an unobservable set requires a non-
linear transformation (Persis and Isidori, 2000). However, for the
systems examined herein, it is further assumed that for each of
the subsystems i of equation (3), we can further separate the state
vector x into its observable and a minimum number of unob-
servable components, denoted as xoi and xui, in a straightforward
manner.

If the union of the observable states from all branches is a strict
subset of the state vector x (∪l

i=1xoi ⊂ x), i.e., does not contain at
least one of the components of x, then it may be concluded that
these excluded states are unobservable and may not be adequately
tracked via a System Identification algorithm. If on the other
hand, the union of the observable components results in the state
vector x, ∪l

i=1xoi = x, then each component of the state vector x
could potentially be identified within the corresponding smooth
branch within which it is observable. Hence, if the response of
the system includes at least one branch for which a parameter is
identifiable, then a system identification algorithm could poten-
tially succeed in identifying the value of that parameter. In this
paper, the latter case of systems is studied, i.e., systems for which
the parameters of the model may be inferred via an appropriate
system identification method.

For a component Cj whose smooth branch k is defined by
equations (5), it is of further interest to proceed in a observability
analysis where it is assumed that all of the dynamic states, and
their derivatives are measured inputs and Pc are the measured
outputs, i.e., u = [xCj t, ẋCj t] and y = yI = [PCj ]. By studying the
observability of this system the parameters θCj can be separated
into identifiable and a minimum set of unidentifiable parame-
ters [θo

Cj , θ
u
Cj ]|yI . Equation (5) can be expressed only in terms of

[xCj t, ẋCj t, θ
o
Cj
]:

ṖCj = eCk
j

(
xCj t, ẋCj t, θ

o
Cj

)
(6)

Due to the absence of θu
Cj |yI from equation (6), for any mea-

surement setup which does not directly involve measurement of
θu
Cj |yI , those parameters directly contribute to the unidentifiable

states xui of the corresponding smooth branch of equation (3).
If a parameter is shared between different components it will be
contributing to the unidentifiable xui only if it belongs to θu

Cj |yI for
all of them. It should, however, be noted that whether [xCj t, θ

o
Cj |yI ]

contribute to xui depends on the observability of the system under
the actual measurement setup used.

Hence, this component analysis may often pinpoint part of the
unidentifiable parameters, although it ought to further be paired
with an observability analysis, as discussed in Chatzis et al. (2014).
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3. UNSCENTED KALMAN FILTER

The UKF simulates non-linear systems by approximating the state
as a Gaussian random variable (GRV), represented by a set of
carefully chosen deterministic points known as the Sigma Points.
This section only provides a basic overview of the filter equations;
more details can be found in Julier and Uhlmann (1997) and Wan
andVanDerMerwe, 2000 and previouswork of the authorsChatzi
and Smyth (2009), Chatzi et al. (2010), and Chatzis et al. (2015).

Consider the general dynamical system described by the fol-
lowing equations (7).

xk = f(xk−1, uk−1) + wk−1, yk = h(xk, uk) + vk (7)

wherewk is the process noise and vk is the observation noise, both
of which are considered to be white Gaussian noise processes of
covariance matrices Qk and Pk, respectively.

Given the state vector at step k− 1 and assuming that this
has a mean value of x̂k−1 and covariance Pk−1, the statistics of
xk can be calculated by using the Unscented Transformation, or
in other words by computing the set of sigma points χi

k with
associatedweightsWi. The steps of themethod are summarized in
Table 1.

As inferred by the steps outlined above, theUKF algorithmdoes
not discern between observable/unobservable states and identi-
fiable/unidentifiable parameters. The overall convergence of the

TABLE 1 | The steps of the UKF algorithm.

UKF

Initialization at time t0: x̂0 = E[x0]

• The unscented transform
1. Augment the state vector to include the noise parameters:

xα
k−1 =

[
xTk−1 w

T
k−1 vTk−1

]T
2. Formulation of the sigma point vector:

χα
k−1 =

[
x̂α
k−1 x̂α

k−1 +
√

(L + λ)Pα
k x̂α

k−1 −
√

(L + λ)Pα
k

]
where λ is a UKF parameter,
L is the dimension of the state vector x and Pα =diag(P, Q, R)

• Time-update:
3. Propagation of the sigma points through the system model:

χi
k|k−1 = f

(
χi
k−1, χw,i

k−1

)
, i = 0, .., 2L

4. Predicted mean and covariance:
x̂k|k−1 =

∑2L
i=0 Wm

i χi
k|k−1 and

Pk|k−1 =
∑2L

i=0 W c
i

[
χi
k|k−1 − x̂k|k−1

] [
χi
k|k−1 − x̂k|k−1

]T
• Measurement steps:
5. Measurement mean and covariance matrices:

ŷk|k−1 =
∑2L

i=0 Wm
i Y i

k|k−1 and Yk|k−1 = h
(

χi
k|k−1, χη,i

k−1

)
Pyy
k =

∑2L
i=0 W c

i

[
Y i

k|k−1 − ŷk|k−1

][
Y i

k|k−1 − ŷk|k−1

]T
and

Pxy
k =

∑2L
i=0 W c

i

[
χi
k|k−1 − x̂k|k−1

][
Y i

k|k−1 − ŷk|k−1

]T
• Kalman updating
6. Calculation of Kalman Gain:
Kk = Pxy

k

(
Pyy
k

)−1

where:
7. Improve predictions of the state and covariance using the latest observations:

x̂k = x̂k|k−1 + Kk

(
yk − ŷk|k−1

)
Pk = Pk|k−1 − KkP

yy
k KT

k

method is ensured only when a parameter converges faster during
identifiable time steps, than it diverges during unidentifiable steps.

4. DISCONTINUOUS UNSCENTED
KALMAN FILTER DUKF

As stated in Section 2.1., during a specific time instance where
the system lies in a specific smooth branch i, only part xoi of
the state vector may be observable. Therefore, the UKF algorithm
is expected to converge only for that observable part xoi. The
predictions furnished during this interval by the UKF for the
unobservable part xui, which in this work is assumed to be the
unidentifiable parameters, are non-optimal and it is also quite
likely that during these time intervals the values of xui may very
well diverge from the real solutions. In fact, their resulting esti-
mates are expected to be inferior to the initial estimates of these
parameters in the initiation of the interval. Hence, during such
intervals it is argued that the optimal choice would be to update
only the observable part of the state.

To introduce the computational part of the D– modification, a
row switching transformation matrix Ti is defined such that:

Ti x =
{
xoi
xui
}

= x′ (8)

in other words, pre-multiplying x with Ti results in a rearranged
vector x′ where the first noi components are observable and the
remaining nui components are unidentifiable. As the order among
the observable components, and likewise for the corresponding
order among the unidentifiable parameters, is not of importance
any of the Ti matrices that satisfy equation (8) may be chosen.
In all cases, those are by definition Boolean matrices containing
only one non-zero element per row which is further equal to one,
satisfying the property T−1

i = TT
i . Any vector v and matrix

A whose rows, and columns for the latter, correspond to the
elements of xmay be brought to the order of x′ with the following
operations:

Ti v =
{
voi
vui
}

Ti ATT
i =

[
Aoo (Auo)T

Auo Auu

]
(9)

while for a n×m matrix B, whose rows only correspond to the
order of the elements in x, the following operating reorders its
elements to the order of x′:

Ti B =
[

Bo

Bu

]
(10)

It is now straightforward to separate a vector or matrix to the
observable o, unobservable u, and cross uo components. DUKF
follows the steps of the UKF algorithm for steps 1–5, as shown in
Table 1. The DUKF structure in nonetheless differentiated from
the standard UKF steps as follows: DUKF updates the observable
components of the estimates of the mean vector and covariance
matrix during the Kalman updating step: x̂k|k−1 → x̂k|k and
Pk|k−1 → Pk|k, using an appropriate Kalman gain matrix defined
based on the observable components. The unobservable parts
are retained invariant, while the cross terms of the covariance
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are updated using the Schmidt-Kalman Filter (Schmidt, 1966;
Novoselov et al., 2005). The steps of the DUKF algorithm are
summarized in detail in Table 2.

The extra steps entailed by the D– modification in com-
parison to the standard UKF are simple operations involving
multiplications with the transformation matrix Ti. Hence, the
extra computations required are of minimal cost, while in fact the
computational cost of the DUKF results similar to, or lower than,
that of theUKF. This may be attributed to the fact that the Kalman
updating steps result in multiplications of matrices that are of
lower dimension to those of the original method. An additional
advantage of the method against the Discontinuous Extended
Kalman Filter,DEKF, previously introduced by the authors, lies in
that it does not require the detection of events and hence there are
no constraints on the algorithm used for the time updating step.
This implies that themethod can be directly paired with any exist-
ing dynamic or finite element software for the time updating step.

4.1. Estimating the Active Smooth Branch
An important step of the DUKF algorithm is related to separating
the states to observable and unobservable as indicated in Table 2.
This is straightforward to do once the smooth branch the sys-
tem lies in is known. As discussed earlier, this may more easily
be constructed by choosing the active smooth branch for each
component Cj of equation (5). If the true value of the states is

TABLE 2 | The steps of the DUKF algorithm.

DUKF

Initialization at time t0: x̂0 = E[x0]

• The Unscented Transform, • Time-update and • Measurement steps
Steps 1–5 identical to the UKF’s 1–5 steps as shown in Table 1

• Separate to observable and unobservable components
6. Choose Mi based on x̂k|k−1

7. x̂′
k|k−1 = Ti x̂k|k−1 =

[
(x̂ok|k−1)

T (x̂uk|k−1)
T
]T

P′
k|k−1 = Ti P′

k|k−1 T
T
i =

[
Poo
k|k−1 (Puo

k|k−1)
T

Puo
k|k−1 Puu

k|k−1

]

P′xy
k = Ti P

xy
k =

[
Pxy

o

k

Pxy
u

k

]

• Kalman updating
8. Calculation of Kalman Gain:

Ko
k = Pxyo

k

(
Pyy
k

)−1

11. Updating observable components:

x̂ok = x̂ok|k−1 + Ko
k

(
yk − ŷk|k−1

)
Poo
k = Poo

k|k−1 − Ko
kP

yy
k

(
Ko
k

)T
12. Retaining unobservable components invariant:
x̂uk|k = x̂uk−1|k−1

Puu
k|k = Puu

k−1|k−1

13. Updating cross terms:

Pou
k|k = Pou

k|k−1 − Ko
kP

xyu

k

14. Gathering terms: x̂′
k|k =

[
(x̂ok|k−1)

T (x̂uk|k−1)
T
]T

P′
k|k =

[
Poo
k|k (Puo

k|k)
T

Puo
k|k Puu

k|k

]
15. Rearranging terms:
x̂k|k = TTi x̂

′
k|k

Pk|k = TTi P
′
k|k Ti

known that can be done by evaluating the values of the set of
functions gCj(x) which result to the transition equations between
branches, gCk→l

j
(x) = 0. In this paper, this branch has to be

estimated by evaluating a related set of functions ĝCj(x) at x =
x̂k|k−1.

1. The non-smoothness is a result of a non-differentiable function
in the state-space equations. In that case, ĝCj = gCj .

2. The non-smoothness is a result of an inequality constraint
equation gCj(x) ≤ 0. As a result, at least one of the branches
lies entirely within the space defined by the constraint equa-
tion gCj(x) = 0. As for any sigma point i, g(χi

k|k−1) < 0
or g(χi

k|k−1) = 0, their weighted sum is likely to satisfy:
gCj(x̂k|k−1) < 0. In fact the previous could be observed even
if g(χi

k|k−1) = 0 , ∀i. This creates situations where all sigma
points may lie in the smooth branch define by the equality
constraint, yet the estimated active smooth branch is different.
For this reason, ĝCj ̸= gCj and a different estimator has to
be used based on the physics of the studied problem. Such an
example is presented in Section 5.2.

5. APPLICATIONS

5.1. Non-Linear Hysteretic Bouc–Wen
Model
In this example, the hysteretic system illustrated in Figure 2
comprising a Bouc–Wen type spring of mass-normalized stiffness
k and linear damping c is examined.

The relative displacement x of the body with respect to the
ground is considered as the measured quantity. The observability
of this systemwas examined inChatzis et al. (2014). The equations
of motion are formulated as:

ẍ + k r + cẋ = −ẍg
ṙ = ẋ − β |ẋ| |r|ν−1 r − γ ẋ |r|ν

(11)

FIGURE 2 | Mass on a Bouc–Wen Spring.
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where k is the stiffness of the spring, c the damping coefficient, and
β, γ, and ν are the parameters of the Bouc–Wen model. The term
ṙ can be rewritten as ṙ = ẋ− ẋs, where xs is the displacement of the
slider and ẋs = β |ẋ| |r|ν−1 r − γ ẋ |r|ν . Hence, r can be thought
of as the displacement of the elastic spring. As stated in that paper
the dynamic equations of motion of the system can be separated
into four smooth branches:

(A) : ṙ = ẋ − β ẋ rν − γ ẋ rν , for ẋ > 0& r > 0
(B) : ṙ = ẋ + β ẋ rν − γ ẋ rν , for ẋ < 0& r > 0
(C) : ṙ = ẋ + β ẋ (−r)ν − γ ẋ (−r)ν , for ẋ > 0& r < 0
(D) : ṙ = ẋ − β ẋ (−r)ν − γ ẋ (−r)ν , for ẋ < 0& r < 0 (12)

within these branches the system is not fully observable, but may
be rewritten in the form:

(A) : ṙ = ẋ − ∆1 ẋ rν , for ẋ > 0& r > 0
(B) : ṙ = ẋ + ∆2 ẋ rν , for ẋ < 0& r > 0
(C) : ṙ = ẋ + ∆2 ẋ (−r)ν , for ẋ > 0& r < 0
(D) : ṙ = ẋ − ∆1 ẋ (−r)ν , for ẋ < 0& r < 0 (13)

where ∆1 =β + γ and ∆2 =β − γ. The augmented state vector
is hence defined as: [x, ẋ, r, k, c, ν, ∆1, ∆2]. In this new repre-
sentation, within each branch all of the states (x, ẋ, r, k, c, ν)
are observable while only one of the parameters ∆1 and ∆2 is
identifiable depending on the sign(ẋ r). When ẋ r ≥ 0, i.e., with
branches (A, D) ∆1 is identifiable, while when ẋ r < 0, i.e., within
the branches (B, C) ∆2 is identifiable.

The previous result can also be demonstrated in terms of the
Bouc–Wen spring that can be considered to be the non-smooth
componentC1, for which equations (13) correspond to the formof
equation (5) with PC1 = r and xC1t = [ẋ]. For such a component,
θoC1 = ∆1, θuC1 = ∆2, when ẋ r ≥ 0 and θoC1 = ∆2, θuC1 = ∆2,
when ẋ r < 0. For the given measurement setup used, the
observability analysis on the overall system shows that there are no
further unidentifiable parameters or unobservable states. To com-
plete the description of the method the transformation matrices
are defined:

1. ẋ r ≥ 0 :
T1 = I8×8 (14)

2. else:

T2 =

 I6×6 {0}6×1

{0}1×6
0 1
1 0

 (15)

A system with mass-normalized stiffness and damping terms
k = 1000 1

sec2 and c = 2∗
√
k∗5% 1

sec , respectively, and Bouc–Wen
parameters ν = 2, ∆1 = 6000, ∆2 = 2000 initially at rest is sub-
jected to the input ground motion shown in Figure 3. The mea-
sured signal is assumed to be the displacement of the system x.

5.1.1. The Effect of Noise
For the parametric analysis that follows, an initial guess is herein
assumed as k0 = k, c0 = c, ν = 3, ∆1/2000= 2, and ∆2/2000= 2.
Initially, the effect of different realizations of noise vectors to the
convergence of the algorithms will be studied. To that end 1000
different sets of random process and noise vectors are generated,
corresponding to a noise-to-signal RMS ratio of 5%. The noisy
inputs and outputs are then used in the two methods, DUKF
and UKF, which assume corresponding covariance matrices for
the process and measurement noise, and the mean error of the
final estimates for the Bouc–Wen parameters is calculated. The
Cumulative Distribution of the mean BW parameter errors is
shown in Figure 4A. Subsequently, the effect of different levels of
noise-to-signal RMS ratio for the process noise and the assumed
values in the algorithm is investigated. To that end, values of RMS
ratios in the range [1%, 7%] with an increment of 1%, where
different values are used for the signals that contaminate the
input andmeasurement vector and the assumed covariances of the
measurement and process noise used in the models. That creates
a total of 74 cases that are examined, for which the mean BW
parameter error is calculated, using both the conventional and
proposed method, and the results are presented in 4B.

As observed in Figure 4A, DUKF performs superior to the
UKF for a given noise-to-signal RMS ratio and is less affected
by the exact realizations of the noise vectors. For the DUKF
approximately 80% of the cases result into mean parameter error
less than 20 versus 60% for the UKF. As can further be deduced
from Figure 4B, the same qualitative comparison for the two
methods is observed even in the casewhere diverse noise-to-signal
RMS ratios are adopted, while a mismatch is noted between the

A B

FIGURE 3 | (A) Ground acceleration (B) relative displacement.
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A B

FIGURE 4 | Predictions of the two EKF models for the corresponding parameters of the Bouc–Wen model. (A) 5% noise RMS ratio and corresponding assumed
covariances. (B) Varying the noise RMS ratio and assumed covariances.
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FIGURE 5 | Mean relative error color-plots for the two methods when different initial values are used for the Bouc–Wen parameters.

FIGURE 6 | 4 masses system with Bouc–Wen springs and linear dampers.

actual and assumed (in the model) covariances of the process
and measurement noise. The use of the DUKF allows for larger
discrepancies between the assumed covariances of the noises and
their real properties.

5.1.2. The Effect of the Initial Estimates
The effect of different initial estimates for the Bouc–Wen param-
eters on the convergence is explored in the following Figure 5. To
that end, the initial estimates used for∆1 and∆2 vary in the range
between [1, 7] * 2000, while ν is varied in the range: [1.8, 3]. The
mean relative error of the BW parameters is calculated for each
case and a color is assigned depending on the value of that error.
The error color-bar is shown in Figure 5 corresponding to mean
errors from 0 to 100%.

As observed inFigure 5, the relative error is lower for theDUKF
as compared to theUKF for a wide range of initial estimates of the
parameters. Essentially the method is more forgiving in terms of
the proximity of the initial estimate to the real value, which offers
an important advantage as often the initial estimates are not close
to the final value.

5.1.3. Non-Smoothness and Dimensionality
The previous Bouc–Wen spring will be extended to 4 masses
connected with Bouc–Wen springs. Each mass is described by a
displacement xi relative to the ground. The non-linear springs are
defined by their stiffness ki and the Bouc–Wen parameters ∆1i ,
∆2i , and ν i and linear dampers with coefficients ci, i= 1, . . ., 4 as
shown in the following Figure 6.
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The state-space equations of the system may be assembled after
noting that the equation of evolution of the elastic displacement
of spring i> 1 becomes:

ṙi = ẋi − ẋi−1 − ∆1i (ẋi − ẋi−1) |ri|νi , for (ẋi − ẋi−1) ri ≥ 0
ṙi = ẋi − ẋi−1 + ∆2i (ẋi − ẋi−1) |ri|νi , for (ẋi − ẋi−1) ri < 0

(16)

If this system is excited by a ground acceleration ẍg and the
displacements of the four masses [x1, x2, x3, x4] are measured
then it may be demonstrated that for each of the four Bouc–Wen
components of the system,C1, . . .,C4, the parameters ∆1i and ∆2i
become unidentifiable when (ẋi − ẋi−1) ri < 0 or (ẋi − ẋi−1) ri ≥
0, respectively. This occurs from the identifiability properties of
each Bouc–Wen component, Ci, after noting that PCi = ri and
xCit = [ẋi − ẋi−1]. When (ẋi − ẋi−1) ≥ 0, θoCi = ∆1i and θuCi =
∆2i , else θoCi = ∆2i and θuCi = ∆1i . The remaining parameters
and dynamic states are identifiable and observable, respectively,
according to the observability analysis of the overall system. The
overall transformation matrix Ti can hence be assembled at any
time instance.

A systemwith parameters ki = [1000, 900, 800, 700] [1/s2], ci =
2
√
ki 5/100 [1/s], ∆1i = [6, 7, 8, 9] 2000, ∆1i = [6, 7, 8, 9] 2000,

∆1i = [1, 1, 2, 6] 1000, and ν i = [2, 2, 2, 2] is subjected to the time
history of Figure 3A. The obtained displacements are shown in
the following Figure 7.

The measurements are contaminated with noise of noise-
to-signal RMS ratio of 1%. The corresponding covariances are
assumed in both models for the process and measurement noises.
The initial estimates used for both models are ki = 1000, ci =
2
√

1000 10/100, ν i = 2.5,∆1i = ∆2i = 3 for i= 1, ·, 4. The results
of the identification using the UKF and DUKF are shown in the
following Figures 8 and 9.

As observed in Figure 8, both methods provide fairly good
estimates of the elastic parameters of the system ki, ci. How-
ever, when it comes to the non-linear (Bouc–Wen) parameters,
the DUKF provides a substantially improved estimated versus

FIGURE 7 | Displacements of the four masses of the system.

the UKF. This can be seen by the fact that while for DUKF
the final ratio of the estimated over real values for the parame-
ters is close to unity, for the UKF this ratio substantially devi-
ates from unity indicating large estimation errors. This can be
attributed to the multiple, 4 in this case, unidentifiable parame-
ters at any time window. As those unidentifiable parameters are
increased, it is more likely that the estimates of the system overall
diverge.

It should hence be noted that non-smooth high dimensional
systems suffer from the effects of dimensionality, but also from
the additional effect of the increased number of unidentifiable
parameters and hence sources of divergence. The former can be
improved using techniques applied to smooth systems for dimen-
sionality (Olivier and Smyth, 2017b), while the latter is treated
through the D– modification suggested here. It should be noted
that the two treatments, which aim at tackling different problems,
can be combined.

5.2. 2DOF Elasto-Plastic System
In this example, the behavior of a shear system of two masses with
displacements x1 and x2 connected to each other and the ground
by means of linear damping elements of normalized damping
over mass c1, c2 and elastoplastic springs of normalized over mass
stiffness k1, k2 and yield force Fy1 and Fy2 as shown in Figure 10 is
studied.

The equations of motion describing the system when subjected
to a ground acceleration ẍg become:

ẍ1 + (c1 + c2) ẋ1 − c2 ẋ2 + k1 xel1 − k2 xel2 = −ẍg
ẍ2 + (c2) ẋ2 − c2 ẋ1 + k2 xel2 = −ẍg (17)

where xeli is the elastic elongation of the elastoplastic spring i
whose evolution over time is defined as:

ẋel1 = ẋ1, in the elastic branch ẋel1 = 0, in the plastic branch
(18)

ẋel2 = ẋ2 − ẋ1, in the elastic branch ẋel2 = 0, in the plastic branch
(19)

The following equations define the transition conditions
between the elastic and plastic branches for spring i:

∥ki xeli∥ = Fyi , elastic → plastic
ẋeli = 0, plastic → elastic (20)

The previous transition equations ensure that the force of
elastoplastic spring i always satisfies the condition: ∥ ki xeli ∥≤ Fyi .

For the purpose of identification the augmented state vector
will include x1, x2, ẋ1, ẋ2, kxel1, kxel2, c1, c2, k1, k2, Fy1 , Fy2 . The
dynamic states kxeli correspond to the product ki xeli and are
used instead of the elastic displacements as it allows separating
the states into observable and unidentifiable within all branches
without having to use a non-linear transformation (Chatzis et al.,
2017). In terms of the identifiability of the system it can eas-
ily be shown as in Chatzis et al. (2017), that all the dynamic
states together with c1 and c2 are always identifiable. How-
ever, only one of [ki, Fyi ] is identifiable depending on whether
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A B

C D

FIGURE 8 | Spring and damping parameters identified by the UKF and DUKF.

spring i lies in an elastic or plastic branch at that specific time
instance. This follows after studying the identifiability of any of
the two elastoplastic spring components, Ci where PCi = kxeli
and xC1t = [ẋi − ẋi−1]. Then the equation of component Ci
becomes:

ṖCi = ki (ẋi − ẋi−1), in the elastic branch
ṖCi = 0, in the plastic branch (21)

and as a result θuCi = Fyi in the elastic branch and θuCi = ki in
the plastic branch. Fyi becomes identifiable when component Ci
enters the plastic branch. This is because the plasticity constraint,
when activated, effectively results into an additional measurement
equation: Fyi = ∥kxeli∥.

Hence, the identifiability of the system requires estimation of
whether spring i is in an elastic or plastic branch. While this
discussion is obvious for the real system through use of equation
(20), it requires some careful consideration when applied to the
systems estimated by the DUKF. As each of the sigma points are
bound by the inequality constraint of equation (20), it is likely
that their mean would satisfy the condition ∥kx̂eli∥ < Fyi even
if the majority of the sigma points are satisfying the equality, and

are hence in the plastic branch. The problem occurs due to the
fact that the condition in equation (20) indicates of whether the
spring is elastic or plastic, but cannot quantify “how” elastic or
plastic the response of the system is. A means of indicating the
tendency of the system to behave in an elastic or plastic manner,
suggested in this paper,may be attained via comparison of the esti-
mated mean velocities of the elastic and plastic elongation of the
springs.

To such an end, the inequality of equation (20) is used to deem
of whether each sigma point lies in an elastic or plastic branch
using the estimated values for the springs prior to applying the
measurement update (i.e., χi

k|k−1 for sigma point i). Then, the
elastic and plastic velocity of spring i for sigma point j, ẋjelj , ẋ

j
plj ,

are:

ẋjeli = ẋjsi , if spring i is elastic

ẋjeli = 0, if spring i is plastic (22)

where ẋjsi is the total velocity of spring i for sigma point j, ẋjs1 = ẋj1
and ẋjs2 = ẋj2 − ẋj1, then ẋjpli = ẋjsi − ẋjeli . The mean estimates of
the two velocities ˆ̇xeli and ˆ̇xpli can be calculated using the fourth
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FIGURE 9 | Bouc–Wen parameters identified by the UKF and DUKF.

step of the DUKF algorithm. Hence, the following criterion is
used to deem of whether the system is behaving elastically or
plastically:

∥ˆ̇xeli∥ ≥ ∥ˆ̇xpli∥ → the system behaves elastically

∥ˆ̇xeli∥ < ∥ˆ̇xpli∥ → the system behaves plastically (23)

It is now straightforward to estimate the branch each spring
would be in and obtain the corresponding contribution to the
transformation matrix T. It should finally be noted that in both
theUKF andDUKF algorithms the following constraint is applied
to sigma point j if ∥kxeli∥ > Fyi for spring i:

kxeli = Fyi ∗ sign(kxeli) (24)
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A B

FIGURE 10 | System studied. (A) System of two masses connected with elastoplastic springs and linear dampers. (B) Behavior of elastoplastic spring.

A B

FIGURE 11 | (A) Ground acceleration and (B) displacements of the masses.

A B

FIGURE 12 | Force displacement curves for (A) Spring 1 and (B) Spring 2.

where equation (24) is a return mapping scheme. This is what
one would follow in the forward dynamics problem, as the value
of Fyi would be known. However, in this problem it would also
be possible to instead modify the value of Fyi when the plasticity
constraint is violated.

A system with properties k1 = 1000 [1/s2], k2 = 800 [1/s2],
c1 = 2

√
k1 0.05 [1/s], c2 = 2

√
k2 0.05 [1/s], Fy1 = 50 [m/s2]

Fy1 = 30 [m/s2] is subjected to the excitation of Figure 11A. The
occurring displacements of bothmasses aremeasured as shown in
Figure 11B.
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The two springs exhibit an elastoplastic response as shown
in the force displacement responses plotted in Figure 12. The
maximum total displacements, x1 and x2 − x1 correspond to 1.7
and 2 times the yield displacements, respectively.

The input and measurements are contaminated with white
noise signals corresponding to 5% noise-to-signal RMS ratios. As
there is a substantial drift of the measured signals their RMS is
calculated after these are passed through a high pass filter with a
cutoff frequency at 0.5Hz. The initial estimates for the stiffness
and the damping of both springs are given a significant offset, as
these are assumed as twice their actual value. The initial estimates
of the yield forces, Fy1 and Fy2 , are varied in the following ranges:
Fy1 ∈ [5, 80] and Fy2 ∈ [5, 60]. This is later used in both the
UKF and DUKF, where the assumed covariances of the process
and measurement noises match the 5% noise-to-signal RMS ratio.
After the algorithms are implemented, the mean relative error
of the estimated parameters with respect to the real values is
calculated and is plotted in the following Figure 13, where the
upper row of figures corresponds to the results of DUKF and the
lower toUKF, each columnof sub-figures corresponds to the error
of the parameter indicated by the title and for each sub-figure

FIGURE 13 | Mean relative error color-plots for the two methods when
varying the initial estimates of Fy1 and Fy2 .

the horizontal and vertical axes correspond to different initial
estimates of Fy1 and Fy2 . The mean relative error is indicated by
the color-bar of the Figure.

As observed in Figure 13, DUKF in general results in reduced
errors over UKF for a wide range of initial estimates. It should be
noted that themethod results in a large improvement over the esti-
mates of the stiffness of the two springs k1 and k2. This is expected
as these parameters become unidentifiable when the correspond-
ing spring is in the plastic branch. Equally there appears to be a
clear improvement for the estimates of the plastic forces Fy1 and
Fy2 , when the initial estimates are in the range Fy1 ∈ (0, 70) and
Fy2 ∈ (5, 50). For values of Fy1 > 70 and Fy2 > 50, DUKF does
not change the initial estimate of the corresponding parameter,
as the algorithms estimates that the system is always elastic. This
can be understood by looking at the following Figure 14 which is
plotting the forces seen by elastic springs of stiffness k1 and k2 for
the real displacements of the system.

In both cases, there are only few points in Figures 14A,B,
where, respectively, even the force of a linear spring for the dis-
placements of the system would exceed the values of Fy1 > 70
and Fy2 > 50. As a result, it is reasonable for the DUKF, given the
properties of the estimator selected and the way the plasticity con-
straint is applied, to reach the conclusion that the corresponding
spring always remain elastic when the initial estimates of Fyi are in
the aforementioned range. While this is disadvantageous in terms
of identification of the real value of the parameters, when high
initial estimates of Fy1 and Fy2 are used, the advantage of theDUKF
lies in that the algorithm has not changed the estimates of the
corresponding covariance terms indicating that these parameters
were not identified. Additionally, it appears that even for such
cases the DUKF is capable of providing good estimates for the
remaining parameters.

In contrast, the UKF would proceed to evolve the initial esti-
mate of Fy1 and Fy2 in all scenarios. The algorithm may hence
reduce the initial estimate of Fy1 or Fy2 even during periods of
unidentifiability and this non-optimal change could happen to
result into more favorable estimates for the value of Fy1 and Fy2 .
However, it is equally or more probable that the algorithm will
change the overall estimates of the parameters to less favorable

A B

FIGURE 14 | Force displacement curves for (A) Spring 1 and (B) Spring 2.
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values during unidentifiable windows, thus resulting in diver-
gence of all parameters. This is depicted in the behavior of theUKF
in Figure 13 for initial estimates of Fy1 > 70 and Fy2 > 50 where
even when the algorithm happens to do better for the estimates
of the corresponding Fyi the remaining parameters behave less
optimally. Additionally, in that region the final estimate of the
covariance terms corresponding to Fyi are substantially lower
than the DUKF even when the algorithm does not converge.
The behavior of both algorithms for the case of initial estimates
Fy1 = 70, Fy2 = 60 is shown in the following Figures 15 and 16
for the estimated/real values of the parameters versus time and the
estimated versus real plastic displacements xpli , respectively.

It should be noted that in Figure 15, the DUKF does not
practically alter the initial guess of Fyi as described above. In
this simulation the UKF happens to evolve the estimate of Fy1
in a coincidentally favorable way, while doing the opposite hap-
pens for Fy2 . However, as observed in Figure 16A, the UKF has
difficulty in tracking the plastic displacements for this case. To

FIGURE 15 | Estimated over real values for the parameters, for the
disadvantageous for the DUKF scenario of initial estimates Fy1 = 70,
Fy2 = 60.

the contrary, the DUKF is shown in Figure 16B to result into
excellent predictions despite the inability to track the values of
Fy1 and Fy2 . Finally it should be noted that UKF appears relatively
certain for the values of Fy1 and Fy2 , despite the fact that the
latter is incorrect, with corresponding covariance terms smaller
than 2× 10−3. In contrast,DUKF has not practically changed the
covariance from the initial guess which is of the order of 102 indi-
cating that the method is uncertain of its estimation of these two
values.

Hence, this investigation leads to a result similar to those of the
DEKF in Chatzis et al. (2017) for Elasto-plastic springs: it appears
more favorable to use initial estimates of Fyi smaller than the real
value of those parameters, or at least smaller than the maximum
force seen by an elastic spring for the displacements of the system.
Of course while this is not possible a priori, as those values are
not known one can be informed by the DUKF of the inability of
the algorithm to identify the corresponding value of Fyi , due to
the lack of change of the parameters and the corresponding large
covariance terms. Additionally, the elastic displacements xeli and
total displacements xi of the system are calculated by the DUKF
with high precision allowing to alert the user on the presence of
permanent displacements.

6. DISCUSSION AND CONCLUSION

This paper suggests the use of a Discontinuous D– modification
for non-smooth systems for modifying the UKF. Non-smooth
systems include certain parameters whose identifiability prop-
erty changes over time. To alleviate the divergence exhibited by
standard filtering algorithms during time periods of unidentifi-
ability, the Discontinuous modification suggests retaining such
parameters invariant during those intervals. This paper, therefore,
introduces a Discontinuous Unscented Kalman Filter DUKF.

The method is implemented as a minimally invasive modifi-
cation allowing, as the original UKF algorithm, straightforward
implementation with any existing software that employ filtering
algorithms to update the states of a systemover time. TheD–mod-
ificationmakes use of a transformationmatrix at any time instance
based on the estimated active smooth branch of the system

A B

FIGURE 16 | Estimated versus real plastic displacements of the springs for (A) UKF and (B) DUKF, for the disadvantageous for the DUKF scenario of initial estimates
Fy1 = 70, Fy2 = 60.

Frontiers in Built Environment | www.frontiersin.org October 2017 | Volume 3 | Article 561354

http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


Chatzis and Chatzi DUKF for Non-Smooth Problems

and the occurring identifiable and unidentifiable parameters. The
proposed modification does not increase the computational cost
of the original method; in fact it leads to inversions and operations
on matrices of lower dimension.

The examples provided demonstrate the use of the algorithm
with two different types of non-smooth systems: systems where
the identifiability condition varies between different subspaces
of the state vector and systems for which the non-smoothness
is a result of an inequality constraint. Several non-smooth sys-
tems can be described as combinations of these two cases. The
examples illustrate the robustness of the D– modification and the
overall improved performance ofDUKF versusUKF for problems
of increased complexity. Different sources of complexity were
studied in terms of their effect such as the noise in the input
and measured data, the assumed noise covariances in the models,
different initial conditions and dimensionality. The DUKF was
shown to improve the estimates provided for all the previous
cases, and resulted in a more consistent behavior than that of the
standard UKF for non-smooth systems.

This paper together with former work of the authors on the
EKF (Chatzis et al., 2017) demonstrate that non-smoothness
bears an effect on the convergence of non-linear Kalman Filters
and in general for online Bayesian methods, further illustrating

that the D– modification is a viable treatment across algorith-
mic implementations of this class. The D– modification tackles
the problems associated to non-smoothness and may be paired
with existing modifications aiming at improving the performance
of the algorithms for smooth problems, substantially expanding
the ability of the occurring algorithms to handle problems of
increased complexity.
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A wide range of vibrating structures are characterized by variable structural dynamics
resulting from changes in environmental and operational conditions, posing challenges
in their identification and associated condition assessment. To tackle this issue, the
present contribution introduces a stochastic modelingmethodology viaGaussian Process
(GP) time-series models. In the presently introduced approach, the vibration response
is represented by means of a random coefficient time-series model, whose coefficients
comply with a GP regression on the environmental and operational parameters. The
approach may be implemented in conjunction to any type of linear-in-the-parameters
time-series model, ranging from simple AR models to more complex non-linear or non-
stationary time-series models. The obtained GP time-series modeling approach provides
an effective and compact global representation of the vibrational response of a structure
under a wide span of environmental and operational conditions. The effectiveness of
the postulated GP time-series models is demonstrated through two case studies: the
first involves the identification of the vertical vibration response of the Humber bridge,
evaluated over a period of three years; the second considers the long-term simulated
vibration response of a wind turbine featuring non-stationary dynamics stemming from
the rotor speed. In both cases, the variation of the average wind speed is the main driver
of uncertainty, while, through application of the proposed GP time-series models, it is
possible to track the resulting variation in modal quantities.

Keywords: time-series models, uncertainty, metamodels, random coefficient, gaussian process

1. INTRODUCTION

Several types of vibrating structures by default operate in constantly varying environmental and
operational conditions, which inevitably results in variability of the induced structural dynamics.
This is the case for wind turbines, bridges, high rise buildings and more. This issue poses a practical
challenge related to the identification and analysis of the vibrational response of these structures, as
well as for the health monitoring, fatigue assessment and control of the induced vibrations.

In order to construct a robust model of the dynamic response of the structure, it is not
only necessary to accurately model the short-term response of the structure, but it is further
necessary to effectively capture the long-term trends underlying the induced dynamics. This
issue, in the particular case of data-based time-series models, has been extensively researched in
recent years, resulting in the formulation of different strategies, including projection methods, and
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deterministic or stochastic functional dependence models. Projec-
tion methods, also referred to as data normalization methods, aim
at projecting characteristic quantities associated with the time-
series model representing the short-term response of the struc-
ture, into a subspace where the influence of Environmental and
Operational Parameters (EOPs) may be easily removed (Yan et al.,
2005; Sohn, 2007; Deraemaeker et al., 2008). On the other hand,
deterministic functional dependence models aim at capturing the
long-term variability in the dynamics by assuming a deterministic
functional relationship from EOPs to the characteristic quantities
of the time-series model describing the dynamics of the response.
Typically, such a deterministic functional relationship is captured
via a functional series expansion. Methods falling into this class
include the regression/interpolation methods discussed in Wor-
den et al. (2002) and Sohn (2007), as well as the Functionally
Pooled (FP) time-series models explained in Kopsaftopoulos et al.
(2018) and Sakellariou and Fassois (2016). These methods are
particularly effective when a direct relationship exists between
measurable input EOPs and the characteristic quantities of the
time-series models. Nonetheless, uncertainty in the EOPs and in
the dynamic response introduces variability in the characteristic
quantities of the basic time-series model, which may not be effec-
tively captured by means of a deterministic relationship. Instead,
randomor stochastic functionsmay bemore effective in capturing
the uncertainty on the characteristic quantities of the time-series
model.

In this sense, a third class of methods, referred to as stochastic
functional dependencemodels, aim at capturing the long-termvari-
ability by assuming that the characteristic quantities of the basic
time-seriesmodel are stochastic variables depending on the EOPs.
Toward this end, recent works have postulated either Random
Coefficient (RC) (Avendaño-Valencia and Fassois, 2015, 2017a,b;
Avendaño-Valencia et al., 2015a) or Polynomial Chaos Expansions
(PCE) (Spiridonakos and Chatzi, 2014, 2015; Avendaño-Valencia
et al., 2015b; Spiridonakos et al., 2016) to represent the variability
of the characteristic quantities of a model. In particular, RC time-
series models represent the variability in the dynamics as ran-
domness in the parameters of the time-series model. Then, apart
from the selection of the specific time-seriesmodel, a further user-
defined choice pertains to the definition of an appropriate distri-
bution model for its respective coefficients, which in several cases
can become very complex. On the other hand the PCE approach
exploits the probabilistic knowledge of the EOPs to build the most
effective functional representation of the time-series parameters.
However, it is also considered that the randomness in the model
parameters originates solely on the randomness of the EOPs.
Therefore, other sources of uncertainty may be misrepresented.

In this regard, this work provides a framework for the global
(short and long term) identification of the dynamic response of
a structure, of unknown properties or a given a priori numerical
model, under variable operational and environmental conditions
by representing the short-term dynamics via a linear-in-the
parameters regressive time-series model (which may assume the
form of an AutoRegressive, AutoRegressive with eXogenous input
or similar model), and a Gaussian Process (GP) regression to
represent the stochastic dependence of the parameters of the basic
time-series model on the EOPs, which in turn, describes the
long-term variability on the dynamics of the structural response.

Contrary to deterministic functional dependence models and
PCE-based methods, where the EOPs are considered as the sole
source of variability on the time-series model parameters, the
appraised GP approach is further capable of capturing and quan-
tifying the additional uncertainty stemming from other unmea-
surable sources. Likewise, the obtained GP time-series model is
totally linear-in-the-parameters, which facilitates the identifica-
tion, parameter estimation and posterior model-based analysis.
The issue of model identification is addressed by the Maximum
Likelihood principle, which is solved by means of an Expectation-
Maximization method adapted to the particular structure of the
Gaussian Process time-series model. In addition,Gaussian Process
Principal Component Regression (GP-PCR) is introduced as an
optional improvement to the basic GP time-series model aiming
at reducing the number of variables in the representation and to
improve the numerical stability of the parameter estimation and
optimization.

The methods discussed here are demonstrated on two dedi-
cated case-studies. The first one pertains to the identification of
actual data corresponding to the vertical acceleration response in
the Humber bridgemeasured over 21 non-consecutive days in the
period fromMay 19, 2011, toMarch 24, 2013. The second one cor-
responds to the identification of the long-term vibration response
of a wind turbine, employing simulations obtained via the FAST
wind turbine aeroelastic simulation code, which are characterized
by non-stationary dynamics and long-term variability induced by
variable wind speed.

The remainder of this paper is organized as follows: Section 2
initially provides a summary of traditional linear-in-the-
parameters time-series models, pointing out their limitations in
long-term identification, and offering their natural extension
via GP regression. In addition, principal component regression
is introduced as an alternative to reduce the number of
identified parameters. Subsequently, Section 3 is devoted to
the identification of the GP time-series model based on a
set of dynamic responses, including the estimation of the
parameters of individual realizations, the estimation of the
hyper-parameters of the representation and the assessment and
validation of the obtained model. Finally, Section 4 provides the
two aforementioned case studies, i.e., the Humber bridge and
wind turbine simulated vibrational response, while Section 5
concludes the study.

2. MODELS OF THE DYNAMIC RESPONSE
OF STRUCTURES

2.1. Traditional Linear-in-the-Parameters
Regressive Time-Series Models
Consider the dynamic response of a structure y[t] ∈ R defined
over the normalized discrete time t= 1, 2, . . . ,N and sampled
with a sampling rate f s. The response is assumed to obey the
linear-in-the-parameters regressive time-series model:

y[t] = ϕT(z[t]) · θ + w[t], w[t] ∼ NID(0, σ2
w) (1)

where ϕ(z[t]) ∈ Rn is the regression vector, z[t] ∈ Rnz is the
vector of regressed variables, θ ∈ Rn is the parameter vector and
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w[t] is a Normally and Identically Distributed (NID) innovations
of mean zero and variance σ2

w. The vector of regressed variables
z[t] may contain previous values of the dynamic response y[t],
excitation inputs x[t] and innovationsw[t], according to themodel
type. Accordingly, equation (1) corresponds to the case of either
an output-only or a Multiple Input Single Output (MISO) model.
However, theMultiple Input Multiple Output (MIMO) case can be
cast into the presently discussed framework through the proper
rearrangement of the regression and parameter vectors, as well
as the redefinition of the dynamic response and innovations as
column vectors. In addition, linear state space representations
may be considered when observation errors are an important
component of the dynamic response measurements.

The linear-in-the-parameters regressive time-series model of
equation (1) encompasses a large group of time-series models,
which differ in the specific form of the regression vector and
the vector of regressed variables. A few important examples are
summarized next:

• AutoRegressive (AR) models: the simplest case corresponds to
the AR model, for which the regression vector is of the form
((Ljung, 1999) Ch. 4):

ϕ(z[t]) = z[t] =
[
y[t − 1] y[t − 2] · · · y[t − na]

]T (2)

where na is the order of the AR model.
• AutoRegressive Moving Average (ARMA) models: ARMA

models further include previous values of the innovations in
the vector of regressed variables, and thus (Ljung, 1999):

ϕ(z[t]) = z[t]

=
[
y[t − 1] · · · y[t − na] w[t − 1] · · · w[t − nc]

]T
(3)

where na and nc are the orders of the AR and MA parts of the
model.

• AutoRegressive with eXogenous variable (ARX) models: ARX
models combine previous values of the dynamic response and
the excitation vector x[t] ∈ Rnx , and thus ((Ljung, 1999) Ch. 4):

ϕ(z[t])= z[t]

=
[
y[t − 1] · · · y[t − na] xT[t − 1] · · · xT[t − nb]

]T
(4)

where na and nb are the orders of the AR and exogenous parts
of the model.

• Linear Parameter Varying AR (LPV-AR) models: LPV-AR
models are a class of time-dependent AR models, which cor-
respond to a generalization of the simple AR model, where
the parameters of the AR model are dependent on an external
scheduling variable β[t] determining the values of these param-
eters at time t. The regression vector in the case of LPV-AR
models is of the form (Avendaño-Valencia and Fassois, 2017b):

z[t] =
[
y[t − 1] y[t − 2] · · · y[t − na]

]T (5a)

ϕ(z[t]) = z[t] ⊗
[
gb1(β[t]) gb2(β[t]) · · · gbp(β[t])

]T (5b)

where na is the AR order, ⊗ denotes the Kronecker product,
gbj(β[t]) is the j-th functional expansion basis, and p is the
order of the functional expansion basis. The closely related
Functional Series TAR (FS-TAR) models form a special case of
the LPV-AR model where the scheduling variable is time, i.e.,
β[t] ≡ t (Poulimenos and Fassois, 2006).

• Non-linear AR (NAR) models: NAR models correspond to
the non-linear counterpart of AR models, where the dynamic
response is regressed on non-linear functions of its previous
values, so that the regression vector assumes the form (Spiri-
donakos and Chatzi, 2015):

z[t] =
[
y[t − 1] y[t − 2] · · · y[t − na]

]T (6a)

ϕ(z[t]) =
[
g1(z[t]) g2(z[t]) · · · gn(z[t])

]T (6b)

where na is the AR order, and gj (z[t]) is the j–th non-linear
term of the vector of regressed variables.

Equation (1) may be expressed alternatively as follows:

w[t] = y[t] − ϕT(z[t]) · θ = y[t] − y[t|t − 1] (7)

where y[t|t – 1]:=E{y[t]|θ, ϕ(z[t])} is the one-step-ahead predic-
tion of the dynamic response, with associated variance E{(y[t1] −
y[t1|t1 − 1]) · (y[t2] − y[t2|t2 − 1])} = σ2

w · δ[t1 − t2], where
t1, t2 are two analysis instants, and δ[t] denotes the Kronecker
delta. Hence, under the NID assumption of the innovations w[t],
the conditional probability of the dynamic response y[t] given the
parameter vector θ and the regression vector ϕ(z[t]) is Gaussian
with mean y[t|t–1] and variance σ2

w, or more specifically:

p(y[t] | θ, ϕ(z[t])) = Ny[t](y[t|t − 1], σ2
w),

y[t|t − 1] = ϕT(z[t]) · θ (8)

where Nx(xo, σ2
x) denotes a Gaussian distribution for the random

variable x with mean xo and variance σ2
x . Moreover, by virtue of

the NID nature of the innovations, it follows that the probability
for an entire vibration response realization of lengthN aggregated
in the vector y= [y[1] y[2] · · · y[N]]T , is:

p(y | θ,Φ) =
N∏

t=1
p(y[t] | θ, ϕ(z[t])) =

N∏
t=1

Ny[t](y[t|t − 1], σ2
w)

(9)

where Φ= [ϕ(z[1]) ϕ(z[2]) · · · ϕ(z[N])] ∈ Rn×N is the
N-sample long regression matrix. Then, by introduction of equa-
tion 8, and by virtue of the properties of exponential functions, it
follows that (see Appendix A.1):

p(y | θ,Φ) = Ny(ΦT · θ, σ2
w · IN) (10)

where IN indicates the N-size identity matrix. The conditional
PDF p(y|θ, Φ), seen as a function of the parameter vector θ,
determines the likelihood of the parameter vector L(θ | y, Φ). Fur-
thermore, after assuming that the coefficient vector θ is a deter-
ministic variable, Maximum Likelihood (ML) estimates may be
obtained by determining the values that maximize the likelihood
L(θ | y, Φ) ((Ljung, 1999), Sec. 7.4).
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2.2. Limitations of the Traditional Linear
Regressive Models
Although the linear-in-the-parameters regressive time-series
model shown in equation (1) is useful for representing diverse
classes of time-series, including stationary, non-stationary and
non-linear, it lacks the flexibility to effectively represent vari-
able dynamics stemming from variable Environmental and Oper-
ational Conditions (EOCs). For instance, it is known that the
elasticity modulus of a material may change with temperature,
and in turn, a change in this variable would modify the natu-
ral frequencies and damping ratios associated with the dynamic
response of the structure. Hence, the model in equation (1) with
a fixed parameter vector θ, would fail to effectively represent the
dynamic response of the structure over a long period of analysis.

Instead, it may be considered that during a given period of
time, say T =N · f s, the EOCs remain more or less constant, and
consequently, the physical parameters of the structure would also
remain constant. Under these conditions, the linear regression
model of equation (1) is a valid representation of the dynamic
response of the structure for such analysis period, while the
parameter vector θ would change according to the EOCs. Two
main questions may be identified in this regard, the first is on how
to select the length of the period where it is considered that the
structural parameters remain more or less constant; the second is
on how to represent the variability in the parameters as a func-
tion of the EOCs. The selection of the period of pseudoconstant
dynamics may be obtained empirically by means of stationarity
tests, as described for example in Kay (2008), Basu et al. (2009),
and Borgnat et al. (2010). On the other hand, the representation
of the variability in the dynamics of the structure as an effect of
the EOCs is the main problem addressed in this work, for which a
Gaussian Process Regression approach is postulated, as shown in
the remainder of this work.

2.3. Gaussian Process Time-Series Model
The key assumption in the Gaussian Process (GP) regression
approach is that the parameter vector of the time-series model
follows a Gaussian distribution. Therefore, the linear-in-the-
parameters regressive time-series model of equation (1), is com-
plemented as follows:

y[t] = ϕT(z[t]) · θ + w[t], w[t] ∼ NID(0, σ2
w) (11a)

θ = θo(ξ,M) + u, u ∼ NID(0n×1,Σθ) (11b)

where ξ ∈ Rm is the Environmental and Operational Parame-
ter (EOP) vector determining the EOCs in the analysis period,
θ0(ξ, M)= E{θ|ξ, M} is the mean parameter vector indicating
the expected value of the parameter vector given the EOP ξ and
the matrix of projection coefficients M∈ Rn×p, and u is an NID
random vector with mean zero and covariance Σθ . The model
is completed by the following functional series expansion of the
mean parameter vector:

θo(ξ,M) =
p∑

j=1
µj · gbj(ξ) = M · g(ξ) (12)

where p is the order of the functional series expansion and:

M =
[
µ1 · · · µp

]
∈ Rn×p g(ξ) =

gb1(ξ)
...

gbp(ξ)

 ∈ Rp×1

(13)

are the matrix of projection coefficients and the functional basis
vector containing the basis with indices b =

[
b1 · · · bp

]T
p×1,

bj ∈ N. Note that any type of non-linear function may have been
used to describe the parameter variation, however, a linear-in-
the-parameter structure has been selected—again—in equation
(12) to facilitate the estimation and analysis of the model. A
time-series model obeying equation (11) shall be referred to as a
Gaussian Process (GP) time-series model and is characterized by
a set of deterministic parameters, referred to as hyper-parameters
P = {M,Σθ, σ2

w}, consisting of the matrix of projection coef-
ficients, the parameter covariance matrix and the innovations
variance.

For a GP time-series model, the instantaneous value of the
dynamic response y[t] and the parameter vector θ are jointly
distributed Gaussian variables, with the joint PDF conditioned on
the regression vector, the EOP vector and the hyper-parameters
shown next:

p(y[t], θ | ϕ[t], ξ, P) = p(y[t] | ϕ[t], θ, ξ, P) · p(θ | ϕ[t], ξ, P)
(14)

where, from equation (11), it follows that:

p(y[t] | θ, ϕ[t], ξ, P) = Ny[t](y[t|t − 1], σ2
w) (15a)

p(θ | ϕ[t], ξ, P) = Nθ(θo(ξ, M),Σθ) (15b)

Similarly, when the dynamic response over the complete period
of analysis of lengthN, namely y, is considered, the respective joint
conditional PDF takes the form:

p(y, θ |Φ, ξ, P) =
N∏

t=1
p(y[t], θ | ϕ[t], ξ, P)

=
N∏

t=1
p(y[t] | θ, ϕ[t], ξ, P) · p(θ | ϕ[t], ξ, P)

(16)

which, under the Gaussianity of both p(y[t]|θ, ϕ[t], ξ, P) and
p(θ |ϕ[t], ξ, P), becomes:

p(y, θ |Φ, ξ, P) =

Ny(ΦT · θ, σ2
w · IN)︸ ︷︷ ︸

p(y | θ,Φ,ξ,P)

· Nθ(θo(ξ,M),N−1 · Σθ)︸ ︷︷ ︸
p( θ|Φ,ξ,P)

(17)

In addition, according to the conditional density axiom, the
joint PDF may be decomposed as follows ((Rasmussen and
Williams, 2006), p. 9):

p(y, θ |Φ, ξ, P) = p(y | θ,Φ, ξ, P) · p(θ |Φ, ξ, P)

= p(θ | y,Φ, ξ, P) · p(y |Φ, ξ, P) (18)
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where p(θ|y,Φ, ξ, P) is the posterior PDFof the parameter vector
after observing the dynamic response, and p(y | Φ, ξ, P) is the
marginal probability of the dynamic response, comprising a func-
tion of the hyper–parameters and is referred to as the marginal
likelihood of the hyper-parameters L(P | y, Φ, ξ). The latter is
obtained by marginalizing the joint conditional PDF p(y, θ | Φ,
ξ, P) with respect to all the possible values of θ (Rasmussen and
Williams, 2006), p. 9). Given that both distributions p(y | θ, Φ,
ξ, P) and p(θ | Φ, ξ, P) are Gaussian, the posterior parameter
PDF and marginal likelihood are Gaussian as well, of the form
(Rasmussen and Williams, 2006), p. 9):

p(θ|y,Φ, ξ, P) = Nθ(θ̂, Pθ) (19a)

L(P | y,Φ, ξ) = p(y|Φ, ξ, P) = Ny(ΦT · θo(ξ,M), Σεk)
(19b)

where

θ̂ = E{θ|y,Φ, ξ, P} = θo(ξ,M) + K · (y − ΦT · θo(ξ,M))
(20a)

Pθ = E{(θ − θ̂) · (θ − θ̂)
T|y,Φ, ξ, P} = (In − K · ΦT) · Σθ

(20b)

K = Σθ · Φ · Σ−1
ε (20c)

Σε = σ2
w · IN + ΦT · Σθ · Φ (20d)

In the previous equations θ̂ ∈ Rn corresponds to the pos-
terior parameter mean with the associated posterior parameter
covariance matrix Pθ ∈ Rn×n. Moreover, the quantities:

ỹ[t|t − 1] := ϕT(z[t]) · θo(ξ,M), ε[t] := y[t] − ỹ[t|t − 1]
(21a)

y[t|t − 1] := ϕT(z[t]) · θ̂, e[t] := y[t] − y[t|t − 1] (21b)

are referred to as the prior and posterior one-step-ahead predic-
tions, respectively, with associated prior and posterior prediction
errors ε[t] and e[t]. In addition, Σε ∈ RN×N is the covariance
matrix of the prior prediction error. The main difference between
the prior and posterior predictions, is that the prior predictions
correspond to the best guess of the dynamic response in the
absence of knowledge of the actual parameter vector at the period
of analysis, while the posterior predictions are the best guess
of the dynamic response based on (an estimate of) the actual
parameter vector.

2.3.1. Remark – Unknown or Non-Measurable
Sources of Uncertainty
The GP time-series model may also be used in the context where
the EOP vector is either unknown or unmeasurable. If that is
the case, the functional series expansion of the mean parameter
vector in equation (12) is limited to a single constant term, so that
θ0(ξ, M):=θ0 =µ1·1, while the parameter PDF reduces to the
conventional multivariate Gaussian model, so that θ ∼ N θ(θ0,
Σθ). Such a case has been explored in Avendaño-Valencia et al.
(2015a).

2.4. Regression on a Reduced Parameter
Set via Principal Component Regression
Apotential difficulty in the adoption of theGP time-seriesmodels
lies in the computational cost due to the large number of param-
eters that need to be estimated. Moreover, a coefficient vector
covariance matrix Σθ with full structure implies that several
of the estimated parameters are redundant and/or unnecessary.
A potential solution to this problem is to use a dimensionality
reduction scheme for the regression matrix, such as in Principal
Component Regression (PCR), which is explained next.

To start with, consider the matrix Φ̄K = [Φ1 Φ2 · · · ΦK]T ∈
Rn×(N·K) containing the regression matrices associated with the
set of dynamic responses YK , which possesses the Singular Value
Decomposition (SVD) Φ̄ = U · Λ · VT, where U ∈ Rn×m

and V ∈ R(N·K)×m are orthogonal matrices, and Λ ∈ Rm×m,
with m=min{(N · K – 1), n} designating the rank of Φ̄K, is a
diagonal singular value matrix with entries λ1 ≥ λ2 ≥ · · · ≥ λm.
Moreover, consider the vector d =

[
d1 d2 · · · dm̃

]T of
dimension m̃ ≤ m containing the indices of selected singular
values, and the truncated eigenvector matrices Ũ ∈ Rn×m̃ and
Ṽ ∈ R(N·K)×m̃ built from the columns of U andV corresponding
to the indices in d.

Hence, if the regression vector ϕ(z[t]) is projected into the
column Eigen-space, so that:

Ũ · ϕ̃(z[t]) = ϕ(z[t]) ↔ ϕ̃(z[t]) = ŨT · ϕ(z[t]) (22)

Then, upon replacement of the previous result into the original
regression model, the alternative Principal Component Gaussian
Process Regression (PC-GP) time-series model is obtained:

y[t] = ϕ̃T(z[t]) · ϑ + w[t], w[t] ∼ NID(0, σ2
w) (23a)

ϑ = ϑo(ξ, M̃) + ũ, ũ ∼ NID(0m̃×1,Σϑ) (23b)

where ϑ = ŨT · θ ∈ Rm̃ is a reduced dimensionality parameter
vector. Note that thematrixU and the scaled singular valuesΛ2/N
correspond to the matrix of principal vectors and the matrix of
principal values of the Principal Component Analysis (PCA) of
the covariance matrix estimate Φ̄ ·Φ̄T/N, thus the name Principal
Component Regression (PCR) ((Bair et al., 2006; Hastie et al.,
2009), Section 3.5).

Two main advantages are obtained through the use of the
PC-GP method (Hastie et al., 2009): (i) the dimension of the
parameter vector is reduced from n to m̃; (ii) since the regression
is built on orthogonal regressors (contained in the matrix Ũ), the
reduced parameter vector ϑ is also uncorrelated, and thus the
corresponding covariance matrix Σϑ is diagonal. Consequently,
only the diagonal elements of the matrix need to be estimated.
Additionally, the original parameter vector may be retrieved via
the operation:

θ = Ũ · ϑ (24)

3. IDENTIFICATION OF THE GP
TIME-SERIES MODEL

The identification of a GP time-series model may be stated as
the problem of determining the hyper-parameters P and the
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structural parameters (consisting of the model and basis orders)
that best fit a given a set of K dynamic responses, say YK = {y1,
y2, . . . , yK}. Additionally, according to the model type, a corre-
sponding set of excitation inputs X K = {x1, x2, . . . , xK} and EOP
vectors ΞK = {ξ1, ξ2, . . . ,ξK} are provided. Additionally, it may
be of interest to determine the parameter vectors associated with
each one of the realizations, i.e., each one of the parameter vectors
θk for all k= 1, . . . ,K. These three topics are analyzed next.

3.1. Estimation of the Parameter Vectors of
Individual Realizations
Maximum A Posteriori (MAP) estimates of the parameter vector
of the GP time-seriesmodel for a single realization yk are obtained
by evaluating the values thatmaximize the posterior PDF p(θk | yk,
Φk, ξk, P) in equation (19a). Given that the posterior distribution
is Gaussian, the MAP estimates correspond to the posterior mean
(equal to the mode of the Gaussian distribution), which may be
computed via equation (20) for given values of P .

3.2. Estimation of the Hyperparameters
3.2.1. Maximum Likelihood Estimation of the
Hyperparameters
Maximum likelihood estimates of the hyperparameters are
obtained via optimization of the marginalized hyper-parameter
likelihood for the complete set of data. Accordingly, ML estimates
are obtained from the optimization problem ((Rasmussen and
Williams, 2006), ch. 5; (Shumway and Stoffer, 2011), ch. 6):

P̂ = arg max
P

K∑
k=1

ln L(P|yk,Φk, ξk) (25a)

K∑
k=1

ln L(P|yk,Φk, ξk) = −N · K
2

ln 2π

− 1
2

K∑
k=1

(
ln |Σεk | + εT

k · Σ−1
εk · εk

)
(25b)

where εk =
[
εk[1] εk[2] · · · εk[N]

]T
N×1 is the vector of prior

prediction errors, with εk[t] defined in equation (21a). Although
it is possible to analytically solve the ML optimization problem
in equation (25a) for some of the hyper-parameters (in particular
for a constant parameter mean), the problem becomes intractable
for other quantities. Alternatively, the Expectation-Maximization
(EM) algorithm constitutes a powerful tool to solve this optimiza-
tion problem.

3.2.2. Expectation-Maximization Algorithm for
Efficient Computation of the ML Estimates
The Expectation-Maximization (EM) algorithm attempts to max-
imize the conditional expectation of the logarithm of the joint
conditional PDF p(yk, θk | Φk, ξk, P), with respect to available
data ((Shumway and Stoffer, 2011), ch. 6). Formally expressed, the
EM algorithm aims at maximizing the expected log-likelihood:

Q(P|P(−)) =Eθ|D,P(−)

{
−

K∑
k=1

ln p(yk, θk |Φk, ξk, P)

}
(26)

where Eθ|D,P(−) {·} denotes the conditional expectation of the
argument with respect to the space of θ given data D = {yk, Φk,
ξk}, ∀ k= 1, . . . ,K and hyper-parameters P (−), and where:

K∑
k=1

ln p(yk, θk |Φk, ξk, P)

= −1
2

K∑
k=1

(N · ln σ2
w + σ−2

w (yk − ΦT
k · θk)

T · (yk − ΦT
k · θk)

+ ln |Σθ| + (θk − θo(ξk,M))T · Σ−1
θ · (θk − θo(ξk,M)))

(27)

Thus, after evaluating the expectation, the expected log-
likelihood of the GP time-series model becomes:

Q
(
P|P(−)

)
= Q1

(
P|P(−)

)
+ Q2

(
P|P(−)

)
(28)

Q1

(
P|P(−)

)
= −K · N

2
lnσ2

w

− 1
2σ2w

K∑
k=1

((
e(−)
k

)T
· e(−)

k + tr
(
ΦT

k · P(−)
k · Φk

))
Q2

(
P|P(−)

)
= −K

2
ln |Σθ|

− 1
2

K∑
k=1

((
δ

(−)
k

)T
· Σθ

−1 · δ
(−)
k + tr

(
Σθ

−1 · P(−)
k

))

where tr(·) denotes the trace operation, and:

e(−)
k = yk − ΦT

k · θ̂
(−)
k , e(−)

k ∈ RN (29a)

δ
(−)
k = θ̂

(−)
k − θo

(
ξk,M(−)

)
, δ

(−)
k ∈ Rn (29b)

and θ̂
(−)
k andP(−)

k are theMAP estimates of themean and covari-
ance of the coefficient vector given the hyperparameter values
P(−) = {M(−),Σ(−)

θ , σ
2(−)
w } obtained with equation (20).

The Expectation-Maximization algorithm operates by
selecting some initial hyperparameter values P (0), and then,
at each iteration i= 1, 2, . . . , the following two steps are
performed:

3.2.3. Expectation Step (E-Step)
The expected log-likelihood is evaluated based on the previous
hyper-parameter values, P (i−1). This translates into the evalua-
tion of themean and covariancematrix of the posterior coefficient
PDF, by applying equation (20) on all the available dynamic
response realizations k= 1, . . . ,K.

3.2.4. Maximization Step (M-Step)
Updated hyper-parameter values are obtained by computing the
values that maximize the expected log-likelihood function, this is
to say:

P(i) = arg max
P

Q
(
P|P(i−1)

)
(30)
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which leads to the update equations:

M(i) =

( K∑
k=1

θ̂
(i−1)
k · gT(ξk)

)
·

( K∑
k=1

g(ξk) · gT(ξk)

)−1

(31a)

Σ̂(i)
θ =

1
K

K∑
k=1

(
δ

(i−1)
k · (δ(i−1)

k )
T

+ P(i−1)
k

)
(31b)

σ̂2(i)
w =

1
K · N

K∑
k=1

(
(e(i−1)

k )
T

· e(i−1)
k + tr

(
ΦT

k · P(i−1)
k · Φk

))
(31c)

Moreover, if the parameter vector is constant, then the update
equation for the mean parameter vector reduces to:

θ(i)
o =

1
K

K∑
k=1

θ̂
(i−1)
k (32)

In addition, in the case of the PC-GP time-series model, the
diagonal structure of the coefficient covariancematrix leads to the
simplified update equation:

σ
2(i)
ϑj

=
1
K

K∑
k=1

(
(ϑ(i−1)

j − ϑ
(i−1)
j,o )

2
+
[
P(i−1)
k

]
j,j

)
,

∀ j = 1, 2, . . . , m̃ (33)

where [M]a,b is the entry of matrix M on row a and column b.
The E and M steps are iterated until a specific number of

iterations, say N iter, is reached, or until convergence, which may
be assessed by evaluating if the norm of the difference between the
current and previous values of the marginal likelihood and hyper-
parameter estimates is lower than a pre-specified threshold. The
later translates into monitoring if any of the following conditions
is true:

∆P ≥ |P(i) − P(i−1)| (34a)

∆L ≥ | ln L(P(i)|YK) − ln L(P(i−1)|YK)| (34b)
Niter ≥ i (34c)

where ∆p and ∆L are thresholds on the absolute difference of
hyperparameters and the marginal likelihood updates.

The EM algorithm has been demonstrated to maximize the
marginal likelihood (equation (25b)) at every step and to converge
to a local maximum of the marginal likelihood located in the
neighborhood of the given initial values (Shumway and Stoffer,
2011). In order to facilitate the convergence toward the global
maximum, it is essential to provide a suitable set of initial hyper-
parameter values, which may be derived from an initial set of
estimates of the coefficient vectors θk obtained with traditional
least squares or maximum likelihood methods as explained for
example in Ljung (1999).

3.3. Model Assessment and Validation
Once the GP time-seriesmodel has been estimated, it is important
to determine the performance of the model. Likewise, it may be of
interest to compare with other model structures and determine

which one is best for the data. For that purpose, the main tool
for evaluating the performance is the marginal likelihood shown
in equation (25b). However, precise evaluation of the marginal
likelihood may be non-trivial, in particular because the prior
prediction error covariance matrix is unknown. Instead, it may be
preferable to evaluate the Residual Sum of Squares normalized by
the Series Sum of Squares (RSS/SSS) based on the prior estimation
residuals ε̂[t], as follows:

RSS/SSS(prior) =

( K∑
k=1

N∑
t=1

ε̂2
k[t]

)/( K∑
k=1

N∑
t=1

y2k[t]

)
,

ε̂k[t] = yk[t] − ϕT
k (z[t]) · θo(ξk, M̂) (35)

where M̂ corresponds to the estimates of thematrix of coefficients
of projection.

Alternatively, a validation error can be evaluated in order to
assess the representation effectiveness and generalization ability
of the GP time-series model. In this sense, consider the validation
set Y(v)

L = {y(v)1 , · · · , y(v)L } consisting of L dynamic responses,
whose elements are independent from the set YK used for estima-
tion (training) of the model. Then, the prior RSS/SSS in equation
(35) may be evaluated based on the validation set, where the prior
estimation residuals are replaced by the validation error ε̂

(v)
l [t], so

that:

RSS/SSS(v)(prior) =

( L∑
l=1

N∑
t=1

(ε̂(v)
l [t])

2
)/( L∑

l=1

N∑
t=1

(y(v)l [t])
2
)

,

ε̂
(v)
l [t] = y(v)l [t] − ϕT

k (z
(v)
l [t]) · θo(ξ

(v)
l , M̂) (36)

The validation RSS/SSS may be associated with the empirical
risk ((Vapnik, 2000), ch. 1) for the loss function L(yk[t], yk[t|t−1])
= ε̂2

k[t] ·
(∑K

k=1
∑N

t=1 y2k[t]
)−1.

4. CASE STUDIES

4.1. Long-term Identification of the
Acceleration Response in the Humber
Bridge
4.1.1. Data Description and Preprocessing
The Humber Bridge is a long span suspension bridge joining the
small towns of Hessle (north) and Barton (south) in the UK.
The main span of the bridge comprises 1,410m and is built on
aerodynamic steel box girders and inclined hangers, and sup-
ported by two reinforced concrete towers rising 155.5m above the
caisson foundations. The bridge is exposed to prevailing south-
westerly cyclonic winds that can reach hurricane force (exceeding
32.7m/s), with atmospheric temperatures ranging from −10 to
30°C. Further details of the structure of theHumber bridgemay be
found in Rahbari et al. (2015). The bridge has been instrumented
with various sensors, including GPS antennas, accelerometers,
inclinometers and extensometers. In addition, various environ-
mental variables including wind speed and temperature at dif-
ferent locations of the bridge are also measured. The monitoring
campaign comprised a three year period starting from January
11, 2011, to December 2, 2013. In the present study, the vertical
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acceleration response signal measured at the midspan on the east
side of the deck is selected for analysis, while the wind speed is
used as EOP.

The vertical acceleration response signal is originally sampled
at 20Hz. For the present study however, it is down-sampled to
2Hz in order to focus the analysis on the main structural fre-
quencies, located under 1Hz, while at the same time reducing
the model complexity. Acceleration and wind speed signal seg-
ments of 250 s (N = 500 samples) are extracted every 30min, thus
resulting in a maximum of 48 segments per day. In the analysis
presented here, the average wind speed on each analysis period is
considered as the unique EOP for the construction of a GP-AR
model of the vertical vibration of the bridge. Hence, in order to
reduce the parameter uncertainty and the computational cost in
the construction of the model, only the vibration records corre-
sponding to the main wind direction (about 90± 20°) are utilized
in the construction of the model. Note, however, that a more
comprehensive representation of the vibration response of the
bridge may be appraised by considering also the wind direction
as an EOP in the GP-AR model. This issue shall be appraised in
a future work. Thus, after the selection of the vibration records
corresponding to the main wind direction and the removal of
artifacts due to problems of the measuring system, a total of 7,000
signal segments are finally obtained for the construction of the
model.

In Figure 1 is provided a histogram of the average wind
speed corresponding to the selected vibration signals. In addi-
tion, Figure 2 displays a typical daily variation of the power
spectral density (PSD) of the vertical acceleration response and
the average wind speed (irrespective of the wind direction). The
obtained PSDs demonstrate that the main natural frequencies
remain relatively stable, although the amplitude of the vibration
evidences large variations even during a single day. In particular,
it is evident that during the low wind speed period observed on
the first 4 h of the analyzed period, the power of the vibration is
much lower in comparison with later hours where the wind speed
increases.

4.1.2. Model Identification
4.1.2.1. Modeling of the Short-term Response
An AutoRegressive (AR) model structure is selected to represent
the acceleration response on short, 250 s, intervals. The order of
the AR model is selected by evaluating different model structures
with orders in the range na = [1, . . . , 100]. A subset of 7 days of
data is selected to determine the model order. The prior RSS/SSS
and Bayesian Information Criterion (BIC) curves, as well as the
frequency stabilization plot, displaying the natural frequencies
and damping ratios associated with the estimated AR models for
increasing orders, are shown in Figure 3. It may be observed that
the RSS/SSS tends to favor large AR orders, while the BIC clearly
demonstrates several minima, and a global minimum found for
the value na = 72. The frequency stabilization plot seems to con-
firm these findings, by demonstrating that the main frequency
peaks found in the PSD are accommodated by AR models with
order around na = 72. Thus, according to the frequency stabi-
lization plot and the BIC curve, the selected model order for
subsequent analysis is na = 72.

FIGURE 1 | Histogram displaying the distribution of the average wind speeds
available for the identification of the model.

4.1.2.2. Modeling of the Long-term Response
The long-term acceleration response of the bridge is represented
by means of a GP-AR model where the 250 s average wind speed
is used as EOP, this is to say ξ. For this purpose, the average wind
speed is normalized from the range [0, 30]m/s to the range [0,1]
by making ξ =AWS/30, where AWS stands for the 250 s Average
Wind Speed. The functional basis used for the expansion of the
parameter vector of themodel corresponds to the class of Hermite
orthogonal polynomials, which satisfy the recurrence relation:

gj+1(ξ) = Hj(ξ) = ξ · Hj−1(ξ) − (j − 1) · Hj−2(ξ), ∀j ≥ 2
(37)

g1(ξ) = Ho(ξ) = 1, g2(ξ) = H1(ξ) = ξ

Thus, GP-AR(72)models are estimated using the EMalgorithm
for increasing basis orders in the range of p= 1, . . . , 6. For the
application of the EM algorithm and validation of the perfor-
mance of the obtained models, the whole dataset consisting of
7,000 segments of 250 s is separated into training and validation
subsets. The training subset is composed by the initial 3,000 seg-
ments, while the validation subset is composed by the remaining
4,000 segments. It should be noted that the GP-AR(72) model
with p= 1 would correspond to the case when the EOP variable
is ignored and the parameter vector is assumed to be Gaussian
with constant mean and covariance matrix. The settings used for
the application of the EM algorithm are shown in Table 1. Note
that the threshold ∆RSS/SSS is presently utilized instead of ∆L, as
suggested in equation (34), since the RSS/SSS is used to evaluate
the convergence of the optimization procedure. Figure 4 shows
the RSS/SSS based on prior and posterior residuals, as well as for
the training and validation subsets obtained with the GP-AR(72)
model with basis orders p= 1, . . . , 6. The obtained results demon-
strate that a GP-AR(72) model with basis order p= 4 provides
the best fit in all cases. Furthermore, the validation error results
slightly elevated when compared against the training error, thus
demonstrating the generalization capability of the model.

The prior and posterior estimates of the parameter vector as
a function of the AWS are shown in Figure 5. The dependency of
the parameter estimates on theAWS is evident and is consistent on
both the prior and posterior parameter estimates. Nonetheless, in

Frontiers in Built Environment | www.frontiersin.org December 2017 | Volume 3 | Article 69864

http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


Avendaño-Valencia et al. Gaussian Process Time-Series Models

FIGURE 2 | Typical 1-day variation of the PSD of the acceleration response and the average wind speed: (A) PSD (spectrogram)–Hamming window, length 8,192
samples, overlap 5,792 samples; (B) 2min average wind speed.

some cases the posterior estimates tend to deviate from the prior at
higher AWS values, especially for higher wind speeds. This effect
may be due to the reduced amount of signal segments available for
higher wind speeds in the construction of the model, as evident in
the histogram of wind speeds shown in Figure 1.

4.1.3. Model-Based Analysis
Once the GP-AR(72)p = 4 model has been identified, it is possible
to analyze the dynamic characteristics of the acceleration response
of the bridge as a function of the average wind speed. In particular,
the Power Spectral Density, the natural frequencies and damping
ratios are extracted from the identified GP-AR(72)p = 4 model.
Each one of these quantities are evaluated as follows:

Characteristic polynomial : A(z, ξ) = 1 +
na∑
i=1

âi(ξ) · z−i

(38a)

PSD : Pyy(f, ξ) =
σ2
w

|A(ej2πf, ξ)|2
(38b)

Poles : {λi(ξ) ∈ C, i = 1, . . . , na : A(λ, ξ) = 0} (38c)

Natural frequencies : fn,i(ξ) =
fs
2π

· |lnλi(ξ)| (38d)

Damping ratios : ζi(ξ) = −cos(arg(lnλi(ξ))) (38e)

Figure 6 shows the GP-AR(72)p = 4 model-based PSD, natural
frequencies and damping ratios obtained for the range of average
wind speeds from 0 to 25m/s, while frequencies and damping
ratios are limited to the ranges [0,500]mHz and [0,10]%, respec-
tively. The model-based PSD and modal quantities demonstrate
that both the amplitude and frequency of the vibration are directly
influenced by the average wind speed.

A more detailed analysis of the first six natural frequencies
and damping ratios obtained from prior and posterior parameter
estimates is presented in Figure 7. The posterior estimates are
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FIGURE 3 | Selection of the order of the AR model. (A) Prior RSS/SSS and BIC curves for increasing model orders na = 1, 2, . . . , 100; (B) frequency stabilization
plot of the AR model for increasing model orders with the Welch PSD estimate–Hamming window, length 512 samples, 256 samples overlap.

TABLE 1 | Settings of the EM algorithm.

Parameter Value

Maximum number of iterations Niter = 104

Hyper-parameter difference threshold ∆p = 10–5

RSS/SSS difference threshold ∆RSS/SSS =10–5

Initialization Ordinary least squares estimates of the
parameters of individual realizations

calculated for the complete set of vibration segments based on the
estimated GP-AR model. The dispersion of the modal quantities
tends to blow up for increasing wind speeds, which in part may
be due to the effect of wind and turbulence on the structure. In

addition, the difference between prior and posterior estimates of
the modal quantities tends to increase when the wind speed is
larger than 20m/s. This effect may be due to the lesser amount of
samples acquired from higher wind speeds, which may be leading
to increased uncertainty in the parameter estimates. The modal
analysis results obtainedwith theGP-ARmodelmay be contrasted
with those previously reported on (Diana et al., 1992; Brown-
john et al., 1994, 2010). In particular, it appears that the modes
displayed in Figure 7 correspond to the first, second, third, and
eight vertical modes (fn ,1, fn ,2, fn ,3, and fn ,5 respectively), and the
first torsional mode of the bridge (fn ,4). Nonetheless, the predicted
variation in the first torsional mode appears to be different to that
one found with the GP-AR model.
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FIGURE 4 | Selection of the basis order of the GP-AR(72) model. Left: prior RSS/SSS obtained for the training and validation subsets; Right: posterior RSS/SSS
obtained for the training and validation subsets.

FIGURE 5 | Prior and posterior estimates of the first four parameters of the GP-AR(72)p=4 model for the average wind speed range from 0 to 25m/s.

Confirmation of the modal analysis results shall be sought
in a future work, where a vector AR model would be used to
represent the two vertical and the horizontal vibration response
of the bridge. However, the relatively simpler model utilized in
this analysis can be used to track and assess the variability in the
modes of the bridge when the wind is blowing from the main
direction.

4.2. Simulated Vibration of Operating Wind
Turbine Blades
4.2.1. Data Description and Preprocessing
This application focuses on the identification and analysis of the
vibration acceleration signals obtained via simulations of a fully
operational wind turbine. For a PCE-based treatment on actual
tower measurements obtained from an operated wind turbine,
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FIGURE 6 | GP-AR(72)p=4 model-based PSD, natural frequencies, and damping ratios as a function of the average wind speed in the range 0–25m/s. Frequency
range and damping ratio limited to [0, 500]mHz and [0, 10]%, respectively. (A) PSD of the bridge vibration as a function of AWS; (B) natural frequencies and damping
ratios as a function of AWS.

the interested reader is referred to Bogoevska et al. (2017). The
analyzed wind turbine is the NREL 5MW reference offshore wind
turbine, fully described in Jonkman et al. (2009). The simula-
tion is performed by means of the FAST wind turbine aeroe-
lastic code, which uses a turbulent wind excitation simulated
with TurbSim (Jonkman and Buhl, 2005). Acceleration signals
are measured at different locations along the span of on one
of the blades of the wind turbine on the flap wise direction,
as depicted in Figure 8. From these, the acceleration signals
measured on the tip of the blade (node 6) are used for further
analysis.

Simulations of both turbulent wind and vibration response
are computed for a period of 10min (600 s) with a sampling

rate of 200Hz. Moreover, the instantaneous rotor azimuth is also
extracted, which shall be used as the scheduling variable in the
model for representation of the short-term response. The obtained
acceleration signals are subsequently downsampled at 12.5Hz for
further analysis and processing. An antialiasing low-pass filter is
applied before down-sampling. The filter consists of a 100 order
FIR filter with cutoff frequency of 5Hz. The cutoff frequency has
been selected in order to preserve the structural modes which
are under 4Hz, and is applied in a forward–backward fashion
to compensate the phase delay by using the MATLAB command
filtfilt.

A set of 100 simulations is obtained under different 10min
average wind speeds in the range from 5 to 26m/s. For that
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FIGURE 7 | Distribution of selected natural frequencies and damping ratios obtained from the GP-AR(72)p=4 model. Solid line, modal quantities from prior parameter
estimates; dots, modal quantities from posterior parameter estimates; shaded areas, 50 and 90% confidence intervals derived from the parameter mean and
covariance matrix. Left column: natural frequencies in mHz; right column: damping ratios.

purpose, the Latin hypercube sampling algorithm is used to create
a set of 100 random average wind speeds within the specified
range. Then, a turbulent wind speed time-series is simulated for
each 10min average wind speed, which is subsequently used as
input to the FAST simulation software.

It is noted that the present simulated data bears important
differences with those published in the previous work (Avendaño-
Valencia and Fassois, 2017a), which are summarized as follows: (i)
The turbulent wind excitation is simulated over an 8× 8 grid,
in comparison with the 2× 2 grid used in the previous work.
Therefore, the excitation is richer while the vibration response
may be more complex. (ii) The sampling rate used for simulation
is extended from 25 to 200Hz so as to improve the conver-
gence of the numerical integration algorithm. (iii) The analysis is
performed in a sensor in the blade tip instead of the blade root.
A consequence of the previous selections is that the structure of
the obtained models may differ significantly with that reported
(Avendaño-Valencia and Fassois, 2017a).

4.2.2. Model Identification
4.2.2.1. Modeling of the Short-term Response
The blade vibration signal is represented via a Linear Parameter
Varying AR (LPV-AR) model, which uses the instantaneous rotor
azimuth as scheduling variable (Avendaño-Valencia and Fassois,
2017a). The selection structure of the LPV-AR model follows the
procedure described in Avendaño-Valencia and Fassois (2017a),
while the selection of the LPV-ARmodel structure is guided by the
BIC. The obtained BIC curves are shown in Figure 9, from which
the model order na = 17 and basis order pa = 5 are selected.

4.2.2.2. Modeling of the Long-term Response
A GP-LPV-AR model is constructed for the representation of
the long term response of the blade. For this purpose, the EOP
variable ξ is defined as the 10minute average wind speed (lying
in the range [0,30] m/s) normalized within the range [0,1]. The
parameter vector of the model is expanded on the Hermite poly-
nomials defined in equation (37).
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GP-LPV-AR(17)5 models with GP basis orders in the range
p= 0, 1, . . . , 6 are estimated using the EM algorithm. The settings
of the EM algorithm are similar to those used in the previous
example and summarized in Table 1; however, in the present case

the thresholds for finalization of the optimization are defined as
∆p =∆RSS/SSS = 10–6. Figure 10A shows the RSS/SSS based on
the prior and posterior prediction errors for increasing orders
of the functional basis expansion of the GP. The plot shows

FIGURE 8 | Location of the sensors in the blade of the wind turbine. Acceleration signals are measured on the flapwise direction of the blade (normal to the surface
of the page).

FIGURE 9 | Selection of the LPV-AR model structure: BIC curves for increasing model orders na = 1, 2, . . . , 40 and for different basis orders pa =1, 3, . . . , 9:
(A) whole range; (B) detail in the range na = [10, 25].

FIGURE 10 | Selection of the order of the GP-LPV-AR models: prior and posterior RSS/SSS curves for increasing GP basis orders p= 0, 1, . . . , 6, for
(A) GP-LPV-AR model; (B) GP-LPV-AR model with principal component regression.
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FIGURE 11 | GP-LPV-AR model-based “frozen” Power Spectral Density evaluated for a full rotation period of the wind turbine blade, and for increasing wind speeds.

totally different behaviors of the prior and posterior errors. In
particular, it is evident that the prior prediction error depends on
the order of the functional expansion, while the posterior error
does not show a significant dependence. This behavior may be
expected, since the prior estimates are based solely on the model
predictions, while the posterior estimates are adjusted to the
observed vibration response. For that same reason, the prior error
is a better tool to evaluate the model capabilities. In the present
case, according to the prior RSS/SSS curve, a basis order p= 5
is selected.

Similarly, a PC-GP-LPV-AR model (based on a Principal
Component representation of the regression matrix of the LPV-
AR model, as explained in Section 2.4) is used for the long-
term identification of the response of the wind turbine. The
PC-GP-LPV-AR model is further estimated by means of the EM

algorithm, using the same settings applied in the previous GP-
LPV-AR model. The Principal Component representation of the
regressionmatrix is carried out using all the components (without
dimensionality reduction), however, the covariance matrix of the
model parameters is in the present case, diagonal, thus a lower
number of hyper-parameters have to be estimated. The obtained
prior and posterior RSS/SSS curves obtained with the PC-GP-
LPV-AR model are shown in Figure 10B. In this case, the prior
and posterior error curves are almost the same, while the overall
error is slightly higher than that obtained with the GP-LPV-AR
model.

4.2.3. Model-Based Analysis
The dynamics of the wind turbine are analyzed based on the iden-
tified GP-LPV-AR(17)5,5 model. For that purpose, the analysis of
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FIGURE 12 | GP-LPV-AR model-based average “frozen” natural frequencies and damping ratios of the wind turbine blade response evaluated for increasing wind
speeds. Solid line indicates the average value, while shaded areas indicate estimates of the 95% confidence intervals.

the dynamics is based on the “frozen” Power Spectral Density,
natural frequencies and damping ratios, which are calculated by
means of the following equations:

“Frozen” characteristic polynomial :

A(z, β, ξ) = 1 +
na∑
i=1

âi(β, ξ) · z−i (39a)

PSD : Pyy(f, β, ξ) =
σ2
w

|A(ej2πf, β, ξ)|2
(39b)

Poles : {λi(β, ξ) ∈ C, i = 1, . . . , na : A(λ, β, ξ) = 0} (39c)

Natural frequencies : fn,i(β, ξ) =
fs
2π

· |lnλi(β, ξ)| (39d)

Damping ratios : ζi(β, ξ) = −cos(arg(lnλi(β, ξ))) (39e)

For the present application, these quantities are functions of
two variables, namely the instantaneous rotor angle β and the
10minute average wind speed ξ. In that sense, the “frozen” PSD,
natural frequencies and damping ratios are calculated for a single
period of rotation of the blades and for the whole range of wind
speeds (3–25m/s). Figure 11 shows the obtained “frozen” PSDs
for different wind speeds in the range. The figure indicates that
the variability of the characteristics of the dynamic response of
the wind turbine both as the rotor azimuth changes, and as the
wind speed increases. In particular, it can be observed that for
all the wind speeds, an important increment in the power of
the vibration response is evident at about two-thirds of a full

rotation. This event may be associated with the blade passing
in front of the tower. Moreover, it is also evident that as the
wind speed increases, the overall power of the vibration response
increases as well. The total power difference when the wind speed
changes from 5 to 25m/s is about 20 dB or a whole magnitude
level.

Average values of the “frozen” natural frequencies and damping
ratios and their respective confidence intervals may be drawn
from the obtained GP-LPV-AR model. The procedure is similar
to that performed in the previous application example. Three
modes are selected for this analysis, namely the pair of modes
located around 1Hz, and the mode located around 2Hz. The
selected average “frozen” natural frequencies and damping ratios
are shown in Figure 12. In the obtained curves is clear the depen-
dency of both natural frequency and damping ratio on the wind
speed. Particularly, for modes 1 and 3 there is an increase on
the damping ratio, while for mode 2 the damping ratio tends
to decrease as the wind speed does. In addition, the natural
frequencies tend to increase with the wind speed as well. The
confidence intervals are in general well bounded, and in par-
ticular it is clear that the estimates of the damping ratios are
reliable.

5. CONCLUDING REMARKS

This work has been devoted to a Gaussian Process time-series
modeling framework for the representation of the long-term
dynamics of structures operating under variable environmental
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and operational conditions. The model definitions plus an iden-
tification method based on the Expectation-Maximization algo-
rithm have been presented. In addition, an optional parame-
ter reduction technique based on Principal Component Regres-
sion has been introduced as a method to reduce the number
of parameters to be estimated in the representation. The result-
ing GP time-series methods provide an appealing alternative for
the representation of the complex dynamics of vibrating struc-
tures operating under variable environmental and operational
conditions.

A potential limitation of the GP time-series modeling method-
ology, as presented in this work, is that the innovations variance
of the time-series model is assumed to be constant. The adop-
tion of a constant innovations variance may hinder the repre-
sentation of changing power in the vibrational response of the
structure according to environmental and operational conditions.
A solution for this limitation is to define a GP to represent the
dependence of the innovations variance on the EOPs, in the same
manner as already explained for the coefficients of the time-series
model. Toward this end, it would be further necessary to modify
the EM algorithm for the estimation of the parameters of the
innovations variance GP.

The proposed GP time-series modeling method offers a
promising tool for assimilation in damage diagnosis algorithms.
For this purpose, a key element lies in formalizing the selection
of the conditions used for training of the model, namely, specifi-
cation of the range of environmental and operational conditions
under which the GP time-series model is able to lead to a robust

decision. An exploratory study on this issue can be found in
Avendaño-Valencia and Chatzi (2017), and will be extended as
future work.
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APPENDIX

A. Demonstrations
A.1. Demonstration of the PDF in Equation (10)
This section aims to demonstrate the PDFof the dynamic response
vector y =

[
y[1] · · · y[N]

]T given the parameter vector θ and
the regression matrix Φ =

[
ϕ(z[1]) · · · ϕ(z[N])

]T. For that
purpose, consider the PDF:

p(y | θ,Φ) =
N∏

t=1
p(y[t] | θ, ϕ(z[t])) (A1)

substituting equation (8) and displaying the Gaussian distribution
as an exponential function, yields:

p(y | θ,Φ) =
N∏

t=1
Ny[t](y[t|t − 1], σ2

w)

=
N∏

t=1
(2πσ2

w)
−1/2 · exp

(
− 1

2σ2w
(y[t] − ϕT(z[t]) · θ)

2
)
(A2)

applying the product operator, yields:

p(y | θ,Φ)

= (2πσ2
w)

−N/2 · exp

(
− 1

2σ2
w

N∑
t=1

(y[t] − ϕT(z[t]) · θ)

)

= (2π)−N/2 · |σ2
w · IN|−1/2 · exp

(
− 1

2σ2
w

N∑
t=1

(y[t] − ϕT(z[t]) · θ)
2
)

(A3)

Then, operating in the sum inside of the exponential function,
leads to:

N∑
t=1

(y[t] − ϕT(z[t]) · θ)
2

=
N∑

t=1

(y[t] − ϕT(z[t]) · θ) · (y[t] − ϕT(z[t]) · θ)

=


y[1] − ϕT(z[1]) · θ
y[2] − ϕT(z[2]) · θ

...
y[N] − ϕT(z[N]) · θ


T

·


y[1] − ϕT(z[1]) · θ
y[2] − ϕT(z[2]) · θ

...
y[N] − ϕT(z[N]) · θ



=



y[1]
y[2]
...

y[N]

−


ϕT(z[1])
ϕT(z[2])

...
ϕT(z[N])

 · θ


T

·



y[1]
y[2]
...

y[N]

−


ϕT(z[1])
ϕT(z[2])

...
ϕT(z[N])

 ·θ


(A4)

and thus:
N∑

t=1
(y[t] − ϕT(z[t]) · θ)

2
=
(
y − ϕT · θ

)T
·
(
y − ΦT · θ

)
(A5)

Then, after putting everything together, the following result is
obtained:

p(y|θ,Φ) = (2π)−N/2 · |σ2
w · IN|−1/2

· exp
(

− 1
2σ2w

(
y − ΦT · θ

)T
·
(
y − ΦT · θ

))
= Ny(ΦT · θ, σ2

w · IN) (A6)
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Accurate measurement-data interpretation leads to increased understanding of structural
behavior and enhanced asset-management decision making. In this paper, four data-
interpretation methodologies, residual minimization, traditional Bayesian model updating,
modified Bayesian model updating (with an L -norm-based Gaussian likelihood func-∞

tion), and error-domain model falsification (EDMF), a method that rejects models that
have unlikely differences between predictions and measurements, are compared. In the
modified Bayesian model updating methodology, a correction is used in the likelihood
function to account for the effect of a finite number of measurements on posterior
probability–density functions. The application of these data-interpretation methodolo-
gies for condition assessment and fatigue life prediction is illustrated on a highway
steel–concrete composite bridge having four spans with a total length of 219m. A detailed
3D finite-element plate and beam model of the bridge and weigh-in-motion data are
used to obtain the time–stress response at a fatigue critical location along the bridge
span. The time–stress response, presented as a histogram, is compared to measured
strain responses either to update prior knowledge of model parameters using residual
minimization and Bayesian methodologies or to obtain candidate model instances using
the EDMF methodology. It is concluded that the EDMF and modified Bayesian model
updating methodologies provide robust prediction of fatigue life compared with residual
minimization and traditional Bayesian model updating in the presence of correlated non-
Gaussian uncertainty. EDMF has additional advantages due to ease of understanding
and applicability for practicing engineers, thus enabling incremental asset-management
decision making over long service lives. Finally, parallel implementations of EDMF using
grid sampling have lower computations times than implementations using adaptive
sampling.

Keywords: model-based data interpretation, Bayesian model updating, model falsification, fatigue life evaluation,
full-scale structures

1. INTRODUCTION

In this paper, four data-interpretation methodologies for model updating are compared to eval-
uate their applicability in predicting the remaining fatigue life of a full-scale bridge. The deficit
between demand and supply of civil infrastructure is increasing annually from an estimated US$
1 trillion in 2014 (World Economic Forum, 2014). Performance-based asset management of existing
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infrastructure for decisions such as repair and retrofit for life
extensionhelps reduce this deficit. Replacement of all aging infras-
tructure is expensive, unsustainable, and often not necessary.
Models that are used for design of civil infrastructure are jus-
tifiably conservative. Therefore, most structures possess reserve
capacity and can last well beyond their design working lives
(referred to as service lives in this paper) (Brühwiler, 2012; Smith,
2016). The challenge lies in quantifying this reserve capacity to
enable asset-management decision making such as repair, retrofit,
and extension.

Asset-management decision making may be improved through
a better understanding of structural behavior. This can be
achieved through monitoring of civil infrastructure enabled by
recent advances in sensing technology (Lynch and Loh, 2006;
Taylor et al., 2016) and availability of affordable computational
tools (Frangopol and Soliman, 2016). However, analytical models
of civil infrastructure systems possess large modeling uncertainty,
including significant systematic errors and unknown correlations
between measurement locations (Jiang and Mahadevan, 2008).
These conditions have lead to recent studies of uncertainties and
development of data-interpretationmethodologies that are robust
to incomplete knowledge (Goulet and Smith, 2013). Moreover,
civil infrastructure are in service for decades and are subjected
to changing load and environmental conditions. Therefore, data-
interpretation methodologies should support engineers for iter-
ative asset-management decisions as new information becomes
available throughout infrastructure lives.

Structural identification involves interpreting measurement
data to update knowledge of parameters governing structural
response in the presence of uncertainties from numerous sources.
Methodologies for structural identification have been studied
extensively (Worden et al., 2007; Beck, 2010; Cross et al., 2013;
Moon and Catbas, 2013). However, every civil structure is
unique due to its form, function, and utility and this requires
explicit consideration of uncertainties in decision making. Most
data-interpretation methodologies assume that the uncertainty
associated with the structural system is defined by a zero-mean
independent Gaussian distribution. However, this assumption is
rarely satisfied for civil infrastructure (Pasquier et al., 2014). Lack
of knowledge of uncertainty related to aspects such as geometry
of structural elements and model bias means that most sources
can only be estimated as bounds. There are other sources of
uncertainties, such as support conditions, that are systematic in
nature and their magnitudes may change the correlation between
uncertainties at measurement locations. Misevaluation of these
uncertainties have led to incorrect updated probability distri-
butions (Goulet and Smith, 2013; Simoen et al., 2013; Pasquier
and Smith, 2015). Such inaccuracy can result in misinformed
asset-management decisions.

The success of data-interpretation methodologies is best mea-
sured on full-scale examples. Brownjohn et al. (2011) have noted
difficulties in transfer of technology from the laboratory to the
field. Laboratories, by design, are intended to reduce uncertainty
and thus they provide little similitude with structural identifi-
cation of real structures. Unfortunately, there are many studies
and theoretical proposals found in the literature (Ben-Haim and

Hemez, 2012) that have not involved testing with full-scale sys-
tems. Yan andKatafygiotis (2015) have presented a novel approach
for Bayesian model updating and highlighted the difficulties in
implementing the procedure in engineering practice. They assert
that the number of parameters to be identified and the large uncer-
tainty associated with complex systems may lead to an unidenti-
fiable system, requiring the need for model reduction techniques.
Kuok and Yuen (2016) have studied modal identification of the
Ting Kau Bridge, which is monitored with more than 230 sensors
of various types. They employ a Bayesian framework for param-
eter estimation and model class selection. Their study shows that
the identification results obtained are influenced by monitoring
conditions such as wind. Behmanesh and Moaveni (2016) have
carried out hierarchical Bayesian model updating of a footbridge
that is subjected to varying temperature conditions. They consider
the effect of parameter uncertainty, parameter variability due to
ambient or environmental conditions and modeling error uncer-
tainty for continuous monitoring. The results from their study
show the importance of including modeling errors for response
prediction. There is a continuing need to evaluate applicability
of model updating methodologies to full-scale systems under
practical conditions.

Detailed numerical models have been used to capture the phys-
ical conditions affecting the response of a full-scale system. Use
of these models in data-interpretation methodologies was recog-
nized to be computationally expensive (Chang et al., 2000). Surro-
gate models have been proposed to improve computation times.
Surrogate models that replaced finite-element models include
polynomial regression (Hemez et al., 2002), multivariate regres-
sion spines (Friedman, 1991), and Kriging estimates (Simpson
et al., 2001) as reviewed by Rutherford et al. (2006). Worden
and Cross (2018) presented the utility of using surrogate models
to predict bridge response under the influence of environmental
conditions such as temperature. Support vector machines have
been used for predicting correlation between modal frequencies
and temperature (Ni et al., 2005), fatigue truck load model (Lu
et al., 2016), and to obtain bridge scour information (Chou and
Pham, 2017). A back propagation neural network model was
used by Ni et al. (2009) to model the correlation between model
frequencies and temperature of the Ting Kau bridge. In this paper,
neural network models have been used to obtain the structural
response for both identification and prediction.

Most research so far has focused on parameter identification
primarily for the purpose of damage detection. Few researchers
have aimed to predict structural response for asset-management
decision making. Li et al. (2016) have predicted von Mises stress
in a test structure. They have employed a Bayesian framework
to arrive at a posterior distribution of model parameters, which
they then utilized to predict von Mises stress at an unmeasured
location. Their study has found that there is a large uncertainty
associated with prediction. Therefore, the forward problem of
prediction requires rigorous treatment of uncertainty associated
with the system. This research exemplifies the need for uncer-
tainty quantification utilizing engineering knowledge to enable
robust prediction of structural response for the purpose of asset-
management decision making.
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Pasquier and Smith (2015) compared a model falsification-
based methodology and Bayesian model updating under various
uncertainty conditions for prediction utilizing a simple beam.
Their results showed that the model falsification methodology
provided accurate prediction in presence of non-Gaussian sources
of uncertainty, model bias, and other sources of systematic uncer-
tainty. Based on this observation, Pasquier et al. (2014) and
Pasquier et al. (2016) utilizedmodel falsification for reserve capac-
ity estimation of a full-scale bridge. However, no research was
found that compares several data-interpretation methodologies
for reserve capacity estimation on a full-scale case study.

This paper compares four data-interpretation methodologies,
residual minimization (Alvin, 1997), traditional Bayesian model
updating (BMU) (Beck and Katafygiotis, 1998), error-domain
model falsification (EDMF) (Goulet and Smith, 2013), and a
modified formulation of BMU. These methodologies are briefly
explained in Section 2. The objective of this comparison is to
verify the applicability of these methodologies for use in prac-
tice for the purpose of reserve capacity estimation. They are
compared based on their ability to provide robust identification
and prediction for a full-scale structure in presence of systematic
uncertainty and incomplete correlation information. Also, these
methodologies have been evaluated based on their compatibility
with introduction of new information, ease of understanding for
use in practice, and computation demand. Using updated infor-
mation, the remaining fatigue life of the bridge is predicted under
two traffic loading scenarios observed using a weigh-in-motion
(WIM) station and one simulated future loading scenario.

2. BACKGROUND—METHODOLOGIES
FOR DATA-INTERPRETATION

In this section, a brief explanation of four data-interpretation
methodologies, residual minimization, traditional BMU, EDMF,
andmodified BMU is presented. Residualminimization is a deter-
ministic methodology, while EDMF and BMU are probabilistic
methodologies that can incorporate multiple sources of uncer-
tainty associated with the system. These methodologies differ
in the assumptions that are made to represent the uncertainty
associated with the system.

2.1. Residual Minimization
In residualminimization, a structuralmodel is calibrated by deter-
mining model parameter values that minimize the error between
model prediction and measurements. Sanayei et al. (2011) pre-
sented a manual model updating example where model predic-
tions are manually compared to measurements and the model
is calibrated based on engineering knowledge to minimize an
objective function. A typical objective function for residual mini-
mization is shown in equation (1):

θ̂ = argmin
θ

ny∑
i=1

(g(xi, θ) − ŷi)2. (1)

In equation (1), θ̂ is the optimummodel parameter set obtained
using measurements, (g(xi, θ) − ŷi) is the residual obtained

between the model response, g(xi, θ), and measurement, ŷi, at
measurement location i. Residual minimization does not account
for the inherent model bias in civil infrastructure due to appli-
cation of safe design models. It also does not take into account
uncertainties arising from systematic or environmental sources
and the correlation between uncertainties. The simplicity of the
methodology makes it popular for use in practice, although the
identification results obtained are not always accurate (Beven,
2000).

2.2. Traditional Bayesian Model Updating
Bayesian model updating is a popular methodology for structural
identification. In this methodology, prior knowledge of model
parameters is updated using information obtained through mon-
itoring of a structure. If g(θ) is the model of a structure with
parameters θ, then the prior probability distribution function
(PDF) of the model parameters, P(θ) is updated as shown in
equation (2),

P(θ|y) =
L(y|θ) · P(θ)

L(y) (2)

whereP(θ|y) is the posterior or updated PDFofmodel parameters,
L(y|θ) is the likelihood function, and L(y) is the normalizing
constant. The likelihood function, L(y|θ), indicates the plausibility
of observing data y for a given realization of θ.

In traditional BMU methodology (Beck and Katafygiotis,
1998), a L2-norm-based Gaussian likelihood function, as shown
in equation (3), is used to update prior information of model
parameters:

L(y|θ) = 2π−nm/2|Σ|−1/2exp

[(
−1

2
ε0 (θ) − Uc

)T

×Σ−1
(

−1
2
ε0 (θ) − Uc

)]
. (3)

In equation (3), Σ is the correlation matrix defined by the
correlation coefficients between measurement locations, ε0(θ) is
a vector of residuals between observation and model response,
and Uc is a vector containing the mean of uncertainty at each
measurement location.

In traditional BMU, the uncertainty associated with the system
is assumed to have an independent zero-mean Gaussian distri-
bution implying model bias and correlations are not considered.
A prominent approach to account for model bias is to model it
as a Gaussian process with variance σ2 (Kennedy and O’Hagan,
2001), which is assigned a non-informative prior andwhose poste-
rior distribution is identified along with other model parameters.
Brynjarsdóttir and O’Hagan (2014) used an informed prior for σ2

to include available information about the model error. Although
these approaches provided reliable estimates of model parameters
in a few cases, they failed to provide reliable solutions for extrap-
olation (prediction at an unmeasured location). In the context
of civil infrastructure, some researchers have considered model-
ing uncertainty for updating response prediction (Papadimitriou
et al., 2001), fatigue reliability assessment (Kwon et al., 2010), and
damage assessment (Simoen et al., 2015). In the above studies,
modeling uncertainty at all measurement locations is assumed to
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be the same, which is rarely the case in the presence of systematic
bias. Also, Bayesian methodology may provide accurate identifi-
cation of parameters at measured locations but the information
obtained from measurements cannot be extrapolated to predict
structural responses at other locations in the presence of system-
atic bias (Behmanesh et al., 2015; Pasquier and Smith, 2015).

2.3. Error-Domain Model Falsification
Another methodology for model updating is EDMF (Goulet and
Smith, 2013). In this methodology, information from measure-
ments is used to falsify parameter values, thereby obtaining a
candidate set from an initial set of possible parameter values. This
methodology is based on the assertion by Popper (1959) thatmod-
els cannot be validated by data; they can only be falsified. Conser-
vative and simplified models used to design civil infrastructure
possess model bias, model fidelity uncertainty, and uncertainties
from simplification of loading conditions, geometrical proper-
ties, material properties, and boundary conditions. Most of these
uncertainties can be estimated only using engineering heuristics
and cannot be described using a zero-meanGaussian distribution.
In EDMF, engineering knowledge is utilized to quantify uncer-
tainties from various sources and combined together along with
measurement uncertainty to obtain a robust falsification criterion.

Consider a structure with modeling and measurement uncer-
tainty, at a measurement location i, ϵmod,i, and ϵmeas,i, respectively.
If a structure is represented by a physics-based model, g(θ), then
the true response of the structure at a measurement location, Qi,
is given by,

Qi = gi
(
θ∗)+ ϵmod,i (4)

where gi(θ*) is the model response at measurement location i for
the real values of the model parameters, θ* and ϵmod,i are the
modeling uncertainty at the measurement location. Similarly, if
the structure is monitored, then the true response of the structure
at a measurement location, Qi, is given by,

Qi = yi + ϵmeas,i (5)

where yi is themeasured response of the structure and ϵmeas,i is the
measurement uncertainty at the measurement location. Equating
equations (4) and (5), the following relationship between model
response and measurement can be obtained,

gi
(
θ∗)− yi = ϵmeas,i − ϵmod,i (6)

where the residual betweenmodel response andmeasurement at a
sensor location is equal to the combined model and measurement
uncertainty. In design decision making, an important consider-
ation is to first fix a target reliability for design. Therefore, in
using EDMF for asset-management decision making, first a target
reliability of identification, ϕ∈ {0,1}, is established (Goulet and
Smith, 2013). Using the target reliability for identification, the
criteria for falsification in EDMF, thresholds Thigh,i and Tlow,i, are
computed using equation (7):

ϕ1/m =
∫ Thigh,i

Tlow,i

fUc,i (ϵc,i) dϵc,i. (7)

In equation (7), fUc,i(ϵc,i) is the combined uncertainty PDF at
measurement location i and ϕ is the target reliability of identifica-
tion. The combined uncertainty, fUc,i(ϵc,i), is calculated by com-
bining uncertainty from various sources such as geometric sim-
plifications, modeling assumptions, and sensor resolutions using
Monte Carlo sampling. If the target reliability of identification, ϕ,
is set to 0.95, then using Monte Carlo sampling, 1 million samples
from the combined uncertainty distribution are generated. From
these samples, the smallest range that contains 95th percentile of
the samples is calculated. The bounds of this range correspond to
the threshold bounds, Thigh,i and Tlow,i. In equation (7), the term
1/m is the Šidák correction (Šidák, 1967) that accounts for a finite
number of measurementsm. For example, using Šidák correction,
if the desired target reliability of identification is 0.95 using two
measurements, then the thresholds bounds are computed for
97.5th percentile (0.951/2) of the generated samples. Once, the
bounds, Thigh,i and Tlow,i, are computed, the user generates model
responses for various instances of model parameters, θ. If the
residual between model prediction and measurement does not lie
within the thresholds then themodel instance is falsified as shown
in equation (8):

Tlow,i ≤ gi (θ) − yi ≤ Thigh,i ∀i ∈ {1...nm}. (8)

Using equation (8), if the response of a model instance does
not lie within the established thresholds for any measurement
location, then that model instance is falsified (Goulet et al., 2010,
2013b; Goulet and Smith, 2013). The remaining model instances
from the initial set, whose responses for allmeasurement locations
lie within the thresholds are accepted to form the candidatemodel
set. These candidate models are then utilized to carry out model
prediction with reduced uncertainty (Pasquier and Smith, 2015).

The EDMF methodology has been developed and applied to
fourteen full-scale systems since 1998 (Smith, 2016). Recent appli-
cations include model identification (Goulet et al., 2013b), leak
detection (Goulet et al., 2013a; Moser et al., 2015), wind simula-
tion (Vernay et al., 2015), prediction (Pasquier and Smith, 2016),
fatigue life evaluation (Pasquier et al., 2014, 2016), and measure-
ment system design (Goulet and Smith, 2012a,b; Papadopoulou
et al., 2016).

2.4. Modified Bayesian Model Updating
The other methodology considered for comparison in this paper
is the modified BMU. In this methodology, prior knowledge of
model parameters is updated using measurements as shown in
equation (2). However, a box-car-shaped L∞-norm-based Gaus-
sian likelihood function is used to include information gained
through measurements. A generalized Gaussian distribution is
defined as,

f (x, k) =
κ1−1/κ

2σκΓ (1/κ)
e
κ·

[
|x−x0|

σκ

]κ

(9)

where f (x, κ) is the generalized Gaussian PDF of random vari-
able x, based on Lκ-norm with mean, x0, and SD, σκ. For κ →∞,
f (x, κ) tends to a box-car shape. Parameters, x0 and σκ, of the
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likelihood function are determined using threshold bounds from
equation (7) as shown in equations (10) and (11):

x0 =
Thigh,i − Tlow,i

2
(10)

σκ = Thigh,i − x0. (11)

The L∞-norm-based Gaussian likelihood function is approx-
imated using κ= 200. If the residuals between model response
and measurements at all locations lie within the thresholds, then
that model instance is attributed a higher likelihood of occur-
rence, while model instances that would be falsified in EDMF are
attributed a low likelihood. The application of modified BMU was
compared with traditional BMU and EDMF, using an illustrative
example, by Pai and Smith (2017).

In this paper, these fourmethodologies are compared consider-
ing a range of uncertainty sources and computational demands of
simulating the behavior of a full-scale structure. Results obtained
from model updating are utilized for fatigue life evaluation of a
full-scale bridge under two traffic loading scenarios.

3. CASE STUDY

3.1. Structure Description
The case considered here is inspired from a steel–concrete com-
posite highway twin bridge in the town of Echandens, Switzerland,
called the Venoge bridge. The bridge has four spans of length 52,
60.4, 55, and 52m, and a total length of 219.4m. In 1995, the
bridge was extended from 2× 2 lanes to 2× 3 lanes by adding an
additional lane in each traffic direction. The bridge is part of the
European route E62 and on average, 7,008 heavy vehicles cross the
bridge weekly in one direction with an average weight of 22 tons.
According to Eurocode, the term heavy vehicles refers to vehicles
with weight greater than 10 tons (Eurocode, 1991). Most of these
heavy vehicles drive on the slow lane on the extended part of the
bridge as shown in Figure 1.

Each half of the twin bridge is composed of a concrete deck
supported over four steel girders. The extended lane and the
old bridge in one traffic direction are supported by two steel
girders each. The concrete bridge deck and steel girders under the
extended lane are modeled using SHELL182 elements in ANSYS.
The steel girders supporting the old bridge are modeled using
BEAM188 elements. The finite-element model is used for a linear
elastic analysis in which the deck is assumed to be homogeneous
and un-cracked on supports under fatigue loads. The bridge has

New bridge -extensionidgegegeNeNeNe nsnsioioioiotetete - - -exexexexgegegegeididididgebrbrbrNew w w NeNeNeNe te nnionsnsexexididbrbr  -ex ioididgegegegeNeNeNeNe ididge tetete - - -exexexexgegegegeNeNeNeNew w ioioionsnsiobrbrbrNew w w w tete nniotensnsexexbrbrididbrbrbr iobrbr ns nididge te -exge exteteexgeNe ioidid

© Sai Sai G.S G.S. Pa. Pai (Ii (IMAC-MAC-EPFLEPFL))

FIGURE 1 | Venoge bridge (Credit: IMAC, EPFL).

four spans as shown schematically in Figure 2. The bridge is
monitored using ten strain gages, installed in 1995, located at two
sections along the span as shown in the figure. These sensors
are located on the interior girder supporting the extended lane
of the bridge. Supports Sup 0, Sup 1, and Sup 2, supporting the
extended lane of the bridge are modeled using spring elements
with parametrized stiffness. Sup 3, Sup 4, and supports under the
old bridge are modeled using rigid spring elements.

Sensors, A1 to A4 and B1 to B4, are used for updating param-
eters of the model. Using this updated knowledge, the response
at sensor locations, A5 and B5, is predicted for validation of the
results obtained using the data-interpretationmethodologies. The
updated model parameters are then used to predict the remaining
fatigue life of a cover plate detail on the bridge. This cover plate
detail is located near sensors A1 and A3, shown in Figure 2. In
this study, the minimum remaining fatigue life of the bridge for
this critical detail is evaluated using in-service traffic and strain
measurement data. The number of sensors and their location on
the bridge is sub-optimal. The measurement system was installed
in 1995 for another objective than the one being studied in this
paper.

3.2. Measurement and Traffic Load Data
Figure 2 shows the position of the sensors on the inner girder
of the extended section of the bridge. Data from eight sensors,
A1 to A4 and B1 to B4, are used for updating knowledge of the
bridge behavior. The position of sensors B1 and B3 on the bridge
is shown in Figure 3. Four sensors are located close to the location
of the critical detail and four other sensors are located at the end of
the first span, 1m from the support, Sup 1. Data from these eight
sensors, recorded from November 18 to 24, 2013, is used for iden-
tification of the model parameters. However, as the data available
is a time-history, it has to be processed to acquire a response that
can be utilized for data-interpretation. A comparable structural
response is the equivalent stress range. The equivalent stress range
calculated using in-service strain measurements is considered as
measured response at sensor locations, yi. The computation of
equivalent stress range is explained in Section 3.3.

The traffic load on the bridge from November 18 to 24, 2013,
in the direction Lausanne–Geneva, is obtained from a weigh-
in-motion (WIM) station located only 1 km from the bridge, at
Denges, without any exits in between. The WIM station provides
traffic load in terms of time of passage (T), vehicle speed (V),
number of axles (N), total length (TL), gross total weight (GTW),
axle weight (AW), and distance between axles (AD). Using this
traffic data, a train of axle loads is generated for the 1-week
duration from November 18 to November 24, 2013. This axle
train is used as a moving point load on the bridge to obtain the
equivalent stress range at each sensor location.

3.3. Computation of Equivalent Stress
Range and Remaining Fatigue Life
Each sensor shown inFigure 2provides a time-history of strain for
vehicles passing over the bridge. This time-history of strain is used
to compute the stress range histogram using the rainflow algo-
rithm (Matsuishi and Endo, 1968). In the stress range histogram,
stress range values below 2MPa are not considered due to their
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FIGURE 2 | Sensor locations on the Venoge bridge.

FIGURE 3 | Sensors B1 and B3 on the Venoge bridge (Credit: IMAC, EPFL).

low effect on fatigue damage of the bridge. The equivalent stress
range, ∆σe (Dowling, 1971), is computed using equation (12),

∆σe =
[∑ ni∆σm

i∑
ni

]1/m
(12)

where ni is the number of cycles that takes place at stress range
level ∆σi and m is the slope coefficient of the S–N curve. The
equivalent stress range is calculated using a single slope S–N curve,
which is a conservative assumption.

Similarly, the equivalent stress range is computed for each
model instance using the finite-element model and traffic load
on the bridge. The finite-element model is used to generate an
influence line for stress at each sensor location for a given set of
parameter values. The train of axle loads is passed over influence
line of each sensor and processed using the rainflow algorithm
to obtain stress range histograms. The equivalent stress range
is computed from these histograms using equation (12) for all
sensors. This step is repeated to obtain the equivalent stress range
at each sensor location for various model parameter values.

The updated model using traffic and strain data is used to
predict the remaining fatigue life of a cover plate detail located
close to sensors, A1 and A3, as shown in Figure 2. The remaining

fatigue life of the cover plate detail is computed using the damage
index. The damage index, Dperiod, is calculated using Miners rule
(Miner, 1945), as shown in equation (13):

Dperiod =
[∑ ni

C · ∆σ−m
i

]
(13)

where C is a constant depending on the category of the critical
detail, m is the slope coefficient, and ni is the number of cycles
that takes place at stress range level ∆σi. The cover plate welded
attachment close to sensor A1 and A3 is classified as FAT36
according to SIA263/1 (2013). Based on the detail classification,
the characteristic value for the constant C is utilized in computing
the damage index. The remaining fatigue life of the bridge, RFL, is
calculated using equation (14):

RFL =
Ryear

Dperiod
(14)

where Ryear is the fraction of traffic simulation period over a year.
Thus, if traffic is simulated over a 1-week period, then Ryear is
taken as 1/52.

3.4. Model Class and Sources of
Uncertainty
The bridge response, i.e., the equivalent stress range at the sensor
locations, is affected by several factors, which are not known
completely. In the finite-element model, unknown parameters are
quantified as random variables with a uniform distribution. Not
all parameters of the finite-element model affect the structural
response significantly. The relative importance of these parame-
ters to structural response is estimated using a sensitivity analysis.
Equivalent stress range at each sensor location is calculated for
numerous values of model parameters. The dataset containing the
model response and parameters is used to fit a linear regression
model for each sensor location. The parameters of the regression
model are indicative of the importance of the structural parame-
ters to response at each sensor location, which is used to calculate
the relative importance. A list of these parameters is shown in
Table 1 along with their relative importance to the structural
response of the bridge at various sensor locations.

The parameters that significantly affect the structural response
based on their relative importance are Ec, KdeckX. These param-
eters constitute the parameters of the model class and knowl-
edge regarding these parameters will be updated using data from
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TABLE 1 | Parametric uncertainty.

Parameter Range Relative
importance (%)

Elastic modulus of steel, 190–210 2.44
Es (GPa)
Elastic modulus of concrete, 20–40 21.07
Ec (GPa)
Connection between concrete deck and 3–7 35.68
steel girders, longitudinally, KdeckX (log N/mm)
Connection between concrete deck and 2–6 0.67
steel girders, transversally, KdeckZ (log N/mm)
Vertical stiffness of Sup 0, 3–7 10.59
Vy0 (log N/mm)
Horizontal stiffness of Sup 0, 3–7 1.38
Vx0 (log N/mm)
Rotational stiffness of Sup 0, 7–11 14.85
Rz0 (log N/mm/rad)
Vertical stiffness of Sup 1, 2–8 2.64
Vy1 (log N/mm)
Horizontal stiffness of Sup 1, 2–8 10.67
Vx1 (log N/mm)

TABLE 2 | Secondary parametric uncertainty, surrogate modeling uncertainty, and
model bias at each sensor location.

Sensor Secondary-parameter Surrogate modeling Model
uncertainty (%) uncertainty (%) bias (%)

Min Max Min Max Min Max

A1 −2.1 5.4 −1.5 8.7 −14.0 1.0
A2 −2.7 5.7 −2.3 11.5 −14.0 1.0
A3 −2.7 5.8 −1.0 11.7 −14.0 1.0
A4 −2.9 6.0 −1.8 14.9 −14.0 1.0
B1 −6.0 3.2 −2.2 7.3 −19.0 1.0
B2 −4.0 2.2 −1.1 5.1 −19.0 1.0
B3 −5.8 3.1 −1.5 6.8 −19.0 1.0
B4 −3.8 1.7 −4.3 6.5 −19.0 1.0

All distributions are uniform.

strain gages and WIM station. The parameters not considered
in the model class for the identification are called as secondary
parameters. They contribute to the secondary parameter uncer-
tainty at each sensor location, which is estimated using the finite-
element model. The secondary parameter uncertainty at each
sensor location is shown in Table 2.

Probabilistic data-interpretation methodologies, such as those
discussed in Section 2, require evaluation of a structural model
for various realizations of model parameters, which are described
as random variables. In this paper, a finite-element model of the
bridge is used as the structural model with two parameters, Ec,
KdeckX, comprising the model class to be identified. Each realiza-
tion of the model parameters is a set of values for Ec, KdeckX for
which the bridge response is evaluated. Using the finite-element
model and a realization of the model parameters, an influence
line for stress at each sensor location is obtained. This influence
line is then used to obtain the equivalent stress range at each
sensor location. The computation of influence line for all sensors
for one set of model parameters takes around 4 h and 30min,
using an Intel(R) Xeon(R) CPU E5-2670 v3 @2.30GHz processor.
The long computation does not allow for efficient sampling of

TABLE 3 | Other sources of uncertainty.

Source Distribution (%)

Influence line calculation U(−1, 1)
Truck position U(0, 1)
Measurement uncertainty N(0, 0.1)

the parameter space to obtain optimum results. Therefore, to
reduce the computation cost, surrogate models are developed to
predict the equivalent stress range at each sensor location and the
remaining fatigue life of the critical detail. The equivalent stress
range predicted using the surrogate models for various parameter
values is taken to be the model response, gi(θ), in model updating.

120 parameter values of Ec, KdeckX are generated using Latin
hypercube sampling and input into the finite-element model to
obtain the equivalent stress range at sensor locations and remain-
ing fatigue life of the critical detail. The parameter values and the
corresponding structural response obtained are used as a data set
to train the surrogate models. Here, a neural network is used to
map the function between the inputs and outputs. Neural net-
work models (Farrar and Worden, 2012) have multiple layers that
map the inputs to the outputs using linear or non-linear transfer
functions. The neural network used here is a feedforward neural
net with 4 hidden layers, trained using the Levenberg–Marquardt
algorithm (Beale et al., 2015). The neural network models were
then cross-validated with 15% of the data points, which were not
used for training the net. The cross-validation results are used
to obtain the surrogate modeling uncertainty. As the number of
data points used for cross-validation is small, the residual between
surrogate and finite-element model prediction is assumed to have
a uniform distribution. The surrogate modeling uncertainty esti-
mated for each sensor location using cross-validation is shown
in Table 2. The neural network models developed are used in
the subsequent sections for prediction of equivalent stress range
at sensor locations and remaining fatigue life of the bridge. The
model bias at each sensor location is also shown in Table 2.
The model bias, estimated using heuristics, is assumed to be
higher at sensor locations closer to the supports than for those at
mid-span.

Structural response of the bridge under in-service traffic load-
ing is also affected by additional uncertainty sources such asmodel
bias, influence line calculation, transversal position of vehicles
on the bridge, measurement uncertainty associated with strain
gages, and WIM station. Most of these uncertainty sources can-
not be computed numerically and are estimated using engineer-
ing knowledge. The uncertainty distribution assumed for these
uncertainty sources is provided in Table 3. The uncertainty from
these sources is assumed to be the same for all measurement
locations.

The uncertainty from these sources are combined together
using Monte Carlo sampling to determine the combined uncer-
tainty PDF. The falsification thresholds for EDMF and the likeli-
hood functions for traditional andmodified BMU are determined
based on the combined uncertainty PDF using equations (7),
(3), and (9), respectively. Equivalent stress ranges at measure-
ment locations obtained using strain gages and the falsification
thresholds obtained using equation (7) are shown in Table 4.
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TABLE 4 | Equivalent stress ranges at measurement locations and falsification
thresholds for EDMF.

Sensor Measurement (MPa) Thigh (MPa) Tlow (MPa)

A1 10.83 0.19 −2.84
A2 10.86 0.24 −3.14
A3 10.57 0.10 −3.00
A4 10.31 0.15 −3.34
B1 4.95 0.28 −1.36
B2 4.98 0.15 −1.15
B3 4.62 0.22 −1.27
B4 5.06 0.28 −1.10

3.5. Structural Identification
In this section, the updated distribution of model parame-
ters obtained using the data-interpretation methodologies is
presented.

For residual minimization, samples from the prior distribution
of model parameters, Ec and KdeckX are generated through Monte
Carlo sampling. For each parameter set, using the surrogate mod-
els developed, the equivalent stress range at each sensor location is
predicted and the parameter set that provides minimum value for
objective function provided in equation (1) is considered as the
optimum value.

For EDMF, an initial set of model parameters is generated as a
grid. Eachmodel instance is input into the surrogatemodels devel-
oped for equivalent stress range, explained in Section 3.4. Using
these surrogate models, the equivalent stress range at each mea-
surement location is obtained and compared with the equivalent
stress range obtained using measurement. If the residual between
model response and measurement for each location lies within
the threshold bounds, Thigh,i and Tlow,i, computed using equation
(7) then the model instance is accepted. All such accepted model
instances form the candidate model set, while the remaining
model instances are falsified.

In modified and traditional BMU, the posterior PDF is sam-
pled using Markov chain Monte Carlo (MCMC) sampling. The
difference between the two Bayesian methodologies is the like-
lihood function employed. Traditional BMU employs a zero-
mean Gaussian likelihood function, as described in equation (3),
while modified BMU utilizes a L∞-norm-based Gaussian likeli-
hood function, as described in equation (9), to update the model
parameters.

The candidate model set obtained using EDMF and sam-
ples of the joint posterior PDF of primary parameters obtained
using modified BMU and traditional BMU are shown in
Figure 4.

In Figure 4A, each candidate model instance obtained using
EDMF is assumed to have an equal probability of occurrence.
Figure 4B shows the samples of joint posterior PDF obtained
using modified BMU. The sampled region is similar to the can-
didate model set region obtained using EDMF. This is because
of the L∞-norm-based Gaussian likelihood function used in
updating the probability distribution of model parameters. The
modified likelihood function has a box-car shape that attributes
a constant probability, p, to model instances whose residual when
compared to measurements at each sensor location lies within the
threshold bounds, Thigh,i and Tlow,i computed using equation (7).

A B C

FIGURE 4 | Posterior PDF of primary model parameters as obtained using (A)
EDMF, (B) modified BMU, and (C) traditional BMU.

In EDMF, these model instances form the candidate model set.
Model instances whose residuals lie outside the threshold bounds
for any measurement location are attributed a probability close to
zero, which is analogous to falsified model instances in EDMF.
Therefore, EDMF and modified BMU provide a similar joint
posterior PDF.

Traditional BMU, which assumes a zero-mean Gaussian distri-
bution for the uncertainty associated with the system, provides
an informed posterior PDF. The maximum likelihood estimate
obtained using traditional BMU for the parametersEc andKdeckX is
30GPa and 5.5 logN/mm, respectively. Samples of the joint poste-
rior PDF obtained using traditional BMU is shown in Figure 4C.
Using residual minimization, the updated parameter values of Ec
and KdeckX obtained are, 20GPa and 4 log N/mm.

In subsequent sections, the updatedmodel parameters are used
to predict the equivalent stress range at two sensor locations
and the remaining fatigue life of the bridge at a critical detail.
The remaining fatigue life of the bridge is predicted under two
scenarios of observed traffic loading, to enable informed deci-
sion making regarding intervention for assessment, retrofit, and
replacement.

3.6. Equivalent Stress Range Prediction
In this section, the updatedmodel parameters from Section 3.5 are
used to predict the equivalent stress range at two sensor locations.
The first location is of sensor A5, which is located on the upper
flange of the bridge girder as shown in Figure 2. The second
location is of sensor B5, which is located on the upper flange of the
bridge girder as shown in Figure 2. Measurements from sensors
A5 and B5 were not used in model updating. The comparison
between equivalent stress range obtained using measurements
and predicted using the updated model parameters is shown in
Figure 5.

In Figure 5A, the equivalent stress range predicted for sen-
sor A5 is shown. The equivalent stress range obtained using
strain data from sensor A5 is 2.5MPa. The equivalent stress
range predicted using the prior distribution of model param-
eters ranges from 0.1 to 24MPa. Using updated knowledge of
bridge behavior as obtained using the three probabilistic data-
interpretation methodologies, the prediction range is reduced.
Utilizing the updated model parameters obtained using residual
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A B

FIGURE 5 | Equivalent stress range predicted using updated model parameters at (A) sensor location A5 and (B) sensor location B5.

minimization, the equivalent stress range predicted is 14.6MPa,
which is biased from the value obtained using measurements.
The 95th percentile bounds of equivalent stress range predicted
using traditional BMU are 0.1 and 10.1MPa. Modified BMU and
EDMF provide wider and similar bounds ranging from 0.2 to
22MPa. In this case, all three probabilistic methodologies provide
robust prediction of the equivalent stress range at the sensor
location as the predicted bounds include the value obtained using
measurements.

Figure 5B shows the equivalent stress predicted for sen-
sor B5. The results obtained using the four data-interpretation
methodologies again show a similar trend as observed for
sensor A5. Residual minimization provides biased prediction
of the equivalent stress range at location of sensor B5. The
three probabilistic methodologies provide reduced prediction
ranges compared with the initial model set prediction. More-
over, the prediction bounds obtained using all three probabilistic
methodologies include the equivalent stress range obtained using
measurements.

Structural identification for the purpose of damage detection
is limited to validation of structural response under uncertainty
conditions that are similar to those used for model updating. In
this scenario, all three probabilistic methodologies provide robust
identification and prediction as shown in Figure 5. In the next
section, structural response prediction under uncertainty condi-
tions that are different from that present during identification is
presented.

3.7. Remaining Fatigue Life Prediction
Most studies involving structural identification are carried out
with the objective of model updating for damage detection. The
results obtained are generally validated through prediction as
demonstrated in Section 3.6. However, in such a scenario, the
uncertainty associated with identification and prediction are sim-
ilar. Under similar uncertainty conditions all three probabilistic
data-interpretation methodologies provide robust predictions, as
shown in Figure 5. For the purpose of asset-management decision
making, the structural response to be predicted is generally not the
response used for identification.Moreover, the loading conditions
under which structural response needs to be predicted is likely to
be different from those used for identification. Under these con-
ditions, the uncertainties associated with modeling are different
during identification and prediction.

FIGURE 6 | Comparison between identification and prediction uncertainty. In
traditional BMU, the bias in uncertainty is assumed to be zero.

TABLE 5 | Sources of relative prediction uncertainty.

Source Min (%) Max (%)

Influence line calculation −1 1
Truck position 0 1
Model bias −1 14
Surrogate model uncertainty −29.5 4.5
Secondary parameter uncertainty −2.7 5.5

All uncertainty sources are assumed to have a uniform distribution.

In this section, the updated knowledge of bridge response is
used to predict the fatigue life of the cover plate detail, which
is located close to sensors A1 and A3, shown in Figure 2. The
fatigue life prediction is carried out under three loading scenarios.
In the first case, the remaining fatigue life of the detail is pre-
dicted under the loading duration utilized for identification, from
November 18 to 24, 2013 (period 1). In the second case, traffic
loading observed during another 1-week period in 2013 (period
2) is utilized for predicting the remaining fatigue life. In the third
scenario, traffic loading is simulated for a week assuming 2%
annual increase in traffic weight over the next 20 years. The rela-
tive combined uncertainty associated with identification of model
parameters and prediction of remaining fatigue life is shown in
Figure 6.

The identification uncertainty, shown in Figure 6, is obtained
through combination of uncertainty sources specified in Tables 2
and 3. The prediction uncertainty, shown in Figure 6, is obtained
through a combination of all modeling uncertainty sources spec-
ified in Table 5.
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FIGURE 7 | Remaining fatigue life predicted using updated model parameters obtained using the four data-interpretation methodologies for traffic during (A) period 1
and (B) period 2.

Model bias and surrogate modeling uncertainty are different
for identification and prediction. The two primary parameters,
Ec and KdeckX, included in the model class for identification are
important in developing the surrogate model for equivalent stress
range and remaining fatigue life. However, their relationship to
the structural responses is different as equivalent stress range and
remaining fatigue life are inversely related to each other. The
surrogate model developed using neural networks for remain-
ing fatigue life is biased. Along with the model bias, this leads
to a biased combined uncertainty PDF for prediction. This dif-
ference is taken into account by adding the prediction uncer-
tainty to the remaining fatigue life predicted using the surrogate
models.

The Venoge bridge built in 1995 was designed for a service
life of 100 years (Eurocode, 1990). As the assessment here is
based on traffic data from 2013, the remaining fatigue life of the
bridge based on design values is 82 years in 2013. The remain-
ing fatigue life of the bridge predicted using the updated model
parameters for traffic loading during period 1 and 2 are shown in
Figures 7A,B, respectively.

In Figure 7, the remaining fatigue life predicted using updated
model parameters obtained through the three probabilistic
methodologies and residual minimization is shown. These results
are compared with the remaining fatigue life obtained using strain
measurements from sensor A1. In Figures 7A,B, the remaining
fatigue life predicted under traffic loading from period 1 and
period 2, are shown, respectively. The prediction uncertainty
associated with each case is different as new surrogate models are
developed for the respective traffic load duration.

In Figure 7A, the remaining fatigue life obtained using mea-
surements fromperiod 1 is 261 years, while theminimum remain-
ing fatigue life predicted using the prior distribution of model
parameters is 92 years. The remaining fatigue life predicted using
the updated model parameters obtained using residual minimiza-
tion is 168 years, which is biased from the value obtained through
measurements by 36%.Using traditional BMU, the 95th percentile
bounds of predicted remaining fatigue life are 101 and 213 years,
which does not contain the remaining fatigue life obtained using
measurements. Bias between the MLE of the predicted distribu-
tion and the value obtained through measurements is 40%. The
bounds of predicted remaining fatigue life obtained using EDMF
and modified BMU includes the value calculated using measure-
ments. Using EDMFandmodified BMU, theminimum remaining

fatigue life predicted using updated model parameters is 127 and
126 years, respectively. Therefore, using measurement data, the
minimum remaining fatigue life prediction was improved by 54%
compared to the expected service life of 82 years in 2013.

In Figure 7B, the remaining fatigue life obtained using mea-
surements from sensor A1 for traffic loading during period
2, is 302 years. The minimum remaining fatigue life predicted
using the prior distribution of model parameters is 99 years. The
remaining fatigue life predicted using the updated model param-
eters obtained using residual minimization is 183 years, which is
biased from the value obtained through measurements by 39%.
The MLE of remaining fatigue life predicted using traditional
BMU is biased from the value obtained through measurement
by 45%. Moreover, the 95th percentile bounds on prediction
obtained using traditional BMUdo not include the value obtained
using measurements. Using EDMF and modified BMU, the min-
imum remaining fatigue life predicted using updated model
parameters is increased to 136 and 135 years, respectively. There-
fore, usingmeasurement data, theminimumremaining fatigue life
predictionwas improved by 65% compared to the expected service
life of 82 years in 2013.

Traditional BMU provides a biased mean value from the value
obtained through measurements for both scenarios. Moreover,
the 95th percentile bounds obtained in both cases does not
include the value obtained through measurement. Even resid-
ual minimization provides biased values for both scenarios con-
sidered. EDMF and modified BMU provide robust prediction
bounds under both traffic loading scenarios. They help improve
the minimum remaining fatigue life prediction by 54 and 65%
in the two scenarios considered. Also, EDMF and modified
BMU provide similar results, an observation previously made in
Figures 4 and 5.

The objective of measurement data-interpretation is to pre-
dict structural behavior for future loading scenarios to decide
on repair, replace, and retrofit actions. Due to recent trends in
transportation, it is likely that freight traffic on highways will
increase in future. Therefore, a 2% annual increase in weight
of vehicles is assumed over a 20-year period to simulate traffic
loading for a 1-week period in the year 2033. Using this traffic
loading, the remaining fatigue life of the bridge is predicted as
shown in Figure 8.

InFigure 8, theminimum remaining fatigue life of the bridge in
2033, predicted using the prior distribution of model parameters
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FIGURE 8 | Remaining fatigue life predicted using updated model parameters
obtained using the four data-interpretation methodologies for a future traffic
loading scenario.

is 38 years. The remaining fatigue life predicted using the updated
model parameters obtained using residual minimization, tradi-
tional BMU (lower 95th percentile bound), EDMF, and modified
BMU are 70, 40, 52, and 53 years, respectively. However, as noted
in Figure 7, traditional BMU and residual minimization provided
biased results from the value obtained using measurements, while
EDMF and modified BMU provided robust and accurate bounds.
Therefore, the lower bound of remaining fatigue life obtained
using EDMF and modified BMU is a robust metric for future
decision making. Using measurements, the minimum fatigue life
increased from 38 to 52 years, a 37% improvement. Moreover,
based on initial design, not accounting for increased loading, the
remaining fatigue life of the bridge in 2033 is 62 years, which
is greater than the value predicted after model updating. This
implies that the bridge if subjected to increased traffic loading will
require repair action sooner than expected during initial design,
which can be improved through data-interpretation. In the next
section, the applicability of these data-interpretation methodolo-
gies in practice along with the computation time required will be
discussed.

3.8. Applicability in Practice and
Computation Time
Application of data-interpretation in practice requires a method-
ology to satisfy four criteria. First, it should provide accurate
identification of model parameters and second, accurate pre-
diction of structural response for reserve capacity estimation.
Third, it should be able to incorporate engineering knowledge
within the framework. Fourth, the methodology should be easy
to understand and use, to enable iterative asset-management
decision making.

In Sections 3.5, 6, and 3.7, results obtained using the three
probabilistic data-interpretationmethodologies and residualmin-
imization are compared. The objective of the comparison in these
sections was to elucidate the accuracy of these methodologies to
uncertainty conditions in a real environment and the utility of
their solutions in practice.

From the perspective of incorporating engineering knowl-
edge into the data-interpretation framework, traditional BMU
utilizes a zero-mean Gaussian likelihood function for model
updating. Information about model bias is not incorporated

FIGURE 9 | Computation time for identification using four combinations of the
probabilistic data-interpretation methodologies. The hardware used for
computation is described in Section 3.4.

in traditional BMU. Moreover, traditional BMU involves the
assumption that uncertainty between measurement locations is
independent, which is not compatible within a closed system such
as civil infrastructure. Residual minimization also cannot include
non-parametrized model bias. In traditional BMU and residual
minimization, as new sources of uncertainty are identified over
the service life of a structure, they can be incorporated into the
framework explicitly only as parameters to be identified. Inverse
problems such as structural identification have an exponential “O”
complexity with respect to number of parameters to be identified.
Therefore, increase in the number of parameters to be identified
exponentially increases the computation time, which is clearly not
desirable.

EDMF and modified BMU provide accurate identification and
prediction as shown in Figures 5 and 7. Both methodologies
utilize engineering knowledge to determine the combined uncer-
tainty and model bias associated with the system. Then, this
information is translated into a falsification criteria for EDMF and
into a L∞-norm-based Gaussian likelihood function for modified
BMU.As new information regarding uncertainty sources becomes
available, it can be incorporated into the combined uncertainty,
thereby not increasing the number of parameters to be identified
unless required. This helps in limiting the problem dimension
and preventing an exponential increase in computation time.
Figure 9 shows the computation time required with increasing
number of samples for four combinations of the probabilistic
data-interpretation methodologies.

In Figure 9, comparisons of computation time are provided
when the data-interpretationmethodologies are utilized in a series
and a parallel computation framework. Section 3.4 contains a
description of the hardware used in computation. Modified and
traditional BMU utilize MCMC sampling to obtain samples of
the posterior PDF, while EDMF and residual minimization uti-
lize grid sampling to obtain the updated model parameter val-
ues. MCMC sampling is a one-step memory process requiring
that samples are generated sequentially. Therefore, MCMC sam-
pling cannot be implemented efficiently in a parallel computation
framework. In this case, utilization of multiple cores for compu-
tation does not make a significant difference. In grid sampling,
samples are generated independently of one another and thus,
calculations can be shared more efficiently within parallel config-
urations, thereby significantly reducing computation time. Other
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parallel implementations of MCMC sampling are discussed in
Section 4.

As shown in Figure 9, modified BMU takes themaximum time
to obtain the complete posterior PDF using MCMC sampling.
Due to the steep ascent of the box-car-shaped likelihood function
before reaching the high-probability plateau, many samples are
rejected. To obtain a single accepted sample, many samples are
evaluated and rejected. This increases the computation times to
obtain the joint posterior PDF. Traditional BMU, which also
utilizes MCMC sampling, takes less time than modified BMU as
the likelihood function utilized has a gradual slope, which is more
favorable for exploring the parameter space. The number of sam-
ples rejected before accepting a sample is lower, therefore the total
computation time is lower. EDMF takes higher computation time
than traditional BMU when grid sampling is utilized. However,
once the grid sampling is parallelized with sections of the grid
passed to 24 cores for computation, the time taken is reduced.
The reduction in computation time is dependent on the number of
cores available. In the comparison shown in Figure 9, the parallel
computing setup uses 24 cores thereby reducing the computation
time for grid sampling by a factor of 24, when computations are
completely independent as is the case for grid sampling. Residual
minimization, when applied using Monte Carlo sampling, has the
same computation time as EDMF using single ormultiple cores. A
drawback of grid sampling is that, as the number of model param-
eters increases, the number of parameter combinations to be
evaluated increases exponentially. Therefore, optimal model-class
selection is very important to limit computational cost without
comprising the accuracy of updated model predictions.

The fourth criterion is compatibility of the data-interpretation
methodology with knowledge and procedures of practicing engi-
neers. Methodologies should be transparent when updating
knowledge of model parameters. MCMC sampling, utilized in
traditional and modified BMU, is a black-box algorithm and
thus provides low transparency to engineers for understanding
the process involved in accepting or rejecting samples. Also, the
sampling metrics such as burn-in samples, step size, and number
of samples required to obtain a stable solution can be deter-
mined only through trial and error. Therefore, many iterations
of the sampling process are required to determine these metrics
to converge efficiently on to posterior PDFs. EDMF, typically,
utilizes grid sampling, wherein a grid of initial model instances
is generated. From this initial grid, only model instances whose
responses are comparable tomeasurements within certain bounds
of uncertainty (Thigh and Tlow) are accepted as candidate model
instances. The falsification criteria is based on a simple accept-
reject decision making. Engineers are able to better understand
EDMF, thus increasing robustness of solutions when information
changes over service lives of structures.

Currently, residual minimization is the most commonly used
methodology. However, as shown in Figures 5 and 7, it does not
always provide accurate solutions for estimating reserve capac-
ity. EDMF provides accurate identification and prediction utiliz-
ing a simple accept-reject criterion for determining the updated
model parameters and requires lower computational resources
than other probabilistic methodologies when implemented in a
parallel framework.

4. DISCUSSION

Decision making for infrastructure asset management is a com-
plex task, which can be aided through a better understanding of
structural behavior using measurements. It is important that the
data-interpretation methodology provides accurate predictions
while being easy to use and incorporating new information and
engineering knowledge over the service life of a structure. Com-
parison between four data-interpretationmethodologies using the
Venoge bridge revealed the applicability of these methodologies
for reserve capacity estimation. In addition to structural identi-
fication (inverse task), the remaining fatigue life of the Venoge
bridge (forward task) was predicted under three traffic loading
scenarios using updated model parameters. The critical detail
analyzed to determine the remaining fatigue life of the bridge is
situated in the extended part of the bridge, built in 1995. The
design remaining fatigue life of this bridge is 82 years in 2013,
which after model updating is estimated to be 126 years.

Residual minimization is a deterministic data-interpretation
methodology, which is commonly used in practice due to its
ease of understanding. Using updated model parameters obtained
through residual minimization, the equivalent stress range at
sensors A5 and B5 and remaining fatigue life at a critical detail
under two traffic loading scenarios were predicted and compared
to results obtained using measurements. The prediction was not
accurate in any of the four prediction cases considered. Residual
minimization does not always provide robust identification in the
presence of unknown correlated uncertainty with model bias and
systematic uncertainty, an observation previously noted byGoulet
and Smith (2013) for a cantilever beam.

Traditional BMU is a probabilistic methodology that utilizes a
zero-mean independent Gaussian likelihood function for model
updating. Using updated model parameters obtained through
traditional BMU, accurate prediction was observed for only two
out of four cases, when compared with results obtained using
measurements. Traditional BMU may provide biased predictions
when model bias and correlation between uncertainties at mea-
surement locations is not accounted for in model updating. This
has been previously observed by Pasquier and Smith (2015) using
an idealized simple beam. This paper makes similar observations
for a full-scale bridge. Improvement in prediction accuracy may
be achieved by parametrizing model bias and correlation between
uncertainties at various measurement locations. However, identi-
fication of the additional parameters increases dimensionality of
the structural identification problem, thereby increasing compu-
tational cost and such strategies usually involve assumptions of
constant bias at all measurement locations. Also, with few sparse
measurements as in the case presented in this paper, a model
class withmany parametersmay lead to unidentifiability (Reuland
et al., 2017).

EDMF and modified BMU, which are robust to variations
in correlation assumptions, provided accurate identification and
prediction for the four prediction cases when compared with
results obtained using measurements. Moreover, results obtained
using EDMF andmodified BMU are similar, implying that EDMF
can be understood as an analogous and discrete approach to
Bayesian model updating, based on the philosophy of model
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falsification. This result was previously observed using an ide-
alized simple beam by Pai and Smith (2017). A drawback with
application of EDMF for model updating is its sensitivity to pres-
ence of outliers in measurements. Therefore, before application of
EDMF, it is important to detect outliers inmeasurement and clean
the data.

Predictions obtained using updated model parameters are sub-
ject to prediction uncertainty. This prediction uncertainty arises
due to the difference between the model used in identification
(to predict model response comparable to measurements) and the
model used for prediction. In the case studied here, as shown in
Figure 6, the identification and prediction uncertainty are differ-
ent. The prediction uncertainty, similar to identification uncer-
tainty, is computed using engineering knowledge and numerical
evaluation of the finite-element and surrogate models. A different
prediction uncertainty model, than the one used in this paper,
may be employed based on engineering knowledge. However,
as prediction results obtained using traditional BMU, modified
BMU and EDMF are subjected to the same uncertainty model,
the bias between predictions from various methods will not
change.

The posterior distribution of model parameters and predic-
tions, such as equivalent stress range and remaining fatigue life,
that are obtained through model updating have large uncertainty
ranges. The information contained in measurements has not
reduced the uncertainty associated with the model parameters
significantly. The use of in-service strain and traffic measure-
ments provides engineers with the possibility to gain information
without disrupting bridge traffic. However, such measurements
are associated with uncertainties such as traffic load position
on the bridge, axle weight of the traffic moving on the bridge.
Moreover, the strain gages are clustered at two cross-sections
of the bridge, thereby the information obtained from these sen-
sors has high redundancy. Better positioning of sensors based
on modern measurement system design strategies could help
improve the amount of information that is acquired with the
sensors. In addition, conducting load tests with knowledge of
weight and position of the trucks may help in acquiring addi-
tional information. Parameter estimation and prediction can be
further refined by improving knowledge of materials through
non-destructive testing, improved modeling of the bridge and
a more detailed fatigue evaluation with more appropriate S–N
curves.

Engineering knowledge of uncertainty sources cannot be
included in residual minimization or traditional BMU without
increasing the number of parameters to be identified, which
increases computation time exponentially. EDMF and modified
BMU account for estimation of uncertainty from many sources
using engineering knowledge by incorporating it into a combined
uncertainty PDF,which is then used to determine either the falsifi-
cation criteria or the likelihood function. EDMF has an additional
advantage as it utilizes a simple accept–reject criterion for model
updating, which is easy to understand and implement. Traditional
BMU and modified BMU, when applied using MCMC sam-
pling, cannot be implemented efficiently in a parallel computation
framework. An alternative may be transitional MCMC sampling
proposed byChing andChen (2007). Angelikopoulos et al. (2012)

TABLE 6 | Comparison of criteria for the data-interpretation methodologies that are
studied in this paper.

Criteria Res min tBMU EDMF mBMU

Prediction case 1: equivalent × X X X
stress range at Sensor A5
Prediction case 2: equivalent × X X X
stress range at Sensor B5
Prediction case 3: remaining × × X X
fatigue life for period 1
Prediction case 4: remaining × × X X
fatigue life for period 2
Incorporating engineering × × X X
knowledge
Ease of use in practice X × X ×
Ranking computation III I II IV
time (single core)
Ranking computation II III I IV
time (24 cores)

The checks indicate satisfactory performance while the crosses indicate unacceptable
performance. The roman numerals used for the last two criteria are rankings where I is the
best.

have implemented transitional MCMC sampling in a par-
allel computation framework, wherein independent Markov
Chains are generated by individual cores. Usage of transi-
tional MCMC could help in sampling a complex parameter
space when the joint posterior distribution of model parame-
ters is multimodal. However, the use of black-box search algo-
rithms decreases the understandability of the methods for use
in practice. Comparison of the methodologies is summarized in
Table 6.

As summarized inTable 6, EDMF fulfils all the criteria required
of a data-interpretation methodology for use in practice. In addi-
tion, grid sampling used in EDMF can be implemented in a
parallel computation framework thereby reducing computation
cost. EDMF and other data-interpretation methodologies were
also used to predict the remaining fatigue life of the Venoge
bridge under a future traffic loading scenario. In this scenario,
the traffic weight was assumed to increase 2% annually over the
next 20 years. Theminimum remaining fatigue life predicted after
model updating using EDMF, under increased traffic loading, was
lower than the service life. Robust prediction of remaining fatigue
life for such future scenarios enable use of data-interpretation
methodologies in scheduling inspections and deciding on asset-
management actions.

5. CONCLUSION

In this paper, four data-interpretation methodologies are applied
to evaluate the fatigue life of a highway bridge under moni-
tored traffic loading. Comparisons are made in terms of param-
eter identification and accuracy of predictions with respect
to measured structural response. Applications of the four
methodologies to the Venoge bridge lead to the following
conclusions:

• Measurements of service behavior improve the accuracy
of remaining fatigue life calculations. The minimum remain-
ing fatigue life of the Venoge bridge is improved by 54% using
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in-service measurement from eight strain gages and observed
traffic load from a WIM station.

• Residual minimization and traditional BMU may not provide
accurate predictions in the presence of systematic uncertainty
and model bias.

• Modified BMU, which employs a Bayesian framework, explic-
itly includes model bias and systematic uncertainty in uni-
form probability distributions and thus provides an accurate
prediction of the reserve capacity.

• EDMF provides accurate and similar bounds for remaining
fatigue life of the bridge when compared with modified BMU.
EDMF has additional advantages compared with Bayesian
methodologies due to ease of understanding and compatibility
with engineering practice, rejecting unrealistic bridge behavior,
while utilizing a simple grid-sampling approach.

• EDMF, when implemented with grid sampling, is an attrac-
tive methodology for efficient implementation in a parallel
computation framework.
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In this paper a hierarchical Bayesian model updating approach is proposed for calibration

of model parameters, estimation of modeling error, and response prediction of dynamic

structural systems. The approach is especially suitable for civil structural systems where

modeling errors are usually significant. The proposed framework is demonstrated through

a numerical case study, namely a 10-story building model. The “measured data” include

the numerically simulated modal parameters of a frame model which represents the

true structure. A simplified shear building model with significant modeling errors is

then considered for model updating with stiffness of different structural components

(substructures) chosen as updating parameters. In the proposed hierarchical Bayesian

framework, updating parameters are assumed to follow a known distribution model

(normal distribution is considered here) and are characterized by the distribution

parameters (mean vector and covariance matrix). The error function, which is defined as

the misfit between model-predicted and identified modal parameters, is also assumed

to follow a normal distribution with unknown parameters. The hierarchical Bayesian

approach is applied to estimate the stiffness parameter distributions with mean and

covariance matrix referred to as hyperparameters, as well as the modeling error which

is quantified by the mean and covariance of error function. Joint posterior probability

distribution of all updating parameters is derived from the likelihood function and the prior

distributions. A Metropolis-Hastings within Gibbs sampler is implemented to evaluate

the joint posterior distribution numerically. Two cases of model updating are studied

with first case assuming a zero mean for the error function, and the second case

considering a non-zero error mean. The response time history of the building to a

ground motion is predicted using the calibrated shear building model for both cases and

compared with the exact response (simulated). Good agreements between predictions

and measurements are observed for both cases with better accuracy in the second

case. This verifies the proposed hierarchical Bayesian approach for model calibration

and response prediction and underlines the importance of considering and propagating

the uncertainties of structural parameters and more importantly modeling errors.

Keywords: hierarchical Bayesian model updating, modeling error estimation, uncertainty quantification and

propagation, probabilistic response prediction, Metropolis-Hastings within Gibbs sampler
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INTRODUCTION

Finite element (FE) model updating is one of the most
common methods for response prediction and performance
assessment of structural systems (Mottershead and Friswell,
1993; Friswell and Mottershead, 2013). In the deterministic
formulation, model updating includes an optimization process
to obtain model parameter values (e.g., geometry, mass,
stiffness) that minimize the misfit between model-predicted and
experimentally measured data features. Data features of interest
include acceleration or strain response time history, or modal
parameters such as natural frequency and mode shapes. Several
applications of deterministic model updating have been reported
for response prediction and performance assessment of real-
world structures with relative success (Capecchi and Vestroni,
1993; Levin and Lieven, 1998; Friswell et al., 2001; Bakir et al.,
2008; Fang et al., 2008; Perera and Ruiz, 2008; Jafarkhani and
Masri, 2011). Brownjohn et al. applied model updating for
dynamic assessment of a cable-stayed bridge (Brownjohn and
Xia, 2000) and a highway bridge (Brownjohn et al., 2003).
Teughels et al. performed damaged detection of a highway bridge
through FEmodel updating (Teughels et al., 2002, 2003; Teughels
and De Roeck, 2004). More applications to real-world bridges
can be found in these studies (Zhang et al., 2001; Jaishi and Ren,
2006; Jaishi et al., 2007; Reynders et al., 2007). Moaveni et al.
employed model updating for progressive damage identification
of a 2/3-scale reinforced concrete (RC) frame (Moaveni et al.,
2012). Song et al. performed damage identification of a two-
story RC building and compared it with lidar measurement
(Song et al., 2017). However, deterministic approaches have their
shortcomings. For examples, they are unable to quantify the
uncertainty of updating results and are only valid when unique
optimal solutions exist, i.e., the inverse problem is identifiable.
The uncertainty quantification issue and identifiability problem
can be addressed in a probabilistic formulation of model
updating such as Bayesian model updating. Beck et al. derived
the framework for Bayesian model updating and presented some
numerical applications (Beck and Katafygiotis, 1998; Katafygiotis
and Beck, 1998; Beck et al., 2001; Beck and Au, 2002). Yuen et al.
applied Bayesianmodel updating for damage identification of the
numerical ASCE-IASC benchmark structure (Yuen et al., 2004).
Behmanesh and Moaveni performed probabilistic identification
of the simulated damage on a footbridge through Bayesian
inference (Behmanesh and Moaveni, 2015). More applications
of Bayesian model updating to numerical and experimental case
studies can be found in the literature (Sohn and Law, 1997; Ching
and Beck, 2004; Muto and Beck, 2008; Ntotsios et al., 2009).

In the application of model updating to real-world civil
structures, three major sources of uncertainty must be
considered: (1) measurement noise and identification error

(e.g., in extraction of modal parameters), (2) variability in
effective model parameters due to the changing in-service

ambient and environmental conditions (change in effective
mass, damping, stiffness due to temperature, humidity, wind
load, and occupancy, etc.), and (3) modeling errors (e.g., linearity
assumption, boundary conditions, and discretization). Although
the classical Bayesian model updating approaches often consider

the effects of measurement noise and identification error, the
second and third sources of uncertainty are not explicitly
accounted for. The second source of uncertainty is relatively
unique to large-scale civil structures, and referred to as inherent
variability. In past studies (Alampalli, 2000; Clinton et al., 2006;
Moser and Moaveni, 2011), identified natural frequencies of
different structural systems are reported to be significantly
affected by temperature, humidity, and weather conditions.
Furthermore, different levels of ambient loading such as wind
and traffic load cause changes in effective structural stiffness.
The proposed hierarchical Bayesian model updating framework
is capable of accounting for these sources of uncertainty by
estimating the probability distributions of updating parameters
characterized by hyperparameters (Behmanesh et al., 2015;
Behmanesh and Moaveni, 2016).

Simplifying assumptions cannot be avoided when modeling
complex civil structures and they often lead to significant
modeling errors. The classical Bayesian model updating
framework cannot explicitly quantify the modeling errors
since all three sources of uncertainty mentioned above are
lumped into one term. However, the classical formulation is
useful for model class selection among competing model forms
(Ching and Chen, 2007; Song et al., 2018). Error-domain model
falsification algorithm is shown to be capable of falsifying model
instances/classes in the view of compatibility with measurement
by avoiding assumptions on the exact distribution of modeling
errors and residual dependency (Goulet and Smith, 2013;
Goulet et al., 2013; Pasquier and Smith, 2015). Comparisons
between error-domain model falsification and Bayesian model
updating approaches regarding to prediction accuracy and
robustness are recently made in these studies (Reuland et al.,
2017; Pai et al., 2018). In the proposed hierarchical Bayesian
framework, the influence of modeling errors is quantified by
fitting and estimating the probability distribution of error
functions characterized by the distribution parameters, e.g.,
mean and covariance in a normal distribution. The estimated
error mean reflects the modeling bias which causes a shift in
model predictions, while the covariance matrix is accounting for
the effect of measurement noise and identification error, as well
as the uncertainty due to modeling errors.

In this paper, the proposed hierarchical Bayesian model
updating approach is implemented for probabilistic response
prediction of a numerical 10-story building model. A frame
model which represents the considered true structure is used
to simulate the measurements. A simplified shear building
model is created and used for model updating to represent
significant modeling errors. Stiffness of different stories in the
shear building model (substructures) are selected as the updating
parameters and are assumed to follow normal distributions
which are characterized by stiffness mean and covariance. The
error function is defined as the difference between identified
modal parameters and their model-predicted counterparts and
is also assumed to follow a normal distribution. The hierarchical
Bayesian approach is implemented to estimate the stiffness mean
and covariance—referred to as hyperparameters—as well as the
modeling errors. The mean of the error function is assumed to
be zero in the first case of model updating. However, significant
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bias is observed in the predicted natural frequencies, which
prompts a second case of model updating with non-zero error
mean. Finally, displacement and acceleration time histories are
predicted using the calibrated models and are compared with
measured data for both cases.

HIERARCHICAL BAYESIAN MODEL

UPDATING FRAMEWORK

Formulation of Hierarchical Bayesian

Approach
The probability distribution of updating structural parameters
θ (e.g., stiffness of different building components) is assumed
to be normal, which is characterized by the mean vector
and covariance matrix referred to as hyperparameters, θ ∼

N (µθ, 6θ). Error function, which is defined as the misfit
between measured data (or data features such as identified
modal parameters) and their model-predicted counterparts, is
also assumed to follow a normal distribution with mean µe

and covariance matrix 6e. The proposed framework allows
estimation of posterior probability distribution of updating
parameters and hyperparameters, namely µθ, 6θ, µe, and 6e.
Figure 1 shows the graphical representation of the proposed
hierarchical Bayesian framework. The influence of changing
ambient and environmental conditions on structural stiffness
is accounted for by hyperparameters µθ and 6θ. The effect of
modeling assumptions on the error function can vary across
different types of structures, structural components, andmaterial.
The modeling errors are assumed to follow a joint normal
distribution in this study. The mean of error function µe

represents a modeling bias, and covariance of error function 6e

includes the contribution of measurement noise, identification
error and modeling error, with modeling error generally having
the largest influence.

In model updating applications, modeling bias (mean of
modeling error) is commonly assumed to be zero. This
assumption can be verified once the updating is completed by
evaluating the error mean. If the error mean is negligible, then
the assumption has been accurate. Therefore, the error function
can be written as:

et =

[

eλt
e8t

]

∼ N(0,6e) (1)

in which et is the error function for dataset t and consists of
two parts: eigen-frequency error eλt and mode shape error e8t ,
defined as:

eλtm =
λ̃tm − λm(θt)

λm(θt)
(2)

e8tm =
8̃tm
∥

∥

∥
8̃tm

∥

∥

∥

− atm
Ŵ8m(θt)
∥

∥Ŵ8m(θt)
∥

∥

(3)

Subscript m denotes the mode number, λm(θt)and 8m(θt) are

model-predicted eigen-frequency (λm(θt) =
(

2π ftm (θt)
)2
, in

which ftm (θt) is the natural frequency in Hz) and mode shape
in dataset t, andλ̃tm and 8̃tm are their identified counterparts.
The natural frequencies and mode shapes extracted from the
vibration measurement are referred to as identified modal
parameters in this paper. Ŵis a Boolean matrix which maps
corresponding degrees of freedom (DOFs) between 8m(θt) and
8̃tm. atm is a scaling factor and defined as:

atm =

(

8̃tm

)T
Ŵ8m(θt)

∥

∥

∥
8̃tm

∥

∥

∥

∥

∥Ŵ8m(θt)
∥

∥

(4)

The assumption of µe = 0 considers negligible modeling
bias, and in the case of significant modeling bias a non-
zero µe should be considered. Due to the compensation effect
between µθ and µe, these two terms cannot be estimated
simultaneously. Therefore, µe is not updated through a Bayesian
inference but is evaluated from the obtained results, as
demonstrated in section Model updating with µe 6= 0. The
covariance matrix 6e is assumed to be a diagonal matrix
which neglects the correlation between different error function
components.

6e =









. . .

σ 2
ei

. . .









(5)

Note that a full matrix can also be estimated in this framework,
but this would increase the computational burden of the updating
process. Based on the authors’ past experience, use of diagonal
covariance matrix is reasonable in many applications. However,
this is not true for all applications and errors in frequency and
mode shape components of the same mode can be correlated. In
the case of error function dependency, the estimated diagonal
covariance matrix is an approximate solution of the full
matrix.

The posterior probability density function (PDF) is
proportional to the multiplication of the likelihood function and
prior PDFs which are assumed to be independent (Gelman et al.,
2013), as shown below:

p
(

θt ,µθ,6θ,6e

∣

∣

∣
λ̃t , 8̃t

)

∝ p
(

λ̃t , 8̃t |θt ,µθ,6θ,6e

)

p (θt ,µθ,6θ,6e) (6)

∝ p
(

λ̃t , 8̃t |θt ,6e

)

p (θt|µθ,6θ,6e) p (µθ,6θ,6e) (7)

∝ p
(

λ̃t , 8̃t |θt ,6e

)

p (θt|µθ,6θ) p (µθ) p (6θ) p (6e) (8)

Equation (7) is derived based on the fact that the identified
modal parameters only depend on the structural stiffness θt and
the error function, therefore, the condition on hyperparameters
µθ and 6θ can be discarded from Equation (6). In addition,
structural stiffness is only dependent on its hyperparameters,
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FIGURE 1 | Graphical representation of the proposed hierarchical Bayesian framework.

therefore, the condition on 6e can be dropped, and by
assuming µθ, 6θ, and 6e are independent in their joint prior
distribution, Equation (8) can be obtained. When multiple
datasets are available and considered, the joint posterior
PDF could be derived by assuming different datasets are
independent:

p
(

2,µθ,6θ,6e

∣

∣

∣
λ̃, 8̃

)

∝ p (µθ) p (6θ)

p (6e)

Nt
∏

t=1

p
(

λ̃t , 8̃t |θt ,6e

)

p (θt|µθ,6θ) (9)

where2 =
[

θ1 . . . θt . . . θNt

]

, λ̃ =
[

λ̃1 . . . λ̃t . . . λ̃Nt

]

, 8̃ =
[

8̃1 . . . 8̃t . . . 8̃Nt

]

, and Nt denotes the number of datasets.
In this study, uniform prior PDF is assumed for µθ

and “conjugate priors” (Gelman et al., 2013) are used
for 6θ and 6e(σ

2
ei
) to simplify the formulation as shown

below.

p(µθ) ∝ 1 (10)

6θ ∼ Inverse-Wishart(6θ0, v1) (11)

σ 2
ei
∼ Inverse-χ2(v2, σ

2
e0) (12)

In above equations, v1, v2, 6θ0, σ 2
e0 are the parameters of

prior PDFs. The selection of these parameters can influence
the final posterior distribution and should be made based on
prior knowledge and engineering expertise. For the considered
inverse-Wishart and Inverse-χ2 distributions, smaller values of
v1 and v2 would “flatten/widen” the prior PDFs indicating larger
prior uncertainties, and 6θ0 and σ 2

e0 would reflect the mode of
distributions.

The joint posterior PDF is derived by substituting the
likelihood function and conjugate prior PDFs into Equation (9)
as shown below.

p
(

2,µθ,6θ,6e

∣

∣

∣
λ̃, 8̃

)

∝ |6θ|
−
Nt + v1 + Np + 1

2
Ne
∏

i=1

(σ 2
ei
)
−
Nt + v2 + 2

2

exp

[

Nt
∑

t=1

(

Jet + Jθt
)

−
1

2
tr
(

6θ0 � 6
−1
θ

)

−

Ne
∑

i=1

v2σ
2
e0

2σ 2
ei

]

(13)

Jet = −
1

2
eTt 6−1

e et (14)

Jθt = −
1

2
(θt − µθ)

T6−1
θ (θt − µθ) (15)

Here Np is the dimension of stiffness parameters θ, Ne is the
dimension of error function et and is equal to (1 + Ns)Nm, and
Nm and Ns denote number of available modes and number of
components (sensors) of the identified mode shape, respectively.

Metropolis-Hastings Within Gibbs Sampler
The derived joint posterior PDF in Equation (13) is only known
up to a normalizing constant, and it is often difficult to evaluate it
analytically. Gibbs sampler, which belongs to the class of Markov
Chain Monte Carlo (MCMC) methods, has been shown to be
capable of sampling and evaluating Equation (13) efficiently.
Gibbs sampler requires the derivation of posterior conditional
PDFs which are listed below:

p
(

θt

∣

∣

∣
µθ,6θ,6e, λ̃t , 8̃t

)

∝ exp
(

Jet + Jθt
)

(16)

p
(

µθ

∣

∣

∣
2,6θ,6e, λ̃, 8̃

)

= N

(

1

Nt

Nt
∑

t=1

θt ,
1

Nt
6θ

)

(17)

p
(

6θ

∣

∣

∣
2,µθ,6e, λ̃, 8̃

)

=Inverse-Wishart(6θ0 + S, v1 + Nt)
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(18)

p
(

σ 2
ei

∣

∣

∣
2,µθ,6θ, λ̃, 8̃

)

=Inverse-χ2(v2 + Nt ,
v2σ

2
e0 + NtVi

v2 + Nt
)

(19)

S =

Nt
∑

t=1

(θt − µθ) (θt − µθ)
T (20)

Vi =
1

Nt

Nt
∑

t=1

e2ti (21)

It can be seen that the posterior conditional PDFs for µθ, 6θ,
and 6e are standard distributions due to the use of conjugate
priors, therefore, samples can be easily generated for these
parameters. However, the conditional PDF for θt is only known
up to a scaling constant and therefore must be evaluated
numerically. In this study, Metropolis-Hastings (MH) algorithm
(Metropolis et al., 1953; Hastings, 1970) is employed to sample
θt . The presented sampling algorithm is called MH within Gibbs
sampler. Gibbs sampler samples the parameters recursively based
on the conditional PDFs, and in each loop, one sample is
generated containing the values of all updating parameters.

Propagation of Uncertainties in

Model-Predicted Response
After the joint posterior PDF is evaluated using Gibbs
sampler, the calibrated model can be used and assessed for
prediction of structural dynamic behavior through propagating
the uncertainties of inherent variability and modeling errors
estimated in the hierarchical Bayesian framework. The parameter
estimation uncertainties are not considered in this study, as this
type of uncertainty becomes negligible when using larger amount
of data. For prediction of natural frequencies and mode shapes,
the definitions of error function in Equations (2, 3) are used:

λ
pre
tm = λm(θt)+ λm(θt)eλtm (22)

8
pre
tm

∥

∥8
pre
tm

∥

∥

= atm
Ŵ8m(θt)
∥

∥Ŵ8m(θt)
∥

∥

+ e8tm (23)

where θt refers to the stiffness parameters of the calibrated model
which follows the normal distributionN(µ̂θ, 6̂θ) in which µ̂θ and
6̂θ refer to the maximum a posteriori (MAP) values estimated
through Gibbs sampler. The error function et (which consists
of two parts eλtm and e8tm ) follows the normal distribution

N(µ̂θ, 6̂θ).
Accurate prediction of response time history is critical for

assessment of structural performance by using metrics such as
themaximum inter-story drift of buildings during an earthquake.
Modal superposition method is employed to predict response
time history. These predictions propagate uncertainties due
to stiffness variability and modeling errors using the model-
predicted modal parameters in Equations (22, 23). The equation
of motion in modal coordinates (Chopra and Chopra, 2007) is:

q̈m(t)+ 2ζmωmq̇m(t)+ ω2
mqm(t) =

Pm(t)

Mm
(24)

where qm(t) is modal displacement of modem, ωm is the circular

natural frequency in rad/s and ωm =

√

λ
pre
tm , ζm is the damping

ratio. Pm(t) is the generalized force function and Pm(t) = 8T
mP(t)

in which P (t) is the input force vector. Mm is the generalized
mass of mode m with Mm = 8T

mM8m. The response time
history in physical coordinates can be transformed from modal
displacement as shown below:

ypre(t) =

Nm
∑

m

8
pre
m qm(t) (25)

In Equation (25), Nm denotes the total number of modes
used in the model calibration process, which means that
only contributions of Nm modes are included in the response
predictions as the calibrated model is only sufficient for
providing reliable predictions of these modes by propagating
all uncertainties considered. Note that error function et is only
evaluated at locations with measurement/sensors, which are
usually sparse. To extend the error function to DOFs which are
not measured, maximum component of σ̂e(φi,j) is assumed for
unmeasured DOFs with µei = 0. This is a relatively conservative

FIGURE 2 | (A) 10-story frame model (exact); (B) 10-story shear building

model (with modeling errors).

TABLE 1 | Geometry and material property of the 10-story frame model.

Structural components Cross-section

(m × m)

Young’s modulus (GPa)

Mean Std

Columns Story (1–3) 0.3× 0.3 50 3

Story (4–6) 0.25× 0.25 40 2

Story (7–10) 0.2× 0.2 30 1

Slabs (all stories) 0.5× 0.5 25 1

Std, standard deviation.
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approach for the extension of error function. The velocity and
acceleration prediction can be derived from Equation (25) by
replacing qm with q̇m or q̈m. Note that the model-predicted
displacement, velocity and acceleration responses are all relative
to the ground.

Ten-Story Building Model and Simulated

Data
The proposed hierarchical Bayesian approach is applied to a
numerical model of a 10-story building for validation. The
identified modal parameters of the building are simulated using
a frame model as shown in Figure 2A. Foundation rocking

is modeled by two rotational springs with stiffness kr =

2× 105 kN-m/rad. The building is assumed to be 30m (10×3m)
tall and 10m wide with a total weight of 40 metric tons (each
floor mass of 4 tons). No variability of the mass is considered
in this study. The cross-section and Young’s modulus of the
columns and floor slabs are reported in Table 1. The larger
values of Young’s modulus for lower stories are representing
larger effective Young’s modulus of reinforced concrete at lower
stories. To account for the inherent variability of the structural
stiffness, Young’s modulus of all members are assumed to
follow normal distributions with means and standard deviations
shown in Table 1. The stiffness of different structural members
are independent except for the two columns on the same

FIGURE 3 | Histogram of simulated natural frequencies from the frame model.

FIGURE 4 | Simulated mode shapes of first three modes from the frame model.
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story which are assumed to have the same stiffness. The small
rectangles with arrows in Figure 2A refer to the considered
locations of accelerometers on the building and direction of
measurements.

Based on the assumed normal distribution of structural
stiffness in the frame (exact) model, 100 sets of modal parameters

(natural frequency and mode shape) are simulated, which
represent the “measured” data. The modal parameters are
polluted with white noise of 0.5% in coefficient of variation
to account for the measurement noise and identification
error. It is assumed that only the first three modes are
identified and their histograms are shown in Figure 3. The

FIGURE 5 | Sample mean and standard deviation of µθ.

FIGURE 6 | Sample mean and standard deviation of 6θ (ρ refers to correlation coefficient).
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mode shapes of the first three modes are shown in Figure 4,
with mean stiffness assigned for all structural members in
this graph. Note that 5 accelerometers are considered in
the building, therefore, only mode shape components at
these stories are available in the following model updating
process.

MODEL UPDATING RESULTS

Case 1: Model Updating With µe = 0
To consider the effects of modeling errors, a 10-story shear
building model (instead of a framemodel) as shown in Figure 2B
is used in the model updating process. In this model, the
foundation rocking is ignored by using a fixed boundary
condition, the floors motion is constrained as only horizontal
direction, and the slabs are assumed to be rigid. The structural
columns are grouped into three substructures (story 1–3, story
4–6, and story 7-10) as shown in Figure 2B, and the updating
parameters θ1, θ2, and θ3 are the Young’s modulus of columns
in these substructures (the same Young’s modulus is assumed
for all columns in each group). It is assumed that the material
distribution along the height of the building is known and can
be divided into three groups. The substructuring strategy is
utilized to limit the number of updating parameters. However,
this strategy introduces additional modeling error due to the
smearing effect of grouping strategy.

The proposed hierarchical Bayesian model updating approach
is applied to estimate stiffness of the three substructures θ =

[θ1, θ2, θ3]
T , their hyperparameters µθ and 6θ, and covariance

of error function 6e (mean of error function µe is assumed to be
zero) using the simulated noisy modal parameters. After a tuning
process, the parameters of prior PDFs in Equations (11, 12) are
selected as:

v1 = 3,6θ0 =





12

12

12



 , v2 = 1, σ 2
e0 = 1× 10−6 (26)

MH within Gibbs sampler is employed to generate samples
from the posterior conditional PDFs in Equations (16–19). In
total, 20,000 samples are generated and first 5,000 samples
are discarded as burn-in period to remove the transitional
samples. Sample mean and standard deviation of µθ and 6θ

are plotted in Figures 5, 6, which show that the samples
have converged and the number of samples is adequate for
estimating these statistics. The sample histograms for µθ, σθi ,
and σe(λ1−3) are shown in Figure 7. The black lines denote
the kernel PDFs which are normalized to have the same
height as the highest bins of the histograms and black dots
denote the MAPs. The MAPs are estimated as the peaks of
kernel PDFs which are preferred over selecting the sample
with highest posterior probability to reduce the estimation

FIGURE 7 | Histograms and kernel PDFs of µθ, σθi
, and σe(λ1−3) (after burn-in).
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uncertainty. Alternatively, the average values could be used
but the MAPs are preferred as they represent the most
probable values of parameters and are more appropriate for
asymmetric distributions. It can be seen that samples of µθ

seem to follow a normal distribution, samples of σθi roughly
follow an Inverse-Wishart distribution, and samples of σe(λ1−3)

approximately follow an Inverse-χ2 distribution with a tail on
the right side. These are expected due to the choice of conjugate
priors used in section Formulation of Hierarchical Bayesian
Approach.

The estimated MAPs of µθ, 6θ(σθi , ρij) and 6e(σei ) are
summarized in Table 2, together with their nominal values from

TABLE 2 | MAPs of µθ, 6θ(σθi
, ρij ) and 6e (σei ) for Case 1 (µe = 0) and Case 2 (µe 6= 0), and evaluated µe from Case 1 results.

Parameters Nominal MAPs

Case 1 Case 2

µ̂θ(GPa) µ̂θ1
50 21.9 21.9

µ̂θ2
40 23.2 23.3

µ̂θ3
30 24.7 24.7

6̂θ σ̂θ1
(GPa) 3 0.48 0.49

σ̂θ2
(GPa) 2 0.49 0.50

σ̂θ3
(GPa) 1 0.40 0.36

ρ̂12 0 0.01 −0.12

ρ̂13 0 0.10 0.03

ρ̂23 0 0.11 −0.10

µe (×10−2) σ̂e(×10−3) λ1 −37.2 5 0 25.1 −2.36 5.9

λ2 −35.8 5 0 0.8 0.01 7.7

λ3 −24.4 5 0 55.0 5.39 10.0

φ1,1 3.2 5 0 0.8 −0.02 0.5

φ2,1 6.3 5 0 5.4 0.47 2.8

φ3,1 7.5 5 0 2.0 0.08 2.7

φ4,1 −0.3 5 0 3.5 −0.22 2.7

φ5,1 −4.0 5 0 2.1 0.01 2.2

φ1,2 −6.0 5 0 6.3 0.45 4.2

φ2,2 −5.7 5 0 5.9 −0.21 5.6

φ3,2 5.6 5 0 5.4 0.37 4.1

φ4,2 13.1 5 0 8.1 −0.06 8.1

φ5,2 1.4 5 0 6.2 0.37 5.3

φ1,3 −11.3 5 0 21.9 1.63 12.7

φ2,3 −2.8 5 0 5.4 0.07 5.1

φ3,3 23.8 5 0 14.6 −0.92 7.2

φ4,3 −2.8 5 0 12.0 0.90 6.4

φ5,3 −4.5 5 0 9.8 −0.20 9.5

ρ̂, µe, and σ̂e are normalized and therefore unitless terms. µe values are in percentage (×10-2 ) while σ̂e terms are per thousand (×10-3 ) as indicated in left column.
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FIGURE 8 | Comparison of natural frequency predictions with their identified counterparts using the calibrated model of Case 1 (µe = 0).
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the frame model. In Table 2, λi refers to eigen-frequency of mode
i and φj,i refers to component j ofmode shape i. It can be observed
that µ̂θi and σ̂θi are underestimated compared to their nominal

values due to the significant modeling errors introduced in the
shear buildingmodel. Although themean and standard deviation
of stiffness are underestimated, the correlation coefficients ρ̂ij are

0.97 0.98 0.99 1 1.01 1.02 1.03

2.46

2.48

2.5

2.52

2.54

2.56

2.58

2.6

2.62

2.64

f1 (Hz)

f 2
 (

H
z
)

Case 2 (
e

0)

Identified

0.97 0.98 0.99 1 1.01 1.02 1.03

4.15

4.2

4.25

4.3

4.35

4.4

4.45

4.5

f1 (Hz)

f 3
 (

H
z
)

µ ≠

FIGURE 9 | Comparison of natural frequency predictions with their identified counterparts using the calibrated model of Case 2 (µe 6= 0).

FIGURE 10 | Acceleration record of the 2009 L’Aquila Italy earthquake.

FIGURE 11 | Comparison of displacement time history predictions at story 10 with measurements (simulations) for Case 1 and Case 2. Light red shaded area: 95%

confidence interval of predictions, blue shaded area: 95% confidence interval of simulations, red line: median of predictions, blue line: median of simulations.
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accurately estimated to be close to zero. Note that the overall
stiffness variability in each of the three column groups is less
than the individual stiffness uncertainty shown in Table 1 due
to (1) the compensation effect of independent element stiffness,
and more importantly (2) modeling errors in the shear building
model, including the negligence of rocking behavior at the base
and the rigid assumption of floors. The implemented grouping
strategy introduces additional modeling errors. Grouping
or sub-structuring is a common strategy to reduce the
number of updating parameters and avoid unidentifiability/ill-
conditioning.

The updated structural parameters (Young’s moduli)
represent the effective stiffness of different substructures. In

presence of large modeling errors, the updated values will
compensate for non-updated model parameters and modeling
errors, therefore, they may not correspond to the physical
Young’s modulus of the used material. In linear time-invariant
applications, calibrated models can still provide good response
prediction even outside the calibration range of response
amplitude. However, the calibrated model should be cautiously
used for prediction of local response quantities with little
sensitivity to the used error metrics such as modal parameter
errors. The available measurements can provide information
about the accuracy or bias of the calibrated model on used
error metrics (natural frequencies and mode shapes here).
But they do not provide accurate estimation of the expected

FIGURE 12 | Comparison of acceleration time history predictions at story 10 with measurements for Case 1 and Case 2 (refer to Figure 11 for legends).

FIGURE 13 | Comparison of displacement time history predictions at story 7 (no sensor/measurement) with measurements for Case 1 and Case 2 (refer to Figure 11

for legends).
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bias for localized quantities such as strains and stresses at
locations with large modeling errors (e.g., base of the building
in this application). Significant variability is observed for the
covariance of error function, and σ̂e(λ1) and σ̂e(λ3) are estimated
much larger than their nominal values (added white noise
level of 0.5%) due to the modeling errors and the assumption
of µe = 0 in Case 1. The nominal value of µe in Table 2 is
computed based on the error function definition in Equations
(2, 3) with Young’s modulus the same as the mean values in
Table 1.

The calibrated model is then used to predict the modal
parameters using the formulation detailed in section Propagation
of Uncertainties in Model-Predicted Response. A total of
1,000 natural frequency predictions are generated from the
calibratedmodel and compared with their identified counterparts
(simulated from the frame model) as shown in Figure 8.
It can be observed that the range of identified values
is fully covered by predictions. However, predictions have
significantly larger variability than measured data. An evident
difference is observed between the centers of two clouds
(black dots vs. gray circles) which indicates error bias.
Therefore, it is concluded that the assumption of µe =

0 is not an optimal choice in this case, and a non-zero
µe is preferred. This observation prompts the second case
of model updating referred to as Case 2 in the following
section.

Case 2: Model Updating With µe 6= 0
In this case of model updating, a non-zero mean is considered
for the error function. Although µe cannot be updated
simultaneously with µθ due to compensation effects, it can be
evaluated from the observed bias in error function as shown
below:

µe =
1

Nt

Nt
∑

t=1

êt (27)

in which êtis the error function evaluated based on Equations
(2, 3) using θ̂t estimated in Case 1. A total of 100 different

values of θ̂t are estimated for 100 sets of modal parameters
from the joint posterior distribution in Equation (13), and
µe is computed as the mean of 100 evaluations of êt . The
evaluated µe is reported in Table 2. It can be seen that the
largest values in µe correspond to the natural frequencies
of mode 1 and 3 which exhibit the largest bias in the
predictions as shown in Figure 8. Note that the estimated
bias does not provide physical interpretation of modeling
errors, but it can potentially indicate the extent of such
error.

The hierarchical Bayesian model updating is repeated with the
evaluated value of µe from Equation (27). Note that in Case 2,
µe is not updated through a Bayesian inference but is obtained
using the updating results of Case 1. The model updating
follows the same process with minor modifications in Equations
(14, 21):

Jet = −
1

2
(et − µe)

T6−1
e (et − µe) (28)

Vi =
1

Nt

Nt
∑

t=1

(eti − µei )
2 (29)

The estimated MAPs of µθ, 6θ(σθi , ρij), and 6e(σei ) with µe 6= 0

are reported in Table 2. It can be observed that µ̂θ and 6̂θ remain
almost the same for the two cases which is expected because the
hyperparameters estimation is based on the measured data and
the underlying model. The inclusion of a constant µe only shifts

FIGURE 14 | Comparison of acceleration time history predictions at story 7 (no sensor/measurement) with measurements for Case 1 and Case 2 (refer to Figure 11

for legends).
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the center of error function distribution and therefore, would not
affect the hyperparameters. However, values of 6̂e components
are generally reduced, especially for σ̂e(λ1) and σ̂e(λ3), making 6̂e

components much closer to their nominal values which are 0.005
due to the added white noise level of 0.5%. Similar comparison of
natural frequency predictions with their identified counterparts
using the calibrated model of Case 2 is shown in Figure 9. It can
be seen that significantly improved predictions are achieved in
this case compared to Figure 8. No observable bias exists between
the two clouds (black dots vs. gray circles), and similar variability
is observed. This demonstrates the importance of accounting for
modeling bias in the proposed hierarchical Bayesian framework
to achieve more accurate predictions.

Response Time History Prediction
The calibrated models from Case 1 and Case 2 are used to
predict response time history to an earthquake ground motion
using the modal superposition method described in section
Propagation of Uncertainties in Model-Predicted Response. The
input is the recorded groundmotion at Antrodoco station during
the 2009 L’Aquila Italy earthquake as shown in Figure 10. The
response predictions only include the contribution of the first
three modes as the shear building model is only calibrated
using these modes. The building is assumed to have modal
damping ratios of 2% for all modes. To account for the estimation
uncertainty of damping ratios, the identified damping ratios of
the first three modes are assumed to be 2% with a coefficient of
variation of 30%. Therefore, response time history predictions
include the uncertainties of the estimated stiffness inherent
variability (µ̂θ, 6̂θ), uncertainty of error function (µ̂e, 6̂e) and
the uncertainty of damping ratios. To verify the accuracy of
response predictions, the model predictions are compared with
the response of the exact (frame) model. The damping of the
frame mode is assumed to be exact (2% damping ratios for all
modes) and the contributions of all modes are included in the
simulation. However, the exact model simulations consider the
variability of stiffness parameters using their exact probability
distributions. It is worth noting that under large amplitude
seismic excitations, buildings experience non-linear hysteretic
behavior (Astorga et al., 2018). Therefore, in the case of dealing
with large amplitude excitations, a non-linear model of the
structural system is recommended to be used. The proposed
hierarchical Bayesian method can then be applied for non-linear
model calibration where hysteretic material properties can be
considered as updating parameters. However, in this study the
considered ground motion is deliberately selected to have a small
peak ground acceleration of around 0.02 g so the assumption of
linear elastic regime with low damping is realistic. Furthermore,
certain building codes allow the use of linear FE models for
simplified and approximate analysis of buildings under seismic
loads such as the equivalent linear procedure and response
spectrum procedure. These two linearmethods are routinely used
in practice to predict structural responses during seismic events.

A total of 200 independent predictions (using calibrated
model) and simulations (using exact model) are performed
and a 95% confidence interval is generated by: (1) sorting the
200 values at each time instant in an increasing order; (2)

TABLE 3 | Statistics of maximum roof displacement, maximum roof acceleration,

and maximum inter-story drift of 10th story for measurement and predictions.

Simulations

(exact model)

Case 1

(µe = 0)

Case 2

(µe 6= 0)

Mean Std Mean Std Mean Std

Max. roof

displacement (m)

0.01 5.1e−4 0.01 1.3e−3 0.01 1.1e−3

Max. roof

acceleration (m/s2)

−1.04 0.02 −0.96 0.10 −1.05 0.06

Max. inter-story

drift of 10th story

(%)

0.044 0.002 0.038 0.016 0.041 0.009

Std, standard deviation.

selecting the 6th and 195th values as the lower and upper
bounds of the confidence interval. Note that only 5 sensors
(story 2, 4, 6, 8, and 10) are considered in the model updating
process, therefore, the estimated error function only includes
information for these stories. The error function is extended
for unmeasured DOFs using the strategy detailed in section
Propagation of Uncertainties in Model-Predicted Response to
predict response of the unmeasured DOFs. The comparisons of
displacement and acceleration time history predictions at the
roof with their simulated counterparts are shown in Figures 11,
12. A good agreement is observed between model predictions
and simulations for both cases, while the predictions in Case
2 are more accurate (smaller bias and uncertainty). Note that
in general, acceleration predictions have larger uncertainty
compared to displacements since a larger number of modes
contribute to acceleration response and higher modes often
have larger modeling errors. In this study, accelerations are
predicted using only the first three modes while the simulations
of true response include contributions of all modes. Figures 13,
14 show the model-predicted responses at the 7th floor which
does not have a sensor. Again, a good agreement can be seen
for displacement and acceleration time history predictions and
simulated response. Similarly, Case 2 predictions provide tighter
fit with simulated response. In general, the predictions in DOFs
without sensors are more conservative (larger variance) due to
the conservative assumption made in the extension of error
functions detailed in section Propagation of Uncertainties in
Model-Predicted Response. The statistics of maximum roof
displacement, maximum roof acceleration and maximum inter-
story drift of the 10th story for measurement and predictions of
Case 1 and Case 2 are summarized in Table 3. It can be seen
that, although Case 1 provides relative satisfactory results, Case
2 delivers significantly more accurate mean values and standard
deviations.

SUMMARY AND CONCLUSIONS

In this paper a hierarchical Bayesian model updating approach
is implemented for modeling error estimation and response
prediction of a 10-story building model using modal parameters.
The identified modal parameters are simulated from a frame
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model which represents the true structure. A shear building
model with significant modeling errors is created for model
updating and the stiffness of three defined substructures are
selected as updating parameters. The hierarchical Bayesian
approach is employed to estimate the stiffness mean and
covariance, as well as the modeling errors of the shear

building model. Metropolis-Hastings within Gibbs sampler
is implemented to evaluate numerically the joint posterior

distribution of updating parameters. The mean of error function
µe is first assumed to be zero in Case 1. Evident bias is

observed in natural frequency predictions which prompts a

second case of model updating (Case 2) with µe evaluated
from the observed bias. The natural frequency predictions for

Case 2 show no bias and similar variability to the identified
values. Displacement and acceleration time history predictions

are obtained for both cases and for all measured and unmeasured

DOFs. Good agreements are observed between predictions and
measurements for both cases and for all DOFs. The predictions

are improved significantly for Case 2 when considering non-

zero modeling bias. These observations validate the proposed

hierarchical Bayesian approach for model calibration, modeling
error estimation, and response prediction by considering and

propagating the uncertainties of structural stiffness andmodeling
errors, and demonstrate the effects of accounting for modeling

bias in response predictions. In the application of proposed

hierarchical Bayesian method, model updating is recommended
to initially be applied with the assumption of zero mean error

(similar to Case 1). If evident prediction error bias is observed
from the calibrated model, then a second case can be applied to
remove the bias and improve the predictions. The main novelties
of the proposed approach include the following.

(I) The “inherent variability” of updating structural
parameters (stiffness) due to changing ambient and
environmental conditions is quantified and estimated by

the hyperparameters µθ and 6θ. As expected, the parameter
estimation uncertainties would decrease with additional
data but the estimated inherent variabilities would converge
to a constant value similar to the estimation variability
obtained from a frequentist approach. This is not the case for
traditional Bayesian approaches.

(II) Modeling errors are characterized by a joint normal
distribution with mean µe and covariance 6e and are
propagated in model predictions. In the case of considering
zero modeling bias µe, the covariance term will be
overestimated to compensate for the bias, resulting in larger
confidence intervals on model predictions.

(III) In presence of significant modeling errors, the effective
structural parameters can be under/over-estimated, but
the calibrated model can still provide accurate confidence
intervals on response predictions due to the inclusion of
modeling errors.
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After a seismic event, it is imperative that critical structural members that are damaged

within a building are identified and analyzed as soon as possible to ensure proper

remedial measures can be taken. Failure to detect damage or correctly analyze the

severity of damage within the building could have catastrophic consequences. When

a reinforced concrete building is subjected to a damaging event, the current standard

method for identifying and analyzing structural damage involves extensive surface-

level visual inspections which often result in inconclusive and inconsistent damage

analysis. Structural Health Monitoring (SHM) is a rapidly developing field which is vastly

improving the way damage is assessed within buildings and other major infrastructure.

In this paper, an automated SHM Damage Detection Model (DDM) specifically tailored

for buildings is developed that uses time series analysis along with sensor clustering

techniques to detect damage in a building from its vibration response due to ambient

wind loading. The specific time series analysis methodology used throughout this paper is

an Auto-Regressive Moving Average model with eXogenous inputs (ARMAX). To validate

the ARMAX DDM, a detailed wind simulation model that applies forces based on actual

wind behavior is created along with a numerical damage model applicable to reinforced

concrete buildings. To evaluate the effectiveness of the proposed DDM in locating and

quantifying damage at a story level precision, two buildings are modeled in SAP2000.

The results from the numerical modeling proved the effectiveness of the ARMAX DDM

at accurately locating and quantifying the degree damage from wind induced floor

vibrations at a story level precision. The limitations of the DDM in its current state and

recommendations for future work are discussed to conclude the paper.

Keywords: ARMAX model, wind induced vibration, damage detection, time series analysis, shear type building

INTRODUCTION

When a building undergoes a seismic event, the typical method for locating and analyzing any
potential structural damage involves lengthy surface level visual inspections by structural engineers
where each critical member is classified in a damage category based on the engineer’s judgement.
Such an arbitrary inspection method often leads to inconclusive and inconsistent damage analysis.
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To overcome the issues from visual inspections, vibration-
based structural health monitoring (SHM) has seen substantial
progress due to the rapid development of advanced technologies
in the areas of computer science and electrical engineering; it is
now more convenient and cheaper to acquire large amounts of
data. Despite this abundant data, the proper way to detect damage
is still a big challenge.

Among all the vibration-based SHM methods, non-
parametric methods and statistical pattern recognition
techniques, such as Time Series Modeling (Sohn et al., 2001; Nair
et al., 2006; Gul and Catbas, 2009, 2011) have gained significant
momentum in the field of SHM due to their ability to deal
with massive data and their capability to improve reliability by
accounting for the variations in the recorded data.

Time series analysis is used to analyze time dependent
data sets to understand their statistical characteristics. In their
infancy, time series models were not used for structural analysis
purposes. They were initially used in a variety of fields, such as
population modeling, electrical engineering, long term weather
predictions, and stock price prediction. In the following papers,
the coefficients of time series models are used as damage
sensitive features in which damage was found by comparing the
changes in the coefficients from the undamaged and damaged
models. Bodeux and Golinval (2000) introduced the application
of Vector Autoregression Moving-Average (VARMA) models for
both system identification and damage detection. Their approach
utilized a prediction error method which assumed a zero mean
Guassian white noise. The method was tested on the “Steel-
Quake” benchmark proposed in the framework of COST Action
F3 “Structural Dynamics.” The tests showed a good correlation
for the modal parameters and for detecting damage based on
the modal parameter uncertainties, however the location of the
damage was not properly identified. Gul and Catbas (2011)
implemented a novel damage detection process which involved
creating a damage detection model which combined time series
modeling and a novel sensor clustering technique. The authors
created ARX models for different sensor clusters by using the
free response of the structure and each sensor cluster output
was treated as an input for the ARX model. The methodology
was shown to successfully identify and locate damage on both
numerical and experimental vibration data even when noise is
considered. Nair et al. (2006) introduced a new damage sensitive
feature (DSF) using the first three auto-regressive (AR) terms
from the auto-regressice moving average (ARMA) series that
is modeled from vibrations. The authors found that the mean
values of the DSF for the damaged and undamaged signals
were different, so a statistical summarization, i.e., a t-test, was
implemented to obtain a confident damage decision. Numerical
and experimental vibration data from the ASCE benchmark
was used to validate the method and the results showed that
both minor and major damage could be precisely detected
and located. de Lautour and Omenzetter (2006) analyzed the
vibrations of a multi story building due to ground motion
to detect seismic damage within the building. Their simple
numerical 3 story structure was subjected to random ground
motion and the resulting vibrations at each story were fit to
an AR time series model. The AR coefficients were then used

as the inputs for an Artificial Neural Network (ANN). The
ANN was trained to detect any changes in the AR coefficients
from before and after damage to identify and quantify the
damage at each story. The results from their numerical case
study proved that their methodology could successfully detect
damage in a simple numerical structure even in the presence
of noise and changes in operating conditions. Ji et al. (2011)
conducted a series of full scale tests at the E-Defense shaking table
facilities to simulate realistic seismic damage in a high-rise steel
building. In conducting these full scale tests, the authors could
evaluate the effectiveness of vibration-based damage diagnosis
methodologies using real life vibration data. The vibration data
from each floor was fit by the frequency response curve-fitting
method and the ARX method. As the seismic damage increased,
the natural frequencies of the structure decreased as expected.
The modal shapes, however did not change as the damage was
distributed evenly over the height of the structure. Note that
these results only apply to steel high rise structures and it is
expected that different results would occur if a different type of
structure was used, such as a concrete moment frame or shear
wall structure. Bao et al. (2013) proposed a damage detection
technique for subsea pipelines which could account for various
loading conditions. The authors first partitioned and normalized
the acceleration data, then used auto-correlation functions and
partial-correction functions to compute the ARMA models
inputs and their orders, respectively. The AR parameters served
as the damage feature vector and the damage indicators were
based on the Mahalanobis Distance between the ARMA models
which were used for damage detection and localization. A finite
element model of a subsea pipeline under ambient excitations
was numerically simulated to verify the authors’ methodology,
and the results show that it can successfully detect and locate
damage even with noise effects. Roy et al. (2015) proposed
a set of 4 ARX model based DSF for damage detection and
localization when no input excitation data is made available. This
was done by assuming that one of the output responses in a
multi-degree-of-freedom (MDOF) system is assumed as an input
whereas the rest are taken as the output. The damage features
are based on ARX model coefficients, Kolmogorov-Smirnov test
statistical distance, and the model residual error. The authors’
methodology was tested on both numerical and experimental
structures and the results show that the DSF could both localize
and quantify the stiffness degradation, however, in cases where
there are multiple locations of damage, one of the DSFs was
unable to clearly quantify the amount of stiffness degradation.
Lakshmi and Rama Mohan Rao (2014) created a novel output-
only damage detection technique based on time series analysis
which accounted for environmental variability and measurement
noise. The authors applied Principle Component Analysis to
transform the large amount of data in order to reduce the data
size, thereby improving computational efficiency. The data is
fitted with AR and ARX models, and the probability density
functions of damage features are obtained by assessing variance
in prediction errors. The authors tested their methodology on
a numerical simply supported beam and an experimental three
story framed bookshelf benchmark structure. Results from the
experiments indicate that the method can detect and locate
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damage, however the measurement of the severity of damage
should be further examined.

This article presents an automated SHM system based on
Time Series Analysis (TSA) and sensor clustering capable of
rapidly providing engineers with the location and degree of
damage at a story level precision from the building’s vibration
due to ambient wind forces. The method presented in this paper
is developed based on previous studies of the authors (Mei and
Gül, 2014; Do, 2015), and aims to complement lengthy visual
inspections and arbitrary scaling constants to provide a more
efficient, consistent and accurate damage assessment.

The novelty of the paper is to utilize structural responses
under wind loading to rapidly detect damage in a building at
a story level precision with severity information. When relating
this damage detection methodology to the objectives presented
by Rytter (1993), it satisfies the first three steps.

METHODOLOGY

Background to Time Series Models
This section provides a brief discussion about the Auto-
Regressive Moving Average model with eXogenous inputs
(ARMAX). More discussions about time series model theories
can be found in the following literature (Sohn and Farrar, 2001;
Lu and Gao, 2005; Omenzetter and Brownjohn, 2006).

ARMAXmodeling is the specific time seriesmodel used in this
paper. Its general form is given in Equation (1).

y (t) + a1y (t − 1t) + . . . + anay (t − na1t)

= b0u (t) + b1u (t − 1t) + . . . + bnbu (t − nb1t) + e (t)

+d1e (t) + d1e (t − 1t) + . . . + dnce(t − nc1t) (1)

In Equation (1), y(t) is the output, u(t) is the input of the
model, e(t) is the error term, and ai, bi, di are the parameters
of the model. The model orders are given in terms of na, nb,
nc. A general form of the ARMAX equation can be written
as Equation (2).

A
(

q
)

y (t) = B
(

q
)

u (t) + D
(

q
)

e(t) (2)

The termsA(q), B(q) andD(q) are polynomials in delay operators
qj as shown in Equation (3).

A
(

q
)

= 1+ a1q
−1 + . . . + anaq

−na

B
(

q
)

= b1q
−1 + b2q

−2 + . . . + bnbq
−nb

D
(

q
)

= 1+ d1q
−1 + . . . + dncq

−nc (3)

From Equation (3), it is simpler to understand the meaning of the
delay operator. For example, a data set x(t) at time multiplied by
qj is equal to x(t – j1t). From the general form of the ARMAX
models (Equation 2), different time series models can be created
by changing the order of A(q), B(q), andD(q). For example, Auto
Regressive (AR) process is created with only na while nb, and nc
are set to zero. The Moving Average (MA) process sets na and nb
to zeros and a non-zero value to nc. The ARX model is defined
as setting nc to zero. As previously stated, the focus of this paper
will be solely on ARMAXmodeling of the transformed equations
of motion as described below.

ARMAX Models for Different Sensor
Clusters
The equation of motion, which governs the dynamic responses
(accelerations, velocities and displacements) of structures, is
described herein. Equation (4) below represents the general
equation of motion for an N degree of freedom system.

Mẍ (t) + Cẋ (t) + Kx (t) = f (t) (4)

In which M, C and K represent the N by N mass, damping
and stiffness matrices of the system. The vectors ẍ(t), ẋ(t), and
x(t) represent the acceleration, velocity and displacement at a
certain time t. The external forcing vector is denoted by f (t)
which is considered as a wind force in this paper. The vibration
of a structure is strongly dependent on time, the prior state of
the structure, and external inputs. By modeling the vibration
data as a time series sequence, statistical characteristics of the
time series which represents the behavior of the structure can be
extracted. This vibration data can be gathered by installing a pair
of bi-axial sensors in perpendicular directions at each story. The
focus of this research centers on the change in stiffness which
represents damage within the lateral resisting members of a
building structure.

Equations (5–12) outline the steps for how the equation of
motion (EOM) can be transformed so that it can be represented
as an ARMAX model. For clarity, one story (represented as a
single degree of freedom) is considered as a single ith row in
Equation (4) and is shown in Equation (5) below.

(mi1ẍ1 (t) + . . . +miN ẍN (t)) + (ci1ẋ1 (t) + . . . + ciN ẋN (t))

+
(

ki1x1 (t) + . . . + kiNxN (t)
)

= fi(t) (5)

Rearranging Equation (5) to isolate the acceleration on the left-
hand side results in Equation (6).

ẍi =
fi

mii

−
mi,1ẍ1 + . . . +mi,i−1ẍi−1 +mi,i+1ẍi+1 + . . . +mi,N ẍN

mii

−
ci,1ẋ1 + ci,2ẋ2 + . . . + ci,N ẋN

mii

−
ki,1x1 + ki,2x2 + . . . + ki,NxN

mii
(6)

It can be assumed in shear type building modeling that the
mass of each degree of freedom is entirely lumped into the
center of the degree of freedom. Any mass values which aren’t
in the diagonal are assumed to be zero and can be removed.
For simplicity, the damping terms in the equation can be
removed due to their miniscule contribution to the equations
balance. As such, Equation (6) can be simplified to Equation
(7) below.

ẍi =
fi

mii
−

ki,1x1 + ki,2x2 + . . . + ki,NxN

mii
(7)
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Taking the second derivative of Equation (7) results in Equation
(8) below.

....
x
i
=

f̈i

mii
−

ki,1ẍ1 + ki,2ẍ2 + . . . + ki,N ẍN

mii
(8)

The goal of taking the second derivative of Equation (8) is
to create an equation in which the right-hand side is only
dependent on acceleration values. Measuring the displacement
and velocities of a structure under light ambient wind loading
may result in measurement errors due to the miniscule
values involved. By applying the forward difference technique
(Levy and Lessman, 1961) as shown in Equation (9), the
left side of Equation (8) can be transformed to create a
new equation solely based on acceleration values as shown in
Equation (10).

ẍ̇i =
ẍi (t + 1t) − ẍi (t)

1t
(9)

...
ẋ
i
=

ẍi (t + 21t) − ẍi (t + 1t)

1t
−

ẍi (t + 1t) − ẍi (t)

1t
1t

ẍi (t + 21t) − ẍi (t + 1t)

1t
−

ẍi (t + 1t) − ẍi (t)

1t
1t

(10)

=
f̈i(t)

mii
−

ki,1ẍ1(t)+ ki,2ẍ2(t)+ . . . + ki,N ẍN(t)

mii

One issue with the newly transformed Equation (10) is that the
acceleration ẋ(t) exists on both sides of the equation, which
could lead to trivial solutions. To eliminate this possibility, a new
sequence yi(t) is introduced to represent the left components
in Equation (10) where yi (t) = ẍi (t + 1t) − ẍi (t). The
final transformation of the equation of motion is shown in
Equation (11).

yi (t + 1t) − yi (t)

1t2
=

f̈i(t)

mii
(11)

−
ki,1ẍ1(t)+ ki,2ẍ2(t)+ . . . + ki,N ẍN(t)

mii

This newly transformed equation can be represented as an
ARMAX function (Equation 1) provided that yi(t) and ẍi(t)
are considered the output and input terms, respectively. The
error term in the ARMAX model represents damping, excitation
force, ambient noise and numerical errors out of the numerical
approximation of the derivative. As stated in Do (2015), it was
found that an order of 1 for both the na and nb terms and an order
of 3 for the nc term was sufficient to account for these influences.
The ARMAX model for the ith row of the equation of motion of
a multi-DOF system can be expressed as in Equation (12) below.
The parameters can be estimated using least square criterion (Mei
and Gül, 2016, #207).

yi (t + 1t) + aiyi (t) = bi1ẍ1 (t) + bi2ẍ2 (t) + . . . + biN ẍN (t)

+e (t) + di1e (t − 1t) + di2e (t − 1t) (12)

Sensor Clustering
Due to the nature of shear structures, it can be assumed that
the signal of a DOF can only affect the DOFs located directly
above or below. With this assumption, the time series models
can be constructed in a more concise way where each model only
incorporates the neighboring DOFs. These models are referred to
as a sensor cluster.

Based on the ARMAX model built for the equation of motion
of a DOF, vibration at one sensor is chosen to fit the part at the left
side of the equation, which is considered the reference channel.
The vibration data from the neighboring sensors represent the
right part of the equation. For an N-DOF structure, there are N
ARMAXmodels with outputs as the reference channel and inputs
only from the adjacent channels.

The ARMAXmodel is solely reliant on the sensor clusters, and
not the readings of each individual sensor. This sensor clustering
technique, which was previously developed by Gul and Catbas
(2011), greatly reduces the complexity of the equation of motion
for an N DOF.

If we consider a four story shear building to explain this
sensor clustering technique. The first sensor cluster created to
build the ARMAX model incorporates the first and second
story and the first story is chosen as the reference channel.
The reference channel of the second cluster is the second story,
and the two neighboring stories (first and third) are included.
The third sensor cluster has the third story as its reference
channel and includes the two adjacent stories: the second and
the fourth. The final sensor cluster incorporates both the third
and fourth stories, with the fourth story being the reference
channel.

Building Damage Features
Among the property changes of a shear structure, mass changes
are often related to the loading of the structure and are not
considered as damage in most cases. To isolate stiffness changes
from mass changes, the damage features proposed by Do (2015)
are used in this paper. This section briefly describes the definition
of the damage features.

The B(q) terms in the ARMAX model (Equation 12)

represents the terms
kij
mii

in the equation of motions of each sensor
cluster. The baseline case matrix is defined in Equation (13) and
the matrix representing the unknown case (i.e., damaged case) is
represented by Equation (14).

bij,baseline =











b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bn1 bn2 . . . bnn











∼=













k11
m11

k12
m11

. . .
k1n
m11

k21
m22

k22
m22

. . .
k2n
m22

...
...

. . .
...

kn1
mnn

kn2
mnn

. . .
knn
mnn













(13)

dij,damaged =











d11 d12 . . . d1n
d21 d22 . . . d2n
...

...
. . .

...
dn1 dn2 . . . dnn











∼=













k′11
m′

11

k′12
m′

11
. . .

k′1n
m′

11
k′21
m′

22

k′22
m′

22
. . .

k′2n
m′

22

...
...

. . .
...

k′n1
m′

nn

k′n2
m′

nn
. . .

k′nn
m′

nn













(14)
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During seismic events, reinforced concrete members will often
undergo a reduction in stiffness. As such, this paper focuses only
on the loss of stiffness in a structure to determine damage and
the mass is assumed to have not changed significantly during the
seismic event. Therefore, the denominators in Equation (14) can
be changed from m

′

ij to mij to produce a new matrix as shown in

Equation (15), where the stiffness terms are the only ones which
change between the baseline case and the unknown case.

dij,damaged
∼=













k′11
m11

k′12
m11

. . .
k′1n
m11

k′21
m22

k′22
m22

. . .
k′2n
m22

...
...

. . .
...

k′n1
mnn

k′n2
mnn

. . .
k′nn
mnn













(15)

The Stiffness Damage Feature (SDF) is presented in Equation
(16) as follows.

SDFs =
di
j,damaged

− bi
j,basline

bi
j,basline

× 100% i : sensor clusters;

j : adjacent sensors

(16)

CASE STUDIES: NUMERICAL ANALYSIS

To verify the validity of the ARMAX damage detection model,
two different structures were modeled using SAP2000. Each
structure was subjected to a variety of damage cases, and the
undamaged and damaged models’ acceleration responses to
ambient wind forces were analyzed and the SDFs were calculated.
Those SDFs were then directly compared to the expected SDF
results which were obtained from extracting the stiffness matrices
from SAP2000.

Of the two of the structures modeled, one was a steel moment
frame and the other was a reinforced concrete (RC) frame, where
shear deformation from lateral loading is most prevalent. The
ARMAX DDM assumes that the structures can be approximated
as shear type structures and therefore flexural deflection are not
considered.

Each structure is presented with damage cases which range
from minor damage cases (only one story damaged) to severe
damage cases (>70% of stories damaged). The entire procedure
for the numerical analysis can be summarized through Figure 1.

Wind Speed Simulation Model
The ARMAX DDM previously outlined requires acceleration
readings at every story to properly function. As previously stated,
the acceleration responses can be gathered by installing one
bi-axial sensor per story. These accelerations are created by a
lateral wind force acting on the building. The following sections
describe the procedure to generate the wind forces.

Wind Simulation at Reference Elevation
When simulating a wind speed function, a common technique
involves breaking the wind down to two components: the
Low Frequency Component (LFC) which represents the average
hourly wind speed; and the high frequency component (HFC)

FIGURE 1 | Damage model overview.

which considers the wind speeds at shorter time periods ranging
from 10 to 300 s (Welfonder et al., 1997; Nichita et al., 2002;
Bayem et al., 2008). This can be represented as follows:

Ur (t) = vLFC (t) + vHFC(t) (17)

This paper utilizes the method proposed by Fernandez and
Alonso (2017) to create a wind speed model at a reference story
elevation which considered both wind components as stochastic
variables, greatly simplifying the wind speed simulation process
and correlating excellently to real life measurements.

Wind Speeds at Other Elevations
When generating the wind speed functions for elevations
other than the reference story elevation, two factors must be
considered: the mean wind speed at the given elevation and the
correlation with regards to the neighboring story wind speeds.

In general, wind speeds increase at higher heights. In this
paper, Power Law is used to represent mean wind speed
profiles at other elevations as it has shown to give an accurate
approximation for elevations below 200m (Holmes, 2015)

U (z) = Ur ×

(

z

zr

)α

(18)
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The exponent α is an empirically derived landscape coefficient
that ranges from 0.10 for smooth, flat terrain to 0.40 for cities
with high rise buildings (Bañuelos-Ruedas et al., 2010). The wind
force example used for the two damage models had an exponent
value of 0.30.

Correlation is defined as the real number in the range [-1, 1]
that measures how two variables (i.e., wind speeds) at different
elevations evolve with each other. The Pearson correlation
equation (Pearson, 1895), which is used in this paper to measure
correlation of wind speeds at different elevations, is defined in
Equation (19).

ρxy =
σ 2
xy

σxσy
(19)

The correlation of real-life wind speeds will not be equal to one.
The correlation generally ranges from 0.50 to 0.80 depending on
site characteristics and wind speeds. The correlation is simulated
based on Kim et al. (2009), which can best reflect real-life
measurements.

C12

(

ry, rz , n
)

= e(−r∗×n∗) (20)

r∗ =

√

(

kyry
)2

+
(

kzrz
)2

Lx (zm)

n∗ =

√

1+

(

nLx (zm)

k2U (zm)

)2

zm =
√
z1 × z2

rz = z2 − z1

where ky = 0.5, kz = 0.5, k2 = 0.06

In Equation (20) listed above, the only inputs required are
the vertical and horizontal distances between two points (rz
and ry, respectively) and the frequency at which wind speeds
are taken (i.e., TSAMPLE = 10 s, n = 0.1). With the power
law and correlation effects accounted for, a wind speed model
was generated in the following section which accounts for any
elevation as it relates to the wind speed created in the previous
section.

Wind Force Generation Model at a Given Elevation
The first step in creating a wind speed at a given elevation was
to generate the wind speed at the reference elevation (first story)
as shown in previously, as that reference elevation speed is the
baseline for the second story wind speed. With the baseline wind
speed generated, each story’s wind speed was built in ascending
order by first increasing each story’s wind speed relative to
the story below using the power law. Following that increase,
a correlation generator was developed to model real life wind
behavior.

According to Kim et al. (2009), the predicted correlation
between wind speeds at 3.25m height difference is 0.695. To
simulate the correct correlation, a correlation generator was
developed to induce some randomness by either increasing
or decreasing the wind speed from its original value. The
randomized numbers were bounded by a normal distribution

with varying limits to create wind speed trials with varying
correlation values. An iterative program was created which
simulates several wind speed trials with different limits and then
checks which trial yielded the optimal correlation value.

With the second story wind speed generated, the wind speed
is then generated for the third floor using the same correlation
generator procedure with the second story as the new reference
elevation speed and with a different correlation value. This
process is repeated for each story until each floor has a wind
speed which corresponds to the Power Law mean speed and
appropriate correlation. Afterwards, the simulation is refined
further to account for turbulence at a one second wind speed
samples.

An example final version of wind speeds at 10 separate stories
is shown in Figure 2A which represents wind speeds with an
average starting hourly wind speed of 4 m/s (∼11 km/hr) at the
first story.

The major factors that can affect the wind pressure include
density of surrounding buildings, relative heights of surrounding
buildings, surface roughness and angle of wind. A parametric
model considering all the factors above proposed by Grosso
(1992) was introduced to simulate pressure coefficients along the
building. These pressure coefficients were used in conjunction
with the calculated wind speeds to generate a story by story wind
force which can be utilized during the damage detection model.
A sample of windward and leeward distributed forces (6 m/s
average wind speed) acting on a four story 16m tall building
are presented in Figures 2B,C. The windward and leeward forces
were applied at the windward and leeward sides of each story’s
floor slab as uniform distributed loads in the numerical building
models. The frequency spectrum of wind force and structural
response are shown in Figure 3.

Numerical Damage Modeling Technique
As the proposed methodology is based on its ability to detect
damage in numerical building models, it is imperative that the
damage properly reflects real life behavior. One of the most
commonly used damage analysis technique to determine the
degree of damage in a structure is the stiffness degradation
method, which compares the initial loading stiffness slope of an
undamaged structural member to the reloading stiffness slope
after the member/structure is subjected to a seismic event. This
stiffness degradation model will be utilized as it directly relates to
the focus of the ARMAX DDM which determines the change in
stiffness at a story by story level. To properly reflect damage, both
the concrete and steel properties were modified as follows.

Concrete Damage
According to Guo et al. (2016), it was assumed that any stiffness
reduction can be attributed to the degradation of the initial
reloading modulus of concrete as shown in Equation (21). This
assumption holds true because when the steel bars are unloaded
and reloaded, their reloading modulus generally will not change
drastically due to the elastic nature of steel, whereas the formation
of cracks in concrete due to a seismic event would greatly
reduce the reloading modulus. This damage model assumes
that the concrete has underwent non-linear damage due to the
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FIGURE 2 | Sample wind forces. (A) Sample wind speeds at 10 Story building. (B) Windward forces acting on a 4 Story building. (C) Leeward forces acting on a 4

Story building.
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FIGURE 3 | Spectra of wind force and response of a 4 Story Building. (A) Spectrum of wind force. (B) Spectrum of response.

concrete strain passing its peak strength value (∼0.22%). Note
that although the concrete has undergone non-linear damage, the
ambient wind forces acting on the reinforced concrete afterwards
would be of low enough force so that the “re-loaded” concrete is
behaving in a linear fashion.

DRConcrete = 1−
ENew

Eoriginal
(21)

Chang and Mander (1994) studied the effects of dynamic
and cyclic loading on concrete and they developed a set of
equations which can relate the original stiffness (EORIGINAL) to
any reloading damaged stiffness (ENEW) while also calculating the
new stress and strain capacities. This set of equations proposed by
Chang and Mander (1994) were adapted to create new concrete
capacity curves in which the only inputs required are the original
concrete compressive strength, initial flexural stiffness and the
target Damage Ratio (DR).

The range of Damage Ratios spans from minor damage (0.40)
to critical damage (0.65). Minor damage refers to the point
in which cracks become noticeable in the concrete. Critical
damage refers to the point just before complete failure of the
concrete with zero force capacity. These Damage Ratio limits and
corresponding degrees of damage were determined previously by
Toussi and Yao (1983).

For illustrative purposes, the stiffness, ultimate strength and
ultimate strain capacity of the undamaged and damaged 40 MPa
concrete is presented in Table 1. It is assumed that the damaged
concrete has lost all tensile capacity due to cracking.

Figure 4 is presented below for better visualization and
understanding of how the damaged concrete compressive curves
compare to the undamaged concrete. Past a strain value of
0.37%, it is assumed that the concrete will have completely
failed (Toussi and Yao, 1983). In this paper, concrete damage is
introduced by changing the material characteristics, i.e., modulus
of elasticity and peak compressive strength, of the damaged
columns according to DR within the SAP2000 model.

TABLE 1 | Undamaged and damaged concrete material properties.

Damage ratio Undamaged 0.40 0.45 0.50 0.55 0.60 0.65

E (MPa) 32888 19733 18088 16444 14800 13155 11511

σULT (MPa) 40 36.66 34.53 31.72 28.19 24.06 19.56

ξult (%) 0.220 0.200 0.200 0.200 0.200 0.190 0.180

Steel Damage
As the steel reinforcing bars undergo cyclic loading, the
unloading and reloading modulus of elasticity remains relatively
unchanged. What does change, however, is the ultimate strength
of the steel, as the constant cyclic loading has a fatigue loading
effect. As such, the DR of the reinforcing steel bars can be
calculated as the ratio of the new ultimate strength of the steel
compared to its undamaged ultimate capacity and is illustrated
in Equation (22) below.

DRRebar = 1−
σUlt.(New)

σUlt.(Original)
(22)

In this paper, steel members in SAP2000 are replaced with
aluminum members to simulate damage.

Parameters
In this paper, a 4 story steel structure and a 10 story reinforced
concrete structure are simulated. As an example, the procedure
to calculate parameters of the 4 story steel structure is shown
herein. The four story buildings is simplified as 4-DOF systems
where the stiffness values of k1 to k4 are the lateral force
resisting stiffness’ at each floor and the mass is assumed to
be lumped in the floor of each story. Each numerical building
model is treated as a strong-beam weak-column structure and
therefore the beams and slabs were treated as perfectly rigid. The
stiffness and mass matrix of the first four stories are shown in
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FIGURE 4 | Concrete compressive strength curves.

Equations (23,24), respectively.

K =









K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44









=









k1 + k2 −k2 0 0

−k2 k2 + k3 −k3 0

0 −k3 k3 + k4 −k4
0 0 −k4 k4









(23)

M =









m11 0 0 0
0 m22 0 0
0 0 m33 0
0 0 0 m44









(24)

With the stiffness and mass matrices set up as shown, the
stiffness damage feature (SDF) matrix was represented as
follows. Note that the equation to calculate each SDF is shown
in Equation (16).

SDF =









SDF11 SDF12 0 0
SDF21 SDF22 SDF23 0

0 SDF32 SDF33 SDF34
0 0 SDF43 SDF44









(25)

This methodology also applies to the 10 story structure, with the
only difference being that the stiffness, mass and SDF matrices
are represented as 10× 10 matrices as opposed to 4× 4 matrices.
With the general SDF matrix set up, the overall loss in stiffness
at each story can be calculated as in Equation (26). Note that
“last story” refers to the highest story of the building and the
calculation of 1K1 requires that K1 = K2.

1K1 = (2 × SDF11)− 1K2

1Ki =
SDFi−1,i + SDFi,i−1

2
, i = 2, 3, . . . , n− 1

1Kn =
SDFn−1,n + SDFn,n−1 + SDFn,n

3
(26)

TABLE 2 | Properties for materials.

Properties Structural steel Concrete Reinforcing steel

Yield strength 380 MPa – 455 MPa

Ultimate strength 450 MPa 40 MPa 683 MPa

Modulus of elasticity 200,000 MPa 32,900 MPa 200,000 MPa

Poisson ratio 0.3 0.2 –

Density 7,850 kg/m3 2,403 kg/m3 7,850 kg/m3

Theoretically, the change in stiffness at each story (aside from the
first) can be gathered by taking a single SDF value, however by
averaging the value of two SDF values instead, the experimental
errors were mitigated.

To better simulate real life scenarios in which the collected
data are usually corrupted with measurement error, white noise
with mean of 0 and standard deviation of 5% of original
signal’s standard deviation are added to each story’s acceleration
response during the baseline and damaged cases. The SDF results
presented in the following section represent the average SDF
values after performing 10 trials with the noisy data.

For each structure, the story accelerations were measured at
the center of each floor slab. Throughout the numerical modeling
simulations, the average starting hourly wind speeds on the first
story ranged from 2 m/s (3.6 km/hr) to 8 m/s (28.8 km/hr).

The damage in each numerical model was represented as a
uniform change in the material properties throughout an entire
column. This model is slightly simplified, as it is expected in
moment frames that the top and bottom of each column would
be the most damaged due to the peak moment forces location.

For the RC building model, the building reinforcement is
designed as per the Concrete Design Handbook-−4th Edition
with the loads being calculated using the 2015 National Building
Code of Canada (Cement Association of Canada and Canadian
Standards Association, 2016). The structures are assumed to
be conventional office buildings in Vancouver on Soil Type
D. The building reinforcement was verified through SAP2000’s
automated moment frame design calculations.

The structural response due to wind for the RC model was
calculated using Newmark’s direct integration method (γ =

0.25, β = 0.50) and incorporated proportional damping with a
constant 7% damping coefficient for baseline state of structure
and a 5% damping coefficient for the unknown state of the
structure (Newmark, 1982). The concrete compressive curves
were modeled using Mander’s curve.

The material specifications for the structural steel, concrete
and rebar are presented in Table 2.

CASE STUDIES: RESULTS AND
DISCUSSION

To verify the validity of the ARMAX damage detection model,
two numerical building models are presented below. The wind
was sampled at 100Hz and the total time period for one state of
each structure is 10 s. Each structure was subjected to a variety
of damage cases, and the undamaged and damaged models’
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acceleration responses to ambient wind forces were analyzed and
the SDFs were calculated. It should be mentioned here again
that a 5% artificial noise was added to all the responses obtained
from the models. Those SDFs were then directly compared to the
expected SDF results which were obtained from extracting the
stiffness matrix from SAP2000. The ARMAX DDM assumes that
the structures can be approximated as shear type structures and
therefore flexural deflection are not considered. Each structure is
presented with damage cases which range from minor damage
cases (only one story damaged) to severe damage cases (>70% of
stories damaged).

Case Study I: 4 Story Steel Structure
It was imperative that the finite element (FE) modeling
parameters were properly calibrated to simulate real life
structural behavior. As such, the first structure considered was
a replica of an experimental four story steel structure which
was built by Do (2015). The FE model replica was subjected
to identical damage cases to those verified in the experiments
to verify that the FE model parameters used throughout this
paper properly reflect real life damage from previously created
experiments. The focus on steel structure was not to detect
seismic damage in a structure, it was to ensure that the numerical
modeling parameters reflected real life behavior.

The 3D view and plan view of the structural model are
shown in Figure 5. As each steel angle column is identical in
material properties and dimensions, they are all considered to
have identical stiffness values.

To validate that the FE model can be replicated to match
previous experiments, the structure was excited by two pairs of
Multiple Impulse Forces (MIF) located at the two corners of the
first and third floors. This forcing function was created through
randomly generating an impulse force under normal distribution
at every 0.1 seconds.

The acceleration response of the structure from the MIF was
recorded at 0.001 s intervals. For the steel structure, the response
calculated by FE modeling was a linear modal response using a
constant damping of 2%.

The original accelerations for the first sensor cluster are
presented in Figure 6. It is seen that the value of output is
generally twice smaller than input data. This makes sense because
the output is the difference of acceleration. It is expected that such
small inconsistency in terms of order is unlikely to cause the ill-
conditioning of matrix while estimating the parameters. As for
this sensor cluster, the number of predicted points is 499 and the
number of unknowns is 5, i.e., (a1, b11, b

1
2, d

1
1 andd

1
2).

Damage Case S1—Single Story Damage (4th Story)
The first damage case involved replacing one of the steel angle
columns with an identically sized aluminum angle column at the
fourth story. The location of the damaged column is at A1 as
shown in Figure 5B.

By replacing a 200 GPa steel column with a 63 GPa aluminum
column at location A1 (the intersection of gridline A and gridline
1), the Damage Ratio of the single column was 1 – (63/200) =
0.685. Every other column in the structure was unchanged and
therefore can be assumed to have Damage Ratio of 0. The overall

FIGURE 5 | FE Model for steel structure. (A) 3D model. (B) Plan view.

loss in stiffness on the fourth story can be calculated as [((3 × 0)
– (1× 0.685))/4]=−17.13% which would be reflected in SDF34,
SDF43, SDF44; SDF33, which represents the change in combined
stiffness of the third and fourth story can be calculated as [((7
× 0) – (1 × 0.685))/8] = −8.56%. Note that the denominator
represents the total number of columns that are included in each
respective SDF.

To validate this calculation method, each expected SDF is
confirmed through extracting the stiffness matrix of the finite
element (FE) models. The extracted FE results (also referred to
as the “expected” results) and the ARMAX analysis results; one
case with no noise and one with 5% noise added; are presented
in Table 3 below. Throughout the damage cases, the SDF results
represent the average of 10 trials.

The 5% noise effect did not have a significant impact on
the SDF values from the ARMAX analysis. With the SDF
matrix set up, the overall loss in stiffness in each story was
calculated as shown in Equation (26) using the 5% noise SDF
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FIGURE 6 | Original accelerations of the first sensor cluster of healthy case of case study 1. (A) Output. (B) Input.

TABLE 3 | SDF results (DC S1).

SDFS (%)—AVERAGE OF 10 TRIALS

FE analysis (expected) ARMAX analysis

No noise 5% noise

0 0 – – −0.09 −0.68 – – −0.16 −0.50 – –

0 0 0 – −0.76 1.07 1.22 – 1.00 1.24 1.82 –

– 0 −8.56 −17.13 – −0.90 −7.52 −14.12 – −1.60 −7.50 −14.39

– – −17.13 −17.13 – – −14.87 −14.80 – – −14.71 −14.78

values. The calculated change in stiffness at each story from the
ARMAX DDM is presented in Equation (27). For brevity, these
calculations will not be shown for any other damage case.

Story1 : (2× (−0.16)) − (0.25) = −0.57%

Story2 : ((−0.50)+ (1.00))/2 = +0.25%

Story3 : ((1.82)+ (−1.60))/2 = +0.11% (27)

Story4 : ((−14.39)+ (−14.71)+ (−14.78))/3 = −14.63%

The overall change in stiffness of each story based on the 5%
noise SDF values from the 10 trials are presented in Table 4. The
bracketed values in the ARMAX column represent the standard
deviation of the 10 trials, with a lower standard deviation value
signifying more stable results.

The ARMAX analysis successfully located and quantified the
damage in the fourth story while no substantial change was
estimated in all other stories. The low standard deviation values
for each story (average value of 1.49) illustrates the stability of the
results through the 10 trials even with added noise.

Damage Case S2—Two Story Damage (1st and 2nd

Stories)
The second damage case involved replacing two steel columns
(A1 and B2 in Figure 5B) at the first story and one

TABLE 4 | Story stiffness change (DC S1).

Story Stiffness change (%)

Expected (FE analysis) Estimated (DDM) mean

(standard deviation)

1 0 −0.57% (1.81)

2 0 0.25 (1.66)

3 0 0.11 (1.61)

4 −17.13 −14.63% (0.87)

steel column (A1) at the second story with identically
sized aluminum columns.

Similar to Damage Case S1, the damage ratios of the individual
“damaged columns” is 0.685. SDF11, which represents the change
in stiffness of the combined first and second story was calculated
as [((5 × 0) – (3 × 0.685))/8] = −25.69%. The change in
stiffness of the second story, as shown in SDF12 and SDF21 was
calculated as [((3 × 0) – (1 × 0.685))/4] = −17.13% and SDF22
was calculated as [((7 × 0) – (1 × 0.315))/8] = −8.56%. For
brevity, these calculations will not be shown for any further steel
damage cases as the same process can be used for every damage
case. In the results tables, each expected damage case result was
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TABLE 5 | Story stiffness change (DC S2).

Story Stiffness change (%)

Expected (FE analysis) Estimated (DDM) mean

(standard deviation)

1 −34.26 −29.75 (2.32)

2 −17.13 −16.47 (1.45)

3 0 −1.87 (1.34)

4 0 −2.84 (0.87)

TABLE 6 | Story stiffness change (DC S3).

Story Stiffness change (%)

Expected (FE analysis) Estimated (DDM) mean

(standard deviation)

1 −51.38 −52.57 (3.29)

2 −17.13 −17.49 (1.45)

3 −34.25 −32.04 (1.08)

4 0 −4.18 (0.60)

completed by extracting the FE matrix, the hand calculations
were only used as a second verification.

The overall change in stiffness at each story from both the
expected results and the 5% noise ARMAX SDF are presented
in Table 5 as per Equation (26).

The ARMAX DDM successfully located the damage on the
first and second story while also measuring no substantial change
in stiffness in the undamaged stories. The degree of damage
on the first floor was underestimated by 4.81%, however the
degree of damage on the second story was very close to the
expected value. The low standard deviation values from the 10
trials illustrate the negligible impact that the 5% noise had on the
ARMAX DDM.

Damage Case S3—Three Story Damage (1st, 2nd,

and 3rd Stories)
The final damage case for the experimental steel structure
represents a more severe case in which there is damage on the
first (A1, A2, and B1 in Figure 5B), second (B2) and third story
(A1 and B1) with a total of six steel columns being replaced by
aluminum columns. The overall stiffness loss values for each story
are presented in Table 6.

The ARMAX DDM successfully located the damage at each
story with excellent correlation to the expected degree of damage
and relatively small differences between each trial.

The ARMAX analysis results from the numerical modeling
produced results very similar to the results which were measured
through previous tests on the experimental structure built by Do
(2015). In each damage case, the ARMAX results successfully
located and determined the degree of damage at each story
without yielding significant false negative or positive results. In
some cases, however, the ARMAX model underestimated the
severity of damage to some extent.

Case Study II: 10 Story Concrete Structure
A 10 story structure with a 4 × 4 column layout as shown
in Figure 7A was simulated. The 3D FE model as well as
plan view of the model are presented in Figures 7B,C. Each
column had identical rebar detailing and identical undamaged
stiffness properties.

Damage Case C1—Two Story Damage (2nd and 5th

Stories)
The first damage case incorporated moderate damage to eight
columns; four columns (A2, B2, C2, and D2) with a DR of 0.50
and four columns (A4, B4, C4, and D4) with a DR of 0.55; at both
the second and fifth story.

Equation (26) was used once again to calculate the story
stiffness change at each level and the results are presented in
Table 7 along with the standard deviation from the 10 trials.

The ARMAX DDM successfully located the damage in the
second and fifth story. The severity of damage at each story
was very close to the expected values with minimal standard
deviations. Although there were some false positive SDF values
that were higher than in the previous structures, it did not result
in any issues as the highest false positive story stiffness change
was calculated as−4.63%.

Damage Case C2—Five Story Damage (1st, 3rd, 4th,

7th, and 9th Stories)
The second damage case simulated a building which has
undergone moderate to severe damage throughout with damage
being applied to columns on five stories. The first story had five
columns (A3, B2, B4, C4, and D2) damaged with DRs ranging
from 0.50 to 0.65. The second story had five columns (A1, A2,
B1, C3, and D3) damaged as well with two columns having a DR
of 0.55 and three columns having a DR of 0.60. The fourth story
incorporated damage in seven different columns (A2, A3, C1, C2,
C3, and D4) with DRs ranging from 0.45 to 0.65. The seventh
story had three columns (A3, B3, and B4) damaged: two with a
DR of 0.55 and one with a DR of 0.50. The ninth story had four
columns (B2, B3, C2, and C3) damaged, each with a DR of 0.40.

Similar to Damage Case C1, the noise continues to not have a
major influence on the damage detection model. Table 8 presents
the overall change in stiffness calculated at each story.

The ARMAX DDM was successful in locating which five
stories were damaged without calculating significant false
negative or false positive results at the undamaged locations.
Like the previous building model, the ARMAX DDM slightly
underestimated the severity of damage when the number of
damaged stories was increased.

Damage Case C3—Seven Story Damage (1st, 2nd,

3rd, 4th, 6th, 7th, and 8th Stories)
The final damage case tested represented a building that is in a
critical state with damaged columns at seven different stories. The
most severe damage was incorporated on the four lowest stories
with the first, second, third, and fourth stories having ten (A1,
B1, B3, B4, C1, C2, C3, C4, D2, and D4), nine (A1, A2, A4, B2,
B3, C3, C4, D1, and D2), nine (A2, A3, B3, B4, C1, C2, C3, D3,
and D4) and six (A3, A4, B2, B3, D1, and D2) columns damaged,
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FIGURE 7 | Overview and FE model for concrete structure. (A) Overview of concrete structure. (B) 3D model. (C) Plan view.

respectively. The sixth, seventh and eighth stories each had seven
columns damaged. To bemore specific, the damaged columns for
sixth story are at A2, A3, A4, B2, B3, C3, and C4. The damaged
columns for seventh story are at A1, A2, A3, D1, D2, D3, and D4.
The damaged columns for eighth story are at A2, A4, B3, B4, C1,
C2, and C3.

The overall stiffness changes at each story are presented in
Table 9.

The ARMAX DDM yielded excellent results by successfully
locating the damage at each of the seven damaged stories.
The degree of damage was calculated with excellent
precision in the first four stories, however the model
slightly underestimated the degree of damage in the three
higher stories.

Discussion of Results
Overall, the ARMAX DDM was shown to effectively locate
the damaged stories in both models with no significant
errors. For most of the damage cases, the ARMAX DDM
accurately estimated the degree of damage, however, the
DDM had slightly less accurate results in the building model
with more columns. This was expected, as the ARMAX
DDM relies on approximating buildings as simplified shear
type structures and ignoring the flexural deformation, so the
ARMAX DDM generated nearly identical results to the FE
models when the structures themselves were simplified. Through
rigorous numerical testing, the ARMAX DDM was proven
to be an effective and consistent method for locating and
quantifying damage.
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TABLE 7 | Story stiffness change (DC C1).

Story Stiffness change (%)

Expected (FE analysis) Estimated (DDM) mean

(standard deviation)

1 0 3.06 (1.19)

2 −26.25 −27.42 (0.94)

3 0 −4.63 (1.38)

4 0 −3.22 (1.14)

5 −26.25 −24.01 (0.91)

6 0 −3.36 (0.62)

7 0 −3.59 (0.82)

8 0 −3.20 (1.56)

9 0 −0.49 (1.53)

10 0 −4.25 (0.41)

TABLE 8 | Story stiffness change (DC C2).

Story Stiffness change (%)

Expected (FE analysis) Estimated (DDM) mean

(standard deviation)

1 −16.88 −16.58 (1.12)

2 0 3.60 (0.85)

3 −18.12 −14.49 (0.76)

4 −22.82 −19.87 (0.49)

5 0 4.46 (0.66)

6 0 1.18 (0.32)

7 −18.44 −15.67 (0.45)

8 0 −0.69 (0.30)

9 −10.00 −11.13 (0.44)

10 0 −0.02 (0.59)

TABLE 9 | Story stiffness change (DC C3).

Story Stiffness change (%)

Expected (FE analysis) Estimated (DDM) mean

(standard deviation)

1 −37.81 −38.58 (0.87)

2 −33.12 −33.03 (0.34)

3 −30.00 −30.72 (1.18)

4 −21.87 −21.78 (0.56)

5 0 1.54 (0.80)

6 −22.50 −17.15 (1.24)

7 −18.44 −19.75 (0.56)

8 −18.75 −21.68 (0.80)

9 0 −2.01 (0.37)

10 0 −4.16 (0.56)

CONCLUSIONS AND FUTURE WORK

In this paper, a new building damage detection model was
proposed and developed using ARMAX analysis on the

acceleration responses due to ambient wind loading. Through
rigorous numerical modeling, it was demonstrated that damage
can be identified at a story level precision and the degree of
damage can be accurately quantified based on floor accelerations
due to wind forces.

Within the detailed description of the methodology, the
ARMAX model, used in conjunction with a sensor clustering
concept to analyze the dynamic responses of a structure was
explored. By assuming the mass of a building can be grouped
into the floors and incorporating mathematical approximations,
the ARMAX time series model was transformed to represent the
general equation of motion. Using a sensor clustering technique,
the ARMAXDDMwas able to create a baseline case and damaged
case of a structure and those two cases were then evaluated
to create a stiffness damage feature capable of locating and
quantifying damage at story level precision.

With an accurate account of the analysis model, forcing
function and numerical damage model, the second part of the
paper involved verifying the capability of the ARMAX DDM
using numerical analysis. To illustrate the effectiveness, two
separate building models were shown. The first was a previously
built, experimental steel structure to which multiple impulse
force loading was applied. The results from the ARMAX DDM
effectively demonstrated that the parameters used in FEmodeling
accurately reflected real-life experimental behavior. The second
structure was a 10 story reinforced concrete frame with a 4 × 4
column layout. Damage was successfully located and quantified
in the minor, moderate and severe damage cases. Note, however,
that the model slightly underestimated the degree of damage in
some stories in the moderate and severe damage cases. The level
of underestimation, however, was small enough to not warrant
anymajor concerns. Overall, the ARMAXDDMwas proven to be
an effective and consistent method for locating and quantifying
damage at a story level precision.

The ARMAX DDM has provided accurate results in multiple
damage building scenarios, however there are still limitations
that are worth mentioning and recommendations for future
work. One limitation of this paper is that although it was
validated through various numerical model testing, there have
been no experimental structures tested using wind induced
vibrations. The numerical damage detection model incorporated
a uniform change inmaterial properties in only the columns, with
the rigid beams and slabs being unaffected. It is recommended
that tests be done which may simulate more realistic structural
damage. Thismay include incorporating severematerial property
changes in the tops and bottoms of the columns while not
affecting the middle elevation as much. This could also include
not treating the beams and slabs as rigid members and instead
applying damage to them and including plastic hinge effects,
i.e., not assuming the structure as shear type. Although the
damage model was shown to be effective when replacing a steel
column with an aluminum one, it is recommended that the
ARMAXDDM be tested on a more realistic damage case for steel
structures. It is also recommended that the timber buildings be
tested. Further investigation should also be completed which look
into adding 10% noise instead of the 5% used. In addition, as the
dynamic system becomes faster in comparison to the sampling
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rate, the first order forward difference to approximate derivative
may no longer be suitable, a higher order approximation or
up-sampling techniques could be applied.
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Transportation and other infrastructure systems, particularly in dense urban regions, are

intertwined, interdependent, multi-scale, multi-domain and complex, and their behavior

cannot be predicted even when element behaviors are known. Such systems should

be managed just like financial assets, leveraging measurement-based, objective and

reliable metrics for documenting their value, performance and condition, and based

on their lifecycle and disutility risk for each distinct limit-states of performance as

discussed in the following. In this paper writers attempt to offer a perspective for asset

management of civil infrastructures with a focus on highway bridges and describe the

tools that are considered necessary for rectifying the current shortcomings mainly arising

from subjective and incomplete performance and condition evaluation practice. The

adoption of sensing systems, which allowsmeasurements of displacement, acceleration,

strain, tilt and that can be collected wirelessly, has the potential of providing objective

metrics needed for optimal asset management. The authors however caution that such

a transition (from asset management based on visual inspection to data-driven asset

management based on objective metrics) could be truly achieved only if combined with

the proper training of a new generation of infrastructure inspectors and stakeholders. The

paper attempts to provide a roadmap to achieve such a transition in asset management

and describes the critical concepts that should be incorporated in training a new

generation of civil engineers in charge of maintaining our transportation assets.

Keywords: bridge asset management, bridge inspection, sensing technologies, sensor selection, high resolution

imaging, wireless sensing

1. INFRASTRUCTURES AND ASSET MANAGEMENT IN THE US

Infrastructures, such as transportation, water, power, fuel and communication are complex,
multi-scale and multi-domain systems (with natural-human-engineered elements) providing
critical services. They are key for the livability, sustainability and resilience of our communities.
The need for infrastructure systems or their expansions are influenced by actual infrastructure
service needs for a region, economy, financing and also politics and policy. Infrastructures in the US
may fall under public, semi-public, private or hybrid (public-private partnership, PPP) ownership
mainly based on history, policy and financing mechanisms. They are operated and preserved with
many possible organizational constructs that are also influenced by their financing and revenue
mechanisms (Figure 1).
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FIGURE 1 | System influencing management and performance of

infrastructures.

In the last decades there has been increasing recognition
that all infrastructure systems should be managed similarly
to financial assets, which are invested and preserved by
principles, such as diversification, time horizon and risk
tolerance in addition to leveraging statistics and scenario
analysis. Infrastructure asset management is the integrated,
multidisciplinary set of strategies for sustaining physical assets,
such as water treatment and distribution facilities, sewer lines,
roads, dams, utility grids, bridges, railways, manufacturing plants
and pipelines.

Figure 1 depicts some of the most critical parameters and
systems that influence and therefore should be considered in
infrastructure management. Given that most infrastructures in
the US are many decades and in some cases centuries old—
consider parts of the water distribution systems remaining from
the time of the Colonies dating back to the 1700’s, the railroads
to the 1800’s, Interstate Highway System to the 1960’s and the
Internet—starting as ARPANET—from the 1980’s. It is natural
for these infrastructure systems to remain under the influence
of history, culture and the legal frameworks defining their
ownership during the time of their early development.

Privately financed and operated infrastructures regulated as
utilities (power, communication, internet, light rail, airlines,
toll roads and bridges, clean water systems, and sewers in
some regions) generally dedicate funds and adopt maintenance
management policies for preservation over the long-term, as their
owners stand to lose revenue in the case of service disruptions.
Meanwhile, public infrastructures, such as streets, roads, parks
and transit that depend on taxpayer funds from the state and

especially the local governments face a different challenge. Local
governments are often starved for resources (consider that
the financial health of many Cities and Counties in the US
remain challenged just due to their insufficiently funded pension
obligations going back to many decades) and the short election
cycles for elected leaders do not offer incentives for proactive
long-term planning for the preservation of public assets. As a
result of this, aged local infrastructures are often managed in
a day-by-day triage mode and local government organizations
are seldom evaluated based on the long-term performance of
their infrastructure assets. In most cases, the federal government
may provide the bulk of major rehabilitation and replacement
costs of public infrastructures but the cost of routine preventive
maintenance is considered as the responsibility of the local
government. Therefore, many local governments prefer to defer
maintenance and wait until assets require major rehabilitation or
replacement, in which case federal funds may become available to
finance most of the cost.

2. CHALLENGES TO ASSET
MANAGEMENT IN THE US

In the United States, there has been increasing Congressional
awareness of checking the performance of federal, state and
local agencies receiving federal infrastructure funds. For example,
the 1993 Government Performance and Results Act (GPRA)
required government agencies to pay increased attention to
the outputs and outcomes that are expected from federal
programs. The 1995 National Performance Review (NPR)
ushered in a broader definition for performance management,
which corresponds with evaluating progress toward achieving
pre-defined objectives. NPR fostered an examination of the
relationship between the outcomes and the investment. In 2001
the U.S. Government Accountability Office (GAO) emphasized
that spending should be tied to outcomes (GAO-01-834). Shaw
(2003) evaluated the performance measures of operational
effectiveness for highways.

In 2010 the National Performance Management Advisory
Commission (NPMAC) indicated that the relation between
expenditures and predetermined outputs as organizational
objectives needs to be realized. The 2012 MAP-21 Act (Moving
Ahead for Progress in the 21st Century Act) of the US
Congress required state agencies to focus on monitoring
performance and outcomes and required that each State should
be developing a risk-based transportation asset management plan
(TAMP) for the National Highway System (NHS) to improve
or preserve the condition of the assets and the performance
of the system. MAP-21 specifically requested the Department
of Transportation (DOT) secretary to ensure that all states
implement performance measurement in order to adequately
monitor the condition of interstate highway infrastructure and
the national highway system.

MAP-21 defines asset management as a strategic and
systematic process of operating, maintaining, and improving
physical assets, with a focus on engineering and economic
analysis based upon quality information, to identify a structured
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sequence of maintenance, preservation, repair, rehabilitation,
and replacement actions that will achieve and sustain a
desired state of good repair over the lifecycle of the assets
at minimum practicable cost. According to Federal Highway
Administration (FHWA), a State asset management plan shall,
as a minimum, be in a form that the Secretary determines to be
appropriate and include:

A summary listing of the pavement and bridge assets on the
National Highway System in the State, including a description
of the condition of those assets;
Asset management objectives and measures;
Performance gap identification,
Lifecycle cost and risk management analysis,
A financial plan, and Investment strategies.

Although 2012 MAP-21 Act’s request for each state to develop
a risk-based TAMP is an excellent and desirable development, a
number of challenges remain:

Estimated cost of US public infrastructure renewal is in
$ trillions and the estimated price we are paying as
a Nation due to infrastructure disutility is also in $
trillions. Meanwhile the federal budget deficits and public
animosity toward taxes imply that conventional mechanisms
for infrastructure funding, such as the fuel tax and the
municipal bonds funding may have become insufficient.
New and innovative means of financing mechanisms for
infrastructure need to be explored and incentivized. The
consequences of such new financing mechanisms especially in
terms of separating infrastructure management from politics,
innovative organizational structures and inclusivity at urban
regions also need to be carefully considered;
Current condition measures for constructed assets, such as
pavements and bridges are subjective, often highly simplistic
and incomplete, sometimes erroneous, and they oversimplify
the complex relations between condition and performance,
discussed further in the following;
Asset management is a complex multi-objective constrained
optimization problem affected by significant epistemic
uncertainty. Challenges in setting the objectives and measures
are due to knowledge gaps regarding: the actual external
and intrinsic loading mechanisms and resulting actions
on constructed systems at various limit-states; operational
demands and how capacity increase may lead to increases
in demands; how site, soil, hydrology, geology, design,
construction, existing conditions and changes in these impact
serviceability, durability and safety performance; optimum
maintenance materials, procedures and their timing; how
condition changes, such as local deterioration and damage
may impact capacity; and, a lack of reliable systemic and
standard methods for justifying and securing adequate
resource streams and distributing these to operate and
preserve assets in order to assure the sustainability of system-
wide services. An infrastructure manager has to incorporate
significant uncertainty (both random and epistemic) in
decision-making. Infrastructure performance is much more
than just satisfactory operation, safety and failure modes of

infrastructure elements and systems, discussed further in
the following;
We lack objective measurement based metrics that would
reveal the Demands, Capacity, Disutility Probability, and
consequences of disutility for evaluating risk in definitive
and quantitative manners. A new engineering education
paradigm culminating in an infrastructure engineering and
management degree is urgently called for and this as well as
other shortcomings of aged infrastructure management in the
USA in the 21st Century has been discussed by many experts
in addition to the writers (Aktan et al., 2016a,b).

3. OBJECTIVES

This paper has been written in response to a request by the
Writers’ colleagues for a contribution to a Frontiers collection
of papers for “robust monitoring,” diagnostic methods and tools
for engineered systems. Rather than directly delving into the
technical specifics of “monitoring,” the writers opted to link the
monitoring problem to the much broader infrastructure asset
management concern. Unless monitoring of critical engineered
systems is encouraged by policy, and the drivers and objectives
of monitoring are crystal clear, the value of many applications
where investments were made into technology leveraging have
remained questionable. It is therefore important to assert that
the discussions in this paper are focused on the broader problem
of technology leveraging for asset management in general and
highway bridge asset management in the US in particular.

A further clarification is required regarding the precise
meaning of “monitoring technology.” Writers use the term
“technology” to stand for “sensing,” imaging and non-destructive
probing in relation to data from field experiments; information
technology; modeling and simulation; and risk-based optimum
decision-making for asset management.

The objectives of this paper follow from the discussions above
and include the following:

To introduce a contemporary definition of infrastructure
performance that will serve as a foundation for infrastructure
monitoring for asset management, by integrating distinct
limit-states with subjective (heuristic, empirical, tacit
knowledge) and objective (measured data-driven, mechanistic
and explicit knowledge) elements that may help make up the
objective functions for asset management;
Discussion and recommendations for technology tools and
integrative leveraging principles in order to make a transition
from the present to objective, data-driven contemporary
condition and performance metrics for risk-based asset
management (including hazards risk management and
resilience needs) of the highway transportation infrastructure;
Describe recommended procedures for integrating and
leveraging technology tools for common scenarios.

4. INFRASTRUCTURE PERFORMANCE

Infrastructure performance may be defined as the analysis
of a multi-dimensional Capacity/Demand relationship as

Frontiers in Built Environment | www.frontiersin.org 3 May 2019 | Volume 5 | Article 61123

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Aktan et al. Technology for Infrastructure Asset Management

illustrated in Table 1. The probability of critical Demands
exceeding the corresponding Capacities of an infrastructure
system should be the basis for evaluating infrastructure
performance at each of the four Distinct Performance Limit-
States–Utility and Functionality; Serviceability and Durability;
Life Safety and Stability of Failure; and Resilience. The Return
Periods for peak demands for most infrastructure components
typically vary as shown in the first row and the Performance
Criteria for each limit-state of performance are narrated in
the last row. Today, engineers and infrastructure owners
often do not incorporate the interdependencies between
each of these four limit-states and often assume that safety
and resilience are separate problems from functionality
and durability.

If a common facility is designed and constructed by adhering
to the building codes, such as those issued by the International
Building Code (IBC) in the USA (or by Eurocodes in the EU)
for buildings, the probability of collapse is assumed to be ∼

10-6 for a 475 years seismic event or other demands governing
the safety limit-state. However, we lack the data to confirm
or dispute the actual performance. In Japan, a country with
the most stringent seismic codes and enforcement, the 1995
Kobe earthquake is reported to have destroyed about 50,000
buildings. In the case of highway bridges designed by American
Association of State Highway and Transportation Officials
(AASHTO) Standards, there is data implying that the probability

of failure is 1/10,000 based on an assumed lifecycle of 75 years
(Bektas and Albughdadi, 2018).

Aside from the safety limit-state, most public infrastructures
especially in the older urban regions in the USA fail to
perform in the Utility and Functionality as well as the
Serviceability and Durability limit-states much earlier than
anticipated in their service-lives. The Second Row of Table 1
implies that asset management should actually integrate the
management of operations, maintenance and preservation,
structural safety and stability and resilience on the same
platform. However, most engineers, public infrastructure owners
and managers have fragmented the lifecycle asset management
challenge by delegating operations, preservation, safety, and
resilience to different and disconnected jurisdictions, bureaus,
and organizations.

In some cases, such as the tall building stock in San Francisco,
doubts may arise about potential performance at the safety
and resilience limit-states after several decades of a building
boom (Fueller et al., 2018). In most cases, however, it takes
an actual natural or man-caused hazard to occur to reveal
the actual performance of systems at the safety and resilience
limit-states. Our current civil and structural engineering practice
based on code prescriptions and subjective visual inspections
(Moore et al., 2001) is grossly insufficient given the increasing
nature and frequency of hazards and associated risks due to
infrastructurefailures and disutility. Further, many civil engineers

TABLE 1 | Infrastructure life-cycle performance management.
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are not even aware of the uncertainty in predicting the
performance of a constructed system which they design by code
provisions.

The desirable approach to managing public infrastructures,
especially at dense urban regions, such as the NE Corridor
in USA is to demand quantitative descriptions and objective
and measurement-based metrics for Loads, Demands, and
Capacities from infrastructures and data for evaluating whether
the disutility probability is acceptable at each and every limit-
state of performance. The acceptable disutility probability would
naturally depend on the affected human population and the
economic consequences. For example, we may tolerate less than
perfect roughness indices and congestion at some highways at
certain times of the day and/or the week; and a bridge deck to
require maintenance in just 5 years after construction due to wear
and deterioration. On the other hand, we cannot continue to
practice infrastructure management with the subjective pseudo-
reality of how constructed systems perform and how engineered,
social and natural elements of complex infrastructure systems
interact.We have to bring infrastructuremanagement to be based
on a rational, objective set of metrics defining the performance
expected of them and their organizations. This requires the ability
to measure and monitor performance as per Edwards Deming’s
teachings since we cannot manage what we cannot measure.

Fortunately, the information technology revolution of the
last several decades offer the tools needed for measuring and
monitoring performance.

5. THE INFORMATION TECHNOLOGY
REVOLUTION

Information Technology (IT) has been defined as the study or
use of systems (especially computers and telecommunications)
for storing, retrieving, and sending information. Intel 4004 is
considered as the first commercial 4-bit IC micro-processor
which has advanced continuously since its invention in 1971.
The 4004 was only capable of 60,000 instructions per second,
but its successors including the Intel 8086/8088 family brought
ever-growing speed and power to computers. Today, thanks to
smartphones and tablets we enjoy ubiquitous computing, data
and image capture and communication. Cloud computing and
storage has become a significant industry, removing many of
the limits to computing, archiving and retrieval of data and
information. Software is available to the public at a very low
cost for almost any conceivable purpose, including all levels of
games, K-12 education, productivity, finance, engineering, arts,
architecture, and sciences amongst others.

Along with the advances in IT, parallel advances in
experimental technology (sensors, actuators, data acquisition
systems, controllers, and pumps; wide-area high-definition
digital imaging; a variety of NDT probes; and more recently,
wireless sensor networks and SCADA (supervisory control and
data acquisition) Systems have become available. Most of these
hardware and associated data acquisition and control software
(e.g., NI’s LabVIEW) have been used in laboratories and in
some cases in the field on actual infrastructures. Naturally, a

variety of sensors have been and are being used in the airplane,
auto, HVAC, and elevator systems and in defense applications.
More recently, coupled multi-level and broad area real-time
imaging, sensing, computing communication and actuation-
control systems have been demonstrated in association with
homeland security purposes and for infrastructure management.

Explosion of IT has created immense amounts of data—to put
things in perspective, the size of the Internet doubles about every
2 years. For the beginning of 2016, the Counter expects around
7.7 Zettabyte (ZB) on to data that is distributed worldwide to
Internet servers (1 ZB = 1021 bytes or 1 million petabytes =
1 billion terabytes = 1 trillion gigabytes). Along with this data
explosion, privacy, and cyber-security have become significant
societal concerns. A Wall Street Journal article describes the
major role “big data” is playing in the US economy (Stoll, 2018).

It follows that in spite of the great abundance of data,
the challenge of organizing, synchronizing, visualizing and
interpreting this data into information, followed by knowledge
and wisdom for transforming infrastructure management, is
pending. However, we do not yet clearly know the scope
of useful data on organizations and assets that we need
for infrastructure management, and how we can collect this
data. What constitutes useful data (and images) for objective
measurement of infrastructure performance at various limit-
states, especially at the service and safety limit-states, and
how we may capture, fuse and interpret this data will be
discussed later. One thing is certain—IT explosion, if properly
leveraged, offers a great opportunity for rationalizing and
optimizing infrastructure management! However, the path
to improving infrastructure management requires being able
to manage data and understanding the path from data
to wisdom.

5.1. Data-Information-Knowledge-Wisdom
In order to identify the most critical data that we need and
how to capture this data for prudent management decisions, first
we need to understand the distinction and hierarchy of data,
information, knowledge and wisdom.

Figure 2 describes the stages of identifying and understanding
complex systems behavior by transforming data to information
by understanding any existing relationships between data
(e.g., by correlation analyses), followed by understanding the
patterns embedded in information to lead to knowledge. Finally,
by understanding the physical, chemical and mathematical
principles embedded in knowledge we may acquire the wisdom
that is essential for generalizing knowledge and developing
prudent decision-making tools, such as scenario generation
and simulation. While data collection is only the first step
of this process, we also have to appreciate that there are
additional manners of acquiring knowledge discussed further in
relation to Figure 3.

5.2. Knowledge Classification and
Acquisition
Figure 3 (Knowledge-Management-Tools, 2017) illustrates a
commonly accepted knowledge classification: Tacit vs. Explicit
(or mechanistic). Tacit knowledge on a system needs to

Frontiers in Built Environment | www.frontiersin.org 5 May 2019 | Volume 5 | Article 61125

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Aktan et al. Technology for Infrastructure Asset Management

FIGURE 2 | The process of acquiring knowledge from data (Equity, 2018).

FIGURE 3 | Knowledge classification.

be accumulated before the fundamental principles, critical
parameters and the mechanisms that describe and help model
the system for simulation may be established as “explicit or
mechanistic knowledge” about the system.

The attributes of tacit knowledge are described in Figure 3,
indicating that data and IT are often not sufficient for its
accumulation especially when we deal with complex systems,
such as infrastructures. Some additional sources include: (a)
collection and verification of existing heuristics, (b) reason
and logic, (c) mathematical proof, (d) trial and error, (e)
intuition, (f) experience gained through apprenticeship under

the mentorship of an expert, (g) observation and empiricism,
and most importantly, (h) the scientific method. Once tacit
knowledge about infrastructures which are complex and large
natural-human-engineered socio-technical and interdependent
system-of-systems is accumulated, this may then be transformed
into explicit knowledge through standards, codes, algorithms and
numerical-statistical models.

6. TECHNOLOGY INTEGRATION

We now return to the challenge of objective data-driven asset
management of infrastructures. What type of data is needed; how
it may be collected; and, how this data would help complement
the available tacit knowledge and help culminate in explicit
knowledge are some of the fundamental questions. In addition
to IT, a technology leveraging toolbox would include:

1. Technology tools for field observations and experiments,
i.e., ability to study by observation (similar to telescopes and
microscopes), as well as design and execute field experiments
by leveraging sensing and imaging, along with leveraging
controlled or uncontrolled loading and/or excitation. Field
experimental technology also requires an ability to capture
the environmental conditions and changes in these during an
experiment, such as wind, temperatures, radiation, humidity,
etc. Additional tools are needed for:

2. Data management, quality assurance, processing,
synchronization, visualization, and correlations;
statistical modeling;
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3. Analytical modeling and simulation, including parameter
identification and an Avatar—or calibration of a digital twin;

4. Decision-making based on lifecycle cost, Pareto
optimization, and risk analysis technologies.

These technology tools are naturally integrated by following the
scientific method or structural system identification. Figure 4
offers a schematic of the structural system-identification method
which was formalized and reported in a book by an ASCE
Committee Catbas et al. (2013), and also discussed by Aktan and
Brownjohn (2013). However, the roots of system-identification
as well as innovations leading to the field experimental tools
including sensing go back to many decades. We need to
acknowledge many contemporary colleagues and especially
giants from earlier generations who have contributed to the
concepts and tools that have made system-identification of
operating buildings, bridges and other constructed systems in
the field possible. Many of these colleagues are acknowledged in
the Summary and Acknowledgments (section 8) and the writers
are aware that they are inevitably failing to include many worthy
contributors for which they apologize.

A successful culmination of the process (more than one
cycle may be required) in Figure 4, may lead to a digital twin
of the structural-foundation-soil system within the resolution
of a mixed macro-micro level representation of a system. The
digital twin may potentially serve as a birth-certificate for a new
system, and as a basis for condition evaluation and NDT and
SHM applications for long-term condition monitoring. These
are critical for preventive maintenance as well as evaluating the
condition of a system following a hazard such an accident leading
to damage.

A closer scrutiny of Figure 4 reveals the range of disciplines
and specializations that are needed for an application to an
operating infrastructure component or system. The process is
successful only if each of the Six Steps are overseen by the
same “project manager” with experience and domain knowledge
associated with each and every one of the Steps, preferably a
structural engineer who would also possess domain knowledge
and heuristics that has been accumulated about the structural
system being identified.

Many researchers specialize in only analytical modeling,
or only experiment, or only computation and parameter

FIGURE 4 | Steps of structural systems identification.
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identification, or only risk and reliability theory. Theymay simply
obtain the products from each Step executed by others and
then try to integrate these. Such a disconnected approach often
fails to produce a reliable, high-fidelity digital twin that will
distribute its loads through the same paths as the actual system,
or one that does not deform and displace like the actual system,
i.e., share the kinematics of the actual system. The maximum
demands computed under different loading schemes during the
simulations may not match reality, and most importantly, the
corresponding actual capacity distribution may be inaccurate.
It is therefore critical to have the same experienced structural
engineer participate in, oversee and integrate each Step of the
process in Figure 4 to help properly integrate the contributions
by different experts as depicted in Figure 4.

7. SENSING TECHNOLOGIES

Having introduced the fundamentals or infrastructure
performance; why prudent asset management requires objective
metrics and measurement data on performance; and the
challenges in integrating and leveraging technology; we now
need to review the current practice in sensing and imaging. We
will first focus on sensing as the most fundamental element in
field experimentation and monitoring. For a crash course on
sensors (sensorwiki, 2018) is an excellent resource.

A National Academy Report (National Research Council,
1995) offered definitions and issues related to sensing in
manufacturing and for structural monitoring and control in
aerospace, space, defense and homeland security applications.
The definitions and glossary in this book may be used for sensors
for civil engineering applications. Table 2 extracted from this
book lists some of the critical sensor characteristics for static and
dynamic applications.

Electronic sensing in civil engineering goes back to 1930’s
(Treatise on Photoelasticity, published in 1930 by Cambridge
Press). The bonded wire resistance strain gage for aluminum
or steel was invented at MIT in 1938. This was the predecessor
of current foil gages manufactured and sold by Vishay, Micro
Measurements (recently purchased by Vishay), or HBM which
also offer strain-gages for concrete. Weldable versions of these
gages are manufactured by and available from HITEC. Tokyo
Sokki Kenkyujo (TML) is a sensor manufacturer in Japan

TABLE 2 | Sensor characteristics (National Research Council, 1995).

Static and dynamic sensors

Accuracy Dynamic error response

Distortion Hysteresis

Hysteresis Instability and drift

Minimum detectable signal Noise

Non-linearity Operating range

Sensitivity Repeatability

Selectivity/Specificity Step response

Threshold

that also offers specialized strain gages, such as for post-yield
measurements. TML products may be purchased in the USA
from Texas Measurements. Vibrating wire versions of strain
transducers, with various gage-lengths and installation methods,
have been commercially available for decades and distributed by
several companies, such as Telemac in France, Geokon in the
US and Roctest in Canada to name a few. Similarly, fiber optic
sensors were commercially available since 1990’s with pioneers,
such as FISO in Canada, Smartec in Switzerland, Omnisens in
Switzerland, Blue Road Research and Micron-Optics in the US,
and Ando in Japan. Obviously the availability of sensors is no
longer a concern, but the art is in designing a field experiment
by selecting, calibrating, positioning, installation and integrating
the outputs of the best sensors for each measurement needs and
constraints in an optimum manner.

The invention of the strain gage enabled the design
and development of many transducers capable of measuring
deformations, displacements and forces by leveraging strain
gages. Vishay, HBM, and TML offer many of these. For example,
a clip-gage is a raised arch wired to accommodate a full strain-
gage bridge which amplifies and measures the strains as the
arch is extended or contracted at the base. By using such a
micro-structural system, the strains of which are measured by
strain gages, we may correlate the strains to the elongation or
contraction between two points on a member. A TML clip gage
is illustrated in Figure 5. The PI displacement transducer has a
simple structure: a combination of strain gauges and an arch-
shaped spring plate, the former attached to the latter. Six models
designed for gauge lengths of 50–300 mm are available. This
transducer is used to measure the crack opening displacement
occurring within each gauge length on the surface of concrete
or to measure local deformations between elements of various
structures. Many other types of clip gages have been used in
research as long as strain gages have become available.

Linear Variable Differential Transformers (LVDT’s) were
invented in the 1940’s for displacement measurements requiring
higher resolution and sensitivity than what is offered by
strain-gage based transducers, such as the clip gage. LVDT’s

FIGURE 5 | TML clip cage.
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operate by leveraging inductance change and are used in the
aerospace industry. LVDT’s of various sizes and sensitivity
are manufactured by Honeywell, Intertechnology (Celesco),
TML, and others. Some LVDT’s use a spring-loaded thin steel
wire which enables them to measure displacement between
distant points.

The vibrating wire strain gage and other vibrating-wire
transducers for temperature, tilt, displacement and pressure or
force have been used for geotechnical measurements. Geokon
Inc. is one of the oldest and most extensive US manufacturer
of vibrating wire transducers for geotechnical and structural
applications. Roctest is another sensor manufacturer based in
Canada and established in 1967, offering a variety of vibrating
wire as well as fiber-optic based transducers.

Another class of transducers that is used in field
experimentation is the accelerometer. PCB (recently purchased
by MTS) offers a wide-range of products suitable for testing
constructed systems. Brüel and Kjær, Kistler Group, and TOYO
Corporation also offer various accelerometers [A listing of
accelerometer manufacturers is available at sens2b-sensors
(2018)] with a wide range of specifications. Geophones which
measure velocity have also been adapted from mining and used
in some bridge tests.

Tiltmeters are designed to measure very small changes from
the vertical level, either on the ground or in structures. Tiltmeters
are used for monitoring dams, the small movements of potential
landslides, the orientation and volume of hydraulic fractures, and
the response of structures to various influences, such as loading
and foundation settlement. Tiltmeters may be purely mechanical
or incorporate vibrating-wire or electrolytic sensors for electronic
measurement. A sensitive instrument can detect changes of as
little as one arc second. Tuff tiltmeters from Jewell and vibrating
wire tiltmeters from Geokon were used by the writer in the past
for monitoring bridge superstructure and substructure rotations.

The writers started to explore sensors that may be suitable for
monitoring bridges following the Big Bayou Canot rail accident
(2018) on September 22, 1993. FHWA and Ohio DOT supported
an investigation of available sensors that could be used for bridge
monitoring, which were purchased and extensively studied both
in the laboratory and in the field over several years. These
experiences accumulated and have led to a 2002 FHWA Report
“Development of a model health monitoring guide for major
bridges” (Aktan et al., 2003)1.

7.1. Sensor Selection and Calibration
Fundamentals
There are many criteria in selecting a sensor for measuring a
physical, chemical or electrical quantity in the field. First we
must understand that the reading of any sensor in the field will
be impacted by many phenomena, and sometimes the sensor
reading may prove more sensitive to a cause or mechanism that is
unknown as opposed to what the designer of an experiment may
think is being measured. In general, we may classify common
transducer measurement errors as:

1http://www.di3.drexel.edu/w2/files/FHWA_Report_7_18_03.pdf

1. Transducer installation assembly error, which is due to the
self-response of the transducer and the attachment assembly
as a mini-structure. The kinematics of a sensor together with
its installation assembly is what is measured. So if the reference
point of a displacement sensor rotates as well as displaces its
reading would be affected by both of these vectors. Resonating
due to a dynamic disturbance, or responding to changes
in environmental conditions, such as the effects of wind or
temperature on reference wires, and other environmental
effects on transducers cannot be corrected by a single
calibration constant or even a calibration curve.

2. Instrument/data acquisition variance errors. Spurious
readings and noise due to electromagnetic interference
on data acquisition is the most critical one to detect and
correct. Variance errors may be controlled by appropriate
data acquisition and processing strategies, such as filtering,
common-mode rejection, and averaging of the data.
Long time-windows of data rather than just a single
reading is required.

3. Instrument/data acquisition bias errors. Drift or changes in
calibration due to an impact or temperature effects on an
instrument are the most critical ones to detect and correct.
Due to bias errors, one has to design in-situ calibration
check strategies;

4. Apparent structural response, such as unrestrained
temperature strains and rigid-body displacements as
well as rotations caused by settlements, temperature,
creep or shrinkage;

5. Structural response associated with stress and force,

including self-equilibrating stresses; since the intrinsic
stresses and other responses change with environmental
conditions or transient loading, sensors inevitably will include
these responses as readings.

The Five most common sources of measurement error are shown
in the following expression:

ǫreading = ǫ1 + ǫ2 + ǫ3 + ǫ4 + ǫ5 (1)

ǫ1 : Errors due to transducer mechanical assembly (epoxy slip,
support offsets, etc.)

ǫ2 : Instrument/data acq. errors (variance errors, such as
noise, etc.)

ǫ3 : Instrument/data acq. errors (bias errors, such as temp. effects
on sensors)

ǫ4 : Apparent structural response (Temp. strains, etc.)
ǫ5 : Response associated with stress and force

We should recognize that understanding the magnitudes of
these errors and mitigating them is not trivial. In fact, the
errors will depend on the sensor, its transduction, the structural-
mechanical system of the transducer together with its installation
assembly, power, A/D conversion, environmental conditions and
their changes, bandwidth and duration of data acquisition and
most importantly, whether the experiment with sensor types
and distribution or density is designed properly. It follows that

Frontiers in Built Environment | www.frontiersin.org 9 May 2019 | Volume 5 | Article 61129

http://www.di3.drexel.edu/w2/files/FHWA_Report_7_18_03.pdf
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Aktan et al. Technology for Infrastructure Asset Management

performing field measurements and checking and validating data
reliability and quality requires significant Tacit Knowledge.

The single most effective manner for assuring data quality is to
perform calibration of individual sensors, followed by the system
of sensors and DAQ in the laboratory (Figure 6). Individual
sensor and sensor-DAQ system calibrations are discussed in
the FHWA Report on Model Health Monitoring Guide (2002)
referenced earlier.

A valid question becomes: “How can we leverage field
experiments for measuring the behavior and performance of
constructed systems given the challenges in obtaining reliable
measurements in the field?” This is a very important question
and requires federal and state governments to invest into training
at field measurement laboratories (e.g., instrumented monitoring
of operating bridges) to demonstrate sensors, calibration,
installation, measurement system design fundamentals and data
quality assurance. These laboratories (Virtual Non-destructive
Evaluation Library for Highway Structures, 2018)2 may serve
as best practices for training motivated engineers to be able to
obtain reliable field measurements and obtain certificates and
even professional degrees.

7.2. Wireless Sensing
One of the purposes of this paper has been to introduce the
products of a recent research project performed under FHWA
Exploratory Advanced Research Program (EARP) funding. In
this project, given the challenges in developing new reliable
wireless sensors for field measurements, the objective was to
explore whether it is possible to transform the most reliable and
proven sensors into wireless operation.

The sensors that were selected were: (a) Resistive strain gages
or rosettes; (b) Clip Gage—as a 4-arm strain gage transducer;
(c) Vibrating wire gage and other vibrating-wire transducers;
(d) Displacement transducers employing wire potentiometers; (e)
Electrolytic tilt-meters; (f) Seismic accelerometers (see Figure 7).
Each type of sensor was successfully untethered from power, data
acquisition, and communication cables by locating in-situ power,
conditioning, data acquisition and communication IC boards in
a small box, and the sensor readings were transmitted wirelessly
to any computer. All the sensors previously described have been
extensively tested in the laboratory and tested in the field and
have been presented to a committee of experts (representatives
from NASA, Volpe Center, PennDOT, FHWA, Minnesota DOT)
as part of a Technology Readiness Level (TRL) assessment on
June 6th, 2017.

The TRL panel agreed that the technology had reached
a TRL between 4—“Components validated in laboratory
environment”—and 5 “Integrated components demonstrated in
a laboratory environment.” Since then, the researchers have
continued the development of the wireless sensing platform and
followed the TRL feedback received to identify scenarios and use
case development, and to develop a set of requirements for the
identified use cases based on stakeholder needs.

2A virtual version of such a laboratory is available at www.di3.drexel.edu/

view_project.php?p=907

With the above set of sensors or transducers, it is possible
to measure: strains, deformations or distortions, displacements,
rotations, and accelerations along with a wide frequency
bandwidth. For instance, the vibrating wire gages offer a highly
robust measurement of temperature, and distortion that is stress-
related (not temperature related) measured at a 1 Hz frequency.
These sensors (in conjunction with imaging) offer an excellent
capability for measuring structural and environmental responses
of any highway structure, at an appropriate frequency. Typically,
for operational monitoring, acceleration data is obtained at
<500 Hz; strain, displacement and rotation response data is
collected at <200 Hz and data on environmental conditions and
their effects on bridge responses is obtained with vibrating-wire
sensors at 1 Hz.

Untethered sensors offer further opportunities for rapid
deployment (minutes/hours) and field monitoring of structures
for weeks since power sources that are standard batteries last
for weeks, depending on the bandwidth and data capture time-
window. Installation assemblies by leveraging industrial magnets
are being designed to enable rapid and easy field installation
even for structures with challenging access constraints. This
capability promises quantitative measurements of structural
strains, distortions, displacements, rotations and accelerations
of a bridge during operations, augmenting the current visual
inspection and subjective assessments to include objective
“pulse and blood-pressure” measurements under traffic and
even special loads. Such measurements may be conducted for
several hours as the inspectors prepare for the inspection
of a bridge. Normally, operational monitoring would be
recommended for 24 h for some critical bridges to understand
and include the impact of daily environmental changes on the
structure’s responses.

As an example, the traffic video in Figure 8 that is
stored during operational monitoring is synchronized with
displacement time histories (or any other response recorded)
of sensors installed on selected girders of the spans 3 and 4 of
a viaduct structure supporting. A screenshot of one significant
displacement event example (peak displacement near 0.6 in) is
shown in Figure 8. In the video, the sensor layout and locations
are displayed on the left hand side on a 3D model of the
bridge. The right hand side shows the video of traffic and the
corresponding real-time displacement recordings. This image-
data integration helps users comprehend the effect of the traffic
(for instance a large truck traveling westbound that just crossed
Span 3 at 6:50:05am and that caused displacement responses
recorded at critical locations by the wireless sensors 1, and 5
at the mid-span of Spans 3 and 4). Such synchronized image
and data combinations are useful for objectively documenting
vehicles that may cause significant demands from a viaduct.

Responses from wireless sensors are consistent with the
responses measured by traditional wired displacement gages
(sensor 3 and 13) that require significantly longer installation
time (and cost) for routing several hundred feet of power and
communication cables to a data acquisition system and a portable
generator. Cables and especially their connections are also a
major source of vulnerability and errors in measurements and
their elimination augments the performance of the wireless
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FIGURE 6 | Jigs for ground truth calibration of sensors before systems-level calibration in the field.

FIGURE 7 | Suite of traditional proven sensors transformed for wireless operation, (A) Wireless magnetic strain gage, (B) Wireless clip gage (crack meter, strain), (C)

Wireless vibrating wire strain gage, (D) Wireless displacement gage, (E) Wireless tiltmeter, (F) PCB wireless accelerometer.

sensing system caused by the traffic loading as well as caused by
temperature changes during the period of testing.

7.3. Future Opportunities Afforded by
Rapidly Deployed Wireless Sensing
Sensors may serve to provide quantitative information,
situational awareness and insight on structural behavior during
many types of bridge inspection listed in the following (Hearn,
2007). While each type of inspection in Table 3 would greatly

benefit from practically deployed wireless sensing, the value of
sensing in the case of Special and Damage Inspections would be
especially important and critical for reducing the uncertainty of
visual inspection. Special and/or damage inspections are used
for bridge reconstruction especially in the case of accelerated
construction; bridges that exhibit unexpected damage and/or
tilting and deformations; fatigue crack monitoring; load
testing for load capacity rating, etc. There is no question that
wireless technology offers significant advantages in feasibility
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FIGURE 8 | Operational monitoring of the I76 viaduct: traffic event.

over the standard wired sensors in these applications. We
anticipate that wireless sensing, especially the ones obtained
by transforming off-the-shelf sensors that have been proven
robust and reliable over decades of use can impact the state of
practice in these applications immediately as opposed to more
long-term, routine measurements and structural-identification
applications which are typically longer term investments for the
owner agencies.

To reiterate, wireless sensing may offer great value to a bridge
owner in the case of:

Damage inspections
Special inspections
Complementing routine visual inspection of a bridge by
measuring “objective performance and health indicators,”
such as operating deflections, strains, accelerations which are
necessary for transitioning to asset management based on
objective data

And more specifically, especially if baseline measurements at
commissioning are available:

Measurement of displacement and rotation due to foundation
settlements caused by soil instability, impact, scour
Bridge replacement while reusing the foundations
Monitoring to assure safety during Accelerated
Bridge Construction

Post-event safety assessment (Accidental hits, scour, fire, flood,
earthquake, etc.)
Monitoring bridges under permit and super-loads to ensure
that no permanent local damage occurs
Weigh-in-motion (WIM) for load enforcement or truck-
load characterization
Dynamic characterization of a bridge by operational
modal analysis
Research, such as the long term bridge and pavement
performance programs

Untethered sensors offer opportunities for rapid deployment
(installation in minutes/hours) unlike tethered sensors and allow
field monitoring of structures for weeks (since batteries were
verified to last for weeks and up to several months depending
on the bandwidth and data capture time-windows). Installation
assemblies by leveraging industrial magnets were designed to
enable even faster and easier field installation especially for
structures with challenging access constraints. Elimination of
long cables and connections with these help reduce significant
sources of error and uncertainty in measurements under
field conditions.

Rapid deployment capability promises quantitative
measurements of structural strains, distortions, displacements,
rotations and accelerations of a bridge during operations, to
augment visual inspection and subjective condition ratings by
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TABLE 3 | U.S. Federally mandated bridge inspection types (Bektas and

Albughdadi, 2018).

Inspection Description

Damage

inspection

An unscheduled inspection to assess structural damage

resulting from environmental factors or human actions.

Fracture-critical

member

inspection

A hands-on inspection of a fracture-critical member or

member components that may include visual and other

non-destructive evaluation.

Hands-on

inspection

Inspection within arm’s-length of the component.

Inspection uses visual techniques that may be

supplemented by NDT.

In-depth

inspection

A close-up inspection of one or more members above or

below the water level to identify any deficiencies not

readily detectable using routine inspection procedures;

hands-on inspection may be necessary at some

locations.

Initial inspection First inspection of a bridge as it becomes a part of the

bridge inventory to provide all Structure Inventory and

Appraisal data and other relevant data and to determine

baseline structural conditions.

Routine inspection Regularly scheduled inspection consisting of

observations and/or measurements needed to

determine the physical and functional condition of the

bridge, to identify any changes from initial or previously

recorded conditions, and to ensure that the structure

continues to satisfy present service requirements.

Special inspection An inspection scheduled at the discretion of the bridge

owner, used to monitor a particular known or suspected

deficiency.

Underwater

inspection

Inspection of the underwater portion of a bridge

substructure and the surrounding channel that cannot be

inspected visually at low water by wading or probing,

generally requiring diving or other appropriate

techniques.

including objective deformation measurements under normal
traffic and even special proof-level loads.

Enhancing visual inspection with rapid wireless sensing
measurements appear as a most promising application. A
follow-up question may regard the merits of recording
bridge “pulses” during operations every 2 years. A structural
system-identification of a bridge type may offer foundational
knowledge for the interpretations of measured responses over
long-term. This idea was in fact suggested two decades
ago (Hunt et al., 1998).

The Long-Term Bridge Performance (LTBP) research
program administered by the FHWA was based on a similar
concept. The insight and knowledge from the structural system-
identification of reference structures (field laboratories serving
as benchmarks and also as training facilities) and the bridge
population represented by the reference structure, would enable
an excellent understanding of the health of a bridge population.

Naturally, rapidly deployable wireless sensors offer many
other uses. Load testing for bridge load rating, construction
monitoring especially in the case of accelerated bridge
construction, transport and erection, foundation reuse, permit
loading, and, structural health monitoring all require reliable
field measurements for short and long durations. The single most

important prerequisite is to train and educate a sufficient number
of technicians and engineers who will have an understanding of
what the measurements physically mean, and exactly what load
or other environmental event is causing the measurements.

When we stop thinking about bridges as simple
beams, and understand the complexity of the behavior of
site-soil-foundations-substructures-approaches-bearings-and-
superstructures as an integrated system, we will be able to better
understand bridge safety and reliability - much better than
what is implicit in the code and incorporating fabrication and
construction quality and maintenance.

7.4. Potential of High Resolution Imaging
While companies, such as Google are completing the mapping
of a large portion of the built environment and users can access
street view images of locations across the globe, bridge inspection
often still relies on traditional means of documenting the
condition of infrastructures by photographs, technical drawings
and other information considered relevant by an inspector.
Images collected by bridge inspectors are very powerful in
documenting local regions of concern but they represent spatially
isolated data points and often miss the relationship of these
to the global system. The limits in the field of view of human
vision in understanding the broader patterns indicating possible
condition changes along a large system are well-established
by photographers.

Technology become recently available to achieve high
resolution maps of bridge decks by stitching high resolution
images collected by cameras installed on road vehicles moving at
traffic speed (Hiasa et al., 2016). Such rapid data collection, is not
only useful because it keeps the inspector protected from the risks
posed by moving traffic and reduce the need for traffic control,
but it is particularly valuable because it provides a visual overall
documentation of the actual condition of the entire deck surface.
Further, high-resolution RGB images can be integrated with
information which can be extracted from properly timed infrared
imaging and reveal possible existence and range of delamination
hidden under the surface (Hiasa et al., 2016).

An example of the product extracted from a rapid high speed
survey is shown in Figure 9 where a complete HD imaging of
a bridge surface is shown together with zoomed views of the
HD images at locations of interest and the location of possible
delaminations detected by high speed IR imaging. The study of
a full-bridge deck surface image could reveal patterns that even
an inspector walking on a bridge cannot easily discern. Such an
image would also help design a more in-depth NDT application
if needed. Periodically collected images complemented with
crack mapping could be really powerful ways to document the
progressive deterioration of the deck.

7.5. A Holistic Technology Integration and
Leveraging Strategy for Bridge Asset
Management
Given that this paper was written in response to a call for
“robust monitoring, diagnostic methods and tools for engineered
systems,” writers believe that it is important to consider how
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FIGURE 9 | High speed high resolution visual and infrared imaging of bridge deck (courtesy of NEXCO).

all of the critical experimental, information, modeling and
simulation, and, decision tools may come together in relation to
typical highway bridge assets. Table 4 presents a logical hierarchy
for field technology applications—starting from (a) Inspection;
(b) Measurement of Geometry and Material Properties; (c)
Evaluation of Condition and Performance; (d) Diagnosis,
Prognosis, Risk Evaluation andOptions for InterventionDesigns;
and, (e) Health and Performance Monitoring based Asset
Management. Each Column of Table 4 would be applied from
Left to Right, and from Cell 1 to Cell 4 in sequence as needed
and justified.

It is possible to argue that the expertise and cost requirements
of integrated technology leveraging in Table 4 may be currently
overwhelming for many infrastructure owners. However, in the
case of major infrastructure components, such as long-span
bridges, viaducts and tunnels that cost $ billions, and that are
critical for the economic vitality of major urban regions, it is
difficult not to justify moving toward a technology-based asset-
management suggested in Table 4. In the case of typical highway
bridges, Table 4 may be applied to a selected population which
may provide an excellent asset management procedure for the
entire population.

8. SUMMARY AND ACKNOWLEDGMENTS

Critical infrastructure systems like water, power, communication
and transportation are key for the livability, sustainability, and
resilience of urban regions. Together with the natural and
the built environments, society, economy and the government
services, infrastructure services serve as foundation of our cities.
Meanwhile, stresses due to urbanization and climate change are
challenging the performance of urban infrastructure systems and
their services.

Infrastructure systems are intertwined, interdependent, multi-
scale, multi-domain and complex, where system behavior cannot
be predicted even when element behaviors are known. The
complexity is compounded in dense urban regions where
infrastructures are bundled in close proximity, where the failure
of one impacts all others.

There is now recognition that infrastructure systems need
to be managed just like financial assets, yet we are a long
way from measurement-based, objective and reliable metrics
for documenting their value, performance and condition; as
well as how changes in their condition may impact their
performance. In this paper writers strive to offer a perspective
for meaningful asset management of infrastructures and describe
the tools that are needed for rectifying the current shortcomings
mainly arising from subjective and incomplete performance and
condition evaluation.

By defining “Infrastructure Performance” and “Technology
Leveraging” for performance and condition evaluation in
terms of rational indices, the paper describes how asset
management can be based on objective data in addition to tacit
knowledge and how data may then be transformed into explicit
knowledge. It would take decades before such a transformation
may be completed, however there has to be foundation for
proper technology leveraging. In this section writers wish
to acknowledge a few of their colleagues who have made
significant contributions to the state of the art in the structural
system-identification (St-Id) concept, experimental, analytical
and computational arts, reliability and decision theory, lifecycle
cost analysis and asset management concepts.

In the case of structural system-identification concept as
applied to constructed systems, we recognize Agbabian et al.
(1991), Shinozuka and Ghanem (1995), Ibáez (1973), Hart and
Yao (1977), Beck and Jennings (1980), Yun and Shinozuka
(1980), Shinozuka et al. (1982), Yao and Natke (1994), and as
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TABLE 4 | Integration of technology tools for bridge asset management: risk based decision making, info-technology, modeling/simulation, and experimental arts.

Enhanced bridge

inspection technology

Measure as-is geometry

and in-situ material

properties

Structural identification:

characterizing

structure-and-soil

Diagnosis, prognosis,

and risk evaluation

Life-cycle health and

performance monitoring;

Asset management

e-archive Legacy

Data-Information System

Leveraging 3D CAS and

Virtual Flythrough

Surveying and GPS:

coordinates of discrete

points critical for

documenting as-is

geometry and validate

as-constructed plans

Evaluate Performance:

1. Operational,

2. Structural:

(a) Serviceability

(b) Durability

(c) Safety, Failure mode(s)

(d) Resilience

3. Organizational

performance

4. Lifecycle Cost

and Revenue Mechanisms

Scenario Analyses for

Critical Demand and

Capacity Envelopes:

Load Rating;

Maintenance, Repair &

Retrofit Needs; Permits &

Posting

Operational enhancement

(ITS) technology, such as

dynamic lane allocations,

variable speed limits, WIM,

open-road tolling, driving

condition alerts & actions,

such as automatic de-icing,

automated security & law

enforcement

Simulations with

Low-resolution FE Model to

Predict Critical Elements,

Loads, Demands and

Probable Failure Modes

before inspection

Evaluate movements,

Evaluate Site, Soil,

Alignment, Fnd, Fill Evaluate

Weather, Geology,

Hydrology & Natural

Hazards

High-resolution RGB & IR

imaging and practical local

NDE if needed by

Impact-echo, Thermal and

Magnetic probes

Non-contact geometry

capture - close-range

photogrammetry, 3D Lidar,

GPS, Laser

Systematic wide-area NDE

applications as needed for

documenting local material

deterioration and distresses

Identify overloads, hazards,

vulnerability, and exposure;

Assess risks due to bridge

non-performance

Structural health and

performance monitoring to

drive need-based custom

inspections and

need-based maintenance

Practical operational

monitoring for global

dynamic characterization by

wireless sensors

Sampling & lab testing of

materials for physical,

chem., and mechanical

characteristics

Controlled Testing: By Truck

loads; Excitation; Impacts;

Operational Monitoring

including WIM or BWIM

Identify risk mitigation via

demand control measures

and any emergency actions

that maybe required

Customized maintenance

management tracking and

documentation software

linked to e-Archive, health

and performance monitor

Voice-command linked to

e-archive for access to past

photos, notes and real-time

reporting during visual

Inspections

Validate 3D flythrough by

mapping as-is geometry of

system, elements, and

material properties

Data Visualization,

interpretation and quality

control. Parameter Id; FE

model calibration, validation

Identify if technology or

innovative renewal

materials/engineering may

help mitigate risks

Capital Planning based on

systems level lifecycle

performance:

Expected Performance and

Condition changes,

Preservation measures,

Risks, costs, financing, and

revenue

significant contributions. Actual field experiments on full-scale
constructed systems were pioneered by late Professors Hudson
(1964) from CALTECH and Clough from UC Berkeley who
collaborated in developing rotary-weight shakers for dynamic
testing of buildings and dams in the 1960’s. Such devices were
also used for destructive tests of a decommissioned structure
(Galambos and Mayes, 1978). Proper Implementation of St-
Id requires careful modeling of constructed systems (Catbas
et al., 2013), adequate field testing capabilities (Aktan et al.,
2016b), data interpretation (Law et al., 2014; Smith, 2016) and
robust parameter identification strategies (Rafael and Smith,
2003; Posenato et al., 2008, Goulet et al., 2010).

During the 1970’s, mechanical engineers interested in
experimental structural dynamics developed the art of modal
analysis and civil engineers started exploring how modal analysis
theory may be applied to structural identification of constructed
systems (First IMAC conference held at 1982 in Orlando, FL).
Brown and Allemang at the University of Cincinnati offered a

review of the history of modal analysis at IMAC in 2007 (Brown
and Allemang, 2007)3.

In the 1990’s, engineers from different disciplines have
embarked on an exploration of health monitoring as a research
area. The First International Workshop on Structural Health
Monitoring (IWSHM) was held in 1997 at Stanford University,
organized by Professor Fu-Kuo Chang following the first Non-
Destructive Testing in Civil Engineering Conference held at
Berlin in 1995 and organized by BAM (Schickert, 1997). These
milestones of technology applications for constructed systems
were followed by remarkable research efforts and summarized
in reports which captured the goals and the potential of SHM
for civil and other structures (Farrar, 2001; Chang et al.,
2003; Brownjohn, 2006; Farrar and Worden, 2006). Sensing
systems capable of being deployed for long periods of time

3http://www.sandv.com/downloads/0701alle.pdf

Frontiers in Built Environment | www.frontiersin.org 15 May 2019 | Volume 5 | Article 61135

http://www.sandv.com/downloads/0701alle.pdf
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Aktan et al. Technology for Infrastructure Asset Management

were demonstrated on constructed systems (Glisic et al., 2013;
Sigurdardottir and Glisic, 2013; Leung et al., 2015).

While in-service or decommissioned constructed systems
have been tested by perturbing with many methods (shakers,
loaded trucks, pull-release by cranes, rock-anchors and actuators,
implosion, etc.), in the case of long-span bridges and high-
rise buildings perhaps the only practical approach is measuring
their ambient vibrations caused by operations and ambient
environmental loads, such as by wind. This approach is also
referred to as operational modal analysis (Abdel-Ghaffar and
Housner, 1977, 1978; Peeters and Roeck, 2001; Ko et al., 2002;
Grimmelsman et al., 2007; Conte et al., 2008; Siringoringo and
Fujino, 2008; Pakzad and Fenves, 2009; Brownjohn et al., 2010).
In the case of ambient monitoring of buildings, exemplary
research by Kareem et al. (1999) should be mentioned.

In the last 20 years, exploring structural health monitoring
applications by leveraging wireless accelerometers became a
trend. Among the many research groups who have advanced
SHM for bridges leveraging untethered sensing systems we
recognize Straser et al. (2001), Lynch et al. (2004), Lynch et al.
(2005), Lynch and Koh (2006), Lynch (2006), Kim et al. (2007),
Pakzad et al. (2008), Jang et al. (2010), Jo et al. (2010), Meyer
et al. (2010), Feltrin et al. (2011), Spencer et al. (2016), Zhang
et al. (2016), O’Connor et al. (2017), Dragos and Smarsly (2017),
Moreu et al. (2017), Noel et al. (2017).

Finally, we should acknowledge the significant body of
research dedicated to structural reliability, lifecycle cost analysis
and management of bridges championed by many researchers,
such as Yanev (2001), Frangopol and Liu (2007), Thoft-
Christensen (2012) and Yuan et al. (2017) amongst many
others. Without these major contributions it would not have
been possible for the writers to make their contributions
to structural identification for health monitoring and asset
management of bridges.

9. CONCLUSIONS AND
RECOMMENDATIONS

The discussions offered in this white paper are intended to
start a conversation on making infrastructure asset management
decisions in general and for bridges and other highway structures
in particular, based on objective data on structural performance
and condition based on objective indices measured in the field.
We cannot eliminate visual bridge inspections that are conducted
based on NBIS (National Bridge Inspection Standards) every
2 years, but we may make them more effective by leveraging
technology and even extend the inspection interval to 5 years as
it is in EU and the Far East for many common bridges.

One possible way to augment current bridge inspection and
condition rating practice is by making objective measurements
that would describe the “pulses or health-signs” of a bridge during
or before an inspection. Sensors for making measurements of
strains, displacements, rotations and accelerations at any point
of a bridge have been available for decades. These sensors have
now been transformed to wireless and practical deployment. It
should be possible to train a sufficient number of expert bridge

inspectors who are capable of making such measurements. On
the other hand we have to caution that sensing and imaging is
not as simple as buying and installing a sensor. There are too
many examples of failed technology applications that did not lead
to any meaningful and actionable information. This has become
a major impediment for infrastructure owners and managers
buying in to sensing and measurements.

This paper detailed the theoretical background and the
training that is essential for educating a new breed of civil
engineers who can properly leverage technology. The challenges
that have to be overcome for completing a transformation of
infrastructure asset management are:

1. Understanding the complex nature of infrastructure systems
made up of engineered, human and natural elements;
Understanding the definition of infrastructure performance
and each of the distinct but interrelated and interdependent
limit-states that govern performance; Understanding that
infrastructure asset management should be managed by
recognizing performance in a holistic manner, with the
interdependency between condition and performance at
each and every one of the limit-states; Understanding how
mechanistic structural engineering and the reliability theory
need to be integrated and applied in an engineering design-
thinking approach for asset management;

2. Making measurements in the field that can lead to data
and interpretation to rationalize bridge asset management
decisions require much more than just mounting sensors
and collecting data. The training and education of inspectors
and engineers need to be considerably more extensive than
current NHI (National Highway Institute) courses to lead to
the following outcomes:

a. Comprehend the elements andmechanisms through which
bridges actually carry their intrinsic and live loads;

b. 3D FEMmodeling and analysis of typical bridges;
c. What are the pulses of a bridge (critical locations and

strains, displacements, tilts, and accelerations at these
locations along with the causes of these responses);

d. What measurements mean in relation to the serviceability,
durability and safety performances of the bridge in terms of
its live load and intrinsic stresses and the changes in these
due to changes in environmental and live load effects.

3. The principles of leveraging FEM analysis and Tacit
Knowledge for field instrumentation design, obtaining and
managing data, and interpretation toward information
and knowledge;

4. Evaluating data quality and reliability, followed by revisiting
a-priori FEM for completing and calibrating this into a
digital twin;

5. How to leverage a digital twin for identifying critical elements,
regions, and mechanisms for load rating, permits, and
preservation decisions;

6. How to improve inspections by leveraging operational
monitoring results and their history;

In spite of the challenges in the training of a new generation
of bridge inspectors and engineers, infrastructure capital needs
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and increasing backlog in infrastructure renewal are forcing
us to bring infrastructure asset management to a rational
objective platform.

There is a lot that FHWA can do to facilitate objective
data-driven asset management. For example, by leveraging
the reference bridges that will serve for the LTBP program
research, we may also take advantage of these also
to serve as field laboratories for demonstrations and
training of the DOT engineers and bridge inspectors.
By instrumenting these bridges using wireless sensors,
FHWA may greatly simplify taking measurements for
LTBP data collection, gaining considerable advantage and
cost reduction. FHWA can also support best-practice
demonstrations and model standards for technology
leveraging that can be adopted by AASHTO as Standards
or Recommendations.

Writers fully recognize that it may take many years
if not decades until civil engineering education and
practice is reformed and civil engineers can take an
effective lead role in guiding government, infrastructure
owners, regulators and stakeholders in cost-effective and
reliable asset management of infrastructures as complex
systems. However, we cannot delay the reform if we are
interested in livability, sustainability, and resilience of our
urban regions.
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INTRODUCTION

Ambient vibration from wind, traffic, and human activities results into low levels of building
motion. As a result, ambient vibration collected data have been used to extract dynamic
characteristics of a wide array of civil engineering structures. Among these, a few dynamic
characterization tests have been performed on timber building structures, but only a few focused
on mass timber structures using different types of engineered wood products for the gravity and/or
lateral load resisting systems (Worth et al., 2012; Reynolds et al., 2015, 2016). Since there is a
growing interest in design and construction of mass timber structures for multi-story buildings,
it is important to provide dynamic data obtained from actual constructed projects.

The dynamic features of buildings have lead researchers and design professionals to gain
knowledge of how structures behave under ambient excitations offering guidance on serviceability
performance and insights on the structural performance of structures under high winds and seismic
loading. Serviceability performance are of particular relevance for mass timber buildings when
compared to conventional concrete and steel buildings, due to the lack of available data. Dynamic
data for this type of building is necessary to understand the influence of overall mass, stiffness,
and mass distribution on the modal parameters of the structure (frequencies, damping, and mode
shapes), especially. The availability of these data can contribute to the effective design of mass
timber buildings to ambient and wind-induced vibrations and the consequent occupant comfort
and safety.

In the past decade, cross-laminated timber (CLT) has been adopted for structural assemblies
of some North American multi-story buildings. One of these projects is the “Albina Yard,” a four-
story building located in Portland, OR, which is the first multi-story construction built using U.S.
manufactured cross-laminated timber (CLT) floor systems. There is currently a lack of open-access
test data on existing buildings using mass timber technology. This study addresses this research
need. Ambient vibration data were collected on the “Albina Yard,” providing one of the few dynamic
dataset for a U.S. building constructed using CLT members. An application and discussion of
these data using two operational modal analysis (OMA) methods is presented in Mugabo et al.
(2019)1. In the cited study, dynamic characteristics of the Albina Yard building were obtained,
using the Enhanced Frequency Domain Decomposition (EFDD; Brincker et al., 2001) and the
Stochastic Subspace Identification (SSI; Brincker and Andersen, 2006) methods. However, other
OMA approaches could be used and results compared to those presented in Mugabo et al. (2019)1.
In addition, these collected data can be used for benchmarking future finite element modeling
to estimate building performance under extreme loading. For this reason, the complete dynamic
dataset for the Albina Yard building is provided to the wider research community for further
investigation and dynamic data analyses.

1Mugabo, I., Barbosa, A. R., and Riggio, M. (2019). Dynamic characterization and vibration analysis of a four-story mass

timber building. Submitted to Frontiers in Built Environment.
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FIGURE 1 | (A) Photo of the “Albina Yard” taken from the East side of the building. (B) Photo showing two uni-axial accelerometers with aluminum-coated brackets

attached to the CLT floor.

This data report aims at guiding interested parties to the
dataset and providing essential information for understanding
the data. Value and use of the data are listed below:

• The data can be directly used to perform output-only modal
identification of the investigated structure.

• The data can be compared to future dynamic data of the same
building, to investigate possible variation of modal properties
of the structure with time.

• The data can be compared to data acquired on other mass
timber buildings.

• The data can be used to benchmark finite element models of
the same building.

DESCRIPTION OF DATASET

The “Albina Yard” building has approximately 27.20 × 13.95m
of plan area per floor and a total height of approximately 15.39m
over four stories. The gravity load bearing system consists of
Douglas-Fir (DF - Pseudotsuga menziesii) cross-laminated timber
(CLT) floors supported on DF glued laminated (glulam) timber
frames. Light-frame double-sheathed shear walls are used for the
lateral force resisting system. The building envelope is comprised
mainly of window glazing on the East and West façades and
metal cladding walls on the North and South faces. Figure 1A
presents a view of the building’s eastern side. Drawings of the
tested building can be found in the dataset described below.
More information on the structural details is presented in
Mugabo et al. (2019)1.

The dynamic data collection took place in January 2017
shortly after the building was commissioned. Data were collected
a weekend day to avoid interference with occupants’ activities

and minimize the input from human-induced vibrations. The
building was tested assuming ambient conditions (vibration from
external environmental sources, such as road traffic, wind, etc.).
Approximately 2 h of ambient acceleration data were collected
using 16 uni-axial accelerometers (Figure 1B) and one tri-axial
accelerometer. The uniaxial accelerometers have ∼1,000 mV/g
sensitivity, acceleration measurement range of ± 5 g peak, a
frequency range of 0.06 to 450Hz, and a broadband resolution
0.000003 g root mean square (RMS). The tri-axial accelerometer
has ∼100 mV/g sensitivity, acceleration measurement range of
± 50 g peak, a frequency range of 0.6–5,000Hz, and broadband
resolution 0.0002 g RMS. For the tri-axial accelerometer, only
the measurements corresponding to the horizontal directions
were measured. The accelerometers were connected through
coaxial cables (with a resistivity of 50 Ohms) to a portable data
acquisition system (National Instruments, NI cDAQ – 9174),
which transmitted the data to a laptop computer with NI Labview
SignalExpress 2014 software (National Instruments, 2013). As-
recorded raw data, without any filtering, are included in the
presented dataset.

Overall, on each floor level, vibration measurements were
taken at the northwestern corner (between farthest beam to
column connection and drywall), center point (utility room
closet), and/or southeastern corner of the building (between
farthest beam to column connection and wall). The utility room
is not at the geometric center of mass of the floor plan of the
building; however, it is estimated to be the closest accessible
location to the planar center of mass. At each of these three
locations, acceleration values were taken in the EW and NS
directions of the building plan.

Data collection were conducted in two setups: setup 1 and
setup 2. In setup 1, the accelerometers were attached on the
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https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Mugabo et al. AV Data on Albina Yard

FIGURE 2 | Power spectral densities of channels 2 and 6 acceleration data

taken during setup 1.

underside of the roof, fourth floor, and third levels. During setup
2, four accelerometers were moved from the fourth level to the
second level. The remaining accelerometers shared the same
locations for both setups. It is worth noting that the northwestern
corner of the second floor level was not instrumented because
it was not accessible during the testing period. For each setup,
the data were collected for ∼1 h, with a sampling frequency of
2,048Hz. Figure 2 is provided to highlight the quality of the data
based on two channels labeled channel 2 and 6 taken during setup
1. The channels 2 and 6 measured the NS accelerations of the
roof ’s northwestern and southeastern corners, respectively.

The dataset has the following digital object identifier2 and
is accessible for download to the general public. The dataset
is named “Albina Yard Building Structural Monitoring and
Behavior Dataset” and is located on the Open Science Framework
repository. Two main folders can be found at this repository: one
for the collected data, and the other for the supporting setup
information. The collected data folder, denoted as “Ambient
Vibration Acceleration Data” contains two zipped files, one
for each setup. The “Supporting Information” folder contains
floor and elevation sketches showing the locations of the
accelerometers, and a file with coordinates of the accelerometer’s
locations in relation to a column located at the SW corner of the

2https://doi.org/10.17605/OSF.IO/34UB6

building. The “Supporting Information” folder also contains six
figures that present power spectral densities of all the channels’
acceleration data taken during setup 1. The dataset contains a
metadata file that provides units and abbreviations, a general
data description, folder hierarchy, and data files information
by line.

POTENTIAL USES

The dataset can be used for a variety of purposes related
to the field of operational modal analysis (OMA). Previous
operational modal analysis using these data were conducted by
Mugabo et al. (2019) using two OMA methods: the enhanced
frequency domain decomposition, and the stochastic subspace
identification. The data can be analyzed using the many available
OMA methods (Reynders, 2012). Several tasks could be of
interest to researchers using these data. Studying optimal sensors
locations and mechanical vibration induced noise are some
among the tasks that can be of interest to researchers in
regard to these data. In addition, these data can be used
to support finite element model development and updating,
since building information is also provided and included in
Mugabo et al. (2019)1.
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Mass timber construction has been gaining momentum in multi-story residential and

commercial construction sectors in North America. As taller mass timber buildings are

being planned and constructed, in-situ dynamic tests of this type of construction can be

performed to further validate their design and use. As part of this larger effort, an in-situ

dynamic characterization testing campaign based on ambient vibration measurements

was conducted on a recently constructed four-story mass timber building located in

Portland, Oregon. The building features cross-laminated timber (CLT) floors, a glued

laminated timber (GLT) framing gravity system, and light-frame shear walls and steel HSS

hold-downs that compose the lateral resisting system of the building. Ambient vibration

acceleration testing data were collected using 18 accelerometers that were wired to

a portable data acquisition system in two experimental setups. Approximately 2 h of

bi-directional horizontal acceleration data were recorded. In this paper, two operational

modal analysis methods are used for estimating the modal parameters (frequency,

damping, and mode shapes) based on the data collected. In addition, a multi-stage

linear Finite Element (FE) model updating procedure is presented for this building type

and the FE estimates of frequencies and mode shapes are compared to estimates from

the collected data. The calibrated FE model provides confidence to the operational

modal results and presents a comprehensive modal characterization of the building.

At ambient levels of excitation, the developed FE model suggests that stiffness of the

non-structural elements, such as the exterior wall cladding, and glazing affects the

modal response of the building considerably. Lessons learnt on this unique and first of

a kind four-story structure constructed in the United States and implications for taller

mass timber buildings are summarized and provide valuable insight for the design and

assessment for this building type under future dynamic excitation events.

Keywords: cross-laminated timber, enhanced frequency domain decomposition, finite element modeling, light-

framed shear walls, mass timber building, operational modal analysis, stochastic subspace identification

INTRODUCTION

The last decade has been marked with a rise in interest and use of mass timber construction in
North America (Pei et al., 2016). This rise is driven by a range of innovative wooden structural
products such as cross-laminated timber (CLT) (Gagnon and Popovski, 2011), mass plywood panel
(MPP) (Freres, 2018), and more traditional wooden products such as glued laminated timber
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(GLT). These products are typically used in structural systems
in conjunction with other wooden and non-wooden structural
members. One example of such combination is the use of CLT
walls with light-frame shear walls (Nguyen et al., 2018). In the
past, light-frame shear wall systems have extensively been used
in the residential industry, typically for one to two story homes,
but also in construction of multi-story timber structures up to
five stories high. With the use of mass timber structural products
along with light-frame shear wall systems, a new opportunity in
expanding the use of light-frame construction to a larger variety
of occupancy types and to higher building heights has presented
itself. This new opportunity warrants the need to improve the
understanding of the performance of lateral dynamic behavior
of this combined mass timber/light-frame structural system,
especially of actual constructed facilities.

The dynamic behavior of a structure can be evaluated given
two types of external excitations: (1) free vibration, with the
structure subjected to initial input(s) only; (2) forced vibration,
with the structure subjected to continuous input(s); and (3)
ambient vibration, with the structure responding to ambient
loads such as wind, traffic and/or human activities. Ambient
vibration testing offers means to evaluate dynamic parameters
without causing excitation induced discomfort to its occupants
and eliminating the potential of causing excitation induced
damage to the structure. When using ambient vibration testing,
output only methods known as operational modal analysis
(OMA) are typically used to identify structural system natural
frequencies, damping ratios, and mode shapes from vibration
testing using output only methods. Several OMA have already
been developed over the past decades. Among the widely used
methods are the Enhanced Frequency Domain Decomposition
(EFDD) (Brincker et al., 2001) and the Stochastic Subspace
Identification (SSI) (Brincker and Andersen, 2006). Damping
ratio estimation from ambient vibrations testing using the above
mentioned OMA methods have shown considerable uncertainty
(Magalhães et al., 2010; Moaveni et al., 2014). Magalhães et al.
(2010) simulated the effects of adding non-proportional damping
and closely spaced natural frequencies to the damping estimation
by the EFDD and SSI methods, and results indicated that the SSI
method displayed more accurate results than the EFDD method
in evaluating the damping ratios of highly complex and non-
proportionally damped simulated data. This study also evaluated
the variability in damping ratios of three ambient vibrations
tested large civil engineering structures using the SSI method.
Large variability in damping ratios were observed with as much
as 52% standard deviation relative to the mean damping ratio.
Similar uncertainty was observed in the Moaveni et al. (2014)
study. In an effort to draw comprehensive conclusions on modal
damping ratios, Satake et al. (2003) compiled natural periods
and damping data of 284 structures of height ranging mostly
between 50 and 150m. High correlations were observed between:
(1) height of buildings and fundamental translational periods,
(2) fundamental translational and torsional periods, and (3)
fundamental periods and higher modes periods. Results in Satake
et al. suggested that natural periods could be well-approximated
as function of height. In general, reinforced concrete buildings
had damping ratios above 2%, while steel-framed buildings had
damping ratios below 2%. It was also noted that the first mode

damping ratios were inversely proportional to the height of
the building. Office buildings, which tend to have fewer non-
structural walls compared to apartment and hotel buildings,
exhibited slightly lower first mode damping ratios than the
apartment and hotel buildings.

The variations in modal parameters due to environmental
loads (temperature, rain, wind), seismic ground shaking of
varying intensity, and seismic retrofits have extensively studied
in the past. Clinton et al. (2006) reported on the observed
changes in natural frequencies of two buildings located at
the California Institute of Technology. Over a span of 36
years, one of the buildings, the Millikan Library, experienced
a decrease of 22 and 12% in the East-West and the North-
South fundamental frequencies, respectively. The permanent
reductions in frequencies were attributed to several moderate
strong motions that the building experienced over the 36-year
life span. Other factors such as heavy rain and strong winds
also produced temporary changes in natural frequencies. Results
indicated that natural frequencies increased up to 3% following
heavy rain events. In another study conducted by Nayeri et al.
(2008), ambient vibrations measurements on a 15-story steel
frame structure were collected over a 50-day period. Changes
in natural frequencies were mostly small with coefficients of
variation (CVs) in the order of 1 to 2%, while damping
ratios varied in the 20 to 70% range for CVs. Diurnal natural
frequency variations ranging from 1 to 4% were observed and
resulting from changes in temperature during the day. During
and following the 1989 Loma Prieta earthquake, Çlelebi et al.
(1993) collected strong and ambient motions measurements on
five San Francisco bay area buildings that exhibited no visible
damage following the Loma Prieta earthquake. For each of
the five buildings, the fundamental frequencies obtained during
the strong motion responses were lower than those obtained
during ambient vibration testing. The ratios of ambient to
strong motion (ambient/strong motion) fundamental frequency
ranged from 1.47 to 1.14. The difference in fundamental
frequencies could be the result of several factors such as: (1)
soil structure interaction, (2) non-linear structural behavior, (3)
slip of steel connections, and (4) interactions between structural
and non-structural elements. Michel et al. (2009) compared weak
earthquake to ambient vibrations of a 13-story permanently
monitored reinforced concrete building in Grenoble, France.
Decreases of up to 3% in natural frequencies were observed using
ground motions measurements compared to ambient vibrations.
With respect to the effect of seismic retrofits, Ivanović et al.
(2000) described changes in natural frequencies of a severely
damaged seven-story reinforced concrete building following
the 1994 Northridge earthquake and its aftershocks. Ambient
vibration measurements following (1) the main event and (2)
one of main aftershocks indicated that the natural frequencies
of the building increased up to 10% during the second data
collection, most likely due to the additional wooden braces added
near structurally damaged areas. Soyoz et al. (2013) evaluated
the effects of retrofitting of a non-ductile reinforced concrete
building. The various steps of the retrofitting effort included (1)
the removal of infill masonry walls, (2) the addition of column
jackets, and (3) the addition of structural walls. The removal
of infill masonry walls decreased the fundamental frequency
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by 11%, and the subsequent retrofit increased the fundamental
frequency by 96% in relation to the fundamental frequency after
infills removal.

Several studies have evaluated the ambient dynamic behavior
of light-frame shear wall buildings (Ellis and Bougard, 2001;
Camelo et al., 2002; Steiger et al., 2016; Hafeez et al., 2018). Ellis
and Bougard (2001) performed dynamic testing and evaluated
the stiffness of a six-story light-frame timber building during
different phases of construction. In this study, the fundamental
frequencies were measured, and lateral stiffness was evaluated
throughout several stages of construction. As the construction of
the building evolved, the fundamental frequencies of the building
increased as non-structural components such as staircases,
interior plasters, and brickwork were added. The effects of
non-structural components on the behavior of structures under
ambient vibrations have been observed by several studies
independently of the lateral resisting system used (Clinton et al.,
2006; Li et al., 2011; Asgarian and McClure, 2012; Devin and
Fanning, 2012; Assi et al., 2016). Li et al. (2011) developed
linear elastic finite element models of four tall buildings with
some of them featuring non-structural components such as an
aluminum façade and infill walls. As much as 60% stiffness
increase from the non-structural components were observed.
Devin and Fanning (2012) conducted ambient vibration testing
on a four-story reinforced concrete frame structure with a lateral
force resisting system consisting of a set of reinforced concrete
cores. A linear elastic FEmodel of the structural system produced
a natural frequency 24% lower compared to the ambient
vibrations estimated values. This difference was attributed to
the stiffness contribution of non-structural components. The
differences in fundamental frequencies of light-frame shear wall
structures tested under different levels of excitation have also
been acknowledged by other studies (Kharrazi and Ventura,
2006; Hafeez et al., 2018). Notably, Kharrazi and Ventura
(2006) suggested a simple equation relating the fundamental
frequencies of light-frame low-rise structures obtained from
ambient vibration to the ones obtained from forced vibrations
dynamic characterization testing. Hafeez et al. (2018) evaluated
fundamental periods and modal damping of 47 wood-frame
buildings under ambient vibrations. The authors provided a
fundamental period relationship based on the Rayleigh quotient
(Chopra, 2012) and extended an equation developed in Kharrazi
and Ventura (2006) for estimating fundamental frequencies of
light-frame shear wall structures.

Extensive research has focused on modeling of wooden
structural systems (Tarabia and Itani, 1997; Folz and Filiatrault,
2004a,b; Collins et al., 2005a,b). Noteworthy examples of
interest to this paper are the Folz and Filiatrault (2004a,b),
in which a numerical modeling approach for predicting
the dynamic response of light-frame shear wall building
systems was developed and validated. This modeling approach
considers rigid horizontal diaphragms and non-linear lateral
load resisting shear wall models, which correspond to shear
spring elements connecting adjacent horizontal diaphragms
or horizontal diaphragms to the foundation. The modeling
approach was validated in Folz and Filiatrault (2004b). For
this validation effort, two construction phases were chosen
as comparison points: first, after the two-story structure was

sheathed with the OSB material, and second, after the interior
gypsum wallboards and the exterior stucco were added to the
structure. Results from the model prediction showed to be in
good agreement with the test results, with maximum relative
displacement values averaging 10% difference from the values
obtained from the experimental campaign. Similarly to the
studies described in the previous paragraph, the results from the
testing and modeling also indicated that the natural frequency of
the building changed from 3.28 to 6.95Hz after the addition of
gypsum wallboards and stucco increased.

The main objective of this paper is to provide a benchmark
dataset on the dynamic characterization of an as-built hybrid
mass timber construction of the first building constructed in the
United States using US manufactured cross-laminated timber
(CLT). The building, known as “Albina Yard,” is an example
of a hybrid structure, exhibiting a mass timber gravity system,
while its lateral force resisting system consists of light-frame
shear walls.While extensive research has gone into characterizing
the structural properties of mass timber members and sub-
systems, few research studies have analyzed the dynamic behavior
of buildings encompassing mass timber structural products,
and specifically CLT (Reynolds et al., 2014, 2015, 2016; Hu
et al., 2016). The limited number of currently built mass timber
buildings, especially in North America, makes this endeavor
more challenging, while it provides motivation for characterizing
the as-built modal properties of this type of structures. This
study contributes to this gap in knowledge and also improves
the general understanding of the impact of drift sensitive non-
structural components (NSCs) on natural frequencies. In this
study, output-only modal analysis methods are used to determine
the modal parameters (natural frequencies, mode shapes and
damping ratios) of the Albina Yard from an in-situ ambient
vibrations testing campaign conducted on the building shortly
after its completion, in January of 2017. Ambient vibration testing
was performed using 18 accelerometers in two experimental
setups and a portable data acquisition system that recorded
approximately 2 h of horizontal acceleration data. Two OMA
methods were used for estimating the modal parameters. A finite
element (FE) model that includes the structural and NSCs of
the building is created for correlation with the results obtained
in the OMA study. Based on the FE model, a parametric study
that includes both structural and NSC parameters is conducted
to inform the roles that structural and NSCs contribute in
the dynamic behavior of the tested structure under ambient
vibration. Finally, results from the output-only test and the
model are compared to the approximate fundamental period
code equations, commonly used by practicing engineers in the
United States (American Society of Civil Engineers, 2017).

STRUCTURAL DYNAMIC TESTING AND

CHARACTERIZATION METHOD

Building Description
The “Albina Yard” is a four-story mass timber building located
in Northeast Portland, Oregon (Figure 1) whose construction
was completed in 2017. The building has a general rectangular
shape with open floor plans, two staircases near its South face
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and an elevator shaft approximately near its geometric center
in plan, as shown in Figure 2. For reference, Figure 3 shows
an elevation section of the building in the East-West direction
through the middle of the building. The building has a footprint
of approximately 26m long (27.20m to 25.45m on depending
story level) by 13.94m with a total height of approximately
15.39m above the grade level. The first story is dedicated to retail
space, while upper stories are designed to be used as office space.
The building envelope is comprised mainly of window glazing
on the East and West façades and metal cladding walls on the
North and South faces, with some small window and exterior
door openings on the South façade.

The gravity load bearing system is composed of Douglas-fir
(Pseudotsuga menziesii) glued laminated timber (GLT) columns
and beams that support Douglas-fir (Pseudotsuga menziesii)
three-ply cross-laminated timber (CLT) floors. The GLT column
used are have two cross-sections: 222× 229mm (GL 8 ¾”× 9”),
and 222 × 305mm (GL 8 ¾” × 12”). The first column cross-
section is used around the perimeter of the building, while the
second one is used at interior load bearing locations. The primary
GLT beams are distributed in plan following the gridlines shown
in Figure 2 and include two cross-section types: 171 × 457mm
(GL 6 ¾” × 18”), and 171 × 610mm (GL 6 ¾” × 24”). The
first type corresponds to the exterior beams spanning in the East-
West direction and the North-South direction, while the second
type is used as the primary interior beams running in the East-
West direction. The spans for the beams are generally 6.10m
in the East-West direction with exception of one bay of the
second floor level that is 2.78m. In the North-South direction, the
spans are 5.60m and 7.43m. In Figure 2, the gridlines for some
secondary GLT girders spanning in theNorth-South direction are
omitted from the figure for clarity of the figure. These omitted
girders are located halfway between the gridlines shown in the
North-South direction. Therefore, the typical spacing of beam
axes for beams running in the North-South direction is 3.05m,
which serve as the primary span direction and span size of
the CLT floors. Three-ply CLT floor panels, with approximate
thickness of 104mm (4.1”), are specified as ANSI PRG 320
Grade V2 (American National Standards Institute/APA—The
Engineered Wood Association, 2018). The CLT floors are
topped off with a 25.4mm layer of non-structural lightweight
concrete (Gyp-Crete).

The lateral load resisting system consists of double-sheathed
plywood shear walls and a diaphragm provided by the CLT floors.
The shear walls feature two types of hold-downs: (1) a hollow
structural sections HSS 127 × 127mm × 6.4mm (HSS 5” × 5”
×¼”) at the first and second level stories, and (2) 150× 150mm
(6” × 6” nominal size) solid sawn lumber posts on the third and
fourth level stories. The sheathed plywood shear walls are located
in the middle of the building and to South face of the building,
close to the elevator shaft and the staircases.

Testing Description: Instrumentation,

Setup, and Procedures
This testing campaign was executed shortly after commissioning.
Thus, the testing was carried out on a weekend day to

avoid interference with occupants’ activities and minimize
the input from human induced vibrations. The building was
tested assuming ambient conditions (road traffic, wind, etc.).
For this ambient vibration testing campaign, 16 uniaxial
accelerometers and one (1) tri-axial accelerometer were used.
The uniaxial accelerometers were PCB model 393B04 and the
tri-axial accelerometer was a PCB model W356A12. Figure 4
shows the two types of accelerometers and the data acquisition
system used during the testing campaign. Further details on the
accelerometer specifications are presented (Mugabo et al., 2019).

The accelerometers were distributed across the building and
were attached to the underside of the CLT floors using glued
metal brackets. The channels and the positive direction of the
accelerations measured are indicated by the labels 1 to 18,
shown in Figure 2. The channels 1 to 12 and 15 to 18 were
connected to PCB 393B04 accelerometers while channels 13
and 14 are the X and Y components of the PCB W356A12
accelerometer used. Figure 3 shows the vertical locations of the
accelerometers throughout the building; however, it does not
correctly represent the N-S direction locations (in/out-of-plane
position) of the accelerometers.

Due to the time constraints and limited number of
accelerometers used in this in-situ testing, the test was phased
into two setups. The first phase, Setup-1, included six (6)
accelerometers attached on the underside of the roof, as well as
in the fourth- and third-floor levels. The second phase, Setup-
2, included six (6) accelerometers on the underside of the roof
and third floor level, two (2) accelerometers on the underside the
fourth-floor level, and four (4) on the underside of the second-
floor level. It is worth noting that the northwestern corner of
the second-floor level was not instrumented because it was not
accessible during the testing period. For each setup, the data were
collected for approximately 1 h, with a sampling frequency of
2,048Hz. Once ambient vibration data were collected, the PCB
W356A12 accelerometer channels were deemed not sensitive
enough for the application at hand.

Data Post-processing and Analysis:

Procedures and Methods
Data were analyzed using operational model analysis (OMA)
techniques. The two OMAmethods used in the estimation of the
modal features are EFDD and SSI, following a similar approach
used by Magalhães et al. (2007) and Moaveni et al. (2014), which
are available in the software used (ARTeMIS Modal, 2017). More
detailed explanations of the methods can be found in Brincker
et al. (2001) for the EFDD and Brincker and Andersen (2006) for
the SSI methods, respectively.

Before applying the two methods, however, the collected
data were post-processed using power spectral densities (PSDs),
taken on 1-min windows using the pwelch function from
MATLAB’s signal processing toolbox (MathWorks, 2018) to
identify high noise signals or malfunctioning accelerometers, and
eliminate corrupted data from the analysis. For the data analysis
using the EFDD and SSI methods, a set of post-processing
schemes were defined to focus on different sections of the
frequency spectrum of interest. The processing schemes used
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FIGURE 1 | Photo of the Albina Yard building taken from the northeast corner.

FIGURE 2 | Floor level plans showing the locations of accelerometers marked 1–18. Accelerometers 1–8 and 13–18, shown in red circles are the reference

accelerometers. Roving accelerometers 9–12 are shown in yellow squares for setup 1 and black triangles for setup 2. The dimensions are presented in meters.

(A) Second floor level, (B) Third floor level, (C) Fourth floor level, (D) Roof level.

are listed in Table 1. An upper limit of 20.48Hz was considered
adequate for capturing the first few natural frequencies of
interest and various Butterworth filters windows were used to

focus on different sections of the spectrum of interest. The
decimation frequencies of 10.24 and 5.12Hz were used to
focus on the lower natural frequencies. The processing steps
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FIGURE 3 | Building section along the EW direction facing North. Accelerometers 1–8 and 13–18, shown in red circles are the reference accelerometers. Roving

accelerometers 9–12 are shown in yellow squares for setup 1 and black triangles for setup 2. The dimensions are presented in meters.

TABLE 1 | Description of processing schemes.

Process Analysis

method

Decimation

frequency (Hz)

Butterworth filter

1 EFDD 10.24 High-pass (0.5Hz, n = 3)

2 SSI 10.24 High-pass (0.5Hz, n = 3)

3* EFDD 20.48 Band-pass(8–18Hz, n = 6)

4* SSI 20.48 Band-pass(8–18Hz, n = 6)

5 EFDD 5.12 High-pass (0.5Hz, n = 6)

6 SSI 5.12 High-pass (0.5Hz, n = 6)

7* EFDD 20.48 High-pass (0.5Hz, n = 3)

8* SSI 20.48 High-pass (0.5Hz, n = 3)

9* EFDD 20.48 High-pass (6.5Hz, n = 3)

10* SSI 20.48 High-pass (6.5Hz, n =3)

*Harmonic peak reduction was used.

were performed on the combined sets of data and on each
of the two separate sets of data (Setup-1 only and Setup-2
only). As a result, 30 different data analysis processing were
performed. It is worth noting that harmonic peaks were observed
in the frequency range of 12Hz to the decimation frequency
20.48Hz. To extract modal features in this frequency range,

a harmonic peak reduction algorithm integrated in ARTeMIS
and based on an SSI process orthogonal projection was used
(Gres et al., 2019).

Structural Modeling
A SAP2000 (CSI, 2017) linear elastic finite element (FE) model
was developed to correlate to the obtained OMA results. The
model was developed to benchmark the experimental results
and define a modeling strategy that can be applied to mass
timber buildings with light-frame shear walls dynamically tested
under ambient vibrations. To validate the identified natural
frequencies at ambient level of excitation, a detailed model of the
structure comprising of structural and non-structural members
was required. The need for such a detailed model is due to
the notion that, at ambient levels, the non-structural members
contribute significantly to the lateral stiffness of the structure.
To avoid difficulties that can arise from starting with a refined
model, it was necessary to start with a simplified structural
model and subsequently add non-structural components that are
assumed to contribute to the lateral stiffness of the building.
This multi-stage modeling approach is graphically illustrated
in Figure 5. The first phase, phase 1, included the gravity
loads supporting system and the light-frame shear walls. In
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FIGURE 4 | Photos of (A) Two PCB 393B04 uniaxial accelerometers attached to the underside of a CLT floor by aluminum-coated angles, (B) One PCB W356A12

tri-axial accelerometer attached to the underside of a CLT floor panel by an aluminum-coated angle, and (C) Data acquisition system.

phase 2 the non-structural wall components were added to the
FE model, namely gypsum wallboards (gwb) layers. Following
the addition of the components in phase 2, phase 3 included
the exterior metal façade walls and window glazing. In phase
4 the staircase members were added to the FE model. Phase 1
through phase 4 included all the structural and non-structural
building components that were considered to have effects on the
lateral stiffness of the building at ambient levels. A correlation
phase, phase 5, was added to adjust the model results to identified
modal parameters.

The gravity loads resisting system, included in phase 1 of
the model, consisted of GLT beams and columns, and the CLT
floors. First, the GLT beams and columns were modeled as
isotropic materials with an elastic modulus of 12,410 MPa as
specified in the National Design Specification (NDS) Supplement
manual (American Wood Council, 2015). It worth noting that
NDS provides design values presenting lower bound values,
and not necessarily indicate the expected values (median).
The column base joints were modeled as fixed restraints to
replicate the fixity behavior of column bases at ambient levels
of loading. CLT floors were modeled as isotropic thin shell
diaphragms with their nominal thickness and assigned amodulus
of elasticity of 12,410 MPa (1,800 ksi). This nominal value in fact
corresponds to assuming the CLT diaphragm in this case study
is essentially rigid. Table 2 provides a summary of the stiffness
properties of all structural components used in the finite element
modeling scheme.

For the light-frame shear walls, the lateral stiffness of each
shear wall section was modeled as two equivalent braces. The
relation between the cross-brace stiffness and shear wall stiffness

is provided following recommendations from the Applied
Technology Council (2017), which provides initial lateral stiffness
values, K0, for different configurations of light-frame shear walls,
including those sheathed on two sides. A lateral stiffness, K0, of
1,596 N/mm per meter (2,780 lb. per in. per ft.) was assigned,
given the plywood shear wall size and detailing pattern.

All the wooden materials including the GLT beams and
columns, CLT floors, and wood posts were assigned a density of
500 kg/m3 (American Wood Council, 2015). To characterize the
masses of the structure and the office supplies, masses were added
at the floor and roof levels. The applied masses included the mass
concrete screed (referred to as Gyp-Crete), carpet, office chairs
and tables, books and roofing materials. Table 3 summarizes the
floor and roof added masses according to the building details and
estimates of furniture observed in the office spaces.

Phase 2 of the modeling approach consisted of updating
the light-frame shear walls stiffness to include the stiffness
contribution of the gypsum wallboards (gwb) (Applied
Technology Council, 2017). The same process used for the
light-frame shear walls was applied to the gwb wall layers. The
reported unit length lateral stiffness value amounts to 247 N/mm
per m (430 lb./in. per ft.). Some wall sections displayed pairs of
gwb layers on each side and therefore lateral stiffness of these
walls was updated to reflect the number of gwb layers.

In the third modeling phase (Phase 3), the exterior walls were
added to the model as isotropic shell elements. For the sheet
metal façade, the lateral stiffness values of the shell elements were
estimated by adding the stiffness of the sheet metal layer and
the gwb layer to represent the sheet metal wall assembly. It was
assumed that the sheet metal façade acts primarily through shear
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FIGURE 5 | Geometrical representation of the FE model of the building showing the multi-phase approach. Phase 1: the gravity system and the light-frame shear

walls as braces. Phase 2: Phase 1 + gypsum wallboards as braces. Phase 3: Phase 2 + exterior walls. Phase 4: Phase 3 + staircases.

behavior. Sheet metal in-plane shear modulus properties proved
difficult to estimate from the construction details. Therefore,
the shear modulus for the sheet metal was estimated from
a previous study that evaluated the lateral stiffness of steel-
clad wood framed (SCWF) walls (Aguilera, 2014). Aguilera
(2014) evaluated the shear modulus and strength of SCWF
wall assemblies typically seen in post-frame buildings. The
study by Aguilera (2014) considered 17 SCWF shear walls of
4,880mm (16’) in width and 3,660mm (12’) in height, which
were tested using a monotonic loading regime and with a
cantilever wall setup. Seven different SCWF wall types were
tested and differed in criteria such as shape of corrugation, girt
spacing, fastener configurations. The mean shear modulus of
all the SCWF shear walls tested was used to model the sheet
metal façade stiffness and added to the exterior walls’ gwb
layer stiffness.

For the façade glazing, a lateral stiffness value of 410 N/mm
per m (715 lb. per in. per ft.) of glass façade length was used. This
stiffness value was estimated from glazing in-plane stiffness test
conducted by Cruz et al. (2010) on a glass section of 1,200mm
(47.25”) in height and 1,600mm (63”) in width, fastened to a

timber frame around its edges. The column-to-column distances
were assigned as the width of the individual exterior wall shell
elements and the story heights were assigned as the height of the
exterior wall shell elements.

The stairs were added as isotropic shell elements for the
landings, stairs threads and the stairs handrails. The stair landings
and the handrails consist of 3-ply CLT panels, while the stairs
threads consist of plywood material. The stiffness assigned to the
CLT panels was derived using the Composite Theory Method
(k-Method) as presented in the CLT Handbook (Gagnon and
Popovski, 2011). The stair threads are made of plywood material
with a thickness of 28.5mm (1–1/8”). A modulus of elasticity
(MOE) of 7,450 MPa (1,080 ksi) was assumed on the basis the
MOE of Douglas-fir plywood sheathing products presented in the
Wood Handbook (Forest Products Laboratory, 2010).

After the additions of the NSCs described in phase 2 through
phase 4 were included to the model, a model correlation phase
was added. The correlation phase was mainly added due to a
disagreement observed between experimentally estimated and
the model results for the torsional fundamental frequency. The
correlation phase included reevaluating floor mass distributions
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TABLE 2 | Summary of stiffness properties.

Element Phase E (MPa) k0 (KN/mm/m) G (MPa)

GLT beams and columnsa 1 12,410 - -

CLT floorsa 1 12,410 - -

Steel Hold-downsb 1 200,000 - -

Light-frame shear walls (trusses)c 1 - 1,596 -

Gypsum board (trusses)c 2 - 247 -

Steel claddingd 3 - - 155

Glazinge 3 - - 114

Staircase landings and rails (CLT)f 4 11,700 - -

Staircase threads (plywood)g 4 7,450 - -

aAmerican Wood Council (2015).
bAmerican Institute of Steel Construction (2017).
cApplied Technology Council (2017).
dAguilera (2014).
eCruz et al. (2010).
fGagnon and Popovski (2011).
gForest Products Laboratory (2010).

and adjusting the stiffness contribution of the exterior sheet metal
façade walls and the light-frame shear walls. The correlation
phase is further discussed in section Parametric Study.

Lastly, a parametric study that included model parameter
variations of structural and non-structural factors was conducted
to examine the impact that several factors would have on the
fundamental frequencies of the structure. The structural factors
considered consisted of the global mass of the structure, the
lateral stiffness of the light-frame shear walls, the lateral stiffness
of the GLT members and the CLT diaphragm stiffness. Along
with the structural factors, some non-structural factors were
considered in parametric study, including the properties assigned
to the sheet metal façade, window glazing, and staircases. A 25%
deviation from the modeled values was applied to each of these
factors. For the mass parameter, a unit area mass was added or
subtracted to the total floor and roof areas.

RESULTS

Operational Modal Analysis: EFDD and SSI
Operational modal analysis (OMA) using EFDD resulted
in the identification of several modal features of the
vibration modes. Figure 6A shows the SVDs obtained
using processing scheme 7 and Setup-1 and Setup-2
(Table 1). The plot shows the first three SVDs with the
high-pass filter at 0.5Hz and a decimation frequency of
20.48Hz. Three well-defined peaks are discernable in
the frequency range from 0–5Hz for SVD1 to SVD3. For
frequencies above 5Hz, two peaks can be observed between
5–10 Hz.

Figure 6B shows the state space models stabilization plots
for data processed using procedure 8 (Table 1). A maximum
model order of 14 was selected (marked with a thick horizontal
line) with the expectation that < 7 structural modes would be
identified in the frequency range of 0 to 20.48Hz. The vertical
dots in the plot indicate the stable modes identified from data
collected in Setup-2 only when using the processing scheme 8.

TABLE 3 | Summary of mass estimates for floors and roof.

Item Mass

Gyp-cretea 42.3

Sound barrierb 8.8

Carpetc 9.8

Office chairs, desk and booksd 7.3

Floor Total (kg/m2) 68.2

Roofing materiale 2.0

Insulationf 1.5

Mechanical unitsg 3.4

Roof Total (kg/m2) 6.9

Light-frame walls to floor (kg/m2 )a 176

Light-frame walls to roof (kg/m2)a 88

Sheet metal façade to floor frame (kg/m)a 179

Sheet metal façade to roof frame (kg/m)a 89.5

Window glazing to floor frame (kg/m)h 89

Window glazing to roof frame (kg/m)h 44.5

aFrom Boise Cascade (2016) technical note on weights of building materials.
bFrom Homasote1

cEstimates based on local observation and engineering judgement.
dFrom Empire2 West Title Agency web link.
eFrom GAF3 web link.
fFrom Owens Corning4 web link.
gFrom Daikin5 web link.
hFrom Glass6 Association of North America.

The modes are extracted in the frequency range of 0–5Hz, two of
which are closely spaced. One additional mode is extracted in the
5–10Hz frequency range.

Figure 7 summarizes the natural frequencies, damping ratios
and the mode shapes identified using the EFDD and the SSI. The
values in bold show the average natural frequencies and damping
ratios resulting from all the processing schemes outlined in
section Data Post-Processing and Analysis: Procedures and
Methods The values in parenthesis indicate minimum and
maximum values of natural frequencies and damping ratios
identified as a result from the different processing schemes. Four
modes of vibrations were identified using both OMA methods.
Three of these modes present the fundamental modes (NS lateral

1Homasote.com 440 Sound Barrier. Available at: http://www.homasote.com/

products/440-soundbarrier.com
2Empire West Title Agency Average Weight of Common Household Furniture.

ewtaz.com. Available at: http://www.ewtaz.com/images/uploads/average-weight-

furniture-2.pdf
3GAF EverGuard TPO Membrane Data Sheet. Available at: https://www.gaf.com/

en-us/document-library/documents/commercialroofingsystems/everguardtpo/

everguardtpo60membrane/everguard_tpo_60_mil_membrane_data_sheet.pdf
4Owens Corning FOAMULAR Extruded Polystyrene. (XPS) Insulation Technical

Bulletin. Available at: https://dcpd6wotaa0mb.cloudfront.net/mdms/dms/

EIS/10015702/10015702-ASTM-C578-Types-and-Physical-Properties-for-

FOAMULAR-Tech.-Bulletin.pdf?v=1343093874000
5Daikin Air Conditioning Technical Data. Available at: http://www.daikintech.co.

uk/Data/VRV-Outdoor/RXYQ/2014/RYYQ-T7Y1B/RYYQ-T7Y1B_Databook.

pdf
6Glass Association of North America Approximate Weight of Architectural

Flat Glass. Available at: http://www.syracuseglass.com/E-DOCS/general/EDOCS/

Approximate%20Weight%20of%20Architectural%20Flat%20Glass.pdf
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FIGURE 6 | (A) Singular value decomposition (SVD) plots from the EFDD with processing scheme 7 (Table 1). (B) State space models of data collected using data

processing procedure 8 (Table 1). The red vertical dots indicate the stable modes and the green horizontal line represents the maximum model order.

FIGURE 7 | OMA identified natural frequencies, damping ratios and mode shapes. The values in bold represent the mean natural frequencies and damping ratios

from all the post-processing schemes. The parentheses indicate the minimum and maximum natural frequencies and damping ratios as a result of using the

post-processing schemes as described in section Data Post-Processing and Analysis: Procedures and Methods.

direction, torsion, and EW lateral direction), and the fourthmode
present the second mode in the NS direction of the building.
There are slight variations in the average natural frequencies
extracted from the two OMA methods. The largest natural
frequency variation occurs in the second lateral NS direction
mode amounting to 0.12Hz (or 1.4% of the SSI extracted average
natural frequency). These variations in natural frequencies are
less significant than the damping ratios variations. For instance,
the average fundamental EW mode’s damping ratio obtained
by EFDD equated to 1.38% while the SSI obtained damping
ratio for this mode was 5.66%. Several studies have explored
damping ratios variations in closely spaced modes (Magalhães
et al., 2010) and identifiability factors such as length of data

recorded, amplitude of excitation, spatial density of sensors,
and measurement noise (Moaveni et al., 2014). The identified
torsional and first EW direction modes are indeed closely spaced
modes. This factor could help explain the large variations in
damping ratios.

Finite Element Model Results
Figure 8 shows the changes in the computed natural frequencies
by adding phase 1 through phase 4 components in comparison
with the SSI identified natural frequencies. The FE model
natural frequencies are normalized to the respective SSI identified
averaged natural frequencies. Figure 8 also shows effects of the
correlation phase (phase 5) which will be discussed in section
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FIGURE 8 | FE natural frequencies of FE model phases 1 through 5

normalized to the SSI identified natural frequencies.

Parametric Study. The natural frequencies computed from phase
1 were significantly lower than the natural frequencies of the
ambient vibration testing. For instance, in the EW and NS
directions. They corresponded to 41 and 55% of the natural
frequencies obtained through SSI. The first torsional natural
frequency amounted 25% of the torsional natural frequency
obtained by SSI. After the addition of the gwb layers of the shear
walls (phase 2), the fundamental frequencies increased to 48 and
63% in the EW and NS directions, respectively. The first torsional
natural frequency, however, was marginally increased in phase
2, reaching 27% of the experimental torsional natural frequency.
The large difference in the torsional fundamental frequency in
phase 1 and phase 2 is consistent with the concept that the light-
frame shear walls, that are located around the center and south-
to-center of the building, would contribute less torsional stiffness
to the overall structural system.

After the addition of the sheet metal façade and the window
glazing in phase 3, the fundamental natural frequency in the NS
direction increased to 76% of the ambient testing fundamental
frequency. A significant increase was observed in the FE torsional
fundamental frequency, going up to 52% of the SSI identified
torsional natural frequency. This observation confirms that
the exterior non-structural walls contribute significantly to the
torsion stiffness of the building.

Phase 4, which featured the addition of the staircases,
increased of the EW and NS fundamental frequencies to 91 and
87%, respectively. The addition of the staircases resulted in the
FE model torsional fundamental frequency adding up to 53% of
the SSI identified natural frequency.

The mode shapes features resulting from the two OMA
methods and the FE model were compared for consistency using
the Modal Assurance Criterion (Pastor et al., 2012). The Modal
Assurance Criterion (MAC) is given by:

MAC(φi, φj) =

∣

∣φT
i φj

∣

∣

2

(φT
i φi) (φ

T
j φj)

(1)

where φi is the modal vector at frequency i and φj is the modal
vector at frequency j.

The diagonal MAC values resulting from the OMA methods
and the FEmodel are presented in Figure 9A. The diagonal MAC
values between the EFDD and SSI identified modal vectors show
high levels of consistency (above 0.9), except for the first EW
direction mode which show a significantly low MAC value. To
further investigate the possible reasons for the low MAC value
in the fundamental EWmode, shorter segments of collected data
were analyzed for MAC consistency. The lack of consistency in
terms of MAC values on subsets of collected data could indicate
some limitations in identifiability. Two 5-min segments collected
data were analyzed separately, from setup 1 and from setup 2.
The fundamental EW direction MAC value becomes 0.69 when
the 5-min setup 1-only data is used as shown in Figure 9B.
The EW direction mode is not identifiable using the setup 2-
only 5-min segment. When data for the two (2) 5-min segments
are combined, the MAC value becomes 0.74. Yet when the full
data set is considered, the EW direction MAC value is 0.12.
While the fundamental EW direction MAC value is higher when
considering certain portions of the data, the entire data set yields
a lower MAC value. This points to the limitations in consistently
extracting the EWmode shape using both OMAmethods, which
is likely due to the EWmode’s proximity to the torsional mode.

The diagonal MAC values of the FE model modes and
SSI identified modes show an increasing trend for torsional
and EW direction fundamental modes as the additional model
components are added (see Figure 9A). The NS direction mode
MAC value decreases as additional stiffness members are added
and equates to 0.92 after phase 4.

Model Correlation
While the modeled lateral natural frequencies were converging
toward the SSI identified natural frequencies after phase 4,
the torsional natural frequency amounted only to 53% of
the identified torsional fundamental frequency. Phase 5 was
introduced to correlate the FE model torsional fundamental
frequency to the experimentally identified values. The
difference in torsional natural frequencies between the FE
model and the SSI method could be attributed to two factors:
a mischaracterization of floor mass distribution and/or a
difference in the lateral stiffness contribution of structural and
non-structural building components.

The masses of the building components were estimated by
considering the main members without the masses of their
connecting assemblies. This would suggest that the building’s
total mass is underestimated, given that most of the member
connections are made of steel, a significantly denser material
compared to wood, and that real moisture condition weights are
expected to be larger than the nominal values assumed per NDS.
The locations were the underestimations of masses could most
likely be higher are the exterior walls. The masses that were not
estimated would include the steel furring and connections of the
façade to the structural system, and the window glazing framing.

The second factor that plays into the imbalance observed in
the torsional natural frequency can be attributed to the stiffness
distribution along the horizontal planes. The torsional stiffness
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FIGURE 9 | (A) Diagonal MAC Values between the SSI identified modal vectors and EFDD identified and FE model modal vectors. (B) Diagonal MAC Values for the

EFDD and SSI identified fundamental modal vectors with 5-min samples data from each setup and all data.

is proportional to the square of the eccentricity between the
axis of stiffness and the center of mass. For this reason, the
stiffness distribution could play an important role adjusting
the torsional stiffness and consequently the torsional frequency.
For the Albina Yard, the stiffness distribution was evaluated
by adjusting the stiffness values of the light-frame shear walls
and non-structural lateral stiffness contributors as specified in
phase 1 through phase 4. The modeled exterior walls stiffness
most likely present sources of biases due to the fact that they
were selected from other experimental walls that may vary
considerably from the structure’s exterior wall stiffness values.
In the case of the sheet metal façade, shear modulus is the
factor of both the warping action and slipping in connections in
addition to the thickness of the metal profile. As result of these
factors, sheet metal shear modulus can be orders of magnitude
lower than continuous profiles of similar thickness as stated by
Luttrell (2004). Due to the lack of connection details on the
exterior walls, it was determined to adjust stiffness with the goal
of matching the torsional natural frequency while maintaining
the lateral natural frequencies close to their original values. The
stiffness distribution adjustment entailed increasing the stiffness
of some lateral resisting components, while decreasing the
stiffness of to maintain the balance in natural frequencies in the
two orthogonal directions and in-plane torsion. It was observed
that an increase in the exterior walls’ stiffness coupled with a
reduction in the stiffness of staircases and light-frame shear walls
was leading to an increase in the torsional natural frequency while
maintaining the lateral natural frequencies relatively similar to
the experimental values.

The two calibration approaches involved the addition of
masses to the exterior walls and the increase in exterior
walls stiffness coupled with the reduction of other stiffness
contributors. The combination of these two approaches led to the
natural frequencies converging for both the lateral and torsional
modes. The resulting FE natural frequencies are 2.79Hz in the
NS direction, 4.05Hz in the torsional direction and 4.44Hz in the
EW direction. These natural frequencies are a result of increasing
the exterior walls (glazing and metal façade) masses by a factor
of two (2). The stiffness of the metal façade and the glazing were

multiplied by factors of 10.25 (G= 1,586 MPa) and 2.8 (G = 320
MPa) of the respective initially modeled values. The increase in
the stiffness of the exterior walls was coupled with light-frame
shear walls and the staircases stiffness values reduced by a factor
of two (2) and four (4), respectively.

Parametric Study
The parametric study considered the effects a 25% change in
the parameters described in section Structural Modeling to the
fundamental frequencies of the FE model. Figure 10 presents the
results of the parametric studies on the NS direction, torsional,
and EW direction fundamental frequencies. The results in this
figure are normalized to the respective fundamental frequency
identified through the SSI method. Figure 10A shows that the
total mass exerts the most influence on the NS fundamental
frequency, followed by the sheet metal façade. The total mass of
the structure has the most influence on the natural frequencies
in comparison to the stiffness parameters since it is one of the

two factors in fundamental frequency equation, f = 2π
√

k
m .

The stiffness parameters considered in this parametric study
contribute to the system total lateral stiffness, k. Inherently,
the mass has larger effect on the change in natural frequency
compared to the single stiffness parameters.

The window glazing, light-frame shear walls, GLT members,
CLT floors stiffness influence the NS direction fundamental
frequency to a lower degree compared to the total mass and
the sheet metal façade stiffness. The light-frame shear walls
contribute less to the NS direction fundamental frequency than
the sheet metal façade and the window glazing, which are
considered to be non-structural building components.

Figure 10B shows the effects of the seven considered
parameters to the torsional fundamental frequency. Similar to
the case of the fundamental frequency in the NS direction, the
total mass of the building displays the most influence on
the torsional fundamental frequency. The sheet metal façade
stiffness, although often considered as a non-structural building
component, causes more effect to the torsional fundamental
frequency than the light-frame shear walls stiffness. The window
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FIGURE 10 | FE model parameters sensitivities plots for (A) NS direction,

(B) Torsional, and (C) EW direction fundamental frequencies. The natural

frequencies are presented in normalized form to the SSI identified natural

frequencies for (A) f = 2.86Hz, (B) f = 4.29Hz, and (C) f = 4.20Hz.

glazing, the light-frame shear walls and the glulam members’
stiffness have a lower impact to the torsional fundamental
frequency compared to the mass and the sheet metal façade
stiffness. The torsional natural frequency is least affected by the
change in parameters of the staircases and CLT floors stiffness.

Figure 10C shows the effects of the parameters to the EW
direction fundamental frequency. The total mass shows to be
the most contributing factor as observed for the two other
fundamental frequency cases. The sheet metal façade stiffness
has a noticeable effect on the fundamental frequency in the EW
direction, and exerts more influence than the light-frame shear
walls. For the EW direction, the exterior walls have more impact
to the fundamental frequency than the staircases, light-frame
shear walls, GLT members, and CLT floors.

Among the structural and non-structural stiffness parameters,
the sheet metal façade and the glazing exert the most influence

in the fundamental frequencies. Based on this observation, it
can be suggested that at the ambient level of excitations, the
exterior walls have the most impact in the structure’s response
to ambient excitations. As expected, the fundamental frequencies
are much less sensitive to the change of the CLT floors in-plane
stiffness compared to the other stiffness parameters considered.
While it is expected that the in-plane shear modulus of CLT
is smaller compared to the modulus of elasticity considered in
this study, based on this sensitivity study, the in-plane shear
modulus stiffness is not expected to have a major impact on the
fundamental frequencies.

DISCUSSION

Comparison Between EFDD and SSI
Four modes were identified with both of the OMA methods
and provide confidence in the results. The identified modes
compared to each other well in terms of natural frequency
(see Figure 7) and mode shapes (Figure 8A). The closely-
spaced modes provided challenges in modal identifiability. While
the OMA methods were consistent in extracting the natural
frequencies of the closely spaced modes, their mode shapes
proved difficult to differentiate. By analyzing two 5-min segments
of recorded data from setup 1 and 2, the diagonal MAC value
between the EFDD and SSI identified closely spacedmodes varied
significantly, while the MAC value for NS direction fundamental
frequency was consistently high regardless of recorded data
length and changes in sensor locations. Possible causes for the
lack of consistency in the EW direction mode shapes can be due
primarily to its proximity to the torsional mode but also to other
identifiability factors such as the presence ofmeasurements noise,
and the limited number of sensor locations.

In contrast to the small difference in natural frequency
values observed across setups and methods, a large difference
was observed in the extracted damping ratios. However, such
differences are to be expected and have been discussed in other
studies (e.g., Magalhães et al., 2010; Moaveni et al., 2014; Yu
et al., 2017). This is most likely due to larger estimation variance
and bias for damping ratios compared to natural frequencies
(Pintelon et al., 2007; Reynders et al., 2008).

Comparison Between FE Model and

Dynamic Testing Identification Results
After model calibration, the model natural frequencies showed
to match the experimental natural frequencies in the three
fundamental modes (NS lateral, EW lateral, torsional directions)
and one higher mode (second NS lateral).

The calibrated FE model suggests that non-structural building
components play a significant role in the measured ambient
vibration excitations. When comparing fundamental frequencies
in the NS direction between phase 1 and phase 5 (see Figure 8),
an increase from 1.57 to 2.79Hz is observed. This increase
in fundamental frequency, as a result of the non-structural
components, shows a similar trend to the increases observed by
Folz and Filiatrault (2004b) in a laboratory setting, where the
fundamental frequency increased from 3.28 to 6.95Hz after the
addition of non-structural components.
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The correlation phase results also suggest that, at ambient
levels of excitation, the exterior walls stiffness contributes more
to the lateral and torsional natural frequencies than the stiffness
of the light-frame shear walls, the interior gravity frames and
the staircases. The parametric study, conducted to investigate
the effects of different structural and non-structural parameters
to the three fundamental natural frequencies, showed that the
overall mass of the building has the most influence on the
fundamental frequencies. For a 25% reduction in the total
building mass, the model normalized torsional fundamental
frequency increased from a ratio of 0.96 to 1.15 of the
torsional fundamental frequency identified with the SSI method
(see Figure 10B). This change is equivalent to a 20% natural
frequency increase in relation to the torsional natural frequency
of the correlated FE model. In the NS and EW directions, the
25% decrease in total mass resulted in a 21 and 17% increase in
the fundamental frequencies, respectively. This finding support,
for FE modeling, the importance of the estimation the structure’s
dead loads and weights, as well as of a good approximation
of the masses acting on the building at the time of the
experimental testing. Experimental studies such as Assi et al.
(2016) observed a similar effect with as much as a 21.7%
reduction in the identified natural frequency after the addition of
some non-structural components to a six-story building featuring
a reinforced concrete shear walls and moment resisting frames
as lateral resisting structural system. It is also worth noting that
more accurate estimation of the wood specific gravity could be
done by adjusting the reference values, such as those provided
by NDS (American Wood Council, 2015), to actual moisture
content data measured at the site.

The parametric phase also indicated that the exterior sheet
metal walls exerts the most influence among all the lateral
stiffness contributors including the light-frame shear walls. Most
often, researchers and design practitioners have a limited amount
of information on the structural properties of façade elements.
Thus, structural modeling often excludes the stiffness addition of
non-structural components. The FE modeling results points to
the potential benefits of including the stiffness of non-structural
components to improve the understanding of dynamic behavior
of tall mass timber structures under service lateral loads such as
wind loads.

Comparison of Identified Fundamental

Frequencies to Code Approximate

Fundamental Frequency Equation
ASCE 7-16 (American Society of Civil Engineers, 2017) provides
guidelines for estimating the fundamental period of a building
based on its height or the number of stories. The approximate
fundamental period calculation is used as a part of the
Equivalent Lateral Force (ELF) procedure, a common procedure
for analyzing seismic loads on structures. The fundamental
frequencies in the lateral directions as well as the torsional
fundamental frequency from the ambient vibration results are
compared to the fundamental frequencies derived from the
fundamental period equation:

Ta = Cth
x
n (2)

where Ct and hxn are parameters that correspond to 0.048
and 0.75 for light-frame structures. The resulting approximate
fundamental period is equal to 0.38 s and corresponds to a
natural frequency of 2.63Hz. By comparison, the approximate
fundamental frequency is a close approximation to the identified
fundamental frequency in the NS direction. In the EW direction
and torsion, Equation (6) does not provide a good estimate of
the measured frequencies. It is worth noting, however, that under
seismic loading, the stiffness contribution of the non-structural
elements is expected to be smaller.

CONCLUSION AND RECOMMENDATIONS

An ambient vibration test was conducted on a four-story mass
timber, commercial building. This experimental study provides
a unique benchmark dataset on the first construction using
CLT produced in the U.S. Two OMA methods were used to
identify natural frequencies, damping ratios, and mode shapes
of the building. Four structural modes were identified and
compared to those obtained using a correlated model that
was developed using a phased finite element model updating
approach. The four structural modes identified are the first
three fundamental structural modes (EW, NS and torsional
directions) and one higher lateral structural mode (NS direction).
Reasons causing limitation in identifiability of the higher modes
include use of an insufficient number of sensors, non-ideal
sensor locations, presence of closely spaced structural modes,
and limited level of the energy of excitation. It is well-
known that these factors can increase bias and variance of the
modal identification.

The presence of mechanical sources of excitation that
are commonly found in buildings that are under operation
can further interfere with the determination of modal
properties. The use of different types of accelerometers led
to additional identifiability limitations due to issues such
as scaling and sensor sensitivity. Despite the variability
in modal parameters arising from each method, use of
both OMA methods was useful in improving confidence in
the results.

A parametric study assessing the contribution of seven
structural and non-structural factors to the fundamental
frequencies was conducted. The mass of the building was
identified as the factor that most affected all three fundamental
frequencies. Therefore, a careful estimation of the building
masses and its distribution in plan is crucial for accurate dynamic
modeling of ambient responses. While the stiffness of non-
structural members is often not considered for high amplitude
level of lateral excitations, such as extreme seismic or wind
loading conditions, the correlation between the identified modal
features and the FE model highlights that exterior non-structural
walls play a major role in the responses to ambient excitations,
which is important when assessing serviceability and comfort
of the occupants. The effects of non-structural members to
the lateral response of tall mass-timber structures will need to
be further investigated as new heights of timber buildings are
reached and serviceability limit states may govern design.
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Autoregressive Models Subject to
Missing Data Using Expectation
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Missing observations may present several problems for statistical analyses on datasets

if they are not accounted for. This paper concerns a model-based missing data analysis

procedure to estimate the parameters of regression models fit to datasets with missing

observations. Both autoregressive-exogenous (ARX) and autoregressive (AR) models are

considered. These models are both used to simulate datasets, and are fit to existing

structural vibration data, after which observations are removed. A missing data analysis

is performed using maximum-likelihood estimation, the expectation maximization (EM)

algorithm, and the Kalman filter to fill in missing observations and regression parameters,

and compare them to estimates for the complete datasets. Regression parameters

from these fits to structural vibration data can thereby be used as damage-sensitive

features. Favorable conditions for accurate parameter estimation are found to include

lower percentages of missing data, parameters of similar magnitude with one another,

and selected model orders similar to those true to the dataset. Favorable conditions for

dataset reconstruction are found to include random and periodic missing data patterns,

lower percentages of missing data, and proper model order selection. The algorithm is

particularly robust to varied noise levels.

Keywords: regression analysis, vibration, damage assessment, probability, estimation, structural dynamics, data

analysis

INTRODUCTION

A fundamental task in a variety of fields is extracting useful statistical information from time series
data. Working with complete datasets, there are different tools toward this end. However, in certain
applications, the datasets are faced with the possibility of missing measurements. For example,
these may result from network communication disruptions, malfunctioning sensing equipment,
improper sampling protocol, or observation patterns inherent to the data collection schemes (Little
and Rubin, 2002; Matarazzo and Pakzad, 2015).

Missing datamay present several problems for statistical analyses conducted and decisionsmade
as a result of those analyses. If missing value indicators are not present in a data analysis package,
inferences about the system being sampled can be biased. Similar biased inferences may result
if missing observations are ignored, particularly if an observation’s missingness is a function of
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its value, for example when observations are uncharacteristically
orders-of-magnitude atypical. Additionally, simply from a cost
perspective, it is not desirable to spend time and resources
collecting data that eventually goes unused.

It follows then that researchers should seek out data
analysis methods that maximize the utility of their entire
dataset, incorporating the fact that it may contain missing
observations. In Little and Rubin (2002), missing data methods
are grouped into four non-mutually exclusive categories.
Procedures based on completely recorded units encompass
strategies like those described above, which essentially ignore
incomplete observations, and may result in serious biases,
particularly with large quantities of missing data. Weighting
procedures modify response design weights in an attempt to
account for missing data as if it were part of the sample design.
Imputation-based procedures fill in missing values, and then
analyze the complete estimated sample with standard methods.
Finally, model-based procedures define a model for the observed
data on which to base statistical inferences. The work presented
in this paper represents a particular model-based procedure
where regression models are fit to observed datasets.

Regressions represent a broad class of models that may be fit
to time series data, and in our case lead to statistical inferences
about that data. Model-based missing data procedures are used
in conjunction with these fits to estimate their parameters.
These parameters may then further be used to predict future
system responses, or as indicators of changes to the system over
time. In either case, accurate parameter estimation is paramount
for correct system behavior prediction and assurance that any
changes in regression parameters are due to system changes, as
opposed to biased estimation.

This paper concerns parameter estimation of two particular
types of regression models. The autoregressive-exogenous, or
ARX(n, m) model assumes that current system output is a
function of the previous n system outputs and previous m
system inputs. The autoregressive, or AR(n) model assumes
that current system output is only a function of the n
previous system outputs. Both models considered in this study
are used to generate simulated datasets; such datasets with
missing samples are then used in this study. The algorithm
presented in Section Parameter Estimation Algorithm is used
for regression parameter estimation and dataset reconstruction,
and the estimated parameters and measurements are compared
with references. In all cases, we do not explore loss of the entire
dataset, as the algorithm requires at least a portion to be run.
This algorithm joins a relatively minor list of those dedicated to
regression models, and more specifically ARX models, subject to
missing observations. Important modifications to the state vector
considered in the presented state-space model are presented.

In this paper, a specific real-world example relating to
structural health monitoring (SHM) is presented, an application
which has not been previously explored with the modified
algorithm outside of preliminary work by the authors in Horner
and Pakzad (2016a,b).

Structural vibration data has popularly been used in the field
for system identification (Juang and Pappa, 1985; James III et al.,
1993; Andersen, 1997; Huang, 2001; Pakzad et al., 2011; Dorvash
and Pakzad, 2012; Chang and Pakzad, 2013, 2014; Dorvash et al.,

2013; Cara et al., 2014;Matarazzo and Pakzad, 2016c; Nagarajaiah
and Chen, 2016), finite element model updating (Shahidi
and Pakzad, 2014a,b; Yousefianmoghadam et al., 2016; Nozari
et al., 2017; Song et al., 2017), and damage-sensitive feature
extraction (Sohn et al., 2001; Gul and Catbas, 2009; Kullaa, 2009;
Dorvash et al., 2015; Shahidi et al., 2015), with the ultimate
goal of inferring information about the current condition of
the monitored structure. Regarding regression models, He and
De Roeck (1997) shows their utility for describing structural
vibration responses, and Shahidi et al. (2015) and Yao and Pakzad
(2012) provide structural damage-sensitive features created using
the parameters of regression models.

In this paper, acceleration time series data is collected from
a two-bay structural steel frame. Parameters are estimated for
ARX models using only portions of these datasets. This work
extends and generalizes that introduced in Horner and Pakzad
(2016b), which included a specific missing data pattern and
alternative parameter estimation algorithm, and Horner and
Pakzad (2016a), which used the same algorithm, but was specific
to randomly missing data.

This paper is organized as follows. Section Model and
Method Review provides a literature review on the relevant
regression models and estimation of their parameters in the
presence of missing data, as well as general likelihood model-
based missing data procedures. Section Parameter Estimation
Algorithm presents the proposed algorithm and highlights its
differences from previous work. Section Experimental setup
and simulation outlines the data collection and simulation
schemes, with Section Results and Discussion presenting the
validation results of regressionmodel estimation with incomplete
experimental datasets. Finally, Section Conclusions outlines the
current conclusions of this work and suggestions on future
research directions.

MODEL AND METHOD REVIEW

Regression Parameter Estimation
The ARX(n,m) model is defined:

y (k)= a1y (k−1 ) + a2y (k−2) + · · · + any (k − n) (1)

+ b1u (k−1) + b2u (k−2) + · · · + bmu (k −m) + v(k)

where y is the model output; u is the model input; ai
is the ith autoregressive (AR) parameter; bi is the ith
exogenous (X) parameter; and v is the noise. In solving
the problem of parameter identification, a model is also
assumed for the ARX input u. In this paper, an AR(p) model
is used:

u (k) = c1u (k− 1)+ c2u (k− 2) + · · · + cpu
(

k− p
)

+ w(k)

(2)

where ci is the ith assumed input AR parameter and w the noise.

In this paper, both noise terms are assumed as Gaussian white

noise, with E[v2(k)] = λ1 and E[w2(k)] = λ2, uncorrelated with

one another.

Existing literature concerning parameter identification of ARX

models includes Isaksson (1993), which presents an algorithm
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similar to that in this paper, using both the expectationmaximization

(EM) algorithm and Kalman filter for parameter identification

with simulated datasets. Wallin and Isaksson (2000) present an

iterative algorithm using least squares and a bias correction for

parameter identification that does not require an assumed input

model. Wallin and Isaksson (2002) investigate periodic missing

data patterns and multiple optima that may result when input

data is missing. Wallin and Hansson (2014) proposes an algorithm

separate from EM for a wide class of models, including ARX.

Ding et al. (2011) use gradient-based parameter identification

methods with structural vibration data. Finally, Naranjo (2007)

discusses general state space models with exogenous variables and

missing data.

The algorithm proposed in this paper can also identify the

parameters of AR models alone, of the form in Equation (2).

The literature is more extensive on parameter estimation of these

models. Papers with a similar approach that utilize maximum

likelihood (ML) and EM-based approaches include McGiffin

and Murthy (1980, 1981), which provide simulation results for

a variety of parameter estimation methods. Kolenikov (2003)

and Little and Rubin (2002) investigate parameter estimation

for AR(1) models. Sargan and Drettakis (1974) present a

ML approach that treats missing observations as additional

parameters with respect to which the likelihood is maximized.

Broersen and Box (2006) perform ML parameter estimation

on AR, MA, and ARMA models. Zgheib et al. (2006) present a

pseudo-linear recursive least squares algorithm in conjunction

with the Kalman filter for reconstruction and AR parameter

identification. Finally, Shumway and Stoffer (2000) present an

overview of state space models and modifications with missing

data. There are several important distinctions between the proposed

algorithm and those presented in previous works; these will be

presented as they arise in Section Parameter Estimation Algorithm.

Additionally, this paper includes both real and simulated datasets

for ARX models.

In each case presented in this paper’s results, the model

order must be selected prior to parameter estimation and dataset

reconstruction. While the paper does explore the effects of

selecting a different model order than that used to generate

the dataset (see Section Improper Model Order Selection—

Simulated), evaluation of strategies for selecting the correct or

most-likely model order are beyond the scope of this work.

To this end, there are several studies, including Grossmann

et al. (2009) and Matarazzo and Pakzad (2016b), which discuss

that the model order decreases significantly with an increase in

missing data. Additionally, Sadeghi Eshkevari and Pakzad (2019)

emphasize that randomness in missing data results in lower model

order selection.

Maximum Likelihood, Expectation
Maximization, and Kalman Filter
A review of maximum likelihood estimation (MLE) and the

expectation maximization (EM) algorithm is provided in Little

and Rubin (2002). The idea behind the former is to find the

values of some statistical parameters that maximize a likelihood

function associated with the sampled data. This likelihood function

is proportional to the probability density function of the data

(often the logarithm of the probability density function, or “log-

likelihood”). EM is an iterative strategy for MLE in incomplete

data problems. It formalizes the procedure to handle missingness

of estimating data values, estimating parameters, re-estimating

data values assuming the parameters are correct, and iterating

until convergence.

The idea of MLE is used extensively in the literature. Specifically

for regression models, MLE without EM is discussed in Wallin and

Hansson (2014) for several regression model classes, McGiffin and

Murthy (1980, 1981) and Sargan andDrettakis (1974) for ARmodels,

Dunsmuir and Robinson (1981) and Jones (1980) for autoregressive-

moving-average (ARMA) models, and ARX models in Wallin and

Isaksson (2002).

The EM algorithm was first formally defined in Dempster et al.

(1977), which outlines several important characteristics, namely,

that it is applicable to a wide array of topics, that successive

iterations always increase the likelihood, and that convergence

implies a stationary point of the likelihood. Shumway and

Stoffer (1982) and Digalakis et al. (1993) describe the algorithm’s

utility with stochastic state-space models in conjunction with

the Kalman filter. Mader et al. (2014) introduce a numerically

efficient implementation of EM. The algorithm similar to that

of this paper presented in Isaksson (1993) utilizes EM for

ARX parameter identification. In the context of structural

vibrations with missing data, EM is used in mobile sensing for

system identification in Matarazzo and Pakzad (2014, 2015,

2016a,b).

Recall that the idea behind EM involves estimating missing

values, or more generally, sufficient statistics of the missing

observations so as to determine the model parameters (i.e., the

“E” step). With the exception of Dempster et al. (1977), the

EM papers above all utilize the Kalman filter (Kalman, 1960)

to this end, as do Shi and Fang (2010) for randomly missing

data. This recursive algorithm produces state variable estimates

by prediction at each time step, then updating the estimates as a

new measurement is taken. The estimates are then more “precise”

than the measurements, which are naturally corrupted with noise.

ARMA model parameters are identified with the Kalman filter

and EM by Harvey and Phillips (1979), Jones (1980), Harvey

and Pierse (1984). AR models are considered using a Kalman

filter formulation in McGiffin and Murthy (1981), Zgheib et al.

(2006), and Wallin and Isaksson (2002) identify multiple optima

in ARX models with Kalman parameter identification. In Section

Parameter Estimation Algorithm, the algorithm introduced in

this paper is presented, incorporating the Kalman filter in the

expectation step of the EM algorithm for MLE of ARX and

AR parameters.

PARAMETER ESTIMATION ALGORITHM

Underlying State-Space Model
The algorithm proposed in this paper can be used for parameter

estimation of either ARX or AR models. We introduce the

algorithm here for general ARX(n, m) models and provide

guidance for its adaption to AR(n) models. Two important

differences from the formulation in Isaksson (1993) are presented

here. In Section Experimental Setup and Simulation, the real

data considered for testing the proposed algorithm constitutes

structural vibrations. In this context, y and u in Equations 1,

2 represent structural responses at two distinct locations. Note

here that u does not constitute an “input” to the system;
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nevertheless, we will use the term “input” when referring to

the u data in this paper. Using alternative terminology, such an

ARX model represents a transmissibility function from different

system responses.

For the remainder of this paper, m = n is assumed

for the ARX model orders (this is not required, but it

eases notation clarity). Define z(k), Ai, and e(k) for ARX

models, as:

z (k)=

[

y(k)

u(k)

]

Ai =

[

ai bi
0 ci

]

e (k)=

[

v(k)

w(k)

]

E
[

e(k)eT(k)
]

= 3 =

[

λ1 0

0 λ2

]

assuming the two noise variance terms are uncorrelated. For

AR models:

z (k) = y (k) Ai = ai E
[

e (k) eT(k)
]

= 3 = λ1

Equations (1, 2) may be rewritten as:

z (k) = A1z (k− 1) + A2z (k− 2) + · · ·

+ Alz (k− l) + e(k) (3)

where l is the largest of n (orm) and p.

The Kalman filter (Section Kalman Filter) is employed for

reconstruction of missing observations; models for use with this

filter may be in state-space form. The choice of a state vector for

this model is not trivial as is shown in the EM algorithm parameter

estimates of Section EM Algorithm. The state vector x(k) is

given below:

x (k)=
[

zT(k) zT(k− 1) · · · zT(k− n)
]T

and the state-space equations may then be written as:

x (k) = Fx (k− 1)+ e(k) (4)

z (k) = Hx(k) (5)

with the following state matrix F and output matrix H (note

that all matrix entries shown below are 2 x 2 in size for

ARX models):

F =



















A1 A2 · · · An−1 An 0

I 0 · · · 0 0 0

0 I · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · I 0 0

0 0 · · · 0 I 0



















H =
[

I 0 · · · 0 0 0
]

In Isaksson (1993), the H matrix is [A1 A2 . . . An−1

An] where it is composed of unknown model parameters.

The choice of state vector here, which differs by a lag of

one time step, simplifies the H matrix by fixing it to the

above. This removes the uncertainty in H and reduces the

complexity of the system identification computations for

the case where the kth measurement is included in the kth

state vector.

The last pieces required to use the Kalman filter are the

covariance matrices of the process and measurement noise.

Since the kth measurement is included in the kth state vector,

the measurement equation noise term is not included [see

Equation (5)], and its covariance matrix R = [0]. Due to

the identity elements along a lower diagonal of F, only the

first (AR) or first two (ARX) terms along the diagonal of

the process covariance matrix Q are nonzero, and are equal

to 3.

Kalman Filter
For complete datasets, the matrices of Equation (5) and the

noise covariances are fed to the Kalman filter directly with

the data to find filtered state estimates, and the parameter

estimation algorithm continues with EM (see Section EM

Algorithm). The Kalman filter “predictive” equations are

presented below:

x̂− (k) = Fx̂(k− 1) (6)

P− (k) = FP (k− 1) FT+ Q (7)

where ∧ denotes an estimate; − denotes that the value is a priori;

x and P quantities without a − are a posteriori; and P(k) is the error

covariance at time k. The Kalman filter “corrective” equations update

the a priori estimates and are given in Equations (8–10):

K (k) = P− (k)HT
(

HP− (k)HT+ R
)−1

(8)

x̂ (k) = x̂− (k)+ K(k)
(

z (k)−Hx̂−(k)
)

(9)

P (k) = (I − K (k)H)P−(k) (10)

where K(k) is the Kalman gain at time k. In addition to the state

and output matrices, the Kalman filter requires initial state and

error covariance estimates, selection of which is discussed in Section

Results and Discussion.

To produce state estimates at time steps with missing

measurements, the filter must also be made aware not to “trust”

measurements indicating a time step with missing observations, be

they zero values, NaN indicators, or values orders of magnitude-

atypical. The output matrix H and measurement noise covariance R

are thus indexed to each time step k. Only values in these matrices

pertaining to non-missing observations are sent to the filter. For

example, in the case of a missing input at time step k, a matrix D(k)

is defined to indicate the output observation as the only trusted

measurement. In the case of Equation (5) for an ARX model, the

measurement vector z(k) would then be length two, and D(k) then

would be the first row of a 2× 2 identity matrix. For any D(k), H(k),

and R(k) are then defined:

H (k) = D (k)H (11)

R (k) = D (k)RDT(k) (12)

Recall, however, that the covariance matrix R = [0], thus always

evaluating Equation (12) to [0] as well.
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EM Algorithm
The EM algorithm is used to produce MLEs of the unknown

parameters for the system, including the error variance terms

λ1 and λ2, and all regression parameters. The basis for this

algorithm lies in definition of the log-likelihood equation of

the reconstructed dataset; formerly-missing observations are

contained in the states estimated using the Kalman filter.

First, the ARX model presented in Equations (1–3) is given

new notation:

y (k) = φT
1 (k) θ1 + v(k) (13)

u (k) = φT
2 (k) θ2 + w(k) (14)

where:

φ1 (k)=















y(k− 1)

u(k− 1)
...

y(k− n)

u(k− n)















θ1 =















a1
b1
...

an
bn















φ2 (k)=







u(k− 1)
...

u(k− p)






θ2 =







c1
...

cp







The response is uncorrelated to the excitation for positive

time lags. In other words, the response at one time is

uncorrelated to the excitation at any time after that.

Therefore, model output and input can be considered as

independent Gaussian processes. Using the notation above,

the joint density of all N observations, denoted f, may be

written as:

f =

N
∏

k=1

















1
√
2πλ1

exp







−
(

y (k)− φT
1 (k)θ1

)2

2λ1



























1
√
2πλ2

exp







−
(

u (k)−φT
2 (k)θ2

)2

2λ2






















(15)

Taking the natural logarithm of this equation yields the log-

likelihood criterion:

L (θ ,3) = C−
N

2
log (λ1)−

N

2
log (λ2)

−
1

2λ1

∑N

k=1

(

y (k)− φT
1 (k) θ1

)2

−
1

2λ2

N
∑

k=1

(

u (k)−φT
2 (k) θ2

)2
(16)

Equation (16) contains the constant term C which does not affect

maximization. Differentiation of this equation with respect to each

of the noise variances and setting the results equal to zero gives the

MLEs for the noise variance terms:

λ1 =
1

N

N
∑

k=1

EN

[

(

y (k)−φT
1 (k) θ1

)2
]

=
1

N





∑N

k=1
EN

[

y2(k)
]

−2

N
∑

k=1

EN

[

φT
1 (k) y (k)

]

θ1

+
∑N

k=1
θT1 EN

[

φ1(k)φ
T
1 (k)

]

θ1

)

(17)

and:

λ2 =
1

N

N
∑

k=1

EN

[

(

u (k)−φT
2 (k) θ2

)2
]

=
1

N

(

∑N

k=1
EN

[

u2(k)
]

−2
∑N

k=1
EN

[

φT
2 (k) u (k)

]

θ2

+
∑N

k=1
θT2 EN

[

φ2(k)φ
T
2 (k)

]

θ2

)

(18)

where EN denotes the conditional expectation based on observations

until sample N, not the entire dataset. Substituting Equations

(17, 18) into Equation (16) yields a different form of the

log-likelihood:

L (θ ,3) = C−
N

2
log

(

1

N

∑N

k=1
EN

[

(

y (k)−φT
1 (k) θ1

)2
])

−
N

2
log





1

N

N
∑

k=1

EN

[

(

u (k)−φT
2 (k) θ2

)2
]



 (19)

Maximizing this log-likelihood is equivalent to minimizing the

quantities in the log terms, so these parts of the equation are

differentiated with respect to the θ parameter vectors and set to zero

to yield their MLEs:

θ
(i+1)
1 =

(

∑N

k=1
EN

[

φ1(k)φ
T
1 (k)

]

)−1

×
∑N

k=1
EN

[

φ1(k)y(k)
]

(20)

θ
(i+1)
2 =

(

∑N

k=1
EN

[

φ2(k)φ
T
2 (k)

]

)−1

×
∑N

k=1
EN

[

φ2(k)u(k)
]

(21)

Thus, the EM algorithm is defined, with the expectation step

encompassing the dataset completion (Kalman filtering) and

Equations (16–18), and the maximization step Equations (20,

21). The algorithm iterates until some convergence criterion is

reached (for the purposes of examples presented later in this

paper, that criterion is achieved when the change in either variance
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FIGURE 1 | Proposed parameter and missing data-estimation algorithm.

parameter becomes <1 × 10−11 from one iteration to the next;

this threshold was selected to be within the computer’s machine

epsilon threshold, as well as practicality from a speed perspective.

A flowchart of the proposed algorithm’s key steps is defined in

Figure 1.

One iteration of the EM algorithm requires calculation of

each expectation contained in Equations (17, 18, 20, 21). As

the Kalman filter provides the state estimates (which in turn

correspond to the y and u values contained in the ϕ vectors) as

well as the error covariance matrices, the appropriate quantities

must simply be selected for the applicable summations. The key

is to notice that the kth state vector x(k) (of length (2l + 2),

for ARX) contains the kth y measurement as its first term, the

kth u measurement as its second, the kth ϕ1 vector as terms

3 through (2n + 2), and the kth ϕ2 vector as even terms 4

through (2p + 2). The relevant covariance terms are in the

corresponding rows and columns within the P(k) matrix. The

required expectations are now defined in Equations (22–27), with

subscripts denoting the relevant parts of the state vector and error

covariance matrices:

EN

[

y2(k)
]

= x̂21 (k)+ P1, 1(k) (22)

EN

[

u2(k)
]

= x̂22 (k)+ P2, 2(k) (23)

EN
[

φ1(k)y(k)
]

= x̂3:(2n+2) (k) x̂1(k) + P 3 :(2n+2), 1(k) (24)

EN
[

φ2(k)u(k)
]

= x̂4:2:(2n+2) (k) x̂2(k) + P4:2:(2n+2), 2(k)

(25)

EN

[

φ1(k)φ
T
1 (k)

]

= x̂3:(2n+2) (k) x̂T3:(2n+2)(k)

+ P3:(2n+2), 3:(2n+2)(k) (26)

EN

[

φ2(k)φ
T
2 (k)

]

= x̂4:2:(2n+2) (k) x̂T4:2:(2n+2)(k)

+ P4:2:(2n+2), 4:2:(2n+2)(k) (27)

It is in these expectation definitions that the choice of state vector

becomes critical, and where the first distinction is made between

this work and that of Isaksson (1993). Without including y(k) and

ϕ1(k), and u(k) and ϕ2(k) in the same state vectors, all required

error covariance terms for evaluation of Equations (22–27) would

not be obtained within the Kalman filter portion of the algorithm.

Isaksson (1993) appears to only include all terms in the k + 1

state vector.

For AR models, there are modifications to the EM algorithm.

Vectors with subscript 2, and thereby Equations (14, 18, 21,

23, 25, and 27) are no longer needed. ϕ1(k) and θ1 are

redefined as:

φ1 (k)=











y(k− 1)

y(k− 2)
...

y(k− n)











θ1=











a1
a2
...

an











and Equations (15, 19, 24, 26) are rewritten as Equations (28–31),

respectively, below:

f =

N
∏

k=1











1
√
2πλ1

exp







−
(

y (k)− φT
1 (k)θ1

)2

2λ1

















(28)

L (θ ,3) = C−
N

2
log

(

1

N

N
∑

k=1

EN

[

(

y (k)−φT
1 (k) θ1

)2
]

)

(29)

EN

[

φT
1 (k)y(k)

]

= x̂2:(n+1) (k) x̂1(k)+ P1, 2:(n+1)(k) (30)

EN

[

φ1(k)φ
T
1 (k)

]

= x̂2:(n+1) (k) x̂T2:(n+1)(k)

+ P2:(n+1), 2:(n+1)(k) (31)

The second key difference between the proposed algorithm and

that presented in Isaksson (1993) is simply that it stops here;

we have not employed the Rauch-Tung-Striebel (RTS) smoother

in this paper, as simulations conducted with it did not show

a difference in model utility. However, the formulation is kept

Frontiers in Built Environment | www.frontiersin.org 6 September 2019 | Volume 5 | Article 109165

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Horner et al. ARX Parameter Estimation—Missing Data

consistent for the case where smoother operations can be applicable.

Please note that the proposed filtering can be implemented in

real-time, while the suggested smoothing operations need offline

computations. In some applications, the advantage of real-time

filtering might be more desirable than the accuracy of the results;

implementation of the proposed algorithm for online EM is thus

the subject of future work. The ability of this algorithm to identify

the correct parameters of incomplete datasets is evaluated in the

following sections.

EXPERIMENTAL SETUP AND SIMULATION

The proposed algorithm is tested on both experimentally-collected,

and simulated datasets. When practical, the experimental datasets

are used. There are a variety of variables that may affect the

convergence behavior of the algorithm. We investigate the effects

of varying percentage of missing data; pattern of missing data;

improper model order selection; variable AR, X, and input

AR model order; noise level; and model type (ARX vs. AR)

on the speed of convergence and accuracy of both parameter

and completed dataset estimates. In all instances, some portion

of the data set was left intact to allow the algorithm to

be run—at most, we considered up to 80% missingness in a

packet-loss scenario. The majority of investigation results are

presented in Section Results and Discussion as box plots. Each

box represents the results of 200 simulations according to the

prescribed conditions. In the case of randomly missing data, indices

of missingness were selected with MATLAB’s random number

generation scheme.

Missing data indices were kept the same across sets of 200

iterations. This would ensure that the variability in a given

box plot was associated only with the initial parameter guesses.

These were always randomly generated, but so as to ensure

a stationary model. For example, all ARX parameters were

limited within (−1/max(n, m), 1/max(n, m)). Initial noise

variance estimates were set at 0.01, as this seemed to obtain

good results across the board in all simulations. The initial

state vector was simply the first (2l + 2) measurements,

and the initial Kalman error covariance matrix was the

identity matrix.

The quantity typically selected for evaluation of parameter

estimate accuracy is the root mean square of the normalized error

(RMSNE). The RMSE (note the lack of normalization) is described

in Chai and Draxler (2014); we elect to include normalization as

we look at both parameter convergence, and adequacy of dataset

reconstruction. Equation (32) defines the RMSNE:

RMSNE =

√

√

√

√

1

M

∑M

j=1

(

pm − pf

pf

)2

(32)

where pm is the estimated point (be it a parameter or a data point)

from the missing data analysis; pf is the corresponding full data

estimate (or true value); and M is the number of values in a given

estimate vector. In calculating RMSNE values when pf is near-zero,

large values may result; for this reason, we have elected not to include

points in RMSNE calculations when the actual values are below a

tolerance, in this case 0.001.

Structural Vibration Data
The real dataset used in this paper consists of the responses from

two of the sensors in one of 39 tests outlined in Nigro and Pakzad

(2014) on a two-bay, structural steel frame. The collected data

represents structural acceleration responses to an impulse load.

Figure 2A shows the (highlighted) frame within the laboratory,

with Figure 2B presenting an elevation drawing with the sensors of

concern and impulse loading location. The responses from sensor

L5 were considered as the “output” or y values of the ARX model,

with L4 constituting the “input” u values. These sensor designations

are used so as to ease the cross-referencing of this work with

that in Nigro and Pakzad (2014) and Shahidi et al. (2015). The

test lasted 2 s and each wireless sensor had 500Hz sampling rates,

yielding 1,000 total measurements apiece. The amplitude-limited

impulse excitation was selected due to the assumption of linear

behavior for the frame. The impulse also does not impose a specific

frequency onto the frame. This represents an advantageous similarity

to ambient vibration (Shahidi et al., 2015), the most likely condition

during which monitoring of a real structure would occur.

TABLE 1 | ARX parameters for generation of simulated datasets.

i ai bi ci

1 3.231 −0.06141 2.800

2 −4.536 0.1007 −3.803

3 3.195 −0.01888 2.600

4 −0.9756 −0.01750 −0.8607

FIGURE 2 | (A) Two-bay structural steel frame. (B) Sensor locations and frame dimensions.
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FIGURE 3 | (A) Parameter estimate convergence for different percentages of randomly missing data. (B) Measurement estimate convergence. (C) Iterations to

convergence.

Simulated Data
The simulated dataset used in this paper was selected to be similar

to that obtained from the experimental setup above, but more easily

controlled. We began by fitting an ARX(4, 4) with input AR(4)

model to the experimental datasets [this model order was selected

due to its good results in Shahidi et al. (2015)]. Then, the MLE

parameters were simply used as the “true” parameters with which

to generate entirely new “output” (and input, for ARX) datasets.

Normally-distributed randomly-generated noise could also be added

with controllable mean and variance. In all cases, the initial output

and input values for the generated datasets were set to unity. With

the exception of the noise variances, the same parameters were used

for generation of simulated datasets at all times. These (rounded) are

provided in Table 1.

RESULTS AND DISCUSSION

Variable Missing Data
Pattern—Experimental
Three missing data patterns were investigated for experimental

data with ARX models. Figure 3 displays the results of variable

random missing data percentages. Missing data indices were

randomly generated in MATLAB. This may represent intermittent,

random sensor network communication disruptions in the real

world. Figure 4 displays the results of variable block missing data

percentages. This represents the case of a packet-loss scenario in the

real world. The location within the dataset of the block of missing

data was confined to the middle of each dataset. Figure 5 displays

the results of variable repetitive patterns of missing data. This
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FIGURE 4 | (A) Parameter estimate convergence for different percentages of block missing data. (B) Measurement estimate convergence. (C) Iterations to

convergence.

represents a more predictable sensor communication disruption

pattern. In each case, missing data was simulated for both output and

input data.

In each of Figures 3–5, the horizontal axes labels indicate the

pattern (or percentage) of missing indices along the length of

the dataset. In all cases, an ARX(4, 4)with input AR(4) model

was considered. For each missing data pattern or percentage,

200 simulations were run. The (A) portions of each figure

represent box plots of the parameter RMSNE values for these ten

simulations, and the (B) portions the same for the data RMSNE

values. In each parameter figure, the lightest box plots indicate

AR parameters, the medium-hued X parameters, and the darkest

input AR parameters. In each data figure, the lighter box plots

indicate output data, and the darker input data. The theoretically

“correct” parameters are not known for the experimental dataset;

for comparison in RMSNE calculations, we use the results

of EM parameter estimation on the complete dataset (without

Kalman filtering).

The results of the above simulations are as expected. We are

primarily concerned with parameter estimation, so the fact that there

does not appear to be a great difference in accuracy of the parameter

estimates across different missing data patterns is as intended for

a robust parameter estimation algorithm. It is worth noting that

the X parameters tend to have significantly higher RMSNE values

across all missing data percentages than the AR or input AR

parameters. This is likely largely in part due to the X parameters

being significantly smaller in magnitude than the AR or input

AR parameters.

Of some concern is the drastic increase in data reconstructive

error for block missingness compared to random or patterned
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FIGURE 5 | (A) Parameter estimate convergence for different percentages of repeating pattern missing data. (B) Measurement estimate convergence. (C) Iterations

to convergence.

missingness, and particularly the variability in this error at high

missingness percentages. This phenomenon occurs due to the MLE

model causing the Kalman estimates to go to zero at a swifter

rate than the actual system. This implies that the algorithm,

in its current state, works adequately for parameter estimation

with a variety of missing data patterns, but is not particularly

appropriate for dataset reconstruction in the case of packet loss, or

prediction. This effect additionally begins to affect the parameter

estimate reliability and convergence rate as well-beyond 60 percent

missingness. However, this is not the only factor at play, since there

may be other regression models (or different orders) that simply fit

the dataset better.

It may appear that cases of patterned missingness, as

opposed to block or random, have less variability in the

accuracy of the estimated parameters and reconstructed

datasets, as well as number of iterations to convergence.

However, if missing every fifth observation is thought of as

missing 20 percent of observations (and furthermore, every

fourth as 25 percent), we appear to see similar variation

as at these percentages for random and block missingness.

Finally, note the termination percentages for the Figures 3,

4 horizontal axes. In this section, and beyond, the criterion

for these termination procedures was that the algorithm

became impractically slow to converge. This suggests that

packet loss scenarios, with their caveat on reconstruction, may

still be handled with the algorithm for parameter estimation,

and at higher percentages of missing data than random

or patterned-missingness.
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FIGURE 6 | (A) Convergence behavior of ARX parameter estimates with varying model order fits for simulated dataset. (B) AR parameters.

Improper Model Order
Selection—Simulated
The purpose of this section is to evaluate the effectiveness of the
algorithm for parameter identification and dataset completion when
a model is generated with a different series of model orders than that
used for the fit in the algorithm. In each simulation, the procedure
described in Section Simulated Data was used for model generation
[i.e., it was ARX(4, 4) with AR(4)], all with 20% missing data. Cases

of overparameterization were explored in these simulations, and

would invalidate typical RMSNE calculations for the parameters.

Therefore, a different means of presenting parameter convergence

is shown in Figure 6. The horizontal axis of this plot shows the

number of iterations required for converged parameter estimates;

thus, each vertical column of parameter estimates corresponds

to the results of the same simulation. From left to right in the

figure, the vertical columns represent 2nd, 6th, 3rd, 5th, and

4th order ARX model parameters. The vertical axis shows the

signed logarithm of the parameter magnitude (SLPM), defined in

Equation (33):

SLPM = sgn(pi) × log
(
∣

∣pi
∣

∣

)

(33)

where pi represents a particular parameter value. The logarithm

of this quantity is selected to properly display parameters of very

different magnitudes on the same plot, and the sign function

is selected to include both positive and negative values on the

plot. In Figure 6, the large symbols at the right end of the

horizontal lines represent the true parameter values of the ARX(4,

4) and input AR(4) models used for dataset generation (note

then that these are NOT representative of convergence behavior

in the axis-limit-number of iterations). Symbols within the figure
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correspond to those of the fits. Symbols occurring within the plots,

but without corresponding border symbols (and indicated), were

thus determined from higher-than-fourth-order models. Figure 7,

alternatively, uses the same conventions as above for data value

RMSNE calculations.

From Figure 6 it is clear that parameter estimates are very

accurate when correct model order is selected, and less accurate

when lower model orders are selected. Larger model orders

(converging in 35 and 40 iterations) have non-zero parameter

estimates at all time lags, and fail to identify the proper parameter

estimates. In Figure 7, however, the results of data RMSNE

calculations are presented in a similar format to Figures 3B,

4B, 5B. For input data, it can be seen that there does

not appear to be an appreciable difference in measurement

estimates for higher order models compared to lower, despite

different parameter estimates. However, output data is more

accurately reconstructed in over-parameterized systems. In real

systems, a “correct” model order is not accessible. Together,

these observations regarding parameter and dataset estimates

highlight the importance of consistent, as opposed to necessarily

“correct” model order selection as a system is monitored over

time. This is particularly important if regression parameters are

FIGURE 7 | (A) Measurement estimate convergence for varying model order fits for simulated dataset. (B) Iterations to convergence.

FIGURE 8 | Convergence behavior of output data estimates with varying model orders for simulated dataset.
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FIGURE 9 | Convergence behavior of input data estimates with varying model orders for simulated dataset.

being monitored as indicators of system change. However, these

observations also suggest that dataset reconstruction may occur

with safe (i.e., large) estimates of system model orders when they

are unknown.

Variable Model Order—Experimental
The aim of this section is to investigate the convergence behavior

of the algorithm with variable model orders. Here, we have only

considered one simulation for each model order grouping (each

which corresponds to a data point on Figures 8, 9). In Figures 8

(output data) and 9 (input data), the size of a plotted point is

inversely proportional to the RMSNE of the converged Kalman

estimated data values. The shade distribution of the plotted points

can be likened to a histogram of the iterations to convergence when

compared with other points, with four distinct shades corresponding

to “bins” of size 60. So, for example, the (2, 2, 2) point has

the lightest shade, and corresponds to a set of model orders

that converged in the algorithm in 60 iterations or less. Finally,

the numbers above and/or below select points on the figures

correspond to the maximum, minimum, and quartile iteration

or RMSNE values obtained in the analysis. For example, the (4,

2, 4) point converged in 210 iterations, tied for the most of

any model order grouping. As another example, point (2, 6, 4)

resulted in one of the lowest RMSNE values of any model order

considered. In all cases, 20% of data was randomly missing from the

experimental dataset.

In many ways, aspects of this figure correspond well with

previous observations. We noted in Section Variable Missing

Data Pattern—Experimental that the X parameters were lower

in magnitude than the AR or input AR. This implies that the

ARX model may in fact be dominated by the AR portion for

these particular datasets; sure enough, in Figures 8, 9, we tend

to see the largest accuracy with high-order AR and input AR

model orders, respectively. Furthermore, while convergence is

relatively quick, lower accuracy at lower model orders is observed

across the board, which likely confirms the earlier notion that

structural vibrations may be described specifically with high-order

AR processes.

Variable Noise—Simulated
The aim of this section is to investigate the effect of the

signal-to-noise ratios in parameter identification. Datasets were

simulated corresponding to the procedure in Section Simulated

Data, and noise levels in Figure 10 were normally distributed with

variances the indicated percentages of the initial signal values.

In all cases, 20% data was randomly missing, and box plot

shade conventions are the same as in Section Variable Missing

Data Pattern—Experimental.

It can be seen from Figure 10 that with the exception of very low

noise increasing percentages of noise do not seem to significantly

affect parameter estimates. This is due to the characteristics of

the Kalman filter mentioned in Section Maximum Likelihood,

Expectation Maximization, and Kalman Filter. Furthermore, the

number of iterations do not typically significantly increase as noise

levels do, though their variability does to some extent. Finally,

it may be noted that data estimates errors increase exponentially

with the noise from low levels, then stabilize at higher noise

variance. This effect is expectedly more drastic for the output

data, as it is affected by both its own noise, as well as that in

the input.

Model Type: ARX vs. AR—Simulated
Finally, the performance of the algorithm for parameter

identification of ARX models is compared to that of AR

models. Datasets are simulated according to the procedure

of Section Simulated Data, which in the case of AR

does not require X or input AR parameters (third and

fourth columns of Table 1). Also of note is the increasing

percentages of missing data across the horizontal axes

of Figures 11, 12. In all cases, no noise was included in

the simulation.

In addition to that shown in the figure, the algorithm was

also performed for the simulated case where no observations were
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FIGURE 10 | (A) Parameter estimate convergence for different noise levels in simulated datasets with 20% missingness. (B) Measurement estimate convergence. (C)

Iterations to convergence.

missing. Both mean and standard deviation of RMSNE values

for input AR parameters and output data is zero (it is for

this reason that the results are not included in Figure 11). This

result is reached in an average of 18 iterations with a standard

deviation of 0.483.

Similarly, for the zero missingness ARX model input data, mean

and standard deviation of RMSNE values are 7.57e–16 and 8.23e–

16, respectively. For output data, mean and standard deviation are

1e–16 and 1e–15, respectively. Mean and standard deviation of X

parameter RMSNE values are 1.29e–11 and 1.46e–11, respectively;

for input AR parameter RMSNE values, 6.81e–15 and 6.8e–14,

respectively; and for AR parameter RMSNE values, 1.76e–13 and

2.11e–13, respectively.

If the AR parameters are compared between Figures 11, 12,

it can be seen that they are estimated more accurately for the

purely AR model, as opposed to ARX. This may be a function

of the model type selected for this particular system. Similar to

experimental datasets, the X parameters are again evaluated with

generally a lower degree of accuracy. It is worth noting that if

ARX identification in Figure 12 is compared to that in Figure 3

(random missingness), simulated datasets’ parameters are generally

estimated at a higher degree of accuracy when compared to real

datasets, at similar percentages of missingness. However, in the case

of simulated datasets, the algorithm becomes impractically slow at

higher percentages of missing data, and there is generally more

variability in the estimates.
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FIGURE 11 | (A) Parameter estimate convergence for simulated AR models with varying percentages of missing data. (B) Measurement estimate convergence.

(C) Iterations to convergence.

CONCLUSIONS

In this paper, an algorithm was proposed to identify parameters of
both ARX and AR models fit to datasets with missing observations.
This algorithm joins a relatively minor list of those dedicated
to regression models, and more specifically ARX models, subject
to missing observations, and presents important modifications to
the state vector considered in the presented state-space model.
The EM algorithm in conjunction with the Kalman filter is
used for MLE of parameters and reconstruction. The effects
of varying percentage of missing data; pattern of missing data;
improper model order selection; variable AR, X, and input AR

model order; noise level; and model type (ARX vs. AR) on

the speed of convergence and accuracy of both parameter and

completed dataset estimates was investigated. Favorable conditions

for accurate parameter estimation include lower percentages of

missing data, parameters of similar magnitude with one another,

and selected model orders similar to those true to the dataset.

Favorable conditions for dataset reconstruction include random and

periodic missing data patterns, lower percentages of missing data,

and proper model order selection. The algorithm is particularly

robust to varied noise levels, an effect of the use of the

Kalman filter.
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FIGURE 12 | (A) Parameter estimate convergence for simulated ARX models with varying percentages of missing data. (B) Measurement estimate convergence.

(C) Iterations to convergence.

Future research in relation to this work should further formalize

the relationships that are apparent in this work. Boxplots in

this work were concerned with evaluating the effect of changing

initial parameter guesses; future work should explore the effects

of consistent initial guesses, but variable missingness data indices.

Additionally, the effect of the parameter values themselves on

estimation accuracy should be further explored. An investigation

should also be conducted into features of the converged ML

statistical parameters that may be extracted to further evaluate the

effectiveness of the algorithm, and different convergence criteria

should be explored. Finally, alternative missing data patterns may be

explored, including removing data from only one of the output or

input at a time.
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The consideration of wireless acceleration sensors is highly promising for cost-effective

output-only system identification in the context of operational modal analysis (OMA)

of large-scale civil structures as they alleviate the need for wiring. However, practical

monitoring implementations for OMA using wireless units suffer a number of drawbacks

related to wireless transmission of densely sampled acceleration time-series including

the energy self-sustainability of the sensing nodes. In this work, two recently proposed

approaches for output-only modal identification addressing the above issues through

balancing monitoring accuracy with data transmission costs are comparatively studied

and numerically assessed using field recorded acceleration datasets from two different

structures: (i) an operating on-shore wind turbine, (ii) an open to traffic highway

bridge. One approach utilizes non-uniform-in-time deterministic multi-coset sampling

at sub-Nyquist rates to capture structural response acceleration time-series under

ambient excitation assuming stationary signal conditions. In this approach, a power

spectrum blind sampling technique is used to estimate the response acceleration

power spectral density matrix from the low-rate sampled measurements and is

coupled with the Frequency Domain Decomposition method of OMA. The other is a

spectro-temporal compressive sensing approach which recovers response acceleration

signals through time-series reconstruction in the time domain from sub-Nyquist

non-uniform-in-time randomly sampled measurements. Prior knowledge of signal

structure in the spectral domain is exploited through smart on-sensor operations and

sensor/server communication. The benefits and limitations of the considered approaches

are discussed and demonstrated by processing the field recorded datasets for different

levels of signal compression and by estimating battery lifetime gains at a single sensor

achieved by reduced data transmission. It is concluded that the two approaches are

readily applicable in OMA of large-scale structures and can be used complementarily

depending on the requirements of any particular acceleration monitoring campaign:

time-series extraction for further interrogation vs. solely modal properties estimation.

Keywords: vibration-based modal identification, multi-coset sampling, spectro-temporal compressive sensing,

blind power spectrum sampling, operational modal analysis, wireless sensors

178

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://doi.org/10.3389/fbuil.2019.00111
http://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2019.00111&domain=pdf&date_stamp=2019-09-24
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles
https://creativecommons.org/licenses/by/4.0/
mailto:agathoklis.giaralis.1@city.ac.uk
https://doi.org/10.3389/fbuil.2019.00111
https://www.frontiersin.org/articles/10.3389/fbuil.2019.00111/full
http://loop.frontiersin.org/people/199706/overview
http://loop.frontiersin.org/people/714281/overview
http://loop.frontiersin.org/people/427895/overview
http://loop.frontiersin.org/people/247299/overview


Gkoktsi et al. Monitoring Using Sub-Nyquist/Compressive Sensing

INTRODUCTION

In recent years, monitoring schemes have roved their worth in
terms of the potential for smart operation and maintenance
of civil structures (Farrar and Worden, 2012). When further
coupled with the concept of the Value of Information, monitoring
of structures serves as a direct tool for informing decision
support on the life cycle management of structural assets. In this
context, operational modal analysis (OMA) involves an efficient
monitoring modality in large scale structural systems, as it is
typically enabled by low cost acceleration sensors, allowing for
a long-term or permanent system supervision (Limongelli et al.,
2016). Due to the difficulty involved in the measurement of
operating loads, OMA relies on output-only information for
extraction of dynamic properties of systems that are typically
subjected to low-amplitude operational loads (e.g., due to wind
traffic, etc.) (Brincker and Ventura, 2015). For the common
case of linear systems, such properties include the modal
characteristics of the structure (e.g., natural frequencies, damping
and mode shapes). Since no explicit loading information is
assumed available, output-only techniques commonly assume
ambient conditions corresponding to a flat spectrum over a wide
range of frequencies (i.e., a white noise excitation assumption).
Such techniques are shown to perform well, even under the
challenge of varying environmental and operational conditions
(Reynders et al., 2013; Shi et al., 2016; Avendaño-Valencia
et al., 2017) while the extracted modal structural properties may
be then exploited for a variety of tasks including condition
assessment, design verification, structural health monitoring
(SHM) and, ultimately, residual life prediction of civil structures
(Straub et al., 2017). Still, OMA has been mostly demonstrated
for use with tethered sensing configurations.

Wireless sensor networks (WSNs) offer a low-cost and easily
deployable alternative to tethered (wired) acceleration sensors
that is particularly attractive for large structures featuring
locations of reduced accessibility (Lynch, 2007). The “smart”
feature of most such wireless platforms, allowing for local
processing at the wireless senor (node) level, has been exploited
for decentralized autonomous monitoring solutions (Nagayama
et al., 2009). Nonetheless, WSNs have so far not enjoyed
widespread adoption into practice, largely owing to their limited
wireless transmission bandwidth and the maintenance costs
related to frequent battery replacement (Klis and Chatzi, 2016a;
Gkoktsi and Giaralis, 2019).

In order to extend the self-sustainability of the nodes, and

to reduce the power allocated for transmission, compressive

sensing (CS) techniques have been explored, with Bao et al.
(2010) and O’Connor et al. (2013), leading developments
in this field, with applications on actual road bridges. CS
samples at random non-uniform in time rates, resulting in
equivalent sampling below the Nyquist rate. In a nutshell, CS
asserts that a discrete-time finite length signal (e.g., an analog
response acceleration signal uniformly sampled in time) can
be recovered, with high probability, from a relatively small
number of randomly acquired samples/measurements in time, by
solving an underdetermined system of linear equations (Candès
and Tao, 2006; Donoho, 2006). Importantly, the number of

random (compressed) measurements required for a faithful
signal recovery depends on the “sparsity” of the acquired signal
with respect to some pre-specified vector basis, such as the
discrete Fourier transform (DFT) basis used for representation
of vectors in the Fourier/frequency domain. Specifically, a K-
sparse/compressible signal features K expansion coefficients on
a given basis with values larger than a relatively low threshold;
the smaller K is, the sparser the signal is, and thus the fewer
random measurements are required for its sparse recovery (i.e.,
estimation of the K significant expansion coefficients) within the
CS framework. In this regard, all algorithms for sparse signal
recovery necessitate an assumption of signal sparsity (Vaswani
and Zhan, 2016), which is a priori unknown and is adversely
affected by signal noise. Further, much research work has been
devoted in constructing sparsifying bases or, more generally,
sparsifying dictionaries tailored for different applications, such as
image denoising (Razaviyayn et al., 2014), video sensing (Eslani
et al., 2014), and ultrasonic non-destructive damage detection
(Fuentes et al., 2019).

In this setting, O’Connor et al. (2014) were the first to
deploy customized CS-based wireless sensors in a long-term
monitoring field application for an overpass in MI, USA. By
randomly triggering in time conventional ADC units, non-
uniform in time compressed acceleration response signals were
acquired. Sparse recovery assuming a DFT expansion basis, as
well as an empirically specified level of sparsity was applied
to the compressed data to estimate the response acceleration
power spectral density (PSD) matrix. The latter matrix was
used in conjunction with the standard frequency domain
decomposition (FDD) algorithm to extract mode shapes and
natural frequencies within OMA. Yang and Nagarajaiah (2015)
and Park et al. (2014) contributed two significantly different
approaches for mode shape estimation from CS-based non-
uniform in time random sampling of structural vibration time-
histories at sub-Nyquist rates. In Yang and Nagarajaiah (2015)
mode shape estimation relies on modal structural responses
obtained by application of blind source separation directly to the
compressed measurements of structural response signals. Sparse
signal recovery (reconstruction) in the time-domain is next
applied to each compressed modal response vector to retrieve
the underlying structural natural frequencies andmodal damping
ratios. In Park et al. (2014) mode shapes are obtained by means of
a singular value decomposition-based algorithm applied directly
to response acceleration compressed measurements, without
taking any reconstruction step, under the assumption of noiseless
undamped free vibration structural response signals (i.e., multi-
tone signal model).

The standard approach to CS-based signal recovery relies
on l1-norm minimization and solution of the so-called Basis
Pursuit De-Noising problem (BPDN). This approach is typically
adopted in CS implementations in OMA applications using
wireless sensors (O’Connor et al., 2014; Zou et al., 2015). In
enhancing the BPDN approach, Klis and Chatzi (2016b) utilize
its re-weighted variant, known as the re-weighted Basis Pursuit
De-Noising problem (rwBPDN), also known as the l1-analysis
problem (Becker et al., 2011). The resulting Spectro-temporal CS
(STCS) scheme leads to improved time-domain signal recovery
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with respect to the standard BPDN approach. Furthermore, in
order to alleviate the heuristic a priori assumption on sparsity Klis
and Chatzi (2016a) initially exploit the concept of a leading node,
i.e., a (typically) tethered node which is permanently logging
at higher sampling rates, and forms part of a Hybrid Sensor
Network (HSN). The latter forms a compilation of primarily
wireless and a minimal number of tethered sensors. In this
way the signal support, on the basis of which the recovery is
performed, is narrowed, which results in reduced transmission
costs. In later work (Klis and Chatzi, 2016b) the leading node
requirement is removed, with wireless sensors transmitting
partial temporal information and a selected part of the spectral
information in a two way communication with the server (central
node). Sparse signal recovery is again enabled via solution of
the rwBPDN problem. The recovered signals may then serve
as input for any standard output-only modal identification
algorithm for OMA. As signal reconstruction is a main target
of this approach, it is particularly attractive for use with time
domain-based identification methods, such as approaches based
on Auto-regressive models, subspace identification algorithms,
or real-time tracking using Kalman filters. The proposed scheme
has been validated on synthetic simulations generated for a
benchmark four-story frame structure of the American Society
of Civil Engineers, as well as data from operating structures.

Aiming to circumvent the signal sparsity requirement for the
identification of modal characteristics (natural frequencies and
modal shapes) from sub-Nyquist sampled response acceleration
data, Gkoktsi and Giaralis (2017), Gkoktsi and Giaralis (2019)
developed an alternative to the former CS-based approaches. The
latter approach couples the sub-Nyquist non-uniform-in-time
deterministic multi-coset sampling strategy (Venkataramani and
Bresler, 2001), with a Power Spectrum Blind Sampling (PSBS)
technique (Ariananda and Leus, 2012; Tausiesakul and González-
Prelcic, 2013) extended to the multi-channel case by Gkoktsi
et al. (2015) to estimate the response acceleration PSD matrix
(second order statistics) from correlation sequences of the
sub-Nyquist measurements. Ultimately, the considered PSBS
approach derives structural modal properties by application of
the FDD algorithm to the estimated PSDmatrix without response
acceleration signal recovery in the time domain and without
making an a priori assumption on signal sparsity in the DFT or
in any other domain (Gkoktsi and Giaralis, 2017). In doing so,
measured response signals are assumed as stationary correlated
stochastic processes in alignment with OMA theory (Brincker
and Ventura, 2015). In this respect, the PSBS approach does not
return the time-histories of acceleration response signals but, on
the positive side, it is purely signal agnostic in terms of signal
structure in the frequency domain and, therefore, indifferent
to signal sparsity attributes and/or to additive noise. In this
regard, it was shown that the PSBS approach achieves quality
mode shape extraction and robust modal strain-based damage
detection from response acceleration measurements corrupted
by additive noise (Gkoktsi et al., 2016) at rates as low as 80%
below Nyquist leading to significant energy consumption gains
in wireless sensors (Gkoktsi and Giaralis, 2019).

Previously, the PSBS approach has been compared to
standard BPDN CS-based approach in terms of quality mode

shape extraction (Gkoktsi and Giaralis, 2017). Herein, we
comparatively assess the PSBS-based scheme (Gkoktsi and
Giaralis, 2017, 2019) and the STCS approach (Klis and Chatzi,
2016a,b) in an effort to demonstrate their readiness levels
for output-only modal identification supported by low-power
wireless sensors which is the first step toward cost-effective SHM.
The strengths and limitations of each approach are elaborated
upon, with a comparison in terms of data compression, potential
for modal identification, and, for the case of STCS, on time-
domain signal recovery. In order to validate the presented
tools, field data from large scale structures are utilized, namely
acceleration response time-histories from an operating on-shore
wind turbine as well as from a highway overpass open to traffic.
For the second structure, estimated battery lifetime gains at the
sensor node level are provided achieved by power consumption
savings from reduced wireless data transmission.

METHODOLOGICAL FRAMEWORK

Spectro-Temporal Compressive Sensing
(STCS) Approach via rwBPDN
Spectro-Temporal Compressive Sensing (STCS) relies on the
formulation of the missing data estimation problem (Candès and
Romberg, 2007; Becker et al., 2011; Candès and Plan, 2011). Let
us assume a signal recorded by sensor i, comprising N samples.
Themissing data estimation problem is formulated as:

yi = Sxi (1)

where yi = [y1i, y2i, ..., yMi]
T ∈ R

Mis the measured signal of
partial (incomplete) observations, comprising a dimension M <

N, and S ∈ R
M×N is a zero-one selection matrix, known a-priori.

The goal of the missing data estimation problem is to recover the
original full signal xi given the incomplete observations yiand the
selection matrix S.

As demonstrated in Klis and Chatzi (2016b) structural
response signals admit a sparse representation via a Discrete
Fourier Transform (DFT) orthonormal basis, A ∈ C

N×N ,
according to the following equation:

xi = Aci, where Ai,l =
1

√
N
e−j2π i l

N (2)

where ci = [c1i, c2i, ..., cNi]
T ∈ R

Ncomprises the coefficient
vector. Via substitution of equation (2) into equation the
observations vector yi may be recovered on the basis of a finite
number of cisparse coefficients, as follows:

yi = SAci (3)

When the vector of observations yiis incomplete, as is the
case for missing data, equation (3) comprises an ill-conditioned
problem with multiple solutions for the coefficients vector
ci. Within the compressive sensing context however, we are
interested in the solution rendering the most sparse vector
ci, for which equation (1) is fulfilled. This is recovered via
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solution of a non-deterministic polynomial time-Hard (NP-
Hard) combinatorial problem:

argmin
ci

‖ci‖0 subject to yi = SAci (4)

As the formulation of equation (4) is non-trivial to solve,
Candès and Romberg (2007) concluded that solving a relaxed
‖ · ‖1 convex optimization problem, known as a basis pursuit
problem, is equivalent to solving the original ‖ · ‖0NP-Hard
combinatorial problem, given that an appropriate condition—
the so-called Restricted Isometry Property (RIP)—holds. The basis
pursuit problem is expressed as:

argmin
ci

‖ci‖1 subject to yi = SAci (5)

The formulation of equation offers a significant reduction in
terms of computational toll, while guaranteeing that the original
response signal xi may be fully recovered, provided that the K-
RIP condition is satisfied by matrix SA. For each positive integer
K, we may define the isometry constant δK of matrix SA as
the smallest integer ensuring that the following K-RIP condition
holds for all K-sparse vectors:

(1− δK) ‖ci‖
2
2 ≤ ‖SAci‖

2
2 ≤ (1+ δK) ‖ci‖

2
2 (6)

According to Candès et al. (2006) if δ2K <
√
2−1 then a solution

to (5) will also satisfy the original problem (4) with a good quality
of approximation.

However, observations stemming from acquisition via sensor
nodes, as is typical for SHM measurements, will be corrupted
with noise. In this case, the original problem becomes

yi = SAci + zi, zi ∝ N (0, σ 2) (7)

The solution to this modified problem is obtained via a convex
optimization problem, known as the Basis Pursuit De-Noising
problem (BPDN):

argmin
ci

‖c‖1 subject to
∥

∥yi − SAci
∥

∥

2
≤ ǫ (8)

Solution of the BPDN problem has been the main approach
utilized so far in the context of CS for SHM implementations
(O’Connor et al., 2014; Wang and Hong, 2015; Wang et al.,
2015). Klis and Chatzi (2016b) have advanced this framework
by utilizing in lace of the classical BPDN formulation, its
re-weighted variant, known as the re-weighted Basis Pursuit
De-Noising problem (rwBPDN) (Becker et al., 2011):

argmin
ci

‖Wci‖1 subject to
∥

∥yi − SAci
∥

∥

2
≤ ǫ (9)

Key to this formulation is the weighting matrix W =

diag([w1,w2, ...,wN]) which ensures a desired structure of the
coefficient vector ci.

The Spectro-Temporal Compressive Sensing (STCS)
framework relies on solution of the rw-BPDN problem. Figure 1

illustrates the steps of STCS framework, with the actions
performs locally on the node level aggregated on the left, and
actions performed globally at the base station (server) level
assembled on the right. As a first step, the support is determined
at each node. The support of a vector is defined as the subset
of non-zero components supp(Yi) = {ω ∈ � : Yi(ω) 6= 0}.
For practical implementations, this is eventually defined
in terms of exceedance of a user-specified threshold ǫ :
supp(Yi, ǫ) = {ω ∈ � : |Yi(ω)| > ǫ}. The selection of the
support is executed for windowed frames xij, extracted from
the original signal xi. The formulated support Uij, as well as its
complementary set Uc

ij allow the decomposition of the spectral

representation of the signal, as expressed via the coefficient vector
ci, into a “noisy” and “clean” component cij = Uijcij+Uc

ijcij. The

locally defined support components are eventually transmitted
to the server, where the weighting matrix Wij is formulated and
the K-sparsity of the signal is determined as Kij =

∑

(Uij).
In a next step, the number of time-domain samples Mij

required for signal recovery is defined, on the basis of which the
server randomly selects and transmits yij sub-vectors, from the
j-th data frame of the i-th sensor, using a uniform distribution.
For more details on this process the interested reader is referred
to (Klis and Chatzi, 2016b). Upon transmission of the necessary
time domain samples, along with the corresponding Wij

weighting matrix, to the server the coefficient vector is recovered
as ĉij = argmin

cij

∥

∥Wijcij
∥

∥

1
subject to

∥

∥yij − SijAcij
∥

∥

2
≤ σu,ij. As a

last step, the coefficient vector of the j-th data frame is projected
back to the time domain:

x̂ij = Aĉij (10)

Once this process has been executed for each data frame, the
estimate of the full time domain signal is attained as x̂i =
[

x̂i1, x̂i2, ..., x̂iD
]T

from all D sensors in the network. The solver
adopted for solution of the involved rwBPDN problem is the
NESTA algorithm (Nesterov, 2005; Becker et al., 2011).

The Multi-Channel Power Spectrum Blind
Sampling (PSBS) Approach
Themulti-channel PSBS approach for operational modal analysis
developed by Gkoktsi and Giaralis (2017), Gkoktsi and Giaralis
(2019) comprises the three stages delineated in Figure 2. The
first stage involves low-rate (sub-Nyquist) deterministic periodic
non-uniform-in-time multi-coset sampling at all D acceleration
sensing nodes. In the next stage, the low-rate (compressed)
measurements from all sensors are wirelessly transmitted to a
server (base station) and centrally processed to obtain their
cross-correlation vectors. These vectors are used to estimate
(recover) the response acceleration PSD matrix by solving an
overdetermined system of linear equations without invoking
any signal sparsity assumption. Lastly, in stage III, the FDD
algorithm is applied to the recovered PSD matrix to obtain
natural frequencies and mode shapes. Notably, this centralized 3-
stage forward-only approach minimizes processing and memory
requirements at the node (local) level as well as wireless

Frontiers in Built Environment | www.frontiersin.org 4 September 2019 | Volume 5 | Article 111181

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Gkoktsi et al. Monitoring Using Sub-Nyquist/Compressive Sensing

FIGURE 1 | Flowchart of spectro-temporal compressive sensing framework (Klis and Chatzi, 2016b).

data communication payload within the WSN leading to low-
complexity and low-energy consumption sensor nodes.

Elaborating on the mathematical details of PSBS approach,
let x(t) be a continuous in time t real-valued wide-sense-
stationary random signal (or stochastic process) represented by
the PSD function Px(ω) band-limited to 2π/T in the frequency

domain ω. The multi-coset sampling strategy is adopted (e.g.,
Venkataramani and Bresler, 2001) in stage I of the approach to
sample x(t) at a rate lower than the Nyquist sampling rate 1/T (in
Hz) as follows. Firstly, the uniform grid of Nyquist samples x(nT),
n = 0,1,2, . . . is divided into consecutive non-overlapping blocks
of N samples each. Then, from each such block, only M (<N)
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FIGURE 2 | Flowchart of multi-channel power spectrum blind sampling approach for frequency domain OMA (see also Gkoktsi and Giaralis, 2019).

samples are acquired whose position is specified by the sampling
pattern sequence with elements in ascending order

n = [n0 n1 · · · nM−1] (11)

taken as time independent. The resulting sampling is periodic
with period N; non-uniform in time (excluding the special case
in which n contains all possible even or odd numbers and N is
even; deterministic since the position of the M cosets is defined
a priori through the sequence n applied to all N-length blocks;
and sub-Nyquist with average sampling rate M/(NT) (in Hz)
(always below the Nyquist rate 1/T since M < N). Notably,
the multi-coset sampling rate is associated with the compression
ratio (CR)M/N (0≤M/N ≤ 1), attaining lower values for higher
signal compression levels. For illustration, Figure 3 demonstrates
multi-coset sampling with pattern n = [0, 2, 5] to a discrete-
time signal partitioned into blocks of N = 8 length. This
particular sampling acquires M = 3 cosets of samples by taking
the 1st (red), the 3rd (cyan), and the 6th (green) Nyquist sample
from every block achieving CR of M/N = 3/8 = 37.5%, that is,
average sampling rate of 62.5% below Nyquist.

Mathematically, the samples of the m-th coset can be written
as the output of the filtering operation

ym[k] =
∑0

s=1−N
gm[s] x[kN − s] k = 0, 1, ..., P − 1 (12)

where P is the total number of the N-length blocks and the filter
coefficients are given as

gm [s] =

{

1, s = nm
0, s 6= nm

(13)

FIGURE 3 | Illustrative example of multi-coset sampling.

in which s= [1–N, 2–N, . . . , 0] is arranged in descending order.
Consider, next, an array of D sensors and M cosets as

shown in Figure 2. The cross-correlation sequences of response
acceleration signals sampled at Nyquist rate, xi[v], from all i= 1,
2, . . . , D sensors are theoretically defined as

rxixj [ℓ] = Ex
{

xi[v] xj[v− ℓ]
}

i, j = 1, 2, ...,D ; ℓ ∈ Z (14)

where E is the mathematical expectation operator. It is herein
assumed that the sequences in Equation (14) take on negligible
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values outside the range −L ≤ ℓ ≤ L. Further, the cross-
correlation sequences of the compressed measurements ymi [k]
from all m = 0, 1, . . . , M − 1 cosets and i = 1, 2, . . . , D sensors,
are written as

ryai ,y
b
j
[ℓ] = E

{

yai [k] y
b
j [k− ℓ]

}

i, j = 1, 2, ...,D ; a, b = 0, 1, ...,M − 1 ; −L ≤ ℓ ≤ L (15)

It can be shown (Gkoktsi andGiaralis, 2019) that the sequences in
Equations (14) and (15) are related by the following key equation

ryiyj = Rgrxixj (16)

where rxixj ∈ R
N(2L+1)×D is a matrix collecting all cross-

correlation sequences of response acceleration signals rxixj [ℓ],

ryiyj ∈ R
M

2
(2L+1)×D is a matrix collecting all cross-correlation

sequences of the compressed measurements ryai ,y
b
j
[ℓ], and

Rg ∈ R
M

2
(2L+1)×N(2L+1) is a sparse pattern correlation matrix

populated by the multi-coset sampling pattern cross-correlations

rga ,gb [τ ] =
∑0

s=1−N
ga[s]gb[s− τ ] = δ[τ − (na − nb)] (17)

where δ[u] = 1 for u = 0 and δ[u] = 0 for u 6= 0. Note
that Equation (16) defines an overdetermined system of linear
equations which can be solved for rxixj without any sparsity
assumptions, provided that Rc is full column rank. The latter is
satisfied forM2 ≥ N (Ariananda and Leus, 2012).

From the practical/computational viewpoint, the
unbiased estimator

r̂yai ,y
b
j
[ℓ] =

1

P − |ℓ|

P−1+min{0,ℓ}
∑

l=max{0,ℓ}

yai [l]y
b
j [l− ℓ] (18)

can be readily employed to approximate the sequences in
Equation (15) using all compressed measurements wirelessly
transmitted to a central unit (server) from all D sensors as
indicated in Figure 2. These estimates are collected in the

matrix r̂yiyj ∈ R
M

2
(2L+1)×D. Next, an estimate of the response

acceleration PSD matrix at discrete frequencies with frequency
discretization step (resolution)

1ω =
2π

(2L+ 1)N
(19)

is computed at the server through the formula (Gkoktsi et al.,
2015; Gkoktsi and Giaralis, 2019)

Ĝxixj = F(2L+1)N

(

RT
gW

−1
Rg

)−1
RT
gW

−1
r̂yiyj , (20)

where F(2L+1)N ∈ C
N(2L+1)×N(2L+1) is the standard DFT matrix.

In the last equation,W is a weighting matrix, and the superscript
“−1” denotes matrix inversion. Ultimately, in stage III, the PSD
matrix in Equation is treated by the standard FDD algorithm to

estimate R structural mode shapes, φ̂r , and natural frequencies,
fr , r = 1, 2, . . . , R.

The critical parameters of the herein briefly reviewed PSBS
approach regulating CR are the number of cosets, M, and the
lengthNof the blocks in Figure 3, subject to the two constraints

M < Nand M
2

≥ N. Once the values of M and N are
fixed, the weighting matrix W in Equation and the sampling
pattern n is determined by solving a constrained least-squares
optimization problem as detailed in Tausiesakul and González-
Prelcic (2013) relying on the criterion r̂xixj = argminrxixj ||r̂yiyj −

Rgrxixj ||
2
W
, where ||a||2

W
= aTWa is the weighted version of the

Euclidean norm.

ASSESSMENT FOR SIGNAL RECOVERY IN
TIME AND IN FREQUENCY DOMAIN

The effectiveness and applicability of both considered approaches
for vibration-based modal identification relies on the accuracy
of their respective information recovery operations from
compressed measurements. That is, time-domain signal
reconstruction/recovery in the STCS-rwPBDN approach, and
frequency domain PSD estimation/recovery in the PSBS-based
approach. In this section, the performance of the above recovery
operations is numerically assessed using field-recorded response
acceleration data from an operational Wind Turbine (WT) in
Lübbenau, Germany (Klis and Chatzi, 2016a). The considered
structure was instrumented with wired high-accuracy MEMs
accelerometer sensors located at the cross-section of the WT
tower at 80 and 100m height. The instrumentation layout of the
WT is shown in Figure 4. Acceleration data were conventionally
acquired at a uniform-in-time sampling rate of 200Hz measured
for ∼10min every half an hour over a period of 29 days. For
the purposes of this work, a small, arbitrarily chosen, sub-set
of the recorded acceleration signals is compressed at different
compression levels and processed via STCS-rwPBDN and PSBS
approaches. PSD estimates and reconstructed signals in time
domain are recovered from the compressed data by application
of STCS-rwPBDN and PSBS approaches, respectively, while
time-histories and non-compressed PSDs of the as-recorded data
serve as a basis of comparison. It is expected that the assessment
of PSBS information recovery in frequency domain will be
most critical given that the level of signal stationarity of the
considered data-set is relatively low while PSBS approach relies,
theoretically, on signal stationary assumption.

The numerical assessment of both methods is performed
using an acceleration time-series recorded on the 29/12/2013 (at
15:44 p.m.) along the North direction (i.e., y-axis in Figure 4)
from the middle sensor in Figure 4 located at 80m height. The
considered acceleration recording was uniformly acquired in
time and it consists of N = 172,420 samples. Firstly, baseline
adjustment is applied to the raw time-series to remove the
mean value and other spurious low-frequency trends. Then, the
time-series is band-limited within the frequency range of [0.10,
25.00Hz] through filtering using a fourth-order Butterworth
band-pass filter.
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FIGURE 4 | Wind turbine tower and sensor instrumentation set-up (Chatzia

and Spiridonakos, 2015).

STCS-rwBPDN Approach for Time Domain
Signal Recovery
The time-domain reconstruction performance of the STCS-
rwBPDN approach is assessed for two compression ratios at
CR = {30, 45%}. For a given WT acceleration response, the
underlying signal support U is first computed to define the
signal’s sparsity level, K (i.e., number of components in the
spectral domain), as well as the variance of the noisy component,
i.e., the complementary set of the support (remaining part of the
spectral representation). As elaborated upon in the work of Klis
and Chatzi (2016a,b), this is used to prescribe error bounds on the
reconstructed signal. For the two considered CRs, the obtained
signal reconstruction estimates are illustrated in Figure 5 for
an acceleration time-window of 400 samples. Comparing the
two panels Figure 5, it becomes evident that the increase in
the number of transmitted samples results in narrowing the
estimated maximal error bounds. Figure 5 also demonstrates
the potential of the STCS-rwBPDN approach, when applied in
windows of non-stationary response signals, albeit necessitating
higher compression rates than the conventional stationary case.
The delivered error bounds allow for attributing some level of
confidence on the undertaken signal reconstruction operation,
which offers a benefit over the alternative (plain) BPDN approach
adopted by O’Connor et al. (2014).

PSBS Approach for Frequency Domain
PSD Signal Recovery
The efficacy of the PSBS approach is numerically evaluated herein
in terms of recovering quality PSD estimates from computer-
simulated compressed acceleration data. These compressed data
are derived through the application of the multi-coset sampling
pattern [section The Multi-Channel Power Spectrum Blind

Sampling (PSBS) Approach] to the corrected (i.e., baseline-
adjusted and band-pass filtered), full-length (N = 172,420
samples) acceleration time-series shown in Figure 6A. The
Welch periodogram (i.e., conventional PSD estimator) of the full-
length time-series before and after band-pass filtering is further
plotted in Figure 6B. The two PSDs are normalized to their
peak value to facilitate a comparison and have been computed
using 4,096 (=212) points in frequency domain, 8 overlapping
segments with 50% overlap, and windowing with a Hanning
envelop function. It is observed that peak PSD amplitude occurs
at ∼1.4Hz which is the dominant resonant frequency of the
monitored WT. Further, it is seen that most important signal
information lies in frequencies below 5Hz, as PSD values above
5Hz are negligible.

Given that the PSBS approach anticipates signal stationarity,
it is deemed essential to undertake data qualification test
to appraise the stationarity level of the recorded time-series
considered. To this end, the corrected data Figure 6A is divided
in seven time-frames of 2min duration and the standard non-
parametric reverse arrangement method (RAM) is used to
test statistically the stationarity hypothesis (Bendat and Piersol,
2010). The outcome of RAM application to a representative
2min long segment of the considered time-series is presented
in Figure 6C demonstrating that the stationarity hypothesis is
confirmed within a 95% confidence interval. Positive stationarity
hypothesis is confirmed at similar confidence level for the rest
of the 2 min-long segments of the data in Figure 6A. Therefore,
this WT recorded data can be treated as wide-sense stationary
at a high confidence level rendering the application of PSBS
meaningful and appropriate.

Next, the WT time-series in Figure 6A is multi-coset sampled
at three different CRs, 11, 21, and 31%, using the settings

listed in Table 1 and PSBS is applied to the compressed/sub-

Nyquist multi-coset samples to obtain single-channel PSD

function estimates using the PSD recovery formula in Equation.
Specifically, for the case of CR= 31%, the full-length acceleration
data-series (N = 172,420 samples) is divided into P = 10,776
(= N/N) blocks of lengthN = 16 each, and from each blockM=

5 samples are selected according to the sampling pattern n = [0,
1, 2, 5, 8]. These selected samples are collected in the compressed
measurement sequences ym[k] (m = 0, 1, 2, 3, 4; k = 1, 2, . . . , P)
in Equation resulting in the acquisition and transmission ofM =

53,880 compressed samples (i.e., 69% fewer samples compared
to the original signal). The estimator r̂yai ,y

b
j
[ℓ] in Equation is

then computed for i = j = 1 (i.e., single-sensor trivial case)
and ℓ ∈ [−40, 40] assuming support correlation parameter L
= 40. The latter consideration enables PSD function recovery

Ĝxx ∈ C
1296×1

in Equation with frequency discretization
step (resolution) 1ω = 4.85 · 10−3 rad/sin Equation. Similar
computational steps are taken for the cases of CR = 21 and 11%,
based on the relevant parameters in Table 1 which involve the
acquisition of 79% (i.e.,M = 35,368) and 89% (i.e., M = 18,858)
fewer samples compared to the uniformly-sampled full-length
signal, respectively.

Figure 7 plots PSD functions recovered from CR = {11,
31%} (solid red curves) in logarithmic and in linear scale. These
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FIGURE 5 | Effect of the increase of transmission level CR on the estimated error bounds: CR = 30% (Left), CR = 45% (Right).

FIGURE 6 | (A) Base-line adjusted and filtered WT response acceleration data-series; (B) normalized Welch periodogram of raw and filtered WT response

acceleration data-series in log (db-like) scale; (C) representative reverse arrangement output results for a 2-min long filtered data-series segment.

TABLE 1 | Adopted multi-coset sampling and PSBS settings.

Compression ratio (CR) 11% 21% 31%

Number of cosets (M) 14 8 5

Length of data blocks (N) 128 39 16

Sampling pattern

sequence (n)

[0, 1, 2, 6, 8, 20,

29, 39, 47, 50,

53, 60, 63, 64]

[0, 1, 3, 7, 9, 14,

18, 19]

[0, 1, 2, 5, 8]

Correlation function

support (N (2L+1))

1,152 1,287 1,296

PSD discretization step

(1ω) in [rad/s]

5.45 × 10−3 4.88 × 10−3 4.85 × 10−3

functions are normalized to their peak attained value to facilitate
comparison against the standard Welch periodogram of the
filtered full-length recorded time-series superposed on Figure 7

(dotted blue curves) and normalized in the same manner. It
is qualitatively observed that the PSBS-based recovered PSDs
lie close to the PSD of the WT data for frequencies up to

5Hz which take on non-negligible values, and therefore, contain
dependable information for modal identification purposes under
ambient/operational excitation, for the low CR value (high data
compression level). Better quality point-wise matching between
the PSBS-based PSDs and the “exact” (non-compressed) PSD of
theWT data is achieved even beyond the 0–5Hz frequency range
for the highest CR value considered (i.e., lower data compression
level) as expected.

To discuss further the level of accuracy of the proposed PSBS
approach for modal properties identification Table 2 reports the
location of the three largest PSD ordinates obtained by simple

peak-picking from the recovered functions via PSBS, f̂r,PSBS, as
well as from the standardWelch periodogram applied to the non-
compressedWT acceleration data (CR= 100%), fr,Welch. Further,
the percentage difference error

dfr

fr
=

∣

∣

∣
f̂r,PSBS − fr,Welch

∣

∣

∣

fr,Welch
; r = 1, 2, 3, 4 (21)
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FIGURE 7 | Recovered PSDs using the PSBS approach for different CRs normalized to the peak values: (A) and (B) logarithmic (db-style) scale; (C,D) linear scale.

TABLE 2 | Frequency locations of peak PSD ordinates through peak-picking and

percentage difference errors for the PSBS approach at various CRs and for Welch

periodogram applied on the full-length signal (non-compressed) data-series.

CR 100% (Non-compressive/exact) 31% 21% 11%

f1 [Hz] 0.635 0.635 0.624 0.570

(df1/f1) – (0.0%) (1.7%) (10.2%)

f2 [Hz] 1.416 1.429 1.404 1.425

(df2/f2 [%]) – (0.9%) (0.8%) (0.6%)

f3 [Hz] 4.102 4.127 4.056 4.131

(df3/f3 [%]) – (0.6%) (1.1%) (0.7%)

is also reported as a measure of the quality of the recovered
PSDs via the PSBS method. It is seen that the location of the
two most prominent PSD peaks (r = 2, 3) is retrieved with
<1% error by the PSBS approach for signal compression level as
low as 89% below the sampling rate of the original data series.
However, the accuracy drops as CR reduces (compression level
increases) for the least prominent peak, r = 1, corresponding
to an inadequately excited vibration mode whose detection is
inherently a challenging task.

ASSESSMENT FOR MODE SHAPE
EXTRACTION UNDER OPERATIONAL
LOADING CONDITIONS

In this section, the effectiveness of STCS-rwPBDN and PSBS
approaches for extracting modes of vibration and natural
frequencies is numerically assessed within the OMA context. To
this aim, response acceleration time-histories field recorded in a
typical highway overpass open to traffic are used. The considered
bridge is the Bärenbohlstrasse overpass in Zürich, Switzerland.
The structure is 30.90m long and fairly symmetric along its
longitudinal direction. It consists of a solid prestressed-slab with
two equal-length spans of 14.75m each. The deck is supported
in all directions at mid-span and in one of the two abutments,
while it is only supported in the vertical and transverse directions
at the second abutment. The deck was instrumented with a
network of 18 conventional wired accelerometers recording
vertical acceleration time-histories at 200Hz sampling rate for
∼10min per hour from 12th July 2013 to 26th July 2014. The
layout of the sensor network deployment is shown in Figure 8;
more details about the bridge and the monitoring campaign can
be found in Klis et al. (2016).
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FIGURE 8 | Sensor network layout at the deck of the Bärenbohlstrasse overpass (Klis et al., 2016).

Herein, the first 2 min-long recordings of a dataset of
18 vertical acceleration time-series simultaneously recorded on
19/06/2014 between 15:08:54 and 15:17:51 from each of the 18
sensors of the network are used. The dataset is pre-processed
in the same way as the WT data-series case-study in section
STCS-rwBPDN Approach for Time Domain Signal Recovery.
That is, they are baseline adjusted and band-limited within
[0.15, 50Hz] frequency range using a band-pass 4th-order
Butterworth filter. For illustration, Figure 9 plots the band-
pass filtered acceleration response signal recorded at sensor
#13, together with its magnitude Fourier spectrum. Further,
representative results from RAM application to a 1min long
segment of this record is provided demonstrating a very high
level of data stationarity (i.e., much higher than the WT data-set;
see Figure 6C for comparison).

Next, the first 2min of the 18 time-series are downsampled at
100Hz and treated by the STCS-rwPBDN and PSBS approaches.
Starting from the STCS-rwPBDN approach, the considered
dataset is first partitioned into R = 29 windows (frames) of NR=

400 samples, and each window is projected into the spectral
(Fourier) domain as indicatively shown in Figure 10A for an
arbitrarily chosen data-frame of sensor #1 time-series. Following
the STCS-rwPBDN methodology in section Spectro-Temporal
Compressive Sensing (STCS) Approach via rwBPDN, the spectral
(Fourier) coefficients per data frame are then thresholded with a
value ǫij = ǫl‖cij‖1/NR, j = 1 . . .R, which pertains to ǫl = 1.5,
yielding the spectral domain elements illustrated in Figure 10A.
The selected support elements are further used to form a
weighting matrix Wij per data frame. Considering next two
different CRs at {36%,11%}, the compressed samples yi (denoted
with a cross in Figure 10B) are selected and used to retrieve the
reconstructed time-domain sequence plotted in Figure 10B by a
broken line. The standard Natural eXcitation Technique (NeXT)
combined with the EigensystemRealization Algorithm (ERA) are
then used to extract estimates of the bridge deck mode shapes,

φ̂r (r = 1, 2, . . . ), and natural frequencies, f̂r (r = 1, 2, . . . ), within
an OMA context (Brincker and Ventura, 2015).

Moreover, the same dataset is treated by the PSBS approach
using the same procedure and settings as in the WT case-study

in Table 1 to recover the PSD matrices Ĝxixj ∈ C
N(2L+1)×18 in

Equation for CR = {31, 21, 11%}. The standard FDD algorithm
ofOMA (Brincker andVentura, 2015) is applied to thesematrices
to find estimates of estimates ofmode shapes, φ̂r(r= 1, 2, . . . ), and

natural frequencies, f̂r (r = 1, 2, . . . ), of the monitored bridge.
Indicatively, the first row of panels of Figure 11 plots the first
four estimated mode shapes of the bridge for CR = 11% using
the PSBS with FDD approach.

The quality/accuracy of modal properties extracted through
the STCS-rwPBDN and PSBS approaches is assessed by
comparison to natural frequencies, fr (r = 1, 2, . . . ), and mode
shapes, φr (r = 1, 2, . . . ), obtained by application of the standard
FDD to the full-length (non-compressive) dataset of recorded
acceleration time-histories which are treated as the “exact” ones.
The second row of panels of Figure 11 plots the first four
exact mode shapes and further reports the corresponding natural
frequencies. Table 3 reports percentage difference errors of the
first four natural frequencies of the bridge deck obtained through
coupling the STCS-rwPBDN with NeXT-ERA as well as the PSBS
with FDD for different CRs with respect to the exact (non-
compressive) ones as per Equation (21). It further collects the
corresponding Modal Assurance Criterion (MAC) values defined
by (Brincker and Ventura, 2015)

MAC =

∣

∣

∣
φT
r φ̂r

∣

∣

∣

2

‖φr‖
2
2

∥

∥

∥
φ̂r

∥

∥

∥

2

2

r = 1, 2, 3, 4 (22)

to quantitatively compare the mode shapes extracted through
the two compressive/sub-Nyquist approaches considered for
different CRs with the exact mode shapes. As a commonly used
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FIGURE 9 | (A) Base-line adjusted and filtered bridge acceleration data-series from sensor #13 in Figure 8; (B) normalized Fourier amplitude spectrum of the

data-series in (A); (C) representative reverse arrangement output results for a 2-min long filtered data-series segment.

FIGURE 10 | Spectral domain projection (left) and time-domain recovery (right) of data-frame #4, channel #1 at CR = 36%. Crosses indicate transmitted samples

used in the recovery process.

criterion, estimated mode shapes withMAC > 0.90 are regarded
to be acceptably close to the exact ones.

By examining the numerical data in Table 3, it is seen that
both STCS-rwPBDN and PSBS approaches are quite accurate in
identifying natural frequencies as the error df/f is well below
1% even for the lowest CR = 11% value corresponding to
average sampling rate of 89% below the Nyquist rate which
equals to 100Hz for the dataset considered. Further, the PSBS
approach yields accurate mode shapes across the board for CR
as low as 21%. For the lowest CR (=11%), PSBS is still capable
of extracting the 1st and 3rd modes with acceptable accuracy,
as can be visually appreciated by comparing the mode shapes
in Figures 11A,C with Figures 11E,G, respectively. However,
PSBS fails to pass the MAC > 0.90 criterion for 2nd and
4th modes for CR = 11% as highlighted in boldface font in
Table 3 (compare also Figures 11B,D with Figures 11F,H). This
is readily attributed to the fact that 2nd and 4th modes are
significantly less excited than 1st and 3rd modes as evidenced by
the amplitude of the respective Fourier coefficients in Figure 9B.
Higher than 11% CR (i.e., larger number of measurements) is
required for the PSBS approach to accurately probe into the least
excited 2nd and 4th modes. On the antipode, the STCS-rwPBDN

approach provides good estimates for all four modes even at
CR= 11%.

To highlight the practical merit of considering reduced
CR values, estimates of daily energy consumption and battery
lifetime savings for a single wireless sensor node of the WSN
in Figure 8 are further reported in Table 4. The data account
for only data transmission power requirement as this is by
far the most energy demanding sensor operation (e.g., Lynch,
2007). The reported estimates are based on the assumption
that each sensor acquires 2min long acceleration signals at
Nyquist rate (CR = 100%) with Fs = 100Hz (Ts = 0.01 s)
under operational conditions every 1 h (i.e., a dataset of Q = 24
signals are collected daily per sensor with each signal comprising
12,000 measurements for CR = 100%). Power consumption
during transmission of Pt = 103.8 mW is taken based on the
specification of a typical wireless sensor used for SHM: the
WiseNode v4 developed by Novakovic et al. (2009). Table 4
reports transmission time, energy consumption, and battery
lifetime for three different CRs previously considered in Table 3.
For illustration, computations pertaining to the case of CR= 11%
are presented in detail for which only 12,000 × 0.11 = 1,320
compressed measurements per hour are wirelessly transmitted.
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FIGURE 11 | Mode shapes of Bärenbohlstrasse overpass: (A–D): estimated using the PSBS approach for CR = 11%; (E–H): “exact” (non-compressive) by

application of FDD to the full-length recorded data.

TABLE 3 | Quantitative assessment of the accuracy of natural frequencies and mode shapes for the bridge case-study obtained by the PSBS with FDD and by the

STCS-rwPBDN with NeXT-ERA approaches for different CRs vis-à-vis standard non-compressive FDD approach.

Non-compressive FDD STCS-rwPBDN plus NeXT-ERA PSBS plus FDD

CR = 100% CR = 36% CR = 11% CR = 31% CR = 21% CR = 11%

Mode f [Hz] df/f [%] MAC df/f [%] MAC df/f [%] MAC df/f [%] MAC df/f [%] MAC

1 7.62 0.63 1.00 0.52 0.98 0.57 1.00 0.20 0.99 0.68 0.99

2 10.35 0.18 0.98 0.32 0.98 0.04 0.98 0.32 0.91 0.04 0.89

3 11.72 0.19 0.99 0.14 0.99 0.24 0.99 0.35 0.98 0.57 0.94

4 12.50 1.22 0.96 0.78 0.94 0.15 0.98 0.31 0.93 0.17 0.64

Assuming that ADC units with 16 bits (i.e., 2 bytes) resolution
are used, IFWD = 2,640 bytes of data package information are
generated per compressed sequence taking t = (IFWD/It1) × t1
= 7.54 s to be wirelessly transmitted to the server, where It1 = 7
bytes is the information carried within one data package and t1 =
0.02 s is the time required for package transmission (Novakovic
et al., 2009). Thus, ttot =Q× 7.54= 181 s (or 0.05 h) are required
for the daily transmission of all compressed acceleration response
data, consuming Etot= Pt×ttot = 18.79 J of energy per day. It is
further assumed that sensor energy supply of 3V comes from
two AA-sized batteries with nominal voltage Vn = 1.5V and
capacity Cn = 3,000 mAh, providing energy Eb= 64,800 J. A
continuous discharge current is taken to occur in the batteries
resulting in ξ = 1% annual energy loss. Then, sensor battery

lifetime, given by

Tb =
Eb

Etot + Eb × ξ/365
, (23)

is estimated as Tb= 104.8 months.
Similar calculations are performed to estimate Etot and Tb

for CR = 21, 31% as well as CR = 100% (non-compressive
transmission) shown in Table 4. The latter case is the one most
widely considered in the literature in comparative studies on
energy savings quantification in wireless sensors (e.g., O’Connor
et al., 2013, 2014; Klis and Chatzi, 2016b). In this respect, Table 4
reports energy reduction and battery gain ratio for all CR< 100%
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TABLE 4 | Daily sensor energy consumption and battery lifetime gains due to

wireless data transmission for various CRs.

Compression

ratio (CR)

100% (non-compressive) 31% 21% 11%

Transmission

time (ttot) [h]
0.46 0.14 0.10 0.05

Energy spent

(Etot ) [J]
170.83 52.96 35.87 18.79

Energy reduction

(ER)
– 69% 79% 89%

Battery life (Tb)
[months]

12.5 39.4 57.3 104.8

Battery gain

Ratio (BR)
– 3.15 4.58 8.38

examined with respect to CR= 100% given as

ER =
Etot|CR = 100 − Etot|CR

Etot|CR = 100

× 100 % and

Tb =
Tb|CR

Tb|CR = 100

, (24)

respectively. Evidently, battery life expectancy increases
dramatically as CR reduces: it more than triples for CR = 31%
compared to non-compressive sampling/transmission, while
it increases more than 8 times for CR = 11%. In this respect,
through collective consideration of the data in Tables 3, 4, it
can be concluded that the considered approaches effectively
support more sustainable wireless monitoring systems having
reduced maintenance costs and environmental impact associated
with sensors battery replacement which can be scheduled at
much longer intervals without significant deterioration to the
accuracy of the estimated modal properties compared to Nyquist
data sampling.

Note, however, that in a practical setting, the choice of
CR (and corresponding battery lifetime gains) is normally
dictated by the sought level of accuracy in extracting modal
properties according to the monitoring purpose and objectives.
If accurate modal properties estimation in the absolute sense
is desired (e.g., for updating computational models of as-
built structures, or for designing/assessing the performance of
vibration control devices, such as tuned mass dampers, to reduce
dynamic response of structures) higher CR values should be
adopted (e.g., CR > 31%). In such cases, battery lifetime gains
may be relatively low but, at the same time, these gains may
be a less important practical consideration. On the antipode,
lower CR values (e.g., CR = 21% or lower) may be adopted
in monitoring campaigns for which extending sensor battery
lifetime becomes a priority over modal extraction accuracy. One
such example is in long-term/permanent structural monitoring
deployments aiming to detect structural damage (e.g., due to
natural deterioration or after an extreme event), in which case
reducing battery replacement frequency, and thus maintenance
costs, becomes important and may be a main criterion for
installing a monitoring system in the first place (e.g., O’Connor
et al., 2014), while accuracy of modal properties in the absolute

sense is less important since changes to modal properties (as a
function of environmental conditions) are of interest.

In every case, the data furnished in Tables 3, 4 are
only indicative and should be used/interpreted comparatively
rather than in an absolute. Indeed, recorded measurements
considered to derive modal properties have been obtained
by a wired sensor network and, therefore, do not account
for the influence of errors that may be encountered in
WSNs, such as loss of synchronization. Moreover, power
consumption (and thus battery lifetime gains) varies from sensor
to sensor in a WSN and is dependent on several factors
including environmental conditions, distance from sensors to
base station, data communication protocols, etc. In this regard,
field deployment of WSNs operating on PSBS and STCS-
rwPBDN is required to appraise the quality of modal properties
and battery gains in an absolute application-specific sense; such
consideration falls outside the scope of this work.

CONCLUDING REMARKS

The applicability and performance of two recently proposed
approaches for output-only modal identification supporting low
energy consumption wireless sensors has been comparatively
demonstrated through numerical assessment using field recorded
acceleration data. Both the approaches aim to reduce wireless
data transmission payloads by considering compressed structural
acceleration responses acquired non-uniformly in time at sub-
Nyquist average sampling rates. The first, STCS-rwBPDN,
approach aims to recover acceleration time-histories in time-
domain from low-rate randomly acquired measurements using
the rwBPDN algorithm of compressing sensing. The accuracy
and efficiency of this operation requires knowledge of the signal
support in the frequency domain prior to transmission of
compressed measurements from sensor nodes to a central server
where time-domain reconstruction takes place. This knowledge
is gained through sampling and interrogation of full-length
acceleration data at the sensing nodes as well as sensors/server
exchange of pertinent information. In this regard, STCS-
rwBPDN can recover the time trace of response acceleration
signals in a deterministic setting and, therefore, can be coupled at
the post-processing back-end with any standard OMA technique
for modal properties extraction. Nevertheless, this flexibility
comes at the cost of a relatively sophisticated wireless data
communication strategy as well the necessity to sample signals
at Nyquist frequency or above at sensors front-end. The second,
PSBS, approach is effectively a spectral estimation technique
aiming to recover second-order statistics (i.e., correlation or PSD
functions) of response acceleration signals treated as stationary
random processes and acquired through low-rate deterministic
non-uniform-in-time multi-coset sampling. Compared to STCS-
rwBPDN, the main practical advantage of the PSBS-based
approach is its simplicity of wireless communication within
WSNs as well as minimal on-sensor data interrogation. Low-rate
multi-coset samples can be acquired using some pre-specified
sampling pattern at each sensor and communicated as-recorded
directly to a server. This high level of data transmission simplicity
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is made possible by the inherent signal agnostic attribute of PSBS
which does not require any prior knowledge about signal spectral
support. However, PSBS approach cannot retrieve time traces
of the acquired signals and this limits the system identification
methodologies that can be applied at the back end of the
approach to those relying on only second-order signal statistics
for modal properties extraction. One such method is the FDD
which was herein coupled with PSBS to deliver mode shapes
and natural frequencies directly from the low-rate multi-coset
sampled response accelerations.

The validation of the two approaches was carried out
by considering field-recorded acceleration data obtained from
conventional wired sensor deployments in an operating on-
shore wind turbine and in a highway overpass (bridge) open
to traffic. The recorded data have been compressed to different
levels (CRs) and processed by both approaches. PSBS captured
successfully salient frequency domain information for the dataset
of the wind turbine for CR as low as 11% (i.e., using 89%
less measurements from the conventionally sampled dataset).
This demonstrates the potential of the method to treat real-life
data that may deviate from perfect stationary signal conditions.
Similarly, STCS-rwBPDN was shown to recover faithfully time
traces of the wind turbine data set at same low CR levels (11%). In
view of these results, it is concluded that bothmethods are equally
promising for SHM of wind turbines using low-rate acceleration
measurements. Moreover, STCS-rwBPDN coupled with standard
NeXT-ERA was able to retrieve quality estimates of mode shapes
and natural frequencies of the bridge case-study again at CR =

11%. PSBS was also able to capture with high accuracy the same
mode shapes for CR = 21% while only the two most significant
ones were retrieved at CR= 11% satisfactorily.

In view of the herein reported numerical results, it is
concluded that both the considered approaches are capable for
accurate output-only system identification of large-scale civil
infrastructure while being, to a good extend, complementary.
Moreover, it is noted that both approaches can be used to
acquire alternative types of signals to acceleration data, such as
tilt measurements and dynamic strains considered in SHM. It
is thus envisioned that smart sensing nodes may incorporate
both these approaches for reducing data transmission payloads
in WSNs which will allow operators to switch between the two
depending on their monitoring needs at any given time: time-
series recovery at, perhaps, some increased data transmission
requirements and more intense on-sensor processing or modal
properties recovery at minimum wireless data exchange and with
minimum on-sensor data interrogation.

Still, note that all datasets considered in this work pertain to
wired sensors and, therefore, are free from errors that are more

common in WSNs, such as missing data or gaps in data due to
data loss in wireless transmission, loss of synchronization among
sensors, etc. The extent of such errors and its potential impact
to the quality of monitoring (e.g., accuracy of extracted mode
shapes and natural frequencies) is application-specific depending
on factors, such as the technology and quality of the sensor nodes
used, the topology ofWSN, the nature and scale of the monitored
structure, the environmental conditions etc. Moreover, the same
factors influence sensor energy consumption and ultimately
battery lifetime. In this regard, consideration of long-term real-
life field deployments of WSNs operating on the examined
approaches is further warranted to verify the accuracy and battery
life prolongation of the approaches for full-fledged monitoring of
large-scale civil engineering structures. This consideration is left
for future work.
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Today’s complex modern infrastructure requires robust and autonomous condition

assessment as they continue to age with increasing operational loads and extreme

climatic events. Structural Health Monitoring (SHM) has recently gained significant

interests in inspection and maintenance of large-scale structures. However, a large

amount of raw data resulting from the data logger of these SHM systems require

appropriate tools to visualize and diagnose the data systematically. Building Information

Modeling (BIM) is a powerful data management tool that can be utilized as a base

platform to analyze and visualize long-term SHM data. Current BIM-based approaches

have the capabilities of facilitating design, production, and construction management

of structures. BIM models in such approaches can serve as static information that

contains as-built data. The objective of this paper is to take one step forward from

static toward dynamic BIM by representing and visualizing real-time SHM data. The

proposed framework developed in this study features an online visualization of data,

real-time system identification, and efficient decision-making. In this paper, a steel bridge

located in London, Ontario (Canada), is utilized as a case study where both BIM and SHM

are integrated with a unified fashion. The proposed framework attempts to improve the

visualization of SHM data and facilitates infrastructure owners in real-time tracking of

critical transport infrastructure.

Keywords: structural health monitoring, building information modeling, visualization, long-term monitoring,

system identification, Autodesk, TVF-EMD, bridge management systems

INTRODUCTION

Civil infrastructure such as bridges, buildings, dams, wind turbines, and pipelines are prone to
deterioration as they age. Keeping track of their usage, performance, and integrity provides impetus
to maintain public safety and achieve improved satisfaction to the infrastructure owners and end-
users. In the past, numerous catastrophic failures occurred world-wide; most of these tragedies
were due to progressive deterioration of structures over the years (Mirza and Shafqat Ali, 2017;
Cawley, 2018), demanding an immediate need for systematic monitoring of structures based on
their current condition. Structural Health Monitoring (SHM) offers attractive strategies to retain
public safety, undertake rapid infrastructure management, and recover a structure from its critical
state in ease (Durager et al., 2013; Newhook and Edalatmanesh, 2013). Changes in structural
performances can be identified by detailed SHM assessments (Okasha and Frangopol, 2012; Miao
et al., 2018).
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SHM offers robust diagnostic and prognostic tools that
can detect critical responses of a structure and evaluate any
unusual symptoms, serviceability, and safety concerns (Carden
and Fanning, 2004; Wu and Jahanshahi, 2018). Most of the
conventional inspection methods require visual inspection by
maintenance engineers. Recently developed SHM techniques
utilized the measured data acquired by sophisticated sensors
(Ellenberg et al., 2014; Sankarasrinivasan et al., 2015; Chen et al.,
2016; Na and Baek, 2017; Sadhu, 2017; Sony et al., 2019) which
can expedite the accuracy of damage detection as compared to
visual inspection (Abe, 1998) using continuously monitored data.
An SHM system, with the aid of long-term monitored data, can
evaluate the structural integrity and perform accurate damage
assessment (Aktan and Grimmelsman, 1999; Somwanshi and
Gawalwad, 2016; Sadhu et al., 2017). Most of these techniques
(Farrar and Worden, 2013) are data-driven in nature, where
either modal (e.g., natural frequency, damping and mode shapes)
or physical (e.g., stiffness and mass) parameters are estimated or
tracked based on the measured data. Any discrete or progressive
changes in these parameters are considered as the potential
condition indicators for damage identification.

Figure 1 shows a typical representation of an SHM system
where the sensors are connected to a data acquisition (DAQ)
system, and send the acquired raw data to a central unit or a
computer. The following post-processing phase includes sorting
and de-noising of the data, and determines the vital information,
including critical deflections and modal parameters such as
frequency, damping ratio, and mode shapes, etc. Once such
parameters are studied and documented from the measured
structural response over a long period, automated alerts can be set
up using the appropriate thresholds for safe and reliable use of the
public infrastructure. However, the interpretation of long-term
data collected from continuous monitoring can be overwhelming
due to the processing of an enormous amount of data. Automated
processing and visualization of data facilitate accurate decision
making in a timely manner. Building Information Modeling
(BIM) is a digital representation of physical and functional
characteristics of a structure (Ren et al., 2019), which is utilized
here for structural monitoring and maintenance.

BIM is not only a computer-aided-design tool but also a
three-dimensional (3D) modeling and information management
tool that can aid the stakeholders and infrastructure owners in

FIGURE 1 | SHM framework.

monitoring projects remotely. Traditional BIM aims at design
and life-cycle analysis of a new building and its construction
(Arayici and Aouad, 2010; Grilo and Jardim-Goncalves, 2010; Liu
et al., 2014; Singh and Sadhu, 2019). BIM is capable of integrating
various engineering aspects through 3D spatial representation.
Capabilities of BIM are not only limited to being a software
environment, but it also serves as a visualization tool providing
a better understanding of the project and helping designers
to convey the design information and ideas to the project
owners (Ivson et al., 2019). With all the information about each
component being in one place in a single model, it enables end-
users to access such information at any time during its lifecycle.
Such capability of big data inventory is utilized in this study
and explored how it can provide a real-time representation of
SHM data to the end-users. During long-term monitoring of
structure, raw and preprocessed data can add up to hundreds
of gigabytes of data, which makes the process of data retrieval
prone to errors (Alampalli et al., 2016; Cremona and Santos,
2018; Almasri et al., 2019). Damage detection can be visualized in
the model by assimilating the sensor data within the BIM model.
BIM uses a static data source to assess the structure. Therefore,
the sensor data, while linked to BIM, can extend the application
of BIM model from static to a dynamic model as it can feature
real-time data retrieval and interpret the current performance of
the structure.

Recently, there have been several efforts to develop BIM-based
SHM strategies. For example, (Zhang and Bai, 2015) created
a low-cost structural condition assessment device that used
BIM computing environment for automated health management
of structures (Chen et al., 2014) developed a dynamic BIM
framework by developing a prototype to insert real-time data
into the BIM model. The dynamic BIM model developed in the
study represented real-time building information via connecting
the sensor data with the BIM model. A geothermal bridge deck
de-icing system monitored with embedded sensors was used
as a case study (Delgado et al., 2017) formulated a standard
data model to include and visualize SHM data directly to
BIM models. A case study was conducted in a pre-stressed
concrete girder bridge featuring a fiber-optic based SHM system.
The goal to accurately represent the SHM sensory system,
including damage sensitive features in the object properties, was
achieved by Grosso et al. (2017). The authors demonstrated
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FIGURE 2 | Virtual sensor.

the linking of data to sensor representations within the
BIM model.

The viability of bridge information modeling with different
modules of bridge management systems was explored by
Marzouk and Hisham (2011). (Huston et al., 2016) worked on
the integration of BIM and decision-making systems with SHM
involving collection, storage, transmission, and processing of
information obtained from sensor data and design documents.
The extended Industry Foundation Classes (IFC) schema,
referred to as IFCMonitor was formulated by Theiler et al. (2017)
to facilitate the documentation of SHM systems since the current
schema was unable to support the full description of modeling
related information. The automatic generation of parametric
building models of SHM systems and efficient integration with
other data sets was enabled by Delgado et al. (2018). Recently,
Boddupalli et al. (2019) developed a data visualization tool for
systematic decision making using the computing environment of
BIM as a primary platform.

The significant limitations of these studies are the lack
of a single standardized neutral exchange format for sharing
information among the various data software. The problem
arises when attempting to extract data from sensors in many
different protocols. The handling of large volumes of data
requires high-performance hardware. Lack of interoperability is
another challenge in the seamless integration of an SHM system
with the BIM platform. There is a lot of software commercially
available for modeling and development of structures. However,

the development of various computational tools such as add-
ins or plug-ins is undertaken in a standalone fashion, which
is also inefficient to address the complications arising from
multiple data sources. The existing BIM-based SHM tools lack
interoperability and information sharing with other software
and technology (Grilo and Jardim-Goncalves, 2010; Cemesova
et al., 2015; Karan and Irizarry, 2015; Tomasi et al., 2015).
Moreover, the capability of system identification and evolution
of structural parameters over time are not available in the existing
visualization tools in the literature, which forms the main focus
of the proposed research.

After a basic introduction of BIM and SHM techniques and
identification of the limitations in the current literature, the
proposed method is discussed in the next section. The proposed
framework is finally illustrated using a case study consisting
of visualization of the bridge SHM data followed by results
and conclusions.

PROPOSED FRAMEWORK

This section provides an overview of the proposed methodology
implemented to visualize SHM information within BIM through
Autodesk REVIT R©. The proposed framework utilizes the relative
merits of SHM and BIM to develop a visualization tool for
monitoring of large-scale infrastructure. This study uses REVIT
and MATLAB (MathWorks, 2018) online portal to integrate the
sensor information with condition data and diagnostic results.
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Virtual sensors in this study are used to visualize the monitoring
related information in the BIM environment. Accelerometer
sensors used for vibration data collection are modeled in the
REVIT as a new class of family, as shown in Figure 2. Sensor
metadata is used to create a sensor family and can be accessed
by highlighting any sensor from the BIM model. The dynamic
behavior of the structure is analyzed using the sensor data
in MATLAB.

Virtual Sensors
Virtual sensors used in this study to mimic the sensors installed
on a real structure are created as a new REVIT family using the
IFC standard of data exchange shown in Figure 3. IFC is used
by building-model based applications to exchange data with each
other, and it constitutes a specification that can describe model
data related to all phases of the life-cycle of a project (Augenbroe
et al., 2004; Rio et al., 2013). The IFC model represents tangible
building elements such as doors, walls, ceilings, beams, etc. and
even more abstract entities such as time, schedule, space, cost,
organization, etc. There are different IFC classes for each element,
while the sensors are included in the IFCBuildingControls domain
module. There are two classes associated with sensors; IFCSensor
and IFCSensorType. As the sensors are defined in the BIM
environment, sensor information can be accessed using the
properties box of each sensor. The link to MATLAB is also
connected with the properties box. By clicking the MATLAB
link, the user is taken to the MATLAB online portal, where
system identification scripts can be run. Subsequently, the system
identification results can be analyzed for decision-making.

System Identification
The data and system identification information of SHM is
embedded within the BIM software such that long-term health
monitoring information can be visualized. A wide range of
system identification methods (Dessi and Camerlengo, 2015;
Perez-ramirez et al., 2016; Pappalardo and Guida, 2018; Barbosh
et al., 2018; Mao et al., 2019) were developed by the researchers
to estimate modal parameters from the measured vibration data.
Most of these techniques are suitable where all critical locations
of the structure are instrumented. For the visualization purpose,
each sensor installed in a real structure corresponds to a virtual
sensor in the BIMmodel. Therefore, while visualizing a particular
virtual sensor, each sensor creates a time history that requires
a system identification method that is capable of using only
a single channel measurement. In this study, a newer time-
frequency method, time-varying filter-based empirical mode
decomposition (TVF-EMD) (Li et al., 2017; Lazhari and Sadhu,
2019) is used to conduct system identification using single-
channel measurement.

Consider a linear with n degrees-of-freedom (DOFs), damped
and discrete lumped-mass structural system, subjected to a
random input force, u(t):

Mÿ (t)+Cẏ (t)+Ky (t)=u (t)

where, M, C, and K are mass, damping, and stiffness matrices,
respectively, and y(t) is a displacement response vector at various

FIGURE 3 | IFC sensor data.

available DOFs. A state-space model can be used to find the
solution for a dynamical system given above:

y=

[

y1
y2

]

ẏ=Ay+Bu

p=̂C y+Du

where A is state matrix, B is the input matrix, Ĉ is the output
matrix, and D is the transmission matrix. Under excitation u(t),
the resulting solution can be written in terms of expansion of
vibration modes:

y=ϕη

where y and η are response and modeshape matrix, respectively.
ϕmxn is the mode transformation matrix. n and m are the
number of modal responses and measurements, respectively.
The measurement at k-th DOF (k=1,2,. . . .,m) from the above
equation can be expressed as:

yk (t)=

n
∑

j=1

ϕkjηj(t)

TVF-EMD is capable of eliminating the mode-mixing or
end-effects under the presence of closely spaced modes or
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FIGURE 4 | Proposed framework of the BIM-based SHM tool.

measurement noise. This method performs local cut-off filtering
where a signal is filtered into local high-pass and low-
pass frequency components and decomposed into narrowband
signal components called Intrinsic Mode Functions (IMFs). By
performing TVF-EMD of the kth measurement yk(t) in terms of
IMFs (i.e., ikj), one can get (Lazhari and Sadhu, 2019):

yk (t)=

n
∑

j=1

ikj(t)

By comparing the above two equations, we get:

ϕkjηj (t)= ikj(t)

By taking the ratio of above equations for k-th and l-th DOF, the
normalized mode shape ordinates at k-th DOF w.r.t. l-th DOF
can be found as:

ikj

ilj
=

ϕkjηj(t)

ϕljηj(t)
=

ϕkj

ϕlj
= ϕ̂kl

The details of TVF-EMD method can be found in Lazhari and
Sadhu (2019) and are not repeated here. TVF-EMDuses the root-
mean-square (RMS) value of the resulting IMFs to extract the
modal responses. However, all the frequencies with energy higher
than the average RMS value cannot be utilized to differentiate
the actual structural frequencies from the background noise. To
automate the identification step, it is proposed that when the

difference between the respective Fourier peaks in an IMF ismore
than a specific percent (say, 70%) of the higher peak value, then
the IMF represents a structural modal response rather thanmixed
modal response.

Proposed Visualization and

Decision-Making
The proposed framework has three-fold advantages of online
visualization of data, real-time system identification, and decision
making by tracking the system identification results obtained
from themeasured data. Figure 4 shows the proposed framework
that can automate system identification and visualization of
SHM data in the BIM environment. First, a parametric 3D
model of the structure is developed in Autodesk REVIT. Since
the virtual sensors are not predefined elements in the REVIT
library, these are manually created using a new REVIT family
and IFC attributes. On the other hand, physical sensors, which
are connected to a DAQ system, record the SHM data for
structural condition assessment. Therefore, accelerometers are
used to collect the SHM data, and virtual sensors are created in
the BIM environment using IFC (as shown in Figure 3) to mimic
the physical sensors on site. Data file from each physical sensor is
associated with the respective virtual sensor in REVIT. System
identification is performed using the TVF-EMD algorithm,
which is integrated with REVIT through an online MATLAB
portal linked via the “Properties” box of the virtual sensor in the
BIM model. Owing to its capability of analyzing a single sensor
data associated with a virtual sensor, the TVF-EMD is adopted
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FIGURE 5 | (A) Sensor instrumentation of steel bridge in London, Ontario, (B) data acquisition system, and (C) sensor.

to undertake system identification from single-channel data. It
is automated and can be implemented in real-time for condition
assessment of structures within the BIM platform. A case study
is presented next to demonstrate the implementation of the
developed framework.

CASE STUDY

The proposed framework is validated using a 300 feet pony-truss
bridge in London, Ontario, shown in Figure 5A. This section
demonstrates the application of the proposed visualization tool
developed in this study. Bridge vibrations were monitored
while different numbers of vehicles traveled over the bridge.
A virtual model for the bridge was developed in REVIT and
sensor data was integrated with the virtual sensors. System
identification results from the SHM data were shown in a
user-friendly format integrated with the visualization platform
of REVIT.

BIM Model
For the framework presented in this study, a structural model
is developed that closely represents the real bridge. The data
attributes define the physical, geometrical and abstract properties
of the structure. REVIT is used as a BIM tool to visualize the
bridge virtually. With the help of 2D drawings provided by the
City engineers, a virtual model of the bridge is developed into
a 3D model with the generic parameters and properties using
REVIT shown in Figure 6.

This model is used to define the real-time dynamic behavior
of the bridge that can be used for visualization of long-term
monitored SHM data. Sensors feed the vibration data to DAQ,
which was connected to a computer. The raw data file generated
by the DAQ system was used to perform system identification
and served as a link to connect the BIM model with the
MATLAB online portal. Virtual sensors that were not pre-defined
in Autodesk REVIT were manually created in the BIM model. A
new REVIT family was used to create the accelerometer sensor
virtually and IFC exchange format was used to define the virtual
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sensor attributes shown in Figures 2, 3, respectively. Figure 6
shows the virtual sensors placed in the virtual BIM model of
the bridge. Properties related to sensors used for this particular

FIGURE 6 | Three-dimensional virtual model for bridge and sensor.

study were defined in REVIT shown in Figure 7. Upon selecting a
particular virtual sensor in the bridge, its properties box shows all
the data associated with that specific sensor, including sampling
frequency, raw datasheet location, sensor serial and location,
MATLAB link for system identification, etc.

Instrumentation
The bridge was instrumented with accelerometers to evaluate its
modal parameters and analyze and predict the structural health
of the bridge. Nine high-sensitive sensors were placed along the
walkway of the bridge, and the sensors were set up to measure
uniaxial vertical vibration. The sensors used for the testing had
a sensitivity of 10 V/g. A sampling frequency of 200Hz was
used. Sensors were placed at a distance of 10, 20, 50, and 100
feet on both sides from the centerline of the bridge shown in

TABLE 1 | Vehicle count of the test data.

Test # Bus Car Truck Total

1 0 11 0 11

2 1 20 1 22

3 1 29 3 33

4 3 Jumps of 2 subjects

5 3 Jumps of 3 subjects

6 3 Jumps of a single subject

FIGURE 7 | Sensor metadata defined in Autodesk REVIT.

Frontiers in Built Environment | www.frontiersin.org 7 May 2020 | Volume 6 | Article 76200

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Singh and Sadhu Visualization Tool for Infrastructure Monitoring

FIGURE 8 | DAQ file containing raw and unprocessed data.

FIGURE 9 | Execution of system identification in REVIT using MATLAB online portal.
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FIGURE 10 | Time history of the measured response at the mid-span of the bridge.

FIGURE 11 | Fourier spectra of the (A) measured free vibration data (B) measured vehicle data.

Figure 5A. The data collection was performed through the DAQ
system by connecting it with sensors using BNC cables and a
laptop using a USB cable shown in Figures 5B,C. Test details
regarding the number and class of vehicles during each test run

are tabulated in Table 1. The duration of each test was between
30 s to 5min. Tests 4, 5, and 6 include the free vibration response
recorded during jumping of a single subject near the center of
the bridge.
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Implementation of Proposed Visualization

Tool
The data collected from the building and MATLAB scripts
(MathWorks, 2018) were linked with the virtual sensors that
were modeled in REVIT shown in Figures 2, 7. By selecting a
sensor, its related properties are shown in the properties box,
including serial number, date, time, sensor location, sampling
frequency, datasheet link, MATLAB link, etc. The properties box
for a highlighted sensor is shown in Figure 8. After clicking on
the MATLAB link for a particular sensor, the user is taken to the
MATLAB online portal, which performs the system identification
using the datasheet assigned to the specific sensor. The DAQ file,
containing the raw and unprocessed data collected by the sensors,
is saved as a text file and is shown in Figure 8.

TABLE 2 | Frequencies (in Hz) identified in free vibration tests.

Test # ω1 ω2 ω3 ω4

4 4.43 5.41 9.24 14.83

5 4.45 5.41 9.22 14.83

6 4.42 5.44 9.15 14.78

This file is linked with the virtual sensor of the BIM model
of the bridge and can be accessed by clicking on the datasheet
link on the properties box of the virtual sensor. This text file
is also uploaded on the MATLAB online compiler along with
the scripts of the TVF-EMD method. By clicking on a sensor
in the BIM model, the respective sensor gets highlighted, and a
Property box shows up in the REVIT window, and all necessary
sensor information is contained in this icon shown in Figure 8.
By clicking on the datasheet link in the properties box, the user
is taken to the raw data file linked to that particular sensor
containing unprocessed data. By clicking the MATLAB link,
highlighted in Figure 9, the user is taken to MATLAB online
portal. In the portal, by executing the MATLAB scripts, system
identification results can be generated using single-channel
measurement through the TVF-EMDmethod.

The framework presented in this study is used to perform
modal identification using a single sensor measurement. The
time history of the physical response of the bridge is shown
in Figure 10. The method used in this study successfully
extracts the mono-component modal responses. The resulting
IMFs (i.e., extracted modal responses) are separated by
the TVF-EMD algorithm. The resulting mono-component
responses and the identified structural frequencies are
discussed below.

FIGURE 12 | Fourier spectra of mono-component modal responses obtained from TVF-EMD.

Frontiers in Built Environment | www.frontiersin.org 10 May 2020 | Volume 6 | Article 76203

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Singh and Sadhu Visualization Tool for Infrastructure Monitoring

TABLE 3 | Frequencies (in Hz) identified from the different sensors.

Sensor # ω1 ω2 ω3 ω4

1 4.45 5.52 9.18 14.82

2 4.45 5.45 9.41 13.15

3 4.43 5.45 9.92 14.82

4 4.44 5.46 9.91 14.82

5 4.44 5.47 9.14 14.81

6 4.43 5.47 9.15 14.84

7 4.45 5.45 9.14 14.82

8 4.42 5.45 9.45 15.50

9 4.45 5.53 9.15 14.82

Free Vibration
Free vibration tests were conducted to estimate the natural
frequencies of the bridge. To achieve this, the bridge was excited
by jumping of a subject at the center of the bridge. This test
has another significance of mimicking the pedestrian activity
(walking or running) on the bridge. As shown in Figure 11A and
Table 2, around four Fourier peaks can be observed between 0
and 20Hz, indicating four natural frequencies of the bridge in
this range, which are consistent with traffic-induced vibration.

Traffic-Induced Vibration
Test runs are selected for analysis in such a way that represents
live traffic conditions. All the test runs except 4, 5, and 6 include
the structural response generated by passing vehicles over the
bridge. Test 1, 2, and 3 are selected for further analysis as their
vehicle count is 11, 22, and 31, respectively, which represent a
wide range of vehicles passing over the bridge. Figure 11B shows
the processed data from the first three tests, which cover most
of the range of vehicle count. As seen in the figure, Fourier
amplitudes have higher values with an increasing number of
vehicles in the bridge.

TVF-EMD is used to acquire the bridge frequencies from
the single-channel measurement or vibration response generated
by a bus driving over the bridge, and the results are shown in
Figure 12. The resulting IMFs are separated by the TVF-EMD
method. The mono-component responses and the identified
structural frequencies are shown in Figure 12. Table 3 contains
the modal frequencies obtained from different sensors generated
using the proposed framework.

CONCLUSIONS

This study investigated the potential of BIM in data management
and maintenance of infrastructure using a web-based workflow.
The use of different data formats can be omitted since the
process is web-based and features real-time integration of sensor
data with the BIM model. The proposed framework enhances
software interoperability and frequent communication, which
are required on civil infrastructure projects. The extension
of the BIM model from static to dynamic enables the real-
time link between the data-driven SHM techniques and BIM
software. The web-based approach can be utilized to identify
the modal frequencies from the sensor data using TVF-EMD

method used in this study. In this way, system identification is
integrated within the BIM model which can be beneficial for
better interpretation of SHM data. By linking the real sensory
data with the virtual sensor, this study extends the BIM model
from static to dynamic and provides an effective management
and visualization tool for engineers and project owners at large
by providing them with updated, monitored information.

In this paper, it is attempted to integrate system identification
within the framework of BIM. The authors used a single-
sensor based modal identification technique, which enabled
visualization of the bridge frequencies at given sensor location
for different periods of time. State-of-the-art SHM methods
(Farrar andWorden, 2013) use modal (frequencies, damping and
mode shapes) or physical (stiffness or mass) parameters as the
condition indicators. In this study, the authors limited their focus
only to the dynamic representation of frequency estimation.
The inclusion of other parameters (such as mode shape) within
the BIM model requires further advances and is reserved for
future research.

The proposed tool will allow a bridge engineer to virtually
monitor a bridge and visualize both raw data as well as
system identification results of different periods in a systematic
manner, which will save time and eliminate any source of
human errors of manual inspection of large data. Unlike
conventional SHM data management, the developed BIM model
enables real-time digital representation of SHM information
throughout the life-cycle of infrastructure, enhancing the
quality and assessment of infrastructure. By linking a single-
sensor based system identification within the BIM model, it
is possible to diagnose the bridge frequencies using the data
from different periods of time from a selected node. Future
research is reserved to utilize Augmented or Virtual Reality,
and automate the digital representation of SHM from multiple
sensors simultaneously.
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