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Studying memory processes at
di�erent levels with simultaneous
depth and surface EEG recordings
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F-Xavier Alario5, Agnès Trébuchon6,7, Cristian Donos1, Irina Oane2,

Constantin Pistol1, Felicia Mihai1 and Christian G. Bénar4*

1Department of Physics, University of Bucharest, Bucharest, Romania, 2Epilepsy Monitoring Unit,

Department of Neurology, Emergency University Hospital Bucharest, Bucharest, Romania, 3Department

of Neurology, Medical Faculty, Carol Davila University of Medicine and Pharmacy Bucharest, Bucharest,

Romania, 4Aix Marseille University, INSERM, INS, Institute of Neuroscience System, Marseille, France, 5Aix

Marseille University, CNRS, LPC, Marseille, France, 6APHM, Timone Hospital, Epileptology and Cerebral

Rhythmology, Marseille, France, 7APHM, Timone Hospital, Functional and Stereotactic Neurosurgery,
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Investigating cognitive brain functions using non-invasive electrophysiology can

be challenging due to the particularities of the task-related EEG activity, the

depth of the activated brain areas, and the extent of the networks involved.

Stereoelectroencephalographic (SEEG) investigations in patients with drug-

resistant epilepsy o�er an extraordinary opportunity to validate information

derived from non-invasive recordings at macro-scales. The SEEG approach

can provide brain activity with high spatial specificity during tasks that target

specific cognitive processes (e.g., memory). Full validation is possible only when

performing simultaneous scalp SEEG recordings, which allows recording signals

in the exact same brain state. This is the approach we have taken in 12 subjects

performing a visualmemory task that requires the recognition of previously viewed

objects. The intracranial signals on 965 contact pairs have been compared to

391 simultaneously recorded scalp signals at a regional and whole-brain level,

using multivariate pattern analysis. The results show that the task conditions

are best captured by intracranial sensors, despite the limited spatial coverage of

SEEG electrodes, compared to the whole-brain non-invasive recordings. Applying

beamformer source reconstruction or independent component analysis does not

result in an improvement of the multivariate task decoding performance using

surface sensor data. By analyzing a joint scalp and SEEG dataset, we investigated

whether the two types of signals carry complementary information that might

improve the machine-learning classifier performance. This joint analysis revealed

that the results are driven by the modality exhibiting best individual performance,

namely SEEG.

KEYWORDS

EEG, stereo-EEG, simultaneous recordings, multivariate pattern analysis, recognition

memory

1. Introduction

Electroencephalography (EEG) is routinely used to understand cognitive processes
(Kappenman and Luck, 2011). The ability of these non-invasive recordings to capture
cognitive processes accurately and entirely is the subject of ongoing investigations. A primary
challenge is the well-known ill-posed problem of source reconstruction (Grech et al., 2008).
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Knowing the actual sources and their time course in detail
would provide invaluable information to disentangle brain
activities. Clinical uses of EEG face a similar challenge, e.g.,
concerning the surface visibility of epileptiform activity, either
ictal or inter-ictal. The challenge has been addressed through
the simultaneous recording of intracranial and surface, both
with EEG (Tao et al., 2005; Ray et al., 2007; Koessler et al., 2015;
Antony et al., 2019; Barborica et al., 2021) and MEG (Pizzo et al.,
2019). An asset of the clinical context is that many forms of
epileptiform activity, sometimes paroxysmal, involve relatively
large patches of cortical tissue that present synchronized activity,
evoking potentials on the scalp having reasonable signal-to-
noise ratio (SNR). By contrast, cognitive processes evoke more
subtle activities and variations, involving deep brain structures,
and high-frequency activity. These factors may cumulatively
contribute to poor scalp visibility of the corresponding
EEG activity.

Recognition memory (Yonelinas, 2002) provides an ideal test
case to explore how neural activities evoked by cognitive tasks
are captured at the scalp by EEG. Recognition memory is a
complex cognitive function generally broken down into encoding,
storage, and retrieval processes (Mandler, 1980; Besson et al.,
2012). These are known to involve lateral and deep structures
such as the hippocampus (Rutishauser et al., 2006; Merkow et al.,
2015). Recognitionmemory has been extensively studied with EEG,
using recordings made either on the scalp (Ratcliff et al., 2016)
or in the brain (Merkow et al., 2015), but not simultaneously.
Here, we assess to what extent the postulated processes are
visible on scalp EEG by validating the source localization results
with the simultaneous scalp intracranial recordings. The data are
collected from patients undergoing stereoelectroencephalographic
(SEEG) pre-surgical evaluation for drug-resistant epilepsy; they
performed a standard task requiring them to encode and later
recognize pictures of objects (Besson et al., 2012; Despouy et al.,
2020).

In animal studies, memory processes have been widely
studied using electrophysiological recordings. The reduced size
of the brain limits the number of electrodes that can be
implanted in the behaving animal. Therefore, most studies
include recordings from only one or two regions, mainly
in the hippocampal formation (Mizuseki et al., 2009; López-
Madrona et al., 2020). However, their spatial resolution is much
higher than human SEEG, with a single electrode composed
of up to seven shanks in the array (Csicsvari et al., 2003) or
containing hundreds of recording channels (Steinmetz et al.,
2021).

For our data collected simultaneously at different scales
(mesoscale – SEEG, macroscale – scalp) in human subjects,
providing wide (SEEG) or whole-brain (surface EEG) spatial
coverage, we have performed a high-sensitivity multivariate
pattern analysis (MVPA) (Haxby et al., 2001; Grootswagers
et al., 2017), not only on individual sets of signals of
different modalities (intracranial, scalp, or reconstructions)
but also on combined sets having higher dimensionality,
to evidence possible synergies between signals recorded at
different scales.

2. Methods

2.1. Subjects

We selected 12 patients diagnosed with focal drug-resistant
epilepsy that underwent long-term simultaneous EEG and SEEG
recordings in the Emergency University Hospital Bucharest
between 2020 and 2022 (Table 1). Patients were considered surgical
candidates and underwent pre-surgical non-invasive evaluation
using extended patient history, video-electroencephalography,
brain structural and functional imaging (inter-ictal FDG-PET CT),
and neuropsychological profile. Consequently, in these patients,
invasive recordings were considered necessary to delineate the
epileptogenic zone and to map the functional cortex for tailoring
the surgical resection (Munari et al., 1994; Kahane et al., 2003;
Jayakar et al., 2016; Isnard et al., 2018). The details regarding
the patients’ gender, age, type of epilepsy, and lateralization are
provided in Table 1. In addition, as part of this research protocol,
scalp electrodes were attached, allowing for simultaneous surface
and intracranial long-term recordings. This study included only
patients with unmodified anatomy, no previous major resection,
and no major cognitive deficit.

The study has been performed under Bucharest University
ethical committee approval CEC 23/20.04.2019. All patients, or
their legal guardian/next of kin, signed a written informed
consent, in accordance with the Declaration of Helsinki, for the
simultaneous recordings and data sharing procedures.

2.2. Experimental paradigm

We used the same experimental visual memory paradigm as
in López-Madrona et al. (2022). In summary, we used 168 images
from the database of Duñabeitia et al. (2018) that were organized
in blocks of 12 or 24 images, presented on a computer screen.
There were two block types: encoding (“ENC”), where a set of 12
images were presented to the patient, followed by a recognition
block where the same 12 familiar images (“OLD”) were randomly
interleaved with other 12 novel images (“NEW”). The patient was
required to indicate by pressing two buttons on the keyboard, using
two fingers of the right hand, whether the images were familiar or
not, within 1500ms. A distracting video of 1min was presented
in between encoding and recognition blocks. The sequence of
36 image presentations was repeated seven times using different
images from the 168-image set and pseudo-random distribution of
the OLD and NEW items, with the constraint that there were never
more than three “old” or “new” items in a row. Stimuli presentation
and response logging were controlled by the software E-Prime 3.0
(Psychology Software Tools, Pittsburgh, PA).

2.3. Simultaneous scalp and intracranial
recordings

Stereoelectroencephalographic exploration was performed
using depth electrodes (Dixi Medical, Chaudefontaine, France)
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TABLE 1 Patients included in this study.

Patient ID Age Epilepsy Laterali
zation

Language
organization

SEEG
electrodes

SEEG
contacts

Scalp
electrodes

SEEG
electrode
location

1 89 37 Insular R Left typical 14 172 30 Left, posterior

2 90 17 Insular-
opercular

L Left typical 9 86 30 Left, central

3 92 27 Insular L Left typical 10 145 30 Left, posterior

4 96 26 Temporal R Left typical 11 152 38 Right,
anterior

5 97 26 Rolandic
Operculum

L Atypical
bilateral

10 135 35 Left, central

6 98 39 Temporal R Left typical 9 129 38 Right,
posterior

7 99 24 Insular L Left typical 13 189 38 Left, anterior

8 101 31 Temporal B Left typical 14 187 40 Bilateral,
central

9 102 31 Temporo-
insular

B Left typical 16 229 40 Bilateral,
posterior

10 104 20 Insular L Left typical 10 124 40 Left, central

11 105 26 Frontal R Left typical 12 161 37 Right,
anterior

12 107 26 Frontal L Left typical 8 176 40 Left, anterior

with 8 to 18 contacts per electrode, 2mm contact length, 3.5mm
center-to-center contact spacing, and 0.8mm diameter. Multiple
electrodes (9 – 16) were placed following a patient-specific
hypothesis regarding the localization of the seizure onset zone
and the pathways of ictal spread (Kahane et al., 2003; Jayakar
et al., 2016), allowing for up to 229 contacts to be available in
each patient. Electrodes were placed intracranially using the
microTargetingTM Multi-Oblique Epilepsy STarFix Platform (FHC,
Bowdoin, ME USA) (Dewan et al., 2018; Yu et al., 2018; Pistol et al.,
2021) or the Leksell stereotactic frame (Elekta AB, Stockholm,
Sweden). To determine the exact location of each electrode and
contact, the post-implantation CT scan was loaded into surgical
planning software (Waypoint Planner, FHC, Bowdoin, ME USA),
co-registered with the pre-implantation MRI, and adjustments
to the initially planned trajectories were made to match the
postop location of the electrodes. Manual labeling of the SEEG
contacts has been performed using the abbreviations listed in
Supplementary Table S1.

In view of the group analysis, the pre-surgical MRI of each
patient was also used for running an analysis pipeline implemented
in FreeSurfer (Fischl, 2012) that allowed us to obtain the patient’s
cortical surface reconstruction, used for visualization purposes, but
also—more importantly—, for performing a non-rigid registration
of the patient’s MRI to the “cvs_avg35_inMNI152” FreeSurfer
template (Postelnicu et al., 2009), providing us with the coordinates
of each intracranial contact in a common MNI space.

One up to three days after the SEEG implantation, between
30 and 40 scalp electrodes were placed according to the 10-20

system. A few electrodes were repositioned on adjacent 10-10 grid
location, due to interference with the SEEG electrodes, and up to
10 electrodes could not be placed at all. The exact number of scalp
electrodes in each patient is provided in Table 1.

Signals were collected using a setup as described by Barborica
et al. (2021). In summary, two identical Natus Quantum 128-
channel amplifiers (Natus Neuro, Middleton, WI) were used, one
for each modality (scalp/intracranial) and having separate signal
references. The reference for the SEEG recordings was chosen on
one contact located in white matter exhibiting minimal activity,
whereas the reference for the scalp system was Fpz. Raw data
were acquired at a sample rate of 4096Hz. The hardware was
synchronized using digital triggers to both systems and a 50Hz sine
reference signal, recorded simultaneously using DC inputs of the
two systems. Patients 9–12 were recorded with a single Quantum
256-channel amplifier that did not require external synchronization
hardware. The data were combined and saved in a single file in
AnyWave ADES format (Colombet et al., 2015), containing both
types of signals. The analysis workflow is shown in Figure 1.

The synchronization between stimuli presentation and (S)EEG
recordings has been performed using a photodiode part of the
Chronos response box (Psychology Software Tools, Pittsburgh, PA)
attached to a corner of the screen where trial start synchronization
flashes were presented. The response time and correctness were
merged into the AnyWave event file by reading the E-Prime log
files using MATLAB (MathWorks, Natick, MA) custom scripts.

Only intracranial sensors located outside the seizure onset zone
and gray matter were included in the analysis. Additional artifacted
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FIGURE 1

Signal collection and analysis workflow.
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trial removal, as well as bad channel removal, was performed
manually by visually inspecting the recordings.

2.4. ERP processing

Signals were loaded into EEGLab (Delorme and Makeig, 2004)
software, resampled at 256Hz, and filtered in the 0.5–45Hz
interval. Scalp EEG was re-referenced to the common average,
and artifacts were removed using independent component analysis
(ICA). Only correct trials have been retained for further analysis.

2.5. Source localization

To test the inverse solution of scalp EEG for finding brain
areas that are involved in task decoding, we have calculated source
signals at the location of the intracranial electrodes. To achieve
that, we have performed a beamformer analysis on the standard
FreeSurfer’s fsaverage template, brain electrical model, and 10–
20 electrode positions available in MNE-Python (Gramfort et al.,
2014). The beamformer spatial filters calculated using linearly
constrained minimum variance (LCMV) (Van Veen et al., 1997)
were used to calculate source time courses on a 5-mm grid covering
the brain. The source time course on the grid point nearest to
the midpoint between a pair of SEEG contacts that were part
of a bipolar-recorded signal was considered to approximate the
source signal at each intracranial site. We, therefore, obtained a
set of signals with the same dimensionality as the SEEG, which
we analyzed using the common MVPA pipeline. Calculating the
source signals at the locations near intracranial recording sites
allowed the SEEG recordings to be used as ground truth for source
reconstructions (Mikulan et al., 2020) and provided the ability to
compare task-related activations at the same locations for both
types of signals.

2.6. Independent component analysis

To test whether a method that is known to separate temporally
correlated neuronal sources can enhance MVPA decoding results,
we have performed an independent component analysis (ICA) of
scalp signals using second-order blind identification (SOBI) blind
source separation (Belouchrani et al., 1993, 1997; Tang et al., 2005),
using EEGLab software (Delorme and Makeig, 2004).

2.7. Multivariate pattern analysis

For multivariate pattern analysis, we have generally followed
the workflow described in Grootswagers et al. (2017). The
processing has been performed using the MNE-Python toolbox
(Gramfort et al., 2013, 2014) and custom Python and MATLAB
(MathWorks, Natick, MA) scripts. A logistic regression linear
classifier was trained to discriminate between responses for the
OLD and NEW conditions using the L-BFGS-B – (Large-scale
Bound-constrained Optimization) solver. The model was fitted

to the standardized data, and its performance was scored using
the receiver operating characteristic (ROC) area under the curve
(AUC). The scores were evaluated using 20-fold cross-validation,
and time intervals where they were statistically different from
chance were evaluated using a one-sample permutation cluster test
applied to the set of scores calculated for each fold (Maris and
Oostenveld, 2007).

The processing pipeline was applied to SEEG bipolar signals,
to the EEG signals, to the entire set of independent components
of scalp EEG, or to the scalp source signals at the SEEG sensor
location obtained using a beamformer. Specific to our study, the
simultaneous collection of the scalp and SEEG data allowed the
pooling of the signals for the two modalities to investigate whether
combined data provide a classifier performance significantly
different from analyzing individual sets.

We have calculated the contribution of signals at each
intracranial sensor location (recorded or reconstructed) to the
recognition process by calculating the activation patterns associated
with fitting the data with a linear model (Haufe et al., 2014) using
the MNE-Python toolbox, which in turn resorts extensively to
scikit-learn Python toolbox (Pedregosa et al., 2011; Abraham et al.,
2014). In contrast to the classifier weights associated with each
sensor, which do not have a direct interpretation, the reconstructed
activation patterns are interpretable as neural sources encoding the
studied processes that can be projected onto the sensors (Haufe
et al., 2014; Fahrenfort et al., 2018).

To assess the contribution of various brain structures to
decoding task conditions, we repeated the MVPA analysis on a
subset of signals recorded or reconstructed within the same brain
area or structure (Despouy et al., 2020), according to the labeling
we have described earlier in this section.Wewill further refer to this
analysis restricted to a region of interest (ROI) as “regional analysis”
(Ebrahiminia et al., 2022). In contrast to activation patterns (Haufe
et al., 2014), which have no statistical significance associated
with their time courses, regional analysis allows inferring, in a
probabilistic way, the time intervals where decoding performance
is different from chance, evidencing the sequential/hierarchical
processing of stimulus novelty within the brain.

3. Results

A total of 136 intracranial electrodes having 1,885 contacts
were implanted in 12 patients. Additional 436 surface electrodes
were attached to the scalp. After data curation and application of
inclusion criteria, signals recorded at 965 intracranial sites and 391
scalp locations were further included in the analysis. The subjects
correctly identified stimulus novelty in 89.53% of the trials. The
MVPA analysis was applied to 1,729 correct recognition trials
(OLD: 822, NEW: 907) having a mean± SD response time of 719.1
± 162.4ms (OLD) and 765.0± 191.2 ms (NEW).

3.1. Responses on the single scalp and
SEEG electrodes

The ERPs for the scalp sensor and SEEG sensor having the
highest magnitude multivariate activation patterns among all scalp
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FIGURE 2

(A) ERP image for the scalp sensor PO2 in subject 1, exhibiting the highest multivariate activation pattern; trials are grouped by condition and sorted

by the response time, marked using black lines; average ERPs for each condition, as well as the contrast between OLD and NEW conditions, are

shown; the statistical significance of the univariate (permutation cluster test) di�erence, if present, between OLD and NEW conditions at a significance

level p < 0.05 is shown using thick horizontal lines; (B) same as (A), but for the intracranial sensor X04-X05 located in right anterior insula in subject 9.

andm= 965 SEEG signals recorded in all n= 12 patients are shown
in Figure 2.

While a typical high-amplitude ERP presents
prominent peaks either following the stimulus presentation
(∼200ms) or around response time, depending on sensor
location, these examples rather capture situations where
the novelty of the stimulus is best captured, between
400ms and 600ms and around the response time
(∼800 ms).

3.2. Single-subject multivariate analysis

The results of the MVPA analysis of responses at the SEEG,
scalp, source level, and combined scalp SEEG in patient 3 are
shown in Figure 3. The classifier performance for the SEEG
signals is consistently above-chance through the interval ∼450ms
through ∼900ms (permutation cluster test, p < 0.05). By contrast,
the scalp signals provide a statistically significant classification
performance only during the memory retrieval and stimulus
recognition processes between ∼500ms and ∼600ms. Computing
source signals at SEEG sensor locations provide classification
results that are similar in magnitude to the scalp sensor signals,
with eventually better results in terms of the extent of the clusters
reflecting the scores significantly different from chance (p < 0.05).

A regional MVPA analysis presented in Figures 3C, D
highlights the regions that contribute most to the overall
decoding performance, namely the anterior cingulate cortex and
hippocampus. The ACC, as sampled by SEEG, exhibits sustained
better-than-chance scores in the late interval ∼500ms through
∼900ms, whereas Hc presents early (∼500ms), but limited
duration (∼100ms) activations. The scalp, source, and combined
signals provide similar results in Hc, but rather different ones
in ACC.

3.3. Group analysis

At the population level (n = 12 subjects), the classifier
performance based on intracranial signals was much higher than
the one based on scalp or source signals, as shown in Figure 4.

The use of source signals calculated at SEEG sensor locations
provides slightly lower classifier performance than the one based on
signals from which it was derived, i.e., scalp signal (Figure 4). The
MVPA analysis applied to the independent components of the scalp
signal provides results that are virtually identical to the scalp ones.
Combined scalp and SEEG scores follow closely the time course of
the SEEG scores.

The time course of classification performance using SEEG
signals is consistent across subjects, as shown in Figure 5, where

Frontiers inHumanNeuroscience 06 frontiersin.org10

https://doi.org/10.3389/fnhum.2023.1154038
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Barborica et al. 10.3389/fnhum.2023.1154038

FIGURE 3

Task decoding performance is expressed as the area under curve of the receiver operating characteristic of the classifier for SEEG, scalp, and source

signals in patient 3. (A) SEEG electrode locations in the left hemisphere; (B) ROC-AUC for sensors of di�erent types, as well as for combined scalp

and SEEG; (C) same as (B), but for the contacts located in the anterior cingulate cortex; (D) same as (B), but for contacts located in the hippocampus.

we have plotted the scores for all subjects as well as the grand
average. This is somehow unexpected, as the areas implanted with
depth electrodes can be quite different. In Figures 5A, C, we show
two implantation schemes providing similar scores, which are
highlighted in Figure 5E with green and blue colors.

When we perform a regional analysis of the performance in
decoding task conditions, we see that the findings at the level of all
m = 965 sites in n = 12 subjects, shown in Figure 4, are confirmed
at a regional scale (Figure 6), with scores significantly different
from chance associated with SEEG signals being higher and more
sustained over time, compared to source signals reconstructed at
the same locations. Among the areas exhibiting the highest and
earliest SEEG scores, we can count F, ITG, and Hc, as well as the
insular-opercular complex. One has to keep in mind that all these
findings are strongly influenced by the coverage of each ROI with
SEEG electrodes.

The 3D representation of multivariate activation patterns
(Haufe et al., 2014) of SEEG and source-space data is shown in
Figure 7. One has to keep in mind that these activation patterns
do not reflect the magnitude of the ERPs, but rather represent
a virtual signal corresponding to how well a site encodes the
stimulus novelty, in our case (Wardle et al., 2016; Grootswagers
et al., 2017). A wide-area brain activation (Figure 7A) over the

course of the recognition process is visible for the intracranial
signals; whereas at a comparable amplitude scale, the source data
show much less activations. The activation patterns of various
brain areas are sequential, following a posterior-to-anterior flow,
as illustrated in Figure 7 and in the Supplementary Data Movie.
The activations associated with EEG source signals show a roughly
similar spatiotemporal pattern. At a closer visual inspection of
Figure 7, we can find evidence of known leakage-related effects
(Schoffelen and Gross, 2009), as multiple contacts in several
electrodes exhibit similar activation values.

In SEEG recordings (Figure 7A), we can divide the activation
into four clinically relevant time intervals. The significant activation
starts at ∼20 0ms and between 200 and 400ms, we can observe
the recognition process that activates the network of structures that
mainly involves the temporal-basal and hippocampus on the right
side. Then, between 400 and 600ms, we can see the activations
related to the decision-making process that significantly involves
bilaterally the perisylvian, prefrontal, and mesial temporal lobe
structures. The sensorimotor activation overlaps the 400–600ms
and continues in the next interval of 600–800ms and represents
the response phase of the task. The last time interval (600–
800ms) highlights the activation of the prefrontal cortex possibly
related to self-evaluation or memory storage. The EEG source
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FIGURE 4

Classifier performance for SEEG, scalp, source, ICA, and combined scalp SEEG signals for all n = 12 subjects. The dashed areas show standard error

intervals for the set of classifier scores for all patients. The horizontal bars indicate the intervals where the scores are statistically di�erent from

chance (one-sample permutation cluster test, p < 0.05).

(Figure 7B) displays a similar timeline of the activation pattern in
the 200–600ms. However, the late phase between 600 and 800ms is
not informative.

4. Discussion

While other studies comparing intracranial to scalp data used
a sequential recording of the two modalities (Ebrahiminia
et al., 2022) or even different sets of participants (Haufe
et al., 2018), we have simultaneously acquired data in the
two modalities, allowing us to validate the results of the EEG
source reconstruction using SEEG recordings in decoding
task conditions, as well as investigate the possible synergy
between invasive and non-invasive recording in decoding
stimulus novelty.

Our results show that our task requiring the subjects to
categorize visual stimuli based on novelty, involving memory
encoding and retrieval, activates large areas of the brain. This
finding is supported by the widespread activation visible in
Figure 7, as well as by the fact that SEEG implantations at
totally different locations result in decoding performances over
time that are close to each other and to the group average
(Figure 5).

The decoding performance of the ML classifier is maximal
when using intracranial signals, although the SEEG implantation
has limited spatial coverage of the brain, compared with the
scalp EEG which is supposed to provide full-brain coverage, as

visible in Figures 3, 4. The relatively poor decoding performance
of the classifier that uses scalp signals can be attributed, in our
opinion, to the significantly lower signal-to-noise ratio (SNR) of
the scalp EEG compared to SEEG. It is also possible that scalp
EEG provides poor visibility of activity in deep structures of the
brain, whereas SEEG samples with undegraded SNR all implanted
locations, regardless of depth. A previous study by Ebrahiminia
et al. (2022) performing sequential scalp and electrocorticographic
(ECoG) recordings has shown that scalp EEG provides slightly
better classification performance of passively viewing visual stimuli
of different categories (Liu et al., 2009). Without counting the
differences in the tasks, one reason for this discrepancy may relate,
once again, to the fact that ECoG does not record activity in deep
brain structures, therefore both modalities provide information
from the outer cortex, with scalp EEG providing slightly better
spatial coverage. Another factor thatmay favor EEG in other studies
is that in our simultaneous protocol, the EEG electrodes were glued
to the scalp 1 day or more before running the memory task (part
of a wider set of investigations), resulting in a degradation of the
quality of the contact within this interval, uncorrectable due to the
requirement of maintaining sterility at the scalp level. Furthermore,
due to spatial constraints related to pre-existing SEEG electrode
anchors, the coverage with scalp electrodes was non-uniform.

Interestingly, using SEEG electrodes, the classifiers were always
able to decode the task conditions using task-evoked intracranial
EEG recorded 300 to 1000ms post-stimuli presentation. This
was true not only at the group, but also at the individual
subject level, even when the spatial sampling of the SEEG
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FIGURE 5

Classifier performance using intracranial signals for two patients having SEEG implantation covering di�erent areas of the brain; (A) bilateral

implantation in subject 8, covering temporal lobe, including mesial structures; (B) mean magnitude of activation patterns in subject 8 across the

entire trial duration; (C) electrode locations in subject 12, frontal, parietal and cingulate areas; (D) same as (B), but for subject 12; and (E) average and

individual classifier scores.

electrodes was completely different (Figure 5). Recent studies
have shown the “traveling wave” behavior of brain activity
(Lubenov and Siapas, 2009; Muller et al., 2014; Liang et al.,
2021; Bhattacharya et al., 2022), and it is possible that we have
observed such effects in our analysis. Under the assumption

that the task-evoked intracranial EEG activity is recorded on a
critical number of electrodes, sufficient for the classifier to learn
the propagation patterns of the traveling wave, we may decode
the task conditions from various brain regions, without a loss
in decoding performance. Similar effects have been observed by
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FIGURE 6

(A) Timeline of decoding performance significantly di�erent from chance (p < 0.05) for signals recorded on subsets of intracranial contacts

implanted in di�erent brain structures. The color of the bars indicates the maximum value of the AUC score within a cluster. The numbers at the right

of each bar indicate the number of sites and number of patients for clusters in each ROI; (B) same as (A), but for scalp sources calculated at the

location of intracranial contacts using beamformer.

groups that studied the representation and processing of emotion in
the brain with machine learning methods, concluding that emotion
representation is encoded as patterns of activations over widely
distributed brain networks (Wager et al., 2015; Donos et al., 2022).

The process of reconstructing the EEG source signals using
beamforming does not result in a significant improvement at the
population level of the classifier’s performance, yielding results
comparable to signals on scalp sensors, as shown in Figure 4. There
are exceptions to that general finding in some individual patients,
as illustrated in Figure 3B, where the decoding performance of
a classifier operating on source signals show earlier and longer
statistically significant above-chance scores than sensor-based
analysis, at a significance level of p < 0.05. However, such results
have to be treated with caution, given the probabilistic nature of
the statistical tests applied (Sassenhagen and Draschkow, 2019).
The regional analysis of the classification performance shown
in Figure 6 is in agreement with the overall results in Figure 4,
where source signals result in more sparse and limited-duration
significant scores than the intracranial signals.

The beamformer source reconstruction is based on linear
matrix operations on the responses (Westner et al., 2022). A linear
transformation based on a square non-singular matrix is equivalent
to an affine transformation in the n-dimensional response space,
which is the space in which the MVPA operates (Grootswagers
et al., 2017).

Another approach that also uses linear matrix transformations
for separating statistically independent components in a set
of signals is the independent component analysis (ICA). We
have tested whether applying ICA to the scalp EEG responses,
results in a set of independent components that provide better
decoding of the task conditions. The results, presented in Figure 4,
show that classifier performance operating on the full set of
independent components, without dimensionality reduction, is
virtually identical to the one for the original signals on the
scalp sensors.

These data-driven findings related to deriving virtual
signals/components based on linear transformations suggest
more general theoretical considerations: a non-singular
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FIGURE 7

MVPA timeline of activation patterns, as introduced by Haufe et al. (2014), for SEEG signals (A) and in EEG source space (B) for all 965 contacts

implanted in 12 patients, shown on the glass brain. The mean of activation patterns’ values within 200ms bins is represented.

affine transformation, equivalent to a series of elementary
transformations such as rotation, scaling, and shear (Goldman,
1992), that do not change the relationships between points
representing the set of n responses at a particular point in time;
therefore, it is not expected to significantly affect the performance
of an ML classifier operating on the transformed set of points.
It should be noted that only linear transformations that do
not perform dimensionality reduction (i.e., the transformation
matrix is square), such as the ones we have considered, are
equivalent to affine transformations and thus unlikely to affect
MVPA classifier accuracy, based on geometrical considerations.
By contrast, other approaches based on non-square linear
transformation matrices, such as principal component analysis
with dimensionality reduction, have been shown to have the

potential for improving ML classifiers’ accuracy (Grootswagers
et al., 2017; Hatamimajoumerd et al., 2020).

In investigating whether scalp and intracranial signals contain
complementary information that might contribute to a classifier
performance, we did find that the modality providing the
best performance (i.e., SEEG) is determining the combined
performance (Figures 3, 4).

A limitation of the study is the partial and non-uniform spatial
sampling of both scalp and intracranial sensors, due to objective
reasons. The source reconstructions are based on the fsaverage

template and associated volume conduction model, without taking
into account the individual patient anatomy, which might lead to
different results (Ramon et al., 2006; Céspedes-Villar et al., 2020).
The scalp electrode locations used for calculating inverse solution
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were the standard 10–20 ones, aligned with the fsaverage head
model, without taking into account the displacements related to the
inaccuracy of the electrode positioning and the avoidance of the
SEEG electrodes. Only one source-reconstruction-algorithm with
fixed parametrization, among many different possible ones, has
been considered (Grech et al., 2008; Mikulan et al., 2020). Another
limitation is that our analysis pipeline is the most conservative
one, being based on wide-band single-trial data. Creating “super-
trials” or “pseudo-trials” by averaging several trials (Despouy
et al., 2020; Ashton et al., 2022) might improve the SNR of
EEG and correspondingly of the source reconstruction signals.
Further measures for improving SNR can be possibly implemented
(Grootswagers et al., 2017), alleviating some of the apparent
limitations of non-invasive recordings.

5. Conclusion

Analysis of invasive EEG provides the highest amount of
information related to stimulus novelty, compared with scalp
recordings, despite the limited spatial sampling of the brain
with depth electrodes. This may be related to the limited scalp
visibility of the activity related to memory processes in deep brain
structures, particularly if containing higher frequency components.
The synergy between the two modalities—enabled by pooling
data recorded simultaneously—is limited, with the SEEG sensors
providing the best decoding performance driving the combined,
overall, performance.
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Introduction: The mechanisms regulating neuromuscular control of standing

balance can be influenced by visual sensory feedback and arousal. Virtual reality

(VR) is a cutting-edge tool for probing the neural control of balance and its

dependence on visual feedback, but whether VR induces neuromodulation akin

to that seen in real environments (eyes open vs. closed or ground level vs. height

platform) remains unclear.

Methods: Here we monitored 20 healthy young adults (mean age

23.3 ± 3.2 years; 10 females) during four conditions of quiet standing. Two

real world conditions (eyes open and eyes closed; REO and REC) preceded

two eyes-open virtual ‘low’ (ground level; VRL) and ‘high’ (14 m height

platform; VRH) conditions. We measured arousal via electrodermal activity

and psychosocial questionnaires rating perceived fear and anxiety. We recorded

surface electromyography over the right soleus, medial gastrocnemius, and

tibialis anterior, and performed force plate posturography. As a proxy for

modulations in neural control, we assessed lower limb reflexive muscle

responses evoked by tendon vibration and electrical stimulation.

Results: Physiological and perceptual indicators of fear and anxiety increased in

the VRH condition. Background soleus muscle activation was not different across

conditions; however, significant increases in muscle activity were observed for

medial gastrocnemius and tibialis anterior in VRH relative to REO. The mean

power frequency of postural sway also increased in the VRH condition relative to

REO. Finally, with a fixed stimulus level across conditions, mechanically evoked

reflexes remained constant, while H-reflex amplitudes decreased in strength

within virtual reality.
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Discussion: Notably, H-reflexes were lower in the VRL condition than REO,

suggesting that these ostensibly similar visual environments produce different

states of reflexive balance control. In summary, we provide novel evidence that

VR can be used to modulate upright postural control, but caution that standing

balance in analogous real and virtual environments may involve different neural

control states.

KEYWORDS

muscle stretch reflexes, virtual reality, electromyography, electrodermal activity,
H-reflexes, tendon vibration, postural sway

1. Introduction

Human standing balance is maintained through a dynamic
integration of multiple sensory and motor systems. Alpha-motor
neurons (αMNs) are the final common pathway for motor control,
with their output being the culmination of complex spinal and
supra-spinal integration processes (Burke et al., 1983; Pierrot-
Deseilligny and Burke, 2005). Interestingly, the neural control
mechanism that support standing balance do not appear to be fixed;
rather, they readily adapt to changes in static posture, like standing
vs. sitting (Hayashi et al., 1992; Cattagni et al., 2014), as well as
different motor behaviors, like standing vs. walking (Capaday and
Stein, 1986). The neural control of standing appears to be further
modulated in the presence of different task demands and postural
threat, such as when there is a chance of being perturbed (Horslen
et al., 2013; Lim et al., 2017), when the eyes are closed (Roman-
Liu, 2018), or when standing at the edge of a height platform
in real (Carpenter et al., 1999, 2004; Sibley et al., 2007; Horslen
et al., 2013, 2014, 2017, 2018; Naranjo et al., 2015, 2016) and
virtual environments (Cleworth et al., 2012, 2016; Nielsen et al.,
2022).

Here we follow the general approach of using muscle stretch
reflex excitability to characterize the neural mechanisms supporting
standing balance (e.g., Davis et al., 2011; Horslen et al., 2013,
2017, 2018). Our focus is on lower-limb muscle stretch reflexes
as a proxy for modulations in the neural control of standing.
In response to changes in muscle length, spindle afferents
generate reflexive activation through the myotatic stretch reflex
arc (Liddell and Sherrington, 1924, 1925; Matthews, 1991). Muscle
spindles are also unique in that they have their own dedicated
motor innervation (‘fusimotor neurons’ or GMNs), enabling active
control over receptor sensitivity by the central nervous system
(Hulliger, 1984; Burke, 2021; Dimitriou, 2021). Context-dependent
adaptations of the stretch reflex may also result from altered
descending commands that modulate the excitability of spinal
interneurons and Renshaw cells, and/or changes in muscle spindle
sensitivity via GMN activation (Burke et al., 1983; Hulliger,
1984; Dimitriou and Edin, 2010; Burke, 2021; Dimitriou, 2021,
2022). Furthermore, muscle stretch reflexes are traditionally
assessed in two different ways, which offer complementary bits of
information: mechanical stimulation (imposed joint movements,
tendon taps, and muscle/tendon vibration) and electrical nerve
stimulation (Hoffman’s reflex). The major distinction between
mechanical and electrical stimulation is that the former relies

on mechanotransduction by the muscle spindle, whereas the
latter bypasses these mechanoreceptors and directly activates the
peripheral nerve along its length. This is important because changes
in muscle spindle sensitivity via GMN input may only be inferred
using mechanical stimuli, whereas electrical stimuli give an indirect
measure of spinal excitability and presynaptic inhibition (Pierrot-
Deseilligny and Burke, 2005; Horslen et al., 2013, 2018).

In real-world environments, muscle stretch reflex excitability
appears to be modulated in the presence of increased postural
demands, altered visual feedback, and postural threat. For instance,
Hoffman (H) reflexes in the soleus were reduced during standing
compared to sitting, even when background αMN activity was
matched in the seated position (Cattagni et al., 2014). Postural
control is challenged when the eyes are closed (Roman-Liu, 2018),
however, H-reflexes appear to not be significantly affected by
closing the eyes (Sibley et al., 2007). Furthermore, Sibley et al.
(2007) demonstrated that H-reflexes are reduced in amplitude
when standing on the edge of a real height platform, which was
taken as evidence of altered pre-synaptic inhibition or fusimotor
drive. By comparing T- and H-reflexes during sympathetic arousal
in the same participants, researchers have suggested the presence of
enhanced muscle spindle sensitivity under threatening conditions
(Davis et al., 2011). Horslen et al. (2013), found that muscle
stretch reflexes evoked with tendon taps become sensitized in
response to postural threat from a height platform, while the
excitability of the spinal circuitry – assessed with H-reflexes –
remained largely unaffected. Additional studies have suggested that
H-reflexes reduce in amplitude under enhanced postural threat
(Llewellyn et al., 1990; McIlroy et al., 2003; Nafati et al., 2004; Sibley
et al., 2007), rather than remain unchanged (Horslen et al., 2013).
To our knowledge, no studies have investigated such effects within
virtual environments and how this compares to simply removing
vision by closing the eyes, which is a main objective of the present
study. Horlings et al. (2009) induced changes in postural control
during quiet standing in both eyes closed and virtual reality (VR)
low height conditions compared to eyes open, however, muscle
activity and reflex responses were not monitored.

Virtual reality has emerged as an increasingly popular tool for
studying human motor control. As a validation of VR, balance
control and physiological and/or psychological stress appear to
occur similarly in real and VR environments (Meehan et al., 2002;
Cleworth et al., 2012, 2016; Nielsen et al., 2022). For example,
Cleworth et al. (2012) compared responses to standing on an
elevated platform vs. at virtual height in an environment matched
in scale and visual detail. The authors reported similar changes
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in the amplitude and frequency of centre of pressure (COP)
excursions, electrodermal activity (EDA), anxiety, fear, and balance
confidence for real and VR height conditions, providing evidence
for the potential utility of VR as a tool for manipulating balance
control and arousal. The safety and practical challenges (cost and
space requirements) of having participants at the edge of a real
height platform, building, or cliff is a barrier to studies of this
sort. VR may offer a means of circumventing these challenges by
simulating tasks and environments that create threat and challenge
the balance system. Commercial VR systems (e.g., Oculus Rift,
HTC Vive, etc.) have decreased in cost while providing better
quality visual feedback in the last 5-10 years. Although VR may
offer a fruitful tool to explore how the balance system adapts control
for a wide range of visual environments, it is still unclear how
exposure to VR modulates the neural control of balance, such as
muscle activity and reflex excitability.

The primary objective of this study was to investigate visual
feedback driven neural modulations in balance control across
real (eyes open/closed; REO and REC) and virtual (low/high;
VRL and VRH) conditions. In the real environment, standing
with eyes closed served as a proxy to manipulate both arousal
and visual feedback. In VR, this was accomplished by modifying
platform height. We used mechanical (noisy tendon vibration –
NTV) and electrical (soleus H-reflex) stimulation to discern global
(spinal excitability) and fusimotor (muscle spindle-dependent)
changes in reflex responses under these different visual feedback
conditions. A secondary objective was to compare physiological
(electrodermal activity) and psychological (fear, anxiety, and
confidence questionnaires) indicators of stress when balancing at
virtual height. Based on previous findings, it was predicted that:
(i) physiological and psychosocial indicators of stress would be
greatest in the VRH condition (Cleworth et al., 2012), (ii) similarly
to real height platform studies, mechanically evoked stretch reflex
amplitudes would increase (Horslen et al., 2013) under conditions
of elevated postural threat from closing the eyes, and a virtual
height platform, (iii) electrically evoked H-reflex amplitudes would
not be altered by closing the eyes (Sibley et al., 2007), and (iv)
H-reflex amplitudes will also be reduced (Llewellyn et al., 1990;
McIlroy et al., 2003; Nafati et al., 2004; Sibley et al., 2007) or remain
unchanged (Horslen et al., 2013), when standing on the edge of a
virtual height platform.

2. Materials and methods

2.1. Experimental design

2.1.1. Participants
A total of 20 healthy young adults (mean age: 23.3 ± 3.2 years;

10 females) participated in this study. Participants were free from
musculoskeletal injury and any diagnosed neurological conditions.
All participants had limited-to-no previous VR experience, and
normal to corrected-normal vision with contact lenses, assessed via
self-report. Participants requiring eyeglasses were excluded, as the
eyeglasses could not fit underneath the VR headset. All participants
provided written informed consent prior to taking part in this
study. The University of Calgary’s Conjoint Health Research Ethics
Board approved all experimental protocols.

2.1.2. Procedure
Once written consent was obtained, participants were outfitted

with EMG, EDA, and stimulating electrodes, as well as a custom-
built wearable tendon vibrator (Figure 1). Prior to beginning
the testing protocol, a one-time electrical stimulation recruitment
curve protocol was performed to determine the maximum peak-
to-peak amplitude and corresponding stimulus intensity values
for the H-reflex (H-max), M-wave (M-max), and 1/2 H-max in
the soleus muscle. The electrically evoked values vary between
individuals; thus, the purpose for ascertaining this information
was to determine an appropriate stimulation current for the
testing protocol specific to each participant. To accomplish this,
participants stood on a force plate with a fixed forward-facing gaze
and arms relaxed at their sides while 1 ms square-wave pulses of
electrical stimulation were delivered over the tibial nerve within the
popliteal fossa. Stimulations were delivered at least 10 seconds apart
to minimize risk of interference from presynaptic inhibition (Zehr,
2002; Palmieri et al., 2004). Stimulation current began at 5 mA
and was subsequently increased in 2-5 mA increments until the
desired physiological response was observed in the soleus. Once the
H-wave amplitude began to descend with increasing current, the
voltage supply was slowly dialed back during subsequent deliveries
until the H-max was determined. To locate the M-max, 2-5 mA
current increments were resumed until a plateau was observed
in the rising M-wave. The H- and M-max were defined as the
greatest peak-to-peak amplitude produced by the smallest amount
of current. Finally, to locate 1/2 H-max, the stimulation current was
reduced incrementally from H-max until the H-wave amplitude
was equal to half of H-max. The current required to elicit 1/2 H-max
peak-to-peak amplitude was used for the H-reflex assessment
throughout the study. The 1/2 H-max targets a point near the
middle of the ascending H-wave and is used to clearly differentiate
between an increased/decreased response without ceiling or floor
effects (Zehr and Stein, 1999; Sibley et al., 2007; Horslen et al.,
2013). This recruitment curve protocol took approximately 5 min
to complete, with 15-30 total electrical pulses delivered, and was
followed by two minutes of seated rest prior to commencing the
testing protocol.

During the subsequent testing protocol, participants
experienced five test conditions while standing comfortably
on the centre of the force plate with a fixed straight-forward gaze
and arms at their sides. Each participant’s feet were separated by
approximately 20 cm at the medial heel. The placement of the
feet was kept consistent using tape markings on the force plate.
Participants were instructed to stand relaxed throughout each of
the five trials while NTV was used to probe T-reflexes (NTV-reflex)
and tibial nerve stimulation was used to probe the H-reflex. During
each condition, two minutes of NTV was applied to the right
Achilles tendon either prior to or immediately following a series of
five H-reflex pulses (separated by 10 s). The stimulus presentation
order was interleaved across participants, such that half received
NTV first and the other half received H-reflex pulses first, across
all trials. In the real environment, participants completed one
baseline trial with eyes open (REO), followed by another trial
with eyes closed (REC). Participants were then introduced to the
virtual environment. An Oculus Rift headset (Meta, CA, USA)
displayed the VR environment coded through Vizard Enterprise
64-bit (WorldViz, CA, USA). The VR environment was a concrete
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FIGURE 1

Experimental setup and raw data. (A) Photo of a participant standing
on the force plate, instrumented with a VR headset, lower-limb
surface electromyography (EMG) electrodes, tibial nerve electrical
stimulation electrodes over the popliteal fossa, a custom-made
wearable tendon vibrator over the right Achilles tendon, and
electrodermal activity (EDA) electrodes on the left palm. (B) Sample
visual environment displayed to participants within the ‘Low’ and
‘High’ (looking down) VR conditions. (C) Raw data traces of EDA,
force plate (centre of pressure, COP, in the anterolateral, AP, or
mediolateral, ML, planes), rectified EMG (right soleus, RSOL; right
medial gastrocnemius, RMG; right tibialis anterior, RTA), and vibrator
acceleration (ACC), during an exemplary trial.

warehouse with a small square platform flush with the floor, on
which participants stood (Figure 1). A red square was positioned
straight ahead on a concrete pillar and was used for a reference
for participants to focus their gaze during trials. During an initial

VR familiarization protocol, while standing on the force plate,
participants were asked to: 1) describe their surroundings, 2)
find three red cubes placed randomly around the room, and
3) turn their head and read the message on a screen located
behind them (“Virtual Reality at the University of Calgary”). The
familiarization protocol took 1-2 minutes to complete. Participants
then completed one practice trial at ground level to mitigate
potential first trial effects (Zaback et al., 2021). Two VR test trials
proceeded with either the low (VRL) or high (VRH) condition
performed first/second in randomized order. Half the participants
received ‘VRL1, VRH, VRL2’ and the other half received ‘VRL1,
VRL2, VRH’. We observed no significant effect of VR condition
ordering on NTV (F(1,75) = 0.025; p = 0.875) and H-reflex
(F(1,71) = 0.111; p = 0.739) responses, and therefore, we collapsed
the data across the different orders. Prior to the VRH condition,
the floor surrounding the platform was lowered seven meters and
the platform was raised seven meters (net height change = 14 m)
where another red square located at eye height was used for visual
reference during the trial. Figure 1 depicts a visual representation
of the scene in VRL and VRH conditions. Prior to each VR trial,
participants completed a confidence questionnaire, and after
each VR trial, participants completed a 16-item questionnaire
addressing their perceived stability, fear, and anxiety during the
trial (Adkin et al., 2002). Questions appeared on screen within
the VR environment and participants were handed a controller
to select their response on a numerical scale ranging from 0 to
100 (confidence, stability, and fear) or 1-10 (anxiety) scale. Each
of the five condition trials lasted approximately 3 min including
NTV and H-reflex assessment. Questionnaires following VR trials
were completed in 3-5 min, and 60-s seated breaks were provided
between all conditions to mitigate fatiguing effects.

2.2. Data collection

2.2.1. Electrodermal activity
The galvanic skin conductance (i.e., sweat secretion) in

response to each condition was monitored throughout the study by
measuring electrodermal activity (EDA), which indicates the degree
of sympathetic arousal (Boucsein et al., 2012; Horslen et al., 2013,
2017, 2018). For each condition, EDA during NTV and electrical
stimulation was assessed separately rather than pooled together
to account for any influence of stimulation method on arousal.
Two surface electrodes (1-cm Ag/AgCl; MediTrace 133, Kendall,
Technical products, Canada) were placed on the thenar eminence
of the left hand (Cleworth et al., 2012). A Skin Conduction
Unit (model 2502; CED Limited, England) recorded EDA with a
sampling rate of 1 KHz.

2.2.2. Psychosocial assessment
A series of questionnaires were delivered for conditions

performed in VR to assess balance confidence, fear, stability, and
anxiety (Smith et al., 1990; Adkin et al., 2002; Cleworth et al.,
2012; Horslen et al., 2013, 2014, 2017, 2018). Individual questions
appeared in the VR field of view, and participants were handed
a controller to navigate to and select their appropriate response.
Prior to each VR trial, participants rated their confidence in their
ability to balance throughout the upcoming trial on a scale from
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0% (no confidence) to 100% (complete confidence). Post-trial,
participants rated their stability and fear on a scale of 0% (no fear;
no instability) to 100% (completely fearful; complete stability), and
a 16-item questionnaire assessed perceived anxiety using a nine-
point scale ranging from 1 (I did not feel this at all) to 9 (I feel
this extremely). These questionnaires have been demonstrated to
have moderate to high reliability under height-induced postural
threat in young adults (Hauck, 2011) and have been used in VR
conditions (Nielsen et al., 2022). Scores from the anxiety questions
were concatenated to achieve an overall measurement of anxiety.

2.2.3. Electromyography
EMG was monitored to assess muscle activity throughout the

study. Changes in muscle activity may be indirectly associated with
changes in posture, fatigue, or arousal. Furthermore, changes in
background EMG amplitude may influence other variables such as
reflex amplitude and centre of pressure dependent variables. Prior
to surface electrode placement, the skin overlaying the muscles of
interest was shaved and cleaned with alcohol swabs. Two surface
electrodes (1-cm Ag/AgCl; MediTrace 133, Kendall, Technical
products, Canada) were applied to the skin, 2 cm centre-to-centre
spacing, over the right soleus (SOL), medial gastrocnemius (MG),
and tibialis anterior (TA). Electrodes were placed in line with
muscle fiber orientation over the thickest region of the muscle belly
(for MG and TA) or just distal and lateral to the gastrocnemius-
soleus intersection for SOL. A reference electrode was placed over
the lateral malleolus. EMG was sampled at 5 kHz and amplified
with a gain of 2000 (NeuroLog NL844 pre-amplifier and NL820A
isolated amplifier; Digitimer Ltd., England).

2.2.4. Force plate
During testing, participants stood in the centre of a six-axis

force plate (OR6-7; AMTI, USA). Ground reaction forces and
moments, sampled at 1 kHz, were collected to monitor the center
of pressure (COP) in the anterior-posterior and medial-lateral
directions during all trials. See Figure 1 for a depiction of the
experimental set up.

2.2.5. Noisy tendon vibration
Mechanical stimulation of the Achilles tendon produced

spindle-generated reflexes in the triceps surae muscles. A novel
wearable device, secured to the posterior ankle using an elastic strap
(2 cm above the calcaneus, directly between the medial and lateral
malleolus) was used to deliver NTV (0 – 100 Hz) to the Achilles
tendon. The elastic strap was secured in position and held at a snug,
but comfortable tension prior to performing any study procedures
and remained in place for the entire experiment. The device
consisted of a custom-manufactured 3D printed housing (Figure 1)
with onboard motor (Haptuator BM3C, Tactile Lab, Canada),
amplifier (PAM8403), and accelerometer (ADXL354-CZ, Analog
Devices Ltd., USA). Motor command signals were generated
using custom LabVIEW software (National Instruments, USA)
and output at 10 kHz from a real-time PXI system (PXIe-1062Q
chassis; PXI-8105 embedded controller) with a multifunction data
acquisition card (PXI-6289) and A/D board (BNC-2090). For
the input signal to all subsequent NTV analyses, we computed
acceleration magnitude as the square root of the sum of squared
x, y, and z axis accelerations (in units of G). Using vibration

magnitude is favorable in this case, as the wearable device vibrates
in three-dimensions and we sought to fully capture this motion –
this is unlike previous studies that used bulkier motors which
moved only in one axis (e.g., Mildren et al., 2017).

2.2.6. Electrical nerve stimulation
Electrical stimulation of the tibial nerve was required to

generate H-reflexes in the triceps surae muscles. These reflexes
are initiated along the peripheral nerve and therefore bypass the
muscle spindle. Following previous studies, H-reflexes were used
in conjunction with NTV-reflexes to assess site-specific adaptations
(Davis et al., 2011, Horslen et al., 2013). Surface electrodes (1-cm
Ag/AgCl; MediTrace 133, Kendall, Technical products Toronto,
Ontario, Canada) were used for the anode and cathode. The
anode was positioned in the centre of the popliteal crease in
the popliteal fossa (Zehr, 2002), targeting the tibial nerve as
it travels proximally and distally. The cathode was positioned
2 cm superior to the patella on the anterior thigh. A constant-
current stimulator (STMISOLA; Biopac, USA) was used to deliver
square-waveform electrical pulses (1 ms duration) using LabVIEW
software (National Instruments, USA). The amperage (1-100 mA)
of each stimuli was manually manipulated to achieve the stimulator
output producing the desired physiological response.

2.3. Data processing

Mean EDA, expressed in microSiemens (µS), was extracted
during time windows encompassing the NTV and electrical
stimulation periods. Force plate signals were digitally low pass
filtered (dual-pass) at 10 Hz (4th order low-pass Butterworth filter)
and COP was calculated from moments (Mx and My) and vertical
force (Fz). The root mean squared (RMS) displacement and mean
power frequency (MPF) of COP in the anteroposterior (AP) and
mediolateral (ML) directions were calculated during each trial.
EMG data were DC removed and full wave rectified for NTV
analysis. Signals were digitally filtered at 1,000 Hz (dual-pass, 4th
order, low-pass Butterworth filter). Background muscle activity
was determined for the SOL, MG, and TA during H-reflex and
NTV assessment by extracting the RMS amplitude during time
windows encompassing the stimulation period plus one second on
either end. For H-reflex assessment in the SOL, EMG signals were
trigger-averaged to the stimulus delivery onset within a window
of 10 ms preceding to 100 ms following tibial nerve stimulation.
This resulted in a trace representing the mean response from
the five H-waves evoked during each condition trial. Values were
extracted for stimulus-triggered average peak-to-peak amplitude
and latency from the stimulus to the first peak in the response wave
(Figure 2). For NTV assessment in the SOL, coherence analysis was
performed using the NeuroSpec2.0 software package (Rosenberg
et al., 1989; Halliday et al., 1995) for MATLAB (Mathworks). This
approach was adopted from prior studies investigating the time and
frequency characteristics of stochastic stimuli-evoked physiological
responses (Dakin et al., 2007, 2010, 2011; Mildren et al., 2017).
Coherence values represent normative estimates of the frequency
coupling strength between two signals (Mildren et al., 2017). Thus,
coherence functions were used to assess the strength of the linear
relationship between the input (NTV magnitude) and the output
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FIGURE 2

Physiological and perceptual indicators of postural threat-induced fear and anxiety. (A,B) Individual participant (gray circles) and box plots showing
median and interquartile range for EDA under real (A) and virtual environments. (B) Individual and average participant questionnaire anxiety rating
scores (out of a total of 0-144 points) under the different VR conditions. Asterisks denote significance at the p < 0.01** level.

(SOL EMG) signals in the frequency domain. Coherence was
estimated as the magnitude of the input-output signal cross spectra
squared divided by the product of the input and output autospectra
(Dakin et al., 2007; Mildren et al., 2017). Temporal characteristics
of coherent frequencies were detected by using the inverse Fourier
transform of the input-output signal cross spectra to compute
cross-covariance (cumulant density), which was normalized by
the product of the vector norms of the input and output signals.
Resulting cross covariance values were normalized to a range of
−1 to 1 (Dakin et al., 2010) and approximate the signal coupling
strength in the time domain. Therefore, a positive correlation
could be produced by either increased probe magnitude being
coupled with an increase in EMG, or by decreased probe magnitude
being coupled with a decrease in EMG. Independence of the two
signals (input and output) are assumed under the constructed
95% confidence limits for coherence (positive threshold) and cross
covariance (positive and negative thresholds) (Halliday et al., 1995).
Values exceeding these limits are indicative of a significant linear
relationship between the input (stimulus) and output (response)
signals. Coherence spectra and cumulant densities were computed
for each individual participant, as well as by pooling the data
from each condition across all 20 participants (FFT windows = 1s;
frequency resolution 1 Hz). Peak-to-peak and the timing of
the cumulant density peak was extracted for statistical analysis.
Additionally, we conducted pairwise Difference of Coherence tests
(Amjad et al., 1997) to determine significant differences in pooled
coherence spectra (see Figure 3).

2.4. Statistical analysis

Analysis was performed using custom MATLAB (MathWorks,
MA, USA) and SPSS software (version 26.0; IBM SPSS Statistics
Inc., Chicago, Il, USA) with α set to 5%. General linear mixed
effects models were used to determine the main effect of visual

condition on dependent variables. This statistical model provided
comparisons between all conditions in real (REO and REC) and
virtual (VRL and VRH) environments with pairwise estimates
using sequential Bonferroni adjustments for multiple comparisons.
Dependent variables in both real and VR environments included
mean EDA (assessed independently during NTV and electrical
stimulation), mean rectified background root mean squared (RMS)
EMG in each muscle (SOL, MG, and TA), RMS and mean
power frequency (MPF) of the anterior-posterior (AP) and medial-
lateral (ML) COP, H-reflex peak-to-peak amplitude in the SOL,
and NTV-reflex cumulant density peak-to-peak amplitude in the
SOL. Pairwise difference of coherence tests compared coupling
strength as a function of frequency for the identical planned
comparisons. Subjective balance confidence, fear, stability, and
anxiety data from questionnaires were assessed for VRL versus
VRH using (one-tailed) paired t-tests. Mean EDA during each type
of stimulus delivery (electrical vs. NTV) was compared for each
condition using paired t-tests to determine if participant arousal
was consistent during H-reflex and NTV-reflex assessment. Cohen’s
d effect sizes were calculated, and magnitude of the effects may
be interpreted as small (ES = 0.2), medium (ES = 0.5), or large
(ES = 0.8) (Cohen, 1988).

3. Results

3.1. General results

Force plate analysis was conducted using data from 19 subjects;
due to technical issues, these data were unavailable for one
participant. Data from one participant was also excluded from
the final H-Reflex analysis due to equipment malfunction. Of the
remaining 19 participants, all had strong SOL muscle responses
to H-reflex, while a weaker or absent response was observed in

Frontiers in Human Neuroscience 06 frontiersin.org24

https://doi.org/10.3389/fnhum.2023.1128548
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1128548 March 29, 2023 Time: 15:27 # 7

Hodgson et al. 10.3389/fnhum.2023.1128548

FIGURE 3

Postural sway and soleus muscle activity across real and virtual conditions. (A) Root-mean-squared (RMS) amplitude and (B) mean power frequency
of anteroposterior (AP) centre of pressure (COP) excursions, as well as (C) RMS soleus muscle activity, across each visual condition. Asterisks denote
significance at the p < 0.01** level.

MG (18 responders) and TA (15 responders) muscles. Similarly,
all 20 participants showed strong SOL and MG reflex responses
(coherence) during NTV, while none definitively produced reflex
responses in the TA. Since SOL consistently demonstrated the
strongest response and was present in all individuals during
H-reflex and NTV delivery, we focused the analysis exclusively
on SOL. This approach is aligned with prior H-Reflex (Horslen
et al., 2013; Young et al., 2018) and mechanical tendon stimulation
(Horslen et al., 2013, 2018; Mildren et al., 2016, 2017) studies which
focused on SOL for analysis.

3.2. Electrodermal activity

There were significant main effects for condition on EDA
during both H-reflex assessment (F(3, 76) = 6.769; p < 0.001) and
NTV (F(3, 76) = 7.003; p < 0.001). Pairwise contrasts, adjusted for
multiple comparisons using the sequential Bonferroni correction,
determined differences between specific conditions. As shown in
Figure 2A, during NTV, significantly greater EDA was observed
in the VRH condition compared to REO (41.6%; t(76) = 3.557;
p = 0.003; CI: 1.045 – 7.08), REC (51.9%; t(76) = 4.126; p = 0.001;
CI: 1.63 – 7.818), and VRL (38.4%; t(76) = 3.358; p = 0.005; CI:
0.912 – 6.756). There were no significant differences in EDA across
stimulation method (electrical vs. NTV) for any condition. During
electrical stimulation (H-reflex assessment), there was a similar
increase in sympathetic arousal in the VRH condition compared
to REO (39.6%; t(76) = 3.741; p = 0.002; CI: 1.324 – 7.692), REC
(40.9%; t(76) = 3.826; p = 0.002; CI: 1.346 – 7.875), and VRL (35.1%;
t(76) = 3.422; p = 0.004; CI: 1.041 – 7.207).

3.3. Psychosocial questionnaires

Questionnaires were administered prior to and following VR
conditions only. We observed significant mean differences between
the high and low conditions across all psychosocial measures.
Compared to the VRL condition, participants reported significantly

lower confidence in their ability to maintain balance prior to
VRH (14.3%; t(19) = 2.63, p = 0.008, ES = 0.588). Similarly,
during the VRH versus the VRL condition, participants felt more
unstable (11.5%; t(19) = 2.87, p = 0.005, ES = 0.642) and more
fearful of falling (17.3%; t(19) = −2.89, p = 0.005, ES = 0.646),
while experiencing greater levels of anxiety (10.6%; t(319) = −7.3,
p < 0.001, ES = 0.408; Figure 2B).

3.4. Background muscle activity

A general pattern of increased muscle activity emerged within
the VR environment, most notably in VRH, in each muscle
measured. Soleus: In SOL, there was a significant main effect
for condition on background muscle activity (F(3, 76) = 2.832;
p = 0.044). Pairwise contrasts, adjusted for multiple comparisons
using the sequential Bonferroni correction, did not identify any
significant difference between any conditions; however, non-
significant trends for increased EMG were observed in the VR
environment, with both VRL (3.8%; t(76) = 2.49; p = 0.075;
CI: 0.000 – 0.004) and VRH (3.9%; t(76) = 2.557; p = 0.075;
CI: 0.000 – 0.004) approaching significance compared to baseline
(REO) (Figure 3). Medial Gastrocnemius: In MG, there was a
significant main effect for condition on background muscle activity
(F(3, 76) = 2.962; p = 0.037). Pairwise contrasts demonstrated an
increase in EMG during VRH compared to baseline (REO) (10.4%;
t(76) = 2.826; p = 0.036; CI: 0.000 – 0.007). Tibialis Anterior:
Similarly, there was a significant main effect for condition on
background muscle activity in TA (F(3, 76) = 3.151; p = 0.030).
Pairwise contrasts demonstrated an increase in EMG during VRH
compared to baseline REO (6.5%; t(76) = 2.953; p = 0.025; CI:
0.000 – 0.004).

3.5. Centre of pressure

Standing at virtual height impacted postural sway
characteristics in the AP direction, indicated by a significant
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FIGURE 4

H-reflex responses across real and virtual visual conditions. (A) Anteroposterior (AP) centre of pressure (COP) during 5 consecutive electrical
stimulation pulses (bars overtop), delivered to the tibial nerve at the popliteal fossa (S29, REO). A notable, forward-directed transient in AP COP
postural sway resulting from rapid plantar flexion is observed in response to each electrical pulse. (B) Exemplary postural (AP COP) and muscular
(RSOL EMG) response to electrical stimulation from a single pulse (initial pulse in panel A). (C) Stimulus-triggered average of the 5 consecutive
pulses from this trial, with the RSOL stimulus artifact, M-Wave, and H-Reflex labeled. (D) Individual participant (gray dashed lines/diamonds) and
average (black bars) peak-to-peak (P2P) H-reflex amplitudes. Asterisks denote significance at the p < 0.001*** level.

main effect for condition on AP COP MPF (F(3, 72) = 4.605;
p = 0.005). Increases in AP COP MPF versus baseline (REO) were
significant during the VRH condition only (31.1%; t(72) = 3.693,
p = 0.003, CI: 0.021 – 0.135). There were no differences in
COP RMS in the AP or ML direction, or in ML COP MPF,
between any conditions. Figure 3 illustrates COP responses across
conditions.

3.6. H-reflexes

There was a significant main effect for condition on
H-reflex P2P amplitude (F(72) = 13.829; p < 0.001). Significant
pairwise contrasts demonstrate patterns of reduced H-reflex P2P
amplitude within the virtual environment versus during real
world conditions. Indeed, both VRL (40.8%; t(72) = −4.934,
p < 0.001; CI: −1.315 – −0.397) and VRH (43.4%; t(72) = −5.247,
p < 0.001; CI: −1.381 – −0.44) evoked smaller H-reflexes
compared to baseline (REO). Similarly, H-reflex P2P amplitude
was also reduced compared to REC during both VRL (34%;
t(72) = −3.676, p = 0.001; CI: −1.063 – −0.212) and
VRH (36.9%; t(72) = −3.988, p = 0.001; CI: −1.136 –
−0.247). There was no difference in H-reflex peak-to-peak
amplitude between VR height conditions (t(72) = −0.312,
p = 0.756; CI: −0.4 – 0.292). A mean latency of 36 ms
was observed, defined as the time between the stimulus
delivery and the initial peak of the bi-phasic reflex wave
(Figure 4).

3.7. Noisy tendon vibration reflexes

A mean latency of 44.3 ms was observed, defined as
the time between the stimulus delivery and the initial
peak of the bi-phasic reflex wave. However, there were no
significant condition effects on NTV-reflex P2P amplitudes.
However, pairwise difference of coherence tests found
that coherence between NTV magnitude and SOL muscle
activity increased for a subset of frequency components (see
Figure 5) for VRH vs. VRL, VRL vs. REO, and VRH vs. REO
comparisons.

4. Discussion

4.1. Summary

The primary objective of this study was to investigate
adaptations in arousal, postural control, and muscle stretch reflexes
under different conditions of real and virtual visual feedback.
We observed that mechanically evoked muscle stretch reflex
amplitude remained unchanged across visual conditions, however,
there were significant reductions in H-reflex amplitude in virtual
reality. This phenomenon occurred not only when exposed to
virtual height-induced threat, but also while standing at virtual
ground level (VRL), a condition mimicking the REO baseline
condition. Thus, merely altering visual input from a real setting
to a virtual environment appears to alter the excitability of
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FIGURE 5

Noisy tendon vibration evoked responses across real and virtual conditions. (A) Pooled coherence spectral estimates (N = 20) under real (REO vs.
REC) and virtual (VRL vs. VRH) visual environments. (B) Pairwise difference of coherence (DoC) tests comparing the pooled coherence spectra under
real (REC-REO) and virtual (VRH-VRL) conditions. Comparisons between baseline (REO) and virtual (VRL-REO, VHR-REO) visual conditions are also
shown. Solid horizontal black lines denote the 95% CI for each pairwise DoC test and values exceeding these lines (asterisks) indicate that, in all
cases, NTV-muscular coherence was higher under conditions of greater postural threat. (C) Pooled cumulant density estimates for the relationship
between vibration magnitude and rectified soleus activity under real and virtual visual environments. (D) Individual participant (gray dashed
lines/diamonds) and average (black bars) peak-to-peak (P2P) cumulant density amplitudes.

spinal reflex pathways. This lends support to existing literature
suggesting that a specific adaptation may occur within the
muscle stretch reflex circuity, such that, in VR, there is a global
decrease in neuro-excitability at the level of the spine. Our results
also suggest there may be a concomitant increase in muscle
spindle sensitivity, which offsets this decrease in spinal excitability,
keeping mechanically evoked muscle stretch reflexes unchanged
(or even slightly increased) in amplitude. To appropriately address
our primary research objective, this study also aimed to elicit
physiological and psychological responses to postural threat using
VR. A physiological arousal response to postural threat was
observed, with significant EDA increases occurring with transition
to VRH from baseline (REO), REC, and VRL conditions. Similarly,
subjective anxiety and fear of falling increased, while balance
confidence decreased in the VRH condition compared to VRL.
Postural muscles of the lower limb also demonstrated increased co-
contraction, which reached significance when transitioning to the
VR height environment, likely explaining the increase in the mean
power frequency of postural sway observed during this condition.

4.2. Psychosocial and physiological
modulation

Significant changes in physiological and psychological
responses in the virtual height condition compared to ground

level are indicative of increased sympathetic arousal. Skin
conductance (EDA) in the VRH condition was elevated compared
to VRL, and concomitant reductions in perceived stability and
balance confidence, as well as increased fear of falling were also
documented. These findings support prior indications that VR
height simulations can stimulate sympathetic arousal such as
increased skin conductance, heart rate, and perceived anxiety
and fear (Meehan et al., 2002; Cleworth et al., 2012) to a similar
degree to real-world elevation. Additionally, no differences were
observed in EDA between the real (REO) and virtual (VRL)
baseline conditions. This indication that transitioning into VR
does not increase participant arousal has been previously reported
(Simeonov et al., 2008; Cleworth et al., 2012). The invariability in
arousal between REO and VRL suggests that participants were not
exposed to physiological stress during this transition, alluding that
any associated changes in reflex excitability may be attributed to
visual feedback rather than perceived threat. Overall, this study
was successful in using VR to generate measurable physiological
and psychosocial changes in sympathetic arousal.

4.3. Altered background muscle activity
and postural sway

Here we observed a general pattern of increased muscle
activity with the addition of virtual reality induced threat. Patterns
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of increased muscle activity in VR were significant during the
height condition (VRH) compared to baseline (REO) for medial
gastrocnemius and tibialis anterior. Increases in activity for these
muscles at virtual height is consistent with the established increase
in lower-limb co-contraction observed in real-world height
induced postural threat. Simultaneously, postural sway frequency
was also affected by VR; compared to baseline (REO), AP MPF
increased in the VRH condition, indicative of a tensing response
at the ankle joint. This likely represents a neural adaptation strategy
to reduce instability (maintain balance) under conditions where the
risk or consequence of a fall is heightened. A linear increase in COP
frequency with height-induced threat has been previously reported
(Adkin et al., 2000). In real height environments, increased
muscular co-contraction alongside greater frequency of AP sway
is observed.

Previous studies, which directly compared standing at ground
level and height in both real and VR environments did not
report significant differences in postural control between matched
real and virtual conditions when standing on a firm surface
(Simeonov et al., 2005; Cleworth et al., 2012), although Simeonov
et al. (2005) did observe increased postural sway when standing
on an unstable surface in VR versus a real environment for
both ground level and height conditions. However, VR has
been reported to increase postural instability during quiet stance
on both firm and foam surfaces compared to similar real-
world conditions; in fact, Horlings et al. (2009) observed that
when compared to real-world quiet standing, the effects of VR
on postural sway were similar to an eyes closed condition,
consistent with the current study, which found no change in
postural control between REC and VRL. It is possible that
differences in technology or virtual visual environment account
for the contradicting findings regarding postural control in VR.
For example, the former studies created VR scenes that very
closely matched their real-world laboratory (Simeonov et al.,
2005; Cleworth et al., 2012), while Horlings et al. (2009) and
the current study did not match the VR scene to the real-
world eyes open condition. Participant VR experience may
have also played a role in this discrepancy. While other
studies do not report on this, participants entered the current
study with very limited prior exposure to VR. It is possible
that the novel nature of the VR experience could affect the
results.

Other studies also did not report on changes in muscle
activity in VR; however, the changes in postural control in this
study are supported by the associated increase in muscular co-
contraction described above. A review by Adkin and Carpenter
(2018) identified eight studies which investigated height-induced
postural and neurophysiological outcomes. A pattern emerged
in the literature that is supported by the present research –
each study reported evidence of increased COP frequency (Adkin
and Carpenter, 2018). These previous studies also reported
a reduction (6 studies) or no change (2 studies) in sway
amplitude when threatened with height (Adkin and Carpenter,
2018). Recent research has substantiated these findings of altered
balance control in response to standing in virtual elevation.
Raffegeau et al. (2020) recorded postural deviations using inertial
sensors while subjects were elevated in VR from ground level to
15 m height. The authors reported that AP postural responses

(sway acceleration) were significantly greater at height, but
only when standing parallel to the threat (i.e., on the edge
of the platform compared to standing perpendicular to the
edge).

4.4. Modulation in muscle stretch reflex
responses

We observed that vibration evoked stretch reflexes remained
unchanged, or marginally increased with virtual reality induced
postural threat. Given that H-reflexes, and presumably, spinal
excitability was diminished in virtual reality, our NTV
results suggest that a compensatory neural mechanism is
at play to maintain nearly constant mechanically evoked
stretch responses. Indeed, in conditions where H-reflexes
were reduced, NTV reflexes remained unchanged or slightly
increased on average. This is consistent with previous reports
of threat-induced modulations to postural control. Indeed,
T-reflex amplification has been demonstrated to occur
during static (Davis et al., 2011; Horslen et al., 2013) and
dynamic reactive (Horslen et al., 2018) standing at height,
as well as alternative sources of arousing stimuli (Bonnet
et al., 1995; Both et al., 2003, 2005; Hjortskov et al., 2005;
Kamibayashi et al., 2009).

As mentioned, an opposing trend to vibration reflex responses
emerged for electrically evoked muscle stretch reflexes. H-reflex
amplitudes were attenuated in VR conditions (VRL and VRH).
No difference was observed in H-reflex amplitude between virtual
height conditions in the present study. Interestingly, compared to
REO, H-reflex amplitudes were reduced in the VRL condition,
suggesting a more general effect of changing visual input from
real to virtual, despite these conditions being seemingly similar.
This demonstrates that the neural control of standing is altered
in VR, even in the absence of any virtual height manipulation,
which to our knowledge has not been reported previously (i.e.,
standing on ground level in the real- and virtual-world results
are not equivalent). Reduced H-reflex amplitudes in response to
threatening scenarios is consistent with previous reports. Subjects
have exhibited weaker H-reflex amplitudes in response to an
increased risk (Llewellyn et al., 1990; Horslen et al., 2013; Miranda
et al., 2019) or consequence (Sibley et al., 2007; Horslen et al.,
2013) of a fall, as well as during alternative scenarios stimulating
sympathetic arousal (Kamibayashi et al., 2009; Tanaka, 2015). This
suggests an inhibitory response at the spinal level that may be
facilitated by descending commands from cortical or supraspinal
structures (Llewellyn et al., 1990; Adkin et al., 2008). Tanaka
et al. (2013) support this theory by using single-pulse transcortical
stimulation to demonstrate increased corticospinal excitability
to the internal oblique muscle during postural-challenging tasks
at height. It is feasible that, when encountered with added
sympathetic arousal or altered visual input, in general, the central
nervous system downregulates spinal excitability to stifle excess
motor outputs which may interfere with its ability to produce
appropriate and efficient sensory-evoked responses to the stimuli.
The net effect of this neural adaptation would be that mechanical
reflex excitability remains unchanged, as observed in the present
study.
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4.5. Neural mechanisms for reflex
modulation

We are under the assumption that both vibration and
H-reflexes are short-latency responses using the same spinal
circuitry except for initiation method and location. The H-reflex
is initiated by stimulating the Ia afferent fibers directly (bypassing
activation of muscle spindles), and therefore, its pathway is
incomplete compared to its mechanically induced counterpart.
Vibration reflex initiation occurs via muscle spindle stimulation
resulting from a mechanical stretch applied to the muscle or
tendon, encapsulating the entirety of the Ia afferent pathway.
It is postulated, based on results of this study, that specific
adaptations local to the muscle spindle may occur in the presence
of virtual reality induced postural threat. This inference is
consistent with prior research (Bonnet et al., 1995; Both et al.,
2003, 2005; Hjortskov et al., 2005; Kamibayashi et al., 2009;
Davis et al., 2011; Horslen et al., 2013, 2018) suggesting a
heightened spindle-specific role in postural control in arousing
situations. Furthermore, because significant H-reflex reduction
signifies heightened inhibition at the spinal or supra-spinal
level, the increase in spindle sensitivity alongside postural threat
must be sufficient to overcome and exceed these inhibitions
to register a net-positive increase in overall reflex. Therefore,
it is likely that the muscle spindle response to threat is
underestimated despite the significant enhancements observed
here and in previous reports. The role of fusimotor control
in posture and movement, and its specific adaptations when
threats are perceived, demands further investigation by directly
measuring spindle activity via single unit recordings with human
microneurography.

Golgi Tendon Organ (GTO) inhibition may also play a
role in NTV-reflex facilitation in threatening scenarios. Horslen
et al. (2017) used electrical stimulation of the Achilles tendon
to demonstrate Ib-inhibition in the triceps surae muscles during
upright standing at both low and high height conditions compared
to lying prone at ground level. Thus, it seems GTO-Ib reflexes are
also dependent on task and threat perception, and their inhibition
under these conditions may enable amplified short latency Ia-
muscle spindle responses. Similar reductions in Ib inhibition
have been previously demonstrated (i.e., Faist et al., 2006; Van
Doornik et al., 2011) and are postulated to reflect a shift toward
excitatory, rather than inhibitory reflexes during postural tasks
compared to unloaded positions; thus, it seems reasonable to
suggest this effect may be amplified as basic postural tasks (i.e.,
standing) advance to more threatening conditions (i.e., standing
at height) with greater levels of muscle activation. However,
axons of Ib afferents innervating GTOs are known to be smaller
in diameter than Ia afferents supplying muscle spindles. Thus,
their stimulation threshold requires a greater current – likely
much higher than that delivered during this study, which used
stimulation intensities in lower ranges to target muscle spindles
specifically (Pierrot-Deseilligny and Burke, 2005). The concurrent
roles of Ib-GTO inhibition and Ia-muscle spindle excitation in
response to sympathetic arousal must be assessed further to
confidently infer their contributions to postural tasks in threatening
states.

4.6. Limitations and future considerations

One interpretation of our findings is that postural threat
in VR increased fusimotor outflow, which maintained vibration
reflex strength during a concomitant increase of spinal inhibition.
A limitation of this research, however, is that we are inferring
potential changes in fusimotor outflow and muscle spindle
feedback indirectly using reflexive muscle activity as a proxy.
As such, we cannot presently make firm conclusions regarding
muscle spindle responses or potential mechanisms of fusimotor
control. In future studies, these results should be bolstered by
direct recordings from individual muscle spindles with human
microneurography in threatening conditions. Even so, direct
recordings from single fusimotor neurons are not feasible in
humans; therefore, GMN activity will still need to be inferred from
changes in muscle spindle firing, all while keeping αMN (muscle
background activity) constant across conditions. This challenge
of inferring fusimotor drive from muscle spindle activation is
a well-appreciated in the literature (Burke, 2021; Dimitriou,
2021).

Another limitation to this study is the lack of a real-world high
height condition. VR has previously been shown to be capable
to eliciting similar responses to real-world conditions involving
quiet standing at low and high heights (Cleworth et al., 2012).
The current study aimed to build on this work by probing
the state of neural circuitry under similar conditions. It would
have been beneficial to directly compare these outcomes in real
and virtual height conditions as well as in the real and virtual
ground level conditions explored in this study. However, due to
practical limitations, a real height condition was replaced with
an eyes closed condition in this study. Nonetheless, closing the
eyes enabled an interesting comparison to virtual environments,
and has been used previously in studies involving real-world
and VR visual environments (Horlings et al., 2009). Finally,
comparisons between REO and VR conditions in current study
would have been better controlled had the virtual environment
been designed to match the real-world visual scene of the lab.
Previous studies comparing real and virtual conditions have
implemented near identical visual scenes within their virtual
display (Simeonov et al., 2005; Cleworth et al., 2012), and this
discrepancy may have played a role in some conflicting findings
between studies.

Our data reinforces that VR can elicit sympathetic arousal and
subjective fear responses with manipulations in virtual elevation.
Future research should investigate how these outcomes scale in
different, potentially even more threatening, virtual environments.
Beyond basic neural mechanisms of balance control, our findings
further suggest that VR may be useful for therapeutic purposes. For
example, VR exposure therapy has been presented as a promising
concept for managing phobias and anxieties, such as towards
heights or flying, by gradually exposing patients to a negative
stimulus (Rothbaum et al., 1997; Krijn et al., 2004; Bush, 2008;
Albakri et al., 2022). There is already research in this area suggesting
benefits in terms of fear of falling and fall risk in older adults
(Rendon et al., 2012; Levy et al., 2016), and clinically in people
with acrophobia (Coelho et al., 2009; Rimer et al., 2021), or anxiety
disorders (Meyerbröker and Emmelkamp, 2011).
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A Commentary on:
Augmented Reality in Neurosurgery, State of Art and Future Projections.
A Systematic Review

By Cannizzaro D, Zaed I, Safa A, Jelmoni AJM, Composto A, Bisoglio A, Schmeizer K, Becker AC,
Pizzi A, Cardia A, Servadei F. (2022). Front Surg. 9:864792. doi: 10.3389/fsurg.2022.864792

Innovation and medicine are inseparable, and technologies such as augmented reality (AR)

may transform the modern neurosurgical armamentarium. Per insights shared by

Cannizzaro and colleagues in their review article “Augmented Reality in Neurosurgery,

State of Art and Future Projections. A Systematic Review” (1), AR-assisted neurosurgery is

a promising, albeit complex and challenging advancement. Over the past year our team of

medical students has engaged in a biomedical innovation curriculum offered by a select

cohort of accredited medical schools throughout the United States. We were tasked with

evaluating the future of AR in neurosurgery. Thanks to our immersive experience with

this unique technology, we felt inclined to comment on this article and share our

perspectives in hopes that others will engage in these conversations and further promote

AR in medicine, specifically within the field of neurosurgery. We found the review article

to be robust and believe that it warrants a significant amount of consideration.

The authors highlight how AR has been largely investigated in spine surgeries, composing

18.2% of their literature review (1). This neurosurgical subspeciality has grown in minimally

invasive techniques, a process that has been amplified with the utilization of

neuronavigation systems. Studies suggest that AR-assisted pedicle screw placement is

legitimate, with some reports sharing 100% accuracy (2) while others share 97.8%–98.5%

accuracy (3). Although these numbers are encouraging, we must thoroughly question how

this technology challenges more traditional surgical techniques. Why invest in AR if it offers

no significant benefit? Dennler et al. (4) show that supplemental anatomical information

provided via AR may help novice surgeons match the efficacy of expert surgeons with

pedicle screw placement. However, to our knowledge, no large-scale randomized control

trials to date have compared AR assisted pedicle screw placement vs. traditional pedicle

screw placement. Moreover, we do not thoroughly understand if AR-assisted surgeries are

cost-effective. We can glean insights from literature that compares the use of free hand
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techniques with robotic devices; although robotics may have more

accuracy in placing pedicle screws and can help decrease

postoperative complications, the initial costs (which can approach

upwards of $850,000) and increased OR time are thought to

drastically outweigh its current benefits (5). Contrastingly, AR

systems like Xvision have comparable profiles of improved

accuracy but offer lower upfront cost (6), suggesting an

opportunity for feasible integration. Other groups must not only

reinforce the efficacy and practicality of AR, but also clearly

analyze the fiscality of these technologies if veteran and novice

surgeons alike are to adopt a new way of operating.

AR is an arguably more alluring tool for neurosurgical oncologists

and neurosurgeons working in remote areas seeking to collaborate

with distant colleagues, which is a realm we would have appreciated

for Cannizzaro and colleagues to further explore. Our review of the

available AR neuro-oncology literature has been exciting—

particularly, a statistically significant improvement in percent of

complete glioma resection in a test group (69.6%) compared to the

control group (36.4%) (p < .01) has been reported (7). Other studies

acknowledge the postoperative improvements associated with AR

guided surgeries as patients who underwent AR-assisted tumor

resection experienced shorter length of hospital stay and improved

postoperative quality of life in comparison to non-AR guided

resections (8). Moving forward, AR enthusiasts should emphasize a

need to attend to extraoperative components affiliated with AR

surgeries—if patients spend less time in the hospital and report

higher quality of life following AR-guided surgery, then investing in

these technologies becomes clearer. Thus, if we can better pinpoint

where AR aligns with the needs of both the surgeon and patient,

then integration can be met with less resistance.

Additionally, neurosurgical education is a valuable avenue to

pursue, explaining why this field composed 18.2% of the authors’

literature review (1). Rather than focusing on the traditional

sense of education (i.e., training residents, revamping models of

surgical instruction, etc.), developers in AR neurosurgery should

emphasize how this technology enhances collaboration among

neurosurgeons. AR expedites consultations between remote

neurosurgeons, encouraging long-distance conferences regarding

complex cases in real time (9). Accordingly, current platforms

such as virtual interactive presence and augmented reality

(VIPAR) place a surgeon in front of a stereoscopic display

capable of remote interaction with a workstation situated in a

different region or country (10, 11). The surgeon can share their

insights on the respective cases and address gaps in access to

care. What we find particularly intriguing about this utilization

of AR in neurosurgery is that it does not drastically change

workflow, which will encourage acceptance within the field.

Nonetheless, as Cannizzaro and colleagues (1) note, there are

multiple obstacles that AR must overcome before diffuse

integration into the neurosurgical operating room. There are two

points we want to highlight from their speculations: (1) as AR

will presumably have a role in the display of intraoperative

images, there will be a growing need for strong microcomputers

that facilitate access to data without compromising quality and

(2) AR surgical headsets and hardware will need to be widely

distributable, comfortable, non-obstructive, yet customizable to
Frontiers in Surgery 0233
individual needs (1). We too find these concepts paramount to

the future of virtually assisted surgeries. If AR can accurately

augment intraoperative neuroimaging, it has the potential to

significantly decrease the number of times a neurosurgeon must

look away from the operating field, diminishing and possibly

eliminating the need to constantly reorient from the patient to a

distant screen in the operating room and back (12). Although

some technologies allow for this, they are quite cumbersome for

the surgeon, requiring them to wear a large, bulky headset (13).

To further complicate matters, currently available AR

technologies may not fully integrate with a surgeon’s established

hospital, software, and/or current neuronavigation systems, which

makes a future with AR burdensome and laborious.

Naturally, these conversations will spark excitement and

criticism, but we cannot let this outweigh the need to continue

expanding and diversifying the future of medicine. We thank

Cannizzaro and colleagues (1) for their thoughtful contributions

to the current discourse and are excited to see how AR and

neurosurgery will co-evolve.
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Artificial intelligence in the
autonomous navigation of
endovascular interventions: a
systematic review

Harry Robertshaw1, Lennart Karstensen2,3, Benjamin Jackson1,

Hadi Sadati1, Kawal Rhode1, Sebastien Ourselin1,

Alejandro Granados1 and Thomas C. Booth1,4*

1School of Biomedical Engineering & Imaging Sciences, Kings College London, London,

United Kingdom, 2Fraunhofer IPA, Mannheim, Germany, 3AIBE, Friedrich-Alexander University

Erlangen-Nürnberg, Erlangen, Germany, 4Department of Neuroradiology, Kings College Hospital,
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Background:Autonomous navigation of catheters and guidewires in endovascular

interventional surgery can decrease operation times, improve decision-making

during surgery, and reduce operator radiation exposure while increasing access

to treatment.

Objective: To determine from recent literature, through a systematic review,

the impact, challenges, and opportunities artificial intelligence (AI) has for

the autonomous navigation of catheters and guidewires for endovascular

interventions.

Methods: PubMed and IEEEXplore databases were searched to identify reports

of AI applied to autonomous navigation methods in endovascular interventional

surgery. Eligibility criteria included studies investigating the use of AI in enabling

the autonomous navigation of catheters/guidewires in endovascular interventions.

Following Preferred Reporting Items for Systematic Reviews and Meta-Analysis

(PRISMA), articles were assessed using Quality Assessment of Diagnostic Accuracy

Studies 2 (QUADAS-2). PROSPERO: CRD42023392259.

Results: Four hundred and sixty-two studies fulfilled the search criteria, of which

14 studies were included for analysis. Reinforcement learning (RL) (9/14, 64%)

and learning from expert demonstration (7/14, 50%) were used as data-driven

models for autonomous navigation. These studies evaluated models on physical

phantoms (10/14, 71%) and in-silico (4/14, 29%) models. Experiments within

or around the blood vessels of the heart were reported by the majority of

studies (10/14, 71%), while non-anatomical vessel platforms “idealized” for simple

navigation were used in three studies (3/14, 21%), and the porcine liver venous

system in one study. We observed that risk of bias and poor generalizability were

present across studies. No procedures were performed on patients in any of the

studies reviewed. Moreover, all studies were limited due to the lack of patient

selection criteria, reference standards, and reproducibility, which resulted in a low

level of evidence for clinical translation.

Conclusion: Despite the potential benefits of AI applied to autonomous navigation

of endovascular interventions, the field is in an experimental proof-of-concept

stage, with a technology readiness level of 3. We highlight that reference standards

with well-identified performance metrics are crucial to allow for comparisons of

data-driven algorithms proposed in the years to come.

Systematic review registration: identifier: CRD42023392259.
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1. Introduction

Cardiovascular (CV) diseases are the most common cause of
death across Europe, accounting for more than four million deaths
each year, with coronary heart disease (44.2%) and cerebrovascular
disease (25.4%) emerging as the predominant contributors to
CV-related mortality across all ages and genders (Townsend
et al., 2016). Endovascular catheter-based interventions such
as percutaneous coronary intervention (PCI), pulmonary vein
isolation (PVI), and mechanical thrombectomy (MT) have become
an established treatment for CV diseases (Thukkani and Kinlay,
2015; Goyal et al., 2016; Giacoppo et al., 2017; Lindgren et al., 2018).
During such a procedure, an operator navigates a guidewire and
catheter from an insertion point (typically the common femoral or
radial artery) to the area of interest to perform the intervention.
Intraoperative fluoroscopy is used intermittently throughout the
navigation and intervention to guide the catheter and guidewire
through the vasculature. Once the target site has been reached, the
treatment can be performed through the catheter. This is typically
thrombus removal in the case of MT, stent deployment in the case
of PCI, and ablation for PVI (Brilakis, 2020).

In acute CV disease, time from symptom onset to treatment is
often crucial for effective endovascular interventions. For example,
the benefits of MT become non-significant after 7.3 h of stroke for
non-stratified patients (Saver et al., 2016). As a result, in the UK for
example, only 1.4% of stroke admissions benefit from MT despite
the 10% of patients that are eligible for treatment (McMeekin et al.,
2017). Other challenges for endovascular interventions relate to
occasional complications including perforation, thrombosis, and
dissection in the parent artery, as well as distal embolization of
thrombus (Hausegger et al., 2001). Moreover, angiography requires
intravascular contrast agent administration, which can occasionally
lead to nephrotoxicity (Rudnick et al., 1995). For operators and
their teams, the high cumulative dose of x-ray radiation from
angiography is a risk factor for cancer and cataracts (Klein et al.,
2009). Although exposure can be minimized with current radiation
protection practice, some measures involve operators wearing
heavy protective equipment which is a risk factor for orthopedic
complications, and so alternative methods of exposure reduction
are beneficial (Ho et al., 2007; Madder et al., 2017).

It is hoped that robotic surgical systems can either mitigate
or eliminate some of the challenges currently presented by
endovascular interventions. For example, robotic systems could
be set up in hospitals nationwide and tele-operated remotely
from a central location, increasing the speed of access to
treatments such asMT beyond what is possible currently (Crinnion
et al., 2022). Additionally, robotic systems might eliminate any
operator physiological tremors or fatigue and allow endovascular
interventions to be performed in an optimum ergonomic position
while potentially increasing procedural precision (for example,
procedure time), and thereby improving overall performance
scores and reducing complication rates (Riga et al., 2010).
Furthermore, as operators would not be required to stand next to
the patient, their radiation exposure would be reduced and the need
to wear heavy protective equipment would be obviated.

Commercial robotic systems are currently available to perform
endovascular interventions. Hansen Medical developed the

MagellanTM system (Auris Health, Redwood City, USA), the first
commercially available robotic system to be used for PVI, and
more recently used to successfully perform carotid artery stenting
in 13 patients (Duran et al., 2014; Jones et al., 2021). This system
comprises a steerable guide catheter inside a steerable sheath
allowing movement in three dimensions, and a separate remote
guidewire manipulator allowing linear and rotational movement.
The Corpath GRX R© (Corindus Vascular Robotics, USA), the next-
generation system of the Corpath R© 200 robot, has successfully
been used for PCI and PVI. This system has performed diagnostic
cerebral angiography procedures and ten carotid artery stenting
procedures (Nogueira et al., 2020; Sajja et al., 2020; Weinberg et al.,
2021). Furthermore, it has been recently used to perform robot-
assisted, neuroendovascular interventions including aneurysm
embolization and epistaxis embolization (Pereira et al., 2020;
Cancelliere et al., 2022; Saber et al., 2022). These systems use a
controller-operator structure, where operators remotely control
and navigate a robot through a patient’s vasculature to the target
site. In currently available systems, the operator has complete
control over the robot and makes all of the decisions.

While these robotic systems help alleviate some of the
challenges of endovascular interventions, they have limitations.
The controller-operator structure requires a reasonably high
cognitive workload, can still result in human error and means
that the procedure is limited to an individual operator’s skill
set (Mofatteh, 2021). These robotic systems also consist of user
interfaces such as buttons and joysticks, requiring skills that are
different to those used in current clinical practice. Additionally,
a lack of haptic feedback from robotic systems might result
in difficulties to receive tactile feedback from the catheters and
guidewires as they interact with vessel walls (Crinnion et al., 2022).

One emerging method of mitigating these challenges is
using artificial intelligence (AI) techniques in conjunction with
robotic systems. AI, and in particular, machine learning (ML),
has accelerated in recent years in its applications for data
analysis and learning (Sarker, 2021), with many areas of
healthcare already making use of this technology for disease
prediction and diagnosis (Fatima and Pasha, 2017; Silahtaroğlu and
Yılmaztürk, 2021). ML algorithms can be divided into three main
groups: supervised, unsupervised, and reinforcement learning
(RL). Supervised learning is the most common form of ML and
involves constructing a model trained on a dataset with labels (the
corresponding correct outputs). The model can then accurately
predict the labels of new, unknown instances based on the patterns
learned from the training data (Kotsiantis, 2007).

Unsupervised learning involves training an algorithm to
represent particular input features in a way that reflects the
structure of the overall collection of input patterns (Dayan, 2017).
In contrast to other types of ML, the dataset is unlabeled and
there are no explicit target outputs or environmental evaluations
associated with each input.

RL is a form of ML, whereby an agent learns by interacting with
the environment and receiving feedback in the form of rewards.
The goal of RL is to maximize the cumulative reward over time
by learning a policy that optimizes the agent’s current state for a
set of actions (Arulkumaran et al., 2017). Similar to the natural
way of human learning, robotic RL automatically acquires the skills
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through “trials and errors” (Sutton and Barto, 2018). Applications
of RL are becoming more expansive, as numerous research areas
aim to use the method, for example, in precision medicine, medical
imaging, and rehabilitation (Lowery and Faisal, 2013; Naros and
Gharabaghi, 2015; Ghesu et al., 2018).

Learning from demonstration (LfD) is a variant of supervised
learning, where input data is provided by an expert demonstrator.
This can also act as a precursor for RL, whereby the agent
can further improve its behavior through interaction with the
environment. Table 1 describes the ML methods that are referred
to later in this paper, each of which can be used to improve
performance across the three types of ML described above. LfD has
been separated from the other types of ML in this case, as it can be
used in the context of both supervised learning and RL.

The use of these ML techniques for autonomy in medical
robotics presents several challenges. To help in the consideration of
regulatory, ethical, and legal barriers imposed, a six-level autonomy
framework has been proposed, ranging from no autonomy at level
0, up to level 5 which involves full autonomy with no human
intervention (Yang et al., 2017). This study aims to systematically
review the methodology, performance and autonomy level of
AI applied to the autonomous navigation of catheters and
guidewires for endovascular interventions. Understanding the
current developments in the field will help determine the impact,
challenges, and opportunities required to direct future translational
research and ultimately guide clinical practice.

2. Methods

This systematic review is PROSPERO (International
prospective register of systematic reviews) registered
(CRD42023392259). The review followed Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines (Page et al., 2021).

2.1. Selection criteria

2.1.1. Eligibility criteria
Included reports consisted of primary research studies, which

investigated the use of AI in enabling the autonomous navigation
of catheters and/or guidewires in endovascular interventions.
Excluded studies did not use AI methods to achieve autonomous
navigation of catheters/guidewires or looked at path planning
for endovascular interventions rather than the navigation itself.
Additionally, studies without an English translation were not
included (Nussbaumer-Streit et al., 2020).

2.1.2. Information sources and search strategy
PubMed and IEEEXplore were used to capture original

research articles, published anytime until the end of January
2023, with the following search query: “(Artificial Intelligence OR
Machine Learning OR Reinforcement Learning OR Deep Learning
OR Autonomous OR Learning-based) AND (Endovascular
OR Vascular Intervention OR Catheter OR Guidewire) AND

(Navigation OR Guidance).” Pre-prints and non-peer-reviewed
articles were excluded.

2.1.3. Selection and data collection process
A medical robotics data scientist, H.R. (3 years of research

experience), searched for studies as defined in the search strategy
and followed the selection process as shown in Figure 1. A
medical robotics data scientist, L.K. (4 years experience in
autonomous endovascular navigation using AI), independently
reviewed the manuscripts against the eligibility criteria. In the case
of discrepancy, consensus was reached by discussion between the
two reviewers. If consensus was not reached, the multi-disciplinary
authorship would make the final arbitration. The relevant data
items, as defined in the following section, were extracted.

2.2. Data items, e�ect measures, and
synthesis methods

Information extracted from each study included: the AImethod
used andmore granular model details (where available), the current
level of autonomy, the type of experiment (in vivo, in vitro, in silico),
the method of tracking the catheter and/or guidewire position, the
method of catheter and/or guidewire manipulation, description of
the navigation path, performance measures, and key performance
outcomes (where available).

The levels of autonomy followed (Yang et al., 2017). Briefly,
these are level 0: no autonomy, level 1: robot assistance, level 2: task
autonomy, level 3: conditional autonomy, level 4: high autonomy,
and level 5: full autonomy. It should be noted that if the autonomy
level was not described in the study, an appropriate level was
assigned based on the content of the paper.

2.3. Study risk of bias, reporting bias, and
certainty assessment

Where appropriate, both Quality Assessment of Diagnostic
Accuracy Studies 2 (QUADAS-2) methodology alongside AI
metrics from the Checklist for Artificial Intelligence in Medical
Imaging (CLAIM) were used to assess the risk of bias for each study
(Rutjes et al., 2011; Mongan et al., 2020).

3. Results

3.1. Studies

As shown in Figure 1, 462 studies met the search criteria, and 21
full-text studies were assessed against the eligibility criteria. A total
of 14 were identified for review (Rafii-Tari et al., 2013, 2014; Chi
et al., 2018a,b, 2020; Behr et al., 2019; You et al., 2019; Zhao et al.,
2019; Kweon et al., 2021; Meng et al., 2021, 2022; Cho et al., 2022;
Karstensen et al., 2022;Wang et al., 2022). The characteristics of the
fourteen studies are listed in Table 2.

According to QUADAS-2 methodology, all studies reviewed
gave a high or unclear “risk of bias” and “concerns regarding
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TABLE 1 Description of ML methods.

Name ML Type Description

A3C RL An algorithm that employs multiple agents working in parallel to learn policies in an environment (Mnih et al., 2016).

Behavior cloning LfD technique where an agent learns a policy by imitating expert behavior. It learns from labeled examples provided by experts,
mapping input observations to corresponding actions to replicate the demonstrated behavior. It can be used as a pre-training
step in RL allowing the agent to learn by imitating the behavior of an expert (Codevilla et al., 2019).

CNN Supervised learning Type of deep neural network specifically designed for image processing and pattern recognition tasks. CNNs leverage spatial
hierarchies through convolutional layers that extract local features and preserve spatial relationships, enabling effective image
classification, object detection, and image segmentation tasks (O’Shea and Nash, 2015).

DDPG RL An algorithm that merges RL and policy optimization. It iteratively refines the policy based on estimated value distributions, to
find an optimal strategy (Lillicrap et al., 2016).

DQN RL Leverages a deep neural network to learn optimal policies through Q-learning (see Q-learning explanation below). It enables
agents to make decisions by maximizing the expected cumulative rewards, facilitating dynamic environment interaction (Mnih
et al., 2013).

Dueling DQN RL An extension of DQN that separates the estimation of state value and action advantages. By independently approximating these
values, the agent can learn the value of being in a particular state while also considering the advantages of each action (Wang
et al., 2016).

GAIL LfD Method where an agent learns a policy by imitating expert behavior using a generative adversarial framework. It involves a
generator network that aims to replicate the expert and a discriminator network that distinguishes between expert and
generated behavior (Ho and Ermon, 2016).

GMM Unsupervised learning A statistical model that assumes data is generated by a mixture of several Gaussian distributions (Reynolds, 2015).

HD LfD Term that encompasses the process of an expert performing a task. Human demonstration can be used as a means to collect
data for LfD (Nair et al., 2017).

HER RL Allows an agent to learn from “failed” experiences by redefining the goal of a task (Andrychowicz et al., 2017).

HMM Unsupervised learning A statistical model that assumes observations are generated by a hidden sequence of states that follow a Markov process
(Rabiner, 1989).

PI2 RL Optimization algorithm which aims to find the optimal policy by iteratively improving the policy through gradient-based
optimization methods, maximizing the expected return (Theodorou et al., 2010).

PPO RL An algorithm that optimizes policies iteratively while ensuring small policy updates. It balances exploration and exploitation,
enhancing stability, and sample efficiency during training (Schulman et al., 2017).

Q-learning RL Algorithm that learns the optimal action-value function (Q-value function) for sequential decision-making. It updates Q-values
iteratively based on observed rewards and the maximum expected future rewards (Jang et al., 2019).

Rainbow RL Extension of DQN that combines multiple improvements to enhance performance, by incorporating techniques such as
prioritized experience replay, distributional value estimation, and multi-step learning to improve overall learning stability and
efficiency (Hessel et al., 2017).

YOLO Supervised learning Object detection algorithm that can detect and classify objects in real-time. It uses a single neural network to directly predict
bounding boxes and class probabilities for objects in an image, providing fast and accurate object detection (Redmon et al.,
2015).

A3C, asynchronous advantage actor critic; CNN, convolutional neural network; DDPG, deep deterministic policy gradient; DQN, deep Q-network; GAIL, generative adversarial imitation

learning GMM, Gaussian mixture modeling; HD, human demonstration; HER, hindsight experience replay; HMM, hidden Markov models; LfD, learning from demonstration; PI2, policy

improvement with path integrals; PPO, proximal policy optimization; RL, reinforcement learning; YOLO, you only look once.

applicability” in all domains. No studies performed procedures
on patients and therefore had no clearly defined patient selection
criteria, reference standards, or index tests. Despite the low level
of evidence, there is value in discussing these individual studies as
they represent the current state of the art and form a baseline for
further research.

3.2. AI models

3.2.1. RL methods
RL was used in nine studies (9/14, 64%) with algorithms

including A3C, DDPG, DQN, Dueling DQN, HER, PI2, PPO,

and Rainbow (Chi et al., 2018a, 2020; Behr et al., 2019; You
et al., 2019; Kweon et al., 2021; Meng et al., 2021, 2022;
Cho et al., 2022; Karstensen et al., 2022). Demonstrator data
in some form (GAIL, Behavior Cloning, or HD) was used
as a precursor in four of the studies (4/14, 29%) during
training (LfD), in conjunction with other RL algorithms (Chi
et al., 2018a; Behr et al., 2019; Kweon et al., 2021; Cho
et al., 2022). The SOFA framework (Inria, Strasbourg, France;
Faure et al., 2012) was used for training RL models in
four studies (4/14, 29%; Behr et al., 2019; Cho et al., 2022;
Karstensen et al., 2022; Meng et al., 2022), the Unity engine
(Unity Technologies, San Francisco, USA) was used in two
studies (2/14, 14%; You et al., 2019; Meng et al., 2021), while
the platform used for training was not specified in three
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FIGURE 1

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram showing the number of articles searched and excluded

at each stage of the literature search after screening titles, abstracts, and full texts.

studies (3/14, 21%; Chi et al., 2018a, 2020; Kweon et al.,
2021).

3.2.2. Other ML types
RLwas not used in five studies (5/14, 36%) which employed LfD

(not as a precursor for RL), unsupervised (GMM and HMM) and
supervised (CNN and YOLO) methods alone or in combination
(Rafii-Tari et al., 2013, 2014; Chi et al., 2018b; Zhao et al., 2019;
Wang et al., 2022). The most common method was LfD, which
was used in three studies (3/14, 21%; Rafii-Tari et al., 2013, 2014;
Chi et al., 2018b). Two of these studies (2/14, 14%) used a GMM
to generate the probabilistic representation of the dataset provided
by a demonstrator (Rafii-Tari et al., 2013; Chi et al., 2018b), while
the other study utilized HMMs to model each movement primitive
(Rafii-Tari et al., 2014). The other two non-RL studies (2/14, 14%)
used solely CNNs or YOLOV5s (Zhao et al., 2019; Wang et al.,
2022).

3.3. Level of autonomy

Conditional autonomy (level 3) was performed in seven studies
(7/14, 50%; Behr et al., 2019; You et al., 2019; Zhao et al., 2019;
Kweon et al., 2021; Cho et al., 2022; Karstensen et al., 2022;
Wang et al., 2022). Here, a target in the vasculature is selected
by an operator and the subsequent navigation to the target of
the guidewire and/or catheter takes place autonomously. Task

autonomy (level 2) was performed across five studies (5/14, 36%),
whereby the robotic driver automates the catheter motion and an
operator manipulates the guidewire for assistance (Rafii-Tari et al.,
2013, 2014; Chi et al., 2018a,b, 2020). Robot assistance (level 1)
was demonstrated in two studies (2/14, 14%), where experiments
were performed entirely in simulation and under continuous
supervision of an operator (Meng et al., 2021, 2022).

3.4. Experimental design

Clinical trials were not performed in any of the studies
reviewed. Physical phantoms were used in the majority of studies
(11/14, 79%) reviewed (Rafii-Tari et al., 2013, 2014; Chi et al.,
2018a,b, 2020; Behr et al., 2019; You et al., 2019; Zhao et al., 2019;
Kweon et al., 2021; Cho et al., 2022; Wang et al., 2022). Of these
studies, seven used 3D vascular phantoms (Rafii-Tari et al., 2013,
2014; Chi et al., 2018a,b, 2020; You et al., 2019; Wang et al., 2022),
three used 2D phantoms (Behr et al., 2019; Zhao et al., 2019; Cho
et al., 2022), and one study used both 2D and 3D phantoms (Kweon
et al., 2021). Commercial phantoms were used in six studies (6/14,
43%): 3D silicone-based, transparent, anthropomorphic phantoms
(Elastrat Sarl, Geneva, Switzerland) were used in 5/14 (36%) studies
(Rafii-Tari et al., 2013, 2014; Chi et al., 2018a,b, 2020); and the study
using both 2D and 3D phantoms used firstly, a 2D PCI trainer for
beginners (Medi Alpha Co., Ltd., Tokyo, Japan) and secondly, a
silicone 3D Embedded Coronary Model (Trandomed 3D Medical
Technology Co., Ltd., Ningbo, China), respectively. Five studies
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(5/14, 36%) appeared to use in-house phantoms: one study used
a silicone-based 3D printed heart model and inferior vena cava
(You et al., 2019), and one used a 10 mm vessel diameter phantom
made of polymethyl methacrylate (PMMA; Behr et al., 2019), while
sufficient phantom detail is not provided by the other three studies
(Zhao et al., 2019; Cho et al., 2022; Wang et al., 2022).

In silico methods were used in two of the studies (2/14,
14%; one used SOFA framework and one used Unity engine;
Meng et al., 2021, 2022). Ex vivo experiments using porcine liver
vasculature were reported by one study (Karstensen et al., 2022).
Here, in silicomethods were used for training models before the ex
vivo experiments.

Figure 2 shows the anatomical regions where each study
focuses. Experiments within or around the blood vessels of the
heart were reported by the majority of studies (10/14, 71%; Rafii-
Tari et al., 2013, 2014; Chi et al., 2018a,b, 2020; You et al., 2019;
Kweon et al., 2021; Meng et al., 2021, 2022; Wang et al., 2022),
with the study with the longest path length starting at the femoral
artery and finishing at the coronary artery (Wang et al., 2022). Non-
anatomical vessel platforms “idealized” for simple navigation were
used in three studies (3/14, 21%; Behr et al., 2019; Zhao et al., 2019;
Cho et al., 2022), and the porcine liver venous system in one study
(Karstensen et al., 2022).

3.5. Evaluation

Passive tracking relies on external sensors to detect the
catheter’s position, active tracking involves the use of sensors
located at the distal end of the catheter for real-time position
tracking, and magnetic tracking utilizes external magnetic fields to
guide the catheter’s movement and track its position. A passive,
tracking-based, method for catheter manipulation was used in
eight studies (8/14, 57%; Rafii-Tari et al., 2013, 2014; Chi et al.,
2018a,b, 2020; You et al., 2019; Meng et al., 2021, 2022), whereas
a passive, image-based, method for catheter manipulation was used
in the other six studies (6/14, 43%; Behr et al., 2019; Zhao et al.,
2019; Kweon et al., 2021; Cho et al., 2022; Karstensen et al., 2022;
Wang et al., 2022). None of the studies reviewed reported active or
magnetic steering methods.

A top-down camera for tracking the location of the guidewire
and/or catheter was implemented in five of the studies (5/14,
36%) where transparent phantoms allowed real-time video to
provide software-generated tracking data (Behr et al., 2019; Zhao
et al., 2019; Kweon et al., 2021; Cho et al., 2022; Wang et al.,
2022). Electromagnetic (EM) position sensors were employed in
six studies (6/14, 43%; Rafii-Tari et al., 2013, 2014; Chi et al.,
2018a,b, 2020; You et al., 2019). An Aurora control unit and
EM Generator of Aurora electromagnetic tracking system (NDI,
Waterloo, Canada) were used in one of these studies (You et al.,
2019), whilst custom-designed sensors (Rafii-Tari et al., 2013) were
used in the other five. These five studies also employed a top-down
camera simultaneously enabled through the use of transparent
phantoms during data collection pre-training. One study employed
continuous fluoroscopy, capturing 7.5 images per second, and used
a CNN to segment the guidewire from real-time fluoroscopy images
to track data that included the coordinates (Karstensen et al., 2022).

Two studies (2/14, 14%) were performed entirely in silico, and
hence no tracking method was required (Meng et al., 2021, 2022).

Quantitative performance measures used in the studies were
heterogeneous which may reflect the low technology readiness level
(TRL; Mankins, 1995) of AI applied to autonomous navigation of
endovascular interventions shown by the studies in this systematic
review. Common performance measures used were success rate
of navigation task (7/14, 50%) and time to complete procedure
(5/14, 36%). Other performance measures shared across studies
were: measures of force (6/14, 43%); acceleration (4/14, 29%);
various measures of speed (4/14, 29%); and path length (4/14,
29%). Half of the studies (7/14, 50%) reviewed compared manual
performance against their autonomous navigation performance.
The key performance outcomes of the 14 studies are listed in
Table 3.

Where possible, critical outcome data for success rate,
procedure time and path length were extracted from the study.
Three of the 14 studies (3/14, 21%) did not measure any of these
performance measures (Rafii-Tari et al., 2013; Meng et al., 2021;
Wang et al., 2022). Of the seven studies (7/14, 50%) that measured
success rate, the value was over 90% in four studies (4/14, 29%; Chi
et al., 2018a, 2020; Zhao et al., 2019; Kweon et al., 2021).

4. Discussion

4.1. Summary of findings

There is no high-level evidence (Howick et al., 2011) to
demonstrate that AI autonomous navigation of catheters and
guidewires in endovascular intervention is non-inferior or superior
to manual procedures. Currently, AI autonomous navigation of
catheters and guidewires in endovascular intervention has not
surpassed TRL 3. There has been no clinical validation nor has
there been comprehensive laboratory validation. Over half of the
studies (9/14, 64%) employed RL methodologies, particularly in
recent years, where most studies used RL (8/10, 80% published
beyond 2018). There are no standardized in silico, in vitro,
or ex vivo experimental reference standard designs, nor are
there standardized performance measures, meaning comparison of
studies quantitatively is of limited value.

4.2. Strengths and limitations

4.2.1. Strengths
The primary strength of the studies reviewed came from the

range of ML techniques employed. Most focused on finding a
ML technique that would improve upon previous work, rather
than using similar algorithms and extending the experimental
environment. This is demonstrated well within the nine studies
(9/14, 64%) which used RL, where a different ML-based
methodology was used in every case except for two (where the
simulation environment and output measurements were changed
between studies). Exploring various techniques is advantageous for
research, especially in the rapidly evolving field of ML, as the fast
pace of development increases the likelihood that more effective
algorithms are created. For example, autonomous endovascular
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TABLE 2 Studies resulting from our search and eligibility criteria proposing AI models for the autonomous navigation of catheters/guidewires in endovascular interventions.

References ML
method∗

Level of
autonomy

Validation
environment

Tracking type Tracking
method

Navigation path Performance measures

RL

Chi et al. (2018b) PI2 + LfD Level 2 In vitro

(phantom)
Passive
(tracking-based)

EM position
sensor

Origin of LCA, to BCA or LSA Max acceleration of catheter tip,
Mean/max/STDEV/impact area of contact force,
Path-following error (RMSE), Mean/STDEV
speed of catheter tip, Path length, Procedure time

Behr et al. (2019) DDPG, DQN,
HER, + HD

Level 3 In vitro

(phantom)
Passive (image-
based)

Top-down
camera

Idealized vessel platform with a bifurcation followed
by a bi-and trifurcation in one plane

SR of navigation task

You et al. (2019) Dueling DQN Level 3 In vitro

(phantom)
Passive
(tracking-based)

EM position
sensor

Insertion at heart RA’s IVC, target is nerve nodes
around CS and TA of heart RA

Path length, SR of navigation task

Chi et al. (2020) PPO + GAIL Level 2 In vitro

(phantom)
Passive
(tracking-based)

EM position
sensor

Position in aorta (proximal to major branches), to
BCA or LCCA

Mean/max force between endovascular
instruments and vascular phantom, Mean/STDEV
speed of catheter tip, Path length, Procedure time,
SR of navigation task

Cho et al. (2022) DDPG +
Behavior Cloning

Level 3 In vitro

(phantom)
Passive
(image-based)

Top-down
camera

Idealized vessel platform with a bifurcation followed
by a bifurcation in one plane

Procedure time

Meng et al. (2021) A3C Level 1 In silico Passive
(tracking-based)

Simulation-
based

Traversing descending aorta, through aortic arch,
cannulation of LCA, LSA, or innominate artery

Limited information available

Kweon et al. (2021) Rainbow + HD Level 3 In vitro

(phantom)
Passive (image-
based)

Top-down
camera

Proximal point in left anterior descending artery to
target location in main or side branch

Procedure time, SR of navigation task

Meng et al. (2022) A3C Level 1 In silico Passive
(tracking-based)

Simulation-
based

Traversing descending aorta, through aortic arch,
cannulation of LCA, LSA, or innominate artery

Contact force, Procedure time

Karstensen et al. (2022) DDPG, HER Level 3 Ex vivo (porcine
liver)

Passive (image-
based)

Fluoroscopy Vena cava inferior to vena hepatica dextra, vena
hepatica intermedia or and vena hepatica sinistra
(porcine liver)

Number of failures due to wrong
branch/entanglement, SR of navigation task

Non-RL

Rafii-Tari et al. (2013) GMM + LfD Level 2 In vitro

(phantom)
Passive
(tracking-based)

EM position
sensor

Traversing descending aorta, through aortic arch,
cannulation of innominate artery

Mean/max acceleration of catheter tip, Mean/max
speed of catheter tip

Rafii-Tari et al. (2014) HMM + LfD Level 2 In vitro

(phantom)
Passive
(tracking-based)

EM position
sensor

Cannulation of LSA and RCCA Mean/max acceleration of catheter tip, Path length

Chi et al. (2018a) GMM + LfD Level 2 In vitro

(phantom)
Passive
(tracking-based)

EM position
sensor

Origin of LCA, to bifurcation site between RCCA
and RSA

Mean/max acceleration of catheter tip,
Mean/max/STDEV/impact area of contact force,
Mean/max/STDEV speed of catheter tip, Path
length, SR of navigation task

Zhao et al. (2019) CNN Level 3 In vitro

(phantom)
Passive (image-
based)

Top-down
camera

Medical and designed vessel models Procedure time, SR of navigation task

Wang et al. (2022) YOLOV5s Level 3 In vitro

(phantom)
Passive (image-
based)

Top-down
camera

Femoral to coronary artery Average Precision

Clinical: BCA, brachiocephalic artery; CS, coronary sinus; EM, electromagnetic; IVC, inferior vena cava; LCA, left coronary artery; LCCA, left common carotid artery; LSA, left subclavian artery; RA, right atrium; RCCA, right common carotid artery; RSA, right

subclavian artery; TA, transaortic.

Technical: A3C, asynchronous advantage actor critic; CNN, convolutional neural network; DDPG, deep deterministic policy gradient; DQN, deep Q-network; GAIL, generative adversarial imitation learning GMM, Gaussian mixture modeling; HD, human

demonstration; HER, hindsight experience replay; HMM, hidden Markov models; LfD, learning from demonstration; PI2 , policy improvement with path integrals; PPO, proximal policy optimization; RL, reinforcement learning.

Evaluation: RMSE, root-mean-squared error; SR, success rate; STDEV, standard deviation.
∗LfD was used as a ML method in cases where no further information about the type of LfD was available.

Descriptions of each type of ML method can be found in Table 1.
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FIGURE 2

Diagram depicting the general vessels of interest for each study. *Study is in more than one area. Studies using non-anatomical platforms are also

shown.

TABLE 3 Key performance outcomes from studies reviewed.

References Path length Procedure time Success rate

Behr et al. (2019) n/a n/a 70% for DDPG

Chi et al. (2018a) Median: 360.5 mmmanual, 281.2 mm
robot

n/a Expert model: 100% under dry condition, 94.4% under
continuous flow, 55.6% under pulsatile flow

Chi et al. (2018b) 367.8 mm pre-RL, 211.6 mm RL 74.5± 11.6 s manual, 137.7± 7.1 s
pre-RL, 121.3± 9.5 s RL

n/a

Chi et al. (2020) Type-I Aortic Arch, BCA: 55.7± 9.4
mm automation, 51.4± 8.3 mmmanual

Type-I Aortic Arch, BCA: 52.1± 9.9 s
automation, 6.36± 1.4 s manual

Type-I Aortic Arch: 94.4% for BCA cannulation, 88.9%
for LCCA cannulation

Cho et al. (2022) n/a Real vessel phantom: 34.06 s own
algorithm, 63.2 s expert algorithm

n/a

Karstensen et al. (2022) n/a n/a 30% (ex-vivo surgical task)

Kweon et al. (2021) n/a Proximal targets: 9.29± 6.00 s
autonomous, 82.1± 34.2 s manual

>95% after 646 episodes (distal-main target)

Meng et al. (2021) n/a n/a n/a

Meng et al. (2022) n/a 97.35 s manual, 68.61 s training n/a

Rafii-Tari et al. (2013) n/a n/a n/a

Rafii-Tari et al. (2014) 2.9 m LSA manual intermediate, 0.44 m
LSA robot intermediate

n/a n/a

Wang et al. (2022) n/a n/a n/a

You et al. (2019) n/a n/a 73% no noise model (phantom)

Zhao et al. (2019) n/a n/a Medical vessel model: 94%, Designed vessel model: 92%

BCA, brachiocephalic artery; DDPG, deep deterministic policy gradient; LCCA, left common carotid artery; LSA, left subclavian artery; RL, reinforcement learning.
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intervention progress has been catalyzed by combining two recent
approaches (LfD and RL; Chi et al., 2018a, 2020; Kweon et al.,
2021; Cho et al., 2022). Here, using demonstrator data in a
third of the RL studies allowed expert operator skill in complex
endovascular procedures to be incorporated. This proficiency can
be leveraged effectively to accelerate the RL training process. The
combined approach, therefore, shortens the transition from a
simulated training environment to a physical testing environment
which typically presents significant challenges, as evidenced by the
findings of Karstensen et al. (2022). Another benefit of accelerating
the process is that in some scenarios thousands of mechanical
experimental training cycles may no longer be required leading to
reduced mechanical wear on the experimental equipment.

4.2.2. Limitations
The limitations of the studies assessed encompassed three areas:

(1) Whilst it was a strength that most studies focused on
finding a ML technique that would improve upon previous
endovascular navigation, the lack of focus on using similar or
fixed algorithms and extending the experimental environment
was a limitation. The challenge of fixing many experimental
variables whilst changing another, is compounded by the lack
of standardized in silico, in vitro or ex vivo experimental
reference standard designs for endovascular navigation, as
well as a lack of standardized performance measures. As
such, the ability to compare studies quantitatively was limited
by confounding. For example, although some performance
measures (e.g., “success rate” and “procedure time”) were
common to several studies, study comparison was limited
due to experimental variations between studies. Firstly, the
navigation path used to test the models varied. Secondly, some
studies defined “success rate” only if a task was completed
within a certain time frame, whereas others had no time limit
for completion. Thirdly, “procedure time” wasmeasured using
different starting points and target sites.

(2) Another limitation, also concerned with reference standards,
is the importance of comparing the endovascular navigation
with an autonomous system against the endovascular
navigation without an autonomous system, to determine
any incremental benefit through autonomy. Critically, the
endovascular navigation without an autonomous system
should ideally be operated by a relevant expert operating
with minimal technical constraint to derive the reference
standard (baseline) allowing comparison. Half the studies
(7/14, 50%) reviewed did compare endovascular navigation
with and without an autonomous system; however, in some
cases, the operator was technically constrained by using
a novel robotic system rather than using the equipment
used and processes they would typically employ, during
an endovascular procedure in the clinic. For instance, the
reviewed robotic systems failed to replicate crucial haptic
feedback experienced during manual procedures. These
include viscous forces between catheters and blood, friction
forces between catheters and the vessel wall, impact forces
from catheter tips and guidewire, and contact with the vessel

wall (Crinnion et al., 2022). Additionally, an expert is not
able to use their previous experience with standard equipment
and may be unfamiliar with these controls, meaning that
performance at a given task will likely be affected.

(3) There were no clinical studies of autonomous endovascular
navigation which is a reflection of the nascent field and current
TRL of the technology. The majority of studies (11/14, 79%)
were in vitro and are valuable for development and testing
as they limit the number of failures during subsequent in

vivo testing (Ionita et al., 2014). However, these studies did
not consider whether construct, face, and context validity of
endovascular navigation systems was acceptable to allow TRL
progression toward the clinic. In particular, in many of the
studies reviewed, there were translational concerns regarding
how the guidewires and/or catheters are tracked within the
vasculature, as the alternative to using fluoroscopy with
standard off-the-shelf catheters and guidewires is to create
entirely new tracking methods. For example, several papers
(6/14, 43%) used EM-tracking to visualize the catheter in real-
time, which has been shown to allow better real-time 3D
orientation, facilitating navigation, reducing cannulation and
total fluoroscopy times, and improving motion consistency
and efficiency (Schwein et al., 2017). However, clinical
translation using this method would require the introduction
of new systems with specialized catheters and guidewires,
resulting in additional costs and training. Furthermore,
other studies (5/14, 36%) employed an experimental set-up
involving a tabletop with a transparent phantom and a top-
down camera. In its current state, this tracking method would
not be suitable for future clinical studies, as a top-down
camera would not be able to provide images of the guidewire
and/or catheter through patient tissue. Nonetheless, it is noted
that top-down cameras have a narrower clinical translation
gap than EM-tracking, as they pose the same 2D challenges
as fluoroscopy.

4.3. Final thoughts and future research

Using AI, it may be possible to create a robotic system
capable of autonomously navigating catheters and wires through a
patient’s vasculature to the target site, requiring minimal assistance
from an operator. If proven to be safe and effective in clinical
trials, the benefits of autonomous navigation are numerous.
It is plausible that in clinical specialities facing a shortage of
highly-trained operators, there may be a reduced need for their
expertise, potentially leading to greater accessibility of endovascular
treatments globally, such as MT. For example, components
of MT such as complex navigation tasks could be performed
autonomously. Furthermore, autonomous systems are not limited
by human factors such as fatigue or loss of focus, potentially making
procedures safer and quicker (Mirnezami and Ahmed, 2018).

The concept of fully autonomous navigation in endovascular
interventions is promising; however, with a TRL level of 3
(Mankins, 1995), the technology is yet to complete validation
even in a laboratory environment. Due to the inadequate evidence
supporting its use (the limited number of studies and its low-level;
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Howick et al., 2011), it is far from being used in clinical practice.
It first must be demonstrated that it can reliably provide benefits
over currently available treatments before it can progress toward
clinical trials.

Importantly, reference standards for endovascular navigation
models need to be established to allow new models to be
compared. This would allow effective comparison of different AI
methods to determine the most effective model for autonomous
endovascular navigation. These reference standards need to be
established judiciously at the in silico, in vitro, and ex vivo level
with carefully-defined environments for different endovascular
tasks such as PCI, PVI, and MT. It is noteworthy that at
the in silico level, where there are continuous advancements in
modeling research and increased computational power, other areas
of clinically-orientated ML research have successfully employed
reference standards to enable reproducibility of results and
comparability between competing models (Russakovsky et al.,
2015; Stubbs et al., 2019). This includes computer vision (ImageNet
Large Scale Visual Recognition Challenge) and natural language
processing (National NLP Clinical Challenges). Furthermore, a
set of minimum reporting standards of performance should be
defined for studies investigating the use of AI in the autonomous
navigation of endovascular interventions. In combination with a
reference standard, this would allow complete comparison between
ML algorithms designed for this specific task.

Clear regulation is required to determine how the community
designs systems for the autonomous navigation in endovascular
interventions. In the seven studies (7/14, 50%) which proposed a
system with “level 3” autonomy, there is an expert operator in place
who can intervene in the autonomous task if needed (“human in
the loop”). At higher levels of autonomy where the robot can make
decisions, particularly ‘level 5’ and potentially ‘level 4’, it is unclear
how systems will be regulated. Therefore, it may be prudent, for
now, for researchers to focus on optimizing systems with ‘level 1–3’
autonomy. As such future researchers may wish to optimize simple
task autonomy, for example the autonomous navigation from the
puncture point to the target site, in a system where an operator can
stop the procedure and take over at any time. It is envisaged that as
autonomous technology and regulations mature over time, systems
will then be updated to carry out more difficult tasks.

Various AImethods have been used to investigate the possibility
of autonomous navigation in endovascular interventions. Although
it is plausible that autonomous navigation may eventually benefit
patients while reducing occupational hazards for staff, there is
currently no high-level evidence to support this assertion. For
the technology to progress, reference standards and minimum
reporting standards need to be established to allow meaningful
comparisons of new system development.
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Background: Augmented reality (AR) is increasingly being explored in
neurosurgical practice. By visualizing patient-specific, three-dimensional (3D)
models in real time, surgeons can improve their spatial understanding of
complex anatomy and pathology, thereby optimizing intra-operative navigation,
localization, and resection. Here, we aimed to capture applications of AR in
glioma surgery, their current status and future potential.
Methods: A systematic review of the literature was conducted. This adhered to the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guideline. PubMed, Embase, and Scopus electronic databases were queried from
inception to October 10, 2022. Leveraging the Population, Intervention,
Comparison, Outcomes, and Study design (PICOS) framework, study eligibility was
evaluated in the qualitative synthesis. Data regarding AR workflow, surgical
application, and associated outcomes were then extracted. The quality of evidence
was additionally examined, using hierarchical classes of evidence in neurosurgery.
Results: The search returned 77 articles. Forty were subject to title and abstract
screening, while 25 proceeded to full text screening. Of these, 22 articles met
eligibility criteria and were included in the final review. During abstraction, studies
were classified as “development” or “intervention” based on primary aims. Overall,
AR was qualitatively advantageous, due to enhanced visualization of gliomas and
critical structures, frequently aiding in maximal safe resection. Non-rigid
applications were also useful in disclosing and compensating for intra-operative
brain shift. Irrespective, there was high variance in registration methods and
measurements, which considerably impacted projection accuracy. Most studies
were of low-level evidence, yielding heterogeneous results.
Conclusions: AR has increasing potential for glioma surgery, with capacity to
positively influence the onco-functional balance. However, technical and design
limitations are readily apparent. The field must consider the importance of
consistency and replicability, as well as the level of evidence, to effectively
converge on standard approaches that maximize patient benefit.
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Introduction

Gliomas account for 78% of primary malignant brain tumors

(1). They originate from glial progenitor cells, namely astrocytes

or oligodendrocytes, that constitute a significant portion of the

mammalian brain. As such, gliomas are highly heterogeneous,

known for their diverse histopathology, molecular genetics, and

clinical behavior. In the United States, the incidence of gliomas

varies from 4.7 to 5.7 per 100,000 persons (2), representing more

than 18,500 new cases and 13,000 deaths annually (3).

Glioblastoma multiforme (GBM), the most common and

aggressive form of glioma, has a median survival of 16 months

(4), carrying a five-year post-diagnosis survival rate of 6.8% (5).

While the pathogenesis differs considerably, low-grade glioma

has a more favorable timespan, ranging from 5.6 to 13.3 years,

depending on several prognostic factors (6). Nonetheless, 70% of

these tumors transform to GBM within 10 years (7). This

eventually causes disability and premature death (8, 9).

Currently, the primary care pathway for gliomas is surgical

resection followed by chemoradiotherapy, with concomitant

temozolomide or other alkylating drugs (10, 11). Maximizing the

extent of resection (EOR), until functional borders are

encountered, is central to prolonging survival, improving the

efficacy of adjuvant therapies, and delaying anaplastic

transformation in both low- and high-grade glioma (12–15). The

rationale for performing this type of “supratotal” resection is

based on evidence that gliomas infiltrate the parenchyma well

beyond magnetic resonance imaging (MRI)-defined abnormalities

(16). Tumor recurrence may thus arise from undetected glioma

cells growing beyond signal abnormalities, typically found 1–

2 cm outside of contrast enhancement, as detected on volumetric

fluid-attenuated inversion recovery (FLAIR) images. However,

supratotal resection is not always practical or feasible to achieve.

Diffusely infiltrating gliomas often limit radical resection

strategies, which preferentially invade along myelinated fibers in

white matter tracts (17); cluster in eloquent brain regions with

dense functional connections, like the basal ganglia and internal

capsule (18); and develop functional multi-cellular network

structures (19). Therefore, surgically-acquired lesions in

functionally critical areas may cause significant neurologic

morbidity and mortality (20, 21). Neural plasticity is another

barrier to radical resection, due to functional reorganization (22,

23). Injury to white matter tracts, dynamically interacting with

gliomas, is linked to post-operative deficits, accordingly (24, 25).

Hence, the true benefit of resection depends on the “onco-

functional balance”: (26) maximizing the extent of tumor removal

while preserving patients’ functional integrity and quality of life.

Augmented reality (AR) is a technology that superimposes

computer-generated, three-dimensional (3D) holograms, as well

as auditory and sensory feedback, on reality in real time and

space. This composite view of virtual objects with the real world

creates a semi-immersive environment. Dating back to 1986 (27),

AR has been applied in neurosurgery for nearly 30 years,

carrying several advantages over conventional approaches (28).

First, AR maps patient-specific neuroanatomy directly onto the

operating field, rendering display of surface and sub-surface targets.
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This has proven useful in visualizing anatomical structures,

vasculature and hemodynamics, and deep-seated lesions in

stereotactic, neurovascular, and tumor surgery, respectively (29).

It also allows surgeons to access and contextualize radiological

images and pre-operative planning. Second, AR eliminates

attentional shifts between patients on operating tables and

screens displaying relevant clinical information. This can reduce

fatigue, cognitive load, and inattention blindness among

surgeons, leading to more focused and efficient procedures (30).

Third and finally, AR may disclose and compensate for intra-

operative brain shift (31, 32): a highly prevalent and complex

phenomenon of brain deformation due to changes in gravity and

hydrostatic pressure, loss of cerebrospinal fluid, tissue

manipulation or removal, and other factors (33). For image- and

function-guided neurosurgery, this can invalidate patient-to-

image registration and reduce the accuracy of localizing and

resecting intra-cranial targets, as well as positioning surgical tools

(34, 35). Thus, AR can be used to update virtual scenes, when

combined with multimodal imaging and functional testing, to

precisely identify pathologies, probe subcortical pathways, and

tailor resection plans (28, 36, 37).

To date, applications of AR in neurosurgery have been limited

to early clinical research. Given this stage, a variety of AR devices

have been used for image projection, including head-up displays

(HUDs), head-mounted displays (HMDs), microscopes,

endoscopes, smartphones, and tablets (29, 37–40). Commercial

display devices have also emerged, such as Google Glass (Google

LLC, Mountain View, California, USA), HoloLens (Microsoft

Corp., Redmond, Washington, USA), and Magic Leap (Magic

Leap Inc., Plantation, Florida, USA) (29). Such innovation

underscores the growing clinical and commercial interest in AR

for neurosurgical practice, with proposed roles in skin incision,

craniotomy, and resection (37, 38, 40). This is of particular

import for eloquent brain tumors, as serious threats to human

life and health, whereby AR may positively influence maximal

safe resection and functional outcomes. In this review, we

summarize current applications of AR in glioma surgery, as

described in the scientific literature, with the aim of

characterizing emerging trends and providing avenues for future

research.
Methods

We performed an in-depth systematic review, adhering to the

Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guideline (41). The review protocol was

registered a priori with the Open Science Framework (OSF) (42),

developed and maintained by the Center for Open Science

(COS), which can be accessed via the digital object identifier

(DOI): 10.17605/OSF.IO/DJ72P. The PRISMA 2020 Checklist

(41), review strategy, and review protocol are additionally

available for consultation upon reasonable request.

PubMed (National Library of Medicine), Embase (Elsevier),

and Scopus (Elsevier) electronic databases were queried from

inception to October 10, 2022, for relevant articles. The following
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search strategy was employed: PubMed: ((“augmented reality”[All

Fields] OR “mixed reality”[All Fields]) AND (“glioma”[MeSH

Terms] OR “glioma”[All Fields] OR “gliomas”[All Fields] OR

“glioma s”[All Fields])); Embase: ((“augmented reality”/exp OR

“augmented reality” OR “mixed reality”/exp OR “mixed reality”)

AND (“glioma”/exp OR “glioma”) AND [article]/lim AND

[humans]/lim); and Scopus: TITLE-ABS-KEY (((“augmented

reality” OR “mixed reality”) AND (glioma))). No publication

date or study type restrictions were applied.

Inclusion criteria consisted of (1) phantoms or patients of

any age and biological sex diagnosed with glioma; (2) AR

developed for or applied in glioma surgery, specifically to aid

intra-operative navigation, localization, and/or resection; (3)

protocol or technical note papers; case-control studies, case

series, or case reports; retrospective, prospective, or concurrent

cohort studies; or non-randomized, randomized, or post-hoc

analyses of clinical trials; and (4) peer-reviewed studies

published in the English language. In contrast, exclusion

criteria comprised (1) phantoms or patients without glioma;

(2) studies not developing or applying AR for/in glioma

surgery, such as for patient education and surgical planning

purposes; (3) reviews, editorials, expert opinion pieces,

commentaries, letters to the editor, and articles with

inaccessible full texts; and (4) studies not peer-reviewed and

published in the English language. Duplicates were excluded

prior to screening and studies that failed to meet full inclusion

criteria were excluded from the overall analysis. The

“Population, Intervention, Comparison, Outcomes, and Study

design” (PICOS) (43) framework was applied for evaluating

eligibility criteria in the qualitative synthesis.

Two independent reviewers, one with and one without prior

content knowledge (N.B., M.H.Z.), screened articles against

PICOS criteria, initially evaluating their titles and abstracts.

Relevant studies were then selected for full text screening and

assessed for eligibility. Inter-rater agreement was reported

(Cohen’s k = 0.74), with disagreements reconciled through

discussion and/or by involvement of a third independent

reviewer (A.R.) until a consensus was reached.

Another set of independent reviewers (W.H., A.K.U.)

subsequently extracted data from eligible studies into a Microsoft

Excel Spreadsheet (Microsoft Corp., Redmond, Washington,

USA). Table cells were labeled as “Not applicable” (N/A) if data

were missing. To ensure global data integrity, an independent

reviewer (Z.O.U.) performed quality assurance checks at random.

Data extracted from eligible studies included: study year, study

location, study design, study type, number of total patients,

number of glioma patients, number of phantom patients, glioma

pathology, other pathologies, image acquisition phase, image data

source, image segmentation technique, geometric modeling

software, registration method, registration accuracy, display

device, display brand, clinical application, primary outcomes, and

any other pertinent findings. Following extraction, data were

qualitatively described, using frequency (count, percentage),

central tendency (mean, median, mode), and variability (range,

standard deviation), as applicable, via R version 4.1.3 (44).

Pooled statistical analyses, such as meta-regressions, were not
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performed due to heterogeneity in study designs and measured

outcomes.

To assess the quality of evidence, a risk of bias assessment

was conducted, using hierarchical classes of evidence in

neurosurgery (45). This involved ranking the methodological

rigor of each study, whereby “Level V” indicates the lowest or

weakest level of evidence, such as case reports, and “Level I”

indicates the highest or strongest level of evidence, such as

randomized trials. As the study design becomes more rigorous,

the quality of evidence increases, and the probability of bias

decreases. Two independent reviewers (V.N.C., L.A.)

conducted the risk of bias assessment, with inter-rater

agreement reported (Cohen’s k = 0.82).
Results

The initial search query returned 77 articles for potential

inclusion in the review [PubMed (n = 21), Embase (n = 25), and

Scopus (n = 31)]. Of these, 40 (52%) unique articles remained

following removal of duplicates (35, 46%) and inaccessible texts

(2, 3%). After title and abstract screening, 15 (38%) articles were

excluded for being literature reviews (7, 18%), investigating non-

glioma tumors (1, 3%), not involving AR (4, 10%), or falling out

of scope with PICOS criteria (3, 8%). Accordingly, 25 (63%) full

text articles were assessed for eligibility, with 3 (12%) deemed

non-eligible for inclusion.

The final review comprised 22 articles, with the first study

published in 2003 (n = 1), the largest number published in 2021

(n = 6), and the most recent published in 2022 (n = 4). See

studies by publication year in Figure 1. Regarding location, the

majority of studies were conducted in Asia (13, 59%) followed by

Europe (7, 32%) and North America (2, 9%). The PRISMA 2020

flow diagram, describing the search strategy and selection

schema, is displayed in Figure 2. Characteristics of the studies

included in the review are summarized in Tables 1–3.

At the time of data abstraction, based on primary aims, studies

were sub-grouped into the following categories: “development” and

“intervention”. Ten (45%) studies (46, 48–50, 53, 54, 57–59, 67)

evaluated the technical design and suitability of AR for glioma

surgery, principally assessing feasibility, accuracy, and/or

reliability benchmarks (i.e., development). The remaining 12

(55%) studies (47, 51, 52, 55, 56, 60–66) investigated the clinical

utility of AR for glioma surgery, with a focus on feasibility,

safety, and/or efficacy profiles (i.e., intervention). Across studies,

there was a total of 909 patients (41.3 ± 54.1), of which 488

were diagnosed with gliomas (22.2 ± 35.7). Other pathologies

included meningioma, lymphoma, angioma, papilloma,

craniopharyngioma, hemangioblastoma, and arachnoid cysts,

among others. Figure 3A–B illustrates the number of glioma

patients and imaging acquisition protocol across study types.

Three studies (51, 59, 67) additionally leveraged phantoms (n =

22, 1.0 ± 4.3). Steps for applying AR models in glioma surgery

comprised: (1) image acquisition, (2) image segmentation, (3)

geometric model generation, (4) registration and tracking, and

(5) intra-operative navigation via fused image overlay.
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FIGURE 1

Number of studies applying AR in glioma surgery by publication year, as identified via PubMed, Embase, and Scopus electronic database searches,
executed on October 22, 2022. AR, augmented reality.
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1. Image acquisition

Data for AR were obtained from a variety of medical imaging

sources that occasionally integrated with network analysis and

brain mapping. All studies performed anatomical or volumetric

magnetic resonance imaging (MRI: 22, 100%), followed by

computerized tomography (CT: 16, 73%), diffusion weighted or

tensor imaging (DWI/DTI: 13, 59%), functional magnetic

resonance imaging (fMRI: 4, 20%), computerized tomography

angiography (CTA: 3, 14%), 3D rotational angiography (3DRA:

3, 14%), and magnetic resonance spectroscopy (MR spectroscopy:

2, 9%). Across image acquisitions, pertinent factors included

spatial resolution, slice thickness, signal- and contrast-to-noise

ratios, and image artifact.

DTI-based tractography, ultrasound, and navigated

transcranial magnetic stimulation (nTMS) were additionally

carried out as complimentary techniques in 8 (36%), 1 (5%), and

1 (5%) study, respectively. Of those involving DTI-based

tractography, two studies (61, 62) performed high-definition fiber

tractography with sodium fluorescein (HDFT-F), motivated by

the prospect of increasing tumor resectability as well as survival

rates. In another study (52), ultrasound images were obtained

prior to corticectomy and following resection, with the aim of

delineating lesion borders and post-resection cavity. See Figure 4

for the distribution of imaging sources used for AR. Most images

were obtained pre-operatively (12, 55%), with 2 (9%) studies

obtaining images intra-operatively and 8 (36%) from both phases

(Figure 3B).

2. Image segmentation

Imaging data was partitioned, or “segmented”, into anatomical

regions of interest, removing unnecessary and irrelevant

information, commonly exported as Digital Imaging and

Communications in Medicine (DICOM) images. This included
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target and adjacent structures, namely tumors and surrounding

blood vessels, nerves, and other tissues; in addition to cortical and

sub-cortical areas, such as the postcentral gyrus and corticospinal

tract. In general, segmentation techniques involved thresholding,

edge pixel detection, and region growing. Liao et al. (59) specifically

developed a rapid, autostereoscopic segmentation method, using

fuzzy connectedness for open MRI-guided glioma surgery.

3. Model generation

Three-dimensional modeling was used to convert

segmentations to virtual objects, most frequently with 3D Slicer

(7, 32%) and BrainLab (5, 23%) visualization software, based on

DICOM images. To achieve this, tumor and cortical surface

meshes, for instance, were exported as files suitable for 3D

printing and computer-aided design (CAD), generally in

stereolithrography (STL) file format. Unique to studies, Ghimire

et al. (52) transformed positive motor responses, acquired from

pre-operative nTMS, in 3D objects projected onto a tractography

model of the corticospinal tract.

4. Registration and tracking

Registration was performed to format, align, and superimpose

virtual objects—including drilling axis and cutting planes—onto

patients’ real anatomy. For studies using neuronavigation, this

typically involved registering the patient to the system and co-

registering the display device (e.g., surgical microscope) to

determine the necessary transformation. In manual registration,

virtual objects were scaled, translated, and/or rotated in relation

to patients’ head or brain, by the user, based on anatomical

landmarks and fiducial markers. While this was the simplest

approach, it was also the most time intensive and susceptible to

human error, requiring continuous interaction between surgeons

and technicians to update the AR scene. In automatic

registration, landmarks and fiducials were often used as starting
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FIGURE 2

PRISMA 2020 flow diagram, describing the search strategy and selection schema of the review process.
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points with further processing and no user interaction. This

approach was more expeditious, though relied on the quality of

machine learning methods (i.e., training datasets). Registration

also involved rigid, non-rigid, or hybrid surface interactions.

Here, an assumption was made whether virtual and real objects

—to be aligned—had the same shape, relating them by a single

or multiple rigid transformations.

Given the variety and inconsistency in registration techniques,

fused image overlay greatly varied across studies. Multiple terms

were also used to express positional accuracy, or the estimate of
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error, as an indication of the system’s ability to guide surgical

targets. These terms included the target registration error

(TRE), fiducial registration error (FRE), root-mean-squared

error (RMSE), and target deviation (D). The TRE and FRE were

the most widely calculated. Other factors contributing to

variation comprised: geometric and optical distortions, such as

incorrect tracking and display abnormalities; “swimming”

effects, like bed movement and brain shift; and glioma

presentation. Mascitelli et al. (63), for example, reported greater

accuracy for superficial lesions compared to deep-seated ones
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TABLE 1 Characteristics of included studies.

Sample size n (m)
Glioma patients 488 (22.2)

Phantom patients 22 (1.0)

Study type n (%)

Development 10 (45.5)

Intervention 12 (54.5)

Imaging source n (%)

3DRA 3 (13.6)

CT 16 (72.7)

CTA 3 (13.6)

DWI/DTI 10 (45.5)

fMRI 4 (18.2)

MRI 22 (100.0)

MR spectroscopy 2 (9.1)

Imaging phase n (%)

Pre-operative 12 (54.5)

Intra-operative 2 (9.1)

Both stages 8 (36.4)

Modeling software n (%)

3D Slicer 7 (31.8)

Amira 2 (9.1)

Avizo lite 3 (13.6)

BrainLab 5 (22.7)

Other 5 (22.7)

Not reported 1 (4.5)

Display Device n (%)

Camera 5 (22.7)

Endoscope 1 (4.5)

HMD 3 (13.6)

HUDa 2 (9.1)

Microscope 7 (31.8)

Smartphone 2 (9.1)

Tablet 2 (9.1)

Video 1 (4.5)

Not reported 1 (4.5)

Study location n (%)

China 5 (22.7)

England 1 (4.5)

Germany 3 (13.6)

Italy 2 (9.1)

Japan 8 (36.4)

Switzerland 1 (4.5)

United States 2 (9.1)

Levels of evidenceb n (%)

Level II 1 (4.5)

Level III 2 (9.1)

Level IV 13 (59.1)

Level V 6 (27.3)

3DRA, three-dimensional rotational angiography; CT, computerized tomography;

CTA, computerized tomography angiography; DTI, diffusion tensor imaging,

DWI, diffusion-weighted imaging; fMRI, functional magnetic resonance imaging;

HMD, head-mounted display; HUD, head-up display; MRI, magnetic resonance;

MRI, magnetic resonance imaging.
aHUDs were used as integration tools for AR visualization in surgical microscopes.
bLevels of evidence used by neurosurgeons in clinical practice.
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(88.0% vs. 64.4%, p = .029). They also disabled HUDs in 59.6% of

cases due to lack of use, distraction, and inaccuracy. Considering

the aforementioned issues, several studies developed novel

registration methods.
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Fick et al. (50) designed a custom reference array, as an adjunct

to HMDs, to correct initial registration for bed movements in GBM.

While their technical workflow functioned as desired, and improved

spatial understanding for surgeons, their registration accuracy was

sub-optimal for clinical use (FRE = 8.55 mm). Relatedly, Archip

et al. (46) evaluated a volumetric, non-rigid registration scheme to

compensate for intra-operative brain shift. In 11 patients with

eloquent supratentorial glioma, they revealed significant

improvement in alignment accuracy compared to rigid-based,

state-of-the-art technology (p < 0.001), with a mean residual

displacement of D = 1.82 mm. Another study (67) leveraged a

markerless spatial drift registration method to precisely align real

and virtual objects. Pre-operatively, this aided surgeons in

diagnosis and surgical planning; whereas intra-operatively, it

helped them distinguish lesion boundaries and localize nerves,

thereby increasing accurate resection of gliomas (RMSE =

1.86 mm). Liao et al. (59) similarly developed a spatial image

registration method for integral videography image overlay,

demonstrating satisfactory accuracy (TRE = 0.90 ± 0.21 mm).

Nonetheless, there was high heterogeneity in registration methods

and measurements, with no standard criteria for defining nor

evaluating accuracy. Others failed to measure and/or report

accuracy altogether (49, 52, 61–63, 65, 66).

5. Fused image overlay

Devices used to display virtual objects on the skull or dura of

phantoms and patients included surgical microscopes (7, 32%),

cameras (5, 23%), HMDs (3, 14%), tablets (2, 9%), smartphones

(2, 9%), videos (1, 5%), and endoscopes (1, 5%). Of the studies

utilizing surgical microscopes, two integrated AR via HUD (47,

63). Display device was unspecified for one study (46), which

broadly referenced surgical instruments. See display devices by

study design in Figure 5.
Augmented reality applications

Iseki et al. (55) were among the first to evaluate AR in tumor

surgery. An analysis of 42 patients with malignant gliomas,

located in or adjacent to functional regions, showed markedly

increased EOR (≥90%) when open MRI was simultaneously

applied with real-time update navigation, which continuously

refreshed intra-operative images. Using a similar concomitant

method, Sun et al. (66) achieved complete resection in 69.6% of

glioma patients (n = 79) compared to 36.4% of control patients

(n = 55), with an average EOR of 95.2% ± 8.5% and 84.9% ±

15.7%, respectively (p < 0.01). The rates of post-operative

recovery in motor, visual, and language function were also higher

in the study group at two weeks and three months (p < 0.05). In

both studies, intra-operative MRI disclosed and corrected for

brain shift, providing surgeons with accurate and objective

information as well as quality control during procedures.

A retrospective study (63) also showed potential for AR in

intra-cranial surgery, detailing early experience with HUDs. For

superficial and intra-axial lesions, HUD provided greater utility

for skin incision, craniotomy, dural opening, and corticectomy,
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TABLE 2 Design of included studies.

Author Approach Designa Type Sample Glioma Modelb Pathology
Archip et al. (46) Prospective Case Series Development n = 11 n = 11 n = 0 LGG, HGG

Carl et al. (47) Prospective Case Series Intervention n = 10 n = 2 n = 0 E, LGG

Chen et al. (48) Prospective Case Report Development n = 16 n = 1 n = 0 Glioma

De Mauro et al. (49) Technical Technical Note Development n = 0 n = 0 n = 0 LGG

Fick et al. (50) Prospective Case Report Development n = 3 n = 1 n = 0 GBM

Finger et al. (51) Retrospective Case Series Intervention n = 28 n = 6 n = 1 AA, DA, GG, PA

Ghimire et al. (52) Retrospective Case Series Intervention n = 180 n = 145 n = 0 LGG, HGG

Hou et al. (53) Prospective Case Series Development n = 35 n = 6 n = 0 DA, GBM, GG

Inoue et al. (54) Prospective Case Report Development n = 3 n = 1 n = 0 GBM

Iseki et al. (55) Prospective Case Series Intervention n = 148 n = 72 n = 0 Glioma

Koike et al. (56) Prospective Case Series Intervention n = 18 n = 18 n = 0 AA, AO, DA, GBM, OD

Koike et al. (57) Prospective Case Series Development n = 16 n = 16 n = 0 A, AOA, DA, GBM, OA, OD

Koike et al. (58) Prospective Case Series Development n = 15 n = 14 n = 0 Glioma

Liao et al. (59) Prospective Case Report Development n = 2 n = 1 n = 1 Glioma

Liu et al. (60) Retrospective Case-Control Study Intervention n = 53 n = 30 n = 0 A, GBM

Luzzi et al. (61) Prospective Case Report Intervention n = 1 n = 1 n = 0 GBM

Luzzi et al. (62) Retrospective Comparative Cohort Study Intervention n = 117 n = 54 n = 0 HGG

Mascitelli et al. (63) Retrospective Case Series Intervention n = 79 n = 4 n = 0 Glioma

Satoh et al. (64) Prospective Case Series Intervention n = 20 n = 7 n = 0 AE, DA, HGG, GG

Satoh et al. (65) Prospective Case Series Intervention n = 5 n = 3 n = 0 AA, GBM

Sun et al. (66) Prospective Comparative Study Intervention n = 134 n = 79 n = 0 LGG, HGG

Zhou et al. (67) Prospective Case Series Development n = 16 n = 16 n = 20 HGG

A, astrocytoma; AA, anaplastic astrocytoma; AE, anaplastic ependymoma; AO, anaplastic oligodendroglioma; AOA, anaplastic oligoastrocytoma; DA, diffuse astrocytoma; E,

ependymoma; GBM, glioblastoma; GG, ganglioglioma; HGG, high-grade glioma (III, IV); LGG, low-grade glioma (I, II); OA, oligoastrocytoma; OD, oligodendroglioma; PA,

pilocytic astrocytoma.
aStudy design reflects glioma patients only.
bModels reflect phantom glioma patients.
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whereas the device was most useful for patient positioning and

bone removal in those with skull base lesions. Although their

sample with low-grade gliomas was small (n = 4), the authors

postulated that HUD would be practical for guiding localization

and resection, though more robust data was needed.

Recently, Luzzie et al. (62) tested the safety and efficacy of a

new multimodal AR technique. They compared patients with

supratentorial high-grade glioma undergoing AR HDFT-F-based

cytoreductive surgery (n = 54) to a cohort of patients undergoing

conventional white-light surgery assisted by infrared

neuronavigation (n = 63). See Figure 6 for an illustrative case.

Results showed higher EOR (p = 0.019), lower post-operative

neurological deficits (p = 0.011), and longer progression-free

survival (p = 0.006) in the study vs. control group. The EOR was

specifically ≥98% in 85% of study cases. However, the types,

grades, and percentages of complications in both groups were

analogous (9.2% vs. 9.5%).

This AR HDFT-F technique was further validated in the

maximal safe resection of a postcentral gyrus GBM (61). Post-

operatively, the patient reported significant improvement in

upper extremity motor function and regained their ability to

walk, with no recurrence at nine months follow-up. In a similar

case, Inoue et al. (54) applied a newly developed AR

neuronavigation system that superimposed tumors and

vasculature plus motor tractography. This proved useful in

visualizing the patient’s lesion border and corticospinal tract, yet

it had limitations in depth perception and accuracy. Their tumor

resided at the corpus callosum inside the resection cavity as a

result. However, no new neurological deficits were observed.
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Two studies leveraged a tablet-based AR navigation system,

called the “trans-visible navigator” (TVN). Satoh et al. (65) first

applied this apparatus to stereotactic biopsy in three cases of

deep-seated lesions, allowing surgeons to confirm target point

accuracy and trajectory suitability, as well as precisely advance

biopsy probes. This evaded the drawbacks of frame-based

stereotactic navigation, resulting in satisfactory histopathology

without complication. In a separate study (64), the TVN was

applied in seven surgeries of low- and high-grade glioma, to

which surgeons rated its utility across the neurosurgical workflow.

Based on their findings, the apparatus was most practical for

resecting superficial tumors, but less so for deep-seated ones,

except when using transcortical and interhemispheric approaches.

Results emphasized the importance of pre-operative discussions

with surgeons in maximizing the effectiveness of AR.

Given the expense of modern navigation systems, two studies

examined mobile AR (mAR) for localizing low- and high-grade

glioma, as alternative low-cost solutions. Hou et al. (53)

compared an iPhone-based method to a frameless

neuronavigation system (n = 6), demonstrating technical

feasibility with comparable accuracy (D≤ 5 mm). Further, their

device simplified image pre-processing, co-registration, and

projection, all of which were completed under 10 min. Chen

et al. (48) also examined mAR in the localization of a

supratentorial glioma, leveraging the Sina Intraoperative

Neurosurgical Assist app. Despite registration meriting

improvement, their system was practical and reliable over

standard neuronavigation (D = 4.4 ± 1.1 mm). Notably, both

studies used manual registration in their AR workflows, likely
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TABLE 3 Summary of AR workflows in glioma surgery.

Author Display Brand Technique Registration Accuracy Primary outcomes
Archip et al. (46) Surgical

instruments
Not specified Pre-operative MRI, fMRI,

DTI, and/or MR spectroscopy
data plus intra-operative MRI
data segmented and modeled
via 3D Slicer software,
integrated into surgical
instruments, superimposed
on patient’s brain

Patient-specific, volumetric
non-rigid registration with
anatomical landmarks and
estimation for brain
deformation

RD = 1.82 mm Feasible application of non-
rigid method that
compensates for brain
deformation within surgical
time constraints; significantly
increased alignment accuracy
compared to rigid method;
visualization of critical
structural and functional brain
areas

Carl et al. (47) Microscope PENTERO and
PENTERO 900 (Carl
Zeiss Meditec Inc.,
Oberkochen, Germany)

Pre-operative CT, CTA, and/
or MRI data plus intra-
operative CT data segmented
and modeled via BrainLab
software, integrated by HUD
into surgical microscope,
superimposed on patient’s
brain

Automatic, user-
independent rigid and/or
non-linear registration
based on low-dose intra-
operative CT via reference
arrays and markers

TRE = 0.72 ±
0.24 mm

Reliable application with high
accuracy; smooth integration
into surgical workflow; good
hand-eye coordination;
intuitive depth perception and
visualization of tumor extent
and surrounding structures;
high impression on patient
anatomy, facilitating
orientation

Chen et al. (48) Smartphone Honor 6 Plus (Huawei
Technologies Co., Ltd.,
Shenzhen, China)

Pre-operative CT and MRI
data segmented and modeled
via 3D Slicer software,
integrated into Android
smartphone running Sina app
superimposed on patient’s
head

Manual registration with
anatomical landmarks and
fiducial markers

D = 4.4 ±
1.1 mm

Practical application for
visualizing and localizing
supratentorial lesions, but not
for infratentorial lesions;
satisfactory accuracy
compared to standard
neuronavigation system;
simple, cost-effective approach

De Mauro et al.
(49)

Microscope OPMI MD-NC1 (Carl
Zeiss Meditec Inc.,
Oberkochen, Germany)
(cited from prior work
68)

Pre-operative CT and MRI
data segmented and modeled
via 3D Slicer software,
integrated into surgical
microscope connected to
infrared optical tracker of
novel mixed reality system,
superimposed on patient’s
head and brain

Manual, point-based
registration with markers
and reference model (cited
prior work 68)

Not reported Working prototype for visual
and haptic simulation of LGG
palpation; force feedback to
distinguish normal from
pathological tissue (VR);
stereoscopic visualization with
real time brain navigation and
space cognition (AR)

Fick et al. (50) HMD Hololens 1.0 (Microsoft
Corp., Redmond,
Washington, USA)

Pre-operative CT and MRI
data segmented and modeled
via 3D Slicer software,
integrated into HMD of
holographic neuronavigation
system, superimposed on
patient’s head and brain

Point-based matching rigid
registration with
anatomical landmarks,
reference array, and visual
markers

FRE =
8.55 mm

Proof-of-concept application
for intraoperative patient
tracking; relatively inaccurate
registration and navigation
accuracy, with hologram
instability and drifting as well
as functional difficulties

Finger et al. (51) Endoscope MINOP (Aesculap Inc.,
Tuttlingen, Germany)

Pre-operative CT or MRI data
segmented and modeled via
Scopus Nova Plan software,
integrated into surgical
endoscope of neuronavigation
system, superimposed on
phantom’s or patient’s head
and brain (intraventricular
space)

Hybrid registration with
anatomical landmarks,
surface matching, and
optical reference matrix

D = 1.2 ±
0.4 mm

Feasible application with
sufficient accuracy; increased
precision to optimally place
burr holes and apply
trajectories; safe navigation
and intuitive visualization of
trajectories while perforating
cortical and subcortical
structures; helpful estimation
of tumor location and
surrounding structures

Ghimire et al. (52) Microscope KINEVO 900 (Carl
Zeiss Meditec Inc., Jena,
Germany)

Pre-operative MRI, fMRI,
and/or DTI data segmented
and modeled via StealthViz
Medtronic software,
combined with intra-
operative ultrasound and
cortical mapping data,
integrated into surgical
microscope of
neuronavigation system,
superimposed on patient’s
brain

Point-based registration
with anatomical landmarks
and visual markers

Not reported Successful application;
supplementary motor
homunculus and novel
subcortical motor map with
accurate intra-operative
identification of cortical and
sub-cortical boundaries as well
as localization of intercostal
muscles

(Continued)

Ragnhildstveit et al. 10.3389/fsurg.2023.1245851

Frontiers in Surgery 08 frontiersin.org54

https://doi.org/10.3389/fsurg.2023.1245851
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


TABLE 3 Continued

Author Display Brand Technique Registration Accuracy Primary outcomes
Hou et al. (53) Smartphone LVL CAM (Daniel LLC,

Apple Inc., App Store)
Pre-operative CT and MRI
data segmented and modeled
via Windows XP software,
integrated into iPhone
smartphone running LVL
CAM iOS app, superimposed
on patient’s head

CT- or MRI-based
registration with markers;
manual co-registration of
virtual images with sagittal
photograph based on
anatomical landmarks via
FUSED app

D≤ 5 mm Feasible application; useful for
localizing intracranial lesions
at low-cost with high accuracy;
suitable for shallow
supratentorial lesions of
moderate size, but not for
infratentorial lesions

Inoue et al. (54) Camera Qcam Pro 9,000 with
headset [QCAM-200S-
HS] and Qcam Connect
(Logicool Co., Tokyo,
Japan)

Pre-operative MRI and DTI
data segmented and modeled
via 3D Slicer software,
integrated into handheld or
headband web camera with
optical markers connected to
neuronavigation system,
superimposed on patient’s
head and brain

Point-based registration
with fiducial markers and
reference table

FRE = 1.8 Feasible application; useful for
visualizing and navigating
corticospinal tract without
damage; effective for resecting
surface tumors, but not for
deep-seated tumors due to
camera malperformance;
difficulty accurately judging
depth perception

Iseki et al. (55) Camera Not specified Pre-operative CT and MRI
data plus intra-operative MRI
data segmented and modeled,
integrated into high-
definition couple charged
device camera on liquid
crystal monitor of
information-guided
navigation system with optical
tracking and real-time update,
superimposed on patient’s
brain

CT- and MRI-based
registration with markers

ME = 0.8 mm Successful application with
excellent accuracy;
significantly increased average
resection rate and total
removal rate of malignant
gliomas using open MRI with
disclosed brain deformation
and shift; improved EOR
when simultaneously using
real-time update navigation

Koike et al. (56) Camera Not specified Pre-operative CT, MRI, DTI,
and 3DRA data segmented
and modeled via Avizo Lite
software, integrated into
fusion 3DCG combined with
intra-operative brain surface
photograph of patient, as part
of mixed reality registration
system

Manual registration via
paired anatomical
landmark and thin-plate
spline methods using
fusion 3DCG as reference

TRE =
0.70 mm

Successful application
integrated with 3DCG
tractography model; excellent
accuracy despite brain shift at
time of intra-operative
photograph

Koike et al. (57) Camera Not specified Pre-operative CT, MRI, and
3DRA data segmented and
modeled via Avizo Lite
software, integrated into
fusion 3DCG combined with
intra-operative brain surface
photograph of patient, as
novel mixed reality
registration method

Automatic, non-rigid
registration via paired
anatomical landmark, thin-
plate spline, and NMI
methods using fusion
3DCG as reference

TRE = 0.72 ±
0.04 mm

Working method with highly
precise spatial alignment
between real and virtual space
with angle versatility; 3DCG
useful for skin incision and
craniotomy planning with
ability to display functional
information

Koike et al. (58) Camera Nikon D500 (Nikon
Corp., Tokyo, Japan)

Pre-operative CT, MRI, and
3DRA data segmented and
modeled via Avizo Lite
software, integrated into novel
mixed reality image-guided
system, projecting intra-
operative brain surface
photograph of patient onto
3DCG

Automatic registration
using the NMI method to
align intra-operative brain
surface photograph (target)
and 3DCG (reference)
textures

TRE = 1.19 ±
0.14 mm

Feasible and cost-effective
application of mix reality
projection mapping with
accurate alignment and
minimal equipment; efficiently
observed pre- and intra-
operative information in the
same coordinate system

Liao et al. (59) Video Not specified Intra-operative MRI data
segmented and modeled via
fuzzy connectedness and 3D
Slicer software, integrated into
integral videography of image
overlay navigation system,
superimposed on phantom’s
or patient’s head and brain

Semi-automatic, point-
based registration with
donut and fiducial markers

TRE = 0.90 ±
0.21 mm

Feasible application of real-
time, autostereoscopic image
overlay for open MRI-guided
glioma surgery with simplicity
and satisfactory accuracy;
potential to reduce procedure
time

(Continued)
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TABLE 3 Continued

Author Display Brand Technique Registration Accuracy Primary outcomes
Liu et al. (60) HMD HoloLens (Microsoft

Inc., Redmond,
Washington, USA)

Pre-operative CT, CTA, and
MRI data segmented and
modeled, integrated by HMD
into MR holographic imaging
technology system,
superimposed on patient’s
head and brain

CT-based registration with
visual markers and
viewpoint tracking

Not reported Successful application with
real-time display of resection
degree; significantly higher
complete resection accuracy
and post-operative recovery
rate, as well as significantly
lower post-operative
complications compared to
ultrasound

Luzzi et al. (61) Microscope KINEVO 900 (Carl
Zeiss Meditec Inc.,
Oberkochen, Germany)

Pre-operative MRI, DWI, and
DTI data segmented and
modeled via BrainLab
software, integrated into
surgical microscope of
neuronavigation system,
superimposed on patient’s
brain

Not reported Not reported Safe and effective application
in maximizing EOR of
postcentral gyrus
glioblastoma; high technique
versatility; improved patient
motor function; no tumor
recurrence at 9-months
follow-up

Luzzi et al. (62) Microscope OPMI Neuro-NC4 or
KINEVO 900 (Carl
Zeiss Meditec Inc.,
Oberkochen, Germany)

Pre-operative CT, MRI, fMRI,
DWI, and MR spectroscopy
data segmented and modeled
via BrainLab software,
integrated into robotic
surgical microscope of
neuronavigation system,
superimposed on patient’s
brain

CT-based optical tracking
registration with
anatomical landmarks and
surface matching

Not reported Safe and effective application
with significantly higher EOR
and PFS rates compared to
control group; optimized
patient functional outcomes;
limited accuracy and reliability
due to parallax error and
crowding of fiber tracts

Mascitelli et al.
(63)

Microscope PENTERO 900 (Carl
Zeiss Meditec Inc.,
Dublin, California,
USA) or Leica OH6
(Leica Microsystems
Inc., Buffalo Grove,
Illinois, USA)

Pre-operative CT, CTA, and
MRI data segmented and
modeled via BrainLab
software, integrated by HUD
(with variance) into surgical
microscope, superimposed on
patient’s head and brain

Standard registration; co-
registration of HUD with
navigation system

Not reported Safe application with good-to-
excellent accuracy; useful for
skin incision, craniotomy,
dural opening, and
corticectomy for intra-axial
and superficial lesions; useful
for bed/head positioning and
extradural/intradural bone
removal for skull base lesions;
disabled in 59.6% of cases due
to lack of use, distraction, and
inaccuracy

Satoh et al. (64) Tablet Surface Pro (Microsoft
Corp., Redmond,
Washington, USA)

Pre-operative CT and MRI
data segmented and modeled
via Amira software, integrated
into tablet PC with back-
facing camera of trans-visible
navigator system connected to
optical markers,
superimposed on patient’s
head and brain

Point-based registration
with anatomical landmarks;
co-registration of virtual
and camera image

TRE = 2.31 ±
2.18 mm

Useful application for skin
incisions, craniotomy, dural
incisions, and superficial
tumor resections; less useful
for deep-seated tumor
resections, except when using
transcortical and
interhemispheric approaches;
minimal time and labor; pre-
surgical discussions essential
to efficacy

Satoh et al. (65) Tablet Surface Pro (Microsoft
Corp., Redmond,
Washington, USA)

Pre-operative CT and MRI
data segmented and modeled
via Amira software, integrated
into tablet PC with back-
facing camera of trans-visible
navigator system combined
with stereotactic frame,
superimposed on patient’s
head and brain

Point-based registration
with anatomical landmarks

Not reported Feasible application to
stereotactic biopsy of deep-
seated lesions; clear trajectory
and ability to advance biopsy
probe precisely; avoidance of
critical structures, the target
point’s location, and viewpoint
turning

Sun et al. (66) Microscope Not specified Pre-operative fMRI and DTI
data plus intra-operative MRI
and DTI data segmented and
modeled via BrainLab
software, integrated into
surgical microscope of
functional neuronavigation
system, superimposed on
patient’s head and brain

Not reported Not reported Successful application for pre-
operative planning as well as
intra-operative guidance and
manipulation; verified brain
shift and quality control
during surgery; significantly
improved tumor resection rate
and neurofunctional
preservation

(Continued)
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TABLE 3 Continued

Author Display Brand Technique Registration Accuracy Primary outcomes
Zhou et al. (67) HMD HoloLens (Microsoft

Inc., Redmond,
Washington, USA)

Pre-operative CT, MRI, and
DTI data segmented and
modeled, integrated by HMD
into novel stereotactic mixed
reality-guided surgical
navigation system,
superimposed on phantom’s
or patient’s head and brain

Markerless spatial
registration with spatial
drift and movement
compensation methods to
precisely align virtual
anatomy with real patient
pre-operatively

RMSE =
1.18 mm
(phantom),
1.86 mm
(patient)

Feasible application with
suitable accuracy and efficacy
for clinical use and resection;
intuitive diagnosis and
performance of surgical
planning pre-operatively as
well as identification of lesion
boundary intra-operatively

3D, three-dimensional; 3DCG, three-dimensional computer graphics; 3DRA, three-dimensional rotational angiography; CT, computerized tomography; CTA,

computerized tomography angiography; D, deviation; DTI, diffusion tensor imaging, DWI, diffusion weighted imaging; EOR, extent of resection; fMRI, functional

magnetic resonance imaging; FRE, fiducial registration error; GBM, glioblastoma; ME, mean error; HGG, high-grade glioma; HMD, head mounted display; HUD, head

up display; LGG, low-grade glioma; MR, magnetic resonance; MRI, magnetic resonance imaging; NMI, normalized mutual information; nTMS, navigated transcranial

magnetic stimulation; PC, personal computer; PFS, progression-free survival; RD, residual displacement, RMSE, root-mean-squared error; TRE, target registration error.

FIGURE 3

Number of patients diagnosed with glioma recruited in AR studies by study type, excluding phantom patients (A). Medical image acquisition phase by
study type, spanning pre-operative and/or intra-operative stages (B). Study types are grouped by primary aim into “development” or “intervention”,
with respect to AR application. AR, augmented reality.

Ragnhildstveit et al. 10.3389/fsurg.2023.1245851
increasing time and attenuating projection alignment, which the

authors noted.

Other applications included intra-ventricular neuroendoscopy

and intra-dural spinal surgery. Finger et al. (51) described their

first experience with AR-guided neuroendoscopy among six

patients with glioma in addition to one phantom model. By

integrating pre-operative information into the endoscope’s field

of view, they were able to optimally place burr holes, estimate

tumor location and surrounding structures, and apply trajectories

for surgical intervention. Carl et al. (47), on the other hand,

applied microscope-based AR via HUD in two patients with

intradural spinal gliomas. In both study cases, AR provided

intuitive visualization of tumor extent and neighboring

structures, with high registration accuracy (TRE = 0.72 ± 0.24).

This was particularly useful for visualizing the cranio-caudal

extent of an intra-medullary ependymoma.
Frontiers in Surgery 1157
Mixed reality applications

Six studies applied mixed reality (MR), a blend of augmented

reality (AR) and virtual reality (VR), wherein physical and virtual

objects co-exist and interact in real time. Motivated by

computer-aided surgery (CAS), De Mauro et al. (49) developed a

prototypical MR system for pre-operative training (VR) and

intra-operative use (AR) embedded in a surgical microscope.

Their VR feature simulated visual and tactile sensations of brain

palpation, with force feedback interaction of soft and hard

tissues. Using real patient data, this allowed surgeons to

distinguish between normal and pathological tissue affected by

low-grade glioma. In contrast, their AR feature enabled

stereoscopic visualization of relevant 3D data for real-time brain

navigation. This was specifically designed to aid image-guided

neurosurgery.
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FIGURE 4

Types of medical imaging used as data sources for AR, specifically segmenting, modeling, formatting, and projecting virtual objects onto phantoms or
patients’ real anatomy. AR, augmented reality.

FIGURE 5

Types of augmented reality display devices used across study designs, including comparative, cohort, and case-control studies as well as case series and
case reports. AR, augmented reality; HMD, head-mounted display.

Ragnhildstveit et al. 10.3389/fsurg.2023.1245851
Zhou et al. (67) similarly evaluated a novel MR navigation

system. Using a markerless spatial registration method, they

tested its ability to diagnose and perform surgical planning pre-

operatively, as well as identify lesion boundaries intra-operatively.

Compared to standard applications, and under ideal conditions,

their system met accuracy, efficacy, and reliability benchmarks

along with time requirements. This was validated in both

phantom experiments (n = 20; RMSE = 1.18 mm; Mtime =

6.02 min) and clinical trials (n = 16; RMSE = 1.86 mm; Mtime =

7.95 min) among patients with high-grade glioma, indicating

suitability for clinical use.
Frontiers in Surgery 1258
Moreover, using MR projection mapping (MRPM), Koike et al.

(58) developed an image-guided surgery system that projects intra-

operative brain surface photographs (BSPs; real space) onto high-

resolution 3D computer graphics (3DCGs; virtual space). See

Figure 7. This was accomplished without the need for large-scale

equipment, such as neuronavigation and other computer-assisted

technologies. In 14 glioma patients, their system displayed

accurate alignment of patient anatomy (BSPs) and medical

images (3DCGs), presented in the same coordinate system, even

after brain shift due to craniotomy (TRE = 1.19 ± 0.14 mm).

Alignment accuracy was evaluated by two neurosurgeons,
frontiersin.org
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FIGURE 6

Illustrative case. Primary motor cortex glioblastoma of the dominant hemisphere. Intraoperative photographs obtained under white light (A), YELLOW 560
filter (B), and AR HDFT (C) before tumor resection. (D–I) The main steps of the surgery that were performed in large part along with the AR HDFT-F
technique. (J–L) The surgical field at the end of the tumor resection obtained under white light (J), combined INFRARED 800 and AR HDFT during
indocyanine green videoangiography (K), and AR HDFT-F (L). Insets in panels (C,F,I,L) are the screenshots obtained during the microscope focus-
based neuronavigation. “Supratentorial High-Grade Gliomas: Maximal Safe Anatomical Resection Guided by Augmented Reality High-Definition Fiber
Tractography and Fluorescein.” This figure is protected by Copyright, is owned by The Journal of Neurosurgery Publishing Group (JNSPG), and is
used with permission only within this document. Permission to use it otherwise must be secured from JNSPG. Full text of the article containing the
original figure is available at thejns.org.
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FIGURE 7

Illustrative case. A 31-year-old man with oligodendroglioma. (A) Intraoperative brain surface photograph in JPEG (Joint Photographic Experts Group)
format. (B) Fusion 3-dimensional computer graphics (3DCG) created from preoperative imaging studies. The purple highlight indicates the tumor
area. (C) Mixed-reality computer graphics created by aligning the intraoperative brain surface photograph and fusion 3DCG. The purple highlight
indicates the tumor area. “Development of Innovative Neurosurgical Operation Support Method Using Mixed-Reality Computer Graphics.” © 2021
The Author(s). Published by Elsevier Inc. Licensed under CC-BY-NC-ND.
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together under consultation, who measured the difference between

BSPs and 3DCGs. This was performed after dividing craniotomy

areas into 16 fields. Further, MRPM made it possible for surgeons

to plan trajectories for intervention based on cortical stimulation

mapping. No post-operative complications were observed.

In a follow-up study (N = 15) (51, 52), recruiting patients with left

hemispheric glioma, MRPM allowed surgeons to visualize the spatial

correlation between medical images and the surgical field, specifically

language-function hubs in the frontal lobe (TRE = 0.70 mm). This was

likewise achieved despite brain shift at the time of the intra-operative

BSP. Both studies leveraged a registration method previously

developed and validated by Koike et al. (57), which demonstrated

high spatial accuracy (TRE = 0.72 ± 0.04 mm).

In a retrospective, case-control study, Liu et al. (60) compared MR

holographic imaging technology (n = 30) to ultrasound (n = 23) in

neurosurgery for spinal cord glioma. Findings showed a significantly

higher total tumor resection rate in the experimental group than in

the control group (96.7%, vs. 82.6%; p < 0.05). This extended to

more accurate complete resections (93.3%, vs. 73.5%; p < 0.05), far

lower post-operative complications (3.3%, vs. 21.7%; p < 0.05), and

improved recovery rates at 12 months follow-up (56.7%, vs. 41.1%;

p < 0.05). Additionally, the tumor recurrence rate was lower in the

experimental group compared to the control group at 12 months

follow-up (0.0%, vs. 4.3%); however, this was not significant (p >

0.05). Enhanced MRI results were used to master the accuracy of

intra-operative complete resections, informed by prior literature on

AR and anatomic pathology (69). Post-operative MRI was then

used to evaluate complete resections and their rate, as well the

incidence of complications after surgery. Functional recovery was

assessed via Modified McCormick Scale (MMS) grading.
Discussion

In this review, we summarized applications of AR in glioma

surgery. Qualitatively, AR is a valuable tool that precisely
Frontiers in Surgery 1460
overlays multiple imaging datasets, plus other relevant clinical

information, onto the surgical field in real time. This obviates the

need for surgeons to shift focus away from patients to nearby

monitors for guidance, and mentally relate 2D information into

3D anatomy. Inattention blindness and interpretation error can

therefore be mitigated. Further, AR enhances visualization of

tumor complexity and its relationship to critical structures. This

facilitates spatial understanding of neuroanatomy; aids surgeons

in navigating, localizing, and resecting lesions; and may

subsequently lead to improved patient outcomes.

However, at present, there is limited data that AR effectively

extends the EOR and PFS as well as preserves motor, visual, and

language function post-operatively. This is evidenced by the

number, breadth, and quality of published studies. Of the 22

included in this review, 10 studies developed and tested AR

systems, including segmentation and registration techniques,

while the remaining 12 applied AR interventionally. Notably,

86% of studies were of low-level or weak evidence, based on

hierarchical classes of evidence in neurosurgery (45), largely

comprising case series and case reports. Accordingly, 77% of

studies included 18 glioma patients or less and 73% lacked

standard control groups. No studies involved random sampling

nor random assignment.

Another critical limitation observed here, relevant to future

research, was the inability to “double blind” patients and

surgeons a key method for reducing detection bias. This problem

underlies any technical advancement in surgery, namely trials of

non-pharmacological treatments with physical components (70–

73). As a result, surgeons who trusted in the efficacy of AR may

have—unconsciously or deliberately—influenced the EOR. This

might have led to an overestimation of treatment effects and

perhaps more significant outcomes. Blinding of outcome

assessors was additionally absent and/or unreported; yet it serves

an important role in the case of soft endpoints, such as

psychosocial function and quality of life. Still, this is not readily

achieved (70, 72, 74). A possible solution is to apply the IDEAL
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Framework (75, 76), a paradigm for incorporating evidence-based

advances in neurosurgery. Here, specific study designs and

reporting standards are recommended across five stages of

surgical innovation: Idea, Development, Exploration, Assessment,

and Long-term study. A controlled, interrupted-time series

design is one acceptable alternative, suggested by the IDEAL

framework, for minimizing known bias (77).

From a technical standpoint, AR workflows considerably varied

across studies. Diverse approaches were employed to acquire and

segment images, model virtual objects, register and track systems,

and display fused data intra-operatively. This variation extended

to measurements, with several terms used to express registration

error, or the accuracy of overlaid virtual objects on patients’ head

and/or brain, each with its own shortcomings. The TRE, for

instance, measures the anatomical region of interest for surgeons

in 3D space, yet has poor depth perception. Other indices fail to

correlate with (TRE) or underestimate (TE) true accuracy. This

lack of standardization in measurement and reporting is well-

documented in the field (78), and likely affects the validity of AR

and its ability to guide localization and resection of intra-cranial

targets, as well as the positioning of surgical instruments.

Registration thus presents a significant and pressing challenge to

precision neurosurgery. Along the same accord, most studies

relied on software and hardware not formally vetted for pre-

and/or intra-operative use. This chiefly applied to novel AR

systems and techniques, which may lead to publication bias. As

such, reported outcomes, at this stage, must be interpreted with

caution.

One strategy towards standardization is founding a

consortium of AR workflows in neurosurgery, including image

acquisitions and open-source software, that could be utilized

across research institutions. Compiling larger, more

homogeneous, and longitudinal datasets may help identify

universal methods; and allow for the development, validation,

and use of machine learning algorithms (79)—and

complimentary techniques (e.g., ultrasound 80, 81)—to

maximize accuracy throughout procedures. This space also

stands to benefit from a “readiness framework” to evaluate AR

suitability for surgical implementation, drawing parallels to

Tang et al.’s (82) analytic model. Their team specifically

developed an evidence-based schema for assessing AR in

medical education, underscoring four criteria: quality,

application content, outcome, and feasibility. Adapting this

model to AR in glioma surgery may address inconsistency in

assessment tools and reliably gauge clinical utility. Mastering

the use of AR in educational, training, and pre-operative

settings will likewise increase its intra-operative value.
Limitations

This systematic review carries inherent limitations. First, no

automated tools were employed during the selection and data

collection process, increasing susceptibility to human error. In

the event this occurred, studies returned by databases may
Frontiers in Surgery 1561
have been overlooked, incorrectly excluded, and/or

misreported in this review. Second, ascertaining the quality of

evidence for each study was subjective, despite following

hierarchical classes for neurosurgery. Studies may have been

misclassified accordingly, especially those meeting criteria for

more than one level. However, additional quality assurance

measures, outlined in our methodology, were taken to ensure

global data integrity. Finally, our qualitative analysis is limited

by its data, which is heterogeneous at best. Standards for

measurements and reporting will help improve the therapeutic

value of AR in glioma surgery moving forward, and will

enable meta-analytic approaches to precisely estimate both

technical performance and treatment effects.
Conclusion

AR has increasing potential in the surgical management of

glioma. It enables improved understanding of complex

relationships between anatomy and pathology, aiding in

real-time intra-operative navigation, localization, and

resection. Further, there are signals of improvement in

neurofunctional preservation associated with AR use, pointing

to real, discernable benefit to patient care. This is evermore

salient given the poor prognosis of gliomas, especially those

with malignant and invasive presentations. However, technical

and design limitations are readily apparent. A universal

approach for developing, applying, and measuring AR systems,

for instance, is critically absent. The field must consider the

importance of consistency and replicability to effectively

converge on standard uses of AR and its therapeutic value.
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Case report: Impact of mixed
reality on anatomical
understanding and surgical
planning in a complex fourth
ventricular tumor extending to
the lamina quadrigemina
Elisa Colombo*, Delal Bektas, Luca Regli and
Tristan van Doormaal

Department of Neurosurgery and Clinical Neurocenter, University Hospital Zurich, Zurich, Switzerland

Background and importance: Tumors of the fourth ventricle account for 1%–5% of
all intracranial neoplastic lesions and present with different configurations and
anatomical challenges. Microsurgery represents the primary therapeutic strategy for
the majority of fourth ventricular tumors, and adequate anatomical understanding
and visualization are paramount to surgical planning and success. The authors
present the case of a young patient with a complex fourth ventricular tumor, whose
surgery was successfully planned using a novel mixed reality (MxR) system.
Case description:We present a case of a 31-year-old woman with a lesion extending
from the fourth ventricle to the lamina quadrigemina and causing symptomatic
hydrocephalus occlusus. Through the combined use of routine 2D images and an
interactive 3D anatomical model, an interhemispheric transtentorial approach was
used to remove 98% of the lesion with successful functional outcomes.
Conclusions: The application of advanced 3D visualizationwith a novelMxR system to
the surgical planning of a complex fourth ventricular lesion proved relevant in
designing the best surgical approach and trajectory to better identify potential
intraoperative challenges and rehearse the patient-specific anatomy. The present
case report endorses the implementation of advanced 3D visualization in routine
perioperative practice.

KEYWORDS

mixed reality, 3D visualization, fourth ventricle, tumors of the IV ventricle, posterior fossa

microneurosurgery

Introduction

To date, the primary therapeutic strategy for tumors of the fourth ventricle is

microsurgical removal (1–3). Lesions of the fourth ventricle may present with a wide

range of anatomical variations and are in close proximity with extremely eloquent

structures in the context of the anatomical complexity of the posterior fossa. Therefore,

surgical planning is fundamental to tailor the microsurgical approach for complex fourth

ventricular lesions, and it may not be optimal if planned based on two-dimensional (2D)

images only. The application of three-dimensional (3D) visualization using mixed reality

(MxR) may offer a better anatomical understanding, and it has an emerging application

in neurosurgery (4). Furthermore, diverse MxR systems have been developed, and initial
01 frontiersin.org65
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FIGURE 1

Diagnostic MRI study documenting a partially contrasted lesion of the IV ventricle with cystic components and infiltration of the vermis: (A) sagittal T1 with
contrast; (B) sagittal T2.
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experience on their implementation in the perioperative phase has

been gathered (5–7). The advantages of patient-specific interactive

3D anatomical models may be multiple and range over the design

of the optimal surgical approach and intraoperative corridor, a

realistic and comprehensive understanding of the close

anatomical structures, and the pre-operative rehearsal and

anticipation of the intraoperative challenges (8, 9).

The authors describe a successful surgical approach for a

complex fourth ventricular tumor extending until the lamina

quadrigemina and infiltrating the basal veins designed using a

novel mixed reality system.
Case description

A 31-year-old woman presented with a 5-day history of double

vision in all directions, holocephalic headaches, and nausea.

Radiologic workup showed a hyperintense lesion extending from

the fourth ventricle to the lamina quadrigemina and causing a

hydrocephalus occlusus (Figure 1). An external ventricular

drainage (EVD) was immediately inserted, and 1 day after, the

resection of the ventricular mass was scheduled.

Surgical strategy and patient positioning were discussed based

on routinely used 2D DICOM (Digital Imaging and

Communications in Medicine) images and further analyzed using

3D MxR technology.
Mixed reality system

The novel MxR system utilized for holographic rendering and

3D visualization consisted of different components (Figure 2). The

primary component was a CE-certified cloud environment (Lumi,
Frontiers in Surgery 0266
Augmedit bv, Naarden, Netherlands) providing a direct MxR

output using a validated expanding mesh algorithm (Disior,

Helsinki, Finland) (10, 11). The Lumi cloud environment had

associated applications for MxR glasses, which represented the

second component of the system and the main tool for 3D

visualization of the hologram (Hololens 2, Microsoft

Corporation, Redmond, WA, USA).
Hologram rendering

2D DICOM images from an external institution were loaded in

a completely anonymized form on the novel CE-certified cloud

environment (Lumi by Augmedit bv, Utrecht, Netherlands)

starting from the acquisition of an axial T1 MPRAGE with

contrast medium (Siemens Skyra 3 T MRI, TR = 1,800 ms, 168

slices, slice thickness = 1.0 mm, acquisition matrix = 256 × 232,

FOV: 90.62, pixel spacing: 0.48828125). The magnetic resonance

study was automatically segmented on the platform to highlight

the skin, skull, brain, ventricular system, and tumor. Following

the automatic segmentation, the tumor was further refined by

means of manual segmentation on 3D Slicer (3D Slicer image

computing platform | 3D Slicer) (12).
Hologram interactive 3D visualization

Through the MxR glasses, the primary user could visualize

the hologram in 3D and interact with it and project it onto the

real anatomy of the patient, manually matching it using her

head to review and plan surgical positioning and the approach

(Figure 3).
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FIGURE 2

Schematic overview of the MxR system in all its components, starting from the imaging source, passing through the cloud-based storage and the
strategies used for holographic rendering and ending with the visualization methods of the MxR output.
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Surgical strategy

To manage the increased intracranial pressure caused by an

occluded hydrocephalus due to the mass effect, a right frontal

EVD was inserted a day prior to the removal of the tumor.

Based on the combined analysis of 2D images and, most

importantly, the 3D model, the patient underwent a parietal

craniotomy with a subsequent interhemispheric transtentorial

approach to the fourth ventricle. The MxR-3D visualization of the

venous anatomy and the relationship of the tumor with the

ventricular system was decisive in choosing a right parietal

craniotomy to release maximally the right parietal vein frontally.

This approach granted a straight trajectory posteriorly from the

right parietal vein and right in the axis of the tumor. The 3D

holographic visualization greatly helped in planning and rehearsing

a surgical trajectory that could avoid the risk of injury of the basal

cerebral veins. Furthermore, surgical planning with the 3D

hologram endorsed the need to open the tentorium parallel to the

straight sinus to achieve better intraoperative vision and control of

the tumor (Figure 4). Patient positioning was designed according

to the MxR planning, and the patient was positioned three-quarters

prone with the head secured in a skull clamp slightly elevated and

tilted toward the floor. A linear occipito–parietal incision along the

midline was the approach chosen.

To confirm gross–total resection of the tumor, an

intraoperative MRI was performed, revealing 98% removal of the

lesion with a small remnant at the tectal level, which was too

adherent to the great vein of Galen to be safely removed.
Discussion

Fourth ventricular tumors account for 1%–5% of all intracranial

neoplastic lesions and represent two-third of the lesions of the

ventricular system (1, 2). To date, the classical and oldest approach
Frontiers in Surgery 0367
to removing tumors of the fourth ventricle is the median

suboccipital approach, which allows access to lesions of the

cerebellar hemispheres, vermis, and medulla (1, 13). This approach

is beneficial for extended anatomical exposure, enabling good

surgical orientation and intraoperative manipulation. However, it is

potentially associated with more tissue injury, the risk of sinus

damage, and postoperative cerebrospinal fluid leakage (14).

Another relevant surgical approach to lesions of the fourth

ventricle is the telovelar approach, which exploits the natural space

of the cerebellomedullary fissure to expose the tela choroidea and

the inferior medullary velum (14, 15). The telovelar approach

provides good access to the lateral recess, but exposing the

posterolateral and the superolateral recesses is challenging and may

require the removal of the cerebellar tonsils (14). The median

suboccipital and telovelar approaches may be performed in a

standard fashion or slightly modified depending on the anatomical

presentation and extension of a fourth ventricular tumor. In order

to tailor the surgical approach in a lesion-specific manner, an

accurate pre-operative study of the anatomy of the lesions and

their relationship with the surrounding structures is fundamental.

In this regard, implementing augmented reality and modern 3D

visualization techniques in neurosurgery has been qualitatively

beneficial (16). Furthermore, applying MxR to surgical planning

of complex cases gives the benefit of a non-threatening

environment for less experienced surgeons, who can rehearse the

procedure, foresee intraoperative difficulties, and increase surgical

confidence (4).

The authors reported a complex case for which the use of MxR

with an interactive patient-specific 3D anatomical model in adjunct

with routine 2D images proved advantageous in gathering a better

anatomical understanding and customizing the surgical approach

and the intraoperative trajectory. Furthermore, surgical planning

with MxR allowed a distinct patient positioning and a more

realistic pre-operative analysis of the intraoperative surgical risks

and challenges.
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FIGURE 3

3D holographic rendering of the IV-ventricular lesion (green) and the intraoperative trajectory (red line) on the coronal (A), sagittal (B), axial (C), and a free
(D) plane. Case report-specific application of MxR in the intraoperative environment showing the view of the operator wearing the MxR glasses and
interacting with the hologram while matching it with the patient’s head (E).

FIGURE 4

Intraoperative visualization of the falcotentorial margin (A), the small opening of the tentorium (B), the presentation of the tumor (C), and the IV ventricle
after resection of the lesion (D).
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Conclusion

The application of advanced 3D visualization with a novel

MxR system to the surgical planning of a complex fourth

ventricular lesion proved relevant to designing the best
Frontiers in Surgery 0468
surgical approach and trajectory to better identify potential

intraoperative challenges and rehearse the patient-specific

anatomy. The present case report endorses the

implementation of advanced 3D visualization in routine

perioperative practice.
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Advances in artificial intelligence,
robotics, augmented and virtual
reality in neurosurgery
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1Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran, 2Network of
Neurosurgery and Artificial Intelligence (NONAI), Universal Scientific Education and Research Network
(USERN), Tehran, Iran, 3Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive
Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran, 4USERN
Office, Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran,
Iran

Neurosurgical practitioners undergo extensive and prolonged training to acquire
diverse technical proficiencies, while neurosurgical procedures necessitate a
substantial amount of pre-, post-, and intraoperative clinical data acquisition,
making decisions, attention, and convalescence. The past decade witnessed an
appreciable escalation in the significance of artificial intelligence (AI) in
neurosurgery. AI holds significant potential in neurosurgery as it supplements
the abilities of neurosurgeons to offer optimal interventional and non-
interventional care to patients by improving prognostic and diagnostic outcomes
in clinical therapy and assisting neurosurgeons in making decisions while
surgical interventions to enhance patient outcomes. Other technologies
including augmented reality, robotics, and virtual reality can assist and promote
neurosurgical methods as well. Moreover, they play a significant role in
generating, processing, as well as storing experimental and clinical data. Also,
the usage of these technologies in neurosurgery is able to curtail the number of
costs linked with surgical care and extend high-quality health care to a wider
populace. This narrative review aims to integrate the results of articles that
elucidate the role of the aforementioned technologies in neurosurgery.

KEYWORDS

neurosurgery, artificial intelligence, augmented reality, robotics, virtual reality

Introduction

In contemporary society, artificial intelligence (AI) is widely perceived as an integral

facet of human existence and has assumed a substantial function in the realm of

medicine, encompassing domains such as diagnosis, prognosis, and treatment in recent

decades. AI, in essence, represents the emulation of human cognitive faculties by

machines, particularly computer systems, and was initially conceptualized in 1950. The

emergence of deep learning (DL) and machine learning (ML) has provided a newfound

opportunity to leverage personalized medicine and has concomitantly augmented the

utilization of AI in medical procedures (1, 2).

Other technologies can be used in medicine as well. For instance, the field of Robotics is

characterized by rapid progression, which is concurrently accompanied by advancements in

AI and ML, ultimately leading to a metamorphosis of the medical practice (3). Augmented

reality (AR) technology serves to enhance the physical world by rendering visible data that

would otherwise be imperceptible to the human eye. In comparison to its virtual reality (VR)

counterpart, AR technology boasts superior flexibility, albeit with a caveat of incomplete

immersion on the part of the patient and physician. VR technology, on the other hand,
01 frontiersin.org70
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entails complete submersion into a virtual environment facilitated

by specialized equipment. In this scenario, the patient or physician

is afforded the most comprehensive visualization attainable, only

restricted by the boundaries of the virtual world (4).

Neurosurgery is an arduous vocation that demands a plethora

of skills and attributes from its practitioners. To achieve success in

this field, neurosurgeons must undergo extensive training, exhibit

an appropriate degree of manual dexterity, possess acceptable

hand-eye coordination, effectively engage in decision-making

processes, show compassion, communicate well with patients and

their families, and work well within a team (5). The efficacy and

outcomes of surgical procedures are partially contingent upon

the proficiency of the operating surgeon, leading to variations in

patient experiences and results across different settings. While

successful surgeries have the potential to produce advantageous

outcomes for patients, errors can yield unfavorable consequences

and, at times, even harmful effects (6). For example, a notable

proportion of medical inaccuracies that occur in neurosurgery

are technical in nature, and pertain to the surgical procedures

themselves, which can be obviated. This underscores the

significance of practical measures intended to enhance the

positive result of neurosurgical interventions, and diminish

related inaccuracies, with the ultimate goal of delivering optimal

healthcare to patients. Recent technological advancements have

narrowed the divide between machines and humans, and have

empowered computers to emulate, and surpass, innate human

intelligence, thus resulting in the emergence of AI as well

robotics, VR, and AR (7, 8).

In this study, we aimed to review the role of AI, VR, robotics,

and AR in neurosurgery and clarify the promising perspective of

neurosurgery with the help of the aforementioned technologies.
Artificial intelligence and neurosurgery

The utilization of computer systems to stimulate critical

thinking and intelligent behavior was originally expounded upon

by Turing in 1950 (9). Six years later, McCarthy provided an

explanation of artificial intelligence, outlining it as the

engineering and science of generating intelligent machines

(10, 11). As time progressed, the development of AI through the

use of more intricate algorithms resulted in performance that

more closely resembled that of the human brain. Within the field

of medicine, two subfields of AI, namely DL and ML, have

emerged with significant roles. In ML, pattern identification is

utilized to enable the analysis of specific situations, allowing for

subsequent learning and the application of acquired data to

future same scenarios. Also, this tool can be leveraged in the

context of individualized patient care and clinical decision-

making. DL, on the other hand, represents an advanced form of

ML that operates more closely to the human brain. Algorithms

are employed to establish an artificial neural network (ANN) that

is able to make decisions and learn autonomously (12–14). In

the past five decades, both DL and ML have played a noticeable

part in the advancement of AI in the field of medicine. The

utilization of predictive models has facilitated medical diagnosis,
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prediction of therapeutic responses, and preventative medicine

(15). The employment of AI has resulted in a reduction of errors

and costs of care, and has provided valuable context for patient

care, thus resulting in several benefits (16).

AI is capable of enhancing the precision of treatment and

diagnosis in the field of neurosurgery, while also providing

neurosurgeons with timely and effective tools for pre-, post-, and

intraoperative care. Neurosurgeons benefit from AI’s ability to

detect subtle malformations and abnormalities from clinical data

as well as neuroradiological images that may elude even highly-

trained human eyes. DL, a type of ML, utilizes neural networks

with multiple layers of learning algorithms (17).

In the pre-operative phase of neurosurgical procedures,

artificial intelligence (AI) can provide valuable assistance to

surgeons by aiding in the diagnostic process, selecting

appropriate patients for treatment, and guiding patients towards

informed decisions (18). During the intra-operative phase, the

technology of AI significantly improve the surgical performance

of neurosurgeons as well as help to minimize the occurrence of

errors in their procedures. In the postoperative phase, AI is

utilized to accurately predict patient’s prognosis, identify

potential complications that may arise after surgery, and track

pertinent data that is used to enhance the quality of aftercare

and patient recovery. By leveraging the predictive capabilities of

AI in the postoperative phase, pre-operative planning can be

optimized to facilitate better patient care and decrease overall

related costs. For instance, machine learning techniques can be

employed to classify, regress, and cluster large data sets, thereby

enabling the identification of risk factors and the prediction of

surgical complications including cardiac and wound-related

issues, as well as mortality rates among patients undergoing

cervical discectomy as well as posterior lumbar spine fusion

procedures (19, 20).

The utilization of ubiquitous and high-resolution radiological

imaging in combination with electrophysiological data has

become the preferred methods for providing neurosurgeons with

unparalleled and noninvasive access to intracranial regions. In

the field of neurosurgical medicine, effective decision-making

requires the careful study, retention, analysis, and interpretation

of a large quantity of complex and dynamic data. Typically,

neurosurgeons rely on their clinical expertise and empirical

evidence to formulate decisions and predict prognoses (21, 22).

The potential of AI in predicting the disease progression has

been demonstrated through the use of DL algorithms trained on

magnetic resonance imaging (MRI) data from a large, multi-

institutional dataset. This approach has shown promise in

replacing the need for invasive tissue sampling in predicting the

progression of glioma in a non-invasive manner. The application

of ML in this context has the potential to enhance the

capitalization of existing data (23, 24).

In the context of temporal lobe epilepsy (TLE), as the most

prevalent surgically remediable and pharmacoresistant type of

epilepsy among adults, the performance of artificial intelligence

(AI) has been found to surpass that of physicians. Specifically, AI

demonstrated a 95.8% success rate in lateralising the influenced

brain hemisphere, as opposed to the 66.7% demonstrated by
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physicians, when utilising functional MRI data (25). This outcome

is of particular significance, as an uncertain localisation of the

epileptogenic zone is able to pose a noteworthy challenge in

terms of allocating patients who are eligble to proper surgeries.

Therefore, the utilization of AI in this context may have the

potential to greatly enhance patient outcomes (26).

There exist additional instances in which artificial intelligence

(AI) was utilized for the categorization and diagnosis of

neurosurgical issues without the aid of radiological input.

Specifically, AI exhibited a substantially heightened accuracy in

discerning between single cells vs. multiunit spike clusters from

electroencephalography recordings of twelve epilepsy patients

who necessitated the implantation of chronic intracranial depth

electrodes (27, 28). Due to its ability to concurrently utilize

multiple variables, a capability that surpasses that of a human

operator, AI can take into account numerous factors when

planning treatment. As such, a study was conducted, which

involved the creation of an artificial neural network, comprising

of eleven clinical inputs, in order to train the algorithm for the

survival rate prediction of patients with traumatic brain injuries

(TBI). In addition, the performance of ML in terms of accuracy

and sensitivity was superior to that of neurosurgeons and

neurosurgery residents, and it was also more specific (29).

However, it is nothworthy that AI, ML, and DL are not imbued

with any mystical properties. Rather, they represent a set of

advanced statistical algorithms and mathematical models (which

frequently depend on recursive functions) that can now be

readily incorporated into everyday applications owing to the

augmentation of computational capabilities. In continue, we will

disscuss some examples of how AI can help in pre-, post-, and

intraoperative care:

• Pre-operative phase: during the pre-operative phase of

neurosurgery, AI has the potential to provide aid to surgeons

in diagnosing the condition, the determination of patients for

the appropriate treatment, and the facilitation of informed

decision-making by patients (18). AI algorithms have been

employed for automated neoplasm segmentation, localization

of epileptogenic zones, identification of suitable candidates for

epileptic surgery, prognostication of symptomatic cerebral

vasospasm following aneurysmal subarachnoid hemorrhage, as

well as estimation of tissue damage post-acute ischemic stroke

(8). For instance, the categorization of tumor and epilepsy can

be subjective, thereby leading to disparities in the decision-

making among neurosurgeons. Upon preparing a robust

outline and framework, algorithms utilizing AI can mitigate

the subjective interpretation of the data and consequently

diagnose medical conditions necessitating neurosurgical

procedures (30, 31).

• Intra-operative phase: during the intra-operative phase of

neurosurgical procedures, AI has the potential to amplify the

surgeons’ performance and mitigate some errors that are

commonly encountered during neurosurgical procedures (31).

The current traditional approach to performing intraoperative

tissue biopsy involves transporting the tissue to a laboratory,

processing it, and preparing specimens with the assistance of
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the results. This process has been in use for over a century

and is both time-consuming and resource-intensive. However,

there have been recent developments in the utilization of AI

technology during the intraoperative phase of neurosurgery.

For instance, Hollon et al. designed a label-free optical

imaging workflow that can predict diagnosis of tumours in

approxiamately real-time automatically. The tumor diagnosis

techniques are able to predict the tumour diagnosis in less

than 150 s, which is significantly faster than conventional

methods that can take up to 30 min. Furthermore, their

overall accuracy rate of 95% is marginally better than regular

histology workflow, which has an accuracy rate of 94% (32–34).

• Post-operative phase: given that patients may necessitate

multiple visits to different geographic locations like inpatient

wards, outpatient clinics, pharmacies, intensive care units,

emergency departments as well as laboratories, telemedicine

possesses the capacity to curtail unnecessary travel for both

patients and healthcare professionals (35, 36). The

implementation of telemedicine services is held in high regard

by both healthcare providers and patients and has the

potential to enhance patient outcomes in the postoperative

phase, particularly in regions with limited geographic access.

The majority of patients welcomed postoperative

videoconferencing which was found to be as effective and safe

as in-person clinic visits for those who had elective

neurosurgery (37).

Robotics and neurosurgery

Robotics, a fast-moving discipline, is transforming

neurosurgery practice with advances in machine learning and

artificial intelligence. Utilizing robotics in neurosurgery can

efficiently omit mechanistic errors, decrease operation time, and

prepare more extended respective margins using minimal-access

operation. In this way, minimal complications and great surgical

results will be achieved (3). Interestingly, it was reported that the

first use of robotics in operation was a neurosurgical biopsy. The

Unimation PUMA (Programmable Universal Machine for

Assembly) 200 robot was utilized in a 52-year-old man to

position a needle guided by a CT scan in a stereotactic biopsy of

an intracerebral lesion (38). Then, the aforementioned robot was

used as an assistant to retract delicate neural structures while

resecting low-grade thalamic tumors among children (39).

NeuroMate robot was the first FDA-approved device specifically

generated for neurosurgical use (3).

Current available robotic systems used in surgery have three

subtypes: master-slave, semi-active, and active (40). Active

robotic systems can work autonomously and perform

preprogrammed tasks. However, master-salve systems depend on

surgeon input and lack preprogramming. Semi-active ones are

hybrid in which surgeon inputs complement preprogrammed

elements of the system (41). Improved visualization for surgeons,

greater precision, as well as a decrease in fatigue are some

benefits of using robotic systems in surgery (42). Regarding
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limitations, there are some concerns about cost, hardware

maintenance, and sterilization (43).

Generally, robotic systems can be used in neurosurgery for

procedures with restricted operative spaces. Anatomical

localization, surgeon’s hand stabilization, placement of pedicle

screws in spinal procedures, and plans to access deep brain

targets are some robot applications in neurosurgery (43–45).

Pathfinder, SpineAssist, Renaissance, Neuromate, and NeuroArm

are common robotic systems utilized in neurosurgery (43, 46).

Robotic assistant is more common among other surgeons, but

specific aspects of neurosurgery including the technical and

microsurgical nature of procedures as well as the history of its

innovation in stereotaxy help it for being well incorporated with

robotic assistance (45).

In 2022, Singh et al. claimed that the usage of robotic systems

in neurosurgery is in its infancy yet. Almost 30 per 100

neurosurgical departments use robotic cranial methods and 40

per 100 departments use robotic spinal methods. While

examining the possible application of robotic systems in

neurosurgery, 13 clinical trials seemed to be applicable, and none

of them were completed (47). Various indications for robotic

usage during neurosurgery are identified. For instance, multiple

studies claimed that screw placement assisting by robots during

spinal surgery is accurate and safe (48–50) and cause less

radiation exposure as well as fewer facet joint violations while

screw placement in comparison to traditional surgery methods

(51, 52). Three different systematic reviews and meta-analyses

reported that the usage of robotic systems can lead to a high

accuracy compared with conventional free-hand strategies (53–55).

In continue, we elucidate some examples of robotic systems

used in neurosurgery in detail:

• The telesurgical robot: In this particular variety of robot,

surgeons exercise remote control over the robot’s actions. The

NeuroArm, hailing from the University of Calgary in Canada,

displays remarkable potential. It constitutes an MRI-

compatible robotic arm that emulates a surgeon’s manual

gestures. It harnesses piezoelectric motors and boasts of eight

degrees of freedom (DOF). This technology has undergone

continuous development, with bespoke microsurgical

instruments (equipped with force-sensing as well as force-

calibration features) recently incorporated into the robotic

arm’s arsenal. Encouraging preliminary experiments

conducted on rats have paved the way for its subsequent

deployment on human subjects. Additionaly, It is the first

robot to furnish the neurosurgeon with tactile feedback while

simultaneously being operated remotely from a workstation

located outside the operating room. Reports indicate that it

has already been employed in over 1,000 neurosurgical

methods, such as MRI-guided tumor biopsies, hematoma

evacuations, and microsurgical dissection (43, 56, 57).

• The supervisory surgeon-controlled robot: the robotic system

supports surgeons in executing accurate procedures. The

PUMA robots, introduced in the 1980s, have become the most

prevalent neurosurgical robots to date. Additional robots, such

as the Pathfinder and Minerva robots, have been subsequently
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without or with a frame, and have advanced from directing

biopsy needles as well as depth electrodes to inserting and

devising pedicle screws in the spine (3).

• Handheld shared/controlled systems: The collaboration between

surgeons and robots occurs at the site where they jointly dissect

and manipulate the structures of brain through instruments.

This allows the precise robot actions to complement the manual

dexterity and manipulative skills of neurosurgeons, resulting in

a synergy of capabilities. It can be likened to the optimal

combination of two distinct worlds. The Steady Hand System,

developed at John Hopkins University, is a representative

instance of the few systems currently in development. This

instrument, which is held by both the surgeon and the robot,

permits finer dissection and eliminates tremor and muscle

fatigue. Other devices, such as the Evolution 1, can be

controlled for endoscopic procedures. The NeuRobot, developed

at Shinshu University in Matsumoto, Japan, is a remotely

operated device that comprises an endoscope equipped with

twin tissue forceps, which can assist in tumour resection (3).

Augmented and virtual reality in
neurosurgery

Virtual reality

Virtual reality (VR) is a process that entails the user’s

immersion in a system obscuring the natural world as well as

generating a virtual realm for users’ experience. VR can be

classified as either immersive or non-immersive, based on

whether the virtual world is generating as a powerful substitute

for the real world or virtual environment, respectively (58).

Although the concept of VR was utilized for panoramic

viewing as early as the eighteenth century, it was not until 1929

that the first VR simulator, specifically a flight simulator, was

invented. However, the term “Virtual Reality” was not coined

until 1987 (59). The development of VR technology can be

traced back to the innovative contributions of Tom Furness, an

electrical engineer, who was affiliated with the United States Air

Force (60). Furness’s contributions were groundbreaking and

earned him the moniker of “The Godfather of Virtual Reality”

(61). The introduction of a VR system in the field of medicine

was pioneered by Robert Mann in the field of orthopedics for

the first time. Subsequently, the head-mounted device (HMD)

was introduced in the 1980s. Although VR had been utilized for

the arachnophobia treatment in 1998, this marked the first

reported use of the technology in pathology treatment (62, 63). It

is noteworthy, however, that the first recorded use of VR in the

therapy of neurosurgical disorders is a recent occurrence. For the

first time, Clarke utilized the NeuroTouch neurosurgical

simulator to excise a Left frontal meningioma in 2009

(see Figure 1) (64).

Throughout the literature, the terminology of Virtual Reality

has been utilized interchangeably to encompass AR and Mixed

Reality (MR). Anyway, it is crucial to note that MR, AR,
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and VR are fundamentally distinct technologies. VR

specifically pertains to computer-generated three-dimensional

(3D) immersive environments, while AR involves the projection

of computer-developed images onto real-world images. On the

other hand, MR entails the projection of virtual objects into the

physical world, where the objects demonstrate spatial awareness

and responsiveness (65). The early usage of VR technology

yielded adverse effects such as temporarily impaired vision, a

lack of sense of presence, vomiting, and nausea. However, these

limitations were primarily attributed to the technical constraints

of the VR technology available during that time, similar to the

human eye’s inability to focus in-depth on a 3D-rendered

image (65–67). Similarly, high-definition 4 K 3D exoscopes have

also been reported to produce similar limitations during

surgical procedures (68, 69).

Cerebrovascular and neuro-interventional surgeries heavily rely

on advanced neuroimaging strategies for operative prognostication

and decision-making. The clinical use of VR enhances the

diagnostic efficacy and accuracy of the aforementioned

techniques (70). Hybrid angio-suites enable neurointerventionists

to create an immersive VR model according to patient-specific

anatomy, which improves crisis resource management, training,

and procedural skills (71). VR technology has been of great

utility due to its specific metric-based performance assessment

which is outside the angio suite as well as its ability to conduct

complex neuro interventions, such as mechanical thrombectomy,

accompanied by the similar set of principles as in live patients

(72). Surgeons can also benefit from gain access to a VR-based

patient-specific model for better planning management or

diagnosing strategies, along with planning complex hybrid or

combined procedures requiring a combination of conventional

and interventional surgical methods (73–75).

A primary obstacle encountered by individuals training to

become neurosurgeons is performing procedures with bimanual

dexterity within a narrow corridor that is bound by intricate

and essential non-resilient bones and neurovascular structures.

Neuronavigation is highly relied upon by those in training for
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better planning their localization and approach. However, it is

not an appropriate means of advancing spatial reasoning

abilities, also an excessive dependence on neuronavigation can

hinder the skills development (58). Additionally, as the

operation progresses, the brain shifts gradually, rendering the

preoperative imaging used in the navigation system less

accurate and useful. To circumvent this issue, an intraoperative

brain imaging system (IBIS) was created that recognized any

discrepancies between preoperative imaging and intraoperative

ultrasound. Through the use of IBIS, intraoperative stimulation

is altered in real-time, as well as inaccuracies are updated using

AR (76, 77). The utilization of VR in training and simulation

has proven to be a superior alternative in reducing operative

stress duration and cognitive load, as well as enhancing efficacy

for novice neurosurgeons, according to a study (78). There is a

diverse range of available VR tools for neurosurgical training

and education, including a multifunction head-mounted display

(HMD) such as Microsoft HoloLens and Google Glass, in

addition to haptic feedback tools such as Procedicus Vascular

Interventional System Trainer (VIST), Immersive touch,

NeuroVR, and synthetic tissue simulators like SynDaver,

Creaplast, Thomas Jefferson University Durotomy Repair

Module, and iDU optics 3D-printed models. Additionally, there

are VOSTARS (video and optical see-through AR surgical

systems) HMD-based surgical navigation platforms, as well as

operating planning devices such as Dextroscope, Surgical

Theatre, Synaptive Medical, and VPI Reveal. The use of

computer simulation and VR has extended to various fields,

including pilot training, medicine, and military, as a means to

alleviate potential dangers by preparing a virtual simulator as

well as haptic and visual feedback (79–81). Physics-based

simulators pose a challenge due to their high computational

demands and requisition of resources, both in terms of

computing skills and software, to prepare haptic and visual

feedback, along with formal trainings in 3D immersive

simulation (79, 82, 83). Amongst the various displays in virtual

reality (VR), HMDs offer the greatest engagement, with other
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displays such as Google Glass featuring an OLED or LED display

with a high refresh rate of 120 Hz as well as latency time of

approximately 20 milliseconds (84). Additionally, VR plays a

crucial role in tele-proctoring, facilitating the training of

surgeons on complex techniques and procedures, independent

on their geographical location (85). Also, immersive

technologies have a profound effect on global virtual

connections, enabling middle- and low-income countries to

enhance their potential applications particularly while ongoing

pandemics, like COVID-19. In future outpatient neurosurgery

consultations, telemedicine is expected to have a crucial role as

it facilitates the interaction between the surgeon and patients in

a “merged reality” space, thereby enabling manual, visual, and

verba interactions between them. While utilizing VR

technology as an educational tool for neurosurgeons, specific

quality control standards must be followed, including

appropriate sound quality, high-resolution images, internet

speed, high processing power, visual and haptic feedback, tissue

fidelity, and organ structure. The main benefits of using VR

technology in the field of neurosurgery training over animal

and human models are its non-invasive nature, low cost,

limitless repetition ability, as well as the extensive diversity and

variety in cases which can be simulated. By the way, the ever-

present concern is the realism and resolution of the VR

technology (86–89). The employment of VR environments

presents an opportunity to accurately gauge the performance of

surgeons, evaluate their proficiency, and monitor their

progression during training. In addition, the implementation of

AR HMD visualization has been shown to elicit greater levels

of enthusiasm and enjoyment in the learning process,

particularly among younger surgeons (90–92).
Augumented reality

AR is a novel technological advancement that overlays 3-D

virtual text or objects onto tangible objects (93). Divergent

from VR, which generates a wholly fabricated environment,

AR presents both virtual and tangible objects, thereby

producing a semi-immersive experience for users. Giglioli

et al. claimed that AR amplifies user perception of reality by

integrating virtual content into the tangible world and

displaying it simultaneously and in real-time. Additionally,

they elucidate that AR encompasses an array of tools and

methods that supplement physical reality with additional

information (94). The implementation of AR technology in

healthcare has been adopted by the field of neurosurgery at an

early stage. This particular medical specialty depends highly

on imagery for the purposes of preoperative planning and

intraoperative neuronavigation. The present neuronavigation

system lonely projects 2-D images (coronal, sagittal, and axial)

on a computer screen, as explained by Pandya et al. In order

to successfully navigate the 2D images into a 3D format, the

surgeon must engage in a mental transformation and be able

to project the visualized data onto the patient’s view. However,

this task creates a significant interruption in the surgical
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workflow as the neurosurgeon must frequently switch between

the computer screen and the surgical field (70, 95).

The American Brain Tumor Association has reported that in

2013, the Central Brain Tumor Registry of the United States

approximated 69,720 novel cases of primary brain tumors.

Johns Hopkins Medicine suggests that the primary objective of

operation for metastatic brain tumors is to remove and debulk

the whole tumor during simultaneously preserving neurological

function (96). Currently, the use of image-guided neurosurgery

(IGNS) plays a critical role in achieving maximal brain tumor

resection. Deng et al. have elucidated that IGNS utilizes

patients’preoperative images to track the tumor’s position

against the preoperative images while surgery. Nevertheless,

they have postulated that by using IGNS, surgeons must switch

views between the surgical field and the computer screen every

time he/she desires to control his/her relative position on the

preoperative images and patient’s brain (97). The division of

the preoperative images on the computer screen into three

distinct images (coronal, axial, and sagittal) necessitates the

surgeon’s mental amalgamation of these images to create a

singular three-dimensional composite image. It has been posited

that the repeated alteration of perspectives while surgery

hinders the surgeon’s workflow. Currently, numerous AR

system prototypes are undergoing testing, specially for brain

tumors management. Inoue et al. employed an AR system

prototype together with a web camera in order to superimpose

the brain tumor images in the patient’s dura and skull.

Similarly, Deng et al. utilized a wireless tablet computer AR

neuronavigation system for operative planning and the

execution of two cases in China (95, 97, 98).

Abe and colleagues conducted an experimental study on a

virtual protractor with an AR system, known as VIPAR, for

percutaneous vertebroplasty. The study involved the use of 5

patients and 40 spine phantoms. VIPAR was developed to

provide real-time visualization of the vertebroplasty needle

trajectory in a 3-D space while the procedure. Generally,

percutaneous vertebroplasty is a minimally invasive procedure

that is aimed at treating fractured spinal vertebrae that cause loss

of function and pain. This procedure involves injecting medical

grade cement into the fractured vertebra, and it significantly

depends on the utilization of C-arm fluoroscopy in order to

guide neurosurgeons in controlling the needle trajectory. Also,

Abe et al. emphasized that while percutaneous vertebroplasty is

generally considered a safe and almost easy procedure, incorrect

needle placement can lead to cement leakage and neurovascular

injury. Johns Hopkins Medicine has proffered that there are

various risk factors which are related to vertebroplasty, such as

rib or other surrounding bone fractures, hemorrhaging,, as well

as cement leakage outside the bone. Upon conducting 40 spine

phantom trials, Abe et al. discovered that the error of the

insertion angle of the vertebroplasty needle while procedure was

highly improved in comparison to present modalities.

Furthermore, in these 5 VIPAR assisted percutaneous

vertebroplasty procedures conducted in the clinical trial, there

was a complete success rate, with no spinal pedicle breach or

leakage of cement (99, 100).
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Limitations

In the field of health care and medicine, AI has made

significant progress. In the future, doctors and robots may

collaborate to improve patient care. Nevertheless, patients may

find it challenging to place their trust in a robot when it comes

to surgical procedures, and it is often recommended that a

neurosurgeon retain ultimate control. Traditional neurosurgeons

typically dissuade the use of aforementioned technologies

including AI during neurosurgical interventions. Conversely, an

excessive reliance on AI may deter surgeons, particularly

neurosurgeons, from mastering the necessary surgical skills

(31, 101). For instance, AI necessitates an extensive dataset for its

operation, thereby presenting the challenge of generating a

plethora of clinically practical algorithms. This entails the storage

of large-scale data, allowing for easy accessibility to abusers,

thereby jeopardizing patient privacy. Numerous ethical concerns

arise in this realm. Although the recording of patient data

remains controversial, in the event of a misdiagnosis due to AI,

moral and legal quandaries require prompt attention (102). The

“black box dilemma” emerges, where both consumers and users

lack comprehension concerning how the computer produces

outcomes, ultimately hindering transparency in AI systems (103).

One must also acknowledge that, regardless of how advanced AI

becomes, it lacks human consciousness and the capacity to make

conscientious and informed decisions (104).

It is highly recommended to certify and verify AI-based

systems with a view to ensuring the safety of patients.

Moreover, it is imperative to minimize the instances of AI

system failures on patients. An additional challenge that looms

ahead is the annotation of targets, given that the identification

of anatomical structures can be a daunting task for even the

neurosurgeons. In order to address this challenge, AI needs to

be trained to recognize such intricate anatomy, in conjunction

with other cutting-edge technologies, thereby enhancing

accuracy in dealing with difficult targets. However, the fact

remains that the bulk of data in a training set is dominated by

standard cases, which makes cases with anatomical

abnormalities a worrisome challenge for the future. In the

context of endovascular procedures, AI is constrained by the

lack of haptic feedback, which limits its potential for usage

(102, 105). Nonetheless, AI can be extensively leveraged in

surgeries for the elderly, but it is still incumbent upon the

clinician to provide the necessary endorsement. Doctors must

therefore acquire a working knowledge of computer science in
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order to effectively analyze and optimize the data and AI

systems at their disposal (106, 107).
Conclusion

The field of AI in corporations with VR, AR, and robotics is an

interdisciplinary area located at the interface of medicine,

neuroscience, and engineering. In the realm of neurosurgery,

they possess the potential to optimize patient outcomes. In the

pre-, intra-, and postoperative stages of neurosurgery, they have

the ability to enhance surgeons’ skill sets. The recent

technological advances in AI, VR, AR, and robotics have made it

possible for humans and machines to collaborate to improve

healthcare delivery. This is achieved via image acquisition,

processing and interpretation, patient allocation to appropriate

surgeries, intra-operative improvements, postoperative follow-up,

as well as facilitating access to high-quality healthcare. However,

more investigations are required to better evaluate the

limitations. Also, the possibility and accessibility of the wide use

of these techniques must be evaluated.
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Role of artificial intelligence and 
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of cerebrovascular disease
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Reza Dashti *

Dashti Lab, Department of Neurological Surgery, Stony Brook University Hospital, Stony Brook, NY, 
United States

Introduction: Cerebrovascular diseases are known to cause significant morbidity 
and mortality to the general population. In patients with cerebrovascular disease, 
prompt clinical evaluation and radiographic interpretation are both essential 
in optimizing clinical management and in triaging patients for critical and 
potentially life-saving neurosurgical interventions. With recent advancements 
in the domains of artificial intelligence (AI) and machine learning (ML), many AI 
and ML algorithms have been developed to further optimize the diagnosis and 
subsequent management of cerebrovascular disease. Despite such advances, 
further studies are needed to substantively evaluate both the diagnostic accuracy 
and feasibility of these techniques for their application in clinical practice. This 
review aims to analyze the current use of AI and MI algorithms in the diagnosis of, 
and clinical decision making for cerebrovascular disease, and to discuss both the 
feasibility and future applications of utilizing such algorithms.

Methods: We review the use of AI and ML algorithms to assist clinicians in the 
diagnosis and management of ischemic stroke, hemorrhagic stroke, intracranial 
aneurysms, and arteriovenous malformations (AVMs). After identifying the most 
widely used algorithms, we  provide a detailed analysis of the accuracy and 
effectiveness of these algorithms in practice.

Results: The incorporation of AI and ML algorithms for cerebrovascular 
patients has demonstrated improvements in time to detection of intracranial 
pathologies such as intracerebral hemorrhage (ICH) and infarcts. For ischemic 
and hemorrhagic strokes, commercial AI software platforms such as RapidAI and 
Viz.AI have bene implemented into routine clinical practice at many stroke centers 
to expedite the detection of infarcts and ICH, respectively. Such algorithms and 
neural networks have also been analyzed for use in prognostication for such 
cerebrovascular pathologies. These include predicting outcomes for ischemic 
stroke patients, hematoma expansion, risk of aneurysm rupture, bleeding of AVMs, 
and in predicting outcomes following interventions such as risk of occlusion 
for various endovascular devices. Preliminary analyses have yielded promising 
sensitivities when AI and ML are used in concert with imaging modalities and a 
multidisciplinary team of health care providers.

Conclusion: The implementation of AI and ML algorithms to supplement clinical 
practice has conferred a high degree of accuracy, efficiency, and expedited 
detection in the clinical and radiographic evaluation and management of 
ischemic and hemorrhagic strokes, AVMs, and aneurysms. Such algorithms have 
been explored for further purposes of prognostication for these conditions, with 
promising preliminary results. Further studies should evaluate the longitudinal 
implementation of such techniques into hospital networks and residency programs 
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to supplement clinical practice, and the extent to which these techniques improve 
patient care and clinical outcomes in the long-term.

KEYWORDS

artificial intelligence, machine learning, deep learning, cerebrovascular, ischemic stroke, 
hemorrhagic stroke, aneurysm, arteriovenous malformation

1. Introduction

Cerebrovascular disease encompasses a wide range of pathologies 
that can confer a high risk of potentially life-threatening sequelae; 
hence, timely diagnosis and treatment is essential in preventing 
subsequent severe neurological deterioration (Santana Baskar et al., 
2021). This requires a large team of clinicians and support staff to 
effectively work up and manage these patients, to enable them to 
receive the highest quality of care. On initial presentation outside of 
the hospital, emergency medical staff must quickly recognize 
symptoms of cerebrovascular disease, safely transfer the patient to the 
hospital, and obtain stroke imaging as early as possible (Santana 
Baskar et al., 2021). This is in tandem with timely clinical evaluation 
immediately on admission to determine the patient’s neurological 
status and overall clinical picture, while also determining medical 
management, such as whether a patient is a candidate for medical 
thrombolytic therapy even before further intervention (Cumbler, 
2015). From there, the radiology technologists and neuroradiologists 
work together to capture and interpret the appropriate imaging from 
which clinicians can hone in both on the critical diagnosis and in 
decision making for intervention/s (Cumbler, 2015; Green 
et al., 2021).

In recent years, with advances in technology and advanced 
machinery, health care has been incrementally augmented by the use 
of such software and technology to aid in diagnosis and decision-
making for various medical conditions (Shuaib et al., 2020). Artificial 
intelligence (AI) is actively being implemented into many fields in 
medicine, and recent advancements in AI algorithms and machinery 
for diagnosing and treating cerebrovascular disease have the potential 
to revolutionize patient care (Soun et al., 2021). In order for AI to 
be further incorporated into the standard of care for cerebrovascular 
disease patients, many years of active collaboration between AI 
algorithm engineers and physicians are needed. In light of the current 
AI revolution in medicine, it is increasingly essential for health care 
professionals treating cerebrovascular patients to familiarize 
themselves with the applications of these innovations to their own 
field. By enhancing their knowledge, clinicians will find themselves 
more prepared when AI inevitably becomes an inherent part of future 
clinical practice (Lanzagorta-Ortega et  al., 2022). In this review, 
we seek to provide an overview and evaluation of AI technologies 
applied to the field of cerebrovascular disease in the diagnosis of 
primary and secondary (lesional) hemorrhagic stroke, and ischemic 
stroke (IS). We  performed a generalized review of the current 
literature by identifying articles that assessed the most updated AI 
and ML techniques. This was done by selecting the most relevant 
articles in the current cerebrovascular disease literature cited on the 
PubMed and Web of Science databases. In doing so, we aimed to 
summarize the clinical relevance of AI in cerebrovascular disease in 

simple terms so that practicing clinicians can gain a better 
appreciation of its current and potential future applications for 
cerebrovascular patients.

1.1. Terminology

Since this review requires clinicians to have a reasonable 
understanding of the fundamental concepts of AI, a discussion of 
relevant terminology would be beneficial.

AI fundamentally refers to the ability of a machine to solve tasks 
in a way that simulates human intelligence (Moor, 2006). Machine 
learning (ML), a subset of AI, utilizes large data sets to train computers 
to iteratively generate a model based on recognizing rules or patterns 
in data (Choi et al., 2020). After training, the model is then tested with 
real-life data (testing data) to assess its accuracy. A schematic of this 
process is shown in Figure 1. In ischemic stroke, ML algorithms can 
be developed to demonstrate the presence of infarct, the total area of 
infarcted brain tissue, and the occluded vessel in question. Such an 
algorithm may subsequently be tested on a group of non-contrast 
computer tomography scans (NCCTs), with results then compared to 
the interpretation of the NCCTs by a radiologist to ascertain the 
accuracy of the algorithm (Wang and Summers, 2012; Choi et al., 
2020; Kim et al., 2023).

Models are often trained using three major classifications of 
learning: supervised, unsupervised, and reinforcement (Sarker, 2021). 
In supervised learning, the training data consists of pre-labeled 
information. With unsupervised learning, pre-existing information is 
absent which means the model must cluster a group of cases together 
based on similar characteristics and identify the relationships between 
said groups (Sarker, 2021). In contrast to unsupervised learning, 
reinforcement learning allows the model to analyze pre-existing data 
and determine the “correct” and “incorrect” answers for any 
given scenario.

Deep learning (DL), a further subclassification of ML, utilizes 
neural networks, a series of nodes or layers that are interconnected in 
such a way in order to simulate the human process of learning (Chen 
et al., 2022). The network begins with an input layer and ends with an 
output layer. In between both of these layers are a series of hidden 
layers, each with a given weight and bias (Jovel and Greiner, 2021). 
Each layer receives the input and assigns a weight to it. When the 
output exceeds a given bias/threshold, an activation function is 
applied and then fed forward to the next node. During the training 
phase, the model can adjust these weights and biases accordingly until 
it achieves the desired output (Jovel and Greiner, 2021). One such 
application may include software that performs a rapid analysis of a 
NCCT for a patient with acute ICH and then decides whether or not 
the neuroradiologist should immediately be notified to interpret the 
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film or if the neurosurgery team should be notified to prepare an 
operating room. Ultimately, three major classifications of deep 
learning exist and are characterized primarily by the kind of data they 
use optimally. Artificial neural networks (ANNs) work best with 
numeric input, convolutional neural networks (CNNs) with visual 
input, and recurrent neural networks (RNNs) with time-series data 
(Banerjee et al., 2019). These concepts are outlined schematically in 
Figure 2.

2. Hemorrhagic stroke

2.1. Background

Hemorrhagic stroke, also referred to as intracerebral hemorrhage 
(ICH), has multiple subtypes based on anatomical location of the 
bleed, encompassing subarachnoid hemorrhage (SAH), 
intraventricular hemorrhage (IVH), intraparenchymal hemorrhage 

(IPH), epidural hematoma (EDH), and subdural hematoma (SDH) 
(Soun et al., 2021). ICH carries a significant morbidity and mortality 
that is steadily increasing in prevalence worldwide, with fatality 
ranging anywhere from 30 to 65% of all incidents (Rymer, 2011; 
Vangen-Lønne et  al., 2017). Therefore, a timely diagnosis and 
neurosurgical intervention (if warranted), are essential for ICH 
patients to improve clinical outcomes (Forman et al., 2020). This is of 
the utmost importance when neuroimaging suggests the presence of 
hematoma expansion (HE), defined as an increase in ICH volume by 
greater than 33% from the initial collection of hemorrhage (Forman 
et al., 2020; Wang et al., 2021). The diagnosis of ICH can often be made 
through an initial NCCT of the head. Characterization of the ICH is 
subsequently performed through CT Angiograms (CTA), Computed 
Tomography Perfusion (CTP), Digital Subtraction Angiography 
(DSA), and Magnetic Resonance Imaging (MRI) to ultimately guide 
further management (Forman et al., 2020).

Neuroradiologists, neurosurgeons, and neurologists receive years 
of training to accurately diagnose ICH subtypes and to obtain volume 
measurements using the above imaging modalities. However, in the 
modern era, newly developed AI and ML algorithms can assist 
physicians to identify ICH and HE using standard imaging techniques 
(Wang et al., 2021). The utilization of these algorithms can both ease 
the interpretation of imaging and more accurately quantify hematoma 
volumes to improve diagnostic accuracy and guide decision-making 
as it pertains to acute surgical intervention or conservative and 
medical management (Guo et al., 2022). Many of these management 
decisions are dictated by whether the patient is likely to have a poor 
prognosis in the long-term.

HE is a pathological feature present in up to 40% of ICH patients, 
and is known to be one of many prognostic indicators of poor outcomes 
(Qureshi and Palesch, 2011). This makes it essential to accurately 
quantify hematoma volumes at admission and in serial imaging for ICH 
patients (Helal et al., 2019; Li et al., 2020). Prior history of anticoagulant/
antiplatelet usage, higher baseline ICH volumes and lower admission 
GCS scores are the most notable risk factors for developing HE (Guo 

FIGURE 1

Overview of AI training and validation.

FIGURE 2

Schematic conceptual representation of AI, ML, and DL.
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et al., 2022). Furthermore, patients with HE subsequently are at greater 
risk of developing IVH and hydrocephalus (Yaghi et al., 2014). Despite 
the extensive literature surrounding ICH outcomes, HE is one of the 
few markers of outcome that can specifically be mitigated, and in some 
cases, prevented by neurosurgical intervention (Brouwers and 
Greenberg, 2013). This makes the identification of HE crucial during 
the care of ICH patients, as it effectively guides medical and surgical 
therapy while potentially preventing adverse outcomes (Aziz et al., 
2015). The role of AI in these contexts pertains specifically in diagnosing 
subtypes of ICH, measuring ICH volumes, and in identifying HE and 
predictive signs of poor outcomes. Below, we discuss the current role of 
AI as well as how future technology can be implemented to improve 
neuroradiological care for ICH patients.

2.2. Standard techniques

One of the first techniques developed to evaluate ICH and 
measure hematoma volumes is manual segmentation (Nguyen et al., 
2020). This entails the manual review of patients’ head CTs by 
individual slices to calculate the hematoma volume (HV). Although 
manual segmentation is the gold standard per the current literature, 
given its high accuracy and error-proof methodology, it is often 
time consuming, particularly in ICH patients for whom timely 
diagnosis is essential. Moreover, with the increasing need for 
imaging in a growing population of ICH patients, efficient review 
of CT scans and other imaging modalities is critical. With this 
rising demand, the ABC/2 technique was developed. With this 
technique, “A” is defined as the length of the longest layer diameter, 
“B” defined as the perpendicular vertical line to A, and “C” is a 
by-product of layer thickness multiplied by bleeding layer number. 
The approximate value of HV is then estimated as the product of 
these variables divided by two. Many studies have demonstrated 
limited efficacy of the ABC/2 method, citing both overestimation 
and underestimation of HVs and perihematomal edema (PHE) 
(Wang et al., 2009; Chen et al., 2022; Hillal et al., 2022). As a result, 
ABC/2 was often unreliable at many level one stroke centers (Webb 
et al., 2015).

Since larger HVs and PHE are arguably the most important 
predictors of HE and poor prognosis in acute ICH, accurate detection 
and quantification of these variables are essential (Yaghi et al., 2014; Li 
et al., 2020). With an aging population and increasing incidence rates 
of ICH, there has been a growing demand for institutions to develop 
AI and ML algorithms that accurately detect PHE and calculate HVs. 
A select few of the most promising algorithms are reviewed below.

2.3. ML for qualitative detection of ICH

With the growth of AI as a prospective tool for ICH detection 
and classification, there have been many studies which have utilized 
and evaluated some of the algorithms and neural networks outlined 
above. The primary outcome reported in the literature is area under 
the curve (AUC), which is a marker for the predictive accuracy of the 
model on a scale of 0–1. One of the highest-powered studies was a 
retrospective study examining over 30,000 CT scans across India 
using deep learning algorithms in two datasets (Qure25k and CQ500) 

(Chilamkurthy et al., 2018). The authors utilized a natural language 
processing (NLP) algorithm to detect IPH, SDH, EDH, SAH, and 
IVH, as well as other pertinent findings such as calvarial fractures, 
mass effect, and midline shift. The authors noted that both datasets 
demonstrated strong degrees of accuracy per the consensus of 
independent radiologists in detecting both the actual hemorrhages 
as well as the other pertinent CT findings above with an AUC of 0.92 
and 0.94 for the above datasets. Another study from 2021 assessed 
25,000 CT scans using more advanced two sequence models with 2D 
CNN to classify subtypes of ICH; they reported AUCs greater than 
0.98 for SAH, IVH, SDH, EDH, and IPH (Wang et al., 2021). Nishi 
et  al. (2021) elucidated an algorithm solely designed for SAH 
detection with NCCTs and compared its detection results with five 
neurosurgeons and five general practitioners (Nishi et  al., 2021). 
Across 135 patients with SAH, their algorithm demonstrated similar 
performance to the neurosurgeons and stronger performance than 
four of the other five physicians (Nishi et al., 2021). The findings for 
all of these studies above suggest that AI is capable of classifying ICH 
subtypes by evaluating simple neuroanatomy at a level that is on par 
with well-trained physicians,

Other 2D-CNNs utilized in the evaluation of ICH include 
GoogLeNet and AlexNet, which have been applied to the detection of 
basal ganglia hemorrhage (Desai et al., 2017). Desai et al. noted that 
both CNNs demonstrated a high degree of accuracy in detecting deep 
ICH (Desai et  al., 2017). GoogLeNet, with a pretrained network, 
yielded the highest accuracy (sensitivity and specificity of 100, 
AUC = 1.0). The untrained AlexNet yielded a high but slightly reduced 
level of accuracy compared to GoogLeNet (sensitivity = 100%, 
specificity 80%, AUC = 0.95) (Desai et  al., 2017). These results 
demonstrate the capacity for such algorithms to provide significant 
diagnostic value even for deep ICH.

Arbabshirani et al. also evaluated a fully 3D-CNN to not only 
detect ICH, but also to effectively triage CT scans to prioritize 
radiology worklists and expedite diagnosis times (Arbabshirani et al., 
2018). This network was trained on over 37,000 studies and 
prospectively evaluated on 9,499 hitherto unseen studies. This model 
was able to successfully re-prioritize 94 studies from “routine” to “stat,” 
and reduced the time to detection of ICH from 512 to 19 min. These 
findings demonstrate the further benefit not just in diagnosing ICH, 
but in expediting the process of diagnosis.

Another critical imaging modality in the detection of acute ICH 
is CTA. CTA allows clinicians to determine whether ICH is 
spontaneous, secondary to trauma, or from a pre-existing lesion 
such as a ruptured aneurysm or arteriovenous malformation 
(AVM) (Fu et  al., 2023). Unlike NCCTs of the head which can 
be  well-evaluated by most physicians, they require more 
subspecialist training to evaluate and often need more time to 
interpret in order to elicit an accurate diagnosis (Wada et al., 2007; 
Fu et al., 2023). One study evaluating a DL algorithm for 3,266 
patients with CTAs of the head and neck showed a mean reduction 
time of 16.4 min when compared to trained radiologists with almost 
identical diagnostic accuracy (Fu et al., 2023). More research is 
needed to demonstrate the benefits of AI for interpretation of CTAs 
and other more complex imaging modalities such as MRIs/MRAs 
and DSAs in the context of ICH, as the current literature has 
primarily evaluated the use of AI in simple imaging techniques such 
as NCCTs (Hotta et al., 2014).
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2.4. Novel machine learning techniques for 
quantitative hematoma evaluation

Most ML algorithms work by taking a pixel-wise approach and 
combining CT slice thickness to calculate HVs. Dhar et al. utilized 
a CNN model developed from U-Net architecture that 
demonstrated similar efficacy to manual segmentation techniques 
for calculating HVs and PHE (Dhar et al., 2020). Voxel-by-voxel 
overlap of hematoma segments was calculated using the Dice 
similarity coefficient (DSC), with a score of “0” suggesting no 
overlap at all and “1” suggesting maximum overlap between the 
manual segmentation method and the algorithm method. Across 
224 CT scans in 124 patients, this study found that the UNet model 
had a DSC of 0.9 (IQR 0.85–0.93) for measuring HVs but only a 
DSC of 0.54 when measuring PHE. However, Ironside et al. (2020) 
used a fully automated segmentation algorithm with a goal of 
specifically calculating PHE in 400 patients with ICH. The 
automated algorithm was both faster and more accurate at 
detecting PHE (mean 480.5 ± 295.3 s/scan; p < 0.0001) and manual 
(mean 316.4 ± 168.8 s/scan; p < 0.0001) methods (Ironside 
et al., 2020).

Although both studies demonstrate strong efficacy of the 
algorithms developed, the conflicting results highlight the 
discrepancies that may exist between different ML algorithms when it 
comes to calculating PHE. Ironside et al. have followed up on their 
previously published results with the prospective QUANTUM study 
in 2022. Currently underway, this study intends to address relevant 
design considerations for an AI to accurately evaluate PHE in ICH 
patients (Ironside et al., 2022). When neurosurgeons use AI to help 
interpret NCCTs with acute hematomas, it is crucial that they are 
aware of how the AI was initially designed. This allows neurosurgeons 
to combine the appropriate mental resources from their clinical 
training with the expertise of the AI machinery to make faster and 
more accurate interpretations. While few subsequent studies in the 
literature have followed up on the evaluation of PHE, several studies 
have demonstrated the efficacy of using ML algorithms to calculate 
HVs. Yu et al. utilized “DR-UNet,” a dimensional reduction analytical 
framework upgraded from the CNN UNet model used by Yu et al. 
(2022). Across 562 patients with a collective 13,825 CT scans, the 
DR-UNet model’s hematoma volume calculations demonstrated a 
strongly positive correlation with the calculations made by a 
neuroradiologist using manual segmentation (R2 = 0.9979, p < 0.0001). 
Few prior studies have demonstrated this level of statistical power with 
ML algorithms. The DR-UNet model also accurately evaluated 13 
irregularly shaped hematomas that were shaped differently from the 
remainder of hematomas in the rest of the data set, thus demonstrating 
the potential for ML algorithms to be used even in evaluating atypical 
hematomas (Yu et al., 2022).

Such hematomas are often better evaluated using CTP imaging. 
CTP is an imaging technique that allows for the visualization and 
volumetric measurement of cortical infarcts well as adjacent 
penumbra. Wang et al. also developed an algorithm for CTP images 
that evaluated 49 ICH patients with concurrent interventricular 
hemorrhage (IVH), a feature known to be  associated with poor 
outcomes in ICH patients (Wang et  al., 2021). They found no 
statistically significant difference between CTP-based planimetry 
segmentation and their algorithm (p = 0.614), despite strong 
correlations between the two measurements (r = 0.996). However, the 

algorithm more accurately calculated volumes for the 56 ICH patients 
without IVH when compared to CTP-based planimetry (r = 0.994, 
p < 0.001). Due to the difficulty with calculating HVs with concurrent 
IVH, few studies have demonstrated algorithms that accurately 
calculate HVs in these patients (Wang et al., 2021).

Ultimately, the primary limitation of AI and ML algorithms in the 
current literature is their lack of efficacy in evaluating ICH in the 
context of IVH or infratentorial hemorrhages, both known to carry a 
worse prognosis than supratentorial ICH without IVH. Bleeding that 
extends to the ventricle can be  associated with posthemorrhagic 
hydrocephalus, cerebral palsy, and permanent neurological deficits 
depending on which neural structures are compressed by the 
accumulation of ventricular blood (Wang et  al., 2021). While the 
results from Wang et al. demonstrated some promising results, further 
studies are needed to substantiate the potential for utilizing such 
algorithms for ICH with concurrent IVH. ML algorithms are currently 
of limited use in patients with these types of ICH who are invariably 
more critically ill and, from a neuroanatomical standpoint, have more 
severe and complex disease. Neuroradiologists often use similar 
methodologies across each of the studies they read. Therefore, it is 
imperative to develop algorithms which can be consistently utilized 
for preoperative planning for any prospective patient with 
hemorrhagic stroke regardless of the further complications of IVH, 
hydrocephalus, or infratentorial bleeding.

In clinical practice, neuroradiologists often assess for other 
predictors of ICH severity on CT scans. For instance, “spot sign,” 
defined as the presence of more than one focal enhancement within 
an acute hematoma, is a marker that suggests the presence of ongoing 
bleeding and often reliably predicts HE (Wada et al., 2007; Hillal et al., 
2022). Another radiographic marker of severity is the “satellite sign,” 
defined as the presence of a visible hemorrhage up to 20 mm away 
from the original hematoma. Other neuroradiological markers on CT 
scans assessed for by radiologists and neurosurgeons include “swirl 
sign,” “black hole sign,” “blend sign,” and “island sign” (Selariu et al., 
2012; Hillal et  al., 2022). All of these signs are ultimately poor 
prognostic indicators suggesting that hematoma expansion is likely to 
occur, but each sign has its own intricacies, sensitivity, and specificity 
for such predictive values. The current literature has a select few 
studies which have compared the utilization of CNNs with a 
pre-existing deep learning model for accurately identifying the above 
predictive markers (Zhong et al., 2021). One such study was by Zhong 
et al., which demonstrated that a CNN model could identify “black 
hole” sign and “blend” sign when compared to a pre-existing deep 
learning model; however the algorithm failed to consistently identify 
“swirl” sign (Zhong et al., 2021). Therefore, further studies analyzing 
the use of such algorithms to consistently identify such radiographic 
signs are needed. If AI is able to successfully evaluate such radiographic 
signs with a high degree of accuracy, it could make the clinical training 
for neuroradiologists and neurosurgeons much more efficient by 
allowing them to allocate more mental resources to other important 
tasks needed for patient care.

Overall, results in the current literature have demonstrated the 
ability of ML algorithms to calculate HVs from CT scans (Kuo et al., 
2019; Ma et  al., 2022; Peng et  al., 2022). A recent 2022 study by 
Tanioka et  al. ventured even further, comparing multiple ML 
algorithms including XGBoost, random forests, support vector 
machines, and k-nearest neighbors (k-NN) (Tanioka et al., 2022). The 
authors suggested that the k-NN algorithm is the most superior given 
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its superior speed and accuracy relative to other algorithms (Tanioka 
et al., 2022). With improvement in technological advances, institutions 
are likely to continue developing more ML algorithms with better DSC 
scores, stronger correlations with gold standard techniques, and faster 
calculation times.

The utilization of such algorithms provides significant benefits for 
healthcare teams involved in ICH care. Neuroradiologists who first 
interpret the film can use the AI to better communicate with 
neurosurgeons the anatomical and radiographic signs relevant to the 
patient’s clinical picture. This can ultimately allow for better 
preoperative planning of the respective neurosurgical intervention, 
which in the emergency setting, is essential for patients with severe 
disease. However, further studies are needed to further assess for and 
substantiate these potential benefits if applied to routine 
clinical practice.

3. Ischemic stroke

3.1. Background

Ischemic stroke (IS) is a devastating condition that annually 
affects nearly 795,000 people in the US alone and 11.6 million people 
globally (Saini et  al., 2021; Tsao et  al., 2022). As in ICH, earlier 
detection of IS can lead to more timely neurosurgical intervention and 
improvements in long-term morbidity and mortality. Currently, a 
number of imaging modalities exist that aid in both the detection as 
well as characterization of ischemic strokes. With the information 
gleaned from these studies, clinicians can estimate prognosis and 
make further decisions regarding both medical and surgical 
management. Significant advancements have been made toward 
utilizing artificial intelligence (AI) programs to rapidly and accurately 
identify abnormalities in many of these imaging studies and 
consequently assist in clinical decision making. The following 
discussion will explore some of these advancements and the potential 
role of AI in the diagnosis, prognostication, and management of 
ischemic stroke.

3.2. Detection of acute ischemic stroke

Central to the diagnosis of ischemic stroke is adequate access to 
accurate and rapid imaging. Although non-contrast computed 
tomography (NCCT) is often the initial study obtained for suspected 
stroke cases, its low sensitivity for detecting early ischemic stroke 
restricts its use primarily to the exclusion of ICH (Chalela et al., 2007). 
Compared to NCCT (sensitivity: 26%), MRI diffusion-weighted 
imaging (DWI) remains the most effective modality for the detection 
of early IS with a sensitivity of at least 83% in most studies (Chalela 
et  al., 2007). Unfortunately, limitations in both accessibility and 
availability of MRI technology can delay crucial diagnosis. Moreover, 
a single MRI study takes upwards of 30 min to be performed and at 
most institutions, with additional delays in time associated with 
waiting for availability for a scanner in the setting of other emergent 
indications such as cauda equina syndrome, transporting the patient 
to and from the machine, and awaiting a confirmed read from an 
attending radiologist (Puhr-Westerheide et al., 2022). Although MRI 
is sensitive for IS, studies have shown mixed findings of long-term 

outcomes for patients with IS who received an MRI as their initial 
imaging study, which may be related, in part, to delays in imaging and 
subsequent interpretation (Kleindorfer et al., 2015). Therefore, AI may 
be of great value for reducing the delays in IS diagnosis seen across 
US hospitals.

The detection of subtle findings that can otherwise be missed by 
physicians encompasses the most promising aspects of AI (Nishio 
et al., 2020; Kaothanthong et al., 2022; Lu et al., 2022). To aid in the 
detection of “invisible” acute IS, Lu and colleagues developed a deep-
learning model comprised of two deep CNNs. The first CNN was a 
localization model that used pre-labeled NCCT scans with both 
positive and negative findings to visually outline regions of interest 
suspicious for infarct. The resulting output was then fed-forward into 
the second CNN, a classification model that assigned a probability of 
acute IS to each study. After a training phase consisting of a subset of 
patients from Tongji Hospital (Institution A), the authors used the 
remaining patients helped internally validate the model and 
demonstrated reasonable performance as measured by sensitivity, 
specificity, accuracy, and AUC, a measure of the predictive power of 
a model (68.99, 98.22, 89.87, 83.61%, respectively). Even when 
applied to an external cohort consisting of patient data from The First 
Affiliated Hospital (Institution B), in which both patient 
demographics and image acquisition differed from that of Institution 
A, the model again demonstrated comparable performance in the 
aforementioned metrics (sensitivity: 62.99%; specificity: 89.65%; 
accuracy: 88.61%; AUC: 76.32%). This performance was superior to 
those of two experienced radiologists tested on the same collection of 
studies (AUC 76.32% vs. 64.01% vs. 64.39%, respectively). 
Furthermore, the performance of both radiologists improved with the 
assistance of the model (AUC 81.15 and 81.83%, respectively), 
suggesting the potential for a synergistic relationship between man 
and machine.

3.3. Characterization of ischemic stroke

After initial detection of IS, clinicians utilize a number of factors 
to help determine appropriate next steps in management including 
etiology, time of onset, presence of large vessel occlusion (LVO), core 
infarct volume, and size of penumbra. Early ischemic imaging findings 
changes, when present, can be  pieced together and quantitatively 
assessed using the Alberta Stroke Program Early CT Score ASPECT 
score (Mokin et al., 2017). The evolution of the field of radiomics has 
allowed an unprecedented degree of speed and accuracy in the 
extraction of many of these features, especially compared to previously 
used segmentation methods. The following sections will highlight 
some of the ways in which machine learning algorithms have been 
employed to further enhance the characterization of acute 
ischemic stroke.

3.3.1. Etiology
In 1993, the multicenter Trial of Org in Acute Stroke Treatment 

(TOAST) clinical trial was completed to develop a classification 
system of acute IS based on primary etiology (Adams et al., 1993). This 
yielded five subcategories: large artery atherosclerosis, cardiogenic 
embolism, small vessel occlusion, IS due to other causes, and IS with 
unknown cause. Since then, further iterations of the TOAST 
classification system have been developed to allow for more accurate 
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subtyping; however, the most common causes of IS still belong to the 
first three subcategories (Wang et  al., 2019). Due to the different 
natures in which these conditions evolve, the treatment strategies for 
each of these subtypes may also vary. Consequently, accurate and 
rapid subtyping is an important part of the diagnosis of IS.

To address this, Chen and colleagues developed a deep learning 
model to categorize causes of embolic IS due to either cardiogenic 
causes or large artery atherosclerosis (Chen et al., 2023). This model 
consisted of segmented CTA data that underwent feature extraction 
using both radiomics and CNN algorithms concurrently. The resulting 
output was then combined and fed-forward into a subtyping model 
consisting of nine separate classifiers to determine the most optimal 
outcome. The authors found the Adaboost algorithm to produce the 
highest performance (AUC: 0.9018, accuracy: 0.8929), suggesting that 
such models could potentially assist clinicians in making a timely 
diagnosis (Chen et al., 2023).

3.3.2. Time of onset
The time of onset since initial symptoms of a stroke is also an 

important factor to consider when determining treatment options. 
However, for many patients, this information may not be readily 
available. In fact, as many as 25% of ischemic strokes occur during 
sleep, often limiting available options (Lago et al., 1998; Fink et al., 
2002; Serena et  al., 2003). Previous research by Thomalla and 
colleagues has shown that diffusion-weighted imaging (DWI) in 
combination with T2-FLAIR imaging can actually provide insight 
into the approximate onset of stroke (Thomalla et al., 2011). They 
showed that the DWI-FLAIR mismatch, if detected, could suggest 
stroke onset within the prior 4–5 h. However, identifying this 
mismatch can be a challenging task even for experienced radiologists. 
Recent work has shown that deep learning could better facilitate this 
mismatch detection and achieve higher performance in most metrics 
(as measured by sensitivity, specificity, and accuracy) compared to 
human readers (Ho et al., 2017; Zhu et al., 2021; Polson et al., 2022).

ML has also shown promise in the field of metabolomics in 
determining stroke onset. Previous work has been performed to 
identify possible biomarkers of early stroke with varying degrees of 
success (Laskowitz et al., 2009; Montaner et al., 2011; Bustamante 
et al., 2017; Sidorov et al., 2019). Using a metabolomics-based machine 
learning framework called extreme gradient boost (XGBoost), Zhang 
and colleagues were able to identify multiple serum biomarkers in rats 
that were both predictive of the presence of stroke as well as the time 
of onset (Zhang et  al., 2022). Together, these findings show the 
potential for ML in stroke management beyond the scope of imaging 
alone. Future areas of research should focus on how AI can 
be implemented in neurosurgical intervention specifically.

3.4. Core infarct volume segmentation

Accurate estimation of this core infarct volume through CTP is 
essential in guiding further management. However, among available 
CTP software programs, there is tremendous variability in the 
parameters used to define core infarct and the resulting perfusion 
maps (Fahmi et al., 2012; Koopman et al., 2019; Hoving et al., 2022). 
A number of ML algorithms have been trained using either CTP maps 
alone or some combination of these perfusion maps with other clinical 
data (Clerigues et al., 2019; Chen et al., 2020; Wang et al., 2020). The 

incorporation of these maps introduces inherent variability in the 
models themselves. Furthermore, each model must first be trained 
according to the individual CTP software program used prior to 
clinical application. To bypass these issues, de Vries and colleagues 
developed a U-Net like model, PerfU-Net, that utilized CTP source 
data without the use of any intermediate perfusion map (de Vries 
et  al., 2023). The model also utilized the concept of symmetry 
awareness and skip connections, whereby a potentially infarcted 
hemisphere was compared to its healthy counterpart and the output 
from one layer became the input to every other subsequent layer in 
order to select for particularly salient elements of the image. While 
PerfU-Net did not perform at the level of some of the top models that 
did use CTP maps, it demonstrated comparable performance [Dice: 
0.46, precision: 0.54, recall: 0.49, average volume difference (AVD) 
compared to ground truth using MRI-DWI: 12.74]. These findings 
suggest that AI can help standardize and relatively accurately estimate 
volumetric measurements of infarct.

3.5. Large vessel occlusion

Large vessel occlusion is a prominent cause of acute IS, which 
carries a disproportionately high level of morbidity and mortality 
(Smith et al., 2006, 2009; Malhotra et al., 2017). Consequently, rapid 
detection of LVO is of paramount importance in the initial workup 
of any stroke. AI has shown tremendous potential in this sphere, 
leading to the development of commercially available programs, 
such as and Rapid CTA and Viz.ai-LVO, that have reasonably high 
sensitivity and specificity (Murray et  al., 2020; Karamchandani 
et al., 2023). Some recent work has even demonstrated a role for AI 
in detecting LVO using CTAs obtained in mobile stroke units 
(MSUs) (Czap et al., 2022). MSU CTAs exhibit limitations in their 
capacity to show ischemia in part due to the variability in image 
quality when compared to traditional scanners as well as an earlier 
than usual acquisition time after stroke onset. The model developed 
by Czap and colleagues was initially trained and tested using 
in-hospital CTAs, achieving an AUC of 0.84. The authors then 
tested the same model using CTAs obtained in MSUs and achieved 
a comparable performance with an AUC of 0.80 (Czap et al., 2022). 
Together, these results show that MSUs equipped with adequately 
trained machine learning algorithms can assist clinicians in 
achieving faster diagnoses in the acute setting. The value of this 
additional speed that AI offers cannot be understated in the acute 
setting where “time is brain.”

3.6. Prognostication of ischemic stroke

In addition to facing the clock, clinicians are often challenged by 
patients’ families who are concerned regarding the acute and long-
term prognosis following their stroke. The answer to this question 
may vary depending on a number of factors including clinical 
features, radiological findings, and medical history as well as the 
treatment options available on presentation. The Alberta Stroke 
Program Computed Tomography Score (ASPECTS) was one of the 
first efforts to predict outcome following an MCA stroke as it allowed 
for the quantification of ischemic changes in the anterior circulation 
using NCCT (Barber et  al., 2000). It was originally designed to 
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identify those patients that would benefit from thrombolytic therapy. 
Since then, it has been used to decide which patients may benefit 
from mechanical thrombectomy (Yoo et al., 2014; Goyal et al., 2015; 
Powers et al., 2015).

Initially, the manual interpretation of ASPECTS was tedious 
and often showed variability due to a number of factors including 
human rater experience (Wardlaw et al., 2007; Menon et al., 2011). 
Today, the advent of commercially available AI software such as 
RapidAI’s Rapid ASPECTS and Brainomix’s e-ASPECTS has 
automated this process, resulting in improved inter-rater agreement 
(Nagel et al., 2017; Goebel et al., 2018; Shibata et al., 2022; Chan 
et al., 2023). Additionally, several studies have produced models 
that have been able to generate ASPECTS scores from NCCT in 
high concordance with ASPECTS scores derived from DWI (Albers 
et al., 2019; Kuang et al., 2019). These performances were superior 
to that achieved by experienced clinicians, thus suggesting that AI 
can play a future role in ischemic stroke management and not 
just diagnosis.

In addition to these programs, there are other ML models that 
have been developed to predict outcomes following IS. For example, 
AI has been used to predict the occurrence of specific events 
immediately following IS including malignant cerebral edema as well 
as hemorrhagic transformation and reinfarction following 
thrombectomy (Yu et al., 2018; Foroushani et al., 2020; Choi et al., 
2021; Hoffman et al., 2023). Such measures may allow future clinicians 
to determine disease severity earlier in the management of IS patients. 
Multiple studies have demonstrated efforts to develop ML algorithms 
that can predict functional outcomes at various stages post-discharge 
(Forkert et al., 2015; Dragoș et al., 2023; Ozkara et al., 2023). Although 
the success of these studies is somewhat limited, it shows great 
promise for the future of IS care.

3.7. AI software implemented in practice in 
cerebrovascular accident patients

Through the iterative enhancements of AI demonstrated in the 
literature outlined above for CVA patients, there has been the recent 
implementation of commercial software platforms at various stroke 
centers utilizing AI for both ischemic and hemorrhagic stroke, some 
of which are highlighted in Table 1.

These software applications facilitate a systematic approach to 
suspected CVA patients, and can expedite the process of detecting 
CVA, and triaging who is eligible and may benefit from neurosurgical 
intervention. The practical implementation of AI software from a 
community hospital to a major stroke center is outlined in Figure 3.

4. AI in intracranial aneurysms

Intracranial aneurysms (IAs) have a prevalence of approximately 
3.2% in the general adult population. While most aneurysms are 
found incidentally, there is always a risk of rupture that is associated 
with a 25% mortality rate during the first 24 h. Ruptured aneurysms 
are responsible for approximately 500,000 annual deaths worldwide, 
with the risk of rupture increased with larger aneurysms (Rinkel et al., 
1998; Vlak et al., 2011; Morita et al., 2012; Jersey and Foster, 2023). 
Unfortunately, most patients with cerebral aneurysms are unaware of 
their condition since they remain asymptomatic until a rupture occurs 
and leads to long-term neurological deficits. Therefore, the accurate 
and timely diagnosis of aneurysms is essential for astute clinical 
decision-making regarding intervention and subsequent clinical 
outcomes. With respect to unruptured aneurysms, there is still debate 
on the specific guidelines regarding if and under what circumstances 

TABLE 1 Commercially utilized software applications utilizing AI in ischemic stroke and ICH.

Software Application Clinical use Imaging modality

RapidAI Rapid ICH Detection and classification of ICH CT

Rapid CTA Detection of LVO CTA

Rapid CTP Detection of perfusion mismatch CTP

Rapid MR Detection of perfusion mismatch MRI/MRA

RapidASPECTS Facilitates ASPECTS grading for stroke CT

Brainomix e-ASPECTS Facilitates ASPECTS grading for stroke CT

e-Blood Detection and quantification of ICH CT

e-CTA Detection of LVO, collateralization CTA

e-Mismatch Detection of perfusion mismatch CTA/CTP/MRA

Viz.ai Viz LVO Detection and triage of LVO CTA

Viz CTP Detection of perfusion mismatch CTP

Viz ICH Detection and triage of ICH CT

Aidoc Aidoc LVO Detection and triage of LVO CTA

Aidoc CTP Detection of perfusion mismatch CTP

Aidoc ICH Detection and triage of ICH CT

Avicenna.AI CINA LVO Detection and triage of LVO CTA

CINA ASPECTS Facilitates ASPECTS grading for stroke CT

CINA ICH Detection and triage of ICH CT
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intervention is warranted, the prognostication of aneurysms, as well 
as the preferred form of neurosurgical intervention (Thompson et al., 
2015). The introduction of AI, specifically DL algorithms, shows 
promise for improving present systems for the detection and 
prognostication of aneurysms.

4.1. The role of AI in aneurysm detection

Imaging modalities typically used for detection of aneurysms are 
similar to those used in the acute ICH setting, and they include DSA, 
CTA, and MRA. Each of these modalities can be operator-dependent 
and has varying degrees of accuracy in detecting subtle arterial lesions. 
Some of the potential diagnostic inaccuracies have been mitigated 
through the implementation of computer-aided diagnosis (CAD) 
systems. These are automated systems which, through the use of 
algorithms, can assist in the detection of abnormal imaging findings 
through the analysis of certain imaging features such as arterial wall 
defects (Arimura et al., 2004; Lauric et al., 2010; Yang et al., 2011; 
Hanaoka et al., 2019). While much of the earlier literature cited a high 
false positive rate of CAD, the recent incorporation of DL models, 
have allowed for greater adaptations and potential improvements to 
such systems. In theory, efficient DL models can facilitate greater 
sensitivity of this system in detecting IAs across various forms of 
imaging. AI can additionally process the dynamic nature of aneurysms 
to better understand its true size and morphology than simple 
diameter measurement can provide (Sahlein et al., 2022).

DSA is currently recommended as the first-line imaging 
modality due to its high sensitivity in detecting aneurysms of all 
sizes (Thompson et  al., 2015). When utilized with AI, CNN 
classifiers have yielded promising results in retrospective studies, 
with the literature citing a sensitivity of 79–100% (Jerman et al., 

2017; Duan et al., 2019; Hainc et al., 2020; Jin et al., 2020; Zeng 
et al., 2020; Ou et al., 2022). These studies have analyzed a wide 
array of algorithms, such as RAGS, RetinaNet, YOLOv3, ViDi, and 
UNet. Jerman et  al. demonstrated a 100% sensitivity using a 
7-layer 2D-CNN model (Jerman et al., 2017). Hainc et al. utilized 
a commercially available ML system on 2D images, and even while 
demonstrating a comparatively lower sensitivity (79%) of this 
algorithm, they demonstrated the feasibility of using AI, with the 
capacity for further improvement with the utilization of 3D images 
and manual ML training (Hainc et  al., 2020). This can lead to 
lower error rates and earlier detection times in asymptomatic 
patients who are unbeknownst to their own risk of 
aneurysm rupture.

CTA is a less invasive imaging modality to diagnose aneurysms 
with a similarly high sensitivity and specificity rate. Its main limitations 
are the susceptibility to artifact and decreased sensitivity for smaller 
aneurysms compared to DSA (Thompson et  al., 2015). Often, 
aneurysm detection is enhanced by vasculature rendering and bone 
subtraction. As a result, the utilization of ML in combination with CTA 
has a sensitivity that differs based on aneurysm characteristics, with 
many studies utilizing the HeadXNet model, UNet, and DeepMedic 
algorithms (Park et al., 2019; Shahzad et al., 2020; Shi et al., 2020; 
Alwalid et al., 2021; Bo et al., 2021; Pennig et al., 2021; Yang et al., 2021; 
Liu et al., 2023). Compared to other radiographic combinations, CTA 
had the most widespread sensitivities with high dependence on size 
and location. This was demonstrated by Shi et al., who analyzed the 
DaResUNet model, and detected a sensitivity ranging from 51.7 to 
100% and from 60.6 to 100% for location (Shi et al., 2020). In spite of 
these limitations, other studies have demonstrated the overall efficacy 
of augmentation AI algorithms with clinicians and reliable 
segmentation (Park et al., 2019). The FDA-approved Viz.AI Aneurysm 
CNN had a sensitivity of 93.8% and accuracy of 94.0% for aneurysms 

FIGURE 3

The use of AI software from an outside hospital to a major stroke center for a cerebrovascular patient requiring complex stroke intervention.
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in their approved range of 4 mm or larger with a mean processing time 
of 114.7 s (Colasurdo et al., 2023). RAPID Aneurysm was one of the 
most promising accurate programs, demonstrating a sensitivity of 95% 
and accuracy of 99% across 51 patients (Heit et al., 2022). However, 
there remains a dearth of available data pertaining to CTA with ML in 
aneurysm diagnosis and management.

With respect to MRA, when using ML techniques with CAD, the 
sensitivities for aneurysm detection ranged from 70 to 100%, 
depending on technique and size (Nakao et al., 2018; Sichtermann 
et al., 2019; Ueda et al., 2019; Chen et al., 2020, 2023; Faron et al., 2020; 
Joo et al., 2020; Shimada et al., 2020; Sohn et al., 2021; Terasaki et al., 
2021). Most of these models utilized validated ML algorithms UNet, 
DeepMedic, and ResNet with retrospective data. These include the 2D 
models of MRA and TOF-MRA, with higher sensitivities found for 
larger aneurysms and when the model was used in concert with 
human readers (Nakao et al., 2018; Sichtermann et al., 2019; Stember 
et  al., 2019; Faron et  al., 2020). Nakao et  al. employed a “2.5D” 
approach by having the network input 2D-image representations of 
3D objects through the combination of a CNN and MIP algorithm 
created to be  incorporated with pre-existing CAD systems. This 
demonstrated similar outcomes to 3D network models (Chen et al., 
2020; Faron et al., 2020; Joo et al., 2020; Sohn et al., 2021). Chen et al., 
using UNet, noted significant decreases in false positives (0.86 per 
case) compared to most other studies when running the algorithm 
after use of an automated vessel segmentation algorithm (Chen et al., 
2020). The same authors conducted a 2023 multi-center follow-up 
study, in which they improved their Squeeze-and-Excitation (SE) 3D 
UNet network optimized with a five-fold cross-validation, which 
yielded an increase in 15.79% for patient-level sensitivity and further 
decrease in false positives (Chen et al., 2023). ML with CAD may be a 
suitable option for aneurysm detection in clinical scenarios where 
patient care is satisfied by noninvasive imaging alone.

Terasaki et al. have conducted one of the few multi-center studies 
evaluating ML models of 2D-CNN, 3D-CNN, and multidimensional 
CNN using TOF-MRA images with both 3.0 and 1.5T (Terasaki et al., 
2021). The authors found the highest sensitivities rates of 82.1, 86.5, 
and 89.1% in the external tests with false positive rates of 5.9, 7.4, and 
4.2%, respectively, validating this approach of AI and ML with MRA 
imaging (Terasaki et al., 2021) Of note, this study also displays the 
overall trend of high false positive rates of MRA compared to CTA and 
DSA. Teresaki et al.’s high false positive rate may lead to unnecessarily 
aggressive management being taken by clinicians if they solely rely on 
the AI to make their diagnosis. This can lead to a waste of scarce and 
expensive resources in the acute setting and may limit the trust that 
clinicians have in AI when managing patients with unruptured IAs. 
This is in stark contrast to Chen et al.’s findings whereby demonstrating 
fewer false positive rates may allow physicians to better trust these 
algorithms for guiding management. Future research on AI should 
attempt to mitigate the false positive rate as low as possible in order to 
allow for a more feasible AI implementation into the acute setting.

4.2. The role of AI in determining aneurysm 
rupture risk and prognostication

Upon detection of an unruptured IA, the next step is to determine 
whether surgical intervention is indicated. While no clear consensus 
hitherto exists, there are scoring systems such as the PHASES score, 

Ruptured Resemblance Score (RRS), and ELAPSS score which can 
guide clinical judgment (Greving et al., 2014; Thompson et al., 2015; 
Backes et al., 2017; Rajabzadeh-Oghaz et al., 2020). The PHASES 
score provides risks of IA rupture based on the following: population 
ethnicity, hypertension, age, size of aneurysm, earlier subarachnoid 
hemorrhage (SAH) from another IA, and site of IA. ELAPSS analyzes 
the location of the IA, patient age, size, and shape of the IA, and 
earlier SAH. The RRS assesses the similarity of a current IA to a 
cohort of previously ruptured IAs based on hemodynamic-
morphological parameters such as wall shear stress. Current 
guidelines suggest that the greatest factors to consider for potential 
intervention are age, aneurysm location, aneurysm size, type of 
treatment center, and the available specialized intraoperative tools 
and techniques, such as intraoperative angiography. Non-sphericity 
index scores are evaluated through intraoperative angiography to 
objectively assess aneurysm characteristics, with higher scores 
correlating with more irregular shapes. The current literature shows 
that future growing aneurysms generally exhibited higher NSI scores 
(Hotta et al., 2014; Dhar et al., 2020).

One goal of ML in this setting is to predict the risk of rupture with 
incidental aneurysms. Various studies have demonstrated higher 
degrees of accuracy in predicting IA rupture with ML, particularly 
when compared to models using limited morphological features or the 
aforementioned scoring systems (Liu et al., 2018, 2019; Zhu et al., 
2020; Bizjak et al., 2021; Sahlein et al., 2022; Li et al., 2023). Rapid 
Aneurysm, a newer tool from the RapidAI developers that have 
already implemented several tools into clinical practice, was recently 
used in a retrospective review of ruptured aneurysms that were treated 
conservatively (Sahlein et  al., 2022). The authors found relative 
volumetric minimum enlargements of 6%, that were initially deemed 
undetectable by manual linear measurement (Sahlein et al., 2022).

Bizjak et al. demonstrated the use of models in predicting IA 
growth based on morphological features. The authors obtained 
morphological data for 44 IAs from CTA and MRA that subsequently 
utilized “deep shape” learning via the PointNet++ model to extract 
vascular surface meshes from the images to predict future aneurysm 
growth and rupture. This study demonstrated high sensitivity (0.96) 
and satisfactory accuracy (0.82) (Bizjak et al., 2021).

Furthermore, ML may also be particularly useful for smaller-sized 
aneurysms (≤7 mm in diameter), for which the risk of rupture or 
growth is often harder for clinicians to predict (Ahn et al., 2021; Lee 
et al., 2021; Xiong et al., 2022). This has been demonstrated in a recent 
systematic review using meta-regression that found no significant 
predictors for small aneurysm growth or size (Lee et  al., 2021). 
Therefore, the AI/ML granularity for aneurysm growth in this 
population is of particular note. Xiong et al. created an ML model in 
1,400 patients in conjunction with a support vector machine (SVM) 
algorithm which utilizes supervised learning models with associated 
learning algorithms to analyze data for classification and regression 
analysis. The authors noted that SVM outperformed the PHASES 
score in predicting aneurysm rupture with an AUC of 0.817 and 
0.893  in the internal and external validity cohorts, respectively. 
Through the use of ML, the authors concluded that maximum size, 
location, and irregular shape of the IAs were the major predictors of 
aneurysmal rupture (Xiong et al., 2022).

The highest predictive value for rupture risk in aneurysm patients 
was observed when algorithms include data beyond imaging 
characteristics, particularly when adding hemodynamic characteristics 
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and clinical information (Chen et al., 2020, 2022; Detmer et al., 2020; 
Ou et al., 2022). Chen et al. was one of the first researchers to utilize 
hemodynamic characteristics in their modeling, finding them to be a 
more significant predictor than imaging in their retrospective study 
with 1,007 IA patients (Chen et al., 2020). Their tested algorithms 
(including random forest modeling, multilayer perceptron, and SVM) 
trained on two different hospital sets performed similarly to traditional 
logistic regression modeling. In 2022, researchers at Capital Medical 
University similarly compared different ML and deep learning 
algorithms both with and without hemodynamic features, noting 
greater accuracy for almost every measure when hemodynamic 
features were included (Chen et  al., 2022). An example of this 
workflow is shown in Figure 4.

4.3. AI in predicting outcomes after IA 
intervention

ML has also been utilized not just in predicting clinical outcomes 
on presentation, but also in predicting the risk of occlusion after 
interventions with various endovascular devices. Various ML systems 
such as ElasticNet and UNet have been utilized in this way yielding 
sensitivity results ranging from 75 to 98% (Paliwal et al., 2018; Shiraz 
Bhurwani et al., 2020; Guédon et al., 2021; Jadhav et al., 2022). These 
studies generally utilized DSA imaging, but spanned multiple 
interventional methods including flow diverters, intrasaccular 
embolization devices, and pipeline embolization devices.

Paliwal et al. retrospectively analyzed 84 ICA sidewall aneurysms 
treated with flow diverters with ML algorithm parameters, including 
factors such as hemodynamics, morphology metrics, and 
morphometrics neck ratio (calculated on the 2D DSA images) (Paliwal 
et  al., 2018). The most sensitive ML algorithm tested was the 
Guassian-SVM and Neural Network (with 90% accuracy). However, 
all 5 algorithms used in this study demonstrated significant 
improvement when using the “all-parameters” model that included 16 
inputs compared to the” significant parameters” model which only 
included five inputs. Guedon et al. also studied ML algorithms in the 
context of flow diverters with the aim of utilizing AI to address the 
lack of scoring criteria for occlusion prediction after this treatment. 

The authors included 146 subjects with ElasticNet for feature selection 
and outcome prediction (occlusion or no occlusion). They 
demonstrated their DIANES score to have an 89% sensitivity and 81% 
accuracy (Guédon et al., 2021). Additionally, Guedon et al. and Paliwal 
et al. found that neck ratio may be a significant factor in occlusion 
6 months after treatment (Paliwal et al., 2018; Guédon et al., 2021).

Jadhav et  al. specifically focused on wide-neck bifurcation 
aneurysms treated with an intrasaccular device defining occlusion 
outcomes according to the Raymod-Roy Occlusion Classifications, 
which classifies aneurysm occlusions into three categories (complete 
occlusion, residual neck, and residual aneurysm), rather than the 
binary outcomes hither to reported in prior literature (Jadhav et al., 
2022). The authors then created different “feature sets” that each 
contained different input combinations and analyzed each set with 
different algorithms. Random forest modeling used with a feature set 
combining clinical and imaging features displayed the highest 
accuracy of 75.3% and sensitivity of 91.8%. The authors additionally 
developed a neural network segmentation algorithm similar to UNet 
to automate 2D and 3D image characteristic calculations which 
performed similarly to the manual computations.

The long-term outcomes of patients with IAs is an important topic 
that can be addressed by advancing technology as well. Bhurwani 
et  al.’s research defined outcomes as occlusion or no occlusion at 
6 months offering predictive postoperative values for patients treated 
with pipeline embolization devices (Shiraz Bhurwani et al., 2020). 
They utilized Keras with DSA imaging and angiographic parametric 
imaging to train a deep neural network, finding an average sensitivity 
of 0.92 but a specificity of only 0.57. Other studies found higher 
predictive values when separating full occlusions from partial 
occlusions, which may account for the wide range in sensitivities 
within the literature (Jadhav et al., 2022). The combination of imaging 
and clinical factors improves sensitivity as well, with Guedon et al. 
utilizing ElasticNet to create the DIANES grading scale with an 89% 
sensitivity and 81% accuracy (Guédon et  al., 2021). Further 
investigations are needed to reach a clearer consensus on the 
effectiveness of ML in predicting occlusion outcomes.

Of note, a novel ML algorithm was presented in 2021 by Williams 
et al., with their proposal of the Aneurysm Occlusion Assistant to 
provide real time surgical guidance (Williams et al., 2021). Using the 

FIGURE 4

Schematic of AI process in aneurysm detection and clinical decision-making.
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open source softwares Keras, Tensorflow, and skLearn combined with 
angiographic parametric imaging and segmented DSA imaging, the 
authors demonstrated predictions on occlusion risk after device 
placement within 7 s, with reasonable prediction accuracy for 
occlusion at 6-months (0.84) This avenue of prognostication yields 
significant potential for cerebrovascular neurosurgeons and requires 
further investigation.

5. Arteriovenous malformations

AVMs are aberrant, dysfunctional connections between arteries 
and veins without an intervening capillary bed (Cockroft et al., 2012). 
These aberrant lesions consist of an intervening nidus with an 
intertwining of blood vessels that have a high propensity to bleed 
(Cockroft et al., 2012). Brain AVMs frequently present with rupture 
which can lead to loss of consciousness, permanent neurological 
deficits, and death. Non-ruptured AVMs can be detected incidentally, 
or present with headaches, progressive neurological deficit, or seizure.

5.1. Current literature on the role of AI in 
AVMs

AVMs appear to have a greater propensity to bleed in pediatric 
patients compared to adults (El-Ghanem et al., 2016). Saggi et al. 
utilized three ML algorithms, random forest models, gradient boosted 
decision trees, to predict the risk of hemorrhage for AVMs in 189 
pediatric patients who presented with or without hemorrhage (Saggi 
et al., 2022). The ML algorithm discerned that smaller AVM sizes, 
left-sided AVMs, and the presence of a concurrent arterial aneurysm 
were all predictors of hemorrhage on presentation. When compared 
with a conventional regression approach, only the ML algorithm was 
able to pick up on these subtleties.

Few studies have demonstrated that AI can successfully predict 
hemorrhage secondary to AVM in adult patients. Across 1810 
patients, Oermann et al. developed a 3D-surface ML algorithm model 
that accurately predicted the risk of adverse events in patients who 
received radiosurgery for AVM solely based off imaging findings 
(Oermann et al., 2016). Oermann et al. compared their algorithm to 
widely used scoring systems such as Spetzler-Martin grading scale 
(Spetzler and Martin, 1986), radiosurgery-based AVM score (RBAS) 
(Pollock and Flickinger, 2002), and the Virginia Radiosurgery AVM 
Scale (VRAS) (Starke et al., 2013). For all three comparisons of the 
algorithm, the AUC for the predictive capability ranged from 0.6 to 
0.7 depending on the time point at which the comparison was made. 
Jiao et al. performed a similar study where AI-based indicators were 
used to predict the likelihood of postoperative motor deficits in 
patients who received AVM resection surgery (Jiao et al., 2023). When 
compared to the Spetzler-Martin grading scale, the highest AUC was 
observed in the logistic regression model of 0.88 (Jiao et al., 2023).

5.2. Limitations and future directions for ML 
algorithms in cerebrovascular neurosurgery

Although novel machine learning (ML) techniques show 
significant promise for cerebrovascular surgery, there are still many 

limitations that must be accounted for prior to further application in 
clinical practice. Of note, the majority of the studies analyzing 
ischemic stroke, ICH, AVM, and aneurysms were retrospective in 
nature with small sample sizes. Furthermore, much of the literature 
utilizes retrospective analyses, meaning that the actual, prospective 
implementation of these models is still pending. These mostly single 
center studies lead to small datasets on which the ML algorithms can 
train. The reported sensitivities and accuracies for these models are 
thus difficult to compare and generalize. Additionally, significant 
manual input and calculation was required to analyze the desired 
parameters. This minimizes the automaticity and time saving potential 
of AI as a clinical tool. There is a greater need for multi-center 
prospective studies to substantiate such AI algorithms prior to their 
full implementation into clinical practice. The lack of substantive 
studies evaluating AI is specifically notable for vascular lesions such 
as aneurysms and AVMs.

Moreover, when deep learning models are developed, they take 
into consideration how the institution’s electronic medical record 
(EMR) system and picture archiving/communication systems (PACS) 
will display radiological films. A major drawback that applies to most 
of the studies noted in this review is that they are single-center 
studies. Therefore, it would be difficult to implement any of these ML 
algorithms at other institutions where the PACS software and CT 
imaging protocols for ICH patients may have subtle differences. 
Many critically ill ICH patients at larger academic centers are often 
transferred from smaller outside hospitals where the initial head CT 
was performed (Vahidy et al., 2016). A successful algorithm is one 
that can be implemented at both tertiary centers and smaller hospitals 
with differing software. Future studies should consider the flexibility 
of ML algorithms so that they can evaluate the algorithms’ efficacy in 
samples across multiple institutions with different EMRs and 
PACS software.

There is also the ethical dilemma that comes with the use of an 
automated system in clinical decision making for cerebrovascular 
neurosurgeons. AI can be beneficial in creating more standardization 
between physician detection and decisions while also analyzing more 
variables or in identifying more minute vascular abnormalities the 
human eye can. However, the large rates of false positives shown in the 
literature are proof of principle which is two-fold. Firstly, of the need 
for further investigation and iterative improvement in these 
algorithms, and secondly, that these algorithms are a useful adjunct 
but are no substitute for the judgment of a clinician.

Nevertheless, AI provides a promising avenue to revolutionize the 
practice of modern neurosurgery, and further lines of inquiry are 
needed both to improve on what has been done, and to open up 
further avenues of use in cerebrovascular surgery.

6. Conclusion

Cerebrovascular disorders often carry a significant management 
morbidity and mortality, making timely diagnosis and intervention 
essential. The application of AI, particularly ML and DL, in the realm 
of cerebrovascular neurosurgery has facilitated a more expedited 
detection, triaging, and prognostication of cerebrovascular 
pathologies such as ischemic strokes, ICH, AVMs, and aneurysms. 
Moreover, the literature has demonstrated that having this technology 
has conferred improvements in timely detection of these pathologies 
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for physicians in training. Some of these AI software applications 
have already been implemented into clinical practice, particularly in 
the realms of ICH and ischemic stroke. As this technology continues 
to develop and be  applied in increasingly innovative ways, it is 
important to remember that many of these models depend on a 
pre-determined gold standard to determine ground truth. As such, 
their maximum potential may be  limited by the information 
immediately available to the algorithm. Clinicians must ultimately go 
beyond simply evaluating how certain machinery may be beneficial 
in the pre, intra, or post-operative setting. In order to ensure patient 
safety, physicians and their staff should have a thorough 
understanding of the methodology used to develop AI, its advantages 
and limitations in the clinical setting as well as the barriers to its 
implementation for specific patient populations. Future multicenter 
prospective studies are needed to further substantiate these 
algorithms for further application in clinical practice, particularly 
with vascular lesions such as aneurysms and AVMs. While in its 
relative nascency in clinical practice, AI technology provides 
significant promise as an adjunct for neurosurgeons in revolutionizing 
clinical decision-making and subsequent clinical outcomes in 
cerebrovascular surgery.
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Glossary

AI Artificial intelligence

ML Machine learning

DL Deep learning

AVM Arteriovenous malformation.

ICH Intracerebral hemorrhage

IA Intracranial aneurysm

CVA Cerebrovascular accident

NCCT Non-contrast computed tomography

ANN Artificial neural network

CNN Convolutional neural network

RNN Recurrent neural network

IVH Intraventricular hemorrhage

SAH Subarachnoid hemorrhage

SDH Subdural hematoma

EDH Epidural hematoma

IPH Intraparenchymal hemorrhage

CTA Computed tomography angiogram

CTA Computed tomography perfusion

DSA Digital subtraction angiography

MRI Magnetic resonance imaging

HE Hematoma expansion

PHE Perihematomal edema

SVM Support vector machine

k-NN k-nearest neighbor

DSC Dice similarity coefficient

AVD Average volume difference

AUC Area under the curve

DWI Diffusion-weighted imaging

TOAST Trial of Org in Acute Stroke Treatment

FLAIR Fluid-attenuated inversion recovery

ASPECTS Alberta Stroke Program Computed Tomography Score

TOF Time-of-flight

SE Squeeze-and-excitation

RBAS Radiosurgery-based AVM Score

VRAS Virginia Radiosurgery AVM Scale

EMR Electronic medical record

PACS Picture archiving/communication systems
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Background: Endoscopic endonasal surgery is an established minimally invasive
technique for resecting pituitary adenomas. However, understanding orientation
and identifying critical neurovascular structures in this anatomically dense region
can be challenging. In clinical practice, commercial navigation systems use a
tracked pointer for guidance. Augmented Reality (AR) is an emerging technology
used for surgical guidance. It can be tracker based or vision based, but neither
is widely used in pituitary surgery.
Methods: This pre-clinical study aims to assess the accuracy of tracker-based
navigation systems, including those that allow for AR. Two setups were used to
conduct simulations: (1) the standard pointer setup, tracked by an infrared
camera; and (2) the endoscope setup that allows for AR, using reflective
markers on the end of the endoscope, tracked by infrared cameras. The error
sources were estimated by calculating the Euclidean distance between a point’s
true location and the point’s location after passing it through the noisy system. A
phantom study was then conducted to verify the in-silico simulation results and
show a working example of image-based navigation errors in current
methodologies.
Results: The errors of the tracked pointer and tracked endoscope simulations were
1.7 and 2.5mm respectively. The phantom study showed errors of 2.14 and
3.21mm for the tracked pointer and tracked endoscope setups respectively.
Discussion: In pituitary surgery, precise neighboring structure identification is
crucial for success. However, our simulations reveal that the errors of tracked
approaches were too large to meet the fine error margins required for pituitary
surgery. In order to achieve the required accuracy, we would need much more
accurate tracking, better calibration and improved registration techniques.

KEYWORDS

augmented reality, pituitary surgery, computer-assisted surgery, tracking, neurosurgery

1. Introduction

The pituitary gland is situated within an exceptionally dense anatomical region,

surrounded by critical neurovascular structures such as the optic nerves and internal

carotid arteries (1). There is significant anatomical variation between patients, and

pituitary tumours often distort this complex anatomy, making safe recognition and

avoidance of critical structures difficult during surgery (2). The current gold standard
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surgical technique for the resection of pituitary adenomas is

through a transsphenoidal approach (3). The endoscopic

endonasal transsphenoidal approach allows for excellent wide-

angle visualisation, but almost always relies on a monocular

endoscopic camera, resulting in limited depth perception, which

can further impair appreciation of critical structures (4).

Surgical navigation systems are established adjuncts used to

support intra-operative orientation and navigation. The most

used navigation tool is a tracked pointer, where a set of reflective

markers are placed at the top of the pointer. An infrared (IR)

camera tracks the markers, allowing the location of the pointer’s

tip to be visualised on the pre-operative scan. This approach is

cognitively demanding for the surgeon, as the surgeon must map

the position of the pointer displayed on the pre-operative MRI

scan onto the live endoscopic video. Moreover, it impacts the

surgical workflow as the surgeon needs to repeatedly stop

operating, remove their instruments, and place the probe into the

operative field. Therefore, alternative techniques that remove the

need for multiple displays and for manual placement of probes

to regions of interest may allow for both a reduced cognitive

load and an improved surgical workflow.

Augmented reality (AR) is an emerging display technology that

allows structures of interest from a pre-operative MRI to be

displayed directly onto the live endoscopic video. AR has already

been used in several surgical procedures with varying success

(5, 6). Within pituitary surgery, several research groups have

previously reported the use of tracker-based AR (7, 8) but it has

not been widely adopted in routine practice. A US survey that

was conducted to investigate the use of intra-operative

neuronavigation found that only 7% of cases used image

guidance systems (9). Despite there being AR products for

microscopic surgery such as the SyncAR (10), to the best of our

knowledge there are no approved AR devices in endoscopic

pituitary surgery. Emerging alternatives such as vision-based

techniques have also been proposed although not yet widely used

(11, 12).

The aim of this study was to assess the accuracy of tracker-

based navigation systems, including those used for AR systems

found in the research literature.
2. Materials and methods

2.1. Study overview

We adopted a simulation-based study methodology to assess

whether, under standard conditions, tracker-based guidance is

sufficiently accurate to allow for guidance during pituitary

adenoma resection. Simulations were developed for two different

setups- a standard surgical tracked pointer setup; and a tracked

endoscope setup that enabled augmented reality. The pointer and

endoscope both had reflective markers, tracked by an IR camera

for localisation purposes. A system overview of these setups can be

seen in Figure 1 and will be described in detail in the following

sections. We then conducted a phantom study to further validate

our simulation results. The system setup can be seen in Figure 2.
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In the navigation methods described, the shared objective is to

present pre-operative imaging information to the surgeon in an

intuitive fashion. This is considered as a geometrical problem

where each radiological image and the physical operating theatre

are described by specific coordinates which must be mapped to

each other. This mapping is done via mathematical

transformations and allows for information from one coordinate

system to be displayed onto another. In the presented navigation

methods, the IR camera can track the 3-dimensional locations of

all the reflective markers. A unique grouping of reflective markers

attached to a tool defines a local coordinate system. In this paper,

a mathematical transform is defined as BTA and maps a point

from the coordinate system A to the coordinate system

B. Transformations are assumed to be rigid and can therefore only

be composed of rotations and translations.

In the following subsections, the study design is presented to

define the chosen geometrical values used in the setup of the

simulations. This is followed by the two different simulation

setups. Finally, we describe how noise was simulated to

investigate its effects on the system accuracy.

A phantom study was subsequently conducted to verify and

demonstrate the results of the simulations and show a working

example of the image-based navigation errors in pituitary surgery

with current methodologies.
2.2. Simulations

2.2.1. Study design
For the purpose of the simulations, the layout of the tracker

and tracked tools are defined based on realistic estimates of the

physical layout in a typical pituitary surgery environment

performed at a single academic neurosurgical centre.

The simulated endoscope is based on the geometry of the Karl

Storz Hopkins telescope 7230 0� of length 180 mm. The camera

projection is modelled using a pinhole model and calibrated

using Zhang’s camera calibration algorithm (13, 14). The pointer

used in the simulation is the NDI pointer part number 8700340

with a length of 160 mm. A diagram of the components involved

in each simulation can be seen in Figure 1. For both

simulations, the patient is placed in front of the IR camera at a

distance of 2 m. The patient is attached to a Mayfield clamp

which has an NDI reference marker part number 8700339

attached to it. The distance between the patient and the reference

is simplified and estimated to be 0.3 m superior to the pituitary

gland.

Using the known dimensions and relative positions of the

different coordinate systems, a mathematical transform can be

found. With this transform, a virtual point in one coordinate

system (e.g., MRI) can be converted to another coordinate

system (e.g., live endoscopic video).

When the IR cameras are localising the position of the reflective

markers, there is an associated error by which the IR camera

localises the markers, referred to as the volumetric accuracy (s)

(15). The value of the volumetric accuracy s by which an IR

camera can locate markers can vary depending on the design of the
frontiersin.org
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FIGURE 1

Transformations and setup involved in the two different tracking methods presented: (A). Tracked pointer setup, (B). Tracked endoscope setup. The
abbreviations used stand for the different coordinate systems and are as follows- camera (Cam), pointer reference (PntRef), endoscope reference
(EndRef), patient according to the mayfield clamp reference (PatRef), MRI, pointer’s tip (PntTip), endoscope tip (EndP) and endoscope video frames
(EndIm).
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camera. Different models such as the NDI Polaris Vega and Vicra

have s values of 0.12 and 0.25mm respectively.1, 2, 3
1NDI polaris vega: https://www.ndigital.com/optical-measurement-

technology/polaris-vega/
2NDI polaris vicra: https://www.ndigital.com/optical-measurement-

technology/polaris-vicra/
3NDI website: https://www.ndigital.com
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Moreover, most models have a specified working range, where

outside the working range the error increases, and when outside the

field of view, the device stops tracking the markers accurately. The

volumetric precision quoted in this article is an error value of

0.2 mm as the average found by Koivukangas et al. (15). However,

values between 0–0.5mm were investigated and can be accessed in

the Supplementary material. During this simulation, the volumetric

accuracy was modelled by adding noise using a Gaussian

distribution with varying standard deviation s.

The effects of noise are then calculated quantitatively by

obtaining the target registration error (TRE). TRE is defined as
frontiersin.org
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FIGURE 2

Setup for the phantom study involving both the tracked pointer and tracked endoscope setups. The endoscope is securely held in place by a clamp and
positioned inside the nostril of the UpSurgeOn phantom. The phantom itself features 20 fiducials attached around its base, serving to align the CT scan
and phantom to a common optical tracker space. An infrared NDI tracker is used to locate the position of the markers on the endoscope, pointer and
calibration markers. The endoscope is calibrated for the AR display using the calibration checkerboard. The AR overlay is displayed on the Smartliver
screen, allowing for real-time visualisation of the AR display. The Storz stack facilitates the connection of the endoscope camera and displays the
endoscope’s output, providing guidance on the precise placement of the pointer tip.
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the Euclidean distance between a point’s true location and the same

point’s location after adding noise to the measurements and

propagating errors through the system (16). Therefore, in order

to calculate errors of different systems, the TRE is calculated

between the target point set as ground truth and the same point

after being transformed with the noisy transforms. To provide a

meaningful average, the process of adding noise as described

above is repeated over 10,000 samples of noise.
2.2.2. Simulation types

2.2.2.1. Tracked pointer setup
The goal of the setup is to be able to locate the pointer’s tip on the

MRI scan to improve surgeons’ orientation. A transform MRITPntTip

is therefore obtained to convert a point from the pointer’s tip

coordinate system to the MRI coordinate system.

Figure 1A shows the different coordinate systems of the

pointer setup. The transformations between the different

coordinate systems of the simulation can be deduced since the

relative positions and dimensions are known by design. For

example, the transform between the pointer tip and the

reference is a simple translation of the pointer’s length in the

y direction of the pointer’s tip coordinate system (see

Figure 3). This is performed for all coordinate systems-

pointer reference (PntRef ) to camera (cam), camera to patient
Frontiers in Surgery 04100
reference (PatRef ) and patient reference to MRI. Once

individual transformations have been obtained, it is possible

to multiply any point in the pointer’s coordinate system by

these transformations to obtain the same point in MRI

coordinates.
2.2.2.2. Tracked endoscope setup
Unlike the tracked pointer, the goal of the endoscope setup is to

have an AR display of the MRI scan in endoscope coordinates. A

detailed map of the involved components can be seen in

Figure 1B. In this case, it is necessary to obtain EndImTMRI that

will transform a point from the MRI coordinate system to each

endoscopic video frame (EndIm). The relative positions of all

components are known, enabling a point to be converted from

the coordinate system of the MRI to the patient reference

(PatRef ), from PatRef to camera (cam), from cam to endoscope

reference (EndRef ) and from EndRef to the endoscope tip

(EndP). Finally, the point is projected from a 3D point in EndP

coordinates onto the 2D endoscopic video coordinate system

(EndIm).
2.2.3. Noise and analysis
In the two tracked setups, each transformation is prone to

noise. In this section, we describe how we add realistic levels of
frontiersin.org
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FIGURE 3

Example transformation of the tracked pointer. The coordinates of the pointer’s markers are taken from the NDI documentation sheet. The
transformation PntRefTPntTip is a 4� 4 transformation matrix. If any point in the PntTip coordinate system is multiplied by this matrix, the point will be
now in PntRef coordinates. The transformation is a simple translation in the y direction as the only difference is the length of the pointer.

4Medtronic website: https://www.medtronic.com/uk-en/index.html
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noise onto simulated measurements and investigate what its effects

are on the system accuracy.

The following errors were associated with the tracked pointer

approach:

2.2.3.1. Tracking noise
Since tracked tools were used in this method, there is a localisation

error associated with the markers. This was modeled by adding

Gaussian noise with standard deviation of 0.2 mm to the location

of each marker, and recomputing the tracking transformation.

2.2.3.2. Tool length effect
The effects of different pointer lengths on the tracking noise were

investigated. The longer the distance between the tool’s end and the

markers, the larger the associated tracking error will be as the errors

magnify with increasing distance. The lengths investigated were

between 100 to 300mm in steps of 10mm increments. The TRE

associated with the tracking noise was generated for each of the lengths.

2.2.3.3. Surface based registration
The total system error will also be affected by the registration

transformation between the patient’s coordinate system and the

MRI coordinate system. The effect of registration error was studied

by adding noise to the rotation (Euler angles in �) and translation

(displacement in mm) parameters of the registration transform.

In the endoscope simulation, the same investigations on

tracking error, tool length and surface-based registration error as

mentioned in the pointer simulation were performed. However,

there were also some additional sources of error with this setup.
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2.2.3.4. Hand-eye calibration error
The errors involved in the calibration of the transformation

between the tracking marker on the endoscope and the camera

coordinate system of the endoscope were simulated. The TRE

was calculated after adding noise to the translations and Euler

angles composing the camera hand-eye matrix.
2.2.3.5. AR
As the endoscope setup investigates an AR display, this error can

also be expressed in camera space, measured in pixels. In this

simulation, noise was added to all the transformations mentioned.

Once noise was added, our interest point was projected from 3D

to 2D using all the noisy transformations. The TRE was then

calculated between the point transformed with the gold-standard

transforms and the point transformed with the noisy transforms.
2.3. Phantom study

The setup of the phantom experiment can be seen in Figure 2.

The phantom was the UpSurgeOn BrainBox TNS model, which is

used and validated for simulation training of the transsphenoidal

endonasal approach (17). A CT scan of the phantom was obtained

with the Medtronic O-arm CT O2 Intraoperative Imaging System.4
frontiersin.org
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FIGURE 4

Target registration errors (TREs) involved for each of the simulations with s 0.2mm. All units are in mm. The large encompassing purple bar on the left
represents the total TRE of the pointer simulation and the large encompassing red bar on the right represents the total TRE of the tracked endoscope
simulation. Within each of these bars there are the different sources of error involved in that setup. The different sources of error are tracking (blue) which
is the localisation error of the IR cameras, registration (orange) which is the surface-based registration error of MRI to patient coordinates and hand eye
(green) which is the hand eye error of the endoscope.
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The endoscope used was the 30 cm Storz model number 27020

AA.5 The pointer was the same as in the simulations, of model

number 8700340, the markers placed on the endoscope for tracking

were the NDI reference marker part number 8700449 and the NDI

polaris Vega6 tracked the marker locations. The Smartliver software

was used (18–20) to obtain the AR view and pointer locations.

In order to match the phantom and CT to the common optical

tracker space, fiducials were attached along the base of the

phantom box as seen in the setup (Figure 2) and their ground

truth locations were obtained manually from the CT scan. The

same locations were then sampled with the tracked pointer tip

and could therefore be matched using point-based registration

using the procrustes algorithm (21).

To replicate the pointer simulation and calculate the TRE, a screw

was placed on the tumour as seen in Figure 6 to represent a target

location. The pointer was then passed through the nostrill of the

phantom to place its tip on the target location. Once placed on the

target, the pointer tip location was recorded and averaged to

represent a single point. The TRE was obtained by calculating the

Euclidean Distance between the ground truth location from the CT

scan, and the location obtained by the pointer when placed on the

screw after being converted to CT coordinates with the point-based

registration.
5storz website: https://www.karlstorz.com/gb/en/index.htm
6NDI website: https://www.ndigital.com
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To replicate the tracked endoscope AR system, the surface of

the tumour was segmented. This was done with the NifTK

manual segmentation toolkit method slice by slice and a

polygon model was then generated also using NifTK (22). The

AR display was obtained using the Smartliver software (18–20)

and recorded. The endoscope camera was calibrated using

Zhang’s camera calibration method (14). The location of the

board was tracked with an NDI reference marker part number

8700449.

To illustrate the errors caused by the tracking system, the

tracked reprojection error was calculated. Since the coordinates

of the chessboard corners are known, their 3D locations can be

converted to the endoscope camera coordinates and projected to

2D to obtain the difference between the detected corners and the

projected corners. A video of the overlay was also obtained for

qualitative illustration purposes.
3. Results

Figure 4 shows a summary of the TREs involved in each of the

simulations.
3.1. Simulations

3.1.1. Tracked pointer
The tracking and surface-based registration errors of the

pointer were simulated. As mentioned previously, the length of
frontiersin.org

https://www.karlstorz.com/gb/en/index.htm
https://www.ndigital.com
https://doi.org/10.3389/fsurg.2023.1222859
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


FIGURE 5

Effect of tool lengths on TRE. The different lines represent different values of s- 0.12, 0.15, 0.20, 0.25 and 0.5mm.
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the pointer used in a single neurosurgical centre served as the

model for this investigation. However, as pointer length can vary,

the effect of tool length was also investigated on the tracking

noise as seen in Figure 5. The total TRE of the pointer with s

0.2 mm as seen in Figure 4 was composed of 2 main errors-

tracking and surface-based registration errors, with values of 1.3

and 1.1 mm respectively. The TRE with all sources of error was

1.7 mm.
3.1.2. Tracked endoscope
In this simulation, two different accuracies can be quoted, one for

3D and one for the 2D (AR) errors. The 3D TRE of the 180 mm

endoscope as seen in Figure 4 was composed of 3 main errors- a

tracking error of 1.3mm, a surface-based registration error of

1.9 mm and a hand-eye error of 0.9mm. The TRE in 3D with all

sources of error added was 2.5mm. The total TRE in 2D for the

AR display was 29 pixels.
3.2. Phantom

In the phantom study, the registration used for both

simulations had an error of 1.03 mm. The calibration error with

Zhang’s calibration algorithm used for the tracked endoscope

setup was 0.66 mm.

The TRE obtained by the tracked pointer phantom study was

2.14 mm. The tracked monocular reprojection error of the AR

system was 3.21 mm, and the AR display obtained by the tracked

endoscope can be seen in Figure 6
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4. Discussion

4.1. Principal findings

In this simulation-based study we have, for the first time,

demonstrated that tracker-based AR devices are likely to be

insufficiently accurate to allow for guidance during pituitary

adenoma resection. Therefore at present, the benefits of

improved orientation using AR would be outweighed by the

compounded errors associated with its use.

The typical size of a pituitary gland is approximately 10mm in

width and 5mm in height (23). When the tracking camera has a s

of 0.2mm, the error of the tracked pointer setup is 1.7mm and that

of the tracked endoscope setup is 2.5mm. This would result in an

AR display where the offset is almost half the pituitary itself, which is

likely more confusing to a surgeon than helpful if used to guide

resection. From the phantom study, we were able to obtain a visual

representation of what the AR display may look like. As seen in

Figure 6, the model of the tumour is not overlayed on the phantom’s

tumour and is therefore more distracting than helpful in aiding

navigation. In order to achieve a reasonable visualisation with a

tracked approach, the total error of tracking, registration and any

other source such as hand-eye would need to be below 1mm. In

order to achieve this accuracy, we would need much more accurate

tracking, better calibration and improved registration techniques.
4.2. Findings in context of existing literature

Navigation systems have a long history within neurosurgery,

and particularly within neuro-oncology, where they can facilitate
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FIGURE 6

Augmented Reality (AR) overlay obtained using the tracked endoscope method. Outlines and labels are added to enhance readability. The red outline
represents the phantom’s tumor, and the green label indicates the AR overlay of the tumor, showcasing an offset caused by system errors. The
overlay is a 3D model of the tumour generated by manually segmenting the tumor on each slice of a CT scan of the phantom. For scale perspective,
the tumor on the phantom measures approximately 8mm in diameter. The blue outline marks the screw, which serves as the target point for the
tracked pointer phantom experiment. As shown in the bottom view, the pointer tip aligns with the screw’s location. Since the precise position of the
screw is known on the CT scan of the phantom, the error can be determined by calculating the difference from this location.
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surgical trajectory planning, resulting in shorter incisions, smaller

craniotomies, and more limited brain exposure and retraction

(24). Within pituitary surgery, a recent registry study reported

that the use of neuronavigation was associated with improved

surgical safety (25), including a reduced rate of complications

such as cerebrospinal fluid (CSF) leak (26). However, the same

study found that navigation was only used in approximately one

in ten pituitary operations.

Limitations of current navigation systems include the need for

the surgeon to mentally map the location of a point identified on

the pre-operative MRI onto the live endoscopic video, and the

need to repeatedly interrupt the surgery to place the pointer.

This was captured by a survey that was taken on the Society of

British Neurosurgeons (SBNS). Key findings were the need for
Frontiers in Surgery 08104
“better integration with image-guidance systems (20%),” and a

call for “intra-operative visualisation and improvements in

neuroendoscopy (49%)” (27). One potential solution to these

limitations is the use of AR, which allows for the fusion of the

pre-operative MRI and live endoscope video into a single display

and can do so on-demand rather than requiring a probe to be

placed.

To date, there are several reports of AR systems used within

pituitary surgery, dating as early as 20 years ago (8, 12, 28–43).

However, no AR systems have been widely adopted despite the

aforementioned stated advantages. The findings from this

paper suggest that one barrier to uptake is insufficient

accuracy. Although only slightly more inaccurate than

standard pointer-based navigation (1.7 versus 2.5 mm), the fact
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that AR displays are overlaid onto the live endoscopic video

make this obvious and distracting. By comparison, when using

standard pointer-based techniques to identify a location on the

pre-operative MRI, an experienced surgeon is more likely able

to accommodate inaccuracies and interpolate the true location.

The distractions posed by inaccurate AR may contribute to

inattention blindness, which has also a recognised concern

with such systems, and is thought to reflect cognitive overload

(44, 45).

Automatic intra-operative CT scanning (iCT) is a promising

technique that can be used to improve registration and can

therefore boost the accuracy of the AR system (31, 46).

However, its adoption faces many challenges. Firstly, it disrupts

the surgical workflow as the operation has to be stopped while

the image is acquired. It also increases radiation dose to both

the patient and the hospital staff in the room. The head

positioning needs to be altered and cannot be placed at the

angle that is comfortable for operation. Finally, this method is

expensive, rendering it unfeasible for low and middle-income

countries.

Recently, alternatives to tracker-based navigation have

emerged. The work of Mirota et al. (11, 12) introduces a

vision-based system that directly matches the endoscopic video

and the MRI scan without the need for a tracking system. The

system functions by performing a 3D reconstruction of the

endoscopic video by extracting and matching features between

subsequent frames and estimating the motion between the

frames. The 3D reconstructed image can then be registered

with the pre-operative CT/MRI scan. Even though this paper

was proposed in 2009–2011, this research has not yet reached

any clinically viable solutions and there is more research to be

done, especially given recent advances in deep learning

techniques.
4.3. Strengths and limitations

The applicability of this study can be extended to various

scenarios using the provided code in the Supplementary

material. However, there are several points that were not

accounted for in the simulation.

The primary limitation lies in how the setup estimates were

derived. In order to perform the simulation, the relative positions

of coordinate systems had to be determined. However, different

centres may have different tools or a different setup than the one

simulated. Although simulations of different tool lengths and IR

camera volumetric accuracies were performed in the

Supplementary material, other setup variations such as the

patient-to-camera position or the relative locations of

the reference coordinate systems, may influence the results as

they can vary across cases. This is one of the reasons why the

results of the tracked endoscope from the phantom study

appeared larger than the simulations. The length of the

endoscope in the simulation was 180 mm whereas the one used

in the phantom experiment was 300 mm and therefore this adds

to the total error of the system.
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Another such point is the working range of the camera. If

the tracking balls of the pointer are located outside the

working range of the IR camera, the volumetric accuracy

drops. Therefore, it is important to note the possibility that

during a surgery, the localisation accuracy of the pointer

setup changes if the surgical bed moves either too close or

too far from the camera and lies outside the working range

of the camera. Tracking can also stop if some of the markers

are occluded.

Any tracked methods require an initial registration performed

before each surgery to align the patient coordinates to the pre-

operative MRI scan. Even if a highly-accurate IR camera were

available in practice, the calibration errors such as the hand-eye

calibration and the registration used when obtaining the

transformation PatRef TMRI would also need to be below 0.5 mm.

This is currently unlikely in the case of surface-based

registration. Other investigations comparing registration with

point-based adhesive markers and surface-based registration

quoted errors with surface-based registration averaging over

5 mm (47). Even though our simulations are highly analytical,

the accuracy of a registration algorithm is ultimately determined

by how well the surgeons perform the registration. That means

that the errors will be dependent on the training provided and

any time limitations the surgeon may have when performing the

registration. This is also reflected in the phantom study, where

the errors of the pointer and endoscope were larger than in the

corresponding simulation studies by 0.41 mm and 0.71 mm

respectively. The simulations we developed are simply a

mathematical representation of the two setups. However, the

errors are also ultimately dependent on factors that cannot be

simulated such as how well the user performs registration or

calibration, the model of the tracking camera, and its location in

the room.
4.4. Conclusions and future work

The findings of this study demonstrate that a tracker-based

system alone is insufficiently accurate to allow for AR in

pituitary adenoma resection. To this end, future work is merited

to develop either purely vision-based or hybrid vision- and

tracker-based alternatives to support AR in this context.
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Application of virtual and mixed
reality for 3D visualization in
intracranial aneurysm surgery
planning: a systematic review
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Background: Precise preoperative anatomical visualization and understanding of
an intracranial aneurysm (IA) are fundamental for surgical planning and
increased intraoperative confidence. Application of virtual reality (VR) and mixed
reality (MR), thus three-dimensional (3D) visualization of IAs could be significant
in surgical planning. Authors provide an up-to-date overview of VR and MR
applied to IA surgery, with specific focus on tailoring of the surgical treatment.
Methods: A systematic analysis of the literature was performed in accordance with
the PRISMA guidelines. Pubmed, and Embase were searched to identify studies
reporting use of MR and VR 3D visualization in IA surgery during the last 25
years. Type and number of IAs, category of input scan, visualization techniques
(screen, glasses or head set), inclusion of haptic feedback, tested population
(residents, fellows, attending neurosurgeons), and aim of the study (surgical
planning/rehearsal, neurosurgical training, methodological validation) were noted.
Results: Twenty-eight studies were included. Eighteen studies (64.3%) applied VR,
and 10 (35.7%) used MR. A positive impact on surgical planning was documented
by 19 studies (67.9%): 17 studies (60.7%) chose the tailoring of the surgical
approach as primary outcome of the analysis. A more precise anatomical
visualization and understanding with VR and MR was endorsed by all included
studies (100%).
Conclusion: Application of VR and MR to perioperative 3D visualization of IAs
allowed an improved understanding of the patient-specific anatomy and surgical
preparation. This review describes a tendency to utilize mostly VR-platforms,
with the primary goals of a more accurate anatomical understanding, surgical
planning and rehearsal.

KEYWORDS

cerebrovascular surgery, intracranial aneurysms, virtual reality, mixed reality,

3D visualization

Introduction

Intracranial aneurysms (IAs) are pathological dilatations of cerebral arteries. IAs are

relatively commonly acquired lesions occurring with a frequency ranging between 0.5%

and 3% in the general population, and accounting for about 80%–85% of non-traumatic

subarachnoid hemorrhages (1). Upon detection of an IA, tailoring of the optimal

treatment strategy is based on careful consideration of the patient history and specific
01 frontiersin.org108
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TABLE 1 Risk of bias score.

Author A B C D
Fellner et al. (6) + - + NA

Koyama et al. (7) + + + NA

Wong et al. (8) + + + NA

Bu et al. (9) + + NA NA

Mo et al. (8) + + - NA

Mori et al. (10) + + - -

Agarwal et al. (11) + + + NA

Nakabayashi et al. (12) + + NA NA

Bambakidis et al. (13) + + + NA

Di Somma et al. (14) + + NA NA

Cabrilo et al. (15) + + NA NA

Alaraj et al. (16) + - + NA

Kockro et al. (17) + + + -

Chugh et al. (18) + - + NA

Shono et al. (19) + + NA NA

Tucker et al. (20) + + NA NA

Eftekhar et al. (21) + - - NA

Gmeiner et al. (22) + + + NA

Toyooka et al. (23) + + - -

Neyazi et al. (24) + + + NA

Zawy Alsofy et al. (25) + + + NA

Haridas et al. (26) + + NA NA

Deib et al. (27) + - NA NA

Allgaier et al. (28) + + + NA

Li et al. (29) + + NA NA

Perin et al. (30) + + + -

Steineke et al. (31) + + + NA

Stifano et al. (32) + + NA NA

A: Appropriate eligibility criteria; B: Exposure/outcome measurement; C: Failure to

adequately control confounding; D: Incomplete follow-up; NA, not applicable.
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aneurysm characteristics. Treatment approaches are surgical and/or

endovascular. With advances in endovascular approaches, the

indications for surgical clipping of IAs have been decreased.

Currently, open IA clipping is generally reserved for complex

aneurysms. Successful and safe surgery of these cases depends on

accurate surgical planning, which implies precise pre-operative

characterization of lesion-specific anatomical features. The

current gold standard imaging modality for the preoperative

study of IAs is digital subtraction angiography (DSA). DSA

allows a comprehensive anatomical examination of the most

relevant IAs’ features (i.e.,: relation to the parent vessels, neck’s

width, dome’s regularity and orientation) at the cost of

invasiveness. The role of magnetic resonance flow (MR-flow) has

indeed been increasing for the diagnosis and the preoperative

analysis of IAs. Nonetheless, MR studies are mostly black-and-

white and visualized on two-dimensional (2D) screens. When

compared to two-dimensional images, three-dimensional (3D)

anatomical visualization with virtual reality (VR) and mixed

reality (MR) offers a more comprehensive anatomical

visualization and understanding in the perioperative phase. In a

VR environment, the user is fully immersed in a simulated

world. To create an immersive environment, each eye is provided

with a separate image by the displays in the VR device. The

user’s physical movement is registered by cameras in the VR

device and matched to the digital world. An MR device enhances

the user’s physical environment with a digital overlay, a so-called

hologram. MR provides the opportunity to interact with the

digital objects in the physical world through (depth) cameras and

a motion sensor in the device that map out the user’s

surroundings and track their movements (2).

Both VR and MR techniques are increasingly adopted in

neurosurgical preparation to provide a safe environment to plan

surgical procedures, rehearse and foresee possible technical

difficulties, and make the intraoperative phase more efficient (3).

Despite their substantial promise, a systematic analysis of the

literature examining the role of MR and VR applications and

their benefits as perioperative adjuncts in open IA surgery has

been lacking. Authors present a comprehensive review on the

topic, with the primary goal to study the true measurable

benefits of using 3D visualization with MR and VR in

preparation of IA surgery. This analysis thereby provides an

overview of the technology used, its drawbacks and the potential

future improvements.
Materials and methods

A systematic review was performed using the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) guidelines (4). Two reviewers (EC and TK) screened

records independently, and disagreements at any stage were

resolved by discussion and consensus. Two additional records

were identified through reference search. The critical appraisal of

the included studies was performed by means of a risk of bias

score using a modified version of the Cochrane Risk of Bias tool

as shown in Table 1 (5).
Frontiers in Surgery 02109
Search strategy

The PubMed and EMBASE databases were searched to identify

eligible papers. The query was performed using the Boolean operators

“AND” or “OR”, and database-related filters to maximize the chance

to identify articles focusing on 3D visualization through MR and VR

system applied to IA surgery. The following string was entered:

((“neurosurg*"[Title/Abstract] OR “Neurosurgery"[MeSH

Terms] OR “Neurosurgical Procedures"[MeSH Terms] OR

“ventriculostom*"[Title/Abstract] OR “lobectom*"[Title/Abstract]

OR “craniotom*"[Title/Abstract] OR “neuro surg*"[Title/

Abstract] OR “neurologic surg*"[Title/Abstract]) AND

(“augmented realit*"[Title/Abstract] OR “Augmented

Reality"[MeSH Terms] OR “mixed realit*"[Title/Abstract] OR

“virtual realit*"[Title/Abstract] OR “extended realit*"[Title/

Abstract] OR “hologra*"[Title/Abstract] OR “Holography"[MeSH

Terms] OR “head mounted display*"[Title/Abstract] OR “head

up display*"[Title/Abstract] OR “head worn display*"[Title/

Abstract] OR “Smart Glasses"[MeSH Terms])).

The most recent search was performed on November 28th 2022.
Selection criteria

Articles were included if the following criteria were met: (1)

Studies published after 1997; (2) Studies analyzing specifically the
frontiersin.org
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role of MR and VR in IA pre-surgical and intraoperative phases; (3)

A specified 2D or 3D visualization technique as a mean to study

angioarchitecture; (4) English, Italian, French or German language.
Data extraction

The following information was extracted from all included

publications: (1) study group and year of publication; (2) type

and number of IA included in the analysis; (3) imaging data

source (computed tomography angiography (CTA), magnetic

resonance angiography (MRA), digital subtraction angiography

(DSA)); (4) category of visualization techniques (screen, glasses,

head-mounted device (HMD); (5) inclusion of haptic feedback;

(6) aim of the study (surgical planning/rehearsal, neurosurgical

training, methodological validation); (7) study population

(residents, fellows, attending neurosurgeons).
Statistical analysis

The descriptive statistical analyses were performed using

R Studio. Data were presented as numbers and percentages.
FIGURE 1

Summary of search strategy (PRISMA flow chart) for relevant studies.

Frontiers in Surgery 03110
Results

A PRISMA flowchart is displayed in Figure 1. A total of 1,763

publications were screened, 40 full-text articles were assessed for

eligibility and 28 studies were included in this review. Studies

were excluded when considered beyond the scope for the aims of

the present analysis, and/or when their outcomes were not of

interest. An overview of the included studies highlighting their

major goals and advantages/disadvantages of augmented reality

application as perceived by the authors of the publications is

illustrated respectively in Table 2 and Table 3. In Table 3, where

no data was specified, it means that the authors of the

publication did not express it. Table 1 provides a visual

summary of the quality review of the included studies.
Virtual reality

Virtual reality implies the use of a system which generates a

complete immersion in a digital environment, that could

provide a realistic simulation of the surgical approach (16). This

type of technology was applied by 18 of the studies (64.3%)
frontiersin.org

https://doi.org/10.3389/fsurg.2023.1227510
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


TABLE 2 Studies’ major goals, imaging elaboration techniques and display types, and source imaging.

Author Year AR Major goals Technology (+/-) processing tools Display type Source
imaging

Fellner F et al. 1998 MR Intraoperative
visualization

Virtual cisternoscopy and Voxel View software Screen CT +MRI

Koyama T et al. 2000 MR Surgical planning New application program and Visual C++ Screen NA

Wong et al. 2007 VR • Surgical planning
• Training

Dextroscope system (Bracco Diagnostics Inc.) • Screen
• Glasses/Head set

CT

Bu B et al. 2009 VR Surgical planning Dextroscope system (Bracco Diagnostics Inc.) • Screen
• Glasses/Head set

CT +MRI

Mo D et al. 2010 VR Surgical planning Dextroscope system (Bracco Diagnostics Inc.) • Screen
• Glasses/Head set

CT

Mori et al 2011 VR Surgical planning Mimics software Screen CT

Agarwal N et al 2012 VR Training Dextroscope system (Bracco Diagnostics Inc.) • Screen
• Glasses/Head set

CT +MRI

Nakabayashi H
et al.

2012 MR Surgical planning AW VolumeShare, Stereo Movie Maker and QuickTime Virtual
Reality

• Screen
• Glasses/Head set

CT

Bambakidis NC
et al.

2013 VR Training Selman Surgical Rehearsal Platform (Surgical Theater) • Screen
• Glasses/Head set

CT

Di Somma A et al. 2014 VR Method validation Dextroscope system (Bracco Diagnostics Inc.) • Screen
• Glasses/Head set

CT

Cabrilo I et al. 2014 MR Intraoperative
visualization

iPlan Workstation, Brainlab Screen CT +MRI + DSA

Alaraj A et al. 2015 VR Training Immersive Touch platform • Screen
• Glasses/Head set

CT

Kockro R et al. 2016 VR Surgical planning Dextroscope system (Bracco Diagnostics Inc.) • Screen
• Glasses/Head set

CT +MRI

Chung AJ et al. 2017 VR Clipping Selman Surgical Rehearsal Platform (surgical Theater) • Screen
• Glasses/Head set

CT

Shono N et al. 2017 MR Surgical planning Unity game engine, Avizo, Maya, and Leap Motion • Screen
• Glasses/Head set

CT +MRI + DSA

Tucker et al. 2017 VR Training Surgical Theatre • Screen
• Glasses/Head set

CT +MRI

Eftekhar B et al. 2017 MR Intraoperative
visualization

Sketchfab.com and Virtual Reality Modeling Language Screen DSA

Gmeiner M et al. 2018 VR Training New simulator and RISC Software—MEDVIS 3D Screen CT + DSA

Toyooka et al. 2018 MR • Intraoperative
visualization

• Surgical planning

Head-up Display system and iPlan Workstation, Brainlab Glasses/Head set CT +MRI

Neyazi et al. 2019 VR • Surgical planning
• Training

Unity game engine and Virtual Reality Toolkit and MeVisLab Glasses/Head set MRI

Alsofy SZ et al. 2020 MR Surgical planning VR workstation connected to HTC Vive goggles and the SteamVR
system and 3D Slicer

• Screen
• Glasses/Head set

CT

Haridas A et al. 2020 VR Surgical planning Surgical Theatre • Screen
• Glasses/Head set

CT

Deib G et al. 2020 MR Intraoperative
visualization

Magic Leap One device • Screen
• Glasses/Head set

CT

Allgaier M et al. 2021 VR Surgical planning Unity game engine and XR Interaction Toolkit Glasses/Head set MRI

Li Z et al. 2021 VR Surgical planning Visualization Tool Kit and Unity3D platform Glasses/Head set CT

Perin A et al. 2021 VR • Surgical planning
• Training

Surgical Theatre • Screen
• Glasses/Head set

CT

Steineke TC et al. 2021 VR Surgical planning Surgical Theatre • Screen
• Glasses/Head set

CT +MRI

Stifano V et al. 2021 MR Surgical planning New MR application, Unity 3D, 3D Slicer and Blender Screen Glasses/
Head set

CT

AR, augmented reality; MR, mixed reality; VR, virtual reality; CT, computer tomography; MRI, magnetic resonance imaging; DSA, digital subtraction angiography; NA, not

applicable.
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(8–11, 13, 14, 16–18, 20, 22, 24, 26, 28–31, 33), with a total of

321 aneurysms included in the studies. The VR systems that

were mostly used were the Dextroscope system (Bracco

Diagnostics Inc., Milan, Italy), documented by 6 studies (33%)

(8, 9, 11, 14, 17, 33), and Surgical Theater (Surgical Theater

Inc., Los Angeles, CA), utilized by 4 studies (22%) (20, 26, 30,
Frontiers in Surgery 04111
31). Thirteen studies (72%) chose the combination of screen

and glasses/HMD as preferred visualization method (8, 9, 11,

13, 14, 16–18, 20, 26, 30, 31, 33). Exclusive use of a 2D

visualization of the CT images represented the most relevant

imaging source in 10 studies (56%) (8, 10, 13, 14, 16, 18, 26,

29, 30, 33).
frontiersin.org
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TABLE 3 Advantages and disadvantages.

Author Year AR Advantages Disadvantages
Fellner F et al. 1998 MR • Depth, perspective, lighting, color

• Correct therapeutic decision
• Difficult visualization of perforators Intraoperative

application
• Operator-dependence
• Time consuming

Koyama T et al. 2000 MR Virtual manipulation Imperfect reproduction of reality

Wong et al. 2007 VR • Overview of the vasculature from any perspective
• Haptic feedback
• Training and education

• Small vessels running horizontally tend to be underestimated
• Intraaneurysmal features not displayed
• Time consuming

Bu B et al. 2009 VR • Surgical rehearsal
• Preoperative risk assessment

NA

Mo D et al. 2010 VR Quick simulation • Intraaneurysmal features not displayed

Mori et al. 2011 VR More precise minimally invasive craniotomy planning NA

Agarwal N et al. 2012 VR Nonthreatening learning environment with immediate feedback • Intraaneurysmal hemodynamics not displayed
• No intrinsic information of the vessel’s wall
• No information about surrounding structures

Nakabayashi H
et al.

2012 MR • More effective realistic surgical simulation
• Design of minimally invasive procedures

NA

Bambakidis NC
et al.

2013 VR Improved training experience, rehearsal and safety No data on patients’ outcomes

Di Somma A et al. 2014 VR Improved anatomical understanding NA

Cabrilo I et al. 2014 MR • Optimization of patient positioning and operative trajectory
• Better anatomical understanding
• Supportive to intraoperative orientation

• Too small cohort to objectively evaluate the real impact of
Mixed Reality

Alaraj A et al. 2015 VR Improved anatomical understanding, intuitive training experience,
haptic feedback

• Intraaneurysmal hemodynamics not displayed
• No intrinsic information of the vessel’s wall

Kockro R et al. 2016 VR • Intraoperative deja-vu’: enhancement of surgical confidence
• Stereoscopic display and manipulation
• Steep learning curve
• Depth perception

Retrospective analysis lacking control groups

Chung AJ et al. 2017 VR Statistically significant improvement in time per clip used No patient outcome nor safety of surgical clipping

Shono N et al. 2017 MR • Optimization of intraoperative trajectory and clip placement
• Archive of cases that could be used for training
• Incorporation of sense, touch and hearing

• Force feedback not incorporated
• Feasibility not validated
• Quality of the model dependent on quality of source imaging
• Cumbersome workflow

Tucker et al. 2017 VR • Better appreciation of the surgical anatomy
• Nonthreatening environment for surgical simulation and training

The application of VR for neurosurgical training should be
further and better implemented

Eftekhar B et al. 2017 MR Improved anatomical orientation Privacy concerns

Gmeiner M et al. 2018 VR Improved anatomical understanding, realistic experience, improved
training, satisfactory haptic feedback

Not realistic for calcified aneurysms, small perforators and wall
irregularities like mini-blebs

Toyooka et al. 2018 MR Understanding of anatomy, geometry and approach Poorer image quality of the HUD

Neyazi et al. 2019 VR Benefit on surgical trajectory and education No patient-specific data

Alsofy SZ et al. 2020 MR Benefit on aneurysm detection, anatomical understanding, surgical
approach, and clipping planning

• No display of small branches and perforators, nor adhesions
• Great dependence on the quality of input data

Haridas A et al. 2020 VR • Detailed evaluation of the patient-specific anatomy prior to surgery
• Better understanding of the complex anatomy in high resolution

NA

Deib G et al. 2020 MR • Better preoperative anatomical understanding NA

Allgaier M et al. 2021 VR • Steep learning curve after adequate training
• Improved anatomical understanding and planning of the surgical

approach

Difficult first-time use. No real patients data

Li Z et al. 2021 VR • Better anatomical understanding
• Training environment
• Enhanced surgical confidence

• Small number of experiments
• Experimental equipment is relatively backward, resulting in

inaccurate results

Perin A et al. 2021 VR Improved anatomical understanding, realistic experience, improved
training

• No haptic feedback: no simulation of dissection and tissue
handling

• Small study sample
• Costs: limited diffusion

Steineke TC et al. 2021 VR • Benefits on preoperative planning and rehearsal with decreased
intraoperative times

• Improved training experience and increased intraoperative efficiency

• Lack of an agreed on and validated complexity scoring system
• Small sample size and not a varied population of surgeons

tested

Stifano V et al. 2021 MR • Better anatomical understanding
• Optimization and customization of surgical planning
• Valuable training tool

• Low comfort and maneuverability
• Dependence of the model on the quality of the source

imaging
• Limited number of patients and users

AR, augmented reality; MR, mixed reality; VR, virtual reality; NA, not applicable.

Colombo et al. 10.3389/fsurg.2023.1227510

Frontiers in Surgery 05 frontiersin.org112

https://doi.org/10.3389/fsurg.2023.1227510
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Colombo et al. 10.3389/fsurg.2023.1227510
• Preoperative planning:

None of the studies of this subgroup applied VR intraoperatively.

16 of the studies (89%) focused on the pre-operative planning of

the surgical approach. The benefit of VR application for

preoperative planning was qualitatively assessed using Likert

scales and the Think Aloud Method, specifically for evaluation of

anatomical understanding, depth perception and visualization of

the surgical trajectory perceived by nine study groups (8, 14, 16,

17, 22, 24, 28, 30, 31).

• Benefit on training:

Eight studies (44%) assessed the impact of this technology on

training neurosurgical residents, focusing on the benefits of VR

with regard to realistic anatomical understanding, haptic

feedback satisfaction and enhancement of surgical confidence

(8, 11, 13, 16, 20, 24, 30). User satisfaction was assessed by

means of Likert Scales and the Think-Aloud Method.

• Impact on patients:

Three studies (17%) evaluated the potential effect of 3D

visualization in VR on clinical outcomes (10, 17, 30). None of

the 18 studies aimed to evaluate the impact of surgical planning

with VR on patient safety, and only one study (5.6%) aimed to

assess the benefits of VR on patient education and understanding

of the surgical procedure (8).

• Perceived disadvantages:

The lack of information on intra-aneurysmal hemodynamics and

vessel wall characteristics was also reported as a disadvantage

(8, 11, 16, 22). Furthermore, small vessels and perforating

arteries tended to be underestimated or not displayed (8, 22).

Mixed reality

Conceptually, MR differs from VR in that it integrates a virtual

environment with the real world, whereas the latter is a full

immersion in a virtual environment. MR provides an interaction

with digital objects in the real world. Ten of the collected studies

applied this technology (6, 7, 12, 15, 19, 21, 23, 25, 27, 32), with a

total of 183 analyzed IAs. In this subgroup, there was indeed no

homogeneity among the MR systems used: each group utilized a

center-specific system and different softwares for the segmentations

and the post-processing of the images. 3D visualization occurred

by means of a combination of screen and glasses/HMD in 6 out of

10 studies (60%) (7, 12, 19, 25, 27, 32). The remaining 4 studies

(40%) utilized solely screen for image visualization (6, 7, 15, 21).

CT as exclusive imaging input source was used by 3 studies (30%)

(12, 25, 27), and 4 studies (40%) chose a multimodal imaging

source (6, 15, 19, 23). Only one group (10%) used DSA only as

the input source (21). None of the studies in this subgroup utilized

MRI as the exclusive imaging source.

• Preoperative planning:

Four studies (40%) used this technology for both the surgical

planning and intra-operative guidance (6, 15, 21, 27). The major

goal documented in this subgroup was again planning of the best

surgical approach, as documented by 5 studies (50%). Similarly to
Frontiers in Surgery 06113
the VR-subgroup, the advantages perceived for the preoperative

planning were based on an improved anatomical orientation, better

depth perception and more adequate understanding of the surgical

approach (6, 21, 25). The major outcomes of these studies were

mostly evaluated through Likert Scales for a qualitative assessment.

Only 2 studies (20%) performed a structured statistical analysis to

examine the outcomes (23, 25).

• Benefit on training:

One of the studies in this subgroup aimed to assess the impact of

MR visualization on neurosurgical training, testing the technology

on residents neurosurgeons (32).

• Impact on patients:

None of the studies in this subgroup aimed to validate the impact

of MR visualization on patient education/safety or clinical

outcomes.

• Perceived disadvantages:

The most relevant drawback reported in the MR-subgroup was the

difficult, if not impossible, visualization of small vessels and

perforators, and the dependence of the segmentation on the

quality of the input data (5/10 studies, 50%) (6, 7, 21, 23, 25).

Discussion

The present analysis represents an up-to-date systematic review

of all published studies, which applied perioperative 3D

visualization through MR and VR to IA microsurgery from 1997

to November 2022.

A relevant aspect emerging from the present analysis is the lack

of measurable hardcore values to quantitatively examine the real

added value of VR and MR applied to open IA surgery. While a

qualitative assessment of the benefits of these 3D technologies is

possible using Likert Scales and the Think Aloud Method, the

absence of objective qualitative parameters makes the analysis

partial and may hinder objective comparisons among the

different 3D modalities, especially when a structured statistical

analysis is not performed. Under this premise, this systematic

review suggests an improved anatomical understanding, a better

depth perception and a nonthreatening learning environment to

be the most relevant perceived advantages of VR, MR applied for

IA surgery planning, compared to conventional visualization

strategies. The 3D and realistic replication of the cerebrovascular

anatomy could help the acquisition of procedural motor skills,

and enhance surgical orientation and confidence (34).

Most of the included studies used multimodal imaging input to

create a more informative 3D vascular model, overcoming the

disadvantages of exclusive use of one imaging modality. While

CTA allows for a precise understanding of aneurysmal size and

shape, provides detailed information on the parent vessel, and

anatomical relationships with the skull base, combination with

digital subtraction angiography (DSA) or MR-flow adds

information on the flow patterns (22, 35). Nonetheless, none of

the studies in the present cohort integrated hemodynamic

information to the 3D visualization. Furthermore, the

combination of CT and MR imaging provides important
frontiersin.org
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information on vessel/aneurysm spatial relationships with the

parenchyma and the cisternal system, which allow a better

surgical orientation (11).

As far as visualization techniques are concerned, merging

glasses or HMD’s with 2D visualization of 3D vascular models

enhances the perception of spatial position and surgical

orientation (8). Glasses and HDMs may also allow a more

intuitive and immersive interaction with the 3D models (36).

The use of VR. MR and RV does not come without limitations.

The studies published so far are mostly retrospective, with small

sample sizes and no control groups. The analyzed studies examine

almost exclusively aneurysms treated in elective settings, with

specific focus on anterior circulation IAs, and rarely provide

information on patient functional outcomes. The lack of an

objective strategy to qualitatively assess the benefits of these

technologies represents a major bias as well. While Likert-scales or

Think-Aloud Method are mostly applied to evaluate the

intuitiveness and the satisfaction of the users, no standardized,

agreed on quantitative scores have been provided yet. To obviate

this absence, objective parameters such as size of the aneurysmal

dome, width of the neck, orientation of the dome, distance of the

aneurysm from relevant anatomical structures should be noted,

when using VR and/or MR, validated and combined into

quantitative scores. The difficulty of these analyses may lie in the

paucity of data and in the novelty of these technologies, which are

still not available in every center. Their diffusion may also be

limited by their often not affordable costs. Another relevant aspect

resulting from the paucity and diversity of the available data is the

lack of unified criteria to provide an objective appraisal of the

current literature. The advantages and the disadvantages reported

for each paper come mostly from the appraisal and experience of

the original authors. With further implementation of these

technologies and gathering of more extensive and unified data, this

limitation could be obviated. Furthermore, segmentation of

intracranial vessels and fine anatomical structures is still highly

dependent on the quality of input data, which makes the

integration of hemodynamic information, small vessels or

intramural particularities difficult. The integration of

hemodynamic information into a 3D preoperative study of IAs

may help characterize their angioarchitecture more accurately. This

information may provide major advantages on the tailoring of

their treatment in a pathology-specific way. Such a tailoring could

potentially increase intraoperative safety and therapeutic efficiency.
Conclusion

This analysis endorses the promising role of MR and VR to

provide a more accurate aneurysm-specific anatomical visualization
Frontiers in Surgery 07114
and understanding. The absence of a standardized set of

quantitative parameters to provide an objective assessment of the

real benefit of these technologies on training in IA surgery

should be a major drive for future studies on the topic.

Furthermore, integration of hemodynamic analysis to the 3D

visualization may also be a promising avenue for future research.
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Introduction: The utilisation of artificial intelligence (AI) augments intraoperative
safety, surgical training, and patient outcomes. We introduce the term Surgeon-
Machine Interface (SMI) to describe this innovative intersection between
surgeons and machine inference. A custom deep computer vision (CV)
architecture within a sparse labelling paradigm was developed, specifically
tailored to conceptualise the SMI. This platform demonstrates the ability to
perform instance segmentation on anatomical landmarks and tools from a
single open spinal dural arteriovenous fistula (dAVF) surgery video dataset.
Methods: Our custom deep convolutional neural network was based on SOLOv2
architecture for precise, instance-level segmentation of surgical video data. Test
video consisted of 8520 frames, with sparse labelling of only 133 frames
annotated for training. Accuracy and inference time, assessed using F1-score
and mean Average Precision (mAP), were compared against current state-of-
the-art architectures on a separate test set of 85 additionally annotated frames.
Results: Our SMI demonstrated superior accuracy and computing speed
compared to these frameworks. The F1-score and mAP achieved by our
platform were 17% and 15.2% respectively, surpassing MaskRCNN (15.2%, 13.9%),
YOLOv3 (5.4%, 11.9%), and SOLOv2 (3.1%, 10.4%). Considering detections that
exceeded the Intersection over Union threshold of 50%, our platform achieved
an impressive F1-score of 44.2% and mAP of 46.3%, outperforming MaskRCNN
(41.3%, 43.5%), YOLOv3 (15%, 34.1%), and SOLOv2 (9%, 32.3%). Our platform
demonstrated the fastest inference time (88ms), compared to MaskRCNN
(90ms), SOLOV2 (100ms), and YOLOv3 (106ms). Finally, the minimal amount of
training set demonstrated a good generalisation performance –our architecture
successfully identified objects in a frame that were not included in the training
or validation frames, indicating its ability to handle out-of-domain scenarios.
Discussion: We present our development of an innovative intraoperative SMI to
demonstrate the future promise of advanced CV in the surgical domain.
Through successful implementation in a microscopic dAVF surgery, our
framework demonstrates superior performance over current state-of-the-art
segmentation architectures in intraoperative landmark guidance with high
sample efficiency, representing the most advanced AI-enabled surgical inference
platform to date. Our future goals include transfer learning paradigms for
01 frontiersin.org116
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scaling to additional surgery types, addressing clinical and technical limitations for
performing real-time decoding, and ultimate enablement of a real-time
neurosurgical guidance platform.

KEYWORDS

artificial intelligence, intraoperative guidance, machine learning, surgical guidance, spine,

arteriovenous fistula, surgeon-machine interface, global neurosurgery
1. Background

Intraoperative application of Artificial Intelligence (AI) is a

rapidly advancing area in surgical innovation. AI technology

offers various capabilities within the operating room, such as

automating workflows and aiding in intraoperative decision-

making (1, 2). The ultimate objective is to leverage AI’s potential

to learn, interpret, predict, and solve problems by training

Machine Learning (ML) algorithms. These algorithms can

process vast amounts of real-world data and guide decisions

comparable to those of expert surgeons (3). We have introduced

the term Surgeon-Machine Interface (SMI) to describe the

advanced and innovative fusion of surgeons and machine

interfaces, creating a new realm of collaboration. Computer

Vision (CV) plays a pivotal role in facilitating interaction with

intraoperative data, enabling machines to comprehend surgical

images and videos (4). It also serves as the foundation of current

endeavours in intraoperative landmark guidance. However, the

availability of literature and regulatory-approved devices for real-

time AI-based anatomical landmark labelling is limited,

indicating that this technology is still in its early stages (5, 6).

Nevertheless, recent advancements in artificial neural networks

(ANNs), a subfield of ML and the backbone of deep learning

(DL), show promise in enabling AI to achieve even higher levels

of performance in this field (5, 6).

In a surgical setting, there are two crucial CV tasks: recognition

and tracking. Object recognition employs machine learning (ML) to

identify objects within an image, similar to human perception.

When combined with an object localization algorithm, object

detection can be achieved. This algorithm generates a bounding

box that encompasses the object and provides a label for it.

However, in surgical applications, where anatomical structures

have intricate contours and unclear boundaries, a single bounding

box may not accurately capture the desired area (7). Object

segmentation addresses this limitation by producing pixel-wise

masks that offer a detailed labelling of individual objects within an

image (8). There are two types of segmentation: semantic

segmentation groups similar pixels into a single classification,

while instance segmentation distinguishes and segments each

individual entity. In essence, instance segmentation allows for the

pixelwise classification of individual objects within a surgical field,

whether they are anatomical structures or surgical instruments.

Although, it is the most preferred recognition technique for

intraoperative guidance (9), previous attempts have been limited to

segmenting rigid surgical instruments (10), as opposed to

anatomical structures, which are often characterised by semi-rigid

boundaries and thus pose a more difficult segmentation task.
02117
Although few, there have been some platforms and clinical

evidence in general surgery that attests to the accuracy and the

significance of AI software in an intraoperative setting (7, 9, 11–

14). Neurosurgery, at the forefront of cutting-edge technology, has

witnessed numerous advancements in AI applications; however,

these applications are limited to surgical phase recognition (15),

detection and surveillance (16), diagnosis (17, 18), endovascular

navigation (16), training and preoperative planning (2, 16, 19–21),

intraoperative imaging, and workflow automation (22). To our

knowledge, there is no other literature or technological reports that

demonstrate a scalable surgical video analysis system in

neurosurgery. In this study, we aim to demonstrate the most

advanced surgical CV architecture to-date, and for the first time

applied to a neurosurgical context. Although a fully functioning

SMI will incorporate real-time implementation with a user

interface, in this manuscript we seek to introduce the core

technology for the conceptualisation of our future real-time

enabled SMI. We demonstrate our custom instance segmentation

core architecture and prediction model in a proof-of-concept for

open spinal dural arteriovenous fistula (dAVF) surgery.
2. Methodology

2.1. Developing the AI framework

Our first prototype framework consisted of three parallel

components (Figure 1). (1) A single frame would be processed

through Mask Region-based Convolutional Neural Network

(MaskRCNN) training, producing class-agnostic boxes. We train

MaskRCNN in a supervised manner on a few annotated frames.

(2) We augment the prediction capability of MaskRCNN by

including temporal information from Colourisation, an

unsupervised technique to learn the frame-wise feature

correlation. Specifically, we extract the unsupervised feature flow

from Colourisation. Then we use it to propagate the instance

mask from the previous frame to the consecutive frames serving

as complementary predictions. (3) Propagation via feature flow

also yields pseudo ground truth instance segmentation to further

improve our Mask R-CNN model. To filter out the noisy label,

we build a rolling updated memory bank to collect high-quality

predictions and score the incoming pseudo prediction. Only

examples above the threshold will be used to fine-tune the Mask

R-CNN model. If few annotated labels are present, only process

(1) and (2) will take place. This architecture rendered inadequate

results with anatomical landmarks being poorly demarcated as

shown in Figure 2. The major issue was that the embedding flow
frontiersin.org
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FIGURE 1

The initial mask-RCNN architecture.

FIGURE 2

Poorly demarcated annotation using colourisation technique.
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from colourisation is biassed to the low-level texture. Tracking

without mid and high-level features is fragile in the challenging

case.
Frontiers in Surgery 03118
Our next attempt was to utilise SOLOv1 architecture with

Kanade-Lucas-Tomasi (KLT) tracking system, as Figure 3. In

SOLOv1, the image is divided into a grid and objects are
frontiersin.org
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FIGURE 3

Initial SOLOv1 architecture.

Park et al. 10.3389/fsurg.2023.1259756
located for every cell in the grid. Instance category and instance

mask are computed in parallel across the grid. Since frame-by-

frame instance segmentation has a disadvantage of lacking

temporal information we embedded a KLT tracking system into

the segmentation system to recognize the objects moving across

video. The tracking system generates initial feature points over

the masks in the first frame. KLT feature tracker tracks these

feature points crossing the video. The identity of a

segmentation is determined by a majority vote over all the

feature points.
FIGURE 4

Current modified SOLOv2 architecture. (A) Input video frame, (B) Model outp

Frontiers in Surgery 04119
To account for the challenges faced with our previous instance

segmentation frameworks, we developed a novel segmentation

algorithm (Figure 4) based on the state-of-the-art SOLOv2

architecture, a dynamic and fast framework for real-time object

detection. In SOLOv2, the mask head is further decomposed into

2 branches, namely, feature branch and dynamic convolution

kernel branch. Instead of forwarding the feature map directly

through another layer of convolution, the feature map is used to

learn a dynamic convolution head, which is a kernel map that

convolves with the feature map to output the final mask
ut predictions, (C) Refined predictions.
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prediction. However, in our experiments we face a practical

limitation of the SOLOv2 framework and obtain many false

positive detections. To alleviate this issue, we customise the

framework to refine this low confidence but plausible detections

into high confidence and obtain higher performance in instance

segmentation (Figure 4).

All algorithms were constructed on Ubuntu 20.04.4 LTS

(x86_64; Canonical Ltd., London, United Kingdom) and

developed using the Detectron2, a Pytorch object detection

library in Python (Language).
2.2. Dataset preparation

A single test video of spinal dAVF surgery was recorded with

Zeiss Opmi Pentero 800 (Carl Zeiss AG, Jena, Germany) at The

Hospital of the University of Pennsylvania. This video constitutes

8,520 frames. A trainee neurosurgeon (RB) annotated 133 frames

using Computer Vision Annotation Tool (CVAT 7.4.0; Irvine,

California, United States). 133 frames were sampled every 30

frames within the first 1.5 min of the surgical video (in-domain).

These frames consist of the operator dissecting the arachnoid

and separating the two abnormal dorsal spinal arteries (part of

the dural AVF) with a blunt probe, dissector, and micro-scissors

followed by the temporary clipping a dorsal spinal artery with an

aneurysm clip after. Any ambiguities with anatomical structure

were clarified by an attending neurosurgeon (VPB).
TABLE 1 Accuracy and computing speed of our SMI architecture and
other commonly reported frameworks in literature.

F1 F1 (iou 50) mAP mAP50 Inference
time (ms)

SOLOv2 0.031 0.09 10.4 32.3 100

YOLOv3 0.054 0.15 11.9 34.1 106

MaskRCNN 0.152 0.413 13.9 43.5 90

Our SMI 0.17 0.442 15.2 46.3 88

Bold values are results from novel architecture.
2.3. Statistical analysis

To assess segmentation accuracy and computing speed, we

applied different frameworks to the single surgical video and

validated it across 85 frames. These frames were uniformly

sampled every 3.33 s from entire 4.73 min of the video. The

validation set comprised of 27 frames which were in-domain and

58 of these frames that were out-of-domain frames, which was a

hold-out test set as a temporal partition from the same video.

The in-domain frames constitute unlabelled frames within the

period of the training set as opposed to the out-of-domain

frames that were unlabelled frames after the last time period of

the training set. In these out-of-domain frames, the surgeon

irrigated the surgical field, suctioned pools of blood outside the

dura, manipulated the arteries with a suction and blunt probe,

and finally removed the aneurysm clip with the applier. Instance

segmentation was performed by MaskRCNN + Feature Pyramid

Networks (FPN), SOLOv2 + R101DCN, SparseRCNN, YOLOv3,

and our SOLOv2-based modified architecture. We then

calculated certain metrics to measure precision for each of these

architectures: mean Average Precision (mAP), and F1 score.

Accuracy was tested on in-domain frames, which were part of

the validation set, as well as out-of-domain frames which were

not part of the test or validation set. Furthermore, we evaluated

the inference time for the computing speed of each of the networks.

All these frameworks were processed in a single computer on

Ubuntu 20.04.4 LTS (x86_64; Canonical Ltd., London, United
Frontiers in Surgery 05120
Kingdom) with GeForce RTX 2080 Ti (NVIDIA, Santa Clara,

United States) mounted. Statistical analysis was all performed

using the Detectron2 (software).
3. Results

Our SMI framework outperformed any other known

frameworks reported in literature for intraoperative landmark

guidance in terms of accuracy and computing speed as shown in

Table 1. F1-score and mAP of our model was 17% and 15.2%

respectively, in comparison to the original SOLOv2 architecture

which was 3.1% and 10.4%, YOLOv3 with 5.4% and 11.9%, and

MaskRCNN with 15.2% and 13.9%, respectively. Taking into

consideration detections that surpassed the Intersection over

Union (IoU) threshold of 50%, our SMI had F1-score of 44.2%

and mAP of 46.3%. This was followed by the MaskRCNN

architecture with F1-score of 41.3% and mAP of 43.5%, YOLOv3

with 15% and 34.1%, and finally SOLOv2 with 9% and 32.3%

respectively.

Qualitatively, our SMI architecture was successful in identifying

objects in both in-domain frames (Figures 5A,B) and out-of-

domain frames (Figures 6A,B), which indicates a good

generalisation based on training on a quarter of the full surgical

video. Our in-domain frame predictions demonstrated a high

mAP score of >0.50 for anatomical structures and surgical tools

and achieved >0.30 for distractions such as pool of blood. Most

importantly, it was able to identify the blunt probe which was

not annotated in the ground truth frame and was also able to

predict a segment of the artery that was not annotated

(Figure 5B). Identification of objects in out-of-domain frames

also demonstrated visually promising results and high accuracy

(Figure 6B). To highlight, the model was able to identify the

suction as a different instrument in the out-of-domain frames,

even though it has never seen the object before within the

training set (Figure 6B).

The computation speed of our SMI was the fastest amongst all

other frameworks (Table 1) with inference time of 88 ms, followed

by MaskRCNN (90 ms), SOLOv2 (100 ms), and YOLOv3 (106 ms).
4. Discussion

This study introduces an advanced surgical platform that

utilises instance segmentation for intraoperative guidance. The

obtained results demonstrate the feasibility of our SMI
frontiersin.org
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FIGURE 5

In-domain segmentation frames. (A) Ground truth frame of in-domain segmentation. (B) Prediction frame of in-domain segmentation.

FIGURE 6

Out-of-domain segmentation frames. (A) Ground truth frame of out-of-domain segmentation. (B) Prediction frame of out-of-domain segmentation.
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framework for real-time application in spinal dAVF surgeries and

its potential for adaptation to other neurosurgical cases. Our

developed framework for the guidance system surpasses

previously described frameworks in the literature in terms of

precision and computational speed. Prior efforts in the field of

general surgery demonstrated various elements of utility;

however, none reports segmentation of both anatomical

landmarks and surgical tools intraoperatively. Moreover, all

segmentation efforts in general surgery are limited to YOLOv3-

based bounding boxes and semantic segmentation techniques.

Nakanuma et al. recently published a feasibility trial

(J-SUMMIT-C-01) for a YOLOv3-based object detection

framework to be used for intraoperative guidance in laparoscopic

cholecystectomy (LC). Although they used the YOLOv3

framework, they were able to demonstrate an objective usefulness

of an AI-powered surgical guidance platform (11, 12). In

addition, Liu et al. provided supporting evidence that their

YOLOv3 based framework identified anatomical structures within

LC more accurately than their trainees and senior surgeons (13).
Frontiers in Surgery 06121
Laplante et al., Madani et al., and Mascagni et al., on the other

hand, utilised a semantic segmentation method to successfully

determine safe and danger zones for surgical dissection and

labelling anatomical structures relevant in LC (7, 14). Moving

forward, Kitaguchi and his team developed an instance

segmentation model but they have only classified surgical

instruments in laparoscopic colorectal surgeries (9). In

neurosurgery, Bouget et al. reports an attempt to identify

intraoperative tools by an outdated method of semantic labelling

and shape-based detection using supervised-vector machine

(SVM) training (22), which has been further improved by

Kalavakonda et al., with binary and instance segmentation

approach (23). Therefore, our study reports the first and the

most advanced use of instance segmentation in the surgical field

to date.

Our extensive experience and previous failed attempts have

significantly contributed to the development of a scalable

segmentation framework in surgery. We have encountered

challenges related to colourisation, the MaskRCNN architecture,
frontiersin.org
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SOLOv1, and KLT feature trackers, which have informed our

understanding of these issues. After careful evaluation, we opted

to modify the SOLOv2 architecture due to its superior

performance compared to counterparts like YOLOv3 (24).

Moreover, another compelling reason to use SOLOv2 was due to

its ease of debugging. With SOLOv2, it becomes possible to

visualize the features for each grid point, considering various

kernel choices. This ability enhances the network’s expressive

power, allowing for a deeper understanding of the underlying

processes and facilitating effective troubleshooting. Ultimately,

through extensive experimentation and framework modifications,

we have successfully established a platform that facilitates the

swift adoption of new segmentation frameworks for improved

outcomes.

Additionally, we have gained valuable insights into the use of

more objective metrics for instance segmentation. While mean

Average Precision (mAP) has been commonly endorsed in

clinical literature, its susceptibility to false positives makes it

less suitable as a metric for instance segmentation in the

surgical field (25). Instead, metrics such as the F1-score,

precision, and recall provide a more accurate evaluation (25).

Nakanuma et al. used the DICE coefficient as a metric for

accuracy; however, we have incorporated this into our loss

function (12).

In this study, we present a novel comparison of sample

efficiency among different intraoperative CV architectures, which,

to our knowledge, is the first attempt of its kind in the literature.

To measure sample efficiency, we calculated a ratio for each

version of our SMI framework. This ratio represents the

percentage of total available data used for training compared to

the percentage used for testing, while achieving the same level of

segmentation accuracy. Our findings reveal a positive trend in

reducing the reliance on training annotation (Figure 7),
FIGURE 7

Comparison of sample efficiency across the versions of our SMI.
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distinguishing our study from previous efforts in utilising CV for

intraoperative guidance, which have shown limited exploration in

this particular area.
4.1. Limitations

There are some technological limitations in our platform. An

unknown object inserted in the surgical field, such as a metal

clip, can interfere with landmark recognition. This issue has not

been previously reported or addressed in the existing literature.

The current algorithms used in surgery are supervised and

primarily designed for two-dimensional analysis of a three-

dimensional surgical field. However, in the presence of unknown

objects that occlude the known objects, these algorithms may

encounter difficulties in recognition. In this study, we have not

evaluated the performance of the algorithms in cases involving

occlusion by unknown objects. In addition to occlusion, there is

a significant translation of the view when the microscope is

moved, which impacts the tracking of the algorithm. Specifically,

we plan to incorporate considerations for translation in out-of-

frame surgeries and for instances where the anatomy is obscured

by surgical tools. We intend to address both these issues in the

next update of our algorithm. Lastly, we observed instances

where frames or anatomical structures appeared blurry

interfering with recognition and tracking. This blurriness can be

attributed to the inherent challenges of object detection in

microscopic surgery, where the lens may be out-of-focus.

Additionally, anatomical structures can appear hazy due to fluid

or bleeding. To mitigate these issues, we intend to enhance our

model’s ability to recognise such barriers and refrain from

providing anatomical predictions when these barriers are

identified.
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We evaluated the architecture on a single surgical video from

one patient. However, to ensure the clinical applicability of the

platform, it is essential to conduct further multi-centred trials

involving multiple patients and various types of surgeries.

However, previous research by Tokuyaso et al. has reported poor

concordance among surgeons when labelling anatomical data.

Therefore, to minimise bias and subjectivity (7, 26), we plan to

involve multiple experts in annotating the surgical images and

assess the inter-rater reliability. Additionally, it is important to

note that spinal dAVF surgery is a microscopic procedure that

does not currently allow our platform to provide superimposed

guidance during surgery, as seen in many laparoscopic studies

(7, 11, 12). To address this limitation, our research group is

currently exploring an upgraded architecture that can process

sparsely labelled data from multiple patients who have undergone

endoscopic microvascular decompression (MVD) surgery (27).
4.2. Future directions

Our plans involve developing our network to overcome the

technological limitations associated with identifying unknown

objects, visual obstruction by tools, and out-of-focus frames

(7, 11). To address the issue of unknown objects, we propose the

network to adapt to and recognise previously unseen objects. For

accurate tracking, our objective is to implement video-based

segmentation that enables continuous tracking even when objects

appear and disappear within the frame whilst retaining

information about object trajectories and make more informed

predictions. Furthermore, we aim to develop task-driven

segmentation, as segmentation itself can be an ill-posed task,

even with the availability of ground truth annotations. By

implementing these advancements, we aim to address the

technological limitations and enhance the performance and

versatility of our network for intraoperative guidance.

In future updates, our goal is to incorporate both spatial and

temporal annotation by utilizing a combination of semantic,

instance, and phase recognition techniques, which were not

explored in this study due to its scope limitations. By integrating

these techniques effectively, we anticipate significant

improvements in both the accuracy of spatial annotation and the

overall understanding of surgical procedures. This expanded

annotation approach holds great potential in providing valuable

insights for surgery, including early error detection, surgical

decision support, and performance feedback in complex

neurosurgical cases. These advancements have the potential to

enhance surgical care by enabling a more comprehensive analysis

of surgical procedures and facilitating continuous improvement

in surgical outcomes (28–30).

As demonstrated with a previous version of our architecture

(27), we are currently extending our framework to be used in

endoscopic surgeries that involve decompression of cranial nerves

at the skull base. In the preliminary work, we conduct

experiments using multiple patient videos and leverage Few-Shot

Learning techniques within a sparsely labelled paradigm (27).

The need for numerous expert annotations and validation poses
Frontiers in Surgery 08123
a challenge for the generalisation of our framework across

various surgical cases and specialties. Therefore, we are currently

exploring different models of unsupervised learning techniques to

improve the utilisation of sparsely labelled datasets and sample

efficiency. With transfer learning capabilities of our CV

methodology, we are actively scaling the core technology for

future iterations and further development of the SMI.

Addressing these limitations provides an outlook that can have

a revolutionising impact on global neurosurgery, by improving the

standard of neurosurgical care and training. Our ongoing study

exemplifies the foundational technology behind a SMI, a concept

that aims to enhance patient outcomes and provide better

training opportunities.
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Background: The aim of this study was to develop natural language
processing (NLP) algorithms to conduct automated identification of
incidental durotomy, wound drains, and the use of sutures or skin clips
for wound closure, in free text operative notes of patients following
lumbar surgery.
Methods: A single-centre retrospective case series analysis was conducted
between January 2015 and June 2022, analysing operative notes of
patients aged >18 years who underwent a primary lumbar discectomy
and/or decompression at any lumbar level. Extreme gradient-boosting NLP
algorithms were developed and assessed on five performance metrics:
accuracy, area under receiver-operating curve (AUC), positive predictive
value (PPV), specificity, and Brier score.
Results: A total of 942 patients were used in the training set and 235
patients, in the testing set. The average age of the cohort was 53.900 ±
16.153 years, with a female predominance of 616 patients (52.3%). The
models achieved an aggregate accuracy of >91%, a specificity of >91%, a
PPV of >84%, an AUC of >0.933, and a Brier score loss of ≤0.082. The
decision curve analysis also revealed that these NLP algorithms possessed
great clinical net benefit at all possible threshold probabilities. Global and
local model interpretation analyses further highlighted relevant clinically
useful features (words) important in classifying the presence of each entity
appropriately.
Conclusions: These NLP algorithms can help monitor surgical performance
and complications in an automated fashion by identifying and classifying the
presence of various intra-operative elements in lumbar spine surgery.
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1. Introduction

Administrative, billing, and coding tasks are a major source of

financial and economic burden on healthcare systems worldwide

(1). With the increase in healthcare and labour costs in recent

years, major health systems are shifting towards minimising

financial expenditure while maximising patient care. A key

component in this process is optimising the clinical coding

pipeline by reducing the burden on labour with limited manual

review and intervention. The clinical coding process involves

transforming medical records, usually presented as free text

written by clinicians, into structured codes using the standardised

Current Procedural Terminology (CPT) and the International

Statistical Classification of Diseases (ICD) codes. The purpose of

such clinical coding is to characterise the use of hospital services,

document patient outcomes, and quantify clinical and surgical

practices to allow for optimal financial reimbursement and to

inform healthcare service planning and policy (2, 3).

Natural language processing (NLP) is a domain of machine

learning that focuses on the analysis of structured and

unstructured free text. NLP techniques are well suited for clinical

coding due to their ability to analyse free text in real time with

great precision. In the United Kingdom, the General Medical

Council states that maintaining accurate and detailed clinical

documentation is essential across all specialties for good medical

practice (4), in addition to providing information for research,

audits, and medicolegal records (5, 6). The current epidemic of

defensive practice due to fear of medicolegal repercussions has

had an extensive impact on neurosurgical documentation

practices, resulting in more detailed documentation of procedures

(7). Despite guidelines being available for the documentation of

operative notes (8), many studies have demonstrated the

inadequate quality of operative notes with much salient

information missing, including the nature of the surgery,

indication of surgery, estimated blood loss, incidence of

complications, and postoperative instructions (6, 9–11). Such

non-standardised documentation can lead to greater manual

review times, making the extraction of relevant information more

labour-intensive. The creation of accurate NLP algorithms

trained on a large number of heterogeneous documents can be

used to supplement the current clinical coding process, reducing

the need for extensive and tedious manual reviews.

Spine surgery comprises the majority of operative cases in

neurological surgery. Incidental durotomy, lumbar drains, and

type of skin closure (sutures or clips) are important elements

included in operative notes and are associated with patient

outcomes, and therefore accurate documentation is vital to

inform best clinical practice (12–16). At present, CPT and ICD-

10 codes are used to identify incidental durotomies and “dural

tears” within operative notes. However, these modalities have

been shown to lack sensitivity, resulting in the underreporting of

these complications (17–19). To the best of our knowledge, no

such codes exist for the identification of the use of drains or

wound closure technique used. Hence, the aim of this study is to

develop NLP algorithms to conduct automated surveillance for
Frontiers in Surgery 02126
identification of incidental durotomy, wound drains, and the

use of sutures or skin clips for wound closure, in free text

operative notes of patients following lumbar surgery.

Towards this, in this study we attempted to evaluate if NLP

techniques could be harnessed to analyse operative notes to

detect the three important elements of spine surgery: incidental

durotomy, the use of wound drains, and type of skin closure

(suture or clips).
2. Materials and methods

2.1. Guidelines

The following guidelines were followed in this study: the

Journal of Medical Internet Research (JMIR) Guidelines for

Developing and Reporting Machine Learning Predictive Models

in Biomedical Research, and the Transparent Reporting of

Multivariable Prediction Models for Individual Prognosis or

Diagnosis (TRIPOD) checklist (20, 21).
2.2. Data source and outcome measure

A single tertiary neurosurgical centre retrospective case series

analysis was conducted for all patients who underwent lumbar

spine surgery between January 2015 and June 2022. The

inclusion criteria for this study were as follows: (1) patient age

more than or equal to 18 years, (2) patient underwent a primary

lumbar discectomy and/or decompression at any lumbar level,

and (3) availability of index surgery operation notes in our

electronic health records. The exclusion criteria included any

patients with incomplete data and patients who underwent

primary lumbar discectomy and/or fusion. The hospital’s

electronic patient records were examined and a total of 1,177

patients were identified. Each patient’s operation note was then

blinded and extracted in an anonymised manner. Our study was

approved by the local hospital’s institutional review board

because of the retrospective and anonymised operative note data

collection method. The study was registered as a health

improvement project with the requirement for patient consent

being waived. All methods were conducted in accordance with

local and national guidelines and regulations.

Along with the operation notes, the age (continuous) and

gender of the patient (male or female) were also collected as

independent variables. There were three primary outcomes for

each operation note: (1) the presence of intra-operative

durotomies (binary outcome), (2) the placement of wound drains

(binary outcome), and (3) the use of clips or sutures for skin

closure (binary outcome). The terms durotomies and dural tears

are used interchangeably in this paper. Each patient’s operation

note was reviewed and annotated by blinded researchers (LM

and SB) who were not involved in the care of these patients. The

results of each outcome category were then verified by the senior

author.
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2.3. Data pre-processing

The data acquisition, pre-processing, model development, and

evaluation pipeline have been highlighted in Figure 1. The dataset

was initially cleaned with a custom data-cleaning function that

consisted of the removal of special characters retrieved from the

Natural Language Toolkit (NLTK) such as “@/{$#%&” and

stopwords including “and”, “or”, and “the”. These words do not

carry significant meaning or information in text analysis tasks,

hence their removal helps to de-noise the text data resulting in

the better efficiency and performance of NLP models. Stemming

and lemmatisation are two common techniques used in the data-

cleaning function, both of which aim to normalise words by

reducing them to their base or root forms. Stemming achieves

this by removing any suffixes at the end of a word, while

lemmatisation is the process of reducing a word to its base or

dictionary form (known as the lemma) while taking into account

the context and part of speech of the word.

Lastly, the CountVectorizer library function was used to pre-

process the cleaned data. By default, CountVectorizer uses the

“term frequency” weighting for single tokenisation, which means

it represents each word by the number of times it appears in a

document. This results in a document-term matrix where each

element represents the frequency of a particular word in a

specific document. The resulting matrix is then used as the input

to various machine learning algorithms such as clustering,

classification, and topic modelling. By representing text data in a

numerical format, the CountVectorizer enables machine learning

(ML) algorithms to process and analyse textual data, which
FIGURE 1

Data acquisition, processing, analysis, and visualisation pipeline. DB, databas
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would otherwise be difficult due to the unstructured nature of

natural language.
2.4. Model development

An 80:20 training–testing split was carried out on the total

cohort of 1,177 patients, with 942 patients in the training set and

235 patients in the testing set. The datasets were stratified for the

outcome variables to account for class imbalances. An extreme

gradient-boosting (XGBoost) NLP classifier was developed to

predict each outcome category. XGBoost was selected as the

classifier of choice owing to a number of factors: (1) its ability to

handle high-dimensional feature spaces such as word to vector

embeddings used in NLP, (2) the ability to handle and adjust for

sparse and imbalanced datasets using weighted loss functions

and subsampling, (3) its faster computational run time and

scalability, and (4) explicit feature importance calculation for

each input attribute (11, 22). Three individual models were

created for identifying each outcome category, and the outputs

from the models were concatenated to produce a multilabel

ensemble output with the predicted probabilities for each

outcome. The three ML models will be referred to as the dural

tear, drains, and clips vs. sutures models in this paper. An

iterative process termed Grid Search was used to optimise the

model hyperparameters. In grid search, a predefined set of

hyperparameter values is defined, and the model is trained and

evaluated on all possible combinations of these values to achieve

the highest level of accuracy.
e.
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TABLE 1 Cohort demographics of the total patient cohort.

Total cohort (n = 1,177)
Age 53.900 ± 16.153

Sex

Female 616 (52.3%)

Male 561 (47.7%)

Drain(s)

Yes 373 (31.6%)

No 801 (67.8%)

Closure

Clips 458 (38.9%)

Sutures 710 (60.3%)

Dural tear(s)

Yes 117 (9.9%)

No 1,060 (90.1%)

TABLE 2 Inter-variable statistical correlation analysis using t-tests for

Biswas et al. 10.3389/fsurg.2023.1271775
The models were trained on fivefold stratified K-fold cross-

validation with five repeats on the training dataset. The training

and testing datasets were stratified by each of the outcome

categories to standardise the class imbalances within our

outcome variables and provide us with the best overall

performance results for the models. The performance of the

models were evaluated via five performance metrics on the

training and testing sets: accuracy, precision/positive predictive

value (PPV), specificity, area under the receiver-operating

curve (AUC)/discrimination, and the Brier score loss. All

metrics were bootstrapped with 1,000 resamples to derive the

associated 95% confidence intervals (CIs). Each model was then

calibrated on the testing set. Calibration refers to how well a

model’s predicted probabilities align with the true observed

probabilities in the study population. This is evaluated using a

calibration curve, which is ideally a 45° straight line starting

from the origin, with a slope of 1 (indicating the spread of the

model’s estimated probabilities over the observed probabilities),

and an intercept of 0 (indicating how much the model tends

to over- or underestimate the true probability). In this study,

the preferred method of calibration was Platt scaling or

sigmoid binned calibration, which involved dividing the

probability range into 10 bins and evaluating the shape of the

calibration curve, as well as its slope, intercept, and the Brier

score loss metric. In addition, the decision curve analysis

(DCA) was used to evaluate and plot the clinical benefit of

using the NLP algorithms to predict the presence of each

outcome variable over a wide range of predicted threshold

probabilities. The DCA illustrates the net benefit defined as

the number of true positives detected for each outcome class

when using the NLP algorithms on individual patient operation

notes.

A model-specific global feature importance analysis was

conducted on the trained models via retrieval of each

model’s relative feature weights that were averaged across all

training folds. Furthermore, the Local Interpretable Model-

agnostic Explanation analysis was performed to predict and

highlight the important features on an individual patient

operation note level.

continuous variables and Chi-square tests for categorical variables.

p-value

Age Sex Drains Closure Dural tear
(s)

Year of
surgery

Age 0.137 0.283 0.001a 0.501 0.013a

Sex

Female 0.137 0.278 0.294 0.217 0.322

Male

Drain(s)

Yes 0.283 0.278 <0.001a 0.554 0.906

No

Closure

Clips 0.001a 0.294 <0.001a <0.001a 0.017a

Sutures

Dural tear(s)

Yes 0.501 0.217 0.554 <0.001a 0.853

No

aStatistically significant p-value.
2.5. Statistical analysis

All statistical analyses were conducted using IBM SPSS

software (Statistical Package for the Social Science; SPSS Inc.,

Chicago, IL, USA) Version 25 for Mac, Microsoft Excel (Office

365, Microsoft, Seattle, WA, USA), and the R coding language (R

Foundation for Statistical Computing, Vienna, Austria).

Histogram plots and the Kolmogorov–Smirnov test were utilised

for tests of normality for the continuous variables. The chi-

squared tests were used to compare all categorical variables, and

the independent samples t-test was used to compare the means

of the continuous variables. Temporal trend analysis with a

linear line of best fit was conducted for all variables, within our

retrospective observation time period. A p-value <0.05 was

considered statistically significant.
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3. Results

3.1. Cohort demographics

A total of 1,177 patients were included in the study, with 942

patients in the training set and 235 patients in the testing set.

Table 1 demonstrates the total cohort demographics. The average

age of the cohort was 53.900 ± 16.153 years, with a female

predominance of 616 patients (52.3%). The rates of intra-

operative durotomy and the use of wounds drains were 9.9%

(117/1,177) and 31.6% (373/1,177), respectively. Overall, the use

of sutures [710 (60.3%)] was more common for skin closure

compared with the use of metal surgical clips [458 (38.9%)]. The

inter-variable comparative analysis (Table 2) demonstrated a

significant relationship between increasing patient age and the

use of sutures (p-value = 0.001). We also noted that with an

ageing population, the operative age of our patients significantly

increased over our observation period (p-value = 0.013). There

was also a statistically significant relationship between the use of

sutures for skin closure in cases with intra-operative dural tears

and wound drains (p-value < 0.001). However, there was no
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statistically significant relationship between the use of wound

drains and the presence of intra-operative dural tears (p-value =

0.554).
3.2. Temporal trend analysis

The Mann–Kendall test was used to analyse the temporal

trends of the variables across our observation time period as

shown in Supplementary Figure S1. During the study period, the

total number of lumbar discectomies and/or decompressions

decreased significantly from 220 surgeries in 2015 to 56 in the

first half of 2022 (−112 estimated in a year) (tau =−0.929, p-
value = 0.002). This decline was observed in all the years with the

exception of 2019, which saw an increase of one operation from

the previous year. It was noted that there was also a decrease in

all spinal procedures post COVID-19, which may account for the

decrease. The frequency of intra-operative durotomies/dural tears

did decrease over the study period; however, no statistical

significance was observed (tau =−0.286, p-value = 0.386), with

rates ranging from 5.8% to 14.2%. The frequency of intra-

operative placement of wound drains also statistically

significantly increased over the study period, rising from 18.6%

in 2015 to 41.1% in 2022 (tau = 0.643, p-value = 0.035). The

preferred method of skin closure also changed over the study

period, demonstrating a preference for closure with sutures in

later years (tau = 0.5, p-value = 0.108) with a rise from 54% in

2015 to 75% in 2022. We observed an exact yet complementary

decrease in the use of surgical clips for skin closure over the

years (tau =−0.5, p-value = 0.108).
3.3. Model performance

Table 3 provides the performance metrics for the three ML

models on the testing dataset. The dural tears model achieved an

accuracy of 91.7615 (95% CI: 88.636–94.602), a PPV of 84.211%

(95% CI: 80.667–90.000), a specificity of 99.032% (95% CI:

96.959–99.750), and an AUC of 0.946 (95% CI: 0.917–0.970).

The drains model achieved an accuracy of 94.894% (95% CI:

92.330–97.160), a PPV of 88.696% (95% CI: 82.308–94.000), a

specificity of 94.694% (95% CI: 90.886–97.025), and an AUC of

0.950 (95% CI: 0.923–0.973). The clips vs. sutures model

achieved an accuracy of 93.750% (95% CI: 91.193–96.307), a

PPV of 94.495% (95% CI: 91.379–97.260), a specificity of

91.177% (95% CI: 84.770–95.153), and an AUC of 0.933 (95%

CI: 0.923–0.973). Figure 2 shows the calibration curves for each

of the models. The dural tears model had a propensity to
TABLE 3 Performance metrics of the machine learning model on the testing

Model Accuracy (%) Precision/PPV (%)

Testing set (n = 235)
Dural tears 91.761 (88.636–94.602) 84.211 (80.667–90.000)

Drains 94.894 (92.330–97.160) 88.696 (82.308–94.000)

Clips vs. sutures 93.750 (91.193–96.307) 94.495 (91.379–97.260)
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underpredict the presence of a dural tear, with a Brier score loss

of 0.082 (95% CI: 0.054–0.114), an intercept of 0.91 (95% CI:

0.46–1.36), and a slope of 0.99 (95% CI: 0.76–1.23). The drains

model demonstrated excellent calibration across all predicted

probabilities with a Brier score loss of 0.051 (95% CI: 0.028–

0.076), an intercept of −0.71 (95% CI: −1.31 to −0.12), and a

slope of 0.75 (95% CI: 0.60–0.91). The clips vs. sutures model

demonstrated a tendency to overpredict the use of sutures for

skin closure, with a Brier score loss of 0.063 (95% CI: 0.037–

0.088), an intercept of −0.01 (95% CI: −0.61–0.60), and a slope

of 0.65 (95% CI: 0.53–0.77). Lastly, the decision curve analysis

on the testing set revealed that all NLP algorithms ensured

greater clinical net benefit at all possible threshold probabilities

relative to the default decisions of changes made for all or none

patients (Figure 3).
3.4. Model explainability

The global feature importance calculations for the NLP

algorithms are presented in Figure 4. These explanations

highlight that for identification of an intra-operative durotomy,

the five most meaningful features (words) are: “repair,”

“intradural,” “dural,” “patch,” and “Valsalva.” The five most

important features (words) for detecting the intra-operative

placement of a lumbar drain are: “drain,” “fascial,” “scoliosis,”

“clotting,” and “incision.” Similarly, for detecting whether

surgical clips or traditional sutures were utilised for skin closure,

the following five words were the most important: “clip,”

“staple,” “warmer,” “lamina,” and “clamp.” In addition, the local

feature importance analysis for an example patient level

operation note demonstrates that the dural tear model is able to

identify the five most important clinically meaningful features to

detect the presence of an intra-operative dural tear (Figure 5).

Interestingly, the local feature importance analysis for the drains

and clips vs. sutures model demonstrated that the algorithm

primarily searched only for the words “drain” and “clip,”

respectively, to make the prediction, with the other

aforementioned features possessing very little impact on the

outcome.
4. Discussion

This study analysed the trends in the use of various intra-

operative elements in spine surgery and developed NLP

algorithms capable of reliably identifying these elements in

operative notes. The automated identification of these elements
set with 95% confidence intervals.

Specificity (%) AUC Brier score loss

99.032 (96.959–99.750) 0.946 (0.917–0.970) 0.082 (0.054–0.114)

94.694 (90.886–97.025) 0.950 (0.923–0.973) 0.051 (0.028–0.076)

91.177 (84.770–95.153) 0.933 (0.923–0.973) 0.063 (0.037–0.088)
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FIGURE 2

Calibrationcurvesof the natural languageprocessingmodels for identifying (A) dural tears, (B) wounddrains, and (C) clips vs. sutures, in the testing set (n=235).
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can facilitate more efficient clinical coding and billing processes,

help optimise hospital quality improvement and safety efforts,

assist clinicians in auditing surgical practices, and guide overall

resource allocation. This study demonstrates that our NLP

algorithms are capable of reliably and accurately identifying the

placement of intra-operative wound drains, the presence of

incidental dural tears, and whether surgical clips or sutures were

utilised for skin closure. This is the first ever study from a

country with a public healthcare system that has demonstrated

the feasibility of using automated NLP systems in operative notes

to potentially guide both surgical practices and resource allocation.

The use of NLP techniques in spine surgery has seen a rise in

the recent years and is projected to rapidly grow in the future (23,

24). The ability of NLP to perform precise automated surveillance

of operative notes, to answer clinically relevant questions, serves to

reduce the burden of time-intensive and error-prone reviews by

clinical coders (25, 26). The delays in clinical coding within the

National Health Service (NHS) impose a significant burden, with

the potential for funding to be blocked if coding is not

completed within a prerequisite timeframe (27). The average

accuracy of this coding has been reported at approximately 83%,

with large inter-study variability (28). Such problems exist in

majority of healthcare systems worldwide and necessitate the

development of automated techniques capable of facilitating these
Frontiers in Surgery 06130
burdensome manual record review processes. Within this realm,

Zaidat et al. have already developed an XLNet model capable of

automatically generating CPT billing codes from operative notes

for three specific surgical procedures: anterior cervical discectomy

and fusion (ACDF), posterior cervical discectomy and fusion

(PCDF), and cervical disc arthroplasty (CDA) (2). Such models

have the potential to greatly reduce manual review/input, minimise

errors in the coding process, and promote standardisation. Most

recently, Shost et al. have also demonstrated a model capable of

reliably identifying the type of spinal surgery performed via

analysis of patient consent forms (29). The ability to rapidly

classify surgical practices can be beneficial to both hospitals and

the practicing surgeons. This will help track surgical volume,

surgery-specific patient outcomes, and also provide trainees with a

method of tracking individual surgical experience. In addition,

NLP algorithms have also demonstrated predictive value in

classifying lumbar spine imaging findings and in determining the

need for surgical intervention in patients with low back pain via

analysis of radiological and clinical reports (30). These examples

highlight the importance of NLP techniques in improving the

provision of patient care and demonstrate the clinical utility of

such models in enhancing hospital and surgical practices.

Our NLP algorithms were developed to identify the presence of

three important intra-operative factors that play a role in guiding
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FIGURE 3

Decision curve analyses comparing expected clinical net benefit of the three models: (A) dural tears, (B) wound drains, and (C) clips vs. sutures, on the
testing set.
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the resource allocation and surgical practices of a neurosurgical

department. In this study, the prevalence of incidental durotomy

was 9.9%, in line with the recent literature on lumbar surgery

(18, 31, 32). Our model demonstrated adequate discrimination

and performance in identifying intra-operative dural tears and

highlighted the use of clinically relevant features (words) to make

its predictions. Previous studies by Karhade et al. have also been

successful in the identification of incidental durotomy with an

accuracy of 99%, surpassing the performance of CPT and ICD-

10 codes, which demonstrated an accuracy of only 64% (18).

Interestingly, however, the feature importance in their NLP

algorithm showed different features compared with ours, further

underscoring the potential variability in NLP algorithm

performance across different cohorts that are geographically

separated, and highlighting the need for broader validation

studies (17). The importance of reliably identifying cases of
Frontiers in Surgery 07131
intra-operative incidental durotomy is highlighted by evidence

suggesting that patients with durotomies tend to have increased

operative durations and inpatient length of stay (LOS) (33).

Thus, accurate depiction of the rates of incidental durotomy can

aid postoperative patient counselling, quantify surgical

complication rates, and help track surgical performance.

For the wound drains model, our study demonstrated an

accuracy of almost 95%. Previous studies have concluded that

postoperative drains are currently being overused in spinal surgery,

potentially imposing an increased risk of unnecessary

complications, while not lending substantial benefit (34). Most

notably, reports have suggested an elevated risk of surgical site

infections (SSI) (35, 36), although this has been refuted by other

papers (15, 37–39). Ho et al. interestingly report that both the

absence of a wound drain and increased drainage when drains are

used indicate an increased risk of delayed infection after posterior
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FIGURE 4

Global feature importance values for the NLP algorithms: (A) dural tears, (B) wound drains, and (C) clips vs. sutures.
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spine surgery (36). Walid et al. additionally found that the use of

postoperative drains was linked to increased post-haemorrhagic

anaemia, and a subsequent requirement of allogenic blood

transfusions (40), which may impose greater costs to the healthcare

system. Adogwa et al. have also demonstrated that patients with

postoperative drains have a significantly longer LOS compared
Frontiers in Surgery 08132
with patients with no drains (37). The combination of such factors

highlights the importance of tracking and quantifying the use of

drains in spine surgery, and therefore the development of our NLP

algorithm will allow for its automated and reliable detection. The

future application of this algorithm in tracking wound drain use

and the associated SSI rates remains to be investigated.
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FIGURE 5

Local feature importance analysis for detecting dural tears in an example individual patient operation note as generated by the NLP algorithm.
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Further, our clips vs. suture model demonstrated an accuracy of

>93% accuracy, and our temporal trend analysis showed a

preference for using sutures for wound closure. Various studies

have concluded that suturing is more efficient when compared

with the use of clips for good wound closure, resulting in lower

rates of separation, prevention of SSI, and ultimately shorter

hospital LOS (41, 42). Contrastingly, postoperative analysis of

visual analogue pain scores comparing the use of clips to non-

absorbable sutures have also demonstrated a significantly quicker

and pain-free experience for patients with stapled wounds (43).

From an economic perspective as well, studies have demonstrated
Frontiers in Surgery 09133
that staples/clips are less expensive than sutures and that the

financial gain appears to increase as laceration length increases

(44). However, conflicting literature exists on the impact of

sutures and clips on patients postoperatively (22), with the need

for future robust randomised control trials to further investigate

their effects. Nevertheless, such single-use surgical items are the

largest contributors to the surgical carbon footprint and hence

precise quantification of such use can guide both financial and

environmental practices (45). Therefore, such automated NLP

techniques can facilitate accurate data collection and analysis of

the use of clips and sutures in neurosurgery. Nevertheless, the
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utility of this NLP algorithm in identifying and predicting

postoperative LOS, risk of SSI, and the estimated carbon

footprint after a surgery remains to be explored in a future study.
4.1. Limitations

Despite these results, the study has several limitations. First,

this was a retrospective analysis at a single centre and therefore

the development and testing of the NLP algorithms was

geographically limited to a specific region. This raises questions

about the algorithms’ generalisability and their performance in

diverse linguistic and clinical contexts. Furthermore, the surgeons

affiliated with the healthcare entities in the study likely share

practices that influence the specific terminology used to

document the various intra-operative characteristics, which could

bias the results. Hence, future prospective and external validation

of the algorithms needs to be performed to validate the clinical

utility of the algorithms. In addition, there are other approaches

that can be utilised to adapt our general model to geographically

distinct regions. Geographically customisable models can be

implemented via techniques such as federated learning and

transfer learning. Federated learning enables the collaborative

training of models across multiple centres without data sharing,

preserving both privacy and centre-specific relationships and

trends in the data. Transfer learning further facilitates rapid fine-

tuning, which can efficiently adapt a base model to new regions

by learning from small local datasets, boosting model

performance and reliability. Secondly, though these models are

able to reliably identify the outcomes of interest, a further

manual review by clinical coders will still be required to exclude

any cases of false positives or false negatives. Thus, the need for

manual review will still exist, though with a considerably lower

level of burden. Hence, multicentre, linguistically different

validation studies in hospitals with varying coding/billing

practices are required to determine the reliability of these models.

Lastly, with the advent of state-of-the-art large language models

such as Bidirectional Encoder Representations from Transformers

and Generative Pre-trained Transformer models, the need for

manual annotation of unstructured, free text data may

exponentially reduce. These models are capable of independently

performing named entity recognition and can understand the

contextual nuances of each outcome of interest. For example,

these models would be able to interpret the reason/context for

using a drain, or the reason for a durotomy. Thus, in the future

the goal would be to develop such models capable of functioning

independently without the need for any manual annotation or

review.
5. Conclusion

In conclusion, this study evaluated the feasibility and

reliability of NLP algorithms in determining the presence of

three intra-operative elements in lumbar spine surgery. We

demonstrate that these NLP models possess great
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discriminative ability and accuracy in predicting the presence

of wound drains, incidental dural tears, and the use of clips

or sutures for wound closure. These models can help

automate the clinical coding process, help optimise hospital

quality improvement, and monitor surgical performance and

practices. This is the first ever study from a country with a

primarily public healthcare system that has demonstrated the

feasibility of using automated NLP systems in operative notes

to potentially guide both surgical practices and resource

allocation.
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